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Abstract

Biological systems rely on complex networks of interacting molecules, genes, proteins,
and other regulators to govern cellular processes. However, inferring the causal structure
of these networks is challenging. Particularly when important regulatory factors are
only indirectly measured or entirely hidden. This difficulty is combined with the need
to distinguish direct from indirect interactions and to capture dynamic responses under
different perturbations such as gene knockouts or drug treatments. Consequently, devel-
oping a method that can incorporate both time resolved data and partial observability is
critical for inference of the intricate architectures underlying signal transduction and
gene regulation.
To address these challenges, we propose an Ordinary Differential Equation based Nested
Effects Model (odeNEM). Our approach combines the established Nested Effects Model
framework,which maps hidden regulatory nodes to observable downstream effects,
with a continuous time ODE formulation. This combination can capture saturable, non-
linear kinetics. By explicitly modeling the propagation of perturbation signals over time,
odeNEM infers which hidden regulators are causally upstream of others. Additionally,
we developed mixture models for the downstream expression data which is considering
the noisy high throughput nature of biological experiments.
We validate our method on two key applications. First, we reconstruct signaling path-
ways in breast cancer cells using phosphoprotein time course data from the HPN-
DREAM challenge. This shows how odeNEM captures context specific interactions
among kinases such as AKT, mTOR, and MEK. Second, we infer a gene regulatory
network in pluripotent stem cells from CRISPR single cell transcriptomics (RENGE),
highlighting both canonical regulators like POU5F1 and SOX2 and novel interactions
that warrant further biological investigation. Across both use cases, our results align
with known biology and external data sources (e.g., ChIP-seq). This also confirms that a
continuous time hidden node model can robustly uncover causal relationships.
Overall, odeNEM expands the applicability of NEM approache by explicitly modeling.
The model’s synergy with perturbation data, prior knowledge, and advanced inference
strategies (e.g., MCMC) enables a more robust and biologically realistic reconstruction
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of latent signaling networks. This contributes a promising picture for unraveling the
complex interplay of molecular interactions in systems biology, with broad implications
for identifying therapeutic targets and understanding disease mechanisms.



Zusammenfassung

Biologische Systeme basieren auf komplexen Netzwerken, in denen Gene, Proteine und
andere regulatorische Faktoren zusammenwirken, um zelluläre Prozesse zu steuern.
Die Rekonstruktion der zugrunde liegenden kausalen Strukturen ist eine große Her-
ausforderung, insbesondere wenn wichtige Regulatoren nur indirekt oder gar nicht
direkt messbar sind. Hinzu kommt die Schwierigkeit, zwischen direkten und indirekten
Interaktionen zu unterscheiden und zeitabhängige Reaktionen auf verschiedene Störun-
gen,etwa Gen Knockouts oder medikamentöse Inhibitoren, korrekt abzubilden. Ein
entscheidender Schritt ist daher die Entwicklung von Methoden, die sowohl zeitaufgelöste
Daten als auch teilweise verborgene Regulationsmechanismen integrieren können.
Um diesen Anforderungen zu begegnen, stellen wir ein „Ordinary Differential Equation
basiertes Nested Effects Model“ (odeNEM) vor. Dieser Ansatz kombiniert das Nested
Effects Model Konzept, bei dem versteckte regulatorische Knoten über beobachtete
Downstream Effekte erschlossen werden, mit einer kontinuierlichen, nichtlinearen ODE
Modellierung. Durch die explizite Abbildung der Signalweiterleitung über die Zeit
ermöglicht odeNEM die Identifikation kausaler Beziehungen zwischen verborgenen
Regulatoren, selbst wenn deren Aktivitäten nicht direkt gemessen werden können.
Ergänzend verwenden wir Mischmodelle für die Rausch und Heterogenitätseffekte in
den Experimentaldaten, sodass unser Verfahren robust gegenüber typischen Messunge-
nauigkeiten in Hochdurchsatz Experimenten ist.
Zur Validierung haben wir odeNEM auf zwei zentrale Anwendungen übertragen. Er-
stens rekonstruieren wir Signalwege in Brustkrebszellen mithilfe von Phosphoprotein
Zeitreihen aus der HPN-DREAM-Challenge. Dabei erfasst odeNEM kontextspezifische
Interaktionen zwischen Kinase Netzwerken wie AKT, mTOR und MEK. Zweitens in-
ferieren wir in pluripotenten Stammzellen (hiPSCs) ein Genregulationsnetzwerk auf
Basis von CRISPR Experimenten mit Einzelzell RNA Sequenzierung (RENGE). Hier
identifizieren wir sowohl etablierte Regulatoren wie POU5F1 und SOX2 als auch neue
potenzielle Interaktionspartner, die weiterführende biologische Untersuchungen na-
helegen. In beiden Fällen stimmen unsere Ergebnisse gut mit externen Datensätzen
(z.B. ChIP-seq) und etablierter Literatur überein, was die Verlässlichkeit des Modells
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unterstreicht.
Insgesamt liefert odeNEM einen einheitlichen Ansatz, um zeitabhängige Daten, verdeckte
Regulatoren und nichtlineare Kinetik in einem Modell zu vereinen. Durch die Verknüp-
fung von ODE Dynamik und Nested Effects Logik stellt dieses Verfahren ein flexibles
Werkzeug zur Analyse komplexer molekularer Netzwerke dar sei es im Bereich der
Proteinsignalgebung oder der Genregulation. Dies trägt nicht nur zu einem vertieften
Verständnis grundlegender biologischer Prozesse bei, sondern bildet auch eine Grund-
lage für gezieltere therapeutische Eingriffe, indem es die Ausbreitung von Störungen
über bisher unsichtbare Schichten zellulärer Netzwerke aufdeckt.
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1 Introduction

This chapter introduces the foundational concepts and challenges addressed in this the-
sis, focusing on signaling pathways and their interplays. A central objective of this work
is to develop methodologies for reconstructing biological networks from time-series in-
terventional data, particularly under conditions where hidden variables and incomplete
observations complicate analysis. The chapter begins by discussing the basic building
blocks of cellular systems, emphasizing gene regulation, signal transduction, and their
dynamic and interconnected roles in cellular processes. Experimental techniques like
RNA interference (RNAi), which provide key interventional data, are highlighted for
their transformative role in functional genomics. The discussion then transitions to the
challenges posed by non-transcriptional regulation and hidden variables, both of which
necessitate advanced computational approaches for network inference. Through this
background, the chapter lays the groundwork for exploring reverse engineering of bio-
logical networks and introduces the motivations behind the methodologies developed
in subsequent chapters.

1.1 Biological Systems and Cellular Processes

Cells are basic building units of living organisms, and they function independently to
carry out the processes needed for their survival. Surrounded by a protective membrane,
the cell maintains its internal balance while interacting with its environment. Inside,
molecules like proteins, enzymes, and nucleotides work together to perform essential
tasks, allow- ing the cell to adapt and function effectively.
Each cell holds deoxyribonucleic acid (DNA), which contains the instructions needed
for an organism’s development, function, and reproduction. These instructions are or-
ganized into units called genes. Genes will lead the production of RNA and proteins.
Proteins take on critical roles in shaping the cell’s structure, facilitating its activities,
and managing interactions within the cell. This flow of genetic information ensures that
cells can adapt and respond to their surroundings [1]. The central dogma, Figure 1.1,
of molecular biology explains how genetic information flows within a cell to create
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DNA
RNA Proteins

Transcription Translation

Figure 1.1: Figure: A simplified representation of the central dogma of molecular biology,
illustrating the flow of genetic information from DNA to RNA (Transcription)
and subsequently to Proteins (Translation). Icons sourced from Pixabay.

proteins [2]. DNA, the molecule that stores genetic instructions, undergoes transcrip-
tion to produce RNA. This RNA, specifically messenger RNA (mRNA), serves as an
intermediary to transfers the genetic code that is needed for proteins to be synthesized.
During transcription, the mRNA undergoes essential modifications, such as splicing,
where non-coding sequences (introns) are removed, and a 5’ cap and a poly-A tail are
added. These modifications stabilize the mRNA and prepare it for translation.
Translation is the cellular process in which ribosomes decode an mRNA sequence to
assemble amino acids into a growing polypeptide chain, ultimately forming a functional
protein. This mechanism is carefully regulated to maintain accuracy and efficiency. Dur-
ing translation, ribosomes assemble amino acids into proteins by reading the instructions
encoded in mRNA. The process is controlled by specialized factors that help ribosomes
bind to mRNA and initiate synthesis [3]. Additionally, small RNA molecules can target
specific mRNA for degradation or prevent its translation [4]. This precise regulation
ensures proteins are made only when and where they are needed, maintaining cellular
efficiency and balance.

Regulation of gene expression happens at both transcriptional and non-transcriptional
levels, each contributing uniquely to cellular processes. Transcriptional regulation, where
transcription factors influence gene expression, leaves measurable traces such as mRNA
levels, making it more accessible through high-throughput techniques like RNA se-
quencing [5]. In contrast, non-transcriptional regulation (post-translational modifica-
tions, protein interactions, and enzymatic effects) lacks direct molecular signatures [6].
These layers of regulation ensure that cellular resources are used efficiently and that
specific proteins are expressed at the right time to contribute to cellular functions [7].

https://pixabay.com
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1.1.1 Modeling Biological Systems with Networks

Gene regulation occurs at the level of individual genes and their products but is part
of broader, interconnected cellular networks that integrate and coordinate molecular
activities [7].
To represent cellular systems, networks are used broadly with nodes corresponding to
molecular entities (genes, proteins, metabolites) and edges representing interactions
(e.g., transcriptional regulation, protein-protein interactions, or metabolic flux) [1]. These
networks are typically categorized into signaling, metabolic, and transcriptional net-
works, which interconnect to form a complex web of cellular activity.

Growth Factors
CytokinesActivators

RafMAPKKK

Stress, Cytokines
Growth Factors, TGF-β

MEKK1-4, MLKs
ASK, TAK1

Stress, Cytokines
Growth Factors, Ceramides

MEKK1-4, MLKs
ASK, TAK1

MEK1/2(MKK1/2)MAPKK MKK3/6, MKK4 MKK4/7

ERK1/2MAPK p38 JNK/SAPK

90RSK, MNK1/2,
Ets, Elk1, Myc,
STAT1/3, ER

Substrate

Hsp27, PLA2,
APKAP2, Myc,
MSK-1, Elk1,
ATF-2, STAT1

c-Jun, ATF2,
Elk1, DPC4,
p53, NFAT4

Proliferation,
Differentiation,
Development

Cell Response

Proliferation,
Differentiation,
Development,
Inflammation,

Apoptosis,
Stress Response

Proliferation,
Differentiation,

Apoptosis

Figure 1.2: Simplified representation of MAPK signaling pathways in regulation of cell
proliferation. This figure is adapted and redrawn from Figure 1 in [8]

Signaling Networks: Cells rely on signal transduction pathways to interpret and re-
spond to their environment. These pathways transmit signals from receptors on the
cell surface to downstream effectors through cascades of molecular interactions [9]. For
instance, mitogen-activated protein kinase (MAPK) pathways help cells adapt to growth
signals or stress by regulating key processes such as proliferation and differentiation,
as it is shown in Figure 1.2 from [8]. These pathways are dynamic, featuring feedback
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mechanisms and interactions with other signaling networks. Also, they may involve
mechanisms that amplify the signal. Understanding the function of signaling networks
is essential, as it uncovers how cells make decisions under normal and disease conditions.

Metabolic Networks: These networks map the biochemical reactions within cells that
produce energy and synthesize cellular building blocks. Glycolysis and the citric acid
cycle are fundamental metabolic pathways crucial for cell survival and growth ([10]).
These networks are not isolated; they interact closely with signaling and transcriptional
networks, as metabolic states can influence gene expression and protein activity [11].

Transcriptional Networks: These networks capture the regulatory relationships be-
tween transcription factors and their target genes, forming an intricate system of control
over gene expression. Cells respond to environmental changes, developmental signals,
and cellular stress via transcriptional regulation and modulating the production of RNA
and proteins.
In transcriptional networks, nodes represent genes or regulatory elements, while edges
denote interactions between transcription factors and their targets [12]. These interac-
tions can be activation or repression, direct (such as physical binding to a promoter
region), or inferred (through correlations in gene expression profiles). The integration of
multiple regulatory signals allows transcriptional networks to act as control systems,
determining spatial and temporal patterns of gene expression.

These networks, while distinct in their functions, are interconnected, forming a dy-
namic web that governs cellular behavior [13]. However, despite advancements in
experimental techniques, many interactions and regulatory mechanisms remain difficult
to catch. This is where defining a method to infer a network of relations from data
becomes necessary.

1.2 Reverse Engineering Biological Networks

Reverse engineering is reconstructing the structure of biological networks by analyz-
ing experimental data and reasoning backward to identify the underlying interactions
among genes, proteins, and metabolites [14]. This approach is vital for understanding the
regulatory and functional architecture of cellular systems, allowing to uncover pathways
that drive complex biological processes.
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High-throughput Observational Data: Data for reverse engineering largely comes from
high-throughput experimental techniques, which capture the molecular and cellular
processes under unperturbed conditions. RNA sequencing provides critical insights into
transcriptional regulation by profiling gene expression under various conditions [15].
Proteomics reveals protein-protein interactions, post-translational modifications, and
enzymatic activities [16]. ChIP-seq identifies binding sites of DNA-associated proteins,
such as transcription factors [17]. This maps their roles into gene regulation. Additional
techniques like mass spectrometry and microarrays provide further insights into protein
abundance, transcriptomic changes, and other cellular dynamics.
While observational data is foundational, it often lacks the resolution to disentangle the
complexities of network interactions. In contrast to observational data, perturbation-
based data (which falls under interventional data) directly tests hypotheses about the
relationships between components. Such interventional data enables a deeper under-
standing of cellular processes [14].

Perturbation-based Techniques: Perturbation-based approaches can reveal causal re-
lationships within biological networks if the provided intervention is targeted to a
known component. If it is unclear which part of the molecular network is perturbed
(e.g., by an uncharacterized chemical), causal insights may be no greater than those
from purely observational data. In practice, many perturbation strategies exist, such as
environmental (e.g., heat or salt stress), pharmacological (e.g., small molecule drugs),
and genetic approaches (e.g., gene knockdowns and knockouts). A gene knockdown
(KD) partially reduces gene expression (often by degrading messenger RNA (RNAi)).
KDs particularly are useful for studying essential genes without completely silencing
targets [18]. A gene knockout (KO), by contrast, completely eliminates gene function. It
is often implemented using CRISPR (Clustered Regularly Interspaced Short Palindromic
Repeats) technology [19]. By combining different perturbation methods (knockdowns,
knockouts, or environmental/drug treatments), researchers can examine both direct
and adaptive responses, thereby refining causal inferences about molecular interactions
within the network.

Data Driven Reverse Engineering of Biological Networks: Biological networks can be
reconstructed using various data types, including purely observational data (e.g., tran-
scriptome or proteome measurements under normal conditions) and perturbation-based
data (which actively manipulate systems to reveal causal relationships). While observa-
tional data are widely used in the literature and can yield correlations among genes or
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proteins, correlations alone do not imply causation. For instance, RNA sequencing might
reveal that certain genes are coexpressed across conditions, yet it cannot distinguish
direct regulatory links from indirect influences through intermediate molecules. To
overcome this limitation, perturbation-based approaches (e.g., targeted knockdowns,
knockouts, or chemical inhibitors) actively alter specific genes or proteins. Observing
how these interventions affect the rest of the system provides stronger evidence of causal
interactions [20].
The integration of these data sources calls for robust computational techniques to model
and analyze the complexity of biological systems. By network inference, we mean the
process of reconstructing or reverse engineering a biological network (e.g., a gene reg-
ulatory or protein interaction network) from the patterns observed in the data. Such
methods typically draw on statistical models and machine learning to detect relation-
ships and predict functional links. For instance, clustering algorithms group genes with
similar expression profiles, while Bayesian networks and dynamic models capture tem-
poral dependencies and probabilistic interactions [14, 20]. Beyond these correlation and
probability based approaches, more formally defined causal frameworks exist. For in-
stance, structural equation models (SEMs) provide a mathematical means for specifying
causal dependencies among exogenous and endogenous variables, although they are
not themselves a direct inference procedure. In contrast, do-calculus describes how
targeted interventions can be represented in a graphical model and has proven valuable
in distinguishing direct from indirect effects [21].
Experimental techniques we have mentioned, such as RNAi and CRISPR-based edit-
ing, provide the necessary perturbation data, systematically silencing or modifying
genes to observe downstream effects. These methods complement observational data by
revealing causal dependencies and highlighting critical nodes in the network. Compu-
tational tools further enhance this integration by mapping molecular information and
reconstructing network topology, bridging the gap between raw experimental data and
functional understanding.

1.3 Hidden Variables in Gene regulation

Hidden layers of regulation, such as phosphorylation events or secondary signaling
pathways, can significantly influence cellular decisions. However, many large-scale
studies (e.g., standard transcriptomic or proteomic analyses) primarily measure steady-
state mRNA or protein abundance, making transient post-translational modifications
(like phosphorylation) difficult to capture. Phosphorylation often occurs rapidly and
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in context-specific bursts that can be missed by snapshot high throughput proteomic
datasets [22] unless specialized phosphoproteomic methods are employed.
Unmeasured proteins, metabolites, or modifications in nontranscriptional regulation
can complicate network reconstruction. Effects of such hidden variables mix with those
known components, resulting in confounding and biased interpretations [23]. For ex-
ample, in signaling pathways, secondary effects may obscure direct causal interactions,
making it difficult to infer upstream downstream relationships accurately.
Addressing these complexities requires advanced computational approaches to miti-
gate confounding effects introduced by hidden variables, such as unmeasured genes or
signaling intermediates. Hidden variables can distort the observed interplay between
known components, leading to biased or incomplete network models. Although meth-
ods exist for learning networks with latent variables (using Bayesian Networks [24]),
such approaches may still struggle when data sparsity or noise levels are high.
Nested Effects Models (NEMs) provide a promising framework for dealing with hidden
variables and noise in observations. Conceptually, NEMs can be viewed as a specialized
form of Bayesian Networks where subset relationships are emphasized [25], [26]. This
makes NEMs well suited for inferring upstream downstream interactions in signaling
genes, even when significant data gaps exist. By addressing the confounding influence
of hidden variables, NEMs enable a more accurate reconstruction of biological networks.

1.4 Objectives and Thesis Organization

The goal of this thesis is to develop a new class of probabilistic graphical models within
the DBN framework, which overcomes some major drawbacks of NEMs:

• Perturbation effects are propagated in a strictly deterministic sense through the
hidden variable network: If there is a path from node A to node B, it is assumed that
perturbation of A always yields a perturbation of B. This idea is rather simplistic
and neglects possible compensatory effects, which occur frequently in biological
systems. These compensatory effects may be due to nonlinearities in the system or
due to the activation of unknown system components, which itself influence B.

• In the present NEM formulation, states correspond to binary hidden variables
(protein ac- tivities), for which downstream perturbation effects (gene expression
data) are observed. A gene knock-down presently corresponds to decoupling a
specific hidden variable from its inputs and setting its activity constantly to 0.
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Therefore, NEMs perform ideal interven- tions (from [27]) in the system of hidden
variables. Experimental perturbations rarely achieve such an efficiency.

• NEMs require all nodes in the hidden variable network to be perturbed individ-
ually. This restriction to isolated perturbations is neither realistic nor desirable.
Targeting several network nodes simultaneously (combinational interventions)
may help to reveal the true network structure much more efficiently. Moreover,
many experimental perturbations tar- get multiple network nodes simultaneously
because the perturbing substance (e.g., a drug) is not specific. Other perturbations,
like somatic mutations in cancer, accumu- late over time and characterize a set of
genetic alterations, which represent combinational interventions into a patient’s
signaling network.

In Chapter 2, we will provide a comprehensive overview of Nested Effects Models
(NEMs), including their principles and formulas, with a particular focus on the basic
and general framework. Additionally, we will discuss further advancements in NEMs,
leading to conclusions that set the stage for our own developments.
In Chapter 3, we introduce our approach called odeNEM (Ordinary Differential Equa-
tional NEMs). This method provides a more realistic representation of time compared
to previous models. Furthermore, this chapter includes results from simulation studies,
showcasing the performance of our approach.
The next two chapters are dedicated to demonstrating the application of our model on
real datasets. Chapter 4 describes how our model was applied to infer protein-protein
interaction networks. The final chapter, Chapter 5, extends the application of odeNEM
to reconstruct regulatory networks, emphasizing its effectiveness in analyzing time-
resolved experimental datasets and comparing them with existing methodologies. Both
chapters include a detailed discussion of the datasets used, preprocessing steps, and
comprehensive results.



2 Nested Effect Models (NEMs)

In the last chapter, we opened the discussion about reconstruction of biological network
in the absence of observation for some elements. In this chapter, we will introduce Nested
Effect Model as a model for such conditions. Since this model will be the foundation of
our developed version, we will explain it thoroughly in this chapter.

2.1 Introduction

By external signals, cells respond through a complex and highly regulated sequence of
events, which can be viewed as two distinct transduction layers. The first layer, called
the transcriptional level, directly influences gene expression. Signaling transduction at
this level activates transcription factors, which then target gene promoters, resulting in
either activating or suppressing specific genes [28].
Then the non-transcriptional level comes, which is not easily detectable but plays a
prominent role in the regulation of gene expression profiles via post-translational modi-
fications (PTMs). This way of transduction, which consists of PTMs in conjunction with
other factors like epigenetic alterations, adds a more complex layer to gene regulations
and dynamic of cellular responses to external stimuli [29, 30]. This type of modification
can not be directly measurable via profiling gene expressions. The occurrence of such
modifications will affect the expression of related genes.
Understanding the downstream effects of PTMs is essential for a comprehensive view of
cellular regulation. PTMs can modulate transcription factor activity, chromatin structure,
and signaling cascades, leading to secondary effects on gene expression and cellular
responses. By integrating both transcriptional and post-translational mechanisms, cells
achieve a finely tuned response to external signals govern differentiation, adaptation,
and stress response [13]. In the importance of exploring such indirect effects, [31] brought
a hypothetical pathway example, which you can see the related schema in Figure 2.1. It
contains three different levels of abstractions in biological concepts: DNA level (genome),
mRNA level (transcriptome), and proteome level. When gene 1 is expressed, it produces
a transcription factor that binds to the promoter of gene 2, regulating its expression. This
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will encode a protein kinase, which yields the protein phosphatase expressed from gene
3 to be phosphorylated. In the next step, the protein phosphates will dephosphorylate
the transcription factor of gene 4. By that event, the last mentioned transcription factor
will be activated, bind to the gene 5 promoter, and change its expression.
To understand this concept, [31] expands the example by comparing two network mod-
els inferred from different data types. The first model (Figure 2.1a), which is inferred
purely from observational gene expression data (mRNA level), fails to capture the effects
of gene 3 and gene 4 on the expression of gene 5. This limitation arises because the
influence of gene 3 and gene 4 occurs at the protein level, involving post-translational
modifications such as phosphorylation and dephosphorylation do not directly appear
in gene expression profiles. Consequently, methods relying only on statistical depen-
dencies in expression data misinterpret the regulatory structure and incorrectly infer a
direct connection between gene 2 and gene 5 while completely missing the intermediate
molecular events involving gene 3 and gene 4.
This demonstrates a fundamental challenge in network reverse engineering from ob-
servational gene expression data. Although gene expression data can reveal statisti-
cal correlations between genes, it cannot establish causal relationships without addi-
tional structural assumptions or interventional experiments. Correlation-based meth-
ods may capture co-expression patterns but do not differentiate direct from indirect
influences. A high correlation between genes does not imply a direct regulatory interac-
tion—correlation may arise due to shared upstream regulators, hidden confounders, or
indirect pathways that do not correspond to actual molecular interactions.
To overcome this limitation, Figure 2.1b incorporates interventional data, such as RNAi
silencing of gene 3. By intervening in gene 3 and disrupting its activity, we block the
normal flow of regulatory influence that would otherwise propagate through gene 3 to
gene 5. If this intervention causes a measurable change in the expression of gene 5, it
indicates that gene 3 plays an indirect but essential role in regulating gene 5.

Given that both transcriptional processes and post-translational modifications influ-
ence cellular responses, a computational model must accurately reflect these two types
of transduction. As we mentioned in the above example, interventional studies like
RNA interference (RNAi) can capture the profile of such hidden processes regulating
pathways and their downstream effects. RNAi functions by silencing specific genes at
the mRNA level, but it can indirectly cause hidden post-translational mechanisms, such
as phosphorylations or other regulatory processes. This is achieved by observing the
resulting changes in downstream gene expressions and protein activities, which may
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Figure 2.1: A hypothetical biochemical pathway- (a) illustrates a simplified biochemical
pathway, showcasing interactions across biological levels: proteins, mRNA,

and DNA. This model, derived from [31], highlights the limitations of
inference based solely on gene expression data, where key contributions
from genes 3 and 4 are missed. (b) demonstrates how interventional data,
such as RNAi silencing of gene 3, disrupts pathway information flow and
reveals an expression change at gene 5. This inclusion refines the model by
uncovering a direct link between gene 3 and gene 5, thereby expanding its

accuracy and predictive power. Adapted from [31]
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Figure 2.2: General Structure of Nested Effect Model (NEM)

provide insights into the underlying regulatory networks [32].
This mechanism includes two key steps. First, double-stranded RNA (dsRNA) has been
split into small interfering RNAs (siRNAs) using RNA nucleases. SiRNAs join the RAN-
induced silencing complex (RISC), which targets and degrades single-stranded mRNAs.
The described process allows for the selective gene silencing without harming unrelated
factors [33].

General class of probabilistic graphical models (PGMs) can address the challenge of
modeling uncertain and complex relations, particularly those involving hidden vari-
ables with random characteristics [24]. The answer to this question remains: How can a
probabilistic model infer such a hidden network from the downstream effects of pertur-
bations?
Nested Effects Models (NEMs), as a specific class of PGMs, have been developed to lever-
age the alterations seen in transcriptional downstream response profiles due to a gene
knockdown. This model can map these observed effects to a hidden regulatory network
that causes the effect. However, the accuracy of NEMs depends on the informativeness
of the perturbations and the complexity of the network.

