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Abstract

When a thin film of a topological insulator (TI) is doped with magnetic impurities, it
can exhibit the quantum anomalous Hall effect (QAHE). This phenomenon emerges
from the breaking of time-reversal symmetry (TRS) in a system with strong spin-orbit
coupling, resulting in a vanishing longitudinal resistance and a quantized Hall resistance
of h/e2 (where h is the Planck constant and e is the charge of an electron), even in the
absence of an external magnetic field. Such a magnetic topological insulator is called a
quantum anomalous Hall insulator (QAHI), where electrical current is carried by one-
dimensional (1D) chiral edge states that propagate along the sample boundaries, while the
two-dimensional (2D) bulk remains insulating. When superconducting pairing correlations
are induced in such a material via the proximity to an s-wave superconductor, the resulting
topological superconductivity is predicted to host chiral Majorana edge modes. In a
Hall-bar device configuration, where a superconducting strip lies across the full width of a
QAHI thin film, a quantized two-terminal conductance of 1

2(e2/h) was proposed as the
smoking-gun evidence of the topological superconducting phase associated with a single
chiral Majorana mode. This reduction in two-terminal conductance by a factor of two,
compared to e2/h observed in a bare QAHI without the superconducting strip, has been
experimentally reported. However, the origin of this 1

2(e2/h) conductance feature remains
a topic of active debate, as alternative trivial mechanisms have also been proposed. This
emphasizes the need for more robust experimental evidence to confirm the superconducting
proximity effect in QAHIs.

In this thesis, narrow superconducting electrodes of Nb on top of a QAHI thin film
are investigated with widths ranging from 160 to 520 nm. By measuring the nonlocal
‘downstream’ resistance with respect to the grounded superconducting electrode, a negative
resistance contribution of −400 Ω is observed for the narrowest superconducting electrode.
This contribution decreases exponentially as the width of the SC increases. This negative
nonlocal resistance is attributed to crossed Andreev reflection (CAR) taking place across
the superconducting electrode. In the CAR process, an electron in the chiral edge state,
arriving at the superconducting electrode with an energy eV smaller than the SC gap
∆, is converted into a hole in the chiral edge state leaving from the SC, carrying a
potential of −V . Simultaneously, a Cooper pair is formed in the superconductor. The
observation of a negative edge potential, measurable as a negative ‘downstream’ resistance
with respect to the grounded SC in our experiment, is a compelling signature of induced
superconducting pair correlation in the chiral edge state of the QAHI. Moreover, the
characteristic length over which the CAR process is suppressed with increasing the width
of the SC is found to be significantly longer than the superconducting coherence length of
Nb. This implies that the CAR process is mediated by the superconductivity induced in
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ii ABSTRACT

the QAHI film underneath the Nb electrode, rather than by the Nb superconductor itself.
These findings are supported by a detailed Landauer-Büttiker analysis of the experimental
set-up, accounting for all possible processes at the SC-QAHI interface, and by KWANT
simulations that incorporate charge disorder in the QAHI film, as well as the metallization
effects by the superconducting electrode.

Having established a reliable method to proximitize a QAHI thin film using a
superconducting Nb, the second part of this thesis re-evaluates the 1

2(e2/h) feature in
two-terminal conductance measurements. Rather than only characterizing the device’s two-
terminal conductance, the potentials of all chiral edge states arriving at and leaving from
the superconducting Nb electrode are determined in this thesis, providing a comprehensive
understanding of the transport through the proximitized QAHI thin film. Two Hall-bar
devices were fabricated for this purpose. In the first device, a Nb superconducting electrode
spans the full width of the Hall-bar, forming a proximitized QAHI region beneath the SC.
The second device serves as a control experiment, where the QAHI film is interrupted
underneath the superconducting electrode, creating two separate QAHI Hall-bars connected
in series through the Nb electrode. For both devices, a quantized resistance of h/e2 is
measured across the Nb electrode in a four-terminal configuration when the current flows
through the QAHI film. This quantized resistance of h/e2 in the four-terminal set-up
employed in this thesis corresponds to a two-terminal conductance of 1

2(e2/h) for the
device. No difference is observed between the devices with and without a continuous
QAHI under the superconducting electrode. This indicates that the 1

2(e2/h) conductance
feature is unrelated to chiral Majorana edge mode transport, as the interrupted QAHI
in the control device prevents Majorana transmission underneath the superconducting
electrode. In addition, the potentials of all chiral edge states arriving at and leaving
from the superconducting electrode remain unchanged when the external magnetic field
exceeds the upper critical field of Nb, which points to a trivial effect unrelated to (induced)
superconductivity. By using the Landauer-Büttiker formalism, the experimental data are
shown to be consistent with a model in which the superconductor equilibrates all the chiral
edge states arriving at and leaving from the superconducting electrode. Lastly, no negative
nonlocal edge potentials are observed in Hall-bar devices with a Nb strip, in contrast
to the narrow Nb electrodes studied in the first part of this thesis. This suggests that
signatures of the superconducting proximity effect in QAHI thin films are only observable
within a length scale comparable to the superconducting coherence length.

The findings in this thesis provide critical insights into the chiral edge transport at
superconducting electrodes interfaced with QAHIs and prove the existence of the
SC proximity effect in QAHIs, offering a foundation for future studies of topological
superconductivity, Majorana physics, and the search for non-Abelian zero modes.
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Chapter 1

Introduction

A highly promising strategy for constructing a fault-tolerant quantum computer is based
on the existence of topological states of matter [1]. The quantum Hall effect, discovered
by Klaus von Klitzing in 1980 [2], is the first example of a topological state observed in
condensed matter. When a two-dimensional electron gas (2DEG) is subjected to a strong
magnetic field, it leads to the formation of Landau levels and a state defined by quantized
Hall conductance and zero longitudinal resistance. Later, it was theoretically predicted [3–5]
that magnetic insulating materials with strong spin-orbit coupling can exhibit a quantized
Hall conductance as well, along with a vanishing longitudinal resistance without an applied
magnetic field. This phenomenon is known as the quantum anomalous Hall effect (QAHE).
This prediction was followed by the experimental realization of the QAHE in magnetically
doped topological insulators, in particular Cr- or V-doped (BixSb1-x)2Te3 thin films [6–11].
In both the quantum anomalous Hall insulator (QAHI) and quantum Hall insulator (QHI),
the current is carried by the dissipationless one-dimensional (1D) chiral edge state(s).
Theoretically, two distinct types of chiral topological superconductivity are realized by
coupling a QAHI and QHI with an s-wave superconductor. In the former system, 2D
topological superconductivity is realized with 1D propagating chiral Majorana edge modes
(CMEMs) if the 2D topological surface states of a QAHI is proximitized [12–14]. This
chiral motion along the boundary of the topological superconductor can be exploited
to exchange a pair of non-abelian anyons in real space by creating a π-phase domain
wall in the CMEMs [15–18]. In the latter system, the two counter-propagating 1D chiral
edge states are coupled through crossed Andreev reflection, creating a 1D topological
superconductor with zero-dimensional Majorana bound states that exhibit non-abelian
braiding statistics [19,20]. However, if a quasi-1D QAHI is realized, by either etching a
trench in the QAHI film or etching the QAHI into a nanowire, then it is also possible to
proximitize the two counter-propagating edge states of the QAHI directly through the
s-wave superconductor, creating a pair of non-abelian Majorana zero modes (MZMs) at
the ends of the quasi-1D structure [14, 21]. Hence, the QAHI and QHI are both promising
platforms for the realization of a topological quantum computer [22].

The main objective of this thesis is to confirm the presence of superconducting
proximity effect in a quantum anomalous Hall insulator (QAHI) contacted by an s-wave
superconductor (SC) and to investigate the chiral edge transport in such heterostructures.
The content of this thesis is structured in five chapters. In the first chapter, a brief
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2 INTRODUCTION

introduction to magnetic topological insulators (MTIs) and the QAHE will be given,
followed by a discussion of the current state-of-the-art SC-QAH heterostructures. Lastly,
a literature overview is given of the SC-QH hybrid systems, which as the QH research
field is more matured served as a valuable reference when designing the experiments
presented in this thesis. In chapter 2, the nonlocal resistance measured with respect to
a grounded narrow superconducting electrode on top of a QAHI thin film is shown to
be negative under certain conditions. This is the most important result of this thesis, as
it is interpreted as the first real proof for induced superconducting correlations in chiral
edge states of a QAHI. In chapter 3, multi-terminal Hall-bar devices are investigated with
µm-size SC strips lying across their full width. This experiment addresses the current
debate on whether or not half-integer quantized conductances are trustworthy signatures
for the presence of chiral Majorana edge states [13,23–29]. In chapter 4, a conclusion is
given for these two experiments, followed by an outlook for the field in chapter 5.

1.1 Introduction to the QAHE

A topological insulator (TI) has an insulating bulk with a metallic boundary as a
consequence of its nontrivial topology. When a TI comes in contact to a trivial insulator
(for instance the vacuum), the bulk-boundary correspondence forces the band gap to close
and a gapless interface state emerges. Three-dimensional (3D) TIs are accompanied by two-
dimensional (2D) gapless surface states and two-dimensional 2D TIs are associated with
gapless 1D edge states at the boundary, as shown in Figs. 1.1a-b and 1.1c-d respectively.
These surface/edge states are protected by time-reversal symmetry (TRS) and have a
helical spin polarization as its spin is locked to its momentum [30]. The first experimental
realization of a 2D TI, also known as a quantum spin Hall insulator, was in HgTe quantum
wells [31], following the theoretical prediction by Bernevig et al. [32]. When an unstrained
HgTe quantum well exceeds the critical thickness (tc ≈ 6.3 nm), a set of two spin-polarized,
counterpropagating edge states are formed at the edge of the sample, giving rise to
a quantized longitudinal conductance. The spin polarization of the edge states in a
quantum spin Hall insulator prohibits elastic back-scattering from nonmagnetic impurities,
leading to dissipationless edge transport.1 Although all the experiments on the HgTe
quantum wells only observed the quantized conductance for channel lengths up to about
200 µm, as a consequence of the inelastic scattering when the edge states encounter charge
puddles [31, 33–35].

In recent years, many 3D TIs were proposed and experimentally realized, amongst which
the chalcogenide TI materials like Bi2Se3, Bi2Te3, Sb2Te3 and their alloys [30, 36–40].
In Bi2Te3, the Dirac point is buried in the bulk valence band and the Fermi level (EF)
lies in the bulk conduction band due to the electron-type bulk carriers induced by Te
vacancies making it an n-type TI. On the other hand, the Dirac point lies within the
2D bulk gap in Sb2Te3, but EF lies in the bulk valence band due to the hole-type bulk
carriers from the Sb-Te antisite defects making it a p-type TI. Hence, by fine tuning
the x-composition in the ternary compound (BixSb1-x)2Te3, EF and the Dirac point can

1Note that each metal contact along the edge will equilibrate the two counter-propagating edge states,
giving rise to a quantized voltage drop. Hence, the four-terminal longitudinal resistance will be quantized
to a multiple of h/(2e2) depending on the number of metal contacts [31].
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Fig. 1.1 | The surface and edge states of TIs with Dirac dispersion. a, Real-space
illustration of a 3D TI with the 2D helical surface states. The electrons with opposite spins
move in opposite directions due to the spin-momentum locking. b, The massless Dirac-like
dispersion of the helical surface state that connects the bulk valence and conduction bands,
forming a 2D Dirac cone c, Real-space illustration of a 2D TI with 1D helical states.
d, The energy dispersion of the 1D helical states in a 2D bulk band gap. e, Real-space
illustration of a QAHI with a single chiral 1D edge state. Note that the 1D edge channel
in a QAHI is not fully spin polarized (see Eq. 1.8). f, The energy dispersion of a QAHI.
The 2D helical surface states at the Dirac point are gapped due to the broken TRS, but
this gap is closed at the edge of the sample by the chiral 1D edge state. When the Fermi
level EF lies inside the 2D bulk band gap, the current is only carried by the dissipationless
edge state.

be moved into the 2D bulk gap via charge compensation [38, 40]. Moreover, when the
thickness of such a 3D TI film is reduced, the top and bottom surface states hybridize,
opening up a gap at the Dirac point. This crossover from 3D TI to 2D TI is oscillatory
as it alternates between trivial insulator and quantum spin Hall insulator phases [41]. In
Ref. [42], the change in the longitudinal resistance between diverging and finite (∼ h/(2e2))
values for varying thicknesses of exfoliated flakes of Bi0.7Sb1.3Te1.05Se1.95 were interpreted
as signatures of these phase transitions between trivial and 2D TI states. However, the
presence of long-range Coulomb disorder due to the charged impurities, can bring the
system in a metallic state of percolated charge puddles, masking the signatures of the
quantum spin Hall phase. This disorder-driven insulator-to-metal transition can only be
avoided with a large enough hybridization gap and low impurity concentration [43, 44].
This indicates that the experimental realization of the quantum spin Hall insulator phase
by thinning down a 3D TI is extremely challenging, as one needs to precisely control the
thickness and disorder.
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The two primary limitations of a quantum spin Hall insulator, i.e. the restricted channel
length for conductance quantization and the stringent control required over material
thickness, necessitate the development of a platform that enables extended quasi-ballistic
transport with reduced sensitivity to sample variations such as thickness. In 2010, Yu et
al. proposed an alternative material framework that also gives rise to dissipationless 1D
edge transport, but breaks TRS, i.e. the realization of a quantum anomalous Hall insulator
(QAHI), see Fig. 1.1e-f. The current is carried by the 1D chiral edge state when EF lies
in the 2D bulk band gap induced by the out-of-plane magnetization. The two essential
ingredients are a ferromagnetic 2D insulator and a band inversion with strong spin-orbit
coupling [5]. A straightforward candidate is breaking the TRS in a quantum spin Hall
insulator. However, experimentally it was shown that Mn-doped HgTe quantum wells lead
to paramagnetic or antiferromagnetic, not ferromagnetic ordering [45,46].2

The first experimental realization of the QAHE was achieved in Cr-doped (BixSb1-x)2Te3
thin films with a thickness of 5 quintuple layers grown on SrTiO3 substrates by molecular
beam epitaxy (MBE). The expected quantized Hall resistance of h/e2 along with a
significant drop in the longitudinal resistance was achieved by gate-tuning the EF into
the magnetically induced energy gap in the 2D density of states at zero applied magnetic
field [7]. Subsequently, the QAHE was realized in V-doped (BixSb1-x)2Te3 with a larger
coercive field (Hc,FM) and a relatively higher Curie temperature (Tc,FM) than the Cr-doped
(BixSb1-x)2Te3 [8]. Additionally, in recent years, the quantized Hall resistance of the QAHE
was also observed in twisted bilayer graphene [48], MnBi2Te4 [49], MnBi2Te4/Bi2Te3
superlattices [50] and moiré heterostructures of MoTe2/WSe2 [51]. Until now, a vanishing
longitudinal resistance was only observed in uniform or modulation Cr- or V-doped
(BixSb1-x)2Te3 [8, 9, 52–55].

In 2022, our lab successfully reported the observation of quantized Hall resistance (Ryx =
h/e2) and a vanishing longitudinal resistance (Rxx) in the MBE grown thin films of V-
doped (BixSb1-x)2Te3 on InP (111)A [53].3 The temperature dependence for the Hall
(ρyx) and longitudinal (ρxx) resistivity is shown in Fig. 1.2a. The ρyx stays zero until the
Curie temperature Tc,FM = 18 K, and increases to h/e2 due to the formation of the 1D
chiral edge channel upon spontaneous magnetization. Similarly, the insulating 2D (and
3D) bulk contribution dominates in ρxx until Tc,FM, below which the current is carried
by the dissipationless 1D chiral edge state. The magnetic field dependence of ρyx and
ρxx is presented in Fig. 1.2b, measured at 40 mK. As the magnetization changes at the
coercive field (around 1 T), ρyx is quantized either at +h/e2 or −h/e2, arising from the
integer topological invariant i.e. Chern number C = ±1 of the system (detailed discussion
in the section below). Simultaneously, ρxx vanishes except for a peak at the coercive field,
where the QAHE is lost upon magnetization reversal. One important detail of this work
is that the QAHE is achieved without applying any gate voltage [53], i.e. the chemical
potential is tuned into the magnetic exchange gap during the MBE growth of the thin
film by fine tuning the Bi and Sb concentration. Moreover, this work investigated the loss
of dissipationless edge transport with increasing current, referred to as the breakdown
of the QAHE [52, 56]. The longitudinal voltage (Vx) remains zero until the breakdown
current (IBD ≈ 160 nA), above which a gradual upturn is observed signalling the onset

2Recently, first principle calculations suggest that V- or Cr-doped CdTe and HgTe may lead to
ferromagnetic ordering which may pave way for new platforms for the QAHE [47].

3In this publication [53], G. L., A. B., and I are co-first authors.
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Fig. 1.2 | The quantum anomalous Hall effect. a, Temperature dependence of the
transverse (ρyx) and longitudinal (ρxx) resistivity, measured using a Hall-bar configuration
with Id.c. = 50 nA. A hall-bar device with the measurement scheme for Hall and longitudinal
voltage, Vyx and Vx, respectively. b, Magnetic-field dependence of ρyx and ρxx, measured
at 40 mK with Id.c. = 30 nA. c, The I-V characteristics for the transverse (Vy) and
longitudinal voltage (Vy) measured at 10 mK in 0 T after training the sample at +2 T
to align all the magnetic domains. Note that Vx was normalized by the voltage-contact
separation (L) and the width (W ) of the Hall-bar. Both the voltages, Vx and Vy shows
deviation from the ideal QAHE above ∼160 nA. This onset of dissipation with increasing
current is referred to as the current-induced breakdown of the QAHE.

of dissipation. The hall voltage shows a linear response and deviates less strongly from
h/e2 at high currents. The breakdown is attributed to the electric-field driven percolation
of 2D charge puddles across the width of the sample [53]. Recently, Röper et al. studied
the characteristics of edge plasmon in a QAHI using broadband microwave transport,
identifying two different dissipation mechanisms for the chiral edge states [57]. In the
low-voltage, low-temperature regime, a frequency-dependent dissipation was observed,
attributed to charge puddles and modeled as an RC series circuit. In contrast, the
dissipation was frequency-independent at elevated temperatures and for higher voltage
regimes associated with 2D diffusive transport due to thermal excitation and percolation
of 2D charge puddles well above breakdown [53,57], respectively.

1.2 Low-energy Effective Hamiltonian of QAHI

In this section the 2D low-energy effective Hamiltonian for a magnetically doped TI is
discussed in order to understand the realization of the QAHE and in the next section, the
superconducting proximity effect in such a system. The effective Hamiltonian [5, 13] is
given by,

H0 =
∑

k

ψ†
kH0(k)ψk, (1.1)

with ψk = (ct
k↑, c

t
k↓, c

b
k↑, c

b
k↓)T , where the superscripts t and b correspond to the top and

bottom surface state with up (↑) or down (↓) spin, and

H0(k) = ℏvD(kyσx − kxσy)ρz +m(k)ρx + λσz, (1.2)
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Fig. 1.3 | Evolution of the energy spectrum upon including magnetization and
spin-orbit coupling. The red (blue) color shows the eigenvalues E1,± (E2,±) and the
arrows represent their spin. The green dash-dot line corresponds to the 1D chiral edge
state with EEdge = ℏvDk. a, In the absence magnetization and spin-orbit coupling, the
eigenvalues are parabolas with a band inversion since m0m1 < 0. b, The band inversion
for E1,+ and E1,− is lost for large enough magnetization strength. c, A gap is opened up
at the unprotected crossings between E2,+ and E2,−, giving rise to a 1D chiral edge mode
when both the magnetization and the spin-orbit coupling are included. Here, the spin-orbit
coupling is only at 0.3% of its full strength, to demonstrate the gap opening. d, Band
structure with the magnetization and the full spin-orbit coupling strength, showing a
direct band gap. Note that the x-axis range has changed by two orders of magnitude. This
figure was inspired by Ref. [5]. The material parameters used for generating this figure are
m0 = −5 meV, m1 = 15 meVÅ2, λ = 50 meV, and ℏvD = 3 eVÅ (as in Chapter 2).
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where vD is the Dirac velocity, σi and ρi (i = x, y, z) are the Pauli matrices for the spin and
top-bottom surface degrees of freedom, respectively. As the top and bottom surface states
are close to each other, their wavefunctions overlap and hybridize which leads to the opening
of a mass gap. This is taken into account by the mass term: m(k) = m0 +m1(k2

x + k2
y).

In addition, λ is the magnetization strength along the z-axis induced by the ferromagnetic
ordering, whose amplitude and sign change during the magnetization reversal of the MTI.
The 4 × 4 Hamiltonian H0(k) in Eq. 1.2 can be block-diagonalized to

H̃0(k) =
[
h(k) + λσz 0

0 h∗(k) − λσz

]
=
[
H1(k) 0

0 H2(k)

]
, (1.3)

with
h(k) = ℏvD(kyσx − kxσy) +m(k)σz, (1.4)

by changing the basis to ((ct
k↑+cb

k↑), (ct
k↓−cb

k↓), (ct
k↓+cb

k↓), (ct
k↑−cb

k↑))T/
√

2 [5]. Subsequently,
the four energy eigenvalues (bands) can then be determined:

E1,± = ±
√
ℏ2v2

D(k2
x + k2

y) + [(m0 + λ) +m1((k2
x + k2

y)]2 for H1(k), (1.5)

E2,± = ±
√
ℏ2v2

D(k2
x + k2

y) + [(m0 − λ) +m1((k2
x + k2

y)]2 for H2(k), (1.6)

Note that the only difference between the equations for E1,± and E2,± is the sign in front
of λ, whose own sign depends on the out-of-plane magnetization direction (up or down).
The energy spectra are shown for four different scenarios in Fig. 1.3. In panel a, the
eigenvalues are plotted in the absence of magnetization (λ = 0) and spin-orbit coupling
(vD = 0). Hence, only m(k) = m0 + m1(k2

x + k2
y) remains with m0 = −5 meV and

m1 = 15 meVÅ2 for (BixSb1-x)2Te3.4 Since m0m1 < 0, the system possesses an inverted
band structure with parabolic dispersion. For a non-zero magnetization strength, the
subbands undergo Zeeman splitting, as shown in panel b for λ = 50 meV. For a large
enough magnetization strength, one pair of subbands (E1,+ and E1,−) looses the band
inversion while the inversion becomes larger for the other two subbands (E2,+ and E2,−).
The unprotected crossings between E2,+ and E2,− open up a gap as soon as spin-orbit
coupling is included, as shown in panel c. Below, it is shown that the band gap between
the subbands opened by spin-orbit coupling is topological and gives rise to a chiral edge
state, whereas the band gap between the other pair of subbands (without inversion) is
trivial.

When the spin-orbit coupling strength is increased to the full value of (BixSb1-x)2Te3
in Fig. 1.3d), the two subbands, E2,+ and E2,−, open up completely leading to a direct
bandgap for the system of size: Egap = 2(|m0|− |λ|) = −90 meV.5 Note that in Fig. 1.3 the
energy spectra are shown for an upward, out-of-plane magnetization (λ > 0). The scenario
is reversed for the opposite magnetization direction, i.e. spin-orbit coupling will open a
topological band gap between E1,+ and E1,−, while E2,+ and E2,− remain trivial. Hence,
irrespective of the magnetization direction, there will always be one set of topological

4The values used for m0, m1, λ, and vD are the same as those for the KWANT simulations performed
for the manuscript included in Chapter 2.

5Here, Egap < 0 is chosen for the QAHI regime, see also Eq. 1.7.
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subbands and one trivial pair, as long as |λ| > |m0|. This is also apparent when the total
Chern number C is calculated for the system [13,58]:

C = C1 + C2 =
λ/|λ|, for |λ| > |m0|

0, for |λ| < |m0|
, (1.7)

which is the sum of the Chern numbers for H1(k) and H2(k) in Eq. 1.3. Notice that
the Chern number is independent of the sign of m0m1, meaning that the QAHE can be
realized irrespective of whether the parent system has a band inversion (m0m1 < 0) or not
(m0m1 > 0) [5]. This means that as long as λ is large enough, it does not matter whether
the (BixSb1-x)2Te3 thin film is in the trivial insulator or quantum spin Hall insulator
phase [41]. Hence, film thickness fluctuations are not detrimental for the realization of the
QAHI phase.

A non-zero Chern number implies the presence of a 1D chiral edge state at the boundary
of the QAHI and a trivial insulator (including the vacuum), see Fig. 1.3c-d. Surprisingly,
it turns out that this chiral edge state is spinless, as can be seen from its wavefunction:

ψ(y, kx = 0) = A
(
e−β+y − e−β−y

) (
ct

k↑ + χcb
k↓

)
, (1.8)

with

β± =
ℏvD ±

√
ℏ2v2

D + 4m1(m0 − λ)
2m1

, (1.9)

where the boundary between the QAHI and trivial insulator is chosen to be along the
x-direction, A is a normalization factor, and χ parameterizes the asymmetry between the
top and bottom surface, see Ref. [59] and Supplementary Note 9 in Chapter 2 for details.
The wavefunction ψ(y, kx = 0) of the chiral edge state is an equal superposition of spin-up
on the top-surface and spin-down on the bottom surface, leading to no net spin-polarization.
Only when the inversion symmetry between the top and bottom surfaces is broken (χ ̸= 1),
does the chiral edge state become spin-polarized in the in-plane direction.

