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1 Introduction

1.1 Background and Introduction

The European Union aims to reduce its greenhouse gas emissions by 80-95% of

1990 levels by 2050 (European Commission, 2012). Therefore, intensified efforts

are being made to favor the success of the energy transition. However, the broad

term ‘energy transition’ does not refer to an isolated measure, but rather embodies a

complex structural transformation comprising diverse individual developments. At

the same time, it involves different sectors such as the electricity, industrial, heating,

and transport sectors. Policy makers more and more are striving to couple these

sectors in a combined effort to implement the ongoing decarbonization in a cost-

effective and environmentally compatible way. At the same time, decision makers

aim to ensure that security of supply is not jeopardized (BMWI, 2010).

The Federal Ministry of Economics and Technology in Germany is attempting to

condense the energy transition into twelve major trends (BMWI, 2016). More specif-

ically, the power supply system is undergoing a transition from centralized to more

decentralized electricity generation (European Commission, 2013). The increasing

share of renewable power plants as well as an increasing number of small-scale gen-

eration units allow for carbon dioxide emission reductions to be achieved while, at

the same time, changing the requirements for the existing energy system. As regards

the market organization, the implementation of an extended market coupling may

allow for gains in efficiency (Parisio and Bosco (2008), Zachmann (2008)). Closely

related, sufficient grid infrastructure has to be provided to enhance the system’s sta-

bility as well as to ensure security of supply, even as the generation of electricity

becomes more and more volatile. However, the refinancing of the respective grid

expansions may be regarded as a core issue. Furthermore, in view of the demand

side, energy-efficiency savings may allow for a reduction in overall energy consump-

tion. Additional energy savings on a residential level may be attributable to the de-

ployment of smart meters, which is one subfield of the superordinate digitalization.

Finally, as the coupling of sectors is increasingly promoted, the efficient integration

of combined heat and power generation is a further goal.
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1 Introduction

These identified trends challenge the power supply systems of today. In partic-

ular, the increasing share of intermittent and highly volatile electricity generation

is causing an augmented need for short-term power system flexibility (Delft and

Microeconomix (2016), International Energy Agency (2014), NREL et al. (2014)).

Against this backdrop, flexibility means the ability of the power supply system to

respond to the high volatility of electricity generation and demand in a sufficient

and reliable manner. Such flexibility may especially be provided by flexible genera-

tion units, expanded interconnection capacity, storage technologies, or demand-side

management (International Energy Agency, 2014).

In this thesis, three major subfields of the energy transition are addressed, all of

which may be positioned within the topic of short-term power system flexibility. To

leverage benefits and guarantee the successful realization of the energy transition,

the individual trends should be made compatible with each other, and benefits may

be leveraged by applying and interacting different flexibility options. Therefore, it

is vital to deepen the economic understanding of the underlying dynamics in order

to fulfill effectively and efficiently the flexibility needs which have been identified.

The key findings derived within the individual chapters of this thesis are intended

to form the basis for comparatively evaluating the costs and benefits of different

flexibility measures.

Power system flexibility may not only be provided by suppliers. The demand side

could play a key role as well. Therefore, this thesis opens with an analysis of the

impact of an advanced metering infrastructure on residential electricity consump-

tion. Smart meters, as such, are attributable to digitalization and may provide ad-

ditional information with higher granularity to customers, grid operators, and re-

tailers. Thereby, consumers may be enabled to alter their consumption behavior,

whereas more efficient grid operation may be facilitated since grid operators will

gain additional information on a subordinate grid level. Additionally, retailers may

reduce their imbalances by forecasting electricity demand with both an increased

temporal resolution and higher accuracy.

In the second part of this thesis, the impact of an intensified electrification pro-

cess within the transport sector is explored using a simulation method. In the coming

years the number of electric vehicles is expected to increase significantly(The Fed-

eral Government of Germany (2009), The White House (2011)). As a consequence,

two aspects are of particular relevance. First, the charging behavior of electric ve-

hicle drivers impacts the time-dependent rate of electricity consumption as well as

the respective extremes. Second, electrical vehicle storage may be harnessed in the

2



1.2 Research Outline

context of grid services. Electric vehicle storage could thus provide short-term flexi-

bility to the power supply system (see, e.g., Kahlen and Ketter (2015), Kahlen et al.

(2017)). Especially in the case of bidirectional charging, grid-relieving consumption

behavior and demand-side management may become feasible.

Finally, this thesis includes three chapters dealing with the economics of sequen-

tial short-term electricity markets. In this context, the limited predictability and

high volatility of renewable electricity generation has caused an augmented need

to trade products with shorter contract duration closer to physical delivery. As a

consequence, sequential short-term electricity market designs were established in

Germany that face both strongly increasing relevance and trade volumes, especially

on an intraday level (Hagemann and Weber, 2013). The functioning of short-term

electricity markets is regarded as a crucial prerequisite for integrating huge amounts

of renewable energy sources into the power supply systems of today (Scharff et al.

(2013), Simon (2013)). In this thesis, focus is placed on the impact of restricted

participation in markets with sub-hourly products.

In the following section, the individual chapters of this thesis will be outlined

in detail. Each of the five chapters is based on a single paper. The articles pre-

sented in Chapter 2, Chapter 4 and Chapter 5 were developed in collaboration with

researchers who are also affiliated with the Institute of Energy Economics at the

University of Cologne. These articles are co-authored with one researcher each. As

regards the collaboration, within each paper the authors contributed in equal shares.

1.2 Research Outline

1.2.1 The Impact of Advanced Metering Infrastructure on Residential
Electricity Consumption - Evidence from California

Chapter 2 contains an analysis of the impact of an advanced metering infrastruc-

ture on residential electricity consumption. The article presented is co-authored by

Simon Paulus and has not yet been published.

In the context of policy makers aiming to achieve heightened carbon dioxide

emission reduction targets, discussions surrounding energy saving measures have

recently become increasingly relevant. On a residential level, energy-saving mea-

sures depend heavily on the bounded rationality of consumers. Implementing an

advanced metering infrastructure addresses this issue by allowing for real-time feed-

3



1 Introduction

back on electricity consumption and thereby enabling a bidirectional communication

between the consumer and the respective service utility. We analyze the effect of the

policy-induced deployment of advanced metering infrastructure in California in or-

der to derive quantitative estimates for the respective aggregate impact on residen-

tial electricity consumption. Since states exhibit significant heterogeneity as far as

energy-related consumption characteristics are concerned, we apply synthetic con-

trol methods and derive a weighted combination of New Mexico and New York as the

control group. We isolate the effect of smart meters by filtering out distorting effects

and empirically compare the Californian trend in residential electricity consumption

over time with the respective one in the control group.

Based on the empirical results, we find a significant reduction of the average

monthly residential electricity consumption in California of approximately 6%, in-

duced through the deployment of the advanced metering infrastructure. Further-

more, we find a clear seasonal pattern of electricity savings. The reduction of elec-

tricity consumption is only significant in non-heating periods. Finally, the results

indicate a continuous effect, at least during our period of observation. Our results

may provide crucial information for policy makers to assess the effectiveness of a

policy-driven deployment of advanced metering infrastructures to achieve electric-

ity savings at the residential level.

1.2.2 Leveraging the Benefits of Integrating and Interacting Electric
Vehicles and Distributed Energy Resources

Chapter 3 focuses on a beneficial interaction of photovoltaic generation units and

electric vehicles in the light-weight transport sector. The article has not yet been

published. I am the sole contributor.

The essay considers two parallel trends, both of which are expected to impact the

existing power system significantly. First, a rapidly increasing number of renewable

power plants can be identified. High numbers of small-scale generation units are

changing the requirements for the existing energy system. At the same time, an elec-

trification of the transport sector is underway. In this chapter, potentials from using

photovoltaic generation units together with electric vehicles are analyzed. The main

purpose is to fill a current research gap by adopting two perspectives. First, light is

shed on the cost-saving potential of electric vehicles on a residential level where

households may achieve a higher share of self-consumption. Second, a system-

oriented perspective is taken and the peak load impact as well as the respective

4



1.2 Research Outline

peak-load reduction potential of electric vehicles is analyzed.

To address the research issues in question, a bottom-up simulation approach has

been developed to model the driving behavior of electric vehicles as well as the re-

sulting charging demand. The simulation results show that, on a household level,

smart charging strategies oriented to renewable energy sources (RES) may allow

for a share of self-consumption that is about 59% higher compared to uncontrolled

charging. On a system level, the results suggest that uncontrolled and RES-orientated

charging may drive the average peak load of electricity purchased from the grid to

increase significantly by 69% to 84% of the available charging capacity. In contrast,

by implementing tariff schemes which incentivize a peak-load minimizing charging

behavior, the peak-load impact under analysis may be reduced to 27% on average.

However, there is only limited potential to counteract reverse power flows from pho-

tovoltaic electricity generation in peak hours.

1.2.3 Price Volatility in Commodity Markets with Restricted
Participation

In Chapter 4, an article is presented which is published within the Working Paper

Series of the Institute of Energy Economics at the University of Cologne (Knaut and

Paschmann, 2017b). The work is co-authored by Andreas Knaut. We analyze the

underlying drivers of the high price volatility observed in German electricity markets

with sub-hourly contract duration.

The analysis is motivated through the identification of an apparently systematic

but puzzling price pattern in two sequential short-term electricity markets, namely

the day-ahead and intraday auction. In these markets, electricity is first traded via

hourly contracts, and three hours later a subsequent auction with quarter-hourly

contract duration is settled. We observe huge price variations between the respec-

tive contract prices. In more detail, the 15-minute contract prices tend to fluctuate

around the previously settled day-ahead prices, which reveals high price volatility.

We develop a stylized theoretical model depicting the price formation in both mar-

kets under analysis. We account for the interaction of sequential markets with dif-

fering product granularities. Based on the model, we find that the high volatility is

mainly driven by two influencing factors. First are the sub-hourly variations of re-

newable generation and electricity demand. Second, restricted participation in the

intraday auction compared to the market with hourly contracts triggers an increase

of the respective supply curve gradient. Building on that model, we conduct an em-

5



1 Introduction

pirical validation using historical price data. We are thereby able to link restricted

participation in the intraday auction to welfare losses of EUR 108 million in 2015

and EUR 55 million in 2016.

1.2.4 Decoding Restricted Participation in Sequential Electricity
Markets

In the chapter previously discussed, the assumption of restricted participation in the

intraday auction is crucial, but yet the underlying drivers remain undetected. We

hence pose the research question of how to decode these drivers in Chapter 5. The

underlying article is co-authored by Andreas Knaut and is published within the Work-

ing Paper Series of the Institute of Energy Economics at the University of Cologne

(Knaut and Paschmann, 2017a).

Restricted participation may trigger both high price volatility and welfare losses.

Therefore, it may be beneficial to identify the underlying drivers in order to derive

countermeasures with the purpose to increase efficiency. In this chapter, we consider

four potential drivers of restricted participation: i) the state of not knowing and

inertia, ii) costs of market entry, iii) flexibility constraints of generation units, and

iv) a lack of cross-border market coupling. We present empirical evidence that the

role of inertia is essentially negligible. Conducting exemplary profitability analyses,

we then find an indication that costs resulting from market entry should not prevent

agents from extending their trading activities to markets with sub-hourly contracts.

In order to address the remaining potential explanatory approaches, we set up

a fundamental electricity market model with quarter-hourly temporal resolution.

Hereby, we are able to replicate the price pattern observed in real-world data. Dis-

entangling the individual drivers under analysis by analyzing different sets of con-

straints, we finally identify the lack of sub-hourly market coupling as being the most

relevant driver of restricted participation in the German intraday auction. As a con-

sequence, it may be beneficial for policy makers to urge the implementation of mar-

ket coupling on a sub-hourly level. Finally, we simulate the impact of introducing

full market coupling on a 15-minute level and suggest that the price volatility of

quarter-hourly prices may, as a result, decrease by a factor close to four.
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1.2.5 Economic Analysis of Price Premiums in the Presence of
Non-convexities - Evidence from German Electricity Markets

Chapter 6 focuses on the economic analysis of price premiums in German short-term

electricity markets where the underlying merit order exhibits a discontinuous shape.

It has not yet been published as an article, and I am the sole contributor.

Economic theory suggests that the limited storability of electricity may pose limits

to arbitrage. The widespread explanatory approach for price premiums in electric-

ity markets developed by Bessembinder and Lemmon (2002) may yield positive as

well as negative differences between forward and real-time prices, depending on the

volatility and skewness of spot prices. In Longstaff and Wang (2004), the authors

analyze historical prices from US electricity markets and find the general model to

be applicable to their real-world data. However, even though a similar pattern of

price premiums can be found in two sequential German short-term electricity mar-

kets, namely the day-ahead and intraday auction, there is empirical evidence that

the idea of price premiums being solely explicable through statistic key figures of

spot prices is not transferable to the market dynamics under analysis. This in itself

is not surprising, as there is no informational update between the two market set-

tlements and since both markets are cleared in rapid succession. Based on these

relations, an alternative explanatory approach is developed. A theoretical analysis

is presented which depicts the price formation in sequential markets with increasing

product granularity and a differing supplier structure. The model allows to analyze

the impact of non-convexities on price premiums in sequential market designs.

The model suggests that non-convexities in only a subset of sequential markets

may lead to price differences at equilibrium. These price premiums can be either neg-

ative or positive, depending on whether the non-convexities are more pronounced

in the first or second market. As a consequence, the direction of price premiums

directly depends on the market settlement being in particular sections of the un-

derlying supply curves. To support this hypothesis, historical real-world data reveal

a high correlation of load and the direction and value of price premiums. There-

fore, price premiums between the day-ahead and intraday auction reflect a value for

additional short-term power system flexibility rather than incorporating a value of

risk-bearing. A proxy is derived which yields a value of additional national power

system flexibility equal to EUR 10.2 million in 2015. In contrast, the respective value

for flexibility provided by neighboring countries is EUR 6.4 million in 2015. Even

though these are rather small numbers, it may be worth thinking about further ap-

plications of the general model framework, such as in the case of sequential block
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1 Introduction

and single unit auctions.

1.3 Methodological Remarks

From a methodological point of view, the analyses conducted within this thesis es-

sentially build upon three different types of approaches. First, the essays presented

in Chapter 2 and Chapter 4 heavily build on an empirical analysis applying regression

techniques. A completely different approach is adopted in Chapter 3. More precisely,

numeric simulation processes are applied, which, at least partially, are based on an

underlying optimization problem. Similarly, Chapter 5 depicts findings that were

derived with the use of a fundamental electricity market model. Finally, this thesis

also presents theoretical economic models and analyses, such as those presented in

Chapter 4 and Chapter 6.

The methodological diversity allows for shedding light on the research issues in

question by adopting a multi-perspective view. Hereby, it is accounted for the com-

plexity as well as the variety of these research questions, and the choice of each

approach is directly motivated by the question of what may fit the problem structure

the best. Additionally, the combination of different methodological approaches may

bring significant value added. By way of illustration, in Chapter 4 we complement a

theoretical model with an additional empirical analysis. We break down the complex

problem structure into a simplified theoretical model framework, solve the model,

and then directly feed the respective results into a subsequent empirical analysis. As

a consequence, the results are expected to be both more compelling and convincing.

Yet, a profound knowledge of the limits and assumptions related to each of the

approaches applied is crucial in order to interpret and categorize the respective re-

sults. Thus, a detailed discussion of the underlying methodological approaches is

presented within each chapter.

8



2 The Impact of Advanced Metering
Infrastructure on Residential Electricity
Consumption - Evidence from California

One important pillar in the debate about energy-saving measures addresses energy

conservation. In this paper, we focus on the deployment of advanced metering in-

frastructure to reduce the impact of limited information and bounded rationality of

consumers. For California, we empirically analyze the influence of a statewide and

policy-driven installation of advanced metering infrastructure. We apply synthetic

control methods to derive a suitable control group. We then conduct a Difference-

in-Differences estimation and find a significant negative impact of smart meters on

monthly residential electricity consumption that ranges from 6.1 to 6.4%. Second,

such an impact only occurs in non-heating periods and does not fade out over the

analyzed time period.

2.1 Introduction

In the light of exacerbated discussions on climate targets and emission reduction

goals, energy-saving measures have become increasingly important. In the residen-

tial sector, such measures have to account for specific characteristics such as limited

information and bounded rationality. Although there should be a natural interest in

reducing electricity consumption, it is common knowledge that the savings potential

is yet to be leveraged. In this paper, we analyze the impact of advanced metering

infrastructure (AMI) on residential electricity consumption. The AMI feeds back

real-time information on electricity consumption and enables bidirectional commu-

nication between the consumer and the respective service utility.

Since, from a consumer‘s perspective, cost recovery after installing AMI is at least

questionable, pilot tests and policy-induced measures are the prevalent ways of eval-

uating smart-meter deployment. The respective impact of smart meters on electric-

ity consumption may differ in both frameworks. In pilot tests, a loss of generality

resulting from small samples and the Hawthorne effect, whereby individuals alter

9
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their behavior in response to their awareness of being observed, may be relevant.

Therefore, we focus on a statewide policy measure and identify a lack of empirical

evidence in the existing literature. On the basis of our analyses, decision makers

may assess the effectiveness of a policy-driven deployment of smart meters.

We analyze the impact of AMI based on empirical evidence from California. Fol-

lowing the Californian Energy Crisis in 2001, the government issued a decision re-

garding statewide deployment of smart meters in the Energy Action Plan II of 2005.

As a consequence, the three major service utilities committed themselves to installing

AMI right across their service areas beginning in 2008. As such, smart meters provide

consumers and utilities with more detailed consumption information1. We compare

the Californian development of residential electricity consumption over time with

the respective one in a synthetic control group named ‘Synthetic California’. We

construct this control group using synthetic control methods in order to resemble

Californian characteristics (Abadie et al., 2010). Furthermore, we isolate the effect

of advanced metering infrastructure by filtering out distorting effects such as energy

savings related to energy-efficiency measures.

We find a significant reduction of the average monthly residential electricity con-

sumption in California that effectively ranges between 6.1 and 6.4% during our pe-

riod of observation. However, we identify a clear seasonal pattern of electricity sav-

ings, showing significant reductions of electricity consumption only in non-heating

periods. We suggest that this may be due to the fact that some household appli-

ances are more likely to be substitutable in non-heating periods and thus provide

higher saving potentials. On the contrary, heating represents a more basic need and

therefore electricity consumption patterns may be less likely to change during heat-

ing periods2. Finally, our results suggest that the impact of additional informational

feedback on electricity consumption is continuous during our period of observation.

We reckon that, at least within the seven years under analysis, smart-meter deploy-

ment is a suitable way to achieve overall electricity savings in the residential sector.

However, for service utilities, an ongoing assessment of the respective impact on elec-

tricity consumption may be beneficial to foster persistent effects. Finally, seasonal

fluctuations with respect to the impact of AMI suggest that energy-conservation mea-

sures should be complemented by other energy-saving measures in order to achieve

a general and continuous reduction in electricity consumption.

1The smart meters may provide data with higher temporal resolution and device-specific information.
2In the US, up to 65% of households have electric space heating and thus a significant impact on

electricity consumption is expected.
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2.2 Literature Background

The remainder of the paper is organized as follows. Section 2.2 provides the

main literature background. In Section 2.3, we depict the identification strategy for

measuring the impact of smart meters on residential electricity consumption. We

then present the most relevant characteristics of residential electricity consumption

in Section 2.4 and furthermore provide a broad overview on energy-saving measures

that are relevant for the analysis. Our applied empirical approach and the data are

described in Section 2.5, and the respective results are discussed in Section 2.6.

Finally, we draw conclusions in Section 2.7.

2.2 Literature Background

When analyzing the impact of AMI on residential electricity consumption, we es-

sentially expect the respective influence to be triggered by additional informational

feedback. The paper at hand in a broader context is hence positioned in behavioral

economics. One important pillar for such literature deals with aspects surrounding

bounded rationality, which may serve as an explanatory approach for the actual be-

havior of consumers. As the provision of informational feedback directly addresses

the limited information of consumers, we first focus on some basic principles in the

literature. According to Simon (1957), the term ‘bounded rationality’ refers to the

rationality that is exhibited by the economic behavior of humans. More precisely,

rationality is assumed to be bounded due to the limited information that individ-

uals have at certain reference points in time. Naturally, how decisions are taken,

assuming that individuals first face a lack of perfect information and second are

not even capable of processing all the information they encounter, remains an open

question. The joint answer given by behavioral economists and psychologists has

directed researchers to the aspect of time itself. Over time, decisions of individuals

are influenced by new information that, after being ‘fed back’ to the individuals, trig-

gers adjustments in their decisions. Such an informational feedback (or ‘learning’)

re-aligns initial thinking, punishes deviant behavior, and leads to the amelioration of

decisions (Arthur, 1991, 1994, North, 1994). Arthur (1994) labels this behavioral

‘process’ as inductive reasoning, implying that the individual initially assumes a va-

riety of working hypotheses, acts upon the most credible ones, and then replaces

them by new ones if they fail to work. Thus, the interplay between economic and

psychological research evidently can not be neglected (Rabin, 1998, Simon, 1986).

The essence of bounded rationality and informational feedback has inspired a

vast body of prior research, not only in the field of energy (e.g. DiClemente et al.
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(2001)). Above all, the impact of providing feedback on consumption is of particular

interest. In the related literature, such an effect has most often been measured

with the help of empirical work that is constrained by data and/or the experimental

design itself. Therefore, the setting of experimental studies and the selection of

variables are crucial.3 This paper addresses the relevance of bounded rationality in

the energy sector. In this context, informational feedback incorporates a measure

that is supposed to effect an overall reduction of electricity consumption based on

additional information. A summary of experimental energy-related studies has been

published by Faruqui et al. (2010). The authors conducted their survey based on

pilot programs in the United States, investigating the effect of in-home displays on

consumer behavior, and found that reductions in consumption from such programs

reached 7% on average. More recent research has been conducted by Gans et al.

(2013) dealing with the effect of informational feedback on residential electricity

consumption. In that study, the authors analyze the impact of smart meters in a

large-scale natural experiment in Northern Ireland. They find that the decline in

residential electricity consumption induced through smart meters ranges between

11 and 17%.

Targeting an overall reduction of electricity demand, the literature distinguishes

between three different types of energy-saving measures. Despite the energy-conser-

ving impact of informational feedback, electricity consumption can also be influ-

enced by energy-efficiency programs and demand response. Whereas informational

feedback induces a behavioral change so that ‘using less electricity’ results as the

outcome, energy efficiency aims at a reduced energy usage while maintaining a

comparable level of service (Boshell and Veloza, 2008, Gillingham et al., 2006, McK-

insey and Company, 2009). Efficiency is thus closely linked to the installation of

energy-efficient technologies within households such as freezers, refrigerators, dish-

washers, light bulbs, and other appliances. In contrast to these direct measures,

demand response is related to the electricity market itself. Despite a reduction of

peak demand that was observed in field experiments on dynamic pricing (Faruqui

and Sergici, 2010), Joskow and Wolfram (2012) stress that the overall penetration

of demand response measures in the US has been low so far. For California, the im-

pact of demand response programs is still negligible today. In this paper, we focus on

the isolated impact of deploying AMI and thus position this article in the literature

analyzing energy-conservation measures.

Recently, behavioral literature has focused on the growing appreciation of how

3A review of such features from experimental studies can be found in Selten (1998).
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non-price interventions can affect consumer behavior. As such, informational feed-

back provided to the consumer is pivotal in order to increase the household‘s respon-

siveness and likewise influence its electricity consumption. Among others, Allcott

(2011) reports that providing social norm information induces consumers to con-

serve electricity. Allcott and Rogers (2014) expand the analysis on social norms by

using data from the Opower program, in which home energy reports based on social

comparison are repeatedly provided to residential electricity consumers.

Supplementing prior research, we focus on the impact of AMI in a large-scale

framework rather than analyzing short-term pilot programs. Moreover, the litera-

ture so far gives a long list of issues related to the explanatory power of pilot tests.

Such aspects cover, inter alia, the representative nature of the sample, the time hori-

zon, additional and distorting monetary incentives, and measurement errors. Fur-

thermore, a Hawthorne effect may be identified, reflecting the fact that people may

alter their behavior when they know that they are participating in an experimental

study (Adair, 1984). Thus, the transferability of results from pilot tests to a larger

and more general context is at least questionable. We intend to fill this gap by de-

riving an empirical approach that will allow us to draw conclusions from an energy-

conservation measure induced by statewide policy. Complementing prior research,

we are thus able to assess the effectiveness of a policy-driven deployment of smart

meters in the context of energy-conservation measures.

2.3 Identification Strategy

In the US, smart-meter4 deployment in several states is fostered by legislation. While

some states have not passed any smart-meter legislation yet, others have already

fully adopted smart-meter plans. Figure 2.1 depicts the status of smart-metering

legislation across the US states.

We use the dichotomy of states with significant impact of smart-metering legisla-

tion and states with negligible smart-meter penetration rates in order to derive an

experimental setting. On the one hand, we identify the statewide and policy-induced

smart-meter deployment in California as a treatment that allows us to analyze the

impact of smart meters on consumption. On the other hand, states that do not yet

have any smart-meter penetration may serve as a control group.

4Such smart meters are part of the Advanced Metering Infrastructure (AMI). For more details on AMI
see 2.8.1.
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Figure 2.1: Smart-metering legislation across the US states (EIA 2011)

The installation of smart meters refers to a short and precisely controllable period,

essentially ranging from 2009 to 2011. Being a statewide measure, all residential

customers are affected in the same manner. By analyzing the development of elec-

tricity consumption before, during, and after the deployment of smart meters, we

are thus able to clearly relate back possible changes to the trigger event. We further-

more isolate the respective impact in question by controlling for the other electricity

saving impacts (i.e. energy efficiency and self-consumption from renewable ener-

gies).

We would like to observe the development of residential electricity consumption in

a population that faces the introduction of informational feedback over time (treat-

ment group) and the respective control group. The control group should ideally re-

produce the characteristics of the population that experiences the treatment. Since

the characteristics influencing residential electricity consumption are heterogeneous

across the US states, we do not expect a single state to resemble Californian con-

sumption characteristics appropriately. In this paper, we therefore apply synthetic

control methods in order to evaluate what might be a control group that meets the

above outlined requirements. We thereby aim to guarantee quasi-randomness. In a

next step, we then conduct a Difference-in-Differences estimation to test for causality

as well as to quantify the reduction effect in scope.
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2.4 The Californian Case

2.4 The Californian Case

In order to evaluate the impact of deploying smart meters in California, it is first nec-

essary to understand the most relevant drivers of residential electricity consumption

and its development over time. This is crucial since, besides the deployment of

smart-meter infrastructure, further political measures were adopted that tackle is-

sues related to energy conservation, energy efficiency, and demand response. When

it comes to energy savings, California is one of the most ambitious states, with vari-

ous measures having been adopted to achieve an overall decrease of electricity con-

sumption and thus greenhouse gas emissions. Beginning with the energy crisis in

California in 2001, policy makers decided to foster an increase of energy efficiency

with a particular focus on the residential sector.

In this regard, there were repeatedly updated energy action plans, all of which

defined goals for energy consumption (CPUC and CPA, 2003). These action plans

mainly aimed at:

• meeting energy growth needs as well as optimizing resource efficiency and

energy conservation;

• reducing electricity demand;

• ensuring security of gas and electricity supply including the provision of an

appropriate infrastructure;

• achieving goals with respect to renewable energies and distributed electricity

generation.

In order to tackle the above aims, the Energy Action Plan considered measures fos-

tering voluntary dynamic pricing, explicit incentives for demand reduction, rewards

for demand response, energy-efficiency investments, energy-conservation measures,

energy-efficiency programs, and programs that support improvements of energy ef-

ficiency when it comes to buildings and devices. Furthermore, within the scope of

the Energy Action Plan 2 in 2005, the government issued a decision for a large-

scale deployment of smart meters (CPUC and CPA, 2005). As a consequence, the

three major investor-owned utilities (IOUs), namely Pacific Gas & Electric (PG&E),

Southern California Edison (SCE), and San Diego Gas & Electric (SDG&E), started

programs that deployed AMI within their service areas. As depicted in Figure 2.2,

these IOUs cover more than 75% of all customer accounts5 in California (2015).

5These numbered 13,845,610 in December 2015 and the respective energy consumption is related
to a share greater than 70%.
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2 The Impact of Advanced Metering Infrastructure on Residential Electricity Consumption

Figure 2.2: Investor-Owned Utilities (IOUs) and the respective share of Californian customer
accounts (2015, Dec.)

Below, we explain the most relevant types of measures and their impact on res-

idential electricity consumption in more detail. We distinguish between measures

related to energy efficiency of buildings and devices, demand response triggered

by electricity price schemes, and energy conservation including, among others, the

deployment of AMI.

Demand Response Through Electricity Tariff Design

‘Load shifting’ is a typical demand response from electricity consumers. It occurs if

consumers are able to react to price signals from the electricity market. Technically,

a consumer reduces load in response to a signal from a service provider or grid op-

erator. Today, electricity consumers in the residential sector in California face either

a tiered tariff scheme or a time-of-use pricing scheme. In tiered tariff schemes, elec-

tricity prices are relative to a ‘baseline’ consumption of electricity within a defined

territory. As such, the tariff scheme follows a typical quantity-dependent pricing that

varies across predefined blocks of usage. The number of tiers offered and temporal

definitions with respect to peak, semi-peak, and off-peak vary among IOUs, and peak

prices can be more than twice the off-peak ones.6 In general, consumers receive their

electricity and gas bills at the end of each month, following a standardized 30-days

billing cycle. Billing contains information on daily gas and electricity usage gathered

by smart meters throughout the cycle. Consumers are thus able to identify monthly

variations of gas and electricity usage on daily and monthly levels.7

6We provide two simplified versions of residential tiered and time-of-use schedules in Section 2.8.7.
7Sample bills from PG&E, SDG&E and SCE can be found under the service portal from each IOU.
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A two-tiered tariff had already been implemented in California prior to the en-

ergy crisis in 2000. However, with the energy crisis and the inconvenience caused

by blackouts that were induced by supply shortages, regulators enhanced the tier

structure by introducing five tiers. These were removed again in 2013 due to on-

going discussions on tier design and, as of today, Californian tariff design relies on

time-of-use pricing that distinguishes between peak and off-peak times. Addition-

ally, the implementation of real-time pricing has so far been ruled out as an option

in California.

A change in tiered electricity tariff design could potentially provoke slight changes

in overall consumption levels. This may, for example, be the case if load shifting

causes a decrease in electricity consumption in peak periods which is even higher

than the respective increase in off-peak periods. Within this paper, we assume that

there is no significant impact of implementing more or less tiers on the absolute elec-

tricity consumption. To support this hypothesis, we test the assumption of parallel

trends within our empirical analysis. We would expect potential distorting effects

related to a change in the electricity tariff design, if any, to be uncovered within this

procedure since the introduction of five tiers in California was in the pre-treatment

periods.

Energy Efficiency

Besides regulatory efforts to ensure security of supply through tier design, nu-

merous energy-efficiency policy measures which are directed towards a reduction

of energy consumption exist for California (Office of Energy Efficiency and Renew-

able Energy, 2016). The majority of energy-efficiency measures are so-called rebate

programs.8 The three major IOUs, PG&E, SDG&E, and SCE, have all offered energy-

efficiency rebate programs for energy-efficient technologies since 2006. Within these

programs, consumers willing to replace equipment with energy star labelled de-

vices receive a per unit rebate.9 Such incentives are particularly designed to reduce

load through state-of-the-art devices. While the utility level remains constant with

the same service offered (i.e., for example, cooling in the fridge), less electricity is

needed to ensure this service. Empirical evidence reveals a need to distinguish be-

tween different devices. Light bulbs, refrigerators, and freezers provide rather robust

empirical evidence for electricity reduction if replaced within households. Thus, we

8Additionally, appliance standards on a national level have been implemented in the Appliance Effi-
ciency Regulations for California in 2006 as well as the Public Benefits Funds for Renewables and
Efficiency launched in 1998.

9Further details on the applicable residential equipment are provided at the website
’http://programs.dsireusa.org/system/program/’.
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expect a significant impact of energy-efficiency measures on electricity consumption

(Gillingham et al., 2006). We therefore account for energy savings related to energy

efficiency by adjusting electricity consumption data so that the impact of informa-

tional feedback can be studied independently.10

Energy Conservation

Finally, a change of consumption behavior is another way to achieve a reduction

of electricity consumption. Through behavioral changes, ‘consuming less electricity’

with a given technology portfolio is feasible. However, information on the consump-

tion must be revealed in such a way that consumers are able to make informed de-

cisions. As bounded as these decisions may be, decisions change and, in most cases,

may improve if such information is provided to consumers. In this paper, we focus

on the three major IOUs in California, which are adopting plans to distribute smart

meters to all households in their respective service areas. In fact, these plans were

transformed into physical deployment of smart meters, as depicted in Figure 2.3.

The deployment of AMI began in 2008, and first achieved a penetration rate above

10% in 2009.

Figure 2.3: Share of Californian (three major IOUs) households with AMI (smart meters)
over time

As of 2011 the share of Californian households with AMI corresponds to the share

10For more details, see Section 2.5.
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of customer accounts covered by the three major IOUs.11

Households having installed AMI with the respective smart meters are now able

to track their daily electricity consumption via a meter on the device. Additionally,

consumption data are processed by the utility and, as in the case of SDG&E, for

instance, are provided to the customer via on online tool. With the help of the

customer tool, households are able to check their gas and electric usage on a daily

basis. By connecting a home area network to the smart meter, households are able

to track energy consumption information and more details on their energy-usage

profile. Most commonly, thermostats and in-home displays are state of the art in

such technical setups (SDG&E, 2016).

2.5 Data

We base our empirical analysis on variables that may have information on both fluc-

tuations of residential electricity consumption over time and the respective differ-

ences between the states. We use monthly state-specific data, and in the following

we briefly depict the variables we use as well as the respective sources.

2.5.1 Dependent Variable: Residential Electricity Consumption

We define the dependent variable in order to make it possible to isolate the impact of

AMI on residential electricity consumption from other policy measures that coincide

with the deployment of smart meters and that may also influence residential elec-

tricity consumption. We therefore correct data on residential electricity consumption

provided by the IOUs for both own consumption related to residential photovoltaic

(PV) electricity generation and electricity savings achieved through energy-efficiency

programs. That is to say, we mimic the development of residential electricity con-

sumption as if there was no treatment besides smart meters. The respective formula

is depicted in Equation 2.1.

Demand res,ad j
m,s = Demand res,bil led

m,s + Sel f Consumptionres,PV
m,s + Savingsres,ee

m,s

(2.1)

11The share of Californian households in services areas that are covered by the three major IOUs may
vary over time.
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Our initial data on residential electricity consumption consists of monthly (m)

state-specific (s) electricity sales in the residential sector, which we label Salesres
m,s. As

far as California is concerned, we only include data for the three major IOUs, PG&E,

SCE, and SDG&E, in line with our identification strategy. Since the IOUs cover the

major share (i.e. > 75%) of residential customers in California, we assume that

there is no loss of representative nature. In the next step, we divide Salesres
m,s by the

respective number of customer accounts in order to get the average monthly electric-

ity consumption per household for which consumers are billed (Demand res,bil led
m,s ).

We use this relative measure in order to compare residential electricity consumption

in different states independently of the total level of consumption, which may dif-

fer. As outlined above, we now account for the average electricity generation from

PV systems, which replaces electricity purchased from the grid. In general, Califor-

nia uses a billing system that is called net metering. The essence of this procedure

refers to households being directly billed for their total electricity purchase minus

the amount of energy that they feed back into the grid. Thus, there is a direct in-

centive for self-consumption of electricity generated from renewable energy sources.

This self-consumed energy (Sel f ConsumptionPV,residential
m,s ) has to be added to the

basic electricity consumption data in order to get unbiased values.12

Second, we adjust our data for residential electricity savings that result from en-

ergy efficiency (ee) programs (Savingsres,ee
m,s ). The respective data are collected from

the individual service utilities in the US states and are listed in Table 2.1.13 Such

data are based on the technical savings potential, which is the number of residential

devices that face a specific efficiency upgrade multiplied by the respective electric-

ity consumption.14 However, it is not clear whether or not the data are equal to

the actual reduction in electricity consumption. First, rebound effects may not be

ruled out. The existing literature, however, provides little support for such an in-

crease in energy use, which is known as backfire (Gillingham et al., 2015). Second,

Fowlie et al. (2015) found that projected savings from energy-efficiency programs

may exceed actual reductions many times over. We therefore aim to control whether

measurement errors with regard to energy efficiency savings may bias our empiri-

cal results. In the context of our identification strategy, we explicitly guarantee that

smart meters are accessible at the time of the defined treatment period starting in

12For more details on the calculation methodology, see Section 2.8.5.
13We restrict our analysis to residential efficiency programs in California, New York, and New Mexico

since those are the relevant states resulting from the synthetic control methods according to Section
2.6.1.