2.2 NEMs

NEMs emerged from the pioneering work [25], builds upon preliminary work of [34],
offering a unique approach to mapping secondary profiles (particularly in the context of
RNAi screens) to the hidden network caused it. These nested downstream effects are
not part of the model directly but rather serve as observable outcomes to inform NEMs
from underlying hidden dynamics.



2.2 NEMs 13

2.2.1 Basics

This graphical model uses two types of nodes, which can also mimic "genes" and
categorized into two primary groups:

• S−genes (signaling or hidden nodes): These are the (nontranscriptional) nodes that
are subjected to perturbation (silenced in RNAi experiments) in the pathway of a
study. We denote these as S = {S1, S2, ..., Sn}. The received effects of perturbations
on these nodes are not directly measurable, and we are interested in finding the
interplay of such elements with other key elements in the regulatory network.

• E-genes (Effects): These are the (transcriptional) genes represented as E = {E1, E2, ..., Em}
that show changes in their expression profiles due to an intervention on an S−gene.

The conceptual architecture of NEMs, shown by Figure 2.2, is a hypothesized directed
graph between signaling S−genes against the observed cascading structure of down-
stream E−genes.
The main idea of NEM benefits the mentioned structure: the main goal is to capture the
changes in information flow within the pathway (S−genes) between two states: before
and after the interventions. Before any perturbation, connections between elements of
such a regulatory network maintain a dynamic equilibrium where the rates of changes
are balanced. When a perturbation, such as a gene knockdown, occurs, it disrupts the
balance of a few genes. As a result, alters the dynamic of a (biological) system from a
steady-state to some new activity level. This causes the expression of some E−genes to
be impacted by perturbation while the others stay in their basic expressions [35, 36].
The S−genes can assume binary states ’1’ or ’0’. While ’1’ represents an interruption
in signaling, ’0’ exemplifies a node that is an active participant in the pathway’s infor-
mation flow. [25] assumed data of phenotypic profiles has a form of a binary matrix D
which columns refer to experiments (on each S−genes),and rows are observed effects as
E−genes, like what we see in Figure 2.3. Disregard of strength or direction of change,
Dij will indicate whether the Ei notices the interruption of Sj signaling node or not.
To expand the topic further, let us assume an example summarized in Figure 2.3. Since
S1 is a direct or undirect upstream of all other signaling genes S2, S3 and S4, all receive
silencing information on node S1. In another example, the effect of perturbing S2 will not
affect S3 and vice versa but will overlap as S4 perceives both these two perturbations.
Consequently, the effect of genes (E−genes) receive perturbation effects from their direct
signaling gene (S−genes) parent. This can be quantified on the level of expression of
associated E−genes.
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In NEMs, this simple concept had been extended to form a subset of relations on whole
observed effects regarding perturbations which caused those. The set of E−genes that
show changes following the perturbation of Si are represented as Di then:

Si → Sj ⇔ Dj ⊂ Di (2.1)

In essence, within the NEM framework, the assertion that Sj functions downstream of Si

can be inferred if the observable changes under j-th perturbation is subset of observable
changes under i-th perturbation. This indicates that any downstream effects incited by a
perturbation in Sj could also be initiated by intervening Si.
The collective of S−gene, which transitions to state ’1’ when an S−gene S is silenced,
defining the ’influence region’ of S. The compilation of these influence regions is termed
a silencing scheme. This scheme captures the predicted intervention effects based on the
presumed pathway structure. In mathematical terms, it is conceptualized as a transitively
closed graph that describes a partial order of S−genes based on the anticipated nested
framework of downstream impacts. Adopting the assumed detailed by [25], E−gene’s
positions are taken as intrinsic model parameters. The underlying assumption is that an
E−gene aligns exclusively with a singular S−gene.
Each perturbation is considered an action Ai that directly influences a specific S−node
in the system. The perturbed S−node can, in turn, exert a causal influence on other
S−nodes, forming a directed graph (or adjacency matrix) Φ of size S× S , where an edge
from node i to node j indicates that Si has a causal effect on Sj. As we mentioned before,
there is a second type of connections, called Θ (matrix E× S), depicts how observations
are linked to actions. [37] defines NEM as an effect model concluded as a by-product of
these two parts:

F = ΦΘ (2.2)

The main goal of NEM is to discover a causality structure Φ among S−genes with a
subset relations between phenotypic profile best matching to observed E−genes [25, 37].
Leveraging Bayes’ theorem, a particular network Φ can be evaluated and scored accord-
ingly:

P(Φ|D) ∝ P(D|Φ)P(Φ) (2.3)

Θ ∈ {0, 1}m×n associates m E−genes to n S−genes. The fact that observable genes are
independent from each other, given Φ and Θ, likelihood function can be rewritten as
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Figure 2.3: NEMs and the representation of perturbation effects - (a) The directed acyclic
graph (DAG) illustrates causal relationships among S-genes (S1, S2, S3, S4),
where perturbations propagate effects through the network. The binary effect
matrix shows the effects of each experiment (column) in E-genes, with black
cells representing observed effects. S1, the upstream regulator influences all
E-genes, while S4 has the smallest effects. (b) The Venn diagram demonstrates
the nested structure of effects, where S1 influences all other S-genes’ effects,
and S4’s effects are a subset of the others. This hierarchy of nested effects
forms the basis of Nested Effects Models (NEMs).

products of likelihood of each observation Ei:

P(D|Φ, Θ) =
m

∏
i=1

P(Di|Φ, Θi) (2.4)

This independence assumption is a key simplification that allows the likelihood to
factorize, making the computation more tractable. However, in real biological systems,
dependencies between observable genes may exist, and deviations from this assumption
should be considered when interpreting results. As all Θis are also independent,

P(Θ|Φ) =
m

∏
i=1

P(Θi|Φ) (2.5)

This independence assumption simplifies the inference process by allowing the posterior
over Θ to be computed separately for each E−gene. It is based on the assumption that
the connections between S−genes and E−genes (S → E) are independent for each
E−gene given Φ. In other words, given the causal structure Φ, assigning of an E−gene
to an S−gene does not influence the assignment of other E−genes. While this assump-
tion reduces computational complexity, it is important to recognize that dependencies
between different E−genes might exist in real biological systems due to shared regula-
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tory mechanisms. Ultimately for all experiments k on S−nodes, marginalized likelihood
over all parameters Θ is,

P(D|Φ) =
∫

Θ
P(D|Φ, Θ)P(Θ|Φ)dΘ

=
m

∏
i=1

n

∑
j=1

n

∏
k=1

P(Dik|Φ, Θij = 1)P(Θij = 1)
(2.6)

[38] allows the model to reflect the degree of belief in the existence of an edge. Generally,
including proper priors helps the Bayesian models to avoid overfitting by providing
regularization [39]. The prior matrix of all edge probabilities is an n× n matrix Φ̂,

P(Φ̂) = ∏
i,j

P(Φ̂ij) (2.7)

2.2.2 Likelihood function

The discussion around changes in likelihood models of NEMs is crucial because it re-
flects the ongoing efforts to adapt this powerful analytical tool to various experimental
setups and data characteristics. This evolution in likelihood models allows NEMs to
remain relevant and practical in analyzing regulatory networks across a broader range of
experimental contexts. By examining these changes, we gain insight into how the model
has addressed practical challenges and expanded its applicability, ultimately enhancing
our ability to interpret and understand complex biological systems.

NEMs were originally formulated based on specific experimental design assumptions.
The initial work [34] relied on the presence of both positive and negative controls
alongside RNAi perturbation data. This setup allowed for a straightforward counting ap-
proach to measure observables, where effects could be quantified by comparing against
these controls. They have modeled the expression levels as binary random variable Eik

for observation Ei under experiment k.

p (eik | Φ, θi = j) =


eik = 1 eik = 0

α 1− α

1− β β

if Sj = 0
if Sj = 1

(2.8)

So the probability of eik = 1 when its parent Sj is not in the silence region Φ region (of
silenced hidden gene) is the type-I error (α). Similarly, the probability to observe eiik = 0
even though there is an effect on parent node Sj is equal to type-II error (β). For the
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binary data matrix D and uniform prior 1
p of E to S attachments, likelihood has been

defined as:

P(D|Φ) =
1

pm

m

∏
i=1

n

∑
j=1

l

∏
k=1

pα,β (eik | Φ, θi = j) (2.9)

However, this requirement poses significant limitations, as most real-world experiments
typically feature only a single control condition relative to the treatment (RNAi effects).
This discrepancy between ideal experimental design and common practice has led to
challenges in applying the original NEM formulation to many datasets.

Beta Uniform Mixture (BUM) models represent an advancement in statistical approaches
for analyzing gene expression data. These models address limitations inherent in previ-
ous versions of NEM. It operates on p-values derived from differential gene expression
analyses, typically conducted against a single control group. Under the null hypothe-
sis, p-values exhibit a uniform distribution, characterized by a flat probability density
function (PDF). Conversely, under the alternative hypothesis, p-values demonstrate a
skewed distribution with higher density near zero, decreasing monotonically as p-values
increase. [40] formulated the overall probability density function as a mixture of these
two distributions:

P(Dik) = γk + (1− γk) · f1(Dik), γ ∈ (0, 1) (2.10)

So P(Dik|Φ, θi) is a conditional value:

P(Dik | Φ, θi) =

{
f1(Dik) if Φ predicts an effect
1 otherwise

(2.11)

definition of f1, as knockdown effect, remains yet ambigious. A subsequent refinement
introduced by [38] is a three-component mixture:

f (Dik) = π1k + π2kBeta(Dik, αk, 1) + π3kBeta(Dik, 1, βk) (2.12)

where the summation of three mixture coefficients (πck) is equal to one. Since f1 indicates
knockdown effect, they have checked how the estimated f (obtained via EM algorithm)
is far from the maximum uniform part of the BUM model (π̂).

f (Dik) =
f (Dik)− π̂

1− π̂
(2.13)
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2.2.3 Formulation of NEM as Bayesian Networks

NEMs are a crucial tool for understanding how perturbations in biological systems, such
as signaling pathways, propagate across genes and proteins. Traditionally, NEMs pro-
vided a simplified framework that imposed certain restrictions to ensure computational
efficiency. However, a more flexible and generalizable approach models NEMs within
the framework of Bayesian networks, which not only justifies prior assumptions but
also significantly expands the model’s capacity for probabilistic inference, as explored in
[26].
By framing NEMs as Bayesian networks, we can more effectively manage complex signal-
ing hierarchies while accounting for both discrete and continuous data. This formulation
facilitates efficient inference, significantly reducing the search space for determining
the optimal network topology. The Bayesian approach not only provides flexibility in
modeling the probabilistic relationships between signaling and effect genes, but also
allows the integration of prior knowledge and real-world experimental data. As a result,
this reformulation enhances both the interpretability of the model’s outcomes and the
computational feasibility of uncovering intricate gene interactions.
In a Bayesian network (BN), we describe the probabilistic relationships between random
variables using a directed acyclic graph (DAG). As we point before, in the context of
NEMs, the random variables represent two main categories: signaling genes (S−genes)
and effect genes (E−genes). The S−genes are the direct target of perturbations, but
they are typically latent (not directly observed). The E−genes are the observed effects
of perturbations, making the system hierarchical, with S−genes influencing E−genes
through intermediate probabilistic pathways. The overall system can be modeled as a
Directed Acyclic Graph (DAG) where the vertices V(G) consist of both the signaling
genes S and the effect genes E, such that:

V(G) = S ∪ E (2.14)

This forms a two-layer structure where the S−genes influence the E−genes. The pertur-
bation of a signal s ∈ S leads to the observation of an effect e ∈ E. The model is designed
so that an effect is observable if there exists a directed path from an active S−gene to
that effect gene. The conditional probability of observing an effect given the state of its
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parent S−genes is defined as:

P(x = 1 | pa(x)) =

1, if any parent pa(x) = 1

0, otherwise
(2.15)

To compute the likelihood of the data D given a graph structure G, we need to assume
that the data is generated independently for each gene. The likelihood under the NEM
framework is given by the product of local probabilities across all S−genes and E−genes:

P(D | G, L) = ∏
s∈S

∏
e∈E

P(Dse | ese) (2.16)

where Dse represents the observation of effect e caused by signal s. When maximizing
this likelihood, we aim to infer the graph structure G that best explains the observed
data. This task is typically framed within the context of Maximum A Posteriori (MAP)
estimation, where we seek to maximize the posterior probability:

P(G, Θ | D) =
P(D | G, Θ)P(G)P(Θ)

P(D)
(2.17)

A simultaneous maximum a posteriori (MAP) for G and Θ can be formulated as [37]
suggests,

(Ĝ, Θ̂) = arg max
G,Θ

P(G, Θ | D) (2.18)

= arg max
G

(
arg max

Θ
P(D | G, Θ)P(Θ)

)
P(G)

Given prior knowledge about the network topology and parameters Θ, the goal is to
identify the most likely graph structure G and parameters Θ based on the data. The
posterior probability of a graph G, marginalizing over Θ, is given by:

P(G | D) =
∫

P(G, Θ | D)dΘ (2.19)

∝ P(G)
∫

P(D|G, Θ)P(Θ)dΘ

which, under certain assumptions, can be approximated by maximizing the product of
the likelihood P(D | G, Θ) and the prior terms P(G) and P(Θ).
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In the Bayesian framework, we often assume independent priors for the graph topol-
ogy and the parameters Θ. When observations are binary (active/inactive), beta priors
can be used to model the local probabilities [41]:

P(D | G) ∝
N

∏
j=1

∏
e∈E

∏
i∈{0,1}

Γ(Ne,i + αi)Γ(Ne,i + βi)

Γ(Ne,i + αi + βi)
(2.20)

where Ne,i represents the number of observations for each binary state of the effect gene,
and αi, βi are the parameters of the beta distribution. This formula encapsulates the
core likelihood in the presence of prior information about the graph. For continuous
observations, the Cooper-Herskovits formula, Equation (2.20), can be used, assuming a
normal distribution for the observed data. This is particularly relevant when dealing
with real-valued measurements from experiments:

P(D | G) ∝ ∏
e∈ϵ

∏
i∈{0,1}

∏
e∈E

√(
v

v + Ne,k

) Γ
(

α+Ne,k
2

)
(

β + se,k +
(

vnek
v+Ne,k

)
(x̄e,k − µ)2

)(α+Ne,k)/2
(2.21)

This continuous adaptation extends the application of NEMs to a broader set of experi-
mental data, making it more flexible.

2.2.4 Factor Graph

A factor graph is a bigraph used to represent the decomposition of a more complex
global function into simpler and smaller local functions, making it a generalization of a
Bayesian Network [42]. While Bayesian Networks represent conditional dependencies
among variables, factor graphs allow for a more flexible representation of any factoriz-
able function, including but not limited to probability distributions.
The original NEMs by [34] modeled relationships in a simple binary manner, where pair-
wise interactions were either present or absent. [43] extend this idea by incorporating a
more detailed approach to model gene interactions, particularly distinguishing between
activating and inhibiting regulations in biological pathways. This formulation uses a
factor graph framework, which offers a more flexible representation of relationships
between signaling genes (S−genes) and effect genes (E−genes). In Factor Graph Nested
Effects Models (FG-NEMs), the factor graph structure introduces two types of factor
nodes:

• Transitive factors (ω): These factors model the interactions between S−genes and
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capture whether the relationships are transitive (activating or inhibiting).

• Interaction factors (ρ): These factors represent the connections between S−genes
and E−genes.

It allow for six possible interaction modes between S−genes:

(1) A→ B (A activates B)

(2) A ⊣ B (A inhibits B)

(3) A = B (A is equivalent to B)

(4) A ̸= B (A and B do not interact)

(5) B→ A (B activates A)

(6) B ⊣ A (B inhibits A)

The factor graph representation of NEMs expresses the likelihood of the observed data
D, given a structure G as:

P(D | G) = ∑
S

∏
γeS1 ,γeS2

P(γeS1 , γeS2 | GS1,S2 , θeS1,S2)P(Se, S1 | γeS1)P(Se, S2 | γeS2) (2.22)

Here, the likelihood is defined in terms of the transitive factors ω and interaction factors
ρ, which regulate how the data D relate to the hidden states and interactions between
the genes. The prior probability of the S-gene network P(G) is defined through the factor
graph as:

P(G) = ∏
ωS

∏
ρS1,S2

ω(GS1,S2)ρ(GS1,S2) (2.23)

This formulation indicates that each pairwise relationship between S−genes (S1, S2) is
associated with a transitive factor (ω) that ensures the consistency of the interactions
and an interaction factor (ρ) that defines whether the interaction is activating, inhibiting,
or neutral.

To infer the optimal S−gene network that maximizes the posterior probability P(G |
D), NEM uses the maximum a posteriori (MAP) estimation:

Ĝ = arg max
G

P(G | D) = arg max
G

∑
Θ,H

P(G, Θ, H | D) (2.24)
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where Θ represents how E−genes are attached to the network of S−genes and H repre-
sents the hidden states of E−genes (e.g., upregulated, downregulated, or no change). By
applying the same assumptions as in the original NEM framework, we can simplify the
MAP expression:

Ĝ = arg max
G

P(G) ∑
Θ,H

P(H | G, Θ)P(D | H) (2.25)

Since the data D consists of observations for many E−genes, each with a hidden state
He, we can decompose this sum across all E−genes:

Φ̂ = arg max
Φ

P(Φ)∏
e∈E

Le(Φ) (2.26)

Where Le(Φ) is the marginal likelihood for each E−gene, conditioned on the network
structure Φ. Each Le is further factored into pairwise S−gene terms, making it computa-
tionally efficient to calculate.

2.2.5 Learning Networks in NEMs

To comprehensively evaluate a network hypothesis within the NEMs framework, one
often resorts to the Bayes formula. As we declared in Equation (2.3), bayesian approach
allows the integration of prior knowledge with observed data, accompaining a posterior
probability that can then be utilized to score and rank different network models.
The key challenge in learning the structure of S−gene networks is that the number of
possible network topologies grows exponentially with the number of genes, making
exhaustive enumeration feasible only for very small networks. This combinatorial explo-
sion necessitates the use of propper methods for exploring larger networks.
Another issue is likelihood equivalence that arises because NEMs represent subset rela-
tionships that are inherently transitive [34]. In other words, different networks that only
differ in their transitive edges can not be distinguished by the standard Bayesian scoring
scheme. Several approaches have been proposed to ease this limitation, but they often
focus on estimating a single high-scoring network rather than differentiating between
transitively equivalent structures.
To address the scalability issues, pairwise and triple search methods were introduced to
restrict the search space and make network inference more tractable[44]. The pairwise
search method focuses on inferring the relationships between pairs of S−genes. For each
pair of genes S1 and S2, four possible interaction models are considered:
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(1) S1 → S2 (effects of S1 are a superset of the effects of S2),

(2) S1 ← S2 (effects of S1 are a subset of the effects of S2),

(3) S1 ↔ S2 (effects of S1 and S2 are indistinguishable),

(4) S1 · S2 (the genes are unrelated).

For each pair, a Bayesian score is computed, and the maximum a posteriori (MAP) model
MS1,S2 is selected. This approach enhances efficiency, allowing for fast inference even
with a large number of genes. But it treats each pairwise edge independently, which
limits the accuracy of the inferred network due to the potential introduction of false
edges or missed connections in the presence of noise.
To address the limitations of pairwise search, [44] extends the analysis to triplets of
S−genes in a method called the triple search. This method evaluates all possible interac-
tions between three genes, considering 29 possible quasi-order structures (or transitively
closed graphs) for each triplet. The goal is to compute the MAP model MS1,S2,S3 for each
triplet. Once the highest-scoring models for each triplet are identified, they are combined
into a final graph using edge-wise model averaging. For each edge, a confidence score
is computed based on how frequently it appears in the triplet models. The final graph
contains edges with confidence scores exceeding a predefined threshold.
One of the key challenges in network inference is the presence of noise in the data, which
can lead to false positives (FP) and false negatives (FN). For instance, the true relation-
ship S1 → S3 may be missed due to incomplete overlap in the perturbation effects of S1

and S3. Although triple search does not always guarantee a transitively closed graph,
it is better equipped to handle such issues. It considers a more comprehensive set of
possible interactions by evaluating triplets rather than pairs, resulting in structures that
are closer to a quasi-order [44].
In other approach, [38, 37], had applied greedy hill climbing search in NEM context.
Greedy hillclimbing search is an optimization algorithm that iteratively improves a
solution by changing a single element of the current solution that results in the greatest
increase in the objective function. It continues this process until no better neighboring
solutions are found. This can potentially result in a local maximum rather than the global
optimum.
In NEMs, this search begins with an empty initial graph and incrementally adds edges
as the observed data better fits the updated graph.
The module network approach, introduced by [38], was also developed to address the
challenges associated with inferring large networks in NEMs. The module network
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method breaks down this complexity by dividing the network into smaller, manageable
subgraphs, or modules. This approach begins by applying hierarchical clustering to the
S−genes, meaning grouping S−genes that exhibit similar E−gene response patterns
into one cluster. The rationale is that genes with similar effects on E−genes are likely to
be positioned close to each other in the signaling pathway. Each module consists of no
more than four S−genes. By limiting each module to four nodes, the network structure
within each module can be thoroughly explored, identifying the optimal subnetwork for
that module.
Once the optimal structure for each module is identified, the modules must be recon-
nected to form the complete network. [38, 45] proposed two strategies for this task. The
first approach uses pairwise model testing, where connections between nodes from
different modules are established by evaluating the likelihood of pairwise interactions.
The second approach, utilizes the log-likelihood of the entire network, reconnecting
modules by selecting links that result in the highest overall network likelihood.
By dividing the network into smaller, modular subgraphs, this method significantly
reduces the computational burden of large-scale NEMs. Additionally, it aligns well with
the biological reality of modularity in signaling pathways, where certain sub-networks
function independently but are connected to form larger regulatory systems.

2.3 Temporal Dynamics in Nested Effects Models with
DynoNEM

The motivation for including time dimension to NEMs stems from the fact that traditional
versions of NEMs were analyzing biological networks from static perturbation data.
So they fall short in capturing the temporal nature of biological processes, especially
in systems with distinct time scales, such as transcriptional networks. These networks
involve sequential regulatory effects that occur over varying time intervals, making
static approaches insufficient for distinguishing between direct and indirect interactions
or capturing feedback mechanisms.
Dynamic NEMs (D-NEMs) [46] partially addressed this gap by incorporating time
delays into their models. However, they relied on computationally intensive methods,
such as Gibbs sampling, and their approach to inferring upstream signaling times
was less biologically grounded. DynoNEMs were introduced in [47], advances these
efforts by integrating time-series perturbation data into NEMs through a probabilistic
framework. This allows for a more biologically realistic and computationally efficient
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analysis, enabling the modeling of temporal dynamics and providing deeper insights
into regulatory networks.
If an experiment affects Sj at time t, the changes may appear in downstream Ei with a
delay of ∆t. This delay explicitly allows the model to capture chain of effects unfolded
over time. The model operates on the principle of unrolling the hidden network Ψ over
time, Influence from nodes i to node j transmited by delay Ψij:

Si(t)→ Sj(t + Ψij), t = 1, . . . , T −Ψij (2.27)

Unlike traditional NEMs, DynoNEM assigns weights to connections Ψij, reflecting the
time-dependent strength of influence. Also this model operates on continouse time-series
data (p-values from differentialy expressed effects). Let Di(t) denote the observed effect
profile for Ei at time t under experiment k. Likelihood function was described as follow:

p(D|Ψ) = ∏
i∈E

∑
s∈K

∏
k∈K

T

∏
t=1

p(Dik(t)|Ψ, ΘiS = 1)Pr(ΘiS = 1) (2.28)

which θ describes the connections between S and E genes. To model perturbation re-
sponse under alternativehypothesis, for an expected effect, dynoNEM use the BUM
(Beta-Uniform Mixture) model from [40]. Additionally, DynoNEM incorporates a prior
on the network structure Ψ to penalize larger time delays and promote sparse, biologi-
cally plausible networks.

P(Ψ|ν) ∝ ∏
i,j

exp

(
−
|Ψij − Ψ̂ij|

ν

)

DynoNEM differs from traditional NEM models by moving beyond the first-order
Markov assumption, which only considers immediate interactions (k = 1). Instead, by
having weighted edges in mimicing delay behavior, it allows for connections that span
multiple time steps (k > 1), capturing longer-term dependencies. Such assumption is
often missed in simpler models like Dynamic Bayesian Networks. Also, by integrating
time-series data, DynoNEM overcomes issues with static NEMs, such as indistinguish-
able network structures and the inability to model feedback loops. This makes it both
biologically more realistic and computationally practical.
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2.4 Objectives of this Thesis

NEMs have been widely successful in learning latent, causal network structures in
biological systems. However, they exhibit key limitations that need to be addressed to
enhance their applicability and accuracy. The primary goal of this work is to develop a
new class of probabilistic graphical models within the framework of Dynamic Bayesian
Networks (DBNs), overcoming challenges inherent in NEMs.
First, NEMs assume a strictly deterministic propagation of perturbation effects through
the hidden variable network. If a path exists from node A to node B, the model assumes
that perturbing A will always perturb B. This simplistic view neglects compensatory
effects, which are common in biological systems. These effects may arise due to nonlin-
earities or the activation of unknown system components that influence downstream
nodes, such as B, making the current formulation biologically unrealistic in such cases.
Second, the current NEM approach represents hidden states (e.g., protein activities)
as binary variables, where a gene knockdown corresponds to decoupling a specific
hidden variable from its inputs and setting its activity to 0. This approach performs what
are referred to as "ideal interventions" [27], assuming perfect and complete disruption.
However, experimental perturbations in biology rarely achieve such precision, which
limits the real-world applicability of the model.
Additionally, NEMs require each hidden variable (node) to be perturbed individually,
restricting their utility in scenarios involving combinatorial perturbations. Real-world
biological systems often involve simultaneous perturbations of multiple network com-
ponents, either due to non-specific effects of drugs or the cumulative effects of genetic
mutations, such as those in cancer. These combinatorial perturbations often provide
richer insights into the true network structure, which NEMs fail to exploit effectively.
One of the key limitations of DynoNEM is its reliance on discrete time steps to represent
delays in signal propagation. While this approach provides a simplified view of time-
dependent interactions, it imposes artificial constraints on the temporal dynamics of
biological systems. Biological processes, such as gene regulation and protein signaling,
occur in continuous time, often governed by nonlinear and dynamic changes that cannot
be fully captured by a discrete time-step framework.
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2.5 Toward a Unified Framework for Dynamic and Causal
Network Inference

To address the limitations of existing Nested Effects Models (NEMs) and their extensions
like DynoNEM, we propose a new modeling framework that combines the strengths of
State Space Models (SSMs) and Structural Causal Models (SCMs). SSMs provide a robust
foundation for representing dynamic systems, particularly in capturing the temporal
evolution of hidden states and their relationship to observable variables. However, SSMs
lack an explicit causal framework, which is essential for understanding the underlying
mechanisms driving system dynamics. SCMs complement this by explicitly modeling
causal relationships and addressing questions of "what if" scenarios. Together, these
approaches offer a comprehensive solution for reconstructing dynamic and causal net-
works in complex biological systems.
The following sections explore the foundational principles of SSMs and SCMs, highlight-
ing their unique strengths and their integration into a unified framework that bridges
temporal and causal modeling.

