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Zusammenfassung 

In einer impliziten Lernaufgabe, wie der seriellen Wahlreaktionszeit-Aufgabe, erwerben die meisten 

Personen unbewusst Wissen über die zugrundeliegende Regelhaftigkeit. In der Regel gibt es aber 

auch immer eine kleine Gruppe Personen, welcher diese Regelhaftigkeit auffällt und diese auch 

berichten kann. Da das Bewusstsein über eine erworbene Repräsentation entscheidend dafür ist, wie 

flexibel und vielfältig dieses Wissen eingesetzt werden kann, ist es von großem Interesse, Verständnis 

darüber zu erlangen, welche Mechanismen den Übergang von unbewusstem zu bewusstem Wissen 

realisieren.  

In bisherigen Forschungsarbeiten haben sich zwei zentrale Strömungen ausgebildet, welche 

sich dieser Frage widmen. Zum einen besteht die sparsamste Annahme darin, dass unbewusste 

Repräsentationen durch Übung zunehmend an Qualität gewinnen und so graduell in einen 

bewussten Zustand übergehen (Single-System Annahme; z.B. Cleeremans & Jiménez, 2002). Dem 

gegenüber stehen komplexere Modelle, welche annehmen dass implizite und explizite 

Repräsentationen durch separate Lern- und Gedächtnissysteme gestützt werden (Multiple-System 

Annahme). Eines dieser Modelle ist die Unexpected Event Hypothese (Frensch et al., 2003). Diese 

besagt, dass implizites Lernen zu Verhaltensänderungen führt, welche in Widerspruch zu den 

Erwartungen der Person über ihr eigenes Verhalten in der jeweiligen Situation stehen. Diese 

Erwartungsverletzung löst einen Attributionsprozess aus, anhand welchem Erwartung und Erleben 

wieder in Kohärenz gebracht werden sollen; das Resultat kann die plötzliche Einsicht in die 

zugrundeliegende Regel sein.  

Die vorliegenden drei Studien haben zum Ziel die Vorhersagen der Unexpected Event 

Hypothese zu testen und diese den Vorhersagen einer sparsameren Single-System Annahme 

gegenüber zu stellen. In allen drei Studien werden daher in einer impliziten Lernsituation über 

verschiedene Manipulationen unerwartete Ereignisse induziert. Gleichzeitig sind alle Aufgaben so 

entwickelt, dass die assoziative Stärke der Repräsentationen zwischen den Manipulationen nicht 

variieren soll.  

In Studie 1 wird in drei Experimenten das subjektive Gefühl der Flüssigkeit anhand der 

Anordnung regelhafter und zufälliger Durchgänge als unerwartetes Ereignis manipuliert. Experiment 

1 zeigt, dass die Anordnung der verschiedenen Durchgangstypen keinen Einfluss auf die assoziative 

Stärke der erworbenen Repräsentationen zu haben scheint. Experiment 2 zeigt, dass diese 

Anordnung tatsächlich das subjektive Flüssigkeitsempfinden beeinflusst. Experiment 3 zeigt 

abschließend, dass TeilnehmerInnen, welche größere Unterschiede im subjektiven 

Flüssigkeitsempfinden wahrnehmen, auch mehr explizites Wissen erwerben.  

In Studie 2 und 3 werden kontingente Handlungseffekte als unerwartete Ereignisse 

eingesetzt. Dabei wird in Studie 2 die Handlungs-Effekt Kontingenz durch das bei den 
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TeilnehmerInnen induzierte Task-Set manipuliert. Im Verlauf von zwei Experimenten wird zunächst 

geprüft, ob die Manipulation des Task-Sets tatsächlich die Entstehung expliziten Sequenzwissens 

beeinflusst. Anschließend wird in einem dritten Experiment geprüft, inwiefern dieser Effekt spezifisch 

für explizite, aber nicht implizite Lernprozesse ist. In Studie 3 hingegen wird eine direktere 

Manipulation der Handlungs-Effekt Kontingenz verwendet. Hierbei sind die Effekte entweder an die 

Handlungen der Teilnehmer oder an eine aufgaben-irrelevante Stimulusdimension gebunden. Die 

Studien 2 und 3 zeigen vermehrt explizites Sequenzwissen, wenn die TeilnehmerInnen kontingente 

Handlungseffekte erleben. Diese Befunde werden ebenfalls im Rahmen der Unexpected Event 

Hypothese interpretiert.  

Insgesamt zeigen alle drei Studien mehr explizites Wissen bei Personen, welche unerwartete 

Ereignisse erlebten. Da alle Studien darauf ausgelegt sind, die assoziative Stärke zwischen den 

Bedingungen gleich zu halten und nur die Wahrscheinlichkeit eines unerwarteten Ereignisses zu 

manipulieren, scheinen die Ergebnisse dafür zu sprechen, dass die Unexpected Event Hypothese 

einer einfachen Single-System Annahme vorzuziehen ist.  
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Abstract 

In an implicit learning task like the serial reaction time task, most people demonstrate implicit 

knowledge about the underlying regularity. Usually, a small group of persons can be found which 

notices this regularity and is also able to report it. Because whether the acquired representation can 

be used in a flexible and diverse way crucially depends on conscious awareness of this knowledge, it 

is of great importance to understand which mechanisms realize the transition from implicit to explicit 

knowledge.  

Research on this issue has led to two main theoretical streams. On the one hand, the most 

parsimonious account assumes that unconscious representations gain quality through practice and 

therefore gradually transform into explicit knowledge (single-system account; e.g. Cleeremans & 

Jiménez, 2002). On the other hand, there are more complex models which assume that implicit and 

explicit representations are supported by separable learning- and memory systems (multiple-systems 

account). One of these models is the Unexpected Event Hypothesis (Frensch et al., 2003). Within this 

model, it is proposed that implicit learning leads to behavioral changes which contradict the 

expectations of a person about their own behavior in the given situation. This violation of 

expectations triggers an attributional process which should bring expectation and experience back 

into coherence; a sudden insight into the underlying rule can be the result.  

The three studies presented here are aimed at testing the predictions of the Unexpected 

Event Hypothesis and contrast these with the more parsimonious predictions of a single system 

account. Therefore, in all three studies, different manipulations will induce unexpected events in an 

implicit learning situation. At the same time, all tasks are designed in a way to match the associative 

strength of the representations between the manipulations.  

In Study 1 in three experiments, the subjective feeling of fluency is manipulated through the 

arrangement of regular and random trials in order to establish an unexpected event. Experiment 1 

shows that the arrangement of the different trial-types does not affect the associative strength of 

the acquired representational. Experiment 2 shows that the arrangement of the trial-types affects 

the subjective experience of fluency. Lastly, Experiment 3 demonstrates that participants who 

experienced greater differences in their subjective feeling of fluency exhibit more explicit knowledge.  

In Study 2 and 3, contingent action-effects establish the unexpected events. In Study 2 the 

action-effect contingency is manipulated by the induced task-set of the participants. First, over the 

course of two experiments, it is tested whether the manipulation of the task-set affects the 

emergence of explicit sequence knowledge. Subsequently, in a third experiment, it is tested whether 

this effect is specific for explicit but not implicit learning processes. In Study 3, on the contrary a 

more direct manipulation of the action-effect contingency is used. Here, the effects are either bound 

to the responses of the participants or to a task-irrelevant stimulus dimension. Studies 2 and 3 show 
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enhanced explicit sequence knowledge when participants experienced contingent action-effects. 

These results are interpreted in favor of the Unexpected Event Hypothesis. 

Together, all three studies demonstrate more explicit knowledge in participants who 

experienced unexpected events. Because all studies were aimed at keeping the associative strength 

equal across the conditions equal and only manipulate the likelihood of unexpected events, the 

results seem in favor of the Unexpected Event Hypothesis over the simpler single system account. 
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1 Introduction  

Our world is full of structured information. Sometimes this structure is rather simple and fully 

deterministic like the few keys on a keyboard one has to remember to type at an acceptable speed. 

Sometimes it is highly complex and probabilistic, like social interactions where small modifications of 

facial expressions or the choice of words can profoundly change the impression we leave on other 

people. Luckily, we are able to pick up this information and learn to predict our environment to a 

satisfactory certainty. This ability alleviates our day-to-day lives invaluably or, to a certain extent, 

enables them in the first place. In this respect it is usually unnecessary and, given the serial nature of 

conscious processing, often also impossible to be consciously aware of all the hidden rules that guide 

our behavior. Yet it remains mysterious why sometimes we become aware of the rules that structure 

information. Of course, sometimes we become aware of them simply because we are asked to do so, 

for example when someone asks us for the directions to a certain location. At other times however, 

we experience a sudden insight into knowledge that was entirely unconscious before. For example 

when we realize that a friend we sometimes play poker with becomes very quiet when they have a 

good hand.  

What are the necessary and sufficient conditions for such insights to occur? Answering this 

question is not only interesting per se as it could provide important practical implications, for 

example in an educational context, but also to much more fundamental interests. Understanding the 

transition from unconscious to conscious knowledge can help with the further development of 

scientific theories of consciousness. How and why is neural information processing sometimes 

accompanied by conscious knowledge of its contents and in which qualities does this processing 

differ from one that is not accompanied by consciousness? How are representational quality or 

strength and consciousness related? What is the significance of interaction with and feedback from 

the external world? 

From a scientific view, implicit learning research can provide very interesting insights into the 

necessary conditions for a transition from unconscious to conscious knowledge. Here, the typical 

paradigm for implicit learning, the Serial Reaction Time Task (SRTT; Nissen & Bullemer, 1987) can 

reflect everyday situations with deterministic and probabilistic contingencies. These contingencies 

can be of arbitrary complexity and can occur within various stimulus- and response dimensions (e.g. 

motor, visual, auditive, spatial, and temporal). It has been shown repeatedly that learning in the SRTT 

can result in implicit, unconscious knowledge about the hidden sequential contingencies (see 

Abrahamse, Jiménez, Verwey, & Clegg, 2010, for a review). The paradigm provides a vast horizon of 
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possible manipulations, not only concerning the content of what can be learned implicitly but also 

concerning the factors that can influence the rate of conscious insights into the hidden structures of 

the task. The following studies are aimed at testing two accounts about the generation of conscious, 

explicit knowledge in an implicit learning situation. These two accounts are usually treated separately 

despite surely being compatible. The first account concerns the role of metacognitive judgements 

and is treated in study 1. Moreover, in this study the importance of metacognitive judgements 

relying on observance of one’s own behavior is contrasted with a simpler single system account 

according to which representational strength is seen as the variable on which conscious knowledge 

depends. The second account is less directly related to the transition from implicit to explicit 

knowledge and rather finds its roots in the investigation of intentional action control as opposed to 

stimulus-based action control. The topic of discussion here is action-effect learning. The studies 2 and 

3 both investigate the assumption that experiencing contingent action-effects is an important source 

of external feedback that promotes a shift from unconscious, stimulus-based to conscious plan-based 

control. 

Before these studies are presented, the following chapters provide a short insight into the 

scientific theories of unconscious and conscious processing, which build the crucial basis for any 

further thoughts on how these two forms of processing are related (Chapter 2). Building on this, a 

more specified summary will be given on how the transition from unconscious to conscious 

processing is treated in the field of implicit learning. In that context two important theoretical 

viewpoints, single- and multiple-system views, will be summarized and compared (Chapter 3). Finally, 

an overview of the empirical evidence which has accumulated for both opposing viewpoints so far 

will shortly be discussed with regard to open points that are subject of the present studies (Chapter 

4). 
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2 Scientific Theories of Consciousness 

In order to investigate the transition from unconscious to conscious knowledge, it is of indispensable 

importance to think about the highly controversial possibilities to conceive a scientifically seizable 

theory of consciousness. There are two positions which, at the current point of time, share an equally 

strong degree of influence in the literature on consciousness. In their most reduced form, both 

positions can be separated by either postulating or disputing a differentiation between “easy” and 

“hard” problems of consciousness research. These terms go back to Chalmers 1995 who said that it is 

“easy” for science to identify the (neuronal) mechanisms that support cognitive functions and which 

have a strong relatedness to conscious processing. These include language, attention, executive 

functions or generally any process that is traceable with objective measures. Nevertheless, even after 

all cognitive functions have been explained, consciousness, according to this view, has an inherently 

subjective, phenomenal component, also referred to as qualia, that will not be explained by 

understanding information processing. Due to its impenetrable first-person nature, it would remain 

unanswered how and why these cognitive mechanisms are accompanied by a subjective feeling of 

being conscious; this is what is called the “hard” problem. A similar idea stands behind the separation 

between so-called “access”- and “phenomenal” consciousness (Block, 1995). Access consciousness 

refers to any information that is made available to a broad network of cognitive functions. This 

includes verbalization, categorization, reasoning, planning or more generally anything that subsumes 

under cognitive control. Phenomenal consciousness, as Block (2007, p. 487) put it, “overflows 

access”. Phenomenal consciousness has the property of containing richer information than what we 

can report or voluntarily act upon, again touching the subjective first-person characteristic of 

consciousness. Several neuroscientific theories that agree with this dissociative view have been put 

up, trying to explain phenomenal consciousness. These, for example, pronounce the relevance of 

local recurrency of information (Block, 2005, 2007; Lamme, 2006), assume that a holistic macro-

consciousness is comprised of distributed nodes that each a create micro-consciousness (e.g. color, 

sound, etc.; Zeki, 2003) or take an evolutionary route by postulating that neurons form temporary 

coalitions to compete for access to attentional systems (Crick & Koch, 1990).  

Consciousness researchers of the other camp heavily disagree with a divide between access- 

and phenomenal consciousness. The most prominent representative of these views, Daniel Dennett, 

claims that the assumption of a special property as qualia or phenomenal consciousness is 

“scientifically insupportable and deeply misleading” (Dennett, 2015, p. 2). The reason for this is that 

there never can be an experimental setting that is able to study consciousness in the absence of 

access and function. According to proponents of the existence of qualia, in a “perfect (thought) 

experiment”, isolating the perception of the color “red” of an apple from all other cognitive functions 

should lead to a phenomenal but inaccessible consciousness about the apples redness. Nevertheless, 
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the scientist would find a person who verbally insures that they do not see red, that they do not feel 

anything they associate with this color and who is not able to act upon this perception in any possible 

way, because the center for color cannot communicate with any other functional area (Cohen & 

Dennett, 2011). Phenomenal consciousness, according to this view, cannot be falsified and would 

have to rely on arbitrarily chosen criteria independent of subjective and functional observations and 

is therefore by definition a question of believing but not of science. Functional theories of 

consciousness on the contrary assume that there is no brain state independent of function. 

Consciousness is fully explained once it has been understood how cognitive processes interact. The 

interaction of this multitude of processes, most importantly attention, working memory, language 

and decision making processes, is consciousness. There is no additional process that produces 

consciousness. The task for a science of consciousness is to specify, in a falsifiable way, which 

functions are necessary for consciousness and how these functions can be measured adequately.  

Understanding these differences between functional approaches to consciousness and those 

that assume that there is an extra process creating phenomenal consciousness is vital for the further 

understanding of the definition and the measures of unconscious and conscious knowledge behind 

our hypotheses. In the following, two important functional theories behind our hypotheses about the 

transition from implicit to explicit knowledge will be introduced shortly.  

