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Summary 

Intracellular immune signaling plays an important role in modulating plant defense responses 

against pathogens. Arabidopsis nucleo-cytoplasmic protein EDS1 (Enhanced Disease 

Susceptibility1), together with its sequence-related signaling partners, PAD4 (Phytoalexin-

Deficient4) and SAG101 (Senescence-Associated Gene101), is essential for transcriptional 

reprogramming during intracellular signaling in basal and TNL (TIR-NB-LRR) receptor-triggered 

immunity. EDS1 regulates both SA (salicylic acid)-dependent and SA-independent pathways in 

immune responses. Interactions between TNLs and EDS1 place EDS1 as a bridge between TNLs 

and induced transcriptional reprogramming in cells. How EDS1 signaling is regulated and which 

molecular events connect EDS1 to transcriptional defense reprogramming are still unclear.  

A genetic screen was used to identify suppressors of Arabidopsis eds1-2 hypersusceptibility to Pst 

(Pseudomonas syringae pv. tomato) DC3000 avrRps4 with the purpose to identify potential 

components of EDS1 signaling in immunity. Bacterial effector avrRps4 is recognized by the paired 

Arabidopsis TNL receptors RRS1 (Resistance to Ralstonia solanacearum1)/RPS4 (Resistance to 

Pseudomonas syringae4). I identified seven mutants with restored resistance to Pst DC3000 

avrRps4. Among these, four mutants contain different mutations in COI1 (Coronatine-

Insensitive1). Further analysis of several mutants suggests that four different signaling pathways 

can compensate for defects of eds1-2 in defense responses in Arabidopsis. 

Because COI1 is essential for activating JA (jasmonic acid) signaling which antagonizes SA 

(salicylic acid), I hypothesized that EDS1 negatively regulates JA signaling in order to promote 

SA resistance. In transient expression assays, EDS1, PAD4 and SAG101 formed complexes with 

MYC2-family transcription factors (TFs) which regulate an important JA signaling branch. EDS1-

MYC2 association was found to interfere with MYC2 transcriptional activity in transient 

expression assays. This is the first evidence that EDS1 regulates transcriptional reprogramming 

through association with TFs such as MYC2. Because EDS1 interferes with MYC2 transcriptional 

activity, I tested whether MYC2 reciprocally affects EDS1 protein and/or gene expression. MYC2 

specifically suppressed EDS1 promoter activity independently of MYC2-binding G-box and G-

box-related motifs but, surprisingly, requiring MYC2 bHLH domain DNA-binding activity. After 

exogenous application of a bacterial mimic of bioactive JA, coronatine (COR), MYC2-family TFs 

were found to act redundantly to repress EDS1 expression. This repressive function on EDS1 was 
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manifested in Arabidopsis protoplasts transient assays and at an early stage of Pst DC3000 

infection and was not detectable at the late infection stage, probably due to activated EDS1 

signaling.  

In summary, results presented in this thesis reveal a new and important level of regulation of 

immunity and SA-JA pathway balance by mutual antagonism between EDS1- and MYC2-

dependent processes. 
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Zusammenfassung  

Intrazelluläre Signalwege spielen eine wesentliche Rolle für die pflanzliche Immunantwort gegen 

Pathogene. Transkriptionales Umprogrammieren, welches im Zuge der intrazellulären 

Signaltransduktion in basaler und TNL (TIR-NB-LRR) Rezeptor-abhängiger Immunantwort in 

Arabidopsis auftritt, erfordert nucleo-zytoplasmatisch lokalisiertes EDS1 (Enhanced Disease 

Susceptibility1). EDS1 wiederrum bedarf seiner sequenzähnlichen Partnerproteine PAD4 

(Phytoalexin Deficient4) und SAG101 (Senescence-Associated Gene101) um voll funktional zu 

sein. Sowohl SA- (Salicylsäure) abhängige, als auch SA-unabhängige Signalwege werden von 

EDS1 während einer Immunreaktion reguliert. Die Interaktion von TNLs mit EDS1 platziert EDS1 

als Verbindung zwischen TNLs und induzierter Umprogrammierung der Genexpression innerhalb 

der Zelle. Es ist jedoch noch immer unklar, wie EDS1 reguliert wird und welche molekularen 

Vorgänge EDS1 mit veränderter Transkription, welche mit der pflanzlichen Immunantwort 

einhergeht, verbinden. 

Um potentielle Komponenten der EDS1 Signaltransduktion zu finden, welche die 

Hyperanfälligkeit von Arabidopsis eds1-2 Pflanzen gegenüber Pst (Pseudomonas syringae pv. 

tomato) DC3000 avrRps4 aufheben, wurde ein genetischer Screen durchgeführt. Das bakterielle 

Effektorprotein avrRps4 wird von dem Arabidopsis TNL Rezeptorpaar RRS1 (Resistance to 

Ralstonia solanacearum1) und RPS4 (Resistance to Pseudomonas syringae4) erkannt. Ich konnte 

sieben Mutanten mit wiederhergestellter Resistenz gegenüber Pst DC3000 avrRPS4 identifizieren. 

Von diesen enthielten vier unterschiedliche Mutationen in COI1 (Coronatine Insensitive1). Die 

tiefergehende Untersuchung diverser Mutanten legt nahe, dass vier eigenständige Signalwege die 

auftretenden Defekte in der Immunantwort von Arabidopsis eds1-2 Pflanzen kompensieren 

können. 

Da COI1 unabdingbar ist für die Aktivierung des JA (Jasmonsäure) Signalweges, welcher SA 

entgegenwirkt, stellte ich die Hypothese auf, dass EDS1 negativ auf JA wirkt, um so SA abhängige 

Pathogenresistenz voranzutreiben. In transienten Expressionsanalysen bildeten EDS1, PAD4 und 

SAG101 Proteinkomplexe mit Transkriptionsfaktoren (TFs) der MYC2 Familie. Diese TFs 

regulieren einen wichtigen Teil des JA Signalweges. In transienten Expressionsversuchen 

beeinträchtigte die Interaktion von EDS1 mit MYC2 die Aktivität von MYC2 als TF. Dies zeigt 

zum ersten Mal, dass EDS1 transkriptionales Umprogrammieren durch die Interaktion mit TFs 
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wie MYC2 reguliert. Da EDS1 die Aktivität von MYC2 reguliert, testete ich, ob MYC2 auf 

reziproke Weise EDS1 Genexpression und/oder Proteinlevel beeinflusst. Hierbei inhibierte MYC2 

spezifisch EDS1 Promoteraktivität. Dies war unabhängig von G-Box und G-Box-ähnlichen 

Motiven, an welche MYC2 binden kann, benötigte aber überraschenderweise die MYC2 bHLH 

Domäne, welche Bindung an DNA vermittelt. Die exogene Zugabe von Coronatine (COR), 

welches ein bakterieller Imitator bioaktiver JA ist, verdeutlichte, dass TFs der MYC2 Familie 

EDS1 Genexpression auf redundante Art und Weise inhibieren. Diese hemmende Wirkung auf 

EDS1 wurde in transienten Arabidopsis Protoplasten Versuchen und in frühen Stadien von Pst 

DC3000 Infektion weiter bekräftigt. In späteren Infektionsstadien konnte die inhibierende 

Wirkung jedoch nicht nachgewiesen werden, was wahrscheinlich auf die Aktivierung von EDS1 

Signaltransduktion zurückzuführen ist.  

Die Ergebnisse dieser Arbeit zeigen eine neue und wichtige Regulationsebene der Immunantwort 

und der Balance zwischen SA-JA Signalwegen auf, welche von dem gegenseitigen EDS1-MYC2 

Antagonismus gesteuert wird. 
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1 Introduction  

1.1 The two major layers of innate immunity in plants 

Plants have evolved a multi-layered immune system to defend themselves from infection by 

potential pathogenic microorganisms. The first layer of defense takes place on the surface of the 

plant cell, where PRRs (Pattern-Recognition Receptors) reside. PRRs can specifically detect 

PAMPs (Pathogen-Associated Molecular Patterns), such as bacteria flagellin, lipopolysaccharides, 

peptidoglycans, chitin and chitin derivatives, which are conserved across microbial species (Jones 

and Dangl, 2006; Couto and Zipfel, 2016). PRRs activated by PAMPs initiate a signaling cascade 

resulting in the onset of PTI (PAMPs-Triggered Immunity) (Jones and Dangl, 2006; Boller and 

Felix, 2009; Spoel and Dong, 2012). The PTI signal transduction cascade promotes 

phosphorylation of RBOHD (Respiratory Burst Oxidase Homologue Protein D) which is 

responsible for ROS (Reactive Oxygen Species) production in the apoplast (Kadota et al., 2014; 

Li et al., 2014). Next to this, PTI responses rely on cytosolic Ca2+ signaling which activates CDPKs 

(Ca2+-dependent Protein Kinases), as well as MAPKs (Mitogen-Activated Protein Kinases) 

signaling cascades, to induce transcriptional reprogramming (Asai et al., 2002; Couto and Zipfel, 

2016). The transcriptional changes translate into diverse cellular responses at the metabolic level: 

phytoalexin production, callose deposition at the cell wall and hormone synthesis, which are 

generally effective to fend off host non-adapted pathogens (Boller and Felix, 2009). 

Pathogens that have become adapted to a particular host genotype can disable PTI by secreting 

effector molecules into the plant apoplast or cytoplasm. Some effectors are delivered by a T3SS 

(Type III Secretion System) in the case of bacterial pathogens or by feeding structures (haustoria) 

in the case of fungal and oomycete pathogens (Buttner and He, 2009; Kemen and Jones, 2012). 

Effectors target host cellular processes to aid pathogen colonization, often by dampening PTI 

(Dangl et al., 2013). In response, host plants have evolved intracellular immune receptors known 

as R (Resistance) proteins which can specifically recognize the presence or monitor the activity of 

certain effectors (Cui et al., 2015). Upon perception of effectors, activated R proteins lead to ETI 

(Effector-Triggered Immunity) involving a boost in PTI-related defenses (Jones and Dangl, 2006; 

Cui et al., 2015). The major class of R proteins belongs to a polymorphic family of intracellular 

NLRs [Nucleotide oligomerization domain (NOD)-like receptors] with NB-LRR (Nucleotide-
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Binding and Leucine-Rich-Repeat) domains (Spoel and Dong, 2012). ETI responses are 

qualitatively similar to PTI but are generally faster and characterized by stronger and sustained 

transcriptional changes, which are usually coupled with a local HR (Hypersensitive Response) 

(Tao et al., 2003; Navarro et al., 2004; Dodds and Rathjen, 2010; Cui et al., 2015).  

In this study, a low-level post-infection immune responses against virulent pathogens which are 

not obviously recognized by NLRs is defined as basal resistance. Plant basal resistance is likely to 

be “PTI plus weak ETI, minus ETS (Effector-Triggered Susceptibility)”, which allow virulent 

pathogen slow growth (Jones and Dangl, 2006). 

1.2 The role of NLRs in ETI 

As in mammals, plant NLR proteins belong to a subclass of the STAND (Signal Transduction 

ATPases with Numerous Domains) superfamily of proteins (Danot et al., 2009). The molecular 

function of STAND proteins is modulated by a P-loop motif (GxxxxGKT/S) which can be 

switched from an ADP-bound “off” position to an ATP-bound “on” state (Leipe et al., 2004). NLR 

proteins usually contain variable domains at the N-terminus, an LRR domain at the C-terminus 

and a central conserved NB-ARC [Nucleotide-Binding, shared by Apoptotic protease activating 

factor1 (Apaf-1), certain R-proteins and Cell death protein 4 (CED-4)] domain (Danot et al., 2009; 

Takken and Goverse, 2012). Based on the sequences of the N-terminal domains, plant NLR 

proteins are generally divided into two groups: TNLs which contain a TIR (Toll/Interleukin1 

receptor)-like domain and CNLs which contain a CC (coiled-coil) domain (Maekawa et al., 2011).  

1.2.1 NLRs reside in different cellular compartments 

NLR proteins localize to and function in diverse cellular compartments, such as at the plasma 

membrane, endomembrane and/ or nucleus. Upon perception of Pseudomonas syringae effectors 

avrRpt2, avrRphB and avrRpm1, respectively, the Arabidopsis CNLs, RPS2, RPS5 (Resistance to 

Pseudomonas syringae2 and 5, respectively) and RPM1 (Resistance to Pseudomonas syringae pv. 

maculicola1) are activated at and function on the plasma membrane (Axtell and Staskawicz, 2003; 

Gao et al., 2011; Qi et al., 2012). N-termini of some NLR proteins function as membrane-attached 

domains. The N termini of Flax TNL L6 and M, recognizing fungal effectors AvrL567 and AvrM, 

respectively, function as anchor domains to attach L6 and M to endomembranes system (Takemoto 

et al., 2012). Potato CNL protein Rx, conferring resistance to Potato virus X, localizes in both the 
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nucleus and cytosol, and the movement of Rx from the nucleus to cytoplasm promotes immune 

signaling, which is critical for resistance to virus (Slootweg et al., 2010; Tameling et al., 2010). In 

barley, nuclear localization of the nucleocytoplasmic CNL MLA10 (Polymorphic barley Mildew 

A10) is essential for resistance to Blumeria graminis expressing AVRA10, while the cytosolic 

localized MLA10 or its CC-NB1-225 domain is required for cell-death signaling (Shen et al., 2007; 

Chang et al., 2013). These results suggest that the subcellular localization of MLA10 is critical for 

its function. However, a recent study showed that Sr33 (Stem Rust resistance33), an orthology of 

MLA in wheat, induces disease resistance signaling from the cytosol, suggesting that cytosolic 

Sr33 activates both cell death and stem rust resistance signaling (Cesari et al., 2016). Thus, the 

signaling components and regulatory mechanism for cytosolic Sr33-mediated signaling pathways 

may differ from cytosolic MLA10 although they share ~80% amino acid sequence identity (Cesari 

et al., 2016). Nuclear accumulation of Arabidopsis TNL RPS4 (Resistance to Pseudomonas 

syringae4) is necessary for triggering defense response against Pst (Pseudomonas syringae pv. 

tomato) DC3000 expressing effector avrRps4 (Wirthmueller et al., 2007). Thus, the localization 

and spatial dynamics are critical for NLRs activation and function in ETI. 

1.2.2 NLRs recognize specific pathogen effectors 

NLRs can recognize effectors directly by physical interaction or indirectly by monitoring effector-

caused perturbations of host targets, many of which are PTI components (Cui et al., 2015). The 

direct and indirect recognition are consistent with the gene-for-gene model proposed to address 

the disease resistance specificity (Flor, 1971). As examples of direct recognition, effector ATR1 

secreted by Hpa (Hyaloperonospora arabidopsidis) into host cells is specifically recognized by 

TNL protein RPP1-WsB [an allele of Recognition of Peronospora parasitica1 in Arabidopsis 

accession Ws-2 (Wassilewskija)] (Krasileva et al., 2010; Steinbrenner et al., 2015), and the 

effectors AVR-Pia and AVR1-CO39 from Magnaporthe oryzae can be recognized by resistance 

protein pair RGA4/RGA5 (R-gene analog4/5) via directly binding in rice (Cesari et al., 2013; 

Cesari et al., 2014b). NLRs can also be activated by monitoring pathogen effector-triggered 

modification of host factors. For example, RPM1 and RPS2 in Arabidopsis sense the 

phosphorylation or cleavage of RIN4 (RPM1-interacting protein4) caused by Pseudomonas 

syringae effectors AvrB, AvrRpm1 or AvrRpt2, leading to activation of immune signaling (Axtell 

and Staskawicz, 2003; Mackey et al., 2003; Kim et al., 2005; Chung et al., 2014). Indirect 
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recognition has the potential advantage of increasing NLR perception space for rapidly evolving 

pathogen effectors (Cui et al., 2015).  

Recent studies show that there are variations of NLR direct and indirect recognition, and therefore 

the distinction is not so clear between these modes of NLR action. For example, some NLRs 

contain domains resembling effector targets and acting as “integrated decoys” (Cesari et al., 2014a). 

Some of these NLRs function as pairs. Crystal structure analysis of homo- and heterodimer 

forming TIR domains from Arabidopsis TNL receptors RRS1 (Resistance to Ralstonia 

solanacearum1) and RPS4 suggests that RRS1 and RPS4 act as a heterodimer or oligomer and 

cooperatively intercept two unrelated effectors, avrRps4 from Pseudomonas syringae and PopP2 

from Ralstonia solanacearum (Deslandes et al., 2003; Narusaka et al., 2009; Williams et al., 2014). 

In the absence of RRS1/RPS4 recognition, effector PopP2 dislodges WRKY TFs (Transcription 

Factors) from the DNA and reduces their transcriptional activity by acetylating a conserved lysine 

within WRKY domains, leading to effector-induced susceptibility (Le Roux et al., 2015; Sarris et 

al., 2015). A WRKY domain integrated within TNL RRS1-R is also targeted by PopP2 (Le Roux 

et al., 2015; Sarris et al., 2015). The PopP2-mediated acetylation dislodges RRS1-R from the DNA 

and thereby activates RPS4-dependent immune responses, including upregulation of defense genes 

required for disease resistance (Le Roux et al., 2015; Sarris et al., 2015). Therefore, RRS1 acts as 

an NLR sensor with an integrated effector decoy domain, while RPS4 activates as a signaling NLR, 

likely via forming signaling heterodimer with RRS1 (Cesari et al., 2014a; Griebel et al., 2014).  

1.2.3 Certain NLR families function as “helpers” in resistance signaling 

The current view that some NLRs function as “helpers” to relay and amplify resistance signaling 

is supported by studies on NLR receptors in mammalian immunity. For example, in mouse, NAIPs 

(NLR family, Apoptosis Inhibitory Proteins), which provide recognition specificity for distinct 

bacterial pathogens, are required for NLRC4 (NLR family, CARD domain containing4) activation 

and formation of NLRC4 oligomerization, which in turn regulates downstream signaling (Kofoed 

and Vance, 2011; Zhao et al., 2011; Hu et al., 2013; Hu et al., 2015; Zhang et al., 2015c). These 

results suggest that a “sensor-executor” framework, in which NLRs such as NAIPs serving as 

“sensor” and the other partner NLRs such as NLRC4 acting as “executor” to regulate downstream 

signaling (Griebel et al., 2014). In plant ETI, several NLR proteins have no known effector-sensor 

function, referred to as “helper” NLRs, but assist other immune receptors in transducing signals 
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after pathogen recognition to downstream responses (Griebel et al., 2014). Recently, NRC1 (NLR 

protein required for HR-associated cell death1)-like proteins NRC2a/b and NRC3, without known 

effector recognition activity, were discovered to be critical for the cell death and resistance 

mediated by Pto (Pseudomonas syringae. pv. tomato), suggesting NRC2a/b and NRC3 function 

as helper for intracellular receptor Pto-mediated cell death in N. benthamiana (Wu et al., 2016). In 

N. benthamiana, the CNL NRG1 (N requirement gene1), acts together with TNL N to trigger 

resistance against tobacco mosaic virus (Peart et al., 2005). In a genetic screen for lsd1 (lesions 

simulating disease1) suppressors, mutations in ADR1-L2 (Activated Disease Resistance1-Like2) 

were isolated (Bonardi et al., 2011). ADR1 and its paralogs, ADR1-L1 and ADR1-L2, are 

necessary for autoimmune phenotypes of the Arabidopsis typical TNL mutants snc1 (suppressor 

of npr1-1, constitutive1) and chs2-1 (chilling-sensitive2-1) (Dong et al., 2016). In contrast to 

canonical NLRs, the helper function of ADR1-L2 does not require an intact P-loop in the NB-

ARC domain. (Bonardi et al., 2011). Although these “helper” non-canonical NLRs operate 

downstream of “sensor” NLRs, it is unclear whether sensor and helper receptors reside in a 

complex (Griebel et al., 2014). 

1.2.4 Several nuclear NLRs regulate transcription changes 

Currently, some evidence indicate that nuclear-localized NLRs are able to regulate transcriptional 

reprogramming via association with transcription regulators. In barley, in the presence of the 

cognate powdery mildew effector AvrA10, the N-terminal signaling domain of the 

nucleocytoplasmic MLA10 interacts with TF MYB6 and stimulates its DNA binding activity by 

releasing TF WRKY1 suppression, which in turn activates defense-related gene expression (Shen 

et al., 2007; Chang et al., 2013). In rice, CNL protein Pb1 (Panicle blast1) physically interacts with 

TF WRKY54, a positive regulator of SA signaling, which was proposed to contribute to Pb1-

dependent blast resistance (Inoue et al., 2013). In Arabidopsis, the TNL SNC1  associates with TF 

bHLH84 and transcription co-repressor TPR1 (Topless-Related1) to mediate immune responses 

(Zhu et al., 2010; Xu et al., 2014). Tobacco TNL receptor N forms a complex with the TF SPL6 

[Squamosa Promoter Binding Protein (SBP)-domain] to enable the activation of transcription of 

defense genes (Padmanabhan et al., 2013). These findings link NLR function with transcriptional 

regulation in cells. 
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1.3 Modulation of hormones in plant immunity 

Downstream of PTI and ETI activation, a complex network of antagonistic and synergistic 

crosstalk occurs between phytohormone pathways which play an important role in fine-tuning the 

strength and dynamics of immune response and maintaining the balance with other stress pathways 

and growth (Pieterse et al., 2012; Lozano-Duran and Zipfel, 2015). Among the phytohormones, 

SA (salicylic acid) and JA (jasmonic acid) are two critical defense hormones and the crosstalk 

between them has been extensively explored in determining plant-microbe interactions (Pieterse 

et al., 2012). SA is generally considered to be effective against (hemi) biotrophic pathogens, such 

as Pseudomonas syringae or Hpa, whereas JA is important for plants to defend against 

necrotrophic pathogens and insect herbivores, as well as serving as a developmental hormone 

(Pieterse et al., 2012; Wasternack and Hause, 2013). 

1.3.1 SA biosynthesis, metabolism, accumulation and signaling in immunity 

SA is a phenolic compound, which is synthesized by two distinct enzymatic pathways, the 

isochorismate and the phenylalanine ammonia-lyase pathway (Dempsey et al., 2011). Isolation 

and characterization of the ics1 (isochorismate synthase1) mutant have demonstrated an essential 

role of ICS1 in pathogen-induced SA synthesis in the chloroplast by ICS1 (Wildermuth et al., 2001; 

Dempsey et al., 2011). Stress-induced SA appears to be trapped in the chloroplast in the 

Arabidopsis eds5 (enhanced disease susceptibility5) susceptible mutant with mutation in EDS5 

encoding a putative SA-transporter localized on the chloroplast envelope membrane, suggesting 

that SA export from the chloroplast to different cellular compartments is critical for immune 

responses (Nawrath et al., 2002; Serrano et al., 2013; Yamasaki et al., 2013). However, SA level 

is also tightly controlled by further metabolism and regulated by different signaling pathways in 

plants, since constitutive SA accumulation is often associated with autoimmunity and defects in 

growth (Jirage et al., 2001; Zhang et al., 2003; Chandran et al., 2014). SA can be chemically 

modified to other forms of SA, most of which inactivate SA and allow fine-tuning of SA 

accumulation, function and/ or mobility (Dempsey et al., 2011). For example, SAG (SA glucoside) 

is produced from accumulating SA after pathogen infection (Dean and Delaney, 2008), and MeSA 

(methyl salicylate), which is catalyzed by SA methyl transferase such as BSMT1 (Benzoic acid/SA 

carboxyl Methyltransferase1), negatively interfere with SA-associated defense responses (Chen et 

al., 2003; Zhu and Park, 2005; Attaran et al., 2009).  
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Furthermore, SA biosynthesis and metabolism are finely regulated by different signaling pathways. 

In Arabidopsis, mutation of SR1 (Signal Responsive1), also known as CAMTA3 

(Ca2+/Calmodulin-binding Transcription Activator3), leads to enhanced spontaneous lesions and 

resistance to Pseudomonas syringae, suggesting that SR1 acts as a negative regulator of plant 

immunity (Galon et al., 2008; Du et al., 2009). SR1 represses EDS1 (Enhanced Disease 

Susceptibility1) (details in section 1.4) via directly binding to a typical CGCG- box (ACGCGT) 

motif in the EDS1 promoter, resulting also in suppression of SA accumulation (Du et al., 2009). 

The finding that TF CBP60g (Calmodulin Binding Protein60g) activates expression of ICS1 via 

binding directly to its promoter, provides a direct link between Ca2+ signaling and SA-dependent 

defense responses (Sun et al., 2015). Thus, calcium signaling cascades likely positively and 

negatively regulate SA-dependent resistance signaling.  