2.5.1 State-space models (SSMs)

State Space Models (SSMs) are a natural choice for modeling the evolution of dynamic
systems because they capture how hidden states change over time and relate to observ-
able data. These models rely on two fundamental equations: the state transition equation,
which describes how the system’s hidden states evolve over time, and the observation
equation, which links these hidden states to observable outputs. The continuous-time
dynamics are described by an ordinary differential equation (ODE):

dS
dt

= f (St, Ut) (2.29)

where St represents the hidden states at time t, and f defines how these states evolve dy-
namically. For systems modeled in discrete time, the state transition can be approximated
by this first-order Markov process:

St = FtSt−1 + BtUt + wt (2.30)

where Ft describes the state transition matrix, Bt incorporates external influences (Ut),
and wt captures process noise.
The relationship between hidden states and observed data can also be framed proba-
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bilistically:

D(t) ∼ g(S(t)) + vt (2.31)

where D(t) are observed variables dependent on the hidden states S(t), with g describing
the probabilistic mapping. A linear case of this mapping, often used in SSMs, is given
by:

Dt = HtSt + vt (2.32)

Ht is the observation matrix, and vt represents observation noise.
SSMs also share a strong relationship with Probabilistic Graphical Models (PGMs) and
in particular with Dynamic Bayesian Networks (DBNs). SSMs can be seen as a specific
instantiation of discrete time DBNs, where the nodes represent state variables over time,
and the edges encode temporal dependencies. The state transition equations in SSMs
parallel the transition models in DBNs, while the observation equations link hidden
states to observable variables, much like observation models in DBNs. However, not
all DBNs are state space models. In particular, continuous time DBNs (CT-DBNs) [48]
generalize DBNs to continuous temporal dynamics but do not necessarily conform to
the structured latent variable framework of classical SSMs. This connection enables the
use of inference techniques developed for DBNs, such as Kalman Filtering [49] for linear
models and Particle Filtering for non-linear systems, to estimate hidden states in SSMs.

2.5.2 Structural Causal Models (SCMs)

While SSMs excel at modeling temporal dynamics and hidden state evolution, they do
not inherently capture causal relationships between variables. In biological systems,
understanding causality is crucial for deciphering the mechanisms driving dynamic pro-
cesses. Structural Causal Models (SCMs) fill this gap by providing an explicit framework
for representing and reasoning about cause effect relationships. Incorporating SCMs into
the modeling framework enables researchers to move beyond correlations and temporal
dependencies to uncover the causal structure of biological networks.
This integration not only complements our previous discussion on SSMs and DBNs but
also extends our analytical capabilities to more nuanced and realistic representations of
how systems evolve and respond to various influences over time.
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2.5.3 Integrating SCMs and SSMs

Taking the basic idea from Structural Causal Models (SCMs), we can show our hidden
system as a graph with S nodes and directed edges among the nodes as causal relations
and a function which translates causality relations to outputs usable by observations
[21].
However, real-world biological systems are dynamic. So, causal effects unfold over time
rather than occurring instantaneously. SSMs extend SCMs by incorporating temporal
dynamics, modeling how the states of the system evolve continuously and how causal
effects propagate across time. To model this, the tempotal dynamics of the hidden layer
can be defined by ODE in Equation (2.29). This ODE describes how changes in one
hidden state causally propagate to others over time, reflecting the dynamic nature of
biological systems.
Biological systems are often partially observable, meaning that we cannot directly
measure the hidden states (S). Instead, observe downstream effects (D), which are prob-
abilistically linked to the hidden states S, can be described by Equation (2.31). The causal
structure provided by SCMs ensures that we can interpret g in terms of cause-effect
relationships, while SSMs model how these effects are dynamically propagated.
Interventions play a key role in revealing the causal structure. When an external force
(e.g., gene knockout, drug treatment) is applied, it modifies the dynamics: dS

dt . By com-
paring the observed downstream effects (D) before and after the intervention, we can
infer the causal relationships and refine the dynamic model.
This unified approach lays the foundation for refining network inference techniques, as
explored in the subsequent chapter.





3 Ordinary Differential Equation based
NEMs

While it is challenging to determine causal dependencies from observational data in
general, recent developments in structural causal models [21] show that causal inference
is sometimes possible under specific assumptions (e.g., causal Markov condition, faith-
fulness, no hidden confounders). Nonetheless, interventional or time-resolved data can
substantially reduce the reliance on such strong assumptions, making causal relation-
ships easier to detect and validate. This thesis focuses on the benefits of time-resolved
data—often the most direct and robust way to uncover causal structure.

It is well known that causal dependence of variables in general cannot be inferred
from observational data alone. It first needs some additional assumptions that define
causality in the probabilistic context [21]. Ideally, one would like to have interventional
data, and even better, one would like to have time-resolved data. My thesis deals with
the latter situation, which is best suited for revealing causal relationships between vari-
ables.

The main objective is an identification of the causal relations between a set of vari-
ables with continuous dynamics. S = (Si(t))i=1,...,n which are not observable directly
(hidden nodes).

3.1 General Structure

We distinguish between observables E and principally unobservable nodes S. The
weighted graph between all nodes S can be represented via an adjacency matrix W ∈
Rn×n with n := |S|. Connections between S and E nodes are represented by another
rectangular adjacency matrix θ ∈ {0, 1}n×m with m := |E|.
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3.2 Modeling the dynamics of hidden nodes

The matrix W = (wij) is meant to determine the dynamics of S(t) such that wij describes
the effect of node Si on Sj. Using an ordinary differential equation (ODE), an obvious
choice would be:

dS
dt

(t) = WTS(t) (3.1)

However, such a system has an exponential solution:

S(t) = exp(Dt) ∗ S(0) (3.2)

for some matrix D. The (complex) eigenvalues d1, ..., dn of D characterize the qualitative
behavior of the system: If |di| > 1 for some i, the system will diverge (almost surely),
which is not compatible with the behavior of a biological system. If |di| < 1 for all i, the
system will converge to the zero solution, S(t) = 0, also not observed in biological sys-
tems. Even if |di| = 1 for all i (which, by the way, would require a an extensive tuning of
W) the imaginary parts of the eigenvalues would lead to oscillatory behavior. Achieving
|di| = 1 for each eigenvalue is a highly restrictive condition, requiring very careful or
‘fine-tuned’ choices of W. In practice, any slight change in W would typically push some
eigenvalues inside or outside the unit circle, causing convergence or divergence of S(t)
rather than purely sustained oscillations.
While this can occur in linear systems (think of the cell cycle as the main pseudo-
oscillatory process), the regulatory circuits we will investigate aim to maintain cellular
homeostasis, i.e., they are designed to reach a steady-state. Therefore a standard linear
ODE approach does not satisfy our needs.
As linear ODEs have proven useful in biological network reconstruction ([50, 51]), our
goal is to design a differential equation system which is locally close to a linear ODE. To
avoid exponential dynamics, we limit the influence of individual nodes Si(t) on other
nodes by a sigmoid function σ : R→ [−1, 1],

dS
dt

(t) = WTσ(S(t)) (3.3)

Specifically, we chose σ(x) = tanh(x). Based on our experience the actual choice of σ

has little effect on the qualitative outcome. While this step limits the values of dS
dt , it is not

enough to avoid divergence. We therefore add a dampening term αS(t), α > 0, which
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limits the values of S to a finite range and also dampens oscillatory behavior.

dS(t)
dt

= WT ∗ tanh(S(t))− αS(t) (3.4)

This equation that is at the heart of our model, mimics the rate of enzymatic reactions in
Michaelis–Menten kinetics [52].
The tanh function (or sigmoidal/logistic functions) saturates at large positive or nega-
tive arguments, much like the Michaelis–Menten equation saturates at high substrate
concentration. It is a convenient smooth approximation for “bounded” enzymatic or reg-
ulatory rates, ensuring that reaction velocities do not grow unboundedly with increasing
substrate levels.

3.3 steady-state and attractors of hidden nodes

To begin with, it is important to highlight that Equation (3.4) implies that irrespective of
the starting condition S(0), the state vector S(t) can take only values in a bounded range
of Rn. We show that ∥S(t)∥ remains in a compact domain because if any Si(t) grows too
large, the ODE’s negative feedback pulls it back down (and vice versa). This ensures
solutions are globally bounded.
To see this, let |W| = ∑ij |wij| and realizing that for Si(t) > |W|/α

dSi(t)
dt

≤ |W| − αSi(t) < 0 (3.5)

and for Si(t) < −|W|/α

dSi(t)
dt

≥ |W| − αSi(t) > 0 (3.6)

Thus, irrespective of S(0), the trajectory S(t) will approach the compact cube [−|W|/α, |W|/α]n

monotonically in every coordinate and never leave it again. As a consequence, S(t) has
an attractor ([53]) (this implies that if the attractor is a point, it converges. if the attractor
is a curve, it may run exactly on that curve, which means it oscillates, or it might ap-
proach the attractor, which means this is a genuine attractor.). This in turn implies that
the ergodic limit

Si(∞) = lim
t→∞

1
t

∫ t

0
Si(t′)dt′ (3.7)
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exists. We use this value to describe the (average) long term behavior of our system.
Equation Equation (3.4) has one obvious steady-state solution, S(t) = 0. To find non-zero
steady-state solutions S∗, setting the derivatives to zero leads to the condition

S∗ = α−1WTσ(S∗) (3.8)

We search for steady-state solutions by minimizing∥∥∥S∗ − α−1WTσ(S∗)
∥∥∥2

2
(3.9)

by starting at some random state S(0) and running an ODE solver long enough.
Comment: There might be several solutions, but rare. We take the steady-state solution
with the largest value of S∗ and call it as ∥S∞∥2. We merely restart as long as we do not
find a solution different from 0.

3.3.1 Notes on steady-states of a model

In system theory, the steady-state of a dynamical system is considered as a state where
the behavior of variables (state variables) without any external force or perturbation
does not change over time. This aligns with the fact that the system tends to stay in
configurations of a local or global optima of the energy landscape (minimal energy or
maximal stability). Such optimas are characterized by the minimization of the system’s
gradient.
The gradient of function f at point p is denoted by:

∇ f (p) =

[
∂ f
∂s1

(p)
∂ f
∂s2

(p)

]
=

[
0
0

]
(3.10)

While the gradient could be derived analytically, in this case, we relied on numerical
solvers to find the roots of Equation (3.8) directly.
In the two dimensional examples of our dynamical system Equation (3.4), we have
S = (s1, s2). The function f is then the “energy-like” (or Lyapunov-like) potential whose
gradient matches (up to sign) the right-hand side of the ODE. Concretely:

• s1, s2 are simply the two coordinates of the state vector S ∈ R2.

• f (s1, s2) is the scalar function whose gradient satisfies :

∇ f (S) = α S − WT tanh(S).
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Figure 3.1: steady-states and Energy Landscape in Dynamical Systems described in
Equation (3.4) for two different W matrices. The steady-states, represented as

dots.
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Setting ∇ f (S) = 0 recovers the steady-state condition

Ṡ = 0 ⇐⇒ WT tanh(S) − α S = 0.

For two different W matrices, the minimum of gradient of our dynamical system
Equation (3.4), indicative of steady-states, are depicted as dots in the contour plot of
Figure 3.1. The contours plot depicts level sets of f . The dots (steady-states) are precisely
those points where the system’s gradient vanishes, i.e. where

WT tanh(S) − α S = 0.

As you can see, under specific assumptions, different initial conditions subjected to
the same constraints (function) can result in divergent dynamics, leading to various
steady-states, marked by the dots in the figure. However, the symmetric behavior of
tanh function causes our dynamics to have two attractors with the same magnitude but
opposite signs.
It is necessary to mention that, in biological systems modeling we assume the system is
initially at a stable steady-state; for computational stability, this initial state should not
be in the vicinity of zero. Additionally, having negative state is not is not biologically
meaningful for many modeling scenarios, as variables such as concentrations of proteins,
metabolites, or gene expression levels cannot take negative values in real systems. So,
when the ODE of Equation (3.4) starts from any sufficiently large positive value, it will
settle into one positive steady-state also.

3.4 Modeling interventions of the system

Our main objective is to find causal relations between S nodes as it describes our obser-
vations in E. To bridge the gap between our ODE model described in Section 3.2 and our
overarching goal of learning the causalities, we draw upon the concept of a Structural
Causal Model (SCM). As we discussed in Section 2.5.2, an SCM is a framework that
enables us to infer causal relationships by introducing interventions on variables within
a system. In this context, we can view a causal model as equivalent to an ODE, where any
causal connections between variables can be interpreted as non-zero coefficients within
the ODE and vice versa. This connection serves as the foundation for our approach.

In designing our interventions, we introduced a simplifying assumption for the sake
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of clarity. We assumed that the flow of information from direct targets of interventions
was consistently interrupted by perfect inhibition. This implies that the state transitions
of such target nodes become constantly zero, irrespective of the dynamics of any other
related S nodes. However, the state of child nodes (direct or indirect) of the inhibited
targets in our causality structure is influenced by this inhibition. By this description,
we now define our objective as observing the deviations in the state of a variable S
compared to its steady-state due to the excitation of another hidden variable to gain
insights into causalities.
In the language of an SCM, these ‘perfect inhibitions’ correspond to do-interventions on
specific nodes. Concretely, if we denote a node S̃ as a direct target for intervention, then
we can write do(S̃ = 0) to indicate that S̃(t) remains fixed at zero regardless of the usual
ODE dynamics. Equivalently, from the ODE perspective, we remove S̃’s usual update
equation and force dS̃

dt = 0 and S̃(t) = 0 for all t, reflecting a perfect inhibition. This
manipulation severs any causal influence of S̃ on its children, allowing us to observe
how downstream states in the network respond to (or no longer receive) inputs from S̃.
For nodes not in the path from the inhibited target, their activity levels remain un-
changed, as they would in a steady-state scenario. Although depletion may cause a
slight decrease in activity levels, this effect is considered negligible. This approach allows
us to distinguish between changes in activity levels resulting from depletion and those
caused by inhibitions within our model.
When imposing an experimental perturbation j to the system, we model this by replacing
W in Equation (3.4) by a matrix W j. Here, W j is obtained from W in a canonical way:
When S−node i is perturbed in experiment j, the i-the column of W, corresponding to
the inputs of node i, are set to 0. This obviously leads to the silencing of node i (Si(t)→ 0
as t → ∞), and Sj∗

i = 0 for every (pseudo) steady-state of in experiment j. Denote
by Sj(t; W j, α) the dynamics of the system under perturbation/experiment j, given by
equation Equation (3.4):

dSj

dt
(t; W j, α) = (W j)Tσ(Sj(t))− αSj(t) (3.11)

ByW = (W1, ..., WV), we denote the set of matrices encoding all perturbation experi-
ments. By this definition, sj

k(t) will be state of hidden variable k under j experiment.
For W j, Equation (3.9) can be rewritten as:

Sj∗ = α−1W jT
σ(Sj∗) (3.12)
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Regarding S0 = S(0) as the basic steady-state of hidden variables in control situation (no
intervention), we run ODE solver long enough to find roots Sj(∞) for Equation (3.12).
So sj

k(∞) is the ergodic limit for variable k under experiment j as t→ ∞.

3.5 Linking hidden nodes to observables

Recall that θki ∈ {0, 1} indicates whether hidden node k is a parent of the observabe i,
meaning that changes in k will affect i. We assume that each observable can have exactly
one parent. The parent of i ∈ E is denoted by pa(i) ∈ S. The matrix θ = (θij) is used to
propagate the dynamic changes in the hidden network to the observables.
Let oj

i(t) ∈ R denote the observation made at node i, i ∈ E, under some experimental
condition j, j ∈ {1, ..., V}, at time t. The full data therefore is D = {o1

1, ..., oj
i ...}. We

assume that there is a “control” or “null” condition in which the system is in its basic
steady-state. Upon perturbation, we are interested in modeling the relative deviation
from this basic state. Therefore, we take oj

i(t) as the absolute log fold change of the value
oj

i(t) over its basic state value. When doing so, small positive values will indicate small
effects, whereas strong effects will lead to large positive values. As there will be random
fluctuations of our measurements, be it due to technical limitations or to biological
variation, we assume that the observations oj

i(t) are drawn from a mixture distribution

oj
i(t) ∼ (1− γ

j
i(t)) · f j

0 + γ
j
i(t) · f j

1 (3.13)

where f j
0 is the distribution modeling random fluctuations and f j

1 models the distribution
of relevant changes. These distributions can depend on the experimental condition j. For
simulation study, we use normal distributions for both distributions that were truncated
at 0,

f j
0 ≡ N+(0, σ

j
0) (3.14)

f j
1 ≡ N+(µ

j
1, σ

j
1) (3.15)

The mean and variance parameters are estimated from the data (see in Section 3.6). Let
Γ = {σj

0, σ
j
1, µ

j
1; j ∈ E}.

The mixture coefficient γ
j
i(t) ∈ [0, 1] is a function of the activity of the (hidden) parent
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k = pa(i) of i:

γ
j
i(t) = tanh

∣∣∣sj
k(t)− s0

k

∣∣∣∣∣∣sj
k(∞)− s0

k

∣∣∣ (3.16)

Notable, the magnitude of perturbation probability γ
j
i(t) corresponds to a higher

likelihood of perturbation of S node at a time. In other words, we want to see how
dynamical state of node k = pa(i) under experiment j is far from the wild-type steady-
state s0

k , and normalize it with the distance of two steady-states (under the corresponding
experiment vs wild-type). Recall W, Θ, Γ , where Γ is the set of all parameters of the
mixture model in all experimental conditions Γ = {σj

0, σ
j
1, µ

j
1; j ∈ E}. Recall that θik is the

probability that S−node k is the parent of E−node i. Then

P(D | W , α, Θ, Γ) =
V

∏
j=1

∏
i∈E

∑
k∈S

θik

T

∏
t=1

p(oj
i(t) | Sj

k(t; W j, α), Γ) (3.17)

The concerns of numerical underflow of Equation (3.17) is described in Section .0.

3.6 Parameter Learning

The assignment probabilities : Θ need to be specified beforehand, by default we choose
a uniform prior θik = 1/|S|. In the presence of prior knowledge, this prior can be ex-
changed by an informative prior.

Estimating Parameters of the mixture model : The mean and the variance parameters
Γ are estimated from the data using an EM algorithm. The Expectation-Maximization
(EM) algorithm is a powerful iterative method that is well-suited for scenarios involving
latent variables or incomplete data to estimate the parameters of the distributions. In
our modeling, it allows us to iteratively estimate the parameters of the truncated normal
distributions that model the random fluctuations ( f0) and the relevant changes ( f1) in
the data.

EM Algorithm Steps:

• Initialization: Start with initial guesses for the parameters σ0j, µ1j and σ1j. These
can be derived from simple statistics of the data, such as the overall mean and
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variance, or by using prior knowledge.

• E-step (Expectation step): In this step, the posterior probability that i-th data point
belongs to the f1 by estimated parameters j will be updated.

τij =
πj f1j(xi)

πj f1j(xi) + (1− πj) f0j(xi)
(3.18)

where πj is the mixing factor.

• M-step (Maximization step): In this step, we update the parameter estimates by
maximizing the expected log-likelihood computed in the E-step. The updates for
the parameters, for f0 and f1 (Equation (3.14) and Equation (3.15)), are given by:

µ̂
(t+1)
1j =

∑N
i=1 τijxi

∑N
i=1 τij

(3.19)

σ̂
(t+1)
1j =

√√√√√∑N
i=1 τij

(
xi − µ̂

(t+1)
1j

)2

∑N
i=1 τij

(3.20)

σ̂
(t+1)
0j =

√√√√∑N
i=1(1− τij)x2

i

∑N
i=1(1− τij)

·

√√√√√√√√1 +
ϕ

(
a

σ
(t)
0j

)
1−Φ

(
a

σ
(t)
0j

)


ϕ

(
a

σ
(t)
0j

)
1−Φ

(
a

σ
(t)
0j

) − a

σ
(t)
0j

 (3.21)

• Iteration: Repeat the E-step and M-step until convergence, which is typically
determined when the changes in the parameter estimates between iterations fall
below a predefined threshold.

Derivation of the σ̂
(t+1)
0j is included in Section .0.

Learning W and α via MCMC: The parameters of the dynamic system, W and α ,
are learned by a Markov Chain Monte Carlo (MCMC) algorithm. Note that for learning
W , only W needs to be learned, as the matrices W j inW are constructed from W using a
fixed scheme.
One possibility to learn W is to sample from the posterior distribution P(W | D, q).
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This can be achieved via Metropolis-Hastings Markov-Chain Monte Carlo (MCMC)
sampling. More specifically, we define the following possible MCMC moves for any
uniform randomly selected edge i→ j(i ̸= j):

(i) insert new edge i→ j, i.e. sample weight wij from N(ν, τ)

(ii) delete edge i→ j, i.e. set wij = 0

(iii) swap weights of two edges i→ j and j→ i

(iv) modify edge weight, i.e. log wij 7→ log wij + N(0, ζ2)

Each random move from these four moves is chosen uniformly. Each MCMC move
(resulting in a modified weight matrix W ′) is accepted with probability

min
(

1,
p(D |W ′, Q)p(W ′ | ρ)
p(D |W, Q)p(W | ρ)

)
(3.22)

as Metropolis Hasting ratio.
Since the true W = (wij) will typically be non-identifiable from limited data, it is relevant
to define a prior distribution. Here we use an edge-wise prior motivated by altered
defenition from the spike and slab [54], which allows for sparse models and at the same
time allows for incorporating prior knowledge, if available:

wij | ρij ∼ (1− ρij)δ0 + ρij (3.23)

where δ0 denotes a point mass at zero with Lap(0, β) distribution. The prior can be
understood as follows:
ρij defines the degree of certainty about the existence of edge i → j. A larger value
increases the chance for wij ∼ Uni f orm(0, 1).
That means the edge weight wij is given a higher chance to be different from zero. On
the other hand, a small ρij increases the chance for wij = 0. Hence, our prior enforces
sparsity for edges with low a priori confidence and increases the probability of non-zero
weights for high confidence edges.
Note that due to edge-wise independence p(W | ρ) = ∏ij p(wij | ρij).

3.7 Simulation Studies

We evaluated the performance of our proposed model in Equation 3.4 and Equation 3.17
by reconstructing networks of different structures and complexity by various parameters.



42 3 Ordinary Differential Equation based NEMs

This evaluation process was methodically structured to assess the model’s robustness
and accuracy across a spectrum of network configurations. In the first part of our eval-

S1

S2 S3

(a) Feed forward

S1

S2 S3

S4

(b) Bifan

S1

S2 S3

S4

(c) Diamond

Figure 3.2: Motif Structures

uation, we began with simple network patterns known as motifs, which are common
in real-world networks. These motifs which are shown in Figure 3.2, are like building
blocks in the study of complex networks. Starting with them helped us understand how
well our model could reproduce basic interaction patterns, providing valuable insights
into network principles.
To further evaluate our model on larger structures, we extended our analysis to subnet-
works of KEGG pathways [55]. Specifically, we used 5 and 10-node graphs, as defined
in the supplementary material of [47], to allow a one-to-one comparison of odeNEM
results with dynoNEM. This transition from small motifs to larger, biologically relevant
networks allowed us to carefully assess how effectively odeNEM handled more intricate
network structures and parameter settings.

Importantly, while dynoNEM results were referenced from the original publication,
the method was not rerunnable, which restricted direct re-validation of its performance
against our approach.

