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Prediction error drives associative learning
and conditioned behavior in a spiking
model of Drosophila larva

Anna-Maria Jürgensen,1 Panagiotis Sakagiannis,1 Michael Schleyer,2,3 Bertram Gerber,2,4,5

and Martin Paul Nawrot1,6,*
SUMMARY

Predicting reinforcement from sensory cues is beneficial for goal-directed behavior. In insect brains, under-
lying associations between cues and reinforcement, encoded by dopaminergic neurons, are formed in the
mushroombody.Weproposeaspikingmodelof theDrosophila larvamushroombody. It includesa feedback
motif conveying learned reinforcement expectation to dopaminergic neurons, which can compute predic-
tion error as the difference between expected and present reinforcement. We demonstrate that this can
serve as adriving force in learning.When combinedwith synaptic homeostasis, ourmodel accounts for theo-
retically derived featuresof acquisition and lossof associations that dependon the intensity of the reinforce-
ment and its temporal proximity to the cue. Frommodelingolfactory learningover the time courseofbehav-
ioral experiments and simulating the locomotion of individual larvae toward or away from odor sources in a
virtual environment, we conclude that learning driven by prediction errors can explain larval behavior.

INTRODUCTION

Associative learning is a fundamental cognitive ability across vertebrate1–4 and invertebrate species.5–8 In insects, themushroom body (MB) is

a central brain structure for multi-sensory integration, involved in memory formation and recall.9,10 The synapses between its intrinsic and

output neurons are at the core of memory formation during associative learning.6,9,11–14

During associative learning, a relationship between two previously unrelated elements is established gradually. In classical conditioning,

representing one form of associative learning, a so-called conditioned stimulus (CS), obtains behavioral relevance through its concurrence

with the reinforcing unconditioned stimulus (US). The temporal evolution of this memory acquisition process depends dynamically on the

spatiotemporal proximity of the CS and US, as formalized in the Rescorla-Wagner (RW) model.15

DV = a$ðlUS � VðtÞÞ;
Vðt +DtÞ = VðtÞ+DV :

(Equation 1)

The asymptote lUS of the learning curve defines the point at which the CS fully predicts the US and the acquisition of their association

terminates. Until then, the change in associative strength DV is proportional to the difference between the maximum associative strength

lUS and the already acquired associative strength VðtÞ. This driving force in the learning process has been termed prediction error

(PE)PE = lUS � VðtÞ.16 Throughout the memory acquisition phase, the pace of learning, which can be formalized as the slope of the acqui-

sition curve, decreases as the PE becomes smaller, reducing the driving force for changes of the association VðtÞ.15–17 This continuous update
of reinforcement predictions, guided by the PE, could allow animals to adapt their anticipatory behavior to the predicted US efficiently18,19

and thus approach reward or avoid punishment.

Dopaminergic neurons (DANs) have long been known to encode information about reward and punishment. These types of neurons

respond to the presence of rewards and punishments in the environment, shown both in vertebrates20–25 andDrosophila.26–29 The activation

of DANs induces approach or avoidance learning as has been found in vertebrates30–33 and larval28,34–36 and adult37–39 Drosophila. This

approach or avoidance learning is facilitated by the modulation of the synapses between intrinsic and output neurons of the MB.11,13,14,40

Ultimately DANs do not only signal the presence of rewards or punishments but have also been suggested to encode a PE in various verte-

brate species24,41–44 and might have a similar function in insects.27,28,40,45–50
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Figure 1. Network mechanisms

(A) Networkmodel of theDrosophila larva olfactory pathway including all neurons and connections implemented. One-to-one feedforward connections between

21 olfactory receptor neurons (ORNs) and 21 projection neurons (PNs)/local interneurons (LNs) and from 2 to 6 PN to each of the 72 Kenyon cells (KCs). Lateral

inhibition from each LN innervates all PNs, and recurrent feedback inhibition from the anterior paired lateral (APL) neuron is provided onto all KCs. TheMB output

region is organized into two distinct compartments. The upper compartment holds the approach encoding MBON+ and is innervated by the punishment-

mediating DAN-; the lower compartment holds the avoidance mediating MBON- and is innervated by the reward-mediating DAN+. Each DAN can exert a

neuromodulatory effect on the plastic KC>MBON synapses within its compartment. MBONs provide excitatory and inhibitory (via gray interneurons, LN)

feedback to the DANs. The implementation of the olfactory pathway with ORNs, PNs, LNs, APL, and KCs is similar to a previous model that lacks plasticity

and the MB output circuitry.1

(B) Sketch of synaptic weight change at a single KC>MBON synapse with respect to the synaptic eligibility trace elicited by KC spikes and the occurrence of

reward-triggered spikes in DAN+. Amylacetate is paired with a reward for 2 s (gray shaded area).

(C) To generate simulated larval behavior in the Petri dish during the test phase of the learning experiments, we utilized our locomotory model,2 based on the

behavioral bias (see method details in STAR Methods) acquired by the MB model during the training phase. The behavioral bias is used directly as input to the

locomotory model.

(D) All odors (seemethod details in STARMethods) were used in the experiments: naturalistic odor patterns for amylacetate and 3-octanol, as well as four artificial

patterns (odorA, odorB, odorC, odorD) with varying distances (see method details in STAR Methods) from odorA. Each odor activates a different set of input

neurons with a different spike rate, as indicated by the scale bar.
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We introduce a biologically realistic spiking model of the Drosophila larva olfactory pathway and MB in one brain hemisphere that forms

associations of odors with reward to further test the hypothesis that within this circuit PE coding takes place in DANs that receive feedback

from the output neurons of the MB or their downstream partners through either direct or indirect pathways.12,28,51–54 Beyond the scope of

similar models28,55–58 (see discussion), we demonstrate that the proposed mechanism can reproduce the experimentally observed findings

on the acquisition of associations of odors with reward in a time-resolved manner.59 To facilitate direct qualitative and quantitative compar-

isons with animal behavior, we couple ourMBmodel with a realistic locomotorymodel of the larva60 that captures the learning-induced adap-

tation of chemotactic behavior in the individual animal.
RESULTS

Connectome-based circuit model of the larval olfactory pathway

The network architecture of our model (Figure 1A) connects our previous olfactory pathwaymodel61 with a plastic circuit model of theMB and

its output neurons. Our model is based on the anatomy of the olfactory pathway and the MB in a single Drosophila larva brain hemi-

sphere28,34,62,63 (see method details in STAR Methods). Peripheral processing is carried out by 21 olfactory receptor neurons (ORNs), each
2 iScience 27, 108640, January 19, 2024
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expressing a different olfactory receptor type.62,64,65 ORNs form one-to-one excitatory synaptic connections with 21 projection neurons (PNs)

and 21 local interneurons (LNs) in the antennal lobe.62 Each LN connects with all PNs via inhibitory synapses, establishing a motif for lateral

inhibition within the antennal lobe. The 72 mature larval Kenyon cells (KCs)63 are the excitatory intrinsic neurons of the MB. Each KC receives

excitatory input from 2 to 6 randomly selected PNs. Additionally, a few KCs receive input from a single PN.63 These one-to-one PN>KC con-

nections are excluded from our circuit model. The KCs are subjected to feedback inhibition, provided via the GABAergic anterior paired

lateral (APL) neuron, which receives input from all KCs.34 Only mature KCs, characterized by a fully developed dendrite, are included in

this model, yielding a complete convergent synaptic KC>APL connectivity. The MB lobes are organized in compartments, in which the KC

axons converge with the dendrites of one or fewMB output neurons (MBONs).28,63 Our model assumes twoMBONs from two different com-

partments that are representative of two different categories of output neurons of the MB that mediate either approach or avoidance (Fig-

ure 1A).11–14,66–69 Both MBONs receive excitatory input from all of the KCs to fully capture the information that is normally represented by the

complete set of MBONs. Each compartment is also innervated by a single DAN, signaling either reward (DAN+) or punishment (DAN-) that

targets the KC>MBON synapses to facilitate learning.
Learning and synaptic plasticity at the KC>MBON synapses

