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Prediction error drives associative learning
and conditioned behavior in a spiking
model of Drosophila larva

Anna-Maria Jurgensen,' Panagiotis Sakagiannis,! Michael Schleyer,”* Bertram Gerber,?4>
and Martin Paul Nawrot'-¢*

SUMMARY

Predicting reinforcement from sensory cues is beneficial for goal-directed behavior. In insect brains, under-
lying associations between cues and reinforcement, encoded by dopaminergic neurons, are formed in the
mushroom body. We propose a spiking model of the Drosophilalarva mushroom body. Itincludes a feedback
motif conveying learned reinforcement expectation to dopaminergic neurons, which can compute predic-
tion error as the difference between expected and present reinforcement. We demonstrate that this can
serve as a driving force in learning. When combined with synaptic homeostasis, our model accounts for theo-
retically derived features of acquisition and loss of associations that depend on the intensity of the reinforce-
ment and its temporal proximity to the cue. From modeling olfactory learning over the time course of behav-
ioral experiments and simulating the locomotion of individual larvae toward or away from odor sources in a
virtual environment, we conclude that learning driven by prediction errors can explain larval behavior.

INTRODUCTION

Associative learning is a fundamental cognitive ability across vertebrate' ™ and invertebrate species.s’8 In insects, the mushroom body (MB) is
a central brain structure for multi-sensory integration, involved in memory formation and recall.”'® The synapses between its intrinsic and
output neurons are at the core of memory formation during associative learning.>”'"='*

During associative learning, a relationship between two previously unrelated elements is established gradually. In classical conditioning,
representing one form of associative learning, a so-called conditioned stimulus (CS), obtains behavioral relevance through its concurrence
with the reinforcing unconditioned stimulus (US). The temporal evolution of this memory acquisition process depends dynamically on the
spatiotemporal proximity of the CS and US, as formalized in the Rescorla-Wagner (RW) model.'”

AV =a-(Ags — V(1)

V(t+At) = V(t)+AV. (Equation 1)

The asymptote Ays of the learing curve defines the point at which the CS fully predicts the US and the acquisition of their association
terminates. Until then, the change in associative strength AV is proportional to the difference between the maximum associative strength
Aus and the already acquired associative strength V(t). This driving force in the learning process has been termed prediction error
(PE)PE = Jys — V(t).'® Throughout the memory acquisition phase, the pace of learning, which can be formalized as the slope of the acqui-
sition curve, decreases as the PE becomes smaller, reducing the driving force for changes of the association V(t).'>”" This continuous update
of reinforcement predictions, guided by the PE, could allow animals to adapt their anticipatory behavior to the predicted US efficiently'®'”
and thus approach reward or avoid punishment.

Dopaminergic neurons (DANs) have long been known to encode information about reward and punishment. These types of neurons
respond to the presence of rewards and punishments in the environment, shown both in vertebrates’?° and Drosophila.”*~*” The activation
of DANs induces approach or avoidance learning as has been found in vertebrates® = and larval”®***¢ and adult’’ =" Drosophila. This
approach or avoidance learning is facilitated by the modulation of the synapses between intrinsic and output neurons of the MB,""1%40
Ultimately DANs do not only signal the presence of rewards or punishments but have also been suggested to encode a PE in various verte-

brate species” "' and might have a similar function in insects.?/-?34%4>-50
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Figure 1. Network mechanisms

(A) Network model of the Drosophila larva olfactory pathway including all neurons and connections implemented. One-to-one feedforward connections between
21 olfactory receptor neurons (ORNs) and 21 projection neurons (PNs)/local interneurons (LNs) and from 2 to 6 PN to each of the 72 Kenyon cells (KCs). Lateral
inhibition from each LN innervates all PNs, and recurrent feedback inhibition from the anterior paired lateral (APL) neuron is provided onto all KCs. The MB output
region is organized into two distinct compartments. The upper compartment holds the approach encoding MBON,, and is innervated by the punishment-
mediating DAN_; the lower compartment holds the avoidance mediating MBON. and is innervated by the reward-mediating DAN... Each DAN can exert a
neuromodulatory effect on the plastic KC>MBON synapses within its compartment. MBONSs provide excitatory and inhibitory (via gray interneurons, LN)
feedback to the DANs. The implementation of the olfactory pathway with ORNSs, PNs, LNs, APL, and KCs is similar to a previous model that lacks plasticity
and the MB output circuitry.'

(B) Sketch of synaptic weight change at a single KC>MBON synapse with respect to the synaptic eligibility trace elicited by KC spikes and the occurrence of
reward-triggered spikes in DAN... Amylacetate is paired with a reward for 2 s (gray shaded area).

(C) To generate simulated larval behavior in the Petri dish during the test phase of the learning experiments, we utilized our locomotory model,” based on the
behavioral bias (see method details in STAR Methods) acquired by the MB model during the training phase. The behavioral bias is used directly as input to the
locomotory model.

(D) All odors (see method details in STAR Methods) were used in the experiments: naturalistic odor patterns for amylacetate and 3-octanol, as well as four artificial
patterns (odorA, odorB, odorC, odorD) with varying distances (see method details in STAR Methods) from odorA. Each odor activates a different set of input
neurons with a different spike rate, as indicated by the scale bar.

We introduce a biologically realistic spiking model of the Drosophila larva olfactory pathway and MB in one brain hemisphere that forms
associations of odors with reward to further test the hypothesis that within this circuit PE coding takes place in DANs that receive feedback
from the output neurons of the MB or their downstream partners through either direct or indirect pathways.'”?*>"=>" Beyond the scope of
similar models?®>~° (see discussion), we demonstrate that the proposed mechanism can reproduce the experimentally observed findings
on the acquisition of associations of odors with reward in a time-resolved manner.”” To facilitate direct qualitative and quantitative compar-
isons with animal behavior, we couple our MB model with a realistic locomotory model of the larva® that captures the learning-induced adap-
tation of chemotactic behavior in the individual animal.

