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1. Introduction

Prices have a signaling function in markets. They serve as incentives that coor-
dinate producers and consumers in the efficient allocation of resources, ensuring
that supply meets demand at optimal cost. As such, prices play a fundamen-
tal role in shaping the decision-making processes of market participants in any
economic system.

Electricity markets are unique due to the physical characteristics of electricity
as a good. Electricity supply and demand must be balanced in real time as
supply is subject to short-term capacity constraints and electricity is storable
only with the help of dedicated flexibility technologies such as batteries, thermal
storage, or demand-side management (c.f. Borenstein, 2005). This creates a
need for precise temporal coordination between supply and demand, making the
analysis of price signals especially important. In addition, electricity markets are
dependent on an interconnected grid that links producers and consumers. The
grid is also subject to capacity constraints, meaning that the physical location
of production and consumption matters (cf. Joskow and Léautier, 2021). Thus,
in addition to temporal coordination, spatial coordination is essential to ensure
the efficient operation of the electricity system.

These unique characteristics have gained importance with the ongoing trans-
formation of energy systems. The accelerated adoption of renewable energy
sources (RES), the increase in decentralization, and the growing participation of
consumers in electricity markets fundamentally alter the market dynamics. In
Germany, for instance, RES accounted for 52.5% of gross electricity consump-
tion in 2023 (BMWK, 2024a). The national target of 80% generation of RES by
2030 (EEG, 2023) signals a shift toward a decarbonized electricity system char-
acterized by new supply locations and weather-dependent feed-in patterns. At
the same time, consumer participation is growing and, as a result, the demand
structure is changing, further driven by the coupling of the electricity, heating,
and transport sectors. For example, six million heat pumps are expected to
be installed in private households by 2030 (BDEW, 2024), which will lead to
changes in the demand structure and may not correspond to the intermittent
generation of RES. The implementation of flexibility technologies, like batteries
and thermal storage, along with grid expansion, are essential developments for
the future electricity system to complement the transformation and ensure the
coordination between supply and demand.

The transformation of the energy system increasingly challenges existing pric-
ing mechanisms to provide effective signals to coordinate the electricity market
and the grid. Adding to this complexity is the unbundled structure of electric-
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1. Introduction

ity systems in many countries, which separates competitive wholesale electricity
markets from regulated grid operation. Key questions are how to design prices
that accurately capture the unique temporal and spatial characteristics of elec-
tricity, and how to allocate costs between competitive wholesale markets and
regulated grid operation to incentivize efficient outcomes.

Currently, many electricity systems fall short in delivering accurate price sig-
nals. For example, wholesale electricity prices often lack a local component,
disregarding the grid’s physical constraints. Retail tariffs are typically com-
posed of different components including network tariffs, taxes, and levies that
add on wholesale market price signals. For example, retail tariffs frequently in-
clude volumetric network tariffs that inflate electricity prices for consumers, as
they embed fixed grid costs into variable charges rather than reflecting the true
cost of grid usage at specific times and locations.

Understanding the price formation, possible interactions between its compo-
nents, and how market participants react to the price signals is therefore a crucial
task in economic research. Price signals guide the decisions of market partici-
pants, such as when to produce or consume electricity, invest in capacity, or
deploy flexibility technologies. For a market to function efficiently, price signals
must be coherent and economically sound. This applies in particular in the case
of retail tariffs, consisting of different price components. Otherwise, the economic
incentives of price signals may be distorted, undermining the system’s efficiency.

This thesis contributes to understanding price signals in the electricity sys-
tem through four chapters, each based on a single paper to which the authors
contributed equally. Using numerical, analytical, and empirical methods, the
chapters explore the relationship between price signals, system efficiency, and
the decision-making of market participants.

1. The Place beyond the Lines - Efficient Storage Allocation in a Spatially
Unbalanced Power System with a High Share of Renewables. Joint work
with Berit Czock and Jonas Zinke. EWI Working Paper 23/01 and under
review at Energy Economics (Czock et al., 2023)

2. Unlocking Thermal Flexibility for the Electricity System by Combining
Heat Pumps and Thermal Storage. EWI Working Paper 25/03 (Sitzmann,
2025)

3. Network Tariffs under Different Pricing Schemes in a Dynamically Consis-
tent Framework. Joint work with Samir Jeddi. EWI Working Paper 21/01
(Jeddi and Sitzmann, 2021)

4. How Prices Guide Investment Decisions under Net Purchasing - An Em-
pirical Analysis on the Impact of Network Tariffs on Residential PV. Joint
work with Fabian Arnold and Samir Jeddi. EWI Working Paper 21/07
and published in Energy Economics, Vol. 112, 2022 (Arnold et al., 2022)
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1.1. Outline of the Thesis

The remainder of the introduction provides an outline of the following chapters
(Section 1.1), discusses the methodological approaches, and hints at opportuni-
ties for future research (Section 1.2).

1.1. Outline of the Thesis

Chapter 2 and 3 are based on numerical models of the wholesale electricity mar-
ket and the transmission grid, with a particular focus on the integration of flex-
ibility technologies. These two chapters utilize numerical models that optimize
a social planner’s cost-minimization problem to analyze the electricity system.
Under ideal conditions, such an optimization corresponds to the decision-making
of market participants guided by the price signals of the wholesale market. The
analyses investigate how storage investments can be optimally allocated to dif-
ferent locations, and how the flexibility provision through thermal storage com-
bined with heat pumps impacts the electricity system. Chapter 4 broadens the
analysis by incorporating the perspective of the grid operator on pricing, ana-
lytically deriving the interactions of spot market pricing schemes and network
tariffs on consumer decision-making in a dynamic context. Finally, Chapter 5
studies whether the economic incentives provided by price signals work as ex-
pected in theory and emphasizes the importance of these incentives by showing
empirically how price signals guide household investment decisions in residential
PV systems in Germany. Each chapter is described in more detail below.

The Place beyond the Lines - Efficient Storage Allocation in a
Spatially Unbalanced Power System with a High Share of
Renewables

Chapter 2 deals with the challenges in grid operation posed by the temporal and
spatial variability of increasing shares of wind and solar generation. While grid
expansion is restricted in the medium term, storage technologies can potentially
increase the power system’s efficiency by temporally aligning generation and
demand and increasing grid utilization. The analysis is based on a theoretical
and a numerical model to evaluate the optimal allocation of battery storage. In a
case study for Germany, the results show that batteries can reduce system costs
when placed behind the north-south grid bottleneck and near solar power. The
supply costs in a setting with uniform prices and a random battery distribution
are 9.3% higher than in the theoretical first-best benchmark with nodal prices.
An optimal allocation of batteries can reduce this efficiency gap by 0.7 percentage
points to 8.6%. This corresponds to almost a doubling of supply cost savings
per euro spent on battery installation. Due to the lack of spatially differentiated
investment incentives under the German uniform pricing scheme, batteries must
be allocated by additional policies. Simple allocation rules such as tying battery

3



1. Introduction

siting to solar capacity or explicitly identifying a limited number of suitable sites
and auctioning capacity can approximate an optimal allocation.

Unlocking Thermal Flexibility for the Electricity System by
Combining Heat Pumps and Thermal Storage

The expansion of heat pumps drives the electrification of the heating sector which
is important to achieve Germany’s ambitious climate targets. Chapter 3, there-
fore, examines the impact of heat pumps in combination with thermal storage
on the flexibility of the German electricity system in 2030, focusing on its mar-
ket and grid impacts. A temporally and spatially detailed electricity market
and transmission grid model evaluates the impact of thermal storage. The re-
sults show that, overall, unlocking the flexibility of thermal storage consistently
reduces total supply costs. However, while the flexibility provided by thermal
storage supports the integration of renewable energies and reduces supply costs
in the dispatch, the use of flexibility increases grid violations and hence, redis-
patch measures. By further studying a model setup with locational marginal
prices (LMPs), the analysis highlights regional differences in the value of flexi-
bility, which is particularly high in northern Germany, where proximity to wind
generation enhances the benefits of thermal storage.

Network Tariffs under Different Pricing Schemes in a Dynamically
Consistent Framework

Since adequately designed prices are essential for efficient coordination between
the electricity network and market participants, Chapter 4 addresses the inter-
actions of the different electricity price components from a competitive wholesale
market and regulated network operation. An analytical model is set up to ex-
amine different regulatory settings, consisting of alternative spot market pricing
schemes and network tariff designs in a dynamic context. While a setting with
zonal pricing, i.e. spatially differentiated prices, and fixed network tariffs achieves
the highest welfare, a deviation of either the pricing scheme or the network tariff
design leads to inefficiencies. The results show that two inefficiently designed
price components can be better than one, especially if network tariffs correct for
the static inefficiency of the pricing scheme. Besides the network tariff design,
network operators must pay attention to the allocation of network costs. It af-
fects spatial price signals and, therefore, the dynamic allocation of investment
decisions. Considering these decisions in a dynamic framework increases the re-
quirements for the configuration of network tariffs, especially with volume-based
network tariffs.

4



1.2. Methodological Approaches and Future Research

How Prices Guide Investment Decisions under Net Purchasing - An
Empirical Analysis on the Impact of Network Tariffs on Residential
PV

Chapter 5 emphasizes the importance of economic incentives arising from prices
by showing empirically how price signals guide household investment decisions
in Germany. Under the current regulation of net purchasing in Germany, invest-
ment incentives for residential PV depend on the remuneration for grid feed-in
and the consumption costs that households can save by self-consumption. Net-
work tariffs constitute a substantial part of these consumption costs. In an
empirical model, postcode-level data for Germany between 2009 and 2017 is
used and the regional heterogeneity of network tariffs is exploited to investi-
gate whether they encourage to invest in PV installations and evaluate how the
nonlinear tariff structure impacts residential PV adoption. The results show
that network tariffs do impact PV adoption. The effect has increased in recent
years when self-consumption has become financially more attractive, and the re-
sults confirm the expectation that PV investments are driven by the volumetric
tariff. Policy reforms that alter the share between the price components are,
thus, likely to affect residential PV adoption. Further, with self-consumption
becoming a key incentive, price signals can effectively support the coordination
of electricity demand and supply in Germany.

1.2. Methodological Approaches and Future Research

Each chapter of this thesis deals with a specific aspect of coordination in electric-
ity systems and uses different methodological approaches to answer the respective
research questions.

Chapter 2 and 3 are based on large-scale numerical optimization models of
the European electricity sector. The models are applied to analyze investment
and dispatch decisions by taking into account a detailed depiction of the trans-
mission grid. The models rely on the fundamental assumptions of competitive,
efficient markets, and rational market participants with perfect foresight. In
addition, the models assume the electricity demand to be inelastic and disre-
gard any transaction costs. Under these idealized conditions, the results of the
optimization can be interpreted as the decision-making of market participants
guided by the price signals of the wholesale market. The model configurations
in both chapters are designed to be specific to the research questions raised in
each chapter. Chapter 2 analyzes the efficient allocation of new investments
into decentralized battery capacities and studies different policy instruments that
could coordinate an optimal battery allocation. Chapter 3 studies the flexibil-
ity provision of thermal storage installed in combination with heat pumps. In
this chapter, a dispatch model with flow-based market coupling in hourly time
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resolution is used to analyze dispatch and redispatch effects of the flexibility
provision.

In order to examine spatial effects in more detail, both analyses make use
of the concept of nodal pricing (locational marginal prices (LMPs)). Within
this setup, grid constraints are considered within the price formation, meaning
that all available information can be exchanged between the market and the
transmission grid. Without any frictions, such a price formation represents the
first-best benchmark for efficient coordination of electricity supply, demand, and
the grid. However, in reality frictional losses are likely to distort optimality,
for example, reduced liquidity, lack of transparency, market power issues, and
increased transaction costs. The first-best nodal benchmark must therefore be
interpreted as a theoretical benchmark. Further research could focus on relaxing
the assumptions of the model and analyze the impact of flexibility options in
a further developed model framework. With regard to the concept of nodal
pricing, for example, potential market power issues and reduced liquidity could
be investigated.

Chapter 4 sets up a stylized theoretical model framework of the electric-
ity system which allows for an analytical solution. The analysis is based on
a two-node model, including a spot market and the network tariff setting of a
transmission system operator (TSO). The theoretical model is able to capture
several spot market pricing schemes and network tariff designs. The theoreti-
cal approach provides insights into the interaction of the two price components,
their potential inefficiencies and the requirements for a dynamically consistent
allocation of demand-side investments. The stylized theoretical model relies on
several strict assumptions, which include i.a. perfect competition, perfect fore-
sight, constant marginal costs at the supply side, and identical consumers on
the demand side. The assumptions made in the model allow the tractability of
results, although they are accompanied with a high degree of abstraction and
imply a loss of generality. Relaxing critical assumptions, e.g., deviating from the
assumption of constant marginal costs or varying the functional form of the de-
mand function, are therefore promising directions for further research. Further
empirical or numerical studies could complement the theoretical analysis.

Chapter 5 applies an econometric approach to empirically investigate whether
and how price signals impact the adoption of residential PV installations in Ger-
many. A panel data set of PV installations, network tariffs, and socioeconomic
covariates on postcode level covering the years of 2009–2017 is used. The re-
gional heterogeneity of network tariffs is exploited to investigate whether they
encourage investment in PV installations and to evaluate how the nonlinear tariff
structure impacts residential PV adoption. A Poisson quasi-maximum likelihood
estimator (PQMLE) with fixed effects is applied, which is a suitable estimator
given the structure of the panel data set and allows to control for unobserved
heterogeneity across regions and time. However, the use of fixed effects absorbs
a substantial part of the within-variance and hence, the analysis is limited in
explaining the present heterogeneity of PV installations in Germany. Further
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research could apply alternative estimation strategies in order to examine the
impact of economic and socio-economic factors on the regional heterogeneity
across Germany in more detail.

Beyond this discussion, the individual chapters describe in detail the method-
ological approaches used, discuss their limitations, and point out possibilities for
further research.
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2. The Place beyond the Lines - Efficient

Storage Allocation in a Spatially

Unbalanced Power System with a High

Share of Renewables

2.1. Introduction

As countries strive for climate neutrality, they aim for high wind and solar power
penetration rates. Wind and solar are intermittent, so temporal congruence with
demand is not guaranteed. Additionally, resource quality varies across regions,
which may lead to a spatial imbalance between supply and demand or exten-
sive transmission requirements that exceed the capacity of existing grid infras-
tructure. Efficient coordination of investments in wind and solar, as well as in
transmission grid expansion and power system flexibility, can mitigate these chal-
lenges and decrease system costs. Storage technologies, such as electric batteries,
provide such power system flexibility. They can address temporal imbalances by
shifting generation and load and reduce spatial imbalances by improving net-
work utilization if allocated accordingly. Whether such an allocation is achieved
ultimately depends on the market design. Under nodal pricing, allocation incen-
tives are set by market prices. Such incentives do not exist in uniform pricing
systems.

This paper analyzes investment in storage technologies in both a nodal and
a uniform setting. We focus on a rapidly changing, spatially unbalanced power
system, i.e., where solar and wind capacity expansion is fast, but grid expansion
is slow. By applying a stylized, theoretical, and a numerical investment and
dispatch model, we answer the following three research questions: Firstly, where
in the transmission grid should batteries be allocated? Secondly, how important
is storage allocation for the system’s efficiency and, thirdly, how could policy
instruments be designed to approximate an optimal allocation under uniform
pricing?

The importance of storage allocation is first illustrated using a theoretical
two-node, two-time-step model that stylizes the characteristics of a spatially
unbalanced power system. This model enables us to show fundamentally that
storage capacity can increase line utilization depending on its location. We
show that both an allocation before or behind a grid bottleneck can be efficient.
Which allocation rule dominates crucially depends on the temporal relationship
between the volatility pattern of renewable generation, the demand structure,
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and available transmission capacity. Naturally, the complexity of the allocation
question increases as soon as more than two nodes and time steps are considered.
Therefore, we provide a comprehensive numerical model to investigate optimal
storage allocation in a system with multiple technologies and a detailed grid
representation. We use the German electricity system as a case study.

Already today, Germany exhibits characteristics of a spatially unbalanced elec-
tricity system. Under the single bidding zone, i.e., uniform pricing, wind gen-
eration is dominantly allocated in northern Germany on the shore of the North
and Baltic Seas, while electricity demand is historically centered in the south
and west of Germany, which is more densely populated and industrialized. As
a result of this spatial mismatch, the volume and costs of network congestion
measures have risen and are likely to increase further, given Germany’s latest
renewable capacity targets.

To investigate the optimal allocation of storage and identify policy design
options for coordinating investments, we use a linear optimization market and
grid model that endogenously determines the allocation of storage and renew-
able generation technologies. The storage technology is calibrated as short-term
battery storage. The model computes a closed-form solution to the investment
and dispatch optimization problem while considering a high spatial resolution.
We use the results from modeling a nodal setup with consideration of transmis-
sion constraints as a theoretical first-best benchmark. This allows benchmarking
battery allocation under a uniform setup without consideration of transmission
constraints in the investment problem, similar to the current German market
design.

The numeric simulation results confirm the significance of local demand, re-
newable feed-in volatility, and grid infrastructure availability for optimal battery
allocation. Especially solar generation, which has a daily generation pattern that
matches the batteries’ short-term shifting abilities, is a key driver for an efficient
allocation. Compared to the nodal first-best benchmark, we see that the uniform
setting with randomly distributed batteries increases supply costs by 9.3%. An
optimal allocation of batteries can reduce this efficiency gap by 0.7 percentage
points to 8.6%. In relation to the cost of battery investments, this corresponds
to almost a doubling of the supply cost savings per euro spent. The supply cost
savings are realized in redispatch, where the location of batteries is crucial.

In the current system in Germany, such an optimal allocation is not achieved
because spatially differentiated investment signals are not available under uni-
form pricing. However, with the help of an additional policy instrument, location-
specific information could be made transparent to provide a reference point for
allocating batteries in a system-beneficial way. To get insights on how to design
this policy instrument, we model different allocation rules. We find that simple
heuristics, such as tying battery allocation to solar generation or explicitly defin-
ing a limited number of nodes for capacity auctions, can closely approximate the
optimal battery allocation.
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2.2. Literature review

Only a limited amount of publications have fundamentally examined the role
storage could play in unbalanced power systems. Newbery (2018) argues fun-
damentally that storage can increase grid utilization, thus decreasing system
imbalances. Using theoretical models, Neetzow et al. (2018) analyze whether
grid expansion and storage are complements or substitutes, and Weibelzahl and
Märtz (2018) examine the effect of storage on the optimal definition of price
zones, highlighting the additional complexity storage brings into the system.
Predominantly, the current literature is based on more complex, numerical stud-
ies considering specific countries or regions. Many of the studies focus on the
short-term deployment of storage in uniform price systems (e.g. Abrell et al.,
2019, Bertsch et al., 2016, Schill and Zerrahn, 2018, Zerrahn and Schill, 2017).
These papers analyze the possibilities of using storage to balance the temporal
volatility of renewables but do not include a grid representation. To model spa-
tial allocation and derive market design implications, a representation of grid
constraints is crucial. Such an analysis is, for example, carried out by Schmidt
and Zinke (2023) for the case of wind generation allocation in Germany in 2030
and similarly, vom Scheidt et al. (2022) investigate differences between a nodal
and a uniform pricing system in Germany, focusing on the integration of hydro-
gen and system-optimal locations of electrolyzers in 2030. Lindner et al. (2023)
analyze the impact of batteries used as grid boosters or virtual power lines and
place them at two exemplary nodes in the north and south of Germany.

Closest to our analysis is literature on efficient incentives for flexibility assets.
Ambrosius et al. (2018) investigate the effects of different market designs on
investment incentives for flexible demand in the German industry in various
scenarios under nodal and uniform pricing. However, the paper uses a simplified
transmission grid representation with just 16 zones. Babrowski et al. (2016)
apply a more detailed model but focus on the optimal amount of storage.

Some further publications focus on the longer term and analyze efficient power
system configurations with (nearly) 100% renewable power generation in the
European power system, e.g., Brancucci Mart́ınez-Anido and de Vries (2013),
Bussar et al. (2014), Schlachtberger et al. (2017), and Göke et al. (2021).

Research gap and contribution

Reviewing current literature reveals a lack of systematic analysis of optimal stor-
age allocation and market design implications. Consequently, our paper seeks to
bridge the gap between existing publications that address storage, grid issues, or
market design as individual issues in power systems with high shares of wind and
solar. We contribute a fundamental analysis of storage allocation in a simplified
model and verify and expand our findings by employing a numerical electricity
market and detailed grid model with endogenous storage allocation in light of
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the current conditions in Germany. Analyzing storage allocation in a uniform
setting and a first-best nodal benchmark allows us to translate the insights from
our integrated analysis into policy suggestions.

2.3. The economic rationale for storage allocation

This section introduces a model with two nodes and two time steps to analyze
determinants of cost-optimal spatial allocation of storage in a spatially unbal-
anced transmission network. Generally, electrical storage technologies can shift
electricity supply between different points in time.

Depending on their allocation in the grid, storage can use its temporal shifting
potential to increase network utilization and thus reduce spatial imbalances. For
illustration, consider the following:

Assume a weather-dependent, renewable generation technology in node R, for
example, a wind or a solar generator gres, with constant zero marginal costs
cres = 0. Renewable generation is stochastic and can take two possible states,
reslow and reshigh. Demand d is allocated in node D and can also take two
possible states dlow and dhigh. For simplicity, demand and renewable availability
are assumed not to be correlated, and renewable generation meets demand when
both are in the same state, i.e., reslow = dlow and reshigh = dhigh. Further,
we consider a peak-load technology gpeak at node D, with constant marginal
costs cpeak > 0 and enough capacity to serve the demand in each time, i.e.,
gpeak >= dhigh.

Both nodes are connected by a transmission line l with line capacity dlow <
l < dhigh. Hence, if both demand and generation in node R are high, node D
could still not be fully supplied by the renewable generation technology due to
a grid bottleneck. The model is illustrated in Figure 2.1.

R D
transmission line l

renewable generation gres
with gres ∈ {reslow; reshigh}
and cres = 0

demand d ∈ {dlow; dhigh}
peak-load generation gpeak
with cpeak > 0

Figure 2.1.: Two-node example

We consider two time steps t1 and t2. Combining renewable generation and
demand in all its possible states yields eight different cases, shown in table 2.1.1

Storage s can either be built in node R orD and comes without any investment
costs. We further assume no storage losses or other variable costs in addition

1We do not consider combinations in which renewable generation is low in t1 as storage is per
se useless in these cases.
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Table 2.1.: Possible combinations of renewable generation and demand in both time
steps

Volatility t1 t2 Allocation rationale

case 1 none reshigh, dlow reshigh, dlow no storage
case 2 none reshigh, dhigh reshigh, dhigh no storage
case 3 in generation reshigh, dhigh reslow, dhigh storage in R

case 4 in both reshigh, dlow reslow, dhigh indifferent (R or D)

case 5 in generation reshigh, dlow reslow, dlow no storage
case 6 in demand reshigh, dlow reshigh, dhigh storage in D

case 7 in demand reshigh, dhigh reshigh, dlow no storage
case 8 in both reshigh, dhigh reslow, dlow no storage

to charging costs, such that cs < cpeak when storage is charged with renewable
energy. For simplicity, we assume that storage power (charge and discharge) ca-
pacity equals supply and demand states reshigh and dhigh. Furthermore, storage
volume capacity spower is sufficient to store at least one period of full charging,
i.e., svolume ≥ spower.

By definition, storage is only useful if there are fluctuations in the system,
either in renewable generation or demand. If renewable generation is high in
both time steps and demand does not fluctuate either, the transmission line l is
already used at capacity and peak generation is minimized. Hence, storage has
no benefit to the system as a whole, which holds for cases 1 and 2.

If demand fluctuates and transmission line l is not utilized in t1 or t2, temporal
shifting becomes useful. Consider the case that renewable supply is high in t1
and low in t2 and demand in node D is high in both time steps (case 3). Because
there is a transmission bottleneck in t1, storage could be used to store excess
renewable generation reshigh − l. In t2, the stored energy can be released and
transmitted to node D, as transmission line l is not utilized because generation
is otherwise low. Storage has to be allocated at the generation node R to do so,
as l is fully utilized in t1 when the storage is charged. A similar effect occurs, if
demand is low in t1 and high in t2 (case 4). In this case, however, the location
does not matter. Without storage, line l is not utilized at capacity in either
time step. Thus, storage can charge regardless of whether it is allocated at
node R or node D. In case 5, where demand is low at both times, no storage
is needed because both renewable generation and grid capacity are sufficient to
meet demand at both times.

If the renewable generation is high at both times, the benefit of storage depends
solely on the demand profile. In case 6, where demand is low in t1 and high in
t2, storage capacity equal to spower = l−dlow is built in node D to use renewable
generation in t2 instead of the more expensive conventional generation. In cases
7 and 8, where reshigh and dhigh coincide, again, temporal shifting has no benefit.
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Main findings and generalization

The model demonstrates that storage can decrease supply costs by increasing
line utilization and that storage location is crucial to unlock said system benefits.
The results suggest that storage can be optimal either before or behind a grid
bottleneck. In the simple setup, the optimal location depends on the volatility of
the underlying demand and generation profiles. Thus, storage is allocated where
volatility is higher. In practice, however, the underlying profiles are stochastic
and exhibit more time steps, i.e., a sequence of the individual cases discussed
above. When combining the cases into a sequence, the strict dominance of an
allocation case ceases to exist, meaning that one of the cases could prevail or
storage capacity could be split between the two nodes.2

Furthermore, the complexity of the model and the underlying relationships
increases as soon as more than two nodes and technologies with different char-
acteristics are considered. Even in the very simple model setup with only two
nodes and two time steps, the storage allocation depends on the parametrization
of generation and demand volatility. To decide where storage is allocated opti-
mally, it is thus necessary to use a well-parametrized and numerical real-world
model.

2.4. Methodology and input data

2.4.1. Model framework

We employ an extended version of the investment and dispatch model SPIDER
initially developed in Schmidt and Zinke (2023). SPIDER is a model of the
European power sector that considers a detailed depiction of the German trans-
mission grid.3 The model invests in new power plants and dispatches generation
capacities such that the net present value of the variable and fixed costs is min-
imized.

Demand, which means the structure, spatial distribution, and level, is assumed
to be inelastic, i.e., not adjusting to prices. The model relies on the assumption
of perfect markets and no transaction costs. Thus, the competition of profit-
maximizing symmetric firms corresponds to the model’s cost minimization of a
central planner.

2With a longer sequence of time steps, also the assumption regarding the volume factor of
storage svolume

spower
becomes more relevant than it is in the two-time-step example. The volume

factor determines the maximum duration of temporal shifting. Different volume factors
mean that different parts of a stochastic demand and supply pattern can be exploited, thus
also potentially affecting efficient allocation.

3For a thorough description of the underlying model and its characteristics, the reader is
referred to Schmidt and Zinke (2023).
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We set up a linear optimal power flow problem (LOPF) to approximate the
inner-German transmission grid infrastructure. To keep the problem linear,
DC power flow constraints approximate non-linear AC power flow restrictions.
Thereby, the model neglects grid losses and reactive power (c.f. van den Bergh
et al., 2014). The implementation of DC power flows is based on the cycle-based
Kirchhoff formulation, which has been proven to be an efficient formulation (c.f.
Hörsch et al., 2018). Network investments are assumed to be exogenous, which
is valid for the 2030 time horizon due to the long approval and construction
times. European regulatory authorities usually review and approve grid expan-
sion projects 10 to 15 years in advance (c.f. Bundesnetzagentur, 2019).

In addition to the initial model of Schmidt and Zinke (2023), in this paper,
SPIDER is extended to allow for endogenous investments in storage as well as
solar power capacities. The model optimizes the allocation of storage, but the
ratio of maximal charging power (hereafter referred to as capacity) and stored
energy (hereafter referred to as storage volume) is set exogenously. The key
formulation of the cost minimization problem and the storage constraints are
given in A.2.

Modeling a detailed representation of grid constraints and endogenous invest-
ments in generation and storage is a computational challenge. As in Schmidt and
Zinke (2023), the model is subject to several limitations: As mentioned above,
investments in transmission grid lines are exogenous assumptions. Ramping and
minimum load constraints are approximated to avoid a mixed-integer optimiza-
tion and the model does not include combined heat and power plants. Further,
the model abstracts from uncertainty and assumes perfect foresight.

2.4.2. Assumptions and data

The regional focus of the model is Germany, with a spatial resolution at trans-
mission grid node level, i.e., 220 kV to 380 kV voltage levels. The depiction of
the transmission grid is based on grid information from multiple sources, includ-
ing Matke et al. (2016) and 50Hertz et al. (2019). Grid extensions follow the
German 2030 grid development plan, which was reviewed and approved by the
German grid regulator (c.f. Bundesnetzagentur, 2019).

While the German transmission grid is modeled for 2019 with 380 nodes and
606 lines, Germany’s neighboring countries are depicted as singular nodes with-
out intra-country grid restrictions. The model includes interconnectors to as
well as between neighboring countries, which are approximated via net transfer
capacities (NTC) based on ENTSO-E (2020a).