We assume that the KC>MBON synapses undergo plasticity (Figures 1A and 1B), based on strong experimental evidence in larval28,66,67 and

adult flies.11,13,14,40 This plasticity requires the convergence of the sensory pathways in the form of KC activation and of the reinforcing

pathway, mediated by a neuromodulatory DAN signal at the synaptic site. We employ the two-factor learning rule

Dwl
i = � a$eiðtÞ$RðtÞ% 0 (Equation 2)

to model learning-induced plasticity at each KC>MBON synapse i (Figures 1A and 1B). The first factor is expressed in the presynaptic KC

activation by an odor, rendering the synapse eligible for modification. This is modeled via an exponentially decaying eligibility trace eiðtÞ,
which is set to one whenever the respective KC elicits an action potential (Figure 1B). Its decay time constant determines the window of op-

portunity for synaptic change. The presence of a reinforcing stimulus constitutes the second factor and is signaled by the reward-mediating

DAN+ or punishment-mediating DAN-. Spiking of the DAN+ (or DAN-) provides a neuromodulatory reward (or punishment) signal RðtÞ to the

synaptic site. When a DAN action potential coincides with positive eligibility at a given synapse i, the respective synaptic weight is reduced

(Figure 1B) where the reductionDwl
i is proportional to the current value of the eligibility and is additionally controlled by the learning rate a> 0

(Table S1). A higher or lower DAN activity thus results in a more or less frequent reduction of the synaptic weight elicited by DAN spikes. Each

synaptic weight is restricted to non-negative values.
Synaptic homeostasis

To account for the experimentally observed decline of a learned association when the reward is omitted45,70–73 and to maintain memory ca-

pacity across the population of KC>MBON synapses, we introduce a mechanism for homeostatic synaptic plasticity74,75 as

Dwh
i = ðwinit � wiðtÞÞ $MðtÞ $ hR0: (Equation 3)

This rule has two features. First, the magnitude of the homeostatic effect depends on the postsynaptic spiking activityMðtÞ of the MBON.

Second, we assume that the homeostatic regulation acts locally at individual synapses.76,77 Each MBON action potential leads to a homeo-

static increase Dwh
i > 0 of the individual KC>MBON synaptic weight if wiðtÞ<wh

i . This increase is proportional to the extent to which the

weight differs from its original valuewinit (Table S1) and thus balances the learning-induced reduction of the synaptic weight. The homeostatic

regulation factor hR 0 (Table S1) parameterizes the magnitude of the homeostatic effect. This mechanism serves as an implementation for

the loss of the association when the reward is omitted, partly counteracting the plasticity effect at each KC>MBON synapse (see discussion,

section ‘‘a mechanistic implementation of the RWmodel’’), and also maintains memory capacity by counteracting the accumulated reduction

of input weights over the course of the learning process (Equation 2). The sum of the learning-induced synaptic plasticity and the homeostatic

regulation defines the magnitude of the synaptic weight at the next simulation time step t +Dt as

wiðt + DtÞ = wiðtÞ+Dwl
i +Dwh

i (Equation 4)

and thus the dynamic weight changes throughout an experiment.
Behavioral bias at the MB output

It has been shown experimentally that specific MBONs encode a behavioral tendency to either approach or avoid a currently perceived stim-

ulus, depending on the acquired stimulus valence in adult12–14,68,69 and larval66 Drosophila. In the naive state of our model, all KC>MBON

synapses have the same initial weight winit (Table S1), and hence the spiking activity of both MBONs is highly similar. Learning alters the

KC>MBONsynaptic weights and thus skews the previously balancedMBONoutput. This acquired imbalance betweenMBONoutputs biases

behavior toward the approach or avoidance of the conditioned odor (Figure 1C). To quantify the effect of learning, we compute the behavioral

bias toward odors used in the experiments from the spike count of both MBONs over a time interval T (also see method details in STAR

Methods)
iScience 27, 108640, January 19, 2024 3



Figure 2. Learning with prediction errors

(A) N = 30 model instances were trained with the odor amylacetate (CS) and reward (US, blue background). MBON>DAN feedback, the reward/odor intensity,

and the learning rate were manipulated in separate experiments. The odor preference (behavioral bias, see method details in STAR Methods) was measured

continuously in windows of 1 s and averaged over all model instances.

(B)N = 30 model instances were trained during three trials with amylacetate and reward (blue background). Reward intensity was either constant across the three

training trials (white curve) or enhanced during the third (gray) or the second and third trials (black). The training was followed by a 3min test phase with odor only

(gray background).

(C) N = 30 model instances were trained with amylacetate and reward (blue background) and then underwent an extended test phase (gray background).

(D) Individual acquisition curves for N = 30 model instances (standard experiment Figure 2A).
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BB =
MBON+ � MBON�

T
: (Equation 5)

Implementation of prediction error coding in the KC-MBON-DAN motif

In the larva, DANs and other modulatory neurons can receive excitatory and inhibitory input from different MBONs, either directly or via a

single or two interneuron steps.28 Based on this anatomical evidence, we propose a basic MBON>DAN feedback motif in Figure 1A (for

similar models, see discussion section: Comparison with other MBmodels). In our model, DANs are activated by external reward/punishment

signals and also receive direct excitatory (red) and indirect inhibitory (blue) feedback from both MBONs. As the initial balance between the

two MBON outputs shifts over the course of the training process, the amount of excitatory and inhibitory feedback that DANs receive con-

tinues to diverge, allowing the DANs to access the model’s learning history. Ultimately, DAN activation signals the PE as the difference be-

tween the current external activation by reinforcement in the situation and the expected reinforcement based on prior learning. Prior learning

is implemented as the difference between excitatory and inhibitory MBON>DAN feedback.