RESULTS

Connectome-based circuit model of the larval olfactory pathway
The network architecture of our model (Figure 1A) connects our previous olfactory pathway model®’ with a plastic circuit model of the MB and
its output neurons. Our model is based on the anatomy of the olfactory pathway and the MB in a single Drosophila larva brain hemi-

sphere”®3243 (see method details in STAR Methods). Peripheral processing is carried out by 21 olfactory receptor neurons (ORNs), each
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expressing a different olfactory receptor type.*”*"*> ORNs form one-to-one excitatory synaptic connections with 21 projection neurons (PNs)
and 21 local interneurons (LNs) in the antennal lobe.®” Each LN connects with all PNs via inhibitory synapses, establishing a motif for lateral
inhibition within the antennal lobe. The 72 mature larval Kenyon cells (KCs)®? are the excitatory intrinsic neurons of the MB. Each KC receives
excitatory input from 2 to 6 randomly selected PNs. Additionally, a few KCs receive input from a single PN.®* These one-to-one PN>KC con-
nections are excluded from our circuit model. The KCs are subjected to feedback inhibition, provided via the GABAergic anterior paired
lateral (APL) neuron, which receives input from all KCs.* Only mature KCs, characterized by a fully developed dendrite, are included in
this model, yielding a complete convergent synaptic KC>APL connectivity. The MB lobes are organized in compartments, in which the KC
axons converge with the dendrites of one or few MB output neurons (MBONSs).?4°% Our model assumes two MBON's from two different com-
partments that are representative of two different categories of output neurons of the MB that mediate either approach or avoidance (Fig-
ure 1A)."171447 Both MBONS receive excitatory input from all of the KCs to fully capture the information that is normally represented by the
complete set of MBONs. Each compartment is also innervated by a single DAN, signaling either reward (DAN,) or punishment (DAN.) that
targets the KC>MBON synapses to facilitate learning.

Learning and synaptic plasticity at the KC>MBON synapses

We assume that the KC>MBON synapses undergo plasticity (Figures 1A and 1B), based on strong experimental evidence in larval®*®*” and
adult flies.""""*'%%° This plasticity requires the convergence of the sensory pathways in the form of KC activation and of the reinforcing

pathway, mediated by a neuromodulatory DAN signal at the synaptic site. We employ the two-factor learning rule
AW = — a-g(t)R(t) <0 (Equation 2)

to model learning-induced plasticity at each KC>MBON synapse i (Figures 1A and 1B). The first factor is expressed in the presynaptic KC
activation by an odor, rendering the synapse eligible for modification. This is modeled via an exponentially decaying eligibility trace e;(t),
which is set to one whenever the respective KC elicits an action potential (Figure 1B). Its decay time constant determines the window of op-
portunity for synaptic change. The presence of a reinforcing stimulus constitutes the second factor and is signaled by the reward-mediating
DAN. or punishment-mediating DAN-. Spiking of the DAN.. (or DAN,) provides a neuromodulatory reward (or punishment) signal R(t) to the
synaptic site. When a DAN action potential coincides with positive eligibility at a given synapse i, the respective synaptic weight is reduced
(Figure 1B) where the reduction Aw! is proportional to the current value of the eligibility and is additionally controlled by the learning rate a > 0
(Table S1). A higher or lower DAN activity thus results in a more or less frequent reduction of the synaptic weight elicited by DAN spikes. Each
synaptic weight is restricted to non-negative values.

Synaptic homeostasis
To account for the experimentally observed decline of a learned association when the reward is omitted’>’%~"® and to maintain memory ca-

74,75

pacity across the population of KC>MBON synapses, we introduce a mechanism for homeostatic synaptic plasticity as

AW = (Wiir — wi(t)) - M(t) - h > 0. (Equation 3)

This rule has two features. First, the magnitude of the homeostatic effect depends on the postsynaptic spiking activity M(t) of the MBON.
Second, we assume that the homeostatic regulation acts locally at individual synapses.”*’” Each MBON action potential leads to a homeo-
static increase Aw! >0 of the individual KC>MBON synaptic weight if w;(t) <w!. This increase is proportional to the extent to which the
weight differs from its original value win;: (Table S1) and thus balances the learning-induced reduction of the synaptic weight. The homeostatic
regulation factor h > 0 (Table S1) parameterizes the magnitude of the homeostatic effect. This mechanism serves as an implementation for
the loss of the association when the reward is omitted, partly counteracting the plasticity effect at each KC>MBON synapse (see discussion,
section "a mechanistic implementation of the RW model”), and also maintains memory capacity by counteracting the accumulated reduction
of input weights over the course of the learning process (Equation 2). The sum of the learning-induced synaptic plasticity and the homeostatic
regulation defines the magnitude of the synaptic weight at the next simulation time step t+ At as

wi(t + At) = wi(t) +Aw + Aw" (Equation 4)

and thus the dynamic weight changes throughout an experiment.

Behavioral bias at the MB output

It has been shown experimentally that specific MBONs encode a behavioral tendency to either approach or avoid a currently perceived stim-
ulus, depending on the acquired stimulus valence in adult'”"**®? and larval®® Drosophila. In the naive state of our model, all KC>MBON
synapses have the same initial weight wi,;; (Table S1), and hence the spiking activity of both MBONSs is highly similar. Learning alters the
KC>MBON synaptic weights and thus skews the previously balanced MBON output. This acquired imbalance between MBON outputs biases
behavior toward the approach or avoidance of the conditioned odor (Figure 1C). To quantify the effect of learning, we compute the behavioral
bias toward odors used in the experiments from the spike count of both MBONs over a time interval T (also see method details in STAR
Methods)
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Figure 2. Learning with prediction errors

(A) N = 30 model instances were trained with the odor amylacetate (CS) and reward (US, blue background). MBON>DAN feedback, the reward/odor intensity,
and the learning rate were manipulated in separate experiments. The odor preference (behavioral bias, see method details in STAR Methods) was measured
continuously in windows of 1's and averaged over all model instances.

(B) N = 30 model instances were trained during three trials with amylacetate and reward (blue background). Reward intensity was either constant across the three
training trials (white curve) or enhanced during the third (gray) or the second and third trials (black). The training was followed by a 3 min test phase with odor only
(gray background).

(C) N = 30 model instances were trained with amylacetate and reward (blue background) and then underwent an extended test phase (gray background).

(D) Individual acquisition curves for N = 30 model instances (standard experiment Figure 2A).

gg - MBON. — MBON (Equation 5)

T

Implementation of prediction error coding in the KC-MBON-DAN motif

In the larva, DANs and other modulatory neurons can receive excitatory and inhibitory input from different MBON:Ss, either directly or via a
single or two interneuron steps.”® Based on this anatomical evidence, we propose a basic MBON>DAN feedback motif in Figure 1A (for
similar models, see discussion section: Comparison with other MB models). In our model, DANSs are activated by external reward/punishment
signals and also receive direct excitatory (red) and indirect inhibitory (blue) feedback from both MBONSs. As the initial balance between the
two MBON outputs shifts over the course of the training process, the amount of excitatory and inhibitory feedback that DANs receive con-
tinues to diverge, allowing the DANSs to access the model’s learning history. Ultimately, DAN activation signals the PE as the difference be-
tween the current external activation by reinforcement in the situation and the expected reinforcement based on prior learning. Prior learning
is implemented as the difference between excitatory and inhibitory MBON>DAN feedback.