The regional scope and the depiction of the German transmission grid are
visualized in Figure 2.2.

Our analysis covers the years 2019, 2025, and 2030. Each year is represented
by 12 representative days at hourly resolution. We derive the representative days
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by using k-medoids clustering with respect to residual load (c.f. Kotzur et al.,
2018).

For our case study, we parameterize the storage technology as large-scale elec-
tric batteries. Therefore, these batteries participate in the wholesale market and
may be subject to redispatch measures (in the uniform setting).4 A.3 discloses
further assumptions on technology parameters, demand development per country
as well as fuel prices.

Existing power plant capacities and their distribution across Germany are
derived from data provided by the German regulator Bundesnetzagentur.5 Power
plants are distributed via their postcodes to the nearest transmission grid node.
The future distribution of offshore wind farms is based on 50Hertz et al. (2019).

Figure 2.2.: German transmission grid and NTC connections to neighboring countries

Capacity development at the national level is exogenous and follows the Na-
tional Trends scenario in ENTSO-E (2020a) for all countries except Germany.
For Germany, the assumed capacity development reflects the legal and politi-
cal situation. Wind and solar expansion follow the current legal targets (EEG,
2023, WindSeeG, 2023). The legislation does not include a specific capacity tar-
get for batteries in 2030. Instead, aggregated battery capacity is an assumption

4In practice, this does not apply to small storage systems such as photovoltaic systems or
storage for electric vehicles designed to increase self-sufficiency.

5Conventional power plants are based on the power plant list (Bundesnetzagentur, 2020a) and
renewables on data from the Marktstammdatenregister (Bundesnetzagentur, 2020b).
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based on Scenario B from the 2037/2045 grid development plan (50Hertz et al.
(2022)).6 Table 2.2 shows the assumed expansion of wind, solar, and battery
capacities in Germany.

Table 2.2.: Assumed development of installed wind, solar and battery capacities in Ger-
many

[GW] 2019 2025 2030

Wind Onshore 53.4 65.4 115.0
Wind Offshore 7.5 14.3 30.0

Solar 49.2 105.2 215.0
Batteries 0.0 5 15.0

The phase-out of German nuclear, lignite, and coal power plants is imple-
mented according to the path defined in the Act to Reduce and End Coal-
Fired Power Generation (KVBG, 2020). In addition, the announced phase-out
of lignite-fired power generation by 2030 is considered for the state of North
Rhine-Westphalia (BMWK et al., 2022). We assume that the electricity market
triggers sufficient investments into backup power plants to meet demand at all
times. The location of the required gas capacities is efficiently determined in the
nodal setting and fixed for all model runs.

The regional allocation of onshore wind, solar, and battery storage capac-
ity is determined endogenously. Therefore, their regional allocation follows the
economic rationale of the considered model setup (see 2.4.3) while considering
distributions of determining factors such as demand and resource quality. Since
the total installed capacities are the same in all settings examined, the efficiency
of regional allocation alone determines the differences in electricity supply costs.

Demand time-series for neighboring countries are based on hourly national
demand in 2014, according to ENTSO-E (2020b). The German demand is dis-
tributed to the nodes similar to the approach in 50Hertz et al. (2019): Based
on sectoral demand shares on the federal state level (c.f. Länderarbeitskreis En-
ergiebilanzen, 2020), household demand is distributed onto nodes proportionally
to population shares. The distribution of industry and commercial demand re-
flects the regional distribution of gross value added for the respective sectors (c.f.
Eurostat, 2020)). The demand time series are synthesized in a bottom-up ap-
proach using sector and application-specific standard load profiles, which reflect
2014 as a calendar and weather year.

The intermittency of renewable feed-in is modeled via weather-dependent
hourly regional feed-in potential. The time series for onshore wind in Germany
and solar generation are based on high-resolution reanalysis meteorological data
from the COSMO-REA6 model. For onshore wind, the conversion of wind speeds
to regional feed-in data is based on Henckes et al. (2017). For solar genera-

6In a sensitivity analysis, our results prove robust for deviating total battery capacities of 5,
10, and 20 GW, respectively A.4.
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tion, solar radiation was converted to regional feed-in potential as described by
Pfenninger and Staffell (2016a). Data for Germany’s neighboring countries and
German offshore wind power is provided by Pfenninger and Staffell (2016a) and
Pfenninger and Staffell (2016b).

2.4.3. Nodal and uniform setting, allocation rules, and
benchmarking

The model framework is applied to simulate investment and dispatch decisions
under two different settings: nodal and uniform. Each transmission grid node
constitutes a market in the nodal setting, and grid constraints are considered
within the price formation. When grid constraints are binding, prices differ
between nodes. In the case of new investments, these spatially differentiated price
signals and hence, transmission bottlenecks are considered in siting decisions.
Without any friction, the nodal setting represents the first-best configuration for
efficient coordination of power generation investments, dispatch, and the grid.

Germany employs a uniform pricing approach. Uniform pricing relies on larger
market areas or zones, usually defined by a country’s national borders. Under
uniform pricing, physical constraints concerning power flows within a market area
are not considered in the market clearing. As a result, the scheduled dispatch
after market clearing may violate physical grid restrictions and require curative
redispatch measures carried out by grid operators. As grid restrictions are not
reflected in the market, prices within a market area are the same. We model
a uniform setting where transmission bottlenecks are neglected; As a result,
coordination between generation investment, dispatch, and the grid is missing.
This setup represents the uniform pricing market design currently in place in
Germany in a simplified way.7

Consequently, the two setups differ regarding the amount of information avail-
able or, more specifically, in terms of the consideration of transmission con-
straints. In the uniform setting, a subsequent dispatch run considering the DC
power flow reveals whether the scheduled dispatch with given investment deci-
sions violates grid constraints, i.e., whether a redispatch is required. The differ-
ence in supply costs between the initial dispatch and the subsequent redispatch
run is considered the resulting redispatch cost.8 We quantify efficiency losses
of the uniform setting by comparing total supply costs with the nodal first-best

7We neglect additional factors that might impact siting decisions, such as additional policies
or locational factors that relate to the preference of individual investors. Consequently, in
the uniform setup, siting decisions for wind and solar are guided by resource quality so that
new facilities are primarily built in areas where meteorological conditions allow a maximum
yield. Other generators, including batteries, are indifferent to siting in the uniform setup.

8We model a perfectly efficient redispatch that includes all generation units in all modeled
countries. Thus, the resulting total supply costs, i.e., dispatch plus redispatch costs, would
be equal if capacity allocations in the nodal and uniform setting were the same. However,
the allocation of new capacity is sub-optimal in the uniform case, resulting in higher total
supply costs than in the nodal setup.
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benchmark. Capital costs can be neglected since the total installed capacity is
the same in each setting.

Assuming that the uniform pricing system is politically desired and will be
maintained in Germany, location-specific information could be made transparent
with the help of an additional policy instrument that provides a reference point
for a system-beneficial allocation of storage capacities. To get insights on how to
design this policy instrument, we use the numerical model to analyze different
allocation rules for storage investment in an otherwise uniform setting. Thereby,
we focus on allocation rules that coordinate the storage allocation isolated from
other technologies. Specifically, we test for heuristic approaches and explicit
allocation rules.

Heuristic approaches, on the one hand, allocate storage capacity based on a
reference distribution. We select the heuristics based on an analysis of drivers
for optimal storage allocation. A similar instrument to such a heuristic is used in
the capacity auction for wind power generation. To achieve a broader capacity
distribution over Germany, the merit order of capacity bids is altered to compen-
sate for yield losses at sites with lower resource quality. The correction follows a
non-linear heuristic based on the deviation from a reference wind generator. An-
other example of a heuristic allocation approach can be found in Sweden, where
generation network tariffs depend on latitude. The differentiation of network
tariffs incentivizes generation investment at lower resource quality sites close to
demand.

On the other hand, we test explicit approaches which allow storage investment
at a limited number of candidate nodes identified as suitable in the optimal
case. The capacity is then optimized across the candidate nodes. Hence, this
approach requires detailed information about load flows. A similar policy is
already implemented within the capacity auctions for wind generation, where a
certain percentage of capacity is reserved for bids from the so-called south zone, a
predefined area below the structural grid bottleneck. A different kind of location-
specific capacity mechanism is used to procure the so-called grid reserve. The
German grid regulator monitors the capacity demand for redispatchable power
plants in the south of Germany. If available capacity is lower than capacity
demand, grid operators can procure specific mothballed power plants or power
plants scheduled for phaseout for grid reserve.

To rank the different instruments and their efficiency gains, we derive the op-
timal allocation of batteries for the uniform setup and use it for comparison. To
obtain the optimal allocation, we perform a first model run calculating the distri-
bution of wind and solar capacity without considering transmission constraints.
Subsequently, in a second model run, we optimize the battery allocation consider-
ing transmission constraints and the given distribution of wind and solar. While
the optimal allocation represents the upper bound for the efficiency achieved
with a storage allocation mechanism, determining a lower bound is somewhat
more complicated. In the uniform setting, there is no clear decision rule for
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storage because resource quality does not vary. Different factors such as demand
typology, innovation drive or existing infrastructure could potentially influence
storage allocation in the real world without spatially differentiated investment
incentives. It is, however, unclear whether and how such factors influence the al-
location and we, therefore, cannot include them in our model. Instead of a lower
bound, we compute a demand-weighted random distribution of storage across
Germany as a benchmark for the lack of coordination incentives. The random
distribution is sampled 100 times and averaged to reflect an expected value.

2.5. Numerical model results

2.5.1. Battery allocation

In both settings, placing 15 GW battery capacity reduces supply cost, i.e., dis-
patch (and redispatch) costs.9 In the nodal setting, supply costs decrease by 1.1%
compared to a case without batteries in the system. In the uniform setting, bat-
teries can reduce supply costs by 1.5%. The drivers for the efficiency gains differ
between the two settings. Under the nodal setup, wind, solar, and batteries are
allocated in an integrated optimization and under the consideration of grid con-
straints. This allows wind and solar generation to be shifted to locations with
higher full-load hours that were subject to grid constraints without batteries.10

Thus, renewable power generation increases and higher-cost fossil generation is
avoided compared to a case without batteries. In the uniform setting, supply
cost reductions are split between cost savings in the initial market clearing and
in redispatch. In the market clearing, batteries shift excess renewable energy
to peak residual load periods, avoiding high-cost peak generation. The supply
cost reductions are realized independent of the location and are equal in both
battery allocation cases under the uniform setup. In redispatch, batteries create
additional efficiency by avoiding high-cost generation behind grid bottlenecks.
To achieve efficiency gains in redispatch, the allocation of batteries is relevant.
This is illustrated by comparing a case of optimal battery allocation to a case of
random battery allocation. On average, when allocated randomly, batteries can
only decrease supply costs by 0.8% in comparison to a case without batteries.
An optimal allocation sets the upper bound for supply cost reduction at 1.5%.
Figure 2.3 compares the efficiency gains of placing 15 GW of battery capacity in
the grid for the three cases.

9Note that the amount of battery capacity is imposed exogenously in our setting. Thus, we
do not investigate whether the savings in supply cost cover the capital cost of the batteries
and hence do not infer conclusions about the economic efficiency of the chosen amount of
batteries installed. We discuss some rough estimates at the end of section 2.5.3.

10For a more detailed understanding of the different allocations of wind and solar under nodal
and uniform setting without batteries, see Appendix A.4.
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Figure 2.3.: Relative reduction of supply costs due to batteries in the nodal and uniform
setting compared to the case without batteries

When comparing the two settings, we find that the total supply costs are 8.6%
higher in the uniform than in the nodal setting, even for optimal battery alloca-
tion. This cost difference is attributed solely to the sub-optimal distribution of
renewable generation capacity.

In both settings, nodal and uniform, the optimal battery allocation follows
the allocation of wind and especially solar generation capacity. Thus, in the
nodal case, batteries are allocated broadly across Germany, while in the uniform
case, batteries concentrate in the south of Germany and especially below the
51st latitude. Moreover, under both settings, batteries are allocated close to
congested transmission lines, i.e., lines that are frequently utilized at full capacity
(depicted in red).

Grid congestion is illustrated in the upper graph of Figure 2.4b, which shows
marginal supply costs at each node over latitudes. In the nodal setting, marginal
supply costs equal the nodal prices. In the uniform case, they reflect the supply
costs in redispatch. Prices differ between nodes if transmission constraints are
binding, i.e., if a bottleneck exists. This is especially the case between the 52nd
and 53rd parallel, where price differences of up to 44 EUR/MWh in the nodal case
and 70 EUR/MWh in the uniform case occur. The price difference in the uniform
setting is higher because the grid bottleneck is more prevalent here. This can be
attributed to the sub-optimal renewable allocation in this case. In both settings,
placing most of the battery capacity below the grid bottleneck is optimal. It
follows the distribution of solar generation capacity. Thus, it is distributed more
uniformly across the west and east in the nodal setting, while it is concentrated
in the southeast (the federal state of Bavaria) in the uniform setting. Close to
solar generation, batteries can flatten the daily solar generation profile, mitigate
local grid congestion, and thus reduce local residual demand peaks. Doing so,
batteries help to avoid the high-cost (re-)dispatch of conventional power plants
in this area.

Furthermore, in both settings, a significant battery capacity of about 3 GW is
allocated right above the structural north-south transmission bottleneck. Under
the nodal setup, this capacity is shifted closer to western demand centers, where
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(a) Spatial distribution of battery capacity expansion and
line utilization in the (i) nodal and (ii) uniform setting

(b) Nodal marginal supply costs
and battery allocation by
latitude

Figure 2.4.: Spatial distribution of 15 GW battery capacity and marginal supply costs
in 2030

substantial wind and solar generation capacity is allocated. Through temporal
shifting, these batteries increase the utilization of connections to the north and
the usage of local wind and solar generation. In the uniform setting, the battery
capacity allocated at the structural grid bottleneck is concentrated in the middle
and the east of Germany, making use of solar capacity allocated there while at
the same time increasing utilization of the easternmost HVDC connection.

The north of Germany, i.e., above the 53rd parallel, attracts a battery capacity
of 1.4 GW under the nodal setup. The allocation of this capacity is the result
of the simultaneous optimization of battery and renewable capacity allocation.
Batteries allocated in the far north increase the north-south transmission uti-
lization at locations where HVDC lines are connected. Thus, they enable wind
generation to increase its full load hours by moving further northwards. This
rationale does not hold under the uniform setup, where the optimization of re-
newables and batteries is decoupled. Additionally, the structural north-south
bottleneck is too prevalent to achieve a similar transmission. As a result, there
are no batteries allocated in the far north.

The numerical model results confirm for the case study of the 2030 scenario
of Germany what the two-node model revealed: Storage can reduce supply costs
in transmission constraint power systems with high volatility, but allocation
matters to unlock the efficiency gains. For the case of batteries, we show that
efficiency gains can be made, especially in conjunction with solar generation,
as batteries flatten the daily generation pattern. By locating them near solar
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generation and grid congestion, the batteries avoid high residual demand peaks,
i.e., costly generation during dispatch and redispatch.

2.5.2. Policy instruments for battery allocation

The uniform pricing setting sets no spatial coordination incentives for batter-
ies; thus, achieving optimal allocation is unlikely. Therefore, we investigate the
supply costs of potential allocations that could be realized by regulatory mech-
anisms that impose additional price signals under uniform pricing. We test for
two types of capacity distribution mechanisms: heuristic allocation rules that
allocate battery capacities over all nodes according to a predefined distribution
and explicit mechanisms that allow battery allocation only at specific candidate
nodes.

2.5.2.1. Heuristic allocation rules

As shown in the two-node model and the numerical example, optimal storage
allocation is driven by the volatility induced by renewable feed-in, demand, and
transmission grid constraints. Therefore, the first two heuristics distribute bat-
tery capacity proportionally to solar generation capacity and demand, respec-
tively. Even though wind generation allocation is not a driver for optimal bat-
tery allocation in the uniform setting, we test whether batteries could exploit the
volatility of wind generation and decrease supply costs when distributed accord-
ing to wind generation capacity in a third heuristic. Heuristic four reflects the
allocation of both wind and solar, thus taking a combined approach to renew-
able volatility. Capturing the dynamic influence of transmission grid constraints
in a heuristic approach is more difficult. We investigate whether heuristic five
can address grid congestion, which distributes storage capacity proportionally to
phased-out power plants. Phased-out plants were historically allocated close to
demand and may thus address the north-south bottleneck.

To discuss the suitability of these heuristics, we assess them against the optimal
battery allocation given the distribution of wind and solar in the uniform setting
discussed in the previous section. The relative increase in total supply costs
resulting from the heuristics compared to the hypothetical, optimal allocation of
batteries lies between close to 0 and 1.1% (see table 2.3).

Table 2.3.: Summary of relative cost increases and battery capacity factors for heuristic
battery allocations

opt.
benchmark

random
benchmark

solar
wind

& solar
demand

phased-out
power plants

wind

Supply cost delta [%] - 0.66 0.27 0.38 0.61 0.90 1.07
Redispatch cost delta [%] - 3.84 1.58 2.19 3.58 5.25 6.24
Battery capacity factor 0.15 0.15 0.16 0.15 0.16 0.13 0.08
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As market efficiency gains are independent of the allocation, the differences in
supply costs between the benchmark and the heuristic allocations correspond to
the difference in redispatch costs, which are determined by the total redispatch
volume and the power plants used in redispatch. The total redispatch volumes
are similar in the benchmark case and for all heuristics. Redispatch is mainly
caused by high wind power curtailment in the north of Germany. Situations
of high wind feed-in and north-south transmission bottlenecks continue for long
periods, and therefore the ability of batteries to reduce curtailment volumes is
limited.

Hence, redispatch costs differ mainly due to the different types of power plants
used for redispatch. Redispatch costs are lowest if batteries frequently shift low-
cost electricity in time to avoid costly fossil-fired generation. In our scenario
results, this is especially the case in the south and east of Germany, where
high solar generation leads to high volatility in local marginal generation costs.
Batteries can utilize this volatility by charging when solar power generation is
high. They then use this energy to displace lignite power plants and gas turbines,
which replace south German nuclear capacities, in redispatch. Conclusively, a
heuristic, which distributes capacity according to solar generation capacity, is
the most efficient, followed by a heuristic, which considers both wind and solar.

A demand-based heuristic is the third most efficient. Here, more battery
capacity is located in the west of Germany, while solar power generation is con-
centrated in the east and south. Since marginal generation costs are higher in
the west, battery charging is more expensive and replacement of fossil power
plants in redispatch is less frequent. A similar effect occurs if the batteries are
allocated accordingly to phased-out power plants since they are located near
demand centers, too.

In contrast, if batteries are deployed close to wind generation, their contri-
bution in redispatch is more limited. Even though batteries prevent more wind
curtailment than in the other heuristics, they can only participate in redispatch
above the structural grid bottleneck. There, marginal generation costs in re-
dispatch are low, and so is volatility, making this allocation the least efficient.
In fact, redispatch costs are even higher than in a case without batteries. This
is because batteries increase the share of wind generation in the initial market
outcome, which then has to be curtailed in redispatch due to grid constraints.
However, market gains outweigh redispatch losses, resulting in lower total sup-
ply costs than without batteries. Moreover, the allocations according to wind
or phased-out power plants are even less efficient than a random allocation of
batteries. The random allocation leads to a broad distribution of batteries across
Germany, meaning that at least some batteries are close to solar generation and
demand.

The heuristics’ supply cost differences are also reflected in battery utilization.
In the wind-based heuristic, the battery capacity factor is less than half of the
capacity factor of the solar-based heuristic, where a capacity factor of 0.16 is
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achieved. This corresponds to 345 battery cycles per year or an average of almost
one charge cycle per day, i.e., a steady reduction of residual loads. The reason is
the assumed capacity-to-volume ratio of 4h, which makes batteries better suited
to buffer daily solar generation than wind generation profiles with their coarser
volatility.

2.5.2.2. Explicit allocation rules

Secondly, we investigate explicit approaches that allow for an optimal battery
allocation at predefined candidate nodes. We test the following variations: Start-
ing from the 40 nodes with the highest capacity in the hypothetical benchmark
case, we iteratively reduce the number of candidate nodes to 1. The resulting
supply costs of these explicit allocation rules are between 0.00 and 0.85% higher
than the optimal benchmark. The higher the number of candidate nodes, the
lower the supply costs. At 40 or more candidate nodes, supply costs are almost
the same as in the optimal benchmark case. Even reducing the allocation to
just two nodes leads to a cost increase of 0.37%, which is between the supply
costs of the solar heuristic (0.27%) and the heuristic allocation according to so-
lar and wind capacity (0.38%). If the number of candidate nodes is reduced to
one, the supply cost delta more than doubles compared to the case with two
nodes. With one endogenously chosen candidate node, all capacity is placed at
a node in southern Germany. In this case, the battery cannot have its full effect
because the installed battery capacity is higher than the sum of renewable and
transmission capacity at that node. Consequently, the resulting capacity factor
is much lower, and the total supply cost is higher than in the case of random
distribution. Nevertheless, it is noteworthy that the single-node allocation is still
more efficient than an allocation by wind capacity or phased-out power plants.

The explicit approaches that distribute battery capacity to five or more nodes
outperform all heuristic approaches.11

Table 2.4 compares resulting capacity factors and supply costs relative to the
hypothetical benchmark for each of the explicit options.

Table 2.4.: Summary of relative cost increases and battery capacity factors for explicit
battery allocations

opt.
benchmark

random
benchmark

40 20 10 5 3 2 1

Supply cost delta [%] - 0.66 0.00 0.02 0.10 0.16 0.29 0.37 0.85
Redispatch cost delta [%] - 3.84 0.00 0.12 0.57 0.94 1.70 2.14 4.97
Battery capacity factor 0.15 0.15 0.15 0.15 0.15 0.15 0.14 0.13 0.10

11When comparing the results, however, it has to be noted that the installed capacity per
node is optimized endogenously in the explicit cases. In contrast, capacity distribution is
determined exogenously in the heuristic cases.
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2.5.3. Summary

We quantify the efficiency gains of placing 15 GW of batteries in the German
transmission grid by comparing supply costs for two settings, nodal and uni-
form, to equivalent cases without batteries. The results show that batteries
reduce supply costs in both cases. In the uniform setting, the efficiency gains are
composed of supply costs reduction in the electricity market, which are indepen-
dent of battery allocation, and in redispatch, which depend on battery location.
To compare different allocation rules under the uniform setup, a hypothetical,
optimal allocation for a given distribution of renewable capacity is used as an
upper benchmark. Furthermore, a random distribution of batteries is used as a
benchmark for missing local investment incentives. The analysis shows for our
scenario that explicit approaches with endogenous battery investment allowed at
a limited number of pre-determined nodes can approximate the optimal distri-
bution well, and already from five nodes, it outperforms all heuristic approaches
with a fixed distribution. Among the fixed heuristic approaches, an allocation
that mimics the distribution of solar generation capacity performs best. Solar
generation is a crucial driver for optimal allocation since batteries can exploit
the daily solar generation pattern to reduce gas-fired redispatch. Other heuristic
approaches prove to be less suitable. An allocation proportional to phased-out
power plants or wind generation capacity is less efficient than a random distri-
bution. The wind-based heuristic leads to even higher redispatch costs than the
case without any batteries.

The performance of the different allocation rules is compared to the theoretical
first-best nodal benchmark. Figure 2.5 shows the relative increase in supply costs
compared to this benchmark for the allocation variations ordered by efficiency. It
highlights the efficiency gains that can be made by introducing and coordinating
batteries. The most efficient allocation rule is the explicit allocation to 40 nodes,
leading to 8.6% higher supply costs than the nodal benchmark. Least efficient
is the heuristic allocation by wind capacity (+9.7%). Hence, the range of total
supply costs between the best and the worst performing allocation amounts to
1.1% of the nodal supply costs.
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Figure 2.5.: Supply cost differences between allocation rules and the first-best nodal
benchmark in 2030

The relevance of appropriate coordination can be further illustrated by relat-
ing the supply cost savings achieved by batteries to the capital cost incurred.
The supply cost saving of each battery allocation is the difference in total supply
costs compared to the uniform setting without any batteries. To calculate the
capital costs of batteries, we assume investment costs of 600 EUR/kW, a lifetime
of 16 years, and an interest rate of 8% (c.f. EWI, 2021). The ratio of savings
to annualized capital cost depends strongly on battery allocation. Batteries can
yield 1.08 EUR in savings per euro spent if allocated optimally in the uniform
setting. A random allocation reduces the savings by 47 ct per euro spent. With
an explicit allocation at five or more candidate nodes, the battery-induced sav-
ings come close to the savings under an optimal allocation (0.96 - 1.08 EUR
saved per euro spent, depending on the number of nodes). In the best heuristic
allocation (solar), the ratio of savings to expenditures is 19 ct lower than with an
optimal allocation. In the worst case (wind) examined, the savings drop to just
33 ct per euro spent. Under the assumed capital costs, 15 GW of battery capac-
ity is in the money if allocated optimally. With the help of the allocation rules,
savings are higher than the annualized capital costs for explicit approaches at 10
or more nodes. With all other rules, savings are below expenditures. However,
batteries can generate additional value not considered in the present analysis
through system services, e.g., balancing power provision or avoiding grid expan-
sion in the long run and thus savings can be higher. Further, these results highly
depend on the (assumed) capital costs.
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2.6. Discussion

2.6.1. Generalization

Although the numerical model results are specific to the chosen setting, they can
be generalized for several aspects. First, the finding of the two-node model that
optimal storage allocation is driven mainly by volatility is valid and applicable for
all time horizons and countries. In our case study, solar power is the dominating
renewable capacity driving volatility and, thus, battery allocation. Divergent
renewable energy shares may lead to different optimal battery allocations, e.g.,
previous analyses assuming higher shares of wind power conclude that higher
shares of battery capacity should be allocated near wind energy.

Secondly, the numerical analysis at hand focuses on batteries, i.e., a storage
technology with a relatively small storage volume compared to installed charging
capacity, which complements the daily fluctuations of solar power generation.
Therefore, we perform a sensitivity analysis regarding the storage type and show
that the optimal allocation depends on the specific technology. In particular,
storage with a larger power-volume ratio is favorable at locations with high
shares of wind power (see A.4).

Thirdly, we show that storage can generate value in a uniform setting in both
the initial market clearing and in redispatch. The latter can only be exploited if
the market design allows for the participation of storage in redispatch. If this is
not the case, a substantial part of the potential benefits of storage technologies
- in our numerical analysis, about 50% - cannot materialize.

Fourthly, the findings for the transmission level can be used to get insights for
the distribution grid. Distribution grid operators could use the batteries’ flexi-
bility to lower curtailment volumes and required grid expansion if the batteries’
allocation matches flexibility demands and technical and regulatory properties
allow. However, on the distribution grid level, storage is usually used to increase
the self-consumption of solar generation, e.g., home-storage systems. Therefore,
these systems are neither dispatched by market signals nor used in redispatch.

2.6.2. Limitations

Several limitations should be noted when considering the results and analysis
presented. First, the numeric modeling results are based on several strong as-
sumptions, e.g., perfect foresight, no transaction costs, perfect markets, and
the exogenous distribution of inelastic exogenous demand. The mathematical
duality between a central planer and a profit-maximization of symmetric firms
holds only if these assumptions are all met. In practice, this is rather not to
be expected. In particular, the first-best nodal benchmark is a rather theoreti-
cal benchmark as in reality frictional losses can distort optimality, e.g., reduced
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liquidity, lack of transparency, market power issues, and increased transaction
costs (c.f. Antonopoulos et al., 2020).

Furthermore, modeling the market setup of uniform pricing, as it is currently
in place in Germany, comes along with some simplifying assumptions. We ab-
stract from additional policy instruments for the expansion of wind and solar
power. In particular, the reference yield model should affect wind power expan-
sion compared to our modeled distribution. The cost-based redispatch mecha-
nisms applied in practice are less efficient than those modeled in our numerical
analyses. In our model, power plants outside Germany and all technologies in-
cluding storage can be used for redispatch without any restrictions, which is not
necessarily the case in practice. In particular, redispatch of hydro-pumped stor-
age in the Alps can be fully exploited in the model which might cannibalize the
value of batteries in Southern Germany. Additionally, further efficiency gains of
storage deployment are possible, which were not part of the numerical analyses,
e.g., avoided grid expansion or increased security of supply.

In addition to these model properties, the results have to be interpreted in light
of the specific scenario chosen for the analysis. To demonstrate the robustness of
our results, we perform a sensitivity analysis regarding the total installed battery
capacity in A.4. Additionally, the scenario-specific renewable energy allocation
largely determines the magnitude of the identified efficiency gap between the first
best nodal and the uniform setting. Besides resource quality, further aspects,
such as land availability and residents’ opposition, play into renewable investors’
decision process. Hence, the resulting renewable energy distribution for 2030 is
likely to be less concentrated in reality, which also impacts the optimal storage
allocation and system efficiency.