Having graph structures, related data has been generated also. As we described in
Section 3.4, perfect inhibition of a direct target node can simulate an RNAi experiment.
This idea were also applied to simulate knockdown of a hidden node (S−gene) in our
sampled networks.
For a W matrix matching to a motif structure and starting from steady-states as initial
values for the hidden variables, which are set sufficiently away from zero to avoid com-
putational instabilities, we utilize Equation (3.11) to capture the dynamics of a hidden
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Figure 3.3: Dynamics of hidden layer in feed forward network

layer under inhibition of each S−nodes. These dynamics levels have been translated
to perturbation levels γ, by Equation (3.16), to generate data with our mixture model
Equation (3.13). An extensive example of state levels and perturbation levels of feed
forward motif network is provided in Figure 3.3. This captures how odeNEM capture
expected hidden dynamic behavior upon each experiments correctly. Experiments in
our simulation studies are single complete inhibition of a node. Figure 1 and Figure 2
are also showing the same in supplementary.
To assess the convergence of the MCMC chains, we performed multiple diagnostic
checks, including trace plots, likelihood convergence, and autocorrelation analysis. The
trace plots were examined to ensure the stability and proper mixing of the chains over
iterations, indicating stationarity. Likelihood convergence was analyzed to confirm that
the overall posterior likelihood stabilized, demonstrating the chains had reached the tar-
get distribution. Additionally, autocorrelation was evaluated to verify the independence
of samples and the effective exploration of the parameter space. Together, these checks
provide a validation of the convergence and reliability of the MCMC results.
To mitigate the inherent randomness in the MCMC process, we have averaged the
simulation and inference results over five iterations for each network configuration.
All computational runs described in this chapter, as well as the subsequent chapters,
were performed on the CHEOPS cluster using the batch job scheduler, supported by the
Regional Computing Center (RRZK) at the University of Cologne.
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3.7.1 Evaluation Metrics

The performance of our proposed propagation model in capturing the structural proper-
ties of true networks is first validated by using two statistical measures:
Area under the Receiver Operating Characteristic curve (AUC-ROC) : The ROC curve
illustrates the relationship between the True Positive Rate (TPR) and the False Positive
Rate (FPR) across different threshold values. The TPR and FPR are calculated as follows:

TPR =
TP

TP + FN
(3.24)

FPR =
FP

FP + TN
(3.25)

where TP is the number of true positives, FN is the number of false negatives, FP is the
number of false positives and TN is the number of true negatives.
The AUC-ROC is the area under this curve, measuring model’s ability to distinguish
between classes and is particularly useful in situations where there is an imbalance
between the classes.
Area under the Precision-Recall curve (AUC-PR) : This curve plots Precision against
Recall for different threshold values. Precision is defined as follows:

Precision =
TP

TP + FP
(3.26)

Recall =
TP

TP + FN
(3.27)

and Recall is the same as TPR in the ROC curve.
AUC-PR provides insight into the model’s performance in terms of both precision
(the proportion of true positive results among all positive predictions) and recall (the
proportion of true positive results detected among all actual positives) specifically in
cases of imbalanced datasets where one class is much more prevalent than the other.
Negative Predictive Value (NPV) and Positive Predictive Value (PPV) : NPV and PPV
can be interpreted as accuracy measures for a diagnostic test which are formulated as:

NPV =
TN

TN + FN
(3.28)



3.7 Simulation Studies 45

the probability that subjects with a negative screening test truly don’t have the edge in
our gold standard network.

PPV =
TP

TP + FP
(3.29)

the probability that subjects with a positive screening test truly have the edge in our
gold standard network. Furthermore, the analysis of the quantiles within the sampled
distributions assists in identifying which elements of the weight matrices are likely
to represent an edge in the inferred causal model. Quantiles are values that partition
a probability distribution into equal-sized, continuous intervals. The qth quantile of a
distribution is typically based on the cumulative distribution function (CDF).
CDF Calculation : For a given distribution with F(x) as CDF, the qth quantile is defined
such that

F(xq) = q (3.30)

For instance, the median is the 50− th percentile, where q = 0.5. The median is a resilient
measure of central tendency, offering greater resistance to outliers and skewed distribu-
tions than the mean. So in our evaluations, a variable whose 50− th percentile value is
zero in the sampled distribution may suggest a weaker causal relationship, providing a
pivotal clue in our analysis of causal models.

The most robust conclusions are drawn from analyses using High Posterior Density
(HPD) intervals. HPD offers a quantifiable measure of the uncertainty or confidence in
our parameter estimation based on the posterior distribution. This way offers a Bayesian
counterpart to frequentist confidence intervals.
For example, an HPD interval with credible level of 95%(α = 0.05) covers range of
values for the parameter that contains 95% of the probability mass. In more general
definition, HPD interval for a given probability p is calculated by finding the smallest
interval where the probability of the parameter being in this interval is at least p.
HPD Calculation : Mathematically, for a continuous parameter θ and its posterior
distribution P(θ | D), an HPD interval [a, b] satisfies:

P(a ≤ θ ≤ b | D) = p (3.31)

For all intervals [c, d] where P(c ≤ θ ≤ d | D) = p, it holds that b − a ≤ d − c. In
simpler terms, [a, b] is the narrowest interval containing the specified proportion p of
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the posterior distribution.

3.8 Evaluations

To have an initial validations of our model, we examine whether the temporal trajectories
of the hidden states align with the anticipated behavior when subjected to inhibition of a
single node. Figure 3.3 and subsequent Figures in supplementary illustrates the model’s
response over time to specific modifications (here is the complete inhibition of a node in
each experiment). These trajectory analyses offer an initial confirmation that our model
accurately captures the dynamics we expect to observe.
Notably, in Figure 3.3, second experiment which inhibits node S2, leads to its inactivity.
This is evidenced by a zero-state value. In such one-directional information flow system,
the inhibition of S2 results in a decreased activity level of S3, while S1 remains stable
maintaining its steady-state value. It is also relevant here to mention that simulations are
extended over prolonged periods to capture the true effects as some effects can develop
and stabilize more slowly.

HPD Validations

Validation of MCMC results using HPD offers a more generalized perspective on esti-
mated parameters by providing confidence intervals. This approach primarily empha-
sizes the range of the most likely values, rather than the detailed shape of the posterior
distribution. In our evaluations, we consider an HPD interval “narrowly centered around
zero” if it (i) has a small width (i.e., low posterior uncertainty) and (ii) includes zero as its
midpoint or close to it. This signals that the data strongly support a parameter value near
zero, implying no substantial effect. Conversely, an HPD interval that is “sufficiently
broad and far from zero” reflects two aspects: the interval does not contain zero (indicat-
ing a likely nonzero effect) and its greater width denotes higher uncertainty regarding
the effect’s exact magnitude. Thus, both the position of the HPD relative to zero and
its width inform us whether a parameter is credibly nonzero—and how certain we can
be of its estimated value. Figure 3.4 demonstrates how increasing the number of time
points improves our model’s ability to reconstruct the underlying feed forward network.
As t grows from 2 to 5, 10, and finally 20, the posterior distributions for the true edges (in
the upper triangle) move further away from zero, indicating stronger confidence in the
presence of these connections. Simultaneously, the distributions for the absent edges (in
the lower triangle) tightly concentrate around zero, reflecting high certainty that no edge
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Figure 3.4: Effect of increasing the number of time points (t ∈ {2, 5, 10, 20}) on recon-
structing feed forward networks. Each panel (a)–(d) corresponds to a specific
t−value and is arranged in a matrix format where the rows represent the
source nodes and the columns represent the target nodes. Consequently, sub-
figure

(
i, j
)

in each panel shows the posterior density of the estimated weight
for the edge i→ j.
Within each cell, the shaded area corresponds to the highest posterior density
(HPD) region, indicating the most credible values of that edge’s weight. In
the lower triangle cells (e.g.,

(
3, 1
)
), the true network specifies no direct edge,

so we expect the posterior distribution to center around zero. In the upper
triangle cells (e.g.,

(
1, 3
)
), the network has a true edge, so we expect the

posterior to deviate from zero.
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should be inferred there. By t = 20, most true edges show posterior densities whose
HPD intervals clearly exclude zero, signifying robust detection. Conversely, edges that
are not in the true network remain near zero with narrow HPDs, thus reinforcing the
model’s capacity for sparse, accurate reconstruction. Overall, this pattern confirms that
collecting more time points significantly boosts the reliability of inferred edge weights
and supports the feasibility of our ODE based approach for network inference.
While the HPD figure effectively illustrates the ability to detect both present and absent
edges, it does not fully capture overall model accuracy or predictive power. Metrics such
as AUC, PPV, and sensitivity (as discussed in Section 3.7.1) complement HPD by offering
a broader evaluation of performance. Together, these insights guide model refinement
and improvement in predictive accuracy.

In following, we did a comprehensive performance analysis across various metrics.
To cover the vast effects of different parameters on performance, simulations have been
done under various settings as follows.

Hidden nodes

Number of S−genes play a prominent role in describing how our model can perform.
We examined performance of odeNEM in the reconstruction of a sample network with
n = {3, 4, 5, 10} hidden nodes. The ground truth networks corresponding to these cases
are described in Section 3.7. To observe the true effect, other parameters were set to con-
stant values (timepoints=20, number of E−genes=20). The chain of networks sampled by
MCMC after burn-in time and thining filters, have been evaluated by metrics described
in Section 3.7.1. As it is obvious in Figure 3.5, increasing number of hidden nodes comes
with the cost of sensitivity reduction. Specifically, adding more nodes seems to reduce
the precision (as seen in PPV) and increase the variability in sensitivity and specificity,
indicating that larger networks may introduce more complexity, potentially leading to
more varied and less predictable performance outcomes.
When examining the effect of increasing the number of hidden nodes on AUC and
AUPR metrics, it becomes clear that the model’s performance decreases as the network
grows larger. For smaller networks with 3 or 4 nodes, the AUC is nearly perfect at 1.0,
indicating the method’s strong capacity to distinguish between positive and negative
cases. However, with 10 hidden nodes, the AUC drops below 0.75. This is a marked
decrease in the model’s overall classification ability.
A similar pattern emerges for AUPR. It remains relatively high in smaller networks (3
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Figure 3.5: Motifs’ Reconstruction Evaluations with Different Hidden Nodes

and 4 nodes), but declines substantially as the number of hidden nodes increases. The
limited data set (20 observations) cannot sufficiently support the complexity introduced
by a larger network, making it harder to maintain high precision recall performance.
One major factor is the high ratio of free parameters to available data, which can degrade
inference. In a more predictive context, such a scenario might be referred to as overfitting
where the model appears to capture patterns that do not generalize. However, since we
are inferring network structure (rather than a predictive function), it is more accurate to
say that the increased model flexibility leads to identifiability challenges. Many plausible
networks may fit the limited data equally well, diluting true connections and introducing
false edges. This mechanism can lower precision (due to false positives) and reduce
sensitivity (due to increased false negatives).

These observations underscore the bias variance trade off in statistical modeling. A
larger network can capture more complex relationships (thus lowering bias). However,
with insufficient data or regularization, this complexity also increases variance. As a
consequence, parameter estimates (edges and weights) can become unstable and per-
formance metrics such as sensitivity, PPV, or AUPR will decrease. Finding an optimal
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network complexity thus depends critically on data quantity and quality.
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Figure 3.6: Motifs’ Reconstruction Evaluations with Different Observation Numbers:
Performance metrics (AUC, AUPR, NPV, PPV, sensitivity, and specificity)

across two motifs (’Bifan,’ ’Diamond) with varying observation numbers (E
= 5, 10, 20).

As a next step, we show how number of E−genes can affect performance. We observed
performance of the reconstruction of "Diamond" and "Bifan" motifs with a varying num-
ber of E−genes as m = {5, 10, 20}. Once more, we simulated data for constant number
of timepoint with T = 10. In both cases, adding number of observations enhances all
metrics.
We observed that as the number of E−genes increases, there is a consistent improvement
in reconstruction performance across all metrics, including AUC, AUPR, NPV, PPV,
sensitivity, and specificity. This pattern is apparent in both the “Diamond” and “Bifan”
motifs, indicating that a higher density of observational data enhances motif recovery.
The improvements are particularly pronounced in metrics such as AUPR and PPV, which
are indicative of the model’s ability to correctly identify true relationships and minimize
false positives.
For both motifs, increasing the number of E−genes consistently improves reconstruc-
tion performance across all metrics. While the improvements are most notable when
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transitioning from smaller to moderate values (e.g., from 5 to 10), the effect of additional
observations remains substantial even at higher values (e.g., from 10 to 20). Notably,
Sensitivity and NPV exhibit significant enhancements with higher observation counts, in-
dicating that the model becomes more adept at identifying true connections and correctly
ruling out false ones as the dataset becomes more comprehensive. This underscores the
value of larger datasets for robust motif reconstruction, even as the rate of improvement
for some metrics may taper off.
Additionally, the results indicate that "Diamond" motifs tend to achieve higher sensi-
tivity and specificity compared to "Bifan" motifs under similar conditions, pointing to
potential differences in the structural complexity of these motifs and their reconstruc-
tion challenges. This highlights the importance of motif type and network structure in
determining the reconstruction success and provides a basis for tailoring observational
strategies based on the underlying motif complexity.
Overall, these findings emphasize the crucial role of observational density in enhanc-
ing reconstruction accuracy, especially for more complex motifs. This has implications
for experimental designs, where resource allocation to increase observational data can
significantly benefit network reconstruction efforts.
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Figure 3.7: Motifs’ Reconstruction Evaluations with Different Timepoints : Performance
metrics (AUC, AUPR, NPV, PPV, sensitivity, and specificity) across three

motifs (’Bifan,’ ’Diamond’ and ’Feed forward’) with varying timepoints (t =
2, 5, 10, 20).

One crucial factor in dynamic network reconstruction is the length of the time series.
Insufficient timepoints may fail to capture slower-developing effects, resulting in in-
complete or inaccurate reconstruction. To address this, we investigated the impact of
varying timepoints (T = {2, 5, 10, 20}) on the reconstruction performance of three motifs
("Feed forward," "Diamond," and "Bifan") and five randomly selected networks from
KEGG pathways with five hidden nodes (from [47]). For this analysis, the number of
observations was held constant at 20.
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Figure 3.8: Reconstruction performance of examples of 5-Node KEGG networks across
different timepoints (t = 2, 5, 10, 20) using six metrics: AUC, AUPR, NPV,

PPV, sensitivity, and specificity.

Figure 3.7 and Figure 3.8 illustrate the impact of increasing timepoints on the re-
construction of motifs and KEGG pathway networks, respectively. Across all cases,
extending the length of the time series improves performance metrics, including AUC,
AUPR, NPV, PPV, sensitivity, and specificity.
For motifs (Figure 3.7), AUC consistently reaches perfection (1.0) at just 5 timepoints,
underscoring the model’s robustness in distinguishing positive and negative cases, even
with relatively short time series. AUPR, however, shows greater variability, particularly
for shorter timepoints (T = 2, 5), as the limited temporal resolution can miss key rela-
tionships within the network. Metrics such as PPV and sensitivity are initially variable
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but show improvements and stabilization as the number of timepoints increases.
For KEGG pathway networks (Figure 3.8), the trends are similar but more gradual. AUC
and NPV steadily improve, reaching near-perfect values at 20 timepoints. Sensitivity and
PPV demonstrate higher variability for shorter timepoints, highlighting their sensitivity
to limited data. Specificity remains consistent across all timepoints, reflecting the model’s
reliability in identifying negative cases.
These observations highlight the critical role of adequate timepoints in improving model
performance. A shorter time series may capture less information, leading to variability in
metrics such as AUPR and sensitivity. As the timepoints increase, the temporal resolution
becomes sufficient to detect network relationships accurately, leading to stabilization in
performance metrics. The consistency of AUC and NPV across both motifs and KEGG
networks further underscores the model’s robustness, while the variability in PPV and
sensitivity emphasizes the need for sufficient temporal data to balance precision and
recall.
This analysis helps to reveal how the model’s predictive accuracy evolves, ensuring that
it remains robust across different scenarios and stages.
The metrics, as described in Section 3.7.1 include the area under the receiver operating
characteristic curve (AUC), precision-recall curve (AUPR), negative predictive value
(NPV), positive predictive value (PPV), sensitivity (sens), specificity (spec) and high
posterior density (HPD). These indicators give us a rounded understanding of the
model’s strengths and potential areas for improvement, encompassing both its ability
to correctly identify true positives/negatives as well as its precision in avoiding false
positives/negative.

3.8.1 Performance Comparison with dynoNEM

We compare the performance of odeNEM with dynoNEM for KEGG networks with 5
nodes to evaluate their respective strengths and limitations. Our method demonstrates
strong specificity, maintaining high reliability in rejecting false positives, comparable
to the dynoNEM results (Figure 3 and 4 from [47]). AUC achieves near-perfect levels
for (t > 5), showcasing excellent classification performance. However, sensitivity falls
behind dynoNEM, particularly at lower timepoints (t = 2, 5), indicating limitations in
detecting true positives with sparse data. Trade-offs between sensitivity, AUPR, and
PPV are apparent, in some examples of Figure 3.8, underscoring the need for improved
balance between precision and recall.
For 10-node networks, the complexity of reconstruction increases significantly. In odeNEM,



3.9 Discussion 55

Figure 3.5, sensitivity shows a pronounced decline, indicating that identifying true posi-
tive connections becomes more challenging as the network size grows. Specificity, while
generally stable, also exhibits slight declines, suggesting that distinguishing true nega-
tives may be affected by increased network complexity. In contrast, dynoNEM maintains
robust sensitivity as the number of E−genes increases, demonstrating its capacity to
identify true positives effectively in larger networks (Figure 3 supplementry of [47]).
We mention once more, while dynoNEM results were referenced from the original
publication, the method was not rerunnable. This restricted direct re-validation of its
performance against our approach.

3.9 Discussion

In this chapter, we developed a novel method for reconstructing hidden networks. This
integrated approach increases the strength of NEMs in capturing hierarchical relation-
ships while incorporating SSMs and SCMs to account for temporal dynamics and causal
interactions within complex systems.
Unlike traditional static methods, our framework accounts for the nonlinear and dy-
namic nature of real-world systems, offering greater flexibility and accuracy in recon-
structing complex networks. A major contribution of this work lies in the integration of
ODE-based modeling with probabilistic tools. This combination allows us to quantify
uncertainty in parameter estimates while ensuring biologically meaningful results.

Various validations were used to identify significant connections, distinguishing true
signals from noise. This demonstrated the effectiveness of this approach across vari-
ous network motifs and KEGG pathways. For simpler motifs such as feed forward,
Bifan, and Diamond, the method achieved high accuracy even with a limited number
of timepoints, as seen in the perfect AUC scores for as few as five timepoints. This effi-
ciency highlights the method’s potential for scenarios where experimental data is scarce.
However, the performance for larger, more complex networks, such as those in KEGG
pathways, revealed the need for sufficient observational data to maintain sensitivity and
precision. These findings underline the trade-offs between network complexity and data
availability, emphasizing the importance of tailoring the model to the data at hand.

Beyond reconstruction performance, the method also addressed key aspects of biolog-
ical system. For example, modeling steady-states through gradient minimization and
identifying attractors, captures essential biological features. This focus is particularly
important for systems where variables, such as protein concentrations or gene expression
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levels, must remain within physiological bounds. Additionally, the incorporation of a
depletion factor allowed us to model the decay and turnover of biological entities over
time, reflecting the natural dynamics of cellular processes. The method also accounted
for noise in experimental data, a common challenge in biological systems. By integrating
probabilistic tools with deterministic ODE models, we ensured robust performance
even under uncertain or noisy conditions, enabling the identification of true network
connections while minimizing false positives.

Despite these achievements, challenges remain. The decline in sensitivity and precision
with increasing network complexity suggests that future work could explore improved
regularization techniques or adaptive priors.



4 Inference of Protein-Protein Interaction
Networks

In the last chapter, we presented the formal description of the odeNEM, a method
designed to reconstruct the underlying hidden network of S−nodes that cause the
observational effects in E−nodes. The next two chapters explain the applications of
odeNEMs: the first focuses on protein phosphorylation measurements, and the second
one focuses on RNA-seq data. However, before going through these applications, we
introduce an abstract description of the main questions and further expand on the
details of each dataset and corresponding experiments. Also, the semantics of S−nodes
and E−nodes must be specified for each experiment, as the meaning of these nodes
varies entirely across different experimental contexts. By applying odeNEM to protein
phosphorylation time series data, we confirm known and reveal novel interactions
between pathways that are active in cancer.

4.1 Breast Cancer

Breast cancer, the most prevalent cancer in women worldwide, is a complex and mul-
tifaceted cancer that requires a comprehensive approach to diagnosis and treatment.
Global health reports show 11.7% of all yearly new cases are breast cancers [56], and
global numbers show breast cancer accounts for cancer related death in high ranks [56].
Despite the fact that many early-stage cases of this cancer show no noticeable symptoms,
common signs in more advanced stages can be a detectable change in the structure of
breast(size, shape, thickening, lump or dimple) or nipple discharge of blood. Within the
main two categories of breast cancer, ductal or lobular carcinoma, further subtypes are
defined based on activity of hormone receptors or epidermial growth factor receptor
[57]. Each breast cancer subtype can activate or suppress some pathways, depicted in
Figure 4.1. That leads to variations in the tumor’s susceptibility to different therapies.
We introduce the main subtypes and receptor statuses, which are crucial for accurate
modeling of complex dynamics of cancer.
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HER2 Positive

HER2 (Human Epidermal Growth Factor Receptor 2) is a cell surface receptor that can
be overexpressed in some subtypes of breast cancers. This overexpression increases cell
proliferation and survival, leading this subtype to be more aggressive and historically
more challenging to treat. However, the development of targeted therapies against HER2
expression has improved outcomes for patients with HER2-positive breast cancer [58],
[59], [60].

Luminal

The luminal subtype is characterized by high levels of expression of the estrogen receptor
(ER) and progesterone receptor (PR) [61].
The ER is a receptor that, upon binding to estrogen, regulates the transcription of genes
involved in cell growth, survival, and differentiation. High levels of ER are commonly
found in breast cancer and are often associated with a better response to hormonal
therapy. However, resistance to hormonal therapy can develop, especially in advanced
stages of the disease [62].
The PR is another nuclear receptor that interacts with progesterone. It plays a crucial
role in the development and progression of certain types of breast cancer. Breast cancers
that are PR positive are often sensitive to hormonal fluctuations and may respond to
special therapies modulating progesterone[63].
There are two main luminal categories: luminal A and luminal B. Luminal A are typically
ER and PR positive and HER2 negative with low proliferation rates. On the other hand,
luminal B tumors are ER positive, PR can be positive or negative and HER2 can be
positive. Luminal B often has higher proliferation rates.

Basal like/Triple Negative

The basal subtype has lower expressions of the three hormone receptors (ER, PR, and
HER2). This pattern of receptor expression is referred to as triple-negative breast cancer
(TNBC). Due to low expression of these three receptors, that are typically used to guide
hormone therapy, TNBC is resistant to hormone therapy [64]. However, recent advances
in cancer research have led to the discovery of other markers and biomarkers that can
be used to guide treatment decisions in TNBC. For instance some types of cell lines
in this subtype are sensitive to englerin A and digoxin, drugs that alter intracellular
concentrations [65]. This suggests that these cell lines could be particularly responsive to
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treatments that target these mechanisms.
The data that will be presented in this chapter, includes cell lines which are from all
the mentioned subtypes above. We will discuss these cell lines and more features from
the data in rest of this chapter. But before, we highlight a few pathways which are
prominent in cell signal transduction of cancer. While there is abundant literature on
cancer pathways, we focus on [66].

4.2 Pathway Interactions in Cancer

The heterogeneity of breast cancer is reflected in the variety of pathways that can be
active in a tumor cell. To understand the systemic consequences of their activity, it is
necessary to know their interactions. The KEGG pathway for breast cancer signaling
(hsa05224), in Figure 4.1, provides an overview of the molecules involved in the most
important pathways, and it shows molecules at which different pathways converge:

• PI3K/AKT/mTOR pathway: This pathway is crucial for keeping cells alive, help-
ing them grow and managing their energy. Mutations and alterations in this
pathway are common in breast cancer and can make the cancer grow faster and
resist treatments [67]. Also it can interact with other pathways like MAPK/ERK
[68].

• MAPK/ERK pathway: The MAPK pathway helps cells grow and become different
types of cells. Often cross-talk between this pathway and other pathways like ER
or HER2 can cause breast cancer cells to grow uncontrollably [69]. Mutation in
this pathway leads to start of activation of many cancerous functions including
uncontrolled cell proliferation, resistance to apoptosis, enhanced angiogenesis, and
increased metastatic potential [70].

• WNT pathway: Abnormal activation of this pathway contributes to cancer initia-
tion and progression, especially because the pathway is responsible for stem cell
maintenance and tissue homeostasis. Its interaction with Notch and Hedgehog
causes a transition of epithelial to mesenchymal (EMT) [71].

• NF-kβ pathway: It plays a central role in inflammation and immune responses.
Interaction of this pathway with PI3K/AKT enhances oncogenic signals [72].

• p53 pathway: Normally it is crucial in DNA damage repair and cell cycle reg-
ulation. In various cancers, this pathway is frequently mutated which leads to
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genomic instability and proliferation [73].

4.2.1 Importance of Studying Signaling Pathways in Specific Context

The behavior of signaling pathways can vary depending on genetic and epigenetic
factors. This means that the same external intervention (stimulus or inhibitor) can lead
to different cellular responses under distinct conditions. Due to the unique genetic or
epigenetic composition of each lineage, these differences become more clear when re-
sponses to identical perturbations have been compared across different lineages [74].
Such variability underscores the need for computational approaches that can adapt
to the unique characteristics of diverse biological contexts. Additionally, it is crucial
to predict how structure of such networks will change in response to new stimuli or
treatments. Therefore, the proposed model should simulate the dynamic behavior of the
network under various conditions.
The importance of understanding signaling pathways in context is the topic of HPN-
DREAM (Heritage Provider Network) challenge [75], [76]. This challenge emphasizes
the need for models that can adapt to various biological conditions and predict how
signaling networks behave in different contexts. The set of experiments in the large-scale
data of [75] can be effectively described by our model, Section 3.4.
Also our approach, outlined in Chapter 3, aims to address these challenges by consider-
ing the unique characteristics of different cell types and their specific biological contexts
as feeded observations under variouse experiments. In the end, by integrating all inf-
fered context-specific networks, we can better model a holistic picture of the signaling
pathways which are central in cells responses to various perturbations.

4.3 HPN-DREAM Challenge

The HPN-DREAM holds a challenge in the field of computational biology that focuses
on learning causal influences in signaling networks using both experimental and in
silico data. The 8th version, [76], consists of three sub-challenges:
causal network inference : It involved inferring causal signaling networks using protein
time course data from various biological contexts, each defined by a combination of cell
line and stimulus. Using inferred networks, the causal validity was evaluated using
unseen interventional data.
time-course prediction : The inferred network from previous sub-challenge had been
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applied to predict trajectory of effects under new perturbation (not included in data). It
basically evaluates suggested model in generalization aspect.
Among these three main concepts, we will mainly deal with first one, applying our
model to infer causal relations that may vary across different contexts.