14In the example of New York, the data are furthermore corrected for free-rider and spillover effects
(New York State Department of Public Service, 2016).
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2009. As there is a time lag between significant energy-efficiency savings begin-

ning in 200615 and the treatment, we are able to control for the accuracy of the

methodology in filtering out the impact of energy-efficiency measures by testing for

the assumption of parallel trends before the treatment.

As regards the data references for California, we rely on the California Energy Ef-

ficiency Statistics for the three major IOUs of interest (CPUC, 2016), for New York

we take state-wide Energy Efficiency Portfolio Standard (EEPS) Program Electric-

ity Savings Data (New York Office of ITS, 2016), and for New Mexico we review

annual efficiency reports published by the major service utility16 (PNM, 2016). An

overview on the respective data is provided in Table 2.1. Whenever only a sub-

set of utilities provides energy savings data, we restrict our empirical analysis to

the average residential electricity consumption within the respective service area.

However, the corresponding utilities that provide data cover the majority of house-

holds in their states and thus we assume their representative nature. By now adding

Savingsres,ee
m,s , we finally get the average adjusted residential electricity consumption

per household (Demand res,ad j
m,s ), which we use as the dependent variable within our

empirical framework.

Table 2.1: Energy efficiency savings data

State Utilities Period of time Resolution

California PG&E, SCE, SDG&E 2006-2015 Monthly
New York Statewide 2008-2015 Monthly
New Mexico PNM 2008-2015 Monthly

2.5.2 Explanatory Variables

By using panel data, we account for both cross-sectional and cross-temporal dif-

ferences within the US states. Since we encounter varying temporal and spatial

resolutions among our explanatory variables, we have to adjust some of our data

in order to perform our estimation approach. For instance, household survey data

are only available on census region level in most cases. Thus, we first address this

spatial issue by assigning federal states to the census regions where necessary. As a

consequence, we face a minor loss of cross-sectional explanatory power. Second, for

15The development of energy-efficiency savings in California is illustrated in Figure 2.7 in Section
2.8.2.

16This is the Public Service Company of New Mexico, which covers more than 50% of all customer
accounts in New Mexico.
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the chosen period between 2002 and 2015, we need to distinguish between continu-

ously updated data with monthly observations, yearly available data, and household

survey data based on observations in 2001, 2005, and 2009. For some survey data,

we are able to add data for the years 2011 and 2013. In order to obtain an overall

monthly and state-specific dataset, we use previous observations if no updated data

are available.

Table 2.2 gives an overview of all variables that are used in our empirical anal-

ysis. Furthermore, it provides further details such as a brief explanation of each

variable and depicts the respective sources. Key to our identification strategy is the

deployment status of AMI (EIA, 2016b). It reflects the treatment under analysis by

measuring the progress of installation of smart meters by households over time. We

furthermore include explanatory variables concerning the employment level, wages,

residential electricity sales, customer accounts, and electricity prices that are pub-

lished by the US Energy Information Administration (EIA) or the Bureau of Labor

Statistics (BLS). It is worth mentioning that the electricity price is calculated as an

average value across all tariff tiers. Furthermore, the EIA also provides data on

residential electricity consumption, which are the basis for the derivation of the de-

pendent variable. Data are provided on a monthly and state-specific level.

In addition, we include climate data. More precisely, heating degree days (HDDs)

and cooling degree days (C DDs) are calculated based on per state temperature val-

ues that we obtain from the meteorological data forms of the National Oceanic and

Atmospheric Administration (NOAA, 2016).17

Complementing these data, we add data reflecting household characteristics with

a focus on electricity usage behavior and appliances. Such data are taken from the

Residential Energy Consumption Survey (RECS) and the American Household Sur-

vey (AHS) for three and five reference points in time, respectively, namely 2001,

2005, 2009, 2011, and 2013. The survey data consist of different technologies and

the percentage of households using specific electrical appliances. For instance, we

include data on the average number of refrigerators per household, the share of

households that use electric heating, and the usage intensity of heating by fuel type

for census regions and states. Physical household characteristics such as the average

number of rooms per household, the average number of electric ovens, and the av-

erage floor space available per household are additionally gathered on a state level.

Data on the share of household members with a high-school diploma or higher as
17To derive HDDs, for example, the difference between daily high and low temperatures is compared

to the threshold of 65◦F and summed over all days of a month. The respective data are furthermore
standardized to 1000.
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well as the average number of ‘elderly’ people living in each state are taken from

RECS as well. Finally, as we expect macro-economic indicators to be relevant when

explaining the development of electricity consumption over time, we include data

on the unemployment level and adjusted gross domestic product. Hereby, we also

control for the impact of the Great Recession. Both indicators are taken from the

BLS. In addition, Table 2.3 shows descriptive statistics for all variables used for our

empirical estimations under Section 2.6.2.

2.6 Empirical Analysis

Following the identification strategy from Section 2.3, we use a two-stage empirical

approach. First, we derive a control group by applying synthetic control methods.19

In a second step, we conduct a Difference-in-Differences estimation to quantify the

effect under analysis.

2.6.1 Derivation of the Control Group Using Synthetic Controls

States are rather heterogeneous. This implies that characteristics driving residential

electricity consumption exhibit significant regional variation. Above all, these char-

acteristics include climatic conditions such as temperature and humidity, housing,

and social characteristics as well as demographic aspects. Consequently, it is ques-

tionable whether a single US state adequately resembles Californian characteristics

with respect to residential electricity consumption. In order to circumvent such hin-

drances, we apply synthetic control methods and derive a weighted combination of

US states that we use as the control group, ‘Synthetic California’. The application

of synthetic control methods is positioned in the context of a vast body of existing

literature that gives further insights into methodological details (e.g. Abadie and

Gardeazabal (2003), Abadie et al. (2010), and Abadie et al. (2015)). The individual

weights for the synthetic counterfactual are determined according to the objective

function expressed by Formula 2.2.

min
w
(X1 − X0 ·w)′V (X1 − X0 ·w) (2.2)

Here w denotes a vector with positive weights for each state that has yet to be

derived. The individual weights sum up to one. In order to optimize these weights,

19The respective procedure is described in detail in Section 2.6.1.
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Table 2.2: List of variables and references

Label Explanation Resolution Region18 Measure Ref(2016)

AM Im,s Share of households
with AMI

Yearly State-
specific

% EIA

C DDm,s,
HDDm,s

Cooling degree days,
Heating degree days

Monthly State-
specific

1000◦F NOAA

Clothesdr yerm,s Avg. share of electric
clothesdryers

’01,’05,’09 Census
regions

Relative
share

RECS

Customersres
m,s Total residential

customer counts
Monthly State-

specific
Total EIA

Demand res,bil led
m,s Avg. electricity sales per

household
Monthly State-

specific
MWh EIA

Educationm,s Share of household
members with a high
school degree or higher

’01,’05,’09,
’11,’13

Census
regions

Relative
share

RECS

Elderl yPeoplem,sAvg. number of old
people living in a
household

’01,’05,’09,
’11,’13

Census
regions

Total RECS

Feed backPV
m,s Total residential

feed-back (grid) from
PV

Monthly State-
specific

MWh EIA

F loorspacem,s Avg. floorspace per
household

’01,’05,09 Census
regions

m2 RECS

GDPm,s Total real GPD per
employee

Yearly State-
specific

mil.
USD

BLS

Heating
Equipmentm,s

Share of households
using electric heating

’01,’05,’09 Census
regions

Percent RECS

I r radiat ionm,s Avg. (1998-2009)
solar irradiation

Monthly State-
specific

kWh/
m2/da y

NREL

MainHeatingm,s Share of households
with electricity as
main heating fuel

’01,’05,’09 Census
regions

Relative
share

RECS

Ovenm,s Avg. number of
electric ovens per
household

’01,’05,’09 Census
regions

Total RECS

Priceres
m,s Avg. electricity price

for residential
customers

Monthly State-
specific

Euro/
kWh

EIA

Re f ri geratorsm,sAvg. number of
refrigerators per
household

’01,’05,’09 Census
regions

Total RECS

Roomsm,s Avg. number of
rooms per household

’01,’05,’09 Census
regions

Total RECS

Unemplo ymentm,sUnemployment level Yearly State-
specific

Relative
share

RECS

Wagem,s Avg. weekly wage Monthly State-
specific

1000
USD

BLS

Notes to Table 2.2: The exact references are: NOAA (NOAA, 2016), RECS (EIA, 2016a), EIA (EIA,
2016b), BLS (BLS, 2016), NREL (NREL, 2016)
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Table 2.3: Descriptive statistics

Variable N Mean SD Min 25% Median 75% Max

C DDm,s 2352 0.07 0.10 0.0 0.0 0.003 0.10 0.58
Clothesdr yerm,s 2352 0.77 0.14 0.47 0.54 0.84 0.90 0.97
Demand res,ad j

m,s 2352 0.81 0.27 0.41 0.60 0.73 0.95 1.97
Educationm,s 2352 0.59 0.03 0.54 0.56 0.59 0.62 0.64
Elderl ypeoplem,s 2352 0.33 0.03 0.28 0.31 0.33 0.34 0.37
F loorspacem,s 2352 2049 250 1568 1895 2080 2289 2405
GDPm,s 2352 0.006 0.001 0.004 0.005 0.006 0.007 0.009
HDDm,s 2352 0.47 0.42 0.00 0.06 0.38 0.80 1.92
HeatingEquipmentm,s 2352 0.25 0.17 .06 0.13 0.23 0.29 0.65
MainHeatingm,s 2352 0.22 0.16 0.06 0.09 0.18 0.24 0.62
Ovenm,s 2352 1.02 .02 1.00 1.01 1.01 1.03 1.09
Priceres

m,s 2352 0.111 0.038 0.048 0.082 0.100 0.141 0.241
Re f ri geratorsm,s 2352 1.24 0.05 1.14 1.20 1.23 1.28 1.30
Roomsm,s 2352 5.81 .32 5.19 5.65 5.93 6.13 6.21
Unemplo ymentm,s 2352 0.06 0.02 0.02 0.05 0.06 0.08 0.12
Wagem,s 2352 0.85 0.18 0.52 0.52 0.80 0.96 1.46
AM Im,s 2352 0.03 0.16 0.00 0.00 0.00 0.00 0.99

we rely on a procedure that minimizes the distance vector between Californian pre-

treatment characteristics (X1) and the respective characteristics of the resulting con-

trol group (X0w). These characteristics include all variables that are depicted in

Section 2.5. We divide the pre-treatment period into two sub-periods. In more de-

tail, we consider a first pre-treatment period (1) that starts in 2002 and ends in

2005. Based on this first period, we calculate the weights for the synthetic control

group according to the above mentioned methodology. Additionally, we define a

second pre-treatment period beginning when the Energy Action Plan in California

was adopted (2006) and continuing until the beginning of the treatment period in

2009 (c.f. Figure 2.5). The second pre-treatment period allows the assumption of

parallel trends to be tested.

With regard to the data, the varying temporal resolution does not distort the

derivation of a synthetic control group since the respective methodology is based

on averages over time. More precisely, neglecting temporal variability, the chosen

approach aims to determine weights such that average values of the explanatory

variables during the first pre-treatment periods are resembled. We then account for

the relative importance of the individual explanatory variables X by introducing a

weight vector V . Following standard synthetic control methods (see, e.g., Abadie

and Gardeazabal (2003)), we rely on a regression-based technique in order to de-
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2 The Impact of Advanced Metering Infrastructure on Residential Electricity Consumption

rive V .20 Naturally, the set of time periods for determining V is also restricted to the

first set of pre-treatment periods.

The set of states that are considered to be control group candidates is restricted.

Suitable candidate states should exhibit no significant impact of AMI during the

entire period of observation. Thus, we use a subset of states with a smart meter

penetration lower than 10% as possible control group candidates. The respective

threshold exactly matches the definition of our treatment as we consider the treat-

ment period beginning in the first year with a Californian share of AMI higher than

10%. The remaining candidate states are depicted in Figure 2.4.

Figure 2.4: Candidate states with low AMI penetration

As a result, we obtain Synthetic California, which combines the states of New

York and New Mexico, which are given weights of 62.5 and 37.5% respectively. A

deeper analysis of the underlying causal relations reveals that New York adequately

resembles Californian housing characteristics, whereas New Mexico is particularly

characterized by similar climate conditions.

We now reduce our initial dataset by considering just the two sections, Califor-

nia and Synthetic California. The variables for Synthetic California are calculated

as the weighted combination X0w. The resulting development of residential elec-

tricity consumption is depicted in Figure 2.5i, where we highlight the three periods

that we differentiate. For illustration purposes, Figure 2.5ii depicts the respective

difference plot. In order to support the claim of a suitable control group, it is crucial

that the pattern of residential electricity consumption in Synthetic California before
20Details on weights are listed in Section 2.8.4.
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2.6 Empirical Analysis

the treatment resembles the respective real Californian one. We therefore compare

the differences in residential electricity consumption between the two sections in

both pre-treatment periods. In general, the consumption pattern in the upper figure

is characterized by seasonal trends. More precisely, the development of residential

electricity consumption exhibits recurrent upwards and downwards movements in a

range between 430 and 830 kWh/month. The figures show that the seasonal com-

ponent, in particular, is reproduced accurately. As regards the differences in levels,

the respective values in California and Synthetic California differ only slightly be-

tween the two pre-treatment periods. In more detail, whereas the residential elec-

tricity consumption in the first pre-treatment period is 11 kWh lower on average

in California compared to Synthetic California, the respective average difference is

-15 kWh in the second pre-treatment period. Even though there is no perfect pre-

treatment match in both periods, the respective difference is rather constant until

the treatment period. Additionally, the average difference in residential electricity

consumption amounts to -36 kWh in the post treatment periods, which already indi-

cates a significant treatment effect. We therefore assume that residential electricity

consumption would have developed identically in California and Synthetic Califor-

nia if there had not been any additional treatment. Simply put, the assumption of

parallel trends is valid. We now focus on the development of residential electric-

ity consumption after the treatment. Essentially beginning in 2010, we observe a

clear excess of negative differences, indicating a significant impact of AMI on elec-

tricity consumption. Furthermore, the absolute value of peak differences is doubled

compared to the pre-treatment periods. To sum up, our descriptive results already

indicate a negative influence of smart meters on residential electricity consumption.

However, we address the question of causality and quantify the impact under anal-

ysis within the next section.

2.6.2 Difference-in-Differences Estimation Results

We define the yearly share of AMI as the treatment variable and thereby account

for the respective deployment process. In more detail, there is a time lag between

the decision for the smart-meter deployment and the ability of every household to

use AMI which is directly reflected by the treatment variable. We apply a linear

Difference-in-Differences estimation in levels according to Formula (2.3). We aim to

estimate the coefficient γ to shed light on whether or not a significant decrease of res-

idential electricity consumption due to smart-meter deployment has been achieved.

For our estimation, we rely on monthly data gathered over 14 consecutive years
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2 The Impact of Advanced Metering Infrastructure on Residential Electricity Consumption

i Synthetic controls: Descriptive comparison

ii Synthetic controls: Difference plot

Figure 2.5: Descriptive comparison and differences between the development of residential
electricity consumption in California and ‘Synthetic California’
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(2002-2015). According to the estimation approach, we directly use the differences

between the respective values for California and Synthetic California.21 Besides the

treatment variable, we control for other potential impacting factors. We use the

subset of variables that provide monthly observations, because data with a tempo-

ral variability different from that exhibited by the dependent variable would lead

to distorted results and issues of collinearity. First, we include monthly average

electricity prices (Priceres
m ). Furthermore, we consider data for HDDm and C DDm

to account for weather conditions. Finally, we account for macro-economic impact

factors comprising wage data (Wagem) and the development of the unemployment

level (Unemplo ymentl vlm). In addition to the explanatory variables, we estimate

the error term µm using robust standard errors to account for heteroscedasticity. It

is worth mentioning that we do not estimate an aggregate constant term but control

for different periods.

∆Demand res,ad j
m = α1DummyPre−Treatment1 +α2DummyPre−Treatment2

+ γ∆AM Im

+ β1∆Priceres
m

+ β2∆C DDm + β3∆HDDm

+ β4∆Unemplo ymentl vlm + β5∆Wagem

+µm

(2.3)

We conduct a two-stage least squares regression analysis to address issues related

to endogeneity of electricity prices. In more detail, one may expect simultaneity of

residential electricity consumption and the respective prices due to mutual bidirec-

tional dependencies. We therefore use the lagged electricity price as an instrument22

for the original explanatory variable. We argue that the electricity prices from past

months affect the current prices (cov[Priceres
m−1, Priceres

m ] 6= 0) since, for example,

fixed price components do not change on a monthly basis. We identify a high first-

order autocorrelation of 96% in California and 76% in Synthetic California.23 At the

same time, we do not expect the electricity price from the previous month to impact

the current electricity consumption as it does not reflect the price that households

are actually charged. Thus, there should be no direct impact on the decision ra-

21We provide an overview of the respective descriptive statistics in Section 2.8.3.
22A Kleiberger-Paap test indicates that the hypothesis of weak instruments may be rejected.
23Lower values compared to California may be traced back to the use of a weighted combination of

electricity prices.
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tionale of households other than through its impact on the current electricity price

and thus we assume that the exclusion restriction is valid (cov[Priceres
m−1,µ] = 0).

As well as the electricity price, it is relevant to comment on the other explanatory

variables included. By default, weather conditions are a factor given exogenously

and the economic variables such as wage data are most commonly assumed to have

a unidirectional impact on electricity consumption as well. Moreover, we do not

expect our estimation to be biased by omitted variables, since we include the most

relevant variables that, according to prior literature, are assumed to have an impact

on residential electricity consumption. Finally, we isolated the impact of AMI such

that we do not expect any other policy measures to influence the artificial electricity

consumption we use.

To investigate the impact of the treatment in question and to break down the re-

spective temporal development, we depict estimates for three specifications, namely

IV (1), IV (2), and IV (3). Put simply, IV (1) measures the aggregate impact of de-

ploying AMI in California on the state-wide residential electricity consumption. Re-

sults for IV (1) are displayed in Table 2.4, where we find the treatment effect to be

significant at the 1% level. A 100% diffusion rate of AMI triggers an average monthly

residential electricity reduction of 31 kWh per household, which is equivalent to a

relative reduction of 5.1%. These estimation results provide the first evidence of

causality and both estimates which are controlling for significant differences in the

pre-treatment periods are insignificant. However, additional insights and further ev-

idence for causality are provided in Section 2.8.6. Thus, we claim that there is no

systematic difference between the Californian and the Synthetic Californian devel-

opment of residential electricity consumption other than that induced through the

AMI.

All in all, the p-value of the model suggests significance. With regard to the addi-

tional explanatory variables included, both C DD and HDD reveal highly significant

coefficients, and reduced regressions show that they constitute the major share of

explanatory power. This is plausible as both variables reflect the need for electric-

ity through, for example, air conditioning in non-heating periods and heating in

colder months. In addition, we see a slightly significant negative impact of the un-

employment level. An increasing unemployment rate tends to be accompanied by

decreasing wages, which reduces the available budget for the electricity bill. Finally,

we observe a negative coefficient for the electricity price, as increasing prices are

expected to create incentives for reducing electricity consumption. However, the

respective estimate is insignificant, which may be traced back to the data availabil-
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Table 2.4: IV Estimates for DiD estimation

Dependent variable: ∆Demand res,ad j
m

Explanatory variable IV (1) IV (2) IV (3)

Pre-Treatment1 -0.07 -0.002 -0.003
(0.007) (0.007) (0.007)

Pre-Treatment2 -0.10 -0.006 -0.004
(0.008) (0.008) (0.008)

Non-heating Heating
∆Share AM Itotal,m -0.031∗∗∗ -0.042∗∗∗ -0.01

(0.01) (0.01) (0.01)

Non-heating Heating
∆Share AM I2009−2011,m -0.020 0.024

(0.025) (0.02)

Non-heating Heating
∆Share AM I2012−2014,m -0.041∗∗∗ -0.008

(0.013) (0.016)

Non-heating Heating
∆Share AM I2015,m -0.039∗∗ -0.031

(0.016) (0.022)

∆Priceelec,res
m -0.46 -0.48 -0.36

(0.51) (0.49) (0.57)
∆C DDm 0.66∗∗∗ 0.67∗∗∗ 0.68∗∗∗

(0.08) (0.08) (0.081)
∆HDDm 0.04∗∗ 0.06∗∗∗ 0.05∗∗∗

(0.02) (0.02) (0.02)
∆Unemplo ymentl vlm -0.53∗ -0.46 -0.88∗∗

(0.20) (0.24) (0.36)
∆Wagem 0.05 0.04 (0.07)

(0.06) (0.06) (0.06)
observations 167 167 167
R2 0.45 0.47 0.48
F 23.8 22.91 17.17
p-value 0.00 0.00 0.00

Notes to Table 2.4: Robust standard errors in parentheses. ∗ / ∗∗ / ∗∗∗ : significant at the 0.05 /0.02 /
0.01 error level respectively. We use data from January 2002 until December 2015.
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ity. Furthermore, we do not directly use the electricity prices that households are

actually charged; instead we use averages across all tariff periods and service areas.

In addition to IV (1), we specify IV (2) in order to investigate seasonal variations

of the treatment effect under analysis. We differentiate between heating and non-

heating periods, all of which are defined within the same year. We define heating

periods to cover the months from January to March and from October to December.

We observe a significant impact of AMI in non-heating periods, whereas there is no

significant influence in colder months. The respective reduction in non-heating pe-

riods amounts to 42 kWh per household per month (6.7%). We expect some devices

to be more likely to be substitutable in summer periods (such as air conditioning,

dryers etc.), whereas electric heating in the heating period is a more basic need. As

one main finding, we thus conclude that the potential for energy conservation can

basically be leveraged by households in non-heating periods. At the same time, the

average residential electricity consumption in the states under consideration tends

to be higher in the non-heating periods. Thus, policy makers may achieve a slight

reduction of the electricity consumption in peak months by deploying AMI. Such a

finding is especially important in the light of the Californian energy crisis, which was

the event triggering the deployment of smart meters. However, we are well aware

that we do not control for the one-time peak load but focus on the overall electricity

consumption.

In addition to IV (2), we specify IV (3) in order to analyze the temporal structure

of the impact of smart meters on residential electricity consumption and to address

the question of continuous effects. More precisely, we split up the post-treatment

periods into three sub-periods and differentiate between heating and non-heating

periods. Overall, we get similar results with respect to the influence of the climate

factors C DD and HDD. Furthermore, the macroeconomic indicator is now signif-

icant at the 2% level and the respective estimate is slightly higher than in IV (1).

As regards the treatment effect, we identify additional evidence for seasonality. The

impact of AMI on residential electricity consumption is significant in non-heating

periods only. Analyzing differences between the non-heating periods in all three

post-treatment periods, we first find that the impact of AMI is insignificant in the

first post-treatment period. We argue that this finding may be traced back to the

introductory phase of deploying smart meters. In the first period, there are no ob-

servations available that reflect a state in which all households are able to access

AMI. The aggregate effect in which we are interested may thus be derived instead

from the last two post-treatment periods with AMI being fully deployed. From 2012
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to 2015, we observe a relative reduction of residential electricity consumption that

ranges from 6.1% to 6.4%. Compared to the literature, this is a little lower than

the reductions gained from field experiments, as mentioned in Section 2.2. In addi-

tion, we find that this reduction potential related to AMI is rather continuous over

time. We find no evidence that the impact under analysis comes to an abrupt end

after some years. However, it may be worth considering an extended period of ob-

servation in future research. Finally, the temporal structure identified supports the

hypothesis of causality. One may, in particular, assume that the methodology to iso-

late the impact of AMI from energy efficiency savings is imprecise. However, if that

were the case, we would expect significant differences in electricity consumption

before the deployment of smart meters was completed, as rather constant energy-

efficiency savings were achieved from 2007 onwards (Figure 2.7 in Section 2.8.2).

Rather to the contrary, we identify coefficients that strongly comply with the tempo-

ral development of the share of AMI.

2.7 Conclusion

One topic worth stressing in the light of climate targets and emission reduction goals

focuses on energy conservation. Within the residential sector, the design of energy-

saving programs has to account for unique behavioral aspects such as limited infor-

mation and bounded rationality. Against this backdrop, we investigate how AMI is

impacting on residential electricity consumption at the state level over time. Our

identification strategy is based on a decision for statewide smart-meter deployment

by the government of the state of California in 2005. As such, the treatment on

which we are focusing is policy-driven and not based on a natural experiment or

pilot program as predominantly studied in prior research. We are thus able to cir-

cumvent hindrances stemming from a lack of generality or Hawthorne effects. We

aim at assessing the overall effectiveness of policy measures related to energy con-

servation. To the best of our knowledge, such a framework has not been studied so

far.

We apply a two-stage empirical approach. First, we derive a control group as a

weighted combination of US states using synthetic control methods. We find a com-

bination of New York and New Mexico that reproduces the characteristics of Califor-

nia appropriately. We then descriptively depict the development of residential elec-

tricity consumption in California and its counterfactual, ‘Synthetic California’, and

find an indication for a change in consumption after 2009 when introducing smart
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meters. In order to draw inferences regarding causality and significance, we apply a

Difference-in-Differences estimation in a second step. Our results comprise two ma-

jor findings, all of which contribute to the existing literature on energy conservation.

First, we observe a significant reduction in electricity consumption induced through

AMI in non-heating periods that essentially ranges from 6.1 to 6.4%. In contrast,

there is no significant reduction in heating periods. Thereby we infer that reduc-

tions in electricity consumption induced by smart-meter deployment are linked to

seasonality. Second, based on our empirical results, we find an indication that the

impact of additional informational feedback on residential electricity consumption is

continuous during the period analyzed. However, we are not able to draw a unique

conclusion on persistence due to a lack of further periods of observation.

Summarizing our findings, we suggest that the Californian smart-meter deploy-

ment is effective in leveraging energy-saving potentials. We expect this finding to

be mainly attributable to the additional informational feedback that smart meters

provide. In essence, this information may be the cornerstone for altering consump-

tion decisions that have been taken previously. Theory suggests that breaking the

rationality boundaries improves decisions with respect to electricity savings. We

find an indication that the impact of smart meters on consumption is continuous.

However, for service utilities it may be worth implementing monitoring procedures

in order to assess the long-term impact of smart meters. Furthermore, it may be

worth considering supplementary informational feedback such as programs that fo-

cus on social comparisons. Finally, we find that the influence of AMI exhibits strong

seasonal variations. Thus, it may be beneficial to consider complementary energy-

saving measures.

2.8 Appendices

2.8.1 The General Functioning of the Advanced Metering Infrastructure

Figure 2.6 shows the simplified functioning of the AMI. As depicted, the AMI first

enables the collection of consumption data differentiated by energy source. The con-

sumption data are collected by a smart meter device that then processes and trans-

mits the data via an electronic network to the end user. As such, the AMI could pro-

vide real-time consumption data with electricity price information, allowing users

to curb electricity consumption if electricity prices are increasing. As information

flows iteratively between the meter and the end user, we stress that such a system is
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a closed informational system allowing (potentially) for correction of consumption

in a continuous manner (c.f. ‘inductive process’ from Section 2.2).

Figure 2.6: Simplified illustration of Advanced Meter Infrastructure (AMI) and its informa-
tional feedback

2.8.2 Development of Energy-Efficiency Savings in California

Figure 2.7: Development of energy-efficiency savings in California over time

Depicting the development of energy-efficiency saving estimates for California in

Figure 2.7, we identify a significant and rather continuous impact of energy-saving

measures beginning in 2007.
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Table 2.5: Descriptive statistics: Differences in levels (California minus Synthetic California)

Variable N Mean SD Min 25% Median 75% Max

∆C DDm 168 0.01 0.05 -0.12 0.00 0.005 0.002 0.18
∆Demand res,ad j

m 168 -0.02 0.05 -0.20 -0.05 -0.02 0.00 0.11
∆HDDm 168 -0.22 0.22 -0.83 -0.41 -0.18 -0.01 0.09
∆Priceres

m 168 0.005 0.015 -0.079 -0.003 0.006 0.014 0.039
∆Unemplo ymentm 168 0.016 0.012 0.00 0.00 0.01 0.027 0.04
∆Wagem 168 0.03 0.05 -0.14 0.01 0.04 0.06 0.10
∆AM Im 168 0.393 0.444 0.000 0.000 0.131 0.954 0.997

2.8.3 Descriptive Statistics: Difference-in-Differences Variables

2.8.4 Empirical Results: Weight Vector V for the Exogenous Variables

The weight vector V is presented in Table 2.6.

Table 2.6: Weights of the exogenous variables

Label Weight

C DDm,s 0.109
Clothesdr yerm,s 0.091
Educationm,s 0.008
Elderl ypeoplem,s 0.010
F loorspacem,s 0.071
GDPm,s 0.119
HDDm,s 0.263
HeatingEquipmentm,s 0.090
MainHeatingm,s 0.040
Ovenm,s 0.000
Priceres

m,s 0.042
Re f ri geratorsm,s 0.009
Roomsm,s 0.083
Unemplo ymentm,s 0.000
Wagem,s 0.149

2.8.5 PV Self-Consumption

In general, we calculate the quantity of self-consumed electricity generation as the

difference between the total electricity generation by PV systems and the amount

that is fed back into the grid. Monthly data with respect to the total electricity gen-

eration from renewable energy plants in the residential sector that is fed back into
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the grid are provided by the U.S. Energy Information Administration (EIA) (EIA,

2016b). Furthermore, the EIA provides data on the total capacity of PV systems in-

stalled on a residential level. However, there are no publicly available monthly data

on the total PV electricity generation in households. This is due to the concept of net

metering. Thus, we use a heuristic approach in order to derive PV electricity gen-

eration data. More precisely, our approach is based on the monthly average global

horizontal irradiance, which is given in kWh
m2d for each state by the National Renew-

able Energy Laboratory (NREL, 2016). The respective averages were derived from

observations between 1998 and 2009 and do not vary across the years during our

period of observation. We assume a typical efficiency of 13.2% for PV systems and a

power density of 9m2/kW p. For illustration purposes, our calculation methodology

is expressed in Equation 2.4.

Sel f Consumptionres,PV
m,s = Instal ledCapaci t y res,PV

m,s · I r radiat ion
GHI
m,s

· Da ysmonth · E f f icienc y PV · AreakW p

− FeedBackres,PV
m,s

(2.4)

2.8.6 Difference-in-Differences Estimation: Additional Evidence for
Causality

By controlling for differences in electricity consumption apart from those related to

AMI, we provide additional evidence for causality. In more detail, we include yearly

time dummies in addition to the share of AMI to control for other impacting factors.

All the respective time dummies yield insignificant coefficients as depicted in Table

2.7. One may claim, therefore, that we identify no impact on residential electricity

consumption other than that induced through the deployment of smart meters.

2.8.7 Simplified Residential Schedules

Residential schedules from PG&E and SCE, as shown in Figure 2.8, may not fully

reflect the wide range of tariff designs provided by the IOUs. As one example, we

do not consider schedules from the CARE program where customers are eligible

for reduced tariffs. Moreover, rate structures may be subject to changes over time.

Our data were collected in the first quarter of 2016. However, the samples below

illustrate tier and time-of-use schedules in a simplified way.
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Table 2.7: IV Estimates for DiD estimation when controlling for yearly time dummies

Dependent variable: ∆Demand res,ad j
m

Explanatory variable IV (1)

2003 -0.003
(0.008)

2004 -0.009
(0.009)

2005 0.009
(0.021)

2006 0.011
(0.011)

2007 -0.006
(0.01)

2008 0.022
(0.028)

2009 0.049
(0.034)

2010 0.056
(0.050)

2011 0.078
(0.052)

2012 0.041
(0.037)

2013 0.035
(0.029)

2014 0.002
(0.034)

∆Share AM Itotal,m -0.035∗∗∗

(0.015)
∆Priceelec,res

m -0.42
(1.08)

∆C DDm 0.70∗∗∗

(0.09)
∆HDDm 0.03∗∗∗

(0.02)
∆Unemplo ymentl vlm -0.22

(0.13)
∆Wagem 0.07

(0.06)
observations 167
R2 0.45
F 23.8
p-value 0.00

Notes to Table 2.7: Robust standard errors in parentheses. ∗ / ∗∗ / ∗∗∗ : significant at the
0.05 /0.02 / 0.01 error level respectively. We use data from January 2002 until December
2015.
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Figure 2.8: Simplified schedules for tier and time-of-use in the residential sector

Generally, tiers may be subject to change in terms of numbers, territory, and pricing

as well. Significant differences in the tariff structure for time-of-use schedules stem

from the definitions of peak and off-peak. In the above example, PG&E defines peak

hours as ranging from 12 am to 6 pm, whereas all other hours are declared off-peak.

For SCE, peak hours are defined as ranging from 2 pm to 8 pm. The off-peak period

begins at 8 am and lasts until 2 pm. Additionally, the period from 8 pm to 10 pm is

considered as off-peak. The ‘super off-peak’ period comprises the hours between 10

pm and 8 am, while peak is replaced by off-peak at weekends.
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3 Leveraging the Benefits of Integrating and
Interacting Electric Vehicles and Distributed
Energy Resources

In this paper, benefits resulting from the interaction of electric vehicles and pho-

tovoltaic generation units are analyzed. In doing so, a bottom-up approach is de-

veloped to simulate the driving and charging behavior of electric vehicles. An eco-

nomic analysis is then performed to determine key findings for households with

photovoltaic systems and electric vehicles: First, smart electric vehicle charging con-

cepts may allow households to achieve higher cost-saving potentials by increasing

their share of self-consumption by 59% compared to the case of uncontrolled charg-

ing. Second, adopting more of a system-oriented perspective, smart electric vehicle

charging concepts could react to times of peak load and thereby reduce the aver-

age peak-load increase due to electric vehicles to 27%. According to these findings,

it may be beneficial for policy makers to encourage peak-load minimizing charg-

ing behavior by introducing, e.g., load-sensitive tariff schemes. Technical challenges

arising from the peak-load impact of electric vehicles may be regarded as being a co-

ordination problem. Finally, the analysis shows that the potential of electric vehicles

to counteract extremes of reverse power flows due to high photovoltaic electricity

generation is limited.

3.1 Introduction

The power supply system is facing an ongoing transition from centralized to more

decentralized electricity generation. The increasing share of renewable power plants

as well as an increasing number of small-scale generation units change the require-

ments for the existing energy system. At the same time, an electrification of the

transport sector is underway, meaning that in the coming years the number of elec-

tric vehicles will increase significantly(see ,e.g., The Federal Government of Germany

(2009), The White House (2011)).

As more and more vehicles begin to run on electricity instead of gasoline and
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diesel, the absolute electricity consumption as well as the temporal load structure

will be increasingly affected by vehicle charging behavior. Yet battery storage in

electrical vehicles may be harnessed for additional storage applications and grid ser-

vices. Put simply, electric vehicle storage may be used to smooth out the highly

volatile feed-in profiles from distributed energy sources. Imagine, for example, an

electric vehicle storage that is used in combination with a photovoltaic (PV) sys-

tem. On the one hand, the vehicle may be directly charged using renewable energy

generation. Smart charging could help to reduce or even avoid the need for electric-

ity to be purchased from the grid and thereby allow for cost-saving potential to be

leveraged, depending on the underlying regulatory framework. On the other hand,

electric vehicle storage could provide additional flexibility to the power supply sys-

tem (see, e.g., Kahlen and Ketter (2015), Kahlen et al. (2017)) or even be used in

the context of demand-side management and grid-relieving consumption behavior

given, e.g., bidirectional charging.

Yet the rapidly growing share of photovoltaics in the energy mix has resulted in

an electricity generation profile that is increasingly dichotomous. In other words,

there may potentially be a few hours with very high electricity generation followed

by hours with zero electricity generation if the sun suddenly stops shining. A high

simultaneity of photovoltaic systems feeding-in electricity at the same time stresses

the grid. However, as demand and renewable electricity generation do not perfectly

coincide, the application of storage technologies may be beneficial in alleviating

such grid issues. Research has yet to be conducted as to whether electric vehicles

could serve as sufficient buffer storage. Heterogeneity in driving profiles, for exam-

ple, makes it harder to determine to what extent electric vehicles could be charged

using photovoltaic systems. Therefore, the concurrence of photovoltaic electricity

generation and electric vehicle charging demand should be simulated via modeling

techniques that account for differences in, e.g., the individual driving behavior.

In this paper, the interaction between photovoltaic generation and electric vehicle

charging behavior is analyzed extensively. More specifically, two key aspects are in-

vestigated: First, the cost-saving potential of electric vehicles in helping to achieve

a high share of self-consumption on an individual household level is simulated. Sec-

ond, a system-oriented perspective is assumed and the peak-load impact of electric

vehicles is analyzed. Consequently, the peak-load reduction potential of electric ve-

hicles is determined relative to different charging concepts and incentive schemes.