2.7. Conclusion and policy implications

This paper investigates the allocation of battery storage in spatially unbalanced
power systems in the transition to climate neutrality, i.e., with rapidly increasing
shares of wind and solar power generation. Specifically, we seek to answer three
questions: Firstly, where in the transmission grid should batteries be allocated,
secondly, how important is storage allocation for the system’s efficiency, and
thirdly how could policy instruments be designed to approximate an optimal
allocation?

To investigate the drivers of optimal storage allocation, we develop a theo-
retical two-node, two-time-step model that simplifies the dynamics of spatially
unbalanced power systems. We show that an allocation close to volatile re-
newables or close to demand can be optimal. We find that optimal allocation
depends on the volatility and location of demand and generation relative to grid
bottlenecks.
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These results are verified and expanded in a numerical case study using the
example of a spatially unbalanced power system in Germany. The largest effi-
ciency difference occurs between the nodal and uniform setting. Supply costs
are at least 8.6% higher in the uniform case than under the nodal setup. This
is primarily because in the nodal setting wind and solar generators are allocated
optimally and shows that the leverage of a simultaneous allocation and coordi-
nation of wind and solar expansion exceeds the leverage of allocating batteries.
However, the results in the nodal setting rely on several assumptions that tend
not to hold in practice, and switching from uniform to nodal pricing may not be
politically feasible.

In practice, there is no allocation coordination under uniform pricing; thus,
the optimal battery allocation that minimizes the efficiency gap to the nodal
benchmark is not achieved. Our analysis reveals that with a random battery
allocation, the efficiency gap relative to the first-best nodal case lies 0.7 percent-
age points higher than with an optimal allocation. The least efficient allocation
that was tested even increases the efficiency gap by 1.1 percentage points. 12

It is, therefore, worth discussing how coordination can be achieved and local
incentives can be set even in a system with uniform pricing. In Germany, this
question is currently being asked as part of the government initiative Climate
Neutral Electricity System Platform - a dialogue platform that aims to prepare
for an upcoming electricity market reform.

Our model results show that several allocation rules are conceivable to approx-
imate an optimal allocation of batteries in the uniform setting. For example, a
heuristic approach that allocates batteries close to solar capacity or explicit ap-
proaches that rely on grid analyses to determine a limited number of locations for
a capacity auction can reduce supply costs in the uniform setting. In addition,
implementing such an allocation rule would ensure that inefficient distributions,
like an allocation close to installed wind power capacity, are not realized.

Policymakers designing regulatory instruments based on these findings should
weigh the reduction in supply costs resulting from improved allocation against
the implementation costs. In the case of the heuristic approaches, the difficulty
lies in identifying a mechanism that yields the desired distribution of batteries.
Costs could also be incurred if the chosen mechanism leads to a high number of
transactions, e.g., if batteries were subsidized via feed-in tariffs. For the explicit
approaches that allow the installation of batteries at limited locations in the
grid, the allocation could be managed via a limited number of auctions. Here,
transaction costs arise from the information asymmetries of the regulator in
determining optimal locations and capacities. Further, our results benefit from
the assumption of perfect foresight. In practice, it may be more complicated
to determine optimal candidate notes ex-ante, in particular, if only a few nodes
are chosen and in a dynamic setting the optimality of nodes may change over

12However, the benefits of optimal battery allocation in the uniform setup are split roughly half-
half between market-based dispatch and subsequent redispatch, underlining the importance
of including flexibility assets in redispatch.
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time. Choosing a heuristic approach directly connected to the distribution of
solar power may be more robust to the deviations from a modeled scenario.

Policies that coordinate wind, solar, and storage capacity in an integrated
way could come even closer to the first-best benchmark. The analysis of such
an integrated approach could be part of further research. It would likely lead to
additional efficiency gains but would be a more complex endeavor with higher
implementation costs.

We conclude that it is possible to design a policy instrument suitable to ap-
proximate an optimal storage allocation under uniform pricing. Any potential
policy should either be simple and low-cost to implement or be part of a compre-
hensive mechanism that coordinates all types of generation and flexibility with
the grid.
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3. Unlocking Thermal Flexibility for the

Electricity System by Combining Heat

Pumps and Thermal Storage

3.1. Introduction

Electrification of the residential heating sector is key to achieve the policy goal of
decarbonization, particularly with the increased use of electricity from renewable
energy sources (RES). For example, space heating accounted for 63.5% of final
energy consumption in the residential sector in the EU in 2022, with 68.6%
supplied by fossil fuels (c.f. Eurostat, 2024). Electrical heat pumps are widely
recognized as a suitable technology to replace fossil fuels and integrate renewable
energies, as they provide heat from a medium such as air or water with low
electricity consumption (c.f. Bloess et al., 2018, Maruf et al., 2022).

The expansion of heat pumps in the coming years is a key strategy in the pur-
suit of Germany’s ambitious climate goals, reflected in the government’s target
to install six million heat pumps by 2030 compared to 1.7 million heat pumps in
2023 (BDEW, 2024). In combination with the government’s target to increase
electricity generation from RES to generate 80% of gross electricity consump-
tion in 2030 (EEG, 2023), these measures aim to support the transformation of
the heating sector. This presents both opportunities and challenges for the elec-
tricity market and the electricity grid. On the one hand, heat pumps increase
electricity demand, and therefore affect market dynamics and grid load. On the
other hand, heat pumps can be combined with thermal storage, which could
also bring benefits if the flexibility potential of thermal storage is used for the
electricity system, e.g., in order to balance volatile RES generation.

By now, thermal storage is widely recognized for optimizing heat pump effi-
ciency and reducing costs at the household level (see e.g. Frings and Helgeson,
2022), but it is discussed less from the perspective of the electricity system. By
decoupling the electricity demand of heat pumps from the heat demand, ther-
mal storage can increase the flexibility of the electricity system, but requires
coordination between electricity markets and the grid. As the imbalance be-
tween Germany’s RES generation concentrated in the north and demand centers
predominantly located in the west and south already leads to congestion in the
transmission grid, the perspective of the grid should be taken into account when
evaluating the flexibility potential of thermal storage.
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Against this backdrop, this paper analyzes the impact of the combined ex-
pansion of heat pumps and thermal storage on the electricity system, focusing
on market and grid dynamics. The paper assesses the system value of the flex-
ibility provided by thermal storage, taking into account the restrictions of the
transmission grid.

To do so, the paper presents Germany as a case study and applies a timely and
spatially highly resolved model of the Central European electricity markets and
transmission grid for the year 2030. The high spatial resolution captures regional
variations in electricity demand profiles of heat pumps, which is a relevant aspect
due to their dependence on weather conditions.

The analysis evaluates six scenarios, combining two model setups and three
heat pump distributions. The first model setup reflects the current German mar-
ket design with a uniform wholesale price and subsequent redispatch to relieve
grid congestion. The second setup represents a theoretical first-best benchmark
using locational marginal prices (LMPs). The three heat pump distributions are
based on the current geographic locations of heat pumps, the allocation of wind
capacity, and the allocation of PV capacity. Each scenario is compared for three
storage sizes (2h, 4h, and 8h shifting potential) with a base case of inflexible
heat pumps.

Across all scenarios and shifting potentials, flexibility provision through ther-
mal storage reduces total supply costs compared to an inflexible use of heat
pumps. The model setup with LMPs confirms its role as the first-best bench-
mark. Total supply costs are consistently lower than in the uniform model setup
and fall continuously with increasing shifting potential for all three distributions.
The latter contrasts with the uniform setup, where an increased shifting poten-
tial does not generally lead to lower total supply costs. This divergence arises
because flexibility provision through thermal storage in the uniform setup affects
the market result (dispatch effects) and the grid dynamics (redispatch effects) in
opposing directions. While the market results benefit from the flexibility for all
heat pump distributions, redispatch measures increase.13 Specifically, when heat
pumps are allocated based on their current locations or PV capacity, the 4h shift-
ing potential results in lower total supply costs than the 8h shifting potential, as
redispatch supply costs increase over-proportionally for these distributions.

The comparison of the heat pump distributions further reveals that flexibil-
ity provision through thermal storage provides the highest system value when
thermal storage is located near wind capacities in northern Germany. The region-
alized analysis within the LMP model setup confirms this observation, showing
that the system value of flexibility is particularly high in northern Germany.

In summary, within the uniform model setup, thermal storage reduces to-
tal supply costs due to the predominantly beneficial market effects, yet at the

13By assumption, small scale storage units like thermal storage do not actively participate in
redispatch.
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same time leading to increasing redispatch costs. Policymakers should therefore
promote the installation of thermal storage and its market participation, while
simultaneously introducing locational signals to maximize system-wide benefits,
taking into account market conditions and grid constraints.

Related literature and research gap

The paper at hand extends the literature by examining the impact of thermal
storage on the electricity system in a numerical analysis for Germany, including
grid dynamics and spatial differences in heat pump demand profiles.

The paper adds to the literature evaluating the impact of heat pumps and
thermal storage on electricity markets. Bloess et al. (2018) and Maruf et al.
(2022) present extensive literature reviews on various power-to-heat and thermal
storage technologies. Bloess et al. (2018) highlight the role of power-to-heat
technologies in integrating RES by reducing curtailment and substituting fossil
fuels, with benefits enhanced by thermal storage. Maruf et al. (2022) focus on
the European context, emphasizing the technological maturity of thermal storage
and highlight its importance in the residential sector in lowering RES curtailment
and total system costs.

More recently and similar to the analysis in this paper, Roth et al. (2024) show
in a numerical model analysis for Germany in 2030, that coupling heat pumps
with thermal storage effectively aligns the electricity demand of heat pumps with
the residual demand, and thus reduces overall system costs. Schöniger et al.
(2024) find similar results for Austria in 2030, demonstrating that flexible heat
pumps cut costs and curtailment of RES in all scenarios examined. However,
this literature solely focuses on the impact of heat pumps and thermal storage
on the electricity market, without accounting for grid dynamics.

Another strand of literature takes the grid into account when analyzing the
flexibility potential of thermal storage in electricity system models. However,
these studies focus on sector coupling at a higher level of aggregation in technol-
ogy modeling, evaluating the combined flexibility of decentralized resources such
as heat pumps with thermal storage, electric vehicle charging, and demand-side
management. Heitkoetter et al. (2022), for example, assess a large set of de-
mand response options and their endogenous deployment using an energy system
model with 100 nodes in Germany. Their findings reveal an equal distribution
of demand response options across Germany, with a high expansion in western
Germany, where large aggregated demand response potential exists. Büttner
et al. (2024) analyze the impact of flexibility options on the German transmis-
sion grid in 2035, including the gas, heat and mobility sector. They consider
large-scale thermal storage in combination with district heating grids, but do
not equip decentralized heat pumps with a thermal storage. Their results show
that these technologies, taken together, can reduce total system costs and CO2
emissions. Bauknecht et al. (2024) assess the role of decentralized flexibility
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options in reducing congestion in the transmission network and the impact on
the need for network expansion. The authors show that with increasing shares
of RES, decentralized flexibilities are particularly valuable to relieve transmis-
sion bottlenecks if they are located close to net feed-in nodes. Further studies
analyze the impact of flexibility provision by other technologies than thermal
storage, for example, vom Scheidt et al. (2022) for the integration of hydrogen
and electrolyzers and Lindner et al. (2023) for batteries as grid boosters. Within
a similar model setup, Czock et al. (2023) assess the optimal allocation of battery
storage investments in Germany and show that simple allocation rules such as
aligning the locations of batteries and PV capacities can approximate an optimal
allocation if locational price signals are missing.

This paper combines the two strands of literature: a thorough analysis of
decentralized heat pumps combined with thermal storage in a spatially and tem-
porally high-resolution electricity model that incorporates grid constraints. This
approach captures regional weather dependencies of heat pumps and assesses the
flexibility of thermal storage on electricity markets and the transmission grid.

Adding the spatial component to the analysis improves research on heat pumps
and thermal storage in two ways: First, accounting for regional temperature dif-
ferences is crucial to adequately model electricity demand (c.f. Büttner et al.,
2022, Eggimann et al., 2019) and to prevent system over- or undersizing when
integrating heat pumps (c.f. Halloran et al., 2024). Second, by representing the
grid dynamics, redispatch measures can be included in the analysis, providing
a more complete picture of the current electricity system in Germany. For the
European electricity system, Frysztacki et al. (2021) show that ignoring conges-
tion can raise system costs by up to 23%. Furthermore, the representation of the
grid allows to study alternative pricing mechanisms, such as LMPs. The results
provide valuable insights for policymakers to promote the combination of heat
pumps with thermal storage and to make the electricity market more accessible
for decentralized flexibility options.

The paper is organized as follows. Section 3.2 introduces the model framework
and describes the main assumptions, the input data, the scenarios, and the
numerical model setup. Section 3.3 presents the results of the analysis for the
uniform and the LMP model setup. Section 3.4 discusses the results in relation
to model assumptions, data and policy implications. Section 3.5 concludes.

3.2. Methodology

This paper uses the SPIDER (Spatial Investment of Distributed Energy Re-
sources) electricity system model developed by Schmidt and Zinke (2023), Czock
et al. (2023) and Zinke (2023) to analyze the impact of heat pumps in combi-
nation with the flexibility provided by thermal storage. SPIDER is a model
of the European power sector and considers a detailed depiction of the Central
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European transmission grid. Dispatch modeling is based on the mechanisms of
flow based market coupling (FBMC) and enables dispatch analyses with a high
regional and timely resolution (Zinke, 2023). In this paper, commissioning and
decommissioning of transmission and generation, as well as total demand and the
expansion of heat pump and thermal storage, are exogenous. The methodology
is described below, along with the input data, and the numerical model setup.
The notation is provided in Table B.1 in the Appendix.

3.2.1. Model framework

SPIDER optimizes the dispatch decisions of the European power plant fleet and
the usage of storage by minimizing the variable costs of electricity generation.
It minimizes the net present value of the variable costs under several constraints
concerning the market equilibrium, technical requirements and the grid. Variable
costs are the product of electricity generation, GENt,m,i, in each timestep t,
market zone m, and technology i and the technology-specific variable operating
costs, γt,i:

min! V C =
∑

t∈T,m∈M,i∈I
γt,i ·GENt,m,i (3.1)

The setup of the model in terms of the markets is flexible, i.e. the scope and
geographical granularity, down to the representation of individual transmission
nodes, can be adjusted according to the research question. The model therefore
allows both nodal and zonal modeling, with the latter also enabling a subsequent
redispatch analysis (see Zinke (2023) for more details on the methodology).

To ensure computational feasibility, simplifying assumptions are applied, in-
cluding exogenous investments in transmission, generation, and demand capac-
ities, the exclusion of combined heat and power plants, and approximations for
ramping and minimum load constraints.

In this paper, the model is applied to analyze the dispatch of electricity gen-
eration and demand, as well as storage technologies. In particular, the impact
of the regional expansion of heat pumps and their flexible use through thermal
storage is evaluated, taking grid restrictions into account. For this purpose, the
model of Zinke (2023) is extended by a detailed representation of the electricity
demand of heat pumps and the flexibility of thermal storage.

Heat pumps

The modeling of demand in SPIDER is extended in this paper to include the
electricity demand profiles of heat pumps. To account for the relationship be-
tween temperatures and the conversion efficiency (COP) of a heat pump, sepa-

rate weather-dependent heat pump demand profiles, demandheatpump
t,m , i.e., hourly
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time series of electricity demand used to operate heat pumps, are constructed
for each market zone. The performance of heat pumps, measured by the COP,
varies over time and depends on the temperature difference between the source
and sink (copt). A larger delta between the source temperature and the de-
sired flow temperature results in lower COPs, i.e., colder days result in lower
efficiencies, especially for air source heat pumps.

A common approach to incorporate temperature-dependent COP values is to
calculate the COP exogenously, assuming a sink temperature and given values
for the source temperature, following Verhelst et al. (2012). This approach is
used throughout the paper. The heat pump demand profiles are calculated based
on information provided by the German DSOs (see Section 3.2.2 for a detailed
description) and result in an hourly electricity demand profile for each market
zone.

Thermal storage

Thermal storage shifts energy temporally, similar to battery storage, but operates
within the constraints of the heat pump’s electricity demand profile. Thus, unlike
a battery, which charges and discharges freely, thermal storage shifts electricity
demand over time without physically supplying electricity. Instead, it reduces
the baseline electricity demand that would have occurred during a given hour
without the shifting of the thermal storage.

It is important to note, that heat pumps convert electrical energy into thermal
energy, which is stored as heat in the thermal storage. For modeling purposes,
thermal storage is expressed in electrical terms, requiring consideration of the
conversion between thermal energy and electricity. This results in the following
storage equations.

The storage volume, STOR V OLm, is defined by the hourly shifting capabil-
ity, vol factor, and the installed capacity, capm (eq. 3.2). The charging level of
storage, STOR LEV ELt,m, cannot exceed the storage volume, STOR V OLm

(eq. 3.3).

STOR V OLm = vol factor · capm (3.2)

STOR LEV ELt,m ≤ STOR V OLm (3.3)

In eq. 3.4, the storage level is determined by the storage level in the previous
time step and the net balance of the current shift with the thermal storage,
i.e., the difference of charged (consumed), CONt,m, and discharged (supplied),
GENt,m, electricity. Static efficiency, ϵstatic, determines the losses per hour and
dynamic efficiency accounts for the losses during storage charging, ϵdynamic. The
storage level is parameterized in electrical terms, but corresponds to a storage of
thermal energy. Thus, one has to account for the time-varying COP of the heat
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pump by including the ratio of the COP of the previous and current time step,
copt-1,m
copt,m

.14

STOR LEV ELt,m =
copt-1,m
copt,m

· (1− ϵstatic) · STOR LEV ELt-1,m

−GENt,m + (1− ϵdynamic) · CONt,m

(3.4)

GENt,m ≤ demandheatpump
t,m (3.5)

The electricity supply of thermal storage, GENt,m, is constrained by the de-

mand of heat pumps, demandheatpump
t,m , in the respective hour (eq. 3.5). This

limitation reflects that the thermal storage buffers the electricity demand of the
heat pump and shifts it between different times.

3.2.2. Input Data

The configuration of the model corresponds to that in Zinke (2023). At re-
gional level, the model represents Central Europe with a high spatial resolution
at transmission grid node level, i.e., 220kV to 380kV voltage levels, covering the
13 European countries participating in the ”Core Flow-Based Market Coupling
project”. The model is based on the published grid information provided by
Joint Allocation Office (2022). In order to reduce complexity, the initial grid of
1063 nodes is reduced to 533 nodes and 859 lines in 2021 using a grid reduc-
tion algorithm proposed by Biener and Garcia Rosas (2020). Italy, Switzerland,
Denmark, Norway, and Sweden, that are outside the FBMC area, are depicted
as singular nodes without intra-country grid restrictions and interconnectors to
these markets are approximated via net transfer capacities (NTC). Grid ex-
tensions are included in accordance to the German grid development plan (c.f.
50Hertz et al., 2023), and ENTSO-E’s Ten-Year Network Development Plan (c.f.
ENTSO-E and ENTSO-G, 2022). The regional scope and the reduced transmis-
sion grid are visualized in Figure 3.1.

The development of installed capacities and expansion of renewable energies
are exogenous to the model. For all countries except Germany, the installed ca-
pacities are based on the scenario Global Ambition in ENTSO-E and ENTSO-G
(2022). For Germany, the development of installed capacities follows the current
legal and political targets and is shown in B.2. The time series for hourly onshore
wind and solar generation are computed based on high-resolution reanalysis of
meteorological data from the COSMO-REA6 model based on Henckes et al.
(2017) and Pfenninger and Staffell (2016a), respectively. The generation poten-

14The formulation is derived from substituting STOR LEV ELthermal
t,m = copt,m ·

STOR LEV ELelectric
t,m for both time steps t and t−1 and by taking into account the copt,m

for GENt,m and CONt,m in the thermal formulation of a typical storage level constraint
(see e.g. Ruhnau et al., 2020).
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Figure 3.1.: Transmission grid

tial of offshore wind regions (hourly) and hydropower (weekly) is provided by
Copernicus Climate Change Service (2020).

The analysis covers the year 2030 with an hourly resolution. Time series
of country-specific hourly electricity demand are taken from ENTSO-E and
ENTSO-G (2022). German demand is taken from Fraunhofer ISI et al. (2022)
(see Table 3.1) and is then distributed by sectoral demand shares on the federal
state level (c.f. Länderarbeitskreis Energiebilanzen, 2020). For residential de-
mand, the distribution is assumed to follow population shares, while industrial
and commercial electricity demand is distributed in proportion to the regional
gross value added (c.f. Eurostat, 2020). This approach is similar to the one used
by the transmission grid operators in Germany (50Hertz et al., 2022). For the
other countries, the assumed demand distribution follows the population per
local administrative unit (Eurostat, 2023).

Heat pumps

For Germany, in addition to the data on total electricity demand, the electricity
demand of heat pumps is required. The annual electricity demand of heat pumps
as well as the number of installed heat pumps and the installed capacity of heat
pumps are from Fraunhofer ISI et al. (2022) (see Table 3.1). The installed
capacity of thermal storage listed in table 3.1 is parametrized corresponding
to the annual peak demand of heat pumps, following Ruhnau et al. (2019) and
Marijanovic et al. (2022). The annual peak demand of heat pumps can be derived
from the electricity demand profiles of heat pumps. The procedure for deriving
these profiles is described in detail below.

In order to incorporate the temporal dimension of heat pump demand, hourly
electricity demand profiles for heat pumps are derived for each transmission
node. As the demand profiles of heat pumps are dependent on the weather, re-

40



3.2. Methodology

Table 3.1.: Demand development and heat pump expansion in Germany

2021 2030

Total electricity demand [TWh] 532 624
Electricity demand of heat pumps [TWh] 8.5 34.7
Number of heat pumps [Mio] 1.4 5.9
Installed capacity of heat pumps [GW] 6.5 26.7
Installed capacity of thermal storage [GW] 3 12.3

gional temperature differences are taken into account when creating the profiles.
Meteorological data on temperature is used for this purpose, provided by Coper-
nicus Climate Change Service (2020). The temperature time series are combined
with temperature dependent load profiles for heat pumps published by the DSO
SWM Infrastruktur (2024).15 The DSO’s load profiles and thus the resulting

heat pump demand profiles (demandheatpump
m,t ) capture the current operation of

a heat pump and thus implicitly reflect the technical optimization of the heat
pump. This includes, for example, taking into account passive storage from the
thermal inertia of the building and the consumption relevant properties of the
heat pump. The latter includes in particular that the COP of the heat pump is
already taken into account in the load profiles. The resulting demand profiles
per node of the transmission grid depend on the temperature and therefore differ
regarding their level.

Three alternative distributions are considered for the regional allocation of
the installed capacity of heat pumps in Germany. The first distribution, referred
to as the hp-distribution, is based on the current geographic locations of heat
pumps. This distribution is derived from Heitkoetter et al. (2021), who provide
regional data for the installed capacity of heat pumps in 2030, using historical
data on building types and heating technologies at the district level. The second
distribution, the wind-distribution, aligns heat pump capacity with the locations
of onshore wind capacity. The third distribution, the pv-distribution, allocates
heat pump capacity based on the locations of PV capacity.

Figure 3.2 illustrates the three distributions of installed heat pump capacity
at transmission nodes and shows the percentage of heat pump capacity at each
transmission node relative to the total heat pump capacity in Germany in 2030.

With the hp-distribution, heat pump capacity increases from north to south,
with most capacity concentrated in southern regions below the 50th parallel,
while eastern and western regions show a relatively even allocation. In contrast,
the wind-distribution concentrates heat pump capacity in northern Germany,
predominantly above the 53rd parallel, with fewer installations in southern re-
gions. The pv-distribution results in a broad allocation across Germany, resem-

15The methodology for creating the profiles was initially developed by the formerly German
Association of DSOs VDN and the University of Cottbus. For more information see Verband
der Netzbetreiber (VDN) (2002).
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(a) (b) (c)

Figure 3.2.: Heat pump capacity at transmission nodes as a percentage of total heat
pump capacity in Germany in 2030 distributed by (a) currently installed
heat pump capacity, (b) installed onshore wind capacity and (c) installed
PV capacity

bling the hp-distribution in its southern concentration below the 50th parallel.
However, due to the greater expansion of PV in eastern Germany, heat pump ca-
pacity is more pronounced in that region. The differing heat pump distributions
impact electricity demand within the grid. Variations in demand at individual
nodes arise from both the reallocation of heat pumps and their associated elec-
tricity demand and from location-specific differences in demand profiles due to
varying weather conditions (see Figure B.1 in the Appendix).

Thermal storage

This paper incorporates thermal storage capacities to analyze the system-friendly
shifting of heat pump demand. It is assumed that each installed heat pump is
equipped with a thermal storage and that this is used exclusively for system-
friendly use. By assumption, the technical optimization of heat pump operation,
i.e., optimizing the operation according to the COP, is done by separate ’technical
storage capacity’ excluded from the analysis. This is because already today heat
pumps are commonly installed together with some thermal storage capacities in
order to optimize the technical operation of the heat pump. As the heat pumps’
electricity demand profiles are based on DSO data, this technical optimization
is likely to be included in the current data. The thermal storage capacities
considered in this paper are assumed to be installed in addition, such that system-
friendly heat pump operation can be performed in addition to the technical
optimization.

The thermal storage is parameterized in terms of an hourly load shifting po-
tential. The shifting potential, i.e., the storage size, is varied throughout the
analysis. It is assumed that thermal storage is able to store twice the installed
capacity (2h shifting potential). This corresponds to the already allowed in-
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terruption interval for DSOs during network peak times (§14a EnWG, 2024).
Further, a shifting of four hours (4h shifting potential) and eight hours (8h shift-
ing potential) is considered. At the household level, this corresponds to storage
units of 400 l, 800 l, and 1500 l, typical for single- and multi-family homes (Agora
Energiewende, 2023).

The efficiency of the thermal storage is set as follows: as an average estimate,
the dynamic losses, ϵdynamic, are set to 5% and static losses, ϵstatic, are set equal
to 1% (Frings and Helgeson, 2022, Ruhnau et al., 2020). COP values for heat
pumps and data on the mix of currently installed systems, used to calculate an
average value for Germany, are retrieved from Ruhnau et al. (2019).

The formulation of the thermal storage can be interpreted as a classical hot
water-based heat storage, which is the most used thermal storage i.a. due to its
low cost, compactness, scalability, and usability (Maruf et al., 2022).16

The investment costs for thermal storage are used to evaluate the profitability
of thermal storage from the perspective of the heat pump owner. Based on
data from Frings and Helgeson (2022) and own research of industry data, the
annualized costs are on average 88 EUR/a for a 400 l storage, 105 EUR/a for
an 800 l storage, and 134 EUR/a for a 1500 l storage. The discount rate is set
to 5% and a technical lifetime of 30 years is assumed (c.f. Frings and Helgeson,
2022).

3.2.3. Scenarios and numerical model setup

The analysis examines the combination of heat pumps with thermal storage in
Germany in six scenarios: The three heat pump distributions described above
are analyzed within two different model setups described in the following.

The first model setup represents the current market design in Germany with
a uniform wholesale electricity price, i.e. one market zone. This means that
physical restrictions on electricity flows within the market area are not taken into
account in the market clearing. This is addressed in the model setup by defining
the market zone m as one zone for the whole of Germany. The dispatch run
calculates the market clearing and is complemented by a subsequent redispatch
run. Grid restrictions are taken into account as part of the redispatch and it
is checked whether physical grid restrictions are violated after market clearing.
If this is the case, the dispatch results require curative redispatch measures,
which in practice are carried out by the grid operators. Within the redispatch
run, the zonal net trade positions are fixed and generation adjustments are only
possible within one market zone. It is assumed that wind and solar generation

16Passive storage, i.e., the buildings’ thermal mass, is not considered in the optimization model.
It is indirectly captured by the DSO’s demand profiles. For further analysis, it could be
integrated into the model by allowing a certain temperature band for the heat demand to
fluctuate, see for example Marijanovic et al. (2022), Papaefthymiou et al. (2012).
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can be curtailed, but not ramped up, within the redispatch run. Furthermore,
small-scale storage units, like thermal storage, are not yet part of the redispatch.

Within this model setup, the effects of providing flexibility through thermal
storage can be split into their effects on the market result (dispatch) and on the
grid (redispatch). However, as thermal storage does not participate in redispatch,
only indirect effects of its use on the grid can be analyzed. The analysis of
regional effects in this model setup is therefore limited, as the use of thermal
storage in dispatch does not differ regionally due to the lack of grid information.

The second model setup considers the first-best benchmark with LMPs in order
to show direct, regional effects through an integrated view of the market and the
grid. Each transmission grid node represents a market and grid constraints are
considered within the price formation. When grid constraints are binding, LMPs
differ between nodes. Without any frictions, such a price formation represents the
first-best benchmark for efficient coordination of electricity generation, demand
and the grid and sets an upper limit for the benefit of providing flexibility through
thermal storage.

Hence, the two model setups differ in terms of the amount of information
available or, more specifically, in terms of the consideration of transmission con-
straints, RES curtailment and the participation of thermal storage.