4.3.1 DREAM Data

The challenge involved 32 different biological contexts, each defined by a unique combi-
nation of a cell line and a stimulus to capture the variability in signaling responses due
to differences in genetic and epigenetic backgrounds. For each context, they provided
the time course data of 45 phosphoproteins using kinase inhibitors as interventions,
Figure 4.2a.
Each cell line was firstly deprived of Serum to minimize effects from nonplanned factors
in the medium. This is normally a standard practice in cell culture to ensure that the
experimental conditions are controlled and that the results are just obtained by the
experiments and not a random effect. Then the pre-treated cells were subjected to kinase
inhibitors or DMSO as a control. As we will describe in Section 4.3.1, kinase inhibitors
are commonly used to block the activity of specific enzymes while DMSO serves as
a control. After stimulation with each stimulus, Section 4.3.1, Reverse-Phase Protein
Array (RPPA) was conducted at 10 time points targeting 40 phosphoproteins. 150 high
quality antibodies, aimed at detecting total and phosphorylated proteins. The RPPA
methodology in [76] involves serial dilutions of cell lysates, printed on slides, and probed
with validated antibodies. After capturing signal intensity, the data is processed using a
B-spline model to fit a "supercurve" for each slide, relating signal intensity to protein
concentration. Quality control checks ensure slide consistency, excluding those below a
certain threshold. For normalization, values are adjusted by median centering across
antibodies and correcting for each sample to account for protein loading differences. To
isolate the immediate and direct effects of the inhibitors on the phosphoproteins, the
paper in which the experiment was carried out [76] focuses on short changes up to 4
hours post-stimulation.
So, this data can be understood through these variables: cell Lines, kinase Inhibitions,
stimuli, timepoints, proteins. We provide below an overview of the values these variables
can assume.
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Figure 4.2: (a) Overview of Biological Contexts and Data Dimensions: Each context is
defined by the combination of 8 stimuli, 4 cell lines, and 6 kinase inhibitors.
The time course data captures phosphoprotein responses across these
contexts, reflecting variability in signaling due to genetic and epigenetic
differences. (b) Differential Profiles Under Kinase Inhibition: Using kinase
inhibitors (e.g., AZD8055), specific signaling pathways are perturbed.
Reverse-Phase Protein Array (RPPA) data measures changes in 45
phosphoproteins over time to characterize the inhibitor’s effects. (c) Joint
Network Inference Across All Contexts: Integrating data from all biological
contexts to infer a joint signaling network. Nodes represent proteins, and
edges represent interactions, color-coded by the pathway or context
specificity.
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Cell Lines

Various breast cancer cell lines can contain different genomic/epigenomic variants. In
addition to that, the subtype which a cell line belongs to can highlight some signaling
pathways while supressing the rests, Section 4.1. [76] included four cell lines: MCF7,
UACC812, BT20 and BT549. Each cell line represents a different subtype of breast cancer,
based on the expression of certain receptors and the presence of specific mutations.
For instance, the MCF7 is a luminal subtype known to express high levels of the estrogen
receptor (ER) and progesterone receptor (PR). UACC812 is another luminal subtype
whith overexpression of human epidermal growth factor receptor-2 (HER2) [61].
On the other hand, BT20 and BT549 are believed to belong to the basal subtype, given
their lower expression of these three receptors. This pattern of receptor expression is
referred to as "triple-negative".

While these cell lines serve as widely used models for studying breast cancer subtypes,
it remains debated how accurately they reflect the complexity of tumor heterogene-
ity in real patients. Differences in the tumor microenvironment, genetic diversity, and
epigenetic modifications may limit their direct translational relevance [77].

Stimuli

DREAM 8 challenge includes eight stimuli: Epidermal Growth Factor (EGF), Fibrob-
last Growth Factor (FGF), Insulin-like Growth Factor 1 (IGF-1), Neuregulin 1 (NRG1),
Hepatocyte Growth Factor (HGF), Insulin, PBS, Serum. As we see previously in Fig-
ure 4.1, each of the mentioned stimuli can interact with specific receptors on cell surface
(under specific conditions). This triggers different signaling pathways and leads to an
alternation in regulation of cell functions such as proliferation, survival, and many other
cellular processes. For example, EGF as a potent mitogen binds to receptors like EGFR
(ErbB1, HER1) or HER2 (ErbB2) to trigger intracellular signal transduction pathways
in cell proliferation, differentiation, and survival [78]. So stimulating each cell line with
these stimuli mimics both physiological and pathological conditions that breast cancer
cells might encounter in the body.

Kinase Inhibitions

Before stimulating a cell line with a stimuli, it has been treated with one of the five
inhibitors: PD173074, BEZ235, AZD8055, GSK690693, GSK690693-GSK1120212. Also the
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control case (DMSO) has been considered. Each of the mentioned inhibitors restrains
activity of one or more direct targets. Such experiments aimed to uncover specific causal
relationships between targets (directs or undirects) that might not otherwise be evident.
This has been done by isolating effect of each experiment (in our case inhibition) to see
how dynamics change between nodes [79], [80] and [81].
Inhibitors in the DREAM 8 challenge target various key roled proteins, each playing
a crucial role in cellular signaling pathways: PD173074→ (FGFR1, FGFR2), BEZ235
→ (p110, mTOR1, mTOR2), AZD8055→ (mTOR1, mTOR2), GSK690693→ (panAKT),
GSK690693-GSK1120212→ (panAKT, MEK1, MEK2)
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Figure 4.3: Stimulus Dependent Changes in Phosphoprotein Abundance Under Kinase
Inhibition

Timepoints

To capture the temporal dynamics of signaling pathways, the experiments include mea-
surements at multiple timepoints following stimulation. These timepoints allow for
observing both the immediate and delayed effects of stimuli and inhibitors on protein ac-
tivity. Such temporal data are critical for understanding transient (short response) versus
sustained (remain active longer) signaling events and for inferring causal interactions
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among network components.

Proteins

The dataset encompasses measurements of key signaling proteins across various con-
ditions, including total and phosphorylated forms. These proteins serve as nodes in
the signaling network and include those involved in critical pathways such as the
MAPK, PI3K-AKT, and mTOR pathways. Like the main paper of DREAM, we have used
phosphoproteins because they directly represent the active state of signaling pathways,
providing functional and dynamic insights into cellular processes, unlike whole protein
levels.

4.3.2 Data Analysis

The time series data is used to determine which phosphoproteins show significant
changes in abundance under an experiment (kinase inhibition effect) versus control state
(DMSO). This set of proteins will be regarded as our E−nodes later.

Preprocessing

In [76], the paired t-tests are used to compare the mean phosphoprotein abundance
under DMSO control and the inhibitor regime. The results are then corrected for multiple
testing using the adaptive linear step up procedure for controlling the False Discovery
Rate (FDR) and evaluated against specific criteria to identify significant changes. This
is necessary in multiple hypotheses testing, to keep the probability of a false positive
result (Type I error) below a predetermined threshold. 35 out of 48 phosphoproteins
significantly changed under a given inhibitor regarding these two conditions:

• FDR value less than 5 percent (from paired t-tests comparing DMSO and inhibitor
time courses)

• The inhibition effect size (measured as the log2 ratio of abundance under inhibition
versus DMSO control) exceeds the replicate standard deviation:

A(t) = log2(
abundance under a condition

abundance under DMSO
) (4.1)

Detailed results are accessible in [76]. These 35 proteins will be our set of E−nodes in
setting up of our model. For the selected proteins, we also calculated the log ratio of
changes A(t), which will be the main profile of observed measurements.
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Context Dependent Effects

As it has been shown in Figure 4.3, there are few specific changes that can be described
exclusively due to stimulus addition. For example, relative changes of some phospho-
proteins, like Akt or MEK1 phosphoproteins, under FGFR inhibition (PD173074) are
more prominent when cell line is stimulated with FGF1. Also, large variations in rela-
tive abundance of AKT phosphorylations seems to be more stimulus dependent under
inhibition with BEZ235.

Figure 4.4: Canonical Signaling Pathway Highlighting Context Independent Interactions
from [76]

Before we expand on this topic, let’s have a look to canonical signaling pathway which
[76] introduces. Such networks are applied to make a more general overview about path-
ways regardless of the conditions they have been concluded in. Most of the prominent
known connections in such networks are also valid under different circumstances.
While such canonical signaling pathways provide a general framework for regulatory
interactions, the actual edges (connections) between proteins can change depending on
the specific biological context. This means that under different conditions (e.g., different
cell lines, stimuli, or inhibitors), some interactions may become more or less prominent,
reflecting context-specific regulation rather than universally fixed connections. For exam-
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ple, mTOR and its more direct descendants in canonical networks, in Figure 4.4, are being
affected mainly under inhibition of mTOR (via AZD8055 or BEZ235). This is regardless
of cell lines or stimuli. For example, Figure 4.3 shows a noticeable phosphorylation level
reduction for p70S6K just under inhibition of mTOR (AZD8055 and BEZ235) regardless
of presence of any stimulus.
So, screening phosphoprotein changes in specific context c (combination of cell lines,
Stimuli) shows notable changes mainly when the inhibitor targets the parent directly.
However there are yet influences that suggest effects are not just due to known connec-
tions in canonical pathways.
Complete plots for all phosphoproteins in all four cell lines are provided at the end of
this thesis for comparison.

4.3.3 Inferred Network by Challenge Contest

Stacking all data together and utilizing techniques which infer causalities under dif-
ferent conditions, [76] reconstructed networks for each context. The STAR (STructure
learning with Adaptive Regulators) method is a Bayesian network inference approach
designed to reconstruct causal signaling networks from perturbation data. It integrates
prior knowledge with experimental data to identify significant regulatory interactions.
The method employs an adaptive strategy to update the network structure iteratively,
refining the causal relationships as more data becomes available. This approach is par-
ticularly useful in capturing context-specific interactions that may not be evident from
prior knowledge alone. For a detailed description of the STAR method, including its
algorithmic implementation, please refer to the supplementary materials of [76].
The STAR method reconstructs causal signaling networks where each variable (node) is
directly observable. In contrast, our approach (odeNEM) is designed for networks with
hidden variables (directly observable). Due to this fundamental difference in network
structure and inference methodology, we do not perform a head to head comparison
between the two methods. Instead, we leverage the STAR inferred network as a reference
to contextualize our findings.

The comprehensive network in Figure 4.5 is a summarization of causal networks of all
contexts in [76]. By this unification, we can see many edges appeared as significant cell
specific relations that were not present in the applied prior networks of the correspond-
ing paper. This can strongly suggest the necessity of studying causal networks regarding
specific setups and conditions.
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Figure 4.5: Comprehensive Causal Network Summarizing All Contexts using the STAR
Method.
This network, recreated from [76], represents inferred causal relationships
across multiple cell lines. Nodes correspond to phosphoproteins, and edges
indicate significant interactions inferred across experimental conditions. The
network includes context dependent interactions, meaning relationships may
vary across cell lines and experimental conditions.
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4.4 Applying odeNEM

A computational model, in particular Nested Effect Model (NEM), can be used to study
dynamics of interactions between pathways under perturbation effects. Especially the
complete inhibition experiments, like how DREAM 8 data is produced based on, can be
modeled easily by our odeNEM model (Section 3.4).
The primary motivation for applying odeNEM to these data is benchmarking rather than
discovering new interactions. By evaluating its performance on this well characterized
dataset, we assess the model’s ability to recover interactions between pathways which
are known.

4.4.1 Selecting hidden nodes and effect nodes

The E−nodes in the odeNEM model represent the observables. In our data, as it was
described in Section 4.3.2, phosphorylation levels of 35 proteins had been considered as
the observed effect nodes E.
The S−nodes are variables that transmit signals to the E−nodes. Ideally, one would
like to include all molecules involved in the signaling pathways (Figure 4.5), but the
network of such a large number of S−nodes can not be learned reliably from our noisy
observations. We therefore decided to reduce the complexity by merely modeling 3 main
signaling pathways (mTOR, AKT, MEK) as S−nodes. In addition to that, there are quite
a few phosphoproteins in the data which play role as receptors of external stimuli in the
big picture of breast cancer pathways, Figure 4.1. So, we have added a "Receptor" node
to the set of S−nodes to indicate this class of proteins.
It is worth mentioning back to the definition of interventions in Section 3.4. Under each
experiment, one (or several) S−node becomes the target of a complete inhibition and
passing information through this node becomes fully blocked. So, the set of direct targets
of an inhibitor can be potentially regarded as hidden nodes. Also, it is necessary that
for each of those hidden nodes there should be relevant observations in set of effects,
E−nodes, to support what we observe from experiments. As in previous parts have been
described, inhobitors used in DREAM challenge inhibit these targets: FGFR1, FGFR2,
p110, mTOR1, mTOR2, panAKT, MEK1 and MEK2. From these direct targets, we do not
have measured phosphoproteins of FGFRi and p110. So, we regard mTOR, AKT, MEK
as the hidden nodes.
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4.4.2 Prior on S-E Connections

We considered three different priors for the connections between hidden nodes S and
observations E: uniform, strict, and DREAM-based priors. In all three cases, few phos-
phoproteins (E−genes) were directly and exclusively connected to their corresponding
parent S-nodes :
(Akt-pS473, Akt-pT308) − > AKT, mTOR-pS2448 − > mTOR, MEK1-pS217-S221 − >

MEK
For certain other proteins which are well documented in the literature as downstream
markers of specific pathways, our strict prior considered these proteins exclusively as
downstream effects of their relevant parent. For all other proteins, prior distribute the
connections evenly across all possible hidden nodes. For example, PRAS40, which is
known to be regulated by the PI3K-AKT pathway [82], was connected to the parent node
with the highest prior probability.
In addition to using biological knowledge, we incorporated canonical pathway informa-
tion and the prior network described in [76] to refine the S-E connections. This approach
formed the DREAM-based prior, as illustrated in Figure 4.6.
The uniform prior distributed observations evenly among all hidden nodes, except
for the specifically assigned phosphoproteins (Akt-pS473, Akt-pT308, mTOR-pS2448,
MEK1-pS217-S221), which were directly linked to their corresponding S−nodes.
It is important to note that while our priors specifically influence S-E connections, the
S-S connections themselves are not determined by these priors but are inferred through
the model.

4.4.3 Emission Probability Modeling

After calculating log ratio of changes for each condition versus the wild type by Equa-
tion (4.1), a gamma mixture model has been fitted to the observation profile for each
phosphoprotein under a perturbation. To determine the most appropriate model, we
used both Akaike Information Criterion (AIC) and the Bayesian Information Criterion
(BIC). AIC assesses model fit while balancing the number of parameters, whereas BIC
provides a stricter penalty for model complexity. Using these two criteria, mixture of
two gamma models showed best trade off between goodness of fit and model simplicity
(lowest AIC and BIC) for most of the proteins and conditions.
An example of mixture model fit for protein p70S6K under two expreiments has been
shown in Figure 4.7. More details on the EM algorithm and parameters fitting can be
found in Section 3.6.
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Figure 4.6: Pathway Level Network Derived from the STAR Inference.
This network restructures Figure 4.5 by grouping phosphoproteins into hid-
den nodes, each representing a signaling pathway. The grouping shown
here follows the DREAM-based prior, described Section 4.4.2. This structure
serves as a ground truth for evaluating odeNEM’s performance in using
DREAM-based prior in Figure 4.8.
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Figure 4.7: Gamma Mixture Modeling of Phosphoprotein Profiles Across Experimental
Conditions

4.5 Results

Our model focuses on the interaction between various signaling pathways that play key
roles in breast cancer. To highlight pathway level interactions, we derived Figure 4.6 by
restructuring the network inferred by the STAR method (Figure 4.5). Specifically, we
grouped phosphoproteins into hidden nodes representing their associated signaling
pathways, reducing node complexity. Unlike Figure 4.5, which includes protein level
interactions across different contexts, Figure 4.6 retains only edges that reflect regulatory
relationships between pathways. By this transformation, we ensure structural compara-
bility with the pathway level network inferred by odeNEM, allowing a direct evaluation
of its predictive performance.

The grouping shown in Figure 4.6 was determined by the DREAM-based prior, which
integrates biological knowledge and canonical pathway structures. Since each prior
(uniform, strict, and DREAM-based described in Section 4.4.2) assigns phosphoproteins
to hidden nodes differently, each prior defines a different possible ground truth. For
clarity, Figure 4.6 presents only the network derived from the DREAM-based prior, while
Figure 4.8 evaluates odeNEM’s performance across all priors by comparing inferred
networks to their respective ground truths.
From the odeNEM model, we obtain a posterior probability for each potential edge
Si → Sj. An edge is considered as predicted (positive) if its posterior probability exceeds
a chosen threshold, and not predicted (negative) otherwise. In these experiments, the
typical threshold was set to 0.7 on the posterior probability. This keeps our results far
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beyond random inferred effects. Once both the inferred adjacency matrix (based on the
thresholded posterior probabilities) and the ground truth adjacency matrix (as per the
uniform, strict, or DREAM-based prior) are in binary form, each potential edge falls
into one of four categories: TP, FP, TN and FN. Using these counts, the standard metrics,
described Section 3.7.1, were computed.
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Figure 4.8: Inference Performance of odeNEM Under Different Priors (uniform, strict,
and DREAM-based)
The inferred network for each prior were compared to their respective ground
truths

To ensure that our MCMC sampling adequately explored the posterior distribution
and reached a stationary regime, we conducted extensive diagnostics on the convergence
behavior. We ran multiple independent MCMC chains, monitoring their evolution over
200,000 iterations. Convergence was assessed through visual inspection of log-likelihood
trace plots and the stabilization of posterior samples.
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Figure 4.9: Convergence diagnostics of the MCMC sampler based on log-likelihood
trace plots. Each panel shows the log-likelihood evolution over iterations for
different chains on left side. On right side, the accepted log-likelihoods after
burn-in and thining are depicted.
Chains are from different contexts (Cell line, Stimuli). So, the likelihood
values are not comparable. The burn-in phase is visually evident as an initial
drift, after which the likelihood stabilizes, indicating proper convergence.
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Figure 4.9 presents representative log-likelihood trace plots for different chains. The
left panel of each plot illustrates the complete trajectory of log-likelihood values over the
full set of iterations, highlighting the initial burn-in period where the likelihood exhibits
a transient phase before stabilizing. A vertical red dashed line at 100,000 iterations marks
the empirically determined burn-in phase, beyond which the samples appear to have
reached stationarity. The right panel zooms in on the post burn-in region, showing the
fluctuations of log-likelihood values in a stable regime.
To further confirm the reliability of our sampling strategy, we applied a thinning inter-
val of 50, reducing autocorrelation in the posterior samples while ensuring sufficient
effective sample size (ESS). The trace plots confirm that, after the burn-in phase, the
likelihood stabilizes, and the sampling process maintains sufficient variance to capture
the posterior distribution adequately.

4.5.1 Evaluation of Priors

We evaluated our model using the three described priors in Section 4.4.2: uniform, strict,
and DREAM-based priors. Figure 4.8 illustrates the reconstruction performance across
these priors, measured using metrics such as AUC, AUPRC, BAC, and specificity. The
DREAM-based prior consistently outperformed the other priors across most metrics and
cell lines, demonstrating its robustness. It likely performed better because it incorporates
biological knowledge and canonical pathway information, making it more specific while
still allowing flexibility in modeling noisy data.
AUC is generally high for all priors and cell lines, particularly for the DREAMPrior,
showing its robustness in identifying true signal from noise. Also it is observable that
DREAMPrior slightly outperforms other priors in BT20 and BT549, which indicates it
captures the signal to noise separation better for these cell lines. Specificity is high for
all priors, particularly for BT20 and UACC812, where all priors perform almost equally.
This shows the model has a low false positive rate and performs well in identifying true
negatives. While AUC and specificity are generally high, AUPRC (and to some extent
BAC) highlight the challenges of balancing true positive identification with false positive
minimization. AUPRC is consistently lower than AUC, which is expected for imbalanced
datasets (sparse networks). BAC (Balanced Accuracy) is moderate to high for all priors.
DREAMPrior performs slightly better, again showing balanced performance in both
positives and negatives (high BAC shows balanced sensitivity (true positive rate) and
specificity (true negative rate)).
In conclusion, the DREAM-based prior demonstrates consistent superiority across most
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metrics, particularly in AUC, AUPRC, and BAC, making it a reliable framework for
capturing pathway dynamics and modeling sparse, noisy data. Based on these results, we
selected the DREAM-based prior as the foundation for further analyses and assessments.
The differences observed across cell lines (e.g., BT20 and BT549 are performing better)
may reflect underlying biological variability or differences in pathway activation patterns
as well as the level of noise in the data.

4.5.2 Heatmap Analysis

To assess how well the model predictions align with the observed data across various
conditions, we divided the data into two parts: a training set and a test set. We split
the data by inhibitor: for each chosen test inhibitor, we excluded all time course mea-
surements under that inhibitor from the training set and reserved them as the test set.
Concretely, if AZD8055 was designated as the test inhibitor, then all AZD8055 data were
excluded from training, and the remaining inhibitors’ data (which do not target same
node as AZD8055 does) formed the training set.
Our model was first trained on the training data yielding a collection of candidate
networks ranked by their posterior likelihood. From these, we selected the first few
hundreds best inferred networks. In practice, this often means taking a few hundred top
scoring networks from the MCMC sampling. Using these top networks, we predicted
the activity trajectory of the hidden node that the test inhibitor targets (e.g., mTOR
for AZD8055). The activity level was computed directly from Equation (3.4). Since the
ODE output (predicted activity) and the experimental data (log fold changes from Equa-
tion (4.1)) are on different scales, we could not compare them numerically. Instead, we
compared their direction (increase or decrease) over time. Figure 4.10 summarizes these
comparisons by displaying the match proportion for each phosphoprotein, stimulus,
and cell line under the held-out inhibitor regime. Concretely, the match proportion is the
fraction of time points at which the sign (positive or negative) of the predicted activity
agrees with the sign of the observed log fold change. A value of 1.0 (dark red) indicates
perfect sign alignment over all measured time points, whereas 0.0 (white) indicates
no agreement in direction. Our results show that while the model generally captures
pathway dynamics for many proteins and stimuli, there is variability in alignment,
suggesting potential areas for refinement.
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Figure 4.10: Heatmap of match proportion between observed and predicted trajectories
across proteins, stimuli, and cell lines.
The match proportion represents the fraction of time points where predicted
changes in pathway activity match the observed phosphoprotein response.
Each cell shows the fraction of time points (0 to 1) at which the direction
of the predicted activity matches the sign of the observed log fold change
for that phosphoprotein, stimulus, and cell line. Higher match proportions
(dark red) indicate stronger agreement between model predictions and
experimental data.
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Figure 4.11: Assessment of causal learning by comparing true observation and our
mixture model. Each subfigure illustrates the comparison between observed
(solid black) and mixture model (red) for the specified cell line.
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4.5.3 Trajectory Comparisons

To visually assess the model’s performance, we generated plots in Figure 4.11 that over-
lay the observed trajectories (black) with the predicted trajectories (red). The observed
trajectories are average log fold changes (Equation (4.1)) for the proteins specifically
connected to the hidden node inhibited in test experiment, while the predicted trajecto-
ries come from the a mixture distribution (Equation (3.13)). In other words, we want to
see how our mixture model can mimic the true observation for the E−nodes which the
parent is the target in test set. Although these two curves appear on different numerical
scales, their shapes can be compared to judge whether the model captures the qualitative
trends of activation or deactivation under each stimulus.
Because of this mismatch, we do not directly compare the black and red lines’ absolute
values. Instead, we look at whether increases or decreases occur at similar time intervals
and whether the predicted curve stabilizes or fluctuates in a manner consistent with the
observed protein-level data.

For instance, in BT20 with Insulin, EGF or FGF1, the observed log fold changes and the
mixture model increases early on and then stabilizes, indicating the model is capturing
the timing of the major transitions.
In MCF7, mixture model for most stimuli, except HGF, captures general trends effec-
tively.
For UACC812, predictions for PBS, FGF1 and HGF align closely with observed data.
Overall, the model captures trends well and more prominently it captures the jump in
the time points of the occurence.

4.6 Discussion

In this chapter, we applied the odeNEM framework to infer and evaluate causal net-
works underlying protein signaling in breast cancer cell lines. By modeling the interplay
between key pathways, we successfully captured both known and novel interactions,
demonstrating the model’s ability to integrate noisy experimental data into meaningful
biological insights. Below, we summarize the main findings and discuss their implica-
tions.
Our comparison of prior configurations (uniform, strict, and DREAM-based priors) re-
vealed the superior performance of the DREAM-based prior in reconstructing networks
across all cell lines and metrics. This finding highlights the importance of incorporating
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prior biological knowledge to address the inherent complexity and variability in cancer
signaling. The analysis highlighted significant cell line specific differences in signaling
pathway interactions, underscoring the heterogeneity of breast cancer. For instance,
BT20, a basal like cell line, showed strong alignment between observed and predicted
trajectories, particularly under stimuli. This is also valid for most stimuli in MCF7 cell
line.
In contrast, UACC812 exhibited greater variability in model performance. This variability
might reflect biological complexities such as pathway cross-talk, feedback mechanisms,
or context dependent signaling that are not fully captured by the current model.

While the model demonstrates promising results, it has limitations that should be
addressed in future work. It struggles to fully capture complex cross-talk between
pathways, particularly in challenging contexts, which suggests a need for additional
regulatory mechanisms or expanded hidden node networks. The reliance on limited
experimental data and noisy observations limits its ability to generalize, highlighting
the potential value of integrating complementary datasets, such as RNA-seq or pro-
teomics, for greater robustness. Additionally, while simplifying the hidden node network
improves reliability, it may overlook subtle dynamics, which could be addressed by
developing computational strategies for handling larger and more complex networks.
Also, the characteristic activation and stabilization patterns of certain stimuli, were well
predicted but underestimated in late phases. This indicates that while the model can
effectively capture short term dynamics, it may require further refinement to account for
delayed feedback or long term stabilization effects.