1.3 Low-energy Effective Hamiltonian of a Proximitized
QAHI

In this section, the superconducting proximity effect on a QAHI in contact to an s-wave
SC is discussed. The Bogoliubov-de Gennes (BdG) Hamiltonian for a proximitized MTI is
given by [13,14]

HBdG(k) = 1
2
∑

k

Ψ†
kHBdG(k)Ψk, (1.10)

HBdG(k) =
[
H0(k) − µ ∆k

∆†
k −H∗

0 (−k) + µ

]
, (1.11)

∆k =
[
i∆1σy 0

0 i∆2σy

]
, (1.12)
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Fig. 1.4 | Phase diagram of the proximitized QAHI, with ∆ = ∆1 = −∆2 and
µ = 0. The regions with different Chern number N = ±0, ±1, and ±2 are colored in
white, light gray, and dark gray, respectively. The solid black lines ∆/m0 = ±λ/m0 ± 1
mark the band closings of the topological transitions. The dashed lines represent ∆ = ±λ
and serve as a reference. The QAHI, normal insulator (NI), and helical TSC phases are
marked by the green, orange, and purple lines, respectively. For the dotted line with labels
‘a’ to ‘f’, the corresponding energy spectra are plotted in Figs. 1.5a-f.

where Ψk = [(ct
k↑, c

t
k↓, c

b
k↑, c

b
k↓), (c

t†
−k↑, c

t†
−k↓, c

b†
−k↑, c

b†
−k↓)]T . Here, ∆1 and ∆2 correspond to

the pairing gaps for the top and bottom surface state respectively, and µ indicates the
chemical potential.

For the simple case when ∆1 = −∆2 = ∆ and µ = 0, an analytic solution can be
found. After a basis transformation, the 8 × 8 Hamiltonian HBdG(k) in Eq. 1.11 is
block-diagonalized to

H̃BdG(k) =
[
H+(k) 0

0 H−(k)

]
, (1.13)

where

H+(k) =
[
h+,+(k) 0

0 −h∗
+,−(−k)

]
, (1.14)

H−(k) =
[
h∗

−,−(k) 0
0 −h−,+(−k)

]
, (1.15)

with ha,b = ℏvD(kyσx − kxσy) + [m(k) + aλ+ b∆]σz, where a and b can be ± 1 and ∆ is
assumed to be real. The eight eigenvalues then become:

Ea,b,± = ±
√
ℏ2v2

D(k2
x + k2

y) + [(m0 + aλ+ b∆) +m1(k2
x + k2

y)]2, (1.16)
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Fig. 1.5 | The energy spectra for the topological phase transition of a QAHI to
TSC to normal SC, for the case of ∆ = ∆1 = −∆2 and µ = 0. The eigenvalues
Ea,b,+ and Ea,b,− (Eq. 1.16) are shown by the solid and dashed lines, respectively. The
panels a to f correspond to the marked positions along the dotted line in the phase diagram
of Fig. 1.4. a, QAHI phase (∆ = 0), with band gap Egap = 2(|m0| − |λ|) = −50 meV. The
green dash-dotted line represents the 1D chiral Dirac fermion mode on the edge of the
sample. b, N = +2 TSC phase (∆ = 0.5|m0|). The green dash-dotted line represents the
two degenerate 1D chiral Majorana fermion modes on the edge of the sample. c, Gapless
superconducting phase (∆ = |λ| − |m0|). d, N = +1 TSC phase (∆ = λ), with band
gap Egap = −2|m0| = −50 meV. The brown dash-dotted line represents the single 1D
chiral Majorana fermion mode on the edge of the sample. e, Gapless superconducting
phase (∆ = |λ| + |m0|). f, Normal SC phase (∆ = 3.5|m0|). The material parameters
used for generating this figure are m1 = 15 meVÅ2, λ = 50 meV, and ℏvD = 3 eVÅ (as
in Chapter 2), but the value for m0 is increased from −5 meV to −25 meV (= −λ/2) to
better visualize the gap opening and closing of the topological transitions.
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and the Chern numbers for H+(k) and H−(k) are given by,

N+ =


−2, for |∆| < −m0 − λ,

−1, for |∆| > |m0 + λ|,
0, for |∆| < m0 + λ,

(1.17)

N− =


2, for |∆| < −m0 + λ,

1, for |∆| > |m0 − λ|,
0, for |∆| < m0 − λ,

(1.18)

respectively. The total Chern number of the system is then N = N+ + N− [13], and
is visualized in Fig. 1.4 as a function of ∆ and λ in units of m0. The conditions in
Eqs. 1.17-1.18 define straight lines, ∆/m0 = ±λ/m0 ± 1, separating regions of different
Chern number N . For ∆ = 0, the system is in the QAHI phase when |λ| > |m0| (Eq. 1.7),
as indicated by the green line in Fig. 1.4. This C = ±1 phase with one chiral Dirac fermion
mode on the edge of the sample is topologically equivalent to the N = ±2 topological
superconductor (TSC) phase with two chiral Majorana fermion modes on the edge. The
energy spectrum for a QAHI with λ = −2m0 and ∆ = 0 is shown in Fig. 1.5a.6

When ∆ is increased from point ‘a’ to ‘b’ along the dotted line in Fig. 1.4, the Ea,b,± bands
(Eq. 1.16) split and the band gap starts to close, see Fig. 1.5b. For ∆/m0 = λ/m0 − 1
at point ‘c’, the system becomes a gapless superconducting, see Fig. 1.5c. Increasing ∆
beyond ‘c’ turns the system into the N = +1 TSC phase with one chiral Majorana edge
state. With increasing ∆, the band gap now increases, reaching a maximum at point
‘d’ when ∆ = λ and Egap = −2|m0| = −50 meV,7 see Fig. 1.5d. When ∆ is increased
above ‘d’, the band gap decreases again and closes at point ‘e’, see Fig. 1.5e. Finally, for
∆/m0 > λ/m0 + 1, the system is a normal SC with N = 0, see Fig. 1.5f. Increasing ∆
beyond point ‘e’ will only increase the trivial band gap. The phase diagram in Fig. 1.4 has
a special region marked by the purple line, where ∆ > m0 and TRS is not broken (λ = 0).
Here, the system is in the helical TSC phase [13]. However, a discussion of this phase falls
outside the scope of this thesis.

When inspecting the phase diagram in Fig. 1.4, several issues become clear, possibly
hindering the realization of the N = +1 TSC phase in real material systems: (i) While it is
possible to make the MTI films very thin (∼4 nm) to ensure a QAHI with a large m0 of a
few meV [60], the QAHI films in this thesis are ∼9 nm thick. For such thicknesses, the top
and bottom surface states are well separated and m0 will be very small [60]. For m0 = 0
the phase diagram in Fig. 1.4 will have no region with N = ±1, instead the N = ±2
phase will directly transition to N = 0, when ∆ = ±λ (dashed lines in Fig. 1.4). Hence,
the region in the phase diagram with N = ±1 is very narrow for realistic values of m0.
(ii) The N = +1 TSC state requires a minimum size of the induced gap ∆ > |λ| − |m0|,
and the most robust N = +1 TSC state is realized when ∆ = |λ|. For most MTIs, λ is of
the order of tens of meV [61]. This is much larger than the superconducting gap of Nb
used in this thesis as the SC material [62].

6This spectrum is the same as the spectrum shown in Fig. 1.3d, but with a smaller band gap
Egap = 2(|m0| − |λ|) = −50 meV, since m0 is much larger in this example.

7Here, negative band gaps are chosen for the topological phases.
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Fig. 1.6 | Phase diagram of the proximitized QAHI, for different choices of µ,
∆1, and ∆2. The values of ∆ and λ are expressed in units of m0. a, The special case of
∆1 = −∆2 = ∆ with nonzero chemical potential µ = 0.7. Moving the chemical potential
away from the center of the band gap increases the phase space for N = ±1, compared to
Fig. 1.4 with µ = 0. b, When the top and bottom surface state have the same induced
gap ∆1 = ∆2 = ∆, there is no N = ±1 TSC in the phase diagram. c-d, Only the top
surface is proximitized (∆1 = ∆ and ∆2 = 0) for zero and finite chemical potential. Due
to the broken inversion symmetry between the top and bottom surface, the N = ±1 TSC
phase space is maximized. Reprinted figure with permission from Ref. [13]. © Copyright
(2015) by the American Physical Society.

Luckily, there are two parameters in Eqs. 1.10-1.11, which are not explored yet: the
chemical potential µ and the top-bottom asymmetry of the induced gaps (∆1 and ∆2).
Until now the situation with µ = 0 and ∆1 = −∆2 was discussed. Wang et al. simulated
several phase diagrams for different choices of µ = 0, ∆1, and ∆2 [13], shown in Fig. 1.6.
Two important effects are observed: Firstly, including a nonzero µ, results in an extended
region for N = ±1 in Fig. 1.6d, as compared to Fig. 1.4. This can be understood by
returning to Eq. 1.11, where the chemical potential µ sits on the diagonal of HBdG(k).
This means that the inclusion of µ is equivalent to adding a fourth mass term (in addition
to m0, λ, and ∆) [12]. By moving the chemical potential µ into the 2D conduction or
valence band, the minimum size of ∆ required to enter the N = ±1 phase can be reduced
to essentially zero. This situation arises naturally as most SCs contacting the MTI will
dope the MTI due to metallization effects [63]. Secondly, notice that the key ingredient to
the creation of the N = ±1 phase is the broken-inversion symmetry between the induced
gap on the top and bottom surface, ∆1 and ∆2, respectively. For ∆1 = ∆2 = ∆, shown in
Fig. 1.6b, there is no N = ±1 phase. The system transitions directly from the N = ±2
TSC to normal SC phase. Interestingly, the N = ±1 region is the largest when only one
of the surfaces in proximitized (∆1 = ∆ and ∆2 = 0), see Fig. 1.6c. The phase space
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a b

Fig. 1.7 | Majorana interferometer. a, Schematic of a 3D TI (grey region) covered by
two ferromagnets with opposite magnetization; M↑ (red region) and M↓ (blue region). In
the middle of this lies a superconducting island S (orange region). An incoming 1D chiral
state with potential V (section ‘a’) splits into two CMEMs on arrival at the SC, taking
different paths (sections ‘b’ and ‘c’) around the superconducting island. The CMEMs
recombine at section ‘d’ as an electron or hole, depending on the number of vortices
enclosed by the SC is even or odd, respectively. Note that the figure shows the simplest
case where the SC has a single vortex. Reprinted figure with permission from Ref. [64]
© Copyright (2009) by the American Physical Society. b, Illustration of a QAHI thin film
(yellow region) with a grounded SC (grey region) contacting one of the 1D chiral edge
channels. There are two normal contacts at the ends of the QAHI serving as the source and
drain, respectively. An incident electron with potential V splits into a pair of Majorana
modes which takes two opposite paths around the SC, indicated by the green dotted lines.
Depending on the number of vortices enclosed, the Majorana fermions combine into a
hole or electron, denoted by the red and blue dashed line respectively. Note that IS is the
supercurrent entering the grounded SC and IN is the current through the normal contact
acting as the drain. This figure was taken from Ref. [26] with permission.

for N = ±1 can then be increased further by increasing the amplitude of the chemical
potential (µ = 0 → 0.7), compare Figs. 1.6a and 1.6b. This leads to the conclusion that
the best choice for realizing the N = ±1 phase seems to be a rather thick QAHI film
covered with the s-wave SC, where only the top surface is proximitized (∆1 = ∆ and
∆2 = 0) and the SC strongly charge dopes the surface states of the QAHI film (|µ| ≫ 0).
For such a system a small value for ∆ or m0 are not detrimental.

Hence, coupling a QAHI to an s-wave SC can lead to a 2D TSC, hosting CMEMs. The
charge-neutral nature of CMEMs makes their detection extremely challenging. There
are a few theoretical proposals based on interference experiments to probe the existence
of CMEMs in the TSCs [64, 66]. These proposals rely on a 3D TI with a grounded
superconductor island on top. The inclusion of two magnets with opposite out-of-plane
magnetization directions ensures that a magnetic domain wall is formed in the 3D TI,
i.e. sections ‘a’ and ‘d’ in Fig. 1.7a. This magnetic domain wall host a 1D chiral mode,
which splits in two CMEMs moving around the superconducting island (sections ‘b’ and
‘c’). When the two CMEMs recombine in ‘d’, either an electron or hole is injected into
the 1D chiral mode leaving from the SC depending on the number of vortices in the
superconductor island. Note that this ‘Majorana interferometer’ is naturally realized when
a grounded superconducting electrode covers one edge of a QAHI, see Fig. 1.7b. In this
case, no additional magnets are needed and it is the 1D chiral edge state of the QAHI
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Fig. 1.8 | Point-contact spectroscopy on a SC-QAHI heterostructure.
a, Schematic of the point-contact device on the edge of a SC-QAHI heterostructure.
A 200-nm thick Nb layer is deposited on a 6-nm thick QAHI thin film, which is grown on a
GaAs(111) substrate. The device has normal contacts on the surface of the superconducting
Nb and point contacts made of 200 to 500-nm wide thin Au strips across the edge of
the heterostructure. The arrow represents the Andreev process. Note that the real thin
film dimensions were 5 ×2 mm2, and the sketch is not to scale. b, The raw differential
conductance dI/dV spectra for the point-contact set-up is shown for different applied
magnetic fields at T = 15 mK. The broad peak around zero bias voltage (Vb) is attributed
to AR at the Nb-Au interface. Note that the black dashed lines at the 0-mT and
200-mT curves are fits with the BTK model (with the effective barrier Z = 0.01, the
superconducting gap ∆ = 1.6 meV, broadening parameter Γ = 0.6 meV), which points
to a highly transparent Nb-Au interface. c, Selected background subtracted differential
conductance (dI/dV ) data at different applied magnetic field as the magnetic field is swept
from -500 mT to +500 mT, and the magnetization direction of the sample switches at
175 mT. The raw dI/dV spectra at 175 mT is used for the background subtraction. Three
different topological regimes are identified, and the curves are marked with their respective
Chern numbers N . d, For three selected magnetization strengths λ = 0.01m0(N = 0),
−1.2m0(N = −1), and −1.85m0(N = −2), the simulated dI/dV spectra are shown as a
function of bias voltage energy (E) normalized by ∆. The simulated curves are qualitative
agreement with the experimental data shown in panel c. This figure is taken from Ref. [65],
with copyright (2020) National Academy of Sciences.
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which splits into the two CMEMs taking different paths around the edge of the SC. When
the CMEMs encircle an odd number of vortices, then the incoming electron with potential
V from the source enters the SC as a Cooper pair, which results in a hole with potential
−V being ejected into the ‘downstream’ 1D chiral edge state leaving from the SC. When
the CMEMs encircle an even number of vortices, an electron is ejected into the downstream
edge state and no supercurrent flows into the superconducting electrode.

These CMEMs are still Majorana fermions with fermionic exchange statistics, meaning
they cannot be used to perform non-abelian braiding operations. Several theoretical
proposals take advantage of the chiral nature of the edge of a proximitized QAHI and use
a Josephson junction to inject edge vortices into the CMEMs [15–18]. An edge vortex is a
π-phase domain wall containing a Majorana zero mode (MZM) and such edge vortices can
be exchanged in real space, unlike the immobile MZM residing in a superconducting vortex
core or at nanowire endpoints. However, a prerequisite for these advanced measurement
schemes is the experimental verification of the superconducting proximity effect in a QAHI.

1.4 Experiments on SC-QAHI heterostructures

A quantized two-terminal conductance of e2/(2h) was proposed as evidence for chiral
Majorana edge modes at the SC-QAHI interface [13, 23–25]. In chapter 3, an overview of
the theory and experiments associated with the half-integer conductance will be discussed.
Based on our own Landauer-Büttiker (LB) analysis and experimental data, it is shown
that this half-integer quantized conductance is the result of equilibration of the two chiral
edge modes arriving at the superconducting electrode (in agreement with Ref. [29]) and
that this equilibration is also present in the absence of superconductivity, and hence not
related to the superconducting proximity effect.

Another study claimed the spectroscopic evidence of CMEMs in a proximitized QAHI thin
film, using point contacts made of thin Au strips on the edge of Nb–Cr-doped (BixSb1-x)2Te3
heterostructures [65]. The sketch of such a device is shown in Fig. 1.8a. The device is
said to have high interface transparency with a contact resistance of < 100 Ω. The raw
differential conductance dI/dV data shown in Fig. 1.8b is primarily shaped by a broad
peak centered at zero bias, which corresponds to the Andreev reflections at the Nb-Au
interface. This is confirmed by the fit of the BTK model to the data taken at 0 mT and
200 mT, represented by the black dashed lines in Fig. 1.8b. The differential conductance
data were recorded as the applied magnetic field was swept from -500 mT to 500 mT, and
the magnetization of the sample is inverted. Shen et al. argue that the dI/dV spectrum
at 175 mT corresponds to the situation of λ < m0 (Eq. 1.7) [65], i.e. the QAHI is in the
trivial insulating state without a chiral edge state. This leads the authors to conclude
that the dI/dV spectrum at 175 mT only includes the contribution from the Nb-Au
interface, and that the superconducting proximity effect in the Cr-doped (BixSb1-x)2Te3
film is completely suppressed. The dI/dV spectra at different magnetic fields are then
compared after performing a background subtraction with the spectrum at 175 mT.

Three selected dI/dV spectra are shown in Fig. 1.8c, accompanied by the simulated spectra
in Fig. 1.8d calculated using the Hamiltonian in Eq. 1.10. Comparing the experimental
and simulated curves, a transition of a dip-like feature at 50 mT to a plateau at 125 mT is
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observed, followed by its disappearance at 150 mT. These changes with magnetic field are
interpreted as two different topological phase transitions [65]. Namely, the fully magnetized
QAHI transitions from N = −2 → −1 → 0 as the magnetic domains in the Cr-doped
(BixSb1-x)2Te3 film flip to align with the applied magnetic field. This reduce the value
of λ to zero, when the magetization of the sample vanishes at the coercive field. This
corresponds to moving on a horizontal line (−λ/m0 → 0) in the phase diagram shown in
Fig. 1.4. However, a few issues should be raised for this work. Firstly, the assumption
that the chemical potential of the Cr-doped (BixSb1-x)2Te3 thin film underneath the Nb
layer is lying in the 2D exchange gap is highly unlikely, as it is known that the SC dopes
the (M)TI surface that lies beneath it [14,63]. This means that for low bias voltages at
175 mT (N = 0) there can still be contributions from the 2D or even 3D bulk states of the
Cr-doped (BixSb1-x)2Te3 thin films, which is not considered in the analysis. These bulk
states might be responsible for the features observed in Fig. 1.8c. Secondly, the majority
of the side contacted area lies on the Nb layer (as seen in the device sketch in Fig. 1.8a),
and the broad peak centered at zero bias stemming from the Nb-Au interface dominates
the raw dI/dV spectra in Fig. 1.8b. Hence, it is difficult to dismiss trivial effects at the
Nb-Au interface as a possible origin for the features in Fig. 1.8c.

A separate study by the same group reported an observation of a conductance peak that
slowly evolves into a single zero-bias peak in the presence of an external magnetic field on
QAHI nanoribbons coupled to an s-wave SC, attributed to the formation of MZMs at the
end of the proximitized MTI nanoribbon [67]. However, it is well-established by now that
the mere observation of a zero-bias peak is not convincing evidence for MZMs as it can
also be explained by trivial Andreev bound states or weak antilocalization by disorder in
the superconducting nanowire [68, 69]. Moreover, for narrow structures (≲ 20 µm) the
breakdown of the QAHE also results in a conductance peak at zero bias since at large
biases the conduction takes place through the dissipative bulk [53].8 In conclusion, neither
Ref. [65] nor Ref. [67] give convincing evidence for the realization of the TSC phase in
their respective SC-QAHI heterostructures.

1.5 Inducing Superconducting Correlations via Andreev
Processes

Until now, the superconducting proximity effect was discussed in terms of an induced
superconducting gap in the Hamiltonian describing the material system. A different but
equivalent way of describing the superconducting proximity effect is by evaluating the
possibility for Andreev processes to occur at the SC-Q(A)HI interface. In Chapter 2 of
this thesis, Hall-bar devices in which one edge of the QAHI is contacted by a narrow
superconducting electrode are investigated. In addition to Majorana interference (Fig. 1.7),
there are different Andreev processes that can occur at such a SC-QAHI interface.

In this section, an overview will be given of the most important experimental studies that
report induced superconducting correlations in similar device structures on quantum Hall

8For instance, compare the sharp dip in dV /dI at zero bias due to the breakdown of the QAHE in
Fig. 3b of Ref. [53] with the zero-bias peak in dI/dV in Fig. 3a-b of Ref. [67].
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insulators (QHIs). Like the QAHI, this 2D system with broken TRS also offers a platform
to couple the chiral 1D edge modes to a SC. The experiments outlined below served as
the primary motivation for this thesis and inspired the results presented in Chapter 2.
Two important distinctions have to be made here between a QAHI and a QHI. Firstly,
a QAHI does not require an external magnetic field and its remnant magnetization is
only ∼4 mT (see Supplementary Note 13 in Chapter 2 for details). This implies that
there are no strict requirements regarding the choice of SC. In order to proximitize a
QH system, on the other hand, a SC with a high critical field is necessary since a large
external magnetic field is required for the formation of Landau levels. Superconducting
alloys such as NbN [20,70,71], NbTiN [72], MoRe [73,74] are used for this purpose, and
were shown to make highly transparent contacts with graphene and III-V semiconductor
2DEGs. Secondly, the spin-polarized ν = 1 filling factor of the QHI resembles the QAHI
edge, but with the key difference that the latter is not fully spin polarized [59].

Below three different processes are discussed: Local Andreev reflection in the metallic
phase of a QH and QAH sample, the formation of chiral Andreev edge states in a QHI,
and lastly crossed Andreev reflection in a QHI.

Local Andreev Reflection

The 2DEG illustrated in Fig. 1.9a is in a metallic state in the absence of an applied
magnetic field. A single electron with energy eV smaller than the superconducting gap
(∆SC) cannot enter the grounded SC due to the energy gap at the EF in the density of
states of the SC. However, an electron is allowed to enter the SC by forming a Cooper
pair, while a hole is retroreflected to the source of the electron. This phenomenon is
known as (local) Andreev reflection (AR). According to the Blonder-Tinkham-Klapwijk
(BTK) theory [75], the transparency of an SC-metal interface is given by t = 1/(1 + Z2),
where the barrier strength was characterized by a parameter Z ranging from 0 for an ideal
metallic contact to ∞ for a tunnel barrier with vanishing transparency. The Andreev
process becomes prominent for high transparency, which leads to a sub-gap conductance of
maximum twice the normal-state conductance for a perfect contact (Z = 0). This reflects
the dual charge transfer mechanism, or in other words the effective doubling of the applied
current [76].

In 2017, Lee et al. [20] investigated the transparency of the SC-graphene interface
by measuring the differential conductance, shown in Fig. 1.9b. Here, the differential
conductance is given by σ = dIa-d/dVe-c, where Ia-d is the current flowing from contact
a to d and Ve-c is the voltage drop between contact e and c (see inset of Fig. 1.9c). A
large backgate voltage was applied such that the graphene 2DEG remained 2D conducting
with a negligible sample resistance contribution at large magnetic fields. Note that in
Fig. 1.9b, σ was normalized by the conductance at 13 K, which is above the critical
temperature (Tc) of the SC. The normalized σ shows an enhancement of ∼45% up to a
bias voltage of ∼1 mV in the absence of a magnetic field, pointing at a reasonable interface
transparency. Figure 1.9c shows the AR probability (PAR) at different magnetic fields,
which was extracted by performing a BTK fit [20]. The amplitudes of σ and PAR are
suppressed by increasing the applied magnetic field as seen in Fig. 1.9b-c, indicative of the
gradual suppression of superconductivity in the NbN electrode resulting in reduced AR.
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a b c

Fig. 1.9 | Magnetic field dependence of Andreev reflection at the NbN-graphene
interface. a, Illustration of local AR, where an incoming electron ‘e’ with potential ‘V ’
retroreflects as a hole ‘h’ with potential ‘−V ’ at the interface with the grounded SC in
the absence of an external magnetic field. The blue (green) region corresponds to the
2DEG (SC). L and W are the length and width of the SC electrode contacting the 2DEG.
b, The differential conductance at T = 1.8 K normalized with the respective values at
T = 13 K for different magnetic fields at Vbg = 60 V. At T = 13 K, NbN is no longer
in the superconducting state. The additional normal-state resistance contribution of the
NbN electrode was subtracted from σ13K before performing the normalization of σ/σ13K.
The symbols are the experimental data which are well-fitted with the modified BTK
theory (represented by the solid lines) with Z = 0.018. c, The AR probability (PAR)
is also estimated from the modified BTK fit. The inset shows the image of the device
configuration. This figure is taken from Ref. [20] with permission from SNCSC.

In a similar experiment, Kayyalha et al. [29] characterized the SC-MTI interface quality by
fabricating narrow SC electrodes of width WNb ≈ 200 nm on top of Cr-doped (BixSb1-x)2Te3
thin films, and performing differential conductance measurements. Figure 1.10 shows
the upstream (σU = I6-8/V7-8) and downstream conductance (σD = I6-8/V9-8) normalized
by their respective values at T = 6 K, above the Tc ≈ 5 K of the Nb finger electrode.
Here, the terminology ‘upstream’ and ‘downstream’ refers to the chiral flow of the 1D
edge state arriving at and leaving from the superconducting electrode, respectively. The
metallic phase of the QAHI was realized by applying a large backgate voltage, tuning the
chemical potential out of the exchange gap. The experimental data shows an increase
of ∼80% with respect to the differential conductance value at T = 6 K in zero applied
magnetic field. This enhancement cannot be fully attributed to AR at the SC-MTI
interface, as it also includes the metal-to-superconductor transition induced by the critical
current of the Nb finger. After taking into account the normal-state Nb resistance, the
interface conductance enhancement due to AR is estimated to be ∼47% [29], indicative
of a highly transparent interface. This constitutes the first experimental realization of
the superconducting proximity effect in a MTI, i.e. the enhancement of σ by ∼47% due
to AR proofs that the 2D surface states (and potentially also the 3D bulk states) are
proximitized. However, no signatures of Andreev processes were observed when the MTI
was tuned into the QAHI phase as the breakdown of the QAHE dominated the measured
dI/dV [29]. Hence, whether the superconducting correlations can be induced into the 1D
chiral edge states remains to be verified. This is the topic of chapter 2.
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Fig. 1.10 | Interface transparency in the SC-MTI finger device. a-b, The
normalized upstream (σU) and downstream (σD) differential conductance of the SC-MTI
finger device (see the insets) for different magnetic fields at T = 2 K with Vbg = −50 V.
c-d, The temperature dependence of the normalized upstream (σU) and downstream (σD)
at Vbg = −50 V without an applied magnetic field. The hysteresis in all the panels is
attributed to Joule heating from the highly resistive MTI layer. This figure is taken from
Ref. [29]. Reprinted with permission from AAAS.