The suggested feedback motif led to learning curves that saturated when the reward was fully predicted, and the PE approached zero

(Figure 2A). This effect disappeared when the feedback circuit was disabled (Figure 2A). In this case, the behavioral bias quickly reached

its maximum value when the MBON- elicited nomore spikes. Increasing the reward intensity caused the learning curve to saturate at a higher

level (Figure 2A) because RðtÞ (Equation 2) was positive more often during each analysis time window of 1 s (Equation 5). Increasing the

learning rate a by 65% fostered a faster acquisition of the association (Figure 2A). When changing the learning rate, we also adapted the ho-

meostatic regulation factor h (Equation 3) by the same factor since it was fitted together with the learning rule. More information about the
4 iScience 27, 108640, January 19, 2024
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isolated effect of synaptic homeostasis can be found in the supplemental information (Figure S1). Increasing the reward intensity after 2:5min

(black curve), or 5 min (gray curve), of appetitive training resulted in a steeper slope of the learning curve. Additionally, it increased the

maximum during training trials of 2.5 min duration with increased reward intensity (Figure 2B). Higher intensity of the reward resulted in

an average DAN spike rate of 39:14 ðG1:27 SDÞ Hz compared to 33:11 ðG1:34Þ Hz.
We next tested for the loss of the acquired association throughout prolonged exposure to the CS without the US following initial memory

acquisition, as observed experimentally.15,78 To test this in our model experiments, we now presented the odor that was previously paired

with reward in the absence of reward and for an extendedperiod. The extinctionmechanismwas no longer outweighedby learning and drove

each individual weight back toward winit (Figure 2C). We also demonstrated the interaction of the learning rule with this mechanism in Fig-

ure S1, where the learning rate remains constant. At the same time, the magnitude of the homeostatic regulation was manipulated to show

that both mechanisms need to be in balance.

The observed properties of the learning curves are not just the result of averaging across many model instances but can be attributed to

the saturating effect of the MBON>DAN feedback on each individual learning curve (Figure 2D).

Learned preference and behavior generalize to similar odors

We trained ourmodel by pairing a rewardwith a single odor for 4min. After the training procedure, we tested the behavioral bias for either the

same or a different odor, following the experimental approach used in the larva.79 Mimicking the experimental data, we showed that the odor

preference is highest if training odor and test odor were identical in the case of training with 3-octanol. When amylacetate was used during

training, 3-octanol preference was increased (Figure 3A). Figure 3B shows the network response to 30 s stimulations with amylacetate and

3-octanol in a single exemplary model instance. On the level of the ORNs, 3-octanol merely activated a subset of the amylacetate-activated

neurons, some with a higher rate than in the case of amylacetate (Figure 1D). The uniqueness of the odor response pattern is enhanced in the

KC population.61 We systematically tested for generalization using a set of artificially designed ORN activation patterns with a controlled de-

gree of overlap (seemethod details in STARMethods, Figure 1D) and found that, with decreasing similarity, the generalization effect to a new

odor was diminished (Figure 3A).

The model reproduces temporal features in trace conditioning experiments

Including an odor-evoked eligibility trace at the KC>MBON synapses allowed the model to maintain the sensory odor representation for a

time window during which reward would trigger synaptic change (Figure 1B). The time window between odor and reward onset

(0; 10; 20; 30; 40; 50; 60; 120 s) was varied for trace conditioning experiments with a 30 s presentation of odor and reward that was repeated

three times. A small inter-stimulus interval (ISI) between the onset of the odor stimulus and the onset of the reward stimulus of 10 to 30 s

led to an increase in behavioral bias compared to the complete overlap of odor and reward (Figure 3C), using the extended window of op-

portunity for synaptic change triggered by each KC spike. Long ISIs did not lead to learning as the eligibility trace had declined close to zero

(Figure 3C). These findings match observations from experiments in larvae34,80,81 with the caveat that the trace in the real larva brain seems to

extend for a slightly longer period of time compared with our experiments.

The model reproduces paired and unpaired associative conditioning experiments

To test if learning, driven by PE, can account for learned larval behavior, we replicated a set of single-trial conditioning experiments performed

with larvae59 in simulation. In these experiments, simulated animals were first trained with the odor amylacetate in a single trial of varying

duration. In the animal experiments, larvae are placed on a Petri dish coatedwith an agar-sugar substrate and the odor in two small containers

for diffusion in the air (paired training, Figure 4A). Either before or following this training protocol, larvae undergo a single trial without sugar

and odor. Afterward, the animals are transferred to a new dish with two odor containers placed on different sides. One of them contains amy-

lacetate, and the other one is empty. This paired training was compared with an unpaired protocol (Figure 4A) with separate (randomized

order) presentations of amylacetate and sugar. After the paired training protocol, the animals tend to approach the previously rewarded

odor, as measured by the difference in the number of animals on each side at the end of a 3 min test phase, divided by the total number

of animals. Following the experimental literature, we will refer to this measure as the preference index59 (Equation 17 in quantification and

statistical analysis in STAR Methods).

We aimed to replicate these behavioral experiments on two levels. First, we focused on the direct model output that reflects the strength

of the acquired association between amylacetate and reward (behavioral bias, Equation 5, see also quantification and statistical analysis in

STARMethods) and later also simulated behavior based on these biases. We simulated both the paired and unpaired training protocols (Fig-

ure 4B). While the unpaired training yielded almost no behavioral bias, the models that underwent the paired training showed an increased

behavioral bias that depended on the duration of the training and saturation for longer training duration (Figure 4B). The simulation results

reported in Figure 4B were obtained using odor-naive models that exhibited no odor preference prior to training. To account for the exper-

imental finding that real larvae typically express an odor preference evenwithout any training,82–84 we readjusted our experiments to include a

pre-training period of 10 min to start the conditioning experiments with the amylacetate-reward association already established. This adap-

tation of the protocol led to new results (Figure 4C). The paired condition in Figure 4C showed that, once the behavioral bias was saturated

(Figure 2A), continued pairing maintains the association without further increasing it. Unpaired training, however, caused the behavioral bias

to decrease and saturate at a lower level. For a discussion of different potential causes of a reward expectation prior to training, please refer to

the discussion (comparison of modeling results to experimental findings). Figure 2A shows that disabling MBON>DAN feedback led to a
iScience 27, 108640, January 19, 2024 5



Figure 3. Reward generalization and trace conditioning

(A) The behavioral bias (see Method details in STAR Methods) generalizes to odors that differ from the training odor after a 4 min training (3 min test phase). We

conducted simulation experiments with different combinations of training and testing odor, each for 10 groups (gray circles represent themean of a single group)

of N = 30 larvae, and red lines indicate the mean between groups. The behavioral bias is highest when the training and the testing odor are the same.

(B) Spiking activity in the network during the presentation of amylacetate (left) and 3-octanol (right) in a single naive model instance.

(C) Simulated trace conditioning experiments with odor (amylacetate) and reward. Inter-stimulus interval (ISI) indicates the time between odor and reward onset.

The black line displays themean, and gray lines the std overN= 10 groups of 30model instances each. Conditions circled in red correspond to the conditions also

used in animal experiments.3,4
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learning curve that did not saturate but instead increased with a steep slope until it reached themaximum value for the behavioral bias (Equa-

tion 5) with a MBON- rate of 0. To verify if this PE feedback mechanism is responsible for the difference between maintenance and loss of the

association in Figure 4C, we repeated the same experiment with disabled MBON>DAN feedback. The behavioral bias overall was much

higher compared to the intact network (Figure 4D). The maximum was reached before the test phase of even the shortest experiment

with 1 min training.
6 iScience 27, 108640, January 19, 2024



Figure 4. Paired and unpaired learning in the MB model

(A) Schematic overview of the paired vs. unpaired training protocol.

