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Abstract

One of the most profound predictions of modern condensed matter physics is that gauge theories
may emerge naturally in the low-energy description of certain solid state systems. This is in
stark contrast with particle physics, where gauge theories have to be postulated. Emergent gauge
theories often bring with them quasiparticles that carry fractions of a fundamental quantum
number, holding the potential to revolutionize quantum technologies.

The paradigmatic Kitaev model, an exactly solvable quantum spin liquid, realizes an
emergent static Z2 gauge field and itinerant Majorana fermions coupled to it. Remarkably,
there is a large class of materials that have shown significant promise for realizing this exotic
phase of matter. Despite tremendous experimental efforts, a conclusive proof of emergent
gauge fields and fractionalized excitations of the Kitaev spin liquid has remained elusive. Any
material realizations of this model inevitably contain interactions that break the integrability of
the model, and make the gauge fields dynamical. Understanding the properties this dynamical
emergent gauge field is crucial for predicting its observable signatures in real materials.

In this thesis, we develop a comprehensive theory of dynamical gauge fields in the Kitaev
spin liquid, weakly perturbed away from its integrable limit. We focus on the dynamical
properties of the fundamental gauge excitation - the vison, dressed by a cloud of Majorana
fermions.

Through a controlled perturbation theory, we calculate the dispersion of a single vison,
induced by an off-diagonal exchange (Γ) term and an external magnetic field hhh. Our findings
reveal that the sign of the Kitaev interaction has a profound influence on the dynamical
and topological properties of visons. While they can move efficiently and coherently in the
ferromagnetic Kitaev model, their motion in an antiferromagnetic (AFM) Kitaev model is
driven by the an incoherent, Majorana-assisted hopping. Remarkably, in the presence of an
external magnetic field, visons of the AFM Kitaev model become topological, predicting a
novel contribution to the thermal Hall effect. The massless Majorana fermions scatter from the
vison’s gauge flux in a highly singular manner. Employing a modified Boltzmann formalism to
capture this behaviour, we show that it leads to a universal mobility in the low-temperature (T )
limit, µ(T ) = 6ℏv2

m
(kBT )2 , where vm is the velocity of Majorana fermions.
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Motivated by the layered three-dimensional (3D) structure of candidate materials, we
investigate the gauge field dynamics in weakly coupled multilayer Kitaev spin liquids. The
interplay of novel conservation laws and robust topological constraints prevents single vison
motion, leading instead to a variety of dynamic vison-pairs. The conservation laws put strong
constraints on the motion of these excitations. Depending on the stacking pattern, inter-layer
pairs may exhibit a fully two-dimensional (2D) motion within the layers, or a highly restricted
one-dimensional mobility. Intra-layer pairs can, however, move across layers, with the direction
of motion determined by the stacking pattern. Furthermore, we show how the anisotropy of
Kitaev couplings strongly influences the coherence of interlayer tunnelling.

In the final part, we focus on two experimental signatures of mobile visons: Raman
spectroscopy and the thermal Hall effect. Using an effective two-particle model of visons, we
calculate the low-energy Raman response of visons in a generic ferromagnetic Kitaev spin
liquid. Our results reveal distinct signatures of anyonic statistics in the continuum response and
sharp peaks associated with anyon-bound states. Notably, these sharp peaks exhibit a strong
sensitivity to the chirality of Raman light, a feature observed in several experiments. Finally,
we provide a detailed calculation of the thermal Hall effect resulting from dynamical visons in
the antiferromagnetic Kitaev model, discussing its implications for experimental detection.
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Chapter 1

Introduction

Matter around us exists in an astonishing variety of forms. In classical physics, which governs
our everyday experiences, we are most familiar with three distinct phases: solid, liquid, and
gas. The air we breathe is a gas, the water we drink is a liquid, and the walls that protect us
from nature’s elements are made of solids. Despite this variety, modern particle physics reveals
a remarkable truth: all matter, from the most delicate vapor to the hardest rock, is ultimately
made of the same fundamental building blocks—elementary particles like electrons, quarks,
and a few others. But how can this small set of particles give rise to such vastly different
forms of matter? The key lies in the way large collections of these particles interact with one
another. When grouped together in enormous numbers, they behave collectively in ways that
individual particles do not, giving rise to unique properties and behaviours. This presents a new
paradigm in our way of understanding the world - emergence. Emergent properties are what
determine if a mass of particles can form a solid with a rigid structure in one scenario, or the
same particles may move freely as a gas or flow smoothly as a liquid. The diversity we observe
in the world around us, then, is not due to a difference in fundamental particles, but rather how
those particles organize and cooperate on a larger scale.

The traditional framework that largely shaped our understanding of phases and phase
transitions was developed by Lev Landau [2]. Symmetry lies at the heart of this tremendously
successful paradigm. Different phases are characterized by the system exhibiting different
degrees of symmetries. Consider the example of a classical ferromagnet (like a kitchen magnet)
in three-dimensions (3D). It can be approximately described by a lattice of spins that interact
with their neighbouring spins - two neighbours aligned with each other lower the energy by
an amount J. At low temperatures, T ≪ J, the spins have very low energy and thus prefer to
align with its neighbour forming a highly uniform state with all the spins pointing in one single
direction in space. This is a high-symmetry, ordered state. As the temperature increases, the
spins gain enough energy to deviate from their common direction and start to fluctuate. At
very large temperatures, T ≫ J, the system will have randomly pointing spins, causing the net



2 Introduction

magnetization (sum of all spin vectors) to be vanishingly small. Landau described such a phase
transition using an order parameter - a single quantity that distinguishes two different phases.
In the case of the ferromagnet, this takes the form of local magnetization mmm(rrr) which is a sum
of spin vectors in a small volume. In the ordered phase, m(rrr) ̸= 0 while in the disordered phase
mmm(rrr) = 0. The system is said to undergo a spontaneous symmetry breaking phase transition
at a particular temperature, known as the Curie temperature (Tc), as it is cooled from high to
low temperatures. This is mathematically described by writing down the free energy of the
system, F [mmm(rrr)], as a simple function of the order parameter consistent with the symmetries of
the system. The remarkable success of this prescription has largely shaped our understanding
of most equilibrium phenomena.

Given a phase of matter, how does emergent behaviour determine its properties? A classic
example is the theory of hydrodynamics, which describes the motion of a fluid in terms of a
coarse-grained velocity field while the microscopic description would require keeping tracking
track of the molecular motion of 1023 (for a drop of water), an impossible task even if we
know exactly how to describe it! The hydrodynamical description, expressed by the Navier-
Stokes equations beautifully explains a whole range of phenomena we encounter ranging from
rocket propulsion to atmospheric modelling. This principle of coarse-graining the microscopic
details to understand complex systems in a macroscopic (or emergent) scale also applies to
the biological world. In fact, many examples from nature demonstrate the power of collective
behaviour. Consider the synchronized movement of a school of fish or a flock of birds in
flight—they exhibit coordinated, seemingly intelligent patterns, yet no single fish or bird
controls the group. Perhaps the ultimate collective emergent behaviour is life itself.

Wilson [3], Kadanoff [4], Anderson[5], Fischer[6], Wegner[7] and many others translated
the idea of coarse-graining into a mathematically rigorous framework known as the renormal-
ization group theory. The behaviour of a complex system, at larger scales, is described by what
are called fixed points in a parameter space, where the physical properties exhibit universal
behaviours despite differences in the microscopic models. Most remarkably, these emergent
descriptions can be qualitatively different from the laws that govern a single constituent entity’s
behaviour. For example, a surfer in the ocean has little use of the quantum mechanical motion of
the water molecules but the formation and dynamics of the waves described by hydrodynamics
may mean life or death.

Enough with classical physics. Borrowing Feynman’s words, there’s plenty of room at the
bottom. Even in the microscopic world, swarms of particles can come together and interact,
giving rise to different phases of matter. However, what distinguishes them from classical phases
is the underlying quantum mechanical nature of interactions, thus defining quantum matter! A
flock of “quantum birds” will naturally behave entirely differently than the classical birds. The
question is if we can use the same principles from Landau’s framework and renormalization
theory to discover emergence in quantum systems. The answer? Yes and No.
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For the ‘Yes’ part, an excellent example is the Landau-Ginzburg theory of superconductivity
- a fascinating phenomenon where a metal, upon cooling, transitions into a state with zero
resistance, essentially possessing charges that can move without friction. Within the metallic
phase (‘disordered’ phase), the electrons behave almost as if they do not interact with each other.
The dominant sources of friction are the small concentration of impurities or lattice disorder.
Landau showed that this collection of interacting electrons in a metal could be described by
the notion of a quasiparticle - an electron whose properties are only slightly modified by
interactions[8]. Mathematically speaking, the quasiparticle is adiabatically connected to the
electronic degrees of freedom, with its fundamental properties like charge or spin remaining
unchanged. However, as the metal is cooled down below the Curie temperature Tc, this
description suddenly fails and the system becomes superconducting. Landau along with Vitaly
Ginzburg, proposed a theory for superconductivity using a a complex field ψ(rrr) as the order
parameter [9]. A free energy expansion in terms of this field could produce a phase transition
that describes the superconducting transition phenomenologically. Later, a more microscopic
theory by Bardeen-Cooper-Schrieffer (BCS) led to the interpretation of |ψ(rrr)|2 as the local
density of electrons that are in the superconducting state [10]. In the ordered phase, the
quasiparticles are no longer ‘almost electrons’; they are, in fact quantum superpositions of an
electron and its absence (a hole)!

The theory of BCS superconductivity still admits a description in terms of a local order
parameter and lies well within the paradigm of spontaneous symmetry breaking. For example,
to detect if the system is in the superconducting phase, one only needs access to a small chunk
of the system (neglecting superconducting vortices). However, towards the end of the 20th
century, a new paradigm of phases and phase transitions beyond the reach of this conventional
wisdom emerged - topological phases of matter [11]. This rapidly evolving field has unified
abstract concepts from mathematical topology and collective phenomena in condensed matter
physics, revealing fundamental connections between them.