Chiral Andreev Edge States

In the presence of a magnetic field, the electron transport predominantly occurs via the
1D chiral edge states in the QH regime due to the emergence of Landau levels which gap
out the bulk of the 2DEG. This chiral nature is expected to alter the physics of Andreev
reflection at the SC-QH interface [77,78]. Moreover, the type of Andreev processes observed
also depends on the relation between the width of the superconducting electrode (WSC)
and the superconducting coherence length (ξS).

Let us first discuss the regime where WSC ≫ ξS, illustrated in Fig. 1.11a. For a probability
for Andreev reflection of PAR = 100%, the incident electron undergoes consecutive Andreev
reflections along the edge of the SC electrode, forming what is known as chiral Andreev
edge states (CAESs) [20]. In the semi-classical picture, these CAESs are a series of
alternating skipping orbits of electrons and holes, propagating in the direction determined
by the cyclotron frequency, ωc = eB/m, where m gives the effective mass, e is the charge,
and B is the magnetic field strength. As Andreev reflection flips the signs of both m and e,
the cyclotron motion continues in the same direction for electrons and holes, maintaining
a single chirality for the CAES [79].
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Fig. 1.11 | Semi-classical representation of the CAESs. a, The formation of a CAES
along the SC-QHI interface in the presence of an applied magnetic field B for a long
and wide grounded SC electrode. The blue (green) region corresponds to the 2DEG
(SC). After many skipping orbits at the SC-2DEG interface the CAES becomes an equal
mixture of electron ‘e’ and hole ’h’ character, acquiring the same potential as the grounded
SC (V = 0). This figure is taken from Ref. [20] with permission from SNCSC. b, The
semi-classical calculation of the concentration of electrons in the CAES after a certain
number of reflections along the SC electrode. The Andreev and normal probabilities for a
single reflection are PAR and 1 − PAR, respectively.

However, the probability for Andreev reflection will generally be finite, as an incoming
electron can also undergo normal refection. For a long SC electrode coupled to a QHI,
this will result in the CAESs quickly becoming an equal mixture of electron and hole after
a couple of reflections at the SC-QH interface, resulting in a downstream potential equal
to the chemical potential of the grounded SC (see Fig. 1.11a). This can be demonstrated
using a simple statistical argument [20], see Fig. 1.11b. Assuming that PAR = 0.9 for a
single reflection and the incoming current consists of 100% electrons, then upon the first
reflection 90% is Andreev reflected as holes while 10% is normal reflected as electrons.
After the second reflection, the CAES consists of 82% electrons (1% of the 10% electrons
normal reflected and 81% of the 90% holes Andreev reflected). This process continues
and after a few reflections, the CAES consists of 50% electrons and 50% holes. This
corresponds to one electron on average being transferred into the SC for every incoming
electron. Figure 1.11b showcases how easy it is for incoming electrons to transform into
an equal mixture of electron and hole depending on the value of PAR. Interestingly, for
any PAR except when close to 0 and 1, the current leaving from the SC will be an uniform
mixture of electron and hole within about 20 reflections. In the work by Lee et al. [20],
20 reflections corresponds to < 200 nm of travel distance for an electron along the SC at
B = 8 T with a magnetic length of about 10 nm [20].

Quantum mechanically, combining Andreev reflection with the QH creates fermionic modes,
where electron and hole states hybridize and travel chirally along the SC-QH interface
with different wavevectors. In other words, the 1D edge state becomes a superposition
of electron and hole, as displayed in Fig. 1.12a [74, 78]. Experimentally, this is probed
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by measuring the voltage at the downstream normal metal contact with respect to the
grounded superconducting contact [20,72,74]. According to the Landauer-Büttiker (LB)
formalism, the expression for the corresponding intrinsic downstream resistance (Ri

D) is
then

Ri
D = h

νe2

(
T ee − T eh

1 − T ee + T eh

)
, (1.19)

where ν is the filling factor and T ee (T eh) is the transmission probability of an electron
from the upstream channel to arrive at in the downstream channel as an electron (hole),
with T ee + T eh = 1. For a long CAES, T ee = T eh = 0.5 is expected, which indeed gives
Ri

D = 0. However, for short interactions with the SC electrode (T ee ̸= T eh), RD can
become nonzero, and even negative when T eh > 0.5. This means more holes than electrons
are arriving in the downstream channel.

Zhao et al. [74] fabricated devices on graphene encapsulated in hexagonal boron nitride with
normal (Cr/Au) and superconducting (MoRe) contacts. The induced superconducting
coherence length and the phase coherence of the QH edge state are calculated to be
160 nm and 12 µm [74], respectively. The width of the superconducting electrode was
600 nm, falling between these two values, such that the crossed Andreev reflection (CAR)
contribution (discussed below) is suppressed. The device geometry is shown in Fig. 1.12b.
The downstream resistance (RD) is measured in a three-terminal measurement set-up, and
includes different resistance contribution,

RD = VD

I
= RQHI +RSC +Rcontact +Ri

D, (1.20)

where the sample resistance (RQHI) is zero in the QHI state, the resistance of the SC
section lying on the substrate between the film edge and the SC contact (RSC) is zero
in the superconducting state, the extrinsic contact resistance (Rcontact) is negligible for
the 600-nm-wide contact in this device, and the intrinsic downstream resistance (Ri

D) is
the CAES contribution given by Eq. 1.19. This reduces the Eq. 1.20 to RD = Ri

D when
graphene (or the 2DEG) is in the QHI regime and the SC is in the zero-resistance state.

Figure 1.12c shows the Landau fan diagram for RD, with an overall response similar to the
typical Landau fan diagram of the longitudinal resistance of a QHI. Note that the standard
behavior of longitudinal resistance is that it is zero at the QH plateaus and positive
for the regions in-between. The observation of RD being nonzero at the QH plateaus is
attributed to the formation of CAESs along the grounded superconducting contact c. In
particular, RD seems to strongly fluctuate between positive and negative values when
changing the gate voltage or applied magnetic field. This corresponds to T eh < 0.5 and
> 0.5 in Eq. 1.19, respectively. The fluctuations in the sign of RD can be explained in
the quantum-mechanical picture: Along the SC-QHI interface the superconductor couples
the electron edge state with the hole edge state at the same energy, forming a pair of
CAES for each electron state. The two CAESs develop a phase difference, stemming
from their different wavevectors, as they propagate along the superconducting interface
causing mesoscopic fluctuations in the sign and amplitude of RD. When RD is negative
(positive), the CAES interference produces a hole (electron) in the downstream QH edge
states leaving the SC contact. This hole (electron) will lower (raise) the chemical potential
with respect to the grounded superconducting contact c, and travel downstream to contact
d [74]. The fluctuations in RD are clearly observed for ν = 2 and ν = 6 highlighted by the
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Fig. 1.12 | The interference of CAESs along the SC-QHI edge. a, The pictographic
representation of the CAESs as a superposition of electron and hole states, where the
e+ h and e− h states propagate along the SC-QHI interface with different wavevectors.
The wavefunction densities of electron e (red) and hole h (blue) are calculated using a
tight-binding model, with the dimensions in units of the lattice parameter a of graphene.
b, The three-terminal measurement geometry is shown using an optical image of the sample.
The 1D edge state(s) propagates in the counter-clockwise direction for a downwards, out-
of-plane magnetic field. The current enters on contact a and contact c is grounded. The
hall voltage (Vxy = Vd − Vb) and the downstream voltage (VD = Vd − Vc) are measured
simultaneously. The yellow and grey region correspond to the normal and superconducting
contacts, respectively. c, The RD is plotted as function of the gate voltage VG and magnetic
field B. The black lines represent the QH plateaus at ν = 2 and ν = 6. The mesoscopic
fluctuations in RD are suppressed with increasing magnetic field. This figure is taken from
Ref. [74] with permission from SNCSC.
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black lines in Fig. 1.12c. As the superconducting proximity effect is gradually suppressed
by increasing the applied magnetic field, the amplitude of the fluctuations in RD is visibly
reduced.

In 2022, Hatefipour et al. [72] reported on similar experiments involving InAs-based
quantum wells. The cross-sectional schematic of the device is depicted in Fig. 1.13a. A
multi-terminal hall-bar is fabricated on InAs with 90-nm thick superconducting contacts
(NbTiN), as shown in Fig. 1.13b. Contacts 1, 2, 3, 5, and 6 are metallic electrodes, while
contact 4 is the superconducting electrode. Note that the SC makes a top-contact to the
InAs, unlike the works on graphene discussed in this section [20,74], where the graphene
was etched to form a side contact to the SC (see Fig. 1.14c below). Moreover, the width
of the SC-2DEG interface is 150 µm, which is much wider than for the SC-graphene
devices [20, 74]. The study in Ref. [72] discusses the results of two devices. Device A
includes a deliberate pre-surface cleaning step before the sputter deposition of the SC,
aimed at understanding the role of interface quality in inducing superconductivity in QH
edge modes. This step is omitted for device B. Figures 1.13c-d show RD as a function
of both the applied magnetic field B and the gate voltage Vg. For this measurement the
current is injected through contact 1 while grounding contact 4”. The Hall resistance,
measured between contacts 2 and 5, enables the authors to identify the filling factors ν for
the Landau fan diagrams of devices A-B in Figs. 1.13c-d, respectively. The value of RD,
measured between contacts 5 and 4’, is negative when the system is tuned into the QH
plateaus (for even filling factors ν). This negative RD is attributed to the emergence of
CAESs along the SC-2DEG boundary, indicating that superconducting correlations are
induced in the 1D egde modes [72]. The negative amplitude of RD is significantly larger
in device A with the additional interface cleaning step during the device fabrication as
compared to device B, indicative of a stronger superconducting proximity effect in device
A than B.

The authors used the LB formalism to obtain a detailed understanding of the experimental
data [72]. Since the 2DEG is in the QHI regime, the SC is in the superconducting state,
and the contact resistance is negligible for such large contacts, then Eqs. 1.19-1.20 can be
rewritten with T ee + T eh = 1 as,

RD = Ri
D = h

νe2

( 1
2T eh − 1

)
, (1.21)

The extracted transmission probability of Andreev reflection (T eh) from the experimental
data is 55% [72], which is large in comparison to the SC-graphene systems [20]. In
addition, the persistently negative RD for such a wide SC interface (150 µm) without any
fluctuations in the sign of RD in the QH plateaus of the Landau fan diagram (Fig. 1.13c-d)
is another striking difference to the earlier work by Zhao et al. [74] (Fig. 1.12c). The
authors provide two possible explanations [72]: (i) The dephasing of the electron-like and
hole-like edge modes along the SC-QH interface might be negligible, corresponding to the
regime with small proximity-induced superconducting pairing (∆SC) and long coherence
length (ξS). (ii) The lack of fluctuations in RD with neither the applied magnetic field nor
the gate voltage may point to a scattering process at the superconducting electrode that
preferentially drains electrons, causing more holes to end up in the downstream channel
even if T eh ≪ 0.5. Note that such a scattering process breaks the particle-hole symmetry.
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Fig. 1.13 | CAESs along the SC-QHI edge of an InAs quantum well device.
a, Illustration of the cross-section of the gated NbTiN-InAs device, corresponding to the
small section outlined by the rectangle in panel b. b, The schematic of the multi-terminal
InAs hall-bar device (green) and measurement set-up. The NbTiN superconducting
contacts (blue) are 4, 4’, 4”; the normal metal contacts (dark yellow) are 1, 2, 3, 5, and
6. The potential of the top-gate (light yellow) is given by Vg. Contacts 1 and 4” are the
source and drain, respectively. RD is measured between contacts 5 and 4’, where L is the
horizontal separation between two consecutive electrodes. c, Measured RD as a function
of B and Vg in device A with a high interface quality. d, Measured RD as a function of B
and Vg in device B with low interface quality. The filling factors (ν) mark the QH plateaus
in the Landau fan diagrams in panels c and d. Reprinted figure with permission from
Ref. [72]. © Copyright (2022) by the American Chemical Society.
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Crossed Andreev Reflection

In this section two nonlocal mechanisms are addressed that can take place when WSC ≪ ξS.
Electron co-tunneling (CT) across a narrow superconducting electrode is a quantum
transport process in which an electron crosses from the upstream channel arriving at the
SC to the downstream channel leaving from the SC without creating a Cooper pair in the
superconducting electrode. For crossed Andreev reflection (CAR), on the other hand, an
incoming electron (e) with potential V forms a cooper pair to enter the grounded SC by
taking an electron from the other side of the SC, see Fig. 1.14a. The converted hole (h)
with a potential −V then continues to move forward on the other side of the SC with the
chirality of the 1D QH edge state. This regime is particularly fascinating because a long
(L ≫ hvF/∆, h is Planck’s constant) and narrow (WSC ≪ ξS) superconducting electrode
coupling the counter-propagating QH edge states with Fermi velocity (vF) is predicted to
host two Majorana zero modes, one at the end of the SC and the other in resonance with
the 1D chiral edge state, as depicted in the inset of Fig. 1.14a.

Lee et al. [20] fabricated multi-terminal hall-bar devices with narrow superconducting
(NbN) electrodes of different widths, to investigate the CT and CAR processes in the QH
edge states of graphene. The measurement configuration is shown in Fig. 1.14b, where
the normal contact ‘a’ is the source and the superconducting contact ‘d’ is the drain.
The chiral 1D QH edge states are propagating clockwise at the edge of the sample. The
upstream (VU) and downstream (VD) potential are measured between contact pairs b-c
and e-c, respectively. All the contacts were fabricated by an in situ etching technique of
the hBN-encapsulated graphene samples, in order to maintain low contact resistance. The
normal electrodes are made of Ti/Au and the superconducting contact is NbN which is
reactive sputtered in Ar/ N2 environment. As a result of the employed fabrication recipe,
there is no graphene underneath the NbN electrode but a narrow wedge-shaped trench in
graphene that is side-contacted by the SC, as shown in Fig. 1.14c.

Recalling Eq. 1.19 for the intrinsic downstream resistance derived using the LB formalism,
it is clear that the sign of Ri

D depends on the relative amplitudes of T ee and T eh. We can
now express these transmission probabilities as T ee = TCT + TN and T eh = TCAR + TA,
where TCT (TCAR) represents the nonlocal CT (CAR) process and TN (TA) represents the
probability for an electron (hole) to arrive in the downstream channel after travelling along
the SC-graphene interface in the CAESs. Using the same statistical argument as above (see
Fig. 1.11), the CAESs are expected to become an equal superposition of electron and hole
for the device shown in Fig. 1.14b. This means that TN = TA, combining Eqs. 1.19-1.20
then give the expression for the measured downstream resistance

RD = VD

I
= h

νe2

(
TCT − TCAR

1 − TCT + TCAR

)
+RQHI +RSC +Rcontact, (1.22)

where the first term in the summation is the intrinsic downstream resistance Ri
D, and

RQHI = 0 at integer filling factors. Figure 1.14d shows RD as a function of the filling factor
ν for different temperatures T , for a graphene device with a 50-nm-wide superconducting
electrode. For filling factors, ν = 1, 2, and 6, RD is negative indicating that the CAR
process dominates over CT (TCAR > TCT) [20].
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Fig. 1.14 | Negative downstream resistance stemming from CAR at a narrow
superconducting electrode contacting a QHI. a, Illustration of the CAR process
at a narrow superconducting electrode (green) contacting a QHI (blue) in an applied
magnetic field B. Inset of a, the black arrows represent the counter-propagating 1D edge
channels of the QHI coupled via the superconducting gap (∆) leading to the formation of
non-abelian MZMs at the ends of the superconducting electrode. b, False-color scanning
electron microscopy (SEM) image of the SC-QHI device, showing the measurement set-up.
Graphene (blue) is contacted by Ti/Au normal contacts (yellow) and a 50-nm-wide NbN
superconducting contact (green). Inset of b, the dashed red line highlights the side-contact
of NbN to the graphene edge. c, The cross-sectional schematic of the NbN contacting
the graphene edge. ξS represents the superconducting coherence length. d, The raw
downstream resistance RD as a function of the filling factor (ν), obtained by sweeping the
gate voltage Vg at different temperatures T in an applied magnetic field of B = 14 T. The
width of the NbN electrode is WSC = 50 nm for this device. e, Temperature dependence
of RD (top), RU (middle) and RNbN line (bottom) for ν = 2 at B = 8 T. The blue-shaded
region is the change in downstream resistance ∆RD attributed to CAR at the 50-nm-wide
NbN electrode. The curve for RU in the middle panel mirrors the changes in RD. The
temperature dependence of RNbN line has an onset critical temperature of Tc, on = 8.7 K,
and a critical temperature of Tc = 5.2 K below which the NbN electrode reaches the
zero-resistance state. f, The exponential width dependence of RD (square symbols) and
∆RD (circle symbols) at 0.3 K, fitted by ∆RD(WSC) = ∆RD,0 exp(−WSC/ξS). All devices
with WSC ≲ 200 nm showcase a finite negative raw signal. The inset shows the SEM
images of the devices with WSC = 98, 111, 146, 188, 200, 600 nm, from left to right,
respectively. This figure is taken from Ref. [20] with permission from SNCSC.
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Lee et al. used the temperature T as a tuning knob to probe the evolution of RD as the
superconductivity is lost in the NbN finger electrode with increasing temperature. Note,
that the magnetic field can not be changed as freely, since a large field is required to
maintain the graphene in the QH regime at a particular filling factor. Figure 1.14e shows
the temperature dependence of both RD = VD/I and RU = VU/I for ν = 2, for a device
with a 50-nm-wide NbN electrode. In order to determine the normal-state resistance
and critical temperature (Tc) of NbN, a small separate section of the NbN electrode was
measured independently, see the bottom panel of Fig. 1.14e. The NbN electrode resistance
RNbN line has an onset critical temperature of Tc,on = 8.7 K and enters the zero-resistance
state below Tc = 5.2 K. Comparing the different panels in Fig. 1.14e, RD and RU are
observed to gradually drop around Tc,on = 8.7 K, with RD eventually becoming negative
once the NbN electrode is fully superconducting. The change in RD of ∼250 Ω between
Tc,on and Tc is attributed to the contribution from the small section of the NbN electrode
(RSC in Eq. 1.22), highlighted by the black dashed box in the inset of Fig. 1.14b. After
subtracting this NbN resistance contribution, the remaining ∼180 Ω at Tc originates from
the contact resistance contribution of the SC-graphene interface (Rcontact in Eq. 1.22) [20].
The change in RD is then defined as, ∆RD = RD(T = 0.3K)−RD(T = Tc) = Ri

D, indicated
by the blue-shaded region in the top panel of Fig. 1.14e. The value of ∆RD = −230 Ω is
considerably larger than the raw value of RD at the base temperature (0.3 K) and is an
estimate for the total contribution of the CAR and CT processes across the superconducting
finger electrode. This corresponds to approximately 4% of the maximum negative ∆RD
value, −h/4e2 (ν = 2) under ideal conditions for 100% CAR, according to the LB formalism.
This reduced ∆RD value is stated as a consequence of magnetic-field-induced quasiparticle
excitations in the SC in addition to the diminished probability for Andreev processes at
the SC-graphene interface due to the large applied magnetic field of B = 8 T [20].

In order to estimate the characteristic length-scale associated with the observed CAR
process, the width dependence was studied by varying the superconducting electrode width
WSC from 50 nm to 600 nm for different graphene devices, see the inset of Fig. 1.14f.
Both RD (square symbols) and ∆RD (circle symbols) exhibit an exponential decay with
increasingWSC, see Fig. 1.14f. The data is fitted using the exponential function, ∆RD(W ) =
∆RD,0 exp(−W/ξS) with ∆RD,0 = −600 ± 27 Ω and ξS = 52 ± 2 nm. The extracted value
of ξS is in agreement with the expected coherence length of NbN, as it lies in-between the
clean (ξBCS = ℏvS

F/π∆ ∼ 200 nm) and dirty (
√
ξBCSlmfp ∼ 10 nm) limits of NbN, with the

Fermi velocity of NbN vS
F = 1.8 × 106 ms−1, the superconducting gap ∆ = 1.8 meV at

B = 8 T, and the mean free path lmfp = 0.3 nm [20].

In a different study [70], Gül et al. also observed CAR in the fractional quantum Hall
insulating state of graphene contacted by sub-100-nm-wide NbN superconducting electrodes
[70]. Negative nonlocal downstream resistances were observed for several fractional filling
factors ν = 1/3, 2/5, 2/3, 5/3. This provides a platform to synthesize parafermions that
obey rich non-abelian statistics [80]. However, the observed signatures of CAR were rather
weak compared to the integer QHI phase of graphene reported above [20]. The suppression
of the negative nonlocal downstream resistance occurred either when the bulk contribution
dominated resulting in nonquantized Hall resistance, or when the superconductivity in
NbN was suppressed with increasing temperature.
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Note that the amplitude of RD observed by Lee et al. [20] (and Gül et al. [70]) is
persistently negative (Fig. 1.14), signaling that CAR always dominated over CT. Moreover,
the amplitude of RD in Fig. 1.14f shows a strong dependence on the width of the SC
disappearing for superconducting electrodes wider than a few hundred nms [20]. The
study by Zhao et al. (Fig. 1.12), on the other hand, showed fluctuations in the sign of
RD [74], meaning that for the CAESs formed along the 600-nm-wide SC-QHI interface
the T ee and T eh processes are competing with each other (see Eq. 1.19). This, in turn,
contrasts strongly with the persistently negative RD observed by Hatefipour et al. for
a 150-µm-wide superconducting contact on an InAs quantum well (Fig. 1.13) [72]. In
conclusion, the negative RD observed for the extremely wide superconducting electrode in
Ref. [72], as well as the apparent dominance of Andreev processes over normal reflections
at the SC-QHI interface in Ref. [20,70,72] remain open questions.

In chapter 2, the downstream resistance will be characterized for similarly narrow SC-QAHI
hybrid structures as shown in Fig. 1.14b, but with the import distinction that the V-doped
(BixSb1-x)2Te3 thin film is not etched underneath the SC. In chapter 3, multi-terminal
Hall-bar devices with large (µm-size) superconducting electrodes lying across the full width
of the V-doped (BixSb1-x)2Te3 thin films will be investigated.



Chapter 2

Induced Superconducting Correlations in
a Quantum Anomalous Hall Insulator

This chapter is presented in the form of a manuscript and is published in Nat. Phys. as

A. Uday,∗ G. Lippertz,∗ K. Moors, H. F. Legg, R. Joris, A. Bliesener, L. M. C. Pereira,
A. A. Taskin, and Y. Ando, Induced superconducting correlations in a quantum anomalous
Hall insulator, Nature Physics, 20, 1589–1595 (2024)

A. A. T. and Y. A. conceived the project. A. U., G. L., A. B., and A. T. did the MBE
growth of the ferromagnetic thin films. A. U. optimized the fabrication recipe for acquiring
a transparent SC-QAHI interface. A. U. and G. L. did the device fabrication. A. U. did
the transport data acquisition and analysis, with the help of G. L., A. A. T., and Y. A.
K. M. and H. F. L. gave the theoretical interpretation for the manuscript. R. J. and
L. M. C. P. measured the sample’s remnant magnetization using SQUID magnetometry.
A. U., Y. A., H. F. L., and K. M. wrote the manuscript with input from all authors.

2.1 Overview

This chapter discusses the first report of the observation of CAR across a narrow
superconducting electrode lying on top of a QAHI, indicative of induced superconducting
correlations in the chiral edge of a QAHI.

In this work, a ferromagnetic TI thin film of V-doped (BixSb1-x)2Te3 is grown on InP(111)A
using MBE. Our samples give a quantized Hall resistance (Ryx = h/e2) and vanishing
longitudinal resistance with coercive field peaks, confirming that our samples are in the
QAHI regime without the need for electrostatic gating. This is a major advantage, as it
opens up the top surface of the films for other structures than a gate stack. This allows the
fabrication of Hall-bar devices on these films which are contacted by the superconducting
Nb-electrodes with widths ranging from 160 to 520 nm (devices A-E), proximitizing the
TI surface state as well as maintaining the QAHI state in the rest of the film. The normal
contacts were made of Ti/Au.
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In Ref. [20] discussed in the introduction, the nonlocal resistance is measured as the
temperature is increased above the upper critical temperature of the SC for a narrow
superconducting electrode contacting a QHI, see Fig. 1.14e. This allows the authors to
compare RD when the SC is in the normal and superconducting state. For a QAHI the
temperature is not a good tuning knob, since the zero-resistance state is quite fragile and
not maintained for temperatures above ∼100 mK (see Supplementary Note 6), which is
much less than the critical temperature of the SC. On the other hand, an external magnetic
field is not required for the realization of the QAHE (unlike the quantum Hall effect)
allowing us to study RD as a function of the applied magnetic field from 0 T to above the
upper critical field of Nb. Another striking difference is that in Refs. [20, 74] the SC is
side-contacting the QHI, whereas in this work the SC makes a top-contact to the QAHI.
Hence, unlike in the SC-QHI system, there are two SCs to be considered in our experiment:
The parent SC which is the Nb-electrode, and the proximitized V-doped (BixSb1-x)2Te3
thin film. If the proximity effect results in a topological superconductor (TSC) underneath
Nb, then the N = 1 phase is most-likely realized as the Nb is known to electron-dope
TIs and the the inversion symmetry is broken between the top and bottom surface of
the QAHI film, see Fig. 1.6d. This means that for an upward out-of-plane magnetization
(M > 0) one chiral Majorana edge mode (CMEM) will run clockwise along the TSC-QAHI
interface and another CMEM counterclockwise along the TSC-vacuum interface. These
two CMEMs will then interfere when recombined ejecting either an electron or hole into
the downstream QAHI edge state depending on the number of vortices enclosed by the
SC [26, 64, 66]. Instead, if the proximity effect results in a trivial superconductor (SC)
underneath Nb, then chiral Andreev edge states (CAESs) are formed at the SC-QAHI
interface. These CAESs states will accumulate a phase difference as they travel clockwise
along the SC-QAHI interface for M > 0, ejecting either an electron or hole into the
downstream QAHI edge state when they recombine. Lastly, the nonlocal CAR and CT
processes can also result in electrons and holes in the downstream edge state. These CAR
and CT processes can be mediated by the parent SC (Nb) or via the proximitized SC
(which can be trivial or topological).