In order to investigate the concurrence of photovoltaic electricity generation and

electric vehicle charging demand, a bottom-up approach is developed. The model
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simulates electric vehicle driving and charging behavior in power supply systems

with high penetration rates of electric vehicles. In quantifying the potential of elec-

tric vehicles to increase the self-consumption of photovoltaic electricity generation,

it can be found that uncontrolled electric vehicle charging would result in a share

of self-consumption that is rather comparable to a case without any storage. Here,

the charging demand and photovoltaic electricity generation would only partially

coincide. However, smart charging strategies designed to follow the generation

from renewable energy sources (RES) may allow for a share of self-consumption

of about 59%, 57% more than in the case of uncontrolled charging. This share of

self-consumption is even higher than in the case of a stationary battery storage, as

charging demand triggers an increase in the overall residential electricity demand.

By analyzing the impact of socio-demographic characteristics of potential electric

vehicle owners, the most relevant drivers of the simulation results can be identified.

The share of self-consumption tends to be especially high if the vehicle is used less

often and for comparitively shorter trips. Above all, being connected to the residen-

tial power socket during midday hours yields higher shares of self-consumption. As

a consequence, unemployed and retired electric vehicle owners tend to exhibit high

shares of self-consumption.

On a system level, uncontrolled and RES-oriented charging may trigger a signifi-

cant increase in the peak load of the household in terms of the electricity purchased

from the grid. The results show that the electric charging behavior in these two

cases increases the household’s peak load on average by between 69% and 84%

of the available charging capacity. However, tariff schemes that incentivize peak-

load minimizing charging behavior, such as those with peak-load pricing, may be

beneficial in reducing the maximum charging demand of electric vehicles. In fact,

load-sensitive tariffs could encourage electric vehicle charging to shift away from

times of peak load, thereby reducing the average peak-load increase due to electric

vehicles to 27%. Nevertheless, the simulation indicates that only limited potential

exists to counteract the peak of reverse power flows from photovoltaic electricity

generation. Therefore, complementary measures such as charging opportunities in

addition to residential charging and efficient congestion management, especially on

a distribution grid level, should be considered.

The results presented in this article enable a better understanding regarding the

impact of increasing shares of electric vehicles on the power supply systems of today.

As such, it may be beneficial for policy makers to implement load-sensitive tariff

schemes to avoid technical issues linked to a strongly increasing peak load in local
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distribution grids. On a household level, there may be a business case to couple

photovoltaic electricity generation with electric vehicle charging demand.

The remainder of this paper is structured as follows: The main literature back-

ground is depicted in Section 3.2. The modeling approach developed to simulate

the charging behavior of electric vehicles is then presented in Section 3.3. In Sec-

tion 3.4, the main model results are shown and discussed in detail. Finally, Section

3.5 concludes.

3.2 Literature Background

The European Union has committed to reducing greenhouse gas emissions by 80-

95% by 2050 compared to 1990 levels (European Commission, 2012). In order to

achieve these targets, strong efforts have been made to support investments into

distributed renewable electricity generation (European Commission, 2013). In Ger-

many, the share of renewable electricity generation accounted for 27.8% of the over-

all gross electricity production in 2015 (German Federal Government, 2015). Yet

high shares of highly volatile distributed electricity generation, such as wind and

solar power, may challenge the power supply systems of today. Especially if dis-

tributed generation units are operated in an uncontrolled manner without reactive

power management, the voltage stability may be jeopardized and an increasing volt-

age level may be identified (Lopes et al., 2007). Furthermore, as stated in Lopes

et al. (2007), the power quality may be affected by harmonic distortions and vari-

ations of the transient voltage. In order to alleviate these challenges, smart grid

infrastructure has been rolled out (Blumsack and Fernandez, 2012). Nevertheless,

there is an increasing need for grid services in order to guarantee the balance of de-

mand and supply at each point in time. From a rather market-oriented perspective,

forecast uncertainty triggers an additional need for short-term trading opportunities

with preferably short contract duration (see, e.g., Borggrefe and Neuhoff (2011),

Knaut and Obermüller (2016), Knaut and Paschmann (2017b), von Roon and Wag-

ner (2009)).

As the electricity generation from photovoltaic power plants only partially co-

incides with demand, storage technologies may be beneficial in order to shift the

volatile electricity generation into periods with high demand (Toledo et al., 2010).

Otherwise, the photovoltaic electricity generation may exceed demand in individual

hours (Denholm and Margolis, 2007). The utilization of energy storage may there-

fore allow households to reduce or even avoid purchasing electricity from the grid.
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As a consequence, cost savings potentials could be leveraged as the share of resi-

dential self-consumption increases (Kousksou et al., 2014). From a system point of

view, one major issue regarding increased distributed generation is the high simul-

taneity of photovoltaic electricity generation being fed into local distribution grids.

As a consequence, costly grid reinforcement may become necessary (dena, 2012).

However, small-scale energy storage on a residential level may help to reduce these

grid expansion needs (Zeh and Witzmann, 2014). Depending on the underlying reg-

ulatory framework, residential energy storage could be harnessed for grid services

and thus may facilitate the large-scale integration of distributed generation units

(Kousksou et al., 2014).

Although it is well known that small-scale electricity storage may facilitate the

integration of residential photovoltaic generation units, a respective business case

may be hard to find. High initial investment costs pose hindrances to investing into

the respective energy storage systems (Nair and Garimella, 2010), especially for ex-

isting plants (Hoppmann et al., 2014). However, opportunities for electrification in

the transportation sector have recently become more plentiful, with electric vehi-

cles leading the path for decarbonization in the passenger vehicle segment. With a

large-scale diffusion of electric vehicles to be expected within the next years, it is

necessary to analyze whether vehicle storage may be harnessed for additional ap-

plications coupled with photovoltaic generation units. The literature so far provides

detailed insights into the interaction of electric vehicles and smart grids as well as

the major challenges that arise(see, e.g., Mwasilu et al. (2014), San Roman et al.

(2011), Galus et al. (2013) and Garcia-Valle and Pecas Lopes (2013)). Yet, Richard-

son (2013) identifies a research gap surrounding the interaction of solar power and

electric vehicles. More precisely, it is found that previous articles mainly focus on

individual business cases lacking representativeness and generality. In Birnie (2009)

and Li et al. (2009), for example, the authors analyze benefits from combining park-

ing lots with solar photovoltaic panels. Furthermore, the respective business models

for charging electric vehicles with photovoltaic electricity generation are discussed

in Letendre (2009) and the technical feasibility of such concepts is the major topic

in Gibson and Kelly (2010) and Kelly and Gibson (2011).

Complementing the existing literature, three major pillars surrounding the inter-

action of photovoltaic electricity generation and electric vehicles are addressed, all

of which could support a beneficial integration of high numbers of electric vehicles

into the power supply systems of today: First, the heterogeneity exhibited by elec-

tric vehicle users is analyzed with respect to its impact on the potential to couple
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phovotoltaic generation units and electric vehicle storage. The respective procedure

allows to circumvent hindrances resulting from small samples and specific config-

urations. Second, detailed insights on major factors affecting the electric vehicle

storage potential are developed. In doing so, the role of user characteristics is ana-

lyzed in more detail. Finally, adopting a system-oriented perspective, the peak-load

impact of electric vehicles can be evaluated. Within the analyses, special focus is

placed on the role of different charging concepts1.

3.3 Methodology

A bottom-up simulation approach is applied to model the electric vehicle driving

behavior and the resulting charging demand. The driving profiles that can be ob-

served today2 may differ significantly from those to be expected with an increasing

penetration rate of electric vehicles. The modeling approach developed especially

allows driving profiles to be mimiced in a world with high diffusion rates of electric

vehicles.

In a first step, the driving behavior of lightweight electric vehicles in the private

transportation sector is modeled by the use of statistical information. Based on the

simulated driving characteristics, the resulting charging behavior can then be de-

rived. In the following, the individual steps are explained in more detail.

3.3.1 Modeling the Driving Behavior of Electric Vehicle Owners

Simulating Electric Vehicle Owner Characteristics

The derivation of weekly driving profiles is based on a preceding simulation of elec-

tric vehicle driver characteristics, and it is assumed that the owner is the only user

of the electric vehicle. Interactions with secondary vehicles are not considered. The

general program sequence is depicted in Figure 3.1. Initially, the age and gender of

the vehicle owner are simulated based on general demographic data combined with

information on car owners in Germany (Endlein et al., 2015). Depending on both

1More details on charging procedures and the respective impact on the grid integration of electric
vehicles are presented in Müller et al. (2017). However, the authors adopt a grid operator’s per-
spective and lack scalability as well as representativeness of their results.

2For more details on early adopters, see, e.g., Rogers (2003) and Santini and Vyas (2012).

46



3.3 Methodology

parameters, the respective employment status can be derived3 (DESTATIS, 2017). If

the simulated vehicle owner is employed, a random draw is conducted to derive the

daily working time as well as to simulate whether the person works on weekends.

Based on the previous characteristics, conclusions on the respective earnings may be

drawn(DESTATIS, 2015).

Figure 3.1: Program sequence simulating user characteristics

3Being employed may have a significant impact on the driving behavior if the electric vehicle is used
to commute to work.
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Simulating Weekly Driving Profiles

The simulation seeks to replicate recurrent typical driving patterns rather than con-

sidering one-time occasions such as holiday trips. General driver characteristics are

linked to the resulting driving requirements based on statistical information referring

to the usage of lightweight vehicles in the private transportation sector in Germany

(Follmer et al., 2008). Unfortunately, the data does not differentiate between the

driving behavior of electric vehicles and conventional cars. Yet, since this article con-

siders rather high diffusion rates of electric vehicles, it is to be expected that electric

vehicles will replace the driving patterns that are nowadays served by conventional

cars. By linking driver characteristics and driving requirements, it is facilitated to

account for a wide range of heterogeneity. The underlying driver characteristics are

transferred into driving profiles that are, so to say, customized as statistical data is

broken down into specific user groups such as students, unemployed and employed

persons. Further differentiation is made with respect to the age and gender.

The program sequence is illustrated in Figure 3.2. First, the employment status

is transferred into the overall driving schedule. In doing so, a probability-weighted

draw is conducted to check whether the car is used to go to work. In order to link

specific trips to general employment characteristics, an additional random draw is

applied referring to the period in which the daily working day beings. The procedure

is based on a probability density function for the start of the work day.

Having dealt with possible commutes to work, focus is now placed on residual

daily trips apart from working purposes. In a first step, the average number of trips

per day is derived depending on the underlying user characteristics. In doing so,

the corresponding driving distances can be extracted from statistical data. Within

a loop, these trips are then iteratively transferred into the overall driving schedule.

There is an initial probability-weighted draw with respect to a particular purpose

for each trip under consideration. In general, ten types of purposes are differenti-

ated which are, inter alia, related to leisure activities such as doing sports, honorary

positions and cultural activities. Furthermore, shopping, personal dealings and ac-

companiment are considered. It is accounted for the fact that the probability of

specific purposes may vary depending on the day of the week. For each trip it is

then simulated whether the electric vehicle is used in the context of the purpose

under evaluation. A criterion is applied which is based on statistics referring to the

total number of days on which a car is used per week as well as to the general share

of trips that are performed using passenger cars. Both data sets are extracted from

Follmer et al. (2008). If the current trip presupposes the use of the electric vehicle,
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it is to be simulated at which time the activity starts. In Follmer et al. (2008), a rich

set of data is provided with respect to the starting times for the purposes considered.

However, as the temporal resolution (hourly) does not fit the purpose of modeling

quarter-hourly profiles, probability density functions were derived from discrete sta-

tistical values using least-squares methods. Thereby, a continuous representation of

probabilities for each point in time was achieved. Finally, based on the starting point,

the average activity duration, and the respective driving time, the trip is transferred

into the weekly driving schedule.

Within the iterative procedure, previous trips are always accounted for to avoid

overlaps. The iterative procedure is repeated until there are no residual trips left.

As a result, a weekly driving schedule with 15-minute temporal resolution is finally

acquired. The schedule provides information on the purposes of all trips, the driving

duration, and distances.

3.3.2 Modeling the Charging Behavior of Electric Vehicles

The charging concepts considered within this paper comprise uncontrolled charging

as well as charging strategies oriented to smart renewable energy sources (RES).

Within the system analysis, a third charging concept is simulated to minimize the

residential peak load. The individual concepts will be outlined in more detail below.

The analysis is restricted to assuming that the only charging opportunity is provided

by a residential power outlet or wallbox.

Individual households are considered which possess both a photovoltaic genera-

tion unit as well as an electric vehicle. The respective investment costs are neglected

within the analysis and sunk costs are assumed as the focus of this article is placed

on the interaction and the beneficial operation of both devices rather than on the

general investment decision.4 It is assumed that the installed capacity of the pho-

tovoltaic power plant equals 10 kWinst , which is a typical parameterization for a

residential consumer in Germany (BNetzA, 2017). The absolute value as well as

the temporal structure of the photovoltaic electricity generation are derived from

solar irradiation data for Germany. More precisely, the respective data refers to the

test reference year provided by the German meteorological service5 (DWD, 2011).

4Furthermore, the opportunity to increase the photovoltaic generation capacity is neglected. As res-
idential customers today are rather less charged relative to their system capacity, peak-load reduc-
tion potentials do not result in additional photovoltaic generation capacity becoming more eco-
nomic.

5The data refers to ’Region 5’ in Germany, which is, for example, close to Cologne.
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Figure 3.2: Program sequence simulating driving profile
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The hourly data may be interpolated in order to obtain a time series with 15-minute

temporal resolution. With respect to the conventional residential load, it is initially

assumed that the yearly electricity consumption equals 4,500 kWh per household.

The respective load structure is derived from reference load profiles for a four-person

household(VDI, 2008). Within the scope of this paper, several sensitivity analyses

are conducted considering different load profiles, which are attributable to specific

socio-economic characteristics.

Households aim to minimize the overall costs of their electricity purchase from

the grid. A constant residential electricity tariff is assumed equal to 31.5 ct/kWh.

Photovoltaic electricity generation that is not used for residential appliances (self-

consumption) but rather fed back into the grid is remunerated with a constant feed-

in premium of 11.1 ct/kWh. As total costs are not within the scope of the analysis,

the absolute values of the assumptions made do not impact the results. Only the

relative cost structure plays a crucial role. More specifically, the assumptions re-

fer to a case in which self-consumption is always preferred compared to electricity

purchased from the grid. Regarding the electric vehicles, a storage capacity of 25

kWh and a specific energy usage of 20 kWh/100km are considered. Finally, per-

fect foresight with respect to load, driving needs and electricity generation of the

photovoltaic generation unit is assumed.

Charging Concepts

The most relevant characteristics of the three charging concepts considered should

be briefly discussed. First, the classification ’uncontrolled charging’ refers to the case

in which smart charging algorithms which allow to react to a selective load at specific

points in time are not available. Instead, the vehicle is charged with the maximum

available charging capacity until the storage limit is reached, whenever connected

to a charging station. In the context of this paper, this is the single-phase maximum

residential charging load available, equal to 3.7 kW.

In a second step, households are able to apply smart charging algorithms which

support the cost optimization problem by enabling a profitable interaction of pho-

tovoltaic electricity generation and electric vehicle charging demand (’RES-oriented

charging’). Simply put, the electric vehicle is primarily charged if the sun is shin-

ing. This concepts yields a linear optimization problem for each residential decision

maker considered. A detailed overview on the optimization problem is presented in

Section 3.6.1.
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Assuming a system-oriented perspective, it is finally seeked to analyze the theo-

retical peak-load reduction potential without explicitly implementing the underlying

charging procedure. The peak load (peak_load) which is stressing the grid is there-

fore endogeneized and embodies the objective function which is to be minimized. In

doing so, it is accounted for both the peak of electricity purchased from the grid as

well as reverse power flows resulting from high amounts of photovoltaic electricity

generation that are fed back into the grid. Therefore, the target function (3.1) is

included:

minimize z = peak_load

with 1) peak_load ≥ ev_char ging_load_gridt + residential_loadt

2) peak_load ≥ pv_to_gridt ,

(3.1)

where electricity purchased from the grid comprises both conventional residential

load (residential_loadt) as well as the electric vehicle charging load (ev_charging_

load_gridt). Photovoltaic electricity generation that is fed back into the grid is em-

bodied by the term pv_to_gridt .

3.4 Results

In this section, benefits resulting from the interaction of electric vehicles and pho-

tovoltaic generation units are analyzed to determine key findings for households

with photovoltaic systems and electric vehicles: First, the economic analysis ad-

dresses the research question whether smart electric vehicle charging concepts may

allow households to achieve higher cost-saving potentials by increasing their share

of self-consumption. Second, adopting more of a system-oriented perspective, the

peak-load impact of electric vehicles as well as the capability of electric vehicles to

contribute to a peak-load reduction is simulated. It is abstained from grid calcula-

tions due to the individual character of grid configurations. Yet, the economic results

may form the basis for further technical analyses.
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3.4.1 Self-Consumption

Reference Case

In analyzing the self-consumption potential of individual households, two bench-

mark cases are initially derived to provide a comparative basis for the further results.

In this analysis, the first benchmark is considered as a household without any storage

device. As a second benchmark, a stationary battery storage device with a 3 kW load

limit and a loading capacity equal to 6.6 kWh is considered. The efficiency of the

storage device is assumed to amount to 95%. The optimization results are depicted

in Table 3.1.

Table 3.1: PV usage characteristics

Reference case simulation results

Case a: No storage Case b: Stationary storage

Self-Consumption (Mean) 27.5% 52.0%
Share Demand Provided by PV (Mean) 39.6% 55.3%

Supporting the general applicability of the modeling approach as well as the valid-

ity of the data, these results are well in line with those presented in the existing lit-

erature. In Luthander et al. (2015), the authors present an overview on simulation-

based analyses with focus on the share of self-consumption. The respective results

range between 25% and 38%. Furthermore, the authors state that households may

achieve an even larger share of self-consumption, ranging between 45% and 65%,

if the photovoltaic power plant is combined with a stationary battery storage.

The Impact of Electric Vehicles on the Residential Share of Self-Consumption

Uncontrolled Charging

To begin with, the impact of uncontrolled charging concepts is simulated for 1,000

different driving profiles. In doing so, the influence of electric vehicle charging

processes on the general residential load structure can be evaluated. Figure 3.36

presents a boxplot for the average hourly residential electricity demand across all

simulated profiles. The red marker shows the mean overall residential load includ-

ing the charging load. The green boxes bound the 25% and 75% quantile thresholds.

Additionally, the dashed lines mark the 10% and 90% thresholds. Finally, the lowest

6These are averages across all 15-minute time intervals within each hour over the whole year simu-
lated.
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line reflects the conventional residential electricity demand without electric vehi-

cles. In order to offer an intuition for times of higher shares of self-consumption, the

photovoltaic electricity generation in representative summer and winter weeks are

also given7.

Figure 3.3: Impact of uncontrolled ev charging demand on residential load profiles com-
pared to the pv generation (3.7 kW)

Uncontrolled charging concepts tend to trigger higher residential loads in the early

evening hours. These results may be traced back to typical working times: When

people get home from work, they plug in their electric vehicle and charge their stor-

age device. As indicated in Figure 3.3, the charging load tends to coincide with

high conventional residual loads, which could lead to an increased peak-load level

(analyzed in more detail in Section 3.4.2). Furthermore, with regards to the self-

consumption potentials, photovoltaic electricity generation and the electric vehicle

charging load only partially coincide and therefore limit the amount of photovoltaic

electricity that can be directly used to charge the vehicle.

To provide quantitative support for the previous observations, the numeric simula-

tion results referring to both the share of self-consumption and the share of residen-

tial electricity demand that may be covered by photovoltaic electricity generation are

shown in Table 3.2. The findings reveal that the average share of self-consumption

only slightly increases (+30% relative increase; +8.7% absolute) compared to the

benchmark without any storage device (Section 3.4.1). This is due to two reasons:

7These weeks are determined by a least-mean-squares procedure applied to the difference of residen-
tial load and photovoltaic electricity generation in each week of the year.
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First, the electric vehicle storage is characterized by limited availability. Second, un-

controlled charging concepts allow for self-consumption potentials being leveraged

solely coincidentally. However, the value distribution of the simulation results also

reveals that, in individual cases, households may achieve a share of self-consumption

that is even higher than in the case of the second benchmark with a stationary battery

storage. Such a finding may be due to the fact that electric vehicles cause an overall

increase in the residential electricity demand as a result of their charging needs. As

such, the share of demand that is covered by photovoltaic electricity generation sig-

nificantly decreases compared to the benchmark case without electric vehicles, even

though self-consumption increases. In addition, it is worth stressing that there are

also driving profiles which exhibit hardly any additional self-consumption potential.

These driving profiles reveal a higher probability of vehicles not being located at the

place of residence in the midday hours, e.g., due to work requirements.

Table 3.2: Results in the case of uncontrolled charging on a household level

Simulation results

Target Figure Min 5% Percentile Median 95% Percentile Max Mean STDEV

Self-Consumption 27.5% 28.1% 34.8% 50.2% 69.7% 36.2% 6.9%
Share Demand PV 12.4% 17.3% 29.4% 32.7% 40.3% 27.1% 5.3%

RES-Oriented Charging

Prior findings suggest that the application of smart charging algorithms that seek

to interact charging processes and photovoltaic electricity generation may allow for

additional cost-saving potentials to be leveraged. By achieving higher shares of self-

consumption, households may be able to save on their electricity costs. Figure 3.4

depicts the impact of RES-oriented charging on the resulting residential demand

profiles. It is observed that, compared to uncontrolled charging, the charging load

tends to be shifted into midday periods in order to benefit from the interaction of

photovoltaic electricity generation and charging demand. As a consequence, the

average share of self-consumption, especially in the midday hours with high solar

power availability, may increase significantly8.

8As the objective function is meant to target high shares of self-consumption, households are indif-
ferent when to charge their vehicle whenever the sun is not shining. Thus, an arbitrary prevalence
of charging processes in night periods may be identified. In the real-world, however, residential
customers may prefer charging their vehicle as early as possible due to range anxiety. Nonetheless,
the temporal structure of charging processes in periods without photovoltaic electricity generation
does not impact the following results. Detailed insights into the concurrence of photovoltaic elec-
tricity demand and electric vehicle charging demand in individual hours may be found in Section
3.6.4.
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Figure 3.4: Impact of RES-oriented ev charging demand on residential load profiles com-
pared to pv generation (3.7 kW)

The optimization model from Section 3.6.1 is applied yielding the results in Table

3.3. The mean share of self-consumption increases by 59% compared to the case

of uncontrolled charging. Therefore, the share of self-consumption is on average

about 11% higher than in the benchmark case with a stationary storage device but

no electric vehicle. Overall, the mean self-consumption potential now amounts to

57.6%, which is at least double the achievable level without any storage device. Ad-

ditional residential load that stems from charging processes may be scheduled such

that directly charging the vehicle with photovoltaic electricity generation becomes

feasible. At the same time the targeted driving behavior is not impacted. The results

clearly emphasize the importance of appropriate charging algorithms to support the

interaction of electric vehicles and photovoltaic generation units.

Table 3.3: Results in the case of RES-oriented charging on a household level

Simulation Results

Target Figure Min 5% Percentile Median 95% Percentile Max Mean STDEV

Self-Consumption 29.9% 39.5% 59.3% 70.3% 79.0% 57.6% 9.5%
Share Demand PV 16.2% 22.2% 50.8% 59.1% 60.2% 44.8% 13.5%

Apart from the average values, the cost-saving potential of smart charging al-

gorithms is found to strongly depend on the underlying driving behavior. If an

individual driving profile is rather restrictive, the share of self-consumption may

even correspond to the benchmark case without any storage device, i.e., a minimum
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share of self-consumption equal to 29.9%. Therefore, the impact of particular socio-

demographic characteristics on the achievable share of self-consumption is analyzed

in detail within the next subsection.

Decoding Socio-Demographic Impact Factors

Six different types of households are considered, each of which exhibits different

socio-demographic characteristics. The analysis focuses on RES-oriented charging

in order to analyze what types of households are more likely to benefit from shift-

ing their charging demand relative to the feed-in profiles from photovoltaic power

plants. The simulation procedure is based on the use of synthetic load profiles which

are customized depending on the individual socio-economic characteristics. The

profiles were generated with a load profile generator (Pflugradt, 2017) and taken

from Feridarova (2015)9. The driving profiles which are assigned to the individual

households furthermore comply with the underlying socio-economic characteristics.

Details on the exact specifications are presented in Table 3.4.

Table 3.4: Socio-demographic characteristics

Case specification

Case Household Characteristics Electric Vehicle Driver Consumption/a

Case 1 Couple (no child), age: both 38, with work Male (38), employed 3,281 kWh
Case 2 Family (child), age: both parents 45, with work Male (45), employed 3,455 kWh
Case 3 Family (child), age: both parents 42, unemployed Female (42), unemployed 3,977 kWh
Case 4 Single (child), with work Female (31), employed 2,616 kWh
Case 5 Couple, both retired Male (72), retired 3,856 kWh
Case 6 Multigenerational home, working couple, 2 children, 2 seniors Male (68), retired 8,475 kWh

Table 3.5: Results in the case of RES-oriented charging on a household level for different
socio-economic specifications

Simulation results

Case Min 5% Percentile Median 95% Percentile Max Mean STDEV

Case 1 22.1% 30.1% 44.4% 59.0% 67.5% 43.6% 9.2%
Case 2 28.9% 34.3% 49.6% 63.6% 73.5% 49.7% 9.6%
Case 3 32.7% 37.5% 52.3% 67.9% 75.1% 52.7% 9.0%
Case 4 20.2% 29.6% 41.9% 59.4% 67.2% 42.7% 9.7%
Case 5 45.1% 49.2% 52.9% 65.0% 74.6% 54.3% 5.3%
Case 6 68.2% 73.1% 81.1% 84.0% 85.8% 79.9% 3.6%

Analyzing the share of self-consumption for the individual socio-demographic cases

considered, as presented in Table 3.5, conclusions on the most relevant impact fac-

tors can be derived. For example, a relatively high share of self-consumption can
9The exact data is accessible via Waffenschmidt (2015).
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be identified if the electric vehicle driver is retired (Case 5 and Case 6). A retired

couple, on average, may achieve a share of self-consumption of about 54.3%. The

corresponding value distribution, what means the range between the minimum and

maximum target figure in all simulated cases, is flat. The underlying reason for this

result is most likely that retired drivers tend to exhibit relatively short mean daily

driving distances. Statistics reveal that the group of retired people examined in this

study has an average daily driving distance of 23 km, which is approximately a third

of the driving distance for employed persons between 30 and 50 years old. In ad-

dition, the driving purposes of retired people tend to be related to activities with

shorter duration. Within this analysis, shopping activities with an average residence

time of 15 minutes constitute a significant share of all trips. As a consequence, the

vehicle may be assumed being connected to the residential power outlet a large part

of the midday hours if the sun is shining.

Apart from being connected to the residential power outlet during the midday

hours, the corresponding charging demand is a further core issue. With respect to

the retired drivers, for example, a rather small charging demand limits the potential

to charge the electric vehicle with photovoltaic electricity generation. Overall, the

highest share of self-consumption may be achieved if the vehicle is assigned to a

multi-generational household since the conventional electricity demand in midday

hours is rather high. In contrast, employed persons with long working hours exhibit

a significantly lower self-consumption potential. Oftentimes, in this case, the vehicle

is not connected to the residential charging station when the sun is shining. The

socio-demographic groups that fall under this category are, for example, a family in

which both parents work (Case 1 and Case 2) as well as the employed single (Case 4).

Here, the self-consumption potential is on average between 9% and 45% lower than

for the retired group considered. On the other hand, there are households with

barely any additional cost-saving potential related to electric vehicles, illustrated by

the 5% quantile thresholds shown in the tables. These findings may be traced back

to the concurrence of trips and photovoltaic electricity generation along each day.

Finally, the average self-consumption potential of an unemployed family (Case 3) is

similar to the one of the retired drivers considered. However, a wider distribution of

the simulated share of self-consumption is observed. As a family on average exhibits

a higher number of daily trips, the temporal structure is crucial.
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3.4.2 Peak-Load Impact and Peak-Load Reduction Potential

The Impact of Different Charging Concepts

Uncontrolled Charging

In a first step, the peak load impact of electric vehicles is analyzed in the case of

uncontrolled charging concepts. It is account for both the peak of residential load

that is met by electricity purchased from the grid and the minimum of the residual

load, equal to the total residential load minus the photovoltaic electricity generation.

The simulation procedure is repeated iteratively for 1,000 driving profiles. The nu-

meric results are illustrated in Table 3.6. As a benchmark, the values for the case

without an electric vehicle (’No EV’) are listed as well.

Table 3.6: Peak-load impact in the case of uncontrolled charging

Simulation results

Target Figure Min 5% Percentile Median 95% Percentile Max Mean STDEV

Peak Load [kW] 4.47 4.47 5.42 5.96 5.96 5.34 0.46
Peak Load No EV [kW] 2.26 2.26 2.26 2.26 2.26 2.26 0.0
Minimum Load [kW] -5.69 -5.69 -5.69 -5.62 -5.26 -5.67 0.04
Minimum Load No EV [kW] -5.69 -5.69 -5.69 -5.69 -5.69 -5.69 0.0

Uncontrolled charging on average drives the peak load to increase by 3.08 kW or

136%. Relative to the charging load, it may be concluded that electric vehicle charg-

ing processes under uncontrolled charging can yield a peak load increase amounting

to 83% of the available vehicle charging capacity. The relative increase is robust to

alternative charging capacities. In the case of 2.3 kW, for example, the average

peak load increases by 78% of the charging capacity (see Section 3.6.2). Due to a

frequency of charging processes in the early evening, when the conventional load

tends to be very high, the peak load of residential appliances and electric vehicle

charging tend to coincide. Even the minimum peak-load increase is equal to 60%

of the vehicle charging capacity. However, the maximum amount of electricity fed

back into the grid is only reduced to a negligible extent. There appears to be a need

to analyze whether differing charging concepts may be suitable to reduce the peak-

load impact identified as well as to reduce the peak of electricity fed back into the

grid.

RES-Oriented Charging

As self-consumption of electricity directly reduces the amount of electricity fed

back into the grid, is is now analyzed whether RES-oriented charging may help to
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avoid additional stress posed to the distribution grid. Detailed descriptive statistics

on the simulation results are listed in Table 3.7.

Table 3.7: Results in the case of RES-oriented charging on a household level

Simulation results

Target Figure Min 5% Percentile Median 95% Percentile Max Mean STDEV

Peak Load [kW] 2.26 2.26 5.19 5.85 5.96 4.80 1.23
Peak Load No EV [kW] 2.26 2.26 2.26 2.26 2.26 2.26 0.0
Minimum Load [kW] -5.68 -5.68 -5.68 -5.42 -5.21 -5.64 0.09
Minimum Load No EV [kW] -5.69 -5.69 -5.69 -5.69 -5.69 -5.69 0.0

Although leveraging cost-saving potentials on an individual household level may

be possible, applying RES-oriented charging algorithms on average may not signifi-

cantly reduce the peak load of reverse power flows. On the other hand, the average

peak load related to electricity purchased from the grid increases by 69% of the avail-

able charging capacity what is, in the case of 3.7 kW, 2.5 kW. Such peak-load impact

is only slightly lower than in the case of uncontrolled charging. The question arises

as to whether incentive schemes such as dynamic pricing and peak-load pricing may

be suitable to leverage peak-load reduction potentials that are not encouraged by

flat tariff schemes.

Peak-Load Minimizing Electricity Charging Behavior

The theoretical peak-load reduction potential that may be achieved when support-

ing peak-load minimizing behavior is now examined. In doing so, the peak load is

endogenized within the target function, analogous to Section 3.3.2. The results are

illustrated in Table 3.8.

Table 3.8: Results in the case of peak-load minimizing charging behavior

Simulation results

Target Figure Min 5% Percentile Median 95% Percentile Max Mean STDEV

Peak Load [kW] 2.26 2.26 2.81 4.47 5.96 2.88 0.71
Peak Load No EV [kW] 2.26 2.26 2.26 2.26 2.26 2.26 0.0
Minimum Load [kW] -5.69 -5.69 -5.62 -2.60 -1.68 -5.07 1.0
Minimum Load No EV [kW] -5.69 -5.69 -5.69 -5.69 -5.69 -5.69 0.0

It can be observed that the impact of electric vehicle charging processes on the

resulting peak load of electricity purchased from the grid may be reduced to a large

extent if incentivized in an appropriate way. In this case, the average peak load only

increases by 0.62 kW or 27.4%. As the peak load in our simulation results occurs

in the early evening hours, the vehicle tends to be connected to the domestic power

outlet for a longer time in these periods. A driver may, for example, think about
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coming home from work and using the vehicle the next morning again. Therefore,

significant load-shifting potential can be identified. The charging demand may be

distributed along a certain time period such that the peak-load impact is rather small.

Simply put, the impact of electric vehicle charging processes on the electricity load

is a coordination problem.

Yet, the residential peak of negative power flows caused by photovoltaic electricity

generation may only be reduced to a limited extent. The absolute peak load on av-

erage is merely reduced from 5.7 kW to approximately 5.1 kW, which is about 17%

of the available charging load. Only 5% of all households are essentially able to

significantly counteract the maximum of photovoltaic electricity generation which is

fed back into the grid. Thus, our results yield an indication that, under the analyzed

framework, the stress posed to the grid by simultaneous photovoltaic electricity gen-

eration may not be reduced by interacting electric vehicles with distributed energy

sources. This result may be due to the fact that a significant share of vehicles tends to

be parked away from the place of residence at noon when the solar power availabil-

ity reaches its maximum, e.g., when people are at work. The results emphasize the

importance of alternative charging opportunities, such as public charging stations,

in order to leverage peak-load reduction potentials on a distribution grid level.

To deepen the understanding of these results, additional sensitivity analyses pro-

vide further insights. Regarding the impact of alternative charging capacities, the

potential to minimize the peak-load impact of electric vehicles only slightly (≤ 10%)

changes under the assumption of a charging load equal to 2.3 kW or 11 kW (Sec-

tion 3.6.3). This finding indicates significant load-shifting potential. Households

are subject to a lack of coordination as well as zero incentives to alter their charging

behavior. On the other hand, charging with high loads to meet the driving require-

ments is only a minor issue.

Furthermore, conclusions can be drawn regarding the potential impact of range

anxiety. A scenario is considered in which electric vehicle drivers target a minimum

storage level of 50% in each period (see Section 3.6.5). The results depict that the

average peak load impact increases from 27% to 38%. However, it is imaginable that

in a worst case scenario range anxiety may trigger a charging behavior that is com-

parable to uncontrolled charging. Thus, it may be beneficial to reduce hindrances

that favor range anxiety such as providing sufficient charging infrastructure. Finally,

the peak-load reduction potential is analyzed in terms of different socio-economic

groups (see Section 3.6.6). The results reveal that the average peak-load increase

due to electric vehicle charging demand ranges from 0% in the case of the retired
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group to 48% for the working couple. In the case of the retired group, the vehicle

tends to sit at home for longer periods such that the load-shifting potential is sig-

nificant. In the case of working people, the driver may wish to charge the vehicle

in the early evening hours shortly after coming home from work in order to drive

to a leisure activity directly afterwards. Consequently, the respective load-shifting

potential may be limited.

3.5 Conclusion

In this paper, the interaction of electric vehicles and photovoltaic generation units

is analyzed. Two key aspects are examined in detail: First, emphasis is placed on

the cost-saving potential of electric vehicles which results from helping individual

households to achieve a significantly higher share of self-consumption. Second, a

system perspective is adopted and the impact of electric vehicles on the residential

peak load is analyzed. Within the analyses, special focus is placed on the influence

of different charging concepts.

From a methodological point of view, a bottom-up simulation approach is devel-

oped to model the electric vehicle driving and charging behavior. The model allows

for scalability such that the charging behavior in future power supply systems with

high diffusion rates of electric vehicles can be mimiced.

Regarding the simulation results, in the case of uncontrolled charging, there are

limited opportunities to increase the share of self-consumption by charging the vehi-

cle with photovoltaic electricity generation. The share of self-consumption is rather

comparable to a case without any storage device and photovoltaic electricity gen-

eration and charging demand would only partially coincide. In contrast, smart

charging strategies designed to shift charging demand into periods with high solar

power availability may allow to achieve an average share of self-consumption which

is about 59% higher than in the case of uncontrolled charging. Sophisticated charg-

ing concepts may hence allow for significant cost-saving potentials to be leveraged

on an individual household level.