The suggested feedback motif led to learning curves that saturated when the reward was fully predicted, and the PE approached zero
(Figure 2A). This effect disappeared when the feedback circuit was disabled (Figure 2A). In this case, the behavioral bias quickly reached
its maximum value when the MBON._ elicited no more spikes. Increasing the reward intensity caused the learning curve to saturate at a higher
level (Figure 2A) because R(t) (Equation 2) was positive more often during each analysis time window of 1 s (Equation 5). Increasing the
learning rate a by 65% fostered a faster acquisition of the association (Figure 2A). When changing the learning rate, we also adapted the ho-
meostatic regulation factor h (Equation 3) by the same factor since it was fitted together with the learning rule. More information about the
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isolated effect of synaptic homeostasis can be found in the supplemental information (Figure S1). Increasing the reward intensity after 2.5 min
(black curve), or 5 min (gray curve), of appetitive training resulted in a steeper slope of the learning curve. Additionally, it increased the
maximum during training trials of 2.5 min duration with increased reward intensity (Figure 2B). Higher intensity of the reward resulted in
an average DAN spike rate of 39.14 (+1.27 SD) Hz compared to 33.11 (£ 1.34) Hz.

We next tested for the loss of the acquired association throughout prolonged exposure to the CS without the US following initial memory
acquisition, as observed experimentally.'>’® To test this in our model experiments, we now presented the odor that was previously paired
with reward in the absence of reward and for an extended period. The extinction mechanism was no longer outweighed by learning and drove
each individual weight back toward wi,i (Figure 2C). We also demonstrated the interaction of the learning rule with this mechanism in Fig-
ure S1, where the learning rate remains constant. At the same time, the magnitude of the homeostatic regulation was manipulated to show
that both mechanisms need to be in balance.

The observed properties of the learning curves are not just the result of averaging across many model instances but can be attributed to
the saturating effect of the MBON>DAN feedback on each individual learning curve (Figure 2D).

Learned preference and behavior generalize to similar odors

We trained our model by pairing a reward with a single odor for 4 min. After the training procedure, we tested the behavioral bias for either the
same or a different odor, following the experimental approach used in the larva.”” Mimicking the experimental data, we showed that the odor
preference is highest if training odor and test odor were identical in the case of training with 3-octanol. When amylacetate was used during
training, 3-octanol preference was increased (Figure 3A). Figure 3B shows the network response to 30 s stimulations with amylacetate and
3-octanol in a single exemplary model instance. On the level of the ORNS, 3-octanol merely activated a subset of the amylacetate-activated
neurons, some with a higher rate than in the case of amylacetate (Figure 1D). The uniqueness of the odor response pattern is enhanced in the
KC population.®’ We systematically tested for generalization using a set of artificially designed ORN activation patterns with a controlled de-
gree of overlap (see method details in STAR Methods, Figure 1D) and found that, with decreasing similarity, the generalization effect to a new
odor was diminished (Figure 3A).

The model reproduces temporal features in trace conditioning experiments

Including an odor-evoked eligibility trace at the KC>MBON synapses allowed the model to maintain the sensory odor representation for a
time window during which reward would trigger synaptic change (Figure 1B). The time window between odor and reward onset
(0,10, 20, 30, 40, 50, 60, 120 s) was varied for trace conditioning experiments with a 30 s presentation of odor and reward that was repeated
three times. A small inter-stimulus interval (ISl) between the onset of the odor stimulus and the onset of the reward stimulus of 10 to 30 s
led to an increase in behavioral bias compared to the complete overlap of odor and reward (Figure 3C), using the extended window of op-
portunity for synaptic change triggered by each KC spike. Long ISIs did not lead to learning as the eligibility trace had declined close to zero
(Figure 3C). These findings match observations from experiments in larvae®?®" with the caveat that the trace in the real larva brain seems to
extend for a slightly longer period of time compared with our experiments.

The model reproduces paired and unpaired associative conditioning experiments

To testiflearning, driven by PE, can account for learned larval behavior, we replicated a set of single-trial conditioning experiments performed
with larvae®” in simulation. In these experiments, simulated animals were first trained with the odor amylacetate in a single trial of varying
duration. In the animal experiments, larvae are placed on a Petri dish coated with an agar-sugar substrate and the odor in two small containers
for diffusion in the air (paired training, Figure 4A). Either before or following this training protocol, larvae undergo a single trial without sugar
and odor. Afterward, the animals are transferred to a new dish with two odor containers placed on different sides. One of them contains amy-
lacetate, and the other one is empty. This paired training was compared with an unpaired protocol (Figure 4A) with separate (randomized
order) presentations of amylacetate and sugar. After the paired training protocol, the animals tend to approach the previously rewarded
odor, as measured by the difference in the number of animals on each side at the end of a 3 min test phase, divided by the total number
of animals. Following the experimental literature, we will refer to this measure as the preference index®” (Equation 17 in quantification and
statistical analysis in STAR Methods).

We aimed to replicate these behavioral experiments on two levels. First, we focused on the direct model output that reflects the strength
of the acquired association between amylacetate and reward (behavioral bias, Equation 5, see also quantification and statistical analysis in
STAR Methods) and later also simulated behavior based on these biases. We simulated both the paired and unpaired training protocols (Fig-
ure 4B). While the unpaired training yielded almost no behavioral bias, the models that underwent the paired training showed an increased
behavioral bias that depended on the duration of the training and saturation for longer training duration (Figure 4B). The simulation results
reported in Figure 4B were obtained using odor-naive models that exhibited no odor preference prior to training. To account for the exper-
imental finding that real larvae typically express an odor preference even without any training,*** we readjusted our experiments to include a
pre-training period of 10 min to start the conditioning experiments with the amylacetate-reward association already established. This adap-
tation of the protocol led to new results (Figure 4C). The paired condition in Figure 4C showed that, once the behavioral bias was saturated
(Figure 2A), continued pairing maintains the association without further increasing it. Unpaired training, however, caused the behavioral bias
to decrease and saturate at a lower level. For a discussion of different potential causes of a reward expectation prior to training, please refer to
the discussion (comparison of modeling results to experimental findings). Figure 2A shows that disabling MBON>DAN feedback led to a
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Figure 3. Reward generalization and trace conditioning

(A) The behavioral bias (see Method details in STAR Methods) generalizes to odors that differ from the training odor after a 4 min training (3 min test phase). We
conducted simulation experiments with different combinations of training and testing odor, each for 10 groups (gray circles represent the mean of a single group)
of N = 30 larvae, and red lines indicate the mean between groups. The behavioral bias is highest when the training and the testing odor are the same.

(B) Spiking activity in the network during the presentation of amylacetate (left) and 3-octanol (right) in a single naive model instance.

