Performance of Quantum SDP
Methods for Quadratic Binary
Optimization Problems

Dissertation zur Erlangung des Doktorgrades

in Theoretischer Physik

der
Mathematisch-Naturwissenschaftlichen Fakultit

der Universitit zu Koln

vorgelegt von

Fabian Henze

Koln, 2025

Diese Dissertation wurde von der Mathematisch-Naturwissenschaftlichen Fakultét
der Universitit zu K6ln angenommen.

Gutachter: Prof. Dr. David Gross
Prof. Dr. Felix Motzoi

Tag der Disputation: 24.06.2025

il

Abstract

Quantum computing algorithms offer asymptotic speedups compared to classical
approaches in many domains. However, it remains uncertain whether these advan-
tages extend to problem instances that can be solved within a reasonable time. One
challenge for quantum algorithms is their often high scaling cost with respect to
precision. Consequently, applications that allow approximate solutions are more
promising candidates for quantum speedups. One such example are semidefinite
programming (SDP) relaxations of quadratic binary optimization problems, which
incorporate a rounding procedure at the end. The Hamiltonian Updates (HU) SDP-
solving algorithm introduced by Brandao et al. in 2019 was specifically designed for
such problems. This thesis analyzes the performance of the HU algorithm and as-
sesses whether it could provide a quantum advantage. To ensure a fair comparison,
we develop heuristics that significantly improve the algorithm’s efficiency. Since
large-scale quantum computers do not yet exist, direct benchmarking is not possi-
ble. Instead, we adopt a hybrid approach, estimating the running time of quantum
subroutines by analyzing their required number of gate operations. Our findings
suggest that even with these optimizations and under highly optimistic assumptions
favoring the quantum approach, a quantum implementation of the Hamiltonian Up-
dates algorithm is unlikely to outperform classical methods for realistic problem
sizes. Moreover, when applying SDP relaxations to real-world datasets, we observe
that approximate relaxation techniques can lead to highly suboptimal solutions for
the original optimization problems.

iii

Contents

Abstract ii
1 Introduction 1
2 Optimization 3
2.1 Basics of optimization problems 3
2.2 Integer programmingo i e e 4
2.3 Quadratic unconstrained binary optimization 5
2.4 Semidefinite programmingo 6
2.5 Goemans-Williamson algorithm, 7
3 Performance of quantum algorithms 9
3.1 NISQ vs. fault-tolerant algorithms 9
3.2 Asymptotic vs. non-asymptotic performance 10
3.3 Non-asymptotic performance of quantum algorithms 11
3.4 Benchmarking of quantum algorithms 12
4 Publication: Solving quadratic binary optimization problems using quan-
tum SDP methods: Non-asymptotic running time analysis 13
4.1 Contributions to the publication 14
4.2 Publication 14
5 Benchmarking of SDP relaxations for real-world problems 71
5.1 Sums-of-squares method 71
5.2 Problem formulations oo 72
53 Benchmarks 73
6 Conclusion 76

Bibliography 78

Chapter 1

Introduction

In recent years, quantum computing has gained an enormous amount of public at-
tention. Contributing to this are several announcements of achieving a quantum
advantage (i.e. solving a problem faster on a quantum computer than it could be
done on a classical computer) for specific problems like in the "quantum computa-
tional supremacy" experiment by the Google Al Quantum group in 2019 [Aru+19],
and others [Zho+21; Drm+25]. However, one has to note that these experiments
only serve as proof-of-concepts, as the selected problems are specifically designed
to demonstrate quantum advantage and do not have real-world applications [SK22].
Furthermore, it is crucial to compare quantum performance against the best-known
classical algorithms. For Google’s claim this was not the case, as IBM pointed out
soon after the announcement [Res19].

The gap to developing a quantum device capable of outperforming classical com-
puters on practical problems remains substantial. Nevertheless, significant advances
in the scale and fidelity of quantum computers [Phi+22; Xue+22; PKG24] spark
hope that quantum computers could show advantages on practical problems in the
not too far future. A particular group of possible applications that arise for quantum
computing are optimization problems. There are countless quantum algorithms pre-
sented in academic literature designed for optimization that show better asymptotic
scaling than classical algorithms. But this does not necessarily lead to an actual ad-
vantage of quantum implementation for practical problems. Indeed, several studies
have shown that, for specific algorithms, quantum computers are not expected to
achieve a practical advantage [Dal+23; Amm+23].

A frequently considered class of optimization problems in quantum computing are
quadratic unconstrained binary optimization (QUBO) problems. In QUBOs, the
complete optimization task is encoded within a single cost matrix, without any fur-
ther constraints. The compact structure of QUBOs makes them a popular choice
for formulating problems in quantum algorithms, as they enable more general and
simpler routines. However, QUBO problems are known to be NP-hard in general,
and it is widely believed that this class of problems cannot be solved efficiently
(i.e. in polynomial time with respect to problem size) even on a quantum computer
[Aar05; Ben+97]. Therefore, it is also of interest to find efficient ways to approxi-
mate QUBOs. This can be done by relaxations of the problem as semidefinite pro-
grams (SDPs). Two examples of methods that build on such SDP relaxations are the

Chapter 1. Introduction 2

Goemans-Williamson (GW) algorithm and sum-of-squares (SOS) method. We will
study these two in this work.

Although, the SDPs arising in the GW algorithm can be solved classically in poly-
nomial time, this scaling can still quickly become too costly for larger problem in-
stances. In 2019, Ref. [GLBKSF22] introduced an algorithm inspired by quantum
mechanics called Hamiltonian Updates (HU) that allows for certain subroutines to
be implemented on a quantum computer with favorable asymptotic scaling in the
problem dimension. The main goal of this thesis is to estimate the performance of
the quantum implementation of HU and assess whether a quantum advantage on po-
tential future quantum hardware is possible. For this, we first focus on significantly
improving the practical performance of the HU algorithm. This is required for a fair
comparison, as the original publication mainly focused on optimizing the asymptotic
performance. In a second step, we classically benchmark the HU implementation,
while simultaneously tracking and bounding the minimum number of required gate
operations for a quantum implementation.

The structure of the thesis is as follows: In Chapter 2 we give an overview of the
optimization problems discussed in this thesis. Chapter 3 discusses hurdles for quan-
tum algorithms to provide a practical advantage, as well as obstacles and approaches
for quantifying their performance. Chapter 4 summarizes and includes the publica-
tion [Hen+25] that forms the main part of this work, where the HU algorithm is
improved and benchmarked. Building on this, Chapter 5 uses the techniques intro-
duced in [Hen+25] to benchmark HU for problems with real-world data and com-
pare these to other techniques including the SOS method. Finally, in Chapter 6 we
summarize the results and discuss their relevance for quantum based optimization
algorithms in general.

Chapter 2

Optimization

2.1 Basics of optimization problems

Optimization problems are often referred to as programs, and the process of solving
them is known as programming. In an optimization problem, the goal is to find the
optimal value of a variable x, which is restricted to a domain A called the search
space." The objective is to maximize or minimize a given cost function or objective
function f : A — R, which assigns an objective value to each x. Additionally, x
is often subject to a set of constraints. Finding the exact optimal solution is often
challenging. As a result, it is useful to develop efficient methods for computing
bounds on the optimal value.

Optimization problems can be broadly classified into two categories based on the
nature of the search space: (i) discrete optimization, where A is a countable set,
meaning x takes discrete values (e.g. integers or binary values) and (ii) continuous
optimization, where A is a continuous set, allowing x to take real values.

Continuous optimization problems are usually easier to solve than discrete ones. A
common approach to discrete problems is to relax them by extending their search
space to a continuous domain, for example, allowing x to take real values instead of
integers. Since the original search space is a subset of the relaxed one, the optimal
objective value of the relaxed problem serves as an upper bound for a maximization
problem.

Relationship between optimization and feasibility problems

A common approach in optimization is to reformulate an optimization problem

imi X 2.1
maigluze f(x) (2.1)
as a feasibility problem
find xeA
(2.2)

subjectto f(x) <1,

ITypically, x is a vector, but depending on the problem structure, it may be more convenient to
represent it as a matrix. In such cases, the capitalized notation X is commonly used.

Chapter 2. Optimization 4

where the feasibility formulation introduces an additional parameter v € R as a
threshold for the objective value. If we can determine whether Equation (2.2) is
feasible (i.e. there exists a value for x that fulfills the constraints) for a given vy,
we can approximate the optimal objective value using binary search. The overhead
introduced by binary search scales only logarithmically with the target precision, i.e.
the gap between the largest infeasible and smallest feasible value of .

NP-hardness

The complexity class nondeterministic polynomial time (NP) includes all decision
problems for which a given solution (e.g. a value for x) can be verified in polynomial
time. However, this does not imply that such a solution can be found efficiently.
The hardest problems within NP are known as NP-complete. Any problem in NP,
including other NP-complete problems, can be reduced to an NP-complete problem
with only a polynomial number of calls to that problem. Problems that are at least
as hard as NP-complete problems are called NP-hard. It is widely believed, though
not proven, that NP-hard problems cannot be solved in polynomial time [GJ79].

2.2 Integer programming

A wide range of industry problems can be expressed as integer programs (IPs), rang-
ing from scheduling problems and electricity generation planning to optimization of
kidney exchange programs [Wol20]. IPs are characterized by a search space re-
stricted to integer values. If a problem involves both integer and continuous vari-
ables, it is referred to as a mixed integer program (MIP). In general, solving IPs is
NP-hard. However, significant progress has been made in recent years with modern
solvers capable of handling large-scale problems efficiently [CL24]. These include
commercial solvers such as Gurobi [Gur24] and CPLEX [Cpl09], as well as open-
source alternatives like SCIP [Bol+24].

IPs can be categorized based on the structure of their objective function. Below, we
introduce two important classes of IPs, which will be used later for benchmarking
with real-world instances in Chapter 5.

Integer linear programs
An integer linear program (ILP) takes the form

maximize cTx
xeZ", x>0 (2_3)

subject to Ax <D,

where ¢ € R" is the cost vector, and A € R¥*" b € Rk define k linear constraints
on X.

Chapter 2. Optimization 5

Integer quadratic programs

A generalization of ILPs is the integer quadratic program (IQP), which includes
quadratic terms in the objective function:

maximize xTCx +cTx
xeZ", x>0 (2'4)

subject to Ax <D,

where C € R™*" is a quadratic cost matrix.

2.3 Quadratic unconstrained binary optimization

Another common formulation of optimization problems is quadratic unconstrained
binary optimization (QUBO). In a QUBO problem, the goal is to optimize a quadratic
objective function over a binary vector x. It is formulated as

maximize xTC X, (2.5)
xe{-1,1}"

where C € R™*" is called the cost matrix. An alternative formulation restricts x to
{0,1}" instead of {—1,1}". These representations are mathematically equivalent
and can be converted into one anothe (see e.g. [BJ R89]).2

Similar to IPs, QUBO problems are NP-hard in general. IPs can be transformed
into QUBOs by incorporating constraints as penalty terms in the objective func-
tion (see Section 5.2). Due to their unconstrained nature, QUBOs are often pre-
ferred as a starting point in theoretical optimization literature [Lucl4], particularly
in quantum computing, where various quantum algorithms, such as variational meth-
ods [McC+16] and quantum annealing [Far+01], are designed to solve them.

We now give two examples of optimization problems that can be formulated as QU-
BOs.

MaxCut

MaxCut is one of Karp’s famous NP-complete problems [Kar72]. It is defined on
an undirected graph G = (V,E) with edge weights w : E — R. The goal is to
partition the set of vertices V into two groups such that the sum of the weights of
the edge E.yt+ C E connecting the two groups is maximized:

maximize w(e). (2.6)
EcutCE € Eeut

By introducing a binary vector x € {—1,1}" with n = |V| to represent the parti-
tioning of the vertices, and defining the adjacency matrix W, the objective function

2When converting to the {—1,1} representation the dimension increases by one.

Chapter 2. Optimization 6

can be rewritten as

Y w(e) =) wle)— %xTWx. (2.7)

e€Ecut ecE

Since the constant term), w(e) does not affect the optimization, the MaxCut
problem (2.6) can be formulated as a QUBO (2.5) with C = —W /2.

Cut norm

The cut norm of a matrix B € R"*™ is defined as the optimal value of the following
optimization problem:

.. T
maximize Bz. 2.8
yze{-11}" 4 28)

This problem can be expressed as a QUBO. To do so, we define the block matrix

1/0 B

Next, we introduce the binary vector x € R" with n = 2m, constructed as the direct
sum of ¥ and z, i.e. x = y @ z. This allows us to rewrite the objective function as
yTBz = xTCx. Thus, the cut norm of B is equal to the optimal value of the QUBO
formulation

maximize x!Cx. (2.10)
xe{-1,1}"

2.4 Semidefinite programming

A fundamental class of matrices is the set of (semi-)definite matrices. A matrix
A € R™ " is said to be positive semidefinite (psd) if

xTAx >0 for all x € R™

This is denoted by X = 0. If the inequality in (2.11) is strict for all nonzero x, then
A is positive definite. If the inequality is reversed, A is negative (semi-)definite. A
symmetric matrix is psd if and only if all its eigenvalues are nonnegative.

Positive semidefinite matrices play an essential role in various fields, including opti-
mization and quantum mechanics. For instance, density matrices representing quan-
tum states are psd. Another application is in optimization, where psd matrices are
part of semidefinite programming (SDP) [TodO1].

Chapter 2. Optimization 7

Semidefinite programming formulation

Semidefinite programming refers to a class of convex optimization problems where
the optimization variable is a psd matrix. A standard SDP formulation is given by

maximize tr(CX)
XeRan
subject to tr(A;X) < b, 2.11)
X = 0.

SDPs can be efficiently solved using interior-point methods [NN94; Ali95], mak-
ing them a valuable tool in combinatorial optimization, control theory [BV94], and
machine learning [Lan+04]. We will discuss an application of SDPs for relaxing
QUBOs in the next section.

2.5 Goemans-Williamson algorithm

The Goemans-Williamson algorithm [GW95] is a well-known approximation algo-
rithm that relaxes a QUBO problem into an SDP. The idea is to lift the quadratic
binary optimization problem to a continues higher-dimensional space where it be-
comes a convex problem.

SDP Relaxation of QUBO

The objective function of a QUBO problem is given by xT Cx with x € {-1,1}.
This can be rewritten using the outer product as

xTCx = tr(CxxT) = tr(CX),

where X € R™" is defined as X = xx. Now, X is a psd, rank-1 matrix with
all diagonal entries equal to 1. We can relax the problem by removing the rank
constraint while preserving positive semidefiniteness and diagonal constraints. The
resulting SDP relaxation is

maximize tr <C Tx)
XeRmx"

subjectto diag(X) =1, (2.12)
X = 0.

While the original QUBO is NP-hard, the SDP relaxation can be solved in polyno-
mial time.

Randomized rounding

To obtain a binary vector x € {—1,1} from the relaxed solution X, Goemans and
Williamson proposed a randomized rounding technique. This procedure involves:

Chapter 2. Optimization 8

1. Computing the square root decomposition of X, i.e. finding v/X such that
VXVX = X.
2. Sampling a random Gaussian vector g ~ N'(0,1), ¢ € R".

3. Projecting v/ X column-wise onto ¢ and taking the sign to obtain a binary
vector:

X; = sign Z (\/Y)ijg]‘ , 1€ [n].

j€[n]

Since solving the SDP and computing VX is typically more expensive than the
rounding procedure, it is often beneficial to repeat the rounding step multiple times
and select the best result.

Approximation guarantees

For certain cost matrices C, the expected objective value of the rounded solution
can be bounded by a constant factor & € [0,1] of the optimal SDP value. Let
X* € R™" be the optimal SDP solution and x* € {—1,1}" the optimal QUBO
solution. Define x(8) ¢ {—1,1}" as the binary vector obtained by applying the
randomized rounding procedure to X* with the random Gaussian vector g.3 Then,
for certain cost matrices the expected objective value after rounding taken over the
distribution of Gaussian vectors ¢ can be lower bounded as follows:

Eo[(x@)TCx®)] > atr(CX*) > a(x*)TCx*. (2.13)

The second inequality follows from the fact that the SDP is a relaxation of the orig-
inal QUBO. The first inequality requires more involved proofs, and the value of a
depends on the structure of C. Some known bounds include:

* If the entries of C are nonpositive, we have o ~ 0.878. If the Unique games
conjecture holds, this bound is optimal [Kho+07].

 If C is psd, [ANOG] prove a bound of & = %

 If C takes the block form of Equation (2.9) corresponding to the cut norm
problem, [AN06] prove a bound o & = 7 — 1

Note that the bound in (2.13) may not always be meaningful, e.g. if tr(CX*) is
negative (e.g. for C = —1). The guarantees listed above typically assume that the
SDP relaxation is solved exactly. In Section 4.2, we derive adjusted bounds for
inexact solutions in the cut norm case.

3In the publication included in Section 4.2 we usually omit to denote the dependence on g

Chapter 3

Performance of quantum algorithms

The potential computational advantage of quantum computers over classical ones
stems from their ability to store and process information in a superposition of states.
Simulating such a system on a classical computer would require exponentially more
memory and computational operations. One might therefore think that quantum
computing is equivalent to performing an exponentially large number of computa-
tions in parallel. However, this is not the case, as it is not possible to extract all the
information contained in a quantum superposition. More precisely, the maximum
amount of classical bits of information that can be retrieved from measurements on
a quantum computer is limited to the number of qubits. Moreover, since a complete
measurement causes a collapse of the quantum superposition, additional information
cannot be obtained through repeated measurements without rerunning the quantum
computation.

To achieve a computational advantage, quantum algorithms must manipulate the
quantum state in such a way that measurements yield exactly the desired informa-
tion. The process for this depends on the specific problem being solved. In some
cases, this can be done efficiently, enabling quantum computers to achieve exponen-
tial (or at least superpolynomial) speedups. A prominent example is Shor’s factoring
algorithm [Sho97]. For other problems, significantly more computational overhead
is required to extract useful information from the quantum state. A typical example
is Grover’s search algorithm [Gro96], which amplifies the probability of measur-
ing the correct solution by gradually increasing the amplitude of the target state in
a sequence of rotations and reflections. This technique results only in a quadratic
speedup, rather than an exponential one. Problems of this nature are usually found
in combinatorial optimization. Therefore, these generally do not exhibit the same
dramatic quantum advantage as problems like integer factorization.

3.1 NISQ vs. fault-tolerant algorithms

When discussing quantum algorithm, one typically distinguishes between two cate-
gories: (i) algorithms designed for noisy intermediate-scale quantum (NISQ) hard-
ware, which lacks error correction capabilities, and (i1) algorithms that require fault-
tolerant quantum computing [Got98], where error correction ensures reliable com-
putations. While NISQ hardware is expected to become available in the near fu-
ture [Pre18], fully fault-tolerant quantum computers remain a distant goal [Bev+22].

Chapter 3. Performance of quantum algorithms 10

Fault tolerance imposes strict requirements on quantum gate fidelities and incurs
significant overhead in terms of the number of physical qubits and gate operations
required for error correction.

NISQ algorithms

NISQ algorithms typically include variational algorithms, such as the variational
quantum eigensolver (VQE) [Per+14] and the quantum approximate optimization
algorithm (QAOA) [FGG14]. These algorithms rely on relatively short quantum
circuits with tunable parameters. By repeatedly executing the quantum routine and
optimizing these parameters based on the measurement outcomes, one aims to find
an optimal configuration that yields a good approximation to the original problem.
Due to the complex structure arising from these quantum operations, the perfor-
mance of variational algorithms is often difficult to predict theoretically. Some the-
oretical results provide insights into their solution quality, including both positive
results (e.g. [Far+22; BM24]) and negative results (e.g. [Bra+20; DP+23; FGG20]).
However, while these results are impressive from a mathematical standpoint, they
often apply only to highly structured or even trivial problem instances. It remains an
open question whether variational algorithms can outperform classical algorithms
on practically relevant problems.

Faul-tolerant algorithms

Fault-tolerant quantum algorithms, in contrast, rely on deeper quantum circuits,
making them more susceptible to errors. To ensure reliability, they require high-
fidelity quantum gates and error correction protocols. The latter typically involve
encoding each logical qubit in multiple physical qubits, leading to substantial re-
source overheads. Unlike NISQ algorithms, fault-tolerant quantum algorithms pro-
vide rigorous theoretical guarantees, ensuring they return the correct result with high
probability. This makes them more predictable in terms of performance but also sig-
nificantly more challenging to implement on hardware.