 

2.1 The Global Workspace Theory 

The Global Workspace Theory (GWT; Baars, 1997, 2005; Dehaene & Changeux, 2011; Dehaene & 

Naccache, 2001; Dehaene, Changeux, Naccache, Sackur, & Sergent, 2006) was one of the first 

scientific functional theories of consciousness that seems capable of abolishing the homunculus 

problem many other approaches have, especially those assuming a separable phenomenal 

consciousness.  

The homunculus problem encompasses two difficulties: The first is the assumption that there 

are certain networks or certain neurons which create consciousness, and which constitute a place 

where consciousness happens. This place is termed the Cartesian Theatre by Dennett (1991). The 

implication here is that there is an entity (the homunculus) additional to brain states, for whom or 

which information needs to be presented in order to exert control, and which leads to the subjective 

experience of a stream of consciousness. Introducing such an entity necessarily leads back to the 

hard problem, asking why and how neuronal information becomes transformed into conscious 

information in the first place. The second problem with any theory implicitly comprising a 

homunculus is that it also has to explain how the information which gets presented is selected from 
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the enormous pool of unconscious information and how consciousness as a final product can have a 

causal influence on unconscious brain processes.  

The GWT aims at solving both of these problems. Most importantly, the GWT does not 

assume that there is any specified area in the brain where consciousness is created; rather, 

consciousness is equalized with global availability of information. The basic assumption of the GWT is 

that the brain contains a multitude of functionally highly specialized areas working in parallel. 

Information in these areas is unconscious, there is no micro-consciousness or anything alike 

associated with information processing in these networks. Per se, these networks work 

encapsulated, that means they exchange information only within hard-wired or acquired pathways 

to fulfill their specialized task. This specialization enables the brain to handle a massive amount of 

input in parallel (Baars, 1997). Nevertheless, coherent interaction with the environment requires 

serial output and therefore a mechanism is needed that selects information and puts it into the focus 

of attention. Here, the theory postulates that there is a global workspace (GWS) which provides the 

necessary infrastructure, neurologically mainly realized by thalamo-cortical long-distance neurons of 

the prefrontal and the anterior cingular cortex (see Baars, Franklin, & Ramsøy, 2013 for a detailed 

elaboration of the neuronal architecture). The GWS is able to select relevant information, prevents 

interference, allows the encapsulated modules to exchange information and flexibly establishes 

temporary networks between these modules (Dehaene & Naccache, 2001). The GWT uses a 

blackboard as a metaphor for imagining how the GWS works. When a module gets selected to enter 

the GWS, it can broadcast its content to any other network in the brain.  Other modules can use this 

information from the blackboard and process it in their specified function. The information of the 

broadcasted module is no longer encapsulated. It is now said to be amodal because it is no longer 

bound to the specialized processes of the module it originated from, but instead is now processed in 

a broad context of unconscious subsystems. These subsystems include, for example, perception, 

language, intentions, self-concepts, expectations, memory, and also exclusive access to working-

memory function (Baars, 1997, 2005; Baars et al. 2013; see Figure 1). Neuroimaging shows that this 

de-capsulation of information is accompanied by a neurological “ignition”, a sudden, strong 

activation of a vast variety of cortical and subcortical regions (Dehaene & Changeux, 2011; Dehaene 

& Naccache, 2001).  
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Figure 1. Schematic global workspace model (Baars et al., 2013). Conscious experience corresponds to the 
information currently being represented in working memory and focused by attention. Conscious contents 
have access to a broad range of unconscious modules (self-systems, intentions, etc.), which set the context for 
the conscious information, and define the quality of subjective experience. Furthermore, the information 
currently in the global workspace is accessible to unconscious resources (memory systems, language, etc.) 
which can process this information according to their specialized function. All unconscious modules constantly 
send feedback to the global workspace and can enter the global workspace themselves, if their activational 
strength signals high relevance to the current goals. It is the function of the global workspace to converge the 
parallel input of the various specialized modules and allow serial behavioral output.  

 

This conception of consciousness resembles the perfect thought experiment of Cohen & 

Dennett (2011) described in Chapter 2. There is neither a certain mechanism that creates 

consciousness, nor is there a certain place in the brain where consciousness happens. Consciousness 

is the global accessibility of information. The apple is consciously perceived as being red because the 

encapsulated, unconscious color module is allowed to communicate with all the just named 

subsystems. Further, a broad variety of inner thoughts and emotions, as well as options to openly act 

upon this perception, becomes enabled. Even though the GWS is said to rely on long-distance 

neurons of the PFC and the ACC, the GWS is not located in any certain area. It is a virtual space, 

dynamically changing with the contents being processed and the functions being involved.  

             As mentioned above, the GWT also aims at solving the question of how the information which 

is most relevant for current action planning gets selected to be distributed via the GWS. The problem 

of theories that comprise a homunculus assume a top-down control process where some supervising 

entity decides which information is the most important at any point of time. Which modules should 

be considered as being relevant and what would the consequences of this selection be? Obviously, a 
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mechanism that tests all potentially relevant unconscious modules would be stuck in a combinatorial 

explosion, never coming to any successful decision (see the Frame-Problem, Dennett, 1984). Instead, 

the GWT suggests a bottom-up stochastic variation-selection mechanism (neural Darwinism, 

Changeux & Dehaene, 1989). Every unconscious module constantly competes for access to the GWS 

(variation component), while the GWS sets a selection function depending on current goal states. 

Only one module or coalition of modules will show the strongest activation in the context of the 

current goal-state depended content of the GWS and will therefore win the competition for global 

broadcasting (Shanahan & Baars, 2005). For example, driving in a car at night can lead to the 

consciously represented plan to watch out for any moving objects near the road. Any information 

stemming from a network that processes movement information will receive extra activational 

strength. In this case any moving object will gain access over a signal with higher bottom-up strength, 

for example a talking passenger. Yet, very strong bottom-up signal strength might still win over a 

signal that fits the current fitness function and “break through into consciousness” (Baars, 2005, p. 

49), for example when the passenger starts yelling at you. 

Taken together, the GWT provides a scientifically accessible conception of consciousness 

because it allows testable predictions about the observable functions that should separate conscious 

from unconscious processing. Therefore it also qualifies as an important background to think about 

the conditions for a transition from implicit to explicit (sequence) knowledge. Before considering the 

plausibility of different theories that are concerned with this more specific question in Chapter 3, one 

further important theory of consciousness should be presented here, namely the Higher-Order 

Thought Theory.   

 

2.2 Higher-Order Thought Theories 

The Higher-Order Thought Theory (HOTT) in its most popular form goes back to the work of 

Rosenthal (1997). Different from the neurologically oriented GWT, the HOTT originally was much 

more related to the philosophical side of consciousness theories. Nevertheless, it has developed to 

be a theory with empirically testable predictions which also is compatible with the current 

neurological and cognitive state of knowledge. The HOTT is concerned with the metacognitive 

aspects of consciousness. In its core, it differentiates between first-order and second-order (or 

higher-order) states. First-order states refer to simple input-output rules of any sensory or motor 

system. This can be understood in analogy to the parallel working modules in the GWT. Encapsulated 

information processing can be seen as a first-order state which per se is unconscious. Not only the 

human brain, but any simple or complex machine which shows discriminatory performance has first 

order states (e.g. perceiving light of a certain wavelength results in the output of detecting red). 
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Consciousness, according to the HOTT, crucially depends on developing higher-order knowledge 

about this first-order knowledge. Consciousness means knowing that one knows. This comprises the 

ability for self-reflection, self-reference and a propositional attitude (e.g. “I know/believe/guess that 

it is red that I see”, “It is I, who sees red”, “it is red that I see”). What is needed for consciousness is a 

mechanism that allows the brain to draw inferences about its own internal first-order states and 

about how these relate to states in the environment. Lau (2008a) suggests a Bayesian learning 

approach to describe the relation between perceptual first-order states and meta-cognitive higher-

order judgements about these states. This approach builds on psychophysical signal-detection 

theory. Every performance depends on the sensitivity (d’) of a processing unit and its decision-

criterion (c). Many studies on (un-) conscious perception use d’ as a measure for awareness (d’ = 0 is 

interpreted as unconscious perception). Lau (2008a) argues that operationalizing unconscious 

perception as d’ = 0 severely underestimates the potential of unconscious processing as it only 

reflects poor perceptual performance capacity. Instead, he suggests that the decision criterion c is of 

much greater relevance for studies of consciousness. In a related  study (Lau & Passingham, 2006), it 

has been demonstrated that manipulating attention towards a masked stimulus can result in equal 

sensitivity towards the stimulus but very different subjective reports of having seen or having not 

seen the stimulus. Likewise, the widespread cortical activity which the GWT relates to conscious 

processing is, according to Lau and Passingham, a confound due to differences in performance. When 

performance was matched, subjective reports of consciousness were only related to increased 

activity in the dorsolateral cortex.  

What is important for the HOTT is how the cognitive system comes to a decision about its 

own internal states and their reference to external stimuli. Bayesian decision theory can help to 

understand how an optimal criterion is set.  Via external feedback, the cognitive system can develop 

a first-order representation of the probability of a certain signal strength when a signal is present and 

when it is not. Additionally, the system also has to learn the base rate of the stimulus. Given these 

two probabilities, the cognitive system can estimate the opposite likeliness that a stimulus is present, 

given a certain signal strength, which is important for making optimal decisions. However, people 

often seem to fail to set an optimal criterion. A common and easily accessible example are blindsight 

patients, who, according to Lau (2008a), set very conservative criteria even though their 

performance is well above chance. Likewise, and more related to the content of the research 

presented in the following, experimental studies on unconscious learning and perception show the 

same above-chance performance while the participants claim that they are merely guessing 

(Cheesman & Merikle, 1984; Dienes & Berry, 1997). Lau (2008a) therefore argues that metacognitive 

higher-order representations need to be assumed in order to explain how the criterion for a 

subjective judgement about the accuracy of one`s own responses or, more general, perceptual 

consciousness is set. A higher-order mechanism is assumed which develops a representation of its 

own internal first-order signals which are related to the external world. For example, a person might 
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learn via feedback that the mean fire rate for a signal being present is 25 Hz and a signal being absent 

is 10 Hz and sets an optimal criterion at 17.5 Hz. Now, due to a lesion, the internal signal decreases 

strongly and the first-order distributions now show a mean of 15 Hz for a signal and 5 Hz for noise. 

Failing to learn about these new internal distributions would result in keeping the criterion at 17.5 Hz 

which now leads to a very high amount of false-negatives, as can be observed in blindsight patients. 

Recently, Fleming and Daw (2017) gave a more detailed, computational description of the learning 

processes behind the development of metacognitive criterion setting. Thereby the authors also go 

into deeper detail between first-order criteria that reflect how a person might react to a stimulus 

(e.g. pressing or not pressing a button) and higher-order judgements of having consciously perceived 

something.  

Taken together, HOTTs also provide a theoretical base for functionally discriminating 

unconscious from conscious processing. While the GWT is more focused on the behavioral 

enrichment that comes along with conscious processing on various levels (controllability, flexibility, 

verbalization, integration, combination, etc.), HOTTs rather pronounce the subjective, 

phenomenological side of conscious processing (Rosenthal, 2008). Without (unfalsifiably) assuming 

that there is a phenomenology to first-order processing, HOTTs propose that consciousness is given 

when a person can represent being (or not being) in a certain state. 
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3 The Transition from Implicit to Explicit Knowledge 

Implicit learning became a popular research topic in cognitive psychology in the 1960s when George 

Miller (1958) established the paradigm of Artificial Grammar Learning (AGL). He demonstrated that 

participants learned to become sensitive to letter strings that followed hidden rule, even though they 

were not explicitly informed about these rules. Arthur Reber (1967) later explored the implicit 

aspect, namely the inability of the participants to verbally express any of their knowledge about the 

hidden grammar, more deeply. From then on, the interest in the ability to learn without being 

conscious of what has been learned or even that anything has been learned at all, spread to areas 

outside of linguistic research. This included paradigms on probability learning (A. Reber & Millward, 

1965), dynamic system control (Berry & Broadbent, 1984) and, most important to the studies at 

hand, sequence learning within the Serial Reaction Time Task (SRTT), going back to Nissen & 

Bullemer (1987). Naturally, there has been an extensive, productive and still not univocally settled 

debate on whether the knowledge acquired in these tasks can be said to be unconscious. Over the 

many years of research on unconscious processing, convincing empirical evidence accumulated to 

justify the assumption of unconscious influences on behavior which functionally differ from 

consciously perceived input (Alamia et al., 2016; Kouider & Dehaene, 2007). Still there are scientists 

who hold the strong opinion that it has yet to be shown that there is such a thing as unconscious 

perception or decision making (Newell & Shanks, 2014; Peters & Lau, 2015; Shanks, 2016; Tran & 

Pashler, 2017). Surely, productive criticism on the methods being used to distinguish unconscious 

from conscious processing should not be dismissed easily. However, in the light of the above shortly 

introduced functional theories of consciousness, the assumption that there is no unconscious 

processing to be found, entails some theoretical problem which will shortly be discussed in Chapter 

3.1. 

Presuming that there are unconscious processes that influence behavior, implicit learning 

paradigms, especially the SRTT, provide immensely powerful tools not only for demonstrating the 

ubiquity and flexibility of implicit learning processes but moreover for studying the requirements for 

a transition from unconscious knowledge to conscious insight into this knowledge. Priming research, 

the probably most prominent paradigm for unconscious processing, has the difficulty that stimulus 

signal strength and task performance capacity are often not matched between the conditions (Lau, 

2008a; 2008b). This means that comparing a dim, brief, masked or an “unseen” stimulus with a 

clearly visible or “seen” stimulus should result in different performances without the need to assume 

conscious and unconscious processing.  

Implicit learning paradigms as the SRTT, by contrast, allow training people with a certain 

sequence over a long period of time leading to a strong implicit knowledge base. Thus, in sequence 
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learning paradigms it is possible to match the associative strength, and therefore the signal strength, 

between conditions as well as the difficulty and therefore the task performance capacity. At the 

same time factors that are suspected to influence whether participants gain insight into the hidden 

sequence can be manipulated. Of course, the underlying theory about the nature of consciousness 

influences which measures can differentiate between unconscious and conscious processing and also 

strongly influence which manipulations are expected to influence the transition of unconscious to 

conscious sequence knowledge (see Chapter 4.1).  

Moreover, the differences in the theoretical conception of conscious and unconscious 

processing also are reflected in implicit learning research. There is a long and not yet solved debate 

about the nature and the relation of implicit and explicit knowledge. The manifoldness of the 

different theoretical perspectives can best be simplified by dividing them into single- and multiple-

system accounts. The following sections of this chapter present the most influential theories within 

both of these views. It is described how these accounts characterize implicit and explicit learning 

processes and how the transition from implicit to explicit knowledge is imagined. Furthermore, a 

short evaluation of the theoretical views on consciousness behind them is provided.  

 

3.1 Single-System Views 

The core assumption of single-system views within implicit learning research is that there is no need 

to assume any additional process which transforms unconscious into conscious knowledge. Yet, there 

are two classes of single-system views which differ strongly in their underlying assumption about the 

nature of consciousness. This difference lies in their stance on the verifiability of unconscious 

processing. Even though unconscious processing is supposed to be empirically demonstrated in a 

vast and long history of scientific research (see Kouider & Dehaene, 2007, for an overview), there still 

are scientists who reject that such successful demonstrations exist (Newell & Shanks, 2014; 

Perruchet & Vinter, 2002; Peters & Lau, 2015; Shanks & St John, 1994).  