(B) The model’s behavioral bias (see method details in STAR Methods) for training with amylacetate and reward for N = 10 paired (dark gray, mean in red) and

N = 10 unpaired (light gray, mean in blue) experiments with groups of 30 modeled larvae each. In the unpaired condition, half of the groups were trained with the

odor preceding the reward. For the other half, the reward preceded the odor.

(C) Model behavioral bias for amylacetate for N = 30 paired and N = 30 unpaired experiments with randomized order of odor and reward. Prior to the

conditioning experiment, the model instances underwent a 10 min pre-training period, during which odor and reward were paired.

(D) Model behavioral bias for amylacetate for N = 30 paired and N = 30 unpaired experiments with randomized order of odor and reward. The MBON>DAN

feedback was disabled. Before the conditioning experiment, the model instances underwent a 10 min pre-training.
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After examining the readout of the MB directly (Figure 4), we next performed behavioral simulations of the testing phase with groups of

virtual larvae for both the paired and unpaired conditions.59 Since the effect of training in lab experiments was quantified behaviorally via

spatially defined, group-level metrics (preference index59 and performance index,59; Equations 17 and 18), this allows a straightforward com-

parison between the animal (Figures 5A and 5B) and simulation experiments (Figures 5C and 5D). To this end, we utilized a realistic model for

the simulation of larval locomotion and chemotactic behavior60 that uses the behavioral bias at the output of the MB model as a constant

factor, throughout the test to modulate the locomotory behavior of individual larvae toward or away from a spatially placed odor source

in a virtual arena (see quantification and statistical analysis in STAR Methods). The resulting preference indices, acquired across groups of

independently simulated larvae (Figure 5C), can be directly compared to the experimentally obtained preference indices (Figure 5A). We

also compared performance indices from our simulated experiments (Figure 5D) with those from the lab experiments (Figure 5B). We found

that the model can replicate these when assuming an odor preference at the beginning of the experiment. The animals’ preference is rela-

tively consistent across training trials of different duration. Prolonged paired training did not lead to an increase in preference (Figure 5A).

These experiments did not include a test for odor preference before training, but the naive larval preference of odors used in learning ex-

periments has been demonstrated elsewhere repeatedly.82–84 This paired training was compared with an unpaired protocol with separate

(randomized order) presentations of amylacetate and sugar. Here, the extent to which animals preferred amylacetate over no odor varied

with the duration of the training trial. The longer the duration of the training, the more the preference index decreased from an initially

high value but saturated around 2:5 min (Figure 5A).
DISCUSSION

We proposed a basic PE encoding circuit motif in the larval MB and tested its biological plausibility and capacity to explain behavioral data in

a continuous simulation using our spiking network model of the olfactory pathway61 andMB.We demonstrate that this mechanistic model for

PE coding results in saturating individual and group-level learning curves where the slope andmaximum of the learning curve are determined

by the intensity of the reward. Learning is also influenced by the relative timing of odor and reward and can be extinguished if the reward is

omitted during the presentation of the sensory cue. Coupling of the spiking neural network simulation with the simulation of larval locomotory

behavior allowed to explain behavioral results obtained in larval learning experiments.
A mechanistic implementation of the RW model

A number of predictions can be derived from the phenomenological RW model15 and tested in our mechanistic model thereof. We found

that, regardless of odor and reward intensities or the model’s learning rate, the strength of the odor-reward association (quantified by the

behavioral bias, Equation 5) saturated over time (Figure 2A), as the strength of the already acquired association VðtÞ approached the

maximum value determined by the present reward (lUS) (Equation 1). Consequently, our model’s acquisition curve saturates at a higher value

when the intensity of the reward is increased (Figures 2A and 2B), as predicted by the RW model, in which a stronger US should result in a

higher value of the asymptote lUS.
15 In our model, a higher reward intensity relates to a higher input rate to the respective DAN (see method

details in STAR Methods), which translates into more frequent DAN action potentials within a given window of 1 s. According to the RW

model, increasing the learning rate a15 should lead to faster acquisition of the association without changing the asymptote. In our model,

the learning rate parameter enters the synaptic learning rule and directly modulates the increment of the synaptic weights (Equation 2).

The RW model predicts that the omission of reward should result in the loss of the learned association15 (Equation 1). At this theoretical

level, we cannot infer if this loss is due to extinction or forgetting. Extinction, characterizedby the possibility of recovery of the association after

its temporary loss,85 has been demonstrated in adult73,86 but not yet in larval Drosophila (for a discussion see Mancini et al.87). To retain the

association for recovery, extinction relies on the formation of parallel memory traces for themaintenance and the loss of the association.45,72,88

The mechanism implemented in our model (Equation 3) is a sensory input-dependent homeostatic mechanism of forgetting that slowly

pushes all synaptic weights back toward their initial value. This steadily deletes any previously learned association without the possibility

of recovery, but only in the presence of olfactory input. Note that, because the postsynaptic MBON activity MðtÞ enters Equation 3, any

olfactory input may trigger homeostatic forgetting. As a consequence, if the model is first trained by pairing odor A with reward and subse-

quently undergoes a second pairing of odor B with reward, then the reward association with odor A is diminished during the acquisition of the

reward association with odor B, providing an experimentally testable prediction.
Comparison of modeling results to experimental findings

A variety of experiments have demonstrated group-level acquisition curves that saturate over multiple training trials or with increasing dura-

tion of a single trial in olfactory conditioning.58,59,71,89,90 To replicate larval behavior in reward learning experiments59 with varying duration of

the learning phase (Figures 5A and 5B), we trained our model with an odor and reward in a paired vs. unpaired fashion (Figure 4B). Real larvae

exhibit a naive (often positive) preference for many odors.82,91–93 They demonstrate a strong odor preference after a very short training and no

significant increase in their preference when trained in a paired manner for longer periods.59,82 In contrast, animals trained in an unpaired

protocol start with a similarly high odor preference, which then decreases over time.59,82 This observation from animal experiments is some-

what counter-intuitive since the coincidence of odor and reward should yield an increase in the association of those two stimuli,15 which can be

observed in our modeling results (Figure 4B). To resolve this, we included the observation that odors are not always neutral to untrained an-

imals and assumed odor preference before the conditioning experiment.59 In this case, the animals would enter into the experiment with an
8 iScience 27, 108640, January 19, 2024



Figure 5. Replicating behavioral experiments with paired and unpaired training

(A) Experimental preference indices for amylacetate for 20 groups of 30 real animals each for paired and unpaired experiments with randomized order of odor

and reward (data published by Weiglein et al. (2019),5 https://learnmem.cshlp.org/content/26/4/109/suppl/DC1).

(B) Experimental performance indices for amylacetate computed between preference in paired and unpaired real animal experiments.5

(C) The simulated behavior is based on the protocol in A. Simulated preference indices for amylacetate forN = 10 paired andN = 10 unpaired experiments with

varied order of odor and reward.