Besides calcium signaling cascades, MAPK signaling pathways also modulate SA-dependent 

immune responses. Pathogen infection of Arabidopsis pretreated with BTH (Benzothiadiazole), a 

bioactive analog of SA, enhanced MPK3 and MPK6 accumulation and their mRNA levels, which 

was correlated with increased defense gene expression and induced disease resistance (Beckers et 

al., 2009). These results suggested that MPK3/6 are important in SA-mediated priming disease 

resistance, in which plants are able to trigger faster and stronger activation of defense in response 

to biotic stress (Beckers et al., 2009; Conrath et al., 2015). However, it is unknown how MPK3 

and MPK6 modulate the SA signaling pathway because they function redundantly in the same 

signaling cascade and an mpk3 mpk6 double mutant is embryo-lethal (Wang et al., 2007). In 

contrast to MPK3 and MPK6, MPK4 were shown to negatively regulate defense responses with 

the findings that disruption of MPK signaling cascade by loss-of-function mutation in MPK4 leads 

to activation of a CNL SUMM2 (Suppressor of mkk1 mkk2, 2), which in turn constitutively 

activates defense responses including increased SA accumulation (Petersen et al., 2000; Brodersen 

et al., 2006; Zhang et al., 2012). NPR1, a transcriptional co-activator acting downstream of SA 

accumulation, is stabilized and activated by its homologs NPR3 and NPR4 which function as SA 

receptors to sense a gradient of SA concentration, which modulates a large set of defense-related 

genes (Dong, 2004; Fu et al., 2012; Yan and Dong, 2014).  



Ph.D. Thesis-Introduction 

 

8 

1.3.2 JA biosynthesis and signaling in defense responses 

JA is synthesized through a series of enzymatic reactions, and biologically active JA-Ile 

(jasmonoyl-isoleucine) is rapidly synthesized by JAR1 (Jasmonic acid-Amido Synthetase1) upon 

necrotrophic pathogens infection, pest attack or wounding (Fonseca et al., 2009; Wasternack and 

Hause, 2013). JA-Ile, together with an inositol phosphate cofactor, glues the F-box protein COI1 

(Coronatine-insensitive1) with JAZ (Jasmonate-ZIM-domain) proteins (Xie et al., 1998; Chini et 

al., 2007; Thines et al., 2007; Sheard et al., 2010). In the absence of JA-Ile, JAZ proteins repress 

activation of JA-responsive genes expression via recruitment of chromatin modifying proteins 

such as HDA6 (Histone Deacetylase6) or transcriptional co-repressors such as TPL (Topless) 

(Pauwels et al., 2010; Zhu et al., 2011b; Shyu et al., 2012). Enhanced COI1-JAZs association in 

the presence of JA-Ile leads to degradation of JAZs via 26S proteasome, coupled with releasing 

TFs from repression of HDA6, TPL or TPR (TPL-Related) proteins, thereby leading to activation 

of two major branches of signaling pathways involved in regulating diverse JA responses (Chini 

et al., 2007; Thines et al., 2007; Wasternack and Hause, 2013) (Figure 1.1). Two TFs ERF1 

(Ethylene-Responsive transcription Factor1) and ORA59 (Octadecanoid-Responsive Arabidopsis 

AP2/ERF59) positively regulate one branch signaling pathway upon necrotrophic pathogen attack, 

which upregulates the expression of JA-responsive marker gene PDF1.2 (Plant Defensin1.2) 

(Berrocal-Lobo et al., 2002; Lorenzo et al., 2003) (Figure 1.1). Upon the perception of JA-Ile, 

degradation of JAZs activate MYC2 (MYC-related protein2), a bHLH (basic helix-loop-helix) TF 

(Chini et al., 2007). The activated MYC2 acts together with its related TFs MYC3 and MYC4 

(MYC2-family TFs) to regulate another branch of JA signaling, in which the stress marker genes 

such as VSP1&2 (Vegetative Storage Proteins1&2), are induced in response to wounding and 

insect herbivores (Lorenzo et al., 2004; Fernandez-Calvo et al., 2011; Pieterse et al., 2012; 

Schweizer et al., 2013). Importantly, MYC2 directly binds to the promoter of ORA59 and represses 

ORA59 expression, leading to suppression of ERF1/ORA59-controlled genes expression (Zhai et 

al., 2013). This negative role of MYC2 on ERF1/ORA59 branch signaling make it is possible to 

fine-tune the expression of a specific subset of JA-responsive genes in different stress responses.  

1.3.3 MYC2 and the SA-JA crosstalk in stress responses 

MYC2 with its conserved bHLH DNA-binding domain preferentially binds to G-box and G-box-

related motifs which are present in the 5’ upstream regions of nearly 30% Arabidopsis genes 
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(Dombrecht et al., 2007). Due to the abundance of bHLH domain-containing proteins as well as 

different variations of the G-box, it is likely that MYC2 does not regulate all G-box-containing 

genes (Dombrecht et al., 2007; Fernandez-Calvo et al., 2011). A serial of studies revealed that 

MYC2 positively and negatively regulates a large number of genes involved in variety of JA-

regulated functions, such as tryptophan and flavonoid metabolism, hormone biosynthesis and 

signaling, insect pest resistance and senescence (Abe et al., 2003; Lorenzo et al., 2004; Nickstadt 

et al., 2004; Laurie-Berry et al., 2006; Chini et al., 2007; Dombrecht et al., 2007; Fernandez-Calvo 

et al., 2011; Schweizer et al., 2013). Recent emerged evidence has demonstrated that MYC2 serves 

as a master in modulating crosstalk between the JA signaling pathway and other phytohormone 

pathways: SA, ABA (abscisic acid), GA (gibberellin) and ethylene signaling pathways (Kazan and 

Manners, 2013).  
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Figure 1.1. Current network of MYC2 functions and crosstalk between JA and SA signaling pathways 

COI1 mediates two branches of JA signaling, including MYC2-mediated branch and ORA59/ERF1-controlled branch. 

In response to insect, JA signaling positively regulates insect defense gene VSP1 through MYC2. In contrast, both 

increased SA accumulation and activated MYC2 negatively regulate necrotrophic pathogen-responsive gene PDF1.2 

via repressing TFs ORA59 and ERF1. In response to COR secreted by Pseudomonas syringae, MYC2 activates TFs 

ANAC019, ANAC055 and ANAC072, which in turn suppress salicylic acid levels by activating the SA metabolism 

gene BSMT1 and by repressing SA biosynthesis gene ICS1, leading to a reduction of SA accumulation. The increased 

SA accumulation leads to enhance resistance to biotrophic or hemi-biotrophic pathogens. Arrows indicate positive 

regulation while the arrows with blunt end denote negative regulation. See text for details. 

 

Through changing cellular redox state, SA modulates modification, sequestering and even 

degradation of TFs involved in JA signaling, thereby antagonizing the JA pathway (Caarls et al., 

2015). Downstream of COI1, accumulation of SA interferes with ORA59 stability, leading to 

suppression of JA-responsive genes, such as PDF1.2 (Van der Does et al., 2013). (Figure 1.1) 

Recently, it was shown that insect egg extracts suppress JA signaling-controlled defense via 

promoting the degradation of TFs MYC2 and its related paralogs MYC3 and MYC2 in an SA-

dependent manner (Schmiesing et al., 2016). Thus, in the context of biotic stress, an activated SA 

signaling pathway targets both the ORA59- and MYC2-mediated JA-responsive signaling 

pathways to repress JA-related responses. 

Reciprocally, JA also antagonizes SA signaling pathways, as demonstrated predominantly through 

exploring the interactions between pathogens and plants (Pieterse et al., 2012). Effectors secreted 

by pathogens have been shown to dampen plant defense responses by suppressing SA 

accumulation or signaling or by activating JA signaling which then interferes with SA outputs. 

Two Pseudomonas syringae effectors HopZ1a and HopX1 promote bacterial virulence by directly 

targeting JAZ proteins for degradation which activates JA signaling (Jiang et al., 2013; Gimenez-

Ibanez et al., 2014). The virulence factor, COR (coronatine) secreted by certain Pseudomonas 

syringae and some other bacterial strains is a potent structural and functional mimic of JA-Ile, 

which binds to COI1-JAZ complexes (Feys et al., 1994; Sheard et al., 2010). COR promotes 

bacteria entry into the apoplast by reopening stomata and subsequently increasing bacterial growth 

by overcoming SA-dependent resistance (Mittal and Davis, 1995; Brooks et al., 2005; Melotto et 

al., 2006; Sheard et al., 2010; Zheng et al., 2012). Acting downstream of COI1-JAZ release, MYC2 
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negatively regulates SA-dependent resistance, because myc2/jin1 mutant displays increased SA-

dependent resistance to Pseudomonas syringae strains (Lorenzo et al., 2004; Laurie-Berry et al., 

2006). Recently, MYC2 was shown to directly upregulate ANAC [Arabdiopsis NAM (no apical 

meristem), ATAF, CUC (cup-shaped cotyledon)] TFs, such as ANAC019, ANAC055 and ANAC072 

(Zheng et al., 2012). These ANAC TFs act redundantly to reduce SA accumulation via direct 

repressing the ICS1, a SA biosynthesis gene, and upregulating an SA metabolism gene BMST1, 

leading to a general reduction in SA-mediated resistance (Zheng et al., 2012) (Figure 1.1). Thus, 

MYC2 is a master positive regulator of JA-related responses and negative regulator of SA-related 

defenses.  

1.4 The EDS1 signaling node in immunity 

EDS1, encoding a protein with a lipase-like domain in its N-terminus, was originally isolated in a 

genetic screen in Arabidopsis for suppressors of RPP5 (Peronospora parasitica5)- and RPP14-

mediated resistance against oomycete Hpa isolates (Parker et al., 1996; Falk et al., 1999). 

Subsequently, EDS1 was shown to be an essential components for all tested TNL ETI and certain 

autoimmune responses (Aarts et al., 1998; Li et al., 2001; Rusterucci et al., 2001; Hu et al., 2005; 

Wirthmueller et al., 2007; Heidrich et al., 2013; Xu et al., 2015).  

1.4.1 Nuclear EDS1 accumulation is necessary for immunity 

The Arabidopsis EDS1 is a nucleocytoplasmic protein (Feys et al., 2005; Garcia et al., 2010). 

Based on analysis of EDS1 mislocalized to the cytoplasm or the nucleus in transgenic Arabidopsis 

plants, it was concluded that a full immune response requires coordinated EDS1 nuclear-

cytoplasmic activities (Wirthmueller et al., 2007; Cheng et al., 2009; Garcia et al., 2010). More 

specifically, nuclear EDS1 is necessary to activate transcriptional reprogramming in defense 

responses against biotrophic or hemi-biotrophic pathogens in TNL and basal immunity (Garcia et 

al., 2010). Arabidopsis plants expressing high levels of nuclear EDS1 display TNL autoimmunity-

like phenotype and transcriptional reprogramming, which is dependent on a potentially weakly 

active TNL RPP1-likeLer DM2h (Dangerous mix2), suggesting that the nuclear activity of EDS1 

needs to be tightly controlled (Stuttmann et al., 2016). This study also showed that very small 

amounts of nuclear pool EDS1 are sufficient for mediating basal and TNL immunity deleterious 

consequences for plant rosette development (Stuttmann et al., 2016). Thus, an appropriate amount 

of EDS1 is necessary for plant defense responses. 
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1.4.2 EDS1 acts as a hub in NLRs signaling and is a virulence target for effectors 

Arabidopsis EDS1 forms complexes with several TNLs: RPS4, RPS6 (Resistance to Pseudomonas 

syringae 6), SNC1 and VICTR (Variation in Compound Triggered Root growth response), inside 

nuclei, indicating that EDS1 may act as hub for TNL-triggered immunity and bridge TNLs with 

downstream resistance pathways (Bhattacharjee et al., 2011; Heidrich et al., 2011; Kim et al., 

2012). Apart from its essential role in TNL signaling, EDS1 is also involved in certain CNL 

receptor-mediated defense responses. EDS1 functions genetically redundantly with SA, 

potentially compensating for SA defects in resistance mediated by three CNL receptors: RPS2, 

HRT (HR to TCV) and RPP8 (Recognition of Peronospora parasitica8), recognizing Pst DC3000 

avrRpt2, TCV (Turnip Crinkle Virus) and Hpa Emco5, respectively (Venugopal et al., 2009) 

(Figure 1.2). This has been evidenced by the finding that eds1-22 sid2-1 double mutant showed 

susceptibility to Pst DC3000 avrRpt2, TCV and Hpa Emco5, whereas eds1-22 and sid2-1 single 

mutant were resistant (Venugopal et al., 2009). Therefore, EDS1 acts as a core signaling hub 

involved in basal, CNL- and TNL-triggered immunity (Figure 1.2).  

 

Figure 1.2. Simplified illustration of EDS1 signaling in both basal, CNL- and TNL-triggered resistance. 

EDS1 is required for basal resistance, in which SA is also important. EDS1 is essential for all TNL-mediated signaling, 

while functions redundantly with SA in certain CNLs-mediated resistance. Downstream of EDS1, both SA-dependent 

and SA-independent responses are activated. Arrows indicate positive regulation. 
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EDS1 interacts with unrelated effectors, avrRps4 and HopA1, and EDS1-avrRps4 association 

alters the complex of EDS1 with RPS4 and a repressor protein SRFR1 (SUPPRESSOR OF RPS4-

RLD1) (Bhattacharjee et al., 2011; Heidrich et al., 2011). It was therefore proposed that EDS1 is a 

probable common virulence target for effectors to dampen the immune signaling. This is supported 

by the finding that bacterial pathogen effector AvrA1 directly targets soybean GmEDS1 for 

virulence (Wang et al., 2014a). However, it is ambiguous whether EDS1 is a common virulence 

target for pathogen effectors because of the finding that rrs1a/rrs1b mutant, defective in 

recognition Pst DC3000 avrRps4, only displayed partially increased and susceptibility to Pst 

DC3000 avrRps4 and Pst DC3000 compared to eds1-2 (Saucet et al., 2015). If EDS1 is a virulence 

target for avrRps4, rrs1a/rrs1b mutant should show similar susceptibility as eds1-2 to Pst DC3000 

avrRps4 due to the suppressive target virulent function of EDS1 (Saucet et al., 2015). Thus, more 

studies are required to examine whether EDS1 is a common virulence target for pathogen effectors. 

1.4.3 EDS1 functions with its sequence-related partners PAD4 and SAG101 in innate 

immunity 

Through molecular and genetic analysis in Arabidopsis, EDS1 has been demonstrated to function 

together with its sequence-related partners, PAD4 (PHYTOALEXIN DEFICIENT4) and SAG101 

(SENESCENCE-ASSOCIATED GENE101), in both basal and TNL-mediated resistance (Aarts 

et al., 1998; Feys et al., 2001; Feys et al., 2005; Rietz et al., 2011; Wagner et al., 2013). The EDS1-

family proteins (EDS1, PAD4 and SAG101) contain a lipase-like domain at their N-termini and 

share a conserved uncharacterized domain referred to EP (EDS1-PAD4) domain (Feys et al., 2001; 

Feys et al., 2005). EDS1 physically interacts with PAD4 in both nuclei and the cytoplasm, while 

the association of EDS1 with SAG101 occurs only in nuclei where SAG101 is restricted to (Feys 

et al., 2005). Together with the separate complexes among EDS1-family proteins, it was therefore 

proposed that dynamic interaction of EDS1 with its signaling partners in different cell 

compartments are important for plant immune signaling relay (Feys et al., 2005). Loss of 

interaction with EDS1 reduces post-transcriptional accumulation of PAD4 as well as SAG101 

(Feys et al., 2005; Rietz et al., 2011). Random mutagenesis of EDS1 established that one variant 

EDS1L262P disrupts the interaction with PAD4 but still retains a physical association with SAG101 

(Rietz et al., 2011). EDS1L262P reduced PAD4 accumulation and compromised basal resistance but 

did not affect TNL-triggered resistance in the Arabidopsis Ws-2 background (Rietz et al., 2011).  
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A recently resolved crystal structure of an EDS1-SAG101 heterodimer and a derived EDS1-PAD4 

heterodimer model revealed the large interface of EDS1-SAG101 or EDS1-PAD4 proteins in a 

heterodimers and provided further evidence that EDS1-PAD4 and EDS1-SAG101 complexes are 

exclusive (Wagner et al., 2013) (Figure 1.3). This is contrary to the finding that EDS1-PAD4-

SAG101 formed a ternary complex (Zhu et al., 2011a). Mutations in a hydrophobic helix of EDS1, 

EDS1LLIF, which is a necessary contact site between the two partner proteins, losses ability to 

interact with both PAD4 and SAG101 (Wagner et al., 2013). Corresponding contact site mutations 

in PAD4 and SAG101, PAD4MLF and SAG101LLIY, dramatically reduce association with EDS1 

(Wagner et al., 2013). Genetically, EDS1LLIF transgenic plants failed to complement the defect of 

eds1-2 in resistance to Hpa Cala2 (Wagner et al., 2013). Moreover, the pad4-1 sag101-1 double 

mutant showed similar hypersusceptibility as eds1-2, a null EDS1 mutant, in RPP2-mediated 

resistance to Hpa Cala2 (Feys et al., 2005; Wagner et al., 2013). Therefore, these genetic data 

indicate that formation of EDS1-PAD4 and EDS1-SAG101 heterodimers are essential for EDS1 

resistance signaling (Wagner et al., 2013). 
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Figure 1.3. Structural features of an EDS1-SAG101 heterodimer 

Crystal structure of EDS1-SAG101 heterodimer is represented in cartoon form. EDS1 lipase-like domain (sandy 

brown) is juxtaposed with the lipase-like domain of SAG101 (dark cyan), while the EP domains of EDS1 (chocolate) 

and SAG101 (dark turquoise) interact with each other. Red box highlights the amino acids L258, L262, I254, F261A 

in a hydrophobic helix of EDS1 (in green), which are represented in mesh. The molecular arrangement of the 

heterodimer is represented by vertical bars. (Adapted from Wagner, et al., 2013) 

 

The crystal structure analysis also indicated that the N-terminal domains contribute dominantly in 

forming heterodimers EDS1-PAD4 and EDS1-SAG101 (Wagner et al., 2013). Although EDS11-

384, consisting of the EDS1 lipase-like domain, is sufficient and necessary for heterodimer 

formation with SAG101 in N. benthamiana, and also stable and nucleocytoplasmic in Arabidopsis 

transgenic plants, it is insufficient to complement the defects of eds1-2 in resistance (Wagner et 

al., 2013). Therefore, the C-terminal EDS1 consisting of amino acid residues 385-623 is required 

for EDS1 to modulate defense responses (Wagner et al., 2013). 

1.4.4 EDS1 modulates SA-JA crosstalk  

Genetic studies in Arabidopsis show that EDS1 and its signaling partner gene PAD4 positively 

regulate SA accumulation and are essential for SA-mediated basal resistance (Zhou et al., 1998; 

Feys et al., 2001). Reciprocally, EDS1 and PAD4 mRNAs are upregulated by exogenous SA 

application, consistent with EDS1/PAD4 and SA forming a positive feedback loop which amplifies 

and reinforces resistance against biotrophic pathogens (Zhou et al., 1998; Feys et al., 2001). 

Previous observations that constitutive defense responses of snc1 and smg7 (suppressor with 

morphogenetic effects on genitalia7) are fully dependent on EDS1 and PAD4, but only partially 

dependent on ICS1 suggests that EDS1/PAD4 signaling node also induces SA-independent 

pathways to regulate part of the defense responses (Li et al., 2001; Zhang et al., 2003; Gloggnitzer 

et al., 2014). We recently showed that the autoimmune transgenic Arabidopsis lines with co-

overexpressing EDS1 and PAD4 trigger both SA-dependent and SA-independent signaling and 

EDS1/PAD4 and SA signaling act in parallel in pathogen resistance (Cui et al., in Press). 

Arabidopsis microarray analyses of wild-type and signaling-defective mutants, coi1, pad4, and 

sid2, in which PAD4 not only affected SA signaling pathway but also JA/ET signaling pathway 

(Glazebrook et al., 2003; Bartsch et al., 2006; Wang et al., 2008). Therefore, as a positive regulator 



Ph.D. Thesis-Introduction 

 

16 

in SA signaling pathway, EDS1/PAD4 signaling node negatively controls JA/ET signaling 

pathway via an unknown mechanism.  

1.5 Repression and de-repression in plant immunity 

To maintain the balance between immune responses and growth fitness, plants employ various 

strategies to adjust the strength and duration of PTI responses (Couto and Zipfel, 2016). In 

Arabidopsis, to completely implement BIK1 (Botrytis-Induced Kinase1)-mediated responses upon 

PAMP perception, BIK1 needs to be released from repression from protein phosphatase type 2C 

PP2C38 (Couto et al., 2016). PP2C38 regulates phosphorylation stasis of BIK1 via direct 

interaction, resulting in inhibition of BIK1-mediated immunity (Couto et al., 2016). Upon the flg22 

perception, the induced microRNA miR393 removes repression on SA signaling from auxin 

signaling, leading to certain activation of SA signaling (Navarro et al., 2006; Robert-Seilaniantz 

et al., 2011). Thus, upon PAMP perception, a process of de-repression is necessary to activate PTI.  

ETI is quantitatively stronger than PTI, and it was proposed that this involves the removal of 

negative regulators upon NLR specific recognition of effector (Cui et al., 2015). In barley ETI, 

CNL MLA10 interacts with HvWRKY1 and removes its suppression of transcription factor 

HvMYB6, leading to activation of both basal and MLA-mediated resistance (Shen et al., 2007; 

Chang et al., 2013). In rice, CNL Pb1 associates with and protects OsWRKY45, a positive 

regulator of SA signaling pathway, from ubiquitin-mediated degradation, which is critical for Pb1-

mediated resistance (Inoue et al., 2013). In Arabidopsis, SNC1 interacts with TPR1, a 

transcriptional corepressor, probably leading to downregulation of negative regulators of 

immunity (Xu et al., 2014). These findings suggest a de-repression model in which activated NLRs 

remove the suppression of negative immune regulators to trigger robust immunity.  

1.6 Thesis aims 

Under the pressure of natural selection, plant pathogens have developed diverse strategies, 

including the secretion of virulence factors, to colonize hosts and circumvent innate immunity. 

Reciprocally, plants have evolved to activate robust ETI against pathogen infection. As an early 

NLR convergence point and immune signaling hub, EDS1 functions as a crucial bridge between 

activated NLRs and nuclear transcriptional reprogramming (Garcia et al., 2010; Bhattacharjee et 

al., 2011; Heidrich et al., 2011). However, the molecular mechanism by which EDS1 relays 

signaling information from an activated NLR to the transcriptional machinery is not yet known.  
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Crosstalk between phytohormone pathways is essential for plants to keep a balance between 

immunity, responsiveness to competing stresses, and growth (Pieterse et al., 2012; Lozano-Duran 

and Zipfel, 2015). EDS1 with PAD4 promotes SA accumulation to activate SA-dependent 

resistance but also negatively regulates JA signaling-related responses independently of SA (Falk 

et al., 1999; Feys et al., 2001; Glazebrook et al., 2003; Brodersen et al., 2006). The question how 

EDS1 modulates SA-JA crosstalk in immune response remains to be addressed. Also, although 

EDS1/PAD4 are central immunity components, our knowledge is very limited about how they are 

themselves are regulated and whether EDS1/PAD4 counteracts the action of negative components 

to fine-tune immune responses, consistent with a de-repression signaling model. 

My aim in this Ph.D. thesis was to test the hypothesis that EDS1 resistance-promoting activity is 

negatively regulated by repressors which can themselves be overcome by activated EDS1 

signaling in TNL-mediated ETI. For this, I started my Ph.D. project with a genetic screen to 

identify mutants that have recovered EDS1-dependent TNL (RRS1/RPS4) resistance to Pst 

DC3000 avrRps4 in a hypersusceptible Col-0 eds1-2 mutant background. Specifically, the aims of 

my Ph.D. thesis were to 1) identify negative regulators that are potentially antagonized by EDS1 

resistance signaling, 2) explore how EDS1 activates downstream transcriptional reprogramming, 

3) investigate the role of EDS1 in modulating SA-JA crosstalk in stress signaling.  
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2 Results 

2.1 Forward genetic screening for suppressors of eds1 (sed mutants) 

2.1.1 Isolation of Arabidopsis sed mutants in an EMS mutagenized M2 population 

Arabidopsis Col-0 recognizes the effector avrRps4 via the TNL RPS4/RRS1 receptors pair and is 

therefore resistant to Pst DC3000 avrRps4 (Hinsch and Staskawicz, 1996; Narusaka et al., 2009; 

Le Roux et al., 2015; Sarris et al., 2015). The Col-0 null (fast-neutron-generated deletion) eds1-2 

mutant is hypersusceptible to Pst DC3000 avrRps4 due to defective TNL signaling (Figure 2.1A). 

To identify suppressors of eds1-2 (sed), ethyl methanesulfonate (EMS) mutagenesis was initiated 

by Dr. Haitao Cui with the expectation that sed mutants display restored resistance of eds1-2 to 

Pst DC3000 avrRps4. The loss-of-function mutations in negative regulators or gain-of-function 

mutations in positive regulators of different resistance signaling pathways may lead to restored 

resistance phenotype in eds1-2 (Figure 2.2B). These regulators may be involved in basal resistance 

or CNL-mediated resistance, which are EDS1-independent. These regulators may also regulate 

defense responses in EDS1-dependent manners, such as EDS1-triggered SA-dependent and SA-

independent resistance signaling.  
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Figure 2.1. Expected signaling defects in the recovery of eds1-2 resistance to Pst DC3000 avrRps4 

A. Col-0 eds1-2 is defective in TNL (RRS1/RPS4) resistance to Pst DC3000 avrRps4. Col-0 eds1-2 mutant 

seedlings, in contrast to the wild type Col-0, do not survive Pst DC3000 avrRps4 infection. Photos were taken 7 

d after spray-inoculation with bacteria (108 CFU/mL) of two-week old seedlings. 