The magnetic field dependence of device A with the narrowest Nb electrode width (WNb =
160 nm) shows that RD is negative when Nb is in the superconducting state (H < Hc2).
The observation of negative RD is the highlight of this work and is attributed to the CAR
process taking place across the narrow superconducting electrode, inducing superconducting
correlations in the chiral edge states of the QAHI. Majorana interference or the presence
of CAES are excluded as the possible origins of the negative resistance, as the long Nb-
electrode overlaps with the QAHI film for 5 µm. The CMEMs and CAESs are expected
to have self-averaged or equilibrated to the SC potential giving no contribution to the
downstream potential. This is confirmed by the width dependence of RD for which the
negative resistance decrease with increasing width and disappear for WNb > 365 nm. Such
a small increase in the width has almost no impact on the perimeter (∼10 µm). Hence,
the width dependence of the negative resistance does not agree with the expectations for
the CMEMs and CAESs processes. The nonlocal CAR process, however, is exponentially
suppressed with increasing WNb in our devices, in agreement with Ref. [20] (Fig. 1.14f).
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We find that the CAR process disappears with a characteristic length of ∼100 nm, which is
much larger than the superconducting coherence length of Nb in the dirty limit (∼30 nm).
This indicates that it is the proximitized SC which is facilitating the CAR across the
narrow superconducting electrode. This is the second important finding of this work,
i.e. the V-doped (BixSb1-x)2Te3 thin film underneath the Nb is proximitized. This means
that these heterostructures are a prime candidate to search for CMEMs, which should
be present if the electron doping from the Nb is not large enough to move the chemical
potential into the 3D bulk bands. If the chemical potential remains in the 3D bulk band
gap and the 2D surface states are the only bulk states present, then Eqs. 1.10-1.18 should
hold, predicting CMEMs.

In addition, quantum transport simulations using the KWANT package are presented in
this work. For wider superconducting electrodes, the KWANT simulations show Majorana
interference as a result of path length differences of the two CMEMs encircling the SC.
At the same time, for narrow superconducting electrodes, either CAR or CT dominates
in the KWANT simulations resulting in a negative or positive downstream resistance,
respectively. There was no width dependence observed in the KWANT simulation in
contrast to the experimental observation of stable dominance of CAR over CT in our
devices. This indicates the presence of additional physics that are not included in the
simulations at the moment.
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Induced superconducting correlations in a 
quantum anomalous Hall insulator
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Thin films of ferromagnetic topological insulator materials can host the 
quantum anomalous Hall effect without the need for an external magnetic 
field. Inducing Cooper pairing in such a material is a promising way to 
realize topological superconductivity with the associated chiral Majorana 
edge states. However, finding evidence of the superconducting proximity 
effect in such a state has remained a considerable challenge due to inherent 
experimental difficulties. Here we demonstrate crossed Andreev reflection 
across a narrow superconducting Nb electrode that is in contact with the 
chiral edge state of a quantum anomalous Hall insulator. In the crossed 
Andreev reflection process, an electron injected from one terminal is 
reflected out as a hole at the other terminal to form a Cooper pair in the 
superconductor. This is a compelling signature of induced superconducting 
pair correlation in the chiral edge state. The characteristic length of the 
crossed Andreev reflection process is found to be much longer than the 
superconducting coherence length in Nb, which suggests that the crossed 
Andreev reflection is, indeed, mediated by superconductivity induced on 
the quantum anomalous Hall insulator surface. Our results will invite future 
studies of topological superconductivity and Majorana physics, as well as 
for the search for non-abelian zero modes.

Inducing superconducting (SC) correlations using the SC proximity 
effect in the one-dimensional (1D) edge state of a two-dimensional (2D) 
topological system would lead to exotic topological superconductiv-
ity hosting non-abelian anyons1–7 and, hence, has been experimen-
tally pursued in a couple of systems. For the 1D helical edge state of a 
2D topological insulator (TI), the induced SC correlations have been 
detected in Josephson junctions8,9. The SC correlations in the quantum 
Hall edge states are less trivial due to the chiral nature of the edge and 
large magnetic fields required, but strong evidence has been obtained 
in terms of the crossed Andreev reflection (CAR)10–13 or the formation of 
Andreev edge states14–16, which cause a negative nonlocal potential in 
the downstream edge17–20. In the CAR process, an electron in the chiral 

edge entering a grounded SC electrode creates a Cooper pair by taking 
another electron from the other side of the electrode, causing a hole to 
exit into the downstream edge (Fig. 1b). This hole is responsible for the 
negative nonlocal voltage observed experimentally17,20. Importantly, 
SC correlations are induced in the chiral edge state through the CAR 
process. Very recently, the CAR process has been observed even in the 
fractional quantum Hall edge states20, which are an interesting platform 
for creating parafermions obeying rich non-abelian statistics21,22.

In this context, the SC proximity effect in a quantum anomalous 
Hall insulator (QAHI), which is a ferromagnetic TI showing the quan-
tum anomalous Hall effect (QAHE), is highly interesting. If the 1D edge 
state of a QAHI can be proximitized, one could create a non-abelian 
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gives the characteristic length of the CAR process that is much longer 
than the SC coherence length of Nb, which suggests that it is not the 
superconductivity in the Nb electrode but the proximity-induced 
pairing in the QAHI beneath the Nb that is mediating the CAR process.

Nonlocal detection of CAR
Our samples are Hall-bar devices of V-doped (BixSb1−x)2Te3 (ref. 36) in 
contact with SC Nb electrodes with widths ranging from 160 to 520 nm. 
Figure 1a,b shows false-colour scanning electron microscopy images of 
device A, which had the narrowest Nb electrode (contact 4). All other 
contacts were made of Ti/Au with contact resistances of a few ohms 
(Supplementary Note 1). The 1D chiral edge state propagates in the 
anticlockwise direction for an upward, out-of-plane magnetization 
(M > 0). For the configuration shown in Fig. 1a, we set a d.c. current to 
flow between contacts 1 and 4d; namely, a voltage was applied to the 
normal metal contact 1 and the SC contact was grounded.

In ref. 28, Andreev reflections of the electrons in the 2D ‘bulk’ 
states of a magnetic TI film in the metallic regime were observed in 
devices like the one in Fig. 1a, but here we probe the SC correlations 
in the 1D chiral edge state of the QAHI. For our purpose, confirmation 
of the dissipationless edge transport without the contribution of the 
2D bulk is essential. In fact, the longitudinal resistance Rxx (= R1–4d,2–3 
measured between contacts 2 and 3 with the current between 1 and 4d) 
vanishes in our devices, whereas the transverse resistance Ryx (= R1–4d,6–2 
measured between contacts 6 and 2) is quantized to h/e2, where h is 
the Planck’s constant and e is the elementary charge, without the need 
for electrostatic gating, as shown in Fig. 1c. Note that a breakdown of 
the zero-resistance state occurs when the current exceeds a critical 

Majorana zero mode by coupling two counter-propagating edges by 
the CAR process through a superconductor6,10,17. If, on the other hand, 
the 2D surface of the QAHI is proximitized, a chiral Majorana edge 
state may occur2,23, which could be a platform for flying topological 
qubits that transfer information between stationary qubits24–27. Hence, 
proximitized QAHI is an interesting platform for Majorana physics. 
However, no clear evidence has been reported for the SC proximity 
effect in a QAHI28–30.

The QAHI can be realized by doping Cr or V into a very thin film 
(typically ≲10 nm thickness) of the three-dimensional TI material 
(BixSb1−x)2Te3 in which the chemical potential is fine-tuned into a mag-
netic gap that opens at the Dirac point of the surface states as a result 
of a ferromagnetic order31–33. Hence, a QAHI is insulating, not only 
in the three-dimensional bulk but also in the 2D surface. Inducing 
SC correlations in bulk-insulating TIs is much more difficult than in 
bulk-conducting TIs34, and this is one of the reasons for the lack of clear 
evidence for the SC proximity effect in a QAHI. In fact, a recent work 
reported the observation of Andreev reflection in a metallic regime 
of a magnetic TI film, but when the sample was in the QAHI regime, 
there was no evidence for any Andreev process28. Another work in this 
context29 used a device structure that was not optimal for detecting 
the relevant Andreev process. Recent experiments on quantum Hall 
systems found a robust signature of CAR even at the spin-polarized ν = 1 
filling factor17,20, which appears to resemble a QAHI edge. However, an 
important difference is that a QAHI edge is not fully spin polarized35. In 
the present work, we have successfully observed the signature of CAR 
with a narrow Nb finger electrode (down to 160 nm width) in contact 
with the QAHI edge. The finger-width dependence of the CAR signal 
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Fig. 1 | CAR across the quantum anomalous Hall edge state. a, False-colour 
scanning electron microscopy image of device A including the measurement 
schematics. The SC Nb electrode (green) and the Ti/Au normal electrodes 
(yellow) are in contact with the V-doped (BixSb1−x)2Te3 thin film (cyan). For an 
upward, out-of-plane magnetization (M > 0), the chiral 1D edge state propagates 
anticlockwise along the sample edge. The voltage VD between contacts 3 and 4 
gives the downstream resistance RD ≡ VD/Id.c.. b, Magnified image of the 160-nm-
wide Nb electrode shown in a. The white arrows schematically show the CAR 
process. c, Magnetic-field dependence of the four-terminal resistances, showing 
the QAHE with vanishing longitudinal resistance R1–4d,2–3 = 0 and quantized 
transverse resistances R1–4d,6–2 = h/e2 at 25 mK. d, Current versus voltage (I–V) 
characteristics of the four-terminal longitudinal voltage Vx at 17 mK in various 
applied magnetic fields H from 0 to 6 T in steps of 1 T. The breakdown current 
decreases with increasing H. e, The light blue line shows the downstream 

resistance RD continuously measured as a function of H from 0 to 6 T with 
Id.c. = 2 nA at 25 mK. Blue symbols represent the slopes of the I–V characteristics at 
Id.c. = 0 at discrete magnetic fields (Supplementary Note 3), which give confidence 
in the negative RD indicative of CAR. As the superconductivity in Nb is suppressed 
with increasing H, RD increases by 520 Ω, which consists of the normal-state 
Nb resistance (120 Ω, marked by a dashed line) and the CAR contribution 
ΔRD ≃ −400 Ω (marked by blue shading). The RD level of ~180 Ω marked by the 
middle horizontal dashed line corresponds to Rcontact, which gives a positive 
offset to the raw RD. f, I–V curves for the downstream voltage VD measured in 
0 T at 17 mK for different magnetic-field-sweep histories. The magnitude of 
the negative slope at Id.c. = 0 depends on the history. See Supplementary Note 4 
for details. Inset, An I–V curve up to ±70 nA dominated by the current-induced 
breakdown of the QAHE.
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current36–42, and the zero-resistance region is observed to shrink with 
increasing magnetic field, as shown in Fig. 1d, which is possibly caused 
by a charge redistribution between the bulk and the QAHI edge in 
applied magnetic fields43,44. This fragility of the QAHI state against 
current makes it difficult to estimate the contact transparency using 
current biasing17,28.

The CAR process converts an incoming electron with an energy 
eV that is smaller than the SC gap Δ into a hole carrying a potential of 
−V in the downstream edge (Fig. 1b), which is detected at contact 3 as 
the downstream voltage VD with respect to the grounded SC contact 
4a. Here, downstream refers to the chiral direction of the edge state 
(Fig. 1a,b). In addition, there is a finite probability that an upstream elec-
tron will tunnel directly into the downstream as an electron carrying a 
positive potential V. This is called co-tunnelling (CT), and it competes 
with the CAR process in the nonlocal transport11–13. The downstream 
resistance RD ≡ VD/Id.c. observed in this configuration consists of

RD = RQAHI + RNb,InP + Rcontact + RiD, (1)

where the resistance of the QAHI film RQAHI is zero for low probe currents 
below the breakdown, RNb,InP is the resistance of the Nb section lying on 
the InP wafer between the film edge and the SC contact 4a (which is zero 
when the Nb is SC), Rcontact is the extrinsic contact resistance due to the 
imperfect Nb–QAHI interface and RiD is the intrinsic downstream resist-
ance reflecting the CAR/CT contribution. The subgap states in the SC 
due to, for example, vortices can provide a dissipative channel that 
dumps electrons to the ground, which will reduce RiD (refs. 17–19). Note 
that the present set-up is a three-terminal configuration and that Rcontact 
always gives a finite contribution to VD. An external magnetic field is 
not required for the realization of the QAHE, enabling us to examine 
RiD as a function of the applied magnetic field from 0 T up to the upper 
critical field Hc2 of SC Nb. This is an important difference from previous 
studies of the SC proximity effect in quantum Hall edge states17–20. The 
magnetization measurements of our QAHI films found that the magnetic 
induction produced by the ferromagnetism of the film was only ~4 mT 
in a near-zero applied magnetic field at 2 K (Supplementary Note 13). 
This is smaller than the lower critical field of Nb (~180 mT)45 and would 
not create vortices, which harbour subgap states and allow incident 
electrons to be dissipated without the Andreev mechanism17,46,47. How-
ever, one cannot exclude the possibility that some vortices remain 
trapped at strong pinning centres. Due to the chiral nature of the edge 
state, no Andreev reflection occurs into the upstream edge.

Figure 1e shows the magnetic-field dependence of RD for device A 
with a Nb electrode of width WNb = 160 nm, measured with current 
Id.c. = 2 nA (see Supplementary Notes 3 and 4 for additional data). Below 
~1 T, the downstream resistance is negative, signalling the CAR process 
across the Nb electrode. This is the main result of this work and dem-
onstrates that SC correlations are induced in the chiral edge state across 
the SC finger by CAR processes in our devices. As the magnetic field is 
increased, RD gradually turns positive and saturates as the supercon-
ductivity is lost in the Nb electrode. The change in the nonlocal down-
stream resistance due to the suppression of the CAR/CT process is 
calculated as ΔRD ≡ −[RD(H > Hc2) − RD(H < Hc2) − RNb,InP], which should 
be equal to RiD provided that RQAHI remains zero and Rcontact does not 
change across Hc2 (which we confirmed in wide-finger devices; see 
Supplementary Note 14). When ΔRD is negative (positive), the CAR (CT) 
process is dominant. We estimate ΔRD ≈ −400 Ω after subtracting the 
contribution of the normal-state Nb resistance RNb,InP ≈ 120 Ω (Fig. 1e 
and Supplementary Note 2). As RiD  = 0 in the normal state, 
RD = RNb,InP + Rcontact holds at H > Hc2 and below the breakdown current, 
allowing us to evaluate Rcontact and conclude that the CAR process con-
tributes ΔRD(= RiD) ≈ −400Ω, which is much larger than the measured 
negative RD. This ΔRD corresponds to about 3% of the maximum nega-
tive downstream resistance −h/2e2 expected for 100% CAR (Supple-
mentary Note 8).

To give confidence that the negative RD is not just a result of volt-
age fluctuations, the I–V characteristics for the downstream voltage 
VD in 0 T are shown in Fig. 1f. The slope in the zero-current limit (which 
also gives RD) is reproducibly negative for all the measured curves for 
different magnetic histories, even though the magnitude of RD changes 
with the magnetic history (Supplementary Note 5), which was probably 
caused by a change in the disorder profile. The small nonreciprocity 
seen in Fig. 1f is due to 1D chiral edge transport itself48,49. At high cur-
rent, the breakdown of the QAHE (causing RQAHI > 0) dominates the 
downstream voltage (Fig. 1f, inset). The change in the behaviour of 
VD versus Id.c. with increasing temperature is shown in Fig. 2a. The RD 
values extracted from these data are plotted in Fig. 2b as a function of 
temperature along with the four-terminal longitudinal resistance Rxx, 
which starts to deviate from zero above ~50 mK, behaviour typical of 
the QAHI samples available today36–40. Obviously, the CAR contribution 
in RD is masked by the contribution of RQAHI at T > 50 mK. This observa-
tion demonstrates a clear link between the negative RD and the QAHI 
edge transport.

Finger-width dependences of the downstream 
resistance
We further investigated RD for devices with different Nb finger widths 
up to 520 nm. The magnetic-field dependence of RD in device B with 
WNb = 235 nm is shown in Fig. 3a (see Supplementary Note 7 for data on 
devices C–E, which had wider fingers). The estimated Nb finger resist-
ance RNb,InP is also shown for comparison. Notice that the increase in RD 
coincided with the suppression of the superconductivity in Nb. The RD 
value fluctuated around zero in this WNb = 235 nm sample when the Nb 
was SC, which indicates that the negative CAR contribution (RiD) hap-
pened to be nearly of the same magnitude as Rcontact, so that the result-
ing RD was around zero. Note that simple Andreev reflection can account 
for only a factor of 2 reduction in the interface resistance28,50 and can-
not explain why RD went to zero. We estimated ΔRD = −70 Ω for device 
B (Fig. 3a). In addition, we confirmed that RU − RD = h/e2, where RU is the 
upstream resistance, which must hold if ΔRD is due to Andreev processes 
whose contribution should cancel in RU − RD (Supplementary Notes 8 
and 12). Note that not only was RD < 0 observed for device A but also 
that RD = 0 was observed for devices B (Fig. 3a) and C (WNb = 365 nm; 
Supplementary Fig. 7a), which cannot be understood without CAR. 
Hence, the existence of CAR for WNb up to 365 nm can be inferred from 
the raw RD data without analysis.

For comparison, we show in Fig. 3c the data for a WNb = 160 nm 
sample (device F), which was fabricated several months after the film 
was grown. The ageing of the film caused a large Rcontact, and the CAR 
contribution ΔRD(= RiD) could not make RD become negative or zero, 
even though the width of this sample was the same as that of device A. 
Using the estimated RNb,InP ≃ 100 Ω, we obtained Rcontact ≃ 420 Ω and 
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ΔRD ≃ −170 Ω for this device F, pointing to the robustness of the CAR 
process even for a poor contact. Note that devices A–E were of higher 
quality because they were fabricated on a fresh QAHI film immediately 
after the growth.

As summarized in Fig. 3b, a finite negative ΔRD was obtained up to 
WNb ≃ 500 nm. For device A (WNb = 160 nm), as already mentioned, dif-
ferent values of the negative RD(H < Hc2) were obtained for different 
magnetic-field sweeps due to the changing disorder profiles. These 
are included in Fig. 3b as individual data points (see Supplementary 
Note 5 for the calculations of the ΔRD values). One can see in the inset 
of Fig. 3b that, on average, the magnitude of ΔRD was exponentially 
suppressed with increasing WNb. A fit to ΔRD = R0 exp(−WNb/ξCAR)   
gives R0 ≈ −750 Ω and the characteristic length of the CAR process 
ξCAR ≈ 100 nm. This is much longer than the SC coherence length of dirty 
Nb, that is √ξBCSlmfp ≈ 30  nm, with the BCS coherence length 
ξBCS = ℏvSF/πΔ, Fermi velocity of Nb vSF = 1.37 × 10

6 m s−1, SC gap of Nb 
Δ = 1.2 meV and the mean-free path lmfp ≈ 3 nm (refs. 51,52).

Discussion
We now turn to possible scenarios by which SC correlations could be 
introduced into the edge states through CAR processes, starting first 
with a scenario in which the SC finger defines a trivial SC region, such 
that no chiral Majorana edge state can form. The Nb finger is itself 
trivial and, under certain circumstances, the induced proximitized SC 
state in the TI surface can also be trivial23. Apart from the absence of 
full spin polarization (Supplementary Notes 9 and 10), this scenario is 
essentially identical to that of the ν = 1 quantum Hall state that has 
previously been extensively discussed11–13,17,47,53. Note, however, that the 
disordered nature of the QAHI surface would cause the Andreev edge 
state to become diffusive and results in an equal mix of electrons and 
holes, such that the Andreev edge state will not contribute to RiD. Tak-
ing ξs to be the SC coherence length of the mediating superconductor, 
the CAR processes induce SC correlations across the SC finger and 
gives rise to negative RiD when the finger width WSC is shorter than ξs. 
When WSC ≫ ξs, the transport along the Andreev edge state dominates 
over CAR.

An alternative scenario is that the proximitized TI surface realizes 
a topological superconducting (TSC) region that hosts a single chiral 
Majorana edge mode. This can happen, for instance, if the Nb slightly 
dopes the TI surface to make the chemical potential lie above the 

magnetic gap and only the top surface is proximitized2. In this case, for 
a wide finger, an incoming electron hitting the TSC region splits into 
two chiral Majorana modes that take opposite paths enclosing the 
region covered by the finger. The two chiral Majorana modes recom-
bine on the opposite side of the TSC region as either an electron or a 
hole, depending, in principle, on the number of residual vortices 
trapped in the SC region enclosed by the path54,55. However, as the chiral 
Majorana modes have a finite spatial extent and the QAHI surface is 
disordered, these processes will probably self-average in our several- 
micrometres-long Nb finger, resulting in an equal mix of electrons and 
holes transmitted to the opposite side of the finger due to the chiral 
Majorana modes, such that RiD ≈ 0. On the other hand, a narrow finger, 
WSC ≲ ξs, allows CAR to the opposite edge through the bulk of the prox-
imitized TSC region and leads to RiD < 0, as in the previous scenario of 
trivial SC. We can visualize these qualitatively different regimes of the 
TSC scenario in quantum transport simulations (Fig. 4a) with a micro-
scopic tight-binding model appropriate for a proximitized QAHI in the 
TSC regime (see Methods for details). Our simulation results in Fig. 4b,c 
show that, when the SC finger is much wider than the induced SC coher-
ence length, the current on the top surface is carried by chiral Majorana 
modes travelling around the proximitized section, with the finger 
length and the width both affecting the interference. For example, the 
plot in Fig. 4b for a wide finger shows that the electron to hole conver-
sion probability Teh oscillates regularly as a function of the finger length 
LSC when LSC ≫ ξs. Here, Teh > 0.5 means that holes predominantly come 
out of the finger into the downstream edge due to the interference of 
the chiral Majorana modes. In a real situation with a long finger, such 
an oscillating Teh would self-average to 0.5, resulting in RiD ≈ 0. When 
the finger is narrower (WSC ≈ ξs), a qualitatively different regime is 
obtained. In that case, Teh is very sensitive to LSC for LSC ≲ ξs, but it stabi-
lizes at large LSC to a nearly fixed value that depends sensitively on WSC. 
Figure 4b shows the behaviour of Teh for two different widths in the 
narrow regime. These are stabilized at large LSC to Teh values larger and 
smaller than 0.5. The simulated local current densities (Fig. 4c) suggest 
that there are no more well-separated chiral Majorana modes in this 
regime and that the electron to hole conversion can be attributed to a 
CAR process that occurs mainly near the QAHI edge.

Therefore, our simulations suggest that, like the trivial SC case, 
the CAR process can indeed become dominant in the TSC case. We 
should nevertheless note that the stabilized value of Teh for a narrow 
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finger at large LSC is strongly dependent on WSC in our simulation and 
is not always larger than 0.5 (Supplementary Note 11), which implies 
that RiD would fluctuate between negative and positive values as a func-
tion of WSC in the narrow finger regime. Similar oscillatory behaviour 
has also been predicted by theoretical calculations for the trivial SC 
case11–13. However, in our experiment, we found ΔRD (= RiD) to be always 
negative for narrow fingers, as was also the case with similar experi-
ments on graphene with a trivial SC finger17,20. This stability of negative 
RiD points to the existence of additional physics that are not captured 
in our simulations. In fact, the reason for the stable dominance of CAR 
in real experiments is an interesting subject in its own right13,47,53. For 
example, the dissipative channel through vortices in the SC finger, 
which is not included in our simulations, could be playing a role19,47. In 
this regard, in related experiments to probe the Andreev edge states 
with a wide SC electrode, oscillatory RiD and stably negative RiD were 
both reported18,19. The latter is surprising56, and possible explanations 
for the dominance of electron to hole conversion in the Andreev edge 
states have also been proposed19,46,57,58. Our result extends the case of 
the stable dominance of electron to hole conversion and calls for a 
better theoretical understanding.

One can see from the above considerations that both trivial and 
non-trivial scenarios are consistent with our observations. Irrespective 
of its nature, our observation ξCAR ≫ ξNb implies that CAR occurs through 
the superconductivity of the proximitized magnetic TI surface, rather 
than the SC finger itself. This makes sense, since Nb has negligible 
spin–orbit coupling and the finger on the top surface does not natu-
rally result in processes coupling to the bottom surface, whereas our 
simulations suggest that the bottom surface needs to be involved in the 
CAR processes in the QAHI platform. Furthermore, the dependence on 
the magnetic history of the device suggests that trapped vortices or 
the magnetic disorder profile play a role, which is natural in the above 
scenario for CAR through the proximitized surface. If ξCAR is taken as 
the SC coherence length in the QAHI surface, a simple estimate gives 
the induced SC gap Δind ≈ 0.04 meV (Supplementary Note 16).