3.2 Asymptotic vs. non-asymptotic performance

In scientific literature, algorithms are often evaluated based on their asymptotic per-
formance, meaning their running time or resource consumption is expressed in terms
of how they scale with input size. An algorithm with better asymptotic complexity
will eventually outperform another for sufficiently large instances. However, asymp-
totic improvements do not indicate where the crossover point lies. In many cases,
an algorithm may theoretically surpass another but only at input sizes so large that
they are infeasible to implement on any existing hardware. This class of algorithms
is sometimes referred to as "galactic algorithms".

Another important distinction is the difference between worst-case and average-case
performance. For example, while the simplex algorithm for linear programming has
been shown to require exponential time in worst-case instances [KM72], it often
performs extremely well in practice, making it a preferred choice over interior point

Chapter 3. Performance of quantum algorithms 11

methods, which are proven to run in polynomial time [Kar84]. Beyond time com-
plexity, numerical stability is another relevant factor. For instance, Strassen’s algo-
rithm for matrix multiplication [Str69] has an improved asymptotic complexity of
O(n*81) compared to the standard O(n>) method. However, due to stability issues
[DSGW 18], it is rarely used in practice.

3.3 Non-asymptotic performance of quantum algorithms

Quantum algorithms often suffer from worse non-asymptotic performance compared
to their classical counterparts. Several factors contribute to this disadvantage:

* Slower gate operations: Quantum gates are significantly more challenging
to implement physically than classical gates. As a result, even with optimistic
projections for future quantum hardware, the average execution time for a
quantum gate operation is expected to be substantially slower than for a clas-
sical operation.

* Overhead from error correction: The necessity of quantum error correc-
tion introduces a significant resource overhead, increasing both the number of
required physical qubits and the overall execution time.

* Stochastic nature of quantum algorithms: Unlike classical deterministic
computations, quantum algorithms rely on probabilistic measurement out-
comes, leading to greater numerical instability and requiring many repetitions
to provide desired results.

* Optimized classical algorithms: Classical algorithms are often highly
optimized and tailored to specific problems, incorporating techniques such
as heuristics, branch-and-bound methods, and dynamic programming.
This presents a major challenge for quantum algorithms: while they may
outperform brute-force classical approaches (e.g. Grover’s search algorithm
can quadratically speed up exhaustive search), they often fail to compete
with state-of-the-art classical solvers. While some efforts have been made to
integrate such techniques into quantum frameworks — such as branch-and-
bound [Mon20] and dynamic programming [Amb+] — adapting these methods
to quantum computers remains significantly more difficult than in classical
computing.

Unlike for classical algorithms, benchmarking quantum algorithms on real hardware
is currently infeasible for relevant problem sizes, as the necessary quantum comput-
ers do not yet exist. Simulating quantum computations on classical hardware is also
highly limited, as the memory and computational cost grow exponentially with the
number of qubits. As a result, many quantum algorithms proposed in recent years
claim theoretical speedups, but their practical performance remains unknown. This
makes it essential to explore indirect benchmarking methods and develop techniques
to estimate or bound their efficiency on potential future quantum hardware. We dis-
cuss an approach for this in the next section.

Chapter 3. Performance of quantum algorithms 12

3.4 Benchmarking of quantum algorithms

Currently, no quantum hardware exists that can solve problems at a practically rele-
vant scale. This makes it impossible to directly measure the running time of quantum
algorithms. Instead, one has to analyze the structure and complexity of the required
quantum circuits and derive theoretical estimates for their performance on future
hardware. This section outlines a typical approach to such an analysis.

Gate model

Quantum information is stored in qubits, which are manipulated using quantum
gates. The specific set of available gates depends on the architecture of the quantum
computer, as well as the encoding and error correction protocols employed. The
latter introduces significant overhead, increasing both the number of physical qubits
required and the total number of gate operations performed. To ensure a hardware-
independent complexity analysis, this thesis considers an idealized model in which
error correction overhead is neglected, and only logical qubits and gate operations
are taken into account. The analysis assumes access to a small universal gate set,
including both single-qubit and two-qubit operations. Since two-qubit gates are typ-
ically more difficult to implement and often constitute the main bottleneck, single-
qubit gates are disregarded to simplify the analysis. It is important to emphasize that
these assumptions favor quantum computing, meaning that the results derived from
this approach provide lower bounds rather than accurate estimates of actual resource
requirements.

Estimating the quantum gate count

Quantum algorithms often combine classical and quantum components, achieving
a speedup through the execution of specific subroutines on a quantum computer.
While the overall running time of such hybrid algorithms is difficult to predict due
to its dependence on problem instances, it is often possible to estimate the cost of
individual quantum subroutines. A common approach to benchmarking is to de-
termine the number of quantum gate operations required for a single execution of
a subroutine, considering parameters such as problem size and targeted precision.
Since these parameters may vary across subroutine calls, the total cost is estimated
using a method known as hybrid benchmarking. This involves classically simulat-
ing the full algorithm, tracking the frequency and characteristics of each quantum
subroutine call, and summing their respective gate costs.

13

Chapter 4

Publication: Solving quadratic
binary optimization problems using
quantum SDP methods:
Non-asymptotic running time
analysis

This publication builds upon the Hamiltonian Updates (HU) algorithm introduced
by [GLBKSF22], which was designed to solve the semidefinite programming (SDP)
relaxation that arises in the GW algorithm discussed in Section 2.5. The HU al-
gorithm uses certain positive semidefinite (psd) matrices known as Gibbs states or
thermal states, which naturally appear in the formulation of quantum mechanics.
While the high-level structure of the HU routine is entirely classical, the computa-
tion of Gibbs states can be performed on a quantum computer. By employing quan-
tum algorithms, this process achieves a better asymptotic scaling in the dimension
compared to classical methods, potentially leading to a quantum advantage.

However, this improved dimensional scaling comes at the cost of significantly worse
dependence on precision. Since the HU algorithm is intended to be used within the
GW framework, which includes a rounding step, it is conceivable that lower preci-
sion suffices for practical applications. Notably, even in its classical form, the HU
algorithm already outperforms standard SDP solvers such as matrix multiplicative
weights and interior-point methods in terms of scaling with dimension, although,
again at the expense of less favorable precision scaling.

As discussed in Section 3.3, superior asymptotic scaling does not necessarily trans-
late into a practical quantum advantage for realistically solvable problem instances.
The aim of this publication is to rigorously analyze the quantum implementation of
the HU algorithm and assess whether a regime of problem instances exists where fu-
ture quantum hardware could surpass classical computation. Since the original for-
mulation of the HU algorithm was not optimized for non-asymptotic performance,
a direct evaluation of its practical feasibility would be insufficient. Consequently, a
significant portion of this work is dedicated to improving the algorithm’s practical
efficiency before benchmarking its performance.

Chapter 4. Publication: Solving quadratic binary optimization problems using 14
quantum SDP methods: Non-asymptotic running time analysis

Contents of the publication
The publication presents several contributions:

* A series of improvements to the HU routine, significantly enhancing conver-
gence in numerical benchmarks for both classical and quantum implementa-
tions.

* A new infeasibility criterion that substantially reduces the running time for
infeasible instances.

* Improved theoretical bounds and a numerical analysis on the precision of the
solution returned by the HU algorithm after applying the randomized rounding
routine.

* The integration of new quantum algorithms for Gibbs state preparation, im-
proving asymptotic scaling with respect to precision.

* Lower bounds on the number of quantum gate operations required for the HU
routine. Based on these bounds, a comparative analysis of the running times
of quantum and classical implementations is conducted, with extrapolations
to larger problem instances.

Findings and conclusions

Despite the algorithmic improvements introduced in this paper and multiple assump-
tions favoring the quantum implementation — such as ignoring overhead from error
correction and statistical inaccuracies from quantum measurement — the quantum
version of HU remains more than ten orders of magnitude away from breaking even
with its classical counterpart for tested instances. Furthermore, extrapolations in-
dicate that even for problem instances requiring over a century to solve classically,
the quantum speedup remains insufficient, with the performance gap still exceeding
seven orders of magnitude.

4.1 Contributions to the publication

The improvements to the HU algorithm were developed and evaluated by me, with
input from the other authors. Similarly, I derived and applied the proofs presented
in the paper, as well as the bounds used for gate counting. I wrote the majority of
the manuscript, excluding the abstract, substantial portions of the introduction, and
the conclusion. Additionally, I implemented the complete codebase for generating
and benchmarking problem instances, along with parts of the code used to visualize
the results.

arXiv:2502.15426v1 [quant-ph] 21 Feb 2025

Solving quadratic binary optimization problems
using quantum SDP methods:
Non-asymptotic running time analysis

Fabian Henze*!, Viet Tran?, Birte Ostermann®, Richard Kueng?,
Timo de Wolff® and David Gross'

Unstitute for Theoretical Physics, University of Cologne, Germany
nstitute for Integrated Circuits and Quantum Computing, JKU Linz, Austria
3Institute for Analysis and Algebra, TU Braunschweig, Germany

Abstract

Quantum computers can solve semidefinite programs (SDPs) using resources
that scale better than state-of-the-art classical methods as a function of the prob-
lem dimension. At the same time, the known quantum algorithms scale very
unfavorably in the precision, which makes it non-trivial to find applications for
which the quantum methods are well-suited. Arguably, precision is less crucial for
SDP relaxations of combinatorial optimization problems (such as the Goemans-
Williamson algorithm), because these include a final rounding step that maps SDP
solutions to binary variables. With this in mind, Brandao, Franca, and Kueng have
proposed to use quantum SDP solvers in order to achieve an end-to-end speed-up
for obtaining approximate solutions to combinatorial optimization problems. They
did indeed succeed in identifying an algorithm that realizes a polynomial quantum
advantage in terms of its asymptotic running time. However, asymptotic results
say little about the problem sizes for which advantages manifest. Here, we present
an analysis of the non-asymptotic resource requirements of this algorithm. The
work consists of two parts. First, we optimize the original algorithm with a par-
ticular emphasis on performance for realistic problem instances. In particular, we
formulate a version with adaptive step-sizes, an improved detection criterion for
infeasible instances, and a more efficient rounding procedure. In a second step,
we benchmark both the classical and the quantum version of the algorithm. The
benchmarks did not identify a regime where even the optimized quantum algo-
rithm would beat standard classical approaches for input sizes that can be real-
istically solved at all. In the absence of further significant improvements, these
algorithms therefore fall into a category sometimes called galactic: Unbeaten in
their asymptotic scaling behavior, but not practical for realistic problems.

*fhenze2 @thp.uni-koeln.de

Contents

1

Introduction

1.1 Non-asymptotic analysis of algorithms
1.2 Combinatorial optimization
1.3 Organizationof thepaper
1.4 Notation e

The Hamiltonian Update algorithm
2.1 Reduction to feasibility problems
2.2 The Hamiltonian Updatestep

Improved convergence for Hamiltonian Updates

3.1 Adaptivesteplength Lo oL
3.2 Euclidean-normbased Py,
33 Addingamomentumterm
34 Freeenergytracking
3.5 Numerical benchmarks of the non-asymptotic improvements

Improved randomized rounding
4.1 Analyticalresults
4.2 Numerical simulations for e dependence

Improved Gibbs state simulation
Asymptotic performance of the improved Hamiltonian Updates

Non-asymptotic benchmarking of quantum implementations
7.1 Gatecounting
72 Results. e

Conclusion
8.1 Acknowledgements

Proofs
A.1 Freeenergytracking
A2 Randomizedrounding.

Number of quantum gates for Hamiltonian Updates

B.1 Blockencoding
B.2 Hamiltonian simulation via Qubitization
B.3 Gibbsstate samplingo
B.4 Diagonal entry sampling
B.5 Quantum HU algorithm

AN L W W W

[o BN |

12
14
15
16
16
20

22
22
24

25

27

28
28
30

31
32

36
36
39

1 Introduction

1.1 Non-asymptotic analysis of algorithms

Quantum algorithms are typically compared to classical approaches based on their
asymptotic behavior. Indeed, the lack of large-scale, fault-tolerant quantum hardware
makes a direct comparison of practical performance difficult for the time being.

The danger of this approach lies in the fact that an asymptotic assessment hides
constant factors, which can be substantial. Even if an advantageous scaling behavior
has been rigorously established, such an analysis does not directly give information
about the minimal size of instances for which a practical speed-up actually manifests.
One therefore encounters the risk of designing what is sometimes referred to as galactic
algorithms: Computational methods that do outperform all others, but only at instance
sizes that are so enormous that there is no hope that they will ever be practically rel-
evant. It is therefore a timely and important task to find non-asymptotic estimates for
the resource use of quantum algorithms [1, 3, 21, 22].

In doing so, one faces the problem that algorithms published in the academic lit-
erature are often not optimized for practical performance. Up until recently, such op-
timizations were not seen as a priority: The description of any novel quantum algo-
rithm beyond the well-known classes discovered by Shor [45], Grover [27], as well as
Hassidim Harrow and Lloyd [28], displaying some form of quantum advantage, is con-
sidered a significant achievement. This, coupled with the fact that scaled-up quantum
hardware remains out of reach, means that there has been little incentive for researchers
to optimize implementations.

In particular if one expects to find negative results about the practical usability of
published quantum algorithms, it is therefore incumbent upon those performing bench-
marks, to first expend reasonable efforts to find an optimized implementation. For
this reason, a large part of the present work is spent on improving existing algorithms
(Secs. 3-5).

1.2 Combinatorial optimization

We are concerned here with quadratic unconstrained binary optimization problems,
often abbreviated as QUBOs:

n
.. T
maximize z' Cx = Ciixix; 1
CR™ Z gLy ()
1,j=1
subjectto z; =+1 fori=1,...,n.

for a symmetric cost matrix C € IR™*"™. Finding the optimizer is NP-hard, as can
be seen e.g. by reduction from the problem of finding a maximum cut in a graph
(MAXCUT) — one of Karp’s 21 NP-complete problems [30].

The seminal work by Goemans-Williamson [26] provides a randomized rounding
procedure with rigorous approximation guarantees for MAXCUT, using the semidef-
inite programming (SDP) relaxation of the original problem. This SDP relaxation of

Problem (1) is given by

imize tr (CTX) = Cij Xij
maximize tr (C.X) Z: e o

subjectto diag(X)=1,X >0,

where the final constraint demands that X is symmetric (X7 = X) and positive
semidefinite, or psd for short. The quantitative relation between the original prob-
lem (1) and the relaxed version (2) depends on properties of the coefficient matrix C'
(e.g. whether is it positive in the SDP- or element-wise sense; see, e.g. Refs. [2, 24,
17]). In this paper, we restrict attention to matrices of the form

where B € IR"/2%"/2_ In order to fix a consistent normalization, we will throughout
assume that the coefficient matrix is normalized in operator norm (or spectral norm,
i.e. the largest singular value), ||C|| = 1. For such instances, the value obtained from
applying a randomized rounding procedure to the solution of (2), that gives a feasible
solution for the original problem, is at most a factor of (% — 1) ~ .273 smaller than the
optimal value of the original problem [2, Sec. 4.1]. Remarkably, the relation does not
depend on the dimension n.

The relaxed problem (2) can be represented as a semidefinite program (SDP). As
such, it can be tackled, e.g. via interior point methods or the ellipsoid method. These
methods, in particular, interior point methods, are effectively solvable, and ellipsoid
methods are, moreover, solvable in polynomial time if proper starting criteria are met.
While it the polynomial time solvability of SDPs is not fully settled in general yet due
to an observation by O’Donnell [36], the polynomial time solvability for SDPs relaxed
from QUBOs via Sums of Squares follows from Raghavendra and Weitz [41]. We refer
to standard textbooks, such as [11, 13], for further details. In practice, though, SDP
solvers perform poorly in the problem size, both in terms of running time and mem-
ory requirements, thus even a polynomial advantage might therefore have significant
practical impact.

To simplify the comparison between various methods, we state their performance
for the particular case where the matrix B is chosen to be a matrix with column sparsity
s, where the non-zero entries are i.i.d. Gaussian random variables. We also assume that
the exponent of matrix multiplication equals 3, reflecting the scaling in practical appli-
cations. Let p be the desired precision of the SDP solution. Then, the two prevalent
approaches to solve the SDP in Eq. (2) have the following asymptotic running times:

(i) Interior point methods require O(n*log(u~"')) floating-point operations; see,
e.g. [32].

(i) Matrix multiplicative weight methods require O(min{n?5s; =25, n2550-5,-3-5})
floating-point operations; see, e.g. [8].

We note that p refers to the approximation of the optimal value of the relaxed
problem (2), not the original one (1). The latter, being NP-hard to approximate by

the PCP theorem, does of course not admit any polynomial-time approximation under
standard complexity-theoretic assumptions.

With this goal in mind, Ref. [25] developed a classical and a quantum Hamiltonian
Update algorithm for solving the SDP relaxation (2) using resources that scale better
than off-the-shelf solvers in the problem size. On the flip side, their algorithm con-
verges very slowly. That is, the proven running time bounds are extremely unfavorable
in the precision . More precisely, their main theorem is:

Theorem 1 ([25, Thm. 1]). Let C be a (real-valued) symmetric n X n matrix with
column sparsity s. Then the problem (2) can be solved up to additive accuracy n ||C||
in running time

O (v3) + =2+ exp(1.6/ T2 og (1))
on a quantum computer and in running time
O(min{n?sp~'2,n3u=%})
on a classical computer.

We are thus faced with the following situation: The algorithm of Ref. [25] shows
that, for fixed precision y, quantum computers can, in principle, solve the SDP relax-
ation (2) with a running time that scales more favorably in the problem size than any
known classical approach with rigorous performance guarantees. At the same time, the
proven dependency on p suggests that the theoretical advantage will only manifest for
enormously large problem instances, which cannot be practically executed at all.

The purpose of the present paper is to optimize the results of Ref. [25], derive
sharper bounds, and finally benchmark the performance of the optimized version, in
order to estimate its performance for realistic scenarios.

Another recent follow-up to Ref. [25] is Ref. [10], which explores the use of itera-
tive refinement techniques to speed up convergence. We have not included a quantita-
tive comparison between these two approaches in this manuscript, because no reference
implementation is available, and we are still in the process of clarifying some questions
about algorithmic details with the authors [9].

We refer to Refs. [16, 15, 4, 5] for more details on quantum algorithms for solving
SDPs.

1.3 Organization of the paper

The structure of the paper is as follows:

In Sec. 2, we provide an overview of the Hamilton Updates (HU) algorithm intro-
duced in Ref. [25]. Sec. 3 presents several non-asymptotic improvements to HU that
enhance both its classical and quantum performance. In particular: Secs. 3.1-3.4 detail
methods for reducing the number of iterations needed in practice to find a feasible solu-
tion or to certify infeasibility. In Sec. 3.5, we numerically compare the performance of
the improved algorithm to the original one. Sec. 4.1 provides an asymptotically tighter
bound on the precision of the objective value after rounding, improving upon the re-
sults in Ref. [25]. Complementing this, Sec. 4.2 numerically examines the behavior

of the precision after rounding. Sec. 5 presents an improved quantum subroutine that
uses algorithms with better dependence on the precision for Gibbs state preparation
and Hamiltonian simulation, offering improvements over Ref. [25]. Sec. 6 provides
an overview of the analytical and numerical results from Secs. 4 and 5. Finally, in
Sec. 7, we benchmark the improved algorithm by running it classically and estimating
the minimum number of gates required for a quantum implementation based on the
constructions in Refs. [34, 5].