Some of these scientists state that unconscious processing has simply not been 

demonstrated convincingly even though it probably exists (Peters & Lau, 2015). Others (Perruchet & 

Vinter, 2002) instead put forward the strong hypothesis that there is an isomorphism between 

phenomenal experience and acquired knowledge about the world, hence that all mental 

representations are conscious. This latter assumption is incompatible with the functional views on 

consciousness, outlined in the former chapter. The idea of all representations being conscious cannot 

be falsified and is, depending on the understanding of the term “representation”, also tautological. 

The authors define representations as “mental events” which are “involved in reasoning, inference, 

action planning, and other mental activities” (p. 299). They set an arbitrary cut-off where some 
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neural activity, for example the change in connective weights, does not count as a representation 

yet. Therefore, according to this view, if a participant is trained in a SRTT and internally builds new 

associative weights, these weights are either below an arbitrary threshold and do not count as a 

representation or they exceed this threshold and can be tested via a direct knowledge test. So for 

these authors, a simple recognition task or a free generation task can demonstrate conscious 

sequence knowledge (Perruchet & Amorim, 1992). However, a large body of work has shown that 

above-chance performance in these tasks can differ profoundly from the persons’ subjective 

experience of knowing (Cheesman & Merikle, 1984; Dienes & Berry, 1997) as well as it can differ 

from objective tests which require control of this knowledge (e.g. responding with the button which 

is the most unlikely to be next, Debner & Jacboy, 1994). Because of the theoretical pitfalls of this 

conception of conscious knowledge, this view is of no further importance to the studies at hand.  

The methodological viewpoint that there has been no convincing demonstration of 

unconscious knowledge might be of somewhat more relevance to the following experiments. It 

surely is beyond the scope of this work to extensively debate on whether all studies have been 

adequately taken into account by the authors doubting that there has been a convincing 

demonstration of unconscious knowledge (Newell & Shanks, 2014; Peters & Lau, 2015). 

Nevertheless, the argument of the critiques is also interesting for the experiments presented here. 

As outlined in Chapter 2.2 HOTTs see the subjective criterion of perceiving or not perceiving 

something consciously as the most important or even the only relevant indicator of consciousness 

(Lau & Passingham, 2006; Lau & Rosenthal, 2011). Contrary to the GWT they do not necessarily 

assume that conscious and unconscious processing will differ in objective performance capacity. 

Whether this argument can hold for all types of elaborate, complex behavior is a different debate. 

Nevertheless, Lau’s (2008a) point that operationalizing unconscious perception via d’= 0 and 

conscious perception as d’> 0 is defective, is important. Comparing a dim, brief, masked or an 

“unseen” stimulus with a clearly visible or “seen” stimulus should result in different performances, 

independent of whether this processing was unconscious or conscious.  Lau (2008b) therefore calls 

for experiments where stimulus signal strength and task performance capacity are matched between 

the conditions but still show that a difference in subjective judgements is possible. This, according to 

the critiques, could show the need for a two-system view, separating between conscious and 

unconscious processing, much more convincingly. Peter’s & Lau’s (2015) argument is based on 

priming research, where indeed it has been very common practice to compare “unseen” with “seen” 

stimuli. In such a setting, it is a difficult task to match performances with a d’ > 0 while at the same 

time ensuring that the perception of the stimuli can still potentially be unconscious.  

Implicit learning paradigms like the SRTT instead, allow training people with a certain 

sequence over a long period of time and accordingly build a strong implicit knowledge base. Various 

studies in this field show evidence that participants can discriminate between sequential and non-
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sequential trials very well (d’ > 0) while at the same time showing no subjective insight into this 

knowledge (zero-correlation criterion, Dienes & Berry, 1997; Ziori & Dienes, 2005).  Within the SRTT 

paradigm, the single-system claim that all knowledge shown in different objective tests leads back to 

conscious knowledge of different representational strength can be falsified. Here, it is easier to 

match the associative strength and therefore the signal strength as well as the difficulty and 

therefore the task performance capacity. At the same time, factors that are suspected to influence 

whether participants gain insight into the hidden sequence can be manipulated.  

Contrary to the above described viewpoint that all behavior is based on conscious 

representations, there are single-system views which might be more important to the issue of the 

following experiments. As mentioned initially, the crucial difference is that these further single-

system views assume that both unconscious and conscious processing influences our behavior. 

Nevertheless, these theories are also single-system views because they assume that there is a 

gradual difference in the representational strength of unconscious and conscious processing without 

the need to assume any transformational process or a different representational format. Bottom-up 

signal strength is viewed as a sufficient condition for the criterion that divides unconscious from 

conscious processing. This view fits well with the theories described in Chapter 2 which assume that 

there is a difference between phenomenal and access consciousness (e.g. Block, 1995; Chalmers, 

1995). There are many researchers who claim that different gradual qualities of conscious perception 

lead back to different qualities of signal strength (Block, 2007; Lamme, 2003, 2010; Overgaard, Rote, 

Mouridsen, & Ramsøy, 2006;  Windey, Vermeiren, Atas, & Cleeremans, 2004; Zeki, 2003,). Most 

commonly, these assumptions can be found in research on visual priming (Atas, Vermeiren, & 

Cleeremans, 2013; Nieuwenhius & de Kleijn, 2011; Windey, Gevers, & Cleeremans, 2013).  

In the field of implicit sequence learning, the most influential single-system view stems from 

Cleeremans and Jiménez (2002). Different to the mentalistic view of Perruchet & Vinter (2002) they 

take a computational stance and assume that there is no subthreshold processing that does not 

count as a representation and is not assumed to be relevant for behavior. Instead, any kind of neural 

processing is constantly causally effective because any processing is embedded in a causal chain. The 

cognitive system, in their view, is best characterized as hierarchically organized, interconnected 

modules in which information processing leads to dynamic, transient patterns of activation. 

Modulated by the strength of their connections and activations, these modules influence each 

other’s processing. Their definition of a representation therefore does not refer to content in a sense 

of a “meaningful component of the represented world” (Perruchet & Vinter, p. 299). Rather, 

representations are graded, transient patterns of neural activation which can vary on different 

dimensions, influencing the “quality of [a] representation” (Cleeremans & Jiménez, 2002, p. 18). 

Most important to their theory, the quality of a representation is influenced by the following three 

factors: (1) Stability, i.e. the time a certain activational pattern can be maintained, (2) strength, i.e. 
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the number of modules involved and their respective activational strengths, and (3) distinctiveness, 

i.e. the extent of overlap between representations within a functional network (see Kinsbourne, 

1996, for a similar position).  

Cleeremans and Jiménez (2002) define learning as an adaptive process that necessarily 

accompanies information processing, resulting in changes of connection weights. These changes are 

termed indirect effects of learning because they do not necessarily lead to changes in subjective 

experience. Implicit learning first leads to very weak, poor quality representations. These, though 

already causally effective, might not result in noticeable subjective changes in one’s experience. But 

while these representations gain quality with further learning, their potential influence on action, 

their availability to control processes and the subjective experience also gradually changes (Figure 2). 

First there might be slight changes in the subjective experience, leading, for example, to a feeling of 

the task becoming easier and finally, as the representations gain quality, lead to full conscious 

knowledge of the acquired knowledge. The function of consciousness, within this framework, is the 

ability to control this knowledge. Yet, the authors are not fully explicit on how independent the 

ability to control knowledge, the potency of a representation and subjective experience are. They 

only state all three aspects are “closely related” (p. 22). With reference to Block (1995) it is remarked 

that there is a differentiation between access- and phenomenal consciousness within their 

framework. However, it remains open how and why representational quality affects these different 

aspects of consciousness to a different extent and, even more important, how these aspects could 

potentially be captured within their connectionist approach.  

Furthermore, in their essay, the authors state that quality of representation is crucial for 

differentiating unconscious from conscious knowledge, but also note that these are necessary but 

not sufficient conditions for representations to become conscious. It is acknowledged, with a 

reference to the global workspace theory, that attention and integration of information play an 

important role in determining whether any sufficiently strong representation will eventually enter a 

state of conscious processing. This supposed involvement of top-down mechanisms is not elaborated 

any further. It is therefore not ultimately clarified whether the quality of the representation is 

changed when accessed by top-down mechanisms or how these mechanisms are triggered in the 

first place. Yet, even with this open question about the role of top-down processes and the sufficient 

conditions for the emergence of a conscious representation, the authors seemed to imply a single-

system view behind the graded characteristics of conscious processing. The consciously processed 

information is the formerly implicit information that can now be accessed, and which gains further 

strength and stability by this accessibility. There is no need for a second system supporting a 

different representational format which would be required for consciousness.  
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Figure 2. A graphical representation of the relation between quality of representation (X-axis) and availability 
to conscious experience, action, and control (Y-axis), according to Cleeremans and Jiménez (2002). It can be 
seen that all three aspects of availability gradually change from an implicit to an explicit state. Not further 
discussed in the current context is the area of automaticity, which is associated with a representation that 
became very strong due to extensive practice.  

 

Interestingly, a few years later, Cleeremans (2008, 2011, 2014; Windey & Cleeremans, 2015; 

Windey et al., 2014) modified this theory of a graded consciousness in a way that, at first glance, 

might be interpreted as a two-system account. In fact, the new model could be seen as a hybrid 

between one- and two-system accounts. Instead of further elaborating the mechanisms behind the 

access to a global workspace, Cleeremans now takes the stance that global availability is not 

sufficient for consciousness. Rather, he turns towards the ideas of higher-order thought theories. 

Through interaction with the environment, a first-order representation is developed, gradually 

improving in quality, as originally assumed in the essay by Cleeremans and Jiménez (2002). The 

crucial addition to their former stance and the new adaption to HOTTs is that the acquired first-order 

information is never conscious; it is labeled as knowledge within the system. For consciousness to 

arise, the first-order information needs to be redescribed as a metarepresentation; that is knowledge 

for the system (Clark & Karmiloff-Smith, 1993). The first-order representation itself becomes an 

object of a representation for higher-order systems. This higher-order system receives input from the 

first-order systems and learns that the state of a first-order system has changed, for example 

because something has been learned, and thereby develops a higher-order attitude towards the first-

order knowledge (e.g. “I know that …”, “I hope that …”, “I see that …”). This higher-order 

representation is assumed to be a new representation involving a broad pattern of activation over 

different processing units which is only indirectly shaped by the changes of the connection-weights 
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within the first-order systems. Obviously, this justifies labeling the model of Cleeremans as a two-

system theory. Nevertheless, it also has to be considered how Cleeremans sketches the mechanism 

of the metacognitive higher-order system: It is stated that the representations of this system develop 

in the exact same way as first-order representations. The most important factor for a meta-cognitive, 

conscious representation to develop is that it gains stability, strength, and distinctiveness over the 

course of learning. More precisely, a first-order system is described as a simple feed-forward 

backpropagation network consisting of an input, a hidden, and an output unit (Figure 3). This 

network continuously develops increasing sensitivity to contingencies in the environment by 

developing associations between the input and the output and thereby improves so-called Type 1 

responses (e.g. simple discriminative responses towards a stimulus). There is no intrinsic property 

within this network that is associated with consciousness. A similarly built second-order network is 

connected to this first-order network, receives input from there and learns about the internal states 

of the first-order network. It can learn how the internal state of the first-order network was, when a 

response was correct or when it was incorrect, and thereby develops higher-order judgement-

knowledge about the first-order system possessing or not possessing knowledge in a given situation 

(Type 2 responses).  

This general principle can, for example, be extended for distinguishing between imagination 

and factual perception, knowing or guessing, remembering or predicting. It can help in deciding 

whether a situation has changed or is the same, how consistent a situation is, how similar a situation 

is to associated situations and so on. Because the same strengthening mechanism lies behind first- 

and higher-order networks, consciousness is still a gradual phenomenon, changing on a trial-by-trial 

basis. This is what gives the proposed model characteristics of a single-system theory and justifies 

categorizing it as a hybrid between single- and multiple-system views.  
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Figure 3. A schematic representation of a metacognitive network according to Cleeremans (2011). The first-
order network consists of a three-layer feedforward backpropagation network that gradually learns to produce 
a correct Type 1 response (e.g. a stimulus discrimination). The information from the first-order network is the 
input of the hidden units of a second-order network. The second-order network gradually learns to judge 
whether the first-order network has produced a wrong or correct response (Type 2 response).  

 

3.2 Multiple-System Views 

Opposed to single-system views, multiple-system views assume that implicit and explicit learning are 

supported by dissociable memory systems which build different forms of representations and are 

supported by different mechanisms. As the following section will show, multiple-system views are 

much more prominent in implicit learning research. This might be attributed to the fact that before 

implicit learning arose as a research topic around the 1960s (e.g. A. Reber, 1967), it was common to 

assume that human learning is usually guided by hypothesis-testing and leads to verbalizable, 

symbolic propositions (see e.g. models of information processing from Fodor, 1975; Newell & Simon, 

1972). It might therefore seem intuitive that learning which happens in an incidental manner, 

without any intention or instruction and is not available for verbal report, is the product of a system 

that works differently from the system assumed in common information processing models.  

The early works of Arthur Reber (1965, 1967, 1989) already imply that implicit learning 

should be differentiated from explicit learning processes in several ways.  He argued that implicit 
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learning should be imagined as a differentiation process, as opposed to an enrichment process. The 

former describes a primitive, rudimentary mechanism that develops sensitivity towards information 

in the environment and that is incapable of adding information to the provided material or using 

reflective strategies (Reber, 1967). While Reber (1965) first assumed that implicit knowledge can 

never be available to consciousness, he later (1989) assumed that additional conscious processes can 

interact with these implicitly learned representations and thereby result in conscious knowledge. 

Nevertheless, he did not specify this interaction any further.  

A first theory that was more directly concerned with the interaction of separate implicit and 

explicit learning mechanisms was introduced by Willingham (1998) in form of the so called COBALT 

(control-based learning theory). In this model it is assumed that implicit and explicit learning 

processes work independent and in parallel. Primarily conceptualized as a neuropsychological theory 

of motor-skill learning, the COBALT is based on two separable neural processing pathways. The 

implicit learning system is supposed to be located in a dorsally located pathway. Learning in this 

network is less attention-demanding and leads to rather slowly developing but stable motor-skills. 

The representations developed by the implicit system are supposed to be coded in allocentric space. 

Explicit learning on the other side is supposed to be located in a ventral pathway. Learning within the 

explicit system is highly attention-demanding but also more accurate, strategic and can develop very 

quickly through, for example, instructions, observations or hypothesis testing and is more susceptible 

to forgetting. Representations in the explicit system are supposed to be coded in egocentric space. 

Both systems do not directly interact and develop knowledge completely independent of each other. 

The only interaction between both systems which is allowed within the COBALT is that the explicit 

system can override the implicit system but not the other way around.  

A very similar account, more directly dedicated to implicit sequence learning than the 

COBALT, which is a more general theory for motor skill learning, has been developed by Keele, Ivry, 

Mayr, Hazeltine, and Heuer (2003). Their model adopts many of the ideas from the COBALT with 

some modifications. For example, also being a mainly neuropsychological model, the same mapping 

of an implicit learning system to a dorsal processing pathway and an explicit learning system to a 

ventral pathway is proposed. A main difference is that the model of Keele and colleagues is based on 

the assumption that implicit sequence learning is learning of contingencies within dimensional 

modules. Thus, the model is not exclusive to motor skill learning; dimensions can, among other 

things, refer to visual contingencies (e.g. colors or shapes; each being one dimension), auditive 

contingencies (e.g. pitch or timbre) or motor contingencies (e.g. hand or feet movements). It should 

be noted that Keele et al. acknowledge that the term dimension is not perfectly defined in their 

theory and a clearer suggestion can be found in Eberhardt, Esser, and Haider (2017).  