3.3. Numerical model results

This section presents the numerical model results for six scenarios that are a
combination of the two model setups for the German electricity system, the
uniform and the LMP model setup, and the three heat pump distributions,
based on the current geographic locations of heat pumps, the allocation of wind
capacity, and the allocation of PV capacity (c.f. Sections 3.2.2 and 3.2.3). For
each scenario, three storage sizes (2h, 4h, and 8h shifting potential) are compared
with the base case of inflexible heat pumps that operate strictly according to their
demand profiles. Total supply costs of each scenario are compared in Table 3.2.

The results show that, across all scenarios and shifting potentials, flexibility
provision from thermal storage always reduces total supply costs compared to an
inflexible use of heat pumps. The model setup with LMPs consistently achieves
lower total supply costs than the uniform model setup, confirming its role as
the first-best benchmark. Furthermore, the results show that within the LMP
setup, total supply costs fall continuously with increasing shifting potential for all
three distributions. This contrasts with the uniform setup, where an increased
shifting potential does not generally lead to lower total supply costs. When
allocating heat pumps according to the hp-distribution and the pv-distribution,
the 4h shifting potential achieves lower total supply costs than the 8h shifting
potential. For these distributions, the redispatch supply costs increase over-
proportionally.
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Table 3.2.: Percentage change in total supply costs for different heat pump distributions
and shifting potentials for the uniform and the LMP setup

Model Heat pump Inflexible heat 2h [%] 4h [%] 8h [%]
setup distribution pumps [%]

uniform hp-distribution -1.22 -1.51 -1.09
uniform wind-distribution -1.97 -3.55 -3.86 -4.20
uniform pv-distribution -0.37 -1.62 -1.73 -1.68

LMP hp-distribution -10.75 -12.20 -12.82 -13.28
LMP wind-distribution -11.42 -12.92 -13.63 -14.21
LMP pv-distribution -10.91 -12.43 -13.05 -13.54

Note: The base (100 %) for the percentage change is given by the uniform model setup
and the hp-distribution with inflexible heat pumps.

The following Sections analyze the results in more detail. Section 3.3.1 further
elaborates the results under the uniform setup, differentiating between the im-
pact of flexibility provision on the market result (dispatch effects) and the grid
result (redispatch effects). Section 3.3.2 examines the regional value of thermal
storage by making use of the LMP setup. Section 3.3.3 assesses the profitability
of installing thermal storage for system use from the perspective of the individual
household.

3.3.1. Impact of flexibility from thermal storage in the uniform
setup

Within the uniform setup, total supply costs consist of the market result (dis-
patch effects) and the grid result (redispatch effects). Although the flexibil-
ity provision by thermal storage consistently reduces total supply costs across
all heat pump distributions and shifting potentials, the isolated effects on the
market and the grid are opposing, presented in Table 3.3 for each heat pump
distribution.

Across all distributions, the shifting through thermal storage positively affects
dispatch results and therefore lowers dispatch supply costs compared to the in-
flexible use of heat pumps. The higher the shifting potential of the thermal stor-
age, the lower dispatch supply costs are. For example, given the hp-distribution,
dispatch supply costs decrease by -2.34%, -3.34%, and -3.74% with a 2h, 4h, and
8h shifting potential, respectively.

However, as the uniform model setup neglects grid constraints within the dis-
patch, the market result with flexibility provision can either reinforce or mitigate
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Table 3.3.: Percentage change in supply costs with flexibility provided by thermal storage
compared to supply costs with inflexible heat pumps for each heat pump
distribution

Heat pump distribution Type of supply costs 2h [%] 4h [%] 8h [%]

hp-distribution Dispatch supply costs -2.34 -3.34 -3.74
hp-distribution Redispatch supply costs 2.97 5.35 8.80
hp-distribution Total supply costs -1.22 -1.51 -1.09

wind-distribution Dispatch supply costs -2.66 -3.42 -4.33
wind-distribution Redispatch supply costs 2.73 4.29 6.28
wind-distribution Total supply costs -1.62 -1.93 -2.27

pv-distribution Dispatch supply costs -2.31 -2.97 -3.65
pv-distribution Redispatch supply costs 2.75 4.74 7.55
pv-distribution Total supply costs -1.26 -1.36 -1.32

Note: The base (100 %) for the percentage change is given for each row by the
respective base case with inflexible heat pumps.

grid constraints.17 Table 3.3 shows that redispatch supply costs increase with
an increasing flexibility potential for all distributions, i.e. the market results
increase the need for grid management. With the hp-distribution, the redispatch
supply costs increase by 2.97%, 5.35%, and 8.80% with a 2h, 4h, and 8h shifting
potential, respectively.

The resulting effect on total supply costs depends on how these two effects
balance each other. With the hp-distribution and the pv-distribution, total supply
costs benefit most from a 4h shifting potential. With a 2h shifting potential, the
flexibility potential is lower, resulting in a smaller reduction in dispatch supply
costs. With an 8h shifting potential, the negative effect on the grid increases over-
proportionally such that the total supply costs are above the case with 4h shifting
potential. With the wind-distribution, the larger thermal storage with 8h shifting
potential achieves the lowest total supply costs, as the locations of heat pumps
and thermal storage better align with wind locations and generation patterns.
Thus, with an increasing shifting potential, the location of the storage becomes
increasingly important, as the spatial alignment between RES generation and
flexibility provision within the grid becomes a more critical factor relative to the
market result.

The spatial alignment between RES generation and thermal storage locations
also explains why the allocation of heat pumps following the wind-distribution re-
sults in the lowest total supply costs among the three distributions. Compared to
the hp-distribution, the allocation of heat pumps based on the wind-distribution

17Since thermal storage is not part of the redispatch, the electricity shifting of thermal storage
only indirectly affects redispatch results if the dispatch result is physically better or worse
for the grid than it would be without the shifting of the thermal storage.
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reduces total supply costs by -1.97% in the base case with inflexible heat pumps,
and by -3.55%, -3.86%, and -4.20% with 2h, 4h, and 8h shifting potential, re-
spectively (see Table 3.2). A large part of the reduction is already observable in
the base case with inflexible heat pumps and is thus the result from the realloca-
tion of heat pump demand from southern to northern Germany. Installing heat
pumps close to wind capacity increases demand in northern Germany, which
helps mitigating grid bottlenecks between north and south and facilitates on-
shore wind integration without violating grid restrictions. The cost reductions
are therefore largely driven by lower redispatch costs, which, in comparison to
the hp-distribution, decrease by -10.0% in the base case, and by -10.2%, -10.9%,
and -12.1% with 2h, 4h, and 8h shifting potential, respectively.

All in all, the installation of a thermal storage is recommendable from the
system perspective independent of the underlying distribution of heat pumps. A
recommendation regarding storage size depends on the location of the thermal
storage.

The following Sections 3.3.1.1 and 3.3.1.2 explain the driving factors behind
the positive impact of thermal storage on the market and the adverse impact on
the grid.

3.3.1.1. Dispatch effects

The flexibility provision through thermal storage positively impacts the market
result by enabling the temporal shifting of electricity demand. The dispatch
effects are shown below exemplarily for the hp-distribution.18 The annual elec-
tricity shifted amounts to 6.7 TWh, 10.1 TWh, and 12.3 TWh with a 2h, 4h,
and 8h shifting potential, which corresponds to approximately 19.3%, 29.2%, and
35.5% of electricity demand from heat pumps or about 1.1%, 1.6%, and 1.9% of
total electricity demand.

The electricity shifting of thermal storage therefore alters the structure of the
electricity demand of heat pumps. The corresponding duration curves of elec-
tricity demand from heat pumps are depicted in Figure 3.3. While the electricity
demand of heat pumps without thermal storage is positive in all 8760 hours, the
shifting of thermal storage reduces it to zero in 2778, 3751, and 4224 hours, de-
pending on storage size. Charging increases electricity demand from heat pumps,

18In the dispatch, grid restrictions are not considered. Consequently, changes in the distribution
of heat pumps and thermal storage do not affect the market result apart from variations
in weather profiles across different nodes, which alter electricity demand. These effects are
small on an aggregated level and therefore the direction and magnitude of the effects are
comparable for wind-distribution and pv-distribution.
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Figure 3.3.: Duration curve of electricity demand from heat pumps in 2030 in MWh

raising peak load from 12.3 GW with inflexible heat pumps to 21.1 GW, 21.5
GW, and 21.9 GW, for 2h, 4h, and 8h shifting potential.19.

Consequently, the electricity shifting enabled by thermal storage impacts the
price formation, reducing price volatility as flexibility increases. Specifically, it
shifts electricity demand away from high-price periods and decreases the number
of zero-price hours. The average annual electricity price decreases by 0.6%, 1.0%,
and 1.2% for 2h, 4h, and 8h shifting potentials, respectively, compared to the
average price of 70.5 EUR/MWh for the base case with inflexible heat pumps.

A detailed analysis of the hourly profiles shows the factors that influence the
dispatch behavior of thermal storage. Typically, storage charges when electricity
prices are low, which often coincides with high RES generation, and discharges
when prices are high, reflecting lower RES generation and higher fossil fuel con-
tributions to setting marginal prices.

The results show that thermal storage charging correlates more strongly with
PV generation than wind, as PV has a greater impact on electricity prices. The
charging of the thermal storage shows a positive correlation with PV generation,
reflected in Pearson correlation coefficients of 0.42, 0.51, and 0.54 for 2h, 4h, and
8h shifting potentials, respectively. In contrast, the correlation with wind gen-
eration is significantly weaker (0.01, 0.02, and 0.05). This is due to the different
feed-in profiles of PV and wind: While wind generation is positively correlated
with heat pump demand (0.27 for wind vs. -0.37 for PV), PV generation shows
a stronger negative correlation with electricity prices (-0.65 for PV vs. 0.22
for wind). The resulting price reductions from high PV generation incentivize

19Note that, the cumulative peak demand from heat pumps that results after the shifting of
the thermal storage does not exceed the installed capacity of heat pumps in the model. If
this condition does not hold, an extension of the heat pump capacity (and possibly also
the grid connection) would be necessary. This would consequently increase the household’s
annualized investment cost for providing flexibility.
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storage charging, whereas wind’s weaker price correlation makes its influence on
storage charging more ambiguous.

As a result, the flexibility provision by thermal storage leads to an increase
in generation from PV, onshore and offshore wind power, and hence a decrease
in market based curtailment, while at the same time electricity generation from
coal and gas turbines is declining, as listed in the Appendix in Table B.4.

3.3.1.2. Redispatch effects

The impact of flexibility provision through thermal storage on the transmission
grid can be evaluated by analyzing the results of the redispatch. Since ther-
mal storage does not actively participate in redispatch, its electricity shifting
indirectly affects redispatch results by making the dispatch either more or less
compatible with grid constraints compared to the inflexible use of heat pumps.

The results show that, regardless of the distribution of heat pumps and thermal
storage, the redispatch volume consistently increases with an increasing shifting
potential relative to the inflexible use of heat pumps, as listed in Table 3.4.

Table 3.4.: Redispatch volumes with inflexible heat pumps and percentage changes with
thermal storage and different shifting potentials

Heat pump Inflexible heat 2h [%] 4h [%] 8h [%]
distribution pumps [TWh]

hp-distribution 55.0 2.9 4.7 6.0
wind-distribution 52.3 1.9 2.9 3.3
pv-distribution 54.8 2.0 3.6 4.5

Hence, for all distributions, the market results with flexibility provision through
thermal storage require more redispatch measures compared to an inflexible use
of heat pumps. The underlying reason is the spatial mismatch between genera-
tion technologies and heat pumps combined with thermal storage. This includes
increasing curtailment of RES in the redispatch compared to the base case with
inflexible heat pumps. RES generation that can be additionally integrated in
the market through thermal storage is partially curtailed in redispatch and re-
placed by fossil fuel-based generation, thus, partly offsetting the environmental
and economic benefits of flexibility provision.

Among the analyzed distributions, the wind-distribution results in the lowest
increase in redispatch volume. This outcome stems from a better spatial align-
ment between wind generation and heat pumps compared to hp-distribution and
pv-distribution, which also explains why total supply costs are lowest for the
wind-distribution.
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The results suggest that the system value of thermal storage differs between
locations, but within the uniform setup these differences cannot be signaled to
the market.

3.3.2. Regional value of flexibility from thermal storage

The LMP model setup offers the possibility to analyze the regional differences
across Germany in more detail and allows to assess the regional system value
of flexibility provision through thermal storage. The regional system value of
thermal storage is reflected in the expected revenue depending on its location.
Figures 3.4 (a)-(c) illustrate the expected revenue with the hp-distribution for
each shifting potential by latitude, distinguishing in color shades between nodes
west and east the 10th meridian.20
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Figure 3.4.: Expected revenues for thermal storage by latitude for (a) 2h shifting poten-
tial, (b) 4h shifting potential, (c) 8h shifting potential, and (d) the standard
deviation of LMPs in the base case with inflexible heat pumps

20The 10th meridian is marked in the maps of Germany in Figure 3.2. To the west of the 10th
meridian, most nodes are located in Baden-Wuerttemberg and the federal states of former
Western Germany, whereas to the east, they are predominately located in Bavaria and the
federal states of former Eastern Germany.
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For all three shifting potentials, it can be observed that the regional system
value of thermal storage in terms of the expected revenue increases from south
to north. In southern Germany, the expected revenues tend to be higher east of
the 10th meridian. Further north, with a few exceptions, the regions in eastern
Germany follow the upward trend but set the lower limit of expected revenues,
while the outliers with relatively high expected revenues are mainly found in
western Germany.

The differences in the expected revenues between nodes can be explained by
looking at the LMPs in each node. As thermal storage shifts electricity over
time, their expected revenue is less dependent on the average level of prices
and more dependent on the variation of hourly prices.21 To illustrate this, the
standard deviation of the LMPs per node by latitude is presented in Figure 3.4
(d), showing that higher expected revenues correspond with a greater standard
deviation of LMPs.22 A more detailed examination of the data further reveals
that wind and PV generation is relatively high at these nodes, which explains
the higher price fluctuations. Consequently, the flexibility of thermal storage is
more valuable to the electricity system at these nodes with high RES generation
and is utilized more frequently and extensively than at other nodes with lower
expected revenues.

In general, these results also apply for the wind-distribution and the pv-
distribution. (see Figure B.3 in the Appendix). Figure 3.5 shows the differences
in expected revenues per thermal storage with an 8h shifting potential between
the hp-distribution and the (a) wind-distribution and (b) pv-distribution.23
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Figure 3.5.: Differences in expected revenues per thermal storage with 8h shifting po-
tential for (a) wind-distribution - hp-distribution and (b) pv-distribution -
hp-distribution

21Figure B.2 in the Appendix shows the average annual LMPs per node by latitude.
22Thermal storage has a negligible effect on both the average annual LMPs and their standard

deviation. As a result, the base case with inflexible heat pumps is presented.
23The effects are most pronounced for the 8h shifting potential. See Figure B.4 in the Appendix

for the 2h and 4h shifting potential.
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With the wind-distribution, expected revenues shift from north to south, espe-
cially from above the 51st parallel, with changes ranging from -4 to 10 EUR/a.
A reallocation of thermal storage according to the pv-distribution yields smaller
differences in expected revenues compared to the hp-distribution, as the two dis-
tributions are more similar. Most nodes show revenue changes between -2 and 4
EUR/a, with mixed impacts in northern and southern nodes. There is a notable
shift in expected revenues between eastern and western nodes, with increases
predominantly in the west and decreases in the east.

Relating these results to the observed shifts in heat pump demand, expected
revenues rise in regions with less thermal storage capacities compared to the
hp-distribution and fall in regions where more thermal storage is allocated. This
suggests that the value of a single thermal storage depends not only on its own
location but also on the distribution of other thermal storage capacities. Re-
gions with decreasing thermal storage capacities face higher expected revenues
per thermal storage, whereas regions with increasing thermal storage capacities
experience lower expected revenues per thermal storage.

3.3.3. Individual household’s investment decision

From a system perspective, combining a heat pump with thermal storage reduces
total supply costs across all scenarios and shifting potentials. The profitability
for individual households is evaluated by comparing expected market revenues
with the investment costs of thermal storage, considering stand-alone solutions
and storage extensions when installing a new heat pump system.

In the uniform setup with the hp-distribution, a household earns 53 EUR/a
with a thermal storage with 400 l (2h shifting potential), 77 EUR/a with 800 l
(4h shifting potential), and 96 EUR/a with 1500 l (8h shifting potential).24 For
stand-alone installations, average annualized investment costs of 88 EUR/a (2h
shifting potential), 105 EUR/a (4h shifting potential), and 134 EUR/a (8h shift-
ing potential) exceed the expected revenues. For storage extensions, upgrading a
400 l storage to 800 l, i.e. providing a 2h shifting potential for market use, costs
an additional 17 EUR/a, and 29 EUR/a for upgrading an 800 l storage to 1500 l,
providing a 4h shifting potential. These extensions yield profits of 36 EUR/a
and 48 EUR/a, respectively, making them cost-efficient decisions for individual
households.25

In the LMP setup, the value of flexibility is highest in northern Germany,
particularly above the 53rd latitude, where expected revenues consistently ex-
ceed those in the uniform setup, reaching up to 66 EUR/a, 108 EUR/a, and

24Revenues are the same for the pv-distribution and slightly higher for the wind-distribution
(54 EUR/a, 79 EUR/a, and 99 EUR/a, respectively).

25Additional revenues from providing flexibility in other markets, e.g. the intraday market
or ancillary services, could improve profitability, especially if price fluctuations are greater
than in the wholesale market. However, a detailed analysis of multi-market participation is
beyond the scope of this paper, as it alters thermal storage operational patterns.
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153 EUR/a, for 2h, 4h, and 8h shifting potentials, respectively. While stand-
alone installations still remain unprofitable, storage extensions to either 800 l
(2h shifting potential) or 1500 l (4h shifting potential) are profitable across all
nodes. The storage extensions yield profits that range between 18 EUR/a and
49 EUR/a for a 2h shifting potential, and between 17 EUR/a and 79 EUR/a for
a 4h shifting potential.

Given the heat pump expansion target for 2030, the majority of heat pumps
will have to be built in the coming years. It is therefore reasonable to assume
that most investment decisions will be made when installing new heat pump
systems. At this stage, installing a thermal storage with increased capacity for
market-oriented flexibility is a profitable decision, assuming that wholesale price
signals are visible on the individual household level as discussed in Section 3.4.3.

3.4. Discussion

In order to understand the results, it is important to be aware of the underly-
ing methodology and to critically assess it. This Section discusses the model
assumptions (Section 3.4.1), the data (Section 3.4.2), and the results in the light
of existing literature and its policy implications (Section 3.4.3).

3.4.1. Model assumptions

The numerical model uses idealizing assumptions which may lead to results de-
viating from reality. The model assumes perfect foresight, fully rational eco-
nomic behavior, and perfect coordination among storage installations. In reality,
achieving such a frictionless market participation is challenging and highlights
the importance of aggregators and technical necessities like smart meters.

Additionally, the model assumes that flexibility from thermal storage on house-
hold level can be fully utilized in the transmission grid, even though they are
installed at the distribution grid. Including the distribution grid into the analysis
could provide further insights: First, it could accentuate regional differences due
to the heterogeneous distribution networks in Germany. Second, interactions be-
tween distribution and transmission grid levels could either intensify or mitigate
transmission congestion. While bottlenecks in the distribution grid may limit
storage availability for the transmission grid, offering flexibility at the distribu-
tion level could also create an additional revenue stream for heat pump owners,
potentially increasing the profitability of thermal storage.

Furthermore, this paper assumes that only the additional thermal storage ca-
pacities are operated in a system-friendly manner. This provides a lower bound
for the flexibility potential. The analysis does not determine if ’technical storage
capacities’ can be utilized for system-use when not required for technical opti-
mization, or if reducing technical operational levels could increase revenues from
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system-use. In particular, thermal storage meeting §14a EnWG criteria may
allow system-friendly optimization without incurring extra costs as this storage
is designed for two-hour shifting and likely exceeds technical needs.

Despite possible deviations due to the idealized assumptions, the results indi-
cate that thermal storage offers considerable shifting potential that can be effec-
tive even if only partially activated, particularly if it is located in grid-beneficial
locations. As shown in Section 3.3 this is particularity the case if heat pumps
are allocated close to onshore wind capacity.

3.4.2. Data

The current extrapolation of heat pump demand profiles to 2030 disregards po-
tential changes in heat pump types, technological advancements, and variations
in building characteristics like insulation. These factors could reshape future
electricity demand profiles and current assumptions on the efficiency (COP) of
heat pumps. While advancements in technology and insulation are expected
to increase efficiency, the installation of heat pumps in less insulated buildings
may lower efficiency. Presently, heat pumps are mainly installed in single-family
homes, but broader adoption in multi-family buildings could either level out or
intensify demand peaks as usage increases simultaneously. Additionally, a deeper
understanding of heat pump operation in practice and thus improved technical
optimization could smooth out demand profiles over the course of the day.

Furthermore, this paper investigates the impact of the regional allocation of
heat pumps and thermal storage on the electricity market and the grid by an-
alyzing three exemplary distributions. The results are robust with respect to
the different distributions, as the core results and the direction of the effects
remain essentially unchanged if the distribution assumption is changed. Future
studies could aim to improve the predictive quality for heat pump distribution
in 2030, similar to the detailed analysis by Arnold et al. (2023) on the expansion
of electric vehicles in Germany.

3.4.3. Results and policy implications

This section briefly summarizes the results, embeds them in the literature, and
discusses key policy implications concerning the spatial distribution of new heat
pump and thermal storage installations as well as the impact of flexibility pro-
vision by thermal storage on market effects and grid dynamics.

With regard to the installation of new heat pumps combined with thermal stor-
age, allocating them near wind capacities proves most beneficial for the overall
system, achieving the lowest total supply costs. This outcome is primarily driven
by the reallocation of heat pump demand, as most of the cost reduction is al-
ready observable in the base case with inflexible heat pumps. Shifting demand
to northern Germany relieves the grid and reduces redispatch costs compared
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to installing heat pumps in southern Germany. These results suggest that pol-
icymakers should prioritize to incentivize heat pump installations in northern
regions to align new demand with local renewable generation and reduce grid
constraints — a target applicable to other sources of demand as well.

When considering the impact of flexibility provision by thermal storage, the
results show its consistent potential to lower total supply costs independent of
the chosen distribution of heat pumps. Unlocking flexibility from thermal storage
mitigates RES curtailment and substitutes fossil fuel generation. These results
align with the findings in previous studies (e.g., Bauknecht et al., 2024, Bloess
et al., 2018, Büttner et al., 2024, Roth et al., 2024, Schöniger et al., 2024).

To fully utilize the flexibility potential of thermal storage, it is recommendable
to incentivize equipping heat pumps with thermal storage and ensuring their flex-
ibility is accessible to the market. A practical first step could involve integrating
existing thermal storage, built in accordance to §14a EnWG, into the electricity
market during periods when it is unused for this purpose or for other technical
optimization of the heat pump. To facilitate market participation, existing mar-
ket barriers should be addressed, in particular the distortions between wholesale
price signals and retail prices. Heat pump owners often lack access to real-time
electricity prices, limiting their ability to optimize electricity demand based on
market conditions. Moreover, the addition of taxes, levies, and network fees dis-
torts wholesale price signals, complicating effective household responses to price
fluctuations. Regional variations in retail electricity prices, driven by network
tariffs unrelated to grid congestion, add further complexity. The structure of re-
tail electricity prices should therefore continue to be part of the political debate.
Agora Energiewende (2023) and Eicke et al. (2024) recently explore various pol-
icy instruments such as dynamic retail pricing and time-varying network tariffs,
to enable the use of decentralized flexibilities in Germany.

Regarding the size of the thermal storage, the results show that smaller systems
with 2h or 4h shifting potential consistently lower total supply costs, independent
of the underlying heat pump distribution. However, with an 8h shifting potential,
thermal storage provides additional cost reductions only when allocated close
to wind capacities. The larger storage size better aligns with wind generation
patterns and grid constraints in northern Germany. This finding extends the
existing literature, as previous studies (e.g., Roth et al., 2024, Schöniger et al.,
2024) focus on market effects of thermal storage but neglect grid impacts.

Concerning the impact of flexibility provision on the grid, the results empha-
size the need for locational signals. In the uniform setup, which represents the
German electricity system, thermal storage reduces total supply costs through
its positive market effects, but at the same time it increases redispatch costs.
Unlike aggregated studies of decentralized flexibilities (e.g., Bauknecht et al.,
2024, Büttner et al., 2024, Heitkoetter et al., 2022), this analysis highlights the
grid impacts of heat pumps with thermal storage. The results suggest that with
the introduction of flexibility from thermal storage, taking grid constraints into
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account becomes increasingly important in order to utilize the flexibility for the
market without violating grid constraints. This applies in particular to larger
shifting potentials. Although idealized LMPs are not directly applicable, they
show the benefits of integrated price signals. Policy makers should ensure that
heat pumps are operated with consideration for their impact on the grid. Cur-
rent proposals for an electricity market reform in Germany, e.g. by the Federal
Ministry for Economic Affairs and Climate Action, acknowledge the need for lo-
cational signals but have, so far, left out storage technologies (BMWK, 2024b).

Overall, creating a cohesive regulatory framework that integrates both market
and grid dynamics will be essential to fully realize the economic potential of
heat pumps combined with thermal storage. Policymakers should incentivize
the installation of thermal storage and ensure its participation in the electricity
market. This particularly includes addressing distortions between wholesale price
signals and retail prices. Additionally, locational signals should be implemented
that account for both market conditions and grid constraints, ensuring that
flexibility provision maximizes its system-wide benefits.

3.5. Conclusion

This paper analyzes the impact of heat pumps combined with thermal storage on
the electricity system, accounting for market and grid dynamics. It evaluates the
system value of the flexibility provided through thermal storage when taking grid
restrictions into account. Six scenarios combine two model setups, a uniform and
a LMP model setup, with three heat pump distributions, based on the current
geographic locations of heat pumps, the allocation of wind capacity, and the
allocation of PV capacity. Each scenario is compared for three storage sizes (2h,
4h, and 8h shifting potential) with the inflexible use of heat pumps.

The results show that across all scenarios and shifting potentials, flexibility
provision through thermal storage reduces total supply costs compared to an
inflexible use of heat pumps. In the uniform model setup, the provision of flex-
ibility improves the market results but at the same time increases the necessity
for grid management. The extent to which these two opposing effects outweigh
each other depends on the shifting potential. When heat pumps are allocated
based on their current locations or PV capacity, the 4h shifting potential re-
sults in lower total supply costs than the 8h shifting potential, as redispatch
supply costs increase over-proportionally for these distributions. Allocating heat
pumps and thermal storage near wind capacity in northern Germany leads to
the largest reduction in total supply costs, which, in contrast to the other two
distributions, benefit most from the 8h shifting potential. Thus, spatial proxim-
ity to wind generation enhances the benefits of the flexibility provision through
thermal storage. The regional analysis within the LMP model setup supports
these findings and shows that the regional system value of flexibility provided
by thermal storage is highest in northern Germany. The results therefore sug-
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gest that the consideration of grid restrictions becomes more important with the
introduction of flexibility from thermal storage in order to utilize the flexibility
for the market without violating grid constraints. This applies in particular to
larger shifting potentials.

The magnitude of effects depends on the model parametrization and data
assumptions regarding the market and grid. Particularly, the effects of thermal
storage depend on the assumptions about other flexibility options as they interact
with the flexibility provided by technologies such as electrolyzers and batteries.
Further studies for other countries or other scenarios, e.g. on the impact of heat
pump demand profiles, the expansion of RES and other storage technologies, can
therefore contribute to further understand the driving factors. In addition, future
research could analyze the impact of the location of heat pumps and thermal
storage with endogenous investment decisions to further extend the analysis of
the different heat pump distributions used in this paper.

In conclusion, unlocking the flexibility potential of heat pumps in combination
with thermal storage offers economic benefits for the electricity system across all
scenarios. Policymakers are advised to incentivize the market deployment of
thermal storage. This should be coupled with locational price signals to align
market incentives with grid requirements, thereby ensuring that the benefits of
the flexibility are fully realized across the electricity market and the grid. The
question of how locational price signals can best be implemented within a uniform
setup remains an ongoing topic of public and scientific debate.
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4. Network Tariffs under Different Pricing

Schemes in a Dynamically Consistent

Framework

4.1. Introduction

The transition towards a decarbonized energy system requires investments in
new electricity consumption technologies, like power-to-gas facilities or electric
heating systems. In liberalized electricity systems, investment and operation de-
cisions are private and based on price signals. Therefore, adequately designed
prices are of great importance to efficiently coordinate the network and decisions
of supply and demand. Increasingly decentralized investments and rising network
costs make spatial price signals even more relevant. In many electricity systems,
however, prices for consumers do not include spatial signals, and in most cases,
they contain several price components that are not necessarily aligned. While
the demand-side has traditionally been perceived as price-inelastic, with new
demand-side technologies entering the system, consumers can participate more
actively in electricity markets. Therefore, misaligned price signals can have an in-
creasingly negative impact on welfare and the system’s efficiency. The adequacy
of price signals depends on the design of several components, including the spot
market pricing scheme and regulatory price components, like network tariffs. In
many countries, network tariffs account for a significant part of the consumer
price. In addition to the sum of price components that directly affect the con-
sumers’ decision-making, the individual price components can interact with each
other. These interactions depend on the design of the individual components.