1.4 Notation

The following table summarizes the notational conventions we use throughout the
manuscript:

Symbol

Description

Definition

A=XB

llll,,
1Al

Al
[[A]l
1Al e,
||AHtr—>tr
14|
in]

R(pllo)

max

00 —>00

€

14

AH

Aor e, Ag
PC

Py

P
M)
B

F

b

positive semidefinite (psd) order

/1 norm

operator (or Schatten-oco) norm
trace (or Schatten-1) norm
max (or £~) norm

{1 — ¢5 norm

trace-to-trace norm
infinity-to-infinity norm

index set

quantum relative entropy

normalized cost matrix

solution for QUBO (1)

solution for SDP (2)

Hamiltonian and (potential) solution for (8)
Gibbs state and (potential) solution for (6)
threshold for objective value

dimension of cost matrix

(column) sparsity

SDP precision

precision of HU constraints

precision after randomized rounding

matrix for HU (cost/diagonal) update

step size/length for HU (cost/diagonal) update
matrix for cost update

matrix for diagonal update with ¢; norm

matrix for diagonal update with ¢ norm
momentum in k'" iteration

momentum hyperparameter

free energy

number of qubits used to store H

A =X B & A, B symmetric, and
2T Az < 2T Bz YV € R"

lzlly, =22, @l

Al = Susz]R":Ha:H:l{HA‘TH}
[All, = tr(JA]), [|A]=VATA
Al oy = max; [Asj

||AH£1~>£2 = Susz]R":HzH[l:I{HAQS”}
”AHtr_)tr = SupBe]R”X":HBH”:I{HA(X)Htr}
1Al = SUD gy -1 A}
[n] ={i € N|1 <i<n}

S(pllo) = tr (p(inp — In o))

with p,o > 0,tr(p) = tr(o) =1
CeR™™CT=C,|C||=1

z e {-1,1}"

X € R™™", X is psd, diag(X
HeR"™ HT =H

pu = exp(—H)/ tr(exp(—H))
Defined in (8).

)=1

maximum number of non-zero entries
per column in a matrix

Let X ™ be an optimal solution to (2).
A solution X to (2) has precision p if
tr(X*C) — tr(XC) < np.

Defined in (8).

Defined in (42).

H +— H + AAH, defined in (20)

P.=~1-C
P4 = sign(diag(p) — 1/n)
— tr(sign((diag p) — 1/n))/nl
P2 = (diag(p) — 1/n)/ max; |pii — 1/n]
M® =X, q(AH)®
0<pg<1
F(H) = —In(tr(exp(~ H)))

Table 1: Summary of notation used in this paper.

2 The Hamiltonian Update algorithm

Now, we give a summary of the Hamiltonian Updates algorithm for solving the SDP
in Eq. (2). Compared to the original presentation of Ref. [25], we slightly modify the
notation involving the update step, in a way that facilitates stating the improvements in
Sec. 3. We give the high-level algorithm in Alg. 1 and an illustration in Fig. 1.

2.1 Reduction to feasibility problems

We express the HU algorithm as an optimization over the renormalized psd matrix

p=-X.)
n
The two representations are obviously equivalent — but the convention adopted here
will later allow us to formulate a quantum version, where p will be a density matrix (i.e.
p = 0and tr(p) = 1) describing the state of a physical quantum system. In particular,
the constraint on the diagonal now reads diag(p) = 11.
Using the matrix Holder inequality, we can then bound the objective function of
the SDP relaxation:

ltr (Cp)l < ICHIplle = IC tr(p) =1,

because the trace norm of a psd matrix is equal to its trace. This ensures that the optimal
value of the re-scaled version of SDP (2) falls into the interval [—1, 1].

In a next step, we will transform the optimization problem into a series of feasibil-
ity problems. Choose a precision parameter €, and perform a binary search over the
interval [—1, 1], to find a value v* such that the program

find p>x0, tr(p) =1
peR’rLX’n

subjectto vy —tr(Cp) <0 (5)
and Z

is feasible for v = ~*, but not for v = v* + ¢,. A binary search finds such a value in
O(log, (€, ')) iterations. Therefore, the feasibility problems (5) can find the optimal
value of (2) with an overhead that is logarithmic in the desired precision.

However, even the feasibility problem cannot be decided by a practical algorithm
for exact constraints. Let € ; be another precision parameter. We say that p is € s-feasible
for the program (5) if it satisfies

1
Pn‘**‘io
n

find p>=0, tr(p) =1
pER’nXTL

subjectto v —tr(Cp) < €y 6)
and Z

The program (5) is € ¢-feasible if an € s-feasible p exists.
In the section below, we will introduce the Hamiltonian Update (HU) routine for
solving Eq. (6). It satisfies the following conditions:

1’<
i — — €f.
Pii n f

1. If (5) is feasible, the HU routine outputs an € ¢-feasible solution p.

2. If (5) is not € ¢-feasible, the HU routine outputs no solution.

3. If (5) is es-feasible but not feasible, the HU routine outputs either an € ¢-feasible
solution or no solution.

Thus, conversely,

1. If the HU algorithm succeeds, it will output an €¢-feasible p*. In Sec. 4, we will
describe rounding algorithms, which construct exact solutions given p*.

2. If the HU algorithm fails, we know that (5) is not strictly feasible.

Therefore, a binary search using the HU algorithm will output an € -feasible solution
p* with objective value v*, such that (5) is not strictly feasible for v = v* + ;.

For simplicity, in what follows, we will restrict to the case where ¢y = ¢, and
denote this common precision parameter by e.

2.2 The Hamiltonian Update step

The idea behind Hamiltonian Updates is to express p as a Gibbs states, i.e. one writes

exp(—H)

= ix(exp(—H)) @

PH

for some symmetric matrix H € R™*". We refer to H as the Hamiltonian, in ac-
cordance with standard physics terminology. This way, the constraints p >~ 0 and
tr(p) = 1 are automatically satisfied. Thus, the problem reduces to finding an H such
that the constraints on pg are fulfilled:

find H,
HER"X”
H=HT
subjectto v —tr(Cpp) < € ®)

1
and Z‘(pH)”—g‘ <€

To find a suitable Hamiltonian, we start with the n x n zero matrix H = 0, and refine
it in a series of update steps, described next.

I Feasible area e-relaxed area * HU steps

€4 494 "€

Figure 1: [llustration of the Hamiltonian Updates algorithm. The circle depicts the space of
trace-one psd matrices, with pg lying in the center. The feasible region is shown in dark red, the
e-feasible region is marked light red. Each graphic shows a single iteration of HU: At the start
of each update, a matrix P is calculated that defines a hyperplane (shown in green) separating
the current p and the feasible region. By updating pr — pr+ap (i.e. penalizing infeasible
directions), p moves towards the hyperplane. For simplicity this is depicted by a straight line.
This is generally not the case, as p depends non-linearly on H. The procedure ends when p
enters the e-feasible region (i.e. all constraints are fulfilled up to precision € as defined in (8)).

10

Algorithm 1 Simplified Hamiltonian Updates

Require: Cost matrix C, threshold objective value -, precision parameter €

Ensure: Condition | Output
(5) is feasible an e-feasible p
(5) is not e-feasible | false
else undefined (an e-feasible p or false)

function HAMILTONIAN_UPDATES(C, 7, €)

1:

2 H < Opxn,p < 1/nand F + —In(n)

3 while /' < 0do > Main loop of HU
4 if p is e-feasible then

5: return p

6 else

7 compute AH > Computed from the violations of p
8 H «+ H+)\AH > Update Hamiltonian
9: p < exp(—H)/tr(exp(—H)) > Update Gibbs state
10: F + —In(tr(exp(—H))) > Update free energy
11: end if
12: end while
13: return false > F' > 0 — No feasible solution exists

14: end function

To keep notation succinct, we usually make the dependence of py on H implicit,
and write p = py if the Hamiltonian is clear from context. Let 5 = diag(p) be the
diagonal matrix with p;; = p;;. We define the two symmetric matrices:

P!t =sign(p — 1/n) — tr(sign(p — 1/n))/nl, (10)

where the sign function is applied element-wise to the matrices. (The origin of the
superscript /1 for P; will become clear in Sec. 3.2).

The matrices P, and Pﬁl allow us to reformulate the two feasibility constraints (8)
as

v —tr(Cp) = tr(Pep) < € (11)
Z \pii — 1/n| = tr(Pip) < e (12)

11

While the correctness of (11) is easy to see, (12) needs a short calculation to confirm:
Z |pii — 1/n| = Z(Pu‘ —1/n)sign(pi; — 1/n)
i i
=Y pusign(pis — 1/n) = Y sign(pi — 1/n)/n
i i

— tr(psign(p — 1/n)) — tr(p) r(sign(— 1/n)/n)
= tr(psign(p — 1/n)) — tr(ptr(sign(p — 1/n))/n)
= tr(prl),

13)

where we used tr(p) = 1 in the third step.

The matrices P, and Pfl can be interpreted as normal vectors for hyperplanes in
the vector space of symmetric n X n matrices which we also endow with the trace
(or Frobenius) inner product A, B — tr(AB). The hyperplanes separate the current
iterate p from the feasible region defined in the feasibility SDP (8). The trace inner
products tr(P,.p) and tr(P! p) measure how strongly the constraints are violated. If
both constraints are violated by less than e, the algorithm stops and outputs the solution
p. Otherwise, in order to reduce the violations, HU applies cost updates and diagonal
updates, defined, respectively, as

P, during cost updates,

Pfl during diagonal updates. (14

Hw— H+)MAH, where AH = {
for some step size .
By adding AAH to the current Hamiltonian H, the updated Gibbs state

pH+aaH = exp(—(H + AAH))/ tr(exp(—(H + AAH)))

will move towards to the separating plane (or even cross it when A is too large). Note
that P, is constant given -y, while Pfl depends on p and therefore changes with each
update. We will discuss quantitative bounds on the distance to the feasible region in
Sec. 3.4. The algorithm then iterates this Hamiltonian update procedure many times to
get closer and closer to the feasible region — hence the name.

Stated as is (and how it was proposed in Ref. [25]), this meta-algorithm faces two
major problems which renders it inefficient in practice: Firstly, an analytical running
time analysis provided in Sec. 3.4.2 shows that the required number of iterations de-
pends quadratically on the precision e. Secondly, the Hamiltonian Updates algorithm
detects infeasible instances by checking if an a priori upper bound on the number of
iterations has been reached. This turns out to be rather inefficient in practice. In this
work, we provide substantial improvements that address both of these problems. This
is the content of the next section.

3 Improved convergence for Hamiltonian Updates
In this section, we introduce several improvements to the Hamiltonian Updates meta-

algorithm, which benefit both the classical and the quantum version. In Secs. 3.2-
3.3, we present heuristics designed to reduce the number of iterations required for the

12

algorithm to converge. Sec. 3.4 gives improved estimation techniques for the change in
relative entropy used to prove infeasibilty of a given problem instance. The complete
enhanced algorithm is outlined as Alg. 2 and 3. Finally, in Sec. 3.5 we compare these
improvements numerically against the original algorithm.

Algorithm 2 Improved Hamiltonian Updates

Require: Normalized cost matrix C, threshold objective value ~, precision parameter
€, initial step lengths A, and A\, momentum hyperparameter (3

Ensure: Condition ‘ Output
(5) is feasible an e-feasible p
(5) is not e-feasible | false
else undefined (an e-feasible p or false)
1: function HAMILTONIAN_UPDATES(C, 7, €, A¢, Ag, B)
2: P.+— -C+~1
3 H «+ 0n><n
4: M < O, xn
5: F = —1n(n)
6 p %]lnxn
7
8 while ' < (0 do > Main loop of HU
9 if tr(P.p) > € then
10: AH « tr(Pep) P+ £ M
11: H,p, F,\. < UPDATE(H,AH, \.) > Apply cost update
12: M+~ \.AH > Update momentum
13:
14: elseif > . |p;i — 1/n| > e then
15: P!> « (diag(p) — 1/n)/ max; |pi; — 1/n]
16: AH «+ Pp? + &M
17: H,p,F,\q <+ UPDATE(H,AH, \;) > Apply diag. update
18: M +— \AH > Update momentum
19:
20: else
21: return p > p is e-feasible
22: end if
23:
24: end while
25: return false > F' > 0 — No feasible solution exists

26: end function

13

Algorithm 3 Update function for Hamiltonian Updates

Require: Hamiltonian H, update matrix A H, current step length A\, or \4

Ensure: updated Hamiltonian H,., current Gibbs state p, current free energy F,
updated step length A\, or A4

1: function UPDATE(H, AH, \)

2 Hyew < H+ MNAH > Compute new Hamiltonian
3 compute exp(—Hpeyw) > Compute matrix exponential for p and F’
4: Prew < exp(_Hnew)/tr(exp(_Hnew))

5:

6 while tr(AH pyew) < 0 do: > Check for overshoots
7 A 0.5) > Reduce step size
8 Hpew < H+ NAH > Re-compute new Hamiltonian
9: compute exp(—Hyew)
10: Prew < €Xp(—Hpew)/ tr(exp(—Hpew))
11: end while
12:
13: F + —In(tr(exp(—Hynew))) > Compute free energy
14: A<+ 1.3\ > Increase step size for the next iteration
15:

16: return H v, Pnew, F A
17: end function

3.1 Adaptive step length

Recall from Eq. (14) above, that the individual updates of the Hamiltonian H € R"™*"
take the following form:

H v H+ AP, 5)

where P can be either P, or Pfl. As is commonly the case for iterative algorithms,
there is a trade-off in choosing the step size or learning rate \: Small choices of A mean
that violations of the constraints take many iterations to be corrected, while too large
values of \ increase the danger of overshooting. In our case, overshooting corresponds
to moving to the other side of the separating hyperplane, in which case we do not have
a guaranteed improvement anymore (c.f. Sec. 3.4.1).

The algorithm of Ref. [25] uses a constant step length A = €/16 that only depends
on the desired target accuracy €. In contrast, here we propose to use two adaptive step
lengths

Ae and Ad,

one for each constraint in (8). We choose the concrete step lengths according to the
following heuristic: The algorithm maintains the current step sizes A, and A4, which

14

are increased by a constant factor after each corresponding update — we find that multi-
plying with 1.3 works well in practice. We say that the algorithm has overshot if, after
an update, the sign of the constraint has reversed, i.e. if tr(PpH+Ac/dp) < 0. This
sign is checked after every update. In case an overshot did occur,) is halved, and p is
re-computed for the now smaller step size (c.f. Alg. 3).

This approach means that if an overshoot occurs, we must recompute the Gibbs
state, which incurs an overhead in computation time. Hence, the possibility of over-
shooting manifests itself in a slight increase of the average computation time per itera-
tion, when compared to the constant step length method. However, as we demonstrate
numerically in Sec. 3.5, this is more than compensated for by an overall faster step-wise
progress which significantly reduces the total number of iterations required, especially
in the early phase of the HU meta-algorithm.

3.2 Euclidean-norm based P,

In the original Ref. [25], the authors address the violation of the diagonal constraint in
(8) using a matrix P{fl that corresponds to the ¢; norm: tr(Pflp) = .lpi —1/n]
(see Eq. (10)). This approach is a natural choice, as this norm reflects the feasibility
constraint in Eq. (8) which is also formulated in terms of the ¢; norm. However, closer
inspection reveals that the correction provided by Pf ! may be suboptimal. After all, it
only considers the sign of the deviations in each entry, not their magnitude.

We propose a new approach where P, is proportional to the violation in each com-
ponent. To achieve this, we modify (10) by removing the sign function. Because the
trace term in (10) becomes zero under this modification, the result is

P =p—1/n. (16)

The trace with the modified matrix evaluates to the squared Euclidean or ¢ norm of
the deviation:

tr(pPg2) = tr(p(p — 21/m)) + tr(pL/n)
— tr(p(5 — 2L/n)) + 1/n

= Z (p% — 2pii/n + 1/n°) 17
= Z(pzz —1/n)%.

Note that this is a much more common choice as a loss function in gradient descent
algorithms. To further optimize and to improve numerical stability, one can experiment
with different normalizations for P{fz. Although the differences are generally minor,
because the adaptive step size defined in the previous section adjusts well to different
normalizations, we find experimentally that dividing sz by its maximum absolute
entry yields the best results.

Additionally, we scale P, in each update with the corresponding distance tr(FP.p).
Thus, the new matrix

P, = tr(P.p)P., (18)

15

corresponds to larger corrections in the cost update when p is further away from the
feasible region.

In Fig. 3, we compare the performance of HU using Pf2 instead of Pf !, observing
that this modification results in a speedup of approximately a factor of two to three.

3.3 Adding a momentum term

In gradient descent methods, it is common to also add a so-called momentum term [38],
which often empirically increase the speed of convergence.

In the following, we use a superscript (-)(¥) to refer to the value of a variable in the
kM iteration. Define the momentum term to be

0 AR (AH)™) for cost update in k** step,
)\fik) (AH)®) for diag. update in k** step,
MO =o.

Next, choose a new hyperparameter 5 € (0, 1) and modify the update rule (14) to
read

) H®) 4+ A£k>(AH)(k) for cost update in k" step, (19)
H®) 4)\Eik) (AH)™®) for diag. update in k" step,
(PC) *) + %M(k_l) for cost update in &*® step,
(AH)® = ¢ (20)

(PfQ)(k) + %M(’“*U for diag. update in k" step.
Numerically, we find that a values of 3 between 0.4 and 0.5 achieve the best results,
with reductions in the number of iterations by roughly 30-40% (c.f. Fig. 3 and Tab. 2).

3.4 Free energy tracking

When we cannot guarantee that a particular SDP instance is feasible, it is crucial to find
a termination criterion; otherwise, the HU routine would run indefinitely. This can be
achieved by bounding the quantum relative entropy

R(p*|p) = tr (p*(log p* — log p)) @21

between any solution p* (assuming that one exists) and the current state p. For proper-
ties of the quantum relative entropy, we refer to standard textbooks, e.g. Ref. [43].

It is known that the relative entropy distance between the maximally mixed state
po = 1/n and any other state is upper-bounded by In(n). We demonstrate in this
section that one can lower-bound the decrease in relative entropy distance between the
current Gibbs state p and p* (if it exists) in each update. By choosing the maximally
mixed state as the initial state py, we are guaranteed that the cumulative change in
relative entropy cannot exceed In(n), if a solution does indeed exist. By the same

16

token, if the estimate of total relative entropy distance reduction exceeds In(n), it is
certain that a feasible solution does not exist.

This “relative entropy tracking” procedure serves two different purposes: First, if
the algorithm detects that it would have covered a relative entropy distance of In(n),
but has not yet found a solution, we know that the problem is infeasible. Using termi-
nology standard in quantum information, we could call this a heralded event: Meaning
that if it occurs, we can draw rigorous conclusions from it, but, at the beginning of
the algorithm, it is unclear after how many iterations it will be detected. Second, we
would like to have an a priori upper bound on the number of iterations required before
infeasibility is detected.

Ref. [25] uses a single bound to serve both these purposes. In contrast, we report
a large gain in practical performance by using different estimates for the two goals. In
Sec. 3.4.1, we introduce a new method for tracking the entropy change that makes use
of another quantity from statistical mechanics called free energy. We observe numeri-
cally that this new approach can achieve speedups over the original method of a factor
> 10000 (c.f. Tab. 2).

Our a priori bound on the number of iterations is presented in Section 3.4.2. Com-
pared to Ref. [25], it includes a treatment of the momentum term (c.f. Section 3.3)
and it improves the estimate by a constant factor. The theoretical guarantee does not
cover all heuristics we employ, in particular it does not take adaptive step sizes and
the improved way of choosing F; into account. We re-iterate that these are pessimistic
worst-case bounds and that the observed practical performance is much better.

3.4.1 Termination criterion

On a high level, our improved relative entropy tracking method exploits the observation
that the decrease in distance to the feasible set is larger, the further away the current
state is from being feasible. In contrast, [25] uses a worst-case bound that does not take
into account the faster decrease of the relative entropy distance that happens especially
in the early steps of the algorithm.

We now show how the relative entropy R can be estimated during the HU routine.
We can rewrite the definition of the relative entropy (21) as

R(p*||p) = tr(p* In(p*)) + tr(p* H) + In(tr(exp(—H))). (22)
In statistical mechanics,
F(H) = —In(tr(exp(—H))) (23)

is called the free energy (at inverse temperature 1). Initially, for Hy = 0 we have
F(0) = —1In(n). Then, the total change in relative entropy with respect to the initial
Gibbs state pg = 1/n is given by

AR(po. p) = R(p*||p) — R(p*|lpo) = tr(p* H) — F(H) ~In(n). (24)
In the HU algorithm, the Hamiltonian H in the kM iteration is of the form

gk — Z e P,
k=1,...k

17

with coefficients ¢ > 0. By construction, the matrices P& penalize infeasible
directions and thus fulfil tr(p* P(*")) < 0. Then, we always have tr(p* H) < 0 and
therefore,

AR(po, p) < —F(H) - In(n). 25)

Next, we use that the absolute change in relative entropy distance is upper bounded by
In(n) and therefore

—In(n) < AR(po, p) < —F(H) —In(n). (26)
Thus, we know that if a feasible solution p* exists, we always have
F(H)<0 27

for any H occurring as part of the HU routine. Hence, the task of tracking the relative
entropy translates into evaluating the free energy. Classically, this quantity can be
easily computed with no relevant additional computational effort, as one already has to
compute exp(—H) for the Gibbs state in each iteration.