An obvious next step is to confirm whether the induced 2D super-
conductivity is topological and is associated with chiral Majorana 
edge states. A possible experiment to address this question would be 
based on a device like ours but with a much shorter finger electrode, 

such that the interference between the two chiral Majorana edge states 
travelling along either sides of the finger can be detected without 
self-averaging. A transmitted charge switching between an electron 
and a hole depending on the number of vortices in the finger would 
give strong evidence for chiral Majoranas54,55. Furthermore, by putting 
two SC fingers close enough together to make a Josephson junction 
and by applying a voltage pulse across the junction, one could inject 
an edge vortex in the chiral Majorana edge state. This edge vortex is a 
non-abelian zero mode and experiments to confirm its non-abelian 
nature have been theoretically proposed24. Therefore, the platform 
presented here offers ample opportunities to address topological 
superconductivity, Majorana physics and non-abelian zero modes.
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Methods
Material growth and device fabrication
The V-doped (BixSb1−x)2Te3 thin films were grown on InP (111)A substrates 
by molecular beam epitaxy in a ultrahigh vacuum. High-purity V, Bi, 
Sb and Te were co-evaporated onto the substrate, which was kept at a 
temperature of 190 °C to produce a uniform film of thickness ~8 nm. 
The chemical potential was tuned into the magnetic gap for an opti-
mized Bi:Sb beam-equivalent-pressure ratio of 1:4. A capping layer 
of 4 nm Al2O3 was made ex situ with atomic layer deposition at 80 °C 
using Ultratec Savannah S200 to protect the film from degradation 
in air. The Hall-bar devices were patterned using standard optical 
lithography techniques. The narrow Nb/Au SC contacts (45 nm/5 nm) 
and the Ti/Au normal metal contacts (5 nm/45 nm) were defined using 
electron-beam lithography. The Al2O3 capping layer was selectively 
removed in heated aluminium etchant (Type-D, Transene), before the 
sputter-deposition of the Ti/Au and Nb/Au layers in a ultrahigh vacuum. 
Devices A–E reported in this paper were fabricated simultaneously 
on the same wafer, whereas device F was made on a separate wafer.  
A clean QAHE without the need for gating was observed in all devices. 
Scanning electron microscopy was used to determine the width of 
the Nb electrodes, which were covered with 5-nm-thick Au to avoid  
oxidation.

Measurement set-up
The transport measurements were performed at a base temperature 
of 17–25 mK in a dry dilution refrigerator (Triton 200, Oxford Instru-
ments) equipped with a 8 T SC magnet. All the data presented in Main 
were measured using a standard d.c. technique with nanovoltmeters 
(2182A, Keithley) and a current source (2450, Keithley). The a.c. data 
shown in Supplementary Note 4 were measured using a standard a.c. 
lock-in technique at low frequency (3–7 Hz) using lock-in amplifiers 
(LI5640 and LI5645, NF Corporation). The magnetization measure-
ments were performed using a commercial superconducting quan-
tum interference device (SQUID) magnetometer (MPMS3, Quantum 
Design). The sample was mounted in a plastic straw, self-clamped, 
with the sample surface perpendicular to the applied magnetic  
field.

Quantum transport simulations
We performed the quantum transport simulations using the KWANT59 
package, by considering a 2 × 4-orbital two-dimensional tight-binding 
model (on a square lattice with lattice constant a = 2 nm), based on the 
following Bogoliubov–de Gennes model Hamiltonian for a proxim-
itized magnetic TI (MTI) thin film23,31,60:

HBdG(kx, ky) = (
HMTI(kx, ky) − μ −iσy(1 + ρz)Δ/2

iσy(1 + ρz)Δ∗/2 μ − H∗
MTI( − kx, −ky)

) , (2)

HMTI(kx, ky) = ℏvD(kyσx − kxσy)ρz + [m0 +m1(k2x + k2y)] ρx +Mzσz, (3)

with σx,y,z and ρx,y,z the Pauli matrices acting on the spin and pseu-
dospin (for the top and bottom surfaces) degrees of freedom, 
respectively, and μ the chemical potential. We set the Dirac velocity 
ℏvD = 3 eV Å, the top–bottom surface hybridization m0 = −5 meV and 
m1 = 15 meV Å2, out-of-plane magnetization strength Mz = 50 meV, 
and proximity-induced s-wave pairing potential Δ (on the top sur-
face) with ∣Δ∣ = 10 meV (yielding an induced SC coherence length 
ξMTI = ℏvD/∣Δ∣ = 30 nm). These model parameters yielded a magnetic gap 
Egap = 2(Mz − ∣m0∣) = 90 meV, meaning that the magnetic gap edge was 
45 meV above the Dirac point. We considered the chemical potential 
μ = 25 meV, such that the Fermi level was nearly centred between the 
Dirac point and the magnetic gap edge. To obtain a TSC regime in the 
region below the SC finger, we introduced a local shift of Δμ = 75 meV to 
bring the local Fermi level well above the magnetic gap. Nonmagnetic 

(for example, electrostatic) disorder was considered by adding a Gauss-
ian random field to the on-site energies of the TI thin film near the 
position of the SC finger. The disorder was characterized by the dis-
order strength S = 2 meV (the standard deviation of the Gaussian) and 
spatial correlation length λ = 10 nm. Note that the model parameters 
did not reflect the device properties quantitatively, as that would have 
required a scattering region several orders of magnitude larger than 
presently considered in our simulations (in particular, due to the much 
larger SC finger size and induced SC coherence length). Our aim was to 
investigate the CAR (ξMTI ≈ WSC) and Majorana interference (ξMTI ≫ WSC) 
regimes qualitatively.

Data availability
Raw data used in the generation of Figs. 1–4 and Supplemen-
tary Figs. 1–13 are available via Zenodo at https://doi.org/10.5281/
zenodo.11231864 (ref. 61). Source data are provided with this  
paper.

Code availability
The code used in the quantum transport simulations is available via 
Zenodo at https://doi.org/10.5281/zenodo.11231864 (ref. 61) along 
with the raw data.
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Supplementary Note 1 Contact Resistance for Ti/Au contact

Figure S1a shows the schematics of the 3-terminal measurement for the contact resistance of con-

tact 1. Figure S1b shows the voltage V6-1 as a function of the DC current I2-1 recorded at 17 mK in

different magnetic fields. For an upward, out-of-plane magnetization, the 3-terminal (downstream)

resistance R2-1,6-1 ≡ V6-1/I2-1 consists only of the sample resistance and the contact resistance. Be-

fore the current-induced breakdown of the QAHE, the sample resistance is zero. Hence, the slope

of 3.5 Ω in the pre-breakdown regime is the contact resistance of the Ti/Au contact 1.

- 2 0 0 - 1 0 0 0 1 0 0 2 0 0
- 3

- 2

- 1

0

1

2

3

0 T2 T

V 6-1
 (µ

V)

I 2 - 1  ( n A )

4 T

ba

3 . 5 Ω

Figure S1: Three-terminal I-V characteristics in device A for the Ti/Au contact 1. a, False-
colour scanning-electron-microscope image of device A from Fig.1a, including the measurement
schematics. The current flew from contact 2 to 1, and the voltage was measured between contacts
6 and 1. For an upward, out-of-plane magnetization (M > 0), the chiral 1D edge state propagates
in the counter-clockwise direction. b, Plots of the 3-terminal voltage V6-1 as a function of the DC
current I2-1 for various magnetic field H at 17 mK. The breakdown current of the QAHE decreases
with increasing H . The dashed line is a linear fit to the pre-breakdown regime, yielding the slope
of ∼3.5 Ω that corresponds to the contact resistance of the Ti/Au contact 1.
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Supplementary Note 2 Estimation of the normal-state Nb contribution
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Figure S2: Magnetic-field dependence of the Nb electrode resistance. a, The 4-terminal Nb
resistanceRNb of device A (WNb = 160 nm), device B (WNb = 235 nm), and device C (WNb = 365

nm). b, RNb of device D (WNb = 415 nm) and device E (WNb = 520 nm). Although the Nb
electrodes on all the devices were fabricated simultaneously, the resistivity of Nb and the upper
critical field Hc2 differ among the devices.

In the main text, Figs. 1a-b show SEM pictures of device A. The Nb electrode contains four

contacts (4a, 4b, 4c, and 4d) to allow for a 4-terminal resistance measurement, with separations

LNb,sect. ≡ La-b = Lb-c = Lc-d = 2.5 µm. The width is WNb = 160 nm along the full length

of the Nb electrode. The overlap with the V-doped (BixSb1−x)2Te3 thin film is LNb,film = 5 µm.

The small Nb section on the InP substrate between the edge of the thin film and contact 4a has

a length of LNb,InP = 1.2 µm. Devices B, C, D, and E are identical to device A except for the

width of the Nb electrode: WNb = 235, 365, 415, and 520 nm, respectively. Figure S2 shows

the 4-terminal Nb resistance RNb (= V4b−4c/I4a−4d) as a function of the applied magnetic field.

While devices A–E are on the same wafer and the Nb electrodes were fabricated simultaneously,

the resistivity of Nb and the upper critical field Hc2 differ among the devices. The normal-state

resistance RNb,InP of the LNb,InP-section contributes to the downstream resistance through RD =

RQAHI +RNb,InP +Rcontact +Ri
D as explained in the main text. To estimate RNb,InP for each device,
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the Nb resistance is rescaled by LNb,InP/LNb,sect. = 1.2 µm / 2.5 µm. This RNb,InP was also used in

the calculation of the data points for ∆RD = −[RD(H > Hc2)− RD(H < Hc2)− RNb,InP] shown

in Fig.3b.

Supplementary Note 3 I-V characteristics at different magnetic fields in device A

In the main text, Fig. 1e shows the magnetic-field dependence of RD; the blue symbols represent

the slopes at IDC = 0 extracted from the I-V curves shown in Fig. S3. Negative RD is observed

for µ0H < 1 T. Moreover, notice the large noise amplitude for the VD-vs-IDC curves displaying

negative slopes, whereas a lower noise level is observed for curves measured above the Hc2 of Nb.

This indicates that the noise is intrinsic to the CAR process in this system.
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Figure S3: I-V characteristics at different magnetic fields in device A. The negative slope in
the zero-current limit, confirming the negative RD, is reproducibly observed below 1 T, where the
Nb electrode is still superconducting.
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Supplementary Note 4 Comparison of RD measured with DC and AC techniques

The plots of VD vs IDC shown in Fig. S3 were obtained with a DC technique. Up to a DC current

of |IDC| ≲ 3 nA, the slope of VD (and hence RD) is negative below 1 T. To verify the negative

RD, the sample is remeasured with an AC lock-in technique with a small AC excitation current of

IRMS = 1 nA (i.e. Ipeak = 1.41 nA) for the same experimental setup as shown in Fig. 1a. Figure S4

shows that the result of the AC measurement agrees well with the slopes of the I-V curves at IDC

= 0 measured with the DC technique. Hence, the negative RD in device A is reproducible between

the AC and DC techniques. We note that the sharp spike in RD near zero magnetic field seen in

the AC-measurement data in Fig. S4 is an artifact most likely related to a sharp increase in the

temperature upon crossing H = 0 due to a magnetocaloric effect, similar to observations by other

research groups 1–3.

0 1 2 3 4 5 6- 3 0 0
- 2 0 0
- 1 0 0

0
1 0 0
2 0 0
3 0 0
4 0 0
5 0 0

 A C  m e a s u r e m e n t  ( I R M S  =  1 n A )
 D C  s l o p e s  f r o m  F i g . S 3  ( + 0 . 7 5 T  t o  + 6 T )
 D C  s l o p e s  f r o m  F i g . S 5 b  ( + 2 T  t o  - 0 . 2 T )

R D
 (Ω

)

� 0 H  ( T )

Figure S4: Validation of the RD values in device A. The solid blue line shows RD measured
continuously with an AC technique with IRMS = 1 nA at 25 mK as a function of the applied
magnetic field; this RD result is consistent with the RD values extracted from the slopes of the I-V
curves at IDC = 0 measured with the DC technique (magenta and cyan symbols).
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Supplementary Note 5 Effect of the magnetic-field-sweep history on RD in device A

After taking the data shown in Fig. S3 (for which H was increased from 0 to 6 T), we reduced H

back to 0 T and took the I-V data shown in Fig. S5a in the order of 0 , −0.1, and −0.25 T. Then,

we increased the magnetic field to 2 T and decreased it to −0.2 T, during which we took the series

of I-V curves at different magnetic fields shown in Fig. S5b. Interestingly, the RD values in the

zero-current limit obtained for the series shown in Fig. S5b are essentially consistent with those

obtained in the series shown in Fig. S5a, see Fig. S5d. This suggests that the system has metastable

disorder profiles, and it remained in the same profile between the measurements of Fig. S5a and

Fig. S5b, while the profile changed from that in the measurements of Fig. S3 (i.e. Fig. 1e in the

main text). The temperature dependence data shown in Fig. 2b of the main text were measured

after we took the data in Fig. S5b and set the magnetic field to zero again. To check for the effect

of thermal cycling, we measured the 0-T I-V curves at 17 mT before and after the sample was

heated to 200 mK, and the result is shown in Fig. S5c. It appears that the thermal cycling has little

effect on RD.

To summarize the effect of the magnetic-field-sweep history in device A, Fig. S5d shows

the RD values obtained in four different magnetic-field sweeps performed to take the data shown

in Figs. S3, S5a, S5b, and S5c. Altogether, the obtained negative slopes of −210 Ω (Fig. 1f),

−215 Ω (Fig. S5a), −117 Ω (Fig. S5b), −92 Ω (Fig. S5c), and −72 Ω (Fig. S5c) are used as

the values of RD(H < Hc2) for each magnetic cycle to calculate the five data points of ∆RD =

−[RD(H > Hc2)−RD(H < Hc2)−RNb,InP] shown in Fig. 3b of the main text for devicd A, along

with RD(H > Hc2) = 310Ω (obtained from the data in Fig. S3) and RNb,InP = 120Ω (Fig. S2).
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Figure S5: Effect of the magnetic-field-sweep history observed in device A. a, I-V char-
acteristics measured at 17 mK in the order of 0 , −0.1, and −0.25 T directly after taking the
magnetic-field-dependence data shown in Fig. S3. b, I-V characteristics measured at 17 mK in
decreasing magnetic fields from 2 T to −0.2 T directly after taking the data shown in panel a and
bringing the magnetic field to 2 T. The dashed lines in panel a and b show the maximum negative
slopes observed at −0.25 T and −0.2 T, respectively. c, I-V characteristics measured at 17 mK
in 0 T before (blue) and after (magenta) thermal cycling to 200 mK, directly after taking the data
shown in panel b. d, Collection of the RD values obtained in four different magnetic-field sweeps.
Blue, red, and green symbols are the slopes at IDC = 0 extracted from the data in panels a, b, and
c, respectively. The gray symbols are the discrete data points up to 2.5 T shown in Fig. 1e.
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Supplementary Note 6 Current- and temperature-induced breakdown of the QAHE
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Figure S6: Breakdown of the QAHE. Plots of the 4-terminal longitudinal voltage Vx vs IDC in 0 T
(M > 0) measured in device A at various temperatures. The thermal activation of charge carriers
with increasing temperature gives rise to a parallel dissipative conduction channel, causing the
zero-resistance state of the QAHI to disappear at ∼100 mK, while the current-induced breakdown
of the QAHE causes a finite Vx above ∼30 nA at 17 and 50 mK.

In Fig. 2b of the main text, the 4-terminal longitudinal resistance Rxx is shown as a function

of temperature. The data points of Rxx were extracted from the I-V curves shown in Fig. S6

as the slope at IDC = 0; here, the current was set to flow between contacts 1 and 4d, and the

voltage between contacts 6 and 5 was measured. The 17-mK and 50-mK curves present a well

extended zero-voltage plateau up to ∼30 nA, after which the current-induced breakdown of the

QAHE occurs. At higher temperatures, the zero-resistance state is not realized due to the thermal

activation of charge carriers into the gapped 2D surface states of the QAHI 1, 4–6.
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Supplementary Note 7 Downstream resistance measured with wider Nb electrodes
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Figure S7: Downstream resistance in devices with a wider Nb electrode. a-c, Light blue lines
show the magnetic-field dependencies of RD at 25 mK measured with IDC = 2 nA in device C (a,
WNb = 365 nm), device D (b, WNb = 415 nm) and device E (c, WNb = 520 nm). Blue symbols
represent the slopes in the I-V curves at IDC = 0. Note that above ∼4.5 T, the breakdown (BD) of
the QAHE starts to dominate RD in all these devices. The distance between two dashed lines in
each panel mark the estimated normal-state Nb contribution RNb,InP pointed by an arrow, based on
which the CAR contribution ∆RD is estimated.

Figure S7 showsRD as a function of the applied magnetic field measured at 25 mK in devices

C, D, and E having the Nb-electrode width of 365, 415, and 520 nm, respectively. Note that the

increase inRD above ∼4.5 T observed in all devices is due to the breakdown of the QAHE, see Fig.

1d of the main text. In devices C and D, the normal-state Nb contribution was ∼16 Ω and ∼24 Ω,

yielding ∆RD of about −62 Ω and −17 Ω, respectively, when one comparesRD before and after the

superconductivity is suppressed. In device E, on the other hand, the normal-state Nb contribution

of ∼27 Ω accounts for the full increase in RD upon the suppression of superconductivity. Hence,

∆RD is zero for the 520-nm-wide Nb electrode of device E. The ∆RD values of these devices are

included in Fig. 3b of the main text.

8



Supplementary Note 8 Landauer-Büttiker formalism

For the measurement configuration shown in Fig. 1a of the main text, the current flows from

contact 1 to 4. The chiral edge state runs counter-clockwise along the sample edge for an upward,

out-of-plane magnetization. The current-voltage relation in the linear-response Landauer-Büttiker

formalism 7, 8 is given by

Ii =
6∑

j=1,j ̸=4

aij (Vj − V ) , (S1)

where Ii is the current flowing into contact i, Vj is the potential at contact j, and V is the potential

of the superconducting electrode (contact 4). The proportionality coefficients ai j in Eq. S1 at zero

temperature are given by

aij =
e2

h

(
N e

i δij − T ee
ij + T eh

ij

)
. (S2)

Here, N e
i is the number of available channels for electron-like excitation in contact i:

N e
i =

6∑

j=1,j ̸=4

(
T ee
ij + T eh

ij

)
, (S3)

where T ee
ij (T eh

ij ) is the transmission probability of an electron from the j-th contact to arrive as an

electron (hole) at the i-th contact. Since a QAHI possesses only a single chiral edge state, N e
i = 1

for all contacts. Notice that the potential difference in Eq. S1 is expressed with respect to the

potential of the grounded superconducting contact 4 (V = V4 = 0), and the summation in Eqs. S1

and S3 runs only over the normal metal contacts. The non-zero transmission probabilities Tij are

simply T ee
12 = T ee

23 = T ee
56 = T ee

61 = 1, T ee
35 , and T eh

35 . The non-zero proportionality coefficients ai j then
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become

a11 = a22 = a33 = a55 = a66 =
e2

h
, (S4)

a12 = a23 = a56 = a61 = −e
2

h
, (S5)

a35 =
e2

h

(
−T ee

35 + T eh
35

)
. (S6)

Using I1 = −I4 = I and I2 = I3 = I5 = I6 = 0, Eq. S1 gives a set of equations which can be

solved for I and Vi. The expressions for the current I , downstream resistance Ri
D, and upstream

resistance Ri
U for an ideal (dissipationless) superconducting contact 9, 10 then become

I =
e2

h

(
1− T ee

35 + T eh
35

)
VSD, (S7)

Ri
D =

VD

I
=

h

e2

(
T ee
35 − T eh

35

1− T ee
35 + T eh

35

)
, (S8)

Ri
U =

VU

I
=

h

e2

(
1

1− T ee
35 + T eh

35

)
, (S9)

where VSD ≡ V1 −V4, VD ≡ V3 −V4, and VU ≡ V5 −V4. Notice that Ri
U −Ri

D = h/e2 as expected.

T ee
35 and T eh

35 are not independent parameters, they represent transmission probabilities of an

electron leaving contact 5 and should satisfy the following relation:

T ee
35 + T eh

35 + TD = 1, (S10)

where TD is the probability of the direct transfer of the electron into the SC contact 4. The TD = 0

condition represents the case of a perfect superconductor, for which an electron with the energy

smaller then the SC gap cannot enter SC contact directly, but only through Andreev processes

with finite T eh
35 . In the extreme case of 100% Andreev process with T eh

35 = 1, one should observe a

doubling of the current I (see Eq. S7), resulting in the maximally negative downstream resistance
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−h/(2e2) (see Eq. S8). On the other hand, TD = 1 represents the case when the contact 4 acts

as a perfect metal, which can be achieved in our experiment, for example, by applying a magnetic

field and fully suppressing the superconductivity in the finger. In this case, Ri
D = 0 (see Eq. S8) as

expected for an ideal metallic contact. For 0 < TD < 1, the observation of a negative downstream

resistance Ri
D < 0 is a direct indication that T ee

35 < T eh
35 (see Eq. S8), i.e., there are more holes than

electrons that arrive at contact 3.

Both T ee
35 and T eh

35 represent total probabilities for electrons and holes to get into the down-

stream channel after interacting with the SC finger and finally reach the contact 3. It is useful

to distinguish between different contributions. In particular, crossed Andreev reflections (CAR)

and direct tunneling of electrons from upstream to downstream channel (so called electron co-

tunneling, CT) are expected to decay exponentially with increasing width of the finger. We can

write T ee
35 = TCT + TN and T eh

35 = TCAR + TA, where TN and TA represent the probabilities

of all other processes at the finger to get into the downstream channel as an electron and hole,

respectively. In most processes such as the transport through the Andreev edge state or the chiral

Majorana edge state, one would expect an equal mixture of electron and hole on a long finger, i.e.

TN = TA. Moreover, in real devices the SC-QAHI interface is never ideal and always contains a

finite contact resistance Rcontact. The expression for the apparent RD is then given by

RD = Ri
D +Rcontact =

h

e2
TCT − TCAR

1− (TCT − TCAR)
+Rcontact. (S11)

This RD becomes negative only when CAR occurs more often than CT and the resulting negative

contribution is large enough to overcome Rcontact. Nevertheless, even when the apparent RD re-

mains positive, one can identify negative Ri
D by subtacting Rcontact from the apparent RD, which is

11



done by calclulating ∆RD used in the main text.

Note that in the experimental setup shown in Fig. 1a, there are two additional contributions

to the downstream resistance (see Eq. 1): the resistance RQAHI of the QAHI film (which is zero

for low probe currents below the breakdown) and the resistance RNb,InP of the Nb section lying

on the InP wafer between the film edge and the SC contact 4a (which is zero when the Nb is

superconducting).

Supplementary Note 9 Wavefunction of chiral edge state

Following similar derivations in Refs. 11,12, without loss of generality and neglecting coupling to

the two split-off bands far from the Fermi-level that do not have a band inversion resulting from the

magnetization, we write the two lowest energy states as |+ ↑z⟩ = (|t ↑z⟩+|b ↑z⟩)/
√
2 and |− ↓z⟩ =

(|t ↓z⟩ − |b ↓z⟩)/
√
2, where (+) is a symmetric (bonding) and (−) is an antisymmetric (anti-

bonding) state spread over the top and bottom surface with spin ↑z and ↓z along the magnetization

axis. In the basis (|+ ↑z⟩ , |− ↓z⟩) the Hamiltonian of the lowest energy states is then given by

H =




mk −M −iv(kx + iky)

iv(kx − iky) −mk +M


 = (mk −M) τz + v (kyτx + kxτy) , (S12)

where mk = m+B(k2x + k2y) > 0. A magnetization M > m ensures that there is a band inversion

that results in the existence of the chiral edge mode.

We consider an edge state on a boundary parallel to the x-axis such that the state lives in the

region y > 0 and kx remains a good quantum number. For kx = 0 we make the Ansatz that the

12



edge state can be expressed ψ(y, kx = 0) = Aξ exp(−y/λ), which means that 1/λ has to satisfy

[(
m−M − B

λ2

)
τz +

iv

λ
τx

]
ξ = 0, (S13)

which has non-trivial solutions if ξ = (1, χi)/
√
2 with χ = ±1 and

1

λ
=

−χv ±
√
v2 + 4B(m−M)

2B
. (S14)

Since physical states must decay and we consider the case where the edge state is in the region

y > 0, only λ > 0 is a valid solution. Furthermore, since m < M , only χ = −1 ensures that both

spinor components always satisfy this condition. Therefore, the edge state takes the form11, 13:

ψ(y, kx = 0) = f(y)(|t ↑z⟩+ i |t ↓z⟩) + (|b ↑z⟩ − i |b ↓z⟩))/
√
2 = f(y)(|t ↑⟩+ |b ↓⟩), (S15)

where f(y) ∼ exp(−y/λ) and ↑, ↓ refers to spin in the plane of the QAHI perpendicular to the

edge (here, y-direction).

Supplementary Note 10 Difference from the ν = 1 state of a quantum Hall insulator

At first sight, the chiral edge state of a QAHI appears similar to the ν = 1 state of a quantum Hall

insulator14, 15. However, the spin-polarised nature of the ν = 1 state necessitates, for instance, a

superconductor with strong spin-orbit coupling or a nonuniform magnetic field distribution in order

for CAR processes to occur9, 14, 15. In contrast, the edge state of the QAHI considered in our work

is a superposition of spin states on the top and bottom surfaces. Furthermore, when brought into

proximity with a superconductor, the resultant doping of the TI surface16, 17 will lead to an induced

superconductivity that inherently has strong spin-orbit coupling. In a simple approximation and at

13



zero-momentum, the wavefunction of the chiral edge in the x-direction of a QAHI takes the form

of Eq. S15. If we consider an asymmetry χ between the top and bottum surfaces, the wavefunction

is generalized to

Ψ(y) = f(y) (|t ↑⟩+ χ |b ↓⟩) . (S16)

In the isotropic case, χ = 1, the edge state has no net spin-polarisation and the CAR process will

not be hindered as long as the SC finger is narrow enough. Superconducting pairing across the

finger will be only slightly suppressed by a partial spin-polarisation of the edge states, which may

arise in realistic situations 13. Even in the extreme case of a fully spin-polarised edge, χ = 0, CAR

can still occur due to spin-orbit coupling, if the superconductivity is induced on the TI surface.