In a second part of the analysis, a system perspective is taken and the peak-load

impact of electric vehicles is simulated in detail. Uncontrolled charging concepts as

well as charging designs which support the concurrence of photovoltaic electricity

generation and electric vehicle charging demand may cause an increase in the res-

idential peak load ranging from 69% to 84% of the available charging capacity. In
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order to avoid the resulting technical issues, tariff schemes incentivizing peak-load

minimizing charging behavior may be beneficial. In fact, such load-sensitive tar-

iff schemes could encourage electric vehicle drivers to shift their charging demand

away from peak-load times. Thereby, the average peak-load impact of electric vehi-

cles could be decreased to 27%. These results are robust with respect to alternative

charging capacities. However, the simulation results yield an indication that the po-

tential to counteract the peak of reverse power flows from photovoltaic electricity

generation is limited. Consequently, complementary charging opportunities, such as

public charging stations, and an efficient congestion management could be crucial

prerequisites to efficiently integrate electric vehicles into the power supply systems

of today.

In future research it may be worth analyzing selected model assumptions in more

detail. First, it could be expected that households exhibit a specific price elasticity

with respect to their driving and charging behavior. However, such data has yet

to be collected and evaluated. Second, only residential charging opportunities are

considered within the scope of this article. Broadening the scope of the analyses to

additional charging opportunities, such as charging at work, may provide valuable

insights. Finally, the model could be extended to account for uncertainty.

3.6 Appendices

3.6.1 Model Description: Renewable Energy Resources (RES-)Oriented
Charging

Table 3.9: Parameters of the optimization model

Model parameters Dimension Description

binar y_connectedt ∈ {1,0} Binary whether car is connected to charging station
distancet 100km Distance driven with the electric vehicle in a certain time period
domest ic_char ging_l imit kW Maximum load for domestic charging
e f f icienc y_char ging % Storage efficiency when charging and discharging
ev_ener g y_usage kWh/100km Specific energy usage of electric vehicles
f eed_in_premium EUR/kWh Feed-in premium for photovoltaic electricity generation
min_load % Minimum load of electric vehicle storage
pv_instcap kWinst Installed capacity of the pv generation unit
pv_availabil i t yt kW/kWinst Relative available pv electricity generation
residential_demandt kW Overall residential demand for domestic appliances
storage_capaci t y kWh Storage capacity

The decision maker faces a cost minimization problem. Electricity purchased from

the grid either for residential appliances or charging the vehicle is brought to account
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Table 3.10: Variables of the optimization model
Model variables

Abbreviation Dimension Description

dummy_char gingt kW Dummy reflecting charging needs apart from residential charging
ev_char ging_load_gridt kW Quarter-hourly vehicle charging load (grid)
ev_dischar gingt kW Discharging the electric vehicle for residential electricity consumption
pv_to_gridt kW PV electricity generation fed back into the grid
pv_to_consumptiont kW PV electricity generation used for conventional residential load apart from charging
pv_to_vehiclet kW PV electricity generation used for electric vehicle charging
residential_load_ grid t kW Residential load besides vehicle charging that is served by electricity purchased from the grid

with the residential electricity price. Furthermore, photovoltaic electricity genera-

tion could be fed back into the grid being remunerated with a fixed feed-in premium

(3.2).

minimize z = el_priceres ·
1
4
·
�

ev_char ging_load_gridt + residential_load_gridt

�

− f eed_in_premium ·
1
4
· pv_to_gridt

+ 1000 · dummy_char gingt

(3.2)

Since only residential charging opportunities are considered, a dummy variable

dummy_char gingt is included reflecting that if there are periods in which residen-

tial charging is not sufficient to meet the driving requirements, alternative charging

stations are expected to be available. The respective costs are assumed to be very

high.

In general, perfect foresight with respect to the photovoltaic electricity genera-

tion is assumed. The respective generation is non-dispatchable. However, three

possible applications are considered which comprise directly charging the vehicle

(pv_to_vehicle), serving residential electricity consumption (pv_to_consumption)

and feeding back into the grid (pv_to_grid) (3.3).

pv_to_gridt + pv_to_vehiclet + pv_to_consumptiont = pv_instcap · pv_availabil i t yt (3.3)

The electric vehicle is incorporated by implementing a respective vehicle storage

equation. The storage level in each time period directly depends on its preceding

level. Whenever the vehicle is used for driving purposes, the storage level is fur-

thermore reduced by the respective energy usage which is depending on the specific

energy consumption ev_ener g y_usage as well as the distance driven (3.4). When-

ever the vehicle is located at home, it may be charged by the use of the domestic

charging station (ev_char ging_load_grid) or directly from photovoltaic electricity

generation (pv_to). In both cases, efficiency losses (95% efficiency) are considered.

Finally, the vehicle storage may also be discharged in order to supply residential

electricity consumption (discharging_load_ev_grid).
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storage_levelt =storage_levelt−1 − ev_ener g y_usage · distancet

+ e f f icienc y_char ging · pv_to_vehiclet

+ e f f icienc y_char ging · ev_char ging_load_gridt

−
dischar ging_evt

e f f icienc y_char ging

(3.4)

The storage level may not exceed a certain threshold which is determined by the

storage capacity (3.5)

storage_levelt ≤ storage_capaci t y (3.5)

The constraint (3.6) refers to a minimum storage level .

storage_levelt ≥ storage_capaci t y ·min_load (3.6)

In the first time period the storage is assumed to be half-full. Furthermore, a

restriction is included such that the storage level is at least half-full in the last period

under consideration.

As outlined in the previous section, all charging and discharging opportunities

are finally restricted by charging bounds which are illustrated in Equation (3.7),

Equation (3.8) and Equation (3.9).

0≤ ev_char ging_load_gridt ≤ domest ic_char ging_l imit · binar y_connectedt

(3.7)

0≤ dischar ging_evt ≤ domest ic_char ging_l imit · binar y_connectedt (3.8)

0≤ pv_to_vehiclet ≤ domest ic_char ging_l imit · binar y_connectedt (3.9)

The parameter binar y_connectedt determines whether the vehicle is connected
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to the domestic power outlet in a specific period. Thus, it controls for whether the

electric vehicle may be charged. The parameter is assigned in an upstream process

depending on the position of the vehicle which is directly resulting from the un-

derlying driving profile. It is assumed that the vehicle is connected to the charging

opportunity whenever the vehicle is located at home.

Finally, each household faces a given demand profile. Demand may be supplied

by electricity purchase from the grid, self-consumption of photovoltaic electricity

generation or discharging the electric vehicle (3.10).

residential_demandt =pv_to_consumptiont

+ residential_load_gridt

+ ev_dischar gingt · binar y_connectedt

(3.10)

3.6.2 Sensitivity Analyses: The Impact of Charging Capacity in the
Case of Uncontrolled Charging

The simulation results for the case of a charging capacity equal to 2.3 kW are pre-

sented in Table 3.11.

Table 3.11: Simulation results (2.3 kW)

Simulation results

Target Figure Min 5% Percentile Median 95% Percentile Max Mean STDEV

Peak Residual Load [kW] 3.07 3.09 4.03 4.56 4.56 4.05 0.44
Peak Residual Load No EV [kW] 2.26 2.26 2.26 2.26 2.26 2.26 0.0
Minimum Residual Load [kW] -5.69 -5.69 -5.69 -5.45 -5.24 -5.67 0.06
Minimum Residual Load No EV [kW] -5.69 -5.69 -5.69 -5.69 -5.69 -5.69 0.0

3.6.3 Sensitivity Analyses: The Impact of Charging Capacity in the
Case of Peak-Load Minimizing Charging Behavior

The simulation results for a charging capacity of 2.3 kW are presented in Table 3.12

and in Table 3.13 in terms of a charging capacity equal to 11 kW.
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Table 3.12: Simulation results (2.3 kW)

Simulation Results

Target Figure Min 5% Percentile Median 95% Percentile Max Mean STDEV

Peak Residual Load [kW] 2.26 2.26 2.81 3.33 4.56 2.67 0.37
Peak Residual Load No EV [kW] 2.26 2.26 2.26 2.26 2.26 2.26 0.0
Minimum Residual Load [kW] -5.69 -5.69 -5.62 -2.6 -1.67 -5.06 1.0
Minimum Residual Load No EV [kW] -5.67 -5.67 -5.67 -5.67 -5.67 -5.67 0.0

Table 3.13: Simulation results (11 kW)

Simulation Results

Target Figure Min 5% Percentile Median 95% Percentile Max Mean STDEV

Peak Residual Load [kW] 2.26 2.26 2.81 6.18 11.77 3.06 1.73
Peak Residual Load No EV [kW] 2.26 2.26 2.26 2.26 2.26 2.26 0.0
Minimum Residual Load [kW] -5.69 -5.69 -5.62 -2.6 -1.67 -5.06 1.0
Minimum Residual Load No EV [kW] -5.69 -5.69 -5.69 -5.69 -5.69 -5.69 0.0

3.6.4 Analyzing the Temporal Structure of the Impact of Different
Charging Concepts on the Share of Self-Consumption

Figure 3.5 and Figure 3.6 illustrate the coincidence index of photovoltaic electricity

generation and the electric vehicle charging demand for each hour in a represen-

tative summer week. The coincidence index is determined as the hourly average

share of self-consumption that is achieved accounting for conventional load as well

as electric vehicle charging load.

First, Figure 3.5 refers to weekdays (Mo-Fr). The green line marks the photo-

voltaic electricity generation in a representative summer week.

On the other hand, Figure 3.6 depicts the respective results for the weekend.

3.6.5 The Impact of Range Anxiety on the Peak-Load Impact and the
Peak-Load Reduction Potential of Electric Vehicles

Table 3.14: Results peak load minimizing charging behavior with 50% minimum load

Simulation Results

Target Figure Min 5% Percentile Median 95% Percentile Max Mean STDEV

Peak Load [kW] 2.26 2.26 2.81 4.60 5.96 3.12 0.94
Peak Load No EV [kW] 2.26 2.26 2.26 2.26 2.26 2.26 0.0
Minimum Load [kW] -5.69 -5.69 -5.62 -2.60 -1.68 -5.07 1.0
Minimum Load No EV [kW] -5.69 -5.69 -5.69 -5.69 -5.69 -5.69 0.0
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Figure 3.5: Coincidence index of photovoltaic electricity generation and electric vehicle
charging demand in an exemplary summer week (weekdays)
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Figure 3.6: Coincidence index of photovoltaic electricity generation and electric vehicle
charging demand in an exemplary summer week (weekend)
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3.6.6 The Impact of Socio-Demographic Characteristics on the
Peak-Load Impact and the Peak-Load Reduction Potential of
Electric Vehicles

Table 3.15: Results peak load reduction potential for different socio-economic Specifications

Simulation Results

Case No EV Min 5% Percentile Median 95% Percentile Max Mean STDEV

Case1 8.31 8.31 8.31 8.31 9.6 11.2 8.5 0.58
Case2 4.99 5.85 7.2 7.4 7.4 8.6 7.4 0.3
Case3 5.2 5.3 5.75 7.3 7.4 7.4 6.97 .64
Case4 6.53 6.53 6.82 7.37 8.73 9.21 7.44 0.48
Case5 7.71 7.71 7.71 7.71 7.71 7.71 7.71 0.0
Case6 8.87 8.87 8.87 8.87 8.87 8.87 8.87 0.0
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4 Price Volatility in Commodity Markets with
Restricted Participation

In commodity markets, price volatility may increase significantly if the contract dura-

tion decreases. To gain insights into the underlying drivers, we analyze price volatil-

ity based on the example of German electricity markets. In doing so, we develop a

theoretical model to reproduce the price formation in two markets with increasing

product granularity and differing market participation. The model is then trans-

ferred into an empirical analysis revealing that the high price volatility in German

short-term electricity markets is essentially triggered by restricted participation in

the market with shorter contracts and by the high volatility of renewable supply and

demand. We find yearly efficiency losses ranging from EUR 55 million to EUR 108

million that may be reduced if markets are coupled.

4.1 Introduction

Prices in commodity markets mostly reveal high price volatility, especially when con-

tracts are settled close to physical delivery. This is particularly applicable to energy

commodities such as oil, gas or electricity (Regnier, 2006). Price volatility embod-

ies a crucial indicator of price uncertainty. As such, it directly impacts the decision

rationale of market participants, for example, with respect to investment decisions

and risk management. It is hence relevant to understand the fundamental drivers

of price volatility. In this paper, we analyze price volatility based on the example of

German electricity markets.

Electricity markets exhibit characteristics that favor high price volatility. First, de-

mand and supply have to be balanced at each point in time. Second, there is only

limited potential to store large quantities of energy, especially in the short run. The

increasing intermittent electricity generation from renewable energies, which are

prone to forecast uncertainty and highly fluctuating feed-in profiles, has increased

the need of short-term trading opportunities. This lead to the establishment of new

trading opportunities on the exchange where market participants are granted the

option to trade products with shorter contract duration close to the point of physical
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delivery. In these markets, electricity is traded first with hourly and afterwards with

quarter-hourly contract duration. Price variations between the respective products

can be huge. Figure 4.1 illustrates the price volatility observed in the German day-

ahead auction with hourly products and the intraday auction with quarter-hourly

contracts on an exemplary day1. The Figure is puzzling as we observe an appar-

ently systematic price pattern. Prices for quarter-hourly products fluctuate around

the previously settled prices in the day-ahead auction and are much more volatile.

This is especially surprising as there is essentially no informational update between

both market settlements (3 hours time lag). In this article, we derive a fundamental

explanatory approach to shed light on the underlying drivers of the price pattern

identified. Thereby, valuable insights are provided on whether these price signals

reflect an additional need for electricity market flexibility or even indicate an ineffi-

cient market design.
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Figure 4.1: Exemplary price time series of German short-term electricity markets (2015-03-
15)

The article at hand builds on the literature in the field of sequence economies

which has emphasized the importance of sequential market organization in order to

allocate commodities efficiently. A large and growing body of literature has inves-

tigated the interaction of sequential markets such as Green (1973) and Veit et al.

(2006). Pindyck (2001) analyzes the short-term dynamics of commodity markets

and Pindyck (2004) seeks to evaluate the impact of volatility on commodity prices.

Closely related, Kawai (1983) derives a model in order to analyze the impact of

future trading on spot market dynamics. Electricity markets represent a special sub-

set of commodity markets and previous research into sequential electricity markets

has focused on short-term trading opportunities on the exchange. In von Roon and

1This is the 13th of March 2015.

72



4.1 Introduction

Wagner (2009) as well as Borggrefe and Neuhoff (2011), the authors outline the

importance of functioning short-term markets in order to deal with the increasing

share of renewable energies in the German power supply system and the correspond-

ing forecast uncertainty. Ito and Reguant (2016) and Knaut and Obermüller (2016)

focus on strategic behavior in sequential short-term electricity markets. Their main

findings are that, under restricted market entry and imperfect competition, a system-

atic price premium analogous to Bernhardt and Scoones (1994) may occur in earlier

market stages. Furthermore, there is a vast body of literature investigating the price

formation in short-term electricity markets based on forecasting techniques such as

time series analysis or artificial neural networks (Hagemann (2013), Karakatsani

and Bunn (2008), Kiesel and Paraschiv (2015), Weron (2014)).

We analyze the price formation in sequential short-term electricity markets based

on a fundamental approach. To the best of our knowledge, there is no prior litera-

ture with focus on the fundamental interaction of sequential markets with increasing

product granularity and a differing supplier structure. It has to be stressed that we

neglect the influence of uncertainty due to the rapid succession of both investigated

markets. Quite the opposite: we derive a theoretical model illustrating that the high

volatility of quarter-hourly intraday prices is mainly driven by two aspects. First,

the main purpose of trading in the intraday auction is to balance sub-hourly vari-

ations of demand and renewable generation. Second, the gradient of the intraday

auction supply curve is significantly higher than the respective gradient in the day-

ahead auction. This is due to the finding of restricted market participation in the

intraday auction. Consequently, we identify welfare losses (see also Hortaçsu and

Puller (2008)). We conduct an empirical analysis of historical price data and vali-

date our theoretical considerations. Furthermore, we quantify the relative increase

of the supply curve gradients. Based on the respective estimates, we relate restricted

participation in the intraday auction to welfare losses of EUR 108 million in 2015

and EUR 55 million in 2016. We expect these inefficiencies to increase with an aug-

mented share of renewable energies, as they raise the need for sub-hourly trade.

These losses could be reduced by the implementation of sub-hourly market coupling

or by additional short-term electricity market flexibility, such as provided by storage

technologies.

The article is structured as follows. First, we briefly depict the price formation in

the markets of interest (Section 4.2). We then address our main research questions

by conducting empirical analyses which are outlined in detail in Section 4.3. Finally,

conclusions are drawn in Section 4.4.
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4.2 Price Formation in the Day-Ahead and Intraday Auction

Electricity is traded sequentially at various points in time. Trading opportunities

increase closer to the time of physical delivery and the contract duration for differ-

ent products decreases. Figure 4.2 depicts the time line of trading for the German

wholesale electricity markets. Trading on the exchange begins with futures which

are traded for yearly, quarterly, monthly or weekly time intervals. These markets,

in particular, address risk hedging purposes and financial trading. In contrast, in

the day-ahead auction contracts for the physical delivery of electricity in specific

hours are traded. The respective auction is held at noon (12:00), one day before

physical delivery. Historically, the day-ahead price has been the most important

reference price for all electricity market participants. The intraday auction was im-

plemented at the end of 2014. It is settled at 3pm and first allows to trade 15-minute

contracts. Market participants may hereby balance sub-hourly variations of supply

and demand. Subsequently, trading is organized in a continuous intraday market.

Here trade takes place on a first-come-first-serve basis via an open order book. Gate

closure is 30 minutes before physical delivery and the respective products include

hourly as well as 15-minute contracts. The continuous intraday market is mainly

used to balance forecast errors based on updated information until delivery (Gar-

nier and Madlener, 2014). The end of the intraday trading period marks the end of

electricity trading in the wholesale markets.

Figure 4.2: Sequence of trading in German wholesale electricity markets

In this article, we focus on the interaction of the day-ahead and intraday auction.

Both markets are settled in rapid succession and differ in terms of product granular-

ity (hourly/quarter-hourly). As the intraday auction is settled three hours after the

day-ahead auction, we consider new information to be negligible between both mar-

ket stages. We find empirical evidence for this hypothesis. In contrast, we suggest

that the price relations under consideration are mainly driven by restricted partici-
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pation in the intraday auction. As such, market participation in the intraday auction

is restricted to a national level and cross-border trade is not permitted. Further

details on the individual drivers of restricted participation in the intraday auction

are presented in Knaut and Paschmann (2017a). Unlinke the intraday auction, the

day-ahead auctions for hourly products are coupled within the internal European

electricity market.

4.2.1 Theoretical Model

We use a stylized theoretical model in order to depict the market interaction as well

as the price formation in the day-ahead and intraday auction. In general, we consider

two types of suppliers (restricted and unrestricted) which interact in two markets

(day-ahead and intraday auction) that differ in terms of product granularity and

participation. Both types of suppliers participate in the market for hourly products,

which embodies the day-ahead auction. In the second market (intraday auction),

products are traded with shorter contract duration and only unrestricted suppliers

are able to participate. More precisely, the common product that can be supplied

by both types of suppliers is further split into n different sub-products in the second

market which are identified by τ ∈ 1,2, ...n.

Consumers may demand a different quantity Dτ in each time interval τ. The de-

mand is satisfied under perfect competition by restricted and unrestricted suppliers.

Both types of suppliers operate generation plants with increasing marginal costs of

generation. The unrestricted suppliers offer the quantity qu
τ reflecting the produc-

tion level in τ that results from supply in both markets. The respective total costs

are Cu(qu
τ). In contrast, the restricted players are not able to participate in the mar-

ket with sub-hourly contracts. Their production level is fixed at a level of qr along

the n time intervals τ. The total production costs of the restricted players in time

interval τ amount to Cr(qr). We assume simultaneous market settlement and con-

sider information in both markets to be identical 2. As the quantities of both types

of suppliers are chosen under perfect competition, we formulate the following op-

timization problem. We minimize the total costs of electricity generation such that

2Supporting this assumption, several energy trading companies confirmed that there is no informa-
tional update between both market settlements.
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supply meets demand:

min z =
∑

τ

�

Cu(q
u
τ) + Cr(q

r)
�

(4.1)

s.t. Dτ =qu
τ + qr ∀τ. (4.2)

In order to derive the optimal solution, we transform the problem into its La-

grangian representation by introducing the shadow prices pτ:

L=
∑

τ

�

Cu(q
u
τ) + Cr(q

r) + pτ(Dτ − qu
τ − qr)

�

. (4.3)

We apply the corresponding Karush-Kuhn-Tucker conditions to derive necessary

conditions which characterize the cost minimal solution. This procedure yields the

optimal quantities qu
τ and qr as well as the respective shadow prices pτ.

∂L
∂ qr

=
∑

τ

�

C ′r(q
r)− p∗τ

�

= 0 →C ′r(q
r) =

∑

τ p∗τ
n

(4.4)

∂L
∂ qu
τ

=C ′u(q
u
τ)− p∗τ = 0 →p∗τ = C ′u(q

u
τ) (4.5)

Due to illustration purposes, we apply the general model to a framework in which

we assume linear marginal cost functions for both restricted and unrestricted suppli-

ers. However, the following considerations could analogically be applied to different

shapes of supply functions. Exemplary linear marginal cost functions are displayed

in Figure 4.3. We formulate the respective marginal cost functions for both suppliers

as

Restricted suppliers: C ′r(q
r) = a0 + ar

1qr (4.6)

Unrestricted suppliers: C ′u(q
u
τ) = a0 + au

1qu
τ, (4.7)

where a0 is the offset, ar
1 is the gradient of the restricted supply curve and au

1 is the

gradient of the unrestricted supply curve.3 Adding both functions horizontally, the

aggregate supply function is expressed by

C ′(q) = a0 +
ar

1au
1

ar
1 + au

1

q = a0 + a1q, (4.8)

with a1 =
ar

1au
1

ar
1+au

1
being the gradient of the aggregate supply function. We solve the

3We assume the offset (a0) of both marginal cost functions to be identical.

76



4.2 Price Formation in the Day-Ahead and Intraday Auction

linear model to derive optimal quantities and prices.

Q

p

p

qr
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Q

p

qu0
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Q

p

DD0 D1

aggregate

Figure 4.3: Marginal cost functions of restricted and unrestricted suppliers and the resulting
aggregate marginal cost function

Proposition 4.1. The average price (p) is determined by the intersection of the ag-

gregate supply function (including restricted as well as unrestricted suppliers) and the

average demand (D):

p = a0 + a1D. (4.9)

Proof. Based on the linear marginal cost functions, we plug in (4.5) and (4.2) into

(4.4). As a result, we derive

a0 + ar
1qr∗ =

1
n

∑

τ

a0 + au
1(Dτ − qr∗). (4.10)

Defining the average demand over n periods as D =
∑

τ Dτ
n and solving for qr∗,

we obtain the quantity which is produced by the restricted suppliers according to

Equation (4.11).

qr∗ =
Dau

1

ar
1 + au

1

(4.11)

Furthermore, based on (4.4), the average price p =
∑

τ pτ
n is determined by the

marginal generation costs of the restricted suppliers. If we plug in qr∗, this yields

the average price which is the value of the aggregate marginal cost function in terms

of the average demand (D) in (4.9).

The average price p may be regarded as the settlement price in the first market

where both types of suppliers are able to participate. In a next step, we derive the

prices for each time period τ in the second market with unrestricted suppliers being

exclusively permitted to participate.
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Proposition 4.2. The price in each time period τ depends on the difference between

the average demand and the demand in each time period τ (Dτ) as well as the gradient

of the unrestricted supply curve:

p∗τ = a0 + a1D+ (Dτ − D)au
1 = p+ (Dτ − D)au

1. (4.12)

Proof. Based on the previously derived quantity qr (Equation (4.11) and by the use

of (4.2) and (4.5), we may define

p∗τ = a0 −
(au

1)
2

ar
1 + au

1

D+ au
1 Dτ. (4.13)

Here the first term is the offset of the aggregate supply function (a0). Furthermore,

we make use of the following equation

(au
1)

2

ar
1 + au

1

= au
1 −

au
1ar

1

ar
1 + au

1

= au
1 − a1 (4.14)

and introduce the gradient of the aggregate supply function (a1). By inserting this

term into (4.13) and reformulating, we obtain (4.12).

The optimal prices and quantities reflect the second-best market outcome, given

that restricted suppliers are not able to change their production level across the

time periods τ. If the restricted suppliers could adjust their production level in an

unrestricted manner, the overall efficiency would increase.

Proposition 4.3. The welfare loss due to restricted participation is expressed by

∆Wτ =W ef f
τ −W inef f

τ =
1
2
(au

1 − a1)(D− Dτ)
2 ≥ 0. (4.15)

Proof. Adopting a rather theoretical perspective, one market with full market partic-

ipation and a product granularity that complies with the actual variability of demand

and renewable generation would yield the efficient market outcome. However, fo-

cusing on the role of market participation, we consider a state in which all market

agents would participate in both markets as the efficiency benchmark. For compar-

ative issues, we also derive the respective market outcome under restricted partici-

pation. This scenario is regarded as the inefficient case. Since the lack of sub-hourly
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market coupling may be considered being the most relevant driver of restricted par-

ticipation in the German intraday auction (Knaut and Paschmann, 2017a), we as-

sume the major share of the inefficiencies which result from restricted market par-

ticipation to be avoidable by implementing full market coupling. Nevertheless, we

are well aware that rather inevitable inefficiencies may not be ruled out entirely.4

As we assume a perfectly inelastic demand, we derive welfare implications based

on cost considerations. Assuming restricted participation of some suppliers (ineffi-

cient case), the total costs to satisfy demand in period τ are expressed by

C inef f (Dτ) = Cu(q
u
τ) + Cr(q

r)

= a0(Dτ − qr∗) +
au

1

2
(Dτ − qr∗)2 + a0qr∗ +

ar
1

2
(qr∗)2.

(4.16)

In contrast, the efficient market outcome would lead to costs that are determined

by plugging in Dτ into the aggregate supply function (4.8).

C ef f (Dτ) = a0Dτ +
ar

1au
1

(ar
1 + au

1)2
(Dτ)

2. (4.17)

Analyzing the difference between the costs in the efficient and inefficient cases and

inserting the result extracted from Equation (4.11), we define the total deadweight

loss according to Equation (4.18).

∆Wτ = C inef f (Dτ)− C ef f (Dτ)

=
1

2ar
1 + 2au

1

�

D
2
(au

1)
2 − 2D(au

1)
2Dτ + (a

u
1)

2D2
τ

� (4.18)

By rewriting and simplifying, we finally obtain (4.15).

Welfare losses from restricted participation essentially depend on (1) the differ-

ence between the gradient of the supply curve of unrestricted suppliers and the ag-

gregate supply function(au
1 − a1), and (2) the volatility of demand (D − Dτ). We

thus identify two major drivers of welfare losses and derive the following relations.

First, if fewer suppliers participate in both markets, the gradient au
1 will increase

causing higher welfare losses. Second, the higher the volatility of demand in the

time periods τ, the higher the overall welfare losses.

4Introducing the intraday auction, albeit being inefficiently designed, yet may allow for an overall
efficiency increase compared to a situation in which quarter-hourly trade on the exchange would
not be possible at all (Neuhoff et al., 2016).
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Consumers and suppliers are affected differently.

Proposition 4.4. Compared to the case of unrestricted participation, restricted par-

ticipation may trigger losses in consumer surplus and producer surplus of restricted

suppliers. The producer surplus of unrestricted suppliers may increase.

Proof. See Section 4.5.1.

We find that consumer surplus is significantly reduced compared to the efficient

outcome. The respective consumer losses are twice as high as the total welfare losses

(2∆W = 2
∑n
τ=1∆Wτ). In contrast, suppliers in total benefit from the inefficiencies

under analysis. Taking a closer look at the distributional effects between restricted

and unrestricted suppliers, we find that only unrestricted suppliers may gain a higher

surplus if market participation is restricted. The surplus of restricted suppliers tends

to be lower compared to the efficiency benchmark.

4.2.2 Application to Intraday Auction Prices

To apply the previous model to real-world electricity markets, it is first necessary

to comment on crucial assumptions made within the stylized theoretical frame-

work. In the context of electricity markets, demand is most commonly modeled in

terms of the residual demand. Following this approach, we define the residual de-

mand as total demand minus the electricity generation from wind and solar power

(Dres
t = Dt − Windt − Solart). The electricity generation from renewable ener-

gies is subtracted from demand as it is characterized by short-term marginal costs

close to zero. Consequently, the respective electricity generation corresponds to the

availability of wind and solar power at each point in time. Furthermore, trade in

electricity markets is performed by balancing responsible parties which are obliged

to balance supply and demand within their balancing group in each time interval.

Therefore, the residual demand is expected to drive the actual trade volumes in

electricity spot markets. In addition, the existing literature provides evidence that

demand in electricity markets can be assumed to be price inelastic, especially in the

short run (Knaut and Paulus, 2016, Lijesen, 2007).

The residual demand is supplied by conventional generation units with increas-

ing marginal costs depending on the underlying energy carrier. In our model, we

assume the marginal cost functions to be linear. As far as the day-ahead auction

is concerned, we clearly observe a rather linear relation of residual demand and
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the respective prices in historical data (for more details see Section 4.5.2). In con-

trast, the structure of the intraday auction supply curve may vary in individual hours

as the underlying market dynamics are crucially depending on the day-ahead mar-

ket clearing point. However, within the scope of this article, we use an aggregate

explanatory approach that focuses on general price relations. We find empirical ev-

idence that these relations can appropriately be modeled based on the assumption

of linear relations. Further details are given in the empirical part of this article.

In general, the assumption of perfect competition may be regarded being valid in

the context of the German day-ahead and intraday auction5. We additionally assume

mean price equivalence between both markets following general economic theory

(see, e.g., Delbaen and Schachermayer (1994), Harrison and Kreps (1979)). More

precisely, necessary conditions to assume identical average price levels in the day-

ahead and intraday auction, in particular, comprise the following aspects(Mercadal,

2015):

1. Both markets should be characterized by free market entry and perfect com-

petition.

2. There are no transaction costs.

3. Prices should be transparent, unambiguous and accessible to each market par-

ticipant.

4. Prices should refer to identical products and the respective products should be

perfect substitutes.

5. Prices should be based on the same and latest available information.

6. The assumption of convexity is satisfied.

We comment on the latter four conditions in more detail. First, trade in both auc-

tions is processed on the exchange and information transparency is given at each

point in time. Sequential settlement implies that day-ahead prices embody refer-

ence prices for bids in the subsequent intraday auction. Furthermore, there is no

discrimination of individual players. As a consequence, we claim that condition (3.)

is met. Second, intraday auction products combined are a perfect substitute for

day-ahead contracts. Additionally, contracts in both auctions refer to the physical

delivery of electricity. As a consequence, we consider condition (4.) to be valid as

well. As regards condition (5.), the day-ahead and intraday auction are settled in

5More details are presented within the findings of the Monitoring Report by the German regulator
(BNetzA, 2015).
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rapid succession and we have already commented on the assumption of identical

information.

The assumption of convexity is subjected to a deeper examination in Paschmann

(2017). As long as we are interested in aggregate price relations rather than mod-

eling prices in individual hours, the simplification adopted within the scope of this

paper is sufficient and suitable. To support this hypothesis, a descriptive analysis

of historical price data reveals that the average difference between day-ahead and

intraday auction prices is close to zero6 within our period of observation (see Sec-

tion 4.3.1). Consequently, we equate the hourly average price in Equation (4.12)

and the hourly day-ahead auction price.

4.2.3 Illustrative Insights Derived From the Theoretical Model

Based on the theoretical model, we gain insights on price relations in sequential

markets with differing product granularity and restricted market participation. In

the context of the day-ahead and intraday auction, hourly products are traded si-

multaneously with quarter-hourly contracts (τ ∈ 1,2, 3,4). The model suggests that

the price formation in these markets may be illustrated according to Figure 4.4. The

day-ahead supply curve reflects the aggregate marginal cost function (C ′(q)) as mar-

ket participation is considered to be unrestricted in the first market. Additionally,

the gradient of the intraday auction supply curve equals the gradient of the supply

curve of unrestricted producers (au
1). As we model intraday auction prices in terms

of deviations from the corresponding day-ahead prices, we project the respective

supply curve gradient on the day-ahead market clearing point as expressed by Equa-

tion (4.12). Differences between the quarter-hourly and hourly mean of the residual

demand (Dτ − D) are now transferred into movements along the 15-minute supply

curve and directly yield quarter-hourly intraday auction prices.

When we transfer these relations to subsequent hours as depicted in Figure 4.5,

one can observe a distinct pattern of prices. Prices for quarter-hourly products fluctu-

ate around the respective prices for hourly contracts as illustrated by the green price

time series. If the market participation in the intraday auction was not restricted,

the gradients of the supply curves would be equal in both markets and prices would

follow the curve of the fictitious quarter-hourly residual demand level as marked in

blue.

Following the illustration in Figure 4.5, we observe three typical price movements:

6In more detail, it is below transaction costs.
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Figure 4.4: Supply and demand in the hourly and quarter-hourly market

First, for an increasing residual demand, prices in the first quarter-hour are signifi-

cantly lower compared to the respective prices in the last 15-minute time interval of

the hour. Second, with a decreasing demand profile, we identify reverse relations.

Third, a flat demand profile leads to low price variation.

0

10

20

30

40

50

60

70

R
es

id
ua

l d
em

an
d 

[G
W

]

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00
0

10

20

30

40

50

60

P
ric

e 
[E

U
R

/M
W

h]

unrestricted participation au1 >a1

Figure 4.5: Exemplary residual demand profile and the resulting pattern for quarter-hourly
product prices

So far, the model suggests that the high price volatility in sequential electricity
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markets is mainly driven by two aspects. First, quarter-hourly trade volumes are

driven by sub-hourly deviations of the residual demand from the respective hourly

means. Second, the high volatility of prices may stem from restricted participation.

As a result, the gradient of the quarter-hourly supply curve increases compared to

the respective hourly one (au
1 > a1).

4.3 Empirical Analysis

We first seek to test the applicability of the theoretical model with respect to histor-

ical data. We compare alternative specifications and conduct sensitivity analyses in

order to support the hypothesis of robust and meaningful results. Second, we set

up an empirical approach to quantify the impact of restricted participation on the

price relations under analysis. Based on the respective results, we derive welfare

implications. We choose an empirical approach rather than analyzing historical bid

data due to two reasons. First, effects on the demand and supply side may be hard

to aggregate when processing raw bid curve data. We target to account for both

restricted participation on the supply side as well as a varying elasticity of wholesale

demand (Knaut and Paulus, 2016). The approach adopted within this paper allows

for estimating an aggregated coefficient. Second, the transformation of intraday

auction bid data, which exhibits a pronounced stepped shape, into linear relations

is a complex issue.

We analyze the time period from January 2015 until the end of April 2017. In the

following, we first give a short overview on the respective data. We then describe

our estimation approach and, finally, we depict and evaluate the empirical results.

4.3.1 Data

Due to the implementation of the intraday auction on December 9, 2014, the em-

pirical analysis is based on data from January 2015 until the end of April 2017. A

detailed list of all variables that are used is presented in Table 4.1. The table includes

a brief explanation for each variable and the symbols which are used. Additionally,

Table 4.2 provides information on the most relevant descriptive statistics.

Price data for German electricity markets was gathered from the European Power

Exchange (EPEX SPOT SE, 2017b). In addition, we refer to the residual demand as

a crucial expalantory variable which comprises two elements. First, we use forecasts
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Table 4.1: List of variables and references

Symbol Label Variable Measure Reference

pida
t id auction price Uniform settlement price for a

15-minute product in the
German intraday auction

EUR/MWh EPEX SPOT SE
(2017b)

pda
t day-ahead price Hourly German day-ahead

auction price
EUR/MWh EPEX SPOT SE

(2017b)
Dres

t ; Dres
t residual demand

15; residual
demand 60

Residual demand in a
15-minute period and the
respective hourly mean

GW EEX (2017a) ,
ENTSO-E (2017)

∆Dres
t residual demand

deviation
Difference of the 15-minute
residual demand and the
respective hourly mean

GW EEX (2017a) ,
ENTSO-E (2017)

Solart ;
Solar t

solar power 15
solar power 60

Day-ahead forecast for the
15-minute solar power and the
respective hourly mean
(ex-ante value)

GW EEX (2017a)

∆Solart solar power
deviation

Difference of the 15-minute
solar power and the respective
hourly mean

GW EEX (2017a)

Windt ;
Wind t

wind power 15
wind power 60

Day-ahead forecast for the
15-minute wind power and the
respective hourly mean
(ex-ante value)

GW EEX (2017a)

∆Windt wind power
deviation

Difference of the 15-minute
wind power and the respective
hourly mean

GW EEX (2017a)

Dt ; Dt load 15; load 60 Realization of the 15-minute
load and the respective hourly
mean

GW ENTSO-E (2017)

∆Dt load deviation Difference of the 15-minute
load and the respective hourly
mean

GW ENTSO-E (2017)
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for the renewable generation which are provided by the four German transmission

system operators (TSOs) who are in charge of the reliable operation of the power

system (EEX, 2017a). We refer to forecasted values as trades in the day-ahead and

intraday auction take place one day before physical delivery and are therefore based

on expectations with regard to the electricity generation from wind and solar power

plants.