The first hint of an uncharted territory came from the quantum Hall effect (QHE)[12]. A
two-dimensional electronic gas under a strong magnetic field shows a remarkable feature - the
Hall conductance of the system displays a plateau as a function of the magnetic field. The value
is quantized to integer multiples of a fundamental constant e2

h where e is the electric charge and
h is Planck’s constant. The quantization is so incredibly accurate (to nearly one part in a billion)
that it has been used as the standard for electrical resistance. The story only got more intriguing
with the observation of the fractional quantum Hall effect (FQHE) where the conductance is
quantized to a fraction of e2

h [13]. And most fascinating, the quasiparticles of this state were
found to carry a fraction of the unit electric charge! - an utterly baffling observation considering
that the underlying electrons are fundamental particles that cannot be split [14, 15]. Later, it
was proposed and observed that these quasiparticles not only carry fractional charge but also
carry fractional statistics; that is, they are neither bosons nor fermions [16, 17]. Such bizarre
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quasiparticles were later found to emerge in a variety of systems, although most of them still
remain theoretical.

A recurring and even more profound feature in these fractionalized quantum systems is the
presence of gauge fields[18]. Gauge fields, a cornerstone of fundamental particle physics, were
long believed to be theoretical constructs that had to be postulated rather than emergent. Their
natural emergence in the low-energy description of condensed matter systems was, therefore, a
profound and unexpected development, with wide-reaching implications. Many topological
phases of matter are now understood not through the traditional Landau theory of symmetry
breaking, but instead via emergent gauge theories, with quasiparticles resembling those of the
standard model of particle physics. They exemplify a new kind of order, topological order,
where no symmetries are broken and the information about a system’s (topological) phase is
encoded not locally, but globally. Much like an ant can’t tell if its walking on a pretzel or a
donut unless it explores the whole object, different topological phases cannot be distinguished
by local observables. (Indeed, the ant can tell the difference if it decides to takes a bite.)

For a computer scientist, this may present a different kind of revelation. If we could store
information in the topology of such a phase of matter, errors acting locally would have a hard
time accessing and changing the bit of information. This is the idea behind topological quantum
computing [19]. Quantum information can be stored in a non-local manner, such as in two
fractions of a single electron’s spin. Remarkably, the information remains protected unless the
two quasiparticles (or "fractions") are brought back together. To draw a lousy analogy, imagine
the two quasiparticles as secret spy agents, each holding a piece of a secret code. No matter
how intensively you interrogate one agent, the full code remains protected unless you can get
both of them together.

Although well established theoretically, an unambiguous experimental detection of emergent
gauge fields and the associated fractional quasiparticles is still lacking. Astonishing progress
has been made in FQHE systems although its description in terms of an emergent gauge field
still lacks a concrete theoretical and experimental footing [20].

In this context, a remarkable class of systems where gauge fields and fractional quasiparticles
naturally emerge has been at the center of attention - quantum spin liquids. When quantum
fluctuations are strong enough to prevent any kind of magnetic order (e.g. the ferromagnet
discussed above), quantum spins may exist in a highly quantum entangled state with the low
energy physics described by an emergent gauge field, with “matter” that interacts with it.
A wide variety of such states have been proposed across many different systems. However,
detecting these states experimentally has proven to be an incredibly challenging task, despite the
extensive theoretical groundwork. A major obstacle in this search is the presence of undesirable
interactions and disorder inevitable in real materials. These imperfections often push the system
away from the ideal parameter regimes predicted by theoretical models, making it difficult to
observe the exotic phenomena. Understanding how such perturbations modify the properties
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and signatures of such theoretically fine-tuned models is extremely crucial in detecting them
experimentally as well as engineering them in materials.





Part I

Preliminaries





Chapter 2

Emergent Gauge Fields

2.1 Gauge Theories in Physics

A central pillar of our understanding of the world around is built on gauge theories[21]. The
philosophy of this class of field theories is remarkably simple: physical observables must be
invariant under certain local transformations, or redundancies in the mathematical description.
Let us start with a familiar example - Maxwell’s electromagnetism in three dimensions. The
physical quantities are the electric and magnetic fields, EEE(rrr) and BBB(rrr) respectively. However,
the mathematical description uses the language of vector potentials AAA(rrr) such that the fields,
and therefore the Lagrangian, are invariant under the transformation

AAA(rrr)→ AAA(rrr)+∇λ (rrr). (2.1)

This freedom in choosing the “gauge” offers a redundancy in the description and going from
one choice of λ (rrr) to another is a gauge transformation. It is useful to recall that the electric
field EEE(rrr), the conjugate variable to AAA(rrr) generates the gauge transformations, much like the
momentum operator generating translations in space. Furthermore, if we demand that the state
of a system shall be invariant under any gauge transformation, for an arbitrary λ (rrr),

e−i
∫

∇λ ·EEE |ψ⟩= ei
∫

λ∇·EEE |ψ⟩= |ψ⟩ , (2.2)

we end up with the following Gauss law.

∇ ·E = 0. (2.3)

This rather simple result that gauge redundancy leads to local constraints is a hallmark of gauge
theories. A violation of the Gauss law at a point defines a ‘defect’ of the field, localized in
space. Recalling from our experience that this violation, expressed as ∇ ·E = ρ , is basically the
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(a) (b)

Fig. 2.1 Spin ice and monopoles in a pyrochlore lattice. (a.) In a spin ice material, classical spins form
a pyrochlore lattice. The ground state is described by the ‘two-in two-out’ ice rule. (b.) Flipping a spin
at a single site breaks the ice rules in two site-sharing tetrahedra. The defective tetrahedra host effective
magnetic monopoles (black spheres) which can be separated from each other by sequentially flipping
more spins. This realizes an emergent classical magnetostatics with monopoles and Dirac strings (green)
connecting them. Figure adapted from Ref. [23]

definition of electric charge, we witness the magic where charges are a natural consequence
of the electromagnetic gauge invariance. Beyond electromagnetism, all the other fundamental
forces of the standard model were unified by introducing different gauge fields, proving that
they are somehow, mysteriously, fundamental in physics. The current framework of particle
physics consists of elementary particles like electrons and gauge fields that mediate interactions
between them. However, in the late nineties, surprising developments in the (then) rather
mundane field of condensed matter physics saw gauge theories emerge naturally, rather than
being forced upon the framework!

2.2 Spin Ice: A (classical) Success Story

A remarkable and conceptually simple example of an emergent gauge theory in solid state
systems is the spin ice model [22]. In the material Dy2Ti2O7, Dy atoms form a pyrochlore lattice
(corner-sharing tetrahedra), shown in Fig. 2.1, with their magnetic moments approximated
by classical spins. The interaction between spins can be described by an effective nearest
neighbour Ising model ∑⟨i j⟩ J SiS j , where the local Ising axis is along the line connecting
the centres of tetrahedra sharing the spin. A long-range dipolar interaction is also present in
these systems, which we neglect for simplicity. The ground state manifold is described by the
collection of spin-states obeying the ‘ice rules’: every tetrahedron must have two spins pointing
inside and two outside (‘two-in two-out’). An alert reader may already have spotted the gauge
theory lurking behind this emergent local constraint. At temperature scales below the Ising
exchange strength, thermal fluctuations will dominantly mix states within this large ground
state manifold.
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Let us now connect the centres of adjacent tetrahedra to form a diamond lattice whose links
now hold an Ising variable: the spins of the original lattice. Fluctuations within the ground
state manifold will involve flipping these variables such that the ice rules remain intact. It is
easy to see that such transformations will trace out closed loops of flipped link variables. This
picture now resembles a lot the electromagnetic theory we saw earlier. To make this connection
more apparent, let us call these variables ‘ magnetic’ vector field. Closed loops of this magnetic
field lines form a defining property of the emergent magnetostatics. The ice rule corresponds to
the Gauss law of this gauge theory, roughly speaking, a discrete version of Maxwell’s theory.
Once we allow for defects (violation of the ice rule), something fascinating happens, magnetic
monopoles emerge!

Consider flipping a single spin. This violates the Gauss law in two tetrahedra sharing the
flipped spin. Such a pair of point defects form a source and a sink for the magnetic field lines,
thus defining the emergent monopoles. Importantly, the pair (monopole and anti-monopole)
can be separated by further spin flips without any extra energy cost making a single monopole
the true elementary excitation of the system. Spin ice materials have been instrumental in
helping us tame the concept of emergent gauge fields in condensed matter to some extent.
Remarkably, several experiments have conclusively established this physics [24]. The most
striking among them are the thermal quench experiments which observed a characteristic slow
relaxation timescale, consistent with a physical picture of diffusion and annihilation of magnetic
monopoles.[25, 26]

It is important to emphasize that spin ice is a purely classical system where the gauge fields
are in fact observable quantities; they are real classical spins. In this sense it is qualitatively
different from what we are concerned with in this thesis. Our focus will be on quantum systems
where the emergent gauge fields are indeed a redundancy in the description and only the defects
(gauge excitations) have a physical meaning. Adding quantum effects naturally takes us to the
notion of a quantum spin liquid, a central theme of this thesis. Indeed, Ross et al. [27] showed
that strong quantum effects can turn a classical spin ice into a quantum spin liquid with an
emergent quantum electrodynamics, featuring quantum coherent excitations such as emergent
magnetic and electric monopoles, as well as a gapless ‘photon’.

2.3 Quantum Spin Liquids and Fractionalization

While the story of spin ice is rather recent (early 2000s), the idea that quantum fluctuations may
prevent the ordering of a magnet all the way down to absolute zero was already around since
the 1970s. Anderson pioneered the notion of a phase of matter where the quantum spins are
strongly entangled with each other and therefore exist in a macroscopic superposition state [28].
Much like we saw how a spin flip splits into two magnetic monopoles in the spin ice, a spin
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RVB Ground state = + + · · ·

Excited state = + + · · ·

Fig. 2.2 Resonating valence bond spin liquid and fractional spinons. Spins on a triangular lattice
form an EPR pair with its neighbour (red ellipsoids). The quantum state is a superposition of all possible
pairings. (b.) Breaking a pair creates two unpaired spin-half excitations called spinons (blue spheres),
that are deconfined and can hop around freely.

flip in such a quantum liquid state also splits into quasiparticles called spinons, but this time
they are truly quantum objects that are entangled with each other. This exemplifies the idea of
a collective phenomenon where the fundamental excitations carry a fraction of the quantum
numbers of its constituents, an archetypal example being the fractional quantum Hall effect
[29].

Consider a triangular lattice of spin-1
2 moments as shown in Fig. 2.2. One can imagine a

state where the spins that share a link form an entangled EPR pair state, given by |↑↓⟩+ |↓↑⟩
(represented by the red ellipses). Due to quantum fluctuations, different pairings can mix and
the system can exist in a massive superposition state as shown schematically in Fig. 2.2. This
defines what is called a resonating valence bond state (RVB), first proposed by Anderson as a
variational ansatz [28]. There is no magnetization in the system and no symmetries are broken.