In conclusion, the odeNEM framework demonstrates significant potential for un-
covering causal relationships in complex signaling networks. The application of the
DREAM-based prior proved to be a reliable foundation for capturing pathway dynamics,
particularly in basal like cell lines such as BT20. However, the observed variability in
performance across cell lines and conditions highlights areas for refinement, including
the need to account for cross-talk, feedback mechanisms, and experimental variability. By
integrating additional data types and refining computational strategies, future iterations
of the model can achieve greater robustness and accuracy, advancing our understanding
of signaling dynamics in breast cancer.



5 Inference of Gene Regulatory Networks
(GRNs)

In this chapter, we apply the odeNEM model to generate gene regulatory networks
(GRNs) using data obtained from time-series CRISPR perturbation experiments. We
introduced odeNEM, in Chapter 3, as a method designed to reconstruct the hidden
networks underlying the interactions between S−nodes using observations of E−nodes.
Here, we leverage RENGE’s dataset, from [83], to infer the GRN using odeNEM.
RENGE contains both a regression-based computational framework and a dataset. It
infers GRNs from time series observational gene expression data to identify interactions
between genes. The resulting network is then systematically compared with the GRN
inferred directly by RENGE, enabling us to assess consistency, identify discrepancies,
and explore unique features detected by each method.

Before diving into these comparisons, we provide an overview of the experimental
data and discuss the integration process with odeNEM, emphasizing how our model
contributes to validating and expanding upon the inferred gene regulatory structures.

5.1 Importance of GRNs in Understanding Cellular Functions

GRNs are vital for understanding how genes regulate cellular functions. They map the
transcriptional and post-transcriptional relationships between genes, proteins, and other
regulatory components, revealing mechanisms of growth, differentiation, and cellular
responses to stimuli. Beyond advancing our knowledge of cellular biology, GRNs have
clinical significance. Dysregulation of these networks is associated with diseases such as
cancer, autoimmune disorders, and metabolic syndromes. By identifying key regulatory
genes, or "master regulators," GRN analysis provides a basis for therapeutic intervention,
offering new opportunities to target disease-driving pathways.
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5.1.1 Challenges and Advances in GRN Inference

Inferring GRNs is inherently challenging due to the complexity and dynamic nature of
biological systems. Traditional approaches, such as co-expression analysis, often fail to
distinguish between direct and indirect regulatory interactions, leading to ambiguous
or incomplete network reconstructions. Snapshot-based methods, which capture gene
expression at a single time point, further intensify this issue by missing the temporal
sequence of regulatory events and transient interactions.
To overcome these challenges, temporal data and perturbation-based methods have
become necessary. Temporal data allow for the differentiation between early, direct
regulatory responses and later, downstream effects, providing a dynamic view of gene
interactions. Meanwhile, perturbation experiments, such as CRISPR-based knockouts,
introduce targeted disruptions that help isolate the functional impact of specific genes,
improving the accuracy of causal network inference. This combination of temporal and
perturbation data not only reduces ambiguity but also improves the accuracy of causal
network inference.
The RENGE framework exemplifies this integration by combining time-series scRNA-seq
with systematic CRISPR perturbations. Time-series data captures the progression of gene
expression changes, while CRISPR enables controlled interventions to identify causal
regulatory relationships. This approach addresses key questions in gene regulation,
such as identifying causal relationships and distinguishing between direct and indirect
effects.

5.2 RENGE’s Framework

RENGE integrates time-series scRNA-seq with systematic CRISPR perturbations to
reconstruct GRNs. The use of scRNA-seq captures the temporal progression of gene
expression changes following perturbation, while CRISPR enables direct identification
of causal regulatory relationships by systematically targeting specific genes.
A major strength of RENGE lies in its capacity to differentiate between early (direct)
and late (indirect) regulatory responses. By capturing the progression of gene interac-
tions over time, RENGE enables the reconstruction of regulatory networks that account
for both transient and sustained interactions, including those involving genes not di-
rectly knocked out. This comprehensive approach addresses limitations in static and
correlation-based methods, offering a more detailed and dynamic view of GRNs.
The experimental design, depicted in Figure 5.1, highlights the targeted perturbations of
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23 key genes using CRISPR-based knockouts, followed by single-cell RNA sequencing
across days 2 to 5 post-transduction days, capturing temporal dynamics crucial for GRN
reconstruction.

23 Target Genes
ETS2, ETV4, FOXH1, ID1, JARID2, LIN28A, MYC, MYCN, NANOG,
NR5A2, PDLIM1, POU5F1, PRDM14, RUNX1T1, SOX2, TRIM24,

TRIM25, VENTX, ZIC2, ZIC3, ZNF398, ZNF649, ZNF90

Day 3Transduction Day 2 Day 4 Day 5

Figure 5.1: Experimental Design of RENGE: scRNA-seq Profiling Across Days 2-5 Post-
Transduction with gRNA Vectors

5.2.1 RENGE Dataset

Below, we outline the dataset’s composition and the experimental framework used to
generate it:

Cell Types

The dataset includes data from human induced pluripotent stem cells (hiPSCs), which
were chosen due to their ability to differentiate into various cell types, making them
ideal for studying complex regulatory mechanisms. These characteristics make hiPSCs
an excellent model for understanding regulatory dynamics at the early stages of cell
differentiation and for identifying key factors that maintain pluripotency .

Temporal Data Collection and Perturbation

To capture the temporal dynamics of CRISPR-mediated gene knockouts, samples were
collected on days 2, 3, 4, and 5 post-transduction from hiPSCs. The experiment targeted
23 genes (along with 4 control gRNAs), with two gRNAs per gene, ensuring coverage of
the pluripotency network. Cells were transduced with CRISPR gRNAs and sorted for
expression of gRNAs using an MA900 cell sorter. Approximately 5,000 single cells were
captured per sample using the 10x Genomics Chromium platform, aiming for 100 cells
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per gRNA. Single-cell RNA sequencing (scRNA-seq) was performed using the Illumina
NovaSeq system, with 26 cycles for read 1, 91 cycles for read 2, and 8 cycles for the
sample index, ensuring high sequencing depth.

Cell Culture and Experimental Conditions

The hiPSCs (OILG-3 line) were cultured under controlled conditions that supported
their growth and maintenance of pluripotency. Cells were grown on specific substrates
and treated with factors that ensured their viability and ability to respond predictably to
gene perturbations. By using consistent culture conditions, the dataset captures genuine
biological responses to perturbations rather than variability introduced by differing
growth environments.

5.2.2 Data Processing and Normalization

Once the sequencing data was obtained, it underwent several processing steps to pre-
pare it for GRN inference. First, the raw sequencing reads were aligned to the reference
genome to determine which genes were expressed in each cell. Cells that did not meet
certain quality criteria were filtered out to ensure that only high-quality data was used.
For example, cells expressing >200 and <10,000 genes were preserved and cells with
more than 20% mitochondrial reads were excluded.
Next, the expression data was normalized to account for differences in sequencing depth
across cells. This normalization step is crucial, as it allows for meaningful comparisons
of gene expression levels between cells, ensuring that the inferred regulatory relation-
ships are reliable. Additionally, each cell was assigned a gRNA label, indicating which
gene had been targeted, which helped link the observed changes in gene expression to
specific gene knockouts. In all these steps, the Seurat software package was used for
data processing, including quality control, normalization, and scaling of gene expression
data [84].
The variance vs. mean plot, Figure 5.2, illustrates the relationship between gene ex-
pression variability and mean expression levels. We expect the normalization could to
some extent stabilize the variance of the observations. The plot highlights how variance
initially increases with mean expression, reaches a peak, and then decreases at higher
expression levels. This pattern reflects biological and technical sources of variability. The
observed reduction in variance at higher expression levels suggests effective stabilization
of the mean-variance relationship by normalization, ensuring comparability of gene
expression across cells.
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The analysis of expression values between experimental and control groups provided
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Figure 5.2: Variance and mean expression, post-normalization

critical insights into the impact of gene perturbations. The density plot in Figure 5.3
revealed a higher density of low-expression values in the experimental group compared
to the control, suggesting transcriptional changes triggered by CRISPR-based pertur-
bations. Violin plots showed variability in expression values, particularly within the
experimental group. This variability reflects heterogeneity in gene expression responses
to knockouts. Subtle differences between the groups, as seen in both density and violin
plots, indicate potential shifts in variability at specific expression levels. Additionally,
the presence of outliers in both groups underscores the inherent variability of single-cell
RNA-seq data.
Figure 5.3, directly compares mean expression levels between experimental conditions
and controls across all genes and timpoints. It highlights deviations from the diagonal
(i.e., experimental vs. control parity). These deviations indicate experiments which affect
genes more responsive. For instance, POU5F1, PRDM14, RUNX1T1 and SOX2 exhibit
strong deviations, suggesting that these knockdowns are highly more effective. In con-
trast, genes such as ID1 and ZNF649 show minimal deviations.
This analysis demonstrates that the number and magnitude of reacting genes vary widely
across different perturbations, reflecting the differential sensitivity of the regulatory
network components to targeted gene knockouts.
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Figure 5.3: Visualizations of Gene Expression Distributions and Comparisons Across Conditions : Violin plots of the
aggregated gene expression distributions in the control condition (turquoise) versus all perturbations
(pink), representing expression levels across cells in the control group and cells in the experimental
group. Density plot of the same data as in the violin plot, showing the distribution of expression values
across all cells in the control and experimental groups. Scatterplots comparing the mean expression
levels of individual genes between experimental (x-axis) and control (y-axis) conditions for each of the
23 perturbations. Each panel represents one perturbation, with points indicating individual genes in
each timepoint, and the diagonal (red line) representing parity between experimental and control mean
expression values.
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5.2.3 RENGE Algorithm Overview

The core model can be expressed as:

Eg,t =
K

∑
k=1

w(t, k, g)AkXg + bt (5.1)

where:

• Eg: is the expected gene expression vector when gene g is knocked out.

• w(t, k, g): represents the effect strength at time t for regulation order k.

• A: is the gene regulatory matrix.

• Xg: is the decrease in expression of the knocked-out gene g.

• bt: is the baseline expression level.

5.2.4 Inferring Pluripotency Network in hiPSCs

By focusing on transcription factors central to maintaining pluripotency, RENGE pre-
dicted key regulatory relationships vital to this state. Different methods, including
RENGE, were used to infer gene regulatory networks for 103 transcription factors, en-
compassing both the 23 knockout genes and additional transcription factors showing
significant changes in expression. Compared to other methods, such as GENIE3 and
MIMOSCA, RENGE demonstrated superior accuracy, especially in identifying interac-
tions involving non-knockout genes (see Figure 2 and 4 in [83]). To validate the inferred
networks, a subnetwork of 19 genes was constructed using ChIP-seq data from human
pluripotent stem cells as a reference (Figure 5d in [83]).
This analysis revealed both known regulators of pluripotency, such as POU5F1, NANOG,
and SOX2, as well as new potential regulators that may contribute to the maintenance of
pluripotency. For instance, the model highlighted novel regulatory relationships involv-
ing a complex between PRDM14 and RUNX1T1, suggesting new avenues for exploring
the intricate network governing stem cell fate (see Figure 6 in [83]).

5.3 Application of odeNEM

The successful application of odeNEM relies on a meaningful selection of the hidden
nodes for which to infer regulatory interactions (S) and the model for which we obtain
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informative measurements (E). Before looking into the data preparation for odeNEM, it
is important to outline the specific requirements for setting up our model.

5.3.1 Hidden Nodes and Observations

In odeNEM, the regulatory genes targeted by CRISPR (the 23 knockout genes in Fig-
ure 5.1) are referred to as the hidden nodes. These hidden nodes will represent a regula-
tory network whose edges are captured indirectly by observing changes in downstream
genes. In this study, observation profile contains the log fold change of mean expression
of cells receiving an inhibition and the control cells for each gene and time point. This
differential expression, quantified as log fold change of the means, helps in capturing the
true effect of each knockout while accounting for baseline variation in gene expression.
A simple diagram of data array preparation is presented in Figure 5.4.
Since the transformed expression profile is reported in a natural log, we took it to the
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Figure 5.4: Representation of Cell Groups and Gene Expression Averaging Across Ex-
perimental Conditions.
This figure illustrates the organization of data across genes (g), Days (D), and
cell groups. Each cell group corresponds to a subset of cells measured under
specific experimental conditions(knock out of one of 23 target genes). The
computation of the mean gene expression values across all cells in each cell
group, resulted in a reduced cube.
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log2 fold-change format, which is commonly used in transcriptomics studies for easier
interpretation [84].

LogFC =
mean(Expressiongi ,Dj,ExperimentCellsk

)−mean(Expressiongi ,Dj,ControlCells))

log2
(5.2)

As shown in Figure 5.5, the distribution of LogFC values was generally centered around
zero, with positive and negative shifts indicating upregulation and downregulation,
respectively. These observations underscore the biological variability in response to per-
turbations and validate the experimental design’s ability to capture dynamic regulatory
changes.
AIC and BIC were used to evaluate and compare the different types of mixture models
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Figure 5.5: Distribution of Log Fold Change (LogFC) across experiments
Boxplots represent the distribution of LogFC values for each experiment, with
the boxes showing the interquartile range (IQR). Outliers beyond this range
are plotted individually as points, highlighting genes with extreme expression
changes. The right panel presents density plots of LogFC values for each
experiment, allowing for a visual comparison of the overall distribution and
variance of LogFC values across different experiments.

applied to the gene expression data. These metrics identify the best fitting model for each
gene by balancing model complexity and fit quality [85, 86]. AIC and BIC values were
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Figure 5.6: Heatmap of AIC and BIC values across genes for the tested models. Each
row corresponds to a mixture model (Normal or Gamma), and each column
represents a gene. The color intensity indicates the model fit, with lower
AIC/BIC values (blue) representing better fits.

calculated for the Normal mixture and Gamma mixture. The heatmaps below (Figure 5.6)
illustrate the AIC and BIC values across all genes, with lower values indicating better
fits.
From the heatmap (Figure 5.6), it is evident that the Gamma mixture model consistently
achieves lower AIC and BIC values across a majority of the genes compared to the
Normal mixture model. This suggests that the Gamma mixture model better captures
the variability and skewness in the gene expression data. Consequently, we employed
the Gamma mixture model in Equation (3.13) to further investigate the distribution of
log-transformed fold-change values:

og ∼ (1− γg) · f g
0 + γg · f g

1 (5.3)

where fi(og|αg
i , β

g
i ) is Gamma density function for the responsive component with pa-

rameters α
g
i (shape) and β

g
i (rate). The input to the model consists of the log-transformed

fold change values for each gene. This gamma mixture model aims to capture hetero-
geneity in the response by fitting distinct gamma distributions to a gene expression,
each representing a different regulatory effect (strongly responsive conditions f1, weakly
responsive conditions f0).
In the E-step, the responsibilities τg from Equation (3.18), representing the posterior
probabilities that a log-transformed fold change og belongs to the responsive component
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( f1), are calculated as:

τg =
πg · f g

1 (o
g | α

g
1 , β

g
1)

πg · f g
1 (o

g | α
g
1 , β

g
1) + (1− πg) · f g

0 (o
g | α

g
0 , β

g
0)

, (5.4)

where πg is the mixing proportion. The responsibilities are computed for each observa-
tion og, allowing the model to assign weights to the contributions of f0 and f1.
In the maximization step, the model parameters are updated to maximize the expected
log-likelihood. The mixing proportion πg is updated based on the average responsibility:

πg =
1
N

N

∑
i=1

γ
g
i , (5.5)

where N is the number of observations.
The shape (αg

0) and rate (β
g
0) parameters for the weakly responsive component are

updated using the method of moments:

µ
g
0 =

∑N
i=1(1− γ

g
i ) · o

g
i

∑N
i=1(1− γ

g
i )

, σ
g2
0 =

∑N
i=1(1− γ

g
i ) · (o

g
i − µ

g
0)

2

∑N
i=1(1− γ

g
i )

. (5.6)

α
g
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µ
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σ
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0

, β
g
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σ
g2
0

µ
g
0

. (5.7)

The parameters for the strongly responsive component are similarly updated:

µ
g
1 =
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i=1 γ
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i · o
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Figure 5.7: Distribution of genes by model fit category Distribution of genes across
categories ("clear," "ambiguous," and "noisy") based on the separation metric,
Sparation metric (difference in means) quantifies the difference between
f0 and f1. Clear genes exhibit strong separation, ambiguous genes show
moderate separation, and noisy genes demonstrate high overlap or minimal
separation between the components.

Finally, genes were clustered based on the separation between f0 and f1 (the difference
in means or overlap of the gamma distributions). Genes were categorized as "clear,"
"ambiguous," or "noisy" based on the separation metric. The distribution of genes across
these categories is shown in Figure 5.7.
Together, these analyses demonstrate the ability of the gamma mixture model and its
comparisons with other models to capture the heterogeneity in gene expression and
regulatory responses.

5.3.2 Model Assumptions and Parameters

The connection between the hidden nodes and the observation nodes was established
without any specific prior knowledge of the regulatory network except for 23 genes
which are direct targets of inhibitions. We connected those exclusively with the corre-
sponding hidden node. The remaining 80 informative genes were uniformly connected
to all hidden nodes, ensuring that no prior bias or specific regulatory information was
imposed on their relationships.
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5.4 Results

Using Markov Chain Monte Carlo (MCMC), we ran multiple independent chains to
better diagnose convergence and to ensure the robustness of our posterior estimates.
Preliminary runs suggested potential slow mixing for certain parameters. This motivated
the choice of 200,000 iterations. The selection of the burn-in period and thinning interval
was carefully tailored to ensure convergence and reduce autocorrelation in the sampled
chains. The burn-in length was determined empirically by monitoring trace plots of
parameters for signs of stationarity. Figure 5.8 displays a representative trace plot for
two parameters. It shows initial transients (burn-in phase), followed by a region of
relative stationarity. Specifically, the first 100,000 samples exhibit a noticeable drift, and
convergence appears to stabilize around iteration 100,000. Based on these observations,
we discarded the first 100,000 iterations from subsequent analyses. To further confirm
convergence, we examined the log-likelihood trace plots across the three independent
MCMC chains (Figure 5.9). Each panel shows the full trajectory of log-likelihood values
over iterations, with a vertical dashed line indicating the burn-in phase. Convergence
was assessed based on the stabilization of log-likelihood values post burn-in. The final
segments of the traces exhibit relatively minor fluctuations, supporting the assumption
that the Markov chains reached a stationary distribution.
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Figure 5.8: Representative trace plots for two inferred gene regulatory parameters from
the odeNEM model, highlighting the MCMC sampling process and
convergence characteristics. Y-axis is the value sampled for that parameter
(element of W matrix). Each plot spans 200,000 iterations. The first half of
iterations represent the burn-in phase.
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Figure 5.9: Log-likelihood trace plots for the three independent MCMC chains. Each
plot shows the progression of log-likelihood values across iterations. The red
dashed line indicates the burn-in phase, after which the chains exhibit
relatively stable behavior. The left plots are the whole chain, and the right
plots are the window after burn-in and after thinning.
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To address autocorrelation in the MCMC samples, we applied thinning by selecting
every 50th sample. We determined this thinning interval by inspecting the autocorrela-
tion function and ensuring an effective sample size (ESS) above 200 for the majority of
parameters. This threshold of 200 is a commonly accepted heuristic in Bayesian infer-
ence, roughly ensuring that the Monte Carlo error remains small relative to the posterior
uncertainty [87].
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Figure 5.10: Autocorrelation functions (ACFs) for two representative regulatory
parameters taken from the MCMC posterior samples. The y-axis indicates
the autocorrelation at each lag (x axis).

Figure 5.10 shows the autocorrelation function (ACF) for two representative examples
of parameters. It illustrates that substantial autocorrelation persists up to lag 40, moti-
vating our choice of a thinning interval of 50.
Figure 5.11 indicates that, despite the initial slow mixing, our final sampling design
provides enough independent information to support robust downstream analyses.
After thinning, each chain yielded around 2,000 effectively independent samples.
Finally, we summarized HPD for each regulatory parameter by computing the mean
and 95% credible intervals (CIs) across the thinned samples, Section .0. Edges in the
GRN can be classified as significant if their 95% CIs excluded zero, thereby indicating
robust posterior support for the corresponding interaction. For completeness, we also
reported Bayes Factors (BF) and posterior probabilities of edge presence, which reinforce
the CI-based findings and offer an alternative perspective on the strength of evidence.
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Figure 5.11: Effective sample sizes (ESS) for all parameters after burn-in and thinning.
Each bar represents a parameter, and the dashed red line marks an ESS of
200, a commonly recommended threshold for stable posterior estimation.

5.4.1 Network Construction and Key Findings

Our network analysis, presented in Figure 5.12, shows edges between 23 hidden nodes.
The main focus of us will be on key pluripotency factors like POU5F1, NANOG, SOX2,
PRDM14.
At this point, it worths to mention shortly overview of these factors [88]. POU5F1 also
known as OCT4 is a transcription factor essential for maintaining the undifferentiated
state of pluripotency of stem cells. SOX2 often working in conjunction with POU5F1, is
necessary in self-renewal of embryonic stem cells. NANOG reinforces the pluripotent
state by inhibiting differentiation. PRDM14, as a cofactor, is a transcriptional regulator
essential for maintaining pluripotency in embryonic stem cells (ESCs) and specifying
primordial germ cells (PGCs) by repressing differentiation-associated genes. It also facil-
itates DNA demethylation, ensuring the epigenetic landscape required for pluripotency
and germ cell development [89].
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Figure 5.12: Inferred Gene Regulatory Network Capturing Pluripotency Dynamics,
Edge labels represent posterior probabilities from the MCMC inference,
indicating the likelihood that a regulatory interaction exists.
Black lines represent interactions supported by RENGE regulatory co-
efficients, and blue are edges reported only by odeNEM. Dashed
lines indicating predicted edges supported by ChIP-seq data (-10 ·
log10(MACS2 q-value) > 50).

Findings of odeNEM model on RENGE data sets show POU5F1, PRDM14, RUNX1T1
and SOX2 emerged as hub genes, regulating multiple targets in a scale-free structure.
MYC, ZIC2 and ZNF398, less known as main elements of pluripotency core, regulate
several other nodes in our inferred network.
The regulatory coefficient in the RENGE framework, [83], quantifies the influence of
a transcription factor (TF) on its target genes. This coefficient reflects the strength and
direction of regulatory relationships, enabling the construction of the GRN that maps
how TFs control gene expression over time.
For a detailed explanation of the regulatory coefficient and its computation, refer to the
Supplementary Information of the RENGE study in [83].
A summary of edge evidence between nodes, showing pairwise relationships with
Bayesian statistics is included in Section .0. The table includes lower, median, and upper
quantiles of the edge weights, the mean and variance of the edge distributions, the
probabilities of edge presence and absence, and BF, which quantifies the strength of
evidence for each edge (probabilities of edge presence/probabilities of absence). High BF
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values indicate strong evidence for the presence of an edge, with values calculated based
on posterior probabilities after appropriate burn-in and thinning of MCMC samples [90].

5.4.2 Validation of Regulatory Interactions Using ChIP-seq Data

To validate the inferred GRN, we constructed a ground-truth network using publicly
available ChIP-seq data from the ChIP-Atlas database from [91], following the approach
described in the RENGE paper. Regulatory interactions were defined based on tran-
scription factor (TF) binding scores. Only interactions exceeding a threshold score were
considered as high-confidence edges in the ground-truth network.
To systematically assess the alignment of our inferred network with experimental ev-
idence, we varied the ChIP-seq threshold across a range of values. This allowed us
to evaluate the precision and recall of our network predictions at different levels of
thresholds. The Area Under the Precision-Recall Curve (AUPRC) was calculated for each
threshold to measure the consistency between our inferred edges and those supported
by ChIP-seq data.
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Figure 5.13: Validation of Network Predictions Using ChIP-seq Data Thresholds: AUPRC
ratio of comparison between odeNEM network and ground truth from Chip-
seq data under different thresholds of confidence.
The red dots represent the specific thresholds at which we evaluated the
AUPRC ratio.

To calculate the AUPRC ratio, the mean AUPRC across all transcription factors was
divided by the random baseline, which represents the expected performance of a random
predictor (proportional to the fraction of positive interactions in the binarized ChIP-seq
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data at each threshold). The log2 transformation of this ratio was then used for evalua-
tion. This step not only provided a quantitative metric for validation but also ensured
that the inferred network captured both direct and indirect regulatory interactions with
high accuracy.
Figure 5.12 shows the inferred GRN with dashed edges representing regulatory inter-
actions supported by ChIP-seq data with confidence exceeding the defined threshold.
High-confidence edges are visually highlighted while retaining the original structure
and color coding of the network.
Figure 5.13 presents the log2(AUPRC ratio) as a function of the ChIP-seq threshold,
illustrating how the model’s alignment with experimental data improves as the thresh-
old increases. The trend reflects the model’s strong ability to predict high-confidence
regulatory interactions, with performance stabilizing at higher thresholds. This dual
approach of visual and quantitative validation highlights the robustness of the inferred
network and its consistency with experimentally validated regulatory interactions.
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Figure 5.14: Comparison of Inferred Regulatory Effects between RENGE and odeNEM
(a) presents RENGE regulatory effects and (b) posterior probabilities for
genes from rows to genes in the columns.