Important to the theory of Keele et al. (2003) is that the dorsal, implicit learning system is 

exclusive to uni-dimensional learning. Information which is only correlated within one single 
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dimension will be learned without the need for any attentional supervision. It follows that multiple 

sequences can be learned in parallel as long as none of the sequences compete for processing in the 

same module and none of the sequences depends on processing its covariation with another 

sequence in a different modality (e.g. a color predicted by a shape). Uni-dimensional learning is 

assumed to result in so-called encapsulated information, which means that it does not interact with 

any other module and therefore will always remain implicit. There is no mechanism that can 

transform this implicitly learned information into explicit knowledge. The explicit learning system on 

the contrary is responsible for multi-dimensional learning. Whenever two or more sequences covary 

over different dimensions, it is necessary that selective attention is drawn towards the relation 

between the involved dimensions. Because attentional supervision is needed, there is no parallel 

learning within the explicit system. Nevertheless, learning in the multi-dimensional system is still 

seen as an automatic process in a way that it does not need the intention to learn. All that is needed 

is that the correlating dimensions, and no uncorrelated dimensions, are specified as relevant by the 

current task set. The supposed automaticity of the explicit learning system is reflected in the 

assumption that any learned knowledge within this system also is implicit at first. The only difference 

to the implicit system is that this knowledge can become explicit, conscious knowledge. Keele et al. 

remain silent on what the sufficient and necessary conditions are for multi-dimensional learning to 

become conscious; they only state that “because such events are attended, they are accessible to 

processes underlying awareness and thus (…) can become explicit” (Keele et al., 2003, p. 317). 

Interestingly, even though the model of Keele et al. is commonly known as a dual-system theory (and 

is also included as such within this work) it is, much like the model of Cleeremans (2011), rather a 

hybrid between one- and multiple-system views. Different from the model of Cleeremans, Keele et 

al. do not assume any dependency of the explicit on the implicit learning system and rather propose 

two completely independent systems. Nevertheless, the model by Keele et al. also assumes that 

implicit and explicit learning can arise from one and the same (multi-dimensional) system and that 

both systems are based on the same learning mechanism. 

All multiple-systems views, introduced so far, are very unspecific about the actual emergence 

of explicit sequence knowledge. They all are more oriented towards explaining how implicit learning 

can be realized and subsuming empirical findings under one unitary framework. They do not contain 

any references to theories of consciousness like the single-system view by Cleeremans and 

colleagues (Cleeremans, 2011; Cleeremans & Jiménez, 2002) did and rather presume that conscious 

knowledge can result from implicit learning but do not describe how it develops. There are, however, 

multiple-system frameworks consciousness which are specifically designed to distinguish implicit and 

explicit learning mechanisms and which take scientific theories of consciousness into account. 

A first and very influential approach came from Dienes and Perner (1999) which is rooted in 

HOTTs. According to Dienes and Perner any representation can vary in their explicitness in three 
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hierarchical structured constituents; these are content, attitude, and holder. A representation is 

defined as a propositional attitude which at least needs an explicit content. When a person learns a 

sequence in an SRTT, they will acquire a first-order representation of the sequential structure. The 

person can explicitly represent the content of that proposition. That means that the person is aware 

of the given stimuli and their responses and might even express experiencing some feeling of fluency 

or familiarity. However, any propositional attitude can furthermore comprise an attitude towards 

this content (“knowing”, “imagining”, “wanting”, etc.) and lastly a holder (“I”). Dienes and Perner 

conceptualize implicit learning as being at least content explicit (more precisely as being property 

explicit as a further differentiation and most basic form of “content”; see Dienes & Perner, 1999) but 

attitude and holder implicit. However, for knowledge to become subjectively conscious (i.e. 

reportable sequence knowledge) the proposition also needs higher-order knowledge of the attitude 

(knowing that there is a sequence) and the holder (“it is I who knows that there is a sequence”). 

Important to the question how attitude and holder can become explicit, Dienes and Perner stated 

that observing one’s own behavior and inner experiences (e.g. the feeling of fluency) can lead to 

inferences of one’s own knowledge. These inferences constitute an explicit learning process that 

leads to a higher-order representation (i.e. attitude and holder explicitness) of one’s own knowledge.  

This conceptual framework of overserving one’s own behavior by Dienes and Perner (1999) 

provides the basis for the Unexpected Event Hypothesis (UEH) which has originally been proposed by 

Frensch et al. (2003). The UEH aims to improve the description of the mechanism behind the 

initiation of explicit learning processes. Most importantly, it aims to improve the explanation how 

and when implicit learning can trigger an explicit inferential process.  Concerning implicit learning 

processes, the UEH shares some assumptions with the models of Cleeremans and Jiménez (2002) as 

well as of Keele et al. (2003). Building on the computational stance on implicit learning, the UEH 

assumes that implicit learning is a byproduct of interacting with the environment. By repeatedly 

interacting with sequential information, associative weights will gain strength and implicit 

representations will develop. It is further assumed that this acquired knowledge is encapsulated 

within highly specialized subsystems. Unlike the model of Keele et al. implicit knowledge is not 

restricted to a dorsal processing path; instead, the modules which can acquire implicit knowledge are 

spread over different cortical and subcortical networks (see e.g. Conway & Pisoni, 2008; Gilbert, 

Sigman, & Crist, 2001, for overviews). For example implicit motor learning has often been associated 

with activity in the basal ganglia (see Karuza et al., 2013, for an overview), implicit visual learning has 

been found within the medial temporal lobe and the lateral and ventral occipital cortex (Rose, 

Haider, Salari, & Büchel, 2011; Rose, Haider, Weiller, & Büchel, 2002; Turk-Browne, Scholl, Chun, & 

Johnson, 2009) and auditory sequence learning within the primary auditive cortex (Kilgard & 

Merzenich, 2002). Similar to the model of Keele et al. (2003), it is postulated that implicitly acquired 

knowledge is unconscious due to its encapsulated nature and that there is no intrinsic conscious 

property to implicit knowledge, nor is there any additional mechanism that can transform it into 
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explicit knowledge. Unlike the account from Cleeremans (2011), explicit learning does not develop 

through the same learning mechanism as implicit learning and does not require the slow 

strengthening of metacognitive knowledge. Explicit sequence learning instead constitutes an 

independent mechanism that is based on hypothesis testing.  

The crucial idea of the UEH is that explicit sequence knowledge can only develop when a 

person unexpectedly notices a change in their own behavior. This can trigger an intentional search 

for the sequence. In an implicit learning situation, interaction with the task leads to continuous 

improvement of the responses to the stimuli; they become more accurate and faster. It can be this 

improvement or, for example, the feeling that the task becomes more fluent or easy, that there is a 

certain rhythm in one’s own responses or even an external event that directs the participant’s 

attention towards noticing an underlying pattern and triggers following search processes. These 

search processes do not necessarily lead to a detection of the sequence if another explanation seems 

more likely to account for the unexpected event (Figure 4).  

 

 

Figure 4. A schematic representation of the Unexpected Event Hypothesis (Frensch et al., 2003). Any deviation 
between the expected and actual experience of a person constitutes an unexpected event. This comprises 
deviations from subjective, inner experiences (e.g. the feeling of fluency or knowing) as well as observable, 
external events (e.g. entering the correct response before target onset, constantly producing the same 
sequence of action-effects). The detection of an unexpected event leads to an explicit learning process which 
operates via hypothesis testing. Finding the hidden rule as the cause for the unexpected events leads to explicit 
rule knowledge, while finding another cause will hinder the development of explicit sequence knowledge.  
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Generally speaking, the UEH comprises a monitoring process which constantly compares 

expected and actual experiences. This comprises internal, experiential, as well as external, behavioral 

deviations from one’s expectation. This process allows detecting unexpected changes and initiates an 

attributional process for the detected conflict in order to adjust its predictions and reestablish 

coherence between the distant environment and one’s proximal model of it. Comparable 

monitoring-models have been established in neurocognitive models of conflict-detection and 

adaption (Botvinick, 2007; Botvinick, Braver, Barch, Carter, & Cohen, 2001) metacognitive control 

(Kortiat, 2000, 2012, 2015), or memory (Whittlesea, 2002; Whittlesea & Williams, 2000). 

Importantly, this leads to two differences to the model of Cleeremans (2011). First, although 

both theories assume an indirect relation between implicit and explicit knowledge, in the UEH the 

quality of the implicit knowledge is less important for the acquisition of explicit knowledge. In the 

model of Cleeremans, the first-order system has to produce mostly correct responses before the 

higher-order system can learn that something has been learned by the first-order system. In the UEH, 

even though a strong implicit representation is also more likely to lead to an unexpected event (e.g. 

by experiencing more automaticity in one’s own responses), an unexpected event can happen at any 

point during the learning process nevertheless. Any hint for an underlying sequence, even very early 

during the learning phase, for example noticing that no key has to be pressed successively, can serve 

as an unexpected event. In this example, the explicit learning process is triggered completely 

independent of the representational quality first-order knowledge. The second important difference 

is that explicit knowledge does not develop on a gradual trial–by-trial basis. Instead, once a person 

starts searching for a reason for the unexpected event, detecting and learning the sequence explicitly 

will happen via a rather sudden insight-process. It will only take a few trials from the search for the 

sequence to the fully developed explicit representation of it.  

Concerning the compatibility with current views on consciousness, the UEH seems 

advantageous to the model of Keele et al. (2003). Multi-dimensional learning according to Keele et al. 

is a single process that starts with acquiring implicit representations which can develop into explicit 

representations. This implies that there is a certain network within the brain which is responsible for 

transforming unconscious into conscious representations. Even though Keele at al. add that attention 

is necessarily involved in multi-dimensional learning and that the ventral pathway processes 

categorized representations, this does not help to explain, in any way, why and how these 

representations can be conscious. Also, it is not defined if a difference between phenomenal and 

access consciousness is made. Without explaining which functions are related to explicit processing 

in their model, the ventral, multi-dimensional system creates a homunculus and it remains open at 

which point an implicit representation transforms into an explicit representation and how explicit 

representations differ from implicit ones.  
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The UEH instead is compatible with a functional framework of consciousness. There is no 

special mechanism or network that is supposed to be able to transform an implicitly learned 

representation into a conscious one. Neither is there an undefined gradual transition between 

unconscious and conscious states that leaves unspecified when exactly which functions of 

consciousness are enabled. Instead, the UEH can be positioned within a higher-order thought 

framework of consciousness as well as within a conceptualization of global availability of information. 

In its core, it assumes that consciousness requires learning that something has been learned. 

Concerning the HOTTs, the UEH proposes that sequence knowledge can only become explicit when a 

person has learned that they have learned something. Metacognition plays a major role in the UEH, 

as it assumes that there is no direct access to first-order knowledge; the only option to know that 

one knows (or not knows) is via observation of one’s own behavior and its coherence with the held 

beliefs and assumptions about one’s own first-order states. Furthermore, consciousness within the 

UEH is a dichotomous all-or-none state; once a representation is conscious, it is globally accessible to 

all functions of different networks.  

The UEH is also compatible with global workspace theories of consciousness. Once an explicit 

representation of a sequence has developed, there is not only a subjective state of knowing, it will 

also be available for verbal report, flexible and strategic use (e.g. inhibition, transfer to a new task), 

integration with associated knowledge or stimulus-independent, intentional use. Importantly, this 

does not mean that consciousness cannot differ in the detailedness of the features that are 

represented explicitly. As Dienes and Scott (2005) suggested, explicit knowledge can be judgmental 

or structural. A person can perceive an unexpected event within an implicit learning situation and 

assume that an underlying structure of the task is the reason for that change. Nevertheless, the 

sequence might, for example, be very complicated or the participant is simply not interested in 

finding out the actual sequence. In this case, the participant will possess conscious judgement 

knowledge; they know that there is a sequence, but they don’t know its exact structure. Another 

participant might detect the full sequence (or at least parts of it) and therefore will possess structural 

knowledge. Both participants can demonstrate all functions of consciousness about the exact 

features they are conscious about. The participants with judgmental knowledge can communicate 

that they know that there is a sequence or use this knowledge in a similar experiment in the future to 

start searching for a sequence from the beginning of the task. What they cannot do, for example, is 

intentionally producing the sequence in reverse order, when asked to do so. This would of course 

require explicit structural knowledge. Nevertheless, whether only judgmental or also structural 

explicit knowledge develops, is not dependent on the quality of the implicit representation but only 

on the explicit hypothesis testing process.  

To summarize, the core assumptions of the UEH are that (a) implicit learning influences 

behavior, (b) this behavioral change is detected and does not match the expected performance, (c) 
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this mismatch triggers a conscious attributional process, (d) this attributional process can lead to a 

detection of the sequence, and (e) the resulting explicit representation is a new representation, fully 

independent of the quality of the implicit representation and accessible to all functional networks.
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4 Empirical Evidence for Single- and Multiple-System Views 

Now that the theoretical outlines of single- and multiple-system views have been presented, it is 

important to take a look at the empirical evidence that supports each of these views. In order to 

understand the following experiments and their implications for the competing views, a short 

introduction into the methods of measuring implicit and explicit knowledge within the SRTT is 

necessary.  

Factoring that there is little consensus on the existence of unconscious knowledge and the 

nature of conscious knowledge, there is also a broad variety of methods for measuring both kinds of 

knowledge. What a test does measure and what the demands for a test of conscious knowledge are, 

is highly dependent on the conceptualization of consciousness. The following section will therefore 

give a short overview of the most common tests and their interpretation under different 

conceptualizations of consciousness.  

 

4.1 Measures for Implicit and Explicit Knowledge 

Whenever a participant is trained within an SRTT, they will show an incremental decrease in their 

reaction times (RT) to sequential stimuli compared to non-sequential stimuli (even though this is 

somewhat more complicated to show for non-motor sequences; Haider, Eberhardt, Kunde, & Rose, 

2012). This RT benefit is called an indirect test because it is merely a byproduct of task-performance. 

A direct test, which explicitly asks the participant to demonstrate what they have learned during 

training, is needed to identify whether their acquired knowledge is conscious or unconscious.  

The most intuitive and also most used method of choice among the direct tests is to simply 

ask the participant to name the sequence after the training. If they cannot recall the sequence and 

possibly also claim that they have not even noticed that there was a sequence, it could be assumed 

that the knowledge is unconscious. Whether verbal report has any informative value about the 

implicit or explicit nature of the knowledge has been extensively criticized and discussed. In their 

very well-known critique, Shanks and St John (1994) stated that in order to be able to show that 

knowledge is truly implicit, a direct test must fulfill two criterions: The information- and the 

sensitivity-criterion. The information-criterion requires that the direct test has to measure the exact 

same information that was responsible for the performance in the indirect test. Verbal report does 

not fulfill this criterion because it asks for more than what might be needed for a decrease in RT. 

Instead of being able to name the whole sequence, the participant might have noticed that no 

stimulus position is used successively or might simply know about single, salient transitions in the 
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task. Verbal report is therefore highly dependent on what the scientist considers to be important to 

ask for and asking for the wrong information (which might vary individually among the participants) 

might bias the participant and lead to an underestimation of explicit knowledge. The sensitivity 

criterion requires the direct test to be as sensitive as the indirect test. The test situation should 

ideally not differ from the training situation with the exception of the instructions and should 

motivate the participant to use any knowledge they have acquired during the training. Verbal report 

does not meet this criterion, either, because it creates a whole different recall situation and is less 

sensitive due to an unknown response-bias, motivation and expectation of the participant.   