However, excitations on top of this state are well defined. Breaking an entangled pair will
result in two unpaired modes carrying spin-1

2 quantum number (blue spheres) - spinons. Just
like the monopoles we encountered before, this locally created pair can move independently,
far from each other by rearranging the pairing bonds making a single spinon a well-defined
and localized quasiparticle. However, unlike the monoples that always carry a ‘Dirac string’
of flipped spins connecting it to its anti-monopole pair, the spinons have no strings attached
(pun intended); whatever connects them is completely unobservable. This is the essence of
fractionalization in a quantum spin liquid. While in an ordered state, the elementary excitations
must always carry an integer spin (e.g. magnons), they may carry only a fraction of it in a spin
liquid. This is perhaps the most definitive statement and experimentally relevant feature of a
quantum spin liquid. Absence of magnetic order is merely a guidepost, but detecting fractional
quasiparticles is the smoking-gun sign of a quantum spin liquid.
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(a) (b)

Fig. 2.3 Toric code and gauge theory. (a.) Grey dots at the centres of each edge are spin-1/2 degrees of
freedom. The Hamiltonian is made of two types of operators, Âs, defined as the product of σ x around
a vertex (blue) and B̂p defined as the product of σ z around a square plaquette (red). (b.) Bp =−1 and
Ax =−1 at a single vertex or plaquette respectively constitute an elementary excitation of the Toric code.
Flipping a semi-infinite chain of σ z (σ x) along the blue (red) dashed line creates a single m (e) particle.

How do all of this connect to gauge theories though? Does such a liquid like state with a
macroscopically entangled ground state emerge naturally from a Hamiltonian? A paradigmatic
model was invented by Alexei Kitaev in 2003 that naturally answers these questions in a
remarkably elegant manner: The Toric code, a predecessor of the honeycomb spin liquid [30].

2.4 Toric Code: Z2 Gauge Theory and Anyons

The model is defined on a square lattice with period boundary conditions where every link (or
edge) carries a single spin-1

2 degree of freedom. The Hamiltonian is defined as

HTC =−JA ∑
s

Âs − JB ∑
s

B̂p, (2.4)

where the vertex operator Âs is defined on every vertex labelled by s, and plaquette operator B̂p

is defined on every square plaquette p as follows.

Âs =
4

∏
j=1

σ
x
j,s, B̂p =

4

∏
i=1

σ
z
i,s. (2.5)

Here, σ x
i,s is the Pauli operator corresponding to the spin-1

2 at the link i, connected to the vertex
s. Similarly the plaquette operator is defined as the product of σ z around a square plaquette as
shown in Fig. 2.3.
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The operators B̂p and Âs all commute with each other:

[B̂p, B̂p′] = 0, [Âs, Âs′] = 0. (2.6)

The commutation of a vertex (plaquette) operator with its neighbouring vertex (plaquette)
operator is trivially proven, as they all involve the same spin component. The commutativity of
a vertex and its adjacent plaquette operator follows from the fact that they always share two
sites with each other. Importantly, every operator in the Hamiltonian is a conserved quantity,
and has eigenvalues ±1 as B̂2

p = Â2
s = 1. Periodic boundary conditions also impose an extra

global conservation law give by

∏
p

B̂p = ∏
s

Âs = 1 (2.7)

Given Jp = Js > 0, the ground state is then given by all the eigenvalues being 1:

B(p) |ψ⟩= |ψ⟩∀p, A(s) |ψ⟩= |ψ⟩∀v. (2.8)

One can even write down the exact ground state wavefunction of the many body system as

|ψ⟩= 1√
2 ∏

v
(1+ Âs) |0 · · ·0000⟩ . (2.9)

The gauge theory is now apparent. Every link hosts a Z2 gauge field variable. The vertex
operator then resembles an electric field while the plaquette operator defines a magnetic field.
The condition that all B̂p operators take eigenvalues 1 is analogous to the Gauss law we
encountered in electromagnetism as well as in the spin ice system. Expanding the ground state
wavefunction given above, one ends up with a sum of many states of the form Âs1...Âsn |00...0⟩,
for arbitrary n. The ground state is thus a superposition of all states where the flipped σ z

eigenvalues are flipped such that they form closed loops in the dual lattice connecting the
centers of the squares. An example of such a loop is shown in Fig. 2.4a (blue dashed square).
One can transform between different states in this superposition by flipping such closed loops.
This defines the gauge transformations! We could have also written the ground state in terms of
the B̂p operators, with the spins in the σ x basis. In this picture, the loops would be defined in
the original lattice. This reflects a fundamental duality between the ‘electric’ and ‘magnetic’
fields in this model.

2.4.1 Topological order

Besides the closed loops, there exists another class of conserved quantities in the toric code
defined by loops that wind around the torus, similar to the Wilson loops in Wegner’s lattice
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(a) (b)

Fig. 2.4 Topological order and Abelian anyons. (a.) Lx,1,Lx,2,Lz,1,Lz,2 defines loops that run around
the torus in horizontal and vertical directions. They are conserved quantities of the toric code and
determines its topological order. (b.) Taking an m particle around an e particle along the dashed blue
loop results in an extra phase of π for total wavefunctions. e and m are abelian anyons with respect to
each other.

gauge theory [31]. These are illustrated in Fig. 2.4a defined by Lz,1(2) = ∏i σ
z
i , where the

product is defined along the red line that runs horizontally (vertically) across the whole torus.
Similarly, the operator Lx,1(2) = ∏ j σ x

j , where the product is over the sites crossed by the
blue line winding around the torus in the horizontal (vertical) direction. They are conserved
quantities with eigenvalues ±1:

[Lx,1,Lz,1] = [Lx,2,Lz,2] = 0, {Lx,1,Lz,2}= {Lx,2,Lz,1}= 0. (2.10)

These non-trivial loops define the topological order [32] that describes a phase of matter
that does not exhibit broken symmetries, characterized by degenerate ground states that cannot
be distinguished by any local operator. Earlier, we obtained the ground state of the toric code by
assigning to the vertex and plaquette operators eigenvalues 1. However, the eigenvalues of the
non-contractible loops still need to be fixed. Using the commutation relations Eq.(2.10), one can
think of the four non-trivial loop operators as the Pauli x and z operators of two effective spin-1/2
modes. In the basis of Lz,1 and Lz,2 with the eigenvalues denoted by z1 and z2 one can define a
four-dimensional ground state manifold labelled by (z1,z2) = (1,1),(1,−1),(−1,1),(−1,−1).
Graphically, z1 =−1 corresponds to a non-trivial loop winding across the torus in the vertical
direction. Similarly z2 = −1 defines a loop along the horizontal direction. (See Fig. 2.4).
Therefore, if one needs to detect a ground state within the manifold, a global observable has
to be checked; no local process is capable of it. Indeed, to flip between two ground states, the
non-trivial loops Lx,1 and Lx,2 have to be used, just like σ x flips between the eigenstates of σ z

for a usual spin-half particle.
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2.4.2 Abelian anyons

What are the excitations of the toric code? The elementary excitation corresponds to a single
vertex or a plaquette operator with eigenvalue -1. In terms of the gauge theory, these can be
interpreted as “electric” and “magnetic” charges denoted by e and m. A single σ x

v,1 acting
on the ground state would flip the eigenvalues of two plaquette operators that share the link
(v,1), creating a pair of m particles. Similarly, a single σ

z
p,1 would create a pair of e particles at

the two vertices connected by the link (p,1). The global conservation law further constraints
that, in a toroidal geometry, e and m particles should always come in pairs. However, one can
still consider a single isolated excitation by taking its pair far way; infinitely far away in the
thermodynamic limit.

Consider two isolated e and m particles, as illustrated in Fig.2.3b. We can apply a sequence
of σ x operators along a closed loop such that the e particle moves in a loop (shown in blue) and
comes back to its original position. If this loop encloses the m particle, as shown in Fig.2.4b,
the quantum state of the system acquires an extra phase π . This simply arises from the fact that
the closed loop intersects the string of σ x used to create the m particle. The Pauli algebra then
enforces a minus sign on the final wavefunction. This observation reveals the anyonic nature of
e and m particles. Taking an e particle around an m results in the wavefunction acquiring an
extra minus sign. An e and an m particle are thus said to be mutual semions but two e (or two
m) particles are bosons with respect to each other. The excitations of the toric code realizes the
simplest class of anyons called abelian anyons, where the exchange of two particles results in a
U(1) phase. As we will see in the next chapter, more complicated non-abelian anyons whose
exchange results in a unitary transformation acting on the ground state manifold.

2.4.3 Quantum memory

The toric code is many things. But Kitaev originally proposed it as a model of fault tolerant
quantum computation. It is worth discussing this rather important aspect of the model. The
degenerate ground state manifold offers an ideal space to store quantum information, protected
from errors. The four-fold degenerate space can realize two logical qubits. Since no local
processes acting on individual spins can cause a transition between two ground states, (we shall
make this argument more quantitative in a moment), there is virtually no errors affecting the
logical qubit space. Let us understand this a bit more closely.

Imagine adding a a small Zeeman field term h∑i σ
z
i to the toric code Hamiltonian. At zero

temperature, we prepare the system in one of the ground states, say z1 = z2 = 1 and turn on the
Zeeman field. The perturbation at a single site will create a pair of e particles, raising the energy
of the system by ∆ = 2Js. However such creation processes will be exponentially suppressed
in temperature by the factor ∼ e−β∆, leaving only virtual processes involving creation and
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annihilation of pairs. For a logical error to occur, one of these virtual processes should involve
creating a pair and taking them all the way around the torus only to finally annihilate them.
Using perturbation theory, it is straightforward to argue that such a hopping of an e particle
around a torus of length L occurs at order hL. Thus for a weak perturbation to the toric code,
h ≪ ∆, logical errors are exponentially suppressed in system size as well as the energy gap.
Equivalently, the energy splitting between the different ground states of a perturbed toric code
decreases exponentially with the system size. This excited the hope of a robust quantum
memory - a holy grail of quantum computing. However, it turns out that, although the toric code
is resilient to a coherent noise source like the Zeeman field above, it is totally fragile towards
incoherent error sources like a finite temperature bath. At a finite temperature, the topological
order and consequently the ground state degeneracy are destroyed [33, 34].