(D) Simulated performance indices for amylacetate computed between preference in paired and unpaired simulation experiments.
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already established reward prediction that would be violatedduring unpaired training. Three scenarios lend themselves as plausible causes of

this effect. First one is accidental conditioning over the course of their lifespan, during which they are raised on a food substrate while being

exposed to air that carries many different odorants. Alternatively, or in fact, additionally, the animals likely exhibit innate preferences for

several odors.91,92,94 Finally, the presence of the reward during reward-only phases might lead to an association of the experimental context

with that reward (previously discussed by Saumweber et al.82). In our model, this could be realized by providing context-specificmulti-sensory

input to theMB that can be associated with themodel solution suggested byMüller et al.95 The resulting reward expectation (solely based on

the always-present context), unmet during the odor-only phases, could then lead to a negative PE signal. All three candidate explanations

would yield a similar projection for the unpaired experimental protocol: a reward expectation acquired prior to the actual experiment would

cause a violation of that expectation during odor-only trials of the unpaired experiments. In all three cases, the animal’s preferences might

also generalize to a broader array of odors, leading to an overall preference for some odors, as observed experimentally. To test this hypoth-

esis, we pre-trained ourmodel before simulating conditioning experiments (Figure 4C) to establish an odor preference at the beginning of the

experiment. This not only ensured that the model behaves in accordance with the RWmodel15 but also fits the animal experimental results59

(Figures 5A and 5B). A possible alternative explanation could be a sensory habituation process to the odor that might cause odor preferences

to decrease over time in the unpaired condition, while, in the paired condition, this effect might be counteracted by the continued presen-

tation of odor and reward together.96

Thus far, we tested our model in experiments where the CS and US presentations fully overlapped (paired conditions). We now consider

different onset times, with the onset of the CS always preceding the onset of the US (Figure 3C). For these experiments, we used a shorter

duration of 30s for both CS and US presentation, repeated over three acquisition trials to mimic experimental conditions in larval experi-

ments34,80,81 that used optogenetic activation of DANs as a proxy for sugar reward (or punishment). Similar to their experiments, we show

that the behavioral bias clearly depends on the temporal delay between CS and US (Figure 3C). The complete temporal overlap of CS

and US (ISI = 0) does not seem to exploit the full potential of learning the association. Instead, partial overlap yields stronger associations

due to the extended window of opportunity for synaptic change triggered by the odor’s eligibility trace. In our model, the eligibility trace eðtÞ
represents a molecular process that maintains the odor signal locally in the KC>MBON synapses (Equation 2). Appetitive and aversive trace

conditioning experiments have been conducted with larvae34,80,81 and adult flies and other insects.89,97–99 All experiments during which the

CS is presented before the US demonstrate that longer ISIs abolish learning of the CS-US association when no KC odor representation per-

sists during the reward period. In the cases of shorter intervals, the experimental data are not entirely conclusive. The odor preference was

either higher for partial or no overlap, compared with complete overlap,34,99 or highest for complete overlap.58,81,89

We also looked at the extent of reward generalization to novel odors. Experiments with larvae have shown that associations between an

odor and reward generalize, to a varying extent, to other odors.79,100 Previous modeling experiments in adult insects have also shown that

reward generalization depends on odor similarity.56,101–103 In our larval model, we also demonstrate both generalization to other odors

and a loss in strength, compared to the training odor (Figure 3A). We also show that the extent of the generalization depends on the similarity

of the training and test odor, as measured by the overlap of the input patterns (Figure 1D). The larval pathway with its relatively small coding

space62,64,65 might be especially prone to such poor discriminative abilities.

Model predictions for behavioral experiments

We targeted two hypotheses. Firstly, symmetrical inhibitory and excitatory feedback from MBONs to DANs should yield a circuit capable of

producing saturating learning curves due to PE16 driving the learning process, which has also been suggested by previous models.28,55–58

Secondly, saturating learning curves, driven by PE, should translate into real animal and simulated behavior when comparing different training

durations and intensities of reinforcement. We were able to test these hypotheses on the level of MB readout (behavioral bias, Equation 5;

Figures 2 and 4) and through the comparison of animal and simulated behavior of artificial larvae (Figure 5). While the simulation results fit

nicely with the real larval behavior in an experiment with a varied training duration59 (Figure 5), ultimately, the role of MBON>DAN feedback

needs to be tested in behavioral animal experiments, directly manipulating this feedback. We would expect that the learning curves of indi-

vidual animals should saturate over time whenMBON>DAN feedback is intact. If this feedback was blocked, learning curves should not satu-

rate. Additionally, increasing or decreasing the intensity of the reward should lead to saturation on a higher or lower level, respectively.

Models of PE coding in the insect MB

Models in which a PE signal drives synaptic plasticity lend themselves to studying the evolution and saturation of learning over time (either

across repeated learning trials or in continuous time), depending on the learning history. Here, we suggest a minimal basic circuit motif es-

tablishing a mechanism for PE coding in the Drosophila larva MB. It is based on a two-factor learning rule that requires the coincidence of

presynaptic sensory KC activity and DAN activity to reduce the strength of specific KC>MBON synapses and a symmetrical MBON>DAN

feedback circuit to convey excitatory and inhibitory feedback components to DANs that compute a PE (Figure 1A). Our model is in line

with several recent modeling approaches that have targeted the idea of PE coding in DANs in the adultDrosophila55–58 as well as in the larval

MB28 implemented as some form of MBON>DAN feedback.

Somephenomena predicted by the PE coding theory have been demonstrated in thesemodels. The first key prediction is the saturation of

the learning curve across time as the PE decreases,15,16 which has been shown in trial-based ratemodels.55–58 The secondprediction is the loss

of an acquired association of a stimulus with reinforcement, following repeated presentations of the stimulus alone, which has been realized in

two conceptually distinct ways. A memory decay, implemented as a process of changing the KC>MBONweights in the opposite direction of
10 iScience 27, 108640, January 19, 2024
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the learning process, is implemented in our model (Equation 3) and has been used by others in similar ways.58,103,104 Alternative models have

suggested a circuit for extinction learning that can form a parallel extinctionmemory of opposite valence in the adult56–58 and the larva.28 This

typically involves an additional cross-compartment inhibitory MBON>DAN feedback and allows for the replication56 of extinction experi-

ments in the adult fly.45,72 An additional feature observed in associative learning is trace conditioning, when the reinforcing stimulus is delayed

with respect to the CS; it has been realized by an action potential-triggered eligibility trace in ourmodel (Equation 2) and previously through a

decaying rate function.28,57,105

To our knowledge, the present model is the first implementation of PE coding in the MB in a fully spiking neural network model. The syn-

aptic learning rule (Equation 2) detects a coincidence between a DAN action potential and positive synaptic eligibility that is triggered by KC

action potentials. Postsynaptic MBON action potentials trigger a homeostatic restoration of initial weights and thus implement memory loss

without reinforcement. The fact that the spikingmodel is continuous in time allowed us to train and test our model in realistic time-continuous

virtual learning experiments and to assess the dynamic change in the model’s odor preference. The combination with a time-continuous

behavioral simulation60 during memory retention allowed for straightforward comparison with larval experiments (Figure 5).