In this paper, we analyze the interactions of price components by combin-
ing different spot market pricing schemes and network tariff designs. We derive
static and dynamic effects within each regulatory setting and analyze how reg-
ulatory changes impact efficiency by ranking the regulatory settings in terms of
overall welfare. The analysis particularly accounts for network tariffs’ economic
efficiency, including their function to recover network costs for the network op-
erator and their ability to ensure a dynamically consistent allocation of demand
investments.
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We develop a theoretical two-node model, including a spot market and the
network tariff setting of a transmission system operator (TSO).26 The TSO de-
cides on welfare optimal network tariffs that must recover the network costs.
She anticipates the dynamic effects of price signals and optimizes network tariffs
such that upcoming demand investments are efficiently allocated. Subsequently,
the spot market clearing follows, if necessary, accompanied by congestion man-
agement measures. We apply the model in four different regulatory settings -
the combination of two spot market pricing schemes and two network tariff de-
signs. As pricing schemes, we consider zonal and uniform pricing because they
represent two contrasting approaches to incorporate network constraints in the
market clearing.27 As network tariff designs, we consider fixed and volume-based
network tariffs. Economic theory on efficient pricing suggests fixed network tar-
iffs as they do not distort market price signals (c.f. Pérez-Arriaga and Smeers,
2003). In contrast, volume-based tariffs increase the per-unit price for consumers.
If consumers react to prices, volume-based network tariffs induce a deadweight
loss. Ramsey-Boiteux prices minimize this deadweight-loss and constitute the
least-distorting volume-based network tariffs (c.f. Wilson, 1993).

The regulatory setting with zonal pricing and fixed network tariffs achieves
the highest welfare. Without reducing the static welfare, the TSO can ensure
a dynamically consistent allocation of demand investments by restricting the
feasible cost allocation between the two nodes. In the regulatory setting with
uniform pricing and fixed network tariffs, the TSO also achieves a dynamically
consistent allocation of demand investments without reducing the static welfare.
However, the cost allocation is further restricted, as the network tariffs are the
only possibility for spatial price signals. Additionally, the introduction of uniform
pricing leads to inefficiency from congestion management, as we assume a cost-
based redispatch mechanism of generators. With volume-based network tariffs,
the inefficiency from the congestion management reduces, if the TSO includes
a correction term into the network tariff, which imitates zonal prices. Under
both pricing schemes, volume-based network tariffs induce a deadweight loss as
they increase per-unit prices and, therefore, impact the spot market outcome. In
contrast to fixed network tariffs, optimal volume-based network tariffs can lead
to an additional loss in static welfare when considering a dynamically consistent
allocation of demand investments.

Comparing the four regulatory settings shows that deviating from the regu-
latory setting of zonal pricing and fixed network tariffs leads to inefficiencies.

26In the following, we refer to the transmission network only. However, due to the stylized rep-
resentation of network constraints, this does not necessarily exclude our model’s application
in the context of distribution networks.

27We use the term zonal pricing as a general approach for spatially differentiated prices within
one regulated region. This definition includes all pricing schemes in which the spot market
sends locational price signals to the market participants. The concept of zonal pricing
preserves the possibility that several nodes of a network constitute a zone, while prices may
differ between the zones of one region. Within our two-node model, nodal or zonal prices
are equivalent.
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Under uniform pricing, additional costs occur due to congestion management,
and the use of volume-based network tariffs results in a deadweight loss due to
price distortion. If there is only one source of inefficiency, welfare increases by
adjusting the respective price component, i.e., changing either to fixed network
tariffs or zonal pricing. However, suppose both sources of inefficiency are present.
In that case, i.e., the combination of uniform pricing and volume-based network
tariffs, an adjustment of only one aspect can have unintended effects on overall
welfare. If optimal volume-based network tariffs structurally reduce congestion
management costs, switching to fixed network tariffs does not necessarily increase
market efficiency. This result is important considering that current electricity
systems often use a combination of uniform pricing and mainly volume-based
network tariffs. Hence, we demonstrate the importance of addressing the inter-
actions between price components when changing the regulatory setting.

This paper contributes to the broader literature on network cost recovery,
focusing on the interactions with different spot market pricing schemes in a dy-
namic context. Electricity networks constitute a natural monopoly and typically
face large, fixed network costs. Thus, competitive pricing at short-run marginal
costs does not generate enough revenue to cover total costs (c.f. Joskow, 2007,
Pérez-Arriaga et al., 1995). Therefore, cost recovery is necessary independently
of the spot market pricing scheme and requires an appropriate network tariff de-
sign (c.f. Brunekreeft et al., 2005). Borenstein (2016) comprehensively discusses
the aspect of fixed cost recovery in natural monopolies and the economic prin-
ciples of tariff setting in electricity markets. Furthermore, Batlle et al. (2020)
and Schittekatte (2020) conceptually discuss options for residual cost allocation,
with a special focus on residential consumers and distributional effects of net-
work tariffs. This strand of literature is expanded by empirical studies on the
distributional effects, e.g., by Burger et al. (2020) and Ansarin et al. (2020), as
well as numerical simulation models, that analyze the effects of different network
tariffs on different consumer groups, e.g., Fridgen et al. (2018) and Richstein and
Hosseinioun (2020).

In a dynamic context, the demand-side has received relatively little attention
so far, as consumers’ investment decisions have long been considered not be-
ing influenced by electricity price signals. In their recent work on prosumers,
Schittekatte et al. (2018) and Schittekatte and Meeus (2020) analyze the effect
of network tariffs on consumers’ investment incentives and the installation of
residential PV. Gautier et al. (2020) contribute to the discussion on investment
incentives by taking the presence of heterogeneous prosumers into account and
Castro and Callaway (2020) simulate the impact of different network tariffs on
demand’s investment decisions in a numerical model. Though, these analyses
do not consider the spatial dimension and locational choices. While Ambrosius
et al. (2018) do analyze spatial demand investments under different spot market
pricing schemes, they do not consider multiple network tariff designs. In com-
parison, the literature acknowledging the spatial dimension and the impact of
network tariffs on location-based price signals is currently limited to the sup-
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ply side. Tanger̊as and Wolak (2019) analytically show how locational marginal
network tariffs can be designed to incentivize efficient supply-side investments.
Bertsch et al. (2016) analyze different pricing schemes in a dynamic numeri-
cal framework. They consider the interactions of network tariffs (specifically
a g-component) and the pricing scheme. Similarly, Grimm et al. (2019) apply
regionally differentiated network tariffs under different pricing schemes for the
German electricity market. Ruderer and Zöttl (2018) account for the interaction
of congestion management methods and network tariffs by examining the impact
of volume- and capacity-based network tariffs on generators’ investment decision
in an analytical model. The importance of efficient cost recovery mechanisms
is also highlighted by Chao and Wilson (2020). In a numerical model they find
volume-based Ramsey-Boiteux tariffs to be close to the social optimum.

To the best of our knowledge, the paper at hand is the first, which explic-
itly considers different network tariff designs and pricing schemes in a consistent
dynamic framework to analyze the effect on spatial demand-side decisions. Al-
though each of these topics has been studied extensively from an isolated per-
spective, integrated approaches are relatively scarce. Borenstein and Bushnell
(2018) empirically analyze the interaction of network tariffs and the pricing of
externalities in the US. The authors show that if prices are affected by more than
one distortion, the effects can level each other out. We contribute to the dis-
cussion by developing an analytical framework in which we provide insights into
the interaction of the two price components, their potential inefficiencies and the
requirements for a dynamically consistent allocation of demand-side investments.

The remainder of this paper is structured as follows: Section 4.2 introduces our
model set-up, and Section 4.3 analyzes the optimal network tariffs under different
pricing schemes in a dynamic context. Section 4.4 examines the effects of the
regulatory settings on overall welfare. Section 4.5 discusses political implications
and summarizes concluding remarks.

4.2. The model framework

This section introduces the basic model setup to analyze different pricing schemes
and network tariff designs in the presence of a congested transmission network.
We consider a two-node model with two nodes called north and south denoted
by i ∈ {n, s} with respective generation technologies with constant marginal
costs ci. Further, we assume that the generation technology in the north is
strictly cheaper, i.e., cn < cs. Both technologies have an unrestricted generation
capacity. Further, we assume perfect competition in both nodes. Thus producer
surplus is equal to zero in all regulatory settings. The aggregated market demand
in each node is denoted by Di(pi), which is decreasing in price, i.e., ∂Di(pi)/∂pi <
0 ∀ i. We assume a positive number of ωi identical consumers in each node. The
total number of consumers is therefore given by Ω = ωn + ωs.
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Electricity generation qi in both nodes needs to cover total demand, i.e.,∑
i qi =

∑
iDi(pi). Further, the two nodes are connected by a transmission

line, with power flows l and a limited capacity of L, illustrated in figure 4.1. We
focus on congested networks and hence demand exceeds the limited transmis-
sion line capacity, i.e., L ≤ Di(pi) ∀ i. Since we assume that generation costs
are lower in the north, electricity flows from north to south. The transmission
system operator (TSO) is responsible for the physical feasibility of the market
outcome, which, if necessary, also comprises congestion management.

In our analysis, we consider two pricing schemes - zonal and uniform pricing
that differ regarding their congestion management. Under zonal pricing, the
spot market clearing simultaneously considers network restrictions, while under
uniform pricing, ex-post congestion management of the TSO is necessary. After
the spot market clearing, the TSO performs a redispatch of supplied quantities
qi until the transmission constraint L is fulfilled.

N

S

Network: Capacity L and fixed costs F

Demand: Dn(pn) with ∂Dn(pn)/∂pn < 0
Supply: qn with marginal costs cn < cs

Demand: Ds(ps) with ∂Ds(ps)/∂ps < 0
Supply: qs with marginal costs cs > cn

Figure 4.1.: The two-node model.

We assume a redispatch mechanism with incomplete participation. That
means, the TSO considers only producers for redispatch, while the demand-side
is excluded.28 This reflects the common practice in many electricity systems and
is, in particular, due to the complexity of remunerating the demand for a redis-
patch measure. With a cost-based redispatch, the TSO compensates generators
outside the spot market based on their marginal costs.29

Additionally, the operation of the transmission network is associated with fixed
costs of F ∈ ]0,∞[. We assume that the fixed costs are smaller than the consumer
surplus given the generation costs in each node, i.e., F ≤

∫∞
ci

Di(z)dz ∀ i. This
assumption ensures the participation constraint of consumers in all settings.
Fixed network costs cannot be attributed to individual network users. Therefore,
the principle of cost causality cannot be applied to recover these costs. The

28Noteworthy, under the assumption of full participation, uniform pricing with redispatch
achieves the welfare optimal result (Bjorndal et al., 2013).

29Other congestion management methods are comprehensively discussed in DeVries and
Hakvoort (2002), Holmberg and Lazarczyk (2015) and Weibelzahl (2017).
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TSO’s total network costs CTSO contain the fixed costs F as well as potential
congestion rents. Depending on the pricing scheme, congestion rents can be
either positive or negative. We introduce the TSO as a benevolent agent who
recovers her costs by charging network tariffs. We consider two different network
tariff designs: a volume-based tariff τ := (τn, τs), and a fixed network tariff
f := (fn, fs). Volume-based network tariffs can be interpreted as an additional
demand tax that directly influences the demand decision on the spot market.
Fixed network tariffs can be interpreted as an access charge for being connected
to the network. These tariffs constitute two extreme cases for network cost
recovery. We do not apply general non-linear tariffs, e.g., multi-part tariffs. In
both cases, we assume that only consumers pay network tariffs, as is the case
in many electricity systems in practice. The TSO can differentiate between
consumers in the north and south but cannot distinguish between consumers
within one node. Consequently, network tariffs can vary between the two nodes,
but not between consumers within a node.

For the network tariff setting, the TSO wants to ensure a dynamically con-
sistent allocation of demand investments. By definition, new consumers choose
the location of their investment depending on the prices in each node. We de-
fine a pricing schedule P I

i that includes two price components: the payments
at the spot market for each unit demanded and the network tariff payments.
The pricing schedule is given by P I

i = piD + fi, where D is a fixed additional
demand for new consumers.30 If volume-based network tariffs are applied, the
per unit price pi also includes the network tariff τi. The TSO aims at achiev-
ing a dynamically consistent allocation of demand investments. From a welfare
perspective, dynamic consistency is achieved if the new demand investments are
in line with the welfare-maximizing result in future periods. As we consider a
congested network with lower generation costs in the north, consumers should
place new demand investments into the north. The demand invests in the north,
if and only if, the pricing schedule is lower in the north compared to the south,
i.e., iff P I

n ≤ P I
s , which is:

pn(c, τ ) ·D + fn ≤ ps(c, τ ) ·D + fs (4.1)

The TSO anticipates the rationale of the demand’s investment decision and,
therefore, accounts for the pricing schedule (4.1) when setting the network tariffs.
The structure of this constraint holds in each setting and only the spot market
price and the network tariff may change depending on the regulatory setting.31

30By assuming a price-inelastic demand, we ignore quantity effects, which additionally restrict
the optimal solution, but do not change our main results.

31We simplify the investment decision by only considering the costs in both nodes and add
the investment decision to the pricing problem of the TSO. If the investment decision is
modeled endogenously in a sequential setting, i.e., by maximizing the consumer surplus of
the invested demand, the rationale slightly differs between the settings, but our main results
do not change.
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4.3. The interactions of network tariffs and pricing schemes considering dynamic consistency

4.3. The interactions of network tariffs and pricing
schemes considering dynamic consistency

We analyze the interactions between the different combinations of pricing schemes
and network tariff designs and their effect on a dynamically consistent allocation
of demand investments. The model set-up consists of two steps.

At first, the benevolent TSO introduces a vector of network tariffs for the
current time period that can either be fixed (f) or volume-based (τ ). The TSO
has perfect foresight and anticipates the impact of network tariffs on the spot
market outcome and possible network congestion while ensuring the dynamic
consistency of the pricing schedule.32

Second, the spot market clearing takes place, which depends on the pric-
ing schemes. Under zonal pricing, the spot market clears with a cost-minimal
dispatch considering the transmission constraint. The solution is equal to the
optimal dispatch of a social planner, as we show in C.1. Production is equal
to q∗n = Dn(pn) + L and q∗s = Ds(ps) − L. Prices differ among nodes and re-
flect marginal costs of generation, with p∗n = cn and p∗s = cs. The spot market
clearing under zonal pricing yields a positive congestion rent (cs − cn)L. The
TSO anticipates this rent and offsets fixed costs F with it. Under uniform pric-
ing, both nodes belong to the same bidding zone. In contrast to zonal pricing,
both nodes trade irrespective of network constraints. Consequently, the gen-
eration in the north is dispatched to fully cover the demand in both nodes at
marginal costs of cn. The resulting spot market prices are p∗n = p∗s = cn.

33 The
spot market clearing requires a production of qn = Dn(cn) + Ds(cn), which is
technically not feasible as it requires the producer at node n to export more
than L. The TSO is responsible for ensuring the system’s physical feasibility
by conducting congestion management measures. To do so, the TSO performs
a redispatch of suppliers. The TSO instructs the producer at node n to reduce
generation to qn = Dn(cn) + L and instructs the producer at node s to increase
generation to qs = Ds(cn)−L. The TSO compensates the producers outside the
spot market for redispatching their generation. This leads to additional costs
of (cs − cn)(Ds(p

∗
s) − L). In the following, we use these spot market results to

determine the optimal network tariffs.

4.3.1. Fixed network tariffs under zonal pricing

The TSO maximizes welfare by setting the fixed network tariffs under zonal
pricing (4.2a). The optimization is subject to the budget constraint (4.2b) to

32The assumption regarding the TSO’s benevolence is critical for the formulation of the op-
timization problem. Otherwise, the TSO would only consider her budget and neglect the
impact on consumer surplus or dynamic consistency.

33With volume-based network tariffs, the per-unit price in each node also includes τn and τs,
respectively, and hence, in sum pi may differ between both nodes. However, the spot market
price component is the same, regardless of the network tariff design.
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ensure full network cost recovery. Due to the positive congestion rent under
zonal pricing, the TSO has to recover the following costs CTSO

ZP,f = F − (cs −
cn)L. Further, the TSO anticipates the impact of network tariffs on the dynamic
allocation of demand investments. Therefore, the optimization is additionally
restricted by (4.2c).

max
f

WZP,f (p
∗,f) =

∫ ∞

p∗n=cn

Dn(z) dz +

∫ ∞

p∗s=cs

Ds(z) dz − F + (cs − cn)L

(4.2a)

s.t.
∑
i

ωifi − F + (cs − cn)L = 0 (4.2b)

cnD + fn ≤ csD + fs (4.2c)

The fixed network tariffs do not impact the welfare function and the TSO only
has to ensure, that the constraints (4.2b) and (4.2c) hold. See C.2 for a proof
and the derivation of possible solutions for the optimization problem (4.2a-4.2c).
As consumers are homogeneous and fixed costs do not exceed consumer surplus
in each node, fixed network tariffs cannot exceed the individual consumer sur-
plus. Hence, the participation constraint holds for each consumer. Thereby, fixed
network tariffs do not change the cost-minimal dispatch of supply and demand
and thus, do not distort welfare. This is a well-known result from the litera-
ture on fixed cost recovery in network industries (e.g. Borenstein, 2016, Joskow,
2007, Wilson, 1993). Within the boundaries of constraints (4.2b) and (4.2c),
the TSO can allocate the costs freely among the nodes.34 Allocating network
costs equally among consumers in all nodes would be a practical solution that
ensures a dynamically consistent allocation of demand investments. In practice,
this approach is often called horizontal cost allocation. Such a simple allocation
rule would ensure that network tariffs do not distort spatial price signal from
the spot market while fully recovering the fixed network costs.

4.3.2. Fixed network tariffs under uniform pricing

Under uniform pricing, the optimization problem of the TSO changes to (4.3a-
4.3c). First, the spot market prices differ from zonal pricing, and second, the
budget constraint of the TSO (4.3b) changes. Since redispatch comes with ad-
ditional costs for the TSO, she has to recover total costs of CTSO

UP,f = F + (cs −
cn)(Ds(p

∗
s)− L). Again, the TSO ensures the dynamic consistency for the allo-

cation of future demand investments (4.3c). As the per-unit spot price is equal

34We ignore income and distribution effects in our model. Considering these effects may change
the socially desirable cost allocation, e.g. if additional restrictions are included in the
optimization problem. See for example Batlle et al. (2020) for a discussion on this topic and
a proposed alternative to fixed network tariffs.
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in both nodes, the additional demand quantity D cancels out.

max
f

WUP,f (p
∗,f) =

∫ ∞

p∗n=cn

Dn(z) dz

+

∫ ∞

p∗s=cn

Ds(z) dz − F −
[
(cs − cn)(Ds(p

∗
s)− L)

] (4.3a)

s.t.
∑
i

ωifi − F −
[
(cs − cn)(Ds(p

∗
s)− L)

]
= 0 (4.3b)

fn ≤ fs (4.3c)

Proposition 4.3.1. With fixed network tariffs and homogeneous consumers,
the TSO can ensure dynamic consistency without impacting static welfare by
restricting the feasible cost allocation between the two nodes. Under uniform
pricing, the cost allocation between the nodes is further restricted compared to
zonal pricing.

Again, the fixed network tariffs do not affect welfare and the TSO only has
to ensure that the constraints (4.3b) and (4.3c) are met.35 However, under
uniform pricing, the solution to the optimization problem is more constrained by
the dynamic consistency condition compared to the setting under zonal pricing.
The boundary on network tariffs changes from cnD + f∗

n ≤ csD + f∗
s under

zonal pricing to f∗
n ≤ f∗

s under uniform pricing. Thus, to ensure a dynamically
consistent allocation, the TSO has to choose network tariffs that compensate for
the spot market’s missing spatial price signals under uniform pricing.

4.3.3. Volume-based network tariffs under zonal pricing

As in section 4.3.1, spot market prices differ between the nodes and reflect the
respective marginal costs. However, unlike fixed network tariffs, volume-based
network tariffs constitute a levy on consumption and directly influence the de-
mand decision at the spot market. The total price, that consumers pay per unit,
is the marginal costs of generation ci plus the network tariff τi, i.e. pi = ci + τi.
The demand-side reduces demanded quantities accordingly.

The TSO maximizes welfare by choosing the optimal vector of volume-based
network tariffs (4.4a-4.4c). The optimization is subject to the TSO’s break-
even constraint (4.4b).36 The TSO accounts for the positive congestion rent
from zonal pricing, and consequently, recovers costs of CTSO

ZP,τ = F − (cs − cn)L.

35It is straightforward to see that the solution of this optimization resembles to the solution of
the previous chapter, which is depicted in C.2.

36Note that the TSO is unbundled. Unlike the case of a classical, vertically integrated natural
monopoly, the TSO does not increase the spot market price to recover her fixed cost but
introduces a separate network tariff. The difference is that network tariffs are a payment
from consumers to the TSO. Therefore, the congestion rent (cs − cn)L and producer profits
are not affected by the network tariffs and remain constant.
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Additionally, the optimization is restricted by the dynamic consistency constraint
(4.4c). With volume-based network tariffs, the constraint is independent of the
fixed additional demand of new consumers (D) and only depends on the per unit
price pi(ci, τi).

max
τ

WZP,τ (p
∗(τ )) =

∫ ∞

p∗n=cn+τn

Dn(z) dz +

∫ ∞

p∗s=cs+τs

Ds(z) dz

+
∑
i

τiDi(p
∗
i )− F + (cs − cn)L

(4.4a)

s.t.
∑
i

τiDi(p
∗
i )− F + (cs − cn)L = 0 −→ λ (4.4b)

cn + τn ≤ cs + τs −→ µ (4.4c)

Proposition 4.3.2. If the dynamic consistency constraint is binding, the net-
work tariffs deviate from the optimal static volume-based network tariffs. In this
case and under the assumption of constant marginal costs, a dynamically con-
sistent allocation of demand investments lowers static welfare since consumer
surplus in the north increases less than consumer surplus in the south decreases.

To solve the TSO’s optimization problem we derive the first-order condition
of the Lagrangian ∂L/∂τi. Rearranging for τ∗n and τ∗s yields

τ∗n =
λ

1 + λ
· Dn(cn + τ∗n)

−∂Dn(cn + τ∗n)/∂τ∗n
− µ

1 + λ
· 1

−∂Dn(cn + τ∗n)/∂τ∗n
(4.5)

and

τ∗s =
λ

1 + λ
· Ds(cs + τ∗s )

−∂Ds(cs + τ∗s )/∂τ∗s
+

µ

1 + λ
· 1

−∂Ds(cs + τ∗s )/∂τ∗s
(4.6)

We distinguish between two cases:37 First, assume that the constraint for
dynamic consistency (4.4c) is non-binding and µ = 0. Then, the optimal network
tariff in both nodes is equal to:

τ∗i =
λ

λ+ 1
· Di(ci + τ∗i )

−∂Di(ci + τ∗i )/∂τ∗i
(4.7)

In this case, the optimal network tariff (4.7) can be interpreted as a modified
version of the Ramsey-Boiteux inverse elasticity rule (see C.3.1). A high variation
in demand in response to a variation in price leads to lower network tariffs. To
solve for the optimal network tariffs, we define the quasi-elasticity ρi, insert it

37There exists a third case where µ = 0 and the constraint is binding. This case leads to the
same solution as our first case.
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into (4.7) and equate for both nodes. We obtain the following relation:

τ∗n
τ∗s

=
ρs(τ

∗
s )

ρn(τ∗n)
with ρi(τ

∗
i ) = −

∂Di(ci + τ∗i )/∂τi
Di(ci + τ∗i )

(4.8)

The relationship between the network tariffs in the two nodes corresponds to the
relationship between the quasi-elasticities. By using the relationship from (4.8)
and the budget constraint of the TSO (4.4b), we solve for the optimal network
tariff in the south:

τ∗s =
F − (cs − cn)L

ρs(τ∗s )
ρn(τ∗n)

Dn(cn + τ∗n) +Ds(cs + τ∗s )
(4.9)

The result can be derived analogously for τ∗n. Similar to the Ramsey-Boiteux
inverse elasticity rule, we see that when the ratio of the quasi-elasticities between
the south and the north decreases, i.e., when the price sensitivity of the north
increases compared to the south, demand in the south covers a higher share
of the residual network costs and vice versa. In this case, the condition for
dynamically consistent allocation is already met without any further adjustments
to the network tariffs. The optimal static volume-based network tariffs thus
provide dynamic consistency by themselves.

Second, assume that (4.4c) is binding and µ > 0. This is the case if the optimal
static network tariffs reverse the ratio of price schedules between the two nodes
so that the north would become more expensive than the south. This depends
on the ratio of the demand functions, particularly the quasi-elasticities, in the
two nodes (see (4.8)). We denote the resulting network tariffs with τ̂i.

38 As
µ > 0 it follows from (4.5) and (4.6) that τ̂i deviate from τ∗i . In the north, the
optimal volume-based network tariff decreases due to the latter part of (4.5),
i.e. τ̂n < τ∗n. The opposite effect occurs in the south. From (4.6) it follows that
τ̂s > τ∗s . By setting τ̂ instead of τ∗ the TSO deviates from the optimal static
(unconstrained) volume-based network tariffs.

Consequently, this creates a deadweight loss in the current period to benefit the
dynamically consistent allocation of future demand investments. While network
tariffs rise in the south and, thus, lower consumer surplus there, network tariffs
in the north decrease and increase consumer surplus. However, the increase in
consumer surplus in the north does not compensate for the decrease in the south.
The adjustments are not equal because of the ratio of the two demand functions,
which would lead to higher (lower) network tariffs in the north (south) without
the constraint for a dynamically consistent allocation of demand investments.
For example, consider a situation where the demand function of the north is
almost perfectly inelastic, and there is very price-sensitive demand in the south.
Without the requirement for dynamic consistency, consumers in the north would

38In C.3.2, we solve for the optimal network tariffs for the case that the constraint is binding and
derive at what point the constraint restricts the optimal static network tariffs for dynamic
consistency.

69



Network Tariffs under Different Pricing Schemes in a Dynamically Consistent Framework

bear most of the fixed network costs, while network tariffs in the south would
be low. If the difference in network tariffs exceeds the difference in marginal
generation costs, dynamic consistency is violated. In order to ensure dynamic
consistency, the TSO reduces the network tariffs in the north. However, due
to the inelastic demand in the north, consumer surplus increases only slightly.
Conversely, increasing network tariffs in the south lead to a significant loss of
consumer surplus.

4.3.4. Volume-based network tariffs under uniform pricing

In a regulatory setting with uniform pricing, the spot market clearing results in
pi = cn + τi. Total prices pi may differ between the two nodes depending on the
network tariffs τi.

The TSO maximizes welfare, anticipating the spot market result, her own
budget and the dynamic consistency constraint (4.10a-4.10c). Due to uniform
pricing, the spot market result is physically infeasible, and the TSO is obligated
to redispatch generators. From this, the TSO bears additional costs that sum
up to CTSO

UP,τ = F +(cs−cn)(Ds(cn+τ∗s )−L). In contrast to the other regulatory
settings, the TSO’s network costs depend on the network tariffs, because volume-
based network tariffs impact the quantities demanded and they, in turn, impact
redispatch costs.

max
τ

WUP,τ (p
∗(τ )) =

∫ ∞

p∗n=cn+τn

Dn(z) dz +

∫ ∞

p∗s=cn+τs

Ds(z) dz

+
∑
i

τiDi(p
∗
i )− F − (cs − cn)(Ds(p

∗
s)− L)

(4.10a)

s.t.
∑
i

τiDi(p
∗
i )− F − (cs − cn)(Ds(p

∗
s)− L) = 0 −→ λ

(4.10b)

τ∗n ≤ τ∗s −→ µ (4.10c)

The first-order conditions of the Lagrangian ∂L/∂τi are no longer identical be-
tween north and south. The optimal network tariff in the north has the same
structure as under zonal pricing, shown in (4.5). For the south, the optimal
network tariff slightly changes to:

τ∗s =
λ

1 + λ
· Ds(cs + τ∗s )

−∂Ds(cs+τ∗s )
∂τ∗s

+
µ

1 + λ
· 1

−∂Ds(cs+τ∗s )
∂τ∗s

− cn + cs (4.11)

Compared to the structure derived under zonal pricing (4.6), the network tariff
in the south consists of an additional component, which functions as a correction-
term for redispatch. Under uniform pricing, the optimal volume-based network
tariffs mimic zonal prices and partially correct for the inefficiency of the pricing
scheme. Plugging equation (4.11) into the demand function of the south Ds(cn+
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τ∗s ) yields a similar result as under zonal pricing, i.e. Ds(cs + τs). However, the
result is not equivalent to the setting under zonal pricing, as the values of the
network tariffs τi differ.