(C) Simulated trace conditioning experiments with odor (amylacetate) and reward. Inter-stimulus interval (ISI) indicates the time between odor and reward onset.
The black line displays the mean, and gray lines the std over N = 10 groups of 30 model instances each. Conditions circled in red correspond to the conditions also

used in animal experiments.*"

learning curve that did not saturate but instead increased with a steep slope until it reached the maximum value for the behavioral bias (Equa-
tion 5) with a MBON. rate of 0. To verify if this PE feedback mechanism is responsible for the difference between maintenance and loss of the
association in Figure 4C, we repeated the same experiment with disabled MBON>DAN feedback. The behavioral bias overall was much
higher compared to the intact network (Figure 4D). The maximum was reached before the test phase of even the shortest experiment
with 1 min training.
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(B) The model's behavioral bias (see method details in STAR Methods) for training with amylacetate and reward for N = 10 paired (dark gray, mean in red) and
N = 10 unpaired (light gray, mean in blue) experiments with groups of 30 modeled larvae each. In the unpaired condition, half of the groups were trained with the

odor preceding the reward. For the other half, the reward preceded the odor.

(C) Model behavioral bias for amylacetate for N = 30 paired and N = 30 unpaired experiments with randomized order of odor and reward. Prior to the
conditioning experiment, the model instances underwent a 10 min pre-training period, during which odor and reward were paired.

(D) Model behavioral bias for amylacetate for N = 30 paired and N = 30 unpaired experiments with randomized order of odor and reward. The MBON>DAN
feedback was disabled. Before the conditioning experiment, the model instances underwent a 10 min pre-training.
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After examining the readout of the MB directly (Figure 4), we next performed behavioral simulations of the testing phase with groups of
virtual larvae for both the paired and unpaired conditions.®” Since the effect of training in lab experiments was quantified behaviorally via
spatially defined, group-level metrics (preference index”” and performance index,””; Equations 17 and 18), this allows a straightforward com-
parison between the animal (Figures 5A and 5B) and simulation experiments (Figures 5C and 5D). To this end, we utilized a realistic model for
the simulation of larval locomotion and chemotactic behavior® that uses the behavioral bias at the output of the MB model as a constant
factor, throughout the test to modulate the locomotory behavior of individual larvae toward or away from a spatially placed odor source
in a virtual arena (see quantification and statistical analysis in STAR Methods). The resulting preference indices, acquired across groups of
independently simulated larvae (Figure 5C), can be directly compared to the experimentally obtained preference indices (Figure 5A). We
also compared performance indices from our simulated experiments (Figure 5D) with those from the lab experiments (Figure 5B). We found
that the model can replicate these when assuming an odor preference at the beginning of the experiment. The animals’ preference is rela-
tively consistent across training trials of different duration. Prolonged paired training did not lead to an increase in preference (Figure 5A).
These experiments did not include a test for odor preference before training, but the naive larval preference of odors used in learning ex-
periments has been demonstrated elsewhere repeatedly.®”* This paired training was compared with an unpaired protocol with separate
(randomized order) presentations of amylacetate and sugar. Here, the extent to which animals preferred amylacetate over no odor varied
with the duration of the training trial. The longer the duration of the training, the more the preference index decreased from an initially
high value but saturated around 2.5 min (Figure 5A).

DISCUSSION

We proposed a basic PE encoding circuit motif in the larval MB and tested its biological plausibility and capacity to explain behavioral data in
a continuous simulation using our spiking network model of the olfactory pathway®' and MB. We demonstrate that this mechanistic model for
PE coding results in saturating individual and group-level learning curves where the slope and maximum of the learning curve are determined
by the intensity of the reward. Learning is also influenced by the relative timing of odor and reward and can be extinguished if the reward is
omitted during the presentation of the sensory cue. Coupling of the spiking neural network simulation with the simulation of larval locomotory
behavior allowed to explain behavioral results obtained in larval learning experiments.

A mechanistic implementation of the RW model

A number of predictions can be derived from the phenomenological RW model’ and tested in our mechanistic model thereof. We found
that, regardless of odor and reward intensities or the model’s learning rate, the strength of the odor-reward association (quantified by the
behavioral bias, Equation 5) saturated over time (Figure 2A), as the strength of the already acquired association V(t) approached the
maximum value determined by the present reward (Ays) (Equation 1). Consequently, our model’s acquisition curve saturates at a higher value
when the intensity of the reward is increased (Figures 2A and 2B), as predicted by the RW model, in which a stronger US should result in a
higher value of the asymptote Ays.'” In our model, a higher reward intensity relates to a higher input rate to the respective DAN (see method
details in STAR Methods), which translates into more frequent DAN action potentials within a given window of 1 s. According to the RW
model, increasing the learning rate o' should lead to faster acquisition of the association without changing the asymptote. In our model,
the learning rate parameter enters the synaptic learning rule and directly modulates the increment of the synaptic weights (Equation 2).

The RW model predicts that the omission of reward should result in the loss of the learned association'” (Equation 1). At this theoretical
level, we cannot infer if this loss is due to extinction or forgetting. Extinction, characterized by the possibility of recovery of the association after
its temporary loss, has been demonstrated in adult’**® but not yet in larval Drosophila (for a discussion see Mancini et al.”’). To retain the
association for recovery, extinction relies on the formation of parallel memory traces for the maintenance and the loss of the association. > %%
The mechanism implemented in our model (Equation 3) is a sensory input-dependent homeostatic mechanism of forgetting that slowly
pushes all synaptic weights back toward their initial value. This steadily deletes any previously learned association without the possibility
of recovery, but only in the presence of olfactory input. Note that, because the postsynaptic MBON activity M(t) enters Equation 3, any
olfactory input may trigger homeostatic forgetting. As a consequence, if the model is first trained by pairing odor A with reward and subse-
quently undergoes a second pairing of odor B with reward, then the reward association with odor A is diminished during the acquisition of the
reward association with odor B, providing an experimentally testable prediction.

Comparison of modeling results to experimental findings

A variety of experiments have demonstrated group-level acquisition curves that saturate over multiple training trials or with increasing dura-
tion of a single trial in olfactory conditioning.”®*"/ %770 T replicate larval behavior in reward learning experiments® with varying duration of
the learning phase (Figures 5A and 5B), we trained our model with an odor and reward in a paired vs. unpaired fashion (Figure 4B). Real larvae
exhibit a naive (often positive) preference for many odors.?7'=7?
significant increase in their preference when trained in a paired manner for longer periods.””® In contrast, animals trained in an unpaired
protocol start with a similarly high odor preference, which then decreases over time.””®? This observation from animal experiments is some-
what counter-intuitive since the coincidence of odor and reward should yield an increase in the association of those two stimuli, "> which can be
observed in our modeling results (Figure 4B). To resolve this, we included the observation that odors are not always neutral to untrained an-
imals and assumed odor preference before the conditioning experiment.”” In this case, the animals would enter into the experiment with an

They demonstrate a strong odor preference after a very short training and no
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Figure 5. Replicating behavioral experiments with paired and unpaired training

(A) Experimental preference indices for amylacetate for 20 groups of 30 real animals each for paired and unpaired experiments with randomized order of odor
and reward (data published by Weiglein et al. (2019),° https://learnmem.cshlp.org/content/26/4/109/suppl/DC1).