2.5 Experimental Evidence of Quantum Spin Liquids

The natural question arises: are these exotic macroscopic quantum states possible to be realized
in real systems? Anderson’s original proposal of an RVB ground state was explored in several
triangular lattice antiferromagnets. However, it was later shown that a simple triangular
antiferromagnet in fact orders in a 120◦ Nèel state. Follow up works claimed that adding a weak
next-nearest exchange induces a spin liqiud phase in a narrow parameter range. Experimental
search for possible realizations of spin liquids in magnetic materials have not provided any
smoking-gun evidence for a true spin liquid state. However, theoretical insights have been
helpful in developing a general recipe to guide our search - magnetic frustration and quantum
fluctuations in spin (or effective spin)-1

2 systems. Frustration refers to the inability of spins to
align with each other due to competing interactions. This could be naturally induced by the
lattice geometry, or by tailored Hamiltonians that enhance quantum fluctuations. According to
conventional wisdom, low dimensionality should also enhance quantum effects, bringing 2D
(or quasi 2D) materials to the forefront of this research.

In particular, Kagome and triangular lattices due to their frustrating geometry have re-
ceived tremendous attention. As a popular example for a triangular lattice system, κ-(BEDT-
TTF)2Cu2(CN)3, a 2D organic salt, was studied using NMR (nucear magnetic resonance) which
suggested a lack of magnetic ordering and gapless spinon-like degrees of freedom [35]. In
other materials within the class of 2D organic salts, metallic thermal conductivity (κ ∝ T ) at
low temperatures was observed in some samples which may suggest the presence of a Fermi
surface of charge neutral spinons [36]. However, the existence of such a spinon-Fermi surface
even lacks a solid theoretical foundation at moment. Extensive experimental efforts were aimed
at Herbertsmithite (ZnCu3(OH)6Cl2) as a potential spin liquid material due to its Kagome
geometry. No long range order was found in this system and neutron scattering experiments
observed a broad continuum of excitations[37]. However, the explanation of this in terms of
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novel fractionalized excitations are strongly contested by other descriptions based on disorder
or impurity spins[38, 39]. These two examples certainly do not exhaust this rich field teeming
with numerous candidate materials.

2.6 Aim and Outline

Despite the astounding progress in the field, there is a pressing need for an unambiguous
experimental detection of a quantum spin liquid and emergent gauge fields. Ending the dearth
of solvable models, Kitaev, in his seminal paper [40] introduced an exactly solvable spin model
hosting a spin liquid in its ground state. Needless to say, the model has been studied extensively
and several exciting properties both relevant to experiments and theory have been extracted.
Another theoretical milestone was achieved when Jackeli and Khaliullin [41] demonstrated
that the Kitaev model can indeed be realized in naturally occurring materials. A half-quantized
thermal Hall effect, the smoking-gun evidence of the Kitaev spin liquid was reported in the
material α −RuCl3[42, 43]. This has ignited an overwhelming excitement across the field.
Although a conclusive reproduction of this result is still awaited, it is arguably the closest we
have ever come to realizing a true quantum spin liquid with emergent gauge fields.

However, the nature of the emergent gauge theory in these systems remains poorly under-
stood due to the strong interaction between the gauge fields and matter fermions. Understanding
the dynamics of Z2 gauge theories with gapless matter in general has been a long standing
problem. In this thesis we aim to take a crucial step towards bridging this gap between an
idealized model and its material realization. They central objective is to characterize the dy-
namical properties of the emergent gauge field, when perturbations arising from real materials
and external fields are present. The main protagonists will be visons, the elementary excitations
of the emergent gauge theory.

In Chapter 3, I will introduce Kitaev’s exactly solvable model and describe how an emergent
gauge theory coupled to matter fermions emerges in this model. A brief discussion of material
candidates that can potentially realize this model will be discussed, particularly focusing on the
material α −RuCl3. This will set up the main questions we explore in this thesis. In Chapter
4, quantum dynamics of a single vison due to material relevant perturbations and an external
magnetic field will be investigated. Chapter 5 deals with the finite temperature effects on vison
motion, arising from the surrounding gapless matter fermions. In Chapter 6, we will investigate
the effects arising from the layered three-dimensional structure of materials on the emergent
gauge field. In Part III, we will present two major experimental signatures: Raman spectroscopy
(Chapter 7) and the thermal Hall effect (Chapter 8). We will end with an overarching summary
and a brief outlook towards future directions.



Chapter 3

The Kitaev Spin Liquid

In this chapter, we introduce the honeycomb model proposed by Kitaev [40]. We will review the
original solution using the Majorana representation, with an emphasis on the emergent gauge
field excitations - visons. This will help us grasp the fractionalized nature of quasiparticles in the
spin liquid phase. A thorough understanding of this pure Kitaev model will form the foundation
for the remaining chapters, where we add realistic perturbations to the model, destroying its
exact solubility.

3.1 The Model

The Kitaev model is defined on a honeycomb lattice of spins. Interaction between spins are
described by the Hamiltonian

Kitaev Hamiltonian

H = Kx ∑
⟨i j⟩x

σ
x
i σ

x
j +Ky ∑

⟨i j⟩y

σ
y
i σ

y
j +Kz ∑

⟨i j⟩z

σ
z
i σ

z
j , (3.1)

where γ = x,y,z. This defines three types of bonds on the honeycomb lattice, shown in
three different colours in Fig. 3.1. Two spins that share a red coloured bond, denoted by ⟨i j⟩z,
interact with each other through the z component of the spin. Similar definitions follow for blue
(x-type) and green (y-type) bonds. Due to the non-commuting property of the three types of
interactions on a single site, the model has what is called exchange frustration.

The Kitaev model is exactly solvable due to the presence of an extensive number of
conserved quantities: the plaquette operators, defined as the product of Kitaev terms (σα

i σα
j )
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Fig. 3.1 Kitaev honeycomb model and the emergent gauge theory Kitaev model defined on a
honeycomb lattice of spins. The spin interactions σα

i σα
j depends on the type of link ⟨i j⟩ connecting

them. α = x(blue),y(green),z(red). Spin-Majorana mapping is illustrated above the arrow. Majorana
fermions of four kinds ci (black), bx (blue), by (green) and bz (red) are introduced on each site to rewrite
the spin operators as σα

i = ibα
i ci. The model on the right has the c Majoranas hopping on the honeycomb

lattice coupled to a Z2 gauge field formed by u⟨i j⟩. The shaded plaquettes correspond to the fluxes of the
gauge field - visons.

around an elementary hexagon, indexed by p. For example,

W1 = σ
z
1σ

z
2σ

x
2 σ

x
3 σ

y
3σ

y
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z
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z
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x
5 σ
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6 σ
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x
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y
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4 σ
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z
6 (3.2)

as shown in Fig. 3.1. Importantly, these operators are localized on the hexagons and have
eigenvalues wp =±1. The conservation law is then expressed as

[H,Wp] = 0, [Wp,Wp′] = 0. (3.3)

This implies that the eigenstates of the spin model can be separated into sectors labelled by a
set of eigenvalues of all Wp operators. As we shall see shortly, Kitaev’s exact solution gives a
beautiful physical interpretation to these objects in terms of exotic quasiparticles of the model,
completely different in nature from the underlying spins.

To solve the model, we start out by mapping every spin to four Majorana fermions,
bx,by,bz,c. These obey the fermionic commutation relations, and are their own antiparticles:
c = c†, bα = bα†. The spin operators are written as,

σ
x
j = ibx

jc j, σ
y
j = iby

jc j, σ
z
j = ibz

jc j. (3.4)

This is shown schematically in Fig.3.1. The Hamiltonian becomes

H =− ∑
⟨i j⟩γ

Kγ iûγ

i jcic j, (3.5)
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where we introduced a ‘bond operator’ ûγ

i j = ibγ

i bγ

j , for a link of type γ , that connects site i ∈ A
and j ∈ B, where A and B are the two sub-lattices of the honeycomb lattice. Operators ûγ

i j takes
eigenvalues ui j =±1. Most importantly, they commute with the Hamiltonian, as well as with
each other:

[H, ûγ

i j] = 0, [ûγ

i j,u
α
kl] = 0. (3.6)

The conserved quantities, plaquette operators Ŵp, of the original spin model now become local
flux operators of the gauge theory.

Ŵp = ∏
<i j>α∈7

ûα
i j (3.7)

Introduction of fermions on each site naturally leads to a doubling of the Hilbert space (two
complex fermions can be fromed out of four Majoranas). More precisely, while the original
spin model has a Hilbert space dimension of 2N , the enlarged (fermionic) Hilbert space has
dimension 22N . This implies that half of the fermionic states must be unphysical and should not
affect observables. This is enforced by an operation which would project any unphysical state
to zero. Such a projector, P̂i, can be defined as

P̂ = ∏
i

(1+ D̂i)

2
, with D̂i = bx

i by
i bz

i ci. (3.8)

The projector acts on a state in the fermionic Hilbert space as follows.

P̂ |ψ⟩=
∣∣ψph

〉
, |ψ⟩ ∈ H

∣∣ψph
〉
∈ Hspin. (3.9)

Thus, a physical state can be defined by the following condition:

D̂i
∣∣ψph

〉
=
∣∣ψph

〉
∀ i. (3.10)

Making the gauge fields explicit, the spin Hamiltonian can now be written as

Z2 Gauge theory with matter

H =−iKx ∑
<i j>x

ux
i jcic j − iKy ∑

<i j>y

uy
i jcic j − iKz ∑

<i j>z

uz
i jcic j (3.11)

where u⟨i j⟩ =±1.
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3.2 Solving the model

For any given configuration of the gauge field, G = {u⟨i j⟩}, the Hamiltonian is reduced to a
simple model of fermions hopping on a honeycomb lattice, with the signs of the hopping rate
specified by the gauge field value on the corresponding link. In matrix form,

H =
i
2

(
cA cB

)( 0 M
−MT 0

)(
cA

cB

)
(3.12)

where cA = (cA
1 ,c

A
2 , ...,c

A
N) and M is a N ×N matrix where N is the number of unit cells. Here,

we introduce a slight change of notation to label the sublattice degrees of freedom by A and B.