5.4.3 Basic Comparison with RENGE Results

Our network shares 29 key regulatory edges with RENGE’s results. To further highlight
the network similarities and differences, Figure 5.14 compares the regulatory effects
inferred by RENGE (left panel) with those derived from our posterior probabilities (right
panel). The heatmaps illustrate shared regulatory patterns, such as the strong interactions
for POU5F1 -> PRDM14, Sox2 -> NANOG, PRDM14 -> NANOG and RUNX1T1 -
>PRDM14, as well as distinct differences, such as weaker connectivity for certain nodes
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in the posterior results. One prominent example is the NANOG outgoing interactions
from RENGE which our model did not infer those. This emphasizes the overall alignment
while identifying unique edges specific to our approach. The combination of network
topology and heatmap comparison underscores the robustness of our findings while
also revealing potential novel regulatory relationships.
When comparing the out-degree of nodes between our network and RENGE’s, key
similarities and differences were observed which is summed up in Figure 5.15. Both
networks identified POU5F1 and PRDM14 as the most prominent hub genes with high
out-degrees. Specifically, POU5F1 has an out-degree of 15 in our network, aligning
closely with its out-degree of 16 in RENGE. PRDM14 demonstrated similarly high
connectivity in our network compared to RENGE’s results. Nodes such as RUNX1T1
and SOX2 show comparable out-degrees in both networks, confirming their established
roles in pluripotency regulation.
One key difference is NANOG node. This node exhibits a higher out-degree in RENGE
(9) compared to our network (1), suggesting additional downstream regulatory targets
identified by RENGE. Nodes like ZIC2, ZNF398 and MYC exhibit also variations, with
our network highlighting more connections compared to RENGE.
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5.4.4 Predictive Accuracy and Temporal Correlation Analysis

To further evaluate the predictive power of our model, we compared the predicted
activity (Equation (3.16)) of hidden nodes under inhibitions versus the experimental
observations. Activity levels highlight probability of change in state of a hidden variable.
All following evaluations are done for first 1000 inferred networks with best likelihood
values.
Figure 5.16 depicts predicted (blue) vs. observed (red) gene activity over time, demon-
strating the model’s performance under two different knockouts: (a) POU5F1 and (b)
NANOG. For knockdown of POU5F1, Figure 5.16a, the model accurately mirrored
the expression patterns. Under NANOG inhibition in Figure 5.16b, while the model
captured few trends, it’s deviations in certain gene activities. These results affirm the
model’s reliability while identifying some dynamics more challenging to infer.
To evaluate the performance of the model with more detail, we analyzed the correlation
between state levels (Equation (3.11)) and observed data (Equation (5.2)) across multiple
time points for all inhibitions. Figure 5.17 shows the density distribution of correlation
coefficients for each time point. The density curves summarize how well the model’s
predictions align with experimental observations under different KOs.
Our finding for some inhibitions like POU5F1 KO is highlighting correlation near zero at
early time points. As we can see, for POU5F1 KO, correlation shifts more to right as the
perturbation’s effect accumulates during time. This indicates that the knockout’s impact
expands over time, with the transcriptome diverging more significantly from its original
state. This finding is consistent with the PCA findings in the RENGE paper (Figure 3.d in
[83]), where the impact of knockout on the transcriptome became more pronounced over
time. The progressive divergence in correlation values reflects how each experiment
disrupts the regulatory network, causing cascading effects that accumulate over time.
And our model could capture this progress in effects during time.
A negative correlation in this context indicates that the model failed to capture the
correct direction of change in gene expression. This means that while the true expression
levels increased, the predicted state values decreased, or vice versa. However, in our
model, the primary focus is on the probability of change rather than the precise direction
(upward or downward). As long as the model accurately captures whether a gene’s
expression is affected by the perturbation, the inference remains meaningful.

Figure 5.18 shows the distribution of correlation coefficients per experiment, allow-
ing us to see under which KO the model predicts accurately (with peaks toward higher
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Figure 5.16: Model Performance in Predicting Gene Activity Under Knockouts:
Line plots showing predicted (blue) vs. observed (red) gene activity over
time for key pluripotency factors (a: POU5F1, b: NANOG)
value in y-axis is predicted probability of change for blue line and gene
expression change for red line.
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correlations) versus those where it underperforms (peaks near zero or negative corre-
lations). This view reveals that while several KOs (like SOX2, POU5F1, ZIC3, JARID2)
exhibit stronger alignment between predicted and observed expressions, others (like
NANOG) display multiple or shifted peaks, suggesting more complex dynamics.

Figure 5.19 then aggregates the correlation data across knockout experiments, but splits
them by time point. Notably, later time points often shift right (toward higher correla-
tions), indicating that the model’s predictions align better once the perturbation has had
time to manifest.
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Figure 5.17: Temporal Dynamics of Model Predictions and Observations:
Density plots showing the correlation coefficients between model-predicted
states and observed gene expressions over time under knockouts of key
pluripotency factors.
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Figure 5.18: Distribution of correlation coefficients between predicted and observed gene
expression across knockout conditions, aggregated over all time points.
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across all knockouts, stratified by time point.
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5.4.5 Integration of RENGE Insights

The findings of the RENGE paper provide several key insights that align with and
complement our results. By comparing these insights with our observations, we identify
notable areas of agreement and divergence.
RENGE emphasizes the importance of protein-protein interactions (PPIs) between key
pluripotency factors, such as POU5F1, SOX2, and NANOG, as also noted in [88]. These
interactions are essential for coordinating transcriptional regulation and maintaining the
undifferentiated state of stem cells. Supporting this, STRING scores ([92]) and colocal-
ization data ([91]) further highlight the robustness of these PPIs. Specifically, in Figure
6.d [83] identifies gene pairs, such as (POU5F1, NANOG) and (SOX2, NANOG), with
high regulatory correlation. These pairs likely reflect cooperative regulation, further
supported by evidence from STRING scores(>900) and significant colocalization, em-
phasizing their roles in sustaining pluripotency through self-renewal.
In our inferred network, the edge (POU5F1, SOX2) → NANOG consistently emerges as
a strong interaction. The pair (POU5F1, SOX2) exhibits a relatively low correlation of
posterior probabilities (0.15) in our results, combined with a high STRING score (924)
and significant affinity (<2). These findings support the hypothesis that POU5F1 and
SOX2 often act in conjunction with co-regulators to maintain the pluripotent state.
Both networks highlight novel regulatory interactions that extend beyond the canonical
pluripotency core. RENGE identifies PRDM14 and RUNX1T1 as a key regulatory pair,
with a strong regulatory correlation (0.92) between them, suggesting a potential complex
formation. In mice, such a complex has been supported by experimental evidence using
liquid chromatography-tandem mass spectrometry (LC-MS/MS), indicating its potential
importance in maintaining pluripotency [93].
In our inferred network, PRDM14 and RUNX1T1 also emerge as significant regula-
tors, both targeting several downstream nodes. Although the correlation between their
posterior probabilities in our network is relatively modest (0.34), their shared targets
and connectivity patterns align with the idea of cooperative regulation. These findings
suggest that PRDM14 and RUNX1T1 may work in conjunction to maintain pluripotency,
consistent with RENGE’s hypothesis of their regulatory partnership.
In addition, our inferred network highlights novel connections which were not explic-
itly identified in the STRING, Chip-seq data or RENGE model. Notably, edges such
as PRDM14 → ETS2, ZIC2 → FOXH1, SOX2 → MYCN, SOX2 → ZIC3, and ZIC2 →
ZNF398 emerged with high posterior probabilities (>0.5) in our analysis. These novel
regulatory interactions may represent previously uncharacterized relationships in the
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pluripotency network, suggesting the potential for unique regulatory mechanisms that
were not captured in earlier studies. Such findings need further experimental validation
to assess their biological significance and to potentially extend insights derived from
RENGE.

5.5 Discussion

This chapter was built upon the data of the RENGE paper for inferring a GRN of pluripo-
tency dynamics using the odeNEM model. Our inferred network not only aligns with
many of RENGE’s key findings but also highlights novel regulatory interactions, em-
phasizing the robustness and potential of our approach.
One notable finding is the identification of strong regulatory edges such as (POU5F1,
SOX2) → NANOG, which were also highlighted in RENGE as central to maintaining
pluripotency. RENGE’s identification of PRDM14 and RUNX1T1 as a regulatory pair
with a high regulatory correlation is also supported by our network, where these genes
share several downstream targets.
Interestingly, our network highlights novel regulators like ZIC2, ZNF398, and MYC,
which exhibit higher connectivity compared to RENGE’s network. These findings sug-
gest additional layers of regulatory complexity in the pluripotency network that warrant
further investigation.
Discrepancies between our findings and RENGE’s, such as the lower out-degree of
NANOG in our network, may reflect differences in model assumptions or methodolog-
ical approaches. NANOG’s role as a pluripotency factor is well-established, and its
limited connectivity in our network suggests potential areas for refinement or experi-
mental validation.
Validation of our network using ChIP-seq data further supports the inferred regula-
tory interactions. The observed improvement in AUPRC at higher ChIP-seq thresholds
demonstrates the consistency of our network with experimental evidence. Also, our
model demonstrated considerable predictive accuracy in capturing gene activity dy-
namics under perturbations of key pluripotency factors such as POU5F1. The temporal
correlation analysis revealed that, for POU5F1 knockouts, the impact on the transcrip-
tome increases progressively over time, with correlation distributions broadening and
showing bimodal patterns at later stages. These findings align with observations from
the PCA plot of POU5F1 KO in the RENGE study, further supporting the robustness of
our model in progress of knockout effects in time.
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In conclusion, our findings align with and extend RENGE’s insights into the regu-
latory landscape of pluripotency. By identifying novel interactions and validating them
against experimental data, this study contributes to a deeper understanding of the
transcriptional and epigenetic networks governing stem cell states. Future work should
focus on experimentally validating novel edges and exploring the biological implications
of regulatory interactions specific to our network.





6 Conclusion

Biological systems exhibit multiple layers of regulation, from DNA to mRNA to pro-
teins and post translational modifications. The overarching goal of this thesis was to
infer causal regulatory structures by bridging partial observables (gene expression data)
and hidden signaling nodes whose activity is reflected only indirectly. Nested Effects
Models (NEMs) provide a principled way to analyze perturbations by linking each
hidden S-node to sets of observable E-nodes (genes). Our work uses ordinary differ-
ential equations to capture the time resolved propagation of signals among S-nodes,
with the chosen form Ṡ(t) = WT tanh(S(t))− αS(t). This highlights saturable, bounded
dynamics. We also emphasize the synergy of data (time series expression profiles) and
domain knowledge (priors about edges or functional modules).
This integrated approach allows the model to exploit multiple time points and combina-
torial perturbations, leading to more confident inferences about who regulates whom
in the hidden signaling layer. The resulting graph Φ (or adjacency matrix W) can be
interpreted as a causal structure from which we can study downstream effects and
hypothesize novel interventions.

6.1 Key Strengths of the Model

One key strength is the ability to perform causal inference on time series data. Our model
captures how the system evolves under perturbations across multiple time points. As it
was shown, Figure 3.3, our model handle simplest motif as transient or feed forward
where static snapshots are insufficient. Another important advantage is the capacity to
handle combinatorial interventions across many S-nodes, (Section 4.3.1). This feature
extends classical NEMs that usually focus on simpler or single gene knockdowns.
Our model is built on established NEM ideas and preserves the nested effects principle,
such that the presence of an edge Si → Sj implies partially overlapping sets of E-
genes for each perturbed node. Consequently, odeNEM extends the original NEM
framework as it keeps the familiar Bayesian interpretation. A further strength lies in
the possibility of exploiting hierarchical by allowing priors on edges. For instance from
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known pathways, the model can filter out implausible structures, thereby improving the
speed and correctness of convergence. Lastly, the continuous saturable dynamics based
on tanh resemble many biochemical reaction forms (such as Michaelis–Menten). This
will cover broad applicability to transcriptional, signaling, or metabolic contexts.

6.2 Limitations and Challenges

Despite these strengths, certain limitations remain. First, a reliance on strong priors can
bias the model if those priors are incomplete or inaccurate. This makes it difficult to
unravel biological relationships from prior assumptions without careful calibration or
hierarchical methods. Second, fitting is slow on large networks: MCMC or other search
strategies become computationally heavy as the number of S-nodes increases, especially
since each candidate network requires solving ODE trajectories. Third, the biological
data may exhibit abrupt or switch-like changes that a smooth tanh-based ODE cannot
always capture, resulting in potential mismatches if regulation is more stepwise or
bursty. Fourth, our mixture model relies on a “baseline” distribution f0 and an “altered”
distribution f1. Misspecification of f1 can weaken the model’s ability to distinguish
affected from unaffected E-genes. Finally, some cellular processes are non-monotonic
or even oscillatory, whereas the model’s ODE tends to settle in a single stable point,
complicating MCMC sampling if the data contain repeated up/down fluctuations.

6.3 Further Enhancements

Real signaling pathways can exhibit multi stability, oscillations, or bistable switches.
Simple tanh saturations might be replaced by piecewise or delay differential equations
for sharper transitions. Alternatively, the model might incorporate stochastic elements
to handle single cell variability or in vivo noise. Another potential improvements to
odeNEM is incorporating direction or sign of regulation. So, the adjacency matrix re-
flects activation or inhibition (rather than just presence and absence). This enhacement
is enabling more precise interpretations of downstream effects. On the prior side, adopt-
ing more flexible or hierarchical Bayesian priors would allow the model to learn the
reliability of each knowledge source. It will decrease the risk of using a single, rigid
assumption base. Additionally, faster or more scalable inference methods, such as par-
allelized MCMC or variational techniques, could help tackle large networks efficiently.
Alternatively, block wise MCMC moves instead of single altration can exploit the hi-
erarchical structure of biology faster. Finally, accommodating non monotonic or more
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complex altered distributions by replacing f1 with either a mixture of Gaussians or
a nonparametric approach could help the model adapt to more irregular expression
patterns.

6.4 Final Remarks

In conclusion, this thesis connects the original NEM framework with the richness of time
dependent hidden node dynamics governed by an ODE. These extensions introduce new
complexities such as computational overhead, distributional assumptions, and potential
mismatches with abrupt biological changes. But at the same time, they significantly
expand the kinds of causal questions we can address about multi layered and time
resolved cellular processes. By combining combinatorial perturbation designs, saturated
ODE dynamics, and strong domain priors, we have shown that odeNEM can recover
intricate regulatory relationships in silico. With further enhancements, such as sign
inference, multi stability modeling, and more flexible altered distributions, we expect
this approach to become increasingly robust and scalable for large-scale systems biology.





Supplementary Material

Numerically Stable Log-Space Summation for Likelihood
Calculations

The numerical evaluation of Equation (3.17) needs to be performed in log space, because
of numerical underflow for large products of small numbers. To calculate the sum of
values represented in log space without having to transform back to absolute values, we
use the following method:
Suppose we want to calculate the sum p = p1 + ... + pn for very small values pi. Let the
log values of the pi be given, xi = log pi, i = 1, ..., n, and

m = argmaxi (xi; i = 1, ..., n) (.1)

Then, log p can be calculated in a numerically stable fashion by

log p = log

(
n

∑
i=1

pi

)
= xm + log1p

(
n

∑
i=1,i ̸=m

exp(xi − xm)

)
(.2)

where log1p(x) is a faster and numerically precise implementation of the expression
log(1 + x). Note that in our calculations, pi might be zero, hence xi = −∞. One there-
fore has to care about cases in which all pi are zero to avoid undefined −∞ − (−∞)

expressions.
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Derivation of the Corrected Formula for σ̂
(t+1)
0j

• Understanding the truncated normal distribution: Given the truncated normal
distribution f0(x) with mean µ0 = 0 and variance σ2

0 , truncated at x = a:

f0(x) =
ϕ
( x

σ

)
1−Φ

( a
σ

) , x > a (.3)

where ϕ(·) is the PDF of the standard normal distribution and Φ(·) is its cumulative
distribution function (CDF).

• Expected value and variance of truncated normal distribution: The expected
value and variance of a truncated normal distribution with truncation at x = a are
given by:

E[X | X > a] = µ + σ ·
ϕ
(

a−µ
σ

)
1−Φ

(
a−µ

σ

) (.4)

The variance X willl be,

Var(X) = E[X2]− (E[X])2 (.5)

Var(X | X > a) = σ2

1 +
ϕ
(

a−µ
σ

)
1−Φ

(
a−µ

σ

)
 ϕ

(
a−µ

σ

)
1−Φ

(
a−µ

σ

) − a− µ

σ

 (.6)

For µ0 = 0:

Var(X | X > a) = σ2

[
1 +

ϕ
( a

σ

)
1−Φ

( a
σ

) ( ϕ
( a

σ

)
1−Φ

( a
σ

) − a
σ

)]
(.7)

• Formulation in the EM algorithm: In the EM algorithm, the update for σ2
0 consid-

ering the truncated distribution should account for this additional variance term.
Thus, the correct update for σ̂

(t+1)
0j becomes as Equation (3.21).
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When a = 0, the PDF and CDF of the standard normal distribution at 0 are given by:

ϕ(0) =
1√
2π

(.8)

Φ(0) = 0.5 (.9)

Substituting a = 0 in Equation (3.21):

Var(X | X > 0) = σ2
[

1 +
2
π

]
(.10)



118 Supplementary Material

Dynamics of hidden layer in motifs
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Figure 1: Dynamics of hidden layer in Bifan network
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Figure 2: Dynamics of hidden layer in Diamond network



120 Supplementary Material

Table 1: Summary of Results

pair median_q upper_q mean var p_present p_absent bf

RUNX1T1-
>PRDM14

6.4746890 7.3150030 6.4480510 0.3476173 1.00000 0.0011081 902.4220000

POU5F1-
>PRDM14

0.7950008 1.4914710 0.8374263 0.1365132 1.00000 0.0011909 839.7049000

SOX2-
>NANOG

1.8034490 2.6281650 1.5082150 0.6468475 1.00000 0.0032024 312.2703000

PRDM14-
>ETV4

1.3403420 2.8285380 1.4299390 0.5178705 0.99505 0.0049500 201.0202000

PRDM14-
>NANOG

1.9560020 2.7240500 1.8834930 0.2909985 1.00000 0.0068921 145.0929000

PRDM14-
>ETS2

0.8015941 4.2194960 1.3306160 1.7404720 0.99260 0.0074000 134.1351000

PRDM14-
>MYC

1.9027220 4.5241130 2.1622090 1.2489650 0.97860 0.0214000 45.7289700

PRDM14-
>ZIC3

0.6587175 1.8334060 0.7617404 0.2944873 0.97320 0.0268000 36.3134300

PRDM14-
>ID1

1.0375690 4.1911660 1.3605710 1.4308950 0.85180 0.1482000 5.7476380

SOX2-
>ZIC3

0.8757106 2.0030330 0.8912956 0.3755631 0.84590 0.1541000 5.4892930

SOX2-
>MYCN

0.7880227 2.2818660 0.9316865 0.5593425 0.82510 0.1749000 4.7175530

POU5F1-
>LIN28A

1.1327970 2.6074410 1.1063640 0.7953053 0.73405 0.2659500 2.7601050

ZIC2-
>FOXH1

0.5652532 2.1826640 0.6398365 0.4055791 0.60310 0.3969000 1.5195260

ZIC2-
>ZNF398

0.4269766 1.3946520 0.4578436 0.2112489 0.59570 0.4043000 1.4734110

SOX2-
>TRIM25

0.0000000 1.5526440 0.4157347 0.2575999 0.45600 0.5440000 0.8382353

RUNX1T1-
>ETS2

0.0000000 1.5786510 0.4224065 0.2898703 0.41115 0.5888500 0.6982254
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LIN28A-
>JARID2

0.0000000 1.3574040 0.3235254 0.2202219 0.35815 0.6418500 0.5579964

SOX2-
>ID1

0.0000000 1.4128070 0.3141769 0.2292688 0.34005 0.6599500 0.5152663

ZNF398-
>VENTX

0.0000000 1.3690690 0.3334506 0.2445107 0.33830 0.6617000 0.5112589

POU5F1-
>ID1

0.0000000 1.3636930 0.2919352 0.2365154 0.28730 0.7127000 0.4031149

ZNF398-
>FOXH1

0.0000000 1.4023220 0.2681359 0.2143368 0.27335 0.7266500 0.3761784

POU5F1-
>ZIC3

0.0000000 1.2985350 0.2644823 0.2088777 0.26295 0.7370500 0.3567601

POU5F1-
>MYCN

0.0000000 1.2657650 0.2384594 0.1886451 0.25240 0.7476000 0.3376137

MYC-
>ZNF90

0.0000000 1.1748460 0.2017385 0.1504779 0.23715 0.7628500 0.3108737

RUNX1T1-
>NR5A2

0.0000000 1.2964690 0.2161474 0.1695062 0.23450 0.7655000 0.3063357

PRDM14-
>VENTX

0.0000000 1.2324570 0.2087356 0.1718841 0.21245 0.7875500 0.2697607

PRDM14-
>LIN28A

0.0000000 2.6686590 0.3463562 0.6135842 0.18745 0.8125500 0.2306935

POU5F1-
>ETS2

0.0000000 1.2669400 0.1583764 0.1450582 0.15620 0.8438000 0.1851150

POU5F1-
>ZIC2

0.0000000 1.3195990 0.1430067 0.1335299 0.14885 0.8511500 0.1748810

POU5F1-
>TRIM25

0.0000000 1.3119600 0.1498684 0.1427644 0.14750 0.8525000 0.1730205

MYC-
>JARID2

0.0000000 1.2671750 0.1433328 0.1307450 0.14555 0.8544500 0.1703435

ZNF398-
>ZIC2

0.0000000 1.0551990 0.0941570 0.0801639 0.11270 0.8873000 0.1270145

MYC-
>ZIC2

0.0000000 1.1038130 0.1071574 0.0959141 0.11200 0.8880000 0.1261261
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MYC-
>ID1

0.0000000 1.0901400 0.1037899 0.0911164 0.11070 0.8893000 0.1244799

PRDM14-
>ZIC2

0.0000000 1.1254380 0.0992230 0.0963751 0.10210 0.8979000 0.1137098

ZIC2-
>VENTX

0.0000000 1.3045530 0.1107054 0.1208383 0.09840 0.9016000 0.1091393

RUNX1T1-
>ZIC3

0.0000000 1.2102070 0.0947746 0.0923294 0.09415 0.9058500 0.1039355

POU5F1-
>VENTX

0.0000000 1.1341540 0.0922256 0.0909104 0.08945 0.9105500 0.0982373

POU5F1-
>JARID2

0.0000000 1.3105490 0.0952872 0.1056370 0.08380 0.9162000 0.0914648

FOXH1-
>VENTX

0.0000000 1.1621010 0.0792190 0.0799257 0.07560 0.9244000 0.0817828

ZIC2-
>TRIM25

0.0000000 1.0123980 0.0602250 0.0587652 0.06150 0.9385000 0.0655301

POU5F1-
>MYC

0.0000000 1.0373670 0.0570428 0.0545404 0.05860 0.9414000 0.0622477

MYC-
>VENTX

0.0000000 1.0086030 0.0545427 0.0539499 0.05845 0.9415500 0.0620785

TRIM25-
>NR5A2

0.0000000 1.0394730 0.0567033 0.0568876 0.05650 0.9435000 0.0598834

RUNX1T1-
>ID1

0.0000000 0.9783141 0.0533047 0.0568467 0.05370 0.9463000 0.0567473

RUNX1T1-
>ETV4

0.0000000 1.0826460 0.0528603 0.0555182 0.05005 0.9499500 0.0526870

POU5F1-
>NANOG

0.0000000 0.9481680 0.0446980 0.0461321 0.04405 0.9559500 0.0460798

ZIC2-
>ID1

0.0000000 0.9884844 0.0464124 0.0520004 0.04345 0.9565500 0.0454237

SOX2-
>VENTX

0.0000000 0.9196117 0.0398374 0.0417424 0.03875 0.9612500 0.0403121

VENTX-
>JARID2

0.0000000 0.8092178 0.0315469 0.0332457 0.03030 0.9697000 0.0312468



Supplementary Material 123

MYC-
>LIN28A

0.0000000 0.9286524 0.0318945 0.0335746 0.03030 0.9697000 0.0312468

MYCN-
>LIN28A

0.0000000 0.8091429 0.0305633 0.0315134 0.02990 0.9701000 0.0308216

ZIC3-
>ID1

0.0000000 0.7885552 0.0294079 0.0309005 0.02795 0.9720500 0.0287537

ZNF398-
>ETS2

0.0000000 0.3485535 0.0241374 0.0235879 0.02530 0.9747000 0.0259567

JARID2-
>VENTX

0.0000000 0.0000000 0.0232442 0.0245158 0.02285 0.9771500 0.0233843

ZIC2-
>ZNF90

0.0000000 0.0000000 0.0224998 0.0230802 0.02215 0.9778500 0.0226517

RUNX1T1-
>VENTX

0.0000000 0.0000000 0.0196837 0.0183906 0.02185 0.9781500 0.0223381

JARID2-
>LIN28A

0.0000000 0.0000000 0.0500541 0.1189002 0.02070 0.9793000 0.0211376

POU5F1-
>ETV4

0.0000000 0.0000000 0.0198125 0.0203147 0.01965 0.9803500 0.0200439

VENTX-
>ID1

0.0000000 0.0000000 0.0177111 0.0172241 0.01925 0.9807500 0.0196278

ZNF90-
>VENTX

0.0000000 0.0000000 0.0190213 0.0205706 0.01845 0.9815500 0.0187968

VENTX-
>MYC

0.0000000 0.0000000 0.0171411 0.0169971 0.01800 0.9820000 0.0183299

RUNX1T1-
>MYC

0.0000000 0.0000000 0.0163069 0.0166596 0.01650 0.9835000 0.0167768

ZNF649-
>ZIC3

0.0000000 0.0000000 0.0159051 0.0170374 0.01520 0.9848000 0.0154346

TRIM24-
>JARID2

0.0000000 0.0000000 0.0135658 0.0131592 0.01460 0.9854000 0.0148163

SOX2-
>ETS2

0.0000000 0.0000000 0.0133933 0.0133330 0.01420 0.9858000 0.0144045

POU5F1-
>FOXH1

0.0000000 0.0000000 0.0133988 0.0140880 0.01330 0.9867000 0.0134793
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ZNF398-
>JARID2

0.0000000 0.0000000 0.0132537 0.0139089 0.01310 0.9869000 0.0132739

PRDM14-
>MYCN

0.0000000 0.0000000 0.0109534 0.0102865 0.01200 0.9880000 0.0121458

PRDM14-
>JARID2

0.0000000 0.0000000 0.0115073 0.0117758 0.01195 0.9880500 0.0120945

PRDM14-
>ZNF90

0.0000000 0.0000000 0.0115591 0.0127688 0.01125 0.9887500 0.0113780

ZIC3-
>VENTX

0.0000000 0.0000000 0.0095233 0.0093299 0.01015 0.9898500 0.0102541



Bibliography

[1] D. Bray. “Protein molecules as computational elements in living cells.” In: Nature
376.6538 (July 1995), pp. 307–312.