B. Four possible disrupted signaling pathways may lead to the recovery of eds1-2 resistance to Pst DC3000 

avrRps4. The eds1-2 mutant is defective in basal, TNL- and certain CNL-mediated resistance. The loss-of-

function mutations in negative regulators or gain-of-function mutations in positive regulators of resistance 

signaling may restore eds1-2 resistance. These regulators may be involved in EDS1-independent signaling 

pathway in basal resistance (1) or CNL-mediated resistance (4). It is also possible that these regulators are in 

EDS1-dependent resistance signaling, such as EDS1-triggered SA-dependent (2) and SA-independent signaling 

(3). Arrows indicate positive regulation.  

 

Approximately 195000 two-week-old M2 mutant plants from a total of 65-independent M1 pools 

were spray-inoculated with Pst DC3000 avrRps4 and 75 resistant plants were selected (Figure 2.2). 

From the 75 putative M2 plants, 15 plants from 2 independent pools were found to be male-sterile, 

while 14 plants from two other pools were partially sterile (Details in section 2.2). At the M3 

generation, eight of 46 fertile and resistant lines were confirmed to rescue the eds1-2 

hypersusceptibility after spray-inoculation of two-week-old seedlings with Pst DC3000 avrRps4. 

To rule out the possibility of pollen or seed contamination, the confirmed 8 resistant lines were 

genotyped with specific EDS1 primers which detect the deletion of parental eds1-2. Three EMS-

mutagenized eds1-2 mutants, which originate from different M1 pools and had restored resistance 

to Pst DC3000 avrRps4, are further referred to here as sed1, sed2 and sed3.  
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Figure 2.2. Genetic screen for suppressors of eds1-2 hypersusceptibility identifies 3 sed mutants.  

Ethyl methanesulfonate (EMS) treated eds1-2 seeds (M0) were sown, each of 216 pools of M2 seeds contained seeds 

from ~150 M1 plants. Two-week-old M2 seedlings (~195,000) from 65 pools were sprayed with Pst DC3000 avrRps4 

at 108 CFU/mL. At 7 d post infection, 75 resistant plants were selected, among which 29 were fully or partially male-

sterile. Seeds from the remaining 46 plants were harvested as individual M3 lines. In the M3 generation, three of 46 

individual lines were confirmed to be resistant to Pst DC3000 avrRps4 and to contain the parental eds1-2 mutation. 

These three lines were referred as sed1, sed2 and sed3. The sed1 and sed5 were backcrossed with Col-0 eds1-2 to 

generate BC1 seeds. A DNA library was prepared by pooling genomic DNA from 65 BC1F2 resistant plants for each 

sed mutant. DNA libraries were sequenced on an Illumina Hiseq machine. The number of potentially causative SNPs 

was reduced by removing SNPs shared by all sed mutants and found in the Arabidopsis line pEDS1:EDS1-YFPNLS 

#A3/ eds1-2, which has the same Col-0 eds1-2 genetic background as the sed mutants. After this, only SNPs with G 

to A nucleotide transition and with an effect on the protein sequence were considered as putative causative SNPs 

responsible for suppression of eds1-2 hypersusceptibility.  
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2.1.2 A mutation in CPR5 leads to autoimmune phenotype of sed3 

The sed3 mutant displayed autoimmune phenotype with dwarfism, early senescence and defect in 

trichome development (not shown). These defective developmental phenotypes are well known in 

cpr5-1 (constitutive expressor of PR genes5-1) mutant which was identified in a genetic screen for 

mutants with spontaneous programmed cell death and constitutively defense responses to 

biotrophic pathogens (Bowling et al., 1997). Previous findings showed that mutations in CPR5 

result in activation of CNL and TNL resistance, which is partially EDS1-dependent (Boch et al., 

1998; Clarke et al., 2001; Wang et al., 2014b). Thus, I tested whether sed3 contains a mutation in 

this negative regulator of defense. Based on sequencing of PCR products of CPR5 genomic DNA 

from sed3, a G1049A nucleotide transition changed tryptophan (W350) to a premature stop codon 

in CPR5 was found, resulting in a truncated CPR5 lacking most of the transmembrane region 

(Figure 2.3). A recent report revealed that CPR5 resides at the NPC (nuclear pore complex) and a 

conformational change of CPR5 at NPC leads to activation of diverse pathways in TNL and CNL 

ETI (Gu et al., 2016). All these results highly suggest that CPR5 functions upstream of EDS1. 

Thus, no further analysis is carried out on sed3.  

 

Figure 2.3 The diagram displays an amino acid change in CPR5 identified in sed3. In the CPR5 gene, the G1049A 

nucleotide substitution causes a premature stop codon in CPR5. the truncated CPR5 lacks most of the transmembrane 

region in sed1 mutant. Numbers refer to amino acid positions in CPR5 protein. The blue box indicates the 

transmembrane region. 

2.1.3 eds1-2 pathogen hypersusceptibility is reduced in sed1 and sed2 

To reduce the number of background mutations introduced by EMS treatment, Pst DC3000 

avrRps4-resistant sed1 and sed2 mutants (M3 generation) were backcrossed to Col-0 eds1-2 (BC1) 

and the resulting BC1 lines were self-pollinated to obtain BC1F2 generation. Two-week-old 

seedlings from the BC1F2 population were sprayed with Pst DC3000 avrRps4. For both sed1 and 

sed2-derived BC2F2 populations, the ratio of resistant and susceptible plants was 1:3 (X2 test, 

p>0.05), suggesting that sed1 and sed2 mutations are inherited as a single recessive locus (Table 
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2.1). In the BC1F3 generation, sed1 and sed2 displayed normal rosette growth similar as eds1-2 

under short-day growth condition (10 h light, 14 h dark) (Figure 2.4A). 

 

Table 2.1. Segregation ratio of resistant and susceptible plants of sed1 and sed2 in the BC1F2 generation 

Mutant Resistant 

individuals 

Susceptible 

individuals 

X2 p 

sed1 BC1F2 24 60 0.571 0.45 

sed2 BC1F2 30 69 1.465 0.226 

 

To assess more quantitatively the degree of resistance in sed1 and sed2 lines, the homozygous 

mutant lines (BC1F3) were infiltrated with Pst DC3000 avrRps4, and bacteria titres in leaves were 

estimated at 3 d post infection (dpi). Importantly, infiltration instead of spraying allowed me to 

exclude an effect of stomatal closure on bacteria entry into the apoplast, which could reduce host 

susceptibility (Melotto et al., 2006). As shown in Figure 2.4B, bacterial growth was lower in both 

sed1 and sed2 than in eds1-2, but more than in wild-type Col-0 (Tukey HSD test, p<0.05), 

suggesting that both mutants partially restore resistance of eds1-2 against Pst DC3000 avrRps4. 

To test whether sed1 and sed2 mutations restore other TNL-dependent signaling pathways, I have 

inoculated the mutants with downy mildew Hpa (Hyaloperonospora arabidopsidis) EMWA1. 

EDS1 is essential for RPP4-mediated resistance to Hpa EMWA1 in Col-0 (Parker et al., 1996; 

Aarts et al., 1998). The sed1 mutant displayed reduced sporulation of Hpa EMWA1 compared to 

eds1-2, while sed2 fully recovered resistance against Hpa EMWA1 as evidenced by the absence 

of Hpa sporulation similar to Col-0 (Figure 2.4C, Tukey HSD test, p<0.05). Thus, both sed1 and 

sed2 mutations partially restore TNL-mediated resistance compromised by the eds1-2 mutation. 

Since EDS1 is also essential for basal resistance (Parker et al., 1996), I tested whether sed1 and 

sed2 have elevated resistance to the virulent strain Pst DC3000. sed1 as well as sed2 mutant had 

susceptibility that was intermediate between eds1-2 (hypersusceptible) and Col-0 with intact basal 

immunity to this pathogen (Figure 2.4D, Tukey HSD test, p<0.05). Taken together, the pathogen 

infection assays show sed1 and sed2 mutations partially counteract the defect of eds1-2 in both 

basal and TNL-mediated immunity. Because eds1-2 is a deletion mutation, the recovered basal 

and TNL resistance in sed1 and sed2 cannot be due to an intragenic suppressor, I concluded that 
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sed1 and sed2 represent loss-of-function or compromised function mutations in a component 

which is negatively regulated by EDS1, or mutations leading to increased resistance in a pathway 

unrelated to EDS1. 

 

Figure 2.4. Characterization of sed1 and sed2 mutant 
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A. The sed1 and sed2 mutants do not have obvious growth abnormalities in comparison to both Col-0 and 

eds1-2 plants. Rosettes of 4-week-old Col-0, eds1-2, sed1 and sed2 plants (BC1F3 generation) grown on soil 

under the short-day conditions (10 h light and 14 h dark).  

B. The sed1 and sed2 mutants partially restore RRS1/RPS4-mediated resistance in the susceptible eds1-2 

mutant to Pst DC3000 avrRps4. 4.5-week-old plants of Col-0, eds1-2, sed1 and sed2 mutants were infiltrated 

with Pst DC3000 avrRps4 at 105 CFU/mL. Bacterial titers were determined at 3 d post infection (dpi). Error bars 

represent standard deviation (SD). Different characters above the error bars indicate significant differences in 

bacterial growth among genotypes (one-way ANOVA with Tukey-HSD test; p<0.05, n=4). The experiment was 

repeated three times with similar results. Results from one experiment are shown.  

C. The sed1 and sed2 mutants restore different levels of resistance in eds1-2 to Hpa EMWA1 mediated by 

RPP4. 2-week-old seedlings of Col-0, eds1-2, sed1 and sed2 mutants were sprayed with Hpa EMWA1 at 4×104 

spores/mL. Hpa spores number per gram fresh leaf was measured at 5 d post infection (dpi). The pictures were 

taken at 5 dpi. Red arrows indicate sporulation on leaves. Error bars represent standard deviation (SD). Different 

characters above the error bars indicate significant differences in the oomycete growth among genotypes (one-

way ANOVA with Tukey-HSD test; p<0.05, n=3). The experiment was repeated three times with similar results. 

Results from one experiment are shown. 

D. The sed1 and sed2 mutants partially reverse hypersusceptibility of eds1-2 to Pst DC3000. 4.5-week-old plants 

of Col-0, eds1-2, sed1 and sed2 mutants were infiltrated with Pst DC3000 at 105 CFU/mL. Bacterial titers were 

determined at 3 d post infection (dpi). Error bars represent standard deviation (SD). Different characters above 

the error bars indicate significant differences in bacterial growth among genotypes (one-way ANOVA with 

Tukey-HSD test; p<0.05, n=4). The experiment was repeated three times with similar results. Results from one 

experiment are shown. 

 

2.1.4 Candidate genes corresponding to sed1 and sed2 were isolated via sequencing-based 

mapping 

To identify sed1 and sed2 mutations responsible for partially inverting the eds1-2 

hypersusceptibility, I applied a sequencing-based mapping approach. For this, genomic DNA was 

extracted from 65 resistant plants from each of the sed1- and sed2-derived BC1F2 populations. 

DNA from individual plants was quantified and mixed in equimolar amounts and sent for 

sequencing to the Genome Center (MPI, Cologne). The Illumina HiSeq sequence reads were 

mapped to a reference, genomic sequence of pEDS1:EDS1-YFPNLS #A3 in the Col-0 eds1-2 

background (Stuttmann et al., 2016) (Figure 2.5A and B). 
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Figure 2.5. Candidate genes corresponding to sed1 and sed2 were isolated via sequencing-based mapping 

A. The most likely SNP on Arabidopsis chromosome 1 underlying the phenotype of sed1.  Bulked segregant 

DNA from sed1 BC1F2 were Illumina sequenced. Allele frequency (AF) estimation of EMS changes on the five 

Arabidopsis chromosomes in sed1 bulked segregants after subtraction of SNPs from the parental line, EDS1-

YFPNLS #A3 (Stuttmann et al., 2016), are shown in red. Black dots indicate the most likely SNPs underlying the 

phenotype. AF indicates SNP confidence.  

B. An SNP on Arabidopsis chromosome 5 might be responsible for the phenotype of sed2.  Bulked segregant 

DNA from sed2 BC1F2 were Illumina sequenced. Allele frequency (AF) estimation of EMS changes on the five 
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Arabidopsis chromosomes in sed2 bulked segregants after subtraction of SNPs from the parental line, EDS1-

YFPNLS #A3 (Stuttmann et al., 2016), are shown in red. Black dots indicate the most likely SNPs underlying the 

phenotype. AF indicates SNP confidence.  

C. Amino acid change in BSU1 caused by putative causative SNPs in the sed1 mutant. In the BSU1 gene, the 

G1949A nucleotide substitution causes a non-synonymous amino acid change P650L in the metallophosphatase 

domain in sed1 mutant. Numbers refer to the position of amino acid in protein. Colored boxes indicate different 

functional domains. 

D. Amino acid change in DMR6 resulted from putative causative SNPs in the sed2 mutants. A premature stop 

in DMR6 is caused by G181A nucleotide transition. Numbers refer to the position of amino acid in protein. 

Colored boxes indicate different functional domains.  

 

To narrow down the number of single nucleotide polymorphisms (SNPs) which potentially 

underlie the resistance phenotype, I also compared sequencing results between sed1 and sed2. The 

mapping results suggest that an amino acid change, P650L in BRI1 Suppressor (BSU1, 

AT1G03445), caused by a G1949A substitution is responsible for the resistance phenotype of sed1 

(Figure 2.5C). BSU1 contains an N-terminal Kelch-repeat domain and a C-terminal serine-

threonine phosphatase domain and positively regulates brassinosteroid signaling pathway (Mora-

Garcia et al., 2004). For sed2 mutant, a nucleotide transition G181A changed arginine (R) at 

position 61 (R61) to a premature stop codon in the Downy Mildew Resistance 6 (DMR6, 

AT5G24530) gene (Figure 2.5D). DMR6 encodes a 2-oxoglutarate (2OG)-Fe (II) oxygenase and 

was isolated in an independent genetic suppressor screen of Ler eds1-2 in which the dmr6-1 

mutation fully restored TNL RPP2-mediated resistance against Hpa Cala2 (Van Damme et al., 

2005; van Damme et al., 2008).  

2.1.5 A defect in COR perception causes sed4 resistance against Pst DC3000 avrRps4 

29 plants from four independent M2 pools were resistant to Pst DC3000 avrRps4 and were fully 

or partially male-sterile (Table 2.2). Resistance to Pst DC3000, coupled with male-sterility, is well 

known in coi1-1 mutant, which was initially identified in a forward genetic screen for mutants 

insensitive to the bacterial signal coronatine (COR) (Feys et al., 1994). Bacterial COR plays a 

critical role in promoting the virulence of Pst DC3000 via reopening stomata closed upon PAMP 

recognition and also enhancing bacterial multiplication and disease symptoms development 

(Brooks et al., 2005; Melotto et al., 2006; Zheng et al., 2012). COI1 is a co-receptor for bacterial 
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COR and the Arabidopsis resistance to Pseudomonas syringae is conferred by coi1 mutations (Xie 

et al., 1998; Kloek et al., 2001; Sheard et al., 2010). Therefore, I tested whether any of the 29 

partially or fully resistant plants arising from the sed-genetic screen also contain mutations in this 

important regulator of JA signaling. Based on sequencing of PCR products of COI1 genomic DNA 

from four plants per pool (M2 generation), the same coi1 mutation was found in each pool and four 

coi1 mutations were identified from the different four M2 pools (Table 2.2). The respective mutants 

were referred as sed4, sed5, sed6 and sed7 (Table 2.2). The partially male-sterile sed4 and sed5 

mutant have a G330A and A384T mutation in COI1, respectively (Table 2.2 and Figure 2.6). The 

male-sterile sed6 and sed7 mutants have G/A transitions in COI1, which leads to an E359K and 

G369R substitutions in the COI1 protein, respectively (Table 2.2 and Figure 2.6).  

Table 2.2. Four coi1 mutations identified from four different M2 pools  

M2 pool Number of 

genotyped 

mutants 

Mutation Amino acid 

change 

Fertility Mutant name 

CM2-27 4 G1150A A384T Partially male-

sterile 

sed4 

CM2-45 4 G989A G330A Partially male-

sterile 

sed5 

CM2-94 4 G1105A G369R male-sterile sed6 

CM2-95 4 G1075A E359K male-sterile sed7 

 

COI1 contains a degenerate F-box motif and a LRRs (Leucine-Repeat Repeats) region (Figure 2.6), 

both of them are involved in the protein-protein interaction (Xie et al., 1998). The F-box is required 

for COI1 to form an SCFCOI1 complex with SKP1 (S PHASE KINASE-ASSOCIATED PROTEIN 

1)-like proteins and cullin proteins, thereby COI1 functions as an E3-type ubiquitin ligase which 

interacts with JAZ (Jasmonate-ZIM-domain) proteins via LRRs and promotes their degradation in 

a ubiquitin-dependent manner in JA response (Devoto et al., 2002; Chini et al., 2007; Thines et al., 

2007). The coi1-1 mutant with a truncated COI1W467* displayed enhanced resistance to bacterial 

pathogen Pseudomonas syringae pv atropurpurea (Feys et al., 1994; Xie et al., 1998). Two 

different layers of mechanisms have been demonstrated to be responsible for enhanced resistance 

phenotype in coil mutants (Melotto et al., 2006). For the first layer, upon the perception of COR 

secreted by Pseudomonas syringae, COI1 facilitates bacterial entry into the plant apoplast by 
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stimulating reopening of stomata, which normally close in response to flagellin and other PAMPs 

(Melotto et al., 2006; Sheard et al., 2010). The second layer of the COI1 function is in the apoplast, 

in which COI1 represses an SA-dependent defense signaling responsible for restricting pathogen 

growth and impairs an SA-independent disease symptom development (Kloek et al., 2001; Melotto 

et al., 2006; Zheng et al., 2012).  

 

Figure 2.6. The diagram displays four new amino acid substitution mutations in COI1 identified in sed4, sed5, 

sed6 and sed7. Characters in blue refer to the amino acid substitutions in previously published coi1 mutants (He et 

al., 2012; Huang et al., 2014). Grey and black box indicate F-box domain and Leucine repeat region in COI1, 

respectively. Numbers refer to amino acid positions in the COI1 protein. 

 

I therefore determined whether the enhanced resistance of the sed4 mutant is caused by reduced 

entry into the apoplast of Pst DC3000 avrRps4 bacteria which produce virulence factor COR 

(Melotto et al., 2006). For this, Pst DC3000 avrRps4 bacteria were infiltrated into leaves of 4.5-

week-old plants to bypass stomatal resistance. rather than sprayed on the leaf surface. The sed4 

mutant still exhibited lower susceptibility compared to eds1-2 (Figure 2.6), suggesting that the 

increased resistance is not due to the inability of bacteria to reopen stomata. Also, 4.5-week-old 

plants were infiltrated with Pst Δcor DC3000 avrRps4 lacking COR secretion. At 3 dpi, no 

significant difference in bacterial growth was observed between sed4 and eds1-2 (Figure 2.7, 

Student’s t-test, p<0.001). Furthermore, the growth of Pst DC3000 avrRps4 and Pst Δcor DC3000 

avrRps4 was comparable in sed4 mutant (Figure 2.7, Student’s t-test, p<0.001). Together, these 

results suggest that a post-stomatal coi1 defect in the perception of COR is responsible for sed4 

resistance to Pst DC3000 avrRps4. These data further show that in wild-type EDS1-mediated TNL 

(RRS1/RPS4) resistance signaling suppresses the virulent effects promoted by COI1 receptor-

mediated perception of bacterial COR. 
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Figure 2.7. Enhanced resistance of the sed4 mutant to Pst DC3000 avrRps4 is due to defect in COR perception. 

4.5-week-old plants of Col-0, eds1-2 and sed4 were infiltrated with Pst DC3000 avrRps4 (black bar) or Pst Δcor 

DC3000 avrRps4 (red bar) at 105 CFU/mL, and bacterial titers were determined at 3 d post infiltration (dpi). Error 

bars represent standard deviation (SD). Different characters above the error bars indicate significant differences in 

bacterial growth among genotypes (Student’s t-test; p<0.001, n=4). The experiment was repeated three times with 

similar results. Results from one experiment are shown. 

 

To sum up, seven sed mutants were identified from the eds1 suppressor genetic screening. I found 

a truncated CPR5 resulted in constitutive defense responses in sed3. Detailed analysis of sed1 and 

sed2 suggested that mutations in BSU1 and DMR6 are responsible for restored resistance of sed1 

and sed2, respectively. However, no further experiments and characterization of sed1, sed2 and 

sed3 were included in my thesis here. Four mutants were identified with mutations in COI1 that is 

essential for triggering JA signaling. With a COI1A384T mutation, sed4 was insensitive to bacterial 

COR, whose virulence was also abolished in wild-type Col-0, suggesting that TNL (RRS1/RPS4)-

triggered resistance suppresses COI1-activated JA signaling upon bacterial COR perception. 

Moreover, RRS1/RPS4-triggered EDS1 resistance signaling was shown to specifically suppress 

MYC2-mediated JA-responsive genes such as VSP1 and BSMT1 (H. Cui, et al., unpublished). 

These results underlie a negative role of EDS1 in regulating JA signaling responses and further 
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investigation on how EDS1 negatively regulates JA signaling may reveal a molecular function of 

EDS1 in modulating SA-JA crosstalk in plant immunity.  
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2.2 Mutual antagonism between EDS1 and MYC2 in defense responses 

2.2.1 EDS1, PAD4 and SAG101 interact with MYC2 family TFs in plants 

Unpublished data from our lab demonstrate that TNL (RRS1/RPS4)-mediated activation of EDS1 

resistance is associated with the suppression of known MYC2 target genes operating in COR/JA-

Ile signaling (H. Cui, et al., unpublished). As a master transcription factor (TF) downstream of 

COI1, MYC2 modulates transcription of a large set of genes involved in diverse aspects of JA-

triggered response (Kazan and Manners, 2013). For different transcriptional activities, MYC2 

associates with diverse TFs. MYC2 interacts with and attenuate the transcriptional activity of EIN3 

(Ethylene-Insensitive3), resulting in repression of ethylene (ET)-induced responses, such as apical 

hook curvature (Song et al., 2014). Moreover, MYC2, MYC3 and MYC4 directly interact with 

glucosinolates (GS) biosynthesis-related MYB TFs, which play a critical role in the regulation of 

secondary metabolite production in defense responses (Schweizer et al., 2013). MYC2 was also 

found to interact functionally with general transcription regulators such as MED25 (Mediator 

unit25) (Chen et al., 2012).  

A yeast 2-hybrid (Y2H) system was used to test the association of EDS1with MYC2 family TFs. 

A positive control protein JAZ9, interacted with all MYC2, MYC3 and MYC4 TFs (Niu et al., 

2011), but not with EDS1 or PAD4 (Figure 2.8). Yeast growth on SD-LWH medium, indicative 

of the protein interaction, was observed when EDS1 was co-expressed with MYC2, its positive 

control, PAD4 and itself, but not with MYC3 or MYC4 (Figure 2.8). By contrast, PAD4 and 

SAG101 did not show interaction with any of the MYC2-family TFs in this Y2H assay (Figure 

2.8). In summary, EDS1 but not PAD4 or SAG101 interacts with MYC2 in yeast. 

 



Ph.D. Thesis-Results 

 

32 

 

Figure 2.8. EDS1 interacts with MYC2 in a yeast 2-hybrid (Y2H) assay. EDS1, PAD4 and SAG101 fused to 

LexA-DB as baits were tested for interaction with Arabidopsis MYC2, MYC3 and MYC4 proteins fused to GAL4-

AD as preys. Empty vector (EV) was used as a negative control. JAZ9 protein fused with LexA-DB was used as a 

positive control for interaction with MYC2-family TFs in yeast (Niu et al., 2011). LexA-DB-EDS1 and PAD4 fused 

with GAL4-AD, are known to form a heterodimer (Feys et al., 2001), and were used as a further positive control. 

Yeast transformed with both prey and bait plasmids were grown on SD-Leu-Trp (SD-LW, right) or selective the SD-

Leu-Trp-His (SD-LWH, left) medium, and interactions between proteins were indicated by yeast growth on the 

selective medium (SD-LWH) at 72 h after plating. The experiment was repeated three times with similar results. 

Results from one experiment are shown. 

 

To validate the interaction between EDS1 and MYC2 in planta, EDS1 fused to a C-terminal YFP 

tag (EDS1-YFP, ~95 kDa), and GFP alone (~27 kDa), used as negative control, were each 

transiently co-expressed with StrepII and triple hemagglutinin (HA) epitope-tagged MYC2 (SH-

MYC2, ~105 kDa), MYC3 (SH-MYC3, ~97 kDa) and MYC4 (SH-MYC4, ~100 kDa) in 

Nicotiana benthamiana (N. benthamiana). In these plant transient over-expression assays, SH-

MYC2, SH-MYC3 and SH-MYC4 all were co-immunoprecipitated (co-IPed) with EDS1-YFP but 

not with GFP (Figure 2.9), indicating that EDS1 forms complexes with MYC2, MYC3 and MYC4 

in planta.  
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Figure 2.9. EDS1 associates with MYC2 family TFs in planta. EDS1-YFP and GFP alone under the control of 

cauliflower mosaic virus 35S promoter were transiently co-expressed with StrepII-3HA-tagged (SH)-MYC2, -MYC3 

and -MYC4 driven by 35S in N. benthamiana leaves. At 2 d post infiltration, soluble protein extracts were incubated 

with GFP-trap beads and eluates analyzed by immunoblotting with anti-HA- and anti-GFP-specific antibodies. Equal 

sample loading on the gel was estimated with Ponceau S staining. The experiment was repeated three times 

independently with similar results. 