The absence of diagonal elements simply implies that there is no hopping between the
same sublattice sites. In his original work, Kitaev showed that an external magnetic field,
hhh = h√

3
(1,1,1), induces a next-nearest neighbour hopping term κ ∼ hxhyhz

K2 . We will review this
in the following sections. Therefore, in general, if time reversal symmetry is broken, the general
form of the Majorana Hamiltonian is

H =
i
2

(
cA cB

)( D M
−MT −D

)(
cA

cB

)
. (3.13)

It is convenient to combine pairs of Majoranas into complex fermions to convert the Hamiltonian
into the familiar Bogoliubov-de-Gennes (BdG) form [44],

H =
1
2

(
f † f

)(
ξ ∆

∆† −ξ T

)(
f
f †

)
, (3.14)

where the complex fermions are defined on a z-bond (chosen to be the unit cell), at position rrr:

frrr =
1
2
(ci + ic j), f †

rrr =
1
2
(ci − ic j). (3.15)

The parameters of the Hamiltonian are given by

ξ = M+MT , ∆ = MT −M+ i 2D. (3.16)

The BdG Hamiltonian can be diagonalized by a Bogoliubov transformation T , to obtain the
energy spectrum and eigenstates, with

T †HT =

(
−E 0
0 E

)
, (3.17)
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where E is an N ×N diagonal matrix with the energy levels εi = Eii. The eigenmodes, or the
Bogoliubov quasiparticles, are given by operators a, defined by(

X∗ Y ∗

Y X

)(
f
f †

)
=

(
a
a†

)
. (3.18)

The many-body ground state is then given by the Bogoliubov vacuum |0⟩, defined by
a |0⟩= 0, and energy -1

2 ∑
N
i=1 εi. The spectrum is symmetric with respect to zero, reflecting the

particle hole symmetry of the model.

3.2.1 Many-body wavefunctions

The Hamiltonian given by Eq.(3.14), for a given gauge configuration G , has the same form as
a that of superconductor in the BCS formalism [45]. The ground state wavefunction can be
thus mapped to the corresponding BCS vacuum, denoted by |M(G )⟩. Using the Bogoliubov
transformation T , and the resulting eigenmodes an, this can be expressed in the so called
Thouless form [46](or Onishi formula in nuclear physics) as

BCS ground state

|M(G )⟩=
√

det(X)exp
{
−Zmn

2
a†

ma†
n

}∣∣0 f
〉
, (3.19)

where we have defined the matrix

Z = X∗−1Y ∗. (3.20)

Here,
∣∣0 f
〉

denotes the vacuum state for the f fermions, defined by fi
∣∣0 f
〉
= 0, for any i.

An important caveat is the following. By definition, Eq.(3.19) assumes that the f fermion
vacuum and the BCS vacuum are non-orthogonal to each other. The BCS wavefunction is
built as a superposition of states with even number of eigenmodes a on top of

∣∣0 f
〉
. However,

for certain gauge configurations, the parities of f and a fermions are opposite to each other,
resulting in det(X) = 0. The total fermionic parity, of χ and c, is a gauge invariant quantity and
follows the following relation.

(−1)Nχ+N f =−det(Q)(−1)Na ∏
⟨i j⟩

ui j. (3.21)

where Na is the total number of eigenmodes occupied (for ground state, it is zero) and Q
is defined using the Bogoliubov matrices [47, 48]. det{Q} takes values ±1. This implies,
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Fig. 3.2 Fractionalization of a spin. In the Kitaev model, a single spin flip, e.g. σ z, flips a pair of
localized gauge field excitations, visons (shaded hexagons), and creates an itinerant Majorana fermion
(blue sphere). (b). The energy cost per vison, ∆v, as a function of the separation r between a pair. The
value saturates to the ∆0

v ≈ 0.15|K| implying that the visons are deconfined.

depending on the gauge configuration and det{Q}, the parity of f fermions and that of the
eigenmodes a has to be different from each other for the state to be physical. See Ref.[47]
for further details. In the next chapter, we will show how to circumvent this complication by
using appropriate gauge transformations, as well as by carefully choosing basis states that are
non-orthogonal to the BCS wavefunctions we are interested in.

3.3 Emergent Gauge Theory

The doubling of Hilbert space obviously introduces redundancy in the description of the system,
a defining feature of gauge theories in physics. Let us explore this connection in detail. Starting
from the fermionic Hamiltonian, one can replace the bond operators ûγ

i j with their eigenvalues
±1 as they commute with the Hamiltonian. This defines a Z2 degree of freedom that lives on
each bond of the honeycomb lattice forming the emergent gauge field. The c Majorana fermions
form the matter degrees of freedom. The gauge-matter coupling takes the form of a Peierls’
factor attached to the hopping terms where the phase takes values of 0 or π .

For a fixed pattern of uγ

i j (fixed gauge) the Hamiltonian is purely fermionic with only
quadratic terms and can be diagonalized to obtain the eigenvalues and eigenstates. Therefore,
for a system of N spins, each of the 2

3N
2 patterns results in a free fermion problem. We can then

use the projector P̂ to obtain the physical states. This is what makes the Kitaev model exactly
soluble.

3.3.1 Visons

In particle physics where gauge theories are more fundamental, excitations of the gauge field
carry the gauge charge and mediate interactions between matter particles, much like the photon
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of the electromagnetic field. These excitations define the physical degrees of freedom of
the gauge theory and are gauge invariant objects. What are the analogous excitations of our
emergent Z2 gauge field? (Recall our discussion in Chapter 2.) To answer this, let us create a
local excitation by flipping the value of a single gauge variable uγ

i j, while all the others are set
to +1. This flips the eigenvalues of two plaquette operators that share the flipped bond, costing
an extra energy of ∆2v ≈ 0.26 |K|, on top of ground state. If we flip a chain of uγ

i j such that one
end of the chain is at the boundary, we have created a single Wp =−1. This costs an energy
≈ ∆2v

2 , which is, most importantly, finite. The Wp operators that are localized on the plaquettes
thus represent the elementary physical degrees of freedom of the gauge field. Flipping wp from
+1 to −1 creates a localized excitation at the plaquette p. Such an excitation of a Z2 gauge field
is called a vison. 1

The above described process can be then interpreted as creating a pair of visons locally,
and taking one of them to the system’s boundary, resulting in an isolated vison in the bulk.
Importantly, a single vison is a localized quasiparticle with a finite energy E0

v ≈ 0.15 |K| (we
assume Kx = Ky = Kz = K for simplicity). This property, known as deconfinement, is crucial for
the emergence and stability of a gauge theory and fractional quasiparticles. A locally created
excitation splits into two (or more) quasiparticles, which can be infinitely separated with a
finite energy cost. Fig. 3.2b shows the energy of a system of two visons, as a function of their
separation. The numerically obtained plot clearly shows that in the limit of large separation,
the energy saturates to a finite value. The oscillating behaviour arises from finite size effects,
enhanced by the gapless nature of Majoranas.

3.3.2 Gauge transformation

Consider the action of D̂i, defined in Eq. (3.8), on a given configuration of uγ

i j. It flips the signs
of all the gauge links that are connected to the site i, while leaving the plaquette operators Wp

(visons) unaffected.

{D̂i, û
γ

i j}= 0, [D̂i,Ŵp] = 0. (3.22)

The operator D̂i hence defines a gauge transformation; it changes the gauge configuration but
does not affect the physical degree of freedom of the gauge field. A subtle caveat here is that the
gauge transformation here also affects the matter sector in a non-trivial way, as obvious from Eq.
(3.8). The projection operator P̂ implements nothing but an average over all gauge configuration
acting on a given state. This is, in general, necessary to obtain physical observables after doing
calculations in a fixed gauge, much like in classical electromagnetism.

1The name ‘vison’ was coined by Senthil and Fischer in Ref. [49] as it corresponds to a vortex configuration
of a Z2 field. Within their theory of electron fractionalization, the vison is a remnant of an unpaired hc/2e BCS
vortex of high-Tc superconductor.
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An important feature of the emergent gauge field in the Kitaev model is its static nature.
The visons, once created, are completely localized, a consequence of Eq.(3.3). In other words,
visons are infinitely massive quasiparticles of this model.

3.4 Bond Fermions

To facilitate calculations using the exact wavefunctions, it is convenient to form complex
fermions out of the b Majoranas [50]:

χ⟨i j⟩α
=

1
2
(bα

i + ibα
j ), χ

†
⟨i j⟩α

=
1
2
(bα

i − ibα
j ), (3.23)

where rrr denotes the position vector of a unit cell (the center of a z link). The Z2 gauge variables
on each link can now be expressed as the number parity of the corresponding χ fermions:

ûα
i j = 2χ

†
⟨i j⟩α

χ⟨i j⟩α
−1. (3.24)

In other words, the Z2 gauge variables can be interpreted as the occupation number of fermionic
modes that live on the links. where ‘+’ is for the sublattice A and ‘−’for B. We can now use
this framework to describe how a spin fractionalizes in the Kitaev model. The spin operator
becomes

σ
α
i =

i
2
(χ†

⟨i j⟩α
+χ⟨i j⟩α

)ci σ
α
j =−1

2
(χ†

⟨i j⟩α
−χ⟨i j⟩α

)c j, (3.25)

where i ∈ A and j ∈ B. We call the space of χ fermions as the gauge sector, while the f
fermions constitute the matter sector.

A generic eigenstate of the model can be written as a direct product of states in the gauge
and matter sector:

|Φ({R1,R2, ..})⟩= P̂ |{R1,R2, ..},G ⟩ |M(G )⟩ , (3.26)

where {R1,R2, ..} specify the positions of the visons, and |M(G )⟩ represents the many-body
wavefunction of the matter Majoranas in the presence of the visons, all expressed in the fixed
gauge field configuration G . The action of spin operator on the ground state is now clear: it
changes the χ fermion occupation on the corresponding bond creating a pair of visons and
simultaneously introduces a free Majorana fermion which now propagates in the new vison-pair
potential.
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We note that G already fixes the vison positions making Eq. (3.26) redundant. Nevertheless,
we stick with it so as to get a more intuitive understanding while working with multiple vison
sectors.

3.5 Physical States and Projection

While calculating physical quantities that are gauge invariant, it is imperative that we use the
projection operation. Let us see how to numerically implement the projector on a finite size
system. Although the infinite sum over gauge configuration may seem an insurmountable
problem, Pedrocchi, Chesi and Loss [47] showed that it is possible to implement the projection
operator on a finite size system by relating it to fermionic parities.