[2] F. CRICK. “Central Dogma of Molecular Biology.” In: Nature 227.5258 (Aug. 1970),
pp. 561–563.

[3] A. G. Hinnebusch. “Molecular Mechanism of Scanning and Start Codon Selection
in Eukaryotes.” In: Microbiology and Molecular Biology Reviews 75.3 (Sept. 2011),
pp. 434–467.

[4] D. P. Bartel. “MicroRNAs.” In: Cell 116.2 (Jan. 2004), pp. 281–297.

[5] K. M. Lelli, M. Slattery, and R. S. Mann. “Disentangling the Many Layers of
Eukaryotic Transcriptional Regulation.” In: Annual Review of Genetics 46.1 (Dec.
2012), pp. 43–68.

[6] C. T. Walsh, S. Garneau-Tsodikova, and G. J. Gatto. “Protein Posttranslational Mod-
ifications: The Chemistry of Proteome Diversifications.” In: Angewandte Chemie
International Edition 44.45 (Nov. 2005), pp. 7342–7372.

[7] C. Vogel and E. M. Marcotte. “Insights into the regulation of protein abundance
from proteomic and transcriptomic analyses.” In: Nature Reviews Genetics 13.4 (Mar.
2012), pp. 227–232.

[8] W. ZHANG and H. T. LIU. “MAPK signal pathways in the regulation of cell
proliferation in mammalian cells.” In: Cell Research 12.1 (Mar. 2002), pp. 9–18.

[9] W. A. Lim and T. Pawson. “Phosphotyrosine Signaling: Evolving a New Cellular
Communication System.” In: Cell 142.5 (Sept. 2010), pp. 661–667.

[10] H. A. Krebs and W. A. Johnson. “The Role of Citric Acid in Intermediate Metabolism
in Animal Tissues.” In: Source Book in Chemistry, 1900–1950. Harvard University
Press, Dec. 1968, pp. 383–390.



126 Bibliography

[11] A. R. Fernie and M. Stitt. “On the Discordance of Metabolomics with Proteomics
and Transcriptomics: Coping with Increasing Complexity in Logic, Chemistry, and
Network Interactions Scientific Correspondence.” In: Plant Physiology 158.3 (Jan.
2012), pp. 1139–1145.

[12] U. Alon. “Network motifs: theory and experimental approaches.” In: Nature Re-
views Genetics 8.6 (June 2007), pp. 450–461.

[13] A.-L. Barabási and Z. N. Oltvai. “Network biology: understanding the cell’s func-
tional organization.” In: Nature Reviews Genetics 5.2 (Feb. 2004), pp. 101–113.

[14] M. Hecker, S. Lambeck, S. Toepfer, E. van Someren, and R. Guthke. “Gene reg-
ulatory network inference: Data integration in dynamic models—A review.” In:
Biosystems 96.1 (Apr. 2009), pp. 86–103.

[15] A. Mortazavi, B. A. Williams, K. McCue, L. Schaeffer, and B. Wold. “Mapping
and quantifying mammalian transcriptomes by RNA-Seq.” In: Nature Methods 5.7
(May 2008), pp. 621–628.

[16] R. Aebersold and M. Mann. “Mass spectrometry-based proteomics.” In: Nature
422.6928 (Mar. 2003), pp. 198–207.

[17] P. J. Park. “ChIP–seq: advantages and challenges of a maturing technology.” In:
Nature Reviews Genetics 10.10 (Sept. 2009), pp. 669–680.

[18] C. J. Echeverri and N. Perrimon. “High-throughput RNAi screening in cultured
cells: a user’s guide.” In: Nature Reviews Genetics 7.5 (Apr. 2006), pp. 373–384.

[19] P. D. Hsu, E. S. Lander, and F. Zhang. “Development and Applications of CRISPR-
Cas9 for Genome Engineering.” In: Cell 157.6 (June 2014), pp. 1262–1278.

[20] N. Friedman, M. Linial, I. Nachman, and D. Pe’er. “Using Bayesian Networks to
Analyze Expression Data.” In: Journal of Computational Biology 7.3–4 (Aug. 2000),
pp. 601–620.

[21] J. Pearl. Causality: Models, Reasoning, and Inference. Cambridge University Press,
Sept. 2009.

[22] R. Linding, L. J. Jensen, G. J. Ostheimer, M. A. van Vugt, C. Jørgensen, I. M. Miron,
F. Diella, K. Colwill, L. Taylor, K. Elder, P. Metalnikov, V. Nguyen, A. Pasculescu,
J. Jin, J. G. Park, L. D. Samson, J. R. Woodgett, R. B. Russell, P. Bork, M. B. Yaffe,
and T. Pawson. “Systematic Discovery of In Vivo Phosphorylation Networks.” In:
Cell 129.7 (June 2007), pp. 1415–1426.



Bibliography 127

[23] T. Pawson and J. D. Scott. “Protein phosphorylation in signaling – 50 years and
counting.” In: Trends in Biochemical Sciences 30.6 (June 2005), pp. 286–290.

[24] D. Koller and N. Friedman. Probabilistic graphical models. Principles and techniques.
[Nachdr.] Adaptive computation and machine learning. Includes bibliographical
references and index. Cambridge, Mass. [u.a.]: MIT Press, 2010. 1231 pp.

[25] F. Markowetz, D. Kostka, O. G. Troyanskaya, and R. Spang. “Nested effects models
for high-dimensional phenotyping screens.” In: Bioinformatics 23.13 (July 2007),
pp. i305–i312.

[26] C. Zeller, H. Fröhlich, and A. Tresch. “A Bayesian Network View on Nested Effects
Models.” In: EURASIP Journal on Bioinformatics and Systems Biology 2009.1 (2009),
p. 195272.

[27] J. PEARL. “Causal diagrams for empirical research.” In: Biometrika 82.4 (1995),
pp. 669–688.

[28] P. Weidemüller, M. Kholmatov, E. Petsalaki, and J. B. Zaugg. “Transcription factors:
Bridge between cell signaling and gene regulation.” In: PROTEOMICS 21.23–24
(Aug. 2021).

[29] S. Ramazi and J. Zahiri. “Post-translational modifications in proteins: resources,
tools and prediction methods.” In: Database 2021 (Jan. 2021).

[30] C. Agatemor, S. A. D. Middleton, and D. Toledo. “How pervasive are post-
translational and -transcriptional modifications?” In: Trends in Cell Biology 32.6
(June 2022), pp. 475–478.

[31] A. Wagner. “How to reconstruct a large genetic network from n gene perturbations
in fewer than n2 easy steps.” In: Bioinformatics 17.12 (Dec. 2001), pp. 1183–1197.

[32] R. C. Wilson and J. A. Doudna. “Molecular Mechanisms of RNA Interference.” In:
Annual Review of Biophysics 42.1 (May 2013), pp. 217–239.

[33] S. Mocellin and M. Provenzano. In: Journal of Translational Medicine 2.1 (2004), p. 39.

[34] F. Markowetz, J. Bloch, and R. Spang. “Non-transcriptional pathway features
reconstructed from secondary effects of RNA interference.” In: Bioinformatics 21.21
(Sept. 2005), pp. 4026–4032.

[35] J. Tegnér and J. Björkegren. “Perturbations to uncover gene networks.” In: Trends
in Genetics 23.1 (Jan. 2007), pp. 34–41.



128 Bibliography

[36] S. Nelander, W. Wang, B. Nilsson, Q.-B. She, C. Pratilas, N. Rosen, P. Gennemark,
and C. Sander. “Models from experiments: combinatorial drug perturbations of
cancer cells.” In: Molecular Systems Biology 4.1 (Jan. 2008).

[37] A. Tresch and F. Markowetz. “Structure Learning in Nested Effects Models.” In:
Statistical Applications in Genetics and Molecular Biology 7.1 (Jan. 2008).

[38] H. Froehlich, M. Fellmann, H. Sueltmann, A. Poustka, and T. Beissbarth. “Large
scale statistical inference of signaling pathways from RNAi and microarray data.”
In: BMC Bioinformatics 8.1 (Oct. 2007).

[39] Y. Feng and J. Pan. “How Does Prior Distribution Affect Model Fit Indices of
Bayesian Structural Equation Model?” In: Fudan Journal of the Humanities and Social
Sciences (May 2024).

[40] S. Pounds and S. W. Morris. “Estimating the occurrence of false positives and false
negatives in microarray studies by approximating and partitioning the empirical
distribution of p-values.” In: Bioinformatics 19.10 (July 2003), pp. 1236–1242.

[41] G. F. Cooper and E. Herskovits. “A Bayesian method for the induction of proba-
bilistic networks from data.” In: Machine Learning 9.4 (Oct. 1992), pp. 309–347.

[42] F. Kschischang, B. Frey, and H.-A. Loeliger. “Factor graphs and the sum-product
algorithm.” In: IEEE Transactions on Information Theory 47.2 (2001), pp. 498–519.

[43] C. J. Vaske, C. House, T. Luu, B. Frank, C.-H. Yeang, N. H. Lee, and J. M. Stuart.
“A Factor Graph Nested Effects Model To Identify Networks from Genetic Per-
turbations.” In: PLoS Computational Biology 5.1 (Jan. 2009). Ed. by A. Asthagiri,
e1000274.

[44] F. Markowetz and R. Spang. “Inferring cellular networks – a review.” In: BMC
Bioinformatics 8.S6 (Sept. 2007).

[45] H. Fröhlich, M. Fellmann, H. Sültmann, A. Poustka, and T. Beissbarth. “Estimating
large-scale signaling networks through nested effect models with intervention
effects from microarray data.” In: Bioinformatics 24.22 (Jan. 2008), pp. 2650–2656.

[46] B. Anchang, M. J. Sadeh, J. Jacob, A. Tresch, M. O. Vlad, P. J. Oefner, and R. Spang.
“Modeling the temporal interplay of molecular signaling and gene expression by
using dynamic nested effects models.” In: Proceedings of the National Academy of
Sciences 106.16 (Apr. 2009), pp. 6447–6452.

[47] H. Fröhlich, P. Praveen, and A. Tresch. “Fast and efficient dynamic nested effects
models.” In: Bioinformatics 27.2 (Nov. 2010), pp. 238–244.



Bibliography 129

[48] U. Nodelman, C. R. Shelton, and D. Koller. “Continuous Time Bayesian Net-
works.” In: (Dec. 2013). arXiv: 1301.0591 [cs.AI].

[49] R. E. Kalman. “A New Approach to Linear Filtering and Prediction Problems.” In:
Journal of Basic Engineering 82.1 (Mar. 1960), pp. 35–45.

[50] M. K. S. Yeung, J. Tegnér, and J. J. Collins. “Reverse engineering gene networks
using singular value decomposition and robust regression.” In: Proceedings of the
National Academy of Sciences 99.9 (Apr. 2002), pp. 6163–6168.

[51] T. S. Gardner, D. di Bernardo, D. Lorenz, and J. J. Collins. “Inferring Genetic
Networks and Identifying Compound Mode of Action via Expression Profiling.”
In: Science 301.5629 (July 2003), pp. 102–105.

[52] K. A. Johnson and R. S. Goody. “The Original Michaelis Constant: Translation of
the 1913 Michaelis–Menten Paper.” In: Biochemistry 50.39 (Sept. 2011), pp. 8264–
8269.

[53] J. Hale. Asymptotic Behavior of Dissipative Systems. American Mathematical Society,
Jan. 2010.

[54] E. I. George and R. E. McCulloch. “Approaches for Bayesian Variable Selection.”
In: Statistica Sinica 7.2 (1997), pp. 339–373.

[55] M. Kanehisa. “KEGG: Kyoto Encyclopedia of Genes and Genomes.” In: Nucleic
Acids Research 28.1 (Jan. 2000), pp. 27–30.

[56] J. Ferlay, M. Colombet, I. Soerjomataram, D. M. Parkin, M. Piñeros, A. Znaor, and
F. Bray. “Cancer statistics for the year 2020: An overview.” In: International Journal
of Cancer 149.4 (Apr. 2021), pp. 778–789.

[57] E. Orrantia-Borunda, P. Anchondo-Nuñez, L. E. Acuña-Aguilar, F. O. Gómez-
Valles, and C. A. Ramírez-Valdespino. “Subtypes of Breast Cancer.” In: Breast
Cancer. Exon Publications, Aug. 2022, pp. 31–42.

[58] F. Schettini, G. Buono, C. Cardalesi, I. Desideri, S. De Placido, and L. Del Mastro.
“Hormone Receptor/Human Epidermal Growth Factor Receptor 2-positive breast
cancer: Where we are now and where we are going.” In: Cancer Treatment Reviews
46 (May 2016), pp. 20–26.

[59] F. Montemurro, S. Di Cosimo, and G. Arpino. “Human epidermal growth factor
receptor 2 (HER2)-positive and hormone receptor-positive breast cancer: new in-
sights into molecular interactions and clinical implications.” In: Annals of Oncology
24.11 (Nov. 2013), pp. 2715–2724.

https://arxiv.org/abs/1301.0591


130 Bibliography

[60] R. S. Finn, M. F. Press, J. Dering, M. Arbushites, M. Koehler, C. Oliva, L. S. Williams,
and A. Di Leo. “Estrogen Receptor, Progesterone Receptor, Human Epidermal
Growth Factor Receptor 2 (HER2), and Epidermal Growth Factor Receptor Expres-
sion and Benefit From Lapatinib in a Randomized Trial of Paclitaxel With Lapatinib
or Placebo As First-Line Treatment in HER2-Negative or Unknown Metastatic
Breast Cancer.” In: Journal of Clinical Oncology 27.24 (Aug. 2009), pp. 3908–3915.

[61] X. Dai, H. Cheng, Z. Bai, and J. Li. “Breast Cancer Cell Line Classification and
Its Relevance with Breast Tumor Subtyping.” In: Journal of Cancer 8.16 (2017),
pp. 3131–3141.

[62] W. Fan, J. Chang, and P. Fu. “Endocrine therapy resistance in breast cancer: current
status, possible mechanisms and overcoming strategies.” In: Future Medicinal
Chemistry 7.12 (Aug. 2015), pp. 1511–1519.

[63] Z. Li, H. Wei, S. Li, P. Wu, and X. Mao. “The Role of Progesterone Receptors in
Breast Cancer.” In: Drug Design, Development and Therapy Volume 16 (Jan. 2022),
pp. 305–314.

[64] A. Grigoriadis, A. Mackay, E. Noel, P. Wu, R. Natrajan, J. Frankum, J. S. Reis-Filho,
and A. Tutt. “Molecular characterisation of cell line models for triple-negative
breast cancers.” In: BMC Genomics 13.1 (2012), p. 619.

[65] C. V. Grant, C. M. Carver, S. D. Hastings, K. Ramachandran, M. Muniswamy,
A. L. Risinger, J. A. Beutler, and S. L. Mooberry. “Triple-negative breast cancer
cell line sensitivity to englerin A identifies a new, targetable subtype.” In: Breast
Cancer Research and Treatment 177.2 (June 2019), pp. 345–355.

[66] D. Fu, Z. Hu, X. Xu, X. Dai, and Z. Liu. “Key signal transduction pathways and
crosstalk in cancer: Biological and therapeutic opportunities.” In: Translational
Oncology 26 (Dec. 2022), p. 101510.

[67] D. Miricescu, A. Totan, I.-I. Stanescu-Spinu, S. C. Badoiu, C. Stefani, and M. Gre-
abu. “PI3K/AKT/mTOR Signaling Pathway in Breast Cancer: From Molecular
Landscape to Clinical Aspects.” In: International Journal of Molecular Sciences 22.1
(Dec. 2020), p. 173.

[68] Q. Li, Z. Li, T. Luo, and H. Shi. “Targeting the PI3K/AKT/mTOR and RAF/MEK/ERK
pathways for cancer therapy.” In: Molecular Biomedicine 3.1 (Dec. 2022).

[69] H. Lu, Y. Guo, G. Gupta, and X. Tian. “Mitogen-Activated Protein Kinase (MAPK):
New Insights in Breast Cancer.” In: Journal of Environmental Pathology, Toxicology
and Oncology 38.1 (2019), pp. 51–59.



Bibliography 131

[70] M. Burotto, V. L. Chiou, J.-M. Lee, and E. C. Kohn. “The MAPK pathway across
different malignancies: A new perspective.” In: Cancer 120.22 (June 2014), pp. 3446–
3456.

[71] N. Takebe, L. Miele, P. J. Harris, W. Jeong, H. Bando, M. Kahn, S. X. Yang, and
S. P. Ivy. “Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells:
clinical update.” In: Nature Reviews Clinical Oncology 12.8 (Apr. 2015), pp. 445–464.

[72] Y. Xia, S. Shen, and I. M. Verma. “NF-kBeta, an Active Player in Human Cancers.”
In: Cancer Immunology Research 2.9 (Sept. 2014), pp. 823–830.

[73] M. Olivier, M. Hollstein, and P. Hainaut. “TP53 Mutations in Human Cancers:
Origins, Consequences, and Clinical Use.” In: Cold Spring Harbor Perspectives in
Biology 2.1 (Nov. 2009), a001008–a001008.

[74] M. Guo, Y. Peng, A. Gao, C. Du, and J. G. Herman. “Epigenetic heterogeneity in
cancer.” In: Biomarker Research 7.1 (Oct. 2019).

[75] S. M. Hill, L. M. Heiser, T. Cokelaer, M. Unger, N. K. Nesser, D. E. Carlin, Y.
Zhang, A. Sokolov, E. O. Paull, C. K. Wong, K. Graim, A. Bivol, H. Wang, F. Zhu,
B. Afsari, L. V. Danilova, A. V. Favorov, W. S. Lee, D. Taylor, C. W. Hu, B. L. Long,
D. P. Noren, A. J. Bisberg, G. B. Mills, J. W. Gray, M. Kellen, T. Norman, S. Friend,
A. A. Qutub, E. J. Fertig, Y. Guan, M. Song, J. M. Stuart, P. T. Spellman, H. Koeppl,
G. Stolovitzky, J. Saez-Rodriguez, and S. Mukherjee. “Inferring causal molecular
networks: empirical assessment through a community-based effort.” In: Nature
Methods 13.4 (Feb. 2016), pp. 310–318.

[76] S. M. Hill, N. K. Nesser, K. Johnson-Camacho, M. Jeffress, A. Johnson, C. Boniface,
S. E. Spencer, Y. Lu, L. M. Heiser, Y. Lawrence, N. T. Pande, J. E. Korkola, J. W.
Gray, G. B. Mills, S. Mukherjee, and P. T. Spellman. “Context Specificity in Causal
Signaling Networks Revealed by Phosphoprotein Profiling.” In: Cell Systems 4.1
(Jan. 2017), 73–83.e10.

[77] J. Kao, K. Salari, M. Bocanegra, Y.-L. Choi, L. Girard, J. Gandhi, K. A. Kwei,
T. Hernandez-Boussard, P. Wang, A. F. Gazdar, J. D. Minna, and J. R. Pollack.
“Molecular Profiling of Breast Cancer Cell Lines Defines Relevant Tumor Models
and Provides a Resource for Cancer Gene Discovery.” In: PLoS ONE 4.7 (July 2009).
Ed. by M. V. Blagosklonny, e6146.

[78] K. Oda, Y. Matsuoka, A. Funahashi, and H. Kitano. “A comprehensive pathway
map of epidermal growth factor receptor signaling.” In: Molecular Systems Biology
1.1 (Jan. 2005).



132 Bibliography

[79] K. Imai, D. Tingley, and T. Yamamoto. “Experimental Designs for Identifying
Causal Mechanisms.” In: Journal of the Royal Statistical Society Series A: Statistics in
Society 176.1 (Nov. 2012), pp. 5–51.

[80] J. Lewis. “Experimental Design: Ethics, Integrity, and the Scientific Method.” In:
Handbook of Research Ethics and Scientific Integrity. Springer International Publishing,
2020, pp. 459–474.

[81] P. Tigas, Y. Annadani, A. Jesson, B. Schölkopf, Y. Gal, and S. Bauer. Interventions,
Where and How? Experimental Design for Causal Models at Scale. 2022.

[82] O. Raglan, N. Assi, J. Nautiyal, H. Lu, H. Gabra, M. J. Gunter, and M. Kyrgiou.
“Proteomic analysis of malignant and benign endometrium according to obesity
and insulin-resistance status using Reverse Phase Protein Array.” In: Translational
Research 218 (Apr. 2020), pp. 57–72.

[83] M. Ishikawa, S. Sugino, Y. Masuda, Y. Tarumoto, Y. Seto, N. Taniyama, F. Wagai,
Y. Yamauchi, Y. Kojima, H. Kiryu, K. Yusa, M. Eiraku, and A. Mochizuki. “RENGE
infers gene regulatory networks using time-series single-cell RNA-seq data with
CRISPR perturbations.” In: Communications Biology 6.1 (Dec. 2023).

[84] Y. Hao, S. Hao, E. Andersen-Nissen, W. M. Mauck, S. Zheng, A. Butler, M. J.
Lee, A. J. Wilk, C. Darby, M. Zager, P. Hoffman, M. Stoeckius, E. Papalexi, E. P.
Mimitou, J. Jain, A. Srivastava, T. Stuart, L. M. Fleming, B. Yeung, A. J. Rogers, J. M.
McElrath, C. A. Blish, R. Gottardo, P. Smibert, and R. Satija. “Integrated analysis
of multimodal single-cell data.” In: Cell 184.13 (June 2021), 3573–3587.e29.

[85] H. Akaike. “A New Look at the Statistical Model Identification.” In: Selected Papers
of Hirotugu Akaike. Springer New York, 1974, pp. 215–222.

[86] G. Schwarz. “Estimating the Dimension of a Model.” In: The Annals of Statistics 6.2
(Mar. 1978).

[87] A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and D. B. Rubin.
Bayesian Data Analysis. Chapman and Hall/CRC, Nov. 2013.

[88] M. Li and J. C. I. Belmonte. “Ground rules of the pluripotency gene regulatory
network.” In: Nature Reviews Genetics 18.3 (Jan. 2017), pp. 180–191.

[89] Y. Seki. “PRDM14 Is a Unique Epigenetic Regulator Stabilizing Transcriptional
Networks for Pluripotency.” In: Frontiers in Cell and Developmental Biology 6 (Feb.
2018).



Bibliography 133

[90] R. E. Kass and A. E. Raftery. “Bayes Factors.” In: Journal of the American Statistical
Association 90.430 (June 1995), pp. 773–795.

[91] S. Oki, T. Ohta, G. Shioi, H. Hatanaka, O. Ogasawara, Y. Okuda, H. Kawaji, R.
Nakaki, J. Sese, and C. Meno. “Ch IP -Atlas: a data-mining suite powered by full
integration of public Ch IP -seq data.” In: EMBO reports 19.12 (Nov. 2018).

[92] D. Szklarczyk, A. L. Gable, K. C. Nastou, D. Lyon, R. Kirsch, S. Pyysalo, N. T.
Doncheva, M. Legeay, T. Fang, P. Bork, L. J. Jensen, and C. von Mering. “The
STRING database in 2021: customizable protein–protein networks, and functional
characterization of user-uploaded gene/measurement sets.” In: Nucleic Acids
Research 49.D1 (Nov. 2020), pp. D605–D612.

[93] M. Yamamoto, Y. Suwa, K. Sugiyama, N. Okashita, M. Kawaguchi, N. Tani, K.
Matsubara, A. Nakamura, and Y. Seki. “The PRDM14–CtBP1/2–PRC2 complex
regulates transcriptional repression during the transition from primed to naïve
pluripotency.” In: Journal of Cell Science 133.15 (Aug. 2020).



134 Bibliography


	Dedication
	Acknowledgements
	Abstract
	Zusammenfassung
	Introduction
	Biological Systems and Cellular Processes
	Modeling Biological Systems with Networks

	Reverse Engineering Biological Networks
	Hidden Variables in Gene regulation
	Objectives and Thesis Organization

	Nested Effect Models (NEMs)
	Introduction
	NEMs
	Basics
	Likelihood function
	Formulation of NEM as Bayesian Networks
	Factor Graph
	Learning Networks in NEMs

	Temporal Dynamics in Nested Effects Models with DynoNEM
	Objectives of this Thesis
	Toward a Unified Framework for Dynamic and Causal Network Inference
	State-space models (SSMs)
	Structural Causal Models (SCMs)
	Integrating SCMs and SSMs


	Ordinary Differential Equation based NEMs
	General Structure
	Modeling the dynamics of hidden nodes
	steady-state and attractors of hidden nodes
	Notes on steady-states of a model

	Modeling interventions of the system
	Linking hidden nodes to observables
	Parameter Learning
	Simulation Studies
	Evaluation Metrics

	Evaluations
	Performance Comparison with dynoNEM

	Discussion

	Inference of Protein-Protein Interaction Networks
	Breast Cancer
	Pathway Interactions in Cancer
	Importance of Studying Signaling Pathways in Specific Context

	HPN-DREAM Challenge
	DREAM Data
	Data Analysis
	Inferred Network by Challenge Contest

	Applying odeNEM
	Selecting hidden nodes and effect nodes
	Prior on S-E Connections
	Emission Probability Modeling

	Results
	Evaluation of Priors
	Heatmap Analysis
	Trajectory Comparisons

	Discussion

	Inference of Gene Regulatory Networks (GRNs)
	Importance of GRNs in Understanding Cellular Functions
	Challenges and Advances in GRN Inference

	RENGE's Framework
	RENGE Dataset
	Data Processing and Normalization
	RENGE Algorithm Overview
	Inferring Pluripotency Network in hiPSCs

	Application of odeNEM
	Hidden Nodes and Observations
	Model Assumptions and Parameters

	Results
	Network Construction and Key Findings
	Validation of Regulatory Interactions Using ChIP-seq Data
	Basic Comparison with RENGE Results
	Predictive Accuracy and Temporal Correlation Analysis
	Integration of RENGE Insights

	Discussion

	Conclusion
	Key Strengths of the Model
	Limitations and Challenges
	Further Enhancements
	Final Remarks

	Supplementary Material
	Bibliography