Comparison with other insect learning models

Several other models of MB learning, based on KC>MBON plasticity without a PE coding mechanism, exist for the fruit fly,101,104,106 the hon-

eybee,102,107 and more general insect MB circuits.108–110 All of these models suggest plasticity to be mediated by the activity of modulatory

neurons, coinciding with either KC102,103 or coordinated KC andMBON activity.101,104,108 These models can perform associative learning of a

stimulus when paired with reinforcement,101–104,108 as well asmore complicated forms of learning such as second-order conditioning103,104,111

and matching to sample108 or reinforcement generalization tasks, the extent of which depends on the stimulus similarity.101,102 Additionally,

some models101,102,105 were successfully tested in patterning tasks,112 where combinations of stimuli are reinforced, while their components

are not (positive patterning) or vice versa (negative patterning).

Gkanias et al.103 explored an alternative mechanism to PE for the saturation of learning across trials. Their comprehensive rate model of

learning introduced a dopamine-dependent plasticity rule that, similar to Equation 4, consists of a learning term and a recovery term that

accounts for memory loss. Their learning rule is a special case of Equation 2 with unity learning rate. Their synaptic recovery term, however,

is fundamentally different from our synaptic homeostasis term as it depends on the activity of the reinforcing DAN. Thus, the presence of

reward or punishment is required and sufficient to induce loss of memory in contrast to our model, where olfactory input alone is required

and sufficient to induce memory loss.

Individuality is comparable for model and animal behavior

Since individual differences in behaviorally expressed learning performance have been observed in insect experiments,113–118 we included

two sources of individuality in our MB model to account for inter-individual variability between model instances. Firstly, the connectivity

from PNs to KCs is randomly drawn for each model instance. Secondly, the sensory input to the ORNs and the reward input to DANs are

simulated by stochastic point processes. This is sufficient to introduce variability between the learning curves of individuals in Figure 2D

with a considerable range of asymptotic values for the behavioral bias. In the behavioral simulations, each simulated larva was placed in

the center of the virtual dish with a random head orientation, introducing another source of inter-individual variation. This matches the animal

experiments where larvae are placed in the center of the dish using a small brush, resulting in a random head orientation. In addition, the

behavioral model implements a stochastic duration for the successive activity and rest bouts.60 We compare experimental and simulated

behavioral results across repeated group experiments by computing the preference index (Equation 17) for each group of 30 larvae at the

end of the preference test. The distribution across performance indices (Equation 18) computed from independent groups is slightly lower

across simulated groups than across the experimental groups (Figure 5). Additionally, parameters of the larval body could be considered to

enhance inter-individual differences, such as the larval size, which affects speed.60,119,120

Limitations of the study

Insect experiments have provided mixed evidence for other phenomena that can be predicted from the RW model and PE theory, such as

blocking121–125 and conditioned inhibition.126–129We excluded suchmore complex forms of learning fromour experiments. Exploring them in

models could yield valuable insights into the Drosophila circuit, as well as aid in our general understanding of PE coding. Furthermore, the

simplification of the output circuitry to twoMBONs prevents the exploration of parallel associations regarding the same stimulus,45 effectively

limiting conclusions about extinction and forgetting. Another model previously demonstrated that computation across compartments could

be a fruitful way of approaching PE coding in the MB.57

An indirect prediction by the RWmodel15 fits the experimental observation of second-order conditioning in adultDrosophila,130–133 where

a secondCS2 is paired with the CS, after this CS has acquired an association with the US. Through the CS2-CS pairing without the US, the CS2

acquires predictive power of the US. Different mechanisms have been proposed to be involved in causing this effect.27,103,132,134,111 Currently,

second-order conditioning and other more complex forms of learning cannot be accounted for by our model.

CS and US pre-exposure effects135–138 that might be explained by changes in either attention to the CS or habituation to the CS or the US,

caused by prolonged exposure before training, rather than changes in associative strength (for a review see Lubow et al.139), are likely inter-

twined with associative learning in producing animal behavior. They are not addressed by the RW model and are not part of our implemen-

tation thereof.
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145. Kropf, J., and Rössler, W. (2018). In-situ
recording of ionic currents in projection
neurons and Kenyon cells in the olfactory
pathway of the honeybee. PLoS One 13,
e0191425.

146. Farkhooi, F., Froese, A., Muller, E., Menzel,
R., and Nawrot, M.P. (2013). Cellular
adaptation facilitates sparse and reliable
coding in sensory pathways. PLoS Comput.
Biol. 9, e1003251.

147. Betkiewicz, R., Lindner, B., and Nawrot,
M.P. (2020). Circuit and cellular
mechanisms facilitate the transformation
from dense to sparse coding in the insect
olfactory system. Eneuro 7, ENEURO.0305-
18.2020.

148. Olshausen, B.A., and Field, D.J. (2004).
Sparse coding of sensory inputs. Curr. Opin.
Neurobiol. 14, 481–487.

149. Barlow, H.B. (1959). Sensory mechanisms,
the reduction of redundancy, and
intelligence. In Symposium proceedings:
Mechanisation of thought processes (Her
Majesty’s Stationery Office), pp. 535–539.

150. Ito, I., Ong, R.C.-Y., Raman, B., and Stopfer,
M. (2008). Sparse odor representation and
olfactory learning. Nat. Neurosci. 11,
1177–1184.

151. Herikstad, R., Baker, J., Lachaux, J.P., Gray,
C.M., and Yen, S.C. (2011). Natural movies
evoke spike trains with low spike time
variability in cat primary visual cortex.
J. Neurosci. 31, 15844–15860.

152. Haider, B., Krause, M.R., Duque, A., Yu, Y.,
Touryan, J., Mazer, J.A., and McCormick,
D.A. (2010). Synaptic and Network
Mechanisms of Sparse and Reliable Visual
Cortical Activity during Nonclassical
Receptive Field Stimulation. Neuron 65,
107–121.
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STAR+METHODS

KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Published animal behavioral data Weiglein, A., Gerstner, F., Mancini, N.,

Schleyer, M., & Gerber, B. (2019)59. One-trial

learning in larval Drosophila. Learning &

Memory, 26(4), 109-120.

https://doi.org/10.1101/lm.049106.118,

https://learnmem.cshlp.org/content/26/4/

109/suppl/DC1

Software and algorithms

Python 3 packages Python Software Foundation https://www.python.org/downloads/

Code generated for this publication Lab Martin P. Nawrot https://github.com/nawrotlab/

PEcodingDosophilaMB
RESOURCE AVAILABILITY

Lead contact

Further information can be obtained from the lead contact, Martin P. Nawrot (martin.nawrot@uni-koeln.de).
Materials availability

This study did not generate new unique reagents.
Data and code availability

� Published animal experimental data59 is publicly accessible here: https://learnmem.cshlp.org/content/26/4/109/suppl/DC1.
� All code for the model implementation and the simulation experiments is publicly accessible here: https://github.com/nawrotlab/

PEcodingDosophilaMB. All code for the simulation of larval locomotion (Larvaworld) is publicly accessible here: https://github.com/

nawrotlab/larvaworld.