The projection operator can be factorized as a product of operators P̂′− sum of gauge
transformations that change the local bond fermion occupation numbers in unique ways, and
(1+D0), a global gauge transformation that does not change the link variables for a system
with periodic boundary conditions[47, 51]:

P̂ =
1+∑i D̂i +∑i, j D̂iD̂ j + ...+∏i D̂i

22N

= P̂′ (1+∏i D̂i)

2
= P̂′1+(−1)θ+Nχ+N f

2
. (3.27)

Importantly, the second equality shows that the operator (1+D0) = (1+∏i D̂i) is ultimately
related to the parity of total number of bond and matter fermions. The factor θ = M+L1 +L2

will be chosen to be even for the rest of the work, where L1 and L2 are the linear dimensions of
the system and M is a factor that depends on how the periodic boundary is implemented. The
projection operation can thus be understood as follows. Any state with an odd number parity of
fermions is an unphysical state, which is annihilated during the projection, while a state with
even fermionic number parity is transformed into a superposition of (non-equivalent) gauge
transformed states within the same flux sector.

3.6 Ground State

What is the ground state of the model? Since visons cost finite energy, one would expect the
ground state to be in the zero vison sector. However, we should not forget that the visons can
act like scattering potentials for the Majoranas, possibly leading to lower energy states. Due to
a theorem by Lieb [52, 53], it turns out that the ground state is indeed vison free, for the Kitaev
model. Recall that we still have the freedom to choose a gauge configuration. The energy
levels are gauge invariant, observable quantities. The most convenient choice is to set all gauge
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(a) (a)

Fig. 3.3 Ground state phase diagram and Dirac fermions. The Kitaev model features a gapless spin
liquid near the isotropic point Kx = Ky = Kz where the Majorana fermions have a linear band touching,
as sketched in (b). The spectrum obtains a (trivial) gap for sufficiently strong anisotropy of the Kitaev
couplings (unshaded triangles). The corners of the large triangle correspond to the Toric code limit,
where one of the couplings is much stronger than the others. The focus of this thesis is the gapless phase
where, vison-Majorana interactions are important.

variables uγ

i j to +1, leading to a translationally invariant Hamiltonian, written in momentum
space as

H =
1
2

(
f †
kkk f−kkk

)(
ξkkk ∆kkk

∆
†
kkk −ξkkk

)(
fkkk

f †
−kkk

)
, (3.28)

where ∆kkk = i Im{F(kkk)}, and ξ (kkk)=Re{F(kkk)}, which are in turn defined by F(kkk)=∑α Kαeikkk·δδδ α

The hopping vectors, for the lattice shown in Fig. 3.1 are given by δδδ x = nnn1 = (1
2 ,

√
3

2 ),
δδδ y = nnn2 = (−1

2 ,
√

3
2 ) and δδδ z = (0,0). Diagonalising the Hamiltonian thus gives the energy

dispersion of the matter fermions:

εm(kkk) =±| f (kkk)|=±|2(Kz +Kxekkk·nnn1 +Kyekkk·nnn2)|. (3.29)

Phase Diagram. The band structure reveals an interesting feature; the spectrum become
gapless (ε(kkk) = 0) when Kx,Ky and Kz obey the following inequalities.

|Kx| ≤ |Ky|+ |Kz|, |Ky| ≤ |Kx|+ |Kz|, |Kz| ≤ |Kx|+ |Ky|. (3.30)

Translating this into a phase diagram as shown in Fig. 3.3 shows two different phases - gapless
and gapped. Without going into the details, let us summarize the main features of these two
phases. The gapped phase exists for sufficiently strong anisotropies of the Kitaev couplings,
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and are adiabatically connected to the Toric code phase discussed in Chapter 2. The visons in
this phase come in two variants - e and m. They are abelian anyons (semions) with respect to
each other but bosons with respect to themselves. In the rest of this thesis, we shall not discuss
this phase but focus on the gapless phase. However, the dynamics of anyons in the toric code
can also be quantitatively studied using the methods developed in this thesis.

Dirac Equation. As shown in the Fig. 3.3, near the isotropic point (Kx = Ky = Kz = K), there
are two unique points in the Majorana Brillouin zone, called Dirac points K+ and K−, where
the bands touch linearly.

K− = 2π(−1/3,1/
√

3), K+ = 2π(1/3,1/
√

3).

In the complex fermion language, the two points can be combined into a single Dirac point KKK
since fkkk = f−kkk. In the vicinity of the Dirac point, the Hamiltonian can be a expanded in the
leading order to obtain a relativistic Dirac equation. With qqq = (qx,qy) = kkk−KKK,

Massless Majorana fermions

hK(qqq) = vm

(
0 qx + iqy

qx − iqy 0

)
, (3.31)

where the Majorana velocity vm =
√

3K
2 .

3.7 Chiral Spin Liquid

The model described by Eq.(3.1) is time reversal invariant. An external magnetic field, for
example, can break this symmetry. Kitaev, in his original work, showed that a weak Zeeman
term can open a gap in the Majorana spectrum and transform the gapless phase into a chiral
spin liquid (KCSL). Let us consider a field oriented in the [111] direction:

Hh =
1√
3
(hx σ

x
i +hy σ

y
i +hz σ

z
i ). (3.32)

At first order in perturbation theory, Hh creates a pair of visons and cost energy ∆0
2v, taking

the system out of its ground state. At second order, the Majorana hopping rates get a trivial
correction from terms of the following form.

δh(2)M ∼ h2
α

⟨0|σα
i σα

i |0⟩
∆0

2v
∼ h2

α

|K| icic j (3.33)
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(a) (b)

Fig. 3.4 Field-induced chiral spin liquid phase. A weak [111] magnetic field induces a hopping
between the same sublattice shown by the arrows A-A hopping - dashed arrows, B-B hopping - solid
arrows. This opens up a topological gap in the Majorana spectrum, as shown in (b), driving the system
into a chiral spin liquid phase.

Here, i and j should be nearest neighbours on an α type bond, necessary to annihilate the
visons created by each other. Most importantly, second order perturbation effects do not break
time reversal symmetry. At third order, however, non-trivial contributions arise. Consider the
following term in perturbation theory,

δh(3)M ∼ hxhyhz
⟨0|σ x

i σ
y
j σ

z
k |0⟩

(∆0
2v)

2
∼ hxhyhz

K2 ui ju jkicick. (3.34)

See Fig. 3.4 for definitions of the indices. This leads to a hopping between the same sublattice
sites, given by tAA =−tBB = κui ju jk. (Note the similarity of the effective Hamiltonian to the
well-known Haldane model [54] of Chern insulators.) This term also breaks time reversal
symmetry, and ultimately opens up a gap in the Majorana spectrum at the Dirac point. It is
instructive to see this in the low energy Dirac description. The Dirac equation now obtains a
mass term m = 6

√
3 κ:

hK(qqq) = vm

(
m qx + iqy

qx − iqy −m

)
. (3.35)

The energy eigenvalues are given by

εqqq ≈
√

v2
mq2 +m2. (3.36)

The band structure is shown in Fig. 3.4b.

Furthermore, the fermion bands obtain a finite Chern number, signalling that they are in a
chiral topological phase.
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(a) (b)

Fig. 3.5 Majorana edge modes and thermal Hall signature. (a) In a finite sized sample of a chiral
Kitaev spin liquid, a topologically protected chiral edge mode of Majorana fermions (inside the bulk
gap) emerge at the boundary (shaded-bulk bands). Figure adapted from Ref. [40] with permission. (b) A
typical thermal Hall experimental setup. One edge of the sample is at a higher temperature than the other
(T+ and T−), while a heat current JJJ is injected. The transverse temperature gradient ∆Ty is measured.
Figure adapted from Ref. [55].

Chern number. Now is perhaps a good point to make a short detour into the notion of
topological bands. Consider a two-band system, described by the Dirac equation with a mass
term, as in Eq. (3.35). This can be expressed using Pauli matrices denoted by τ as

hKKK = h̃hh · τττ, (3.37)

where τττ = (τx,τy,τz) and h̃hh = (qx,qy,m). This realizes a mapping from the momentum space
to a unit sphere spanned by the unit vector ˆ̃hhh. The Berry curvature Ω(qqq) of the bands are defined
by

Ωnkkk =
ˆ̃hhh ·
(

∂
ˆ̃hhh

∂qx
× ∂

ˆ̃hhh
∂qy

)
. (3.38)

Strikingly, the integral of the Berry curvature over the entire Brillouin zone is an integer, known
as the Chern invariant ν .

Majorana Chern number

νn =
1

4π

∫
1BZ

dkkk Ωnkkk = sgn(m) (3.39)

The Chern invariant has a pivotal role in the modern field of topological phases in condensed
matter physics. What are the physical consequences of this?
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3.7.1 Edge modes and thermal Hall Effect

For the Majorana fermions of the Kitaev model, the bands carry Chern numbers ±1, with its
sign determined by the magnetic field orientation. A profound consequence of Chern bands is
the quantum Hall effect (QHE). However, an important distinction from the QHE of electrons
is that the fermions of the spin liquid are not electrically charged. They are neutral, emergent
quasiparticles in an insulator. Therefore, one has to look for heat transport instead of electrical
transport to see the the Hall effect.

In a typical thermal Hall experiment (THE), the sample is placed in a magnetic field and a
temperature gradient ∆xT is applied by coupling one end of the sample to a heat bath, along the
x axis. Simultaneously, a heat current JJJ is injected along the x axis. An induced temperature
gradient ∆yT along the y axis between the two edges is then measured.

This gives the thermal Hall resistivity through the relation ρxy = ∆yT/J. Using the longitu-
dinal resistivity ρxx = ∆xT/J, one can invert the resistivity tensor to obtain the corresponding
Hall conductivity

κxy =
ρxy

ρ2
xy +ρ2

xx
. (3.40)

There are several approaches to calculating κxy of fermion system. The edge modes of the
chiral spin liquids offer an intuitive picture for this which we shall outline now.

Solving the Majorana Hamiltonian Eq.(3.13) on a finite sized lattice with boundaries, one
can show that a set of modes appear inside the gap ∆m. The dispersion of this band depends
on the details of the edge. However, crucially, this mode is chiral - it propagates in only one
direction. It is also robust against any backscattering from disorder and hence carries all the
energy at low temperatures. The energy current due to this propagating mode can be calculated
for an arbitrary dispersion. For simplicity let us assume the bulk gap is infinite. The edge mode
dispersion obeys the relations ε(−q) =−ε(q) and ε(q →±∞)→±∞. The energy current is
then given by

I =
∫

ε(q)>0
n(q)ε(q)

dε

dq
dq
2π

=
π

24
T 2. (3.41)

This result is quantized and universal for a given temperature. The thermal Hall conductivity
defined as the derivative of the energy current with respect to temperature gives

Half-quantized thermal Hall effect

κxy =
ν

2
κ0 (3.42)
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where κ0 =
πk2

B
6ℏ is the fundamental unit of conductance. This half-quantization is predicted

to be a definitive signature of the chiral spin liquid.