Under uniform pricing, the ratio between the network tariffs not only depends
on the ratio of the quasi-elasticities but also on the generation costs in the
respective nodes. We derive the optimal network tariffs in C.3.3 and show the
relationship in detail. Like in the setting under zonal pricing, the TSO might
adjust the optimal static network tariffs if the dynamic consistency constraint is
binding. The rationale is the same as under zonal pricing: Deviating from the
optimal static (unconstrained) volume-based network tariffs creates a deadweight
loss in the current period to the benefit of the dynamically consistent allocation of
future demand investments. However, under uniform pricing, missing dynamic
consistency is even more severe, as network tariffs are the only possibility of
creating spatial price signals. Investments in the south would amplify the system
costs by increasing redispatch and additionally increase the burden from network
cost recovery for the consumers in the north.

4.4. Welfare implications of the different regulatory
settings

In this chapter, we compare the four combinations of network tariffs and pricing
schemes in terms of their static welfare. This way, we can show how different
regulatory price components affect static efficiency and interact with each other.
Based on the results of section 4.3, we further discuss the results for the static
welfare in the context of a dynamically consistent allocation of demand invest-
ments. From sections 4.3.1- 4.3.4, we derive the optimal static welfare for each
regulatory setting:
Fixed network tariffs and zonal pricing:

W ∗
ZP,f =

∫ ∞

cn

Dn(z) dz +

∫ ∞

cs

Ds(z) dz − F + (cs − cn)L, (4.12)

Fixed network tariffs and uniform pricing:

W ∗
UP,f =

∫ ∞

cn

Dn(z) dz +

∫ ∞

cn

Ds(z) dz − F −
[
(cs − cn)(Ds(cn)− L)

]
(4.13)

Volume-based network tariffs and zonal pricing:

W ∗
ZP,τ =

∫ ∞

cn+τZP∗
n

Dn(z) dz +

∫ ∞

cs+τZP∗
s

Ds(z) dz (4.14)
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Volume-based network tariffs and uniform pricing:

W ∗
UP,τ =

∫ ∞

cn+τUP∗
n

Dn(z) dz +

∫ ∞

cn+τUP∗
s

Ds(z) dz. (4.15)

With volume-based network tariffs, the TSO’s costs are indirectly displayed in
the lower bounds of the integrals as per definition they are refinanced by the
sum over all τi-payments. Note that the volume-based network tariffs are not
identical under the two pricing schemes.

First, we analyze the isolated effects of changing either the pricing scheme or
the network tariff design. Comparing zonal and uniform pricing with the same
network tariff design, we show the inherent inefficiency that results from the
incomplete redispatch scheme under uniform pricing. With fixed network tariffs,
the difference in welfare under zonal and uniform pricing is equal to:

∆W ∗
ZP,f−UP,f =(4.12)− (4.13)

= (cs − cn)Ds(cn)−
∫ cs

cn

Ds(z) dz

=

∫ cs

cn

Ds(cn)−Ds(z) dz > 0 =⇒ WZP,f > WUP,f

(4.16)

The result is always greater than zero as demand decreases in price. It is straight-
forward to show that the same relation holds with volume-based network tariffs,
i.e. WZP,τ > WUP,τ . Thus, regardless of the network tariff design, zonal pric-
ing is welfare-superior to uniform pricing. Consumption at the spot market is
higher under uniform pricing, as market-participants neglect transmission ca-
pacities. The TSO corrects the spot market result ex-post. Due to restricted
participation of the supply-side, redispatch induces additional costs. The result-
ing welfare loss is depicted in the shaded triangle in the south in figure 4.2.

pn = cn

D∗
n

D

p

pZP
s = cs

pUP
s = cn

L DZP
s DUP

s

D

p

Figure 4.2.: Additional costs from redispatch under uniform pricing compared to zonal
pricing; both with fixed network tariffs.
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Comparing welfare under zonal pricing with either fixed or volume-based net-
work tariffs, we derive the inefficiency of volume-based network tariffs. Under
zonal pricing, the difference in welfare with fixed and volume-based network
tariffs yields:

∆W ∗
ZP,f−ZP,τ = (4.12)− (4.14)

=

∫ cn+τZP∗
n

cn

Dn(z) dz +

∫ cs+τZP∗
s

cs

Ds(z) dz − F + (cs − cn)L

=

∫ cn+τZP∗
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(4.17)

Since z < ci+τi and demand decreases in price, the welfare difference must always
be positive. According to economic theory, fixed network tariffs are welfare-
neutral from a static perspective, whereas volume-based network tariffs cause
a deadweight-loss. Figure 4.3 depicts the deadweight loss in the static setting,
which is in both nodes depicted in shaded triangles.
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Figure 4.3.: Deadweight loss associated with volume-based network tariffs under zonal
pricing.

One could now assume that when applying uniform pricing, the relationship
between the network tariffs is identical with the one under zonal pricing, or the
inefficient pricing scheme even increases the inefficiency of the network tariff
design. However, when both sources of inefficiency are present, it is not so clear-
cut, as the following comparison between uniform pricing with fixed tariffs and
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volume-based network tariffs shows:

∆W ∗
UP,f−UP,τ = (4.13)− (4.15)
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(4.18)

The result can be either positive or negative, meaning that the welfare effect
is ambiguous. On the one hand, fixed network tariffs do not impact the spot
market result, while volume-based network tariffs induce a deadweight loss. On
the other hand, equation (4.18) shows that the redispatch costs differ between
the two network tariff designs. Since the quantity demanded in the south is lower
with volume-based network tariffs, the market outcome requires less redispatch
than the setting with fixed network tariffs. However, this is not only due to
the general demand reduction associated with the higher prices in both nodes.
As shown in equation (4.11), the optimal volume-based network tariff in the
south includes a correction term that accounts for the difference in marginal
generation costs between both nodes and, therefore, structurally reduces demand
in the south. If the welfare-enhancing effect of reducing redispatch costs exceeds
the deadweight loss, volume-based network tariffs can increase overall welfare.
Whether this is the case depends on the particular demand functions.

Proposition 4.4.1. If multiple market inefficiencies are present through the
pricing scheme and network tariff design, it may not be sufficient to offset only
one distortion. Uniform pricing with volume-based network tariffs can outper-
form a regulatory setting of uniform pricing and fixed network tariffs if the re-
dispatch costs outweigh the deadweight loss of volume-based tariffs. Vice versa,
the higher the fixed costs of the network, the more likely it is that regulation with
fixed network tariffs is welfare superior.

We analyze the interactions if both the network tariff design and the pricing
scheme are varied between the two settings. To do so, we compare the welfare
under uniform pricing and fixed network tariffs with the welfare under zonal
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pricing and volume-based network tariffs:

∆W ∗
UP,f−ZP,τ = (4.13)− (4.14)

=
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(4.19)

The result can also be either positive or negative. In this case, the overall effect
on welfare depends on whether the deadweight loss from volume-based tariffs,
i.e., the inefficiency of the welfare inferior network tariff design, or the redispatch
costs under uniform pricing, i.e., the inefficiency of the welfare inferior pricing
scheme, predominates.

If the redispatch costs are high enough, they can exceed the deadweight loss
from volume-based network tariffs, making zonal pricing with volume-based net-
work tariffs welfare superior. Hence, the higher the inefficiency of redispatch is,
the more important the pricing scheme is to manage congestion. Vice versa, if
fixed network costs rise, it becomes more likely that the fixed network tariffs
become welfare superior as the inefficiency of volume-based network tariffs out-
weighs the redispatch costs in W ∗

UP,f . Using (4.19), we can show that with rising
F , the welfare difference between the two network tariff designs increases, i.e.
∂∆W ∗

UP,f−ZP,τ/∂F > 0. From equation (4.9), we can derive that with increas-
ing fixed network costs F , the network tariffs in both nodes increase, too, i.e.,
∂τZP∗

i /∂F > 0 ∀i. It is straightforward to show that ∂∆W ∗
UP,f−ZP,τ/∂τZP∗

i
> 0.

Therefore, with volume-based network tariffs, the deadweight loss increases as
fixed network costs rise. Thus, from a welfare perspective, the higher the fixed
network costs F rise, the more advantageous the application of fixed network
tariffs becomes.

For the sake of completeness, the difference between W ∗
ZP,f and W ∗

UP,τ can be
derived from the results above:

W ∗
UP,τ < W ∗

ZP,τ < W ∗
ZP,f and thus, ∆W ∗

ZP,f−UP,τ > 0.

Figure 4.4 summarizes the findings.
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UP,τ W ∗

ZP,τ W ∗
ZP,f

W ∗
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Figure 4.4.: Welfare comparison of the different regulatory settings.
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Ranking the regulatory settings in terms of static welfare demonstrates the
importance of addressing the interactions between price components. Contrary
to the first intuition, there is no clear order regarding the four analyzed settings.
Our analysis finds that the distortions of one regulatory element can either am-
plify or compensate for the distortions of another element. If either the pricing
scheme or the network tariff design leads to inefficiencies, it is best addressed by
restructuring the respective price component. However, suppose both sources of
inefficiency are present. In that case, i.e., the combination of uniform pricing
and volume-based network tariffs, an adjustment of only one aspect can have
unintended, welfare-adverse effects. As optimal volume-based network tariffs
structurally reduce redispatch costs, it is impossible to ensure that switching to
fixed network tariffs increases market efficiency. Due to this compensation effect,
the two inefficiencies can perform better than a regulatory setting with only one
inefficiency in place. This compensation effect is particularly relevant for the
static welfare, the higher the costs for redispatch are.

As section 3 shows, the static welfare of the four regulatory settings interacts
with the requirements for dynamic consistency. The interaction can be divided
into two main effects. The first interaction occurs in regulatory settings with
volume-based tariffs. The TSO reduces static welfare in the regulatory settings
with volume-based network tariffs if it is necessary to adjust the optimal (static)
network tariffs to ensure dynamic consistency. Under zonal pricing, this adjust-
ment only increases the deadweight loss. Under uniform pricing, this adjustment
additionally increases the compensation effect. The redispatch costs decrease as
the volume-based network tariffs in the south increase to ensure dynamic con-
sistency. This effect partially makes up for the increase in deadweight loss.
However, the overall static welfare still decreases due to the adjustment of the
volume-based network tariffs. In contrast, the TSO can adjust fixed network tar-
iffs without impacting the static welfare to ensure dynamic consistency. Hence,
the welfare-ranking of the regulatory settings changes if the TSO must adjust the
volume-based network tariffs to ensure dynamic consistency. It becomes more
likely that the regulatory setting with fixed network tariffs and uniform pricing
is welfare superior to the regulatory settings with volume-based network tariffs.
Second, the importance of dynamically consistent network tariffs increases with
the difference in generation costs, regardless of the network tariff design. Un-
der zonal pricing, misaligned demand-side investments, i.e., investments in the
south, would lead to higher generation costs in the future and, therefore, lower
consumer surplus. Under uniform pricing, costs for redispatch would increase.
To prevent congestion from being further exacerbated in the future, investment
decisions should be made dynamically consistent. Thus, there is a bi-directional
relationship between dynamic consistency of network tariffs and static welfare
that policymakers should account for when changing the regulatory setting.
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4.5. Conclusion

The transformation of the energy system from mainly inelastic consumers to-
wards active market participants challenges the principles of network tariff de-
sign. If appropriately designed, network tariffs can serve as a coordination mech-
anism between the network operator and market participants. Otherwise, net-
work tariffs can distort efficient price signals.

In an analytical model, we examine different regulatory settings, consisting
of alternative spot market pricing schemes and network tariff designs, while
considering a dynamically consistent allocation of demand investments. In our
analysis, we assess the interactions of spot market pricing schemes and network
tariff designs. The regulatory setting with zonal pricing and fixed network tariffs
yields the highest welfare. A deviation of either the pricing scheme or the net-
work tariff design leads to inefficiency. While under uniform pricing, additional
costs occur due to redispatch, the application of volume-based network tariffs
leads to a deadweight loss at the spot market. If both sources of inefficiency
are present, i.e., the combination of uniform pricing and volume-based network
tariffs, an adjustment of one single aspect can have unintended effects on overall
welfare. As optimal volume-based network tariffs structurally reduce redispatch
costs, it is not possible to ensure that market efficiency increases by switching
to fixed network tariffs. Besides the network tariff design, network operators
must pay additional attention to the allocation of network costs. It affects spa-
tial price signals and, therefore, the dynamic allocation of demand investments.
The restrictions on cost allocation are tighter under uniform pricing, as network
tariffs are the only spatial price signal. However, under both pricing schemes,
the TSO can ensure a dynamically consistent allocation of demand investments
with fixed network tariffs without adversely affecting welfare. In contrast, with
volume-based tariffs, the case may arise where the TSO must trade off between
static welfare and dynamic consistency. The TSO can adjust the volume-based
network tariffs deviating from the optimal static network tariffs to ensure dy-
namic consistency. By doing so, the TSO reduces static welfare in benefit of a
dynamically consistent allocation of demand investments.

In current political debates, pricing schemes and network tariffs are often
discussed separately. Our results highlight the relevance of jointly assessing
network tariffs and pricing schemes for policymakers and regulating authorities.
Our results are important, considering that today’s electricity systems often use a
combination of uniform pricing and mainly volume-based network tariffs. In such
a regulatory setting, it seems advisable to identify the predominating inefficiency
instead of partly adjusting the regulatory setting. Especially when a change to
zonal pricing and fixed network tariffs seems unlikely, regulators could consider
the possibility of using volume-based tariffs in favor of their steering possibilities.
Our analysis suggests that an integrated regulatory framework is important to
avoid unintended distortions.
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Moreover, regulators tend to use simplified rules for cost allocation in prac-
tice, which are not aligned with spot market prices and typically do not consider
dynamic consistency. Spatial price signals become more important in a system
under transition as they impact investment decisions. Therefore, these cost allo-
cation rules have an essential impact on static welfare and dynamic consistency,
especially in regulatory settings with uniform pricing.

Future research could include other network tariff designs such as general non-
linear tariffs. Those tariffs could improve system efficiency and compensate for
the frictions of distorted price components. The analytical model could further
be expanded by including concerns on zonal pricing in practice, e.g., market
power and illiquid markets. In addition, empirical studies could complement
our theoretical findings to distinguish between the ambiguities that we found in
our theoretical model and measure the associated welfare loss for the static and
dynamic effects.
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5. How Prices Guide Investment Decisions

under Net Purchasing - An Empirical

Analysis on the Impact of Network

Tariffs on Residential PV

5.1. Introduction

Solar photovoltaic (PV) is generally expected to have a substantial share in the
future electricity generation mix around the globe (IEA, 2020). In Germany,
residential PV systems already count for around 1.2 million installations in 2020
(Bundesnetzagentur, 2021b). These PV systems are typically installed by indi-
vidual households and, thus, distributed decentrally. To limit network expan-
sion and reduce congestion costs, an efficient coordination of these investments
is essential. Recent findings suggest that economic factors are among the main
drivers for PV adoption in the residential sector (e.g. Jacksohn et al., 2019). In
principle, households can use the self-generated PV electricity to either feed it
into the grid or replace electricity consumption from the grid. The profitabil-
ity of these options depends on the regulatory framework. In Germany, a net
purchasing system is in place for residential PV installations, which is also the
predominant metering scheme in Europe (Gautier et al., 2018). That is, grid
feed-in and grid consumption are metered separately and billed at two different
prices. The remuneration of grid feed-in is based on the feed-in tariff, which is
the main subsidy for residential PV in Germany, granted under the Renewable
Energy Sources Act (EEG.). The value of self-consumption depends on the con-
sumption costs, which households can reduce for each kilowatt-hour (kWh) of
grid consumption substituted with self-generated PV electricity.

Higher tariffs for grid consumption increase the consumption costs of the
household and raise the incentive for self-consumption and residential PV instal-
lations. This relationship is unambiguous under net metering, where grid feed-in
and grid consumption are billed at the same price (c.f. Gautier and Jacqmin,
2020). Under net purchasing, the same rationale should apply, although the
incentive structure also depends on the remuneration for grid feed-in. In partic-
ular, the effect should increase the more profitable self-consumption is compared
to the revenue from grid feed-in (c.f. Jägemann et al., 2013).

Additionally, tariffs follow a nonlinear pricing schedule. The investment de-
cision should be incentivized only by the volumetric price rather than the fixed
price component or an average price calculated from both. Empirical findings
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suggest that consumers confuse nonlinear price schedules, which contrasts with
the theoretical expectation (Ito, 2014). Such an effect would raise concerns
regarding the effect of regulatory changes in electricity price components on res-
idential PV installations. In Germany, for example, reform proposals for the
network tariff system plan to shift network costs from predominantly volumetric
network tariffs to a more substantial share of fixed network tariffs. Other pro-
posals aim for a change in the EEG-levy that is currently paid exclusively on a
volumetric basis. Knowing whether and how consumers respond to the different
price components is crucial to assess the consequences of such policy reforms on
PV adoption.

We empirically investigate whether and how price signals impact the adoption
of residential PV installations in Germany. More specifically, we analyze the
impact of network tariffs on PV adoption and exploit the fact that network
tariffs are a considerable part of retail tariffs and the decisive driver for their
regional variation. The heterogeneity of network tariffs allows us to identify
the impact of price signals on a high regional resolution. In contrast, the other
components of the retail tariff depend on markets and regulations that are equal
across Germany. We use a panel data set of PV installations, network tariffs,
and socioeconomic covariates on postcode level covering the years of 2009-2017
and apply a Poisson quasi-maximum likelihood estimator (PQMLE) with fixed
effects to capture unobserved heterogeneity across regions and time.

We find evidence that network tariffs significantly impact PV investments
across Germany. An increase in network tariffs by one within standard deviation
(0.34 eurocent per kWh) is estimated to increase PV installations by 2 %, all else
equal. This effect has grown, supporting the hypothesis that the incentive for self-
consumption has increased over time. Furthermore, it is indeed the volumetric
network tariff that impacts PV adoption rather than the average price. Our
results provide valuable insights into the driving forces of residential PV adoption
in Germany, which allows evaluating upcoming policy reforms regarding the
regional allocation of PV installations and the structure of electricity prices.

The paper is organized as follows. Section 5.2 provides an overview of the
empirical literature on residential PV adoption. Section 5.3 outlines the policy
framework and the economic rationale for investment in residential PV installa-
tions in Germany. Section 5.4 introduces the empirical strategy while section 5.5
presents our panel data set. Our results are shown and discussed in section 5.6
and we discuss our findings and conclude in section 5.7.

5.2. Literature review

Our analysis contributes to two streams of the literature: first, the drivers of
residential PV expansion, and second, the impact of nonlinear tariff structures
on investment decisions in the residential energy sector.
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The main drivers for residential PV investments can be classified by socio-
and techno-economic factors, behavioral factors, and economic factors.39 The
first and most extensively researched category are socioeconomic factors such
as education, per capita income, environmental awareness, and techno-economic
factors, such as solar irradiance and specific house characteristics. Schaffer and
Brun (2015) conduct a comprehensive analysis on the drivers for adopting res-
idential PV in Germany between 1991 and 2012. They find strong effects for
solar irradiance, house density, home-ownership, and per capita income, while
the environmental awareness hardly affects PV investments.40 Subsequent stud-
ies, for example, Dharshing (2017), Baginski and Weber (2019), Jacksohn et al.
(2019) and Gutsche et al. (2020), generally confirm these findings: environmental
awareness has only little explanatory power, while the other socio- and techno-
economic factors are important drivers of residential PV adoption in Germany.

Second, behavioral factors, such as myopia, inertia, or peer effects, are also
likely to drive PV adoption in the residential sector. For example, regarding peer
effects, i.e., the impact of previously installed PV in a surrounding area on the
current investment decision of an individual household, findings in the empirical
literature are mixed. In their seminal work, Bollinger and Gillingham (2012)
examine peer effects on residential PV expansion in the US and find a significant
impact. Rode and Weber (2016) conduct a similar analysis for Germany and
confirm the impact of imitative adoption behavior. Though Baginski and Weber
(2019) also find regional dependencies in their analysis, social imitation does
not seem to be the main driver of the regional spillover effects. Similarly, Rode
et al. (2020) find that the impact of previously installed PV on current adoption
decreases over time and might be mistaken with the regional concentration of
craft skills or solar initiatives.

The third category contains literature on the influence of economic factors,
i.e., expected costs and revenues of the PV installation.41 We observe a growing
research interest regarding the economic factors due to two simultaneous de-
velopments. First, Palm (2020) suggests that in the first stage of the diffusion
process, early adopters have fewer concerns for costs or concrete financial bene-
fits. In contrast, in the later stages, the economic factors become more decisive.
Hence, the impact of socioeconomic and behavioral factors on PV investments
should decrease over time as these factors become less pivotal during the diffu-
sion process of new technologies. Second, in the early years of PV expansion
in Germany, a PV installation has been financially attractive mainly due to the
feed-in tariffs granted as a subsidy for PV deployment. Ossenbrink (2017), and

39Comprehensive reviews on the adoption of building-scale renewable energy systems in Eu-
ropean countries can be found in, for example, Heiskanen and Matschoss (2017) and Sel-
vakkumaran and Ahlgren (2019). In this literature review, we mainly focus on analyses for
Germany to derive a better understanding of the empirical case for the reader. However,
most findings of the literature also apply to other regions.

40Balta-Ozkan et al. (2015) find similar factors for the UK.
41Intuitively, cost and revenues also depend on techno-economic factors, like irradiance. How-

ever, we think of economic factors as monetary metrics.

81



How Prices Guide Investment Decisions under Net Purchasing

Germeshausen (2018) analyze the impact of feed-in tariffs in Germany and, in
particular, the impact of (changes in ) the policy framework on PV adoption.
Jacksohn et al. (2019) analyze the impact of the costs of PV panels and revenues
from feed-in tariffs in Germany from 2008 to 2015 on the individual household
level. They find that these economic factors mainly drive the investment deci-
sions in PV installations and solar thermal facilities. Also in other countries,
economic factors impact households’ PV investment decisions. As for the case of
feed-in tariffs in Germany, governmental pricing policies play a substantial role
for the PV adoption in many countries. Best et al. (2019) quantify the impact of
Australia’s spatially-differentiated small-scale renewable energy scheme on res-
idential PV investments using postcode-level data. Their results indicate that
postcodes receiving a higher subsidy factor have significantly more residential
PV investments, after controlling for solar exposure and spatial patterns in the
data. Similarly, de Groote et al. (2016) find that local policies have a significant
impact on PV adoption in Flanders. Focusing on the residential PV adaption
in California, e.g., Hughes and Podolefsky (2015), show a significant regional
effect of upfront rebates on PV investments, exploiting variation in rebate rates
across electric utilities over time. Similarly, Crago and Chernyakhovskiy (2017)
show that rebates have the biggest impact among financial incentives on residen-
tial PV adoptions in the Northeast. They further indicate positive impacts of
electricity prices.42 With the increasing attraction of self-consumption, the eco-
nomic rationale of residential PV installations is further influenced by the costs
for electricity consumption and, therefore, not only by the feed-in tariff but also
by the retail tariff. Klein and Deissenroth (2017) show that the overall German
residential PV expansion is impacted by the anticipation of profitability, includ-
ing both feed-in and retail tariffs in their analysis. Sahari (2019) analyzes the
choice of heating systems in Finland. She finds a significant impact of electric-
ity prices on long-term technology choices. Further and closest to our analysis,
Gautier and Jacqmin (2020) analyze the impact of volumetric network tariffs on
PV investments under a net metering system in Wallonia. They find a positive
and significant effect of network tariffs on PV installations. In a similar vein,
de Freitas (2020) analyzes PV investments in Brazil. Both regions currently
apply net metering systems, where grid feed-in and self-consumption are both
valued at the retail tariff. Therefore, higher retail tariffs should encourage higher
PV investments. In a net purchasing system, the incentive is two-fold and de-
pends on the remuneration for grid feed-in, which is determined separately (see
section 5.3).

Moreover, we extend the analysis of price signals by examining how the non-
linear tariff structure influences investment decisions. In his seminal work, Ito
(2014) analyzes the price perception of consumers in US electricity markets. His
results suggest that consumers are short-sighted in their response to electricity
prices by deciding on their electricity bill of the past rather than current tariffs or

42See Ossenbrink (2017), for a comparison of the impact of feed-in tariff designs and their
interplay with retail electricity prices between Germany and California.
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future expectations. Further, Ito (2014) examines the impact of nonlinear multi-
tier tariffs on electricity consumption, and Shaffer (2020) conducts a similar
analysis for British Colombia. The authors analyze whether consumers respond
to nonlinear tariffs in the way microeconomic theory suggests, i.e., whether they
respond to the marginal price rather than the fixed or an average price. Both find
that consumers respond to average rather than marginal prices, which contrasts
with the theoretical expectation. However, a further analysis by Ito and Zhang
(2020) for heating usage in China finds that consumers do indeed respond to the
marginal price in the context of a simpler tariff form, i.e., a two-part tariff.

To the best of our knowledge, we are the first to empirically analyze the impact
of price signals on PV adoption in a net purchasing system. We use the regional
variation in network tariffs in Germany to investigate whether and how prices
impact PV investments. We examine whether the incentives for self-consumption
have become more relevant in recent years and conduct the first empirical study
that analyzes how the price components of a nonlinear tariff impact residential
PV adoption.

5.3. Residential PV in Germany: policy framework
and investment incentives

PV installations enable individual households to generate their own electricity
so that they no longer participate in the market only as consumers.43 To il-
lustrate the economic rationale behind residential PV adoption in Germany, we
derive the microeconomic foundation of the investment incentives for an indi-
vidual household. The regulatory framework in Germany is a net purchasing
system. In contrast to a net metering system, where one single price for electric-
ity consumption from the grid (imports) and grid feed-in (exports) exists, these
two options are measured separately (c.f. Gautier et al., 2018).

The PV installation offers two options for the household how the self-generated
electricity (qPV ) can be used:

qPV = qtogrid + qself (5.1)

The household can feed the electricity into the grid (qtogrid) or use it for self-
consumption (qself ), i.e., substitute electricity consumption that is otherwise
imported from the grid (dtotal).

44 We structure the economic incentives by ana-

43As households with PV installations both produce and consume electricity, the term prosumer
has also been established. Prosumers are of general interest in recent literature, seeking to
understand their decision-making and how regulatory policies impact them in more detail,
(e.g. Gautier et al., 2018).

44To fully reflect the potential temporal discrepancy of PV generation and the household’s
electricity consumption, an (hourly) time index could be introduced (see e.g. Ossenbrink
(2017) for a more detailed representation). However, for simplicity and without loss of
generality, we refrain from this issue in the following representation.
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lyzing the net present value (NPV )45 of the PV installation in equation (5.2):

NPV = −CI +

T∑
t=0

R(qtogrid)− C(dtotal − qself )− cOM

(1 + r)t
(5.2)

One-time costs occur due to the initial investment CI . Once the PV system is
installed, continuous costs for operation and maintenance cOM incur and the PV
installation offers the opportunity to generate revenue by selling electricity to
the grid (R(qtogrid)) and to reduce electricity costs by self-consuming electricity
from the PV installation (C(dtotal − qself )). By assumption, costs and revenues
are constant over time, but discounted on a yearly basis t at an interest rate r.
We briefly describe the institutional and regulatory framework in Germany and
discuss the incentives for PV investments over the years.

5.3.1. Regulatory framework for residential PV in Germany

The grid feed-in of a residential PV installation is regulated under the EEG, and
residential PV owners receive a feed-in tariff, paid for each kilowatt-hour (kWh)
of electricity fed into the grid. The feed-in tariff varies depending on the date,
size, and type (roof-top or ground-mount) of the installation.

Feed-in tariffs are determined administratively by the government, and the
level and the categorization are regularly adjusted for new installations. Res-
idential PV installations with 10 kW or smaller have always been eligible to
receive the highest possible feed-in tariff. In contrast, larger installations have
been subject to some changes in the definition of their support categories over
the years. Adjustments of the level of feed-in tariffs are mainly based on the
development of PV investment costs which has led to a declining trend over the
past years (see figure 5.1). While the feed-in tariff was about 43 ct/kWh in 2009,
this has been reduced to about 12 ct/kWh by 2017. In addition to the feed-in
tariff, from 2009 until 2012, the EEG granted an additional remuneration for
self-consumption. Although this remuneration was lower than the feed-in tariff,
e.g., 25 ct/kWh compared to a feed-in tariff of 43 ct/kWh in 2009, households
benefited from self-consumption on top of the savings from reduced electricity
consumption costs (Bundesnetzagentur, 2021a).