On a quantum computer, we instead bound this quantity indirectly via its derivative.
For this, consider a single update. Let H be the initial Hamiltonian, and H + AAH the
one after the HU step. The change in free energy is

AF = F(H + AAH) — F(H), (28)

and its derivative with respect to A is given by the expectation value of the update term
AAH with respect to the final state:

Lemma 2. For all symmetric H)AH € R™*™ and)\ € R, the free energy satisfies
a)\F(H +)\AH) = tI‘(pH+)\AH/\AH). 29)

The proof is given in Appendix A.1.
Now, by integrating both sides in (29), the change in free energy is given by:

A
AF = / tr(pH+)\/AH)\’AH) dAI (30)
0
It is known that the function
A— F(H + M\AH)
is concave (a fact sometimes referred to as Bogoliubov inequality [6, Lem. 2] in quan-

tum statistical mechanics). Thus, we can bound AF’ by evaluating tr(pgxag AAH)
for multiple values 0 < A’ < X and computing

AF >3 (N = N_) tr(paixan AH). G1)
)\/

18

These expected values can be computed relatively cheaply on a quantum computer
(compared to the cost of estimating the diagonal of p, see Sec. 5).

We have studied the behavior of the improved termination criterion numerically.
The results are shown in Fig. 2.

T T
¢ Feasible
1031 E T Infeasible -
-
0 B
Y x
5} X
z III %
o 2 I 4
o 10 II I?
2 FEE S
E FE3 Y TE 7
= IIIIII “tezo
*L;TI o
10t F 7
. .
SRS S S S S A S A S A O SO S S S S SO S
o o o o o o o o o S 9 o o o o o o o o o

H
Fe
e]

=)

T
v
'
’
'
"
.
!
"

I
[
T

|
N
T

#
foi

Feasible
¥ Infeasible -

I
w
T

1
IS
T

Lower bound on free energy

|
o
L}

|
o
T

I
~

L L L L L L
$ & & & e
(S8 (S (S (S (S (S

00‘94
0094
0014
0ok
001 L
0024
0034

~ offset

Figure 2: Behavior of the improved HU algorithm on an instance used with parameters n =
1024, s = 16 and € = 0.001, generated as described in Sec. 3.5. The algorithm terminated after
finding an e-feasible solution for v := ~* + offset, or once the free energy became positive.
Here, 7™ is the optimal objective value determined by an SDP solver [37]. The error bars show
the upper and lower quartiles.

Upper panel: Number of iterations required until convergence as a function of the «y-offset. The
improved termination criterion comes into play on the right tail of the curve. We observe that
the number of iterations required to certify infeasibility goes down the further the problem spec-
ification is from a feasible one. (This contrasts to the fixed termination criterion used in [25]).
Lower panel: The lower bound on the free energy at time of termination. We observe numeri-
cally that the bound increases as «y gets closer to the optimal value. Whether this effect can be
exploited for algorithmic improvements is a question we leave open.

3.4.2 Convergence guarantee

We now provide an a priori bound on the maximum number of steps required for the
algorithm to find a feasible solution, assuming that one does exist. The result goes
beyond Ref. [25] in two ways: It includes a treatment of the momentum term (c.f.
Section 3.3) and it improves the estimate by a constant factor.

19

Theorem 3. For an HU routine using Pj Y in the diagonal update as defined in Eq. (10),

momentum as defined in Sec. 3.3 and a step length A\ = % tr(pg AH), the maxi-
mum number of steps needed to find an e-feasible solution to a feasible program (5) is
upper bounded by

T =16(1 — B) % ?1n(n). (32)

The proof is given in Appendix A.1.

Without the use of momentum terms (i.e. setting 8 = 0), this becomes T =
162 In(n), thus improving the bound of Ref. [25] by a factor of 4. We repeat that
the numerically observed speedup of our improvements compared to Ref. [25] is much
larger than the improvement of the a priori bounds.

We note that the proof of convergence no longer holds when using P§2 for the di-
agonal update as proposed in Sec. 3.2, while still using Pf ! in the feasibility criteria,
because the proof assumes tr(pg Py) > €, which is not necessarily the case for mixed
P;’s. Additionally, Thm. 3 does not consider an adaptive step size, as in Sec. 3.1. How-
ever, in practice, we find that these modifications do substantially improve algorithmic
performance.

3.5 Numerical benchmarks of the non-asymptotic improvements

Here, we numerically study the effects of the different improvements made in Secs. 3.1-
3.4.1. This section consists of three parts:

1. We observe the decrease in the number of iterations when applying the diagonal
update sz instead of Pf ! as described in Sec. 3.2, together with the momentum
term described in Sec. 3.3 for different values of 3.

2. We observe the decrease in the required number of iteration when successively
applying all the improvements compared to the original algorithm.

3. We analyze how the number of iterations of the fully improved HU routine scales
with e.

The simulations are performed on 20 sparse QUBO instances of the block form given
in Eq. (3). The sparsity pattern is chosen uniformly at random with sparsity s = 16.
The non-zero elements are sampled from a standard Gaussian distribution, the matrices
are normalized.

For the first part, we use instances with dimension n = 1024 and require a target
accuracy € = 0.001. We run the complete HU routine using either le or Pf2 in all
diagonal updates and test values for the momentum hyperparameter S between 0 and
0.7. To have a direct comparison, we choose to compare feasible instances of (2) with
target objective values ~ equal to the optimal objective value v*, instead of applying
full binary searches. The optimum ~* is obtained by an SDP solver beforehand for
each instance (specifically, the Splitting Conic Solver (SCS) described in Ref. [37]).
The results are displayed in Fig. 3.

20

T .
@ Pywith ¢ loss
1081 T Py with ¢, loss 1
w
o 4
oS ~—— e
- - I“‘-}---}- I
8 ‘-I—-__I____} I /I,_,
5 " "“}"‘}--—;——--I’
@ T T
-g 1 1 I T - - - -
2 0% + 1 1 I I - - T r'y I L + 1
L 11 +
.
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

&)

Figure 3: Number of iterations for varying values of the momentum hyperparameter 3. The
two different approaches for the diagonal update are compared: The original ¢; norm based Pfl
(blue) and the new £ norm based Pf2 (orange). The instances have dimension n = 1024,
sparsity s = 16 and precision € = 0.001, and use the optimal SDP solution v* as the target
objective value. The error bars show the upper and lower quartiles.

For the second part, to compare the improved algorithm to the original one, we
evaluate three categories: (i) solving a feasible instance, (ii) proving infeasibility of
an instance, and (iii) performing a complete binary search. The numerical simulations
were performed on instances with dimension n = 128 and target accuracy € = 0.01.
For the feasible instances we used an optimal target objective value v* obtained from
an SDP solver (SCS), while infeasible instances used the candidate v = * +0.02. The
comparison is made both in terms of the number of iterations and the number of matrix
exponentiations required. The latter make up the vast majority of computational cost
in each iteration, and thus provide a good measure for comparing the running time of
the different approaches. The results are displayed in Table 2.

.. feasible instance infeasible instance binary search
cumulative improvements ||
iterations matrix exp. | iterations matrix exp. | iterations matrix exp.
original algorithm 88292 88292 3.11e+067 3.11e+06T | 1.28e+07T 1.28e+07T
with adaptive step size 171 241 3.11e+067 4.27e+06* | 1.26e+07t 1.55e+07*
with entropy tracking 171 241 104 144 802 1116
with /> norm based P, 62 86 54 72 323 439
with momentum 42 59 38 50 219 296

Table 2: Comparison in terms of HU iterations and matrix exponential computations for the
original HU algorithm and the new one with the improvements from Secs. 3.1-3.4.1 applied
cumulatively. The number of matrix exponentials is equal to the sum of the number of iterations
and the number of overshoots. The results are averaged over 20 instances with dimension n =
128, sparsity s = 16 and precision € = 0.01. Values computed (partially) analytically using the
termination criterion of Ref. [25, Thm. 2.1] are marked with a dagger (). Values marked with
an asterisk (x) are extrapolated: The total number of overshoots is estimated by observing the
average number of overshoots per iteration and multiplying this with the analytical number of
iterations from the termination criterion. We find a speedup by a factor of more than 1400 for
solving the SDP for an optimal candidate «*, and a speedup of more than 43000 for the complete
binary search.

21

Finally, in the third part, we analyze the scaling of the number of iterations of the
improved HU algorithm as a function of the precision e. We have used instances with
dimension n = 1024 and e values between 1072 and 10~3. The indicated number
of iterations includes a full binary search to find the optimal value up to the desired
precision. A numerical powerlaw extrapolation shows that the number of iterations

scales as 0.006¢ =292, The results are shown in Fig. 4.
106k Powerlaw extrapolation 6.48 x 1073 . ¢ 202
9 lterations (Median)
2 105 L 4
S 3
© 2
0 10%F 2
= i
55 2
- v 1
310° = 3
E x 3
3 =
102
101 E 3
1073 1072

€

Figure 4: Total number of iterations over a complete binary search as a function of the precision e.
The fit is given by f(€) = 6.48 x 10~ 3¢~2:°2 with a 95% confidence interval of (—2.38, —1.73)
for the exponent of e. Therefore, the experimentally observed scaling exponent is similar to the
theoretical bound of —2 (however, the experimentally observed prefactor is significantly better).
The error bars show the upper and lower quartiles. The gray area shows the 95% confidence
interval of the fit.

4 Improved randomized rounding

4.1 Analytical results

After solving the SDP relaxation, we still need to obtain a solution for the original
QUBO problem (1). The Goemans-Williamson algorithm [26] provides a randomized
rounding procedure for this purpose. One first computes the square root of p in terms of
functional calculus, i.e. \/p € R™" is a symmetric matrix with /p+/p = p. Then, the
entries of the rounded solution z € {—1, 1}" are given by the sign of the column-wise

22

projection of ,/p onto a Gaussian random vector:

compute NI (33)
sample gj i N(0,1), j € nl], 34)
compute x; — sign Z(\/ﬁ)”gj , i€ [n]. (35)

J

The Goemans-Williamson-style bounds on the quality of rounded solutions found in
the literature are not directly applicable if the diagonal entries of p are only approxi-
mately equal to 1/n. To address this issue, Ref. [25] proposes two different solutions:
(1) First map the approximate optimizer p to a matrix p* € R™*" that fulfills the diag-
onal constraints exactly, and then apply the above rounding procedure. (2) Apply the
rounding procedure directly to the approximate optimizer p.

Both approaches show the same asymptotic scaling behavior.

Ref. [25] shows that if ", [p;; — 1/n| < e, the error of the final result scales as
O(e'/*). Here, we adjust the parameters that go into the correction procedure, and
improve the scaling to O(e'/3).

4.1.1 Correcting the SDP solution

The improved performance of the first approach, the one where the SDP solution is
mapped to one which satisfies the constraints exactly, results from the theorem below.

Theorem 4. There is an efficient procedure which, given an € > 0 and a psd matrix
p € R™" such that ¥, |pis — 1/n| < € constructs a psd matrix p* € R™ ™ where

o=+ Vi € [n] (36)
n
and l|p* — p||tr = O(e'/3). 37)

The proof is given in Appendix A.2.1.
Combining Thm. 4 with the matrix Holder inequality allows us to bound the change
in the objective value that results from applying this correction:

| tr(Cp*) — tx(Cp)| < [IC]l||0* = p]),, = O('?). (38)

4.1.2 Rounding directly from the approximate solution

The improved results for the second approach — rounding directly — matches this scal-
ing.
Theorem 5. Let p* € R™*"™ be the optimal SDP solution corresponding to a normal-

ized cost matrix C' € R™ "™ with a block structure as defined in (3). Let p € R™*"™ be
an approximate solution with

tr(Cp*) — tx(Cp) < e, (39)

1
and Z lpii — ﬁ| <e Vi € [n], (40)

23

with 0 < € < 1/2. Let x € {—1,1}™ be the vector obtained by applying the random-
ized rounding procedure to p. Then

4
E[zTCxz] > (- 1) ntr(Cp*) — O(ne'/?). 41)
m
The proof is given in Appendix A.2.2.

4.2 Numerical simulations for ¢ dependence

In the previous section, we have provided an analytic worst-case bound for the pre-
cision of the corrected SDP solution of O(e!/?). Now, we study the actual scaling
behavior numerically. To this end, we use the matrices p that have been obtained as
part of the numerical simulation described in Fig. 4, and apply the rounding proce-
dure 10° times to each one. We quantify the performance of the rounding procedure in
two ways: (1) The average objective value after rounding (because this is the quantity
the theoretical guarantees make direct statements about). (2) The maximum objective
value (because this is the number that would be used as the output of a numerical pro-
cedure). To reduce statistical fluctuations, the plots below show the average of 100
maximal values, computed for batches of size 1000 each.

In a second step, we compare the objective values obtained from rounding HU
solutions to the objective values obtained from rounding exact solutions from an SDP
solver (Splitting Conic Solver [37]). To this end, let z¢, zope € {—1,1}" be vectors
obtained from applying randomized rounding to the HU solution and the SDP solver
solution respectively. We then define the precision

v= (xzpthopt —2rCz)/n (42)

of the rounded solution.
We display the results in Fig. 5 and summarize the estimated asymptotic scaling
behaviors in Sec. 6.

24

@ — .
5 ¥ Expected value (Median) - ---- Expected value fit: 03207
g 0.22 Maximum value (Median) - 1072} Maximum value fit: 0.31- " 37
= 1 3 Expected Value (Median) s S
% o1k] Maximum Value (Median) T £
() -9
o
: I A2
>0.20F N I k>
O S G -
E ------ ————— Y ,/i T
20.10 \\{ 1 107 3 &]
5
el
8
= 0.18f 1
g
L. ‘] ‘ ‘
. 1073 1072 1073 1072

Figure 5: Behavior of the objective values 27 Cz:/n after rounding. Results are obtained by
performing a binary search over HU instances for different precision parameters e and applying
randomized rounding. The results are averaged over 20 cost matrices with dimension n = 1024
and sparsity s = 16. The error bars show the upper and lower quartiles.

Left panel: Comparison of average objective value (blue) and the maximum value seen in 1000
roundings (orange).

Right panel: Difference v = (xoTpt CZops — X Cixl) /n, where Zopt and x. have been obtained,
respectively, by applying the rounding procedure to an optimal SDP solution, and an e-precise
HU solution. The fit for the average value is given by £, (¢) = 0.32¢*-"° with a 95% confidence
interval of (0.71,0.88) for the exponent. The colored areas show the 95% confidence interval of
the fits.

We observe that for the parameters tested, taking the best solution obtained from
1000 randomized rounding runs improves the final objective value significantly more
than increasing the precision ¢ from 102 to 10734, Because the rounding procedure
is relatively computationally cheap, it seems advisable to work with a very high num-
ber of randomized roundings. We leave the task of determining the optimal tradeoff
between the number of roundins and e open for future work.

From the second part of the analysis, we find that the average of v scales with
O(%™). In contrast, the lower bounds for the two summands in Eq. (42) differ by a
term of order O(e'/3). Therefore, the numerically observed scaling of v as a function
of ¢ is significantly better than a naive estimate based on the difference of the lower
bounds would have suggested.

5 Improved Gibbs state simulation

In this section, we present improvements to the quantum version of the HU algorithm,
which was originally given in Ref. [25]. On a high level, the idea of the quantum imple-
mentation is to realize the Gibbs state p as the physical state of a quantum system. The
advantage of this method is that the dimension of matrices representable in this way
scales exponentially with the number of qubits. The disadvantage is that information
about the violation of the constraints and about the objective value have to be estimated
statistically from physical measurements. We refer to Ref. [25] for a thorough descrip-
tion. In this section, we only account for the parts of the method for which we suggest
improvements.

25

The quantum version of the HU algorithm delegates a number of subroutines to a
quantum computer. More specifically, given a classical descriptions of H, P,, and AH,
it uses quantum subroutines to estimate the trace inner products tr(P.p) and tr(AHp),
and the main diagonal elements p;;. Recall that p is the Gibbs state for H.

As already stated in [25, Lem. 3.3], the quantum routine for estimating the diagonal
elements dominates the running time. In their approach, obtaining an estimate for the
probability distribution p;; up to an error of O(¢) in £1 norm for the Gibbs states p that
appear in the HU algorithm requires a number of gates that scales as

@(n3/281/2+0(1)6_5+0(1)),

where the O notation hides logarithmic factors. In contrast, we will argue that this
scaling can be improved to

O(nd/2s1/F+o() —3+o(1)y

The improvement is mainly achieved by invoking newer and more optimal methods
for working with Gibbs states on a quantum computer. Specifically, [25] was based on
Ref. [39], while we switch to Ref. [5].

That reference, in turn, builds on a subroutine for Hamiltonian e-simulation, i.e.
for the task of implementing a unitary U that is e-close to e*¥ in operator norm, given
access to an s-sparse matrix H € R™*" stored in QRAM, and a time ¢ € R.

The results of Ref. [5] are stated explicitly based on the Hamiltonian simulation al-
gorithm of Ref. [12]. However, it is a straight-forward (if lengthy) exercise to swap
in an improved method. For our analysis, we have done just that, using the rou-
tine from Ref. [33], which has complexity O(tv/s| H||¢, —e,) T /e°()). Because
|H ¢, —e, < ||H]|, this allows to achieve a similar scaling in the sparsity as the original
quantum HU routine from Ref. [25], while simultaneously having an improved depen-
dence on the precision e. The Hamiltonian Simulation subroutine enters the analysis of
Ref. [5] in their Lemma 36. Plugging in the version of Ref. [33] and retracing the rest
of the argument then gives the following performance for preparation of a Gibbs state:

Lemma 6 ([5, Lem. 44]). Given QRAM access to an s-sparse matrix H € R™*™
satisfying 1 < H and 21 A H, we can probabilistically prepare a purified Gibbs
state |p) A, s.1. with high probability | Tr g (|p)(p| ap) — e~ H / tr(e=)| . < g holds,
using

t

O((IH || V)M /i)

queries and gates.

Lem. 6 requires H to satisfy satisfies 1 < H and 21 A£ H. We achieve this by
employing a trick from Ref. [5, Cor. 14], where we compute an estimate Ay, of the
minimum eigenvalue of H with an additive error 1/2. Using this estimate, we apply
Lem. 6 to a shifted Hamiltonian

H, :=H — (Amin — 3/2)1 (43)

26

that fulfills the requirements. Shifting a Hamiltonian by a multiple of the identity does
not change the corresponding Gibbs state. Computing Apin can be achieved using
O(||H|| sy/n) queries and gates (c.f. Ref. [5, Lem. 50] with e = 1/2).

As argued in Ref. [25, Sec. 3.4], for Hamiltonian matrices H that occur in the HU
algorithm, one has the operator norm bound || H|| = O(log(n)e~!). Furthermore, they
point out that, given O(ne~?2) preparations of p with precision ¢/8, one can acquire
estimate p;; for the diagonal entries fulfilling >, |pis — pis| = €/4. Thus, the cost per
iteration of the HU algorithm is

O(n?/21/2+o() —3+o(1)),

as claimed.

6 Asymptotic performance of the improved Hamilto-
nian Updates

In this section, we summarize the improvement in the asymptotic performance of the
HU procedure that we have achieved compared to Ref. [25].

The first table below gives estimates for the asymptotic complexity of solving the
problem (8) as a function of €. In this paper, we did not attempt to find improved
rigorous asymptotic estimates for this scaling behavior. However, in Sec. 3, we have
described several practical ways to speed up convergence. The numerical results pre-
sented in Sec. 3.5 show that these lead to speedups by very large constant factors, but
the numerically observed asymptotic scaling matches the original exponent within the
margin of error.

Previous theor. bounds New theor. bounds Numerical scaling 95% CI for exponent

O(e™?) (no new results) O(e™2:02) [—2.39, —1.74]

Number of
iterations

The next table summarizes the scaling of the precision v of the rounded solution
(compared to an ideal SDP solution, see Eq. (42)) as a function of ¢, as detailed in
Sec. 4.1.