(B) Experimental performance indices for amylacetate computed between preference in paired and unpaired real animal experiments.”

(C) The simulated behavior is based on the protocol in A. Simulated preference indices for amylacetate for N = 10 paired and N = 10 unpaired experiments with
varied order of odor and reward.

(D) Simulated performance indices for amylacetate computed between preference in paired and unpaired simulation experiments.
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already established reward prediction that would be violated during unpaired training. Three scenarios lend themselves as plausible causes of
this effect. First one is accidental conditioning over the course of their lifespan, during which they are raised on a food substrate while being
exposed to air that carries many different odorants. Alternatively, or in fact, additionally, the animals likely exhibit innate preferences for
several odors.”"””7* Finally, the presence of the reward during reward-only phases might lead to an association of the experimental context
with that reward (previously discussed by Saumweber et al.%%). In our model, this could be realized by providing context-specific multi-sensory
input to the MB that can be associated with the model solution suggested by Mller et al.”” The resulting reward expectation (solely based on
the always-present context), unmet during the odor-only phases, could then lead to a negative PE signal. All three candidate explanations
would yield a similar projection for the unpaired experimental protocol: a reward expectation acquired prior to the actual experiment would
cause a violation of that expectation during odor-only trials of the unpaired experiments. In all three cases, the animal’s preferences might
also generalize to a broader array of odors, leading to an overall preference for some odors, as observed experimentally. To test this hypoth-
esis, we pre-trained our model before simulating conditioning experiments (Figure 4C) to establish an odor preference at the beginning of the
experiment. This not only ensured that the model behaves in accordance with the RW model'® but also fits the animal experimental results™
(Figures 5A and 5B). A possible alternative explanation could be a sensory habituation process to the odor that might cause odor preferences
to decrease over time in the unpaired condition, while, in the paired condition, this effect might be counteracted by the continued presen-
tation of odor and reward together.”

Thus far, we tested our model in experiments where the CS and US presentations fully overlapped (paired conditions). We now consider
different onset times, with the onset of the CS always preceding the onset of the US (Figure 3C). For these experiments, we used a shorter
duration of 30s for both CS and US presentation, repeated over three acquisition trials to mimic experimental conditions in larval experi-

348081 that used optogenetic activation of DANs as a proxy for sugar reward (or punishment). Similar to their experiments, we show

ments
that the behavioral bias clearly depends on the temporal delay between CS and US (Figure 3C). The complete temporal overlap of CS
and US (ISl = 0) does not seem to exploit the full potential of learning the association. Instead, partial overlap yields stronger associations
due to the extended window of opportunity for synaptic change triggered by the odor’s eligibility trace. In our model, the eligibility trace e(t)
represents a molecular process that maintains the odor signal locally in the KC>MBON synapses (Equation 2). Appetitive and aversive trace
conditioning experiments have been conducted with larvag®" %% 89,9799 Al experiments during which the
CS is presented before the US demonstrate that longer ISls abolish learning of the CS-US association when no KC odor representation per-
sists during the reward period. In the cases of shorter intervals, the experimental data are not entirely conclusive. The odor preference was
397 or highest for complete overlap.”®#"%7

We also looked at the extent of reward generalization to novel odors. Experiments with larvae have shown that associations between an
odor and reward generalize, to a varying extent, to other odors.””'® Previous modeling experiments in adult insects have also shown that
reward generalization depends on odor similarity.”®'"~'% In our larval model, we also demonstrate both generalization to other odors

and adult flies and other insects.

either higher for partial or no overlap, compared with complete overlap,

and a loss in strength, compared to the training odor (Figure 3A). We also show that the extent of the generalization depends on the similarity
of the training and test odor, as measured by the overlap of the input patterns (Figure 1D). The larval pathway with its relatively small coding

space®”*“* might be especially prone to such poor discriminative abilities.

Model predictions for behavioral experiments

We targeted two hypotheses. Firstly, symmetrical inhibitory and excitatory feedback from MBONs to DANSs should yield a circuit capable of
producing saturating learing curves due to PE'® driving the learning process, which has also been suggested by previous models.?®*>
Secondly, saturating learning curves, driven by PE, should translate into real animal and simulated behavior when comparing different training
durations and intensities of reinforcement. We were able to test these hypotheses on the level of MB readout (behavioral bias, Equation 5;
Figures 2 and 4) and through the comparison of animal and simulated behavior of artificial larvae (Figure 5). While the simulation results fit
nicely with the real larval behavior in an experiment with a varied training duration®” (Figure 5), ultimately, the role of MBON>DAN feedback
needs to be tested in behavioral animal experiments, directly manipulating this feedback. We would expect that the learning curves of indi-
vidual animals should saturate over time when MBON>DAN feedback is intact. If this feedback was blocked, learning curves should not satu-
rate. Additionally, increasing or decreasing the intensity of the reward should lead to saturation on a higher or lower level, respectively.

Models of PE coding in the insect MB

Models in which a PE signal drives synaptic plasticity lend themselves to studying the evolution and saturation of learning over time (either
across repeated learning trials or in continuous time), depending on the learning history. Here, we suggest a minimal basic circuit motif es-
tablishing a mechanism for PE coding in the Drosophila larva MB. It is based on a two-factor learning rule that requires the coincidence of
presynaptic sensory KC activity and DAN activity to reduce the strength of specific KC>MBON synapses and a symmetrical MBON>DAN
feedback circuit to convey excitatory and inhibitory feedback components to DANs that compute a PE (Figure 1A). Our model is in line
with several recent modeling approaches that have targeted the idea of PE coding in DANS in the adult Drosophila®>® as well as in the larval
MB?® implemented as some form of MBON>DAN feedback.

Some phenomena predicted by the PE coding theory have been demonstrated in these models. The first key prediction is the saturation of
the learning curve across time as the PE decreases,'”'® which has been shown in trial-based rate models.”> > The second prediction is the loss
of an acquired association of a stimulus with reinforcement, following repeated presentations of the stimulus alone, which has been realized in

two conceptually distinct ways. A memory decay, implemented as a process of changing the KC>MBON weights in the opposite direction of
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the learning process, is implemented in our model (Equation 3) and has been used by others in similar ways.”®'%*'%" Alternative models have
suggested a circuit for extinction learning that can form a parallel extinction memory of opposite valence in the adult®*~>® and the larva.”® This
typically involves an additional cross-compartment inhibitory MBON>DAN feedback and allows for the replication®® of extinction experi-
ments in the adult fly.”>’? An additional feature observed in associative learning is trace conditioning, when the reinforcing stimulus is delayed
with respect to the CS; it has been realized by an action potential-triggered eligibility trace in our model (Equation 2) and previously through a
decaying rate function.?*>"1%

To our knowledge, the present model is the first implementation of PE coding in the MB in a fully spiking neural network model. The syn-
aptic learning rule (Equation 2) detects a coincidence between a DAN action potential and positive synaptic eligibility that is triggered by KC
action potentials. Postsynaptic MBON action potentials trigger a homeostatic restoration of initial weights and thus implement memory loss
without reinforcement. The fact that the spiking model is continuous in time allowed us to train and test our model in realistic time-continuous
virtual learning experiments and to assess the dynamic change in the model’s odor preference. The combination with a time-continuous
behavioral simulation®” during memory retention allowed for straightforward comparison with larval experiments (Figure 5).