Supplementary Note 11 Quantum transport simulations

Here, we present more quantum transport simulation results for the setup of Fig. 4a. In Fig. S8, we

show Tee and Teh as a function of the bias energy E and the disorder strength Sdis for fixed LSC =

191 nm and WSC = 260 nm in the case of no doping, i.e., without shifting the chemical potential

outside of the magnetic gap into the TSC regime below the SC finger; the local current density

distributions for two representative disorder levels are also shown. In this case, the top surface

remains undoped and the chiral edge channel displays perfect CT at low bias and low disorder

strengths. When Sdis becomes large enough to push the system locally out of the magnetic gap,

electron-hole conversion starts to appear (Teh > 0). Note that Sdis is the standard deviation of the

Gaussian random field added to the on-site energies to simulate the disorder potential. At larger

Sdis, the disordered region is effectively doped and Teh fluctuates around 0.5 with a large standard
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Figure S8: Quantum transport simulation of proximitized QAHI without doping from the SC
finger. a,b, ⟨Tee⟩ and ⟨Teh⟩ obtained after averaging the results for various disorder distributions
(one standard deviation is indicated by shading) shown as a function of bias energy E (|∆| =
10 meV) in a, and as a function of the disorder strength Sdis (relative to the magnetic gap Egap

= 90 meV) in b. The disorder strength (bias energy) considered in the calculations for a (b) is
indicated by the dashed purple line in b (a). Here, we fixed LSC = 191 nm and WSC = 260 nm. c,
Components of the local current densities for Sdis/Egap = 1

9
(top) and Sdis/Egap = 10

9
(bottom) at

the bias energy E/|∆| = 1
8
; for the latter, a disorder configuration that gave a particularly high Teh

is chosen for demonstration purpose.

deviation. This scenario is unlikely to apply to the experimental setup, as the QAHI state is well

established in the sample. This suggests that a TSC phase due to uniform doping below the SC

finger is needed in the proximitized top surface in order to mediate Andreev processes of the chiral

edge channel with its peculiar spin polarization [see Eq. (S15)]. Note that, with this simulation

setup, we do not consider alternative (trivial) scenarios, e.g., the possibility of the QAHI edge

state leaking into a subgap state in the SC finger and undergoing Andreev processes there before
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going back into the QAHI edge state as a hole. Furthermore, note that we model the SC lead

(shown in Fig. 4a) by a two-dimensional tight-binding model that is lattice-matched to the TI

thin film model, considering parameters for a free electron gas with s-wave pairing (∆). It is only

relevant for energies above the SC gap |∆| when QP tunneling into the SC lead is possible, yielding

Tee + Teh < 1 (see Fig. S8a). However, in the presence of vortices, tunneling into the SC lead is

possible even for E < |∆|, causing Tee + Teh < 1 even at low energies.

In Fig. S9, we present Teh as a function of the SC finger length LSC as in Fig. 4b, but for

different biases and disorder strengths. Increasing the disorder strength reduces the amplitude of

the Majorana edge channel interference pattern around the average Teh ≤ 0.5, whereas increasing

the bias energy pushes down the amplitude of the interference pattern towards Teh = 0. This

indicates that, for obtaining a clean Majorana edge-channel interference pattern in wide fingers

and for identifying a qualitatively different CAR/CT-dominated regime in narrow fingers, disorder

and bias should be sufficiently small compared to the magnetic gap and the proximity-induced

pairing potential.

Although our quantum transport simulations for narrow SC fingers indeed support the pos-

sibility of CAR to take place in the QAHI edge, they do not yield a regime with Teh > 0.5 that

is robust against small variations in the setup (e.g., finger width or bias energy). This is different

from experiment. As we mentioned in the main text, there should be additional physics which

causes the stable dominance of CAR in real situations. One such possibility is the dissipation into

subgap states in the SC finger (not included in our simulation setup, where Tee + Teh = 1 is as-
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Figure S9: Quantum transport simulation of crossed Andreev reflection in a proximitized
QAHI (extended). The disorder-averaged electron-hole conversion probability Teh (standard de-
viation indicated by shading) as a function of SC finger length as in Fig. 4b for different energies
E and disorder strengths Sdis for three selected SC finger widths (orange, blue, and dark-yellow
colour correspond to WSC/ξMTI values of 1.7, 2.0, and 8.7, respectively).

sumed for all subgap energies E < |∆|), as suggested in Ref. 10. When tunneling of electrons into

the SC (which leads to dissipation) is allowed at low energies in addition to the tunneling into the

downstream edge, the CT process would compete more with such a tunneling process than CAR,

yielding ⟨Teh⟩ > ⟨Tee⟩ even when CAR and CT are equally likely in the case without dissipation.

We can further speculate that such an (imbalanced) dissipative process only starts to appear when

the SC finger is narrow enough, because for wide fingers the chiral Majorana edge channels are

well formed and they may short-circuit the tunneling processes.
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We note that our simulations considered the TSC state with a single Majorana mode per edge

(N = 1). Theoretically, there can also be a different TSC state with double Majorana modes per

edge (N = 2) 18. If a TSC state with N = 2 is realized on the undoped (or only slightly doped)

QAHI surface as considered in Ref. 18, the N = 2 edge state is equivalent to a single chiral QAH

edge state and it provides a direct path for an incoming edge electron to travel to the downstream

as argued in Ref. 18, leading to a large positive ∆RD especially for wide fingers where CAR is

suppressed. We never observed such a positive ∆RD for wide fingers, and therefore we believe

that this scenario is not likely. The other possibility to have a TSC state with N = 2 is that both top

and bottom surfaces are sufficiently doped and each hosts a TSC state with N = 1, such that the

total N number becomes 2. In this case, the edge state will surround the finger and the transport of

electrons and holes for a long and wide finger will self-average to give zero contribution to ∆RD,

similar to the case of the Andreev edge state of a trivial SC phase.
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Supplementary Note 12 Comparison of the up- and downstream resistances
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Figure S10: Magnetic-field dependence of the up- and downstream resistances for the 235-
nm-wide Nb electrode of device B. a, The three-terminal resistance R1-4d,3-4a changes by h/e2

when crossing the coercive field upon up-sweep. b, Zoom of R1-4d,3-4a for negative field values
where it corresponds to RU. c, Zoom of R1-4d,3-4a for positive field values where it corresponds to
RD. The relation RU −RD = h/e2 holds in both the SC and the normal states.

In this work, the focus was made on the measurements ofRD, because a negativeRD presents

a clear signature of the CAR process. However, according to Eqs. S8-S9, RU should change in

the corresponding manner so that RU − RD always yields the quantized value h/e2. Figure S10

shows R1-4d,3-4a upon sweeping the magnetic field from −6 T to +6 T. For the negative field range

up to the coercive field of the QAHI thin film, R1-4d,3-4a corresponds to RU, whereas beyond the

coercive field R1-4d,3-4a corresponds to RD. One can see that ∆RU = ∆RD = −70 Ω and the

relation RU(−H)−RD(+H) = h/e2 indeed holds in both the SC and the normal states.
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Supplementary Note 13 Effect of sample magnetization on the Nb superconductivity
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Figure S11: Magnetization measured using SQUID magnetometry. Magnetization (M ) be-
tween 2 and 20 K, after applying at 2 K a saturating field (µ0H) of 7 T and reducing it to 2 mT,
i.e. to a near-remanence state, and measuring the magnetization upon heating keeping the applied
2 mT field. A non-zero positive field was applied to avoid that trapped-field effects associated
with the superconducting magnet could result in an effectively negative applied magnetic field.
The error bars are determined based on conventional error propagation, taking into account (i) the
standard deviation of multiple SQUID magnetometry measurements at each constant temperature
step, (ii) the subtraction of the diamagnetic contribution from the substrate, (iii) the normalization
of the magnetic moment with respect to the film volume.

The vicinity to a ferromagnetic film may be detrimental to the superconducting properties

of the Nb electrode, due to the magnetic field originating from the film. In order to evaluate if

such effects could play a role in our experiments, we carried out magnetization measurements

of our QAHI samples using SQUID magnetometry (Quantum Design MPMS®3). The typical

magnetization of our samples was found to be about 3 × 103 A/m at 2 K, corresponding to a

magnetic induction of about 4 mT. This is well below the lower critical field of Nb, which is

Hc1 ≈ 180 mT 19. As an example, Fig. S11 shows the near-remanence magnetization as a function

of temperature, measured from 2 to 20 K. Given the square hysteresis of our QAHI films (at 2 K

and below), the near-remanent magnetization measured here is approximately equal to both the
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Figure S12: Magnetic-field dependence of the resistance of a 20-µm-wide Nb strip lying
across of a 100-µm-wide QAHI Hall-bar device. The magnetic field was applied perpendicular
to the film. A picture of the device is shown in the inset.

remanant and saturation magnetizations. These magnetization values are expected to only slightly

increase when the temperature is further decreased from 2 K to the mK temperatures used in the

transport experiments reported here, since 2 K is already significantly below the Curie temperature

(Fig. S11). Hence, for all relevant conditions in the experiments presented here (temperature

and applied magnetic field), the magnetic induction originating from the QAHI film is negligible

compared to the applied magnetic fields as well as to the critical field of niobium.

To directly confirm that the Nb superconductivity is not affected by the magnetization of the

QAHI film, we also measured the SC properties of a 20-µm-wide Nb strip lying across a 100-

µm-wide QAHI Hall-bar device. The inset of Fig. S12 shows a picture of the device, and the

main panel shows a typical magnetic-field dependence of the Nb-strip resistivity, which is similar

to that of our Nb finger electrodes on the InP substrate. We found no evidence for weakened
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superconductivity in this Nb strip. Hence, the potentially detrimental effect of the QAHI film on

the Nb superconductivity can safely be neglected.

Supplementary Note 14 Magnetic-field dependence of the extrinsic contact resistance
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Figure S13: Magnetic-field dependence of RD for the 1-µm-wide Nb electrode of device G,
shown together with RNb,InP. The value of RD, measured at 25 mK with IRMS = 1 nA, remained
essentially unchanged up to about 4.5 T, above which RD starts to increase due to the breakdown
of the QAH effect. The size of RRNb,InP is much smaller than the noise level in RD, making its
contribution above 3 T to be hardly visible.

In our analysis of ∆RD, we assumed that the extrinsic contact resistance Rcontact due to an

imperfect Nb-QAHI interface included in Eq. 1 of the main text remains unchanged across the

superconducting transition of the Nb electrode. To verify this assumption, we measured RD for a

1-µm-wide Nb electrode (device G) together with RNb,InP of this finger, and the results are shown

in Fig. S13. In this wide electrode, we did not observe any noticeable change in RD across the

SC transition at around ∼2.8 T within the noise level of about 50 Ω. This result justifies our

calculation of ∆RD using Eq. 1 of the main text (assuming a constant Rcontact across Hc2) within

an uncertainty of about 50 Ω.
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Supplementary Note 15 Estimation of errors

The ∆RD values shown in Fig. 3b of the main text contain uncertainties, which are indicated

with error bars. The main source of the uncertainty comes from the assumption that Rcontact is

constant across the SC transition, which is justified within the uncertainty of 50 Ω as discussed

in the previous section. The other source of errors is the uncertainties in the determination of the

values of RD(H < Hc2) and RD(H > Hc2). Here, the measurement noise of about 3 Ω gives one

contribution. An additional contribution occurs when the observed RD(H > Hc2) is constantly

increasing, as was the case for our samples C and D shown in Fig. S7; for these samples, we

considered extra errors of 16 Ω and 24 Ω, respectively. These considerations lead to the estimated

total errors of 56 Ω (devices A, B, E), 72 Ω (device C), and 80 Ω (device D).

Supplementary Note 16 Estimation of the induced SC gap on the QAHI surface

By identifying ξCAR as the induced SC coherence length, one can try to infer the induced SC

gap ∆ind in the QAHI surface. Since the surface-state mean free path ℓmfp of our QAHI fims is

unknown, we take 5 nm as a typical value for the surface of a TI device 20. Using vF = 4 × 105

m/s 21 with the same dirty-limit formula as for Nb, we obtain ∆ind ≈ 0.04 meV, which is only 3%

of the Nb gap. This ∆ind is probably a lower bound, since other effects of proximate Nb, such

as vF renormalization and screening of charge impurities, would make ℓmfp longer. Nevertheless,

considering the presence of ferromagnetism, a small ∆ind is reasonable. Note that if the 2D surface

is so disordered that only puddles of metallic regions are induced, such a patchy system cannot
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support CAR/CT processes which require superconducting coherence.
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Chapter 3

Non-Majorana-origin of the
half-quantized conductance in SC-QAHI
heterostructures

This chapter is presented in the form of a manuscript and the preprint is available on
arXiv as

A. Uday,∗ G. Lippertz,∗ B. Bhujel, A. A. Taskin, and Y. Ando, Non-Majorana-origin of the
half-integer conductance quantization elucidated by multi-terminal superconductor-quantum
anomalous Hall insulator heterostructure, arXiv:2411.14903 (2024)

A. A. T. and Y. A. conceived the project. A. U., G. L., B. B., and A. T. did the MBE
growth of the ferromagnetic thin films. A. U. optimized the fabrication recipe for acquiring
a transparent SC-QAHI interface. A. U. and G. L. did the device fabrication. A. U. did
the transport data acquisition and analysis, with the help of G. L., A. A. T., and Y. A.
The manuscript was written by A. U. and Y. A., with input from all authors.

3.1 Overview

This chapter discusses the edge transport in a multi-terminal SC-QAHI heterostructure
using the LB formalism. The aim is to obtain a deeper understanding on the origin
of the half-quantized two-terminal conductance, measured in a QAHI Hall-bar with
a superconducting strip lying across the full width of the device. In 2011, Chung et
al. predicted that this feature is a signature of the chiral Majorana edge transport in a
proximitized QAHI in the topological superconductor (TSC) phase with N = 1 [13,23].
Let us recall the phase diagram for a QAHI proximitized by an s-wave SC, discussed in
chapter 1 and reproduced in Fig. 3.0a. When an external magnetic field is applied opposite
to the magnetization direction of this SC-QAHI system, the out-of-plane magnetization of
the QAHI can be inverted. During such a magnetization reversal, the amplitude of the
magnetization strength λ undergoes a sign change, as depicted in Fig. 3.0a by the dotted

∗A. U. and G. L. contributed equally to this work.
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Fig. 3.0 | Half-integer conductance quantization in SC-QAHI heterostructures.
a, Phase diagram of the proximitized QAHI with regions of different Chern number
N = ±0 (white), ±1 (gray), and ±2 (dark gray). The solid black lines ∆/m0 = ±λ/m0 ±1
mark the band closings of the topological transitions (see Eqs. 1.17-1.18), where ∆, λ
and m0 represent the induced superconducting gap, the magnetization strength and the
hybridization gap. The QAHI, normal insulator (NI), and helical TSC phases are marked
by the green, orange, and purple lines, respectively. The dotted line from label A to A’
corresponds to a magnetization reversal from −λ to +λ. b, The chiral Majorana edge
transport configuration for labels A, B, C, D, C’, B’, and A, in panel a. Note that the
unproximitized regions of the QAHI (shown in white) follow the same horizontal path
from ∆/m0 = −3 to +3 in panel a, but at ∆/m0 = 0. Reprinted figure with permission
from Ref. [13]. © Copyright (2015) by the American Physical Society. c, A picture of a
QAHI ribbon with a superconducting Nb strip lying across the full width of the device.
The measurement configuration to determine the two-terminal conductance σ12 for panel
d is shown. d, The magnetic field dependence of σ12 measured across the QAHI-SC-QAHI
junction with a 1.3-nm-thick AlOx layer inserted between the Nb and QAHI thin film.
Panels c and d reproduced from Ref. [81] with permission. © IOP Publishing. All rights
reserved.
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line from A to A’. This causes the proximitized QAHI to undergo several topological phase
transition, in which the Chern number changes as: N = −2 (A) → −1 (B-C) → 0 (D) →
+1 (C’-B’) → +2 (A’) (see Eqs. 1.17-1.18 for details).

Figure 3.0b shows schematic representations of the corresponding chiral Majorana edge
state configurations for a QAHI ribbon in which the middle region is proximitized. For
situation A, the unproximitized QAHI regions with ∆ = 0 (shown in white) have a Chern
number of C = −1. This is topologically equivalent to the TSC phase (shown in gray)
with N = −2. Consequently, Chung et al. predicted a perfect transmission of the two
chiral Majorana modes on the top and bottom edges of the sample [13, 23]. When the
amplitude of λ is reduced to B, one chiral Majorana edge mode is lost in the TSC. Now the
unproximitized QAHI and TSC regions are topologically different, creating a topological
phase boundary between them, hosting one chiral Majorana edge mode. In this case, one
chiral Majorana edge mode is transmitted longitudinally through the TSC (shown by the
blue arrows) and the other transversely to the counter-propagating edge on the other side
of the sample (red arrows). Since only one of the two Majorana modes (i.e. half of a chiral
Dirac fermion mode) is transmitted, the two-terminal conductance σ12 is predicted to
decrease from e2/h at A to e2/(2h) at B [13, 23]. When the amplitude of λ is reduced
further to C, the unproximitized QAHI regions enter the trivial normal insulator (NI)
phase with C = 0, when |λ| becomes smaller than the hybridization gap |m0| (see Eqs. 1.7
for details). In this case, no edge states are transmitted and σ12 ≈ 0. When λ becomes
zero in D, the proximitized region of the QAHI becomes a trivial SC with N = 0. In this
state, the sample has zero net magnetization. By increasing the magnitude of the external
magnetic field, the sample can then be magnetized in the other direction, causing λ to
increase from 0 at D to 3m0 at A’. Here, A’, B’, and C’ are equivalent to A, B, and C,
respectively, but with an opposite chirality of the edge states.

In 2017, He et al. claimed to have observed these topological transitions in the hysteresis
loop of the two-terminal conductance as σ12 = e2/h ↔ e2/(2h) ↔ 0 ↔ e2/(2h) ↔ e2/h
plateaus, when the external magnetic field is swept [82]. However, the data came under
immediate scrutiny [26–29], and the publication was ultimately retracted under suspicion
of scientific misconduct in 2022 [83]. Nevertheless, the first author recently published a
second work [81] investigating the SC-QAHI heterostructure, shown in Fig. 3.0c. The claim
is that by introducing an AlOx oxide barrier between the QAHI and SC the formation of
an electrical short through the SC electrode is suppressed, whereas the superconducting
proximity effect survives up to slightly higher barrier thicknesses. Note that the formation
of an electrical short via the SC between the counter-propagating edge states on opposite
sides of the QAHI sample would effectively turn the SC-QAHI heterostructure into two
QAHI connected in series by the SC [29]. Hence, such an electrical short would be a trivial
origin for the e2/(2h) two-terminal conductance, as compared to e2/h for a QAHI without
a superconducting strip.

Figure 3.0d shows the magnetic-field dependence of the two-terminal conductance σ12 of
the device shown in Fig. 3.0c with an AlOx oxide barrier of ∼1.3 nm. The observations of
kinks at σ12 ≈ 0.57-0.59 e2/h in the magnetic-field sweeps are interpreted as signatures of
the N = 1 TSC state, whereas the samples shows σ12 ≈ 0.74 e2/h in the supposed N = 2
TSC state at large fields Bz [81]. The quantization of σ2T is very poor, only to within
10-30% of the expected values for a TSC with N = 1 and 2. Moreover, the two-terminal



72 NON-MAJORANA-ORIGIN OF THE HALF-QUANTIZED CONDUCTANCE IN SC-QAHI HETEROSTRUCTURES

measurement set-up has two major disadvantages: Firstly, it is not possible to disentangle
the longitudinal sample resistance from the quantized resistance at the superconducting
electrode. For example, the kinks at σ12 ≈ 0.57-0.59 e2/h in Fig. 3.0d could also be
caused by temperature effects [6] or inhomogeneous switching of the magnetization [84,85],
affecting the longitudinal conductance of the QAHI film. Secondly, the set-up does not
allow to individually determine the potentials of the two edge states leaving from the
superconducting electrode.

In the manuscript presented in this chapter, the Landauer-Büttiker formalism is used to
reevaluate the proposed half-integer-quantized two-terminal conductance as a signature of
the superconducting proximity effect in a QAHI hall-bar with a µm-size SC lying across the
width of the device. By including equilibration mechanisms for the edge states, like through
the formation of chiral Andreev edge states (CAESs) and a single-particle current into
the SC via subgap states, it is shown that the e2/(2h) feature is not unique to Majorana
edge transport. Moreover, the formulas derived in the manuscript are used to analyze
the experimental results on multi-terminal devices made of V-doped (BixSb1-x)2Te3 thin
films proximitized by Nb superconducting electrodes. Rather than to only characterize the
two-terminal conductance, the potentials of all the chiral edge states in the multi-terminal
devices are individually determined. From this analysis it is unambiguously shown that the
half-integer-quantized two-terminal conductance arises from the edge state equilibration
of the two chiral edge states arriving at the superconducting electrode (in agreement with
Ref. [29]). This is a trivial effect which also occurs in the absence of superconductivity
(i.e. for magnetic fields larger than the upper critical field of Nb).

Lastly, while the QAHI devices with sub-µm-size superconducting electrodes in chapter 2
showed clear evidence of the superconducting proximity effect in the form of a negative
downstream resistance RD, in this chapter it will be shown that the chiral 1D edge states
leaving from a µm-size SC always have a potential equal to that of the SC, i.e. RD = 0.
This suggests that signatures of the superconducting proximity effect in proximitized
QAHI films can only be observed within the length scale of the superconducting coherence
length, unlike the case of NbTiN-InAs heterostrutures in the quantum Hall regime [72]
(see Fig. 1.13).
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Chiral one-dimensional transport can be realized in thin films of a surface-insulating ferromagnetic topological
insulator called quantum anomalous Hall insulator (QAHI). When superconducting (SC) pairing correlations
are induced in the surface of such a material by putting an s-wave superconductor on the top, the resulting
topological superconductivity gives rise to chiral Majorana edge modes. A quantized two-terminal conductance
of 1

2 (e2/h) was proposed as a smoking-gun evidence for the topological SC phase associated with a single
chiral Majorana edge mode. There have been experiments to address this proposal, but the conclusion remains
unclear. Here we formulate the edge transport in a multiterminal superconductor–QAHI heterostructure using
the Landauer-Büttiker formalism. Compared to the original proposal for the 1

2 (e2/h) quantization based on a
simple two-terminal model, our formalism allows for deeper understanding of the origin of the quantization. The
analysis of our experiments on multiterminal devices unambiguously shows that the half-integer conductance
quantization arises from the equilibration of the potentials of the incoming edge states at the SC electrode, and
hence it is not of Majorana origin.

DOI: 10.1103/PhysRevB.111.035440

I. INTRODUCTION

A thin film of a surface-insulating ferromagnetic topolog-
ical insulator showing the quantum anomalous Hall effect
(QAHE) [1–3] is called quantum anomalous Hall insula-
tor (QAHI). Inducing superconducting (SC) correlations in
a QAHI through the SC proximity effect has been actively
pursued in recent years, because it would lead to exotic
topological superconductivity hosting one-dimensional (1D)
chiral Majorana edge modes [4,5]. The creation of a π -phase
domain boundary in these edge modes is predicted to lead to
mobile Majorana zero modes, which could transfer quantum
information between stationary topological qubits [6–8]. Al-
ternatively, if two counterpropagating chiral edge states of a
QAHI is brought close together, either by etching a trench
in the QAHI film or by etching the QAHI film into a nanos-
trip, then introduction of SC correlations between these two
edges via the crossed Andreev reflection (CAR) using the
SC proximity effect would lead to a quasi-1D topological
superconductor with a pair of Majorana zero modes at the
ends [9–12]. Hence, the proximitized QAHI constitutes an
interesting platform for Majorana physics.

The QAHE showing the Hall resistance quantized to h/e2

with vanishing longitudinal resistance is realized by doping
ultrathin films of the 3D TI material (BixSb1-x )2Te3 with Cr
or V, and fine-tuning the composition x to move the chemical
potential into the magnetic gap opened at the Dirac point of
the surface states as a result of the ferromagnetic order [1–3].

*These authors contributed equally to this work.
†Contact author: taskin@ph2.uni-koeln.de
‡Contact author: ando@ph2.uni-koeln.de

No conclusive evidence was reported for the SC proximity
effect in a QAHI [13–15] until the recent observation of a
negative resistance due to CAR across a narrow Nb finger
electrode on top of a V-doped (BixSb1-x )2Te3 thin film by our
group [16]. The negative nonlocal potential in the downstream
edge stemming from the holes created as a result of the CAR
process was observed only when the width of the Nb electrode
was less than ∼500 nm. Since this experiment had a long
finger-shaped SC electrode which promotes the CAR process
beneath the finger, it is an interesting question if the negative
resistance of different origin, such as Majorana interference
[17,18] or Andreev edge-state transport [19,20], could be
observed over a longer length scale in a differently-shaped
electrode as a signature of SC proximity effect.

Another possible signature of the SC proximity effect in a
QAHI is the quantized two-terminal conductance of 1

2 (e2/h)
[5]: If a topological SC phase with only one Majorana edge
mode (N = 1) [4] is realized as a result of the SC proximity
effect underneath a SC strip lying across the full width of
a QAHI [Fig. 1(a)], then one chiral Majorana edge mode is
transmitted longitudinally across the SC strip and the other
transversely to the counterpropagating edge state on the other
side of the sample, leading to the conductance of 1

2 (e2/h)
[5,21]. This reduction in two-terminal conductance by a factor
of two, as compared to e2/h for a bare QAHI without a SC
strip, was experimentally observed [13,22], but its origin is
still under intense debate as other trivial mechanisms were
proposed [13,22–26].

In the present work, we use the Landauer-Büttiker for-
malism to reevaluate the proposed half-integer-quantized
two-terminal conductance as a signature of the SC proximity
effect in a QAHI Hall bar with a micrometer-size SC elec-
trode lying across the width of the device. With the formula

2469-9950/2025/111(3)/035440(10) 035440-1 ©2025 American Physical Society
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FIG. 1. (a) Simple two-terminal setup on a QAHI thin film, in
which contacts 1 and 2 are normal-metal contacts and the SC contact
3 can be grounded. (b) Schematic for a multiterminal Hall bar with
the SC electrode 11 lying across the center of the device. Contacts
1 to 10 are normal-metal contacts. Current can flow into the QAHI
film through contacts 1, 6, and 11. The other contacts are floating
and serve as voltage probes. The chiral edge state of the QAHI is
represented by the red arrows and shown for an upward, out-of-plane
magnetization (M > 0). (c) False-color image of the measured mul-
titerminal Hall bar device A with a SC Nb electrode lying across the
center of the V-doped (BixSb1-x )2Te3 thin film. The overlap of the
superconductor with the QAHI thin film is 20 × 100 µm2.

derived for a multiterminal device made on such a struc-
ture [Fig. 1(b)], we analyze our experimental results on thin
films of V-doped (BixSb1-x )2Te3 proximitized by micrometer-
size Nb superconducting electrodes. Rather than to only
characterize the two-terminal conductance, we individually
determine the potentials of all the chiral edge states in our
multiterminal devices. We show unambiguously that the half-
integer-quantized two-terminal conductance arises from the
edge state equilibration of the two chiral edge states arriving at
the SC electrode (in agreement with Ref. [13]). This is a trivial
effect which also occurs in the absence of superconductivity.
Last, no negative nonlocal edge potentials are observed in our
devices, suggesting that signatures of the SC proximity effect
in proximitized QAHI films can only be observed within the

length scale of the SC coherence length, unlike the case of
NbTiN-InAs heterostrutures in the quantum Hall insulator
(QHI) regime which employs SC electrodes of similar (or
even larger) sizes [20].