Previous theor. bounds New theor. bounds Numerical scaling 95% CI for exponent

O(e2-25) O(e2-33) O(e27) [0.71,0.88]

Precision after
rounding

The improved scaling of the total running time of each iteration as a function of e,
as detailed in Sec. 5 is as follows

Previous theor. bounds New theor. bounds
Time per iteration:
classical @(nlin{ns, n%se"1}) (no new results)
quantum @(n1.550.5+()(1)6—5+o(1)) @(nl.580.5+()(1)6—3+o(1))

The previous tables can now be combined, to estimate the scaling of the total run-
ning time required to achieve a given precision v of the solution after rounding. For

27

the final column, we have combined the analytic estimates on the running time from
the previous table, with the numerically found scaling of the precision v from the table
above.

Previous theor. bounds New theor. bounds Combined theor. / num. scaling
Total time
classical O(min{n®v =8, n%sv712}) | O(min{n’v=6, n?sv7%}) O(min{n3y =256 n2s,=3.82})
quantum O(nl3s0-5F0(1),=28+0(1))| G(p1:550-5+0(1),~15+0(1)y| G(p1:540-5+0(1),,—6.35)

Theorem 1 of [25] (reproduced in our introduction) stated their asymptotic perfor-
mance in terms of the precision p of the SDP solution, not in terms of the practically
more relevant precision v of after rounding. However, as we found in Sec. 4, the two
quantities display the same scaling behavior as a function of €. Hence, conversely, the
running time scaling as a function of v matches the running time scaling as a func-
tion of p. Therefore, the results of the previous table are directly comparable with
Theorem 1 of [25].

7 Non-asymptotic benchmarking of quantum implemen-
tations

In this section, we compare the quantum implementation of HU to its classical coun-
terpart by estimating the required number of quantum gates and tracking the classical
computation time. We then extrapolate these results to larger problem instances to
explore for which problem sizes one can expect a future quantum computer to beat a
classical one, under optimistic assumptions. This approach mirrors previous studies
for the non-asymptotic behavior of quantum algorithms that are too large to be simu-
lated in the gate model; see, e.g. [18, 42, 3, 40]. We assume that the reader is familiar
with standard methods in quantum computing. For further background consult e.g.
Ref. [35].

7.1 Gate counting

To compare the classical and quantum running times, we generate random problem
instances and solve them using the classical version of the HU algorithm. We estimate
the number of gates needed for the quantum subroutines and compare this with the
classical running time. From this comparison, we determine the maximum allowable
gate time for each instance that would enable a quantum computer to outperform its
classical counterpart. For our estimates of the quantum gate count, we consistently
make assumptions that are favorable to the quantum computer. This approach will
be justified in retrospect: It will turn out that even these optimistic estimates put the
threshold for a quantum advantage far beyond the capabilities of realistic hardware.
As discussed in Sec. 5, the running time of the quantum part is dominated by the
task of estimating the diagonal elements p;; of the Gibbs state. We will only estimate
the cost of this part, and neglect all other quantum sub-routines. (Recall that this is
justified, as we aim for an optimistic assessment of the quantum complexity). In the

28

benchmarks, the precision of the Gibbs state simulations is set to €/8, in line with
Lem. 19 and Ref. [25, Lem. 3.3]. For simplicity, and again being generous to the
quantum approach, we nevertheless assume that the subroutines return exact values.
Additionally, we compute the free energy directly using Eq. (23) instead of bounding
it via Eq. (31). Finally, we will count solely logical two-qubit gates, neglecting single-
qubit gates and error-correction overheads.

As detailed in Appendix B, in this framework, we find the following result for the
complexity of preparing Gibbs states.

Estimate 7. Let H € R™*"™ be an s-sparse matrix and b be the number of bits per
entry used to store H. The expected number of two-qubit gates used to prepare an ap-
proximation of the Gibbs state py; with precision € using the constructions in Refs. [33,
20, 34, 5, 14] is at least

(32b + 321og,(n) — 18) (4.5In(7.8¢ 1) n'/2s | Hy || 0 — 1), (44)
with H constructed from H as defined in Eq. (43).

The estimates for the diagonal entries of p are obtained statistically by measuring
multiple prepared Gibbs states in the computational basis. The number of Gibbs state
samples required can be bounded as follows:

Estimate 8. Let ¢ < 1/4. Let p € R™ " be a quantum state that can be prepared
with precision €/8 in trace distance on a quantum computer. The expected number
of preparations needed to compute estimates p;; for the diagonal entries of p, s.t.
> i |pii — pii| < § using the construction in Appendix B, is at least

1281n(2)e 2n. (45)

A detailed account for how to arrive at Estimates 7 and 8 is provided in Appendix B.

We compute the total number of two-qubit gates required for a diagonal update
step in the HU routine by multiplying the gate cost per Gibbs state sample (44) with
the expected number of samples needed to estimate the diagonal entries of p (45).

We avoid directly computing || H ||, = |[H — (Amin — 3/2)1||max in the bench-
mark, as determining the minimum eigenvalue classically for each iteration is compu-
tationally expensive. Instead, we use a conservative estimate |[Hy || .. 2 [H|l ,ax
based on our numerical observation || H, || .. =~ 2 ||H|| .- Additionally, we assume
that the matrix H is represented on the quantum architecture with just b = 8 logical
bits per element.

We generate random cost matrices with a block form as defined in (3) with normally
distributed non-zero entries in each block and a sparsity of s = 16. A total of 256
instances are created, with dimensions uniformly distributed between 512 < n < 4096.
We then solve the instances using the HU algorithm with e = 0.01 and a binary search
with a final maximum gap of 0.01. The matrix exponentials — the most computationally
expensive part of the process — are executed on an Nvidia GeForce RTX 4090 GPU
card, while an Intel i7-13700 CPU handles the other operations in the routine.

29

7.2 Results

Here, we compare the quantum and the classical running times for the benchmarked
non-asymptotic instances.

In a first step, we ignore the possibility of parallelizing the quantum implementa-
tion. With this in mind, we divide the time the classical implementation took by the
lower bound on the number of quantum gates given in the last section. A necessary
condition for a quantum architecture to be preferable to classical consumer hardware
would be that its two-qubit gates run in time at most equal to that quotient.

The results are displayed in the left panel of Fig. 6. We find that even for large
instances up to dimension n = 4096 a quantum computer requires a two-qubit gate
time of less than 10~ 1% to be able to break even. This is more than ten orders of
magnitude away from the current single-qubit gate speed record of 6.5 x 10~%s [19].

There are two parts of the quantum algorithm where parallelization can provide an
advantage:

e Parallel execution of quantum gate operations. Gates acting on different qubits
can be applied simultaneously rather than sequentially. The smallest number of
layers required to execute a circuit taking this possibility into account is called
its depth. Unfortunately, in our case, it is not known how to reduce the circuit
depth significantly below the gate count. Indeed, the main building block of the
circuit is an adder, for which the state-of-the-art two-qubit gate depth is only a
factor of two lower than the total two-qubit gate count [20].

* Parallel sampling of Gibbs states. This step offers significant parallelization
potential, as the required number of samples is more than 128 In(n)e~2n. From
a computer science perspective, this reduction in algorithmic depth might be of
theoretical interest. However, each simultaneous computation would require its
own dedicated quantum computer, limiting the practical relevance.

7.2.1 Extrapolation

Due to the superior asymptotic scaling of the quantum HU algorithm compared to its
classical counterpart, larger problem instances make it easier for the quantum approach
to break even. We now investigate whether this favorable scaling is sufficient to achieve
a quantum advantage for instances that remain computationally feasible at all. For this
we use two different approaches: (1) Extrapolate using the exponents that have been
derived theoretically in Sec. 6, and let the benchmark data determine just the prefactor.
(2) Fit a powerlaw function of the form f(t) = a1¢%* with free parameters a1, ao to the
data.

Both approaches are displayed in Fig. 6. We have extrapolated the quantum gate
counts for instance sizes that would take more than 100 years to be solved with the
given classical hardware. Still, even at this scale, the required two-qubit gate time
is more than a factor of 107 less than current quantum gate times. For a powerlaw
extrapolation (2) the gap is even larger with a factor of more than 108.

30

Benchmark data Asymptotic extrapolation 1.17 x 102! -1/

2 ---- Powerlaw extrapolation 4.00 x 102" -¢+%* -~ Best current gate time

407519 ; ; ; ; —m 4000 ; : : : :
0 ‘. @ 107°F 1
~3.5F . =
§ 350 E
©3.0 ST § 107 3
3 T 3000 ®
525 ¢ 5lovp E
8 . 25002 £
g20 5 giop]
£ £ £
b 20007 o
215 S gi0v]
o [L
= - —
'.g 1.0 1500 ‘_g 10-19F o E|
g 4
o o

0.5 1000 —21fmm 1
E Faon

0.0 L L L L L L |— L L L L L

] 200 400 600 800 1000 1200 1072 10° 102 104 10° 10® 1010
Classical computation time (s) Classical computation time (s)

Figure 6: Allowed maximum two-qubit gate time for a quantum computer to break even to a
classical simulation. The benchmark data is extrapolated based on the known asymptotic scaling
behaviors (orange) and a power law fit (blue). The constant line (red) shows the best current
classical single-qubit gate time of 6.5ns. The colored areas show the 95% confidence interval
of the fits. We see that with this gate speed, even for running times of more than 100 years, the
quantum implementation would be more than 107 times slower than the classical implementa-
tion.

8 Conclusion

In this paper, we have investigated whether the theoretically proven asymptotic speed-
ups provided by quantum SDP solvers can be used to achieve a practical advantage for
solving convex relaxations of combinatorial optimization problems. A priori, combi-
natorial problems seem to be a good fit for quantum SDP methods, because their main
drawback — the unfavorable scaling in the precision — is less important for applications
where the solution will be subjected to a rounding procedure.

Unfortunately, our work has found no indication that advantages manifest in regimes
that are remotely realistic. This finding holds in spite of the fact that we have spent sig-
nificant efforts to improve the Hamiltonian Updates algorithm before benchmarking it,
and that we have made a large number of approximations and assumptions in favor of
a quantum architecture (in particular, ignoring all quantum error correction overhead,
and only estimating the cost of a subset of the routines a quantum computer would have
to run).

It therefore seems that, to the best of our current knowledge, the proposed quantum
SDP methods for combinatorial optimization may constitute a galactic algorithm —
advantageous in theory, but such that their benefit requires instance sizes that are far
beyond what can be realistically solved.

We note that the present work does not rigorously prove the absence of a real-
istic quantum advantage. Indeed, any such result would require rigorous and non-
asymptotic lower bounds on the classical complexity of the problem. But uncondi-
tional complexity lower bounds are notoriously hard to obtain [7], so that the results
of thorough benchmarks of state-of-the-art implementations seem to constitute the best
evidence that is realistically achievable.

31

Data availability - The data that supports the findings of this article is openly avail-
able [29].

8.1 Acknowledgements

We thank Brandon Augustino, Johannes Berg, Lionel Dmello, and Sebastian Stiller for
insightful discussions.

This work was supported by the Federal Ministry for Economic Affairs and Climate
Action (BMWK), project ProvideQ, and the German Federal Ministry of Education
and Research (BMBF), project QuBRA. FH and DG are also supported by Germany’s
Excellence Strategy — Cluster of Excellence Matter and Light for Quantum Computing
(ML4Q) EXC 2004/1 (390534769).

References

[1] Amira Abbas et al. “Challenges and opportunities in quantum optimization”. In:
Nature Reviews Physics (2024). DOI: 10.1038/s42254-024-00770-9.

[2] Noga Alon and Assaf Naor. “Approximating the Cut-Norm via Grothendieck’s
Inequality”. In: SIAM Journal on Computing (2006). DO1: 10.1137/S0097539704441629.

[3] Sabrina Ammann et al. Realistic Runtime Analysis for Quantum Simplex Com-
putation. 2023. eprint: 2311.09995.

[4] Joran van Apeldoorn and Andrds Gilyén. “Improvements in Quantum SDP-
Solving with Applications”. In: 46th International Colloquium on Automata,
Languages, and Programming (ICALP 2019).2019.D0OI1: 10.4230/LIPIcs.
ICALP.2019.99.

[5] Joran van Apeldoorn et al. “Quantum SDP-Solvers: Better upper and lower
bounds”. In: Quantum (2020). DOI1: 10.22331/9-2020-02-14-230.

[6] Huzihiro Araki and Elliott H. Lieb. “Entropy inequalities”. English (US). In:
Communications In Mathematical Physics (1970). DOI: 10.1007/BF01646092.

[71 S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cam-
bridge University Press, 2009.

[8] S. Arora, E. Hazan, and S. Kale. “Fast algorithms for approximate semidefinite
programming using the multiplicative weights update method”. In: 46th Annual
IEEE Symposium on Foundations of Computer Science (FOCS’05). 2005. DOT:
10.1109/SFCS.2005.35.

[9] Brandon Augustino. Private communication. 2024.

[10] Brandon Augustino et al. Solving the semidefinite relaxation of QUBOs in matrix
multiplication time, and faster with a quantum computer. 2023. arXiv: 2301 .
04237 [quant-ph].

[11] Alexander Barvinok. A course in convexity. American Mathematical Soc., 2002.

32

[12]

(13]

(14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

[26]

Dominic W. Berry, Andrew M. Childs, and Robin Kothari. “Hamiltonian Sim-
ulation with Nearly Optimal Dependence on all Parameters”. In: 2015 IEEE
56th Annual Symposium on Foundations of Computer Science. DO1: 10.1109/
focs.2015.54.

Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge uni-
versity press, 2004.

Michel Boyer et al. “Tight bounds on quantum searching”. In: Fortschritte der
Physik: Progress of Physics (1998).

Fernando G. S. L. Brandao et al. Quantum SDP Solvers: Large Speed-ups, Op-
timality, and Applications to Quantum Learning. 2019. arXiv: 1710 . 02581
[quant-ph].

Fernando G.S.L. Brandao and Krysta M. Svore. “Quantum Speed-Ups for Solv-
ing Semidefinite Programs”. In: 2017 IEEE 58th Annual Symposium on Founda-
tions of Computer Science (FOCS).2017. D01: 10.1109/F0OCS.2017.45.

Jop Briet, Fernando Mario de Oliveira Filho, and Frank Vallentin. “Grothendieck
inequalities for semidefinite programs with rank constraint”. In: Theory of Com-
puting (2014). DO1: 10.4086/t0c.2014.v010a004.

Chris Cade et al. “Quantifying Grover speed-ups beyond asymptotic analysis”.
In: Quantum (2023). DO1: 10.22331/9q-2023-10-10-1133.

Y. Chew et al. “Ultrafast energy exchange between two single Rydberg atoms
on a nanosecond timescale”. In: Nature Photonics (2022). bo1: 10 .1038/
s41566-022-01047-2.

Steven A. Cuccaro et al. A new quantum ripple-carry addition circuit. 2004.
arXiv: quant-ph/0410184 [quant-ph].

Alexander M. Dalzell et al. “End-To-End Resource Analysis for Quantum Interior-
Point Methods and Portfolio Optimization”. In: PRX Quantum (2023). DOI: 10 .
1103/prxquantum.4.040325.

Alexander M. Dalzell et al. Quantum algorithms: A survey of applications and
end-to-end complexities. 2023. arXiv: 2310.03011 [quant-ph].

R.P. Feynman. Statistical Mechanics: A Set Of Lectures. Advanced Books Clas-
sics. Avalon Publishing, 1998.

Shmuel Friedland and Lek-Heng Lim. Symmetric Grothendieck inequality. 2020.
arXiv: 2003.07345 [math.FA].

Fernando G.S L. Brandao, Richard Kueng, and Daniel Stilck Franca. “Faster
quantum and classical SDP approximations for quadratic binary optimization”.
In: Quantum (2022). DOI: 10.22331/9-2022-01-20-625.

Michel X. Goemans and David P. Williamson. “.879-approximation algorithms
for MAX CUT and MAX 2SAT”. In: Proceedings of the Twenty-Sixth Annual
ACM Symposium on Theory of Computing. 1994. DOI: 10.1145/195058.
195216.

33

[27] Lov K. Grover. “A Fast Quantum Mechanical Algorithm for Database Search”.
In: Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of
Computing. ACM, 1996. DOI: 10.1145/237814.237866.

[28] Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. “Quantum Algorithm for
Linear Systems of Equations™. In: Phys. Rev. Lett. (15 2009). DOI1: 10.1103/
PhysRevLett.103.150502.

[29] Fabian Henze et al. 2025. DOI: 10.5281/zenodo.14871936.

[30] Richard M. Karp. “Reducibility among Combinatorial Problems”. In: Complex-
ity of Computer Computations. 1972. DO1: 10.1007/978-1-4684-2001~
2_09.

[31] Christopher King. Inequalities for Trace Norms of 2 x 2 Block Matrices. 2003.
DOI: 10.1007/s00220-003-0955-9.

[32] Yin Tat Lee, Aaron Sidford, and Sam Chiu-Wai Wong. “A Faster Cutting Plane
Method and its Implications for Combinatorial and Convex Optimization”. In:
2015 IEEE 56th Annual Symposium on Foundations of Computer Science. 2015.
DOI: 10.1109/F0OCS.2015.68.

[33] Guang Hao Low. “Hamiltonian simulation with nearly optimal dependence on
spectral norm”. In: Proceedings of the 51st Annual ACM SIGACT Symposium on
Theory of Computing. STOC 2019. Phoenix, AZ, USA: Association for Com-
puting Machinery, 2019. DO1: 10.1145/3313276.3316386.

[34] Guang Hao Low and Isaac L. Chuang. “Hamiltonian Simulation by Qubitiza-
tion”. In: Quantum (2019). DOI: 10.22331/g-2019-07-12-163.

[35] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum
Information: 10th Anniversary Edition. Cambridge University Press, 2010.

[36] Ryan O’Donnell. “SOS Is Not Obviously Automatizable, Even Approximately”.
In: 8th Innovations in Theoretical Computer Science Conference. 2017.

[37] Brendan O’Donoghue et al. “Conic Optimization via Operator Splitting and Ho-
mogeneous Self-Dual Embedding”. In: Journal of Optimization Theory and Ap-
plications (2016). DOI: 10.1007/s10957-016-0892-3.

[38] Boris T. Polyak. “Some methods of speeding up the convergence of iteration
methods”. In: USSR Computational Mathematics and Mathematical Physics
(1964). DOI: https://doi.org/10.1016/0041-5553(64) 90137~
5.

[39] David Poulin and Pawel Wocjan. “Sampling from the Thermal Quantum Gibbs
State and Evaluating Partition Functions with a Quantum Computer”. In: Phys.
Rev. Lett. (22 2009). DOI1: 10.1103/PhysRevLett.103.220502.

[40] QuBRA Quantum Benchmarking Project. https://github.com/qubrabench.
2024.

[41] Prasad Raghavendra and Benjamin Weitz. “On the Bit Complexity of Sum-of-
Squares Proofs”. In: 44th International Colloquium on Automata, Languages,
and Programming. 2017.

34

(42]

[43]

[44]

[45]

Debora Ramacciotti, Andreea I. Lefterovici, and Antonio F. Rotundo. “Sim-
ple quantum algorithm to efficiently prepare sparse states”. In: Phys. Rev. A (3
2024). DOI: 10.1103/PhysRevA.110.0326009.

Joseph Renes. Quantum Information Theory: Concepts and Methods. Walter de
Gruyter GmbH & Co KG, 2022.

Vivek V. Shende and Igor L. Markov. “On the CNOT-cost of TOFFOLI gates”.
In: Quantum Info. Comput. (2009).

Peter W. Shor. “Algorithms for Quantum Computation: Discrete Logarithms and
Factoring”. In: 35th Annual Symposium on Foundations of Computer Science.
IEEE Computer Society, 1994. DOI: 10.1109/SFCS.1994.365700.

35

A Proofs

A.1 Free energy tracking

Lem. 2 describes a well-known concept in statistical mechanics [23, Ch. 2.11]. We still
give the calculation for completeness.