Comparison with other insect learning models

Several other models of MB learning, based on KC>MBON plasticity without a PE coding mechanism, exist for the fruit fly,'°"191% the hon-

eybee,'%'% and more general insect MB circuits.'**'"? All of these models suggest plasticity to be mediated by the activity of modulatory
neurons, coinciding with either KC'%'% or coordinated KC and MBON activity.'%"'%'% These models can perform associative learning of a
stimulus when paired with reinforcement,'®'~'%'% a5 well as more complicated forms of learning such as second-order conditioning %'
and matching to sample'® or reinforcement generalization tasks, the extent of which depends on the stimulus similarity.'®" "% Additionally,
101,102,105 \vere successfully tested in patterning tasks,''? where combinations of stimuli are reinforced, while their components
are not (positive patterning) or vice versa (negative patterning).

Gkanias et al.'”® explored an alternative mechanism to PE for the saturation of learning across trials. Their comprehensive rate model of
learning introduced a dopamine-dependent plasticity rule that, similar to Equation 4, consists of a learning term and a recovery term that
accounts for memory loss. Their learning rule is a special case of Equation 2 with unity learning rate. Their synaptic recovery term, however,
is fundamentally different from our synaptic homeostasis term as it depends on the activity of the reinforcing DAN. Thus, the presence of
reward or punishment is required and sufficient to induce loss of memory in contrast to our model, where olfactory input alone is required
and sufficient to induce memory loss.

some models

Individuality is comparable for model and animal behavior

1137178 e included

Since individual differences in behaviorally expressed learming performance have been observed in insect experiments,
two sources of individuality in our MB model to account for inter-individual variability between model instances. Firstly, the connectivity
from PNs to KCs is randomly drawn for each model instance. Secondly, the sensory input to the ORNs and the reward input to DANs are
simulated by stochastic point processes. This is sufficient to introduce variability between the learning curves of individuals in Figure 2D
with a considerable range of asymptotic values for the behavioral bias. In the behavioral simulations, each simulated larva was placed in
the center of the virtual dish with a random head orientation, introducing another source of inter-individual variation. This matches the animal
experiments where larvae are placed in the center of the dish using a small brush, resulting in a random head orientation. In addition, the
behavioral model implements a stochastic duration for the successive activity and rest bouts.®” We compare experimental and simulated
behavioral results across repeated group experiments by computing the preference index (Equation 17) for each group of 30 larvae at the
end of the preference test. The distribution across performance indices (Equation 18) computed from independent groups is slightly lower
across simulated groups than across the experimental groups (Figure 5). Additionally, parameters of the larval body could be considered to
enhance inter-individual differences, such as the larval size, which affects speediéo'”%m’

Limitations of the study

Insect experiments have provided mixed evidence for other phenomena that can be predicted from the RW model and PE theory, such as
blocking'?'™'?° and conditioned inhibition.'?*~'?” We excluded such more complex forms of learning from our experiments. Exploring them in
models could yield valuable insights into the Drosophila circuit, as well as aid in our general understanding of PE coding. Furthermore, the
simplification of the output circuitry to two MBONs prevents the exploration of parallel associations regarding the same stimulus,*” effectively
limiting conclusions about extinction and forgetting. Another model previously demonstrated that computation across compartments could
be a fruitful way of approaching PE coding in the MB.>’

An indirect prediction by the RW model'” fits the experimental observation of second-order conditioning in adult Drosophila, where
asecond CS2 is paired with the CS, after this CS has acquired an association with the US. Through the CS2-CS pairing without the US, the CS2
acquires predictive power of the US. Different mechanisms have been proposed to be involved in causing this effect.”’-'0%132134 111 Cyrrently,
second-order conditioning and other more complex forms of learning cannot be accounted for by our model.

CS and US pre-exposure effects'*>"*® that might be explained by changes in either attention to the CS or habituation to the CS or the US,
caused by prolonged exposure before training, rather than changes in associative strength (for a review see Lubow et al.”*), are likely inter-
twined with associative learning in producing animal behavior. They are not addressed by the RW model and are not part of our implemen-
tation thereof.

130-133
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REAGENT or RESOURCE

SOURCE

IDENTIFIER

Deposited data

Published animal behavioral data

Weiglein, A., Gerstner, F., Mancini, N.,
Schleyer, M., & Gerber, B. (2019)°”. One-trial
learning in larval Drosophila. Learning &

https://doi.org/10.1101/Im.049106.118,
https://learnmem.cshlp.org/content/26/4/
109/suppl/DC1

Memory, 26(4), 109-120.

Software and algorithms

Python 3 packages Python Software Foundation https://www.python.org/downloads/

Lab Martin P. Nawrot https://github.com/nawrotlab/

PEcodingDosophilaMB

Code generated for this publication

RESOURCE AVAILABILITY
Lead contact

Further information can be obtained from the lead contact, Martin P. Nawrot (martin.nawrot@uni-koeln.de).

Materials availability

This study did not generate new unique reagents.

Data and code availability

e Published animal experimental data®” is publicly accessible here: https://learnmem.cshlp.org/content/26/4/109/suppl/DC1.

e All code for the model implementation and the simulation experiments is publicly accessible here: https://github.com/nawrotlab/
PEcodingDosophilaMB. All code for the simulation of larval locomotion (Larvaworld) is publicly accessible here: https://github.com/
nawrotlab/larvaworld.

e Simulated data can be recreated based on the STAR Methods using the publicly accessible code.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