It is worth mentioning that in real materials, the dominant heat carriers are phonons. They
provide a finite κxx unlike what is assumed in the pure spin model with a bulk gap. This leads to
an interplay between acoustic phonons and Majorana edge modes. Surprisingly, it was shown
independently by Winkler and Rosch [56] and Ye et. al. [57] that coupling to the phonons is
not (completely) detrimental and in fact necessary to observe the quantization. In Chapter 8, we
will comment on the current experimental efforts and present a novel contribution to the THE.

3.8 Anyons

In three-dimensions, particles can be either fermions or bosons, depending on the global phase
change, 0 or π respectively, obtained by the wavefunction when positions of the two particles
are exchanged. However, it was shown by Leinaas and Myrheim in 1977 [58] that, in two-
dimensions, exchange statistics of particles can take a continuum of values. Later Wilczek [59]
expanded upon these ideas to emergent quasiparticles, coining the term "anyons" - particles
that are neither fermions nor bosons. Today, anyonic quasiparticles have been predicted in a
variety of models and experimentally observed in fractional quantum Hall systems [60].

For abelian anyons, exchanging two particles, with position vectors rrr2 and rrr2, may result in
a global phase change of the wavefunction:

Exchange statistics

ψ(rrr1,rrr2) = e−iθ
ψ(rrr1,rrr2), (3.43)

where θ ranges from 0 (bosons) to π (fermions). More complex types, called non-Abelian
anyons, have a higher dimensional Hilbert space than just the position space, as in the Abelian
case. An exchange of particles can therefore result in non-trivial transformations in this internal
space:

Ψ(rrr1,rrr2) = R Ψ(rrr1,rrr2) (3.44)

where importantly, Ψ is a multicomponent vector of dimension d, and R is a unitary matrix of
the same dimension.

Description of such anyonic systems often uses a gauge theoretical framework. The main
idea is to attach a ‘magnetic’ flux of twice the exchange phase to each particle which is otherwise
considered to be a boson. An anyon that is transported around another, topologically equivalent
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to exchanging them twice, acquires the phase, just like an electron travelling around a solenoid
in the classic Aharonov-Bohm effect. Besides realizing a fundamentally new phase of matter,
anyonic systems offer a revolutionary approach to quantum information processing. Storing
information in the internal states of a pair of well separated anyons, for example, can protect it
from local noise. The two anyons have to come together for any local operator to access the
information.

3.8.1 Ising anyons

Coming back to the Kitaev spin liquid, what is the statistics of a vison in the chiral spin liquid?
While the Majorana fermions acquire a mass gap in the chiral phase, visons carry localized
Majorana zero modes (MZM). A pair of well separated visons, thus carry a single fermion mode
ψ , formed by the two MZMs, with energy εψ = 0. The occupation of this mode determines,
what is called, the superselection sector of the pair. If the fermion mode is occupied, the pair is
said to be in the fermion (ψ) sector, and if its empty, the pair is in the vacuum (1) sector.

When two anyons are brought together, they can annihilate each other (energetic considera-
tions aside) and may release a fermion ψ . This process is called fusion and it describes how
one may read-out the quantum information encoded in the system. In general, for two anyons,
this process is represented as

Fusion rules

σ ×σ = 1+ψ. (3.45)

This defines a fusion rule, which describes the possible outcomes of the annihilation of two
anyons. In particular, the above equation along with 1×1= 1 and ψ ×ψ = 1 form the full set
of fusion rules of Ising anyons.

To understand how the exchange of Ising anyons affect the fusion space, it is useful to study
a system of four MZMs. The following discussion closely follows Chapter 6 of Ref. [61].
Consider four anyons σi, i = 1,2,3,4 carrying MZMs γi, i = 1,2,3,4 respectively. We can form
two complex fermions out of the by choosing any two pairs. Consider two such pairings:

z1 = γ1 + iγ2, z2 = γ3 + iγ4 (3.46)

and

w1 = γ1 + iγ3, w2 = γ2 + iγ4. (3.47)
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Fig. 3.6 Braiding of Ising anyons. A braiding process involving three Ising anyons to extract the
topological spin. The process on the left involves braiding γ1 around γ2 and γ3 in a clockwise fashion
followed by the fusion of γ2 and γ3 to obtain the outcome α . γ1 is then braided with α in the counter-
clockwise direction. This is topologically equivalent to no braiding, as on the right hand side. That is
B1B2 = 1. Figure taken from Ref. [61].

The corresponding Hilbert spaces are spanned by the states |nz1nz2⟩, namely,
|00⟩z , |11⟩z , |01⟩z , |10⟩z, defined similarly for the w fermions. Since the total fermionic parity
is a conserved quantity, protected by the Majorana gap (like in a BCS superconductors, where a
quasiparticle excitation costs the gap), we can restrict our attention to the subspace spanned by
|00⟩z , |11⟩z and |00⟩w , |11⟩w. Here we assumed that both pairs were created out of the vacuum
sector, and hence the fermion modes can be empty. Note that the two basis sets differ only by
the exchange of γ2 and γ3. It can be proven using the algebra of Majorana operators that the
exchange of two Majoranas can be expressed by the following relation.(

|00⟩w

|11⟩w

)
=

1√
2

(
−1 1
1 1

)(
|00⟩z

|11⟩z

)
. (3.48)

Braiding phase More relevant to us is the braiding phases of Ising anyons. This refers to the
effect of exchanging two anyons on the total wavefunction of the system. We consider the same
setup as above. One can easily convince themselves that the following operator exchanges γ2

and γ3:

U23 =
eiθ
√

2
(1+ γ2γ3), (3.49)

where the factor eiθ corresponds to the abelian part of the transformation. Importantly, if γ2

and γ3 are already paired, with a definite parity iγ2γ3 =±1, exchanging them will only result in
a global phase factor ei(θ±π/4). Computing the value of θ is actually not straightforward, as
one has to invoke conformal field theoretical (CFT) description of the chiral spin liquid, or the
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machinery of unitary modular category [40]. Here I will present a rather intuitive argument
adapted from Ref. [61].

We consider the following processes in sequence, as illustrated in Fig.3.6: (i) γ1 is braided
around γ2 and γ3 in a clockwise manner, (ii) γ2 and γ3 are then fused into the outcome α =ψ or 1,
and (iii) γ1 is then braided around α counter-clockwise. This sequence can be described by

B2B1 =Uα1U12U13. (3.50)

However, the total braiding process should be equal to identity, as the first and second process
are exactly the reverse of each other. We will now assume that exchanging a single MZM and
a fermion ψ results in a phase factor i. This is consistent with the fact that exchanging two
complex fermions, each composed of two Majorana modes results in a phase i2 =−1. With
this assumption,

U1α = 1−2ψ
†
ψ = iγ2γ3. (3.51)

Therefore U1α = −1, if the outcome is a fermion mode, or +1 if vacuum. Combining these
arguments, we get

1= B2B1 = e4θ
γ2γ3iγ2γ3 = ei(4θ∓π/2). (3.52)

This gives the topological spin of the Ising anyons

Ising Topological Spin

θ =±π

8
. (3.53)

The sign is fixed by the chirality of the system, which is in turn determined by the Chern
number ν of the lower Majorana band. A more rigorous calculation of θ from the CFT
description results in θ = ν

π

8 [40]. Note that exchanging two particles twice is topologically
equivalent to looping one around the other. Therefore, taking an Ising anyon around another
results in an abelian phase of ±π

4 or ∓−3π

4 , if the anyon pair is in the vacuum sector or fermion
sector respectively.

3.9 Kitaev Materials

The Kitaev model provided arguably the first concrete theoretical proof that a quantum spin
liquid phase can exist and gauge fields naturally emerge. However, the direction-dependent
interactions defining the model seemed highly fine-tuned, and its relevance beyond a theoretical
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breakthrough remained unclear. Surprisingly, a few years later, a seminal paper by Jackeli and
Khalliullin [41] proposed that, in certain spin-orbit coupled Mott insulators, such direction
dependent spin-spin interactions may naturally dominate the Hamiltonian. This brought the
Kitaev model from the theoretical fantasy land to the real world. Let us briefly review this
mechanism which ultimately spawned a whole new field of research.

3.9.1 Jackeli-Khaliullin mechanism

The mechanism proposed by Jackeli and Khaliullin (JK) is predicted to occur in certain materials
known as Mott insulators. According to the band theory of solids, systems with odd number of
electrons per unit cell (half-filled band) should be a metal and even number of electrons should
be insulating. However, several materials like transition metal oxides are insulating, despite a
partially filled d-band. Mott proposed that this is a result of the strong Coulomb interactions
between electrons which essentially suppress their hopping between sites, thus defining a Mott
insulator [62].

For the JK mechanism to work, there are three main ingredients. The first is a ligand that
induces a crystal-field around the ion carrying the unpaired orbital. Consider the example of a
d5 orbital. When the ligand ions (e.g. Oxygen or Chlorine) form an octahedral cage around the
ion, it splits the d5 band into an empty eg and a three-fold degenerate t2g states. The second
ingredient, spin orbit coupling (SOC), further splits the triply degenerate t3g into an effective
angular momentum jeff =

1
2 state and two jeff =

3
2 multiplets. Jackeli and Khaliullin argued that

when the ligands form an octahedral cage around the ion, the coupling between the effective
spin-1

2 depends sensitively on the geometry of the edge shared by the two ions.

In particular, when the ions-ligand structure are in an idealized edge sharing geometry, the
two exchange pathways (as shown in Fig. 3.7b), that would typically give rise to Heisenberg
interactions between the spin-1

2 moments interfere destructively. The dominant remaining
exchange then occurs with the help of a Hund’s coupling within the ion orbitals and leads to a
highly bond-specific Ising interaction ∼ t2JH

U2 Sα
i Sα

j . Here α = x,y,z depends on the direction
of the edge shared, t is the electron hopping amplitude, JH is the Hund’s coupling and U is
the repulsive Coulomb interaction energy. This describes the Kitaev coupling! It is also worth
mentioning that such a specific anisotropic interaction was also proposed in the 1982 by Kugel
and Khomskii for orbital moments in certain materials[63].