Lemma 2. For all symmetric H)AH € R™*™ and)\ € R, the free energy satisfies
ONF(H + M AH) = tr(pgiaagAAH). 29)

Proof. We have

| —

Oy tr(e H-AMY — tr (Ox(—H — AAH)F)

x>

k—1
;'1 tr ((—H — AAH)'AH(—H — NAH)*=1)

-1
— (k- 1)!

1
= —tr (e_H_kAHAH) ,

M T

(46)

el
Il
—
I
o

M

tr (—H — AAH)*'AH)

E

where the key step was to use the cyclicity of the trace to combine the terms (—H —
AAH). Then

ONF(H + AAH) = — 9y Intr(e” - M)

BN tr(e—H—)\AH)
tr(e—H—)\AH)

47
tr(e” TAATAR) @7
- tr(e—H—,\AH)
= tI‘(pH_H\AH)\AH).
O

Next, we prove Thm. 3. In preparation for this, we need the following Lemmas 9
and 10.

Lemma 9. Let 0 < 8 < 1 be the momentum hyperparameter, AH € R™*" be an
update matrix in the HU routine and

1— 2
A= % tr(ppAH) (48)
the step length of an update. Then,

1
i — <. 4
clélf |AH — 1| 1 (49)

36

Proof. Let K be the current iteration of HU and (AH)®*), (P)(*) the operators corre-
sponding to the k" iteration. The chosen step length) is independent of the update
type (i.e. cost or diagonal update). Then, following from the definitions of the momen-
tum in Sec. 3.3, the update term takes the form

(AH)H) = Zﬁ’“ P)E=h), (50)

where, depending on the type of update in the respective iteration, (P) (K=k) takes the
form of one of the following:

P.=~1-C
(PS)YHE=R) = sign ((diag (p(K*k)) -]l/n) 51)
(Péz)(K k) _ dlag (p(K_k)) — I]'/n
[(diag (pF=R)) — 1/n||
In either case, this fulfills
LSRR
inf H(P) call < 1. (52)
Then, from a geometric series argument follows
inf ‘(AH)(K) - cILH
ceR
K—1
k p)K- k) _
<> 8 inf [P) et (53)
k=0
K
O

Next, we show that for a suitable step length the change in free energy (and thus also
the decrease in relative entropy distance) can be lower-bounded in terms of tr(py AH):

Lemma 10. Let 0 < 8 < 1 be the momentum hyperparameter, AH € R"*™ an
update matrix in the HU routine, py a Gibbs state for a Hamiltonian H € R™*",
F(H) = —In(tr(exp(—H))) the free energy and

1— 2
A= % tr(ppAH) (54)
the step length of an update. If tr(pg AH) > 0, then
(1 - B)?
1 .

F(H 4+ MAH) — F(H) > (55)

37

Proof. We denote J := 1/(1 — j3). The first step is to show that
|03F(H + AAH)| = |0x tr(praan AH)| < 27, (56)

First, note that Gibbs states are unchanged when adding multiples of identity to the
Hamiltonian, so that

e—H—-A(AH—c1)

PHANAH = T Rk (57)
and similarly
tr ((pr+rAH — PHA(O+e)am)cl) =0, (58)
where, as shown in Lem. 9, we can choose ¢ such that |AH — c1|| < J.
Next, Ref. [16, Lem. 16] states for Hermitian operators H and H’
miﬂ)_u?eHH’) gQ(eHH—H/H _1). (59)

Then, combining the above with a matrix Holder inequality gives

Oxtr (priran AH) | = lim .

tr (prraanAH) —tr (pry(xye)anAH) ’

. infeer | tr ((prAAH — PH+OGe)am)(AH —cl)) |
B e—0 |£|

lprxam — pr+(+e)am]|t
le]

< inf |AH — ¢l lim
ceR e—0

einfeer ls(AH—c1)| _ 1

<2J lim
e—0 ‘€|

=2J inf |[(AH — cl)|| < 2J?
ceR
(60)

and thus [0 tr(prarag AH)| < 2J2. It follows that A\ = tr(pg AH)/(2J?) ful-
fills tr(pH+>\AHAH) > 0.

Next, let « := tr(pg AH). Now, for the change in free energy we have

AF =F (H +a/(2J°)AH) — F(H)

a/(2J?) a/(2J?)
= / a)\/F(H)dX = / tr(pH_;,_)\/AHAH)dX
0 o 61)

a/(2J?)
> / (tr(pu AH) — XDy tr(proram A dN,
0

38

where we bounded the decrease of the integrand by its derivative. Then, with (56)
follows

2

/e 2\dN = 2 (62)
> - -
AF;ié (a = 22N)dX = 2

O

Now, we have all the tools to bound the maximum number of iterations needed in
the HU routine if a feasible solution exists:

Theorem 3. For an HU routine using Pf ! in the diagonal update as defined in Eq. (10),

momentum as defined in Sec. 3.3 and a step length \ = % tr(pg AH), the maxi-
mum number of steps needed to find an e-feasible solution to a feasible program (5) is
upper bounded by

T =16(1 — B) % ?In(n). (32)

Proof. By the definition in Sec. 3.3, AH is of the form P + cM with some positive
factor ¢ (we can ignore here the rescaling P, = tr(P,.p)P,, as this can be absorbed by
the \). Due to the overshoot criterion in each preceding iteration, tr(py M) is always
nonnegative, and thus, tr(pg AH) > tr(pg P). With Lem. 10 we can lower bound

: tr(pr AH)2(1—8)° .
the change in free energy at each step by AF > ’m’#. Then, when using

the original Pcfl for diagonal updates, we have tr(py P) > € at each update, and thus

AF > # in each iteration. The initial free energy is F'(0) = —1In(n). If a
feasible solution exists, the free energy cannot become positive, hence, the maximum
number of steps is 7' = 16(1 — 8)~%¢~2In(n). O

A.2 Randomized rounding
A.2.1 Inexact diagonal constraints

The following proof of Thm. 4 is based on the proof of Ref. [25, Prop. 3.1] with the
main difference being Eq. (74), which allows us to obtain a scaling of O(e'/?) instead
of O(e'/*). For completeness we will give the full proof.

Theorem 4. There is an efficient procedure which, given an € > 0 and a psd matrix
p € R™" such that Y, |pis — 1/n| < €, constructs a psd matrix p* € R"™ "™ where

o — % Vi € [n] (36)
and lei — p”tr = 0(61/3). 37

Proof. For convenience we define ¢ := €'/3. Then, by assumption,

Y lpi—1/n] <& (63)

39

The construction of p* consists of two steps. First we adjust the rows and columns
of p that have large diagonal deviations. For this, we set the diagonal elements in these
rows and columns to 1/n while setting the corresponding off-diagonal entries to zero,
thus ensuring positive semidefiniteness of the resulting matrix. This is a rather harsh
correction, but Y, |p;; — 1/n| < &3 guarantees us that only a small number of entries
need to be treated this way. In the second step, we set all remaining diagonal entries to
1/n and restore positive semidefiniteness by shifting p by %]l and renormalizing it.

Denote d; = p;; — 1/n. Next, we define the index set B C {1,...,n} correspond-
ing to the diagonals with larger deviations:

B={i:|d;] > %} with complement B = {i : |d;| < %} (64)

Now, we define the two matrices p/, D € IR™*™ and construct p* from these, given as
follows:

Step 1:
1/n if i=3, 1€B,
pij =40 if i#j, i€BVjEB, (65)
pij else,
Step 2:
_dz if = .’) B,
D— =g i (66)
0 else,
1 £
f=——— (p+D+>1). 67
S <p T) 0

Then p’ is psd, because it arises by first compressing p to the submatrix with indices in
B, and then adding 1 /n to submatrix with indices in B. Both steps preserve positive-
semidefiniteness. Next, D is a diagonal matrix with | D;;| < % and therefore, D + %]l
is psd. Thus, p? is psd with diagonal entries 1/n. We now show that these corrections
are mild in the sense that Hpﬁ — thr = O(¢).

From Y, |pii — 1/n| < & we have

|B| < &n. (68)
Next, write p in block matrix form
(11) (12)
P P
= ; (69)
p (p<21> p<22>)
with coordinates ordered such that the first block corresponds to the indices in B and
the second block to the ones in B. Then, following from the construction in (65),

oo (1s/n—p pm))
10 =l H(mab)| o

< " Nl + 21682 e + 1L/ v

40

Now, using a result from Ref. [31], we have

[l tei2)] < (ot by o
1p® e 112 lex 1PV ex Hpm)lltr "
P p(12)
=1, (72)
H <p(21) p(22)> N
where || - ||2 is the Frobenius (or Schatten-2) norm. Then,
2 2 2
‘p +2Hp +Hp <1 (73)
tr tr tr
Because p(*?) is a principle submatrix of p, it is also positive semidefinite. Thus,
B
Hp =tr (p(22)) =1—tr <p(ll)) >1- u - Z |di| >1—¢2—¢3
= (74)
—1-0(&).
Then, combining (73) and (74) gives ||p(!) Hfr +2||p1? ||fr = O(£2), and hence
o] +2]|p2| = o). (75)

Furthermore, we have |15 /|| = % < &2, Then, from (70),

0" = pll, = O(E). (76)

This concludes the first step. For the second step we have

1 1 &
Y= —— -1 — | D+ =1
o=l ..(H&) +1+£(T) .
1 / §
= —€p+D+>1
1+£H & o (77)
1 £
= (6)-
Combining (76) and (77) with a triangle inequality gives us
10* = pl,, = O&) = O('7?). (78)
O

A.2.2 Approximation ratio after rounding

The proof of Lem. 11 closely follows Ref. [2, Sec. 4.1]. Compared to the original
version of the proof, we also make a statement about the quality of rounded vectors
obtained from solutions that are not strictly feasible.

41

Lemma 11. Let p* € R™*"™ be the optimal SDP solution corresponding to a cost
matrix C € R"™™™ with a block structure as defined in (3). Let x € {—1,1}" be
the vector obtained by applying the randomized rounding procedure to a psd matrix
p € R™"™ with p;; > 0. Let o € R"*" be the matrix with entries ;; = —/

Then
T 2 2 *
E [¢"Cx| > =ntr(Co) — (1 — = | ntx(Cp*). (79)
T T
. (P
Proof. Setu; := N so that
’U,ITU]‘ = TLO'ij. (80)
Then we have
;= sign((v/p)] 9) = sign(v/piiui 9) = sign(u; g). (81)

We will bound the expected objective value E[z?'Cx] of the rounded solution.
Here, the expected value is taken over a standard Gaussian random vector g € R".
This will be aided by two short calculations, valid for any two unit vectors ¢,b € IR™.
First,

E[bT 997 ¢] = b7 ElggT]c = bTe.

Next, using the fact that the distribution of the Gaussian vector is rotationally invariant,
we may assume that ¢ = e; is equal to the first element of the standard basis, and
b = by e1 + by es is a linear combination of the first two basis vectors. Similarly, g;
and g denote the first two components of g. Then

E[(b" g) sign(c 9)] = E[(b1g1 + b2g2) sign(¢1)]
= E[b1g1 sign(g1)] + E[b2g2] E[sign(g1)]
T
= b1 E[g1 sign(g1)]

2 o0 2 2
=b — xe$/2dx:\/76Tc.
1\/27r/o s

From this, we can expand

7r T . .
—E [z;7/] =5 E [sign(u;] g) sign(u] g)]

2
—E KuiTg - \/zsign(ufg)> <ujTg —~ \/isign(ujrg))}
A

™ . ™ .
~BiTog] + /3BT g sl o)) + [S BT sin(ul)

A —ulws T T — A .
=0 —uj uj Uy uy +up g = Ay 4 noy;.

42

As a convex combination of symmetric rank-one matrices, A is psd. Factoring out,
using the two calculations above, and as well as u;frui = no;; = 1, we see that its main
diagonal elements satisfy

Ay =E [(uiTg - \/?sign(uiTg)> (ung - \/Fsign(u?g))]
2 2 (82)

™ ™
:(1—2)u?ui+5:5—1.

Thus, (n(5 — 1)) "' A is feasible for the SDP. For a cost matrix with the given block
form, the spectrum of objective values for the SDP is symmetric. This can be seen by

considering the block matrix
1 0
U= < 0 _1> . (83)

Then, Up*U t is also feasible for the SDP and
tr(CUp*UT) = tr(UTCUp*) = — tx(Cp*). (84)

Thus, we know that — tr(Cp*) is a lower bound for the SDP and therefore,

[tr(CA)| < (g - 1) ntr(Cp*). (85)
This allows us to bound
E [+7Cx] = % (t2(Cno) + tr(CA)) (86)
> 2 (1x(Cno) | (0D))) 37
> %ntr(CJ) - <1 - i) ntx(Cp*). (88)
0

The proofs of Lem. 12 and Thm. 5 are based on Ref. [25, Sec. 3.5]. They are
adjusted to also consider the improved scaling from Thm. 4.

Lemma 12. Ler 0 < § < 1/2 and p € R™™" be a psd matrix such that), |pi; —

1/n| < &3, Let 0 € R™*™ be the matrix with entries 0ij = n\/Z“T Then,
iP5
lp =0l = O(&). (89)

Proof. Similar to the proof of Thm. 4, we define the index set B = {i : |d;| > %} with
d; = pii — 1/n and write o as block matrix

an _(12)
o o
o= <0(21) U(22)>) (90)

43

where o(?2) corresponds to the index set of B.
We now show that ||p(*2) — o?2)|| = O(¢). To this end, define the diagonal
|B| x | B|-matrix by

1 _

- , i€ B. on
\V Pii

With this we can define a linear map D : X + Dz X Dp on the space of |B| x |B|-
matrices that fulfills D(p(??)) = ¢(?2),
We can then bound

o2 =0 =@ -p)pe| 92)
<= Dllyee [0, (93)
<N =Dl st O4)

because p??) is a submatrix of p and ||p||,, = 1. As both 1 and D are self-adjoint
with respect of the Frobenius inner product tr(X7Y), the dualtity of norms implies
||]1 - D”tr—)tr = ||]1 - D| 00— "

By the definition of B, the diagonal elements of p(??) lie in [(1 — &) /n, (1 +£)/n)].
Then

1 1
< (Dp)ii < , (95)
T+¢ T_¢
and thus for £ < 1/2:
1-¢<(Dp)i <1+¢. (96)
Next, set D¢ = D — 1. From Eq. (96) it then follows that || D¢|| < £. Now,
(1 =D)(X)|loo = IXDe + DeX + De X Del CH)
2
= 2{|Dell o X1l o + 1De [[1X 1l ©8)
< 381X 99)
and hence |1 — D||__, . < 3£ We therefore have
[P =0 <L =Dy = 11~ Dl = OE). (100

Next, we bound the remaining blocks of o using a similar analysis as in Eqs.(71)-(75)
in the proof of Thm. 4. We use that o is psd and its diagonal entries are equal to 1/n.
Then,

Bl

[, = e =1 -2 =1- 0@, 101y

tr

44

and thus oY +20(12) = O(¢). Additionally, from Eq. (75) we have p(*1) 4-2p(12) =
O(&). Combining the above, we have

lp =0l < |} = o2

=0(&)

e
tr

+2 Hp(12)
tr

o
tr

+2 H0(12)
tr

tr

O

Theorem 5. Let p* € R™*"™ be the optimal SDP solution corresponding to a normal-
ized cost matrix C' € R™*™ with a block structure as defined in (3). Let p € R™*" be
an approximate solution with

tr(Cp*) — tr(Cp) <e, 39)
and Z\pii—%| <e Vi € [n], (40)

with0 < e < 1/2. Let x € {—1,1}" be the vector obtained by applying the random-
ized rounding procedure to p. Then

4
E[zTCx2] > (- 1) ntr(Cp*) — O(ne'/?). 41)
T
Proof. Set& =¢€'/3 and g;; = n\/% fori,j =1,...,n. From the assumptions we

have |C|| = 1. Then, using Holder’s inequality and applying Lem. 12 gives
[tr(C(p— o)) < lp = oll, = O) (102)

and therefore | tr(C(p* — 0))| < O(€) + € = O(¢'/3). Now, applying Lem. 11 gives

E [2"Cz] > %ntr(Co) - (1 - 72T> ntr(Cp*) (103)
g *\ 1/3y) _ _ g %

> _n (tr(Cp) —O(e)) (1 ﬂ) ntr(Cp*) (104)

— <i - 1) ntr(Cp*) — O(e*/*n). (105)

O

B Number of quantum gates for Hamiltonian Updates

In Sec. 5, we gave a procedure for approximating the diagonal entries of a Gibbs state
for given Hamiltonian, and its asymptotic scaling. Now, we will give lower bounds on
the number of two-qubit gates needed for an iteration of HU with selected quantum
algorithms [5, 34, 33]. These consists of block encoding, Hamiltonian simulation and
Gibbs state preparation. We assume a gate model, where two-qubit gates are realized
by CNOT gates.

45

B.1 Block encoding

This section is based on Ref. [33], and reproduces some of the their construction in
order to make the present document self-contained.

The input is a Hamiltonian H € R™*"™. We assume that it is s-sparse in the sense
that exactly s elements in each column of H are explicitly specified, with the rest being
equal to 0. (We refer to the specified elements as the non-zero ones, though “potentially
non-zero” would be more accurate).

The matrix is assumed to be stored in QRAM, accessible via two unitary quantum
oracles:

* Op takes two indices i € [n], | € [s] and maps them to the index of the I*!
non-zero entry in the i** row of H, denoted by f(i,1):

Or|i)l) = 19)|f (i, 1))- (106)

* Oy takes two indices ¢, j € [n] and returns the matrix entry H;; represented as
a b-bit number:

Onli)lj)|z) = 1i)|5)]z & Hij). (107)

Definition 13 ([33, Def. 6]). A unitary U block-encodes a Hamiltonian H if

U= <H/Ol > ’ (<0|a ®]ld)U(‘0>a ®]ld) = gv (108)

where d is a b-qubit register and « a suitable scaling factor.

In the following encoding « is bounded from below by s || H|| .-
Reference [33, Thm. 10] realize a block encoding U with the following properties:

* [33, Lem. 13] The encoding U is decomposed as a product U = U, t Ueol

row

¢ [33, Lem. 13] Both U,y and U, consist of one invocation each of O, Oy, O;l,
as well as a further unitary. Additionally, U, uses two controlled SWAPs on
log,(n) qubits each.

¢ [33, Lem. 15] This additional unitary is a product of single-qubit gates and an
b-bit comparer.

To lower-bound the number of two-qubit gates used in this construction, we use
the results of Ref. [20]. They show that a b-bit comparer can be implemented using
(2b — 1) Toffoli gates and 4b — 3 CNOTSs. In turn, each Toffoli may be realized us-
ing 6 CNOTs and a number of single-qubit gates [44]. For further steps, we need a
controlled implementation of U. This can be achieved by just controlling the SWAP
gates, as without these, the quantum circuit just simplifies to the identity (c.f. Fig. 7).
A controlled SWAP on log,(n) qubits can be realized with log,(n) Tofolli gates and
2log,(n) CNOTs.

46

Estimate 14. The controlled implementation of the block encoding U given in Ref. [33]
requires at least 160 + 16log,(n) — 9 two-qubit gates.

......................

control

Or|
ay J; : D
e On Ot | “--mmeeee Oy o5
as — _—

Ua Ut

3
Van)
AN
Vai
3
3

as

L1

Figure 7: Circuit for a controlled U, resulting by combining Ueo1 and Uy, The SWAP gates
are part of Uco1, controlling them allows to control the whole circuit of U. The registers d
and a; encode the index of row and column condisting of log,(n) qubits each, as encodes the
corresponding entry of H with b qubits, and a3 is an O(1) qubit ancillary register.

B.2 Hamiltonian simulation via Qubitization

The Hamiltonian simulation uses a procedure called qubitization, which is explained
in Ref. [34]. It has the following properties:

* [34, Thm .1, Lem. 6] The procedure simulates an encoded Hamiltonian ST HI|{|

for some time ¢.

max

e [34, Sec. 5.2, Thm. 4] The circuit consists of () unitaries V;, where @ is the
smallest integer Q = ¢ — 1 s.t.

€> —. (109)

* [34, Lem. 10] Each V; consists of both the controlled unitaries U and U ! de-
fined in Sec. B.1, besides further single- and two-qubit gates.