We re-analyzed published behavioral data in larvae™ (see also key resources table). No additional animal experiments were conducted for the
present study. Experiments complied with the applicable law according to the authorities of the state of Saxony-Anhalt, Germany, and the
method details can be found in the original publication.” In brief, Drosophila melanogaster flies of the Canton-S wild-type strain were main-
tained at 25°C, 60%-70% relative humidity, and a 12/12 h light-dark cycle. For experiments, five-day-old third-instar feeding-stage larvae of
either sex were used. There is no evidence that sex affects the assessed behavior. Cohorts of approximately 30 larvae were collected from the
food vials, rinsed in water, and used in the respective experiment. For paired training, the larvae were placed at the center of a Petri dish filled
with 1% agarose solution supplemented with 2 mol/| fructose as a taste reward (+). The dish was equipped with two custom-made Teflon
containers of 5 mm diameter, filled with 10 uL of n-amylacetate diluted 1:20 in paraffin oil. Larvae were allowed to move on this ‘odor+' Petri
dish for 1, 2, 2.5, 4, or 8 minutes before being transferred to a second Petri dish that lacked fructose and was equipped with two empty odor
containers. In this dish, the larvae could move for the same amount of time. After such training with ‘odor+’ followed by ‘no odor’ training, they
were transferred to the center of a test Petri dish, which may or may not have contained fructose, and where an odor-filled container was pre-
sented on one side and an empty container on the opposite side. After the end of this 3min test phase, the number of larvae on the odor side,
the side with no odor, and in a 10-mm wide middle zone was counted. The preference index was calculated (Equation 17, quantification and
statistical analysis in STAR Methods). Across repetitions of the experiments, in half of the cases, the sequence was as indicated (‘'odor+’ fol-
lowed by 'no odor’). In the other cases, it was reversed ('no odor’ followed by ‘odor+’). The procedure for unpaired training was the same,
except that the Petri dishes featured either only the odor or only the reward. After such ‘odor’ followed by 'no odor+' training (again, in half of
the cases, the sequence was reversed: 'no odor+' followed by ‘odor’), the preference test was carried out as above. From the preference
indices after paired and unpaired training, a performance index was calculated according to (Equation 18, quantification and statistical anal-
ysis in STAR Methods).
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METHOD DETAILS
Network model

All neurons are modeled as leaky integrate-and-fire neurons with conductance-based synapses. They elicit a spike whenever the threshold is
crossed (parameters provided in the Table S1). Each neuronal membrane potential v; is reset to the resting potential V. whenever a spike
occurs. This is followed by an absolute refractory period of 2 ms, during which the neuron does not integrate any inputs. Any neuron from
a given population (vO, vP, vL, vK, vA, vM, vD) is governed by the respective equation for ORNs, PNs, LNs, KCs, APL, MBONs and DANs
(Equations 6,7, 8,9, 10, 11, and 12), Figure 1A). Depending on the neuron type, in addition to a leak conductance gy, the equations consist
of excitatory ge and inhibitory g; synaptic input. In the case of the DANS, one excitatory g¥*P(E¢ — vP) and inhibitory gM*P(E) — vP) input
represent the two types of MBON feedback for the reward and punishment encoding DAN, respectively. An additional spike-triggered adap-
tation conductance was implemented for ORNs, KCs, MBONs, and DANSs (Equation 13,%"), in accordance with our current knowledge of the
adaptive nature of ORNs in the larva'“® and the adult fly.'*'"'%?"%* Adaptation in KCs has so far only been demonstrated in other insects.**'*®
In the model of these neurons, the adaptation conductance gj, is increased with every spike and decays over time with 7, following previous
model implementations of ORNs and KCs as leaky integrate-and-fire neurons with spike frequency adaptation (SFA).*/ 119414014/ The mech-
anism of synaptic plasticity is described in the results section (learning and synaptic plasticity at the KC > MBON synapses).

Codhv® = 6P (E? — v2) + gl™®(Ec — v0) — gu(Ex — vP) (Equation 6)
d ol L(EL by 4 Ol L .

Cm&vi = gi(Ef — vi)+ 92" (Ee — v)) (Equation 7)

Cm%vf =gl (E] — v/)+gS"(Ee — V}) — gF (B — V) (Equation 8)

Co S = GE(EE — VI — 97 (E — V) + o2 (B — vE) — ulEa — 1) (Equation 9
d A _ CA(FA _ AL AR A '

Cmav; = g (Ef = v) + g (Ee — v (Equation 10)
d oMo MEM _ MY kM M '

Cmav,. = g (EY = vM") + g™ (Ee — V) (Equation 11)

Cm%"? = GP(ED = vP) = 9" P (B — vP) + gl P (Ee — 1) +glPP (B — V) (Equation 12)
d 9 .

E‘% = -1 (Equation 13)

We based our circuit model on the larval connectome both in terms of connectivity as well as numbers of neurons in each population”®©%4

and introduced simplifications to support the mechanistic investigation of the MBON>DAN feedback circuit and its role in PE coding and
excluded a number of connections that have been demonstrated in the larva. Due to the limited availability of anatomical, functional, and
behavioral data, most of our circuit implementation is based on the first instar larva,”8°%%3 while the information on the APL connectivity within
the circuit originates from studies on the third instar larva.** Behavioral experiments used for comparison with our simulation results were also
performed with third instar larvae.**>”*" We demonstrate that our model based on the less developed circuit in the first instar larva is sufficient
to reproduce animal behavior as observed in the older animals. From the anatomy of the first instar larva we excluded DAN>KC®® and
DAN>MBON synapses®® that may play an additional role in learning-induced plasticity at KC>MBON synapses,®’ the details of which are
not fully known. Instead, we induce plasticity purely via the simulation of a neuromodulatory effect of the DANs onto the KC>MBON synap-
ses.”” We also neglect recurrent interactions among KC themselves.®® Many of these interactions affect KC encoding different sensory mo-
dalities, which are not included in our exclusively olfactory model. Furthermore, we simplified the connectivity between LNs and PNs® and
between PNs and KCsto 2 — 6 PN inputs per KC, which excludes the set of KCs in the larva that receives exclusive input from only one PN.%?
This modification supported model robustness with respect to odor encoding within the small set of 72 KCs. Finally, from the population of =
25 larval MBONSs, we only modeled two and correspondingly adapted KC>MBON synapses to provide both MBONs with input from all KCs.

Sparse odor representation

We implemented four mechanisms supporting population- and temporal sparseness in the MB odor representation.®' Population sparseness
is defined as the activation of only a small subset of neurons by any given input.'*® In this circuit, population sparseness is enhanced through
lateral inhibition (via LNs), inhibitory APL feedback, and the divergent connectivity from PNs to a larger number of KCs.®' Temporal sparseness
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refers to the efficient and economic stimulus encoding in time where a specific stimulus configuration is represented by only a few action
potentials,'*”~">" which supports encoding of dynamic changes in the sensory environment.'%'>?">* |n our model, temporal sparseness is
facilitated by the cellular mechanisms of spike frequency adaptation across successive stages of the olfactory pathway, specifically in
ORNSs and KCs, and by inhibitory feedback via the APL onto the KCs.®" At the phenomenological level, the larval ORNs have been shown
to experience firing rate adaptation in response to abrupt changes in the odor stimulus concentration, and behavioral experiments showed
that the ORN adaptation affects the animals’ chemotactic behavior when navigating through an odor landscape.'*" In a computational model
of the adult fruit fly, temporal sparseness has been shown to support recognition of odor identity in brief odor filament encounters during
flight.”® In addition and on theoretical ground,“**"'*® spike frequency adaptation increases neuronal response reliability.