� Simulated data can be recreated based on the STAR Methods using the publicly accessible code.
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

We re-analyzed published behavioral data in larvae59 (see also key resources table). No additional animal experiments were conducted for the

present study. Experiments complied with the applicable law according to the authorities of the state of Saxony-Anhalt, Germany, and the

method details can be found in the original publication.59 In brief, Drosophila melanogaster flies of the Canton-S wild-type strain were main-

tained at 25�C, 60%–70% relative humidity, and a 12/12 h light–dark cycle. For experiments, five-day-old third-instar feeding-stage larvae of

either sex were used. There is no evidence that sex affects the assessed behavior. Cohorts of approximately 30 larvae were collected from the

food vials, rinsed in water, and used in the respective experiment. For paired training, the larvae were placed at the center of a Petri dish filled

with 1% agarose solution supplemented with 2 mol/l fructose as a taste reward (+). The dish was equipped with two custom-made Teflon

containers of 5 mm diameter, filled with 10 mL of n-amylacetate diluted 1:20 in paraffin oil. Larvae were allowed to move on this ’odor+’ Petri

dish for 1, 2, 2.5, 4, or 8 minutes before being transferred to a second Petri dish that lacked fructose and was equipped with two empty odor

containers. In this dish, the larvae couldmove for the same amount of time. After such trainingwith ‘odor+’ followedby ‘no odor’ training, they

were transferred to the center of a test Petri dish, which may or may not have contained fructose, and where an odor-filled container was pre-

sented on one side and an empty container on the opposite side. After the end of this 3min test phase, the number of larvae on the odor side,

the side with no odor, and in a 10-mm wide middle zone was counted. The preference index was calculated (Equation 17, quantification and

statistical analysis in STAR Methods). Across repetitions of the experiments, in half of the cases, the sequence was as indicated (’odor+’ fol-

lowed by ’no odor’). In the other cases, it was reversed (’no odor’ followed by ’odor+’). The procedure for unpaired training was the same,

except that the Petri dishes featured either only the odor or only the reward. After such ’odor’ followed by ’no odor+’ training (again, in half of

the cases, the sequence was reversed: ’no odor+’ followed by ’odor’), the preference test was carried out as above. From the preference

indices after paired and unpaired training, a performance index was calculated according to (Equation 18, quantification and statistical anal-

ysis in STAR Methods).
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METHOD DETAILS

Network model

All neurons are modeled as leaky integrate-and-fire neurons with conductance-based synapses. They elicit a spike whenever the threshold is

crossed (parameters provided in the Table S1). Each neuronal membrane potential vi is reset to the resting potential Vr whenever a spike

occurs. This is followed by an absolute refractory period of 2 ms, during which the neuron does not integrate any inputs. Any neuron from

a given population (vO, vP, vL, vK, vA, vM, vD) is governed by the respective equation for ORNs, PNs, LNs, KCs, APL, MBONs and DANs

(Equations 6, 7, 8, 9, 10, 11, and 12), Figure 1A). Depending on the neuron type, in addition to a leak conductance gL, the equations consist

of excitatory ge and inhibitory gi synaptic input. In the case of the DANs, one excitatory gMHD
e ðEE � vDi Þ and inhibitory gMGD

i ðEI � vDi Þ input
represent the two types of MBON feedback for the reward and punishment encodingDAN, respectively. An additional spike-triggered adap-

tation conductance was implemented for ORNs, KCs, MBONs, and DANs (Equation 13,61), in accordance with our current knowledge of the

adaptive nature of ORNs in the larva140 and the adult fly.141,142,143 Adaptation in KCs has so far only been demonstrated in other insects.144,145

In the model of these neurons, the adaptation conductance gIa is increased with every spike and decays over time with tIa following previous

model implementations of ORNs and KCs as leaky integrate-and-fire neurons with spike frequency adaptation (SFA).47,61,106,146,147 Themech-

anism of synaptic plasticity is described in the results section (learning and synaptic plasticity at the KC > MBON synapses).

Cm
d

dt
vO
i = gO

L

�
EO
L � vO

i

�
+gInputO

e

�
EE � vO

i

� � gIa

�
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i

�
(Equation 6)
Cm
d

dt
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Cm
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(Equation 12)
d

dt
gIa = � gIa

tIa
: (Equation 13)

Webased our circuit model on the larval connectomeboth in terms of connectivity as well as numbers of neurons in each population28,62,63

and introduced simplifications to support the mechanistic investigation of the MBON>DAN feedback circuit and its role in PE coding and

excluded a number of connections that have been demonstrated in the larva. Due to the limited availability of anatomical, functional, and

behavioral data, most of our circuit implementation is based on the first instar larva,28,62,63 while the information on the APL connectivity within

the circuit originates from studies on the third instar larva.34 Behavioral experiments used for comparison with our simulation results were also

performedwith third instar larvae.34,59,81Wedemonstrate that ourmodel based on the less developed circuit in the first instar larva is sufficient

to reproduce animal behavior as observed in the older animals. From the anatomy of the first instar larva we excluded DAN>KC63 and

DAN>MBON synapses63 that may play an additional role in learning-induced plasticity at KC>MBON synapses,63 the details of which are

not fully known. Instead, we induce plasticity purely via the simulation of a neuromodulatory effect of the DANs onto the KC>MBON synap-

ses.63 We also neglect recurrent interactions among KC themselves.63 Many of these interactions affect KC encoding different sensory mo-

dalities, which are not included in our exclusively olfactory model. Furthermore, we simplified the connectivity between LNs and PNs62 and

between PNs and KCs to 2 � 6 PN inputs per KC, which excludes the set of KCs in the larva that receives exclusive input from only one PN.63

This modification supportedmodel robustness with respect to odor encoding within the small set of 72 KCs. Finally, from the population ofz

25 larval MBONs, we only modeled two and correspondingly adapted KC>MBON synapses to provide both MBONs with input from all KCs.
Sparse odor representation

We implemented four mechanisms supporting population- and temporal sparseness in theMB odor representation.61 Population sparseness

is defined as the activation of only a small subset of neurons by any given input.148 In this circuit, population sparseness is enhanced through

lateral inhibition (via LNs), inhibitory APL feedback, and the divergent connectivity fromPNs to a larger number of KCs.61 Temporal sparseness
18 iScience 27, 108640, January 19, 2024
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refers to the efficient and economic stimulus encoding in time where a specific stimulus configuration is represented by only a few action

potentials,149–151 which supports encoding of dynamic changes in the sensory environment.106,152–154 In our model, temporal sparseness is

facilitated by the cellular mechanisms of spike frequency adaptation across successive stages of the olfactory pathway, specifically in

ORNs and KCs, and by inhibitory feedback via the APL onto the KCs.61 At the phenomenological level, the larval ORNs have been shown

to experience firing rate adaptation in response to abrupt changes in the odor stimulus concentration, and behavioral experiments showed

that theORN adaptation affects the animals’ chemotactic behavior when navigating through an odor landscape.141 In a computational model

of the adult fruit fly, temporal sparseness has been shown to support recognition of odor identity in brief odor filament encounters during

flight.106 In addition and on theoretical ground,146,155 spike frequency adaptation increases neuronal response reliability.