Table 4.2: Descriptive Statistics (Units according to Table 4.1, N refers to the number of
observations)

Variable N Mean Std.Dev. Min 25% Median 75% Max

id auction price 81,663 31.49 15.89 -164.48 22.62 30.57 39.92 464.37
day-ahead price 81,663 31.42 14.12 -130.09 23.94 30.29 38.11 163.52
residual demand 15 81,663 41.67 11.09 0.95 34.36 41.59 49.58 73.00
residual demand 60 81,663 41.67 11.06 1.86 34.39 41.60 49.56 72.39
residual demand deviation 81,663 0.00 0.81 -12.27 -0.39 0.00 0.38 8.82
solar power 15 81,663 3.92 6.06 0.00 0.00 0.07 6.19 27.18
solar power deviation 81,663 0.00 0.51 -5.97 -0.04 0.00 0.03 4.48
wind power 15 81,663 9.58 7.47 0.30 3.83 7.43 13.23 39.56
wind power deviation 81,663 0.00 0.18 -1.60 -0.07 0.00 0.07 1.50
load 15 81,663 55.17 10.00 25.04 46.81 54.85 64.09 78.09
load deviation 81,663 0.00 0.76 -13.29 -0.35 0.00 0.35 9.39

Second, the residual demand depends on the electricity demand. We use data on

the system load since load is commonly considered as the best proxy for electricity

demand7. We use data on the realized8 load which is published on the transparency

platform of the European Network of Transmission System Operators for Electricity

(ENTSO-E, 2017).

4.3.2 Empirical Estimations

Empirical Framework

The general estimation procedure is expressed by Equation (4.19):

pt = X ′i,t βi + ν+ εt

with εt ∼ N (0,σ2),
(4.19)

7More information on load can be found in Schumacher and Hirth (2015).
8Here we use the realization of load instead of forecasted values since our empirical analyses suggest

that ex post data matches the day-ahead and intraday market dynamics with higher accuracy. In
more detail, a descriptive analysis of forecasted load data reveals systematic forecast errors (see
Figure 4.7 in Section 4.5.2). There is an indication that the available data does not reflect the
actual level of information which market participants have. A frequency of forecast errors into one
specific direction is not to be expected. Furthermore, the t-tests yield better results when using
realized values indicating higher accuracy of data.
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where pt denotes the quarter-hourly price in period t = 1, 2, ..., T . X ′i,t includes

the exogenous variables of the model, namely the hourly day-ahead price as well

as the quarter-hourly deviation of the residual demand from its respective hourly

mean. We estimate the intercept ν assuming that the underlying supply function

is time-invariant. The expression εt denotes the error term. In order to choose a

suitable estimation methodology, we first test for basic assumptions that would be

required if applying Ordinary Least Squares Regression techniques. These are stan-

dard assumptions such as predetermination or exogeneity of regressors and pt , X i,t

being ergodic and jointly stationary. Furthermore, ε should be independent and

identically distributed.

Beginning with stationarity, we apply two different statistical tests for unit roots.

The respective results of an Augmented Dickey Fuller test and a Phillips-Perron test

are depicted in detail in Section 4.5.2. The statistics clearly reject the assumption of

non-stationary processes. This is especially plausible because we only include data

for a limited period of observation. The underlying drivers of demand and supply as

well as prices in the markets of interest only changed slightly. These are, e.g., fuel

prices and the share of renewable power plants. As such, a significant time trend is

not identified.

We assume exogeneity of the residual demand due to two reasons. First, by us-

ing forecasted data for the electricity generation from wind and solar power, we

guarantee exogeneity of two of the individual components by construction. Second,

the realized load is a proxy for the overall electricity demand and does not reflect

actual trade volumes in individual markets. We furthermore conduct a Durbin-Wu-

Hausman test in order to control for the exogeneity of the day-ahead auction price.

The test results reject the assumption of exogeneity 9 and we thus apply a Two-Stage

Least Squares (2SLS) Regression Analysis including the hourly average of the resid-

ual demand as an instrument for the day-ahead price. The hourly residual demand

is the main driver of demand in the day-ahead auction and thus is highly correlated

with the respective prices (Cov(X i,t , Zi,t) 6= 0, where Zi,t is the instrument). This

assumption is supported by the first stage regression results giving clear empirical

evidence for a strong instrument. Additionally, we argue that our underlying estima-

tion approach directly accounts for the exclusion restriction (Cov(Zi,t ,εt) = 0). All

information from the first market that can be expected to influence quarter-hourly

product prices in the second market is incorporated by the inclusion of the day-ahead

price. Finally, we use robust standard errors in order to account for heteroscedastic-

9In more detail, the test suggests that Cov(X ′i,t ,εt) 6= 0.
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ity.

Empirical Validation

Based on Equation (4.12) and according to Section 4.3.2, we apply Equation (4.20)

using a Two-Stage Least Squares Regression:

pida
t = β1 · pda

t + β2 · (Dres
t − Dres

t) + ν+ εt

= β1 · pda
t + au

1 ·∆Dres
t + ν+ εt .

(4.20)

The difference between the residual demand on a quarter-hourly and hourly level

(residual demand deviation (∆Dres
t )) is included as the main explanatory variable.

Besides, the day-ahead auction price for hourly products (day-ahead price (pda
t )) is

used. The coefficient β2 can be interpreted as the gradient of the unrestricted supply

curve (au
1).

The resulting estimates are depicted in column (1) of Table 4.3. As regards the re-

gression technique, a comparison of the respective IV and OLS estimates is provided

in Table 4.6 in Section 4.5.2. Furthermore, we show selected results for additional

sensitivity analyses in columns (2) - (3). Besides these explicitly outlined results,

additional insights and further sensitivity analyses are presented in Section 4.5.2.

The estimates in column (1) of Table 4.3 yield a first indication that our theoretical

model is applicable to actual price relations observed in the intraday and day-ahead

auction. The t-values of the coefficients validate that the difference in prices is in-

fluenced significantly by the deviation of the residual demand on a quarter-hourly

level from its hourly mean. Furthermore, we observe an adjusted R2 which is ap-

proximately 87% and thus a large part of the variance of intraday auction prices

can be explained by the model. We identify sufficient explanatory power. Addition-

ally, the estimated coefficient with respect to the day-ahead auction price is highly

significant on a 1% level and close to one, as suggested by the model. Thus, the re-

gression results confirm the validity of day-ahead auction prices as reference prices

for intraday auction prices.

On closer examination, the estimated coefficient for residual demand deviation re-

veals a positive sign and embodies the gradient of the supply curve in the intraday

auction. The positive coefficient implies that a positive deviation of the residual

demand leads to an increase of quarter-hourly prices compared to the respective

hourly day-ahead price. This is exactly what we would expect based on the theo-
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Table 4.3: Regression estimates for intraday auction price data

Dependent variable: id auction price (pida
q,t )

Explanatory variable IV (1) IV (2) IV (3)

day-ahead price (pda
t ) 0.96∗∗∗ 0.96∗∗∗ 0.96∗∗∗

(0.002) (0.002) (0.002)

residual demand deviation (∆Dres
t ) 7.65∗∗∗

(0.08)

positive residual demand deviation 7.69∗∗∗

(0.17)

negative residual demand deviation 7.60∗∗∗

(0.14)

wind power deviation (∆Windt) -8.54∗∗∗

(0.14)

solar power deviation (∆Solart) -9.64∗∗∗

(0.13)

load deviation (∆Dt) 6.96∗∗∗

(0.07)

intercept (ν) 1.26∗∗∗ 1.24∗∗∗ 1.26∗∗∗

(0.08) (0.10) (0.08)
observations 81,663 81,663 81,663
adj. R2 0.87 0.87 0.88
F 80,094 53,961 41,459

Notes to Table 4.3: Robust standard errors in parentheses. ∗ / ∗∗ / ∗∗∗ : significant at the 0.05 /0.02 /
0.01 error level respectively. The term positive residual demand deviation in column (2) is constructed
using a dummy variable that equals one if the residual demand deviation is positive. The term negative
residual demand deviation is constructed using a dummy variable that equals one if the residual demand
deviation is negative. Due to the indication of endogeneity with respect to the variable day-ahead
price, we use residual demand deviation 60 as the instrumental variable and apply a 2SLS Regression.
In general, we use data from January 2015 until the end of April 2017.
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retical model. 15-minute excess demand requires additional electricity generation

what means moving right on the merit order. The average absolute value for residual

demand deviation amounts to 0.58 GW and can be transferred into an absolute price

difference of 4.36 EUR/MWh. To sum up, we find evidence that restricted participa-

tion in combination with highly variable demand indeed triggers the high volatility

of intraday auction prices observed.

In a next step, we aim at providing additional evidence for the applicability of the

model to real-world data by conducting further sensitivity analyses and robustness

tests. We follow the general idea of deriving hypotheses based on the underlying

model and testing them empirically. First, the assumption of a linear supply curve

would imply that linear relations are applicable to both positive as well as negative

deviations of the residual demand. Distinguishing between positive and negative

differences of the residual demand (positive residual demand deviation and negative

residual demand deviation) in column (2) of Table 4.3, both coefficients differ only

slightly on a 2% level. The coefficients are furthermore both significant on a 1%

level. The overall picture hence strongly supports the hypothesis of a continuous

linear relation between supply and prices in the intraday auction10.

Second, we decompose the residual demand deviation into its three elements wind

power deviation, solar power deviation, and load deviation. The respective estimates

in column (3) reveal some variations (40%) as controlling for the isolated impact of

solar power, for example, must be seen as referring to only a subset of hours. Since

the individual drivers are only partially correlated, the respective subset is different

for each driver and thus the estimated coefficients may vary. Besides absolute values,

it is far more relevant to evaluate whether the signs of the coefficients match the

underlying causal relations. A positive deviation of the renewable energy generation

implies oversupply which in turn causes lower prices in the intraday auction. As

to be expected, the respective coefficients are negative, whereas the coefficient for

load is positive. Analyzing the value distribution of solar and wind power as well as

load, it is revealed that the volatility of intraday auction prices is mainly driven by

the quarter-hourly variation of load. However, very high differences in prices may

also result from a high gradient of solar power generation. To sum up, the results

presented in this section suggest model validity and robustness of our findings.

10In addition, we tested for alternative specifications such as assuming quadratic relations but found
no empirical evidence for higher accuracy.
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Econometric Analysis of the Supply Curve Gradients

As a further part of the empirical analysis, we conduct a comparative analysis for

the gradients of the supply curves in the day-ahead and intraday auction. We aim at

approximating welfare implications. Against this backdrop, the day-ahead spot mar-

ket price in Equation (4.20) is substituted by the hourly residual demand according

to Equation (4.9). The purpose is to estimate a1 as a proxy for the gradient of the

aggregate supply curve. We thus obtain Equation (4.21):

pida
t = a1 · Dres

t + au
1 ·∆Dres

t + ξ+ εt , (4.21)

where the constant intercept of the hourly supply curve is shifted into the con-

stant ξ and the error-term of the estimation equation. The argument for assuming

exogeneity is analogous to the reasoning in Section 4.3.2. Based on these consider-

ations and as the day-ahead price is no longer included, we apply an Ordinary Least

Squares Regression using robust standard errors. The empirical results indicate ex-

planatory power and a significant impact of the respective explanatory variables.

We observe a slight decrease of the adjusted R2 due to a loss of information by us-

ing a less informative variable (Dres
t instead of pda

t ). Furthermore, we are now

able to comment on the average difference of the aggregate and unrestricted supply

curve by comparing the coefficients a1 and au
1. The estimation results are depicted

in Table 4.4. According to the results presented in column (1), the estimated co-

efficient for the impact of the quarter-hourly residual demand deviation (residual

demand deviation) on intraday auction prices is more than seven times higher than

the influence of the hourly residual demand (residual demand 60) on the proxy for

day-ahead spot prices. We find clear evidence for restricted participation. Further-

more, we evaluate the structural development of the respective relations in column

(2). One could assume that the impact of restricted participation may fade out after

the introductory phase of the intraday auction. Even though the difference between

the estimated proxies for the gradients of the day-ahead and intraday supply curves

decreases from factor 8.5 in 2015 to factor 6.5 in 2016, the first four months of 2017

yield an indication that the impact of restricted participation on the intraday auction

price volatility is again exacerbated in 2017 (Knaut and Paschmann, 2017a). Thus,

our results suggest that the welfare losses identified are persistent rather than ex-

hibiting a short-term nature. Finally, we aim at shedding light on seasonal aspects.

The estimates in column (3) depict that the impact of restricted participation in the

intraday auction on the resulting price volatility is slightly more pronounced (+13%)
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in winter periods. This result may be traced back to a slightly steeper supply curve

in winter periods, at least on average.

Table 4.4: Regression estimates for intraday auction price data (2)

Dependent variable: id auction price (pida
q,t )

Explanatory variable OLS (1) OLS (2) OLS (3)

hourly residual demand (Dres
h,t ) 1.03∗∗∗

(0.005)
residual demand deviation (∆Dres

q−h,t) 7.65∗∗∗

(0.08)
hourly residual demand (2015) 1.03∗∗∗

(0.004)
residual demand deviation (2015) 8.75∗∗∗

(0.14)
hourly residual demand (2016) 0.95∗∗∗

(0.004)
residual demand deviation (2016) 6.21∗∗∗

(0.10)
hourly residual demand (2017) 1.16∗∗∗

(0.006)
residual demand deviation (2017) 8.49∗∗∗

(0.22)
hourly residual demand (Summer) 0.99∗∗∗

(0.004)
residual demand deviation (Summer) 6.95∗∗∗

(0.09)
hourly residual demand (Winter) 1.03∗∗∗

(0.005)
residual demand deviation (Winter) 8.20∗∗∗

(0.13)
intercept (ξ) -10.26 ∗∗∗ -10.68∗∗∗ -10.58∗∗∗

(0.19) (0.18) (0.18)
observations 81,663 81,663 81,663
adj. R2 0.64 0.70 0.66
F 26,273 11,366 13,710

Notes to Table 4.4: Robust standard errors in parentheses. ∗ / ∗∗ / ∗∗∗ : significant at the
0.05 /0.02 / 0.01 error level respectively. In OLS (2) we interact the explanatory variables
with yearly time dummies. In OLS (3) we determine summer periods ranging from April
until the end of September. We use data from January 2015 until the end of April 2017.

Based on the estimates for the gradients of the aggregate and unrestricted supply

curve (a1 and au
1), we are now able to derive a proxy for the welfare losses. The
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respective procedure is expressed by Equation (4.15). The total welfare losses from

restricted participation decreased from EUR 108 million in 2015 to EUR 55 million

in 2016. This reduction may be traced back to a decreasing difference between

the gradients of the supply curves. However, the respective results for the first four

months in 2017 indicate a renewed rise of the welfare losses. When analyzing the

distributional effects in detail, the reduction of the consumer surplus ranges from

EUR 110 million in 2016 to EUR 216 million in 2015. On the supply side, the sur-

plus of unrestricted producers is increased by EUR 120 million in 2015 and EUR 64

million in 2016 and surplus of restricted suppliers is reduced by EUR 12 million in

2015 and EUR 9 million in 2016 compared to the efficiency benchmark.

We note that these calculations do not include actual costs of market entry and

thus have to be regarded as an upper bound for the welfare and distributional effects

linked to restricted participation. As the lack of market coupling is considered as the

most relevant driver of restricted participation (Knaut and Paschmann, 2017a), we

may regard German power plant operators as the unrestricted suppliers. In this case,

the German suppliers profit from non-coupled markets. In contrast, power plant

operators in neighboring countries and German consumers suffer from the lack of

market coupling. As the implementation of cross-border trade of 15-minute and even

shorter contracts is planned for 2017 (Cross-Border Intraday Market Project X BI D),

welfare losses may decrease in the future. However, ensuring sufficient cross-border

intraday capacities as well as an efficient coupling mechanism are crucial pillars that

should be urged by policy makers.

4.4 Conclusion

This article is motivated through the identification of strongly increasing price volatil-

ity in German electricity markets with quarter-hourly products. To shed light on the

underlying drivers, we develop a theoretical model illustrating the price formation

in sequential commodity markets based on a fundamental approach. In doing so,

we consider two markets which are characterized by increasing product granularity

and a change in the set of suppliers along the sequential market settlements. The

model is then applied to the German day-ahead and intraday auction which allow

for trading hourly and quarter-hourly products respectively. We find that the high

quarter-hourly price volatility in real-world data is essentially triggered by two fac-

tors. First are the high variability of demand and renewable electricity generation.

Second, we identify that the supply curve in the intraday auction inclines compared
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to the day-ahead auction. Market participation in the intraday auction is restricted.

Based on our estimates, we relate restricted participation to welfare losses that ap-

proximated EUR 108 million in 2015 and EUR 55 million in 2016.

The main findings presented within the scope of this article provide a better un-

derstanding of sequential markets with both a differing product granularity and a

change in the underlying supplier structure. The identification of inefficiencies is in-

dispensable to derive appropriate countermeasures in order to improve the current

electricity spot market design. This is especially relevant as the increasing share

of renewable energies will trigger an increasing relevance of sub-hourly short-term

trade. Thus, efficiency losses may even increase if the short-term power system flex-

ibility is not increasing accordingly. Based on our findings, policy makers should

tackle issues related to intraday market participation. Above all, the implementa-

tion of market coupling on a sub-hourly level may be a first step towards a more

efficient market outcome. Since this is, at least partially, addressed by the Cross-

Border Intraday Market Project, which is supposed to be implemented within the

course of this year, the respective go live should be promoted. Furthermore, the

provision of sufficient cross-border intraday capacity as well as the implementation

of an efficient coupling mechanism should be urged.

On a more micro-economic level, a fundamental understanding of price relations

within the scope of the day-ahead and intraday auction can be transferred into price

forecasts and may support the evaluation of future market developments. Market

participants need to understand long-term drivers of price spreads in short-term

electricity markets in order to assess investment decisions with respect to more flex-

ible generation units. However, as of today, an exemplary profitability calculation

for a battery storage unit reveals that the current price volatility does not allow for

profitable operation.

Finally, as we observe the respective price patterns not only in electricity markets,

it would be worthwhile to transfer the model to further market settings, e.g., with

respect to other commodities such as gas, coal or oil. However, since the respec-

tive market characteristics are fundamentally different, we leave scope for future

research.
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4.5 Appendices

4.5.1 Proof of Proposition 4.4 on Distributional Effects

Proof. Before taking a closer look into the distributional effects which are attributable

to restricted participation, we first derive the respective surplus of consumers and

producers. We consider consumers to be price inelastic, at least up to a certain

threshold where the electricity price exceeds the value of lost load (VOLL). We link

the VOLL to the price pVOLL which marks the upper limit of the willingness-to-pay

regarding electricity consumption (this definition is analogous to Knaut and Ober-

müller (2016)). On the supply side, the producer surplus is determined by the dif-

ference of the uniform market price and the marginal costs of electricity generation

of each producer.

In the case of restricted participation (inef f ), the consumer (CS) and producer

surplus (PS) in each period τ are calculated as

CS inef f
τ =pVOLL Dτ − pD− pτ(Dτ − D) (4.22)

PS inef f
τ =Dp+ (Dτ − D)pτ − C inef f (Dτ). (4.23)

If all suppliers were able to vary their production level according to the temporal

resolution τ, the efficient outcome (ef f ) would lead to the consumer and producer

surplus which is expressed in the following two equations:

CSef f
τ =(pVOLL − pef f

τ )Dτ (4.24)

PSef f
τ =pef f

t Dt − C(Dτ). (4.25)

The price in the efficient case (pef f
τ = a0 + a1Dτ) directly depends on the aggre-

gate marginal cost function. The difference in consumer and producer surplus can

therefore be formulated as

∆CSt =CSef f
τ − CS inef f

τ

=(au
1 − a1)(D− Dτ)

2 + a1D(D− Dτ)

=2∆Wτ + a1D(D− Dτ)

(4.26)
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∆PSτ =PSef f
τ − PS inef f

τ

=−
1
2
(au

1 − a1)(D− Dτ)
2 − a1D(D− Dτ)

=−∆Wτ − a1D(D− Dτ).

(4.27)

We insert the previously derived welfare losses ∆Wτ for both the change in con-

sumer and producer surplus. Summing up over the n time periods yields

∆CS =
n
∑

t=1

∆CSτ = 2
n
∑

τ=1

∆Wτ + a1D
n
∑

τ=1

(D− Dτ)

︸ ︷︷ ︸

=0

= 2
n
∑

τ=1

∆Wτ ≥ 0 (4.28)

∆PS =
n
∑

τ=1

∆PSτ = −
n
∑

τ=1

∆Wτ − a1D
n
∑

τ=1

(D− Dτ)

︸ ︷︷ ︸

=0

= −
n
∑

τ=1

∆Wτ ≤ 0. (4.29)

The consumer surplus decreases due to restricted participation in the second mar-

ket. It is twice as high as the overall welfare losses. In contrast, the producers face

an increasing surplus. The respective increase is expressed by the total sum of wel-

fare losses along all time periods. As these considerations differ across restricted

and unrestricted suppliers, we now analyze the respective surplus in more detail. In

the inefficient case, we derive the following relations

PSr,inef f
τ =pqr − C r(qr) (4.30)

PSu,inef f
τ =p(qu

τ) + pτ(Dτ − D)− Cu(qu
τ). (4.31)

In the efficient case, the respective surplus would be as follows

PSr,ef f
τ =pef f

τ qr,ef f
τ − C r(qr,ef f

τ ) (4.32)

PSu,ef f
τ =pef f

τ qu,ef f
τ − Cu(qu,ef f

τ ). (4.33)

We derive the optimal quantities which are supplied by restricted and unrestricted
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suppliers (efficiency benchmark) with the use of the aggregate supply function:

qr,ef f
τ =

au
1

ar
1 + au

1

Dτ (4.34)

qu,ef f
τ =

ar
1

ar
1 + au

1

Dτ. (4.35)

As regards the restricted suppliers, we derive the difference in surplus:

∆PSr
τ =PSr,ef f

τ − PSr,inef f
τ (4.36)

=
1
2

a1(1−
a1

au
1

)(D2
τ − D

2
). (4.37)

Summing up over all time periods, we can furthermore simplify the respective ex-

pression according to

∆PSr =
n
∑

τ=1

∆PSr
τ =

1
2

a1 (1−
a1

au
1

)
︸ ︷︷ ︸

≥0

n
∑

τ=1

(D2
τ − D

2
)

︸ ︷︷ ︸

Var(Dτ)≥0

≥ 0. (4.38)

As the variance of demand is always positive, we conclude that restricted suppliers

are characterized by a lower surplus in the inefficient case compared to the efficiency

benchmark. In a next step, we derive the difference in surplus for unrestricted sup-

pliers. As we have already derived the difference in surplus for both all suppliers as

well as the restricted set of suppliers, we present the following expression:

∆PSu =∆PS
︸︷︷︸

≤0

−∆PSr
︸ ︷︷ ︸

≥0

≤ 0. (4.39)

To sum up, we find that restricted participation leads to a reduction in consumer

surplus. In contrast, unrestricted suppliers may achieve a higher surplus in the inef-

ficient case, whereas restricted suppliers suffer from restricted participation.
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4.5.2 Supplementary Information on the Econometric Approach

The Relation of Quantities and Prices in the Day-Ahead Auction

Figure 4.6: Relation of German day-ahead quantities and prices in 2015 (trend line with
linear shape marked in red)

Distribution of load forecast errors

The distribution of load forecast errors during our period of observation is illustrated

in Figure 4.7.

Unit Root Tests

We apply both an Augmented Dickey Fuller test and a Phillips-Perron test for unit

roots. The respective test results are displayed in Table 4.5 (Dickey and Fuller, 1979,

Phillips and Perron, 1979). The Phillips-Perron test uses Newey-West standard errors

in order to account for serial correlation. The null hypothesis of both tests is that

there is a unit root in the periods of observation. We tested the Akaike Information

Criterion (AIC) in order to determine the optimal lag lengths. As the AIC results are

ambiguous for the variables considered and tend to indicate using as many lags as

tested for, we use the Schwert rule of thumb and consider a leg length of 65 (Schwert,

1989). We prefer making a slight error due to including too many lags since Monte

Carlo experiments suggest that this procedure is preferable to including too few lags.

In order to give evidence for the robustness of our results, we repeated the tests for
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Figure 4.7: Distribution of load forecast errors during the period of observation

different lag lengths. Within the scope of the Augmented Dickey Fuller test, we

extend the basic test of a random walk against a stationary autoregressive process

by including a drift and a trend term. As far as the listed results are concerned,

we decide whether to include a trend or constant by checking the significance of the

trend/constant parameters at a 5% significance threshold. The parameter residuals

refers to the estimation results for Equation 4.20 using a 2SLS regression.

Table 4.5: Unit root tests

Augmented Dickey Fuller (Levels) Philipps-Perron Test (Levels)
Variable statistic p-value lags statistic p-value lags

id auction price -18.34 0.00 65 -188.27 0.00 65
day ahead price -16.32 0.00 65 -24.04 0.00 65
residual demand 60 -12.36 0.00 65 -21.71 0.00 65
residual demand deviation 15 -47.20 0.00 65 -683.70 0.00 65
residuals (ε) -26.09 0.00 65 -310.22 0.00 65
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Table 4.6: Comparison of IV and OLS

Dependent variable: id auction price (pida
q,t )

Explanatory variable IV OLS

day-ahead price (pda
t ) 0.95∗∗∗ 0.95∗∗∗

(0.002) (0.003)

residual demand deviation (∆Dres
t ) 7.65∗∗∗ 7.65∗∗∗

(0.08) (0.08)
intercept (ν) 1.26∗∗∗ 1.55∗∗∗

(0.08) (0.11)
observations 81,663 81,663
adj. R2 0.87 0.87
F 80,094 43,979

Notes to Table 4.6: Robust standard errors in parentheses. ∗ / ∗∗ / ∗∗∗ : significant
at the 0.05 /0.02 / 0.01 error level respectively. For the IV estimates day-ahead
price we use residual demand deviation 60 as the instrumental variable and apply
a 2SLS Regression. In general, we use data from January 2015 until the end of
April 2017.

IV and OLS Estimates

Additional Information with Respect to Robustness, Alternative Hypotheses,

and Methodological Variation

We evaluate further variations of the basic estimation procedure and conduct addi-

tional tests for alternative specifications to provide evidence for the assumption of

the general applicability of our theoretical model to historical data. Based on the

model, one may also think about directly estimating the difference between the day-

ahead and intraday auction price without explicitly including the day-ahead price

as an explanatory variable. The respective estimation results are depicted in Table

4.7. As to be expected, the 15-minute deviation of the residual demand is a signifi-

cant (1% level) driver of differences between day-ahead and intraday auction prices.

Additionally, the respective estimate equals the coefficients which are presented in

Table 4.3 and Table 4.4. Even though we identify a minor loss of explanatory power

due to not directly including the day-ahead price, these results support the robust-

ness of our findings.

In a next step, we address the four specific 15-minute intervals of each hour via

a dummy variable in order to analyze whether the estimated coefficients for the

quarter-hourly deviation of the residual demand from its hourly mean differ signif-

icantly across the 15-minute time intervals of each hour. The estimation results in

column (2) of Table 4.3 depict that the respective coefficients differ slightly at a level
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Table 4.7: Regression Estimates Sensitivity Analyses (1)

Dependent variable:
(pda

t - pida
t ) (pida

t )

Explanatory variable OLS (1) OLS (2)

residual demand deviation (∆Dres
t ) 7.65 ∗∗∗

(0.08)
day-ahead price (pda

t ) 0.96∗∗∗

(0.002)
residual demand deviation (Q1) 7.85∗∗∗

(0.14)
residual demand deviation (Q2) 6.75∗∗∗

(0.17)
residual demand deviation (Q3) 6.64∗∗∗

(0.24)
residual demand deviation (Q4) 7.72∗∗∗

(0.10)
intercept (ξ) 0.08∗∗∗ 1.23∗∗∗

(0.02) (0.08)
observations 81,663 81,663
adj. R2 0.54 0.87
F 9,825 32,802

Notes to Table 4.7: Robust standard errors in parentheses. ∗ / ∗∗ / ∗∗∗ :
significant at the 0.05 /0.02 / 0.01 error level respectively. We use data
from January 2015 until the end of April 2017.

of approximately 18%. These differences suggest that the underlying intraday auc-

tion supply curve is slightly steeper in the edge regions which are far more likely

to be relevant in the first and last quarter-hourly period of each hour. Such finding

is plausible since the deviation of the residual demand from its hourly mean tends

to be higher in these time periods. However, we still find the overall model being

applicable.
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5 Decoding Restricted Participation in Sequential
Electricity Markets

Restricted participation in sequential markets may cause high price volatility and

welfare losses. In this paper, we therefore analyze the drivers of restricted partici-

pation in the German intraday auction which is a short-term electricity market with

quarter-hourly products. Applying a fundamental electricity market model with 15-

minute temporal resolution, we identify the lack of sub-hourly market coupling be-

ing the most relevant driver of restricted participation. We derive a proxy for price

volatility and find that full market coupling may trigger quarter-hourly price volatil-

ity to decrease by a factor close to four.

5.1 Introduction

The increasing share of renewable energies has caused an exacerbated need of short-

term trading opportunities for electricity. Forecast uncertainty and highly volatile

feed-in profiles of renewable energies favor the trade of shorter contracts closer to

the time of physical delivery (see, e.g., Garnier and Madlener (2014), Karanfil and Li

(2017), Weber (2010)). In this paper, we focus on the interaction of two sequential

short-term electricity markets in Germany. The first market is the day-ahead auc-

tion with hourly products which is settled at noon one day before physical delivery.

Second, we consider the intraday auction which allows the trade of quarter-hourly

contracts three hours after the day-ahead market settlement.

This article is especially motivated through Knaut and Paschmann (2017b) ana-

lyzing the impact of restricted participation in the day-ahead and intraday auction.

The authors find that restricted participation may trigger both high price volatility as

well as welfare losses. Based on these findings, we target to identify the underlying

drivers of restricted participation in the German intraday auction. Our results are

supposed to form the basis for evaluating countermeasures in order to reduce the

respective inefficiencies.

In general, we consider four potential drivers of restricted participation: i) iner-
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tia as the state of not knowing1; ii) costs of market entry; iii) inflexibility of power

plants; and iv) a lack of cross-border market coupling. In this article, we focus our

attention on the latter three drivers as there is empirical evidence that the role of

inertia is of minor relevance for the intraday auction. We conduct exemplary prof-

itability analyses and find an indication that costs of market entry are not expected

to prevent profit maximizing traders from participating in the intraday auction. In a

next step, we set up a fundamental electricity market model with 15-minute tempo-

ral resolution which is essentially capable of replicating the price pattern observed

in real-world data. We then disentangle the effects of power plant flexibility and

market coupling on sub-hourly price volatility. Our analysis is motivated by the fact

that cross-border trade may cause convergence of prices if sufficient transmission

capacity is available (see, e.g., Parisio and Bosco (2008), Zachmann (2008)) and

thus the overall efficiency may increase. Indeed, our results suggest that the lack of

cross-border trade is the major fundamental driver of restricted participation in the

intraday auction.

Having identified the lack of sub-hourly market coupling as the most important

driver, it may be beneficial for policy makers to urge the realization of the ’XBID’

project aiming to implement cross-border intraday trade on a 15-minute level in

the internal European electricity market (EPEX SPOT SE, 2017d). Furthermore,

additional market coupling on sub-hourly levels such as proposed for Germany, the

Netherlands, and France may be worth considering (EPEX SPOT SE, 2017a). To

derive a proxy for the effectiveness of such measures, we evaluate the influence of

sub-hourly market coupling on the price volatility within our modeling framework.

Our results suggest that full market coupling on a quarter-hourly level may trigger

the sub-hourly price volatility to decrease by a factor close to four.

Besides providing insights for policy makers, our results are also important for

firms participating in the day-ahead and intraday auction as we are able to depict

the most relevant drivers of the high price volatility observed. At first sight, the high

price volatility may seem to be favorable for investments into power plant flexibility.

Based on our findings, however, this may be a false conclusion. Therefore, invest-

ment decisions regarding flexible generation units should account for the impact of

the targeted quarter-hourly market coupling on prices.

Finally, the methodological approach extends research so far as the temporal res-

olution of the model, to the best of our knowledge, is a unique feature compared

to dispatch models that are most commonly applied in the existing literature. We

1For more details on inertia of market participants see Doraszelski et al. (2016).
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clearly point out that simulating the power supply system with sub-hourly temporal

resolution will become increasingly important. This is especially relevant to simu-

late investment decisions of flexible generation units with higher accuracy. At the

same time, we are able to simulate the impact of different types of market coupling

on the respective sequential market dynamics.

The remainder of this paper is organized as follows. We first briefly depict the

main literature background. In Section 5.3 we then present our strategy, i.e., how to

decode the drivers of restricted participation in the German intraday auction. The

respective analysis of the individual drivers considered is presented in detail within

the following sections. Finally, we conclude in Section 5.6.

5.2 Literature Background

Focusing on the interaction of sequential markets, this paper is positioned in research

surrounding market equilibria and the respective market outcome in sequential mar-

ket configurations (see, e.g., Green (1973), Pindyck (2001), Veit et al. (2006)). In

the context of the power sector, Borggrefe and Neuhoff (2011) and von Roon and

Wagner (2009) comment on the important role of sequential short-term electricity

markets due to a strongly increasing share of renewable energies in Germany. In

addition, Knaut and Obermüller (2016) and Ito and Reguant (2016) investigate the

optimal strategy choices of renewable producers in sequential markets. The authors

find incentives to withhold production capacity in the first market which may cause

systematic price premiums in subsequent market stages. Additionally, Mezzetti et al.

(2007) suggest a lowballing effect that may lead to a comparably lower price in the

first market.

Supporting the findings of Knaut and Paschmann (2017b), the idea of high price

volatility due to restricted participation has also been studied in Allen and Gale

(1994). Furthermore, in Polemarchakis and Siconolfi (1997) the authors point out

that limits to market participation may result in incomplete markets and conse-

quently competitive equilibria may not exist. Finally, restricted market participation

may lead to limited arbitrage (Hens et al., 2006). We aim at contributing to the ex-

isting literature by developing a strategic approach to analyze the underlying drivers

of restricted participation in real-world electricity markets.
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5.3 Identifying the Drivers of Restricted Participation

Electricity markets are most commonly organized in a sequential order. Closer to

physical delivery the contract duration tends to decrease and the respective mar-

kets are cleared in rapid succession. Against this backdrop, Figure 5.1 depicts the

sequential market design for the wholesale electricity markets in Germany 2.

Figure 5.1: Sequence of trading in wholesale markets

In this paper, we focus on the market interaction between the German day-ahead

and intraday auction. Following Knaut and Paschmann (2017b), trade in the intra-

day auction mainly stems from quarter-hourly deviations of the residual load from

the respective hourly means. Here residual load is defined as the difference between

the overall system load and the electricity generation from renewable power plants.

Due to the rapid succession of both auctions, the impact of forecast errors on the

trade volumes is negligible. There is no informational update between both mar-

ket stages. According to Knaut and Paschmann (2017b), the gradient of the intra-

day auction supply curve furthermore steeply increases compared to the respective

day-ahead merit order due to restricted participation. Consequently, quarter-hourly

intraday auction prices are much more volatile than hourly day-ahead prices and

welfare losses can be identified3.

We consider the following four possible reasons for restricted participation in the

intraday auction:

i) Inertia as the state of not knowing: Market participants may be used to dis-

patch their power plants on an hourly level according to the day-ahead auction.

It is plausible that they may not directly adjust their trading behavior to newly

emerging markets such as the intraday auction.

2For more details see Knaut and Paschmann (2017b).
3This is especially relevant as the increasing share of renewable electricity generation implies an

augmented importance of sub-hourly trading opportunities.
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ii) Costs of market entry: There may be additional costs for market agents to

participate in a new market with a different contract design. This may, e.g.,

be due to market entry fees or a lack of a respective trading department that

enables trading of quarter-hourly products. Furthermore, a lack of aggregation

with respect to smaller generation units may be identified.

iii) Inflexibility of power plants: Power plant operators may not be able to adjust

their production schedule on a sub-hourly level. This may be due to technical

constraints or due to high costs for starting up additional capacities. Especially

base load generation units such as nuclear or lignite power plants can be re-

garded as being less flexible.

iv) Cross-border trade: So far, trade of 15-minute products only takes place on a

national level. Thereby, only German generation units participate in the market.