 

Although no interaction was found between EDS1 sequence-related partners PAD4 or SAG101 

with MYC2 family TFs in Y2H assay, I tested whether PAD4 and SAG101 could form complexes 

with MYC2 in plants. In transient co-expression assays in N. benthamiana, SH-MYC2 was co-

IPed with PAD4-YFP and SAG101-YFP, but not with GFP (Figure 2.10), suggesting that PAD4 

as well as SAG101 interacts with MYC2 in plant extracts. Taken together, these results suggest 

that all three members of EDS1-family form complexes with MYC2 and its bHLH related TFs, 

MYC3 and MYC4 in planta. N-terminal GST-tagged EDS1 (GST-EDS1) and SAG101 (GST-

SAG101) expressed in E. coli failed to pull-down His-tagged MYC2 (His-MYC2) expressed in E. 

coli in vitro (Not shown), suggesting the interactions of EDS1 and SAG101 with MYC2 are 

indirect or the post-transcriptional modifications on EDS1, SAG101 and MYC2, which do not 

occur in E. coli, are required for direction interaction. Thus, it is unclear whether these interactions 

between EDS1 family proteins and MYC2 family TFs are direct or indirect. Nonetheless, 
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interactions between EDS1 family proteins and MYC2 and its related TFs, MYC3 and MYC4, 

provide the first evidence of a potentially functional connection between EDS1 and transcriptional 

regulation of plant resistance responses. 

 

 

Figure 2.10. PAD4 and SAG101 form complexes with MYC2 in planta. PAD4-YFP, SAG101-YFP or GFP alone, 

were transiently co-expressed with SH-MYC2 in N. benthamiana leaves. Co-immunoprecipitation (co-IP) with GFP-

trap beads was performed on total protein extracts at 2 d post infiltration. Immunoblotting was carried out using 

specific anti-bodies, anti-HA and anti-GFP. Equal sample loading on the gel was estimated with Ponceau S staining. 

The experiment was repeated two times independently with similar results. 

 

2.2.2 EDS1, PAD4 and SAG101 each form complexes with MYC2 in Arabidopsis  

A structure-guided mutational analysis revealed an essential role for EDS1 N-terminal αH 

hydrophobic helix in EDS1 heterodimers with PAD4 and SAG101 (Wagner et al., 2013). Two 

EDS1 variants with mutations in the αH helix were used to explore whether EDS1 forms complex 

with MYC2 using the same interface. One variant is EDS1L262P, which has lost its ability to 

associate with PAD4 but retains association with SAG101 (Rietz et al., 2011). The other variant 

is EDS1LLIF (L258A+L262A+I254A+F261A), which strongly reduces EDS1 association with both 

PAD4 and SAG101 (Wagner et al., 2013). To rule out potential interference by endogenous N. 

benthamiana EDS1 in the co-IP experiments, Arabidopsis mesophyll protoplasts were prepared 

from eds1-2 mutants and used for further transient co-expression assays. EDS1-YFP, EDS1L262P-
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YFP, EDS1LLIF-YFP, and a YFP control were each transiently co-expressed with SH-MYC2 in 

Arabidopsis eds1-2 protoplasts. The SH-MYC2 protein co-IPed with EDS1-YFP, EDS1L262P-YFP, 

EDS1LLIF-YFP, but not with YFP in the IP assays (Figure 2.11), implying that an intact αH helix 

needed for direct interaction with EDS1 partners PAD4 and SAG101 is not essential for the 

association of EDS1 with MYC2 in Arabidopsis. Notably, SH-MYC2 interaction with EDS1LLIF-

YFP was as strong as with EDS1-YFP (Figure 2.11). This result suggests that EDS1 alone, without 

association with PAD4 or SAG101, forms complex with MYC2 in Arabidopsis. 

 

 

Figure 2.11. The EDS1 αH helix, critical for the EDS1-PAD4 and EDS1-SAG101 heterodimer formation, is not 

required for EDS1 to associate with MYC2 in Arabidopsis. The fusion proteins, EDS1-, EDS1L262P- and EDS1LLIF-

YFP and YFP each was transiently co-expressed with SH-MYC2 in protoplasts prepared from the Arabidopsis eds1-

2 mutant. Protoplasts were harvested at 16 h post transfection. GFP-trap beads were added to the protein extracts, and 

eluates of the IP were analyzed with immunoblotting using anti-HA- and anti-GFP-specific antibodies. Equal sample 

loading on the gel was estimated with Ponceau S staining. The experiment was repeated two times independently with 

similar results. 

 

Next, I investigated whether PAD4 and SAG101 are also able to associate with MYC2 without 

forming complexes with EDS1 in planta. I transiently co-expressed each EDS1-YFP, PAD4-YFP, 
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SAG101-YFP or YFP alone with SH-MYC2 in Arabidopsis eds1-2 protoplasts. Strikingly, more 

SH-MYC2 was co-purified with PAD4-YFP and SAG101-YFP compared to EDS1-YFP, although 

both PAD4 and SAG101 YFP fusions had lower accumulation than EDS1 in the input samples 

(Figure 2.12). Thus, PAD4 and SAG101, even without forming complexes with EDS1, have strong 

direct or indirect association with MYC2 in Arabidopsis. Taken together, these results suggest that 

EDS1, PAD4 and SAG101 alone can form complexes with MYC2 in Arabidopsis protoplasts.  

 

 

Figure 2.12. EDS1, PAD4 and SAG101 alone associate with MYC2 in Arabidopsis. C-terminal YFP fused EDS1-, 

PAD4- or SAG101-YFP, or YFP alone were each expressed in eds1-2 protoplast with SH-MYC2. At 16 h post 

transfection, GFP-trap beads were added to protein extracts, and the eluates were immunoblotted with anti-HA- or 

anti-GFP-specific antibodies. Equal sample loading on the gel was estimated with Ponceau S staining. The experiment 

was repeated two times independently with similar results. 

 

2.2.3 N-terminal and C-terminal parts of MYC2 associate with PAD4 and SAG101 

I explored which determinants of MYC2 promote association with PAD4 or SAG101, give that 

these proteins interact more strongly with MYC2 in Arabidopsis protoplast assays (Figure 2.12). 

For this, N- and C-terminal deletion variants of MYC2 were generated (Figure 2.13A). MYC2ΔC 

contains the N-terminal JID (JAZ interaction domain) and a TAD (transcriptional transactivation 
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domain), while MYC2ΔN contains the C-terminal DNA-binding, basic helix-leucine-helix (bHLH) 

domain (Kazan and Manners, 2013).  

 

Figure 2.13. N-terminal and C-terminal parts of MYC2 associate with PAD4 and SAG101 in N. benthamiana 
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A. Diagram of full-length MYC2 and deletion derivatives, MYC2ΔC and MYC2ΔN used in N. benthamiana 

transient assays. The yellow box indicates the JAZ-interacting domain (JID), green box - transactivation domain 

(TAD) and purple - the basic-helix-loop-helix (bHLH) domain. Numbers refer to the amino acid position in 

MYC2. 

B. PAD4 and SAG101 associate with MYC2ΔC or MYC2ΔN in N. benthamiana. PAD4-YFP, SAG101-YFP or 

GFP were transiently co-expressed with SH-MYC2, SH-MYC2ΔC and SH-MYC2ΔN in N. benthamiana. At 2-

day post infiltration, protein extracts were co-IPed with GFP-trap beads, and the pull-down was analyzed by 

immunoblotting using specific anti-HA and anti-GFP anti-bodies. Equal sample loading on the blot was estimated 

with Ponceau S staining. The experiment was repeated three times independently with similar results. 

 

To determine which part of MYC2 is important for association with PAD4 and SAG101, PAD4-

YFP and SAG101-YFP were transiently co-expressed with SH-MYC2ΔC and SH-MYC2ΔN in N. 

benthamiana. Higher SH-MYC2ΔC and SH-MYC2ΔN accumulation than SH-MYC2 were 

observed in the input samples (Figure 2.13B), suggesting that both variants are more stable than 

the full-length MYC2 in planta. Both SH-MYC2ΔC and SH-MYC2ΔN were co-IPed with PAD4-

YFP and SAG101-YFP, which indicated that MYC2ΔC as well as MYC2ΔN can form a complex 

with PAD4 and SAG101. 

2.2.4 MYC2ΔN suppresses pEDS1 driven EDS1 transcription 

The above data show that there is a possible association between EDS1 signaling pathway proteins 

and MYC2-family TFs. This might explain my colleague Haitao Cui’s data that TNL/EDS1 

resistance signaling negatively regulates COI1/MYC2 signaling, potentially to dampen the JA 

signaling pathway and boost SA signaling (H. Cui, et al., unpublished). In co-IP experiments with 

EDS1 promoter driven EDS1 expression, the EDS1 accumulation was reproducibly lower when 

MYC2 was expressed in the N. benthamiana tissue (not shown), which suggested that it is probable 

that MYC2 antagonizes EDS1 function. Therefore, I decided to further analyze if MYC2 affects 

EDS1 promoter activity. For this, EDS1-YFP driven by its native promoter pEDS1 

(pEDS1::EDS1-YFP), which contains 1426 bp nucleotides upstream of the EDS1 start codon 

(Garcia et al., 2010), was co-expressed with SH-MYC2, SH-MYC2ΔC and SH-MYC2ΔC under 

the 35S promoter in N. benthamiana. Strikingly, EDS1-YFP was almost undetectable in extracts 

expressing SH-MYC2ΔN and EDS1-YFP, compared to the samples co-expressing SH-MYC2 and 

EDS1-YFP (Figure 2.14). By contrast, extract with co-expressed SH-MYC2ΔC displayed higher 
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EDS1-YFP accumulation (Figure 2.14). These observations suggest that MYC2ΔC either 

suppresses pEDS1 activity or mediates more rapid EDS1 protein turnover. 

 

 

Figure 2.14. MYC2ΔN reduces EDS1 protein accumulation in N. benthamiana. EDS-YFP, under control of the 

EDS1 promoter (pEDS1) was transiently co-expressed with 35S-driven SH-MYC2, SH-MYC2ΔC or SH-MYC2ΔN 

in N. benthamiana. Protein extracts were analyzed by immunoblotting with specific anti-GFP and anti-HA antibodies. 

Equal sample loading on the blot was estimated with Ponceau S staining. The experiment was repeated three times 

independently with similar results. 

 

Due to the potential effects of endogenous N. benthamiana MYC2 orthologous TFs, transient co-

expression assays were also performed in the Arabidopsis protoplast system to validate results 

obtained in N. benthamiana. In Arabidopsis, MYC2, MYC3 and MYC4 function redundantly to 

modulate the transcription of certain target genes (Fernandez-Calvo et al., 2011; Schweizer et al., 

2013). To determine whether MYC2ΔC inhibits pEDS1 activity in Arabidopsis, the triple mutant 

myc234 was used to prepare protoplasts. In these assays, EDS1-YFP under control of pEDS1 was 

co-expressed with SH-MYC2, SH-MYC2ΔC, SH-MYC2ΔN or SH-YFP as a control. In 

accordance with the results of the N. benthamiana assays, co-expressed of SH-MYC2ΔN with 

pEDS1::EDS1-YFP led to reduced EDS1-YFP accumulation compared to co-expressed SH-YFP, 

even though SH-MYC2ΔN was expressed to a similar level as SH-YFP (Figure 2.15A). The 

pEDS1::EDS1-YFP samples with co-expressed SH-MYC2ΔC displayed increased accumulation 

of EDS1-YFP compared to the samples expressing SH-YFP, while EDS1-YFP levels were 
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comparable between samples expressing SH-MYC2 and SH-YFP (Figure 2.15A). These results 

again suggest that MYC2ΔN suppresses pEDS1 activity or accelerates EDS1-YFP protein turn-

over.  
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Figure 2.15. MYC2ΔN suppresses pEDS1 activity in Arabidopsis protoplast transient assays 

A. MYC2ΔN represses the accumulation of EDS1 in Arabidopsis transient assays. EDS-YFP under control of 

pEDS1 was transiently co-expressed with SH-MYC2, SH-MYC2ΔC and SH-MYC2ΔN or SH-YFP in protoplasts 

prepared from the Arabidopsis myc234 mutant. At 16 h post transfection, protein extracts were harvested and 

were immunoblotted using specific anti-GFP and anti-HA antibodies. Equal sample loading on the blot was 

estimated with Ponceau S staining. The experiment was repeated three times independently with similar results. 

B. MYC2ΔN does not affect EDS1 turn-over in Arabidopsis transient assays. EDS-YFP under control of CaMV 

(Cauliflower Mosaic virus) 35S promoter was transiently co-expressed with SH-MYC2, SH-MYC2ΔC and SH-

MYC2ΔN or SH-YFP in Arabidopsis myc234 protoplasts. At 16 h post transfection, protein extracts were 

harvested and were immunoblotted using specific anti-GFP and anti-HA antibodies. Equal sample loading on the 

blot was estimated with Ponceau S staining. The experiment was repeated three times independently with similar 

results. 

C. MYC2ΔN likely suppresses pEDS1 activity in Arabidopsis transient assays. pEDS1:EDS1-YFP was co-

transformed with SH-MYC2, SH-MYC2ΔC, SH-MYC2ΔN or SH-YFP driven by the 35S promoter in Arabidopsis 

myc234 protoplasts. At 8 h post transfection, samples were harvested for RNA isolation. RNA samples were first 

treated with RNase-free DNase to digest residual DNA then analyzed by one-step qPCR to quantify transcripts 

of EDS-YFP, and the data were normalized to Actin2 expression in the same samples. Error bars represent 

standard deviation. * indicates a significant difference of EDS1 expression compared to the samples co-

transformed with pEDS1::EDS1-YFP or SH-YFP (Student’s t-test, p<0.05). The experiment was repeated two 

times independently with similar results, results from one are shown. 

 

To test whether different actions of MYC2 domain on EDS1 accumulation are mediated at the 

EDS1-YFP protein, the 35S promoter, instead of pEDS1, was used to drive EDS1-YFP, and the 

35S::EDS1-YFP was co-expressed with SH-MYC2, SH-MYC2ΔC, SH-MYC2ΔN or SH-YFP in 

Arabidopsis myc234 protoplasts as described above. The accumulation of EDS1-YFP was similar 

in all co-expressed samples (Figure 2.15B), suggesting that MYC2ΔN does not affect the turn-

over of EDS1-YFP, and MYC2ΔN likely suppresses pEDS1 activity. To confirm the repression of 

pEDS1 by MYC2ΔN, I next measured the transcript levels of EDS1 in Arabidopsis myc234 

protoplasts co-transformed with pEDS1::EDS1-YFP and SH-MYC2, SH-MYC2ΔC, SH-MYC2ΔN 

or SH-YFP under control of 35S. Samples co-expressing HA-MYC2ΔN, but not HA-MYC2, or 

HA-MYC2ΔC, exhibited reduced EDS1 transcript levels compared to the samples co-expressing 

with HA-YFP (Figure 2.15C, Student’s t-test, p<0.05). However, EDS1 transcript levels were not 

significantly different between samples with pEDS1::EDS1-YFP co-transformed with SH-
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MYC2ΔC and SH-YFP (Figure 2.15C, Student’s t-test, p<0.05). Taken together, these results 

indicate that MYC2ΔN represses pEDS1 activity. 

2.2.5 MYC2 specifically represses pEDS1 promoter activity 

MYC2ΔN contains the DNA-binding domain bHLH which facilitates full-length MYC2 binding 

to G-box (CACGTG) and G-box-related hexamers (Abe et al., 1997; Boter et al., 2004; Dombrecht 

et al., 2007). I searched the pEDS1 sequence for such sequences. The EDS1 promoter region has 

one G-box and one G-box variant (Figure 2.16A), indicating that the suppression of pEDS1 activity 

by MYC2ΔN could arise from direct binding to G-box. Because interaction of EDS1 with MYC2 

by protein interaction may interfere with MYC2 DNA-binding (Figure 2.15), a reporter construct 

for transient assays in Arabidopsis myc234 protoplasts was generated in which pEDS1 was fused 

to YFP-CFP (pEDS1::YFP-CFP), instead of EDS1-YFP in previous experiments (Figure 2.16A).  

 

 

Figure 2.16. MYC2 represses pEDS1 promoter activity in Arabidopsis protoplast transient assays 



Ph.D. Thesis- Results 

 

43 

A. Diagram of the EDS1 promoter pEDS1 and reporter construct pEDS1::YFP-CFP. Numbers refer to the 

nucleotide position upstream of the start codon ATG. The red box represents G-box (CACGTG) and blue box a 

G-box variant (CACATG).  

B. Full-length MYC2 as well as MYC2ΔN represses pEDS1 activity in Arabidopsis myc234 protoplasts 

transient assays. The reporter plasmid pEDS1::YFP-CFP was co-transformed with SH-MYC2, SH-MYC2ΔC, 

SH-MYC2ΔN or SH-YFP driven by the 35S promoter into Arabidopsis myc234 protoplasts. RNA was isolated 

from the samples harvested at 8 h post transfection. RNA samples were first treated with RNase-free DNase and 

then analyzed by one-step qPCR. YFP-CFP transcript levels were determined by normalizing to the expression 

of Actin2 in the same samples. Error bars represent the standard deviation. *** indicates significant differences 

in pEDS1::YFP-CFP expression compared to a control sample transformed with p35S::SH-YFP (Student’s t-test, 

p<0.001). The experiment was repeated two times independently, each time contains 2 biological replicates, with 

similar results, results from one are shown.  

C. MYC2 and MYC2ΔN reduce accumulation of YFP-CFP in Arabidopsis myc234 protoplasts transient 

assays. The reporter protein YFP-CFP, under control of pEDS1 was transiently co-expressed with SH-MYC2, 

SH-MYC2ΔC, SH-MYC2ΔN or SH-YFP in Arabidopsis myc234 protoplasts. At 16 h post transfection, protein 

extracts were immunoblotted with specific anti-GFP and anti-HA antibodies. Equal sample loading on the blot 

was estimated with Ponceau S staining. The experiment was repeated two times independently with similar results. 

 

To test pEDS1 activity, I measured the transcript levels of CFP in Arabidopsis myc234 protoplasts 

after co-transformation of pEDS1::YFP-CFP with the MYC2 constructs. Lower CFP transcript 

accumulation was detected in samples expressing with SH-MYC2 and SH-MYC2ΔN compared to 

those with SH-YFP (Figure 2.16B, Student’s t-test, p<0.001). A similar pattern was observed when 

YFP-CFP protein levels were analyzed (Figure 2.16C). These results suggest that both MYC2ΔN 

and full-length MYC2 repress pEDS1 activity when EDS1 protein itself is not expressed 

(compared to Figure 2.15B). However, SH-MYC2ΔC expressing samples accumulated higher 

YFP-CFP protein levels compared to samples with SH-YFP (Figure 2.16C). This difference is not 

clear at the transcript levels (Figure 2.16B), suggesting MYC2ΔC possibly acts on the YFP-CFP 

expression at the post-transcriptional level. In summary, the above transient assays provide 

evidence that full-length MYC2 and MYC2ΔN, but not MYC2ΔC, can act as a repressor of EDS1 

expression at the level of the EDS1 promoter.  

In transient co-expression assays, high expression levels might interfere with the physiological 

function of a protein, especially a TF which is normally expressed at low levels. To rule out that 

suppression of pEDS1 activity by MYC2 is a result of non-specific transcription regulation, I tested 
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whether, in the same assays, MYC2 is able to exert its transcription stimulating activity. MYC2 

directly and positively regulates JAZ2 via targeting its promoter (Figueroa and Browse, 2012). The 

JAZ2 promoter (pJAZ2), containing two G-box motifs, was cloned to generate the pJAZ2::YFP-

CFP for transient assays (Figure 2.17A). Higher levels of YFP-CFP transcripts were observed in 

pJAZ2::YFP-CFP samples co-transformed with p35S::SH-MYC2 compared to those co-

transformed with p35S::HA-YFP (Figure 2.17B). This was also evident at YFP-CFP protein level 

(Figure 2.17C). Transcript levels of YFP-CFP under the control of pJAZ2 were significantly lower 

in samples co-transformed with p35S::SH-MYC2ΔN than in samples with p35S::SH-YFP (Figure 

2.17B, Student’s t-test, p<0.001). However, this difference was not manifested at the YFP-CFP 

protein level (Figure 2.17C). Nonetheless, this experiments shows that MYC2 specifically 

promotes, while MYC2ΔN represses, pJAZ2 activity in Arabidopsis. In summary, I conclude that 

MYC2 specifically suppresses pEDS1 activity likely via the MYC2 C-terminal portion (MYC2ΔN) 

in Arabidopsis protoplasts transient assays.  
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Figure 2.17. MYC2 promotes pJAZ2 transcription activity in Arabidopsis transient assays 

A. Diagram of JAZ2 promoter (pJAZ2) and reporter construct pJAZ2::YFP-CFP. Numbers refer to the position 

of nucleotides upstream of the start codon ATG. The red box represents a G-box (CACGTG) element.  

B. MYC2 promotes pJAZ2 transcription activity in Arabidopsis myc234 protoplasts transient assays. 

pJAZ2::YFP-CFP, as reporter plasmid, was co-transformed with SH-MYC2, SH-MYC2ΔC, SH-MYC2ΔN or SH-

YFP driven by 35S promoter in myc234 protoplasts. A one-step qPCR was used to analyze the RNA isolated from 

the samples harvested at 8 h post transfection. The relative YFP-CFP transcript levels were determined by 

normalization with expression of Actin2 in the same sample. Error bars represent the standard deviation. *** 

indicates significant differences in YFP-CFP expression compared to the control samples transformed SH-YFP 

(Student’s t-test, p<0.001). The experiment with two biological replicates was repeated two times independently 

with similar results. Results from one experiment are shown. 

C. MYC2 promotes accumulation of YFP-CFP under control of pJAZ2 in Arabidopsis myc234 protoplasts 

transient assays. The reporter protein YFP-CFP driven by pJAZ2 was transiently co-expressed with SH-MYC2, 

SH-MYC2ΔC, SH-MYC2ΔN or SH-YFP, in myc234 protoplasts. At 16 h post transfection, protein extracts were 

immunoblotted with specific anti-GFP and anti-HA anti-bodies. Equal sample loading on the blot was estimated 

with Ponceau S staining. The experiment was repeated two times independently with similar results. 

 

2.2.6 MYC2 DNA-binding is essential for MYC2 suppression of pEDS1 activity 

The above data provide strong evidence that MYC2 suppresses EDS1 expression at the level of 

the EDS1 promoter. However, this does not inform us on whether MYC2 exerts repression activity 

directly on EDS1 promoter or via other proteins. I therefore checked requirements of MYC2 DNA-

binding activity in EDS1 promoter repression. The conserved bHLH domain of MYC2 is 

responsible for direct binding to the G-box in the promoter of rd22, a dehydration-responsive gene, 

in Arabidopsis (Abe et al., 1997). Analysis of the crystal structure of the mammalian MyoD 

(Myoblast determination protein1) bHLH domain indicated that two arginine (R) residues directly 

contact the G-box motif in the DNA (Ma et al., 1994). I aligned amino acid sequences of bHLH 

domains from MYC2, MYC3 and MYC4 with MyoD and found that R458 and R460 in MYC2 

correspond to the conserved R residues involved in DNA binding in c-MYC (Figure 2.18A).  
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Figure 2.18. DNA-binding ability is essential for MYC2 to suppress pEDS1 activity in Arabidopsis protoplasts 

transient assays. 

A. Alignment of the bHLH domain from Arabidopsis MYC2, MYC3, MYC4 and human c-MYC. The numbers 

refer to the amino acid position in MYC2 and the black triangles highlight two conserved arginines (R). 

B. R458A/R460A substitution of MYC2 losses repression on pEDS1 in Arabidopsis protoplasts transient 

assays. pEDS1::YFP-CFP was transiently co-expressed with SH-YFP, SH-MYC2, SH-MYC2ΔC, SH-MYC2ΔN, 

SH-MYC2R458A/R460A or SH-MYC2R458A/R460A in myc234 protoplasts. At 16 h post transfection, immunoblotting 

was used to analyze protein extracts using specific anti-GFP and anti-HA antibodies. The red boxes highlight the 

different YFP-CFP protein accumulation between the samples with the presence of SH-MYC2 and SH-

MYC2R458A/R460A. Equal sample loading on the blot was estimated with Ponceau S staining. The experiment was 

repeated two times independently with similar results. 
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These two R residues were mutated to alanines (A) (SH-MYC2R458A/R460A and SH-

MYC2ΔNR458A/R460A) to assess the requirement of DNA-binding for repression of pEDS1 by 

MYC2 and MYC2ΔN. SH-MYC2R458A/R460A and SH-MYC2ΔNR458A/R460A lost their suppression 

activity on pEDS1 because the SH-MYC2R458A/R460A and SH-MYC2ΔNR458A/R460A expressing 

samples displayed increased accumulation of YFP-CFP compared to the samples with wild-type 

versions of the respective MYC2 constructs (Figure 2.18B). The R458A and R460A mutations did 

not influence MYC2 and MYC2ΔN protein accumulation (Figure 2.18B). I concluded that direct 

DNA-binding activity is essential for MYC2 to repress pEDS1 activity. 