II. HALF-INTEGER CONDUCTANCE QUANTIZATION

It is instructive to revisit the original prediction of the
half-integer quantization of the two-terminal conductivity for
a QAHI Hall bar with an s-wave superconductor strip ly-
ing across the full width of the device [5,21], as shown
in Fig. 1(a). To allow for Andreev scattering within the
linear-response Landauer-Büttiker formalism [27,28], the
current-voltage relation can be written as

Ii =
3∑

j=1

aij(Vj − VSC), (1)

where Ii is the single-particle current flowing into contact i, Vj

is the potential at contact j, and VSC = V3 is the potential of
the SC electrode (contact 3). The proportionality coefficients
aij in Eq. (1) at zero temperature are given by

aij = e2

h

(
Ne

i δij − T ee
ij + T eh

ij

)
, (2)

where Ne
i is the number of available channels for electron-

like excitation in contact i and T ee
ij (T eh

ij ) is the transmission
coefficients of an electron from the jth contact to arrive as
an electron (hole) at the ith contact. For the setup shown in
Fig. 1(a), the relevant transmission coefficients are then:

T ee
1,1 = T ee

2,2 ≡ T ee
T ,

T eh
1,1 = T eh

2,2 ≡ T eh
T ,

T ee
1,2 = T ee

2,1 ≡ T ee
L ,

T eh
1,2 = T eh

2,1 ≡ T eh
L ,

T ee
1,3 = T ee

3,1 = T ee
2,3 = T ee

3,2 ≡ T D,

with T ee
T + T eh

T + T ee
L + T eh

L + T D = 1, where the subscripts
“L” and “T” refer to the transmission of a particle longitu-
dinally underneath the SC strip and transversely across the
width of the Hall bar along the SC strip, respectively. T ee

L
and T ee

T describe all the processes for an electron arriving at
the SC electrode with an energy smaller than the SC gap to
leave as an electron in one of the two edge states originating
from the superconductor; these processes include: electron co-
tunneling (CT), the transmission through chiral Andreev edge
states (CAESs), and the transmission through chiral Majorana
edge modes (CMEMs). T eh

L and T eh
T describe all the processes

that result in an electron arriving at the SC electrode with
an energy smaller than the SC gap to leave as a hole in one
of the two edge states originating from the superconductor;
these processes include CAR, CAESs, and CMEMs. More-
over, T D is included to describe single electrons entering the
SC electrode with an energy smaller than the SC gap though
subgap states, e.g., via the interaction with vortices or due to
the presence of a soft gap.
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Using Eqs. (1) and (2), it is then easy to show that:

I1 − I2

V1 − V2
= e2

h
(1 + k), (3)

with

k ≡ (
T ee

L − T eh
L

) − (
T ee

T − T eh
T

)
. (4)

Notice that within the expression for k the T ee
i and T eh

i
coefficients are competing with each other, as well as the
longitudinal and transverse processes.

For a floating SC electrode (I1 = −I2), or when the volt-
age is applied symmetrically (V1 = −V2) with respect to a
grounded SC electrode (V3 = 0), the expression for the two-
terminal (2T) conductance becomes

σ2T = I1

V1 − V2
= e2

2h
(1 + k). (5)

The fact that Eq. (5) only depends on the parameter k is
the first disadvantage of using the two-terminal conductance
to characterize the SC proximity effect; it is not possible to
extract the individual transmission coefficients.

In the original proposals [5,21], Chung et al. predicted that
for a proximitized QAHI in the N = 1 topological SC state,
the transmission coefficients obey the constraint T ee

T = T eh
T =

T ee
L = T eh

L , as one chiral Majorana edge mode is transmitted
underneath the SC electrode and the other across the width of
the Hall bar along the SC strip. For the N = 2 topological SC
state with two CMEMs, they predicted T ee

T = T eh
T = T eh

L = 0,
as both chiral Majorana edge modes are transmitted under-
neath the SC electrode. The expressions for the two-terminal
conductance [Eq. (5)] then become

σ2T = e2

2h
for N = 1, (6)

= e2

2h
(2 − T D) for N = 2. (7)

Chung et al. did not include T D in their original model
[5,21], resulting in perfect half-integer and integer quantiza-
tion of σ2T for N = 1 and N = 2, respectively. However,
if the single-particle current into the SC electrode is large
(T D ≈ 1), then the N = 2 topological SC state will also give
σ2T = e2/(2h).

It is important to point out that (i) this half-integer σ2T

signature is not unique to the above-mentioned choice of
transmission coefficients and can show up for many combi-
nations of T ee

L , T eh
L , T ee

T , and T eh
T . (ii) The situation where

T ee
L = T eh

L and T ee
T = T eh

T corresponds to the QAH edge states
leaving the SC electrode as an equal superposition of electron
and hole, carrying a potential equal to the chemical poten-
tial of the SC electrode. As pointed out before [12,13], this
does not require chiral Majorana edge modes and occurs
naturally for chiral Andreev edge states traveling along a
SC electrode over a long distance; for example in the case
of a superconductor-QHI heterostructure over many skipping
orbits. (iii) If the single-particle current into the SC elec-
trode is large (T D ≈ 1), then the two-terminal conductance
is always σ2T ≈ e2/2h. In this case the superconductor is
indistinguishable from a normal metal contact. Hence, the

half-integer quantization of the two-terminal conductivity is
not a smoking gun evidence for the N = 1 topological SC
state in a proximitized QAHI.

III. EXPERIMENTS ON MULTITERMINAL HALL-BAR
DEVICES WITH A SC STRIP

Hatefipour et al. observed a negative downstream resis-
tance with respect to a 150-µm-wide grounded SC electrode
in NbTiN-InAs heterostructures in the quantum Hall regime
[20]. This is a remarkably long length scale as compared to
the SC coherence length of NbTiN, which poses the question
whether negative nonlocal resistances can also be observed in
proximitized QAHI heterostructures containing micrometer-
size SC electrodes. For this purpose, we added additional volt-
age terminals to our devices, see Figs. 1(b) and 1(c). By mea-
suring the four-terminal resistances of our multiterminal Hall
bar devices with SC strip, we can directly determine the po-
tential of the downstream edge. This configuration also helps
to better understand the cause of the e2/(2h) quantization.

We will limit our discussion to the case of an upward,
out-of-plane magnetization (M > 0) of the QAHI thin films,
which corresponds to a counterclockwise motion of the
chiral 1D edge state. Note that under time-reversal sym-
metry, the transmission coefficients change as Tij(M > 0) =
Tji (M < 0), which means the expressions for the resistances
across SC electrode defined below change as: R3-4(M > 0) =
R9-8(M < 0) and R3-4(M < 0) = R9-8(M > 0).

A. Fabrication details

The QAHI samples used in this study are uniformly V-
doped (BixSb1-x )2Te3 thin films with a thickness of ∼8 nm,
grown on InP (111)A substrates by molecular beam epitaxy in
an ultra-high vacuum (UHV) environment. The details of the
growth were already published in Refs. [16,29]. Atomic layer
deposition at 80◦C (Ultratec Savannah S200) is used to cover
the freshly grown films ex situ with a 4-nm-thick Al2O3 cap-
ping layer to avoid degradation in air. The Hall bar devices are
patterned using standard optical lithography techniques. The
Nb/Au SC contacts (45/5 nm for device A and 90/5 nm for
device B) and the Ti/Au normal metal contacts (5/45 nm) are
defined using electron-beam lithography. Aluminum etchant
(Transene, Type-D) at 50◦C is used to selectively remove
the Al2O3 capping layer before the sputter-deposition of the
Ti/Au and Nb/Au layers in UHV. All QAHI films in this work
display a quantized Ryx and vanishing Rxx without the need of
electrostatic gating, see Fig. 2(b).

This fabrication process was previously shown to result
in good proximitization of V-doped (BixSb1-x )2Te3 thin films
with a low contact resistance [16]. Hence, it is reasonable to
assume, that by following the same recipe for the fabrica-
tion of the micrometer-size Nb electrodes in this work, the
V-doped (BixSb1-x )2Te3 underneath is also well proximitized.

B. Floating SC electrode

First, we treat the experimental setup in which the SC
contact 11 is floating, and the current flows from contact 1
to 6, see Fig. 1(b). This is the same setup as used in
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0 0

0 0 0

Ω

FIG. 2. (a) Schematic of the floating and grounded configurations, with the allowed edge potentials indicated near the arrows to show
the edge states. (b) Longitudinal (transverse) resistance Rxx (Ryx) at 65 mK for device A, showing a vanishing (quantized) value indicative of
a clean QAHE realized in our device even after fabrication. [(c)–(f)] The magnetic-field dependencies of the resistances Ri- j ≡ (Vi − Vj )/I1

at 65 mK for device A, measured between contacts i and j divided by the total current flowing into contact 1 (I1 = 1 nA), for the floating
[(c) and (d)] and grounded [(e) and (f)] configurations. From these resistance values, the edge potentials shown in (a) can be inferred. Inset of
(c): Nb-electrode resistance vs external magnetic field, showing the upper critical field Hc2 ≈ 2.7 T.

Refs. [13,22], which investigated σ2T for a superconductor-
QAHI heterostructures. Solving Eq. (1) with I1 = −I6

together with Eqs. (A1) and (A2) from the Appendix, yields

V11 = V1 + V6

2
= V2 + V7

2
, (8)

independent of the choice of T D, T ee
L , T eh

L , T ee
T , and T eh

T .
Equation (8) shows that when the SC strip is floating, V11

equilibrates the incoming edge state potentials (V1 and V6),
but the outgoing chiral edge states need not be at the same
potential (V2 and V7).

The resistances across the SC strip, R3-4 and R9-8, then
become

V3 − V4

I1
= V9 − V8

I1
= h

e2

(1 − k)

(1 + k)
, (9)

with k given by Eq. (4). Note that R3-4 and R9-8 cannot become
negative, since −1 � k � 1.

Figures 2(c) and 2(d) shows the magnetic-field depen-
dencies of the resistances measured across the Nb strip for
this floating configuration. The potentials of the chiral edge
states leaving the SC electrode are then easily determined:
V3 ≈ V8 ≈ V1/2, as illustrated in Fig. 2(a) (top). This corre-
sponds to k ≈ 0. Notice that R3-4 and R9-8 remain unchanged
when the magnetic field is swept (even for H > Hc2), with
the exception of the peaks at the coersive field where the

sample’s magnetization inverts. This means that if the sample
undergoes a N = 1 to N = 2 topological SC phase transition,
it cannot be seen in the transport data. Note that the value
of R3-4 ≈ R9-8 ≈ h/e2 corresponds to a two-terminal conduc-
tance σ2T ≈ e2/(2h) for the sample.

The observation of k ≈ 0 can have two origins, i.e., either
the single-particle current into the superconductor is large
(T D ≈ 1), or the transmission coefficients are T ee

T ≈ T eh
T and

T ee
L ≈ T eh

L as the CMEMs (or CAESs) at the superconductor-
QAHI interface become an equal superposition of electron
and hole for such large SC electrodes. In both cases, the
superconductor essentially acts as a good metal contact, equi-
librating the potentials of the incoming edge states. This is in
agreement with the earlier report by Kayyalha et al. [13]. In
passing, the concept of edge-state equilibration also plays an
important role [30–34] in understanding the peculiar conduc-
tance quantization across a quantum point contact made on
the ν = 2/3 fractional quantum Hall state [35,36].

C. Grounded SC electrode

Next we ground both the SC contact 11 and the metal-
lic contact 6 (i.e., V11 = V6 = 0). This setup is similar
to the nonlocal measurement of the downstream resis-
tance performed with respect to a grounded SC elec-
trode on top of (fractional) QHI and QAHI thin films
[12,16,19,20,37]. The resistances across the SC strip then
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become

R3-4 = V3 − V4

I1
= h

e2

(
T ee

T − T eh
T

)
(
1 − T ee

T + T eh
T

) , (10)

R9-8 = V9 − V8

I1
= h

e2

(
1 − T ee

L + T eh
L

)
(
1 − T ee

T + T eh
T

) , (11)

where R3-4 is negative when T eh
T > T ee

T . For this grounded
configuration, the resistances no longer depend on the parame-
ter k. By combining various measurement configurations, one
can now determine the amplitudes of T ee

L , T eh
L , T ee

T , and T eh
T

independently. Notice that R3-4 is sensitive to the transverse
transmission coefficients.

To probe the longitudinal transmission coefficients T ee
L and

T eh
L , it is useful to measure the resistance R8-4 given by

R8-4 = V8 − V4

I1
= h

e2

(
T ee

L − T eh
L

)
(
1 − T ee

T + T eh
T

) , (12)

which becomes negative when T eh
L > T ee

L ; note that this R8-4

is different from the usual transverse resistance Ryx = −(V8 −
V4)/I6 = +h/e2, see Eq. (A4) in the Appendix. Hence, the
grounded SC configuration allows for a straightforward differ-
entiation between (T ee

L , T eh
L ) and (T ee

T , T eh
T ), unlike the floating

superconductor configuration where all the resistances only
depend on k [Eq. (4)].

Figures 2(e) and 2(f) show the magnetic-field dependen-
cies of the resistances measured across the Nb strip for
this grounded configuration. The potentials of the chiral
edge states leaving the SC electrode are found to be V3 ≈
V8 ≈ V6 = 0, as illustrated in Fig. 2(a) (bottom). This corre-
sponds again to the Nb strip equilibrating the potentials of
the incoming edge states. However, notice that R3-4(M > 0)
and R9-8(M < 0) in Fig. 2(e) are now nonzero and posi-
tive, respectively. Similarly, R3-8(M > 0) and R9-4(M < 0) in
Fig. 2(f) deviate strongly from h/e2. Rather than to attribute
this to T ee

T > T eh
T and T ee

L > T eh
L , we interpret this to be an

artifact of nonideal contacts. In an actual experiment, both
contacts 11 and 6 will always have a finite contact resistance
to the QAHI film. This will cause the current to be divided
between the two grounds [see Eq. (A5) in the Appendix]. In
device A, we estimate ∼8% of the total current flew through
contact 6.

Regardless of the above-mentioned artifact, the resistances
in Figs. 2(e) and 2(f) do not change as the magnetic field is
increased above the upper critical field of Nb Hc2 = 2.7 T [see
inset of Fig. 2(c)]. This leads us to conclude that T ee

T ≈ T eh
T

and T ee
L ≈ T eh

L .

D. Floating SC electrode with trench

It is important to investigate whether the observation of
T ee

T ≈ T eh
T and T ee

L ≈ T eh
L in our experiment could correspond

to the N = 1 topological SC state, in which one chiral Ma-
jorana edge mode is transmitted underneath the SC electrode
and the other across the width of the Hall bar along the SC
strip [5,21]. We fabricated a second Hall-bar device where
the QAHI thin film is interrupted by a 10-µm-wide gap
underneath the SC electrode (30 × 100 µm2). This ensures
that T ee

L = T eh
L = 0 and no chiral Majorana mode can be

0

0
Ω

FIG. 3. [(a) and (b)] The magnetic-field dependencies of the re-
sistances Ri- j ≡ (Vi − Vj )/I1 at 65 mK for device B in the floating
configuration. In this device, the QAHI film is interrupted by a
10-µm-wide gap underneath the SC electrode, creating two Hall-bar
regions connected in series via the Nb strip. Inset of (a): Nb-electrode
resistance vs external magnetic field, showing the upper critical field
Hc2 ≈ 3.1 T.

transmitted. All the current flowing from contact 1 to 6 has
to go through the SC electrode now. Nevertheless, we still
find the same edge potentials for the floating configuration:
V3 = (1 − k)V1/2 ≈ V1/2 and V8 = (1 + k)V1/2 ≈ V1/2, as
can be deduced from Fig. 3. Hence, k = T eh

T − T ee
T ≈ 0 for

this device. This means that the edge potentials remain un-
changed regardless of how the contact is made to the SC
electrode.

E. Absence of negative nonlocal resistance

Last, we comment on possible negative downstream po-
tentials measured with respect to the floating SC electrode,
as the observation of negative potentials is complicated in the
grounded configuration due to the presence of two grounded
contacts. A negative potential can, in principle, be observed
for V2 or V7 as an offset from the equilibrated potential
V11 = (V1 + V6)/2 of the floating superconductor, see Eq. (8).
The resistances measured with respect to the floating SC
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FIG. 4. Differential resistances at 17 mK measured as a function
of the dc bias current flowing into contact 1 with a small ac excitation
of 1 nA, for device A in the floating configuration. The measurement
setup is shown in Fig. 2(a). The resistances R3-11 and R8-11 are zero
at low dc bias, meaning that there are no signatures of CAR or CT
processes. At high bias, the resistances become dominated by the
breakdown of the QAHE at IBD ≈ 235 nA [29], with already a slight
onset of dissipation at ∼140 nA. The sample was magnetized at
+1.5 T before performing the dV /dI measurements at 0 T.

contact 11 then become

R3-11 = −R8-11 = − h

e2

k

(1 + k)
, (13)

R4-11 = −R9-11 = − h

e2

1

(1 + k)
, (14)

where R3-11 or R8-11 can become negative depending on k
[Eq. (4)]. Notice that R8-11 (and R4-11) are defined in the direc-
tion opposite to the current flow. This means that at elevated
temperature or high bias current the nonzero longitudinal
resistance can cause R8-11 to become negative as well. The
measurement setup used for Eqs. (13) and (14) has an ad-
vantage over the setup used in Refs. [12,16,19,20,37], where
the SC electrode was grounded. Namely, when performing the
experiment on a real device there will be no extrinsic contact
resistance contribution to the resistances in Eqs. (13) and (14),
as they are measured in a four-terminal configuration.

Figure 4 shows the differential resistances measured with
respect to the floating SC electrode 11, together with the longi-
tudinal resistance Rxx, as a function of the dc bias current. The
sample remains in the zero-resistance state up to ∼140 nA,
after which there is an onset of dissipation in Rxx in the pre-
breakdown regime [38]. At IBD ≈ 235 nA the sharp increase
in Rxx signifies the breakdown of the QAHE [29,38–43], likely
due to the electric-field-driven percolation of charge puddles
across the width of the sample [29]. As a result, the negative
value of R8-11(M > 0) stems from the nonzero longitudinal
resistance at high dc bias current. At low bias, before the onset
of dissipation, R8-11(M > 0) is zero in Fig. 4. Hence, no neg-
ative downstream resistances are observed when a V-doped
(BixSb1-x )2Te3 QAHI is proximitized by a micrometer-size
SC electrode on top of the film.

This means that, unlike the case of a superconductor-QHI
system based on InAs [20], the signatures of SC proximity
effect in QAHI require a SC electrode with dimensions of the
order of the (induced) coherence length. When it is satisfied,
T eh

L and T eh
T correspond to the probabilities of crossed

Andreev reflection at the SC electrode in the longitudinal
and transverse directions, respectively. The corresponding
electron cotunneling processes are then described by T ee

L and
T ee

T , respectively. In this regard, the recent submicrometer-size
Hall bars of QAHI reported in Ref. [40,41] may be a good
platform to observe negative nonlocal resistances if SC
electrodes are fabricated with dimensions comparable to the
(induced) SC coherence length [16].

IV. CONCLUSION

We have shown that the proposed detection of the chiral
Majorana edge mode in a superconductor-QAHI heterostruc-
ture through the observation of a two-terminal conductance
of e2/(2h) is ill conceived. This conclusion was derived by
formulating a Landauer-Büttiker model for the relevant mul-
titerminal setup and performing experiments to elucidate the
transmission coefficients, using multiterminal devices made
of V-doped (BixSb1-x )2Te3 thin films proximitized by Nb su-
perconductor. Any experimental results on the two-terminal
configuration can be explained by the SC electrode equili-
brating all the chiral edge state potentials, possibly due to
the presence of in-gap states at the superconductor-QAHI
interface. While the submicrometer-size SC electrodes in our
previous study showed clear evidence of the SC proximity ef-
fect in the form of negative downstream edge potentials [16],
the chiral 1D edge states leaving from the micrometer-size SC
electrodes in the present study always had a potential equal to
that of the SC electrode. This shows that SC contacts on the
order of the (induced) SC coherence length are required for
the study of the SC proximity effect.
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APPENDIX: DETAILS OF MULTITERMINAL
TRANSPORT ANALYSIS

1. Transmission and proportionality coefficients

For an upward, out-of-plane magnetization (M > 0), the
relevant transmission coefficients for the setup shown in
Fig. 1(b) are as follows:

T ee
3,4 = T ee

8,9 = T ee
L and T eh

3,4 = T eh
8,9 = T eh

L ,

T ee
3,9 = T ee

8,4 = T ee
T and T eh

3,9 = T eh
8,4 = T eh

T ,

T ee
3,11 = T ee

8,11 = T ee
11,4 = T ee

11,9 = T D.
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Using Eq. (2), the nonzero proportionality coefficients for
M > 0 then become

a1,1 = −a1,2 = a2,2 = −a2,3 = a3,3 = a4,4 = −a4,5

= a5,5 = −a5,6 = a6,6 = −a6,7 = a7,7 = −a7,8

= a8,8 = a9,9 = −a9,10 = a10,10 = −a10,1 = e2

h
,

a3,4 = a8,9 = e2

h

(
T eh

L − T ee
L

)
,

a3,9 = a8,4 = e2

h

(
T eh

T − T ee
T

)
,

a11,11 = 2e2

h
T D,

a3,11 = a8,11 = a11,4 = a11,9 = −e2

h
T D.

Note that contact 11 acts as both a metallic drain (through
T D) and as a SC “scattering” object allowing electrons coming
from contacts 4 and 9 to be transported via the CAR or CT
processes to contacts 3 and 8 (through T eh

L , T ee
L , T eh

T , and T ee
T ).

2. Longitudinal and transverse resistance

Next, Eq. (1) is solved (with the summation running over
all 11 contacts) with VSC = V11 and

I2 = I3 = I4 = I5 = I7 = I8 = I9 = I10 = 0, (A1)

I1 + I6 + I11 + ISC
11 = 0, (A2)

where I11 is the single-particle current and ISC
11 is the supercur-

rent flowing into the device from contact 11. This yields the
expressions for the longitudinal and transverse resistance:

Rxx = V2 − V3

I1
= V4 − V5

−I6
= V8 − V9

−I6
= V10 − V9

I1
= 0,

(A3)

Ryx = V10 − V2

I1
= V9 − V3

I1
= V8 − V4

−I6
= V7 − V5

−I6
= h

e2
,

(A4)

as expected, regardless of whether the SC contact 11 is
grounded or floating. The resistances measured across the SC
strip (R3-4 and R9-8), on the other hand, do depend on whether
(super)current is allowed to flow into the device through
contact 11. These resistances are discussed for two different
exprimental setups in the main text.

3. Non-ideal grounded contacts

For the measurements shown in Figs. 2(e) and 2(f), the SC
contact 11 and the normal metal contact 6 are both grounded
(i.e., V11 = V6 = 0). In the actual experiment, both contact
11 and 6 have a finite contact resistance Rc,i to the QAHI
thin film, which means that the potentials V11 = −I11Rc,11 and
V6 = −I6Rc,6 at the sample side of the contact will not be
equal and slightly higher than zero. This will cause a small
current to flow from contacts 11 to contact 6, which was not
taken into account in Eqs. (10)–(12).

In the absence of CAR/CT and the presence of 100%
damping at the superconductor-QAHI interface, i.e., T ee

L =

0

FIG. 5. The apparent transverse resistance R8-4 = (V8 − V4)/I1

with I1 = 1 nA, for the floating and grounded configuration. The
nonzero R8-4 in the grounded configuration corresponds to I6 ≈
−80 pA which stems from the finite contact resistances of contacts 6
and 11 [see Eq. (A6)].

T eh
L = T ee

T = T eh
T = 0 and T D = 1, we find:

I6 = Rc,11

Rc,6 + h/e2
I11, (A5)

which is a simple current divider.
The resistances for the grounded configuration then be-

come

R3-4 = R8-4 = Rc,11

1 + (Rc,6 + Rc,11)e2/h
≈ Rc,11, (A6)

R9-8 = h

e2
. (A7)

Notice that R3-4 and R8-4 are positive and will possibly mask
the negative resistances stemming from Andreev processes at
the superconductor-QAHI interface.

Figure 5 shows R8-4 = (V8 − V4)/I1 for the floating and
grounded configuration. When the SC electrode is floating
then I1 = −I6 and R8-4 = h/e2 to-within the accuracy of our
measurement. On the other hand, when the SC electrode is
grounded, R8-4 in Fig. 5 is nonzero. This corresponds to a
current I6 ≈ −80 pA flowing on the right side of the Nb strip.
Rather than claiming that T ee

L > T eh
L [Eq. (12)], we attribute

the nonzero R8-4 to the presence of a finite contact resistance
at the SC electrode 11, Rc,11 [see Eq. (A6)]. This is backed up
by the fact that R8-4 remains unchanged as the magnetic field
is increased above the upper critical field of Nb, Hc2 = 2.7 T
[see inset of Figs. 2(c)].

Note that the effect of nonideal contacts for the grounded
configuration in our experiment is large, as contacts 6 and 11
were grounded outside the dilution refrigerator (rather than
on-chip). This means that in this case the “contact” resistance
Rc,i also includes the line and filter resistances. Equation (A6)
gives a lower bound for Rc,11 > R8-4 ≈ 2 k�.
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4. Does a thin insulating barrier between
the superconductor and QAHI help?