In contrast, the day-ahead auction is characterized by implicit market coupling

across several European countries. Obviously this leads to restricted partici-

pation in the market for quarter-hourly products compared to the day-ahead

auction.

We empirically analyze the development of the day-ahead and intraday auction

price relations over time in order to comment on the role of inertia (Section 5.7.1).

We find an indication that effects related to restricted participation do not fade out.

Rather to the contrary, they may be characterized being persistent. In this article,

we therefore focus on the latter three hypothetical drivers and evaluate which of

them may be a valid explanatory approach for restricted participation in the Ger-

man intraday auction. First, we shed light on the costs of market entry. We compare

fees that arise from trading on the exchange and profits for exemplary generation

technologies that may be gained by extending trading activities to the intraday auc-

tion. Second, we introduce a modeling framework to simulate the interaction of

hourly and quarter-hourly electricity markets which is able to account for the inflex-

ibility of power plants as well as the role of cross-border trade. Based on the model

framework, we disentangle both possible drivers of restricted participation iii) and

iv).

5.4 Costs of Market Entry

In a first step, we provide insights on the benefits and costs for participants entering

the intraday auction. We therefore focus on simulating the additional monetary ben-
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efits that would result from extending trading activities from solely participating in

the day-ahead auction to trading in the intraday auction as well and put the respec-

tive results into context with trading fees. We consider two exemplary generation

units which are a flexible combined cycle gas turbine (CCGT) and a rather inflexible

lignite-fired power plant. In order to conduct profitability analyses for both types of

power plants using historical price data, we use a mixed integer program4. To com-

ment on the additional revenue potential when entering the intraday auction, we

compare a scenario in which the power plant operator only participates in the day-

ahead auction and a case in which trade in the intraday auction is allowed as well.

We implement sequential trading decisions. That is to say, the power plant operator

first decides on the hourly day-ahead supply under perfect foresight with respect to

hourly prices. In a next step, the quarter-hourly schedule is optimized as a deviation

from the previously settled hourly trade quantities based on quarter-hourly prices.

We assume that decision makers target to maximize their profits. Furthermore, we

consider ramping and start-up constraints as well as part-load losses. Additionally,

we account for transaction fees on the power exchange5. The methodology applied

is based on comparable approaches that have most commonly been applied in the ex-

isting literature6 (see, e.g., Frangioni et al. (2009), Ostrowski et al. (2012), Richter

et al. (2016)). Details on the respective parameter assumptions are presented in Ta-

ble 5.1. We use exogenous day-ahead and intraday auction prices based on historical

data from 2015 (EPEX SPOT SE, 2017c).

Table 5.1: Assumptions asset optimization
Min load Max ramp rate Start-up/Shut-down rate Efficiency full-load/part-load Fuel Price (incl CO2)

[%] [%/15Min] [%/15Min] [%] EUR/MWhth

CCGT (70 MW) 20 100 100/100 54/25 19.37
Lignite (300 MW) 50 37.5 12.5/12.5 30/25 3.42

In order to compare our simulation results with actual costs related to market

entry, we use data that is provided by the exchange (EPEX SPOT SE, 2016b). The

respective costs are summarized in Table 5.2. The costs of market entry for the

day-ahead and intraday auction comprise a one-time as well as yearly fees.

Our simulation results are presented in Table 5.3. We depict yearly profits which

can be achieved from trading activities in the day-ahead and intraday auction for

both types of power plants. As we regard trading decisions being sequential and

4The model is presented in detail in Section 5.7.3
5Based on actual values market participants are charged for on the exchange (EPEX SPOT SE), these

are 0.04 EUR/MWh for the day-ahead auction and 0.07 EUR/MWh for the intraday auction.
6The methodological approach is furthermore similar to Section 5.5.1
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Table 5.2: Costs of market entry for the day-ahead and intraday auction

Initial payment Yearly fee

Day-ahead auction EUR 25,000 EUR 10,000 /a
Intraday auction EUR 7,000 EUR 5,000 /a

independent, the overall profit from solely participating in the day-ahead auction

equals the values listed in the column Day-ahead Profit.

Table 5.3: Model results
Day-ahead Trades Day-ahead Profit Intraday Auction Trades Additional Intraday Auction Profit

TWh Mio. EUR TWh Mio. EUR

CCGT 0.19 1.5 (7.9 EUR/MWh) 0.04 0.23 (5.7 EUR/MWh)
Lignite 2.5 54.1 (21.6 EUR/MWh) 0.05 0.3 (6 EUR/MWh)

According to the second scenario considered, participating in the intraday auction

yields additional profits that are depicted in the column Additional Intraday Auction

Profit. Based on the simplified model calculations, additional revenues that may be

gained by both types of power plants in the intraday auction exceed the respective

costs of market entry many times over. For example, a lignite power plant could

earn an additional yearly profit of EUR 300,000 compared to an initial payment of

EUR 7,000 and a yearly fee of EUR 5,000. However, we are well aware that besides

fees for market entry additional costs may be relevant. These may, for example, refer

to implementing a new trading department or paying wages of traders. As these cost

components are difficult to quantify, we do not consider these costs explicitly within

this paper. Nevertheless, our results provide an indication that costs of market entry

may not hinder participation in the intraday auction. Quite the contrary, there are

economic incentives to participate in this market.

5.5 Fundamental Analysis

We choose a fundamental modeling approach in order to simulate price relations

under different restrictions referring to technical constraints and cross-border trade.

In the following, we briefly outline the main characteristics of the chosen modeling

approach.
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5.5.1 Modeling Approach

The modeling approach adopted within this paper extends the electricity system

optimization model DIMENSION which has been developed at the Institute of Energy

Economics (EWI) at the University of Cologne (Richter, 2011) and which has been

applied in numerous studies (see, e.g., Jägemann (2014), Bertsch et al. (2015) and

Knaut et al. (2016)). In general, the model so far allows to simulate the hourly

dispatch within the internal European electricity market. In order to address the

research issues in question, we extend the model to account for a quarter-hourly

temporal resolution. In more detail, we mimic the interaction of two simultaneously

settled markets with first hourly and second quarter-hourly products. The objective

function of the model aims at satisfying the demand at minimum total system costs.

The short-term marginal costs embody a proxy for the electricity price. The model is

implemented as a linear program (LP) in GAMS. We focus on simulating the quarter-

hourly dispatch in 2015 in order to compare our results with historical observations.

In the following, we first depict and explain the most relevant model characteris-

tics as well as basic equations and constraints before we then analyze the modeling

results. In Section 5.7.6 the overall model is presented in a condensed way with

focus on the formalization. Table 5.4, Table 5.5, and Table 5.6 give an overview on

the notation applied.

Table 5.4: Sets

Model Sets

Abbreviation Description

a ∈ A Technologies
s ∈ S; S ⊂ A Storage technologies
c, c1 ∈ C Market regions
c’, c′1 ∈ C’; C’ ⊂ C Market regions with cross-border trade on a 15-minute level
q ∈ Q Quarter-hourly time intervals
h ∈ H Hourly time intervals
hq ∈ H Set of hours that belong to a specific quarter-hourly time interval
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Table 5.5: Parameters of the electricity system optimization model

Model parameters

Abbreviation Dimension Description

aca [EUR/MWhel] Attrition costs for ramping
avq,a,c [%] Availability
dq,c [MW] Total demand in 15-minute resolution to be satisfied
efa [t/MWhth] Emissions per fuel consumption
fua [EUR/MWhth] Fuel price (full load)
fuml

a [EUR/MWhth] Fuel price (min load)
cp [EUR/t ] CO2 emission price
ina,c [MW] Installed capacity
mla [%] Minimum part load level
rra [%] Maximum ramp rate
sta [h] Start-up time from cold start
ηa [%] Net efficiency (generation)

Table 5.6: Variables of the electricity system optimization model

Model variables

Abbreviation Dimension Description

hDh,c [MW] Trade quantities on an hourly level
qDq,c [MW] Trade quantities on a quarter-hourly level
CUq,a,c [MW] Capacity that is ramped up within one quarter-hour
CDq,a,c [MW] Capacity that is ramped down within one quarter-hour
CRq,a,c [MW] Capacity that is ready to operate in each quarter-hour
hGEh,a,c [MWel] Hourly electricity generation
qGEq,a′ ,c [MWel] Quarter-hourly electricity generation
hIMh,c,c1

[MW] Hourly net imports in c from c1

qIMq,c′ ,c′1
[MW] Quarter-hourly net imports in c′ from c′1

hSTh,s,c [MW] Hourly consumption in storage operation
qSTq,s,c [MW] Quarter-hourly consumption in storage operation
TSC [EUR] Total system costs

Objective Function

The electricity system optimization program applied is based on cost minimization.

In more detail, total system costs (TSC) comprise the variable costs of electricity gen-

eration (Costsvar), additional costs for part-load operation (Costspar t−load), start-up

costs (Costsstar t), and ramping costs (Costsramping).

TSC =
∑

c∈C

∑

a∈A

∑

q∈Q

�

Costsvar
q,a,c + Costspar t−load

q,a,c + Costsstar t
q,a,c + Costsramping

q,a,c

� (5.1)
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First, the net electricity generation that stems from dispatching on an hourly and

quarter-hourly level is multiplied with fuel as well as CO2 emission prices what yields

the variable costs of electricity generation (Costsvar) (5.2).

Costsvar
q,a,c = (

∑

hq∈H

hGEhq ,a,c + qGEq,a,c) · (
f ua

ηa
)

+ (
∑

hq∈H

hGEhq ,a,c + qGEq,a,c) · (
cp · e fa

ηa
) (5.2)

Depending on the configuration, part-load losses (Costspar t−load) may be consid-

ered (5.3). They comprise linearized losses depending on the difference between

the fuel costs at full load and minimal load and the share of the overall generation

capacity that is operated below the totally available generation capacity.

Costspar t−load
q,a,c = (CRq,a,c −

∑

hq∈H

hGEhq ,a,c − qGEq,a,c) ·
� f uml

a − f ua

ηa

�

·
� mla
1−mla

�

(5.3)

Furthermore, we include start-up costs (Costsstar t). Based on expert opinions

gained from industrial project partners, we link start-up processes to a doubling in

fuel consumption (5.4). We are aware that this is a simplifying linear approach not

exactly reflecting the complexity of real-world start-up processes. Nevertheless, we

are thereby sufficiently capable to account for start-up costs within the analyses.

Costsstar t
q,a,c = CUq,a,c · (

f ua

ηa
)

(5.4)

Finally, we consider ramping costs (Costsramping) which reflect increasing attrition

if the electricity generation deviates from the respective value in the previous period.

Ramping costs are linked to wear and tear of technical components (5.5).

Costsramping
q,a,c = (CUq,a,c + C Dq,a,c) · aca

(5.5)
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Regional Coverage and Equilibrium Constraints

We consider Germany as well as its neighboring countries in order to reduce the

computational complexity7. The availability of processing cross-border trade is lim-

ited by exogenous historical net transfer capacities (NTC) and we account for the

respective average grid losses.

Each market area is characterized by power balance conditions reflecting that na-

tional demand plus the demand of storage units equals the intra-zonal electricity

generation plus net imports in each time step at equilibrium. To derive the national

demand (dq,c), we use historical load data from 2015 that we extracted from the

ENTSO-E transparency platform (ENTSO-E, 2017) and apply the respective load

structure to the overall electricity demand in 2015. Since the data does not provide

a quarter-hourly temporal resolution for all countries, we interpolate the respective

hourly values where necessary. As we furthermore target to mimic the interaction

of two simultaneously settled markets, where the market with increased product

granularity is characterized by restricted participation, we use the following three

equilibrium conditions:

hDhq ,c + qDq,c = dq,c ∀q, c (5.6)

∑

a∈A

hGEh,a,c +
∑

c1∈C

hI Mh,c,c1
−
∑

s∈S

hSTh,s,c = hDh,c ∀h, c (5.7)

∑

a∈A

qGEq,a,c +
∑

c′1∈C ′
qI Mq,c,c′1

−
∑

s∈S

qSTq,s,c = qDq,c ∀q, c. (5.8)

Equation (5.6) determines that the overall inelastic demand on a quarter-hourly

level dq,c may be supplied by hourly dispatched as well as quarter-hourly dispatched

generation units. The hourly supply (hGE) is a positive rational number, whereas

the quarter-hourly supply (qGE) may be negative as well which accounts for neg-

ative adjustments compared to the hourly supply schedule. At the same time, all

generation units have to remain net suppliers. Finally, the quarter-hourly decision

variables are limited by constraints that refer to restricted participation and will be

explained in more detail below.

7The neighboring countries comprise Austria, Belgium, the Czech Republic, Denmark, France, the
Netherlands, Poland and Switzerland.
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Generation units

Different types of power plants are grouped into vintage classes. We consider con-

ventional, nuclear, thermal and storage generation units as well as renewable power

plants. The renewables are essentially subdivided into generation units based on

wind power (onshore and offshore), solar power, hydro power and biomass. At the

same time, we distinguish whether generation units are combined heat and power

plants (chp) and we include a condition reflecting that the German heat demand in

the domestic as well as in the industrial sector has to be supplied by all German chp

power plants. As this is not the focus in this paper, further insights can be found in

Richter (2011) and Jägemann (2014).

The installed capacities of each type of generation unit are mainly based on his-

torical values and we present the resulting generation capacity in 2015 in Table 5.7.

Table 5.7: Installed capacity in 2015

Type Gross Capacity [GW]

Hard Coal 25.41
Lignite 19.94
Natural Gas 31.37
Oil 3.92
Nuclear 10.73
Pumped Storage 6.49
Run of River / Seasonal Storage 5.16
Wind 42.60
Wind onshore 39.32
Wind offshore 3.28
Photovoltaics 38.36
Biomass 7.29
Others 1.60

We use data on the average power plant availability in order to limit the maximum

electricity generation by each type of generation unit. The net electricity generation

which results from hourly and quarter-hourly dispatch may not exceed the total

installed capacity multiplied with the respective availability (5.9).

∑

hq∈H

hGEhq ,a,c + qGEq,a,c ≤ avq,a,c · ina,c ∀q, a, c (5.9)

At the same time, the electricity generation, if present, has to exceed the minimum

load (5.10).
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∑

hq∈H

hGEhq ,a,c + qGEq,a,c ≥ mla · CRq,a,c ∀q, a, c (5.10)

The electricity generation from wind and solar power and the respective feed-in

structure is fixed to historical values from 20158, which are provided by the ENTSO-

E and EEX transparency platforms (ENTSO-E (2017) , EEX (2017b)).

Analyzing the short-term power market flexibility in Germany, storage technolo-

gies play a crucial role. These technologies especially include pump and hydro stor-

age generation units. The respective plants are mainly characterized by storage

level restrictions, turbine as well as pump capacity, exogenous injections as well as

withdrawals and efficiency parameters. We determine an arbitrary target value for

the storage value implying that the storage level at the beginning of the optimiza-

tion period shall equal the respective one in the last period under consideration.

Besides, we consider some flexibility potential based on demand-side management.

Here demand-side management includes various sources such as industrial processes

(e.g., aluminium-electrolysis and cement mills), heating, aeration and ventilation in

the service, municipal and domestic sector, and electric vehicle flexibility potentials.

We determine a specific demand-side management potential and the overall elec-

tricity demand of the respective processes has to be balanced along the modeling

period.

Technical Constraints

Three main pillars referring to technical constraints of power plants are considered.

These include ramping constraints, part-load losses and start-up restrictions.

First, ramping in both directions is restricted by maximum ramp rates which were

extracted from various projects in collaboration with industrial partners. The re-

spective data is depicted in Table 5.18 in Section 5.7.4. The available generation

capacity in each time step depends on the available capacity in the period before as

well as the capacity that has been ramped up or down. We implement the equations

listed in (5.11).

8In Germany these were approx. 79 TWh electricity generation from wind and 35 TWh from photo-
voltaic power plants.
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CRq,a,c = CRq−1,a,c + CUq−1,a,c − C Dq−1,a,c ∀q, a, c

CUq,a,c ≤ r ra · (ina,c − CRq,a,c) ∀q, a, c

C Dq,a,c ≤ r ra · (CRq,a,c) ∀q, a, c
(5.11)

Finally, start-up constraints are transferred into additional limits for the capacity

that may be ramped up according to (5.12).

CUq,a,c ≤
ina,c − CRq,a,c

sta
∀q, a, c (5.12)

All of these technical constraints are linked to additional costs that are included

in the objective function.

Electricity Market Prices

In this paper, we are especially interested in price relations. Therefore, we derive

prices based on the fundamental modeling results. Being a linear program, we are

able to interpret the marginals on the power balance constraints as the marginal costs

of electricity generation. The marginal on Equation (5.7) may thus be regarded as

reflecting the electricity price in the market with hourly products, whereas we con-

sider the marginal on (5.8) allowing to draw conclusions on the respective quarter-

hourly electricity prices. As we are not interested in absolute price levels, but in the

comparison of price relations, the application of marginals is assumed to be suitable.

5.5.2 Results

We address the fundamental impact of technical constraints and a lack of cross-

border trade on electricity prices by gradually implementing or relaxing additional

constraints in the model in order to analyze the respective impact on prices. We com-

pare the specific results based on descriptive key figures. These, inter alia, include

the minimum as well as maximum values, the standard deviation, and percentile

thresholds. We refer to prices ph reflecting the marginals on the hourly power bal-

ance constraint and to prices pq as marginals on the respective quarter-hourly con-

straint.
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Reference Case and Model Validation

We aim to link our model results to the real-world market outcome by analyzing a

Reference Scenario Sre f , in which we mimic the actual day-ahead and intraday mar-

ket interaction for 2015. Such reference case is a fundamental model run including

all technical constraints that refer to power plant inflexibility as outlined above. Fur-

thermore, we assume that there is no quarter-hourly market coupling. We expect this

setup to represent the current status of the electricity markets in Germany and the

neighboring countries.

In order to evaluate the model validity, we compare prices derived from the fun-

damental model results and real price data for 2015. Based on the comparison in

Table 5.8, we suggest that the model is able to reproduce the average price level

in 2015 well, but rather fails in reproducing comparably high and low price levels.

This deficiency of linear fundamental models is well known and is the result of nu-

merous model assumptions. First, the aggregation of generation units into vintage

classes causes a lack of accuracy regarding the actual diversity of power plants. As a

result, we expect the prices simulated in the model framework not to represent the

actual variability of electricity prices. As a second aspect, the assumption of perfect

foresight does not comply with the real-world problem. We therefore expect that

our results may be downward-biased with regard to restricted participation since

our assumptions can be regarded being rather optimistic as far as the participation

in markets with sub-hourly contract duration is concerned. However, as we do not

aim at forecasting as well as interpreting absolute price levels, but rather intend to

derive conclusions on the fundamental impact of restricted participation on price

relations, our simulation approach still appears suitable. Nonetheless, we are well

aware of the limited generalizability of our results regarding actual electricity prices.

According to Knaut and Paschmann (2017b), restricted participation causes a dis-

tinct price pattern that is characterized by quarter-hourly prices fluctuating around

the respective hourly ones. The sub-hourly price volatility is much higher than the

hourly one. The model applied in this article is basically able to reproduce such char-

acteristic price pattern as shown in Figure 5.2. In order to characterize the extent

of the quarter-hourly price deviations from hourly means, we use two indicators for

sub-hourly price volatility in the following. These are mean absolute price difference

(ph - pq) and standard deviation price difference (ph - pq). Even though the levels of

both indicators signify less pronounced price fluctuations in our model runs com-

pared to historical data (by up to factor seven) (see Table 5.8), we are yet confident

that relative comparisons of different scenarios yield meaningful indicators for our
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Table 5.8: Summary statistics for the reference case and historical prices

Sre f [EUR/MWh] Historical [EUR/MWh]

Mean (pq) 30.25 31.66
Mean (ph) 30.25 31.63

Min (pq) 8.56 -164.48
Min (ph) 10.49 -79.94

10% Percentile (pq) 23.59 14.52
10% Percentile (ph) 23.47 16.26
90% Percentile (ph) 36.89 47.44
90% Percentile (pq) 37.52 49.64

Max (pq) 83.41 464.37
Max (ph) 52.82 99.77

Mean absolute price difference (ph - pq) 0.87 6.57
Standard deviation price difference (ph - pq) 1.60 9.28

further analysis.
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Figure 5.2: Daily pattern of average hourly and quarter-hourly price levels in the reference
model run

The role of power plant flexibility

We are first interested in whether power plant inflexibility may serve as a sufficient

explanatory approach for restricted participation in the intraday auction. Whereas,

as a reflection of reality, all types of model restrictions related to technical constraints

of generation units are considered in the Reference Scenario Sre f , we now aim at an-
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alyzing whether neglecting power plant flexibility constraints may trigger restricted

participation and the resulting characteristic price pattern to disappear. Thus, we

set up the ’No-Ramping Scenario’ (Snoramp) without technical constraints. Again

cross-border trade on a quarter-hourly level is not permitted. We choose a com-

parative illustration and depict the fundamental model results for both scenarios in

Figure 5.3. In the graph, we present average price relations for each quarter-hour

of the day along the modeling period. Further details including descriptive statistics

on the hourly as well as quarter-hourly price levels can be found in Table 5.23 in

Section 5.7.8.

In order to comment on whether the quarter-hourly price volatility observed in

historical data may stem from technical constraints, we compare the two target fig-

ures mean absolute price difference and standard deviation of price differences between

both scenarios (Table 5.9).
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Figure 5.3: Daily pattern of average hourly and quarter-hourly price levels in the reference
model run (Sre f ) and the model run without ramping restrictions (Snoramp)

Table 5.9: Evaluation of price differences: The role of power plant flexibility

Target Figure Snoramp [EUR/MWh] Sre f [EUR/MWh]

Mean absolute price difference (ph - pq) 0.51 0.87
Standard deviation price difference (ph - pq) 0.99 1.6

Our modeling results suggest that neglecting technical constraints causes a de-
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creasing price volatility in the market with quarter-hourly contract duration9. More

precisely, we find that the standard deviation of price differences decreases by 60%

if we do not account for technical constraints. However, we still observe that the

15-minute electricity price proxies are significantly fluctuating around the respec-

tive hourly ones. The characteristic price pattern, which we trace back to restricted

participation, is still applicable. Therefore, we find an indication that additional in-

fluencing factors may trigger the pattern observed. In the next section, we hence

aim at assessing the relative impact of power plant inflexibility in comparison to a

lack of market coupling on a quarter-hourly level.

The Role of Market Coupling

We compare fundamental model results for both a scenario without any cross-border

trade on a sub-hourly level and a scenario with full market coupling. At the same

time, we include all technical constraints referring to power plant flexibility. Simply

put, we compare the Reference Case (Sre f ) with a scenario in which quarter-hourly

cross-border trade is permitted (S f ul lcb). We use target figures analogous to the

previous sections. The respective results are illustrated in Figure 5.4.
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Figure 5.4: Daily pattern of average hourly and quarter-hourly price levels in the reference
model run (Sre f ) and model run with cross border trade on a quarter-hourly level
(S f ul lcb)

9We analyze the individual impact of all types of technical constraints considered in more detail in
Section 5.7.7.
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Table 5.10: Evaluation of price differences: The role of market coupling

Target Figure Sre f [EUR/MWh] S f ul lcb [EUR/MWh]

Mean absolute price difference (ph - pq) 0.87 0.24
Standard deviation price difference (ph - pq) 1.6 0.55

The permission of cross-border trade on a 15-minute level clearly induces a con-

vergence of hourly and 15-minute prices which can be traced back to increased mar-

ket participation. Furthermore, the Reference Case’s price pattern in which quarter-

hourly prices are fluctuating around the respective hourly ones tends to disappear

if quarter-hourly market coupling is implemented. Additionally, according to Table

5.10, the mean absolute price difference as a proxy for restricted participation and

price volatility decreases by a factor close to four. All in all, we find an indication

that the lack of sub-hourly market coupling is the main driver of restricted participa-

tion in the market with quarter-hourly contracts. We furthermore derive the welfare

impact of implementing sub-hourly market coupling based on our modeling results.

The total system costs (5.1) would decrease by EUR 55 million if 15-minute cross-

border trade was permitted. These numbers are similar to the estimates derived in

Knaut and Paschmann (2017b).

5.6 Conclusion

In this paper, we analyze three plausible drivers of restricted participation in the

German intraday auction with 15-minute contract duration in detail. As the overall

efficiency of sequential market designs decreases with limited market participation,

it is crucial to identify the underlying drivers in order to take countermeasures.

First, we are interested in whether costs of market entry may represent an eco-

nomic driver of not participating in the intraday auction while, in contrast, partici-

pating in the day-ahead auction. Based on economic calculations for different types

of generation units, we find an indication that this may not be consistent with the

individual economic decision rationales.

Second, we apply a fundamental electricity market model in order to evaluate

the impact of both power plant inflexibility as well as a lack of sub-hourly market

coupling on the quarter-hourly price volatility. Our results indicate that the lack of

market coupling on a quarter-hourly level is the most relevant driver of restricted

participation in the German intraday auction. Based on our results, we finally sug-
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gest that additional market coupling may cause the 15-minute price volatility to

decrease by a factor close to four.

Our results may serve as a basis for deriving countermeasures in order to reduce

inefficiencies that result from restricted participation in electricity markets with sub-

hourly products. It may be beneficial for policy makers to urge the implementation

of quarter-hourly market coupling across the internal European electricity market

as, at least partially, addressed by the ’XBID’ project. At the same time, understand-

ing the most relevant drivers of restricted participation in the intraday auction may

help power plant operators to forecast the impact of policy measures such as intro-

ducing sub-hourly market coupling on the resulting prices. This is crucial in order to

evaluate long-term business strategies. Finally, our methodological approach points

out that energy system models may benefit from a quarter-hourly temporal resolu-

tion, especially when seeking to model the investment decisions of flexible genera-

tion units. The model allows to simulate sequential market dynamics with differing

product granularity and different types of market coupling.

5.7 Appendices

5.7.1 Empirical Analysis

In order to assess the impact of introducing a new trading opportunity on the result-

ing price relations, we empirically analyze the development of the respective market

dynamics over time. We thereby get an indication for the maturity of the market.

The empirical results help shedding light on the role of inertia and the state of not

knowing of market participants. Our estimation approach heavily builds on the ap-

proach applied in Knaut and Paschmann (2017b). In the following, we first depict

the data used. We then present our estimation procedure and evaluate the respective

results.

Data

Our empirical analysis is based on data from January 1, 2015 until April 30, 2017.

We conduct the empirical estimation on a quarter-hourly level. Table 5.11 gives an

overview on all relevant data included. We furthermore provide a brief explanation

regarding each parameter. Supplementary, the respective descriptive statistics are

presented in Table 5.12.
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We include general price data for the day-ahead and intraday auction which is

provided by the European Power Exchange (EPEX SPOT SE, 2017c). As regards the

main explanatory variables, we first gathered the day-ahead forecasts for the elec-

tricity generation from wind and solar power since trade in the spot markets under

consideration is based on forecasted values. The respective data is available on the

transparency platform of the European Energy Exchange (EEX, 2017b). Second, we

use the realizations of the actual system load10. The respective load values, as a

proxy for the overall electricity demand11, are accessible via data provided by the

Transmission System Operators (TSOs) on the transparency platform of the Euro-

pean Network of Transmission System Operators for Electricity (ENTSO-E, 2017).

Table 5.11: List of variables and references

Symbol Label Variable Measure Reference

pida
t id auction price Uniform settlement price for a

15-minute product in the
German intraday auction

EUR/MWh EPEX SPOT SE
(2017c)

pda
t day-ahead price Hourly German day-ahead

auction price
EUR/MWh EPEX SPOT SE

(2017c)
Dres

t ; Dres
t residual demand

15 residual
demand 60

Residual demand in a
15-minute period and the
respective hourly mean

GW EEX (2017b) ,
ENTSO-E (2017)

∆Dres
t residual demand

deviation
Difference of the 15-minute
residual demand and the
respective hourly mean
(Forecasts)

GW EEX (2017b) ,
ENTSO-E (2017)

Solart ;
Solar t

solar power 15
solar power 60

Day-ahead forecast for the
15-minute solar power and the
respective hourly mean
(ex-ante value)

GW EEX (2017b)

Windt ;
Wind t

wind power 15
wind power 60

Day-ahead forecast for the
15-minute wind power and the
respective hourly mean
(ex-ante value)

GW EEX (2017b)

Dt ; Dt load 15; load 60 Realization of the 15-minute
load and the respective hourly
mean

GW ENTSO-E (2017)

10Here we use ex post instead of ex ante values as we find the respective data matching the causal
relations under analysis with higher accuracy. The forecasted values available exhibit systematic
deviations which are not consistent with the economic rationales of the market participants con-
sidered. Therefore, we expect the realizations of the system load to match the actual level of
information more accurately.

11For more details on load see Schumacher and Hirth (2015).
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Table 5.12: Descriptive Statistics (Units according to 5.11, N refers to the number of
observations)

Variable N Mean Std.Dev. Min 25% Median 75% Max

id auction price 81,663 31.49 15.89 -164.48 22.62 30.57 39.92 464.37
day-ahead price 81,663 31.42 14.12 -130.09 23.94 30.29 38.11 163.52
residual demand 15 81,663 41.67 11.09 0.95 34.36 41.59 49.58 73.00
residual demand 60 81,663 41.67 11.06 1.86 34.39 41.60 49.56 72.39
residual demand deviation 81,663 0.00 0.81 -12.27 -0.39 0.00 0.38 8.82
solar power 15 81,663 3.92 6.06 0.00 0.00 0.07 6.19 27.18
wind power 15 81,663 9.58 7.47 0.30 3.83 7.43 13.23 39.56
load 15 81,663 55.17 10.00 25.04 46.81 54.85 64.09 78.09

Empirical Estimation

We use Ordinary Least Squares (OLS) regression techniques and apply estimation

equation (5.13) with the intraday auction price being the dependent variable.

pida
t = β1 · Dres

t + β2 · (Dres
t − Dres

t) + ν+ εt

with εt ∼ N (0,σ2),
(5.13)

Here the intraday auction price is modeled as a deviation from the respective

day-ahead price which was settled before. Simply put, we use a reference price

approach in which the increased product granularity induces imbalances that cause

new market equilibria in the second market stage, the intraday auction. However,

since we aim at comparing the estimates that reflect the impact of trade quantities on

prices, we replace the day-ahead price with the hourly residual demand (Dres). We

base our procedure on the fact that the hourly residual demand is the main driver

of trade in the day-ahead auction. At the same time, we are well aware that not

directly including the day-ahead price causes a minor loss of explanatory power.

According to Section 5.3, we additionally include the deviation of the quarter-

hourly residual load from its hourly mean (Dres
t − Dres

t) as the main driver of addi-

tional trade needs on a quarter-hourly level in the intraday auction. We furthermore

estimate a constant intercept in order to be able to interpret the R2. Finally, we use

robust standard errors to account for heteroscedasticity.

Based on both an Augmented Dickey Fuller as well as a Phillips-Perron test (see

5.7.2), we reject the hypothesis of non-stationary processes. We additionally expect

our estimation approach not to be biased by endogeneity since our explanatory vari-

ables are based on forecasted values that have been generated before the day-ahead

market settlement. We do not include actual trade volumes but a proxy for the to-
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tal electricity demand. Thus, the market outcome is assumed not to have a direct

impact on the variables used. Additionally, the solar and wind power depend on

weather conditions that are exogenously given. Overall, we hence assume a unidi-

rectional impact of the explanatory variables on the dependent variable. It is worth

considering issues related to omitted variables. In Knaut and Paschmann (2017b),

the authors show that forecast errors do not have a significant impact on the intra-

day auction price as they tend to reveal closer to physical delivery and are far more

likely to be balanced within continuous intraday trade. Furthermore, we got sev-

eral expert opinions of energy trading companies giving evidence that there is no

informational update between both market settlements. Since cross-border trade is

furthermore not permitted within the intraday auction, imports and exports, which

are typical variables with potential influence on the price formation, are not worth

considering.

We apply two OLS specifications (OLS (1) and OLS (2)). Whereas in OLS (1) we

aim at measuring the average increase of the gradient of the supply curve in the

intraday auction compared to the day ahead auction, OLS (2) focuses on structural

changes over time. In more detail, in OLS (2) we separately estimate the coefficients

for the years 2015, 2016, and 2017 by interacting the explanatory variables with the

respective time dummies. Thereby, we are able to comment on effects related to the

introduction of the intraday auction and inertia.

Similar to the analysis presented in Knaut and Paschmann (2017b), we identify a

significant increase of the gradient of the intraday auction supply curve by a factor

higher than seven compared to the respective one in the day-ahead auction. Our es-

timates exhibit sufficient explanatory power with the R2 being above 66%. Based on

OLS (2), we furthermore infer that the respective relation of the coefficients slightly

decreases from factor 8.5 in 2015 to factor 6.5 in 2016. However, the impact of

restricted participation is again exacerbated in the first four months of 2017 and we

identify a factor of 7.3. It has to be taken into account that the findings for 2017 are

solely based on four months of observations. It may be worth analyzing a prolonged

period in future research. Nevertheless, we find an indication that inertia as the

state of not knowing is only a minor driver of restricted participation in the intraday

auction. A high difference between the hourly and quarter-hourly gradients is per-

sistent over time. To sum up, our estimation results suggest that effects related to

introducing a new trading opportunity and inertia do not trigger the major share of

restricted participation in the intraday auction.
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Table 5.13: Regression estimates for intraday auction price data

Dependent variable: id auction price (pida
q,t )

Explanatory variable OLS (1) OLS (2)

residual demand 60 (Dres
h,t ) 1.03∗∗∗

(0.005)
2015 2016 2017

1.03∗∗∗ 0.95∗∗∗ 1.16∗∗∗

(0.004) (0.004) (0.006)

residual demand deviation (∆Dres
t ) 7.65∗∗∗

(0.08)
2015 2016 2017

8.75∗∗∗ 6.21∗∗∗ 8.49∗∗∗

(0.14) (0.10) (0.22)

intercept (ν) -11.26∗∗∗ (0.19) -10.84∗∗∗ (0.17)
observations 81,663 81,663
adj. R2 0.66 0.70
F 26,273 11,366

Notes to Table 5.13: Robust standard errors in parentheses. ∗ / ∗∗ / ∗∗∗ : significant at the
0.05 /0.02 / 0.01 error level respectively. In OLS (2) we interact the explanatory variables
with yearly time dummies. We use data from January 2015 until the end of April 2017.

5.7.2 Unit Root Tests

We apply both an Augmented Dickey Fuller test and a Phillips-Perron test for unit

roots. The respective test results are displayed in Table 5.14 (Dickey and Fuller,

1979, Phillips and Perron, 1979). The Phillips-Perron test uses Newey-West stan-

dard errors in order to account for serial correlation. The null hypothesis of both

tests is that there is a unit root in the periods of observation. We tested the Akaike

Information Criterion (AIC) in order to determine the optimal lag lengths. As the

AIC results are ambiguous for the variables considered and tend to indicate using

as many lags as tested for, we use the Schwert rule of thumb and consider a leg

length of 65 (Schwert, 1989). We prefer making a slight error due to including too

many lags since Monte Carlo experiments suggest that this procedure is preferable

to including too few lags. In order to give evidence for the robustness of our results,

we repeated the tests for different lag lengths. Within the scope of the Augmented

Dickey Fuller test, we extend the basic test of a random walk against a stationary

autoregressive process by including a drift and a trend term. As far as the listed

results are concerned, we decide whether to include a trend or constant by checking
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the significance of the trend/constant parameters at a 5% significance threshold.

Table 5.14: Unit root tests

Augmented Dickey Fuller (Levels) Philipps-Perron Test (Levels)
Variable statistic p-value lags statistic p-value lags

id auction price -18.34 0.00 65 -188.27 0.00 65
day ahead price -16.32 0.00 65 -24.04 0.00 65
residual demand 60 -12.36 0.00 65 -21.71 0.00 65
residual demand deviation 15 -47.20 0.00 65 -683.70 0.00 65

5.7.3 Profitability Analysis Model Description

Table 5.15: Sets of the model applied for profitability analyses

Sets

Abbreviation Description

q ∈ Q Quarter-hourly time intervals
h ∈ H Hourly time intervals
hq ∈ H Set of hours that belong to a specific quarter-hourly time interval

Table 5.16: Parameters of the model applied for profitability analyses

Model parameters

Abbreviation Dimension Description

η [%] Net efficiency (generation)
fu [EUR/MWhth] Fuel price incl CO2 (full load)
fuml [EUR/MWhth] Fuel price incl CO2 (min load)
in [MW] Installed capacity
ml [%] Minimum part load level
rr [%] Maximum ramp rate
pDA,h [EUR/MWhel] Day-ahead auction price
pI D,q [EUR/MWhel] Intraday auction price
st [h] Start-up time from cold start

Table 5.17: Variables of the model applied for profitability analyses

Model variables

Abbreviation Dimension Description

GEh [MWel] Day-ahead electricity generation
∆GEq [MWel] Quarter-hourly production schedule as deviation from day-ahead supply
Oq [MW] Bool whether plant is in Operation
Startq [MW] Bool whether start-up process is initiated
Profit [EUR] Profit of power plant
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We apply profit maximization.

maximize
GEh,∆GEq

Pro f i t =
∑

q

��

∑

hq

1
4
· RevenueDA,hq

�

+ RevenueI D,q − CostsProduct ion,q − CostsStar tup,q

�

whith

RevenueDA,h = GEh · (pDA,h − 0.04)

RevenueI D,q =∆GEq ·
1
4
· (pI D,q − 0.07)

CostsProduct ion,q =

∑

hq
GEhq

+∆GEq

η
· f u

+ (Oq · in−
∑

hq

GEhq
−∆GEq) ·

f uml − f u
η

·
ml

1−ml

CostsStar tup,q = Star tq ·ml · in ·
f u
η

(5.14)

The revenue terms include transaction costs which depend on the specific market

place. These are actual fees charged on the exchange. Based on expert opinions, we

assume start-up procedures to cause doubled fuel costs.