2.2.7 Suppression of pEDS1 activity by MYC2 is G-box-independent 

Since DNA-binding is essential for MYC2 to suppress pEDS1 transcriptional activity in the 

Arabidopsis protoplast transient assays, and G-box and one G-box-related motif were found in the 

EDS1 promoter, I tested whether binding to the G-box or the G-box variant is required for MYC2 

suppression of pEDS1 activity. Two reporter constructs with a mutated G-box and its variant in 

pEDS1 were generated. G-box CACGTG was mutated to TGAGTG in the pEDS1M1::YFP-CFP 

construct, while pEDS1M1+M2::YFP-CFP contains an additional mutation in the G-box variant: 

from CACATG to TGAATG (Figure 2.19A). Each mutated reporter construct was co-expressed 

with SH-MYC2ΔC, SH-MYC2ΔN, SH-MYC2 or SH-YFP in Arabidopsis myc234 protoplasts. 

Surprisingly, expression of SH-MYC2 and SH-MYC2ΔN reduced YFP-CFP protein to similar 

levels when the reporter gene was driven by both mutated pEDS1M1 and pEDS1M1+M2 

promoters, or by the wild-type pEDS1 (Figure 2.19B). However, additional experiments are 

required to confirm whether the protein accumulation levels correspond to the mRNA levels. The 

suppression activity of MYC2 on pEDS1 is independent of G-box and G-box variant motifs 

because the repressive activity of MYC2 and MYC2ΔC on EDS1 promoter was previously 

manifested at both YFP-CFP mRNA levels and its protein accumulation (Figure 2.16 B and C). I 

concluded that MYC2 exerts its repressive activity on EDS1 expression either by binding at other 

non-canonical sites on the EDS1 promoter, or indirectly by affecting the binding/ or repressor 

activities of the other TFs. However, additional mRNA quantitative experiments at the transcript 

levels are required to test whether the protein accumulation is positively correlated with the 

transcript levels. 
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Figure 2.19. Suppression of pEDS1 activity by MYC2 is G-box-independent in Arabidopsis protoplasts 

transient assays. 

A. Diagram of pEDS1 and underlines indicate the mutated sequences of G-box (red) and G-box variant (blue) 

in pEDS1. pEDS1M1 contains a mutated G-box, pEDS1M2 contains a mutated G-box variant and pEDS1M1+M2 

contains both mutated G-box and G-box variant. 

B. The suppression of MYC2 on pEDS1 activity is G-box-independent in Arabidopsis myc234 protoplasts 

transient assay. The reporter YFP-CFP under control of pEDS1, pEDS1M1 or pEDS1M1+M2, were transiently 

co-expressed with SH-YFP, SH-MYC2, SH-MYC2ΔC or SH-MYC2ΔN in myc234 protoplasts. At 16 h post 

transfection, protein extracts were immunoblotted with specific anti-GFP and anti-HA antibodies. Equal sample 

loading on the blot was estimated with Ponceau S staining. The experiment was repeated two times independently 

with similar results. 
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2.2.8 MYC2-family TFs function redundantly to negatively regulate EDS1 expression 

The finding that MYC2 specifically suppresses pEDS1 activity in transient assays raises a question 

whether it is a physiological function of MYC2 to reduce EDS1 expression in order, possibly, to 

maintain a balance between stress hormone pathways. I applied COR, a structural mimic JA-Ile 

which is able to induce MYC2 expression and increase MYC2 steady-state levels (Zhai et al., 2013), 

to examine whether MYC2 represses EDS1 expression in Arabidopsis plants growing on soil. At 

4 h after COR spraying, expression of EDS1 was reduced in the myc2, myc3, and myc4 single 

mutants, and in the wild-type Col-0 compared to mock treatments (Figure 2.20A). By contrast, 

COR treatment did not cause a reduction in EDS1 transcript levels in the triple mutant myc234 

(Figure 2.20A). Thus, MYC2 family TFs function redundantly to repress EDS1 expression in 

Arabidopsis.  

SA accumulation through ICS1 (Isochorismate synthase1) upregulates EDS1 transcription (Feys 

et al., 2001), and ICS1-dependent SA accumulation is in turn negatively regulated by COR secreted 

by Psm ES4326 (Pseudomonas syringae pv. maculicola ES4326) through TFs ANAC019, 055 and 

072 (Zheng et al., 2012). Therefore, sid2-1, a null mutant of ICS1 which is unable to accumulate 

pathogen-induced SA (Nawrath and Metraux, 1999; Wildermuth et al., 2001), was used to test 

whether COR-induced repression of the basal EDS1 transcription is due to a reduced ICS1 

expression. COR treatment did not reduce ICS1 expression in Col-0 or in myc2, myc3, myc4, sid2-

1 single mutants or the triple mutant myc234 (Figure 2.20B). However, the reduction of EDS1 

mRNA levels caused by COR treatment in the same tissues was observed in the sid2-1 mutant and 

in Col-0 (Figure 2.20A). Taken together, these results suggest that COR-induced suppression of 

EDS1 by combined activities of the MYC2, MYC3 and MYC4 TFs is largely ICS1-independent 

and therefore is unlikely to be due to ICS1-mediated SA accumulation. 
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Figure 2.20. MYC2-family transcription factors function redundantly to negatively regulate EDS1 expression 

in response to COR. Two-week-old seedlings of Col-0, the single myc2, myc3, myc4 and sid2-1 mutants and triple 

myc234 mutant were sprayed with 2 nM COR or water as control (mock). At 4 h post treatment, RNA was isolated 

and analyzed by qPCR, and the relative transcript levels of EDS1 (A), ICS1 (B) and BSMT1 (C) were determined by 

normalization with the expression of Actin2. ND, no detectable signal. Error bars represent standard deviation. The 

star * represents significant difference of gene expression between mock and COR treatment (t-test; *, p<0.05; **, 

p<0.01; ***, p<0.001, n=3). The experiment was repeated three times independently with similar results, results from 

one are shown. 

I considered other paths by which COR via MYC2-family TFs might antagonizing EDS1 

expression. BSMT1 (Salicylate/benzoate carboxyl methyltransferase 1) encodes a 

methyltransferase that methylates SA, converting it to an inactive and volatile form (Chen et al., 

2003). The BSMT1 expression is upregulated by Psm ES4326 secreted COR (Chen et al., 2003; 

Zheng et al., 2012). I found that BSMT1 was also induced by COR application in Col-0, myc3, 

myc4 and sid2-1 single mutants but not in myc2 single or myc234 triple mutant plants (Figure 

2.20C). Since the myc2 mutation alone does not affect EDS1 transcription repression after applying 

COR (Figure 2.20A), but does significantly reduce BSMT1 mRNA levels, I concluded that COR-

induced MYC2-family TFs-modulated suppression of EDS1 is independent of BSMT1. In 

conclusion, MYC2, MYC3 and MYC4 function redundantly with each other but independently of 

SA to repress EDS1 transcription in Arabidopsis plants with exogenous COR treatment.  

2.2.9 MYC2-family TFs delay induction of EDS1 in basal resistance  

The experiments described above revealing an activity of COR-induced MYC2-family TFs in 

suppressing EDS1 expression at the level of the EDS1 promoter were performed without pathogen 

infection. The virulent strain Pst DC3000 was applied to determine whether MYC2-family TFs 

also repress EDS1 expression in basal resistance as well. At 8 h after Pst DC3000 infiltration, 

induction of EDS1 expression was higher in myc234 compared to that in Col-0 (Figure 2.21, Tukey 

HSD test, p<0.05, n=4). However, by 12 hpi, EDS1 expression was similar between Col-0 and the 

myc234 mutant (Figure 2.21, Tukey HSD test, p<0.05, n=4). These data suggest that MYC2-family 

TFs activities lead to delayed induction of EDS1 expression during the basal resistance. 
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Figure 2.21. MYC2-family TFs negatively regulate the expression of EDS1 in basal immunity. 4.5-week-old 

leaves of Col-0 and the myc234 triple mutant were pressure infiltrated with H2O, Pst DC3000 and Pst Δcor DC3000. 

RNA was isolated from the samples harvested at 8 h and 12 h post infection. The transcript levels of EDS1 were 

determined by qPCR and normalized to Actin2 expression. Different letters above error bars indicate significant 

differences of EDS1 expression in different samples (one-way ANOVA with Tukey HSD test; p<0.05, n=4). The 

experiment was repeated two times independently with similar results. Results from one are shown. 

 

Since COR application downregulates EDS1 expression in Arabidopsis, I reasoned that Pst 

DC3000 secreted COR could dampen the transcription of EDS1. To test this possibility, I analyzed 

the EDS1 expression post leaf infiltration with Pst Δcor DC3000. No significant difference in 

EDS1 mRNA levels was observed between Pst DC3000 and Pst Δcor DC3000 in both Col-0 and 

myc234 (Figure 2.21, Tukey HSD test, p<0.05, n=4). These preliminary results imply that a 

MYC2-family TFs-dependent delay of EDS1 transcription after Pst DC3000 infection is not due 

to bacterial COR. Taken together, these results point to an important action of MYC2-family TFs 

in negatively regulating EDS1 transcription in basal resistance. Preliminary analysis also suggests 

that these MYC2-family TFs actions on EDS1 are not affected by bacterial COR. 

In summary, I found associations between EDS1-family proteins and MYC2-family TFs. In 

Arabidopsis protoplasts transient assays, EDS1, PAD4 and SAG101 each formed a complex with 

MYC2, and compared to EDS1, PAD4 and SAG101 displayed stronger association with MYC2. 
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Furthermore, the presence of EDS1 interfered with MYC2 transcriptional activity. These results 

provide the first evidence that EDS1 is involved in transcriptional regulation via association with 

and antagonism of TFs, such as MYC2. The Arabidopsis protoplasts assays also showed that the 

DNA-binding is essential for MYC2 to repress pEDS1 activity, which is independent of G-box 

and G-box variant motif in pEDS1. MYC2-family TFs were shown to function redundantly in 

downregulating EDS1 after exogenous COR application. Induction of EDS1 was delayed by 

MYC2-family TFs at an early stage of Pst DC3000 and Pst Δcor DC3000 infection, which was 

counteracted, probably by active EDS1 resistance signaling, at a later infection stage. To conclude, 

these data suggest a mutual antagonism between EDS1- and MYC2-dependent defense responses.  
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3 Discussion 

EDS1 is essential for basal, TNL-and certain TNL-mediated innate immunity. However, little is 

known about how EDS1 signaling is regulated and which molecular events connect EDS1 to 

transcriptional defense reprogramming. In this thesis, I applied genetic screen for suppressors of 

eds1-2 to identify signaling components downstream of EDS1. Seven sed mutants were identified 

with restored eds1-2 resistance to Pst DC3000 avrRps4 (Figure 2.3, 2.4 and 2.5). Among these 

mutants, four of them contained four different mutations in COI1 (Coronatine-Insensitive1) 

(Figure 2.6 and Table 2.2), which is essential for JA signaling and bacterial COR-promoted 

virulence (Xie et al., 1998; Brooks et al., 2005; Laurie-Berry et al., 2006; Melotto et al., 2006; 

Zheng et al., 2012). Downstream of COI1, TF MYC2 is a master in regulating JA signaling-

dependent responses, such as modulating JA-SA crosstalk in response to pathogen infection 

(Laurie-Berry et al., 2006; Chini et al., 2007; Dombrecht et al., 2007; Zheng et al., 2012; Zhang et 

al., 2015a; Schmiesing et al., 2016).  

Bacterial COR promoted Pst DC3000 avrRps4 virulence in eds1-2, which was abolished in Col-0 

(Figure 2.7), suggesting EDS1 resistance signaling activated by TNL RRS1/RPS4 suppresses 

COI1-mediated COR-triggered JA signaling pathway. The associations between EDS1-family 

proteins and MYC2-family TFs (Figures 2.8, 2.9, 2.10, 2.11, 2.12 and 2.13) provide the first 

evidence that EDS1 modulates transcriptional reprogramming via association with TFs. This was 

supported by the finding that the presence of EDS1 interfered MYC2 transcriptional regulation in 

Arabidopsis protoplasts transient assays (Figures 2.15 and 2.16). Reciprocally, MYC2 was shown 

to repress EDS1 promoter activity in Arabidopsis protoplasts transient assays (Figures 2.16, 2.18 

and 2.19), and MYC2 with its sequence-related MYC3 and MYC4 redundantly downregulated 

EDS1 transcription with exogenous COR application (Figure 2.20). This repressive function of 

MYC2-family TFs on induction of EDS1 was also manifested at an early stage of Pst DC3000 

infection, which appears to be counteracted by EDS1 resistance signaling at a later stage (Figure 

2.21). This body of evidence here illuminates a mutual antagonism between EDS1- and MYC2-

mediated signaling, which modulates SA-JA crosstalk in Arabidopsis immunity. The implications 

and shortfalls of the results achieved here will be discussed within the current knowledge of EDS1 

and MYC2. And further required experiments will be proposed in detail below.  
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3.1 Forward genetic screening for suppressors of eds1 

Here, I hypothesized that EDS1 resistance signaling is negatively regulated by suppressors which 

can be antagonized or eliminated by activated EDS1 signaling in TNL-mediated resistance 

responses (ETI). With this hypothesis as a basis, I found seven mutants with restored resistance to 

Pst DC3000 avrRps4 in eds1-2 background. A truncated CPR5 was identified to be responsible 

for resistance to Pst DC3000 avrRps4 recognized by RRS1/RPS4 in sed3 that was coupled with 

constitutive defense responses (Figure 2.3, and J. Qiu, unpublished). Defective BR signaling 

pathway caused by BSU1P650L and truncated DMR6 probably restored paired TNL RRS1/RPS4-

mediated resistance to Pst DC3000 avrRps4 in sed1 and sed2, respectively (Figures 2.4 and 2.5). 

Notably, four different mutations in COI1 were identified with enhanced resistance to Pst DC3000 

avrRps4 in sed4, sed5, sed6 and sed7, respectively (Table 2.2, Figures 2.6 and 2.7), suggesting 

that COI1 mutation partially restores the defect of eds1-2 to Pst DC3000 avrRps4. Previously, 

bacterial COR secreted by Pseudomonas syringae was shown to promote bacterial virulence by 

triggering COI1-mediated JA signaling, which in turn suppresses SA accumulation-dependent 

resistance signaling (Brooks et al., 2005; Zheng et al., 2012). This COR virulence was not 

manifested in wild-type Col-0 (Figure 2.7), suggesting that EDS1-controlled resistance signaling 

suppresses bacterial COR-triggered virulence. These data suggest that COI1 is likely a negative 

signaling component that is antagonized by EDS1-triggered resistance signaling.  

3.1.1 Truncated CPR5 restores TNL (RRS1/RPS4) resistance to Pst DC3000 avrRps4 in 

sed3 

Several mutants in potential negative regulators of plant immunity have been identified as plants 

displaying constitutive resistance, such as Arabidopsis edr1 (enhanced disease resistance1, a 

MAPKKK mutant) (Frye et al., 2001) and cpr5 (constitutive expresser of PR genes5) (Bowling et 

al., 1994; Bowling et al., 1997), and also dmr3 (downy mildew-resistance3) mutant (Van Damme 

et al., 2005). In this sed mutant screen, I found a mutation in Arabidopsis CPR5 resulting in a 

truncated CPR5 protein in sed3 (Figure 2.3) and two other cpr5 alleles were also identified by Dr. 

Haitao Cui (H. Cui, unpublished), which highly suggests that the truncated CPR5 is responsible 

for enhanced constitutive defense in sed3. The observed enhanced immune responses in sed3 are 

also consistent with a previous study that eds1 partially reduced constitutive defenses of cpr5-1 

(Clarke et al., 2001). Moreover, CPR5 was shown to negatively regulate CNL- and TNL-triggered 
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ETI and autoimmune responses of cpr5 were dependent on CKIs (Cyclin-dependent Kinase 

Inhibitors) and a cell-cycle TFs E2F (Wang et al., 2014b). Loss-of-function cki and e2f mutations 

in a WT background also compromised ETI responses induced by TNL and CNL, consistent with 

these factors operating in a convergent NLR resistance pathway that is negatively regulated by 

CPR5 (Wang et al., 2014b). Recent work have suggested that CPR5 resides at the NPC (nuclear 

pore complex) and a conformational change in CPR5 releases CKIs which causes over-activation 

of E2F (Wang et al., 2014b; Gu et al., 2016). This change at the NPC leads to transcriptional 

stimulation of diverse pathways in TNL and CNL ETI activation and programmed cell death (Gu 

et al., 2016). Based on these findings, it is likely that EDS1 acts downstream of CPR5.  

3.1.2 Disrupted BR signaling by BSU1P650L might restore basal and TNL resistance in 

eds1-2  

The plant growth-promoting hormone BR (brassinosteroid) signaling is involved in regulating the 

trade-off between growth and immunity (Lozano-Duran and Zipfel, 2015). Previously, a gain-of-

function mutant BRI1sudl showing constitutive activation of BR signaling, displayed enhanced 

susceptibility to virulent Pst DC3000 and Hpa Noco2 (Belkhadir et al., 2012). Moreover, the BR 

signaling mutant, bak1-3 (BRI1-associated kinase1) showed enhanced basal resistance to Hpa 

Noco2 and also RPP4-mediated resistance to Hpa EMWA1 (Belkhadir et al., 2012). A recent 

report showed that overexpressing the TF gene HBI1 positively regulated BR-responsive genes 

and enhanced susceptibility to Pst DC3000, whereas the HBI1 co-suppressed plants displayed 

increased basal resistance to Pst DC3000 (Fan et al., 2014). These results suggest that BR signaling 

pathway negatively regulates basal resistance. Here, I found a P650L mutation in BSU1 (BRI1-

Suppressor1) in sed1 (Figure 2.4). Acting as a positive regulator of BR-signaling pathway, BSU1 

dephosphorylates BIN2 (BR-Insensitive2) which consequently activates two TFs, BZR1 

(Brassinazole-Resistant1) and BES1 (BRI1-EMS Suppressor1), leading to transcriptional changes 

of BR-responsive genes (Yin et al., 2002; Kim et al., 2011). The BSU1P650L mutation might disrupt 

BR signaling, thereby leading to restored basal resistance of sed1 to Pst DC3000, TNL 

(RRS1/RPS4) resistance to Pst DC3000 avrRps4 and TNL (RPP4) resistance to Hpa EMWA1 

(Figure 2.3 B, C and D). In a microarray analysis of Ws-0 and eds1-1 to Pst DC3000 avrRps4, 

BZR1 and BES1 were down-regulated by 2.4 fold in an EDS1-dependent manner after Pst DC3000 

avrRps4 infection (Bartsch et al., 2006). These results suggest that BR signaling components 

function as repressors of EDS1 signaling, which can be removed by activated EDS1 resistance 
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signaling. However, this view requires to be evidenced by further experiments, such as genetic 

transformation BSU1 into sed1, because only one bsu1 mutant was identified here. 

3.1.3 DMR6 acts as negative regulator in plant immunity 

The negative role of DMR6 (Downy Mildew Resistance6) in plant immunity has been 

demonstrated in different studies. Arabidopsis Ler-0 dmr6-1 fully restored resistance to Hpa Cala2 

in an eds1-2 mutant (Van Damme et al., 2005; van Damme et al., 2008). It was further reported 

that dmr6-1 was more resistant than Ler eds1-2 to virulent Pst DC3000 and DMR6 over-expression 

in Col-0 caused enhanced susceptibility towards Pst DC3000 (Zeilmaker et al., 2015). Here, sed2 

was identified as a G181A nucleotide transition in DMR6 resulting in a truncated DMR6, which 

caused partially enhanced basal resistance to Pst DC3000 and TNL (RRS1/RPS4) resistance to Pst 

DC3000 avrRps4, while completely restored TNL (RPP4) resistance to Hpa EMWA1 (Figure 2.3 

B, C and D). DMR6 is a 2-oxoglutarate (2OG)-Fe (II) oxygenase which acts redundantly with 

DLO1 (DMR6-Like Oxygenase1) and DLO2 to suppress plant immunity (Zeilmaker et al., 2015). 

DMR6 was further hypothesized to catabolize SA via a hydroxylation reaction in the same way as 

DLO1 which hydroxylates SA to form an inactive 2,3-DHBA (2,3-dihydroxybenzoic acid 

molecule) (Zeilmaker et al., 2015). The Col-0 dmr6-3 mutant accumulated more SA than the dlo1 

mutant and, the dwarf phenotype of Col-0 dmr6-3 dlo1 double mutant was ICS1-dependent 

(Zeilmaker et al., 2015). It is therefore likely that truncated DMR6 in sed2 compensates for a defect 

of eds1-2 in SA accumulation, thereby leading to restored resistance phenotype of sed2. These 

data support the negative role of DMR6 in plant defense responses. However, it is unclear whether 

the negative role of DMR6 is EDS1-dependent due to a feedback loop between SA accumulation 

and EDS1 resistance signaling (Feys et al., 2001). 

3.1.4 Disrupted JA signaling partially relieves eds1-2 defects in TNL and basal immunity 

Bacterial COR promotes pathogen entry into plant apoplastic spaces by stimulating stomatal 

reopening and enhances bacterial multiplication after entry (Mittal and Davis, 1995; Melotto et al., 

2006). As a potent JA-Ile mimic, COR antagonizes SA-dependent defenses by activating JA 

signaling (Zheng et al., 2012). In this antagonism, three TFs ANAC019, ANAC055 and ANAC072 

down-regulate the SA biosynthetic gene ICS1 and up-regulate an SA metabolic gene BSMT1, 

leading to lower SA accumulation and promotion of Pseudomonas syringae virulence (Zheng et 

al., 2012) (see Figure 1.1). As a co-receptor for bacterial COR, COI1 transmits COR-induced 
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susceptibility, as different coi1 mutants exhibit enhanced resistance to COR-secreting 

Pseudomonas syringae strains compared to wild-type Col-0 (Xie et al., 1998; Kloek et al., 2001; 

Sheard et al., 2010; Huang et al., 2014; Zhang et al., 2015b). A single amino acid exchange in 

COI1G330E reduced COI1 protein accumulation in coi1-21rps which exhibited slightly less 

resistance to Pst DC3000 compared to coi1-1 and coi1-16 null mutants (He et al., 2012). By 

contrast, COI1G369E, COI1G155E, COI1D452A and COI1L490A mutations abolished COI1 protein 

accumulation in coi1-4, coi1-7, coi1-9 and coi1-10 respectively, and disrupted all JA-related 

responses (Huang et al., 2014). Based on these insights, I concluded that the COI1G330A mutation 

in sed5 and COI1G369E mutation in sed6 likely interfere with COI1 protein accumulation, thereby 

restoring TNL resistance to Pst DC3000 avrRps4 in screening.  