5.3.2. Retail electricity tariffs and the incentive for
self-consumption

The value of self-consumption depends on the consumption costs that can be
reduced for each kWh of grid consumption substituted with self-generated PV

45We focus on the economic rationale in terms of cash flows and do not consider the utility
function of the household. One can think of factors that increase the utility beyond the
financial aspects, e.g. environmental preferences, and those that have a negative impact,
e.g. behavioral biases like inertia or myopia.
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Figure 5.1.: The development of feed-in tariffs for PV installations < 10 kW and average
retail tariffs for households in Germany between 2009 and 2017. Own illus-
tration based on data from Bundesnetzagentur (2021a) and BDEW (2021).

electricity. PV owners can profit from self-consumption because the household’s
electricity bill in Germany mainly depends on the actual consumption. The retail
tariff for grid consumption is nonlinear and consists of a volumetric and a fixed
price component, i.e., it constitutes a two-part tariff.

The volumetric price per kWh typically predominates, whereas the fixed com-
ponent, i.e., the basic price for being served and connected to the network,
accounts for a smaller proportion of total retail costs. Furthermore, the retail
tariff in Germany comprises of three elements: procurement and sales costs of the
retailing firm, network tariffs, and administratively determined taxes, charges,
and levies. The latter include, for example, the tax on electricity, the EEG-levy,
and the concession fee. In 2017, for instance, these three elements split up into
19 % procurement and sales costs, 26 % network tariffs, and 55 % taxes, charges,
and levies (BDEW, 2021). Households do not have to pay the volumetric parts
of the network tariff and all taxes, charges, and levies for self-consumption.46

Following the theory on nonlinear pricing, the fixed price component of the re-
tail tariff should not affect the economic rationale to invest in PV installations.
These costs always have to be paid unless the household becomes fully indepen-
dent and, thus, disconnected from the grid. The volumetric tariff describes the
opportunity to purchase electricity from the grid and thus, represents the value
of self-consumption.

Furthermore, and in contrast to the feed-in tariff that applies equally for all
households across Germany, retail prices vary regionally. While wholesale market
prices and taxes, charges, and levies are the same across Germany, the network

46Though there were changes regarding the EEG-levy for self-consumption in 2012, residential
PV installations with 10 kW or less have always been exempted.
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tariff is the only cost component that systematically differs on a regional level.47

In particular for residential consumers connected to the low-voltage network,
network tariffs are increasingly diverging.48 The regional variation of distribu-
tion network tariffs in Germany is due to the allocation mechanism, a so-called
vertical mechanism, by which network operators allocate the network costs to
network users (c.f. Jeddi and Sitzmann, 2019). In Germany, the network costs are
refinanced by electricity consumers. The allocation is based on the principle that
costs incurred in a particular network area are borne by consumers connected to
the respective network. Network operators calculate the network tariffs on an
annual basis, based on their individual, regulated revenue cap. In practice, this
regulatory procedure means that network costs of the current year are decoupled
from this year’s network tariffs and rather passed on to the network tariffs in
later years.

5.3.3. The economic rationale for investments in PV
installations

The profitability of a PV investment hinges on the the value of self-consumption,
the feed-in tariff and the interaction of both options. On the one hand, substi-
tuting electricity from the grid reduces electricity costs. On the other hand, each
kWh used for self-consumption cannot be fed into the grid, i.e., the PV owner
does not receive the feed-in tariff. Therefore, it is not only the absolute level of
prices and tariffs compared to the PV installation costs that is decisive, but also
the relation of the feed-in tariff to the retail electricity price. We apply the reg-
ulatory setting in Germany to equation (5.2). The expected revenue consists of
the subsidization of grid feed-in via feed-in tariffs (pfit), self-consumption via a
reduction of electricity consumption costs valued at the volumetric tariff (pretail),
plus, if applicable, the additional subsidy for self-consumption (pself ):

NPV = −CI +
T∑
t=0

qtogrid · pfit − [(dtotal − qself ) · pretail + qself · pself − cOM ]

(1 + r)t

(5.3)

Equation (5.3) shows that as soon as the volumetric retail tariff (pretail) rises
above the feed-in tariff (pfit), self-consumption becomes financially more prof-
itable compared to grid feed-in.

The feed-in tariff has been continuously decreasing to accommodate the de-
clining costs of PV installations and technological developments. Contrarily, the
average retail tariff across Germany has been increasing in most years. Both de-
velopments are depicted in figure 5.1 for the period between 2009 and 2017. Since
2012, the average retail tariff is higher than the feed-in tariff by a constantly in-

47The concession fee can also vary depending on the network area. However, the magnitude is
legally fixed, so that the differences are minor compared to the variation in network tariffs.

48See e.g. Hinz et al. (2018) and Schlesewsky and Winter (2018) for further investigations.
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creasing margin. Therefore, we expect the investment incentives for residential
PV adoption to be increasingly affected by the incentive for self-consumption
rather than the feed-in tariff. If this holds, the impact of price signals should
have become more relevant since 2012. The abolition of the explicit subsidy for
self-consumption in 2012 should have further strengthened the influence of the
implicit incentive of the retail tariff.

However, one should keep in mind that self-consumption is attractive only if
the household can use the electricity when the sun shines or if a storage oppor-
tunity exists. Installation numbers of batteries in households only recently begin
to increase as storage is still relatively costly (Figgener et al., 2021). If storage
opportunities become economically attractive, the incentive for self-consumption
might increase in the upcoming years. Thus, it could become interesting to dis-
tinguish between PV systems with and without battery storage.49

In principle, the economic incentives of PV adoption apply equally to all house-
holds. The feed-in tariff does not vary regionally across Germany, and thus, all
else equal, it should have a similar impact on the investment decision. In con-
trast, network tariffs of the distribution grid vary throughout Germany and over
time. Therefore, the implicit investment incentive from self-consumption can
differ between regions. As summarized in section 5.3.2, network tariffs are the
only price component, which varies substantially between regions, and, therefore,
are the main driver for regional retail price variation in Germany. Our empirical
strategy takes advantage of this heterogeneity to investigate the impact of price
signals on PV investments in Germany.

5.4. Empirical strategy

Our objective is to identify whether network tariffs influence investments in PV
installations. Therefore, we set up our analysis on postcode-specific panel data
for Germany and exploit the regional variance of network tariffs across Germany.
Our dependent variable, the number of new PV installations (Yi,t) per postcode
(i) and year (t), is a count variable, i.e., it follows a non-negative distribution
and can only take on integer values. Given the characteristic of the dependent
variable and the panel data structure, we employ a Poisson quasi-maximum
likelihood estimator with multiple fixed effects (PQMLE) (c.f. Wooldridge, 2010).
The consistency of the estimator neither requires that our dependent variable
follows a Poisson distribution nor any additional assumptions concerning the
distribution of our dependent variable. As part of the estimation procedure, we
calculate robust standard errors. By clustering the standard errors at a regional
level, we accommodate for arbitrary correlation across clusters. The choice of

49Due to the low number of installed batteries and data availability, we refrain from including
batteries in this analysis. Predictive simulations for the development of combined PV and
storage systems in Germany can be found, for example, in Kaschub et al. (2016), Fett et al.
(2021) and Günther et al. (2021).
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the PQMLE approach as our preferred estimation method is in line with recent
research by Gautier and Jacqmin (2020) and de Freitas (2020), who apply it in
a similar setting.

The formulation of our preferred estimation model is as follows:

Yi,t = exp(β · tariffi,t−1 + γ ·Xi,t + ϕt + µi + θi · t) · ϵi,t (5.4)

, where tariffi,t−1 is our primary explanatory variable, Xi,t is a vector of postcode-
specific covariates, ϕt are year-specific fixed effects, µi are postcode-specific fixed
effects and θi are postcode-specific time trends. ϵi,t is an error term.

In our preferred model specification, we lag our primary explanatory variable
by one year. Although fully rational households should form an expectation
about future electricity costs, in practice, it may be reasonable to assume that
households are rather short-sighted and base their expectation on the currently
observed electricity costs (c.f. de Groote and Verboven, 2019, Ito, 2014). In Ger-
many, households pay their electricity bill annually and ex-post, which results in
a time lag of one year between the temporal validity of the network tariff and the
cost realization. In addition, some time passes between the investment decision
and the actual PV installation, e.g., due to administrative reasons. Therefore,
we assume that households are more likely to respond to the previous year’s
tariff than the current one and use the network tariff lagged by one year as our
explanatory variable.50 We check the robustness of our assumption against the
current network tariff tariffi,t in Section 5.6 and for tariffs further in the past,
i.e., tariffi,t−2 and tariffi,t−3, in D.2.

An advantageous effect of using the time lag is that it helps us to alleviate
the strict exogeneity assumption of our primary explanatory variable. The en-
dogeneity concerns arise because, in recent years, network tariffs increase mainly
due to network expansion costs which in turn are due to the integration of renew-
able energy sources, including residential PV installations (c.f. Just and Wetzel,
2020). However, PV adoption in the current year does not affect the network
tariffs of the previous year. Therefore, based on our choice of lagged network
tariffs as our explanatory variable and because network tariffs reflect historical
network costs, we suggest that reverse causality is not a concern in our setting.

We further include a vector of covariates to control for observable heterogene-
ity of postcode areas. This vector contains the average income and age of the
population, the share of detached and semi-detached houses in the building stock,
and the number of residential buildings.

50Our assumption is supported, for example, by an empirical analysis regarding electricity
consumption behavior by Bushnell and Mansur (2005), who find that households respond
more strongly to recent past electricity bills than to new retail tariff price information, even
when the new tariff has already been announced. Also, Gautier and Jacqmin (2020) find
the assumption of using a lagged network tariff to be justified in their analysis on the effect
of network tariffs on PV installations under a net metering scheme in Wallonia.
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The fixed effects approach takes advantage of the panel data structure of our
data and allows us to control for unobserved heterogeneity. By applying multiple
fixed effects, we can isolate and identify the impact of our primary explanatory
variable on the dependent variable based on the within-postcode variance in our
data. A random effects model would not be consistent as we expect a correlation
between the individual effects and the independent variables.51 By including
year-specific fixed effects, we control for overall developments over time. Exam-
ples are declining prices for solar modules, overall trends in electricity demand52

or national policy changes, in particular changes in feed-in tariffs. Another as-
pect covered by these effects is the development of retail price components that
do not vary across Germany, such as the EEG-levy or wholesale electricity prices.
Postcode-specific fixed effects account for factors that regionally differ between
postcode areas but are constant over time, e.g., socioeconomic aspects and so-
lar irradiance.53 Postcode-specific time trends control for any linear postcode-
specific development over time that is not addressed by the nationwide year-
specific fixed effects. Examples of such trends include local demographic change
or local economic growth.

In addition to the PQMLE, other commonly used models in count data ap-
plications are, for example, negative binomial regression models or OLS models
with a logarithmized dependent variable. We include these models as robustness
checks for our main findings.

To analyze the effect of the nonlinear pricing schedule, we apply the encom-
passing approach by Davidson and MacKinnon (1993), which can be used to
identify a preferable model specification for non-nested models. We specify the
encompassing model as an augmented model of (5.4) and include both alterna-
tive explanatory variables, i.e., the volumetric tariff (tariffi,t−1) and the average
tariff (∅-tariffi,t−1):

Yi,t = exp(β · tariffi,t−1 + δ ·∅-tariffi,t−1 + γ ·Xi,t + ϕt + µi + θi · t) · ϵi,t (5.5)

We want to test our hypothesis that the volumetric tariff impacts PV invest-
ments rather than the average tariff. Hence, we expect that as long as the model
accounts for the volumetric tariff, the coefficient of the average tariff δ is statis-

51A Hausman test rejects the null hypothesis that there is no significant correlation at the
significance level of 1 %, which supports the choice of a fixed effects approach.

52In Germany, the overall electricity demand has decreased over the past years, which is covered
by the year-specific fixed effects. If spatial heterogeneity in demand exists, this is covered
by the postcode-specific fixed effects. We do not expect substantial variation in both dimen-
sions, as we see no indication that energy efficiency gains should vary significantly across
regions over time.

53Generally, solar irradiance is a decisive variable influencing residential PV investments. How-
ever, we assume that households do not account for the (relatively small) solar irradiance
variation over time. Instead, we expect that households consider it as a spatial component,
such as whether one lives in a generally sunnier region. Therefore, we do not include solar
irradiance as a covariate in our model, as it is reflected in the postcode-specific fixed effects.
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tically insignificant, i.e., not influencing the number of PV installations, and we
can check this hypothesis with a standard F-test (c.f. Greene, 2003).

5.5. Data

For our analysis, we use a unique panel data set at the German postcode level.
The panel data set covers 8,148 postcodes (PLZ) for 2009-2017, a total of 72,672
observations. For our dependent variable we rely on data from the Marktstamm-
datenregister (MaStR) (Bundesnetzagentur, 2021b). For each unit, the MaStR
documents the energy carrier, the installed capacity, the postcode, the installa-
tion date, and various additional information. In this paper, we focus on PV
installations with a size up to 10 kW as this is the typical size installed on res-
idential buildings. Our data consists of 708,555 PV installations commissioned
between 2009 and 2017. By aggregating the number of new PV installations per
year and postcode, we receive our dependent variable (# of PV).

Furthermore, we use detailed data on annual network tariffs on postcode level
from ene’t, a German data provider for the electricity industry (ene’t, 2021).
The data contains information on the annual fixed component of network tariffs
(fixed tariff, in Euro/year) and the volumetric component (tariff, in ct/kWh).
For our investigation of price perception, we use both components to calculate
an average tariff (∅-tariff in ct/kWh) by assuming a reference load profile of
3,500 kWh annual consumption. Figure 5.2 illustrates the regional distribution
of the volumetric network tariff and the number of PV installations per 1000
residential buildings for the year 2017. The maps show regional heterogeneity
for both variables. The volumetric tariffs are highest in north-east and south-
west Germany, driven by the high wind penetration, especially in the north.
PV installations per 1000 buildings concentrate in the southern regions, which
is in line with the general expectations, as these regions show the highest solar
irradiance. Note that the fixed effects of our estimation approach capture this
persistent difference between regions. The spatial heterogeneity of the variables
differs over time, shown in further illustrations of the temporal variation of our
data in D.1.

To analyze whether network tariffs had a greater impact on the number of PV
installations after 2012, we define two binary dummy variables: One that takes
on the value 1 for all years before 2012 (d<2012), and one that takes on the value
1 otherwise (d≥2012).

We further control for the heterogeneity of postcode areas by including so-
cioeconomic drivers of PV expansion that have been identified in the literature
described in section 5.2. We use yearly and postcode-specific data for these so-
cioeconomic covariates from RWI-GEO-GRID, a data set from the Leibniz Insti-
tute for Economic Research (RWI) (RWI and Microm, 2020). First, we consider
the average purchasing power of households per capita (income, in Euro/year).
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(a)

(b)

Figure 5.2.: Regional resolution of (a) the volumetric network tariff and (b) # of PV per
1000 residential buildings, both for the year 2017.

91



How Prices Guide Investment Decisions under Net Purchasing

Table 5.1.: Descriptive statistics, 2009-2017 (N = 73,329)

Variable Mean Median SD Min Max Source

Dependent variable
# of PV 9.66 6 11.57 0 184 MaStR

Independent variables
tariff (ct/kWh) 5.29 5.08 1.04 2.38 9.90 ene’t
fixed tariff (Euro/year) 21.56 18.00 17.72 0 95.00 ene’t
∅-tariff (ct/kWh) 5.90 5.65 1.24 2.67 11.55 ene’t
income (log of) 9.95 9.95 0.19 9.30 11.01 RWI
housetype (% of 1- and
2-family homes) 58.32 63.64 20.69 0.30 100 RWI
age 43.74 43.58 2.35 35.11 58.48 RWI
buildings (log of) 7.40 7.46 0.92 0.69 9.80 RWI

We expect a positive impact of the purchasing power of households on PV ex-
pansion as the investment costs of the installation are more likely to be afforded
by more affluent people. The variable age denotes the average age of inhabitants
in a specific postcode area. One would assume that a younger population is more
aware of the possibility to invest in PV, thus leading to a negative influence of
average age on our dependent variable. For the number of residential buildings
(buildings), which is closely correlated with the number of inhabitants, we would
expect a positive effect on our dependent variable as more buildings in a postcode
mean more opportunities for PV investments. Further, we include the share of
detached and semi-detached houses in the building stock (housetype, in %). De-
tached and semi-detached houses are well suited for residential PV installations,
for example, due to the unity of electricity consumer and investor. Therefore, we
would expect a positive impact of the housetype on our dependent variable. An-
other factor that could have an influence on PV investments but is not included
in our analysis is environmental awareness. Election results, i.e. the proportion
of green voters, are usually taken into account as a measure of environmental
awareness. There is no continuous annual data for this, so the approach conflicts
with the panel-based fixed-effects approach of our model. Moreover, the exist-
ing literature shows that environmental awareness has little to no effect on PV
investment (see Chapter 5.2).

5.6. Results

We estimate the impact of network tariffs on residential PV installations in Ger-
many within our preferred model specification, described in section 5.4. Further,
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we analyze whether the incentives for self-consumption have become more rele-
vant in recent years compared to the early years of PV adoption and how the
nonlinear pricing schedule affects PV adoption. Using additional model specifi-
cations, we also check the robustness of our results.

We present our main results regarding the impact of network tariffs on PV
adoption in table 5.2. Regression (1) shows our preferred model specification
(c.f. equation 5.4), which estimates the impact of lagged network tariffs on the
number of new PV installations, controlling for socioeconomic covariates. Our
estimation suggests that network tariffs have a positive and significant impact
on the number of PV installations. All else equal, an increase of one within
standard deviation (0.34 eurocent per kWh) in network tariffs is estimated to
increase the number of PV installations by 2 %.54 The magnitude of this effect
is in line with the findings of Gautier and Jacqmin (2020) for PV investments in
Wallonia. The results further confirm the findings of Frondel et al. (2019), who
show that households in Germany are aware of yearly price variations and change
their electricity consumption respectively. Furthermore, the impact of the other
covariates in our model is not statistically different from zero. The fixed effects
absorb their impact due to their relatively low within-variance, which is depicted
in D.3.

We further examine whether the incentives for self-consumption have become
more relevant in recent years compared to the early years of PV adoption. There-
fore, we analyze how the change in the economics of PV investments from 2012
onward has affected the impact of network tariffs on PV installations in Germany
(c.f. section 5.3). We include an interaction term between our binary dummy
variables (d<2012 and d≥2012) and the network tariff in regression (2). This esti-
mation allows us to compare the effect of network tariffs before and after 2012.
The results suggest that network tariffs did not significantly impact PV adoption
before 2012, while they do afterward. We estimate that, since 2012, an increase
in network tariffs of one standard deviation (0.34 eurocent per kWh) increases
PV installations by 2.4 %. A Chow test confirms the difference between the esti-
mates of the two time-subsets, revealing significance at the 1 % level. Hence, we
can confirm our hypothesis that self-consumption has gained importance since
2012 when rising retail tariffs started to exceed declining feed-in tariffs.

We further examine how the different price components of nonlinear tariffs
impact PV installations. We make use of the volumetric and the fixed compo-
nent of network tariffs and test the theoretical expectation that PV adoption
should only be affected by the volumetric tariffs. In a first step, we estimate
the impact of average instead of the volumetric tariffs in regression (3). This

54Within standard deviation refers to the variation of the network tariffs that is not accounted
for by the applied fixed effects. The model results show an increase by 5.8 % for one cent
per kWh increase in network tariffs. However, we cannot make reliable statements about
the effect of a shift of that magnitude, because the within standard deviation of network
tariffs in the model is significantly lower than one cent per kWh. We include a more detailed
discussion in D.3.
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Table 5.2.: Main results

Model: (1) (2) (3) (4)
Dependent Variable: # of PV # of PV # of PV # of PV

tarifft−1 0.0578∗∗∗ 0.0914∗∗∗

(0.0061) (0.0208)
d<2012 × tarifft−1 0.0112

(0.0083)
d≥2012 × tarifft−1 0.0707∗∗∗

(0.0064)
∅-tarifft−1 0.0577∗∗∗ -0.0386∗

(0.0066) (0.0224)
income (log of) -0.0334 0.0230 -0.0374 -0.0332

(0.1497) (0.1488) (0.1502) (0.1495)
housetype 0.0041 0.0050 0.0037 0.0042

(0.0042) (0.0042) (0.0042) (0.0042)
age 0.0168 0.0184 0.0160 0.0171

(0.0136) (0.0136) (0.0137) (0.0136)
buildings (log of) -0.1225 -0.1363 -0.0988 -0.1287

(0.1688) (0.1688) (0.1687) (0.1689)

Fit statistics
observations 64,531 64,531 64,531 64,531
AIC 330,230 330,094 330,271 330,225
BIC 476,772 476,644 476,812 476,776
Log-Likelihood -148,967 -148,898 -148,987 -148,963

Robust standard errors clustered at the postcode level.
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

estimation yields similar results compared to our preferred model specification
with the volumetric tariffs in regression (1). In a second step, we jointly test the
two alternatives in the encompassing model (c.f. equation 5.5). In regression (4),
we include both the volumetric (tarifft−1) and the average tariff (∅-tarifft−1).
The coefficient of the volumetric tariff is still positive and statistically signifi-
cant, while the average tariff does not have a statistically significant impact on
the number of PV installations. Thus, the encompassing test confirms the the-
oretical expectation that volumetric tariffs drive PV investments. The results
indicate that consumers differentiate between the price components of the two-
part tariff, which contributes to the empirical evidence on consumers’ perception
of nonlinear pricing. Consumers may understand the taxonomy of the two-part
tariff and base their investment decision on the volumetric rather than an aver-
age tariff. However, given the aggregate nature of our data, this finding should
be complemented by further analysis of microeconomic data.
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In table 5.3, we provide several robustness checks regarding our model speci-
fication and our estimation strategy. In regression (5), we check our assumption
that PV adoption is impacted by the lagged network tariff rather than the con-
temporary one by using the contemporary tariff (tarifft) as our explanatory
variable instead of the lagged network tariff (tarifft−1). The results indicate
a positive effect of the current network tariff on PV adoption. However, the
coefficient is smaller compared to the impact of the lagged network tariff in
regression (1). Moreover, in regression (5), the values of the two information
criteria, AIC and BIC, increase while the value of the log-likelihood decreases
compared to regression (1), implying that the explanatory power of our preferred
model specification is higher. This finding supports our assumption that house-
holds respond to their electricity bill rather than current tariffs and, thus, may
have a rather short-sighted perception of prices.55

We aggregate our data to the next higher regional level (NUTS-3) in regres-
sion (6) to check whether our results remain valid at a higher regional aggrega-
tion. The estimation suggests that, even under a higher regional aggregation,
network tariffs positively and significantly impact PV investments, supporting
the results derived from postcode-level data.56 In regression (7), we estimate our
preferred model specification without the postcode-specific time trends. We ob-
serve that the positive and significant impact of network tariffs persists. Further,
as expected, income has a significantly positive and age a significantly negative
impact on the number of new PV installations. Hence, in our preferred model
specification, the postcode-specific time trends do indeed capture the assumed
postcode-specific demographic change and local economic growth.

To further check the robustness of our results, we apply alternative estima-
tion strategies to determine the impact of network tariffs on the number of PV
installations. First, regression (8) assumes a linear relationship, using an OLS
regression. To accommodate for the non-negative nature of our count data, we
take the log of the dependent variable to which we add one unit due to the pres-
ence of zero outcomes. Second, we estimate a negative binomial regression (9).
Negative binomial regressions make stronger assumptions regarding the distri-
bution of the dependent variable, which do not fully hold for our data. However,
the results can provide a robustness check. Overall, both results confirm the
finding of our preferred model specification, that higher network tariffs lead to
more PV installations.

Finally, we perform another robustness check of our hypothesis by replacing
the dependent variable with a sample of PV systems that should not be af-
fected by network tariffs. Regression (10) shows the results of such a placebo
test. The dependent variable is defined as the number of PV installations larger
than 300 kW. PV systems with this size can be assumed to be commercial
systems, i.e., installed on non-residential buildings or ground-mounted. Al-

55An additional robustness check on tariffs further in the past can be found in D.2.
56In D.2 we further analyze whether the impact of network tariffs may differ between regions

and include a regression on state-specific effects of network tariffs on PV investments.
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Table 5.3.: Robustness checks

Model: (5) (6) (7) (8) (9) (10)
Dependent # of PV # of PV # of PV log(# of # of PV # of PV
Variable: PV+1) >300 kW

tarifft 0.0351∗∗∗

(0.0056)
tarifft−1 0.0725∗∗∗ 0.0540∗∗∗ 0.0478∗∗∗ 0.0550∗∗∗ -0.0468

(0.0153) (0.0047) (0.0056) (0.0045) (0.0520)
income -0.1770 -1.320∗∗ 0.6786∗∗∗ -0.0810 0.7198∗∗∗ 0.6676
(log of) (0.1468) (0.5806) (0.1241) (0.1462) (0.1140) (1.2350)
housetype 0.0152∗∗∗ 0.0286∗∗ 0.0017 0.0051 0.0027 -0.0690 ∗

(0.0038) (0.0144) (0.0030) (0.0036) (0.0028) (0.0342)
age -0.0043 0.0547 -0.0997∗∗∗ 0.0153 -0.1025∗∗∗ 0.2476∗

(0.0131) (0.0571) (0.0076) (0.0116) (0.0070) (0.1202)
buildings -0.1371 -0.5982 0.1874 0.0796 0.2362∗ -0.8075
(log of) (0.1543) (0.5511) (0.1379) (0.1386) (0.1285) (1.3720)

Fixed effects
PLZ Yes+slope Yes Yes+slope Yes Yes+slope
year Yes Yes Yes Yes Yes Yes
NUTS-3 Yes+slope

Distribution PQMLE PQMLE PQMLE OLS Neg.Bin. PQMLE

Fit statistics
observations 72,672 3,192 64,531 65,179 64,531 27,595
AIC 375,142 32,949 338,674 91,389 330,167 42,126
BIC 523,758 37,864 411,999 239,563 403,492 98,980
Log-Likelihood -171,406 -15,664 -161,257 -29,384 -157,003 -14,151

Robust standard errors clustered at the regional level.
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

though non-residential network users are also required to pay network tariffs,
self-consumption should generally not be the driving factor for PV investments
in these cases. Rather, investment decisions should be motivated by potential
revenues from the sale of electricity. Therefore, we expect network tariffs not to
affect investment decisions for PV installations larger than 300 kW. The regres-
sion results confirm this hypothesis, as they do not show a significant impact of
network tariffs on PV installations larger than 300 kW.
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5.7. Conclusion

Within a net purchasing system, investment incentives for residential PV arise
from feed-in tariffs and the value of self-consumption. With the latter becoming
the dominant economic driver, network tariffs, which constitute a substantial
part of the consumption costs, are expected to gain importance. By exploiting
the regional heterogeneity of network tariffs, we investigate whether network
tariffs encourage to invest in PV systems using a unique panel data set at the
German postcode level over the period 2009-2017. We further evaluate how the
nonlinear tariff structure impacts residential PV adoption.

We use a Poisson quasi-maximum likelihood estimator with conditional fixed
effects and provide additional robustness checks for various distributional as-
sumptions and the regional aggregation level. All else equal, an increase in
network tariffs by one standard deviation (0.34 eurocent per kWh) is estimated
to increase PV installations by 2 %. Thus, our results indicate that network
tariffs impact PV adoption across Germany. We find evidence that the impact
of network tariffs has increased over time, supporting our expectation that the
economic incentives for self-consumption have become more important in recent
years. Furthermore, our analysis of the different price components indicates that
the volumetric network tariff drives PV adoption rather than the average price.

For policymakers, our results provide essential insights for upcoming reforms
of electricity price components. Our results suggest that households do react to
price signals and that prices effectively guide investments. The current incentive
for self-consumption is a side effect of the retail tariff design in Germany. Due to
taxes, levies and the network tariff design, retail tariffs contain various price com-
ponents that are not necessarily aligned and, thus, may distort the investment
decision of the household in a way that is economically inefficient. If the retail
tariff is higher than economically efficient, the incentives for PV investments
are distorted. For instance, a feedback effect, as discussed in Jägemann et al.
(2013), arises when rising retail tariffs lead to rising residential PV expansion
and rising PV expansion, in turn, leads to increasing retail tariffs. Therefore,
from an economic point of view, it is essential to create price signals in the least
distorting way. In Germany, reform proposals are currently considered for the
network tariff system and include a shift from predominantly volumetric net-
work tariffs to a more substantial fixed network tariff. Other proposals aim for a
change in the EEG-levy that is currently paid exclusively on a volumetric basis.
Consequently, these reforms influence not only household consumption behavior
but also investment incentives for PV installations.

The regional variation of price signals may explain at least part of the present
heterogeneity of PV installations in Germany. However, as we use fixed effects
to control for unobserved heterogeneity between regions, our analysis is limited
in this regard. Further analyses could examine the impact of economic factors
on the regional heterogeneity across Germany in more detail. Furthermore, de-
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clining costs for storage technologies, such as batteries, will further strengthen
the case for self-consumption in the residential sector. Therefore, future empir-
ical research could investigate the incentives that drive households to invest in
combined PV and storage systems. In a similar vein and in the light of currently
increasing adoption rates of electric vehicles and electric heating systems in the
residential sector, future empirical analyses could shed light on the impact of
price signals on these technologies. Finally, our analysis focuses on the influence
of price signals on the initial decision to invest in a PV installation. Another
promising field would be to supplement our results with empirical studies on
consumption profiles to provide insights into the short-term price sensitivity of
households with PV installations.
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A.1. Notation

Throughout the paper at hand, the notation presented in table A.1 is used. To
distinguish (exogenous) parameters and optimization variables, the latter are
written in capital letters.