We consider the following constraints:

∑

hq

GEhq
+∆GEq ≤ in ·Oq ∀q (5.15)

∑

hq

GEhq
+∆GEq ≥ ml ·Oq ∀q (5.16)

∑

hq

GEhq
+∆GEq ≥ 0 ∀q (5.17)

∑

hq

GEhq
+∆GEq −

∑

hq−1

GEhq−1
+∆GEq−1 ≤ r r ∀q (5.18)
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∑

hq−1

GEhq−1
+∆GEq−1 −

∑

hq

GEhq
+∆GEq ≤ r r ∀q (5.19)

Without going into detail with respect to the exact formula, we furthermore ac-

count for the fact that a generation unit may only be in operating mode (Oq = 1)

if a start-process (Star tq=1) has been initiated several period before, according to

Start-up time from cold start.

5.7.4 Techno-economic parameters

Table 5.18: Techno-economic parameters for conventional power plants. Note: We consider
several vintage classes for each type of generation unit. Depending on the con-
struction year, we thus depict ranges for specific parameters.

Net efficiency Max ramp rate Availability Start-up time Minimum part-load
[%] [%/Min] [%] [h] [%]

Coal 37 - 46 0.02-0.033 84 5 - 7 27 -40
Coal (innovative) 50 0.4 84 4 27

Lignite 32 - 43 0.02-0.025 86 10 - 11 35 - 60
Lignite (innovative) 47 0.04-0.05 86 7 30

CCGT 40 - 60 0.05-0.08 86 2 - 3 40 - 70
OCGT 28 - 40 0.1-0.25 86 0.25 40 - 50

Nuclear 33 0.04 92 24 45
Biomass (solid) 30 1 85 1 30

5.7.5 Fuel and carbon dioxide emission costs

Table 5.19: Fuel costs and CO2 emission costs 2015

Type Costs [EUR/MWhth]

Nuclear 3.5
Lignite 3.5
Oil 27.7
Coal 8.9
Gas 18.4

CO2 emission price [EUR/tCO2] 2015

CO2 4.8

5.7.6 Model Overview

Minimize
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TSC =
∑

c∈C

∑

a∈A

∑

q∈Q

�

Costsvar
q,a,c + Costspar t−load

q,a,c + Costsstar t
q,a,c + Costsramping

q,a,c

� (5.20)

with

Costsvar
q,a,c = (

∑

hq∈H

hGEhq ,a,c + qGEq,a,c) · (
f ua

ηa
)

+ (
∑

hq∈H

hGEhq ,a,c + qGEq,a,c) · (
cp · e fa

ηa
) (5.21)

Costspar t−load
q,a,c = (CRq,a,c −

∑

hq∈H

hGEhq ,a,c − qGEq,a,c) ·
f uml

a − f ua

ηa
·

mla
1−mla

(5.22)

Costsstar t
q,a,c = CUq,a,c · (

f ua

ηa
)

(5.23)

Costsramping
q,a,c = (CUq,a,c + C Dq,a,c) · aca

(5.24)

such that

hDhq ,c + qDq,c = dq,c ∀q, c (5.25)

∑

a∈A

hGEh,a,c +
∑

c1∈C

hI Mh,c,c1
−
∑

s∈S

hSTh,s,c = hDh,c ∀h, c (5.26)

∑

a∈A

qGEq,a,c +
∑

c′1∈C ′
qI Mq,c,c′1

−
∑

s∈S

qSTq,s,c = qDq,c ∀q, c (5.27)
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∑

hq∈H

hGEhq ,a,c + qGEq,a,c ≤ avq,a,c · ina,c ∀q, a, c (5.28)

∑

hq∈H

hGEhq ,a,c + qGEq,a,c ≥ mla · CRq,a,c ∀q, a, c (5.29)

CRq,a,c = CRq−1,a,c + CUq−1,a,c − C Dq−1,a,c ∀q, a, c (5.30)

CUq,a,c ≤ r ra · (ina,c − CRq,a,c) ∀q, a, c (5.31)

C Dq,a,c ≤ r ra · (CRq,a,c) ∀q, a, c (5.32)

CUq,a,c ≤
ina,c − CRq,a,c

sta
∀q, a, c (5.33)

5.7.7 Details on the Impact of Individual Technical Constraints

In the following, we shed light on the individual impact of all types of technical

constraints considered. Therefore, we add further model restrictions in a step-wise

manner while assuming that cross-border trade on a quarter-hourly level is not per-

mitted. Starting without any constraints referring to ramping and start-up character-

istics (S1), we consider limits to ramp rates in S2 and compare the respective model

results. In the left graph of Figure 5.7.7, we illustrate average price relations in each

quarter-hour of the day along the modeling period. In the right table, we present

the respective descriptive statistics for the hourly as well as quarter-hourly price lev-

els. In order to comment on whether the quarter-hourly price volatility observed in

historical data may stem from technical constraints, we compare the mean absolute

price differences and the standard deviation of price differences as indicators for

price volatility.
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Figure 5.5: No ramping vs raming rate

Snoramp S2

Min 10.3/10.1 10.3/10.1

10% 23.6/24.0 23.7/24.0

Mean 30.1/30.1 30.1/30.1

90% 36.9/36.9 36.9/36.9

Max 44.1/44.1 44.1/44.1

STD 5.9/6.0 5.9/6.0

Table 5.20: No ramping vs

raming rate

Table 5.21: Evaluation of price differences [EUR/MWh]
Target Figure Snoramp S2

Mean absolute price difference (ph - pq) 0.51 0.54
Standard deviation price difference (ph - pq) 0.99 1.05

We identify that power plant inflexibility, which is incorporated by ramp rates, only

has very small impact on the quarter-hourly price volatility. Moreover, comparing

the price lines in the graph, we find an indication that both scenarios are quite similar

with regard to price volatility. More details are presented in Table 5.21. Based on the

target figures Mean absolute price difference and Standard deviation price difference,

we find that adding ramping constraints only causes a slight increase of the price

volatility. The average absolute price difference increases by approximately 6%.

In a second step, we aim at analyzing the impact of further technical constraints

by including part-load losses and start-up constraints. Again we refer to the target

figures from above and present the respective modeling results in Table 5.22. For

the sake of simplicity, we focus on the resulting price differences. The expression S2

means the inclusion of ramp rates, whereas in S3 we additionally consider part-load

losses. Finally, S4 extends the previous model runs and start-up constraints as well

as the related costs are implemented.

The results suggest a progressively increasing quarter-hourly price volatility. Fi-

nally, adding attrition costs resulting from ramping processes, we obtain the Ref-

erence Scenario (Sre f ) which is evaluated in detail within the article. Overall, our

modeling results suggest that the most significant change regarding the quarter-
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Table 5.22: Evaluation of price differences [EUR/MWh]

Target Figure S2 S3 S4

Mean absolute price difference (ph - pq) 0.54 0.61 0.65
Standard deviation price difference (ph - pq) 1.05 1.14 1.21

hourly price volatility is induced by considering ramping and start-up costs.

5.7.8 Descriptive Statistics on Model Results

Table 5.23: Descriptive statistics on model results (electricity prices [EUR/MWh]) evaluating
the impact of technical constraints

Snoramp Sre f

Min 10.3/10.1 10.5/8.6
10% 23.6/24.0 23.5/23.6
Mean 30.1/30.1 30.3/30.3
90% 36.9/36.9 37.5/36.9
Max 44.1/44.1 52.8/83.4
STD 5.9/6.0 6.2/ 6.4

Table 5.24: Descriptive statistics on model results (electricity prices [EUR/MWh]) evaluating
the impact of sub-hourly market coupling

Sre f S f ul lcb

Min 10.5/8.6 10.3/10.3
10% 23.5/23.6 23.8/23.8
Mean 30.3/30.3 30.1/30.1
90% 37.5/36.9 36.9/36.9
Max 52.8/83.4 44.1/44.1
STD 6.2/ 6.4 5.9/5.9
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6 Economic Analysis of Price Premiums in the
Presence of Non-convexities - Evidence from
German Electricity Markets

Analyzing price data from sequential German electricity markets, namely the day-

ahead and intraday auction, a puzzling but apparently systematic pattern of price

premiums can be identified. The price premiums are highly correlated with the un-

derlying demand profile. As there is evidence that widespread models for electricity

forward premiums are not applicable to the market dynamics under analysis, a the-

oretical model is developed within this article which reveals that non-convexities in

only a subset of sequential markets with differing product granularity may cause sys-

tematic price premiums at equilibrium. These price premiums may be bidirectional

and reflect a value for additional short-term power supply system flexibility.

6.1 Introduction and Research Question

Economic theory suggests that the limited storability of electricity may pose limits

to arbitrage. Price levels in sequential markets may hence differ significantly and

sudden changes in prices may be identified. At the same time, recent developments

are characterized by the establishment of sequential short-term electricity markets in

Germany to deal with the increasing share of highly volatile intermittent renewable

electricity generation. A trend of trading shorter contracts closer to the physical

delivery may be identified. These markets face an ongoing increase in trade volumes,

but the economic understanding of the respective market dynamics has yet to be

deepened.

In this paper, an analysis of price premiums in the context of two sequential Ger-

man short-term electricity markets is conducted. The day-ahead auction is cleared

at noon one day ahead delivery and offers hourly products. It is regarded as pro-

viding the most relevant reference price for subsequent trade. Second, the intraday

auction is considered which is settled three hours afterwards and allows for trading

quarter-hourly contracts.
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In the research area of electricity markets, the model presented in Bessembinder

and Lemmon (2002) embodies a widespread explanatory approach for price premi-

ums between forward and real-time electricity markets. However, there is evidence

that the model is not applicable to price premiums between the day-ahead and intra-

day auction. The rapid succession of both market settlements without updated in-

formation requires the derivation of an alternative approach to decode the puzzling

pattern of price premiums identified. Therefore, a theoretical model is developed

to analyze price premiums in the presence of non-convexities in sequential markets

with differing product granularity.

The model uncovers that non-convexities being more pronounced in only a subset

of sequential markets may lead to both negative or positive price premiums. The

direction of price premiums depends on the market settlement being in particular

sections of the underlying merit order. Indeed, the real-world data reveals a high

correlation of load and the direction as well as the value of price premiums. It may

be stressed that the price premiums under analysis incorporate a value of additional

short-term power system flexibility rather than reflecting a value of risk. Analyz-

ing the cost-saving potential from smoothing these non-convexities, a proxy for the

value of additional power system flexibility could be derived. On a national level,

this is approximately EUR 10.2 million in 2015. The corresponding value for flexi-

bility which is provided by neighboring countries is EUR 6.4 million in 2015. These

are rather small numbers, but yet the general model framework may easily be trans-

ferred to other applications such as sequential block and single unit auctions.

It is crucial to understand the fundamental properties of the price premiums iden-

tified as they may reflect market needs or even indicate inefficiencies. As regards the

day-ahead and intraday auction, the price premiums are, at least partially, triggered

by restricted participation in the intraday auction. The introduction of cross-border

market coupling on a sub-hourly level may be beneficial to reduce the resulting wel-

fare losses. From a business perspective, the findings and the systematology uncov-

ered are relevant to evaluate business strategies building on the price differences

observed.

The article is organized as follows. In Section 6.2 the paper is positioned in the

existing literature and a broad overview on possible limits to arbitrage is provided.

In a next step, an empirical analysis of price premiums in the German day-ahead

and intraday auction is presented in Section 6.3. To gain insights into the drivers of

the price premiums under consideration, a theoretical analysis is conducted within

Section 6.4. The respective results are then contextualized in Section 6.5. Finally,
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conclusions are drawn.

6.2 Literature Background

The Fundamental Theorem of Asset Pricing depicts conditions for arbitrage-free and

complete markets (Dybvig and Ross, 1987). In particular, the coincide of stochastic

processes and equivalent martingales causes markets not to exhibit unexploited ar-

bitrage opportunities. Based on this theory, in Weber (1981) the author states that

prices in sequential auctions epitomize a martingale where, on average, prices nei-

ther go systematically up nor down over time. The Law of One Price furthermore

clarifies that in perfect financial markets goods should have an identical price across

all locations (Isard (1977) and Richardson (1978)). However, real-world markets

may require a more differentiated view.

The general impact of sequential market designs on prices has extensively been

studied (see, e.g., Allaz and Vila (1993), Juvenal and Petrella (2015), Kilian and

Murphy (2014), Knittel and Pindyck (2013)). In Mezzetti et al. (2007), the au-

thors suggest a lowballing effect reducing the first stage market price. As regards

the application to real markets, in Ardeni (1989) it is stressed that the Law of One

Price does not hold true for sequential commodity markets, at least in the long run.

Based on the example of electricity markets, empirical evidence for this hypothesis

is provided in Ito and Reguant (2016). The authors identify systematic price pre-

miums in forward markets. Taking up on the general idea of non-convergence of

sequential markets’ prices, a concept of equilibrium models with a certain degree of

disequilibrium is developed in Grossman and Stiglitz (1980).

Economic theory suggests that prices in sequential markets may particularly dif-

fer in the case of limited arbitrage. In Grossman and Stiglitz (1980), the authors

identify transaction costs as a first plausible driver of systematic price differences

in sequential markets (see, e.g., Ardeni (1989), Jha and Wolak (2015)). Second,

market power abuse may trigger price spreads since dominant firms may not benefit

from exploiting arbitrage opportunities (Ito and Reguant, 2016). As a third factor,

risk aversion may drive the Law of One Price to fail (McAfee and Vincent, 1993).

For illustration purposes, in Ashenfelter (1989) the author analyzes wine auctions

and observes significant differences in prices for identical goods. The respective ex-

planatory approach is based on risk aversion, quantity constraints, and asymmetric

information. Such asymmetries regarding market participants may also refer to an

asymmetric valuation of goods and different preferences (Bernhardt and Scoones
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(1994), Salant (2010)).

One further category of explanatory approaches for limited arbitrage refers to in-

stitutional and regulatory schemes. In Borenstein et al. (2008), the authors point out

that uncertainty about a regulatory change may trigger prices in sequential markets

to differ and empirical evidence from Californian electricity markets is presented. Fi-

nally, newly emerging markets may trigger learning processes leading to price differ-

ences shortly after introducing a new trading opportunity (Doraszelski et al., 2016).

In this paper, focus is placed on price relations within sequential electricity mar-

kets. Following economic theory, electricity exhibits unique features that cause a

need for a differentiated analysis compared to other commodities such as oil and

gas. First, the limited potential to store huge amounts of electricity poses limits

to arbitrage opportunities. Furthermore, limited access to capital and strict regu-

lation for financial players may be relevant (Birge et al., 2014). In Bessembinder

and Lemmon (2002), the authors develop an equilibrium model that is supposed to

be tailored for sequential electricity markets. In doing so, the authors suggest that

forward premiums are negatively affected by high price volatility. At the same time,

they identify a positive correlation of forward premiums and the skewness of prices

in the real-time market. Complementary to Bessembinder and Lemmon (2002), in

Longstaff and Wang (2004) the authors present empirical evidence from US electric-

ity markets that the theoretical model is actually applicable to real-world data. In

contrast to their scope, the analysis conducted within this article focuses on electric-

ity markets with fundamentally different market characteristics. Above all, there is

essentially no informational update between both market settlements. Nevertheless,

a similar pattern of price premiums is observed yielding a puzzle which is yet to be

solved.

6.3 Empirical Analysis of Price Premiums in the German

Day-ahead and Intraday Auction

An empirical analysis of price premiums between the German day-ahead and in-

traday auction provides first insights on the topic under analysis. The day-ahead

auction is settled at noon one day ahead physical delivery. The respective products

are hourly contracts for the physical delivery of electricity. Following the day-ahead

auction, the intraday auction with 15-minute contract duration is settled one day
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ahead delivery at 3pm1. Both markets exhibit a uniform market price. Additionally,

both market stages are settled in rapid succession such that there is no significant

informational update that impacts trade (Knaut and Paschmann, 2017b)2. Since

trade in both markets refers to physically binding contracts without pure financial

clearing, the main purpose is matching supply and demand according to the contract

duration offered, rather than speculation and risk hedging. More precisely, in Knaut

and Paschmann (2017b) the authors show that the interaction of the day-ahead and

intraday auction is essentially driven by increasing product granularity (hourly vs.

quarter-hourly) and restricted participation in the intraday auction. In Knaut and

Paschmann (2017a), the authors furthermore clarify that the lack of sub-hourly mar-

ket coupling may be regarded as the most relevant driver of restricted participation

in the German intraday auction.

Since the product granularity increases from the day-ahead to the intraday auc-

tion, arbitrage refers to bundles of goods. Four evenly distributed contracts which

are traded in the intraday auction may act as a perfect substitute for the respec-

tive day-ahead contract. Arbitrage is even facilitated by the rapid succession of the

market settlements. As the market characteristics hence basically comply with the

no-arbitrage argument, it could be expected to find mean price equivalence. Never-

theless, systematic price premiums in individual hours of the day can be identified

when analyzing historical price data. For illustration purposes, the distribution of

price premiums for the individual hours of the day is presented in Figure 6.1. The

figure is based on price premiums which are defined as the difference between the

day-ahead auction price and the mean price level of the corresponding four intra-

day auction contracts. The target figure is derived according to Equation (6.1). The

analysis is based on historical day-ahead and intraday auction price data from Jan-

uary 16, 2015 until November 2, 2016 (EPEX SPOT SE, 2016a) and the respective

descriptive statistics are presented in detail in Table 6.2 in Section 6.7.1.

∆p = pda y−ahead −

∑t4
t=t1 pint rada y

t

4
(6.1)

In Figure 6.1 mean values are marked in red and the black lines give the median

values. The green boxes range from the second to the third quartiles, whereas the

dashed lines illustrate the 10 % and 90 % percentiles. Furthermore, the dashed hor-

1For more details on the purpose of implementing the intraday auction complementary to continuous
intraday trade see Neuhoff et al. (2016). As regards the market depth, an illustration of average
trade volumes is presented in Section 6.7.7.

2The influence of forecast errors on the resulting market prices is negligible.
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Figure 6.1: Distribution of differences between day-ahead and intraday auction prices com-
pared to the respective transaction costs (January 16, 2015 - November 2, 2016)

izontal lines highlight the transaction costs. Based on the exact numbers which are

presented in column Mean of Table 6.2, the conclusion can be drawn that in individ-

ual hours (i.e., e.g., h2 and h15) positive price premiums clearly outweigh negative

ones. However, in other hours (such as in h19) reverse relations can be identified.

The direction of price differences hence varies during the course of the day. In the

majority of hours these price differences even exceed the direct transaction costs

for trading, which are demanded by the exchange3. More specifically, positive price

premiums, for example, range between 0 ct/MWh and 77 ct/MWh and the respec-

tive average is 29 ct/MWh. Nevertheless, the aggregate net price premium across

all hours of the day approximately equals the transaction costs.

Based on the empirical findings, it could be expected that market participants

may anticipate the direction of price differences and exploit additional arbitrage

opportunities. As this is not reflected by the real-world data, it is relevant to deepen

the understanding of the underlying drivers.

3These are 0.04 EUR/MWh in the day-ahead and 0.07 EUR/MWh in the intraday auction (EPEX SPOT
SE, 2016b).
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The pattern of price premiums identified, albeit less pronounced, is comparable

to the findings of prior literature dealing with price differences between electricity

forward and real-time markets (see, e.g., Longstaff and Wang (2004) and Viehmann

(2011)). This is rather counterintuitive since some basic characteristics of the market

configurations under analysis differ crucially. In particular, there is no informational

update between the day-ahead and intraday auction. The lack of risk reduction be-

tween both market settlements does not comply with the assumption of risk premi-

ums. Additionally, whereas in Longstaff and Wang (2004) the authors give empirical

evidence for the applicability of the equilibrium pricing model presented in Bessem-

binder and Lemmon (2002), an analogous procedure is essentially not transferable

to price differences between the day-ahead and intraday auction. More precisely,

building on the empirical approach adopted in Longstaff and Wang (2004), a simple

empirical analysis may be conducted to test for the correlation of price premiums

and the variance as well as the skewness of the day-ahead spot prices. Detailed re-

sults are presented in Section 6.7.2. In short, there is empirical evidence that this

explanatory approach is not applicable to the price premiums under analysis.

The analyses presented within this article follow the general idea presented in

Knaut and Paschmann (2017b) and seek to analyze the impact of restricted partic-

ipation on sequential commodity market prices. Whereas the respective modeling

approach in Knaut and Paschmann (2017b) appears suitable to analyze general price

relations on an aggregate level, a need for extending the model may be identified

when analyzing the price formation in individual hours. More precisely, the analysis

conducted within this paper is especially motivated through the observation of pro-

nounced stepped shapes in real-world bid curve data as examplified in Section 6.7.3.

Therefore, a theoretical framework is developed within this essay to analyze the in-

fluence of non-convexities in only a subset of sequential markets on the resulting

price relations.

6.4 Theoretical Analysis

Two classes of suppliers (restricted and unrestricted) are distinguished, both of which

interact in two simultaneously4 settled markets that differ in terms of product gran-

ularity and market participation. Both types of suppliers participate in the first mar-

4Due to the rapid succession of both market settlements, information in both markets is considered
to be identical. This assumption is furthermore supported by energy trading companies confirming
that there is no relevant informational update between both market settlements.
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ket, whereas in the second market only unrestricted suppliers are able to participate.

The first stage product is split up into two identical sub-contracts for the periods t

(t ∈ t1, t2) that can be traded in the second market. The sub-contracts may com-

bined act as a perfect substitute for the first stage product.

Consumers may demand a different positive quantity Dt in each time interval t5.

Demand is satisfied under perfect competition by both restricted and unrestricted

suppliers. Both suppliers operate production units with increasing marginal costs of

production.

As the quantities of both types of suppliers are chosen under perfect competition,

the following optimization problem can be formulated. Simply put, the total pro-

duction costs are minimized such that supply meets demand.

min z =Cr(q
r) +

∑

t

�

Cu,t(q
u
t )
�

(6.2)

s.t. Dt =qr + qu
t ∀t. (6.3)

Here Cr(qr) marks the overall costs for the production level qr of all restricted

suppliers. The costs are determined by the first market’s outcome as restricted sup-

pliers are not permitted to participate in the second market with shorter contracts.

In contrast, Cu,t(qu
t ) refers to the respective production costs for unrestricted suppli-

ers in period t. The quantity qu
t may vary in each time period and results from the

first and second markets’ settlements.

The set of restricted suppliers is characterized by an aggregate marginal cost curve.

In more detail, Equation (6.4) depicts that a linear shape is assumed. The parameter

a0 determines a fixed offset, whereas ar
1 is the gradient of the restricted supply curve.

C ′r(q
r) = a0 + ar

1qr | a0 > 0, ar
1 > 0 (6.4)

With respect to unrestricted suppliers, a stepped discontinuity within their marginal

cost function is considered. Hereby, it is accounted for a case in which unrestricted

participation is somehow systematic and its impact on the resulting market dynam-

ics may vary depending on the market settlement being in particular sections of the

merit order (Equation (6.5)). For the sake of simplicity, the offset (a0) is the same

as in the case of restricted suppliers.

5Demand in electricity markets is characterized as being rather price inelastic. This is especially valid
for short-term markets as considered in this paper (see, e.g., Lijesen (2007) and Knaut and Paulus
(2016)).
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C ′u,t(q
u
t ) =







a0 + au
1qu

t qu
t ≤Qdisc | a0 > 0, au

1 > 0

a0 +∆disc + au
1qu

t qu
t >Qdisc | a0 > 0, au

1 > 0
(6.5)

The parameter Qdisc (> 0) may be regarded as the threshold which determines

the discontinuous section of the merit order. Furthermore, a respective step height

of ∆disc is considered. For illustration purposes, Figure 6.2 depicts the respective

relations. The lack of unrestricted suppliers within a particular section of the merit

order is transformed into a marginal cost function with a stepped shape. Thereby,

the aggregated merit order of both restricted and unrestricted suppliers is dynamic

and depends on the demand quantities.

Figure 6.2: Illustration of the market configuration under analysis

The analysis is based on the assumption of an increasing demand profile (Dt2 >

Dt1) and hence the resulting mixed complementarity problem can be solved on the

basis of the corresponding Karush-Kuhn-Tucker (KKT) conditions.

Proposition 6.1. If demand exceeds a certain threshold such that the optimal produc-

tion level of unrestricted suppliers under continuous relations would exceed the non-

convexity, it is cost-optimal to fix the production of unrestricted suppliers and satisfy

additional demand exclusively by restricted suppliers. Thereby, excess supply by re-

stricted suppliers compared to the case of continuous relations can be identified. This

quantity choice is optimal as long as the additional costs due to exclusive supply by
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restricted suppliers are outweighted by avoided costs due to the discontinuous step.

Proof. The detailed mathematical proof is outlined in Section 6.7.4. The optimal

production level of restricted suppliers depending on the respective demand level

may be defined according to Equation (6.6). The corresponding production level of

unrestricted suppliers may be directly derived by the use of Equation (6.3).

qr ∗ =







































(Dt1+Dt2)
2 · au

1
ar

1+au
1

(a1)Dt2 ≤
2·Qdisc ·(ar

1+au
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1
2·ar
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1
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1+au
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1
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1
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(6.6)

Furthermore, this essay aims to shed light on the respective price implications.

Proposition 6.2. In the presence of non-convexities, mean price equivalence is not a

necessary condition at equilibrium. Rather to the contrary, positive price premiums

may be identified that range between 0 and 0.5 ·∆disc .

Proof. As the market outcome is determined under perfect competition, the respec-

tive inverse demand functions could directly be applied to draw conclusions on

prices. The equations derived in (6.7) have to be satisfied at equilibrium. Here

m1 refers to the first market where both restricted and unrestricted suppliers are

permitted to participate. The second market with restricted participation and in-

creased product granularity is named m2
t . It is worth mentioning that the first mar-

ket’s price is directly determined by the marginal costs of restricted suppliers as the

respective production may only be traded within the first market. Furthermore,

C ′r(q
r)≥

(C ′u,t1(q
r )+C ′u,t2(q

r ))
2 is valid.

p(m1) = C ′r(q
r)

p(m2
t ) = C ′u,t(q

r)
(6.7)

These price relations provide the basis to analyze whether the discontinuity may

trigger price differences between the sequential markets at equilibrium6. Equation

(6.8) can be used to calculate the respective price differences.

6To bridge the gap to the mathematical proof in 6.7.4, it is assumed that ε→ 0.
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∆p = p(m1)− p(m2
t ) =


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

































0 (a1)

(Dt2 −Qdisc) · ar
1 −

(Dt1−Dt2+2·Qdisc)·au
1

2 (a2)

0 (a3)

(Dt1 −Qdisc) · ar
1 +

(Dt1−Dt2−2·Qdisc)·au
1

2 − ∆disc
2 (a4)

0 (a5)

(6.8)

Inserting the respective thresholds for Dt2 according to (6.6) into the second term

of (6.8) yields a price difference that ranges between 0 and 0.5 ·∆disc . Inserting the

respective thresholds for Dt1 into the fourth term (a4) yields analogous relations.

Since there are positive and negative price differences in the real-world price data,

it may be worth analyzing the impact of non-convexities not only in the framework

of unrestricted suppliers, but also extending the previous considerations to restricted

suppliers.

The idea of considering non-convexities in the supply curve of either unrestricted

or restricted suppliers may be motivated through a simplified illustration of the

merit order for the German power plant fleet and its neighboring countries7 assum-

ing unlimited cross-border transmission capacity. The simplifying classification that

unrestricted suppliers embody German power plants, whereas restricted suppliers

are, in particular, located in the neighboring countries, is derived from Knaut and

Paschmann (2017a). The authors stress that the lack of sub-hourly market coupling

is the most relevant driver of restricted participation in the intraday auction. Figure

6.3 depicts the respective marginal costs depending on the underlying fuel costs as

well as the CO2 emission costs. Non-dispatchable renewable electricity generation

is neglected. In addition, Figure 6.4 illustrates the aggregate supply curve of both

types of suppliers. Hereby, it is facilitated to derive conclusions on the impact of

non-convexities in either the restricted or unrestricted supply curve depending on

the overall demand level. The underlying data is extracted from the fundamental

electricity market model DIMENSION which is presented in more detail in Knaut

and Paschmann (2017a) and (Richter, 2011). For simplification purposes and as

the bidding behavior of flexible pumped storage generation units is a complex issue

which is not in the focus of this paper, the respective generation capacities are illus-

7Denmark, the Netherlands, Belgium, France, Switzerland, Austria, Poland and the Czech Republic
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trated in both edge regions of the merit order. Depending on the operational mode,

pumped storage power plants may buy cheap electricity and produce electricity in

periods with comparably higher prices.

Figure 6.3: Stylized illustration of the unrestricted and restricted supply curves

Figure 6.4: Stylized aggregate merit order for Germany and its neighboring countries

The figures already convey the idea that there are significant non-convexities in

particular sections of the merit order. These considerations are also reflected and ob-

servable in real-world bid curve data from the German day-ahead and intraday auc-

tion (Section 6.7.3). The prevalence of non-convexities being more pronounced in
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either the restricted or unrestricted supply curve may vary depending on the overall

demand level. Non-convexities within the German merit order tend to be especially

relevant if demand is rather high.

Proposition 6.3. Negative price premiums may stem from discontinuities in the marginal

cost curve of restricted suppliers. The maximum price difference is bounded by −∆disc′ ,

which is the step height of the respective discontinuity. Overall, the frequency of posi-

tive and negative price differences depends on the market clearing being in particular

sections of the merit order where non-convexities in either the unrestricted or restricted

supply curve are more pronounced.

Proof. The detailed proof is similar to the previous one and outlined in Section 6.7.6.

As a result, if the merit order of restricted suppliers exhibits a non-convex section,

Equation (6.9) depicts the optimal production level.

qr ∗ =















(Dt1+Dt2)
2 · au

1
ar

1+au
1

(b1)Dt2 + Dt1 ≤
2·(Qdisc′+ε)·(ar

1+au
1)

au
1

Qdisc′ + ε (b2)
2·(Qdisc′+ε)·(ar

1+au
1)

au
1

< Dt1 + Dt2 ≤
2·(Qdisc′+ε)·(ar

1+au
1)+2·∆disc′

au
1

(Dt1+Dt2)
2 · au

1
ar

1+au
1
− ∆disc

ar
1+au

1
(b3)Dt1 + Dt2 >

2·(Qdisc′+ε)·(ar
1+au

1)+2·∆disc′

au
1

(6.9)

Price implications can be derived analogous to the procedure applied in Equation

6.8 in Proposition 6.2. The relation p(m1) = C ′r(q
r), however, is no longer a neces-

sary condition as the average marginal costs of unrestricted suppliers now exceed the

respective marginal costs of restricted suppliers. Depending on the trading decision

of unrestricted suppliers, the first stage market price may either be p(m1) = C ′r(q
r)

or p(m1) =
(C ′u,t1(q

r )+C ′u,t2(q
r ))

2 . However, the arbitrage-free second market’s price may

exceed the respective price in the first market at equilibrium since the non-convexity

eliminates additional opportunities for arbitrage8.

As regards the electricity markets under consideration, it may furthermore bring

value added to analyze additional costs which are attributable to the non-convexities.

Against this backdrop, the costs in a framework with non-convexities could be com-

pared to a benchmark which would be a continuous merit order for both types of

suppliers. Thereby, the monetary value of smoothing non-convexities is calculated.

The respective difference in costs yields the value of additional flexibility from a

system perspective. Once more, the classification unrestricted suppliers is linked to

national generation capacity.
8In the real world, the strategic rationale of agents on the demand side may support this allocation as

they face an incentive not to pay the higher marginal costs of unrestricted suppliers to all restricted
suppliers within a uniform price auction.
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Proposition 6.4. A naive proxy for the additional costs attributable to non-convexities

within the supply curve of unrestricted suppliers may be estimated as EUR 10.2 million

in 2015. Furthermore, a similar proxy for the value of additional power system flexibil-

ity in neighboring countries may be derived. The respective estimate is EUR 6.4 million.

Proof. First, the case of a non-convexity within the cost function of unrestricted

suppliers is considered. It is sufficient to analyze the respective additional costs

in terms of the scenario (a2) due to symmetric relations. For the sake of simplicity,

the lower threshold for D2 in the case of (a2) may be substituted with the term D̂t

and Equation (6.10) could be defined.

∆Costs(Dt − D̂t) =∆Costs(x)

=
4 · (ar

1)
5 + 12 · (ar

1)
4 · au

1 + 14 · (ar
1)

3 · (au
1)

2 + 8 · (ar
1)

2 · (au
1)

3 + 9
4 · a

r
1 · (a

u
1)

4 + 1
4 · (a

u
1)

5

8 · (ar
1)4 + 24 · (ar

1)3 · a
u
1 + 26 · (ar

1)2 · (a
u
1)2 + 12 · ar

1 · (a
u
1)3 + 2 · (au

1)4
· x2

(6.10)

The respective cost implications are mainly driven by the gradient of the restricted

supply curve (see Section 6.7.5). Analogous results can be derived for the case of a

discontinuous marginal cost curve of restricted suppliers.

∆Costs(Dt − D̂t) =∆Costs(x)

=
1
4 · a

r
1 · (a

u
1)

2 + 1
4(a

u
1)

3

2 · ((ar
1)2 + 2 · ar

1 · a
u
1 + (a

u
1)2)
· x2

(6.11)

Here welfare losses are mainly driven by the gradient of the unrestricted supply

curve.

To derive estimates from real-world price data, as x is unobservable, the relation

Dt − D̂t = x =
∆(p(m1),p(m2

t ))
ar

1
may be exploited . In the case of negative price premi-

ums, ar
1 is to be substituted by au

1.

To derive numbers for the gradients ar
1 and au

1, empirical estimates presented in

Knaut and Paschmann (2017b) can be used. The aggregate day-ahead merit order

exhibits a gradient of approximately 0.96 EUR/GWh and is defined by ar,u
1 =

ar
1·a

u
1

ar
1+au

1
.

Additionally, the aggregate gradient of the unrestricted suppliers (au
1) may be ap-

proximated as 7.65 EUR/GWh. This yields an estimate for ar
1 which is 1.1 EUR/GWh.

Inserting these estimates into (6.10), additional costs due to non-convexities may be

calculated according to Equation (6.12).
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∆Costs(∆(p(da), p(idt)))







= 1145.5 ·∆(p(da), p(idt))2 ∆(p(da), p(idt))< 0

= 690.94 ·∆(p(da), p(idt))2 ∆(p(da), p(idt))> 0

(6.12)

The term da marks the day-ahead and id the intraday auction. Applying the

respective relations to all price differences observed in 2015 (EPEX SPOT SE, 2016a),

the cost terms presented above can be derived.

As regards the interpretation of these estimates, the limits of this approach should

be taken into account. Nevertheless, the respective numbers yield a naive indication

for the magnitude of the value of additional short-term power system flexibility.

6.4.1 Numerical Example

For illustration purposes, this section provides a simple numerical example. More

precisely, the set of parameters is defined according to Table 6.1.

Table 6.1: Numerical example: Parameter assumptions
Parameter Value
ar

1 1
au

1 2
Qdisc′ 4
∆disc′ 5
Qdisc 12
∆disc 10

Motivated through empirical observations in the electricity markets under analy-

sis, it is assumed that the gradient of the unrestricted supply curve (au
1) exceeds the

respective gradient of the restricted supply curve (ar
1). The increment is assumed

to be twice as high as in the case of restricted producers. As regards restricted sup-

pliers, a non-convexity (∆disc′) is considered if the production level is rather low

(Qdisc′). In contrast, in the case of unrestricted suppliers, there is a discontinuous

step (∆disc) at a higher quantity (Qdisc).