Equation (109) can be written as
q +1ogy(q!) + logy(€) > 2+ qlogy(t). (110)
To simplify this expression, we use an upper bound on Stirling’s approximation
1 1
logy(¢!) < qlog,(q) — qlogy(e) + 5 logy(q) +logy(v2m) + 15 logy(e). (111
where e is Euler’s number. Inserting (111) into (110) gives

qlogy(q) +q(1 —logy(e)) + logy(€) + 1.5 > g + logy(q!) + logy(€) > 2 + glogy(1),
(112)

47

and thus,
q(logy(q) — logy(t) + 1 —logy(e)) = 0.5 — logy (€). (113)
As the right-hand side is positive, we require at least,
log,(q) — log,(t) + 1 —logy(e) > 0, (114)
and thus, we can give a lower bound on a q fulfilling Eq. (109):

q > 0.73t. (115)

H
sl H]|

As mentioned above, this circuit only simulates the normalized Hamiltonian

max

for time ¢. We simulate H for some time 7 by setting t = s || H|,.. 7-

Estimate 15. Simulating H for some time T using the above construction requires at
least Q) implementations of U and U~ each. The required number of two-qubit gates
is at least

Ch(r,e) = (32b+ 32log,(n) — 18) Q

116
> (32b 4 321og,(n) — 18) (0.73s || H| (116

T—1).

max

B.3 Gibbs state sampling

We mainly focus on the estimation of the diagonal of p as this is O(n) times more ex-
pensive than computing a trace product tr(Ap). For this part of the gate count we only
consider the gates that result from the Hamiltonian simulation subroutine described
above and neglect the additional overhead. The following isNbased on Ref. [5]:

As described in Sec. 5, we need to compute an estimate A,;, of the smallest eigen-
value of H up to additive error 1/2. This needs to be done only once per H and thus
does not influence the complexity. Using this, we implement a modified version of
Opr, denoted as Oy, with Hy = H — (Anin — 3/2)1, and denote by C (7, €) the
corresponding lower bound on the number of two-qubit gates for simulating H with
the given construction analogous to Eq. (116).

Definition 16 ([5, Def. 35]). We call W a controlled (M, ~, €)-simulation of H if

HW—WH <e (117)
where
M-—1
W= Y |m)(m|®e™H (118)
m=—M

is a controlled simulation of H.

48

[5, Lem. 36] The implementation of a controlled (M, ~, €)-simulation of H
using the construction of Ref. [5] requires at least

log, (M)

Ceont— (M) = D Cu, (27,2770 "1e) > Cy (M~,¢/2) (119)
Jj=0

two-qubit gates.

Lemma 17 ([5, Thm. 43]). Computing the sub normalized Gibbs state e+ to e-
precision using the constructions in Ref. [5, 34, 33] requires at least

Cle-rey 2 Cr, (2mIn(7.8¢7 1), ¢/4) (120)

two-qubit gates.

Proof. The constants for the non-asymptotic scaling in Lem. 17 are retrieved from the
proofs of Ref. [5, Lem. 37, Thm. 40, 43]:

Ref. [5, Thm. 43] requires ||H4 | < 2r,§ = 1/2.

Ref. [5, Thm. 43] defines f(z + 2¢) = Yo wa’ = "%, 25 =7 + 6.

Thus, a; = e %0 (j—,l)l

Ref. [5, Thm. 40] defines g (ri) = f(z 4+ z0) and g(y) = Y2, iy
Thus, b, = al(r —+ (S)Z
Ref. [5, Thm. 40] sets L = [, In(8/€)] with &' = 6/(r + &) and defines the

L-truncated polynomial approximation of g and it’s corresponding M -truncated
Fourier approximation given by [5, Lem. 37].

Ref. [5, Lem. 37] requires

M = max <2fln (4|€b/||1> ;/],0) , (121)

where

L

L

N~ T

[Blls = > _loul = em0 D> (122)
=0 =0

Ref. [5, Thm. 40] requires a controlled (M, = 5,755, §) simulation.

We can directly form an upper bound for ¢':

1

1
y=—2_x .
r+d o JH

(123)

49

We now want to find a lower bound for ||b]|;. We start with rewriting Eq. (122):

(& o
e (- > 4

1=0 I=L+1
— __ %o _v
=l—e™ Y 0 (124)
I=L+1
i L+1+t
=1—e"" 0
— (L+1+1)!
Next, we use
1
L+1> (y In(8/€)] > (2r + 1) In(8/¢) = 2z In(8/¢), (125)

and therefore, xg < (L + 2)/2. This allows us to compare Eq. (124) to a geometric

series:
$L+1 oo t
b > 1 —Lo
b1l (L+1'Z(L+2>

L4+1
S1 e IO(LH,Z() (126)

Next, we use a lower bound on Stirling’s approximation
21 > e n2) == (127)
giving us

Hle >1- 26—1()+1n(x0)(L+1)+(L+1)—1n(L+1)(L+1)’

_ 1 = gt (in(55) 1) (128)
Then, with zg > 1/2 and e < 1,
In (L;O 1) _1>n(2() -1, (129)
and thus,
Bl > 1 — 2¢~ /22 EWE-1 > (g8, (130)

Now, that we know a lower bound on ||b||1, we can finally bound M using (121) and
(123):

4
M > 2ln< b,”l) 52 2(|Hy |l + 1) In(7.8¢ 7). (131)
€

50

. R .
With v = 3425 = THLET We thus have

M~y > 27 1n(7.8¢71). (132)

Then combining Eq. (119) and Lem. 17 gives
Clo-14y 2 Coont—(Myy,e/2) > O, (20 In(7.8¢71), ¢/4). (133)
O

The procedure above gives a sub normalized Gibbs state e~#+. To obtain a nor-
malized one amplitude amplification is applied to increase the amplitude by a factor
1/tr(e~H+). The expected number of amplitude amplification iterations using the
construction in Ref. [14, Sec. 3] is 0.69+/n/z, where z is a lower bound of tr(e=+).
By our preparation of H we ensured that its minimum eigenvalue is Ay, < 2 and
thus z = e~ suffices. Thus, the expected cost for preparing the Gibbs state is

Cp=0.69en'>C-n) > 1.87n'2Cp, (2nIn(7.8¢71),e/4). (134)
Finally, combining Eq. (134) and Obs. 15 gives the following conservative estimate:

Estimate 7. Let H € R"™*" be an s-sparse matrix and b be the number of bits per
entry used to store H. The expected number of two-qubit gates used to prepare an ap-
proximation of the Gibbs state p g with precision € using the constructions in Refs. [33,
20, 34, 5, 14] is at least

(32b + 321logy(n) — 18) (4.5In(7.8¢7) n/2s || Hy || 0p — 1), (44)

with H constructed from H as defined in Eq. (43).

B.4 Diagonal entry sampling

We now derive the result of Estimate 8 that states the required number of Gibbs state
preparations on a quantum computer needed to estimate the diagonal entries. The
diagonal entries are estimated statistically by measuring the Gibbs states in the com-
putational basis. For technical reasons, we randomize the total number of samples
according to a Poisson distribution Pois(m), where m is the expected number of sam-
ples needed. Then, our estimate for each diagonal entry is given by p;; = N;/m, where
N; represents the number of measurements resulting in the i*" state. Note that we are
dividing by the expected number of measurements, not the actual one.

Lemma 18. Ler) < 1/8. Given N preparations of p € R"™*™, where N is drawn
from a Poisson distribution with mean m = 2.13n~2%(n1In2 + In(1/p)), we can get
estimates {pii }ic{1,...n} S-t. Y _; |Pii — Pii| < n with probability 1 — p.

51

Proof. Let N, be the number of times the outcome ¢ was obtained, so that the total N
satisfies N = > ; N;. The randomization of N makes the N; independent:

S ,—m Z;
miFie ;
A S) TT 5

i TP

_ H (mpi):f;e (135)

Pr[N; = z;Vi € [n]] =

= HPr[PoiS(mpi) = z;].

7

The moment generating function for N; is given by
My,(\) = E [e*V'] = exp(mpi(e* —1)). (136)
Define §; = p; — p;. Then
M;,(3) =E [*] = E [XNe/mop)]
= e ViR {e)‘/mNi}

= e i My, (\/m)
= exp(—Ap; + mp;(e™ —1)).

137)

This moment generating function fulfills My, (|]A|) > M;, (). Indeed, for A > 0 a
series expansion gives

In Ms,(A) = —Ap; + mp;(eM™ — 1)

— (A/m)k
= mp;
,;2 k! (138)

o (—=A/m)k
> mp; Z % = ln Mjs,(—)).
k=2 ’

52

Then, arguing as in the standard proof of the Chernoff bound,

Pr [Z |6:] > n] < e ME [eA Y, m}
=1
— e n H E {e,\wiq
=1

n
o= H]E [6)\51 n e—,\ai]
i=1

(139)
e M H 2Ms, ()
" exp < An — /\ZpﬂrmZn em —1))
= 2" exp (—)\(7] +1)+ m(eﬁ - 1)) .
Choosing A = mIn(1 + n) gives us
Pr [Z HE ?7] < gremn= () In(iin), (140)
Then, with In(1 +7) > n — —2 + 2 forn < &,
" [Z 16:] > 77] < omemln=(m) =5 +)
i=1
141
_ ongm(= B+ (3= 2)nt+2n") (14D
mn2
< 2Me 213,
Demanding Pr (Y7, |6;| > 1] < p and solving for m concludes the proof. O

Lemma 19. Ler ¢ < 1/4. Given N approximate preparations p of p on a quan-
tum computer with), |ps; — pii| < §, where N is drawn from a Poisson distribution
with mean m = 137¢=2(n1n(2) + In(1/p)), we can obtain classical estimates p;; s.t.
> i |pis — pii| < § with probability 1 — p.

Proof. Using Lem. 18 with) = ¢/8 gives D, [psi — pis| < §. Then, by triangular
inequality we get

N L _ € € €
Z'pii — pii < Z\pu — Piil +Z\pm‘ — pii| < 3 + 31 (142)
O

For small € the required mean number of samples approaches
m = 128¢%(n1n(2) + In(1/p)). (143)
For the benchmarking, we assume In(1/p)) > 4.

53

B.5 Quantum HU algorithm

Here we give the high-level HU routine that uses quantum subroutines for estimates
involving the Gibbs state p. The quantum algorithms are discussed in Sec. 5.

54

Algorithm 4 Hamiltonian Updates with a quantum computer

Require: Query access to €/4-precise subroutines

QC_GIBBS_TRACE_PRODUCT : H, A € R™*" — tr(App),
QC_GIBBS_DIAGONALS : H € R™™" — {(pn)ii }i=1,... ns

normalized cost matrix C' € IR™*"™, threshold objective value ~y, precision param-
eter ¢, initial step lengths A\, and \;, momentum hyperparameter (3

Ensure: Condition ‘ Output
(5) is feasible H, such that py; is e-feasible
(5) is not e-feasible | false
else undefined (H, such that py is e-feasible, or false)
1: function QUANTUM_HAMILTONIAN_UPDATES(C, 7, €, A¢, Ag, B)
2 P+~ -C+~1
3: H + 0pxn
4: M < O,xn
5: F = —1n(n)
6:
7: while ' < 0do
8: tr(P.p) < QC_GIBBS_TRACE_PRODUCT(H, P,)
9: if tr(P.p) > 3¢ then

10: AH « tr(P.p)P. + %M

11: H,F,\. < QUANTUM_UPDATE(H,AH, F €, \.) > Cost update
12: M + \.AH

13: continue

14: end if

15:

16: {pii} 4 QC_GIBBS_DIAGONALS(H) > Estimate diagonal of p on QC
17: if >, [pii — 1/n| > 3¢ then

13: Pt o 3, (pii — 1/n) i) il max; | psi — 1/n|

19: AH « PP+ £ M

20: H, F, \q ¢ QUANTUM_UPDATE(H,AH, F, ¢, \g) > Diag. update
21: M + MNgAH

22: continue

23: end if

24:

25: return H

26: end while

27: return false

28: end function

55

Algorithm 5 Update function with a quantum computer

Require: Query access to €/4-precise subroutine
QC_GIBBS_TRACE_PRODUCT : H, A € R™*" — tr(App),

Hamiltonian H, update matrix AH, free energy bound F, precision parameter ¢,
current step length . or A4, number of trace estimations for free energy bound .J

Ensure: Updated Hamiltonian H,,,, updated free energy bound F', updated step
length A; or Ay

: function QUANTUM _UPDATE(H, AH, F ¢, \)

1

2: Hpew < H + \AH

3:

4: tr(AH prew) < QC_GIBBS_TRACE_PRODUCT(Hpew, AH)

5: while tr(AH ppew) < €/4 do: > Check for overshoots; finite precision
6: A<+ 0.5

7: Hpew < H+ NAH

8: tr(AH prew) ¢ QC_GIBBS_TRACE_PRODUCT(Hyew, AH)

9: end while
10:
11 for j € [J] do: > Estimate the change in free energy
12: tr(pHJr%/\AHAH) + qc_gibbs_trace_product(H + %AAH, AH)
13: F+—F+43 (tr(ijL%AAHAH) - i) > Account for finite precision
14: end for
15:
16: A< 13X
17:

18: return H ., F, A
19: end function

56

71

Chapter 5

Benchmarking of SDP relaxations for
real-world problems

In this chapter, we analyze the performance of the HU algorithm in combination
with the GW method for solving real-world optimization problems. In particular,
we investigate how the quality of the obtained solutions depends on the precision €
of the HU routine. Additionally, we compare the HU approach to an alternative SDP
relaxation technique, the sums-of-squares (SOS) method.

This chapter summarizes the findings of a collaborative study [Ost+25]. The imple-
mentation of the HU routine, along with the integration of the GW algorithm, was
carried out by me. The formulation of the affinity-based slotting problem (ASP) and
the vehicle routing problem (VRP), the conversion into QUBO instances, and the
implementation of the SOS relaxation were performed by other contributors.

5.1 Sums-of-squares method

The sums-of-squares method offers an alternative approach to approximating a QUBO
using an SDP relaxation. Unlike the GW algorithm, the SOS method provides only
an upper bound on the objective value, without yielding a corresponding binary
solution vector x. To derive the SOS relaxation, we reformulate the QUBO Equa-
tion (2.5) as

minimize ¢y € R 5.0)
subjectto y —xTCx >0 forallx € {—1,1}. '

With this formulation, every feasible -y in Equation (5.1) is an upper bound for the
original QUBO (2.5). However, the main challenge now lies in enforcing the non-
negativity constraint efficiently, as explicitly checking all possible values of x is
computationally infeasible.

To approach this, we define the function

f(x):=v—xTCx. (5.2)

Chapter 5. Benchmarking of SDP relaxations for real-world problems 72

To certify the nonnegativity of f(x), we express it as a sum of squares of polynomi-
als over x:

f(x) =Y (si(x))* forallx € R". (5.3)

i
Since squares of real-valued polynomials are always nonnegative, this representa-
tion guarantees that f(x) > O for all x € R. To construct a suitable polynomial
representation, we fix a maximum degree 2d of f and consider the vector

2 l’l+d
mg = (1,x1,..., X0, X],X1X2,...) € R(a")

5.4)
containing all monomials up to degree d. Then, if f(x) is a sum of squares, it can
be written in the form

f(x) = (Bmg)TBmy = mI BT Bmy (5.5)

for some matrix B. Then, G = BB is a psd matrix known as the Gram matrix.
With this, we can reformulate (5.1) as the following SDP:

minimize ¢y € R
subjectto ¥ — x'Cx = mgGmd, (5.6)
G~ 0.

By increasing the degree d, we can achieve a more precise approximation at the cost
of significantly increasing the dimension of the Gram matrix G. We refer to d as the
order of the relaxation.

5.2 Problem formulations

Affinity-based slotting problem

In warehouse logistics, efficient item storage is crucial for optimizing retrieval pro-
cesses, such as minimizing the number of aisle changes required when collecting a
set of items. The affinity-based slotting problem (ASP) takes into account the fact
that certain items are frequently ordered together, which is quantified by their pair-
wise affinity. The goal is to store items with high affinity close to one another to
improve retrieval efficiency. This problem becomes even more challenging when
considering storage capacity constraints, as each aisle has a limited capacity for dif-
ferent types of materials. The combination of these factors results in an NP-hard
combinatorial optimization problem. In this work, we formulated ASP as an IQP
(see Equation (2.4)) to capture both the affinity relationships and the capacity con-
straints effectively.

Vehicle routing problem

The vehicle routing problem (VRP) extends the well-known traveling salesman
problem (TSP) by considering multiple vehicles instead of just one. The objective is

Chapter 5. Benchmarking of SDP relaxations for real-world problems 73

to determine optimal routes for a fleet of vehicles that must visit a set of customers
while minimizing the total travel distance. Although the TSP is NP-hard, modern
algorithms can solve many practical instances efficiently. However, TSP often over-
simplifies real-world applications, as industrial logistics typically involve multiple
vehicles and varying constraints on vehicle capacity and depot locations. VRPs in-
troduce additional complexity by incorporating these real-world constraints, making
them significantly harder to solve. In this work, we formulated the VRP as an ILP
(see Equation (2.3)).

QUBO formulations

To apply the HU and SOS methods to the VRP and ASP, we must first reformulate
them as (QUBO) problems. This transformation is well studied, and various ap-
proaches exist. For this work, we followed the methodology outlined by Glover et
al. [GKD19]. The conversion to a QUBO consists of two parts:

* Unconstraining and penalization: The constraints in the IP formulation
must be incorporated into the objective function. This is done by introduc-
ing penalty terms, ensuring that any constraint violation results in an increase
in the objective value. Choosing appropriate penalty magnitudes is crucial. If
they are too low, the optimal QUBO solution may violate constraints of the
IP. On the other hand, if they are too high, the problem may become harder to
solve, as the cost function could be dominated by the penalty terms.

* Binarization: Since a QUBO requires binary variables, integer values in the
original IP formulation must be encoded using additional slack variables. The
number of binary variables required scales logarithmically with the range of
the integer variables, leading to an increase in the problem’s dimension.

If penalty values are appropriately chosen, the optimal solution of the QUBO formu-
lation is equivalent to that of the original IP problem. Consequently, any valid upper
or lower bounds on the QUBO objective also apply to the original problem. How-
ever, approximate solutions obtained from the QUBO formulation do not necessarily
correspond to feasible solutions for the original problem.

5.3 Benchmarks

5.3.1 Instances

For this thesis, we focus on one instance each of the VRP and ASP. The correspond-
ing QUBO formulations have dimensions of n = 96 for the ASP and n = 3380 for
the VRP. We denote their optimal objective values as Yopt.

The IP formulations of both problems can be solved exactly using CPLEX [Cpl09].
However, the QUBO formulations showed to be harder to solve with standard solvers
than the IP formulation. Here, only the QUBO solution for the smaller ASP instance
could be obtained using Gurobi [Gur24], but not for the larger VRP instance. The
corresponding running times and results are summarized in Table 5.1.

Chapter 5. Benchmarking of SDP relaxations for real-world problems 74

instance || dimension | optimal value yopt | time (IP) in s | time (QUBO) in s
ASP 96 246.78 0.45 < 10
VRP 3380 3036.54 1128.14 -

TABLE 5.1: Exact solutions of the ASP and VRP instance. Re-

sults were obtained using CPLEX for IP formulations and Gurobi for

QUBO formulations on a CPU. Dimensions are given for the QUBO
formulations.

5.3.2 Results

To evaluate the quality of the bounds computed using the SOS and HU methods,
we compare them against the optimal solution of the original IP formulation. The
absolute deviation of the computed lower or upper bound from the optimal solution
Yopt 18 given by

Ala(?xil/up = |’)’low/up - ’)’Opt|- (5.7)
Since the absolute objective values depend on the specific weight choices and are
not inherently meaningful, we consider the relative deviations. These are defined as

Aiabs y
1 _ Tlow/up
Afgw/up - Yopt : (5.8)

The SOS relaxations were computed entirely on an Intel Core 17-8700 (CPU), while
the HU routine was executed both on the same CPU and on an Nvidia GeForce RTX
4090 (GPU). As expected, GPU computations significantly outperformed CPU exe-
cution in terms of running time. To estimate the running time of the quantum imple-
mentation (QC) of the HU algorithm, we use a lower bound on the number of two-
qubit gates derived in Section 4.2. Assuming a gate execution time of 6.5 x 10™%s
based on the current gate speed record [Che+22], we derive conservative running
time estimates. The final results are presented in Tables 5.2 and 5.3.

relative deviation of bounds time in s

A Arel CPU GPU QC
HU.—0: || 945.6 16.8 - 0.17 8.4 x 1010
HU:-w0> || 86.0 14.2 - 3.08 1.2 x 1016
HU:-w0+ || 8.8 6.6 - 500.36 3.1 x 1021
HUc-w0s || 3.8 3.2 - 21861.1 7.7 x 10%
HU:-1055 || 3.1 2.8 - 2.7x10° 3.5x10%8
SOS isoer || 1.99 - 3.24 - -
SOSamioer || 0.13 - 28.46 - -

TABLE 5.2: Results for solving the QUBO formulation of the ASP
instance with dimension n = 96 using Hamiltonian Updates and

sums-of-squares.