In a recent publication [22], Huang et al. claimed that an
AlOx oxide barrier suppresses the single-particle current into
the SC electrode (T D ≈ 0), whereas the SC proximity effect
survives up to slightly higher barrier thicknesses. The obser-
vations of kinks at σ2T ≈ 0.57−0.59 e2

h in the magnetic-field
behavior of the two-terminal conductance measured across a
Nb strip were interpreted as signatures of the N = 1 topo-
logical SC state [Eq. (6)]. In the supposed N = 2 topological
SC state, on the other hand, the samples showed σ2T ≈ 0.74 e2

h
[Eq. (7)].

While Huang et al. suggested [22] that their observation of
a kink in σ2T supports the appearance of the chiral Majorana
edge mode predicted by theory [5,21], the σ2T values at the
kink are only within 10–30% of the expected quantization.
This was attributed to additional conduction channels and a
remaining electric short through the Nb. Here, we examine
whether these values can be reconciled with a high resistive
short across the width of the Hall bar. We assume T D = 0
to follow the claim of Ref. [22], and instead allow a fraction
T S of the current to flow between the opposing edges of the
Hall bar through the Nb to consider the electric short assumed
in Ref. [22]. The transmission coefficients for an electron to
transmit as an electron between contacts 3, 4, 8, and 9 are then
modified to:

T ee
3,9 = T ee

8,4 = T ee
T + T S,

and the new proportionality coefficients become

a3,9 = a8,4 = e2

h

(
T eh

T − T ee
T − T S

)
, (A8)

a11,11 = a3,11 = a8,11 = a11,4 = a11,9 = 0. (A9)

Using the condition T ee
T = T eh

T = T ee
L = T eh

L for the N =
1 topological SC state, and T ee

T = T eh
T = T eh

L = 0 for the
N = 2 topological SC state, the expressions for the two-
terminal conductance then become

σ2T = (1 − T S)
e2

2h
for N = 1, (A10)

= (1 − T S)
e2

h
for N = 2. (A11)

Hence, if the N = 2 topological SC state (which is indistin-
guishable from the QAHI state) yields ∼0.74 e2

h [22], then

we should search for a feature at ∼0.37 e2

h for the N =
1 topological SC state, as one would also intuitively ex-
pect. As a result, the kinks observed by Huang et al. at
0.57–0.59 e2

h are most likely not related to the N = 1 topologi-
cal SC state, and furthermore, their study in Ref. [22] gives no
evidence for induced superconductivity in a QAHI. Moreover,
the magnetic-field dependencies of the two-terminal conduc-
tance reported in Ref. [22] show several kinks at different
values of σ2T , which suggests that the kinks at 0.57–0.59 e2

h
are not special points. Such features are possibly caused by
temperature effects [45] or inhomogeneous switching of the
magnetization [46,47], affecting the longitudinal conductance
of the QAHI film.
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Chapter 4

Conclusion

In this thesis, the superconducting proximity effect was investigated in V-doped
(BixSb1-x)2Te3 thin films displaying the quantum anomalous Hall effect. When an s-
wave SC is placed on top of such a QAHI thin film, the metallization effect causes the
chemical potential in the QAHI to move out of the magnetic gap opened at the Dirac point
of the 2D surface states. This results in the region of the QAHI thin film in contact with
the SC to become metallic, whereas the rest of the QAHI film remains insulating in the
3D bulk as well as the 2D surface. In this thesis, it was shown using KWANT simulations
that this doping by the superconducting electrode is beneficial for the superconducting
proximity effect, causing the metallic regions of the QAHI underneath the SC to become
proximitized. In such a heterostructure the inversion symmetry is broken between the top
and bottom surface of the QAHI, as the top surface is in direct contact with the SC. In this
case, the induced superconducting phase is predicted to be a topological superconductor
with Chern number N = 1, associated with a single chiral Majorana mode at the edge of
the proximitized QAHI region. These chiral Majorana edge modes are of great interest
as the creation of a π-phase domain boundary in these edge-modes is predicted to lead
to mobile non-Abelian zero modes, which could transfer quantum information between
stationary topological qubits (see chapter 5). As a result, the experimental realization
of induced superconducting correlations in a QAHI will greatly contribute to a better
understanding of topological superconductivity and Majorana physics, as well as provide a
additional platform to develop topological quantum computation. Two experiments were
presented in this thesis to study the magneto-transport features of the superconducting
proximity effect in QAHI devices.

The main highlight of this thesis is the first experiment which demonstrated the successful
observation of crossed Andreev reflection (CAR) across a superconducting Nb electrode
contacting one edge channel of the QAHI. This is the first compelling evidence for induced
superconducting pair correlation in the chiral edge state of the QAHI. In the CAR process,
an electron in the chiral edge state, arriving at a grounded superconducting electrode with
an energy eV smaller than the superconducting gap ∆, is converted into a hole in the chiral
edge state leaving from the SC, carrying a potential of −V . During this conversion, a
Cooper pair is formed in the grounded SC. The negative potential of the downstream edge
channel leaving from the SC, is recorded as a negative nonlocal resistance with respect to
the SC. For this experiment, narrow superconducting electrodes of Nb with widths ranging
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from 160 to 520 nm were fabricated on top of multi-terminal Hall-bar devices consisting
of V-doped (BixSb1-x)2Te3 thin films. A negative downstream resistance contribution
of ∆RD = −400 Ω was observed for the narrowest superconducting electrode (Fig. 2.1).
This is about 3% of the maximum negative downstream resistance −h/2e2 derived from a
Landauer-Büttiker analysis of the experimental set-up. With increasing width of the Nb
electrode, the value of ∆RD decreases exponentially with a characteristic length of ∼100 nm
(Fig. 2.3). This length scale is much larger than the superconducting coherence length of
Nb in the dirty limit ξNb ≈ 30 nm. This means that the Nb superconducting electrode
itself cannot mediate the CAR process. Instead, we interpret the long characteristic length
scale observed for the CAR process as evidence for a proximitized QAHI surface state
underneath the Nb electrode which can mediate the CAR process over a much longer
length scale due to its smaller induced superconducting gap (∆ind ≈ 0.04 meV). This
ability to proximitize the surface states of a QAHI constitutes an important advancement
for the community as it finally opens up the SC-QAHI platform for Majorana research. In
the outlook (chapter 5), two proposal for future experiments will be discussed based on
these concepts.

The second experiment in this thesis addressed the half-integer two-terminal conductance of
e2/(2h) observed in SC-QAHI heterostructures. Until now, the Landauer-Büttiker analysis
of such a heterostructure in literature neglected to consider equilibration mechanisms
between the chiral 1D edge states and the SC, like through the formation of chiral
Andreev edge states (CAESs) or a single-particle current into the SC via subgap states.
By formulating a Landauer-Büttiker model which does take into account edge state
equilibration, it was shown in chapter 3 that the e2/(2h) conductance is not a feature
unique to Majorana edge transport (Eqs. 3.6-3.7) and its experimental pursuit is ill-
conceived. In addition, experiments were performed on multi-terminal devices made of
V-doped (BixSb1-x)2Te3 thin films proximitized by a Nb superconducting electrode to
determine the potentials of all the chiral edge states in the system. The current flowed
from left to right through the QAHI thin film and the SC lying across the middle of
the QAHI film was electrically floating. The four-terminal resistance measured across
the superconducting electrode was always h/e2, which is equivalent to a two-terminal
conductance of e2/(2h) for this set-up. Since the four-terminal resistance remained h/e2

even when the external magnetic field was increased above the upper critical field of Nb
or when the QAHI film underneath the SC was interrupted by a gap, it is clear that
chiral Majorana edge states do not lie at the origin of the e2/(2h) conductance. Instead,
the chiral edge states arriving at the SC, one at the potential of the source VS and the
other at the potential of the drain VD, fully equilibrate with the floating SC such that
VSC = (VS + VD)/2. Since for µm-size superconducting electrodes on top of a QAHI the
edge states fully equilibrate, the downstream resistance measured with respect to the SC
will always be zero (RD = 0). Combining the insights from the two studies presented in this
thesis on narrow and wide superconducting electrodes, it was demonstrated that signatures
of the superconducting proximity effect in proximitized QAHI films are observable only
within the length scale of the superconducting coherence length.



Chapter 5

Outlook

It has been demonstrated in this thesis that superconducting correlations can be induced
in SC-QAHI heterostructures. Below, a few experiments are discussed that aim to confirm
the presence of topological superconductivity, explore the associated Majorana physics,
and investigate non-abelian zero modes in such systems.

CAR without Extrinsic Contact Resistance

In chapter 2, it was shown that when the width of the SC is comparable to the
superconducting coherence length ξS then CAR can give rise to a negative downstream
resistance, while chapter 3 has shown that a large (µm-size) SC electrode essentially acts
as a good metal contact. Combining these two findings of this thesis, a better device design
is proposed to study the CAR (and CT) in a QAHI, shown in Fig. 5.1a for an upward
out-of-plane magnetization. In this device structure a SC strip lies across the QAHI
Hall-bar, but its width is not constant. On the top edge of the QAHI, the superconducting
electrode is wide (W ≫ ξS) and the SC acts as a good metal contact:

T ee
2,7 = T ee

7,3 = TD, T ee
2,3 = T eh

2,3, T ee
2,6 = T eh

2,6, T ee
5,3 = T eh

5,3.

Here, TD and T ee
ij = T eh

ij describe single electrons entering the SC electrode with an energy
smaller than the SC gap though subgap states and fully equilibrated CAESs, respectively.

The superconducting electrode narrows down to a width comparable to the superconducting
coherence length (W ≈ ξS) at the bottom edge of the QAHI. As a result, the only relevant
processes for the narrow section of the superconducting electrode are CAR (T eh

5,6 = TCAR),
CT (T ee

5,6 = TCT), and the single-particle current into the SC (T ee
5,7 = T ee

7,6 = TD). For a
floating superconducting electrode (I1 = −I4) with V4 = 0, the Landauer-Büttiker (LB)
formalism [86,87] at zero temperature then yields the expression for the potential of the
SC:

VSC = V7 = 1 − TCT + TCAR

2 − TCT + TCARV1. (5.1)

Notice that when TCT ≈ TCAR, VSC ≈ V1/2 as was the case for the fully equilibrated edge
states in chapter 3.
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Fig. 5.1 | Proposals for future CAR experiments on a QAHI. In all the panels the
1D chiral edge channel runs in the anti-clockwise direction for an upward out-of-plane
magnetization. a, Schematic of a multi-terminal Hall-bar device on a QAHI thin film
with a superconducting electrode lying across the middle of the device. In the four-
terminal set-up, the normal electrodes 1 and 4 are the source and drain, respectively,
and the downstream voltage (VD) is measured between the normal electrode 5 and the
superconducting electrode 7. An incoming electron e continues in the downstream channel
as an e or h depending on whether CT or CAR takes place across the narrow section of
the superconducting electrode. b, Schematic of a Hall-bar, where a trench is etched in
the QAHI thin film before depositing the superconducting electrode 4. The downstream
voltage VD is measured between electrode 3 and the grounded electrode 4. Depending
on whether CT or CAR takes place, an electron arriving at the SC is converted into an
electron or hole in the downstream channel, respectively. Note that due to the presence of
a trench below the SC both the CT and CAR processes are now mediated by the parent
superconductor. In this device structure, two Majorana zero modes are created: one in
resonance with the chiral edge state and the other at the end of the trench. c, Schematic
of an ‘inverted nanowire’ structure, in which the trench is moved to the middle of the
QAHI thin film and filled with a SC. The two counter-propagating 1D chiral edge channels
are coupled through the SC via the CAR process, creating two non-abelian Majorana zero
modes at the ends of the trench. Note that the superconducting gap (∆) is associated
with the parent SC in both panel b and c.
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For this asymmetric device design, the intrinsic downstream resistance is given by:

Ri
D = V5 − V7

I1
= h

e2 (TCT − TCAR), (5.2)

which is negative if TCAR > TCT. Moreover, when TCAR = 1 (and hence TCT = 0), then
one obtains the maximum negative value for Ri

D of −h/e2. This is twice the maximum
negative downstream resistance value of −h/(2e2) derived for the set-ups in chapter 2
and 3! Note that the transverse resistance Ryx = (V6 − V2)/I1 = (V6 − V2)/I1 is quantized
to h/e2, independent of the size of TCT, TCAR, and TD.

This experimental set-up has two additional advantages: Firstly, the SC is not grounded
as in chapter 2 and Refs. [20, 70, 72, 74]. In the four-terminal measurement scheme shown
in Fig. 5.1a, RD = Ri

D in the superconducting state, which means that there is no extrinsic
contact resistance contribution that could possibly mask the negative nonlocal resistance
contribution from CAR across the narrow SC section. Secondly, the positive longitudinal
resistance contribution due to the breakdown of the QAHE is minimized in this set-up. The
breakdown effect in a QAHI is large when two chiral edge states with different potentials
are separated by a small distance [53], e.g. in narrow QAHI ribbons. However, since the
superconducting electrode only needs to have a width of ∼100 nm at the bottom edge
of the QAHI, the Hall-bar can be very wide (>100 µm) without running into fabrication
issues.1 This ensures that for small excitation currents the breakdown effect will most-likely
be absent in this device design.

Majorana Zero Modes in SC-QAHI Heterostructures

In Fig. 5.1b, the device design resembles the devices investigated in chapter 2, with a
key distinction: a trench is etched in the QAHI film and subsequently filled with the
SC. In this set-up, the 2D surface of the QAHI is not proximitized as there is no film
underneath the superconducting electrode, making it a fundamentally different system.
When the width of the trench is comparable to the coherence length of the SC, the
two counter-propagating edge channels along the trench boundaries can couple via CAR
mediated by the SC. This hybrid structure is predicted to give rise to 1D topological
superconductivity, hosting a pair of Majorana zero modes in the absence of an external
magnetic field: one localized at the end of the trench and the other in resonance with
the 1D chiral edge state [19]. Experimentally, the presence of CAR can be verified by
measuring a negative downstream resistance RD ≡ VD/I with respect to the grounded SC.
These experiments might potentially benefit from choosing a SC with a longer coherence
length than Nb, for instance Al. However, it is important to keep in mind that the low
critical magnetic field of Al (∼10 mT), combined with the magneto-caloric effect observed
around 0 T in magnetically-doped QAHIs [6], may pose challenges for the analysis of the
magnetic-field dependence of RD. On the other hand, if one manages to make the trench
narrow enough, then Nb can still be employed as the superconductor, having the benefit
of a larger superconducting gap and higher upper critical field.

1It would be extremely challenging to fabricate a continues ∼100-nm-wide SC electrode across the full
width of a 100-µm-wide Hall-bar.
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Fig. 5.2 | Majorana interference device on a QAHI. a, Schematic of a short
superconducting electrode contacting one edge of the QAHI. An incoming electron
splits into two chiral Majorana edge modes (CMEMs) moving around the grounded
superconducting island, as represented by the black dotted lines. The two CMEMs will
recombine on the other side of the SC as an electron or hole depending on the number
of vortices (even or odd) enclosed by the two paths. A single vortex is shown in purple,
contributing the superconducting flux quantum of h/2e. b, False-colour scanning electron
microscopy image of a real device based on panel a, including the measurement set-up.
The V-doped (BixSb1-x)2Te3 (VBST) thin film (cyan) is contacted by normal (yellow) and
superconducting (green) electrodes made of Pt/Au and Nb, respectively. The magnified
image of the short superconducting Nb electrode is shown in the bottom of panel b. The
downstream voltage (VD) is measured between contacts 5 and 8a for an upward and
out-of-plane magnetization where the 1D chiral edge state propagates anticlockwise along
the sample edge. Notice that the superconducting Nb is measured between contacts 8b and
8c, independent from the sample. c, Magnetic-field dependence of RD ≡ VD/Id.c. and RNb
shown for a Nb electrode of width WNb = 530 nm. The forward (orange) and backward
(blue) magnetic-field-sweep are measured at 25 mK with Id.c. = 1nA. The change in RD
when the SC in normal and superconducting state is highlighted by the green shaded
region.
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When CAR is observed in the device structure shown in Fig. 5.1b, it is reasonable to
conclude that the 1D topological superconductivity state is realized. The associated
Majorana zero mode at the end of the trench can then be detected by locally fabricating a
tunnel probe (not shown in Fig. 5.1b). This platform can be further modified to create
an ‘inverted nanowire’ with two localized Majorana zero modes, when the trench side-
contacted by the SC is fabricated in the middle of the QAHI, see Fig. 5.1c. Note that this
inverted nanowire might suffer less from disorder as compared to other Majorana nanowire
platforms, which would help in distinguishing the Majorana zero modes from Andreev
bound states.

Majorana Interference for Short Superconducting Electrodes

Another natural extension of the results presented in chapter 2, is to verify whether the
proximitized QAHI region underneath the superconducting electrode is topological or
not. The schematic shown in Fig. 5.2a is based on a proposal from Beenakker [26], which
involves a short superconducting electrode that covers only one edge of the QAHI. If the
N = 1 topological superconductor phase is realized in the proximitized region of the QAHI,
then an electron arriving at the grounded superconducting electrode will split into two
chiral Majorana edge modes (CMEMs) that take two different paths around the SC. These
CMEMs recombine on the other side of the SC as an electron or hole depending on whether
the two paths enclose an even or odd number of superconducting vortices, respectively. In
particular, the CMEMs accumulate a relative phase difference of π every time they cross
the branch cut of a vortex in the SC. The charge neutral Majorana fermions can then be
electrically detected through their interference upon recombination in the downstream
edge state of the QAHI.

Figure 5.2b shows an image of a real device fabricated in the course of this thesis, where a
530-nm-wide superconducting Nb electrode is contacting a V-doped ((BixSb1-x)2Te3 thin
film. The same fabrication recipe was used as for the devices investigated in chapter 2. The
preliminary data for the downstream resistance RD ≡ VD/Id.c. for an upward out-of-plane
magnetization with Id.c. = 1 nA is shown in Fig. 5.2c. The magnetic field response of RD
shows several features as the Nb turns superconducting (below ∼3 T). The forward and
backward sweeps follow the same path suggesting that the peaks and dips are real and
not random fluctuations. Note that in chapter 2 CAR was not observed for device E with
the widest Nb electrode (WNb = 520 nm), see Figs. 2.3 and S7. As a result no CAR is
expected for the device shown in Fig. 5.2b-c as well, yet the change in RD from the normal
to superconducting state is ∆RD ≡ −[RD(H > Hc2)−RD(H < Hc2)−RNb,InP] ≃ −1.2 kΩ,
where RNb,InP is negligible for the 530-nm-wide Nb electrode. The observation of CAR in
this device can possibly be explained by the superconducting electrode no longer acting as
a good metallic drain, resulting in a larger fraction of the incoming electrons undergoing
CAR (or CT) processes across the superconducting electrode.

Moreover, when Nb is superconducting the magnetic field response of RD in Fig. 5.2c
shows a peak and dip at ∼0.7 T and ∼1.7 T, respectively. A period of ∼2 T is too large
to be related to Majorana interference in this device due to the formation of vortices, as
for an overlap area of 530 × 800 nm2 a vortex is injected about every ∼5 mT. Note that
the size of LNb is difficult to determine and might be much smaller than ∼800 nm. Since
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Fig. 5.3 | Injection of edge vortices in Josephson junctions on top of a QAHI.
a, Proposed device design with two Josephson junctions (J1 and J2) and normal electrodes
(N1 and N2). In response to a voltage pulse V (t) applied to the middle superconducting
electrode, a pair of edge vortices are injected at J1 into the chiral Majorana edge channels
at opposite boundaries of the SC. The edge vortices propagate along the respective chiral
edge channels and fuse at J2, resulting in a current pulse I(t) flowing through N2. The
red dots represent bulk vortices. b, Charge fractionalization due to the formation of edge
vortices for the same device design as in panel a, but in response to a constant voltage:
V (t) = V and in the absence of bulk vortices. In this set-up, the constant voltage bias
V causes edge vortices to be continuously injected with a period of h/(2eV ). In the
absence of bulk vortices, the fusion of the edge vortices results in two current pulses which
integrate to an average charge of ⟨Q⟩ = −e/2 and +e/2, separated by L/v with v the
edge mode velocity. W (t) represents the detection window for the second pulse. If bulk
vortices are present, the peak shapes of I(t) will change depending on the outcome of
the braiding operations [15,17]. c, False-colour scanning electron microscopy image of a
device fabricated on V-doped (BixSb1-x)2Te3 (VBST) with Nb electrodes in the course of
this thesis based on panel a. The Josephson junction gaps are ∼50 nm. Panels a and b
are reprinted figures with permission from Refs. [16] and [18], respectively. © Copyright
(2019-2020) by the American Physical Society.
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a chemical wet-etching process is employed to etch the Hall-bar shape into the QAHI
thin film, the first few hundred nms at the edge of film may be damaged by the acid
creeping underneath the photoresist. This means that it is unclear where the 1D edge
channel exactly flows with respect to the physical edge of the sample. The peak and dip in
Fig. 5.2c could possibly be related to the formation of CAESs along the SC-QAHI interface,
although one would also expect fluctuations over mT field ranges in this case [74,88]. Other
effects that have yet to be considered are the Fabry-Pérot resonances when the Fermi
wavelength kF matches the Nb electrode dimensions [89,90], and the effect of the Meissner
screening current in the SC in response to an external magnetic field [90]. Both effects
were shown to greatly improve the tunnel-coupling between the chiral 1D edge states and
the SC. However, so far the theoretical work on the SC-QAHI hybrid structure is scarce.
Nevertheless, the observation of additional features in the magnetic field response of RD,
when Nb is in the superconducting state, warrants further investigation.

For the study of possible Majorana interference, one obvious modification is to include a
hole in the superconducting electrode in the next device such that one can deterministically
trap multiples of the superconducting flux quantum h/(2e). Additionally, switching to
a type-I SC (like Al), rather than Nb, would remove the additional flux stemming from
vortices in the superconducting electrode. Lastly, by determining the length dependence
of RD, one may obtain a better understanding of the position of the 1D edge state with
respect to the edge of the QAHI thin film, as well as the length-scale over which the edge
state penetrates into the 2D bulk.

Josephson Junctions on a QAHI

Chiral Majorana edge modes in a topological superconductor still exhibit conventional
fermionic exchange properties, while non-Abelian anyons are essential to enable “braiding”
operations necessary for quantum computing applications. Theoretically, a biased
Josephson junction fabricated on top of a QAHI has been proposed to be able to
deterministically inject a pair of isolated vortices into the 1D chiral Majorana edge
modes [15–18]. These “edge vortices” are π-phase domain boundaries which propagate
along the chiral Majorana edge modes and carry with them a non-Abelian zero mode.
Figure 5.3a shows the theoretically proposed device layout for the electrical detection of
these edge vortices. The red arrows represent the 1D chiral Majorana edge modes and
the red dots indicate localized bulk vortices in the SC. Upon the application of a voltage
pulse V (t) to the middle superconducting island which integrates to

∫
V (t)dt = h/(2e),

the superconducting phase difference across the Josephson junction J1 is incremented with
2π and a pair of edge vortices are injected in the top an bottom chiral Majorana edge
mode at J1 in a state of even fermion parity. The two edge vortices, subsequently, fuse at
the Josephson junction J2 and depending on whether the fermion parity has changed from
even to odd or not, may or may not leave behind an unpaired electron. Such a parity
change occurs when one of the edge vortices crosses the branch cut of the phase winding
around a bulk vortex (the red dot on the middle superconducting island in Fig. 5.3a). This
constitutes a braiding operation between a pair of non-Abelian anyons: one immobile in a
bulk vortex, the other mobile in an edge vortex [16]. The transferred charge Q =

∫
I(t)dt,

measured at metal contact N2, is quantized to Q = e or zero, depending on whether the
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region between the Josephson junctions J1 and J1 contain an odd or even number of bulk
vortices, respectively.

The shape of the current pulse I(t) measured at N2 can be quite complicated, as it
depends on the relative magnitude of the path length difference between the upper and
lower Majorana edge modes δL, the edge mode velocity v, and the duration of the vortex
injection process tinj [15,17]. However, even in the absence of bulk vortices (and braiding),
the dynamics of edge vortices can be investigated in the device layout shown in Fig. 5.3a.
If a constant d.c. voltage is applied to the middle superconducting island V (t) = V ,
instead of a voltage pulse, then a periodic train of edge vortices are injected, separated
by ∆t = h/(2eV ), which upon fusion create two current pulses I(t) separated by L/v,
which integrate to an average charge of ⟨Q⟩ = −e/2 and +e/2 [18], see Fig. 5.3b. Notice
that these two pulses still sum to zero, as no change of the fermion parity takes place in
the absence of immobile bulk vortices. The observation of this charge fractionalization
phenomenon in the absence of bulk vortices would constitute the first milestone in the
development of so-called “flying qubits” in this platform which combines two Josephson
junctions fabricated on top of a QAHI.

Figure 5.3c shows a false-colour scanning electron microscopy image of two Nb Josephson
junctions contacting a V-doped (BixSb1-x)2Te3 thin film fabricated in the course of this
thesis. Currently, the smallest junction gaps were ∼50 nm, but the Josephson junction
did not enter the zero-resistance state yet. Efforts are being taken to further improve
the interface quality and reduce the gap size. For a practical estimate of the time scales
of these experiments, one can take L ≈ 430 nm and W ≈ 1.2 µm (from Fig. 5.3c), the
induced supercondcuting coherence length ξS ≈ 100 nm (from chapter 2), and the edge
mode velocity v ≈ 4.5 × 105 m/s (from our publication [57]). This yields a period between
edge vortex injection of ∆t = h/(2eV ) ≈ 2.1 ps for 1 mV of d.c. bias, a pulse separation of
L/v ≈ 0.9 ps, and an edge vortex injection time of tinj = (ξS∆t)/(2πW ) ≈ 30 fs [16, 18].
Hence, the magneto-transport experiments on edge vortices will be extremely challenging
requiring THz data acquisition.
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