Preferred by Shanks & Johnstone (1999) and already suggested by Nissen and Bullemer 

(1987) is the so-called generation task. Here, the participants are confronted with a task that has the 

exact same surface as the training task. The only difference is that sometimes the stimuli sequence 

will be interrupted and the participants are asked to enter the next response they consider to be the 

most likely on their own. Knowledge is said to be conscious if the participant gave more correct 

responses than was to be expected by mere guessing. In a similar vein, in a recognition test (Shanks & 

Johnstone, 1999) participants are tested in a task highly similar to the training situation. Here, they 

are confronted with trials in which the training sequence is presented and trials in which a new 

sequence is presented. It is then their task to rate whether a just presented sequence was “old” or 

“new”. Again, classification performance above chance-level is considered to demonstrate explicit 

knowledge.  

Besides various methodological criticism which is too broad to be discussed here (see, for 

example, Buchner, Steffens, Erdfelder, & Rothkegel, 1997; Jiménez, Méndez, & Cleeremans, 1996, on 

the generation- and the recognition task), there is one very profound methodological and one, 

maybe even more important, theoretical problem with these tasks. On the methodological side, the 

idealistic demand for a test that is process-pure for implicit or explicit knowledge has been criticized 

by Reingold and Merikle (1988). They stated that any behavior is always a product of conscious and 

unconscious processes. On the theoretical side, the search for the most sensitive measure has led to 

an operationalization of consciousness that is at odds with most functional accounts of 

consciousness. Making a correct predictive response might as well be the product of unconscious 

processes as it does not show that there is any subjective consciousness nor does it show that the 

knowledge can be used in any strategic way. These functions of consciousness cannot be assessed if 

the test is identical to the training situation. 

To tackle the problem of process-pureness, Jacoby (1991) developed the process-

dissociation-procedure (PDP) which has been adapted to the SRTT by Destrebecqz and Cleeremans 

(2001). It is the aim of the PDP to estimate the relative contributions of implicit and explicit 

knowledge on task performance. In the PDP, the participants face two intra-individual test conditions 

which both are highly similar to the training condition. Participants respond to the same sequence as 
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during training, but sometimes, no stimulus is presented and they are asked to give the response 

they consider to be the most likely to occur next (inclusion condition; similar to the generation task). 

It is assumed that explicit and implicit knowledge contributes to the performance within the inclusion 

condition. On other trials, they are asked to give the response they consider to be most unlikely to 

occur next (exclusion condition). Here, it is assumed that implicit and explicit knowledge work 

antagonistically. Implicit knowledge will lead to sequence-conform responses (intrusion errors) while 

only explicit knowledge can be controlled in a way that sequence conform responses can be avoided. 

A high proportion of correct inclusion responses together with a low proportion of intrusion errors is 

supposed to be an indicator of explicit knowledge. The PDP can meet the information criterion to a 

high extent because the inclusion- and exclusion condition only differ from the training task in their 

instructions. At the same it is compatible with functional theories of consciousness like the GWT 

because it asks for strategic use of the knowledge during the exclusion condition. However, it should 

be noted that Barth, Stahl, and Haider (2016) demonstrated that a core assumption of the PDP, 

namely the invariance of implicit and explicit processes across inclusion and exclusion conditions, 

may be violated within the SRTT paradigm and therefore yield unreliable measures.  

Moreover, the PDP still suffers from the shortcoming that it does not inform us about the 

subjective state of the participant. Dienes and Perner (1999) therefore asked for a test that combines 

objective and subjective performance while at the same time, it should try to meet the information 

and the sensitivity criterion to a high extent. In implicit learning research, an appropriate procedure 

has been suggested by Persaud, McLeod, and Cowey (2007) and adapted for the SRTT by Haider, 

Eichler, and Lange (2011). In the so-called wager task, the test task is constructed similar to the 

training task. Analogous to the generation task, participants are instructed to give the response they 

consider to be the next correct one whenever the task is interrupted and no target stimulus is shown. 

Right after their response, they are asked to rate their subjective confidence by wagering on their 

response. For example, they are instructed to bet 1 Cent or 50 Cent on the correctness of their 

response, reflecting their respective confidence. According to the zero-correlation criterion, implicit 

knowledge is assumed when a participant shows an amount of correct responses that is above 

chance-level while at the same time being unable to accurately rate the correctness of their 

responses. Overall, due to the high similarity between training and test, the wager task provides a 

highly sensitive task for measuring implicit and explicit knowledge. In addition, due to the wager 

component, it is also compatible with current functional theories of consciousness as the GWT as it 

tests for the ability to use one’s knowledge strategically. Moreover, the wager task is also satisfying 

from a HOTT perspective because it also captures the subjective aspect of sequence knowledge by 

including the confidence rating. Today, the wager task is a widely accepted measure for explicit 

knowledge within implicit learning research and also has been the subject of various methodological 

improvements (see e.g. Fleming & Lau, 2014; Massoni, Gajdos, & Vergnaud, 2014; Pasquali, 

Timmermans, Cleeremans, 2010; Sandberg, Timmermans, Overgaard, & Cleeremans, 2010; ).  
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Lastly, it should be noted that Rünger and Frensch (2010) have made a strong theoretical 

argument for also continuing to use verbal report as an important measure for explicit sequence 

knowledge with respect to the GWT. They argue that not sensitivity but exclusivity is the most 

important criterion for a test of explicit sequence knowledge. According to their theoretical 

conception, sensitive tests tend to overestimate explicit knowledge; what is needed is a test that is 

impregnated against implicit knowledge and strongly exclusive to explicit knowledge. Verbal report 

would be the best candidate for such a test. In order to deal with the critique about verbal report 

being very susceptible to response-biases of the participants, Rünger and Frensch argue that these 

problems can be overcome by careful construction of the questionnaire. It should begin with very 

open questions and become increasingly specific, thereby motivating the participant to mention any 

knowledge they have while reducing insecurity (Eriksen, 1960).  

To summarize, the wager task as well as verbal report have been shown to be very valuable 

measures of explicit sequence knowledge and together are the most commonly used methods in 

implicit learning research. Moreover, Haider et al. (2011) have shown that both measures are 

correlated to a very high extent, making a final decision of one method over the other superfluous 

for the current research questions presented in the following studies.   

 

4.2 Empirical Evidence for Single-System Views 

As introduced in Chapter 3.1, single-system views can differ crucially on whether they assume that 

there are distinct types of acquired knowledge (i.e. implicit and explicit) within an SRTT. According to 

Shanks and colleagues (Shanks, 2005; Shanks & Perruchet, 2002), it has yet to be shown that 

performance in an SRTT is influenced by implicit knowledge. Their argument is mainly a 

methodological one. Any difference shown between an indirect and a direct test, which would be 

necessary to demonstrate dissociable learning systems, can be explained by the tests being unequal 

in their information- and sensitivity criteria. Different transformation processes are needed when a 

learned representation facilitates the response within an SRTT or when the participant is asked to, 

for example, verbally report the sequence. To support their single-system view, Shanks and 

Colleagues use recognition (Shanks & Johnstone, 1999) or generation tasks (Speekenbrink, Channon, 

& Shanks, 2008). Employing these highly sensitive tasks, the authors show that there is no 

performance difference between the direct test and the indirect test. It is therefore argued that 

knowledge acquired within an SRTT (and other tasks that are supposed to demonstrate unconscious 

processes) is accessible to the participants. However, as discussed in Chapter 4.1 these kind of direct 

tests do not fit the functional approaches to consciousness very well. There is neither any criterion 

showing that the participants have any kind of subjective experience of being conscious of that 
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knowledge, nor is any higher, strategic cognitive function required by those tasks. For that reason, 

the discussion of these studies on single-system explanations is not further extended within this 

work.  

Of higher interest are the studies by Cleeremans and colleagues (Cleeremans, Timmermans, 

& Pasquali, 2007; Pasquali et al., 2010). They assume that implicit and explicit knowledge can be 

dissociated but that both forms of knowledge arise from the same learning process, which is mainly 

dependent on the strengthening of associations throughout practice. Importantly, their work 

includes direct tests, like the wager-task, which are more congruent with the discussed functional 

theories of consciousness. In their studies, artificial neural networks following the metacognitive 

learning architecture suggested by Cleeremans (2008; 2011, see Chapter 3.1), are modeled. 

Cleeremans et al. (2007) trained a first-order feedforward network to learn a simple digit 

discrimination task (i.e. discriminating which number from 0-9 served as an input to the network). 

The input network consisted of input, hidden, and output units. The activation pattern of the hidden 

units was copied into a second input-layer of an independent higher-order feedforward network. 

These input units were again connected to a hidden layer of the higher-order network which, in turn, 

was connected to output units, representing the judgement of the higher-order network about the 

correctness of the output of the first-order network. This certainty could be expressed in a “high 

wager” if the higher-order network decided that the output was correct, or in a “low wager” if it 

decided that the output was incorrect. The first-order network gradually learned to improve the 

digit-classification. The higher-order network showed a different, u-shaped, learning curve. It started 

with a fairly good performance (i.e. high wagers on correct outputs of the first-order network and 

low wagers on wrong outputs), then dropped to chance-level and gradually improved again until it 

reached 100% correct responses. This can be explained by the performance of the first-order 

network. The first-order network starts with a very bad classification performance; the second-order 

network learns that the first-order network is almost always wrong and accordingly correctly puts 

low wagers on the correctness of the first-order network. When the first-order network surpasses 

chance-level, the second-order network’s performance will drop until it has learned that the state of 

the first-order network has changed and thereby begins to place high wagers on correct outputs.  

In a subsequent study, Pasquali et al. (2010) aimed to compare the results produced by their 

network to data produced by participants in an implicit learning situation. Therefore, they used the 

data of Persaud et al. (2007) with which the wager-task has been introduced as a measure of 

subjective consciousness within an Iowa Gambling task (Bechara, Damasio, & Anderson, 1994), 

blindsight (Stoering, Zontanou, & Cowey, 2002) and Artificial Grammar Learning (A. Reber, 1967). The 

network built by Pasquali et al. (2010) replicated the participants’ data on all three tasks. Together 

these studies show, on a computational level, that metacognitive learning can be used to explain the 

dissociation between performance in indirect and direct tests in an implicit learning situation.  
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Besides the studies led by Shanks and colleagues, in which tests of ambiguous informative 

value have been used to assess explicit sequence knowledge and the simulation data of Cleeremans 

and colleagues, hardly any studies supporting a single-system view on the emergence of explicit 

knowledge in an implicit learning situation can be found.  

 

4.3 Empirical Evidence for Multiple-System Views 

Corresponding to the larger number of multiple-system views, there is also much more research 

dedicated to investigating them. This comprises modeling of neural networks which propose 

different learning mechanisms and representational formats for implicit and explicit knowledge (e.g. 

the CLARION model by Sun, Slusarz, and Terry, 2005; the TELECAST model by Hélie, Proulx, and 

Lefebvre, 2011). Concerning the question of potentially dissociable neural bases of implicit and 

explicit learning, there are neuropsychological studies on amnestic patients showing the involvement 

of different networks within an SRTT. These studies generally point to the circumstance that 

amnestic patients with heavily impaired declarative memory due to damage in the medial temporal 

lobe (MTL) show an inability to explicitly learn a sequence within an SRTT. Nevertheless, the implicit 

learning skills of these patients are comparable to healthy control groups (P. Reber & Squire, 1998; 

Vandenberghe, Schmidt, Fery, & Cleeremans, 2006; but see Speekenbrink et al., 2008, for a different 

view). There also are neurological studies with healthy participants pointing to a possible 

neurological dissociation between explicit and implicit learning systems. These studies usually 

demonstrate an association between increased activation within the MTL, generally characterized as 

an important network for declarative knowledge, and explicit sequence learning (Keele et al. 2003; 

Poldrack et al., 2001; P. Reber, 2013), even though MTL activity has also been demonstrated for 

implicit non-motor sequence learning (Rose et al., 2011; Rose et al., 2002; Turk-Browne, 2009). 

Furthermore, activity within the dorsolateral prefrontal cortex, the parieto-occipital, the premotor 

and inferior temporal cortex, and the anterior cingulate cortex, subsumed by Keele at al. (2003) as 

the ventral stream, has been associated with explicit sequence learning (Destrebecqz et al. 2003; 

Grafton, Hazeltine, & Ivry, 1995; Hazeltine, Grafton, & Ivry, 1997). More specifically, the ventrolateral 

prefrontal cortex and the ventral striatum showed increased coupling of their activity shortly before 

participants indicated awareness of the implicitly learned sequence (Rose, Haider, & Büchel, 2010; 

Wessel, Haider, & Rose, 2012). These latter studies provide interesting support for the role of the 

detection of unexpected events in the acquisition of explicit knowledge because the investigated 

network has been associated with feedback-based prediction learning and the implicit detection of 

violations from learned associations (Rose, Haider, & Büchel, 2005; Seger, 2008). 
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In congruence with the assumption that implicit learning can be found for various distinct 

response- and stimulus dimensions and that this learning happens within encapsulated modules 

(Eberhardt et al., 2017; Keele et al., 2003), implicit learning can be found in widespread subsystems 

within the brain. Thereby, the most robust finding is the involvement of the basal ganglia as long as 

motor sequences are involved (Karuza et al., 2013) whereas the much less investigated non-motor 

visual learning has been associated with activation in the lateral and ventral occipital cortex, the 

posterior caudate and the MTL (see P. Reber, 2013, for an overview; Rose et al., 2011).  

Showing that different neural networks are involved in explicit and implicit learning might be 

seen as a hint towards different learning mechanisms being involved. However, given the multitude 

of multiple-system views as well as the huge variability in the actual experimental designs and the 

exact structure of the sequences involved, the neuroimaging data are far from being able to support 

any specific theoretical view on the mechanism behind the emergence from explicit knowledge in an 

implicit learning situation. More interesting are studies directly aimed at differentiating between 

single- and multiple-system views. There are a few experiments directly focused at testing 

parsimonious single-system accounts against the assumption that additional explicit learning 

mechanisms are needed to gain insight over encapsulated implicit knowledge.  

The earliest study directly aimed at this question came from Haider and Frensch (2005). In 

this study the authors worked with a number reduction task (NRT; Frensch et al., 2003; Thurstone & 

Thurstone, 1941) instead of an SRTT. In the NRT, participants compare two digits and respond to 

them being identical or not identical. Like in the SRTT, there is an underlying hidden rule which is 

more abstract in the NRT. Despite these differences, both paradigms have in common a typical 

decrease in reaction times when the hidden rule is learned implicitly. In this study the authors tested 

a crucial prediction of the UEH: Unexpected events should trigger an attributional process that leads 

to explicit rule knowledge. More precisely, they programmed unexpected events into the task by 

having the program erroneously record a premature response, i.e. a response made before the 

target stimulus appeared. The participants were made to believe that they were responsible for the 

premature responses. It was manipulated whether the instructions gave the participants a sufficient 

explanation for these responses happening (i.e. attentional lapses), while the other group was given 

no explanation. The idea was that only participants without a given explanation would look for a 

reason for their erroneous behavior and therefore would have a higher likelihood to detect the 

hidden sequence. However, the results were not completely unequivocal. The group that was not 

offered a cause for their premature responses did show more explicit knowledge than a control 

condition without any premature responses inserted.  At the same time, the group that did have a 

cause offered did not differ from that control group. Still, the groups with and without an offered 

cause for their premature responses only differed numerically but not significantly from each other. 