Chapter 5. Benchmarking of SDP relaxations for real-world problems 75

relative deviation of bounds time in s

A A CPU GPU QC
HU.—w0: || 5.6x107 8.4 x 10° 310.36 72.64 9.4 x 10'2
HUc-w0s || 6.2x10° 85 x 10° 1314.95 266.42 2.0 x 1018
HU:-10+ || 55x10° 2.2 x 10* - 37405.86 4.7 x 10%
SOS soer || 1.60 - 95.63 - -

TABLE 5.3: Results for solving the QUBO formulation of the VRP
instance with dimension n = 3380 using Hamiltonian Updates and
sums-of-squares.

We find that the GW algorithm combined with the HU routine produces significantly
looser upper bounds compared to the SOS method, with much higher relative devia-
tions. For the smaller ASP instance, increasing the precision reduces this gap, but at
the cost of an immensely higher computation time. In the larger VRP instance, the
accuracy of the HU algorithm deteriorates even further, with relative errors increas-
ing by several orders of magnitude.

Interestingly, the SOS method shows improved relative accuracy for the larger in-
stance, at least in first-order relaxation. However, the increased problem dimension
in the VRP caused solvers to fail when computing the second-order SOS relaxation.
The estimated quantum running time for the HU algorithm is prohibitively high, ex-
ceeding 1010 seconds even for the simplest cases. Under the assumptions of this
work, a quantum implementation of HU appears therefore entirely impractical.

To apply the HU algorithm, the cost matrix of the QUBO was normalized. After
computation, results were converted back to the original formulation by reversing
this rescaling. However, this also meant that the precision € was effectively scaled
by the operator norm of the cost matrix. This explains the significantly worse perfor-
mance of the HU routine for the larger instance, where the norm is larger. Overall,
our results suggest that approximate solvers like HU are not well-suited for QUBO
formulations derived from integer programs. Further testing is necessary to deter-
mine whether HU could be effective for applications where QUBO formulations
arise naturally rather than as a reformulation of an IP.

76

Chapter 6

Conclusion

In this work, we investigated whether the Hamiltonian Updates (HU) algorithm by
[GLBKSF22] could achieve a practical speedup on future quantum hardware com-
pared to classical implementations. To this end, we first improved the general per-
formance of the HU routine by introducing a series of heuristics that reduced the
algorithm’s running time by a factor of over 40,000 for the tested instances. Ad-
ditionally, we provided tighter theoretical bounds on the algorithm’s scaling with
precision, and numerically quantified its dependence.

By deriving lower bounds on the number of required quantum gate operations for the
subroutines of HU, we benchmarked the algorithm on artificial data and systemati-
cally compared its classical and quantum performance. Our results show that even
under highly favorable assumptions, the quantum implementation remains at least
107 times slower than its classical counterpart for realistically computable problem
instances. In practical settings, where additional challenges such as error correc-
tion must be accounted for, this performance gap is likely to increase by several
additional orders of magnitude.

In a second study, two real-world combinatorial optimization problems were formu-
lated as integer programs (IPs) and converted into quadratic unconstrained binary
optimization (QUBO) problems. We applied HU in combination with the Goemans-
Williamson (GW) algorithm and compared its performance to a second semidefi-
nite programming (SDP) relaxation approach, the sums-of-squares (SOS) method.
Our findings reveal that even when using high precision for HU, the method pro-
duced extremely poor approximations in the original IP formulation. While the SOS
approach provided tighter bounds than HU, it still performed significantly worse
than conventional solvers. However, this does not necessarily imply that HU and
SOS methods are fundamentally ineffective. Instead, our results suggest that QUBO
based reformulations of IPs can be highly sensitive to solution precision. This ob-
servation is also relevant for other quantum optimization approaches such as QAOA
and quantum annealing, which typically provide only approximate solutions and
may struggle with such precision-related issues.

Our benchmarking results, demonstrating that the quantum implementation of HU is
many orders of magnitude slower than its classical counterpart, are consistent with
previous analyses of similar quantum optimization algorithms [Dal+23; Amm+23].
This suggests that a simple quadratic asymptotic speedup may often be insufficient

Chapter 6. Conclusion 77

to achieve practical quantum advantage. Many proposed fault-tolerant quantum al-
gorithms for optimization problems rely on techniques inspired by Grover’s search,
such as quantum minimum search [DH99] and quantum random walks [VA12].
These also provide, at best, a quadratic speedup. This aligns with the broader conjec-
ture that NP-hard problems, where most challenging optimization tasks belong, can-
not be efficiently solved on a quantum device. Ultimately, it remains questionable,
whether quantum computers will ever be able to outperform classical computers for
practical optimization problems.

78

Bibliography

[Aar05]

[Al195]

[Amb+]

[Amm+23]

[ANO6]

[Aru+19]

[Ben+97]

[Bev+22]

[BIR89]

[BM24]

[Bol+24]

[Bra+20]

[BV94]

Scott Aaronson. NP-complete Problems and Physical Reality. 2005.
arXiv: quant-ph/0502072 [quant-ph].

Farid Alizadeh. “Interior point methods in semidefinite program-
ming with applications to combinatorial optimization”. In: SIAM
Journal on Optimization (1995). DOI: 10.1137/0805002.
Andris Ambainis et al. “Quantum Speedups for Exponential-Time
Dynamic Programming Algorithms”. In: Proceedings of the 2019
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA).
DOI: 10.1137/1.9781611975482.107.

Sabrina Ammann et al. Realistic Runtime Analysis for Quantum
Simplex Computation. 2023. arXiv: 2311.09995 [quant-ph].
Noga Alon and Assaf Naor. “Approximating the Cut-Norm via
Grothendieck’s Inequality”. In: SIAM Journal on Computing
(2006). DOI: 10.1137/500975397044416209.

Frank Arute et al. “Quantum supremacy using a programmable su-
perconducting processor”. In: Nature (2019). DOI: 10 . 1038 /
s41586-019-1666-5.

Charles H. Bennett et al. “Strengths and Weaknesses of Quantum
Computing”. In: SIAM Journal on Computing (1997). bOIL: 10 .
1137/50097539796300933.

Michael E. Beverland et al. Assessing requirements to scale
to practical quantum advantage. 2022. arXiv: 2211 . 07629
[quant-ph].

F. Barahona, M. Jiinger, and G. Reinelt. “Experiments in quadratic
0-1 programming”. In: Mathematical Programming (1989). DOLI:
10.1007/BF01587084.

Sami Boulebnane and Ashley Montanaro. “Solving Boolean Sat-
isfiability Problems With The Quantum Approximate Optimiza-
tion Algorithm”. In: PRX Quantum (3 2024). pol: 10 . 1103/
PRXQuantum.5.030348.

Suresh Bolusani et al. The SCIP Optimization Suite 9.0. 2024.
arXiv: 2402.17702 [math.OC].

Sergey Bravyi et al. “Obstacles to Variational Quantum Optimiza-
tion from Symmetry Protection”. In: Phys. Rev. Lett. (26 2020). DOTI:
10.1103/PhysRevLett.125.260505.

Stephen Boyd and Lieven Vandenberghe. Linear matrix inequalities
in system and control theory. SIAM Studies in Applied Mathemat-
ics. SIAM, 1994.

https://arxiv.org/abs/quant-ph/0502072
https://doi.org/10.1137/0805002
https://doi.org/10.1137/1.9781611975482.107
https://arxiv.org/abs/2311.09995
https://doi.org/10.1137/S0097539704441629
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1137/S0097539796300933
https://doi.org/10.1137/S0097539796300933
https://arxiv.org/abs/2211.07629
https://arxiv.org/abs/2211.07629
https://doi.org/10.1007/BF01587084
https://doi.org/10.1103/PRXQuantum.5.030348
https://doi.org/10.1103/PRXQuantum.5.030348
https://arxiv.org/abs/2402.17702
https://doi.org/10.1103/PhysRevLett.125.260505

Bibliography

79

[Che+22]

[CL24]

[Cpl09]

[Dal+23]

[DH99]

[DP+23]

[Drm+25]

[DSGW18]

[Far+01]

[Far+22]

[FGG14]

[FGG20]

[GJ79]

[GKDI19]

[GLBKSF22]

Y. Chew et al. “Ultrafast energy exchange between two single Ry-
dberg atoms on a nanosecond timescale”. In: Nature Photonics
(2022). DOI: 10.1038/s41566-022-01047-2.

Francois Clautiaux and Ivana Ljubi¢. “Last fifty years of integer
linear programming: A focus on recent practical advances”. In: Eu-
ropean Journal of Operational Research (2024). DOI: https://
doi.org/10.1016/j.ejor.2024.11.018.

IBM ILOG Cplex. “V12. 1: User’s Manual for CPLEX”. In: Inter-
national Business Machines Corporation (2009).

Alexander M. Dalzell et al. “End-To-End Resource Analysis for
Quantum Interior-Point Methods and Portfolio Optimization”. In:
PRX Quantum (4 2023). DOI: 10 . 1103 / PRXQuantum . 4 .
040325.

Christoph Durr and Peter Hoyer. A Quantum Algorithm for Finding
the Minimum. 1999. arXiv: quant-ph/9607014 [quant—-ph].
Giacomo De Palma et al. “Limitations of Variational Quantum
Algorithms: A Quantum Optimal Transport Approach”. In: PRX
Quantum (1 2023). DO1: 10.1103/PRXQuantum.4.0103009.
P. Drmota et al. “Experimental Quantum Advantage in the Odd-
Cycle Game”. In: Phys. Rev. Lett. (7 2025). pol: 10 . 1103/
PhysRevLett.134.070201.

Himeshi De Silva, John L. Gustafson, and Weng-Fai Wong. “Mak-
ing Strassen Matrix Multiplication Safe”. In: 2018 IEEE 25th In-
ternational Conference on High Performance Computing (HiPC).
2018.p0OI1: 10.1109/HiPC.2018.00028.

Edward Farhi et al. “Quantum computation by adiabatic evolution”.
In: arXiv preprint quant-ph/0001106 (2001). arXiv: quant —ph /
0001106.

Edward Farhi et al. “The Quantum Approximate Optimization Al-
gorithm and the Sherrington-Kirkpatrick Model at Infinite Size”. In:
Quantum (2022). DOI: 10.22331/g-2022-07-07-759.
Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A Quantum
Approximate Optimization Algorithm. 2014. arXiv: 1411 . 4028
[quant-ph].

Edward Farhi, David Gamarnik, and Sam Gutmann. The Quan-
tum Approximate Optimization Algorithm Needs to See the Whole
Graph: Worst Case Examples. 2020. arXiv: 2005 . 08747
[quant—-ph].

Michael R. Garey and David S. Johnson. Computers and In-
tractability: A Guide to the Theory of NP-Completeness. W. H. Free-
man, 1979.

Fred Glover, Gary Kochenberger, and Yu Du. A Tutorial on For-
mulating and Using QUBO Models. 2019. arXiv: 1811 . 11538
[cs.DS].

Fernando G.S L. Brandao, Richard Kueng, and Daniel Stilck
Franca. “Faster quantum and classical SDP approximations for

https://doi.org/10.1038/s41566-022-01047-2
https://doi.org/https://doi.org/10.1016/j.ejor.2024.11.018
https://doi.org/https://doi.org/10.1016/j.ejor.2024.11.018
https://doi.org/10.1103/PRXQuantum.4.040325
https://doi.org/10.1103/PRXQuantum.4.040325
https://arxiv.org/abs/quant-ph/9607014
https://doi.org/10.1103/PRXQuantum.4.010309
https://doi.org/10.1103/PhysRevLett.134.070201
https://doi.org/10.1103/PhysRevLett.134.070201
https://doi.org/10.1109/HiPC.2018.00028
https://arxiv.org/abs/quant-ph/0001106
https://arxiv.org/abs/quant-ph/0001106
https://doi.org/10.22331/q-2022-07-07-759
https://arxiv.org/abs/1411.4028
https://arxiv.org/abs/1411.4028
https://arxiv.org/abs/2005.08747
https://arxiv.org/abs/2005.08747
https://arxiv.org/abs/1811.11538
https://arxiv.org/abs/1811.11538

Bibliography

80

[Got98]

[Gro96]

[Gur24]

[GW95]

[Hen+25]

[Kar72]

[Kar84]

[Kho+07]

[KM72]

[Lan+04]

[Lucl4]

[McC+16]

[Mon20]

[NNO4]

[Ost+25]

quadratic binary optimization”. In: Quantum (2022). DOI: 10 .
22331/9q-2022-01-20-625.

Daniel Gottesman. “Theory of fault-tolerant quantum computa-
tion”. In: Phys. Rev. A (1 1998). DOI: 10.1103 /PhysRevA.
57.127.

Lov K. Grover. “A fast quantum mechanical algorithm for database
search”. In: Proceedings of the Twenty-Eighth Annual ACM Sym-
posium on Theory of Computing. STOC *96. Philadelphia, Penn-
sylvania, USA: Association for Computing Machinery, 1996. DOTI:
10.1145/237814.237866.

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual.
2024.

Michel X. Goemans and David P. Williamson. “Improved approxi-
mation algorithms for maximum cut and satisfiability problems us-
ing semidefinite programming”. In: Journal of the ACM (JACM)
(1995). DO1: 10.1145/227683.227684.

Fabian Henze et al. Solving quadratic binary optimization problems
using quantum SDP methods: Non-asymptotic running time analy-
sis. 2025. arXiv: 2502 .15426 [quant-ph].

Richard M. Karp. “Reducibility among Combinatorial Problems”.
In: Complexity of Computer Computations. 1972. DOI: 10.1007/
978-1-4684-2001-2_09.

Narendra Karmarkar. “A new polynomial-time algorithm for lin-
ear programming”. In: Combinatorica (1984). bol: 10 . 1007 /
BF02579150.

Subhash Khot et al. “Optimal Inapproximability Results for MAX-
CUT and Other 2-Variable CSPs?” In: SIAM Journal on Computing
(2007). DOI: 10.1137/50097539705447372.

Victor Klee and George J. Minty. “How good is the simplex algo-
rithm?” In: Inequalities I1l. Academic Press, 1972.

Gert R. Lanckriet et al. “Learning the kernel matrix with semidef-
inite programming”. In: Journal of Machine Learning Research
(2004).

Andrew Lucas. “Ising formulations of many NP problems”. In:
Frontiers in Physics (2014). DOI: 10 . 3389 / fphy . 2014 .
00005.

Jarrod R. McClean et al. “The theory of variational hybrid quantum-
classical algorithms”. In: New Journal of Physics (2016). DOI: 10 .
1088/1367-2630/18/2/023023.

Ashley Montanaro. “Quantum speedup of branch-and-bound al-
gorithms”. In: Phys. Rev. Res. (1 2020). pol: 10 . 1103 /
PhysRevResearch.2.013056.

Yurii Nesterov and Arkadii Nemirovski. Interior-point polynomial
algorithms in convex programming. SIAM, 1994,

Birte Ostermann et al. Benchmarking of quantum and classical SDP
relaxations for QUBO formulations of real-world logistics prob-
lems. 2025. arXiv: 2503.10801 [math.OC].

https://doi.org/10.22331/q-2022-01-20-625
https://doi.org/10.22331/q-2022-01-20-625
https://doi.org/10.1103/PhysRevA.57.127
https://doi.org/10.1103/PhysRevA.57.127
https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/227683.227684
https://arxiv.org/abs/2502.15426
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/BF02579150
https://doi.org/10.1007/BF02579150
https://doi.org/10.1137/S0097539705447372
https://doi.org/10.3389/fphy.2014.00005
https://doi.org/10.3389/fphy.2014.00005
https://doi.org/10.1088/1367-2630/18/2/023023
https://doi.org/10.1088/1367-2630/18/2/023023
https://doi.org/10.1103/PhysRevResearch.2.013056
https://doi.org/10.1103/PhysRevResearch.2.013056
https://arxiv.org/abs/2503.10801

Bibliography

81

[Per+14]

[Phi+22]

[PKG24]

[Prel8]

[Res19]

[Sho97]

[SK22]

[Str69]
[TodO1]

[VA12]

[Wol20]

[Xue+22]

[Zho+21]

Alberto Peruzzo et al. ““A variational eigenvalue solver on a photonic
quantum processor”. In: Nature Communications (2014). DOI: 10.
1038/ncomms5213.

Stephan G. J. Philips et al. “Universal control of a six-qubit quan-
tum processor in silicon”. In: Nature (2022). DOI: 10 . 1038 /
s41586-022-05117-x.

Sieglinde M.-L. Pfaendler, Konstantin Konson, and Franziska
Greinert. “Advancements in Quantum Computing—Viewpoint:
Building Adoption and Competency in Industry”. In: Datenbank-
Spektrum (2024). DOI: 10.1007/s13222-024-00467-4.
John Preskill. “Quantum Computing in the NISQ era and beyond”.
In: Quantum (2018). DOL: 10.22331/g-2018-08-06-"79.
IBM Research. On “Quantum Supremacy”. IBM Research Blog.
2019.

Peter W. Shor. “Polynomial-Time Algorithms for Prime Fac-
torization and Discrete Logarithms on a Quantum Computer”.
In: SIAM Journal on Computing (1997). por: 10 . 1137 /
S0097539795293172.

Maria Schuld and Nathan Killoran. “Is Quantum Advantage the
Right Goal for Quantum Machine Learning?” In: PRX Quantum (3
2022). DOI: 10.1103/PRXQuantum.3.030101.

Volker Strassen. “Gaussian elimination is not optimal”. In: Nu-
merische Mathematik (1969). DOI: 10.1007/BF02165411.

M. J. Todd. “Semidefinite optimization”. In: Acta Numerica (2001).
DOI: 10.1017/50962492901000071.

Salvador Elias Venegas-Andraca. “Quantum walks: a comprehen-
sive review”. In: Quantum Information Processing (2012). DOI:
10.1007/s11128-012-0432-5.

Laurence A Wolsey. Integer programming. John Wiley & Sons,
2020.

Xiao Xue et al. “Quantum logic with spin qubits crossing the surface
code threshold”. In: Nature (2022). DOI: 10 . 1038 /s41586—
021-04273-w.

Han-Sen Zhong et al. “Phase-Programmable Gaussian Boson Sam-
pling Using Stimulated Squeezed Light”. In: Phys. Rev. Lett. (18
2021).D0OI1: 10.1103/PhysRevLett.127.180502.

https://doi.org/10.1038/ncomms5213
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1038/s41586-022-05117-x
https://doi.org/10.1038/s41586-022-05117-x
https://doi.org/10.1007/s13222-024-00467-4
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1103/PRXQuantum.3.030101
https://doi.org/10.1007/BF02165411
https://doi.org/10.1017/S0962492901000071
https://doi.org/10.1007/s11128-012-0432-5
https://doi.org/10.1038/s41586-021-04273-w
https://doi.org/10.1038/s41586-021-04273-w
https://doi.org/10.1103/PhysRevLett.127.180502

	Abstract
	Introduction
	Optimization
	Basics of optimization problems
	Integer programming
	Quadratic unconstrained binary optimization
	Semidefinite programming
	Goemans-Williamson algorithm

	Performance of quantum algorithms
	NISQ vs. fault-tolerant algorithms
	Asymptotic vs. non-asymptotic performance
	Non-asymptotic performance of quantum algorithms
	Benchmarking of quantum algorithms

	Publication: Solving quadratic binary optimization problems using quantum SDP methods: Non-asymptotic running time analysis
	Contributions to the publication
	Publication

	Benchmarking of SDP relaxations for real-world problems
	Sums-of-squares method
	Problem formulations
	Benchmarks

	Conclusion
	Bibliography