Sensory input

At the periphery of the olfactory pathway of the larval Drosophila, any odor activates up to = 1/3 of ORNs, depending on odor concentra-
tion." %% We implemented receptor input to ORNs by stochastic point processes resulting in postsynaptic currents to mimic the stochastic
transduction process at each receptor.*® Each of the 21 receptor inputs is modeled according to a gamma process (shape parameter k = 3).
The spontaneous firing rate of larval ORNs has been measured in the range of 0.2 — 7.9 Hz, depending strongly on odor and receptor
type.'*"1°%">” ORNs in our model exhibit an average spontaneous firing rate of 8.92 Hz (SD= 0.2 Hz). We constructed realistic olfactory input
across the ORN population for amylacetate and 3-octanol by estimating ORN spike frequency from calcium signals measured in the receptor
neurons ' “? (dilution of 107* ") to ensure that spike rates would not exceed the rates reported by Kreher et al.’*® They showed that using an
even stronger odor concentration (dilution 10~2'"%) ORN spiking activity never exceeded a frequency of 200 Hz. Due to the lower concentra-
tion used for amylacetate and 3-octanol (Figure 1D)'*? in our experiments and because the authors in'*® estimated firing rates only during the
first 0.5s after odor onset when the effect of spike frequency adaptation in ORNSs is the weakest (leading to higher spike rates), we decided to
allow for a maximum of 150 Hz in odor activated ORNs. After generating the gamma process realizations, we clipped multiple spikes occur-
ring in each time step of the simulation for technical reasons, discarding all but the first spike in each time step. Similar to the odor input, the
presence of either reward in the experimental context was implemented as input to the DAN./DAN.. Regular gamma spike trains (k = 10)
were generated and clipped for the odor input.

To assess the effects of odor similarity on generalization, we additionally created four artificial odors (A, B, C, D, Figure 1D). We quantified
the pair-wise distances in the ORN coding space using the cosine distance (Equation 14), where vectors a and b each represent the input spike
rate for one odor.

Dcos =1- Zi: 1ai.bi (EQUation 14)

The cosine distance between odors A and B equals 0.21, 0.77 between odors A and C, and 0.99 between odors A and D. The comparison of
amylacetate and 3-octanol yields a distance of 0.16.

Experimental protocols

The simulation experiments reported here belong to one of three categories. The first was performed to provide insight into the model and
the effects of specific circuit functions on synaptic plasticity and PE coding. To this end, we used amylacetate as the primary odor input. We
varied the intensity of the reward via the frequency of the gamma spike train, provided as input into the DAN, (either 500 Hz or 550 Hz, re-
sulting in an average output spike rate of 33.11 Hz / 39.14 Hz), and the learning rate a. (0.6 nS or 0.8 nS). Additionally, MBON>DAN feedback
was either enabled or disabled (Figure 1A).

Experiments belonging to the second category were designed to replicate larva lab experiments to allow for a direct comparison with our
model results. With these comparisons, we aim to validate the model and show to what extent our assumptions about the circuit functions
allow us to recreate experimental data (Figure 5). Replicating lab experiments also provides more insights into the circuit mechanisms and
offers alternative interpretations of the phenomena observed in data from animal experiments. Our implementations of the lab experiments
were set up following the general procedure described in the Maggot Learning Manual."”® Regardless of the specific protocol used in
different experiments, larvae are placed into Petri dishes in groups of 30 animals. They are allowed to move around freely on the substrate
that contains reinforcing substances, such as sugar or bitter tastants. During the entire time, they are subjected to specific odorants emitted
from two small containers in the dish to create permanent and relatively uniformly distributed odor exposure within the dish. In the analogy of
the experimental setting, in our simulated experiments, each model instance is trained individually through the concurrent presentation of
olfactory stimulation and reward. One-minute intervals with only baseline ORN stimulation were included between training trials to simulate
the time needed in the lab experiments for transferring larvae between Petri dishes. Unless otherwise specified and test phases refer to 3 min,
during which only odors are presented. All simulations were implemented in the network simulator Brian2."*’

Realistic modeling of larval locomotion

Behavior during the testing phase of the olfactory learning experiment was simulated via the freely available python-based simulation plat-
form Larvaworld (https://github.com/nawrotlab/larvaworld,*®). A group of 30 virtual larvae were placed with random initial orientation around
the center of a 100 mm diameter Petri dish and left to behave unconstrainedly for 3 minutes. The previously conditioned odor was placed at
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one side of the dish, 10 mm from the arena’s boundary. Each larva features a bi-segmental body supervised by a layered control architec-
ture. The basic layer of the control architecture is a locomotory model capable of realistic autonomous exploration behavior. It consists
of two coupled oscillators, one representing the crawling apparatus that generates forward velocity oscillations resembling consecutive peri-
staltic strides.®” The other oscillator generates alternating left and right lateral bending, manifested as angular velocity oscillations.'®” The
crawling and the bending oscillators are coupled via phase-locked suppression of lateral bending to capture the bend dependency on
the stride-cycle phase during crawling (weathervaning). Finally, intermittent crawling is achieved by a superimposed intermittency module
that generates alternating epochs of crawling and stationary pauses, with more headcasts for orientation during the latter.*’

Modulation of behavior due to sensory stimulation is introduced at the second reactive layer of the control architecture. An odor signal can
transiently alter both the amplitude and frequency of the lateral bending oscillator, which biases free exploration towards approach or avoid-
ance along an olfactory chemical gradient. This modulation of behavior is directly influenced via top-down signaling from the third adaptive
layer of the control architecture. In our approach, the spiking MB model populates the adaptive layer and its learning-dependent output,
defined as the behavioral bias (i.e., the difference in MBON firing rates, Equation 5), provides the top-down signal.é’6 We formalize the
gain of behavioral modulation as

G = g-BB. (Equation 15)

which is directly proportional to the behavioral bias and the additional proportionality factor g = 0.5.

QUANTIFICATION AND STATISTICAL ANALYSIS
Behavioral bias

We computed the difference between MBON spike counts as a measure of odor valence at the MB output. Either for bins of T = 1sto quan-
tify continuous changes during learning (Figure 2)

_ MBON, — MBON_

BB T

(Equation 16)

or across the duration of a T = 3 min test phase (Figures 3A, 4, and 5).

Spatially-defined measure of learning
A set of 10 30 trained MB model instances was used to generate 10 groups of 30 simulated larvae. The preference index and the perfor-
mance index® for these simulations are illustrated in Figure 5.

Preference indices (Pref) were computed individually for the paired and the unpaired experiments,”” based on the number of animals on
each side (odor vs. no odor) of the Petri dish at the end of the test phase.

CoUNtoyoy — COUNtaG o )
Pref = odor 1o odor (Equation 17)
COUNtogor+COUNtHG odor

The Performance indices (Pl) are computed from the preference indices of the paired and unpaired experiments.*’

_ Prefpaired - Prefunpaired

Pl 5

(Equation 18)
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