This might have been due to the problem that the offered cause (i.e. attentional lapses) did not 
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necessarily prevent participants from wondering how they were able to give a correct response 

before the target stimulus was even shown. Therefore, there still might have been a substantial, 

though smaller, proportion of participants that were surprised by the unexpected event and 

searched for a cause outside of the simple explanation of inattention.  

In another NRT study, Haider and Frensch (2009) manipulated the chance to experience 

unexpected events produced by the participants themselves. Here, the authors manipulated the 

response-stimulus interval (RSI); there either was a 500ms delay before the next stimulus was 

presented after the last response or it followed 250ms after the last response. Their assumption was 

that a long RSI would raise the likelihood for premature responses, while an RSI of 250 ms would 

make them less likely. The UEH therefore predicts an increase in the amount of explicit knowledge 

for the group with a 500 ms RSI. The results corresponded with this prediction. Because the amount 

of practice was equal between the conditions, it seems that the results are in favor of the UEH and 

against a simpler single-system view. However, there also was a significant performance difference 

between the 500 ms and the 250 ms RSI condition, with the 500 ms Condition showing shorter RTs. 

This might of course, in accordance with the UEH, be an effect of the increase in explicit knowledge 

due to the increased amount of unexpected events. But it might also be a sign that the 500 ms RSI 

condition learned more about the sequence, which, in accordance with a single-system view, 

gradually led to more explicit knowledge. In fact, Destrebecqz and Cleeremans (2001, 2003) argued 

that a longer RSI provides more opportunities to associate memory traces of high quality and thereby 

to develop higher quality representations. In a computational model they assume that there is a 

perception network which can produce motor responses and an additional memory network that can 

interact with the perception- and the motor network and learn about the sequence, but only if given 

enough time (Destrebecqz & Cleeremans, 2003). When the RSI is short, there is less chance that 

memory representations can develop. Even though this explanation has later been disputed by 

Rünger (2012), it is necessary to manipulate unexpected events in diverse other ways to strengthen 

the UEH explanation behind these data.  

Such a different way of manipulating unexpected events, this time within the SRTT paradigm, 

has been explored by Rünger and Frensch (2008) as well as by Schwager, Rünger, Gaschler, and 

Frensch (2012). Rünger and Frensch (2008) manipulated whether the SRTT training contained only 

regular trials (control group) or was interrupted by either a new sequence or by random trials. Their 

assumption was that the interruption by a new sequence or by random trials would lead to an 

increase in RT, which the participants could notice as an unexpected event. Therefore, the groups 

who received additional random trials or trials with a new sequence should develop more explicit 

sequence knowledge. The amount of trials with the actual training sequence was kept constant 

across all groups. Therefore, the representational strength was supposed to be kept equal across the 

three conditions, implying no difference would be expected by single-system views. However, the 
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authors did not find the expected advantage for any of the experimental groups. They only found less 

participants without any verbalizable knowledge in the condition which sometimes was interrupted 

by a new sequence.  

Schwager et al. (2012) chose a similar approach. Here, participants were trained with either 

random material or with regular material. In a subsequent manipulation phase, they either received 

the same regular sequence as during training or a new regular sequence. Single-system views would 

predict that the group who had the same sequence during training and the manipulation phase 

should show the most explicit knowledge. If however, the change to a new sequence is perceived as 

an unexpected event, for example by recognizing an increase in the RT, this should, according to the 

UEH, lead to more explicit knowledge. Again, the results did not completely match the predictions. 

The group with the regular training and the new sequence in the manipulation phase did not show 

more explicit knowledge than the group who received the same sequence in both phases. Only the 

group with random training showed less explicit knowledge than the two groups who were trained 

with a sequence. Nevertheless, it remains an interesting point that from the two groups who 

received the new sequence in the manipulation phase, those participants who had already had a 

different sequence during training had more explicit knowledge of the new sequence than the 

control group who had had no former sequence. Both groups therefore had the same amount of 

practice with the new sequence in the manipulation phase. This result however is not unambiguously 

diagnostic about either a single-system approach or the UEH. It is not a clear prediction of the UEH 

that the group trained with random material before showed less knowledge than the group who had 

already received a different sequence. Eventually, the random group might as well be expected to 

perceive a salient unexpected event, as they changed from more difficult random material to an 

increasingly fluently-feeling sequential structure. A single-system account might explain the finding 

when strengthening of the training sequence led to explicit knowledge of the training sequence. It is 

trivial that a group who has learned that there is a sequence in the training would also search for the 

new sequence in the manipulation phase.  

The studies discussed so far focus on the core assumption of the UEH, namely that there is a 

causal relation between experiencing an unexpected event and the emergence of explicit knowledge. 

There is another row of experiments which also should briefly be mentioned here because they focus 

on another important assumption that separates the UEH from single-system accounts. The following 

studies focus on the sudden transition from implicit to explicit knowledge by converging behavioral 

with neuroimaging data. A sudden insight emerging from hypothesis testing is opposed to single-

system views which all assume a slow and gradual transition. A first investigation has been reported 

by Haider and Rose (2007). They showed that participants who were able to verbally report a 

sequence at the end of training showed differences in their RT performance compared to 

participants whose knowledge remained implicit. While the latter showed a typical gradual decrease 
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in their RT, participants who had developed explicit knowledge showed a distinctive, sudden drop in 

their RTs which is likely to reflect the moment a participant was able to switch from stimulus- to 

plan-driven control. This finding was more thoroughly investigated in a study by Rose et al. (2010). 

Here the concurrence between an RT drop during training and the subsequently tested ability to 

name the rule was further established. Moreover, the authors could show that a clear change in 

neural activity in the ventrolateral prefrontal cortex and the ventral striatum preceded this RT drop. 

This cortico-subcortical network has previously been associated with expected value and the 

representation of prediction errors (see e.g. Chase, Kumar, Eickhoff, & Dombrovski, 2015, for a meta-

analysis). In the context of the UEH an increase in activity in these regions might thus affirm the 

assumption that an unexpected violation of  predictions is relevant for triggering explicit learning 

processes which soon after lead to a drop in the participant’s RTs. Furthermore, both studies support 

the assumption of a sudden insight which leads to a qualitative change in information processing, 

rather than a gradual transition towards conscious knowledge.  

Another interesting finding in that context came from Schuck et al. (2015). Here, the authors 

did not use an SRTT, but a similar task where participants were instructed to perform a simple 

discrimination task which, unbeknownst to the participants, contained a visual sequence that, if 

discovered, would allow a simpler task processing. Increased activation of the medial prefrontal 

cortex was associated with the exploration of color information that could be used for a strategy 

shift. This signal predicted which participants would show a strategy shift a few minutes later. This is 

one of the first studies to show that an active exploration of the task material, as it is proposed by 

the UEH, precedes the insight into an implicitly learned rule. Taken together, the results presented 

here all show very interesting, converging and diverse evidence that unexpected events are an 

important trigger for attributional processes which in turn can lead to explicit learning of an implicitly 

learned sequence. It is the aim of the following studies to build on these findings. The studies are 

designed to improve some of the issues discussed about the just presented studies. Furthermore, 

since the UEH is a very broad framework that allows many different opportunities to experience 

unexpected events and should account for different forms of implicit learning, the following 

experiments should also broaden the methodological horizon of manipulations within an implicit 

learning situation.  
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5 Overview of the Studies 

Three studies were conducted with the aim of providing further insight into the mechanisms behind 

the emergence of explicit knowledge in an implicit learning situation. More specifically, all three 

studies were aimed at testing a parsimonious single-system strengthening account against a multi-

system account represented by the UEH. 

The first study was methodologically close to the studies of Rünger & Frensch (2008) and 

Schwager et al. (2012) presented in the former chapter. Its main aim was to manipulate the 

subjective feeling of fluency as an unexpected event between the participants, while also trying to 

find some methodological improvements to these studies.  

Studies 2 and 3 took a different approach to investigating the assumptions of the UEH. In 

these studies we investigated the role of action-effect learning (Elsner & Hommel, 2001; Hommel, 

Müsseler, Aschersleben, & Prinz, 2001; see Shin, Proctor, & Capaldi, 2010, for a review) which, in 

previous studies has repeatedly been linked to learning within the SRTT (Stöcker & Hoffmann, 2004; 

Tubau, López-Moliner, & Hommel, 2007; Ziessler, 1998). Moreover, various studies showed 

increased explicit sequence learning when action-effect learning was involved (Hoffmann, Sebald, & 

Stöcker, 2001; Stöcker, Sebald, & Hoffmann, 2003; Ziessler & Nattkemper, 2001; Zirngibl & Koch, 

2002). However, there has not been a direct investigation of the role of action-effect learning on 

explicit sequence knowledge so far. Therefore, studies 2 and 3 were designed to fortify this empirical 

evidence and also apply the UEH as an explanatory framework for these effects.  

 

5.1 Study 1: The Emergence of Explicit Knowledge in a Serial Reaction Time 
Task: The Role of Experienced Fluency and Strength of Representation 
 

The goal of Study 1 was to directly test the role of associative strength against the role of unexpected 

events on the emergence of explicit knowledge in an implicit learning situation. As discussed in 

Chapter 4.3 there only have been a few studies that directly tried to test these theories against each 

other. So far, these studies yielded some interesting insights by trying out various manipulations to 

keep the associative strength equal across the different conditions, while at the same time trying to 

manipulate the likelihood of unexpected events and the possible causal attributions for them. Taken 

together, these studies provide converging support for the UEH. However, individually they also 

showed that the manipulation of the relevant factors can become very tricky and that the paradigm 

as well as the complex research question at hand needs a multifaceted approach to deal with various 

unwanted side-effects and alternative explanations. The following study built on the logic of the 



Overview of the Studies 

43 
 

studies from Haider and Frensch (2005, 2009), as well as the studies from Rünger and Frensch (2008) 

and Schwager et al. (2012) by trying to deal with the challenges these studies encountered.  

The current study and all following ones used the SRTT paradigm, instead of the NRT, 

because it allows for a much broader variability of the sequences used and also has a big advantage 

through the great amount of research behind it. This in turn opens up a broader spectrum of 

accepted tests of knowledge. The essential studies by Haider and Frensch (2005, 2009), Rünger and 

Frensch (2008) and Schwager et al. (2012) all used verbal report of the sequence as the test for 

explicit knowledge. As discussed in Chapter 4.1 verbal report has its merits. Still, their results often 

did not show the expected differences and a more sensitive test might help to detect any differences 

in explicit knowledge more reliably. Therefore, in the current and all following studies we used the 

wager task (Haider et al., 2011) to estimate explicit knowledge.  

Furthermore, because the UEH allows many different sources for unexpected events, we 

aimed to augment the empirical basis by using a new manipulation for the occurrence of unexpected 

events. So far, the studies by Haider and Frensch (2005, 2009) mainly used externally determined 

events (i.e. premature responses inserted by the program) which the participants were supposed to 

perceive as self-produced. This was a very good way to ensure that all participants encountered the 

exact same training phase. However, the UEH assumes that implicit learning should lead to changes 

in one’s own behavior and that perceiving these changes leads to an attributional search process. For 

this reason, it would be helpful to find a manipulation that also covers the need to keep the training 

as comparable as possible while at the same time leading to different perceivable changes in one’s 

own behavior. Rünger and Frensch (2008; Experiments 2a & 2b) tried to achieve this by inserting 

random blocks into the training phase. This should lead to a perceivable and unexpected slowing of 

the responses, in turn leading to attributional search processes, compared to a group with the same 

amount of regular trials but without any random trials. Rünger and Frensch however did not find the 

predicted differences in explicit sequence knowledge. This might be because the random blocks were 

too long (120 trials) and participants’ search processes were not successful since they might have 

been triggered and started but also stopped again before the sequence had reappeared. Besides 

that, the results might also be in favor of a single-system strengthening account because participants, 

at least numerically, showed less sequence knowledge and slower RTs when trained with additionally 

inserted random blocks. It could be argued that inserting random blocks led to a weakening of the 

associative strength and therefore also to less sequence knowledge.  

In the following study, we tried to implement an improvement to the design of Rünger and 

Frensch which should tackle the just mentioned difficulties of their study. We aimed for a design that 

kept the amount of regular and irregular trials equal across all groups, therefore not allowing any 

differences in the associative strength. The critical manipulation was the arrangement of the regular 

and irregular trials. For one condition the regular and irregular trials were mixed randomly, while for 
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the other group both trial-types alternated every 22 (Experiment 1 & 2), respectively every 88 trials 

(Experiment 3). The expectation was that only the participants who encountered these alternating 

mini-blocks of 22, respectively 88 random and regular trials should be able to experience a difference 

in the experienced fluency between both types of material. Participants who were trained with both 

types of material mixed randomly should not be able to experience any differences in the fluency of 

the material because the material changes are too frequent. If the differences in the experienced 

fluency represent an unexpected event, the group who received the regular and irregular material in 

alternating mini-blocks should also show more explicit sequence knowledge.  

Another improvement lay in the composition of the three experiments in Study 1. The UEH 

postulates that there is no direct relation between implicit and explicit knowledge. To increase the 

informative value of our study, we aimed to show that the difference in the arrangement of the 

regular and irregular trials has an influence on the explicit knowledge acquisition, but does not lead 

to a difference in the acquired knowledge in general. Therefore, in Experiment 1 we tried to make 

the emergence of explicit knowledge highly unlikely by presenting one group rather short alternating 

mini-blocks (22 trials) of regular and irregular material compared to a group who received randomly 

mixed material. Our expectation was that these mini-blocks were too short to allow the participants 

to explicitly learn the sequence. Experiment 1 should therefore provide an estimation of the 

difference in acquired sequence knowledge that does not go back to explicit learning. Our 

manipulation of the arrangement of the training material should generally not lead to any 

differences in the knowledge base of both groups. However, because we also expected the different 

arrangements to lead to differences in the experienced feeling of fluency, differences in the 

performance during the training task could also be expected. Participants who alternatingly 

experienced more and less fluency during the mini-blocks might show greater differences in their RTs 

than participants who received the randomly mixed material, who might generally be a little slower 

on both types of material. We used the wager task as a very handy option to estimate the acquired 

knowledge without resorting to RTs.  

In a second step we directly aimed to test whether our manipulation led to the predicted 

subjective differences in experienced fluency of the training material (Experiment 2). This direct 

assessment of the subjective metacognitive attitudes towards the training material is a new, 

explorative approach to test the assumptions of the UEH. So far, the anteceding studies have only 

tried to ensure their manipulation affected the subjective perception of the participants’ behavior by 

retrospectively asking them about what they perceived. Here, we tried to implement a more 

sensitive measure of the subjects’ experiences by letting them rate their experienced differences in 

the fluency of the regular and irregular material within the SRTT itself. The group who received the 

regular and irregular material arranged in mini-blocks should rate the regular material as feeling 
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more fluent than the irregular one, while the group who received both materials mixed randomly 

should not be able to rate one material as feeling more fluent than the other.  

Finally, in a last step, we extended the length of the mini-blocks of regular and irregular 

material to 88 trials per mini-block. This should, opposed to the shorter 22 trial mini-blocks, allow the 

group that is trained with this blocked material to find a sequence, if in fact the difference in the 

experienced fluency triggers subsequent search processes. Therefore, Experiment 3 aimed to show 

that the group that wa trained with such longer alternating mini-blocks of regular and irregular 

material should acquire more explicit knowledge than the group that received both types of training 

material mixed randomly.  