Table A.1.: Sets, parameters and variables

Sets
i ∈ I Electricity generation and

storage technologies
m,n ∈ M Markets

l ∈ L Transmission Grid Lines
c ∈ C Linear independent cycles of modeled grid

y, y1 ∈ Y Years
d ∈ D Representative Days
h ∈ H Hours

Parameters
demand(y, d, h,m) [MWh] Electricity demand
avail(y, d, h,m, i) [-] Availability of technology

eff(i,m) [-] Efficiency of technology
linecap(y,m, n) [MW] Available transmission capacity

β(y) [-] Discount factor
δ(y, i) [EUR/MW] Annualized investment cost
σ(i) [EUR/MW] Fixed operation and maintenance cost
γ(y, i) [EUR/MWh] Variable generation cost

capadd,min(y,m, i) [MW] Capacities under construction
capsub,min(y,m, i) [MW] Decommissioning of capacity due

to lifetime or policy bans
l(m,n) [-] Relative transmission Losses
κ(m, l) [-] Incidence matrix
ϕ(l, c) [-] Cycle matrix

Variables
CAP (y,m, i) [MW] Electricity generation capacity

GEN(y, d, h,m, i) [MWh] Electricity generation
CAPadd(y,m, i) [MW] Investments in electricity

generation capacity
CAPsub(y,m, i) [MW] Decommissioning of electricity

generation capacity
TRADE(y, d, h,m, n) [MWh] Electricity trade from m to n

TRADE BAL(y, d, h,m) [MWh] Net trade balance of m
FLOW (y, d, h, l) [MWh] Power flow along line l

TC [EUR] Total costs
FC(y) / V C(y) [EUR] Yearly fixed or variable costs
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A.2. Power market model

Basic model

The central planner invests into new power plants and dispatches generation
capacities such that the net present value of the variable (V C) and fixed costs
(FC) is minimized, where β represents the discount factor.

The objective is hence:

min! TC =
∑
y∈Y

β(y) · [V C(y) + FC(y)]. (A.1)

Installed electricity generation capacities (CAP ) are modeled endogenously:
The model invests in new generation capacities (CAPadd) and decommissions ca-
pacities (CAPsub), which are not profitable. For a realistic depiction of European
energy markets, existing as well as under construction capacities (capadd,min) and
decommissioning due to end-of-lifetime or technology bans (capsub,min) are given
exogenously. These parameters serve as lower bounds for building or decommis-
sioning capacities, respectively. The fixed costs per year comprise the annualized
investment costs (δ) plus fixed operation and maintenance costs (σ) per installed
capacity. The following equations describe these interrelations.

CAP (y,m, i) = CAP (y − 1,m, i) + CAPadd(y,m, i)− CAPsub(y,m, i) (A.2)

CAPadd(y,m, i) ≥ capadd,min(y,m, i) (A.3)

CAPsub(y,m, i) ≥ capsub,min(y,m, i) (A.4)

FC(y) =
∑

m∈M,i∈I
CAP (y,m, i) · σ(i) +

∑
y1:y−y1

<econ lifetime(i)

CAPadd(y1,m, i) · δ(y, i)

(A.5)
∀y ∈ Y,∀m ∈M,∀i ∈ I

Electricity generation (GEN) in each market, day (d) and hour (h) has to level
the (inelastic) demand minus the trade balance (TRADE BAL), which depicts
the net imports of trade flows (TRADE) from other markets. Availability of
power plants (avail ·CAP ), which, e.g., considers maintenance shutdowns limit
their generation. Trade flows between markets are limited by interconnection
capacities (linecap). Yearly total variable costs (V C) result from the generation
per technology times the technology-specific variable operation costs (γ), which
mainly comprise costs for burnt fuel and required CO2 allowances.
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∑
i∈I

GEN(y, d, h,m, i) = demand(y, d, h,m)− TRADE BAL(y, d, h,m) (A.6)

GEN(y, d, h,m, i) ≤ avail(y, d, h, i) · CAP (y,m, i) (A.7)

TRADE BAL(y, d, h,m) =
∑
n

(1− l(n,m)) · TRADE(y, d, h, n,m)

−TRADE(y, d, h,m, n)

(A.8)

TRADE(y, d, h,m, n) ≤ linecap(y,m, n) (A.9)

∀y ∈ Y,∀m,n ∈M & m ̸= n, ∀i ∈ I

V C(y) =
∑

m∈M,i∈I,
d∈D,h∈H

GEN(y, d, h,m, i) · γ(y, i) (A.10)

Storage equations

The charging level of storage (STORLEV EL) is determined by the level in the
previous time step and the net-balance of electricity charged and withdrawn. The
level cannot exceed the storage volume which is given by the installed capacity
and an exogenous ratio of capacity and volume (vol factor).

STOR LEV EL(y, d, h,m, i) = STOR LEV EL(y, t− 1,m, i)

− eff(m, i) ·GEN(y, d, h,m, i) + eff(i,m) ·GEN(y, d, h, i,m) (A.11)

STOR LEV EL(y, d, h,m, i) ≤ STOR V OL (A.12)

STOR V OL = avail(y, d, h, i) · vol factor(i) · CAP (y,m, i) (A.13)

∀y ∈ Y,∀d ∈ D,h ∈ H,∀m ∈M,∀i ∈ IStorage

The amount of energy which can be shifted between typedays (DAY SALDO)
is limited according to the number of days that a typeday represents (d rep). The
total of the energy shifted by storage must add up to zero.

DAY SALDO(y, d,m, i) =
∑
h∈H

(GEN(y, d, h, i,m)−GEN(y, d, h,m, i))

(A.14)
DAY SALDO(y, d,m, i) · d rep(d) ≤ STOR V OL(y,m, i) (A.15)

DAY SALDO(y, d,m, i) · d rep(t) ≥ −STOR V OL(y,m, i) (A.16)
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∑
d∈D

DAY SALDO(y, d,m, i) = 0 (A.17)

∀y ∈ Y, ∀d ∈ D,∀m ∈M, ∀i ∈ IStorage

A.3. Assumptions on technologies, demand and fuel
prices

Table A.2.: Considered technologies and their generation efficiency, assumptions based
on scenario Stated Policies in World Energy Outlook 2021 (IEA, 2021) and
Knaut et al. (2016)

Technologies Efficiency

Nuclear 0.33
Lignite 0.4
Coal 0.45

Combined Cycle Gas Turbines (CCGT) 0.5
Open Cycle Gas Turbines (OCGT) 0.38

Oil 0.4
Biomass 0.3

PV 1
Wind Onshore 1
Wind Offshore 1

Hydro 1
Pumped Storage 0.78
Battery Storage 0.95

Table A.3.: Development of fuel and carbon prices [EUR/MWhth], based on scenario
Net Zero Emissions in World Energy Outlook 2022 (IEA, 2022)

Fuel 2019 2030

Uranium 3.0 3.0
Lignite 3.9 4.0
Coal 7.9 7.7

Natural Gas 13.6 25.9
Oil 33.1 44.9

Biomass 21.0 23.0
Carbon [EUR/tCO2] 24.9 95.0
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Table A.4.: Development of demand [TWh], for Germany based on Bundesministerium
für Wirtschaft und Klimaschutz (BMWK) (2022) and for all other countries
on scenario National Trends in ENTSO-E (2020a)

Country 2019 2025 2030

AT 67 77 79
BE 85 87 91
CH 62 62 61
CZ 63 73 78
DE 524 600 715
DK 35 52 46
FR 456 496 486
NL 114 114 119
PL 156 181 182

A.4. Additional results and sensitivity analyses

Renewable allocation

Solar and wind power allocation is primarily driven by the consideration of trans-
mission capacity. In the nodal setting, grid constraints are considered when siting
new capacity. However, in the uniform case, investment decisions depend mainly
on resource quality and, to a lesser extent, on feed-in patterns and resulting bal-
ancing effects. As a result, wind and solar capacity are distributed more broadly
and closer to demand under the nodal setup. At the same time, it is concen-
trated at sites with high resource quality in the uniform setting. Figures A.1a
and A.1b compare the spatial distribution of wind and solar capacity in both
cases. Total capacity is exogenous for both settings and reflects Germany’s 2030
capacity targets.
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(a) Spatial distribution of wind capacity expansion in the (i) nodal and (ii) uniform setting and
(iii) difference between both in 2030

(b) Spatial distribution of solar capacity expansion in the (i) nodal and (ii) uniform setting and
(iii) difference between both in 2030

Figure A.1.: Spatial distribution of wind and solar capacity expansion in the nodal and
uniform setting

In the nodal setting, wind capacity peaks in the very north of the country,
where resource quality is high. The rest of the capacity is widely distributed
above the 50th parallel. Solar capacity is relatively evenly distributed below the
52nd parallel, despite higher resource quality in the south of Germany. All in all,
significant shares of wind and solar capacities are allocated close to the demand
centers in western Germany.

In the uniform setting, investment in wind power concentrates above the 53rd
parallel. Solar capacity concentrates in Germany’s south and east, with the
majority of capacity installed below the 50th parallel. The lack of coordination
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of renewable feed-in and grid bottlenecks under the uniform setup leads to high
curtailment. This especially affects wind power, which is separated from demand
by a structural north-south grid bottleneck. In total, 109 TWh of renewable
electricity are curtailed under the uniform setup in 2030, compared to only 30
TWh under the nodal setup.

Volume factor

Figure A.2 shows variations of the volume factor, i.e., the ratio between con-
nected power (GW) and the energy volume (GWh) of a storage technology. Low
volume factors correspond to battery storage, while higher factors can be seen for
technologies using a different energy carrier for storage, e.g,. hydrogen. Storage
allocation depends significantly on the volume factor. For higher volume factors
(¿4h), storage moves northwards and closer to wind generation. Here, they buffer
volatile wind generation and increase utilization of the congested lines along the
structural grid bottleneck. However, even for higher volume factors, significant
capacities are allocated in the south of Germany. Even when volume factors
are above 100h and the majority of storage is located above the 52nd parallel,
storage is needed to buffer volatile PV infeed in the south.

Battery capacity

Figure A.3 shows sensitivity analyses for the total installed capacity of batteries
for a given distribution of wind and solar generation according to the nodal set-
ting. The allocation of batteries close to grid bottlenecks along the 53rd parallel
as well as in the south of Germany is robust. In the case of 15 and more GW
of batteries, saturation in those areas leads to an allocation in the north, close
to wind generation centers. The sensitivity analyses, therefore, highlights again
the role of batteries in balancing short-term volatility from demand and solar
feed-in time series as opposed to wind generation that requires longer storage of
electricity.
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(a) 1 h (b) 4 h (reference)

(c) 50 h (d) 200 h

Figure A.2.: Optimal battery allocation based on the distribution of wind and solar in
the uniform setting for different battery volume factors
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(a) 5 GW (b) 10 GW

(c) 15 GW (reference) (d) 20 GW

Figure A.3.: Optimal battery allocation based on the distribution of wind and solar in
the uniform setting for different battery capacities
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B.1. Notation

Throughout the paper at hand, the notation presented in table B.1 is used. To
distinguish (exogenous) parameters and optimization variables, the latter are
written in capital letters.

Table B.1.: Sets, parameters and variables

Sets
i ∈ I Electricity generation and storage technologies
m ∈ M Markets
t ∈ T Timesteps

Parameters
demandt,m [MWh] Electricity demand

demandheatpump
t,m [MWh] Electricity demand from heat pumps

ϵstatic [-] Static efficiency

ϵdynamic [-] Dynamic efficiency
γt,i [EUR/MWh] Variable generation cost
capm [MW] Installed capacities of thermal storage
vol factor [-] Volume factor
copt,m [-] Coefficient of performance

Variables
V C [EUR] Yearly variable costs
GENt,m,i [MWh] Electricity generation
CONt,m,i [MWh] Electricity consumption
STOR V OLm [MWh] Storage volume
STOR LEV ELt,m [MWh] Storage level

B.2. Additional model data

B.2.1. Assumptions on installed capacities, fuel and carbon
prices

The data on the existing power plant capacities and on capacity developments as
well as the allocation of power plant capacities on transmission nodes are taken
from Zinke (2023). The capacity developments in Germany are based on current
legal and political targets. EEG (2023) and WindSeeG (2023) set the legal tar-
gets for the expansion of wind onshore, offshore and solar energy. The phase-out
of German nuclear, lignite, and hard coal power plants follows the path de-
fined in KVBG (2020) and Bundesministerium für Wirtschaft und Klimaschutz
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(BMWK) (2022). While the capacity development of H2 electrolyzers is based
on political targets set in Bundesministerium für Wirtschaft und Klimaschutz
(BMWK) (2023), the development of batteries follows the Global Ambition sce-
nario in ENTSO-E and ENTSO-G (2022). The assumed capacity developments
are shown in Table B.2. Furthermore, Table B.3 shows the assumptions made
on the development of fuel and carbon prices.

Table B.2.: Assumptions on installed capacities [GW] in Germany

Technology [GW] 2021 2030

Wind Onshore 54.5 115.0
Wind Offshore 7.8 29.6
Solar 53.3 215.0
Hard Coal 23.5 8.4
Lignite 20.5 8.9
Gas 31.9 47.0
Nuclear 8.1 -
Batteries 0.0 14.6
H2 Electrolyzers - 10.0
Others 27.5 27.5

Table B.3.: Development of fuel and carbon prices, based on scenario Stated Policies in
World Energy Outlook 2022 (IEA, 2022)

Fuel [EUR/MWhth] 2021 2030

Uranium 5.5 5.5
Lignite 4.5 5.0
Coal 15.3 7.7
Natural Gas 28.8 25.8
Oil 37.7 44.8
Biomass 20.0 22.0

Carbon [EUR/tCO2] 54.0 100.0
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B.2.2. Heat pump distributions

(a) (b)

Figure B.1.: Differences in annual electricity demand from heat pumps between the hp-
distribution and (a) wind-distribution and (b) pv-distribution, in TWh

B.3. Additional results

Table B.4.: Electricity generation with inflexible heat pumps and percentage changes
with thermal storage and different shifting potentials based on the hp-
distribution

Inflexible heat pumps [TWh] 2h [%] 4h [%] 8h [%]

PV 217.5 0.4 0.6 0.9
Onshore wind 179.0 1.1 1.4 1.9
Offshore wind 115.8 0.4 0.7 1.0
Gas 86.0 -1.2 -2.1 -3.1
Coal 5.5 -5.6 -8.1 -9.8
Others 52.4 0.4 0.7 1.0

Total 656.2 0.2 0.3 0.5
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Figure B.2.: Average LMPs by latitude in the base case with inflexible heat pumps based
on the hp-distribution
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(f)

Figure B.3.: Expected revenue per thermal storage with (a) wind-distribution and 2h
shifting potential, (b) pv-distribution and 2h shifting potential, (c) wind-
distribution and 4h shifting potential, (d) pv-distribution and 4h shift-
ing potential, (e) wind-distribution and 8h shifting potential, and (f) pv-
distribution and 8h shifting potential
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Figure B.4.: Delta between the expected revenues per thermal storage for (a) wind-
distribution - hp-distribution and 2h shifting potential, (b) pv-distribution
- hp-distribution and 2h shifting potential, (c) wind-distribution - hp-
distribution and 4h shifting potential, and (d) pv-distribution - hp-
distribution and 4h shifting potential
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C.1. Optimal spot market result

Consider a social planner solving the optimization problem (C.1a-C.1e). The
social planner maximizes overall welfare, consisting of the consumer surplus from
the participation at the spot market minus the electricity generation costs. Thus,
she jointly optimizes the cost-minimal dispatch at the spot market level. The
solution is constrained by the equilibrium condition, which requires supply to
equal demand (C.1b-C.1c) and the restriction of the transmission line (C.1d).

max
l,q,D

W =

∫ Dn

0
[pn(z)] dz +

∫ Ds

0
[ps(z)] dz −

∑
i

ciqi (C.1a)

s.t. Dn + l = qn (C.1b)

Ds − l = qs (C.1c)

|l| ≤ L (C.1d)

qn, qs, Dn, Ds ≥ 0 (C.1e)

The optimal solution yields a node-specific result. The optimal level of generation
in each node is given by (C.2) and depends on the spatial choice of the demand
investment.

q∗i =

{
D∗

n + L for i = n

D∗
s − L for i = s

(C.2)

Since by assumption, generation costs are higher in the south and demand ex-
ceeds the capacity limit of the transmission line, the network is congested and
fully utilized up to the capacity limit, i.e. l∗ = L. The prices reflect the marginal
costs at the respective nodes with p∗n = cn and p∗s = cs and thus, producer sur-
plus equals zero. Due to the price difference between the nodes and the quantity
transmitted from node n to node s, a positive congestion rent (cs− cn)L results,
which is accounted to the TSO budget.
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C.2. Fixed network tariffs

The first-order conditions of the Lagrangian of the optimization problem (4.2a-
4.2c) are:

∂L

∂fn
= λωn − µ = 0 (C.3)

∂L

∂fs
= λωs + µ = 0 (C.4)

∂L

∂λ
=

∑
i

ωifi − F + (cs − cn)L = 0 (C.5)

µ
∂L

∂µ
= µ[csD + fs − cnD − fn] = 0 (C.6)

∂L

∂µ
= cnD + fn ≤ csD + fs (C.7)

µ ≥ 0 (C.8)

The complementary slackness condition (C.6) is true if either (1) µ = 0, (2)
cnD + fn = csD + fs, or (3) both.

Case 1: µ = 0. Plugging µ = 0 into the first two equations yield λ = 0, as
ωi > 0. The fixed network tariffs f can take every possible values that satisfy
equation (C.5) and (C.7).

Case 2: µ > 0 and cnD+ fn = csD+ fs. Using the equality, we can solve for

the fixed network tariffs, e.g. fs = F−(cs−cn)(L+Dωn)
ωn+ωs

. In addition, λ = −µ
ωs

and
λ = µ

ωn
. We can rule this case out, as it would require ωn = −ωs.

Case 3: µ = 0 and cnD + fn = csD + fs. Again, we can solve for the fixed

network tariffs, e.g. fs =
F−(cs−cn)(L+Dωn)

ωn+ωs
. Again, plugging µ = 0 into the first

equation yields λ = 0.

Hence, cases 1 and 3 are possible solutions of the optimization and both require
λ = 0. As the shadow variable of the budget constraint is zero, the constraint
(and the fixed network tariffs) has no influence on social welfare. Hence, fixed
network tariffs can be considered as a welfare neutral payment.

C.3. Volume-based network tariffs

C.3.1. Deriving the Ramsey-Boiteux inverse elasticity rule

We use equation (4.7), substitute pi = ci+τi on the right-hand side and make use
of the relationship τi = pi − ci to expand the equation. We denote the elasticity
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of demand with

ϵi(pi) = −
∂Di(pi)/∂pi
Di(pi)/pi

(C.9)

Plugging the elasticity in, we then obtain the Ramsey-Boiteux formula, which is
the classical inverse elasticity rule:

pi − ci
pi

=
λ

λ+ 1
· 1

ϵi(pi)
(C.10)

We can see that a change in price ∂pi is equivalent to a change in network tariff
∂τi.

C.3.2. Solution for restricted volume-based network tariffs and
boundary for binding dynamic consistency constraint

To solve for the optimal volume-based network tariff with a binding dynamic
consistency constraint, we use the relation of network tariffs from (4.4b) and
(4.4c). As (4.4c) is binding, it follows that τn = τs + cs − cn. Using the budget
constraint (4.4b), we yield

τ̂s =
F − (cs − cn)(L+Dn(cn + τ̂n))

Ds(cs + τ̂s) +Dn(cn + τ̂n)
(C.11)

and

τ̂n = cs − cn +
F − (cs − cn)(L+Dn(cn + τ̂n))

Ds(cs + τ̂s) +Dn(cn + τ̂n)
. (C.12)

To derive the boundary at which the dynamic efficiency constraint is binding,
we plug in the optimal static volume-based network tariff (4.9) into cn + τ∗n =
cs + τ∗s :

cn +
F − (cs − cn)L

ρn(τ∗n)
ρs(τ∗s )

Ds(cs + τ∗s ) +Dn(cn + τ∗n)
= cs +

F − (cs − cn)L
ρs(τ∗s )
ρn(τ∗n)

Dn(cn + τ∗n) +Ds(cs + τ∗s )
,

(C.13)

which simplifies to

∂Ds(cs+τ∗s )
∂τ∗s

Dn(cn + τ∗n)−
∂Dn(cn+τ∗n)

∂τ∗n
Ds(cs + τ∗s )

∂Dn(cn+τ∗n)
∂τ∗n

Ds(cs + τ∗s )
2 + ∂Ds(cs+τ∗s )

∂τ∗s
Dn(cn + τ∗n)

2
=

cs − cn

F − (cs − cn)L
. (C.14)

The solution depends on the costs that need to be recovered, the relation of
the generation costs and the relation of the demand functions in the respective
nodes.
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C.3.3. Volume-based network tariffs under uniform pricing

To solve for the case that the dynamic efficiency constraint is non-binding, i.e.,
µ = 0, we make use of equation (4.11) and substitute the quasi-elasticity ρi.

τ∗s =
ρn(τ

∗
n)

ρs(τ∗s )
τ∗n + cs − cn (C.15)

It still holds that the elasticity in one node affects the network tariff in the other
node. In addition, the network tariffs also depend on marginal generation costs.
Again, we can solve for the respective network tariffs using the budget constraint
of the TSO. The network tariff in the south is equal to:

τ∗s =
F − (cs − cn)L

ρs(τ∗s )
ρn(τ∗n)

Dn(cn + τ∗n) +Ds(cn + τ∗s )
+ cs − cn, (C.16)

while the structure of the solution for the north is similar to the one under zonal
pricing:

τ∗n =
F − (cs − cn)L

ρn(τ∗n)
ρs(τ∗s )

Ds(cn + τ∗s ) +Dn(cn + τ∗n)
(C.17)

For the case that the dynamic efficiency constraint is binding, we can use (4.10b)
and (4.10c). This yields:

τ̂s = τ̂n =
F − (cs − cn)(L+Ds(cs + τ̂s))

Ds(cs + τ̂s) +Dn(cn + τ̂s)
(C.18)

We can check when the dynamic efficiency constraint gets binding, by substi-
tuting (C.16) and (C.17) into τn ≤ τs :

Dn(cn + τ∗n)
∂Ds(cs+τ∗s )

∂τ∗s
[R+ (cn − cs)Ds(cs + τ∗s )] ≤

∂Dn(cn+τ∗n)
∂τ∗n

Ds(cs + τ∗s )[R+ (cn − cs)Dn(cn + τ∗n)]

with R = F − (cs − cn)L

(C.19)

The result is similar to the regulatory setting with zonal pricing and depends
on the costs that need to be recovered, the relation of the generation costs and
the relation of the demand functions in the respective nodes.
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D.1. Further data statistics

Figure D.1 illustrates the variation of the volumetric network tariffs, the fixed
network tariff and the number of PV installations between the years 2009 and
2017.

(a)

(b)

(c)

Figure D.1.: Temporal variation of (a) the volumetric network tariffs, (b) the fixed net-
work tariff, and (c) the number of PV installations
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As shown in figure D.1 (a) and (b) network tariffs have risen steadily over
the period under consideration. In particular, the median fixed tariff more than
doubled between 2009 and 2017. In addition, one can see that for both the
volumetric and fixed tariff the regional dispersion in the 25th to 75th percentile
across postcode areas has increased substantially, while the regional dispersion
of the number of PV installations has tended to decrease (see figure D.1 (c)).

D.2. Further robustness checks

With the following robustness checks in table D.1, we additionally check our
assumption that households respond to the previous years’ tariffs, i.e., tariffi,t−1,
by including tariffs further in the past. We test a regression with tariffi,t−2 and
one alternative with tariffi,t−3 instead of tariffi,t−1.

Table D.1.: Further robustness checks: time lags

Model: (11) (12) (13)
Dependent Variable: # of PV # of PV # of PV

tarifft−1 0.0231∗∗

(0.0086)
tarifft−2 0.0245∗∗∗ -0.0107

(0.0071) (0.0091)
tarifft−3 -0.0050 -0.0031

(0.0081) (0.0082)
income (log of) -0.1004 -0.4194 -0.4253

(0.2140) (0.3182) (0.3184)
housetype -0.0014 0.0034 0.0038

(0.0047) (0.0054) (0.0054)
age 0.0366∗ 0.0331 0.0336∗

(0.0155) (0.0170) (0.0171)
buildings (log of) -0.0403 0.01267 0.1075

(0.1839) (0.2178) (0.2186)

Fit statistics
observations 56,269 48,084 48,083
AIC 282,959.3 235,622.8 235,605.7
BIC 426,858.3 376,482.9 376,483
Log-Likelihood -125,380.6 -101,769.4 -101,758.9

Robust standard errors clustered at the postcode level.
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

The results show that the impact of the lagged network tariffs tariffi,t−2 and
tariffi,t−3 decreases compared to the impact of tariffi,t−1. An encompassing test
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further supports this finding. The coefficient of tariffi,t−1 is the only significant
variable, at least at a 5 percent level, compared to tariffi,t−2 and tariffi,t−3.
Hence, the results further support our assumption.

Table D.2.: Further robustness check: regional results

Model: (14)
Dependent Variable: # of PV

BW × tarifft−1 0.1652∗∗∗ (0.0197)
BY × tarifft−1 0.0290∗∗∗ (0.0085)
BE × tarifft−1 -0.1352 (0.0929)
BB × tarifft−1 0.0559∗ (0.0232)
HB × tarifft−1 0.2740∗∗ (0.0872)
HH × tarifft−1 0.0659 (0.1405)
HE × tarifft−1 -0.0058 (0.0238)
MV × tarifft−1 0.0869∗ (0.0368)
NI × tarifft−1 0.0607∗∗ (0.0192)
NW × tarifft−1 0.0570∗∗ (0.0198)
RP × tarifft−1 -0.0678∗∗ (0.0255)
SL × tarifft−1 -0.0508 (0.0624)
SN × tarifft−1 0.1360∗∗∗ (0.0257)
ST × tarifft−1 0.0678∗ (0.0300)
SH × tarifft−1 0.1550∗∗∗ (0.0309)
TH × tarifft−1 0.2682∗∗∗ (0.0432)
income (log of) -0.0273 (0.1487)
housetype 0.0044 (0.0043)
age 0.0158 (0.0136)
buildings (log of) -0.1350 (0.1685)

Fit statistics
observations 64,531
AIC 329,958
BIC 476,636
Log-Likelihood -148,816

Robust standard errors clustered at the postcode level.
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

In another model variation (14, table D.2), we include an interaction term be-
tween binary dummy variables for the 16 German states and the network tariff.
This estimation allows us to compare the regional effect of network tariffs on PV
investments. The model specification is based on the assumption that while the
effect of the network tariffs differs between states, the effects of the covariates and
time-specific fixed effects do not. The results suggest that network tariffs signif-
icantly impact PV investments in a selection of states (BW, BY, SN, SH, TH),
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with the highest effect being in HB and the lowest in BY. An explanation for the
different sizes of the effect could be differences in awareness for PV investments
in different states. A reason why we cannot identify a significant effect for most
states could be the low within-variance of network tariffs in the respective state.
Because of the low within-variance of the state-specific tariffs and because the
results depend on the assumptions made about the effects of the covariates and
the annual fixed effects, the results should be treated with caution. Therefore,
we interpret the results as indicative of the existence of regional differences in
the effect of network tariffs on PV investments. However, a detailed analysis of
these differences is outside the scope of this paper and remains subject to future
research.

D.3. Within-variance of the covariates in our sample

Using a fixed effects approach, we exploit the within-region variation of our
explanatory variables to identify their impact on our dependent variable. By in-
cluding time fixed effects, we control for overall developments over time. While
this allows us to isolate the effects under investigation, i.e., the effect of network
tariffs on PV investments, it prevents us from making statements about the influ-
ence of covariates that have little or no within-region variation after controlling
for time fixed effects. By regressing the explanatory variables on our fixed effects,
we calculate the variation in these variables used to estimate the coefficients in
our fixed effects model. The standard deviations of these residuals, calculated
for the preferred specification of our model (1) and the specification without the
postcode-specific slope (7), are shown in table D.3. The given values may aid in
interpreting and classifying the estimated treatment effects of the explanatory
variables. For a detailed analysis on the interpretation of fixed effects, refer to
Mummolo and Peterson (2018).

Table D.3.: Within standard deviation

Model: (1) (7)

tarifft−1 (ct/kWh) 0.34 0.49
income (log of) 0.02 0.03
housetype (%) 0.63 0.96
age 0.18 0.43
buildings (log of) 0.02 0.02
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