Demand first increases according to a linear shape and then decreases again. The

resulting hourly production level over time of both restricted and unrestricted sup-

pliers is illustrated in Figure 6.5.
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Figure 6.5: Optimal production level in the numerical example

If the production level of restricted suppliers approximates the non-convexity thresh-

old (Qdisc′ = 5), the respective supply is fixed and compensated by an increased pro-

duction level of unrestricted suppliers (b2). Based on the gradient of the unrestricted

supply curve (au
1 = 2), this allows for cost savings as long as the additional supply

of unrestricted suppliers in both time periods does not exceed the quantity 2.5. If

demand continues to increase, the overall production level of restricted suppliers

is adjusted downward compared to the case of continuous relations. As a conse-

quence, all thresholds for Dt2, which were presented in Equation (6.6), are adjusted

by subtracting the term ∆disc′
ar

1+au
1
. If the optimal production level of unrestricted sup-

pliers under continuous relations would now exceed the respective discontinuous

step (Qdisc = 12), reverse relations can be identified and additional supply by unre-

stricted suppliers is replaced by an increased production level of restricted suppliers

((a2) and (a4)).

In a next step, conclusions on the resulting price differences between both markets

may be drawn. Figure 6.6 presents the simulated prices for the numerical example.

For illustration purposes, the maximum feasible price difference for the case of a

non-convexity within the restricted supply curve is considered.

Dependent on the demand level, the direction of price differences at equilibrium

may vary. If the non-convexity in the restricted supply curve causes an unbalanced

increase of production by unrestricted suppliers, the price in the market with shorter

contracts is higher compared to the first market with unrestricted participation and

vice versa. If the demand level exhibits a high temporal variability (Dt1 6= Dt2), the
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Figure 6.6: Price implications in the numerical example

impact of a non-convexity in the unrestricted supply curve on the respective price

premiums is limited to half the step height (∆disc). Finally, it is worth mentioning

that price volatility may temporarily increase significantly if unrestricted supply in

only one period exceeds the non-convexity.

6.5 Empirical Application

Following the theoretical model, price premiums in sequential markets with differing

product granularity may stem from non-convexities being more pronounced in only

a subset of the sequential market stages. As a prerequesite, a differing supplier

structure in the German day-ahead and intraday auction can be identified which is

triggered by restricted participation in the market with sub-hourly products (Knaut

and Paschmann, 2017a). The sharp stepped shape of the underlying bid curves may

result in a varying frequency of non-convexities dependent on the market settlement

being in particular sections of the merit order. Bearing this is mind, a systematic

correlation between the individual supply curves and the resulting price differences

is to be expected. An analysis of the correlation of load and price premiums by the

use of historical data facilitates to test for these relations.

Based on the illustration of marginal cost curves for generation units in Germany

and its neighboring countries in Figure 6.3 and Figure 6.4, the following expectations
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could be formulated9:

1. Non-convexities are more pronounced in the right area of the German merit

order. The day-ahead price may hence be expected to exceed the respective

intraday auction price if demand is rather high.

2. Compared to its neighboring countries, Germany has a comparably large share

of low-cost generation units, for example, due to nuclear and lignite-fired

power plants. Negative price premiums, if any, would rather be expected to

coincide with low demand.

3. The overall stepped shape of the merit order is less pronounced within the

smoother marginal cost curve of restricted suppliers. The extremes of positive

price premiums may hence exceed the maximum negative price differences.

It has to be annotated that the use of a common aggregate supply curve crucially

depends on the assumption of sufficient cross-border capacity. A respective lack

may trigger additional non-convexities. The empirical analysis will provide insights

with respect to the validity of the three hypotheses. Since in short-term electricity

markets the residual load is commonly used in order to map demand, data was gath-

ered which is provided by ENTSO-E (2017) and EEX (2017b) to derive the residual

demand as the difference between the overall system load and the electricity gener-

ation from renewable energy plants. The period of observation ranges from January

16, 2015 until November 2, 2016. Figure 6.7 illustrates the average hourly devia-

tion of the residual demand from its overall mean. Positive values hence embody

hours with a comparably high residual demand. Apparently, daily profiles of the

residual load exhibit distinct recurrent patterns. Furthermore, the corresponding

average price premiums for each hour of the day along the period of observation

are presented. The figure indicates a high correlation between the residual load and

the resulting price differences. If the residual demand tends to be comparably high,

the day-ahead price is on average higher than the respective intraday auction price.

Reverse relations are applicable to hours with a tendency of lower demand.

The initial hypotheses are confirmed by the empirical observations. The historical

data yield an indication that in peak hours the non-convexities in the German supply

curve are more pronounced. A lack of national peak load generation units or pumped

storage power plants may trigger additional electricity imports. There are incentives

to target excess supply within the day-ahead market to avoid extremely high costs

of purchasing additional quantities from unrestricted suppliers in the intraday auc-

9It is worth stressing that actual bidding data may not fully comply with the fundamental merit order.
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Figure 6.7: Average correlation of residual demand and price premiums (January 16, 2015
- November 2, 2016)

tion. As a result, the day-ahead price could be above the respective average intraday

auction price10 (Hypothesis 1).

In contrast, if the residual demand is rather low, the discontinuous shape of the

supply curve of restricted producers tends to drive the resulting price premiums. A

comparably large share of demand is satisfied by unrestricted suppliers. The Ger-

man intraday auction price may exceed the respective day-ahead price as restricted

suppliers do not face the opportunity to shift their trade quantities into the intraday

auction. At the same time, the respective price difference is arbitrage-free due to the

non-convexity within the restricted supply curve (Hypothesis 2). It is finally worth

mentioning that the maximum positive price premium is higher than the maximum

negative price difference (Hypothesis 3).

To deepen the understanding of the analysis, Figure 6.8 presents empirical results

with respect to the role of seasonality. The classification of seasons is based on

metereological dates. As to be expected, the difference between the average residual

load and its overall mean is more pronounced in winter than in summer periods.

Accordingly, the extremes of the price premiums increase by approximately 70%

10Both types of suppliers are expected to prefer trading in the day-ahead market. In order to meet
the residual demand profile, unrestricted suppliers which committed their production capacity via
hourly contracts are willing to pay a price equal to their marginal production costs to reduce their
electricity generation by trading sub-hourly contracts within the intraday auction.
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ranging from 0 to 130 ct/Mwh. These relations support the hypothesis that the

impact of non-convexities is especially relevant in case of extreme demand values.

Figure 6.8: Average correlation of residual demand and price premiums in specific sea-
sons(January 16, 2015 - November 2, 2016)

6.6 Conclusion

This article begins with an analysis of price premiums between two sequential short-

term electricity markets in Germany, namely the day-ahead and intraday auction.

The framework under analysis is characterized by decreasing contract duration and

differing market participation. As both markets are settled in rapid succession with-

out any relevant informational update, it is initially puzzling to identify significant

price premiums in specific hours of the day. Furthermore, these price premiums can

be both positive or negative.

There is empirical evidence that the explanatory approach for price premiums in

electricity markets, which was developed in Bessembinder and Lemmon (2002), is

not applicable to the market dynamics under analysis. To address these issues, a

theoretical model is developed within this article which seeks to analyze the impact

of non-convexities in sequential market designs with differing market participation.

The approach is motivated through the observation of pronounced stepped shapes

in real-world bid curve data. Based on the model, it can be identified that if non-
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convexities are more pronounced in individual sequential market stages, which is

feasible due to the differing supplier structure, significant price premiums may exist.

Additionally, the difference in prices may be both positive or negative depending

on the relevance of non-convexities in particular sections of the underlying supply

curves. This article presents an empirical analysis of real-world data from German

electricity markets. The respective results reveal a correlation between load and

price differences what essentially complies with the underlying model.

The empirical observations suggest that non-convexities in the supply curve of

neighboring countries are especially relevant if the German residual demand is rather

low. As a consequence, the average intraday auction price may be significantly

higher than the respective day-ahead price. Reverse relations can be observed in

peak hours indicating sharp non-convexities in the German merit order due to a

lack of flexible peak load generation units. There are incentives to target excess

supply in the day-ahead auction and hence the respective price may go beyond the

average intraday auction price.

These findings allow to draw the conclusion that the price premiums under consid-

eration reflect a value of additional short-term power system flexibility. In more de-

tail, numerical proxies can be derived yielding a value for smoothing non-convexities

of approximately EUR 10.2 million in 2015 in the case of additional German power

system flexibility. In contrast, the respective estimate for neighboring countries is

EUR 6.4 million in 2015. Even if these are relatively small numbers, the inefficien-

cies uncovered may be exacerbated if the share of renewable energies continues to

increase and if there is a lack of investment incentives for flexible generation units.

It may furthermore be beneficial to urge the implementation of cross-border trade

on a sub-hourly level to align the supplier structures in the day-ahead and intraday

auction.

The model developed in this article supports a better understanding of price pre-

miums and its underlying properties in short-term sequential electricity markets.

However, it may also be applicable to other frameworks, for example, sequential

auctions with block and single unit bids. Finally, the findings presented in this ar-

ticle may favor the evaluation of business strategies targeting to exploit the price

differences identified. A lack of a respective business case is to be expected, as the

market depth in the intraday auction is limited and since the price premiums iden-

tified do not reflect unexploited arbitrage opportunities.
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6.7 Appendices

6.7.1 Descriptive Analysis of Historical Price Premiums

Table 6.2: Descriptive statistics on price premiums between the day-ahead and intraday auc-
tion (day-ahead price - average intraday auction price) [EUR/MWh] (January 16,
2015 until November 2,2016)

Hour Mean Mean (abs difference) Probability positive Min/Max Percentiles (10/90)

h1 -0.2 2.0 44.7% -18.3/13.2 -3.0/3.0
h2 -0.6 2.0 39.0% -10.9/16.1 -3.5/2.5
h3 -0.6 2.4 41.4% -17.8/16.2 -4.2/3.1
h4 -0.5 2.5 42.6% -13.2/17.5 -4.3/3.6
h5 -0.4 2.3 41.2% -12.7/11.8 -3.6/3.2
h6 -0.3 2.1 44.1% -18.6/20.2 -3.6/2.9
h7 -0.3 2.2 48.6% -29.5/16.3 -3.6/3.0
h8 0.1 1.8 53.1% -21.7/9.5 -2.6/3.0
h9 0.2 1.8 55.1% -8.6/13.2 -2.7/3.1
h10 0.2 1.7 53.7% -13.4/9.2 -2.3/2.7
h11 0.2 1.7 55.1% -21.3/9.7 -2.5/2.9
h12 0.0 2.0 50.4% -44.2/13.4 -2.9/3.2
h13 -0.2 2.0 46.0% -29.5/18.6 -3.3/3.0
h14 -0.4 2.1 44.4% -27.0/13.5 -3.5/2.9
h15 -0.7 2.1 41.9% -41.7/17.7 -3.5/2.3
h16 -0.5 1.9 44.0% -37.8/10.7 -3.1/2.4
h17 -0.2 1.8 49.8% -39.5/14.3 -2.9/2.5
h18 0.5 1.9 60.3% -8.2/18.9 -2.4/3.3
h19 0.8 1.9 63.7% -10.6/11.9 -2.0/3.5
h20 0.7 1.9 64.5% -7.5/11.3 -2.2/3.7
h21 0.2 1.7 57.0% -8.0/9.1 -2.5/3.0
h22 0.0 1.8 51.2% -7.4/8.5 -2.8/2.8
h23 0.0 2.0 52.4% -8.5/10.6 -3.3/3.2
h24 -0.7 2.1 41.6% -12.4/12.7 -4.1/2.7
Total -0.1 2.0 49.4% -44.2/20.2 -3.1/3.0

The numbers presented in column Mean (abs difference) reveal that the mean

of the four 15-minute intraday auction prices is on average 2 EUR/MWh lower or

higher respectively than the corresponding hourly day-ahead auction price. Thus,

there tend to be significant differences in prices in each hour. Additionally, the prob-

ability of differences in prices being positive or negative is presented in column Prob-

ability positive.
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6.7.2 Empirical Analysis of Price Premiums and the Underlying Drivers

Table 6.3 depicts descriptive statistics on price premiums between the day-ahead and

intraday auction. Furthermore, the table shows the respective variance and skew-

ness of the underlying day-ahead spot prices. The analysis is based on real-world

data which is provided by (EPEX SPOT SE, 2016a) and ranges from January 16,

2015 until November 2,2016. The Pearson’s first coefficient is used as the skewness

measure which is the difference between the mean and the mode divided by the

standard deviation.

Table 6.3: Descriptive statistics on price premiums between the day-ahead and intraday auc-
tion (day-ahead price - average intraday auction price) [EUR/MWh] (January 16,
2015 until November 2,2016)

Hour Mean price difference Variance of day-ahead prices Skewness of day-ahead prices

h1 -0.2 88.7 -1.17
h2 -0.6 84.8 -1.13
h3 -0.6 82.4 -1.55
h4 -0.5 81.3 -1.42
h5 -0.4 84.3 -1.54
h6 -0.3 102.0 -1.50
h7 -0.3 178.2 -0.80
h8 0.1 191.7 -0.30
h9 0.2 199.1 -0.23
h10 0.2 155.7 0.01
h11 0.2 153.5 0.46
h12 0.0 214.8 2.58
h13 -0.2 129.8 -0.50
h14 -0.4 159.2 -1.65
h15 -0.7 157.1 -1.85
h16 -0.5 147.2 -0.71
h17 -0.2 149.2 -0.66
h18 0.5 176.4 0.20
h19 0.8 179.9 0.38
h20 0.7 149.6 0.54
h21 0.2 107.8 -0.08
h22 0.0 75.0 -0.26
h23 0.0 73.5 -0.16
h24 -0.7 73.4 -0.54

To analyze the correlation between the individual figures in a condensed way, a

simple Ordinary Least Squares (OLS) estimation may be applied which is following

the general idea adopted in Longstaff and Wang (2004). The respective results are

illustrated in Table 6.4. Even if there are issues linked to the small sample size,

it is yet to be expected that the results provide insights on the question of basic

correlations. The respective results yield an indication that there is no significant
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impact of the price volatility on the respective price premiums. Furthermore, the

correlation between the skewness of day-ahead prices and price premiums is at least

questionable. Finally, the F test does not allow for a unique conclusion on whether

the model is more accurate than basically no model at all.

Table 6.4: Regression of price premiums between the day-ahead and intraday auction (day-
ahead price - average intraday auction price) [EUR/MWh]

Dependent variable: Price Premium

Explanatory variable OLS

day-ahead price volatility 0.0015
(0.0013)

day-ahead price skewness 0.248
(0.124)

intercept (ν) -0.19
(0.21)

observations 24
adj. R2 0.48
F 2.97 (p-value:0.07)

Notes to Table 6.4: Robust standard er-
rors in parentheses. ∗ / ∗∗ / ∗∗∗ : signifi-
cant at the 0.05 /0.02 / 0.01 error level
respectively. Data from January 16, 2015
until November 2,2016 is used.

6.7.3 Exemplary Historical Bid Curves

Exemplary historical bid curves are illustrated in Figure 6.9.

6.7.4 Mathematical Proof (Proposition 1)

Since the procedure is based on cost minimization, the overall production costs for

restricted suppliers can be calculated with the use of Equation (6.13).

Cr(q
r) =

∫ qr

0

�

a0 + ar
1 · q

�

dq

= a0 · qr + 0.5 · ar
1 · (q

r)2
(6.13)

As regards the production level of unrestricted suppliers, the respective optimiza-
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i Day-ahead auction May 22, 2015 (7:00-8:00) ii Intraday auction May 22, 2015 (7:45-8:00)

iii Day-ahead auction October 8, 2015
(18:00-19:00)

iv Intraday auction October 8, 2015
(18:15-18:30)

Figure 6.9: Exemplary bid curves observed in the day-ahead and intraday auction

tion variables (qu∗
t1 and qu∗

t2 ) can directly be substituted according to the equilibrium

condition (6.3). Thus, the relation qu∗
t = Dt − qr ∗ may be used so that the variable

qr remains the only decision variable as demand is assumed to be inelastic. The cost

function of unrestricted suppliers in period t (Cu,t(qr)) may hence be formulated

according to Equation (6.14).

Cu,t(q
r) = 0.5 ·















































|1〉0.5 ·
∫ Dt−qr

0 a0 + au
1q dq

= 0.5 ·
�

a0 · (Dt − qr) + 0.5 · au
1 · (Dt − qr)2

�

Dt − qr ≤Qdisc

|2〉0.5 ·
�∫ Qdisc

0 a0 + au
1q dq+

∫ Dt−qr

QDisc+ε
a0 +∆disc + au

1q dq
�

= 0.5 ·
�

a0 · (Qdisc) + 0.5 · au
1 · (Qdisc)2

+(a0 + (Qdisc + ε) · au
1 +∆disc) · (Dt − qr −Qdisc − ε)

+0.5 · au
1 · (Dt − qr −Qdisc − ε)2

�

Dt − qr ≥Qdisc + ε

(6.14)

An infinitesimal small number ε is considered in order to formulate the optimiza-

tion problem with weak inequalities only. The value of ε reflects the smallest trade-

able increment of the production level. As the cost function to apply depends on the
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value of the decision variable, the respective Lagrangian can be set up depending

on both cases i) Dt − qr ≤ Qdisc and ii) Dt − qr ≥ Qdisc + ε for each of the time

periods t1 and t2 to solve the optimization problem. For the sake of simplicity, is is

assumed that the demand profile is increasing and consequently there is a reduced

number of cases to be considered. That is to say, Dt2 > Dt1+ε is valid. As the second

derivative of the total cost function (C total = Cr(qr)+
∑

t Cu,t(qu
t )) is always positive

( ∂
2C total

∂ qr2 = ar
1 + au

1 > 0), all optima are local minimums.

Case1: Dt − qr ≤Qdisc ∀ t

In the first case, the discontinuity is negligible due to comparably low demand. The

respective Lagrangian is presented in Equation (6.15).

L= (−1) · (Cr(q
r) +

∑

t

Cu,t(q
r)) +µt1 · (Qdisc − Dt1 + qr) +µt2 · (Qdisc − Dt2 + qr)

(6.15)

Applying the respective Karush-Kuhn-Tucker (KKT) conditions, the optimal solu-

tion has to satisfy the conditions listed in (6.16).

(−1) ·
∂ Cr(qr)
∂ qr

+
∑

t

�

(−1) ·
∂ Cu,t(qr)

∂ qr
+µt · (Qdisc − Dt + qr)

�

= 0

Dt − qr ≤Qdisc ∀ t

µt · (Qdisc − Dt + qr) = 0 ∀ t

µt ≥ 0 ∀ t

(6.16)

The respective marginal cost functions are formulated in Equation (6.17).

∂ Cr(qr)
∂ qr

= a0 + qr · ar
1

∂ Cu,t(qr)

∂ qr
= −0.5 · a0 − 0.5 · au

1 · (Dt − qr)
(6.17)

There is a need to apply a distinction of cases. More precisely, the following four

scenarios have to be considered to derive the optimal solution.

1. Scenario1: µt1 = 0,µt2 = 0

160



6.7 Appendices

2. Scenario2: µt1 = 0,Qdisc − Dt2 + qr = 0

3. Scenario3: Qdisc − Dt1 + qr = 0,µt2 = 0

4. Scenario4: Qdisc − Dt1 + qr = 0,Qdisc − Dt2 + qr = 0

Due to the assumption of an increasing demand profile (Dt2 > Dt1+ε), Scenario4

may be ignored. Furthermore, Scenario3 is to be neglected because of the definition

of Case1. In the following, both relevant scenarios are analyzed in detail.

Scenario1: µt1 = 0,µt2 = 0

Solving the KKT conditions, the optimal choice for qr can be formulated according

to Equation (6.18). This is essentially the same solution as presented in Knaut and

Paschmann (2017b) for the case of continuous relations.

qr ∗ =
(Dt1 + Dt2)

2
·

au
1

ar
1 + au

1

(6.18)

Such quantity choice yields a valid solution (Dt2−qr ∗ ≤Qdisc) if condition (6.19)

is met.

Dt2 ≤
2 ·Qdisc · (ar

1 + au
1) + Dt1 · au

1

2 · ar
1 + au

1

(6.19)

Scenario2: µt1 = 0,Qdisc − Dt2 + qr = 0

According to the scenario definition, qr is defined as follows:

qr ∗ = Dt2 −Qdisc . (6.20)

Solving for µt2, Equation (6.21) can be derived.

µt2 = (−1) ·
(Dt1 + Dt2) · a1u

2 · (ar
1 + au

1)
(6.21)

Equation (6.21) does not yield a feasible solution as the respective condition

µt2 ≥ 0 is not satisfied. This is due to the assumption of positive values for both

the gradients of the supply curves as well as the demand in the periods t1 and t2

(Dt1, Dt2, ar
1, au

1 > 0).
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Case2: Dt1 − qr ≤Qdisc , Dt2 − qr ≥Qdisc + ε

Based on the solution for Case1, a threshold for Dt2 can be derived above which the

discontinuity has to be considered (Equation (6.19)).

The resulting KKT conditions in Case2 are depicted in (6.22).

(−1) ·
∂ Cr(qr)
∂ qr

+
∑

t

�

(−1) ·
∂ Cu,t(qu

t )

∂ qr

�

+µt1 −µt2 = 0

Dt1 − qr ≤Qdisc

Dt2 − qr ≥Qdisc + ε

µt1 · (Qdisc − Dt + qr) = 0

µt2 · (Qdisc + ε− Dt + qr) = 0

µt ≥ 0 ∀ t

(6.22)

The respective marginal cost functions are listed in (6.23).

∂ Cr(qr)
∂ qr

= a0 + qr · ar
1

∂ Cu,t1(qr)

∂ qr
= −0.5 · a0 − 0.5 · au

1 · (Dt1 − qr)

∂ Cu,t2(qr)

∂ qr
= −0.5 · (a0 + (Qdisc + ε) · au

1 +∆disc)− 0.5 · au
1 · (Dt2 − qr −Qdisc − ε)

(6.23)

A distinction of cases is to be applied.

1. Scenario1: µt1 = 0,µt2 = 0

2. Scenario2: µt1 = 0,Qdisc + ε− Dt2 + qr = 0

3. Scenario3: Qdisc − Dt1 + qr = 0,µt2 = 0

4. Scenario4: Qdisc − Dt1 + qr = 0,Qdisc + ε− Dt2 + qr = 0

Scenario4 is irrelevant due to the assumption of an increasing demand profile. In

the following, each scenario is outlined in more detail.

Scenario1: µt1 = 0,µt2 = 0

In the case of Scenario1, Equation (6.24) depicts the optimal choice with respect

to the production level of restricted suppliers(qr).
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qr ∗ =
(Dt1 + Dt2)

2
·

au
1

2 · (ar
1 + au

1)
+

∆disc

2 · (ar
1 + au

1)
(6.24)

In Case2 the discontinuity is relevant and thus the quantity supplied by restricted

suppliers is revised upwards by ∆disc
2·(ar

1+au
1)

to account for the stepped shape of the

merit order of unrestricted suppliers. Equation (6.18) may be regarded as a feasible

solution (Dt2 − qr ≥Qdisc) if condition (6.25) is fulfilled.

qr ∗ =
(Dt1 + Dt2) · au

1 +∆disc

2 · (ar
1 + au

1)
≤ Dt2 −Qdisc − ε (6.25)

Condition (6.25) may be transferred into three possible cases:

1. −2 ·Dt2 ·ar
1+2 ·(Qdisc+ε) ·(ar

1+au
1)+Dt1 ·au

1−Dt2 ·au
1+∆disc = 0, ar

1+au
1 6= 0

2. au
1 < −ar

1,−2 ·Dt2 ·ar
1+2 ·Qdisc ·ar

1+Dt1 ·au
1−Dt2 ·au

1+2 ·Qdisc ·au
1+∆disc > 0

3. −ar
1 < au

1, 2 · Dt2 · ar
1−2 · (Qdisc + ε) · (ar

1+ au
1)− Dt1 · au

1 + Dt2 · au
1 −∆disc > 0.

Following the case definition, the conditions ar
1 + au

1 6= 0 as well as −ar
1 < au

1 are

met. However, as both gradients of the supply curves are assumed to be positive

(au
1, ar

1 > 0), the second case is not feasible. The first and third case may finally be

condensed into the inequality constraint which is presented in (6.26).

2 · Dt2 · ar
1 − 2 · (Qdisc + ε) · (ar

1 + au
1)− au

1 · (Dt1 − Dt2)−∆disc >= 0 (6.26)

Formulating inequality (6.26) in terms of Dt2, condition (6.27) can be derived.

Dt2 ≥
2 · (Qdisc + ε) · (ar

1 + au
1) + Dt1 · au

1 +∆disc

2 · ar
1 + au

1

(6.27)

Condition (6.27) embodies a threshold which reflects the trade-off between avoid-

ing higher costs of production by unrestricted suppliers due to the step∆disc and tak-

ing losses due to both unrestricted suppliers with comparably low production costs

being forced to reduce their production level to meet Dt1 as well as higher costs of

an increased production of restricted suppliers.

Besides an upper bound for Dt2 , inequality (6.28) is necessary to identify a valid

solution (Dt1 − qr ≤QDisc).
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D1≤
2 ·Qdisc · (ar

1 + au
1) + Dt2 · au

1 +∆disc

2 · ar
1 + au

1

(6.28)

Scenario2: µt1 = 0,Qdisc − ε− Dt2 + qr = 0

It is to be tested whether the quantity choice in Scenario2 (Equation (6.29)) yields

a valid solution.

qr ∗ = Dt2 −Qdisc − ε (6.29)

The resulting term for µt2 is defined in Equation (6.30).

µt2 = −(Dt2 −Qdisc − ε) · (ar
1 + au

1) + (Dt1 + Dt2) · 0.5 · au
1 + 0.5 ·∆disc (6.30)

As a result, a valid solution (µt2 ≥ 0) has to satisfy the inequality constraint which

is presented in (6.31).

Dt2 ≤
2 · (Qdisc + ε) · (ar

1 + au
1) + Dt1 · au

1 +∆disc

2 · ar
1 + au

1

(6.31)

Due to the discontinuous shape of the merit order for unrestricted suppliers, the

production level of unrestricted suppliers in t2 is held constant for a range ∆Dt2 =
∆disc

2·ar
1+au

1
if Dt2 increases. The lower production level is compensated by restricted

suppliers that increase their production level according to the increase in Dt2. Due

to the choice of qr ∗, the supply of unrestricted suppliers in t1 never exceeds the

discontinuity. Finally, as the intersection of Scenario1 and Scenario2 according to

the inequalities (6.27) and (6.31) exactly yields the same choice of qr ∗ (qr ∗ = Dt2−
Qdisc − ε), there is no need to compare the resulting costs in both scenarios due to

the steadiness in the overlap.

Scenario3: Qdisc − Dt1 + qr = 0,µt2 = 0

Equation (6.32) depicts the resulting term for µt1.

µt1 = (Dt1 −Qdisc) · (ar
1 + au

1) + (−0.5 · Dt1 − 0.5 · Dt2) · au
1 − 0.5 ·∆disc (6.32)
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For this to be a valid solution (µt1 ≥ 0), inequality (6.33) has to be applicable.

Dt1 ≥
2 ·Qdisc · ar

1 + (Dt2 + 2 ·Qdisc) · au
1 +∆disc

2 · ar
1 + au

1

(6.33)

This inequality is analogous to the respective one for Dt2 as there are symmetric

relations.

Case3: Dt1 − qr ≥Qdisc + ε, Dt2 − qr ≥Qdisc + ε

Case3 refers to a situation in which the non-convexity is relevant in both periods.

The respective KKT conditions may be formulated as presented in (6.34).

(−1) ·
∂ Cr(qr)
∂ qr

+
∑

t

�

(−1) ·
∂ Cu,t(qu

t )

∂ qr

�

−µt1 −µt2 = 0

Dt1 − qr ≥Qdisc + ε

Dt2 − qr ≥Qdisc + ε

µt · (Qdisc + ε− Dt + qr) = 0 ∀ t

µt ≥ 0 ∀ t

(6.34)

The respective marginal cost functions are presented in (6.35).

∂ Cr(qr)
∂ qr

= a0 + qr · ar
1

∂ Cu,t1(qu
t 1)

∂ qr
= −0.5 · (a0 + (Qdisc + ε) · au

1 +∆disc)− 0.5 · au
1 · (Dt1 − qr −Qdisc − ε)

∂ Cu,t2(qu
t 2)

∂ qr
= −0.5 · (a0 + (Qdisc + ε) · au

1 +∆disc)− 0.5 · au
1 · (Dt2 − qr −Qdisc − ε)

(6.35)

A further distinction of cases is applied.

1. Scenario1: µt1 = 0,µt2 = 0

2. Scenario2: µt1 = 0,Qdisc + ε− Dt2 + qr = 0

3. Scenario3: Qdisc + ε− Dt1 + qr = 0,µt2 = 0

4. Scenario4: Qdisc + ε− Dt1 + qr = 0,Qdisc + ε− Dt2 + qr = 0

As has been outlined before, Scenario4 does not play a role. Additionally, Sce-
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nario2 does not comply with the definition of Case3 as this would mean that the

unrestricted production level in t1 would be below the discontinuity threshold.

Scenario1: µt1 = 0,µt2 = 0

Equation (6.36) characterizes the optimal quantity choice (qr ∗).

qr ∗ =
(Dt1 + Dt2) · au

1 + 2 ·∆disc

2 · (ar
1 + au

1)
(6.36)

Once more, the term presented in Equation (6.36) includes an upwards adjust-

ment ( ∆disc
ar

1+au
1
) compared to the case of continuous relations due to the non-convexity.

Inserting Dt1−qr ≥Qdisc , condition (6.37) may be defined as a necessary condition

with respect to the optimal solution.

Dt1 ≥
2 · (Qdisc + ε) · (ar

1 + au
1) + Dt2 · au

1 + 2 ·∆disc

2 · ar
1 + au

1

(6.37)

Scenario3: Qdisc + ε− Dt1 + qr = 0,µt2 = 0

Scenario3 yields the Lagrange multiplier which is defined in Equation (6.38).

µt1 = −(Dt1 −Qdisc) · (ar
1 + au

1) + 0.5 · au
1 · (Dt1 + Dt2) +∆disc (6.38)

This may be regarded as a valid solution (µt1 ≥ 0) if condition (6.39) is fulfilled.

Dt1 ≤
2 · (Qdisc + ε) · (ar

1 + au
1) + Dt2 · au

1 + 2 ·∆disc

2 · ar
1 + au

1

(6.39)

These relations are basically similar to Case2. There is steadiness with respect to

the optimal solution (qr ∗) in the intersection of the scenarios considered. To sum

up, the optimal supply of restricted suppliers for different demand levels may be

defined according to Equation (6.40).

qr ∗ =







































(Dt1+Dt2)
2 · au

1
ar

1+au
1

(a1)Dt2 ≤
2·Qdisc ·(ar

1++au
1)+Dt1·au

1
2·ar

1+au
1

Dt2 −Qdisc − ε (a2)
2·(Qdisc+ε)·(ar

1+au
1)+Dt1·au

1
2·ar

1+au
1

< Dt2 ≤
2·(Qdisc+ε)·(ar

1+au
1)+Dt1·au

1+∆disc

2·ar
1+au

1
(Dt1+Dt2)

2 · au
1

ar
1+au

1
+ ∆disc

2·(ar
1+au

1)
(a3)

2·(Qdisc+ε)·(ar
1+au

1)+Dt1·au
1+∆disc

2·ar
1+au

1
< Dt2, Dt1 ≤

2·(Qdisc+ε)·(ar
1+au

1)+Dt2·au
1+∆disc

2·ar
1+au

1

Dt1 −Qdisc − ε (a4)
2·(Qdisc+ε)·(ar

1+au
1)+Dt2·au

1+∆disc

2·ar
1+au

1
< Dt1 ≤

2·(Qdisc+ε)·(ar
1+au

1)+Dt2·au
1+2·∆disc

2·ar
1+au

1
(Dt1+Dt2)

2 · au
1

ar
1+au

1
+ ∆disc

ar
1+au

1
(a5)Dt1 >

2·(Qdisc+ε)·(ar
1+au

1)+Dt2·au
1+2·∆disc

2·ar
1+au

1

(6.40)
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6.7.5 Decoding the Impact of Both Supply Curve Gradients on the
Resulting Cost Implications

The cost factor which was derived in Equation (6.10) is illustrated in Figure 6.10.

Different combinations of ar
1 and au

1 are considered.

Figure 6.10: 3D plot for the resulting factor dependent on the parameterization of ar
1 and au

1

6.7.6 Mathematical Proof (Proposition 2)

In this section, a situation in which the merit order of restricted suppliers exhibits

non-convexities is considered. The following proof is a condensed formulation as it

is essentially similar to the first proof which is presented in Section 6.7.4.

As the non-convexity is exclusively relevant for restricted suppliers, there are es-

sentially two cases which have to be differentiated. In the first case (Case1), the

discontinuity threshold is not exceeded by the production level of restricted suppli-

ers, whereas in the second case (Case2) the non-convexity has to be considered. The

non-convexity is addressed by a stepped shape with height ∆disc′ at the threshold

quantity Qdisc′ .
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Case1: qr ≤Qdisc

The previous considerations may be transferred into the Lagrangian representation

of the optimization problem as presented in Equation (6.41).

L= (−1) · (Cr(q
r) +

∑

t

Cu,t(q
r)) +µ · (Qdisc′ − qr) (6.41)

The respective Karush-Kuhn-Tucker (KKT) conditions are defined in (6.42).

(−1) ·
∂ Cr(qr)
∂ qr

+
∑

t

�

(−1) ·
∂ Cu,t(qu

t )

∂ qr

�

+µ= 0

qr ≤Qdisc′

µ · (Qdisc′ − qr) = 0

µ≥ 0

(6.42)

The relations identified within Case1 are similar to the respective ones in the first

proof. Thus, Equation (6.43) depicts the optimal solution.

qr ∗ =
(Dt1 + Dt2)

2
·

au
1

ar
1 + au

1

(6.43)

Equation (6.43) yields a valid solution as long as the inequality constraint (6.44)

is satisfied (qr ∗ ≤Qdisc′) .

Dt1 + Dt2 ≤
2 ·Qdisc′ · (ar

1 + au
1)

au
1

(6.44)

Case2: qr ≥Qdisc

In Case2 the production level of restricted suppliers exceeds the discontinuity thresh-

old. The according KKT conditions are defined in (6.45).

(−1) ·
∂ Cr(qr)
∂ qr

+
∑

t

�

(−1) ·
∂ Cu,t(qu

t )

∂ qr

�

−µ= 0

qr ≥Qdisc′ + ε

µ · (Qdisc′ + ε− qr) = 0

µ≥ 0

(6.45)
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The respective marginal cost functions are listed as equations in (6.46).

∂ Cr(qr)
∂ qr

= a0 +∆disc′ + qr · ar
1

∂ Cu,t(qr)

∂ qr
= −0.5 · a0 − 0.5 · au

1 · (Dt − qr)
(6.46)

It is sufficient to consider two scenarios:

1. Scenario1: µ= 0

2. Scenario2: qr −Qdisc′ − ε= 0.

Scenario 1: µ= 0

The optimal quantity choice with respect to qr is derived in Equation (6.47). The

quantity is adjusted downwards as additional supply of unrestricted producers com-

pensates for the discontinuous step.

qr ∗ =
(Dt1 + Dt2)

2
·

au
1

ar
1 + au

1

−
∆disc′

ar
1 + au

1

(6.47)

Condition (6.48) has to be satisfied to identify a valid solution.

Dt1 + Dt2 ≥
2 · (Qdisc′ + ε) · (ar

1 + au
1) + 2 ·∆disc′

au
1

(6.48)

Scenario2: qr −Qdisc′ − ε= 0

The scenario definition directly yields Equation (6.49).

qr ∗ =Qdisc′ + ε (6.49)

Condition (6.50) has to be satisfied to guarantee a valid solution (µ≥ 0).

Dt1 + Dt2 ≤
2 · (Qdisc′ + ε) · (ar

1 + au
1) + 2 ·∆disc′

au
1

(6.50)

To sum, up the optimal production level of restricted suppliers can be defined

according to Equation (6.51).
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qr ∗ =















(Dt1+Dt2)
2 · au

1
ar

1+au
1

(b1)Dt2 + Dt1 ≤
2·(Qdisc′+ε)·(ar

1+au
1)

au
1

Qdisc∗ + ε (b2)
2·(Qdisc′+ε)·(ar

1+au
1)

au
1

< Dt1 + Dt2 ≤
2·(Qdisc′+ε)·(ar

1+au
1)+2·∆disc′

au
1

(Dt1+Dt2)
2 · au

1
ar

1+au
1
− ∆disc

ar
1+au

1
(b3)Dt1 + Dt2 >

2·(Qdisc′+ε)·(ar
1+au

1)+2·∆disc′

au
1

(6.51)

6.7.7 Average Intraday Auction Trade Volumes

Figure 6.11: Average intraday auction trade volumes [MWh] in each hour of the day
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