All three experiments taken together provided a clear, gradual deduction of the assumptions 

of the UEH. Experiment 1 showed that our manipulation of the subjective feelings of fluency did not 

lead to a different amount of acquired (implicit) knowledge, expressed in a subsequent wager task. 

Experiment 2 demonstrated that the manipulation of the trial-type arrangement did lead to 

differences in the experienced fluency. Lastly, Experiment 3 showed that the manipulation of the 

experienced fluency did lead to differences in explicit knowledge. More explicit knowledge was 

found for participants who could perceive a difference in the fluency between regular and irregular 

trials due to the blocked arrangement of these trial-types. Together the studies can show that the 

same underlying implicit knowledge base can result in different consciously perceivable changes of 

behavior and that it is this subjectively experienced, unexpected change that leads to an explicit 

search for the reason of this experience. This search ultimately can lead to explicit sequence 

knowledge.    

 

5.2 Study 2: Implicit Visual Learning: How the Task Set Modulates Learning by 
Determining the Stimulus-Response Binding 
 

The main goal of study 2 was to investigate the role of response-effect learning (R-E learning) on the 

emergence of explicit sequence knowledge. R-E learning is generally considered to be an important 

mechanism for intentional action control, as opposed to habitual or stimulus-dependent behavior 

(Hommel et al., 2001; Shin et al.; 2010; Balleine & O’Doherty, 2010). Hence, it might not be surprising 

that several studies have found a relation between R-E learning and the emergence of explicit 

sequence learning in an implicit learning situation (Hoffmann, Sebald, & Stöcker, 2001; Stöcker, 

Sebald, & Hoffmann, 2003; Ziessler & Nattkemper, 2001; Zirngibl & Koch, 2002). Yet, most of these 

studies rather considered R-E learning as a general mechanism guiding implicit sequence learning 

and which is comparable to R-R, S-S or S-R learning (e.g. Ziessler, 1998). Only a few studies have 
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given the finding of an increase in explicit sequence knowledge special consideration. For example, 

Stöcker & Hoffmann (2004) suggested that auditive action effects lead to chunking processes that 

integrate these auditive effects into a melody and that it is these chunking mechanisms that promote 

the emergence of explicit knowledge. Similarly, Tubau et al. (2007) argued that auditive action-

effects are integrated into a melody through the phonological loop. Because the phonological loop 

also plays an important role in plan-guided behavior, auditive action effects might promote plan-

guided, as opposed to stimulus-guided behavior in an implicit learning task. The assumption that 

integrating action-effects into a higher-order structure (i.e. chunks) leads to explicit knowledge 

resembles a single-system account of explicit learning.  However, the integration of a sequence into 

chunks might also be the effect of and not the cause for explicit sequence knowledge. The UEH 

provides an alternative explanation for the observation of an increase in explicit sequence 

knowledge. The essential link between the UEH and R-E learning is that both crucially depend on the 

perception of distal changes in the environment brought upon by one’s own behavior. Different 

research points to the circumstance that R-E associations will only be acquired when the effects in 

the environment are interpreted as being caused by one’s own actions (Herwig & Waszak, 2009, 

2012). It has furthermore been shown that acquiring an action-effect association leads to the 

conscious anticipation of the effect before the action is initiated (Blakemore, Wolpert, & Frith, 2002; 

Haggard & Chambon, 2012; Moore & Haggard, 2008). It is this conscious anticipation of an action-

effect that enables it to control intentional behavior (Hommel et al., 2001; 2017). Integrating the 

research in R-E learning into the UEH leads to the idea that learning R-E relations within an SRTT has 

a much greater likelihood to lead to perceivable changes in one’s own behavior than learning about 

R-R, S-S or S-R relations. The latter three mostly lead to responses becoming faster and making fewer 

errors, which, if noticed at all, both can easily be attributed to mere practice effects. Different from 

that, experiencing that an action contingently leads to the same perceivable change in the 

environment, or even to a whole sequence of perceivable events, is a very salient unexpected event 

that points towards the existing of an underlying sequence – especially if these effects slowly start to 

be actively anticipated. 

The following study was a first try to provide further evidence for the role of R-E learning in 

the emergence of explicit sequence knowledge. In their design, the experiments were built on a 

study by Haider et al. (2012). In this study, the authors used a very subtle manipulation to affect the 

stimulus-response mapping. Participants either responded to stimuli with the keyboard, as in the 

usual SRTT setting, or responded via mouse by clicking on the response stimuli displayed on the 

screen. Additionally, it was manipulated whether there was a pure visual sequence (i.e. in the colors 

of the target stimuli without any sequential motor responses) or a pure motor sequence (i.e. with 

random target colors) which the participants responded to. The interesting finding was that implicit 

learning seemed to be unaffected by the response device, but explicit learning critically depended on 

the combination of response device and sequence type. While the motor sequence was learned 
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explicitly with the mouse as well as with the keyboard, only the participants who responded with the 

mouse were able to acquire explicit knowledge about the visual sequence. These results were 

tentatively explained with an R-E learning mechanism. The assumption was that if participants 

respond with the keyboard they encode mainly information about the location of the response. 

Responding with the mouse instead leads to encoding of both the color and the location of the 

clicked response stimulus on the screen. Therefore, when trained with a motor sequence, all 

participants can experience a contingent association between their response (coded by its location) 

and the outcome, i.e. the next stimulus location.  This enhanced explicit learning for keyboard- and 

mouse-conditions. When the participants were trained with a visual sequence instead, only the ones 

who responded with the mouse, and thereby coded their response by the to-be-selected color, 

experienced a contingent response-outcome relation (i.e. the outcome being the next target’s color). 

Hence, only the mouse-condition showed an increase in explicit knowledge about the visual 

sequence. 

In the following three experiments, the first one represented a replication of the finding of 

Haider et al. (2012). In the second experiment, we aimed to fortify the assumption that participants 

who respond with a keyboard do not encode the visual characteristics of the target-, respectively 

response stimuli (or to a much lesser extent) but rather encode the relevant response locations. To 

test this, we only trained participants with a visual sequence this time. Again, the participants either 

responded with mouse or keyboard. Additionally, we introduced tones which were either bound to 

the colors of the response stimuli or to the response locations. Consequently, only when the tones 

were bound to the colors, the participants produced a melody with their responses, independent of 

whether they responded with the keyboard or the mouse. Should the fact that participants created a 

melody with their responses lead to more explicit sequence knowledge in both response device 

conditions, this could be taken as evidence for the assumptions put forward by Stöcker and 

Hoffmann (2004) or Tubau et al. (2007). If however, the contingent color-tone relation only leads to 

more explicit knowledge in the mouse condition, this could be taken as evidence that the mouse 

condition indeed encoded the colors of the response stimuli to a greater extent. Additionally, this 

could be taken as a further hint that experiencing a contingent relation between a response (here 

coded by colors) and the subsequent effects of this response (the next color and the contingent tone) 

are relevant for the emergence of explicit sequence knowledge. Finally, the third experiment should 

provide more evidence for our proposal that experiencing contingent R-E relations specifically 

impacts explicit sequence learning. In order to test this, participants again were trained with a visual 

sequence and responded either with the mouse or with the keyboard. This time, no additional tones 

were used. Additionally, 50% random trials were interspersed in the training sequence. This should 

hinder the acquisition of explicit knowledge. Two control groups received the same response device 

manipulation, but were trained with 100% regular trials. In line with the former experiments, we 

expected to find explicit knowledge in the mouse control group with 100% regular trials. The 
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interesting comparison to distinguish between a single-system strengthening account and an R-E 

account was the comparison between the two 50% random trials experimental groups. Due to the 

random trials inhibiting the acquisition of explicit knowledge, the relevant comparison was in the 

acquired sequence knowledge per se (i.e. percent correct responses in the wager task). 

If we found more sequence knowledge per se for the experimental group trained with 50% 

random material while using the mouse as a response device compared to the keyboard 

experimental condition, this would speak for a single-system strengthening account. It could be 

interpreted that the manipulation of the response device affects attention to the relevant dimension 

(i.e. stimulus color), so that the mouse-condition acquires stronger associations and therefore also 

can develop more explicit knowledge. If however, both conditions that were trained with 50% 

random material showed a comparable amount of knowledge, this would make a point against an 

interpretation based on the gradual increase of associative strength. We hypothesized that the 

difference in sequence knowledge between response devices would be specific to the acquisition of 

explicit knowledge, not associative strength per se. If R-E learning specifically affects the acquisition 

of explicit knowledge, there should not be a difference between the two experimental conditions 

because the 50% percent random trials impede these explicit learning processes.    

The second study brought important further evidence for a special role of R-E learning in the 

emergence of explicit sequence knowledge. Experiment 1 replicated the findings of Haider et al. 

(2012) and Experiment 2 fortified the R-E learning explanation for these findings. More explicit 

knowledge was found when action-effect tones were bound contingently to the participant’s 

responses coded in the relevant dimension. Experiment 3 showed that action-effects seemed to 

selectively enhance explicit but not implicit learning processes. 

 

5.3 Study 3: Action-Effects Enhance Explicit Sequential Learning 

Study 3 served to further explore the relationship between R-E learning and explicit sequence 

knowledge by ruling out some of the alternative explanations left open by study 2. Concerning the 

results of study 2, it might still be possible to explain them with a strengthening account even if 

Experiment 3 provided results which at least would require some additional assumptions. If 

participants trained with a visual sequence either coded their actions by location (in the keyboard 

condition) or by location and color (in the mouse condition), only the latter group experienced a 

contingent relation between the color they responded to and the next target color. This can be 

interpreted as a simple strengthening of S-S associations, without the need to assume that 

participants interpreted the next color or the tone as an effect of their actions. Additionally adding a 

tone to an S-S sequence adds another predictive dimension to that S-S relation so that accordingly, 
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the quality of the representation can improve even further. In Experiment 3 of Study 2, the mouse 

condition which received 50% random trials did not show more significant explicit knowledge. It 

could be argued that the added noise from the random trials made learning so difficult that both the 

keyboard condition and the mouse condition only learned very little about the visual sequence at all 

and that it would have taken many more trials until the knowledge advantage for the mouse 

condition could have developed. This view might be supported by the fact that while none of the two 

experimental conditions showed an advantage in explicit knowledge, there was a numerical trend for 

the mouse condition to give more percent correct responses in the wager task. If, with more training, 

this trend became a significant difference, it would oppose the assumption that experiencing 

contingent R-E relations specifically impacts explicit sequence learning but not sequence learning per 

se. 

To rule out these explanations with Study 3, we developed an experiment with a related but 

different design which manipulated (a) the contingency of the responses and the effects and (b) the 

interpretation of the additional effect-tones as either being an additional but response-independent 

stimulus event or as an effect of one’s own actions. The most obvious difference was that the 

comparison between two response devices was no longer the manipulation of choice.  

Concerning the contingency of the responses and their effects, the experiment in Study 3 

created a situation where all participants responded with the keyboard to a motor sequence. There 

was an additional and uncorrelated color sequence in the stimuli which was irrelevant for all groups. 

Hence, differently to Study 2, there was no difference in the dimensions the participants were 

induced to pay attention to. In one condition of Study 3, participants had a tone contingently bound 

to each response location, so that they produced a melody by responding to the sequence 

(Contingent-Tone Group; CT-Group). In another condition, participants had the exact same training 

but for them, the tones were bound to the uncorrelated and irrelevant color sequence (Non-

Contingent-Tone Group, NCT-Group). This led to the effect that both conditions had the exact same 

response sequence and heard the same melody but only in the CT-Group, the effect-tones were 

contingent to the key-presses. This is basically a replication of Experiment 2 in Study 2, with a slightly 

different manipulation of the action-effect contingency. In Study 2 the manipulation of the response 

device affected the internal representation of the task and thus, depending on the induced task-set, 

the tones were either bound to the sequential dimension (color) or to another, irrelevant dimension 

(location). This might have led to a somewhat greater variance since participants in Study 2 could 

vary in their internal weighting of the different response dimensions. The manipulation in Study 3 

provided a clearer manipulation of the action-effect contingency because this time, the contingency 

did not depend on the internal coding of the task but instead was determined by the task itself. This 

difference between Study 2 and 3, in combination with the switch from a visual to a motor sequence, 

might help to provide an even clearer data picture. 
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An even more important novelty of Study 3 is that we manipulated the interpretation of the 

action effects as being response-independent stimulus events or as action-dependent effects. In a 

third condition participants had the exact same training as the other two groups. Also, this third 

condition experienced the same response-tone contingency as the CT-Group. The only difference 

was that this time, the tone did not immediately follow the response, as it was the case for the CT-

Group. Instead, it followed with a 400 ms delay to the response (Stimulus-Tone-Group, ST-Group). 

The temporal delay between an action and a following stimulus has repeatedly shown to be an 

important factor in perceiving an event as an action-effect or as an action-independent stimulus 

(Blakemore et al., 2002; Elsner & Hommel, 2004). Comparing the ST- to the CT-Group helps ruling out 

the possible alternative explanation for the results of Study 2; namely that the manipulation of the 

response device led to more attention on the predictive dimensions which in turn led to greater 

associative strength, explaining the differences in explicit knowledge. Here, both conditions 

contained the exact same response-tone contingencies between the predictive elements of the 

sequence and there was no attentional difference between both conditions. The only difference was 

that the CT-Group was more likely to interpret the tones as consequences of their own actions, while 

the ST-Group was more likely to perceive these tones as action-independent stimulus events. Hence, 

showing that only the CT-Group expresses more explicit knowledge in a subsequent wager task, 

while the ST-Group does not, would be difficult to reconcile with a simple single-system 

strengthening account. The results might still be explained with a hybrid between single- and 

multiple-system accounts. For example, according to the model of Keele et al. (2003), the results 

could be explained by constituting that R-E learning is a form of multi-dimensional learning with 

explicit knowledge gradually developing. According to this explanation, the tones would enhance 

learning in the CT-Condition by constituting a correlated sequence to the visual sequence. To deal 

with this explanation we also included a forth control group, who had the same training task but 

without any tones. According to the model of Keele et al., multidimensional learning is perturbed 

when a sequence is interspersed with unpredictive elements. If indeed a multi-dimensional learning 

process was responsible for the CT-Condition showing an increase in explicit knowledge, then the 

same multi-dimensional learning mechanism should be perturbed in the NCT-Condition by the non-

contingent tones. In this case the NCT-Condition should show less knowledge than the control 

condition which did not hear any tones.  