Sensory input

At the periphery of the olfactory pathway of the larval Drosophila, any odor activates up to z 1/3 of ORNs, depending on odor concentra-

tion.140,156 We implemented receptor input to ORNs by stochastic point processes resulting in postsynaptic currents to mimic the stochastic

transduction process at each receptor.143 Each of the 21 receptor inputs is modeled according to a gammaprocess (shape parameter k = 3).

The spontaneous firing rate of larval ORNs has been measured in the range of 0:2 � 7:9 Hz, depending strongly on odor and receptor

type.141,156,157 ORNs in our model exhibit an average spontaneous firing rate of 8:92 Hz (SD= 0:2 Hz). We constructed realistic olfactory input

across the ORN population for amylacetate and 3-octanol by estimating ORN spike frequency from calcium signals measured in the receptor

neurons140 (dilution of 10�4 140) to ensure that spike rates would not exceed the rates reported by Kreher et al.156 They showed that using an

even stronger odor concentration (dilution 10� 2140) ORN spiking activity never exceeded a frequency of 200 Hz. Due to the lower concentra-

tion used for amylacetate and 3-octanol (Figure 1D)140 in our experiments and because the authors in156 estimated firing rates only during the

first 0.5s after odor onset when the effect of spike frequency adaptation in ORNs is the weakest (leading to higher spike rates), we decided to

allow for a maximum of 150 Hz in odor activated ORNs. After generating the gamma process realizations, we clipped multiple spikes occur-

ring in each time step of the simulation for technical reasons, discarding all but the first spike in each time step. Similar to the odor input, the

presence of either reward in the experimental context was implemented as input to the DAN+/DAN-. Regular gamma spike trains (k = 10)

were generated and clipped for the odor input.

To assess the effects of odor similarity on generalization, we additionally created four artificial odors (A, B, C, D, Figure 1D). We quantified

the pair-wise distances in theORN coding space using the cosine distance (Equation 14), where vectors a and b each represent the input spike

rate for one odor.

Dcos = 1 �
Pn

i = 1ai$biffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i = 1a

2
i

p
$

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i = 1b

2
i

q : (Equation 14)

The cosine distance betweenodors A andB equals 0.21, 0.77 between odors A andC, and 0.99 between odors A andD. The comparison of

amylacetate and 3-octanol yields a distance of 0.16.

Experimental protocols

The simulation experiments reported here belong to one of three categories. The first was performed to provide insight into the model and

the effects of specific circuit functions on synaptic plasticity and PE coding. To this end, we used amylacetate as the primary odor input. We

varied the intensity of the reward via the frequency of the gamma spike train, provided as input into the DAN+ (either 500 Hz or 550 Hz, re-

sulting in an average output spike rate of 33:11 Hz / 39:14 Hz), and the learning rate a (0:6 nS or 0:8 nS). Additionally, MBON>DAN feedback

was either enabled or disabled (Figure 1A).

Experiments belonging to the second category were designed to replicate larva lab experiments to allow for a direct comparison with our

model results. With these comparisons, we aim to validate the model and show to what extent our assumptions about the circuit functions

allow us to recreate experimental data (Figure 5). Replicating lab experiments also provides more insights into the circuit mechanisms and

offers alternative interpretations of the phenomena observed in data from animal experiments. Our implementations of the lab experiments

were set up following the general procedure described in the Maggot Learning Manual.158 Regardless of the specific protocol used in

different experiments, larvae are placed into Petri dishes in groups of 30 animals. They are allowed to move around freely on the substrate

that contains reinforcing substances, such as sugar or bitter tastants. During the entire time, they are subjected to specific odorants emitted

from two small containers in the dish to create permanent and relatively uniformly distributed odor exposure within the dish. In the analogy of

the experimental setting, in our simulated experiments, each model instance is trained individually through the concurrent presentation of

olfactory stimulation and reward. One-minute intervals with only baseline ORN stimulation were included between training trials to simulate

the time needed in the lab experiments for transferring larvae between Petri dishes. Unless otherwise specified and test phases refer to 3min,

during which only odors are presented. All simulations were implemented in the network simulator Brian2.159

Realistic modeling of larval locomotion

Behavior during the testing phase of the olfactory learning experiment was simulated via the freely available python-based simulation plat-

form Larvaworld (https://github.com/nawrotlab/larvaworld,60). A group of 30 virtual larvae were placedwith random initial orientation around

the center of a 100 mm diameter Petri dish and left to behave unconstrainedly for 3 minutes. The previously conditioned odor was placed at
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one side of the dish, 10 mm from the arena’s boundary. Each larva features a bi-segmental body supervised by a layered control architec-

ture.60 The basic layer of the control architecture is a locomotory model capable of realistic autonomous exploration behavior. It consists

of two coupled oscillators, one representing the crawling apparatus that generates forward velocity oscillations resembling consecutive peri-

staltic strides.60 The other oscillator generates alternating left and right lateral bending, manifested as angular velocity oscillations.160 The

crawling and the bending oscillators are coupled via phase-locked suppression of lateral bending to capture the bend dependency on

the stride-cycle phase during crawling (weathervaning). Finally, intermittent crawling is achieved by a superimposed intermittency module

that generates alternating epochs of crawling and stationary pauses, with more headcasts for orientation during the latter.60

Modulation of behavior due to sensory stimulation is introduced at the second reactive layer of the control architecture. An odor signal can

transiently alter both the amplitude and frequency of the lateral bending oscillator, which biases free exploration towards approach or avoid-

ance along an olfactory chemical gradient. This modulation of behavior is directly influenced via top-down signaling from the third adaptive

layer of the control architecture. In our approach, the spiking MB model populates the adaptive layer and its learning-dependent output,

defined as the behavioral bias (i.e., the difference in MBON firing rates, Equation 5), provides the top-down signal.66 We formalize the

gain of behavioral modulation as

G = g$BB: (Equation 15)

which is directly proportional to the behavioral bias and the additional proportionality factor g = 0:5.

QUANTIFICATION AND STATISTICAL ANALYSIS

Behavioral bias

We computed the difference betweenMBON spike counts as a measure of odor valence at theMB output. Either for bins of T = 1 s to quan-

tify continuous changes during learning (Figure 2)

BB =
MBON+ � MBON�

T
(Equation 16)

or across the duration of a T = 3 min test phase (Figures 3A, 4, and 5).

Spatially-defined measure of learning

A set of 10 � 30 trained MB model instances was used to generate 10 groups of 30 simulated larvae. The preference index and the perfor-

mance index59 for these simulations are illustrated in Figure 5.

Preference indices (Pref) were computed individually for the paired and the unpaired experiments,59 based on the number of animals on

each side (odor vs. no odor) of the Petri dish at the end of the test phase.

Pref =
countodor � countno odor

countodor+countno odor
(Equation 17)

The Performance indices (PI) are computed from the preference indices of the paired and unpaired experiments.59

PI =
Prefpaired � Prefunpaired

2
(Equation 18)
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