Interestingly, a recent publication reported that COI1A384V accumulates normally but has greatly 

reduced COR-binding and enhanced resistance to Pst DC3000, suggesting that disruption of COR 

perception by COI1A384V leads to a loss of COR-induced susceptibility without interfering with 

COI1 stability (Zhang et al., 2015b). I therefore speculated that the restored resistance of sed4 

might be a consequence of reduced COI1A384T binding of the COR molecule upon Pst DC3000 

avrRps4 infection (Figure 2.7). This was supported by similar TNL resistance to Pst DC3000 

avrRps4 and Pst cor- DC3000 avrRps4 in sed4 (Figure 2.7). I also found that the sed4 mutant is 

partially male-fertile, suggesting that the COI1A384T mutation only partially disrupts the perception 

of JA-Ile. This contrasts with a previous claim that COI1A384T loses recognition of both JA-Ile and 

COR because COI1A384T completely disrupted JA-Ile- and COR-dependent COI1-JAZ9 

interactions in yeast (Zhang et al., 2015b). This difference might be due to the different penetrance 

of COI1A384T in wild-type Col-0 and eds1-2 mutant. I also found a new amino acid substitution 

COI1E359K in sed7 (Table 2.2 and Figure 2.5), which is fully male-sterile. Whether the enhanced 

resistance to Pst DC3000 avrRps4 and male-sterility of sed7 is due to disrupted COI1 protein 

accumulation or abolished perception of COR and JA-Ile is not yet known. However, COI1 protein 

accumulation can be tested by transiently expressing COI1 and COI1A384T in Arabidopsis 

protoplasts. The results presented here suggest that disrupted perception of bacterial COR in 

multiple independent coi1 alleles reduces eds1-2 disease susceptibility. Because COI1 is an 

essential component in JA signaling (Xie et al., 1998; Fonseca et al., 2009; Sheard et al., 2010), 

my results further suggest that JA/COI1 signaling leading to pathogen susceptibility becomes 

exposed in an Arabidopsis eds1-2 mutant background when EDS1 signaling is disrupted. 
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3.1.5 EDS1-dependent resistance signaling suppresses bacterial COR virulence 

COR-mediated bacterial virulence is abolished in wild-type Col-0 because Col-0 with intact TNL 

(RRS1/RPS4) signaling had similar resistance to Pst DC3000 avrRps4 and Pst Δcor DC3000 

avrRps4 (Figure 2.7). This result suggests that TNL/EDS1 signaling suppresses bacterial COR-

promoted virulence and thus likely represses COR-triggered COI1-mediated JA signaling. JA 

signaling is antagonized by SA accumulation downstream of COI1 by reducing TF ORA59 

stability, thereby interfering with ORA59 transcriptional regulation, such as in induction of the JA 

pathway marker, PDF1.2 (Van der Does et al., 2013) (Figure 1.1). Moreover, TNL-activated EDS1 

resistance signaling promotes SA accumulation (Falk et al., 1999; Feys et al., 2001). Therefore, it 

is reasonable to argue that TNL/EDS1 resistance suppresses COR-triggered JA signaling by 

promoting SA accumulation. However, our recent results show that TNL (RRS1/PRS4) activated 

EDS1 signaling represses the expression of JA marker genes such as VSP1 and BSMT1 in an SA-

independent manner (H. Cui, et al., unpublished). This suggests that an EDS1-triggered SA-

independent mechanism is responsible for repressing JA signaling activated by COI1 upon 

bacterial COR perception. Further investigation of how EDS1 suppresses JA signaling may 

illuminate the molecular role of EDS1 in modulating SA-JA crosstalk. 
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3.2 Mutual antagonism between EDS1 and MYC2 in defense responses 

Here, I found and explored the association between EDS1-family proteins and MYC2-family TFs 

(Figures 2.8, 2.9, 2.10, 2.11, 2.12 and 2.13), and the EDS1-MYC2 association was shown to 

repress MYC2 transcriptional regulation activity without affecting MYC2 protein accumulation 

(Figures 2.15 and 2.16). These data provide the first evidence that EDS1 regulates transcriptional 

reprogramming through interaction with TFs. I also found that MYC2 specifically represses 

pEDS1 promoter activity independently of known MYC2-binding G-box and G-box variant motifs, 

but requiring the MYC2 bHLH DNA-binding domain, and thus likely needed MYC2-DNA 

association (Figures 2.16, 2.18 and 2.19). Using exogenous COR applications, I established that 

MYC2 acts redundantly with MYC3 and MYC4 in the negative regulation of EDS1 expression 

and in an SA-dependent manner (Figure 2.20). At an early stage of Pst DC3000 infection, MYC2-

family TFs delay EDS1 induction, which appears to be counteracted by EDS1 resistance signaling 

at a later infection stage (Figure 2.21). These data suggest that MYC2-family TFs antagonize 

EDS1 at the transcriptional level. Therefore, the results achieved here have revealed a mutual 

antagonism between EDS1- and MYC2-dependent signaling in defense responses. 

3.2.1 Arabidopsis EDS1, PAD4 and SAG101 each forms complexes with MYC2 in planta  

Arabidopsis EDS1, an essential regulator for TNL-mediated transcriptional reprogramming, is 

hypothesized to link effector-activated TNL receptors to downstream transcription reprogramming 

(Bhattacharjee et al., 2011; Heidrich et al., 2011). However, it was not known how EDS1 mediates 

transcriptional regulation. The first indication that EDS1 interacts with transcriptional regulators 

came out of a large scale EDS1 Y2H screen using ~1500 Arabidopsis TFs in a prey library, in 

which EDS1 was found to interact with ~30 TFs, including several bHLH TFs (J. Qiu, 

unpublished). In independent N. benthamiana transient expression assays, EDS1, PAD4 and 

SAG101 each formed complexes with MYC2-family TFs (Figures 2.9 and 2.10). Only an EDS-

MYC2 interaction was found in Y2H assays (Figure 2.8). It is possible that a MYC2 ortholog 

present in N. benthamiana but absent in yeast connects Arabidopsis MYC3 and MYC4 with 

Arabidopsis EDS1 because Arabidopsis MYC2 forms heterodimers with Arabidopsis MYC3 and 

MYC4 in N. benthamiana (Fernandez-Calvo et al., 2011). Heterodimer formation between N. 

benthamiana MYC2 and Arabidopsis MYC3 and MYC4 would need to be confirmed in transient 

assays or in vitro pull-down experiments.  
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Interestingly, EDS1, PAD4 and SAG101 each formed a complex with MYC2 in Arabidopsis 

transient expression assays using the eds1-2 null mutant background (Figures 2.11 and 2.12). 

However, direct interaction between EDS1, SAG101 or EDS1-SAG101 complexes and MYC2 

was not found with recombinant proteins expressed in E.coli (H. Cui, unpublished). I have two 

models for EDS1-family protein association with MYC2. First, an intermediate protein bridges the 

association between EDS1-family proteins and MYC2. The conserved C-terminal EP domains of 

EDS1-family proteins (Figure 1.3) contain repeating pairs of α helices which are structurally 

similar to tetratricopeptide repeat (TPR) motifs mediating protein-protein interactions (Wagner et 

al., 2013). TPR domain-containing transcriptional co-repressors TPL (Topless) and TPR (Topless-

like) proteins form complexes with MYC2 via JAZ proteins (Pauwels et al., 2010; Fernandez-

Calvo et al., 2011). Because JAZ repressors physically interact with JID (JAZ-Interaction Domain) 

at the N-terminal of MYC2, it is likely that JAZs proteins bridge EDS1-family proteins with 

MYC2 via association with the N-terminus of MYC2. This idea is supported by the observation 

that PAD4 and SAG101 associate with N-terminal part of MYC2 (Figure 2.13). In future assays, 

I will investigate possible MYC2-EDS1 family interacting modules further and ask whether JAZ 

proteins bridge EDS1-family proteins with MYC2 by testing whether transiently co-expressed JAZ 

proteins also form complexes with EDS1-family proteins in planta. I also used EDS11-384 lacking 

its EP domain and sufficient to form EDS1-SAG101 heterodimers (Wagner et al., 2013) to 

examine whether the EDS1 EP domain is required for association with MYC2 in planta. However, 

no conclusive data were obtained because the accumulation of transiently expressed EDS11-384 was 

much lower compared to that of EDS1 in N. benthamiana (J. Qiu, unpublished).  

The second possibility is that interaction of EDS1-family protein with MYC2 requires post-

transcriptional modifications which may only occur in planta. This might explain why PAD4-

MYC2 and SAG101-MYC2 interactions were found in N. benthamiana transient assays but not in 

Y2H assays (Figures 2.8 and 2.10). All EDS1, PAD4 and SAG101 orthology have conserved 

SUMO (Small Ubiquitin-Like Modifier) attachment motifs (Lee et al., 2007) and are therefore 

potential substrates for SUMO modification which might alter protein-protein interactions and 

function (Johnson, 2004; Lee et al., 2007). It is notable that SIZ1, a SUMO E3 ligase, is required 

for EDS1/PAD4-mediated TNL-triggered signaling (Lee et al., 2007). A site-directed mutagenesis 

of SUMO-latable amino acids in EDS1, PAD4 and SAG101 would be useful to determine whether 

SUMO modification of EDS1-family proteins is important for their association with MYC2 in 
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planta. Also, MYC2 contains different phosphorylation sites (Zhai et al., 2013) and MYC2 can be 

polyubiquitinated by PUB10 (Plant U-BOX Protein10) (Jung et al., 2015). More experiments are 

necessary to explore the post-transcriptional mechanisms underlying EDS1-family association 

with and antagonism of MYC2-family TFs. 

MYC2 was shown to form complex with each of EDS1-family proteins independently of EDS1-

PAD4 and EDS1-SAG101 heterodimers (Figures 2.11 and 2.12). However, these heterodimers are 

essential for EDS1-mediated resistance signaling (Feys et al., 2001; Feys et al., 2005; Rietz et al., 

2011; Wagner et al., 2013). Recently, we also found that resistance to biotrophic pathogens was 

greatly increased by combined enhanced accumulation of EDS1 and PAD4, but not by enhanced 

accumulation of them individually in stable transgenic Arabidopsis plants (H. Cui, et al., in press). 

These results suggest that formation of EDS1-PAD4 heterodimer likely triggers post-

transcriptional regulatory step, which is critical for EDS1/PAD4 signaling. Therefore, we are in 

process of testing whether EDS1-PAD4 and EDS1-SAG101 heterodimers interfere with their 

associations with MYC2 via co-IP experiments using Arabidopsis protoplasts with a combined 

expression of EDS1, PAD4/ or SAG101 and MYC2, and testing whether co-expressed EDS1 and 

PAD4 affect MYC2 post-transcriptional modifications.  

3.2.2 EDS1-family proteins modulate MYC2-family TF transcriptional activity  

MYC2, together with sequence-related MYC3 and MYC4 TFs, modulates the expression of a large 

number of genes involved in diverse signaling pathways (Dombrecht et al., 2007; Fernandez-Calvo 

et al., 2011). MYC2 transcriptional regulation activity was shown to require interaction with other 

proteins. For example, MYC2 recruits MED25 (a subunit of plant Mediator complex) via a TAD 

(Transcriptional Activation Domain) at the MYC2 N-terminus, which brings essential components 

of the PIC (Transcription Pre-initiation Complex) to enrich at MYC2 target promoters (Amoutzias 

et al., 2008; Kidd et al., 2009; Chen et al., 2012) (Figure 3.1A). Thus, the association of 

PAD4/SAG101 with the MYC2 N-terminus (Figure 2.13) may prevent recruitment of PIC by 

blocking MYC2-MED25 interaction, leading to suppressing MYC2 transcriptional regulation 

activity (Figure 3.1D). This is supported by recent finding that JAZ9, which physically interacts 

with JID domain in MYC3 N-terminus, inhibits the MYC3-MED25 interaction (Zhang et al., 

2015a) (Figure 3.1B).  
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Figure 3.1. Proposed model indicates how MYC2 transcriptional activity is influenced by protein-protein 

interaction. MED25 is recruited by MYC2 and enriches at promoters targeted by MYC2, which in turn activates the 

transcription of MYC2 target genes (A). JAZ9 competes with MED25 to associate with MYC2, leading to suppression 

of MYC2 transcriptional regulation (B). TF EIN3 interacts with MYC2 and represses MYC2 transcriptional regulation 

activity by interfering with MYC2 DNA-binding to its target genes (C). EDS1 associates with MYC2 and interferes 

with MYC2 transcriptional activity, probably by dislodge MYC2 from MED25 or from DNA (D). Green arrows and 

red crosses indicate positive and negative regulation, respectively. 

 

MYC2 transcriptional regulation is also inhibited by the TF EIN3 (Ethylene Insensitive3) which 

directly interacts with MYC2 and interferes with MYC2 DNA-binding to several target genes in 

ethylene responses (Song et al., 2014) (Figure 3.1C). Therefore, the association of PAD4/SAG101 

with MYC2 C-terminus (Figure 2.13) also likely influences bHLH domain-mediated DNA-

binding at promoters of its target genes (Figure 3.1D), thereby leading to inhibition of MYC2 

transcriptional regulation activity. This is consistent with a recent finding that TNL (RRS1/RPS4)-

activated EDS1 signaling reduces the enrichment of MYC2 at certain target gene promoters (H. 

Cui, unpublished). Notably, co-expression of EDS1 inhibits MYC2 transcriptional repressive 

function on the EDS1 promoter (pEDS1) in Arabidopsis protoplast transient assays (Figure 2.15 

and 2.16), further supporting the notion that association between EDS1-family proteins and MYC2 

interferes with MYC2 transcriptional activity. The data presented here provide the first evidence 

that EDS1-family proteins modulate transcriptional reprogramming through antagonizing MYC2 

transcriptional regulation. 
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3.2.3 MYC2 suppresses pEDS1 activity independently of G-box and G-box variant motifs 

In Arabidopsis, the conserved bHLH domain of MYC2 directly binds to G-boxes in the promoter 

of rd22, a dehydration-responsive gene (Abe et al., 1997). The role of MYC2 as a transcriptional 

activator was demonstrated by reduced induction of many JAZ genes in myc2 mutants compared 

to wild type in response to JA treatment (Chini et al., 2007; Dombrecht et al., 2007). Also, 

transgenic plants over-expressing MYC2 displayed constitutive expression of certain JAZ genes 

(Chini et al., 2007). There is additional evidence that MYC2 activates transcription of certain JAZ 

genes, such as JAZ2 and JAZ3, through direct binding to their promoters (Chini et al., 2007; 

Figueroa and Browse, 2012), which is further supported in this study by MYC2-stimulated JAZ2 

promoter activity in Arabidopsis protoplasts transient assays (Figure 2.17).  

MYC2 represses TF genes PLT1 (PLETHORA1) and PLT2 (PLETHORA2) and TF ORA59 by 

directly binding to the G-box motif in their promoters (Chen et al., 2011; Zhai et al., 2013). I found 

that MYC2 also represses pEDS1 activity (Figures 2.15 and 2.16). The repression activity of 

MYC2 on pEDS1 was independent of known MYC2-binding G-box and G-box variant motifs 

(Figure 2.19). Crystal structure analysis of the mammalian MyoD (Myoblast determination protein 

1) bHLH domain with DNA has revealed two conserved R residues in the bHLH domain which 

directly contact the G-box motif and its flanking DNA sequence (Ma et al., 1994). The two 

corresponding R residues in MYC2 bHLH domain are required for repressive transcriptional 

regulation on pEDS1 (Figure 2.18), consistent with previous report in mammals that MYCΔC 

lacking the bHLH domain loses its transcriptional repression function (Cowling and Cole, 2007). 

My results suggest that MYC2 exerts its repressive activity on pEDS1 either by binding to other 

non-canonical sites or indirectly by affecting the binding/repressor activities of other TFs.  

The first point of view was supported by early experiments in mammals showing that suppression 

of c-Myc on C/EBPα (CCAAT-Enhancer-Binding Proteinα) was mediated by initiator (Inr) 

elements [CTCA(+1)CTCTCT] rather than E-box (identical with G-box in plants) on C/EBPα 

promoter (Li et al., 1994). MYC, a transcription factor containing a transactivation domain at N-

terminus and a bHLH domain at C-terminus, functions as transcription activator by forming a 

heterodimer with TF MAX (MYC-Associated factorX) containing only the bHLH domain 

(Blackwood and Eisenman, 1991; Amin et al., 1993). Moreover, physical interaction of MYC with 

two TFs SP1 (Protein Coding1) and MIZ1 (Myc-interacting zinc-finger protein1) typically binding 
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to the Inr elements, transforms these two transcription activators into transcriptional repressors 

(Gartel et al., 2001). Therefore, next experiments should involve in testing whether the Inr element 

in the EDS1 promoter is required for MYC2 repressive function by measuring whether MYC2 

shows repressive function on a mutated EDS1 promoter.  

Alternatively, for repression, MYC2 might recruit a co-repressor complexes, such as histone 

deacetylase (HDAC) and DNA methyl transferases because MYC2-interacting JAZ proteins, such 

as JAZ1, JAZ3 and JAZ9, physically interact with HDA6 in Arabidopsis (Zhu et al., 2011b). 

Studies in mammals found that c-MYC recruits HDAC3 to repress Id2 (Inhibitor of DNA binding2) 

and Gadd153 (Growth Arrest And DNA Damage-Inducible Protein153) (Kurland and Tansey, 

2008). Further evidence illustrated that mammalian c-MYC interacts with MIZ1 to recruit DNA 

methyl transferase Dmnt3a (DNA 5-cytosine methyltransferase3a) to the CDKN1A (Cyclin-

Dependent Kinase Inhibitor1A) promoter, leading to cytosine methylation of the DNA and 

silencing of gene expression (Brenner et al., 2005). Therefore, it will be interesting to test whether 

MYC2 associates with HDA6, whether HDA6 also enriches at the promoter of MYC2 target genes 

in co-IP experiments and ChIP-qPCR, and whether such associations and activities are affected by 

EDS1-family proteins.  

3.2.4 MYC2, without direct DNA-binding, promotes protein post-transcriptional 

accumulation  

The N-terminal TAD (Transcriptional Activation Domain) of MYC2 is responsible for physical 

association with MED25 at the promoter of MYC2 target genes (Chen et al., 2012). Also, 

association of MYC2 with MED25 is required for both MYC2 transcription activation and 

repression activities (Cevik et al., 2012). In Arabidopsis protoplast transient expression assays, I 

found that MYC2ΔC enhances YFP-CFP accumulation, regardless of whether it is under control 

of pEDS1 or pJAZ2 (Figures 2.16C and 2.17C). These results suggest that MYC2ΔC with the TAD 

domain and without an intact bHLH DNA-binding domain promotes protein translation, 

independently of changing bHLH domain-mediated DNA binding and altered target gene 

transcript levels (Figures 2.16, 2.17 and 2.18). This finding also suggests that the MYC2 bHLH 

domain might negatively regulate protein post-transcriptional accumulation-promoting activity of 

MYC2ΔC (Figure 2.18). My findings are consistent with previous observations in mammals that 

protein levels of several CDKs (Cyclin and Cyclin-Dependent Kinases) increased in response to 
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MYC expression without changes in their mRNA levels or requirement for the bHLH DNA-

binding domain of MYC (Cowling and Cole, 2007). The possible mechanism behind this is that 

MYC promotes the methylation of the 5’ mRNA guanine or ‘cap’ by promoting global 

phosphorylation of the RNA polymerase II C-terminal domain (Cowling and Cole, 2007). The cap 

stabilizes mRNAs and cap methylation is critical for recruiting translation factors, such as RNMT 

(RNA methyltransferase), to mRNAs for translation (Caldwell and Emerson, 1985; Schwer et al., 

1998). However, more experiments such as RNA methylation profiling in myc234 transgenic 

plants expressing MYC2ΔC or MYC2R458A/R460A, would be required to establish whether MYC2 

regulates methylation of a mRNA cap and which target genes are cap-methylated in response to 

MYC2, independently of MYC2 promoter binding activity. It would be interesting to investigate 

how the bHLH domain suppresses MYC2 translation-promoting activity. Previous studies have 

shown that the bHLH domain is required for dimerization and for MAX to recognize its cognate 

DNA (Ferre-D'Amare et al., 1993). Therefore, it is possible that bHLH domain-mediated 

dimerization inhibits the translation-promoting activity of MYC2. To test this possibility, in vitro 

pull-down experiments could be performed to investigate whether MYC2R458A/R460A forms dimers 

with itself or with MYC2ΔN, and EMSA (Electrophoretic Mobility Shift Assays) to check MYC2 

DNA-binding activity. 

3.2.5 MYC2-family TFs redundantly negatively regulate EDS1 expression 

I found that MYC2-family TFs negatively regulate EDS1 expression in an ICS1- and BSMT1-

independent manner in response to exogenous COR application (Figure 2.20), providing genetic 

evidence that MYC2-family TFs function redundantly and negatively regulate EDS1 transcription. 

The redundant role of MYC2-family TFs is consistent with previous findings that MYC3 and 

MYC4 function additively to MYC2 in activation of JA responses (Fernandez-Calvo et al., 2011; 

Schweizer et al., 2013). However, the down-regulation of EDS1 by MYC2-family TFs appears to 

be SA-independent upon exogenous COR application (Figure 2.20). However, the negative role 

of MYC2 in regulating defense responses was evidenced to be dependent on SA accumulation 

(Laurie-Berry et al., 2006; Zheng et al., 2012). These contrasting results might be down to SA 

accumulation which is coupled with bacterial COR-triggered JA signaling at an early stage of 

Pseudomonas syringae infection, whereas exogenously applied COR chemical does not change 

basal SA-related gene expression (Figure 2.20).  
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Because there is little repressive effect of MYC2-family TFs on EDS1 basal expression (Figure 

2.20A), it is likely that down-regulation of EDS1 is due to increased amount of active repressive 

MYC2 pool upon exogenous application of COR, consistent with MeJA-triggered JA signaling, 

resulting in activation of MYC2 transcriptional activity and promotion of MYC2 stability (Zhai et 

al., 2013). Furthermore, transcriptional activity of MYC2 is tightly controlled and therefore other 

factors might contribute to modulation of EDS1 expression under non-challenged condition. 

Notably, MYC2 transcriptional activity is fine-tuned by different pathways, such as association 

with other proteins such as EIN3 (Song et al., 2014), and the stability of MYC2 is controlled by 

post-translational modifications, such as phosphorylation and PUB10-mediated ubiquitination 

(Zhai et al., 2013; Jung et al., 2015). MYC2 protein accumulation is also reduced by association 

with TIC (Time for Coffee) in an evening-phase specific manner (Shin et al., 2012). Therefore, it 

is worth checking whether the EDS1 basal expression is regulated by MYC2-family TFs in a 

circadian clock-dependent manner. The EDS1 expression is also negatively regulated by the TF 

SR1 (Signal Responsive 1) also known as CAMTA3 (Calmodulin-binding Transcription 

Activator3) (Du et al., 2009). SR1 represses EDS1 expression by binding to CGCG box (ACGCGT) 

in EDS1 promoter, dependent on CAMTA3 Ca2+ / CaM-binding (Du et al., 2009).  

3.2.6 MYC2-family TFs delay induction of EDS1 in basal resistance  

MYC2 is involved in modulating the mutual antagonism between SA and JA in response to 

pathogen infection (Kazan and Manners, 2013). A negative role of MYC2 in regulating plant 

resistance to Pseudomonas syringae was illustrated by jin1/myc2 increased resistance to Pst 

DC3000 (Lorenzo et al., 2004; Nickstadt et al., 2004). Bacterial COR-activated MYC2 stimulates 

the expression of ANAC019, ANAC055 and ANAC072 by MYC2 direct binding to their promoters 

(Zheng et al., 2012) (Figure 3.2). The activated ANAC TFs down-regulate SA biosynthesis gene 

ICS1 while up-regulate SA metabolism gene BSMT1, leading to reduced SA accumulation, thereby 

promoting the virulence of Pseudomonas syringae (Zheng et al., 2012) (Figure 3.2). Here, I found 

that MYC2-family TFs delayed the induction of EDS1 in response to Pst DC3000 at an early stage 

of infection (8 h) (Figure 2.21), suggesting the MYC2-family TFs activated by bacterial COR may 

target EDS1 and repress its transcription to promote Pseudomonas syringae virulence (Figure 3.2). 

This delayed EDS1 expression was counteracted at later infection stages (12 h) (Figure 2.21), 

suggesting that activated EDS1-signaling overcomes MYC2-family TFs repressive function via 

forming complexes with MYC2-family TFs at the later Pst DC3000 infection stage (Figure 3.2). 
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This is supported by finding that presence of EDS1 strongly reduced the repressive activity of 

MYC2 on pEDS1 (Figure 2.15 and 2.16). This negative effect of EDS1 on MYC2 repression might 

be examined further by quantifying EDS1 transcript under control of pJAZ2 co-transformed with 

35S::SH-MYC2 in Arabidopsis eds1-2 protoplasts. Further experiments, such as gene expression 

assays of EDS1 expression in coi1 and myc234 sid2-1 quadruple mutants upon Pst DC3000 

infection, will be used to disentangle the MYC2-family TFs-delayed expression of EDS1 from the 

negative effects of MYC2-family TFs on SA accumulation. 

The MYC2-family mediated delay in EDS1 gene induction in basal resistance could not be 

explained by the presence of bacterial COR (Figure 2.21). Previous studies have shown that COR 

and Type III effectors function cooperatively to promote bacterial virulence by hijacking JA 

signaling (Cohn and Martin, 2005; Navarro et al., 2006; Jiang et al., 2013; Gimenez-Ibanez et al., 

2014). Pseudomonas syringae effector HopZ1 and its homologous HopZ2 and HopZ3 interact 

with and promote the degradation of JAZ proteins (Jiang et al., 2013). However, HopZ1 on its own 

does not contribute to the virulence of Pst DC3000 (Lewis et al., 2008; Jiang et al., 2013). Another 

effector HopX1 from Pta (Pseudomonas syringae pv. tabaci) 11528 (which can not produce COR) 

interacts with and promotes the degradation of JAZ proteins, requiring HopX1 cysteine protease 

activity (Gimenez-Ibanez et al., 2014). Although HopX1 only shares 72 % identity to HopX from 

Pst DC3000, they do have conserved N-terminal domains and a consensus cysteine-based catalytic 

triad (Gimenez-Ibanez et al., 2014). Thus, it is likely that HopX from Pst cor- DC3000 functions 

contributes to virulence of Pst cor- DC3000 (Figure 3.2).  
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Figure 3.2. A signaling scheme underlies a mutual antagonism between EDS1 and MYC2 in basal resistance. 

At an early stage of Pst DC3000 infection (8 hpi), bacterial virulence factor COR and effector HopX1 activated MYC2 

through triggering JA signaling, which delays the induction of EDS1 and reduces SA accumulation by repressing ICS1 

and increasing BSMT1 in an ANAC TFs (ANAC019, ANAC055 and ANAC072)-dependent manner. However, at the 

late infection stage, the active EDS1 associates with MYC2 and interferes with MYC2 transcriptional activity, which 

blocks COR and effector-triggered MYC2-mediated JA signaling, thereby leading to activation of resistance outputs. 