Study 3 revealed that only participants who perceived the tones as contingent effects of their 

own actions (CT-Group) showed an increase in explicit knowledge. Bayesian statistics showed that all 

other conditions (NCT-, ST-, and No-tone Control-Group) did not show any difference in their explicit 

knowledge. Together, the results of Study 2 and 3 are able to provide converging evidence that R-E 

learning plays an important role for the emergence of explicit sequence knowledge. Even though 

these studies do not directly contain any test on whether learning about the R-E relations indeed 

leads to unexpected events, the UEH seems to be a good explanatory framework for the data. 
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Together the studies are not conforming to any straight-forward predictions any single-system 

theory would make. Especially the comparison of the CT- and the ST-Group in Study 3, who were 

trained with the same sequential material, make an argumentation based on associative strength 

difficult. Instead, they suggest that contingently producing the same effect leads to different salient 

cues which can indicate that there is a meaningful relation between one’s actions and stimuli in the 

environment, which in turn can trigger search processes for the underlying contingencies resulting in 

the acquisition of explicit knowledge.  
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6 Conclusion 

Our brains are able to pick up an enormous amount of information in parallel and adapt to its 

structure. In many cases, these learned statistical relations are either too complex or support 

fundamental cognitive functions (e.g. increasing neuronal sensitivity towards certain objects we 

encounter often) and therefore do not need to be represented consciously. Following a functional 

view on consciousness, we need conscious processing to control information in a highly flexible, 

strategically adaptive way. Once information is available to the global workspace network, it can be 

accessed by any specialized network so that any mental operation is enabled for this globally 

broadcasted information. A new, consciously represented rule can be applied without, or with hardly 

any, previous practice. It can be transferred to a new situation or be inhibited. It can be evaluated 

whether we have learned similar rules before and whether it would be reasonable to replace old 

knowledge with the new rule and never use the old rule again. We can share our new knowledge 

with any person verbally if we want to. So obviously, becoming consciously aware of the fact that 

something has been learned comes with various behavioral advantages. The important question is 

how can we know that we know something, when we have never consciously represented this 

knowledge before?  

The GWT and the HOTT both provide a starting point for the question how an unconscious 

representation can become a conscious one. Moreover, both theories together might compensate 

for each other's weaknesses. The GWT provides a very strong framework for conceptualizing implicit 

and explicit representations via their encapsulation, respectively their accessibility. Its asset 

compared to the HOTT is that it is much clearer about the mechanism how and why an unconscious 

representation is selected over any other competing unconscious representation. The selection for 

access to the global workspace is realized via a variation-selection mechanism. At the bottom-up 

level, each unconscious representation can be characterized by a certain activational strength based 

on factors like salience or associative strength. All of these representations constantly compete for 

access to the global workspace and the strongest representation will win this competition. However, 

the activational strength of each representation is not based on these bottom-up factors alone. On 

the top-down level there always is a certain conscious state that represents the goal states in any 

given situation. These goal states provide a fitness function for the competing bottom-up signals. An 

unconscious representation that has a rather weak bottom-up signal strength can gain significantly in 

strength if it fits well into the current situational requirements.  

The HOTT instead provides no indication of how the problem of the selection of multiple 

possibly relevant and competing representations gets solved. It remains completely open when 

which representation will be conscious in a given situation. Rather, it is concerned with the question 
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how a learning mechanism might be realized which is able to build meta-knowledge. In the GWT, 

these meta-cognitive processes are one of many different functions the information in the global 

workspace has access to and are not payed special attention to. In any HOTT, these processes are the 

core functions of consciousness. With respect to the question how knowledge of which we do not 

know that we possess it can become conscious, HOTTs play a significant role. It seems very unlikely 

that an unconsciously acquired representation could gain so much bottom-up strength on its own 

that a breakthrough into the global workspace, regardless of any current conscious content, could 

happen. Even the first and more simplistic draft of Cleeremans' and Jiménez' (2002) single-system 

theory pronounces that some top-down process has to be involved which puts the unconscious 

representation into the focus of attention. All important theories on the transition from implicit to 

explicit knowledge assume that metacognition plays a crucial role in evoking a conscious state that 

allows unconscious knowledge to be detected (Cleeremans, 2008, 2011; Dienes & Perner, 1999; 

Frensch et al., 2003).Three different conceptions can be characterized which aim to explain how 

conscious sequence knowledge results from implicit learning via meta-cognitive processes.  

The first fits the suggestions from Cleeremans and Jiménez (2002). What is needed is a 

fitness-function provided by the current conscious workspace, which can enhance the activational 

strength of a certain unconscious representation enough to grant it access to the global workspace.  

Even though Cleeremans and Jiménez did not specify how this top-down process could be initiated, 

metacognition like, for example, a feeling of fluency could play an important part here. To put it 

simple, a person who has acquired unconscious knowledge somehow needs a conscious state that 

makes them ask themselves “Why do I feel like that?”. This seems similar to the assumptions of the 

UEH. However, opposed to the UEH, the idea here is not that a new explicit learning process acquired 

a new explicit representation but instead, the formerly encapsulated knowledge is “loaded” into the 

workspace. Now the implicit representation is connected to and accessed by a broad amount of 

subsystems, like, most important to the paradigm, speech modules. There is however one 

fundamental problem with this account. Different to unconsciously processed stimuli in the 

environment which can be attended to be processed consciously, encapsulated implicit knowledge is 

conceptualized as internal prediction-weights influencing the expectation of the next stimulus or 

next response. There is nothing about these associative weights per se that can become conscious; 

there is no corresponding distal event to that knowledge. As Cleeremans (2011) later put it himself, 

the implicitly acquired sequence knowledge is knowledge in the system, but not for the system.  

Therefore, the second assumption, which incorporates meta-cognitive processes explicitly 

also stems from Cleeremans (2008, 2011, 2014). This time the problem of what could be the 

conscious content of a formerly implicit representation that now is accessed by various subsystems, 

is circumvented. Instead, a new meta-cognitive representation is created on its own. The result of 

this learning process is knowledge for the system. The cognitive system learns about its own internal 
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states and how these relate to events in the environment. This conception has proven to be viable in 

replicating human data of metacognitive judgements via computational models. Yet, it remains that 

the assumption here is a gradual transition from unconscious to conscious knowledge. Further, it 

remains open how the moment a person reports insight into the sequence is determined. Moreover 

it remains unclear at which point other subsystems gain access to this meta-knowledge. 

Nevertheless, the account from Cleeremans and colleagues surely is an interesting, important and 

testable assumption.  

The third and last conception is the UEH. It is proposed that higher-order learning processes 

lead to expectations of the subjective experience in a particular situation, based on experiences in 

similar situations in the past. A mismatch between the expectation of one’s own experience and the 

actual experience will trigger the need for an explanation. When someone participates in an SRTT, 

they might become very fast over the course of training, however this might still match the 

subjectively perceivable expectation of mere practice. Yet, suddenly encountering a random block 

with a higher amount of errors made and moreover the sudden feeling of becoming slower, or the 

responses feeling less fluent, is a strong unexpected event in one’s own experience. Contrary to the 

first of the three suggestions here, this unexpected event does not allow the first-order implicit 

representation to become conscious. Instead, and more similar to the second account, a new explicit 

representation has to be created. What the unexpected event does is to direct attention to an 

erroneous model of the expected experiences and its apparent need for an update that re-

establishes congruency between expectations and actual experiences. A decisive difference to the 

model of Cleeremans (2008) is that the explicit learning process, which is based on hypothesis testing 

and not on associative strength, leads to a sudden insight rather than to a gradual development. 

Moreover, the UEH is able to explain why the sequence knowledge will remain implicit whenever 

another more plausible explanation for the violation of expectancy is found (Haider & Frensch, 2005).  

It was therefore the aim of the current studies to test the relevance of representational 

strength, as it is pronounced by the account from Cleeremans (2008), against the assumptions of the 

UEH (Frensch et al., 2003). All three studies presented here were aimed at finding a method to 

balance the representational quality via keeping the associative strength equal, while at the same 

time manipulating the likelihood of experiencing an unexpected event.  

Taken together, all three studies provided new and converging evidence for the assumptions 

of the UEH. First and foremost it has been demonstrated that the emergence of explicit sequence 

knowledge is related to the opportunity to perceive unexpected metacognitive feelings (i.e. an 

unexpected difference in the feeling of fluency, Experiment 3 of Study 1) or unexpected effects 

produced by one’s own actions (Experiment 2 of Study 2, and Study 3). The use of different 

manipulations for the likelihood to experience an unexpected event is crucial for investigating the 

UEH. In the UEH, any event with the potential to make one ask why a mismatch between one’s 
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expectation and actual behavior occurred can trigger explicit learning processes. Moreover, a broad 

variety of manipulations for the occurrence of unexpected events of course also helps ruling out 

alternative explanations of possible side effects each single manipulation brings. 

A second major point made by all three studies is that the manipulations of the internal 

change of metacognitive experience as well as the externally observable change in produced action-

effects did not seem to affect implicit learning processes but instead affected an additional explicit 

learning process. This was most directly tested in Experiment 3 of Study 2, where the 50% randomly 

inserted irregular trials led to a disappearance of the effect of the response-device manipulation 

which has been shown to lead to more explicit learning in Experiment 1 and 2.  Moreover, implicit 

learning was not affected by the insertion of irregular trials and there was no advantage in implicit 

learning for the group that still experienced a contingent action-effect relation in at least 50% 

percent of the trials.  Further supporting evidence for a selective effect on explicit learning by the 

different manipulations also can be found in Experiment 1 of Study 1 and in Study 3. In Experiment 1 

of Study 1, the arrangement of regular and irregular trials did not affect the amount of learning as 

measured by the wager task. In Study 3 we exploratively removed all participants with entirely 

explicit knowledge and also no longer found a gradual advantage in knowledge for the group that 

had experienced contingent action-effect relations.  

Lastly, a third very important point of all presented studies is that the experiments provided 

different designs which aimed to carefully match the associative strength across the different 

conditions. This equalized associative strength can help with two problems in implicit learning 

research. First, from a methodological view, our different methods for balancing associative strength 

are important for meeting the justified objections from researchers like Lau (20008b).  Lau demanded 

manipulations of the subjective judgements while matching signal strength in order to investigate 

unconscious processes without performance biases. It can be shown that the implicitly built 

knowledge base (a) is already a strong representation on its own (d’ > 0) and (b) is comparable across 

the different groups. Especially Experiment 1 of Study 1 is suited for demonstrating that the 

manipulation of the subjective experience of the task did not affect the implicit knowledge base. 

Experiment 2 of Study 1 showed that the subjective experience can differ despite the comparable 

implicit knowledge base. Second, and even more important in the context of the goals of all three 

studies, is the theoretical advance this matching of associative strength brings. Due to the differences 

in explicit knowledge, despite equalized representational strength between conditions, a simple 

strengthening account (Cleeremans & Jiménez, 2002) or a more complex higher-order strengthening 

account (Cleeremans, 2008) has difficulties to explain these results. There is no explicit assumption in 

any of these single-system accounts that can explain why there are differences in explicit knowledge 

between the groups, or why implicit learning did not seem to be affected by any of our manipulations. 
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Rather, an account like the UEH which proposes an additional explicit learning process that is triggered 

by observable changes in one’s own behavior seems favorable.  

However, the results presented here are not able to completely rule out an explanation 

based on strengthening mechanisms, respectively not all assumptions of the UEH have been tested. 

A next step would be to show that the manipulations of subjective experiences like the experienced 

differences in fluency or distal action-effects actually constitute an unexpected event for the 

participants. This of course could be done by detailed interviews of the participants in their 

subjective perception of the training. While such interviews might surely be an important first step 

for investigating the subjective feeling of surprise, it is not the most direct test. It only provides data 

about the retrospective reconstructions of feelings of fluency during the training. An online measure 

of surprise during training might be even more insightful. This could be achieved by using EEG or 

fMRT data. Butterfield and Mangles (2003) for example have shown that the fronto-central P3a 

amplitude shows increased positivity when a metacognitive mismatch, i.e. a conflict between 

metacognitive expectations (for example the expectation to produce very few errors) and the actual 

outcome, occurred. Furthermore, the anterior cingulate cortex, the medial frontal gyrus and the 

cingulate cortex have been associated with metacognitive mismatch in an fMRT study by Metcalfe, 

Butterfield, Habeck, and Stern (2012). It would thus be interesting to investigate whether the 

different arrangement of regular and irregular stimuli leads to a difference in the activity in these 

areas. It would probably be best to use the specific design of Experiment 1 and 2 of Study 1. Here,  

the rather short mini-blocks of regular and irregular trials did not lead to explicit knowledge despite 

affecting the subjectively perceivable changes of fluency. This way it could be circumvented that 

explicit sequence knowledge contaminates the data. Once it could be shown that the manipulation 

of the fluency can be associated with a measure for metacognitive mismatches, the design could be 

extended in order to show that the moment a mismatch is detected stands in close relation to 

detecting the sequence. This could be achieved by, for example, analyzing the data for sudden RT-

drops as suggested by Haider and Rose (2007; Rose et al., 2010).  Moreover, neuroimaging data like 

the sudden coupling of gamma-band activity, respectively increases of the BOLD-signal in the 

ventrolateral prefrontal cortex, the medial prefrontal cortex and the ventral striatum could be 

analyzed (Rose et al., 2010; Schuck et al., 2015; Wessel et al., 2012). This would provide a necessary 

test of the prediction of the UEH that unexpected events lead to a sudden onset of hypothesis testing 

and subsequent detection of the sequence, instead of a slowly, gradually developing explicit 

representation as assumed by Cleeremans (2008).  

In order to further exclude a single-system explanation, it would be important to show in a 

more direct way that unexpected events lead to the development of a new representation via 

hypothesis testing, instead of somehow transforming the implicit representation into an explicit one. 

To achieve this, again the design of Experiment 1 and 2 of Study 1 could be used to train participants 
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until they start to perceive differences in their feeling of fluency when trained with the blocked 

material and then presenting them a new, unknown sequence. Showing more explicit knowledge for 

the new sequence when participants were trained with the blocked arrangement of the material, 

than when trained with the randomly arranged material, would make a strong point that the 

sequence is explicitly searched and learned instead of being derived from the implicit knowledge 

base.  

Taken together, the studies provide further, converging evidence that the experience of 

unexpected events lead to the emergence of explicit knowledge in an implicit learning situation. Such 

unexpected events can be characterized as a metacognitive mismatch between the expectancy of 

internal states as well as the expected observable effects of one’s own behavior and the actually 

experienced internal state, respectively behavioral effects. The current studies should encourage 

further investigations which focus on (a) the close relation between the occurrence of an unexpected 

event and a sudden insight into the hidden regularity and (b) the assumption that explicit learning 

processes lead to a new representation which is independent of the implicitly learned one.  

The introduced designs of all three studies provide three different, practicable and powerful 

manipulations of the occurrence of unexpected events while matching associative strength. They can 

also be flexibly adjusted to different research questions investigating the relation and the differences 

between unconscious and conscious processing. Designs like the presented ones can, for example, be 

of value for further development in the debate about the source signals for metacognitive learning 

processes. Increasing the options to manipulate or balance first-order signal strength while 

independently varying metacognitive judgements can help to distinguish between models that are 

based on a single channel bottom-up relation (e.g. Galvin, Podd, Drga, & Whitmore, 2003), 

hierarchical models (e.g. Maniscalco & Lau, 2016) where different processes underlie objective and 

subjective judgements, but the latter always evaluates the judgmental quality of the former, or dual 

channel models, where objective and subjective judgements are based on fully independent 

cognitive processes (e.g. Del Cul, Dehaene, Reyes, Bravo, & Slachevsky, 2009). Understanding the 

fundament of metacognitive learning processes is highly important to several practical areas. This 

includes educational contexts, where the ability to accurately judge one’s own knowledge base is 

crucial to self-regulated learning (Karpicke, 2009), research on artificial intelligence, where 

metacognitive expectancy deviations are a key variable to perturbation-tolerant behavior (Anderson 

& Perils, 2005), or mental illnesses like pathological gambling (Brevers et al., 2014), schizophrenia 

(Moritz et al., 2016) or autism (Williams, Bergström, & Grainger, 2016).
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