Arrows indicate positive regulation while the arrows with blunt end denote negative regulation. 
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3.3 Summary and Perspectives 

Results from the Arabidopsis eds1-2 genetic suppressor screen point to four different pathways 

negatively impacting plant disease resistance, and disruption of any of these can alleviate defects 

of Arabidopsis eds1-2 in basal and TNL-triggered immunity. The most interesting pathway with 

regard to EDS1 signaling is that controlled by COI1 for promoting COR-stimulated virulence and 

JA responses. Activated EDS1 basal or TNL immunity suppresses bacterial COR-triggered COI1-

mediated JA signaling, thereby highlighting an EDS1 function in modulation of SA-JA crosstalk 

independently of ICS1-generated SA. Associations between EDS1-family proteins and MYC2-

family TFs and the suppressive function of EDS1 on MYC2 transcriptional activity suggest that 

EDS1 regulates transcriptional reprogramming and that MYC2-family TFs are direct targets for 

EDS1 repression of COR/JA signaling. A body of evidence also suggests that MYC2 reciprocally 

negatively suppresses EDS1 activity. This MYC2 activity is dependent on the MYC2 bHLH DNA-

binding domain but independent of G-box and G-box-related MYC2-binding motifs in the 

promoter of EDS1. The repressive function of MYC2 on EDS1 was manifested in the expression 

of EDS1 after exogenous COR treatment, which is also independent of SA. A picture emerges in 

which MYC2-family TFs act redundantly to negatively regulate EDS1 at an early stage of Pst 

DC3000 infection, and this is counteracted by activated EDS1 resistance signaling at a later 

infection stage. The data presented here suggest that mutual antagonism between EDS1 and MYC2 

activities is an important fine-tuning mechanism for plant immunity. 

Recent reports have demonstrated that EDS1-family proteins play important role in abiotic stresses, 

such as freezing and drought tolerance (Chen et al., 2015; Szechynska-Hebda et al., 2016). MYC2 

was also shown to positively regulate drought stress with the observation of enhanced drought 

stress resistance phenotype of myc2/jin1 mutant (Abe et al., 2003). Therefore, it is interesting to 

test whether the mutual antagonism between EDS1- and MYC2-dependent signaling impacts 

drought stress tolerance. 

Here, I found associations between EDS1-family proteins and MYC2-family TFs in vivo and that 

the presence of EDS1 represses MYC2 transcriptional activities in Arabidopsis protoplast transient 

assays. However, it is unknown what determines this antagonistic relationship. A next step is 

therefore to determine which amino acid residues or sub-domains/ or surfaces are important for 

EDS1-family proteins to associate with MYC2.  
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My data highlight a suppressive function of MYC2 needing bHLH DNA-binding activity but not 

known MYC2-binding G-box or G-box-related motifs in EDS1 promoter. Next experiments will 

determine which part of the EDS1 promoter sequence is essential for MYC2 suppressive function 

and whether MYC2 can directly bind to this motif. If a pEDS1 motif and direct DNA binding can 

be confirmed, the Arabidopsis protoplast transient expression system will provide a platform to 

interrogate molecular mechanisms underlying MYC2 transcriptional repression activity. To 

further investigate which other components are recruited by MYC2 for repressive function, DNA 

immunoprecipitation assays can be performed in which a reporter construct driven by a biotin-

tagged promoter such as pEDS1 is co-transformed with MYC2 into Arabidopsis protoplasts. 

Potential co-acting components might be identified using mass spectrometry from chromatin-IP 

assays.  

 



Ph.D. Thesis- Materials and Methods 

72 
 

4 Materials and methods 

4.1 Materials 

4.1.1 Plant materials 

4.1.1.1 Arabidopsis thaliana 

Arabidopsis wild-type and mutant lines use in this study are listed in Table 4.1 and Table 4.2, 

respectively. 

Table 4.1. Wild-type Arabidopsis accessions used in this study 

Accession  Abbreviation Original source 

Columbia Col-0 J. Dangla 

a University of North Caroline, Chape Hill, NC, USA 

Table 4.2. Mutant Arabidopsis lines used in this study 

Gen  Accession Reference / Source 

eds1-2 Col-0/ (Ler)a (Bartsch et al., 2006) 

myc2-3 

myc3 

myc4 

myc234 

sid2-1 

Col-0 

Col-0 

Col-0 

Col-0 

Col-0 

(Shin et al., 2012) 

(Fernandez-Calvo et al., 2011) 

(Fernandez-Calvo et al., 2011) 

(Fernandez-Calvo et al., 2011) 

(Nawrath and Metraux, 1999) 

a Ler eds1-2 allele introgressed into the Col-0 background, 8th backcrossed generation, referred to 

as “eds1-2” in this study. 

4.1.1.2 Nicotiana benthamiana 

Nicotiana benthamiana (310A) plants expressing the N resistance gene were obtained from MPIPZ 

(Cologne) and used for transient Agrobacterium-mediated transformation of leaf tissues. 
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4.1.2 Pathogens 

Arabidopsis plants were infected with isogenic Pseudomonas syringae pv. tomato (Pst) strains 

(DC3000) expressing different Pseudomonas effector proteins as specified in section 4.2.4 and 

4.2.5  

4.1.2.1 Pseudomonas syringae strains 

Pseudomonas syringae pv. tomato (Pst) strain DC3000 harbouring either the empty vector 

pVSP61 or expressing the Pseudomonas syringae pv. pisi effector avrRps4 from the same plasmid 

(Hinsch and Staskawicz, 1996) were obtained from R. Innes (Indiana University, Bloomington 

Indiana, USA) and used throughout this study. Pseudomonas syringae pv. tomato (Pst) strain 

DC3000 lacking coronatine (COR) (Pst Δcor DC3000) was obtained from Renier van der Hoorn 

(MPIPZ). Plasmid pVSP61-avrRps4 was transformed into Pst Δcor DC3000 to generate strain Pst 

Δcor DC3000 expressing avrRps4. 

4.1.2.2 Hyaloperonospora arabidopsidis 

Hyaloperonospora arabidopsidis (Hpa) isolate EMWA1 (Holub et al., 1994) recognized by Col-

0 (RPP4) was used in this study. 

4.1.3 Bacterial strains 

4.1.3.1 Escherichia coli strains 

Table 4.3. All E. coli strains were obtained from Invitrogen™ (Karlsruhe, Germany). 

Strain Genotype 

DH5α F- Φ80dlacZΔM15 Δ(lacZYA-argF) U169 deoR recA1 endA1 hsdR17(rk 

-, mk+) phoA supE44 λ- thi-1 gyrA96 relA1 

DH10B F- mcrA Δ(mrr-hsdRMS-mcrBC) Φ80lacZΔM15 ΔlacX74 deoR recA1 endA1 

araΔ139 Δ(ara, leu)7697 galU galK λ- rpsL (StrR) nupG 

DB3.1 F- gyrA462 endA Δ(sr1-recA) mcrB mrr hsdS20 (rB- mB-) supE44 ara14 

galK2 

lacY1 proA2 rpsL20 (StrR) xyl5 λ- leu mtl1 
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4.1.3.2 Agrobacterium tumefaciens strains 

DNA constructs for transient expression in Nicotiana benthamiana (4.2.6) were transformed in 

Agrobacterium tumefaciens strain GV3101 carrying the helper plasmids pMP90RK with antibiotic 

resistance Rif, Kan and Gent. 

4.1.4 Saccharomyces cerevisiae (yeast) strain 

Yeast strain L40 was used in this study (Mitsuda et al., 2010). 

4.1.5 Vectors 

The vectors used or generated in this study were listed in Table 4.4. 

Table 4.4. Vectors 

Vector Annotation 

pXCSG-mYFP-GW Binary Gateway® destination vector for expression 

of a fusion protein under control of 35S promoter 

with a C-terminal mYFP tag 

pXCSG-YFP-mYFP Binary Gateway® destination vector for expression 

of YFP (with stop codon) control of 35S promoter 

with a C-terminal mYFP tag 

pXCSG-gEDS1-mYFP Binary Gateway® destination vector for expression 

of genomic EDS under control of 35S promoter with 

a C-terminal mYFP tag 

pXCSG-PAD4-mYFP Binary Gateway® destination vector for expression 

of PAD4 under control of 35S promoter with a C-

terminal mYFP tag 

pXCSG-SAG101-mYFP Binary Gateway® destination vector for expression 

of SAG101 under control of 35S promoter with a C-

terminal mYFP tag 

pXCSG-gEDS1L262P-mYFP Binary Gateway® destination vector for expression 

of mutated genomic EDS under control of 35S 

promoter with a C-terminal mYFP tag 
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pXCSG-gEDS1LLIF-mYFP Binary Gateway® destination vector for expression 

of mutated genomic EDS under control of 35S 

promoter with a C-terminal mYFP tag 

pXCSG-3*Flag-GW Binary Gateway® destination vector for expression 

of a fusion protein under control of 35S promoter 

with a C-terminal 3*Flag tag 

pXCSG-gEDS1-Flag Binary Gateway® destination vector for expression 

of genomic EDS1 under control of 35S promoter 

with a C-terminal 3*Flag tag 

pXCSG-gEDS1L262P-Flag Binary Gateway® destination vector for expression 

of mutated genomic EDS1 under control of 35S 

promoter with a C-terminal 3*Flag tag 

pXCSG-gEDS1LLIF-Flag Binary Gateway® destination vector for expression 

of mutated genomic EDS1 under control of 35S 

promoter with a C-terminal 3*Flag tag 

pENS-StrepII-3*HA (SH)-GW Binary Gateway® destination vector for expression 

of a fusion protein under control of 35S promoter 

with an N-terminal StrepII-3*HA tag 

pENS-SH-MYC2 Binary Gateway® destination vector for expression 

of MYC2 under control of 35S promoter with an N-

terminal StrepII-3*HA tag 

pENS-SH-MYC2ΔC Binary Gateway® destination vector for expression 

of MYC2ΔC under control of 35S promoter with an 

N-terminal StrepII-3*HA tag 

pENS-SH-MYC2ΔN Binary Gateway® destination vector for expression 

of MYC2ΔN under control of 35S promoter with an 

N-terminal StrepII-3*HA tag 

pENS-SH-MYC2R458/460A Binary Gateway® destination vector for expression 

of mutated MYC2 under control of 35S promoter 

with an N-terminal StrepII-3*HA tag 
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pENS-SH-MYC2ΔNR458/460A Binary Gateway® destination vector for expression 

of mutated MYC2ΔN under control of 35S promoter 

with an N-terminal StrepII-3*HA tag 

pENS-SH-MYC3 Binary Gateway® destination vector for expression 

of mutated MYC3 under control of 35S promoter 

with an N-terminal StrepII-3*HA tag 

pENS-SH-MYC4 Binary Gateway® destination vector for expression 

of mutated MYC4 under control of 35S promoter 

with an N-terminal StrepII-3*HA tag 

pENS-SH-YFP Binary Gateway® destination vector for expression 

of YFP under control of 35S promoter with an N-

terminal StrepII-3*HA tag 

pEDS1XCG-YFP-CFP Binary Gateway® destination vector for expression 

of YFP under control of EDS1 promoter with a C-

terminal mCFP tag 

pANAC019XCG-YFP-CFP Binary Gateway® destination vector for expression 

of YFP under control of ANAC019 promoter with a 

C-terminal mCFP tag 

pEDS1M1XCG-YFP-CFP Binary Gateway® destination vector for expression 

of YFP under control of mutated EDS1 promoter 

with a C-terminal mCFP tag 

pEDS1(M1+M2)XCG-YFP-CFP Binary Gateway® destination vector for expression 

of YFP under control of mutated EDS1 promoter 

with a C-terminal mCFP tag 

pDEST-BTM116-GW Gateway® destination vector for expression of a 

fusion protein under control of  ADH1 promoter with 

an N-terminal fused LexA DB 

pDEST-BTM116-EDS1 Gateway® destination vector for expression of EDS1 

under control of  ADH1 promoter with an N-terminal 

fused LexA DB 
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pDEST-BTM116-PAD4 Gateway® destination vector for expression of PAD4 

under control of  ADH1 promoter with an N-terminal 

fused LexA DB 

pDEST-BTM116-SAG101 Gateway® destination vector for expression of 

SAG101 under control of  ADH1 promoter with an 

N-terminal fused LexA DB 

pDEST-BTM116-JAZ9 Gateway® destination vector for expression of JAZ9 

under control of  ADH1 promoter with an N-terminal 

fused LexA DB 

pDEST-GAD424-GW Gateway® destination vector for expression of a 

fusion protein under control of  ADH1 promoter with 

an N-terminal fused GAL4 AD 

pDEST-GAD424-MYC2 Gateway® destination vector for expression of 

MYC2 under control of  ADH1 promoter with an N-

terminal fused GAL4 AD 

pDEST-GAD424-MYC3 Gateway® destination vector for expression of 

MYC3 under control of  ADH1 promoter with an N-

terminal fused GAL4 AD 

pDEST-GAD424-MYC4 Gateway® destination vector for expression of 

MYC4 under control of  ADH1 promoter with an N-

terminal fused GAL4 AD 

pDEST-GAD424-EDS1 Gateway® destination vector for expression of EDS1 

under control of  ADH1 promoter with an N-terminal 

fused GAL4 AD 

pDEST-GAD424-PAD4 Gateway® destination vector for expression of PAD4 

under control of  ADH1 promoter with an N-terminal 

fused GAL4 AD 

pENTRY-gEDS1 Gateway® entry plasmid that contains genomic 

EDS1 without stop codon from Ler-0 

pENTRY-gEDS1L262P Gateway® entry plasmid that contains mutated 

genomic EDS1 without stop codon from Ler-0 
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pENTRY-gEDS1LLIF Gateway® entry plasmid that contains mutated 

genomic EDS1 without stop codon from Ler-0 

pENTRY-EDS1 Gateway® entry plasmid that contains CDS of EDS1 

with stop codon from Ler-0 

pENTRY-PAD4 Gateway® entry plasmid that contains CDS of EDS1 

with stop codon from Ler-0 

pENTRY-SAG101 Gateway® entry plasmid that contains CDS of PAD4 

with stop codon from Ler-0 

pENTRY-MYC2 Gateway® entry plasmid that contains CDS of MYC2 

without stop codon from Col-0 

pENTRY-MYC3 Gateway® entry plasmid that contains CDS of MYC3 

without stop codon from Col-0 

pENTRY-MYC4 Gateway® entry plasmid that contains CDS of MYC4 

without stop codon from Col-0 

pENTRY-MYC2ΔC Gateway® entry plasmid that contains CDS of N-

terminal MYC2 (aa 1-287) without stop codon from 

Col-0 

pENTRY-MYC2ΔN Gateway® entry plasmid that contains CDS of C-

terminal MYC2 (aa 288-623) without stop codon 

from Col-0 

pENTRY-MYC2R458/460A Gateway® entry plasmid that contains CDS of 

MYC2 (R458/460A) without stop codon from Col-0 

pENTRY-MYC2ΔN R458/460A Gateway® entry plasmid that contains CDS of C-

terminal MYC2 (aa 288-623, R458/460A) without 

stop codon from Col-0 

pENTRY-YFP Gateway® entry plasmid that contains CDS of YFP 

without stop codon from Col-0 

pENTRY-YFP Gateway® entry plasmid that contains CDS of YFP 

with stop codon from Col-0 
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pEDS1XCG-CFP Binary Gateway® destination vector for expression 

of a fusion protein under control of EDS1 promoter 

with a C-terminal mCFP tag 

pEDS1M1XCG-CFP Binary Gateway® destination vector for expression 

of a fusion protein under control of mutated EDS1 

promoter with a C-terminal mCFP tag 

pEDS1(M1+M2)XCG-CFP Binary Gateway® destination vector for expression 

of a fusion protein under control of mutated EDS1 

promoter with a C-terminal mCFP tag 

pANAC019XCG-CFP Binary Gateway® destination vector for expression 

of a fusion protein under control of ANAC019 

promoter with a C-terminal mCFP tag 

 

4.1.6 Oligonucleotides 

Primers used in this study are listed in Table 4.5. Oligonucleotides were purchased from Invitrogen 

(Martinsried, Germany). Start and Stop codons are highlighted in red and recognition sites for 

restriction endonucleases are underlined. Lyophilised primers were resuspended in ddH2O to a 

final concentration of 100 pmol/µL (= 100 μM). Working solutions for PCR were diluted to 10 

pmol/µL (=10 μM), while qPCR working solutions were diluted to 5 pmol/ µL (=10 μM). 

Table 4.5. Oligonucleotides used in this study 

Namer Purpose Sequence (5`→ 3`) 

MYC2-F Cloning MYC2 CACCATGACTGATTACCGGCTAC 

MYC2-R TCCGATTTTTGAAATCAAACTTGC 

MYC2ΔC-R MYC2ΔC deletion tcaTGTTCCAATCGGGTCATTAA 

MYC2ΔN-F MYC2ΔN deletion caccATGCCTGGATCTAACGAACCGGGT 

MYC2R458A/R460A-F Mutagenesis, 

R458A/R460A 

CAGAGgcACAAgcACGCGAGAAACTAAACCAAA 

MYC2R458A/R460A-R Mutagenesis, 

R458A/R460A 

CGCGTgcTTGTgcCTCTGCTTCGACGTGGTTT 

pEDS1M1-F Mutagenesis, 

CAC-TGA 

ACCAATGTAAAACCGAtgaGTG 
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pEDS1M1-F Mutagenesis, 

CAC-TGA 

GAATCTTAGCTTTCCACTcatCG 

pEDS1M2-F Mutagenesis, 

CAC-TGA 

AGCTCAAAGATTCACAtgaATG 

pEDS1M2-R Mutagenesis, 

CAC-TGA 

GAATCAGGACATGCATtcaTGT 

pJAZ2-F Cloning JAZ2 

promoter, AscI  

GGCGCGCCGGTTGCATACTCTAAATAA 

pJAZ2-R Cloning JAZ2 

promoter, XhoI 

CCGCTCGAGCGTTGAAACCGAAATTGA 

qCFP-F qRT-PCR AAAGTGGTTGATGGGATGGTGAGC 

qCFP-R TGCACGCCCCAGGTCAGG 

qP_ICS1_F TTCTGGGCTCAAACACTAAAAC 

qP_ICS1_R GGCGTCTTGAAATCTCCATC 

Actin2_short_F ATGGAAGCTGCTGGAATCCAC 

Actin2_short_R TTGCTCATACGGTCAGCGATA 

EDS1-qF AGATTATTCAGGTGATCGAGCA 

EDS1-qR  TTTATGGGCTTGACACTTTGG  

BSMT1-qF  AGTCTTTGAGGGTCTTGTGAG 

BSMT1-qR  GTCATCTTCTTCGTAGTAGTG  

coi1-141-f sequencing COI1 

genomic DNA 

TCACTCTGGTGGTTATGTGTG 

coi1-1436-r GGACAAGACAACAGACAGTTG 

coi1-1117-f CTTTGCAACTGTTATGCTTGC  

coi1-2301-f ATCTCTTGAAAGCATAGGCAC 

coi1-2503-r ACTGTCCGATGTAGCTTAAG 

coi1-2987-r ACCAAAGTAGTATAGTACAC 

CPR5-269-F sequencing CPR5 

genomic DNA 

CACTAGTCACGAAGCGACCA 

CPR5-1482-R CGACAAGAGTAGCAAAGATC 

CPR5-1340-F TGTTGATGATCTTGTTGAGG 

CPR5-2471-F GGTAAATTGTGTGTGGACAC 

CPR5-2634-R CAACGGTTCGATCTGGTCTC 

CPR5-2791-R TCAAGCATAGTCAGACCCAC 
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4.1.7 Enzymes 

4.1.7.1 Restriction endonucleases 

Restriction enzymes were purchased from New England Biolabs (Frankfurt, Germany) unless 

otherwise stated. Enzymes were used with supplied 10x reaction buffer for restriction digests. 

4.1.7.2 Nucleic acid modifying enzymes 

Standard PCR reactions were performed using home-made Taq DNA polymerase. To achieve high 

accuracy, Pfu polymerases were used when PCR products were generated for cloning. Modifying 

enzymes and their suppliers are listed below: 

Taq DNA Polymerase Home made 

Phusion High-Fidelity DNA Polymerase ThermoFisher, Germany 

T4 DNA ligase Roche, Germany 

SuperScriptTM II RNase H- Reverse Transcriptase Invitrogen, Germany 

GatewayTM LR ClonaseTM Enzyme mix Invitrogen, Germany 

 

4.1.8 Chemicals 

Laboratory grade chemicals and reagents were purchased from Sigma-Aldrich (Deisenhofen, 

Germany), Roth (Karlsruhe, Germany), Merck (Darmstadt, Germany), Invitrogen™ (Karlsruhe, 

Germany), Serva (Heidelberg, Germany), and Gibco™ BRL® (Neu Isenburg, Germany) unless 

otherwise stated. 

4.1.9 Antibiotics (stock solutions) 

Table 4.6. Antibiotics and concentration 

Antibiotics Stock solution 

Ampicillin (Amp) 100 mg/ml in ddH2O 

Carbeninillin (Carb) 100 mg/ml in ddH2O 

Gentamycin (Gent) 15 mg/ml in ddH2O 

Kanamycin (kan) 50 mg/ml in ddH2O 

Rifampicin (Rif) 100 mg/ml in ddH2O 

Stock solutions (1000×) stored at -20 °C. Aqueous solutions were sterile filtrated. 
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4.1.10 Media 

Media were sterilised by autoclaving at 121°C for 20 min. For the addition of antibiotics and other 

heat labile compounds the solution or media were cooled to 55°C. Heat labile compounds were 

sterilised using filter sterilisation units prior to addition.  

Escherichia coli media 

   LB (Luria-Bertani) broth 

        Tryptone        10.0 g/l 

        Yeast extract     5.0 g/l 

        NaCl           5.0 g/l 

        pH 7.0 

 For LB agar plates 1.5 % (w/v) agar was added to the above broth. 

Pseudomonas syringae media 

    NYG broth 

        Peptone         5.0 g/l 

        Yeast extract     3.0 g/l 

        Glycerol         20 ml/l 

        pH 7.0 

 For NYG agar plates 1.5 % (w/v) agar was added to the above broth. 

Agrobacterium tumefaciens media 

    YEB 

        Beef extract       5.0 g/l 

        Yeast extract      1.0 g/l 

        Peptone          5.0 g/l 
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        Sucrose          5.0 g/l 

        1M MgSO4       2.0 ml/l 

        pH 7.2 

 For YEB agar plates 1.5 % (w/v) agar was added to the above broth. 

Yeast media 

YPAD medium 

    Peptone           20 g/L 

    Yeast extract       10 g/L 

    Adenine           100 mg/L 

    Glucose           2 % 

    pH 5.8 

SD/-LW media 

    SD base         26.7 g/L 

    Leu/-Trp DropOut 0.64 g/L 

    pH 5.8 

SD/-LWH media 

    SD base         26.7 g/L 

    Leu/-Trp/-His DropOut 0.62 g/L 

    pH 5.8 

 For agar plates, 1.8 % agar was added. The amino acids or amino acid DropOuts were 

added after autoclaving. 

4.1.11 Antibodies 

The used primary and secondary antibodies for immunoblot detection are listed below. 
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Table 4.7. Primary antibodies 

Antibody Source Dilution Supplier 

α-GFP Mouse polyclonal 1:5000 Roche 

α-Flag Mouse polyclonal 1:5000  

α-HA Rat polyclonal 1:5000 Roche 

 

Table 4.8. Secondary antibodies 

Antibody Source Dilution Supplier 

Goat anti-mouse IgG-HRP Horseradish 

peroxidase 

conjugated 

1:5000 Santa Cruz (Santa 

Cruz, USA) 
Goat anti-rat IgG-HRP 

 

4.1.12 Buffers and solutions 

Table 4.9. Buffers and components 

 Buffer Components 

DNA electrophoresis  10x running buffer  0.4 M Tris, 0.2 M acetic acid, 10 mM 

EDTA, pH 8.5  

6x loading buffer  40 % (w/v) sucrose, 0.5 M EDTA, 

0.2 %(w/v) bromophenol blue  

DNA ladder  10 %(v/v) 6×loading buffer, 5 %(v/v) 1 

Kb DNA ladder (Roth)  

Protein electrophoresis  

 

10x Tris-glycine running 

buffer 

250 mM Tris, 1.92 M glycine, 1 %(w/v) 

SDS 

2x SDS sample buffer  60 mM Tris pH6.8, 4 %(w/v) SDS, 200 

mM DTT, 20 %(v/v) glycerol, 

0.2 %(w/v) bromophenol blue  

Immunoblotting  TBS buffer  10 mM Tris, 150 mM NaCl, pH 7.5  

TBS-T buffer  10 mM Tris, 150 mM NaCl, 0.05 %(v/v) 

Tween 20, pH7.5  
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10x transfer buffer  250 mM Tris, 1.92 M glycine, 1 %(w/v) 

SDS, 20 %(v/v) Methanol  

Ponceau S  Dilution of ATX Ponceau concentrates 

(Fluka) 1:5 in water  

Protein purification  GFP co-IP extraction buffer 50 mM Tris (PH7.5), 150 mM NaCl, 

10 % (v/v) Glycerol, 2 mM EDTA, 5 

mM DTT, Protease inhibitor (Roche, 1 

tablet per 50 mL) , 0.1 % Triton 

 and wash buffer 

Ponceau S  Ponceau S working solution was 

prepared by dilution of ATX Ponceau 

S concentrate (Fluka) 1:5 in H2O. 

Yeast transformation 10×TE buffer 100 mM Tris-HCL (PH8.0), 10 mM 

EDTA (PH8.0) 

10×LiAc solution 1 M LiAc (Lithium Acetate)  

1×TE/LiAc/PEG 1 volume of 10×TE buffer and 1 

volume of 10×LiAc solution with 8 

volumes of 44% (V/V) PEG3350  

Arabidopsis transient 

expression solution 

and buffer 

Enzyme solution 1-1.5% cellulose R10, 0.2-0.4% 

macerozyme R10 (Yakult Honsha, 

Tokyo, Japan), 0.4 M mannitol, 20 

mM KCl, 20 mM MES (PH5.7), heat 

the enzyme solution at 55 °C for 10 

min and cool it to room temperature 

before adding: 10 mM CaCl2, 0.1% 

BSA (Sigma A-6793) 

PEG solution (40%,V/V) 4 g PEG (Fluka, #81240), 3 mL H2O, 

2.5 mL 0.8 M mannitol, 1 mL 1 M 

CaCl2  

W5 solution 154 mM NaCl, 125 mM CaCl2, 5 mM 

KCl, 2 mM MES (pH 5.7) 
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MMg solution 0.4 M mannitol, 15 mM MgCl2, 4 

mM MES (pH 5.7) 

N. benthamiana 

infiltration buffer 

Infiltration buffer 10 mM MES, 10 mM MgCl2, PH5.6 

(NaOH), before use add 

acetosyringone to final 

concentration0.15 mM 

 

4.2 Methods 

4.2.1 Maintenance and cultivation of Arabidopsis plants 

Arabidopsis seeds were sowed directly onto moist compost (Stender, Schermbeck, Germany) 

containing 10 mg/L Confidor® WG 70 (Bayer, Germany). The soil with seeds was covered with a 

lid and keep it at 4 °C for 24-48 h in the dark for vernalization. Then the seeds were moved to a 

controlled environment growth chamber and maintained under short day conditions (10 h 

photoperiod, the light intensity of approximately 200 μEinsteins m-2 sec-1, 22 °C and 65 % 

humidity). Lids were removed around 5 d post germination. 2-week old plants were transferred to 

long day conditions (16 h photoperiod) and allowed to flower for propagation. Aerial tissue was 

enveloped with a paper bag and sealed with tape at its base until siliques shattered. 

4.2.2 Generation of Arabidopsis F1 and F2 progeny 

Fine tweezer was used to emasculate an individual flower. Only flowers with well-developed 

stigma but immature stamen, which can prevent self-pollination, were used for crossing. At least 

2 independent fresh pollen was dabbed onto the stigma. Mature siliques containing F1 seed were 

bagged and harvested. At least five F1 seeds per cross were grown as described above and allowed 

to self-pollinate to produce F2 seeds. 

4.2.3 Maintenance of P. syringae pv. Tomato cultures 

Pseudomonas syringae pv. tomato strains were streaked onto selective NYG agar plates containing 

proper antibiotics from -80 °C glycerol stocks. Then the plates were incubated at 28 °C for 48 h 

before storing at 4 °C and refreshed weekly. 
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4.2.4 P. syringae pv. tomato spraying treatment 

One day before infection, bacterial strains, streaked on NYG agar plates, were restreaked and 

incubated ON at 28 °C. The concentration of bacteria was adjusted to 1 x 107 CFU/mL in 10 mM 

MgCl2 containing 0.04 % Silwet L-77 (Lehle seeds, USA). Two hours before spray-infection, two-

week old seedlings grown under short day conditions were watered and covered by a lid to allow 

opening of stomata. Spray-infected plants were covered by the lid for 3 h and the lid was removed 

to dry the plants. Then infected plants were covered with a lid and moved to a growth chamber 

with short day conditions. One week after infection, survived plants were selected and moved to 

long day growth chamber for harvesting seeds. 

4.2.5 P. syringae pv. tomato growth assay 

One day before infection, bacterial strains were re-streaked on NYG plates containing the 

appropriate antibiotics and incubated ON at 28 °C. The concentration of bacteria was adjusted to 

OD600 0.0002 in ddH2O. Three leaves per 4.5-week-old plant were infiltrated with a needle-less 

syringe. At 3 d post infiltration, 4 replicate samples each with 3 leaf discs (d=6 mm) were taken 

from 4 different plants and transferred to a 2 mL centrifuge tubes containing 10 mM MgCl2 

supplemented with 0.01% Silwet L-77. Bacterial titers were determined by shaking the samples 

with the speed of 650 rpm at 28 °C for 1 h with. 20 µL of the resulting bacterial suspension were 

plated on NYGA plates with appropriate antibiotics and incubated at 28 °C for 40 h before colony 

counting. 

4.2.6 Transient protein expression in N. benthamiana 

Agrobacteria carrying specific constructs (Table 4.4) were incubated for 2 d on selective LB plates 

under 28 °C and inoculated to LB liquid for over-night culture. Liquid cultures were centrifuged 

for 5 min at 3000 rpm. The pellets were incubated for 3-4 h in infiltration buffer (10mM MES pH 

5.6, 10 mM MgCl2, 0.15 mM acetosyringone) at OD600=1. Leaves from 3-4 week-old Nicotiana 

benthamiana plants were syringe-infiltrated with different v/v mixes of the prepared Agrobacteria 

strains. Leaf samples were taken around 40 hpi. 

4.2.7 Transient expression assays using Arabidopsis mesophyll protoplasts 

The method was previously developed by Sheen’s Lab (Yoo et al., 2007). In shortly, leaves from 

3-4 weeks old plants were cut into 0.5-1 mm strips with fresh razor blades without wounding. Put 
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the leaf strips from 10-20 leaves in a flask with 10 mL cellulose/macerozyme solution, and then 

apply vacuum infiltration for 15 min. Continue the digestion for 2 h with gentle shaking (40 rpm 

on a platform shaker). Filter the enzyme solution containing protoplasts with a 35-75 mm nylon 

mesh. Spin at 100 g to pellet the protoplasts in a round-bottomed tube for 2min. Wash protoplasts 

twice in W5 solution, and resuspend protoplasts in the same solution. Keep the protoplasts on ice 

for 30 min in W5 solution before transfection. Spin down protoplasts and resuspend in MMg 

solution (5×105 protoplasts /mL) before PEG transfection. Prepare plasmids combination, add 200 

uL protoplasts to microfuge tube contained plasmids and mix well, then add 220 uL PEG/Ca 

solution and mix well again. Incubate at room temperature for 15 min. Dilute with 1 mL W5 

solution and mix well. Spin down at 100 g for 2 min, remove PEG. Resuspend protoplasts gently 

by adding 1 mL W5 solution and mix well. Spin down at 100 g for 2 min. Resuspend the 

protoplasts by adding 1 mL W5 solution and mix well. Samples for transcript assay were harvested 

at 8 h post transfection by centrifugation at 100 g for 2 min, while samples for immunoblotting 

were incubated at room temperature with light for 16 h by centrifugation at 100 g for 2 min. 

Discard supernatant, freeze and store samples at -80 ℃ until ready for analysis.  

4.2.8 Biochemical methods 

4.2.8.1 Denaturing SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 

Mini-PROTEAN 3 system (BioRad) and discontinuous polyacrylamide (PAA) gels were applied 

to run denaturing SDS-polyacrylamide gel electrophoresis (SDS-PAGE). Resolving gels were 

firstly cast between two glass plates and overlaid with 100% isopropanol which was removed by 

when gels were polymerized which is normally 30 min. Then, the stacking gels were poured onto 

the top of resolving gels, a comb with a specific number of wells was inserted and the gel was 

polymerized for 30 min. In this study, 8% and 10% resolving gels were used, overlaid by 4% 

stacking gels. Gels were 1.0 mm in thickness. 

If protein samples were not directly extracted in 2x SDS-PAGE sample buffer, 1 volume of 2x 

SDS-PAGE sample buffer was added to protein sample and followed by boiling for 5 min for 

denaturation. After removing the combs under running water, each gel was placed into the 

electrophoresis tank and submerged in 1x running buffer. A pre-stained molecular weight marker 

(Precision plus protein standard dual colour, BioRad) and denatured protein samples were loaded 
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onto the gel and run at 80 V for 20 min (stacking gel) and 120 V (resolving gel) until the marker 

line suggested the samples had resolved sufficiently. 

4.2.8.2 Immunoblot analysis 

Proteins that had been resolved on PAA gels were transferred to Hybond™-ECL™ nitrocellulose 

membrane (Amersham Biosciences) after gels were released from the glass plates and stacking 

gels were removed with a scalpel. The blotting apparatus (Mini Trans-Blot® Cell, BioRad) was 

assembled according to the manufacturer instructions. The transfer was carried out at 100 V for 70 

min. The transfer cassette was dismantled and membranes were checked for equal loading by 

staining with Ponceau S for 5 min before rinsing with deionised water. Ponceau S stained 

membranes were imaged by ChemiDoc Imaging system (Bio-Rad) and thereafter washed for 5 

min in TBS-T before membranes were blocked for 1 h at room temperature in TBS-T containing 

5% (w/v) non-fat dry milk. The blocking solution was removed and membranes were washed 

briefly with TBS-T. Incubation with primary antibodies was carried out overnight by slowly 

shaking on a rotary shaker at 4°C in TBS-T supplemented with 3 % (w/v) non-fat dry milk. Next 

morning the primary antibody solution was removed and membranes were washed 3 x 10 min with 

TBS-T at room temperature on a rotary shaker. Bound primary antibodies were detected using 

horseradish peroxidase (HRP)-conjugated secondary antibodies. Antibody details in 2.1.10. 

Membranes were incubated in the secondary antibody solution for 1 h at room temperature at slow 

rotation. The antibody solution was removed and membranes were washed as described above. 

This was followed by chemiluminescence detection using the SuperSignal® West Pico 

Chemiluminescent kit or a 9:1 - 1:1 mixture of the SuperSignal® West Pico Chemiluminescent- 

and SuperSignal® West Femto Maximum Sensitivity-kits (Pierce) according to the manufacturer 

instructions. ChemiDoc Imaging system (Bio-Rad) were used to detect the luminescence. 

4.2.8.3 Immunoprecipitation with GFP_Trap beads (Chromtech) 

5 leaf discs (⌀1 cm) were finely ground in liquid nitrogen. 1.5 mL cold extraction buffer was added 

and incubated on ice for 30 min with 3 times thoroughly vortexing. Centrifuge 2 times with speed 

of 14000 RPM under 4 °C. Transfer supernatant to 15 mL falcons and add another 3mL extraction 

buffer to dilute the samples. 20 µL of GFP_Trap beads were added to samples and incubate for 

2.5 h at 4 ℃ on a wheel roller. Afterward, samples were spun down at 2500 g at 4 °C for 2 min. 

The supernatant was removed by pipetting. Next, 1 mL extraction buffer was added to wash Trap 

https://en.wikipedia.org/wiki/Diameter#Diameter_symbol
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beads on wheel roller at 4 °C for 5 min. To pellet bead, samples were centrifuged for 2 min at 2500 

g at 4 °C. Washing with 1 mL extraction buffer was repeated 4 times. After the last wash, a syringe 

with a needle was used to completely remove the remaining liquid. To elute protein, 100 µL 

2×loading buffer was added and heated at 95 °C for 5 min. To pellet beads, samples were spun 

down by centrifuging for 1 min at 2500 g at room temperature.   

4.2.9 Molecular biological methods 

4.2.9.1 Isolation of total RNA from Arabidopsis 

Total RNA was prepared from 3 to 6-week-old plant materials or from transfected protoplasts. 

Liquid nitrogen froze samples (approximately 50 mg) were homogenized 2 x 15 sec to a fine 

powder using a Mini-Bead-Beater-8TM (Biospec Products) and 1.2 mm stainless steel beads (Roth) 

in 2 ml centrifuge tubes. After the first 15 sec of homogenisation samples were transferred back to 

liquid nitrogen and the procedure was repeated. Thereafter, RNA was isolated using RNeasy kit 

from Bio-Budget according to the manufacturer’s instruction. Samples were stored at -80°C.  

4.2.9.2 Polymerase chain reaction (PCR) 

Standard PCR reactions were performed using home-made Taq DNA polymerase while for 

cloning of PCR products Pfu polymerase was used (see 2.1.6.2) according to the manufacturer’s 

instructions. All PCRs were carried out using a PTC-225 Peltier thermal cycler (MJ Research). A 

typical PCR reaction mix and thermal profile are shown below. 

Table 4.10. PCR mix (20 µL total volume) 

 

Component Volume 

Template DNA 0.2-10 ng 

10x PCR buffer 2 µL 

dNTP (2.5 mM each) mix 1 µL 

Forward primer (10 μM) 1 µL 

Reverse primer (10 μM) 1 µL 

Taq DNA polymerase (4U/ml) 0.5 µL 

Nuclease-free water Make up to 20 µL total volume 
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Table 4.11. Thermal cycling 

Stage Temperature (°C) Time Cycles 

Initial denaturation 94 5 min 1× 

Denaturation 94 30 sec 30-35× 

Annealing 55-60 30 sec 

Extension 72 1 min/kb 

Final extension 72 5 min 1× 

 

4.2.9.3 One-Step quantitative PCR (qPCR) 

SYBR Green One-Step qPCR Kit (Biotool) was used to analyze the RNA samples prepared from 

the transfected protoplasts.  

Table 4.12. PCR mix (20 µL total volume) 

Components Volume 

2x SYBR Green One-Step Mix 10 µL 

SYBR Green One-Step Enzyme Mix 1 µL 

RNA template 100 ng 

Forward primer (5 μM) 1 µL 

Reverse primer (5 μM) 1 µL 

RNase-free ddH2O Add to 20 µL 

 

Table 4.13. One-Step amplification program 

Stage Temperature (°C) Time Cycles 

Reverse Transcription 50 15 min 1× 

Initial denaturation 95 5 min 1× 

Denaturation 95 10 sec 40× 

Annealing 60 20 sec 

Extension 72 20 sec 
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Melt Curve 65 to 95 5 sec per 0.5 °C 1× 

 

4.2.9.4 Site-directed mutagenesis 

Site-directed mutagenesis was performed with minor modifications as described in the instruction 

manual of the QuickChange® site-directed mutagenesis kit of Stratagene®. 

Table 4.14. PCR mix (20 µL total volume) 

 

Table 4.15. Thermal cycling 

Stage Temperature (°C) Time Cycles 

Initial denaturation 94 1 min 1× 

Denaturation 94 10 sec 18× 

Annealing 55-60 10 sec 

Extension 72 15 sec /kb 

Final extension 72 5 min 1× 

 

After the PCR, 1 µL DpnI (20 U/µL) were added to the reaction mix to digest methylated, parental 

DNA and to enable selection of mutation-containing synthesized DNA. The reaction was 

incubated for 1 h at 37°C. 3 µL of the reaction mixture, containing the circular, nicked vector DNA 

with the desired mutations were then transformed into DH10B cells and plated on LB agar 

containing the appropriate antibiotic. 

Component Volume 

Template plasmid (7.5 ng/µL) 1 µL 

10x pfu Turbo reaction buffer 2 µL 

dNTP (2.5 mM each) mix 1 µL 

Forward primer (10 μM) 1 µL 

Reverse primer (10 μM) 1 µL 

Pfu Turbo DNA polymerase (2.5U/ml) 0.4 µL 

Nuclease-free water Make up to 20 µL total volume 
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4.2.9.5 Reverse transcription-polymerase chain reaction (RT-PCR) 

RT-PCR was carried out in two steps. Thermo Scientific RevertAid RT Kit was used for first 

strand cDNA synthesis by combining 1 μg total RNA, 1 µL oligo dT (0.5 μg/µL), in a volume of 

12 µL (made up with H2O). The sample was incubated at 65°C for 5 min to destroy secondary 

structures before cooling on ice. Subsequently, the reaction was filled up to a total volume of 20 

µL by adding 4 µL of 5x reaction buffer, 2 µL dNTP mix (each dNTP 10 mM), 1 µL of RiboLock 

RNase Inhibitor (20 U/µL) and 1 µL of RevertAid RT (200 U/µL). The reaction was incubated at 

42°C for 60 min before the enzyme was heat inactivated at 70°C for 5 min. For subsequent PCR, 

synthesised cDNA was diluted to 10 ng/µL.  

4.2.9.6 Plasmid DNA isolation from bacteria 

Standard alkaline cell lysis miniprep of plasmid DNA were carried out using the MACHEREY-

NAGEL (MN) miniprep plasmid isolation kit according to the manufacturer’s instructions. Larger 

amounts of plasmid DNA were isolated using Qiagen Maxi or Mega preparation kits. 

4.2.9.7 Restriction endonuclease digestion of DNA 

Restriction digests were carried out according to the recommended manufacturer’s conditions. 

Typically, reactions were carried out in 0.2 ml tubes, using 1 µL of restriction enzyme per 20 µL 

reaction. All digests were carried out at the appropriate temperature for a minimum of 60 min. 

4.2.9.8 Agarose gels electrophoresis of DNA 

DNA fragments were separated by agarose gel electrophoresis in gels consisting of 1-2 % (w/v) 

agarose in TAE buffer. Agarose was dissolved in TAE buffer by heating in a microwave. Molten 

agarose was cooled to 50° C before 2.5 µL of ethidium bromide solution (10 mg/ml) was added. 

The agarose was poured and allowed to solidify before being placed in TAE in an electrophoresis 

tank. DNA samples were loaded onto an agarose gel after addition of 2 µL 6x DNA loading buffer 

to 10 µL PCR- or restriction reaction. Separated DNA fragments were visualized by placing the 

gel on a 312 nm UV trans-illuminator and photographed. 
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4.2.9.9 Isolation of DNA fragments from agarose gels 

DNA fragments separated by agarose gel electrophoresis were excised from the gel with a clean 

razor blade and extracted using the MACHEREY-NAGEL (MN) NucleoSpin® Gel and PCR 

Clean-up kit according to the manufacturer’s protocol. 

4.2.9.10 Site-specific recombination of DNA in Gateway®-compatible vectors 

The Gateway® system was used to generate the proper constructs. The pENTR/D vector was used 

to clone the gene fragments. To transfer the fragment of interest into gene expression constructs, 

an LR reaction between the entry clone and a Gateway® destination vector was performed. 

Table 4.16. Basic LR reaction approach: 

Components Volume 

LR reaction buffer (5x) 1 µL 

Entry clone (75 ng/µL) 1 µL 

Destination vector (100 ng/µL) 1 µL 

LR clonase enzyme mix 0.5 µL 

TE buffer Make up to 6 µL 

 

Reactions were incubated for 1 h at room temperature before adding 0.5 µL proteinase K solution. 

Reactions were incubated at 37° C for 10 min. Entire reaction was transformed into E. coli strain 

DH10B. 

4.2.9.11 DNA sequencing 

DNA sequences were determined by Sanger sequencing at the “Automatische DNA Isolierung und 

Sequenzierung” (ADIS) service unit at the MPIPZ, Cologne. 

4.2.9.12 DNA sequence analysis 

Sequence data were analyzed mainly using various packages from DNASTAR and Clone Manager 

6 (Scientific and Educational software, USA). 
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4.2.9.13 Preparation of chemically competent E. coli cells 

Media and solutions required for preparation of rubidium chloride E. coli chemically competent 

cells 

Table 4.17. Media for preparation of competent cells 

ФB TFB1 TFB2 

Yeast extract 0.5 % KAc 30 mM MOPS 10 mM 

Tryptone 2 % MnCl2 50 mM CaCl2 75 mM 

MgSO4 0.4 % RbCl 100 mM RbCl 10 mM 

KCl 10 mM CaCl2 10 mM Glycerol 15 % 

pH 7.6 Glycerol 15 %  

autoclave pH 5.8 sterile-filter sterile-filter 

 

5 ml of an E. coli strain DH10B over-night culture grown in ФB was added to 400 ml of ФB and 

shaken at 37°C until the bacterial growth reached an OD600 0.4 - 0.5. Cells were cooled on ice 

and all following steps were carried out on ice or in a 4° C cold room. The bacteria were pelleted 

at 5000 g for 15 min at 4°C. The pellet was gently resuspended in 120 ml ice-cold TFB1 solution 

and incubated on ice for 10 min. The cells were pelleted as before and carefully resuspended in 16 

ml ice-cold TFB2 solution. 1.5 ml Eppendorf reaction tubes containing 50 µL aliquots of cells 

were frozen in liquid nitrogen and stored at -80°C until use. 

4.2.9.14 Transformation of chemically competent E. coli cells 

A 50 µL aliquot of chemically competent cells was thawed on ice. 10 to 25 ng of ligated plasmid 

DNA (or ~ 5 µL of ligated mix from 10 µL ligation reaction) was mixed with the aliquot and 

incubated on ice for 20 min. The mixture was heat-shocked for 45 sec at 42°C and immediately 

put on ice for 2 min. 500 µL of SOC medium or LB medium was added to the microcentrifuge 

tube and incubated at 37° C for 40 min on a rotary shaker. The transformation mixture was 

centrifuged for 5 min at 1500×g, resuspended in 50 µL LB broth and plated onto selective media 

plates. 
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4.2.9.15 Preparation of electro-competent A. tumefaciens cells 

The desired Agrobacterium strain was streaked out onto YEB agar plate containing adequate 

antibiotics and grown at 28 °C for two days. A single colony was picked and a 5 ml YEB culture, 

containing appropriate antibiotics, was grown overnight at 28 °C. The whole overnight culture was 

added to 200 ml YEB (without antibiotics) and grown to an OD600 of 0.6. Subsequently, the 

culture was chilled on ice for 15 - 30 min. From this point onwards bacteria were maintained at 

4 °C. Bacteria were centrifuged at 6000 g for 15 min and 4°C and the pellet was resuspended in 

200 ml of ice-cold sterile water. Bacteria were again centrifuged at 6000 g for 15 min and 4°C. 

Bacteria were resuspended in 100 ml of ice-cold sterile water and centrifuged as described above. 

The bacterial pellet was resuspended in 4 ml of ice-cold 10 % glycerol and centrifuged as described 

above. Bacteria were resuspended in 600 µL of ice-cold 10 % glycerol. 40 µL aliquots were frozen 

in liquid nitrogen and stored at -80°C. 

4.2.9.16 Transformation of electro-competent A. tumefaciens cells 

100 ng of plasmid DNA was mixed with 40 µL of electro-competent A. tumefaciens cells and 

transferred to an electroporation cuvette on ice (2 mm electrode distance; Eurogentec, Seraing, 

Belgium). The BioRad Gene Pulse™ apparatus was set to 25 μF, 2.5 kV and 400 Ω. The cells were 

pulsed once at the above settings for a second, the cuvette was put back on ice nd immediately 1 

ml of YEB medium was added to the cuvette. Cells were quickly resuspended by slowly pipetting 

and transferred to a 2 mL microcentrifuge tube. The tube was incubated for 3 h in an Eppendorf 

thermomixer at 28°C. A 5 µL fraction of the transformation mixture was plated onto selection 

YEB agar plates. 

4.2.9.17 Yeast transformation 

The method for yeast transformation was adjusted from the protocol developed by the Lab of Dr. 

Pascal Braun (Dreze et al., 2010). Streak yeast strain L40 on YPAD plates and incubate at 30°C 

for 48-72 h to obtain isolated colonies. Pick out 10 isolated colonies and inoculate in 20 mL YPAD 

liquid medium and incubate at 30 °C on a shaker for 14-18 h. Dilute cells with OD600 between 

4.0 and 6.0 into 100 ml YEPD media to obtain a final OD600= 0.1 which is enough for a 96-well 

plate of transformations. Incubate at 30 °C on a shaker until OD600 reaches 0.6–0.8. Harvest cells 

by centrifugation at 800 g for 5 min and discard the supernatant and resuspend cells gently in 10 



Ph.D. Thesis- Materials and Methods 

 

97 

ml of sterile water. Repeat this resuspending and centrifugation once and discard the supernatant. 

Then resuspends cell in 10 mL TE/LiAc solution, centrifuge, and discard the supernatant. The left 

cells were resuspended in 2 mL TE/LiAc solution and 10 mL TE/LiAc/PEG solution supplemented 

with 200 µL of pre-boiled carrier DNA were added and then mix the solution by inversion. 

Dispense 120 µL of this solution into one 200 µL PCR tube which contains 300 ng plasmid DNA 

and then mixes by pipetting up and down. Then incubate at 30 °C for 30 min followed by 15 min 

heat shock in a 42 °C water bath. Then the PCR tubes were centrifuged for 5 min at 800 g. Around 

90 µL water were carefully removed and then resuspend the left cell pellets by vortexing. Plate 

half of the cell resuspension onto appropriate selective plates (SD-LW). Then the plates were 

incubated at 30 °C for 72 h. Use a sterile toothpick to pick transformed yeast colonies into sterile 

glass tubes containing 1.5 mL appropriate selective media. Then incubate on a shaker at 30 °C for 

overnight, which were diluted with 10 times serial to 1000 times. Then drop 5 uL of undiluted and 

diluted cultures onto appropriate selective media (SD-LW and SD-LHW) and incubate at 30 °C 

for 72 h. ChemiDoc Imaging system (Bio-Rad) was used to take picture of the plates. 
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