Beyond the above described idealized geometry, including the effects of direct exchange
between the ions results in a Heisenberg term to be added to the Kitaev Hamiltonian. The
interplay of both direct and ligand-mediated exchange was found to add another term called the
symmetric-off diagonal exchange term Γ(Sβ

j Sγ

i +Sβ

i Sγ

j) on an α type bond with α ̸= β ,γ [65].
This has led to the widely studied J−K −Γ model of Kitaev materials [66–68, 64, 69, 70]. In
reality, several other non-Kitaev terms, that are allowed by symmetry, will also contribute to the
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Fig. 3.7 Jackeli-Khaliullin mechanism in Kitaev materials. The mechanism operates on a transition
metal ion (blue spheres) surrounded by a ligand ion (red spheres) in an octahedral structure. An effective
spin-1/2 moment emerges out of the partially filled d orbital due to the interplay of crystal-field, spin-orbit
coupling and strong electronic correlations. The virtual electron exchange between two ions sharing an
edge destructively interfere and helps produce the Kitaev interactions in these materials. Figure adapted
from Ref. [64].

Hamiltonian. However, when the Kitaev coupling K is much larger than all the other terms, we
expect the system to be in a spin-liquid phase, adiabatically connected to the pure Kitaev model.
Such materials are christened Kitaev materials[64].

This has led to intense experimental and theoretical efforts to understand and engineer
spin liquid phases in a large class of materials [64, 71]. Beyond the JK mechanism, several
other ways to engineer Kitaev interactions in materials based on Cobalt (e.g. Na2Co2TeO6 and
Na3Co2SbO6) have been proposed. For a comprehensive review of leading Kitaev material
candidates and their theoretical underpinnings, I would refer the reader to Ref.[64] by Trebst
and Hickey.

What is the current status of the field? It turns out that almost all the candidate materials
order magnetically below some temperature TN , brutally stomping on the hopes of a spin liquid
ground state. Numerous works have proven, through advanced numerical methods that the
interplay between Kitaev physics and non-Kitaev terms leads to magnetic order and modifies
the experimental signatures of the pure spin liquid [66, 68]. Although the correct values of
these couplings for potential Kitaev materials are still under intense debate [72], the Heisenberg
and off-diagonal couplings are believed to be the two essential ingredients necessary to capture
many of the observed phases in Kitaev materials [70, 65, 73, 74]. This points to the fact that
even if Kitaev interactions arise in these materials, the non-Kitaev interactions are probably
strong enough to destroy any spin liquid phase.

One may still ask, what about the high temperature phases above TN? Some of the very
first evidences of a possible spin liquid behaviour was found indeed in this regime, where
inelastic neutron scattering found a broad continuum of excitations, a necessary (but not
sufficient) condition for a fractionalized spin liquid [75]. Raman spectroscopy followed and
provided complimentary evidence for such a continuum present [76]. Perhaps the most exciting
experimental result came from the group of Matsuda [42, 43], where they observed the half-
quantized thermal Hall effect, a smoking gun signature of the Kitaev spin liquid, in α −RuCl3.
This result has re-ignited excitement in the field.
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(a) (b)

(c) (d)

Fig. 3.8 Crystal structure and Thermal Hall effect of α − RuCl3. (a.) α − RuCl3 is made of
honeycomb layers of Ru atoms surrounded by Cl atoms in an octahedral fashion (Figure adapted from
Ref. [77]). (b.) Experimentally obtained phase diagram based on thermal Hall effect measurements by
Kashara et al.[42]. At small magnetic fields, the material magnetically ordered. At high fields, the spins
are polarized into a trivial phase. In an intermediate regime (red), a half-quantized thermal Hall effect is
observed suggesting a chiral spin liquid phase adiabatically connected to the Kitaev model. At finite
temperature, the spin liquid phase persists below the scale of Kitaev interaction K. (c.) Thermal Hall
data adapted from Kasahara et.al [42]. A predicted quantization of thermal Hall conductivity is observed
between ∼ 6.5T - 7.5T. (b.) Thermal Hall conductivity as a function of temperature. Experimental
figures (b)-(d) are adapted from Ref. [42] with permission.

3.9.2 The curious case of α −RuCl3

α −RuCl3 is composed of weakly coupled layers of honeycomb lattice consisting of Ru3+(4d5)

ions caged by an octahedron of Cl atoms. The Mott insulating behaviour and the effective spin-
half moments in α −RuCl3 were only discovered in the last decade, first by Plumb et.al. [78].
Hopes of it being an ideal system for the JK mechanism, and a possible spin liquid, were raised.
Alas, α-RuCl3 develops a zig-zag magnetic order below a Néel temperature of approximately
7 K or 14 K depending on its three-dimensional structure. Above the ordering temperature,
Raman spectroscopy experiments claimed to have detected the presence of fermionic excitations,
unlikely to be present in a trivial paramagnet [76]. However, as mentioned above, a broad
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continuum of excitations in spectroscopy can also arise from more trivial sources like disorder
or interactions.

What if one destroys the magnetic order not by heating the system but by an external
magnetic field? Does it immediately transition to a field polarized trivial phase or could we
expect an intermediate phase that is adiabatically connected to the Kitaev model? The answer
to this question is still under intense debate. The latter is an exciting scenario, but hard to
distinguish experimentally from the former. By definition, a quantum spin liquid state does not
break symmetry, thus similar to a partially polarized phase. However, there has been a flurry of
wide ranging experimental inquiries into this field-induced regime with conflicting results.

In 2018, transport measurements by Kasahara et al.[42] provided perhaps the most remark-
able and promising evidence for the Kitaev spin liquid phase; a half-quantized thermal Hall
conductivity in the field-induced regime (∼ 8T). Exciting this result was, its interpretation
required a deeper understanding of thermal transport in a spin liquid material given the presence
of phonons that carry most of the heat [56, 57]. This surprisingly revealed that phonons in fact
help us to observe the quantization, at least in certain temperature regime. The half-quantization,
in its true sense has not been reproduced, although Bruin et al. [79] did observe a plateau-like
feature. Large non-quantized thermal Hall effect including an oscillatory behaviour has been
observed by other groups [80]. Recently, evidence of a planar-thermal Hall effect has been
reported in α −RuCl3[43]. Here, the external field is oriented parallel to the honeycomb plane
and the sign of the Hall effect was controlled by the field orientation - two features readily
explained by a spin liquid of the Kitaev type. Moreover, recent reports of thermodynamic
evidence for closing and re-opening of energy gaps, as a function of magnetic field orientation
are also certainly encouraging[81].

However a consistent and conclusive reproduction of these results is absolutely necessary to
establish α −RuCl3 as a true quantum spin liquid material. It is exciting that more materials
have been reported to exhibit similar physics as that of α −RuCl3, making the search for Kitaev
spin liquid a very active field.[82]

3.10 Motivation

In this midst of the ’spin liquid or no spin liquid’ debate, one could either give up or ask
ourselves the question - what if? What if a Kitaev material indeed realizes the spin liquid phase?
What would be the nature of its excitations ? How would it be different from the predictions of
the pure Kitaev model? For instance, in Ref. [57], it was shown that although a pure Kitaev
model is predicted to show a gap in its dynamical response, generic symmetry allowed terms
fill this gap and result in a gapless response. It follows from renormalization group arguments
that the Majorana fermions, owing to their Dirac nature (linear dispersion) are quite robust to
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interactions induced by weak non-Kitaev terms [83]. However, a pivotal feature of the Kitaev
model, the static nature of the emergent gauge field, is destroyed by any weak perturbation
naturally present in a real material. Any realization of a spin liquid that is smoothly connected
to the Kitaev model will, therefore, host a dynamical gauge field. Furthermore, the gauge
fields will influence most, if not all, experimental quantities related to the spin liquid phase.
However, the dynamics of this emergent Z2 gauge field, strongly interacting with the gapless
matter, is largely unexplored. In this thesis, we take a crucial step towards bridging this gap by
developing a comprehensive theory of the gauge field excitations, visons, in a generic Kitaev
liquid, proposing their experimental signatures.





Part II

Dynamics





Chapter 4

Quantum Dynamics of Visons

Any material realization of the Kitaev spin liquid phase will naturally host a dynamical gauge
field coupled to Majorana fermions. How do we describe the dynamics of the elementary gauge
field excitations -a single vison-in such a system? Due to its fractional nature, a single vison
is a stable quasiparticle which can only decay by annihilating with another vison, making its
dynamics fundamentally important.

In this chapter, we develop a controlled perturbative approach to compute the dynamics of
visons induced by weak perturbations to the Kitaev model. When the perturbations are weak,
the vison gap remains finite, allowing us to study its quasiparticle properties, such as band
dispersion and mobility. Consequently, this problem is akin to that of a mobile "impurity" in a
gapless fermionic bath. We will obtain an effective single-particle tight-binding model for a
vison by calculating its hopping amplitudes using many-body perturbation theory.

We consider the two most relevant non-Kitaev spin-spin interactions as perturbations: an
off diagonal exchange term (the Γ term) and a Heisenberg interaction. Together, they form
the well-known J −K −Γ model [65]. Additionally, we will examine effects of an external
magnetic field on the visons. Due to its time-reversal-breaking effects, magnetic fields must be
treated rather carefully. In this chapter, we will explore how these perturbation transform the
static visons of the pure model into mobile quasiparticles with a band structure.

The hopping amplitudes due the Γ term, in the gapless phase (Section 4.1) were computed,
and arguments regarding the Heisenberg perturbation (Section 4.3) were developed during
the author’s Master thesis [84]. These results are reproduced here to make this thesis self-
contained and coherent. The results of this chapter are published in Physical Review X 12,
041004 (2022)[85], co-authored with Achim Rosch. The numerical data are mostly reproduced
from the publication.
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(a) (b)

Fig. 4.1 Vison hopping induced by the Γ term. (a.) A weak ∆HΓ on a given bond (shown here for
⟨i j⟩z) has two symmetry related terms that hop a vison from RRR1 to RRR2, through two different paths shown
by the two arrows. The two processes interfere with each other. (b.) The dual triangular lattice of the
honeycomb, on which visons hops around. The Γ term induces a next-nearest-neighbour hopping on this
lattice.

4.1 Off-diagonal Exchange

To investigate how perturbations lead to the motion of visons, we start with the off-diagonal
symmetric exchange, known as the Γ term. Focusing on this perturbation, we will develop the
analytical and computational methods for evaluating vison hopping matrix elements. These can
be then used for any generic perturbation that induces vison dynamics.

An off diagonal symmetric exchange interaction is given by

∆HΓ = ∑
⟨i j⟩

α

α ̸=β ̸=γ

(σ
β

i σ
γ

j +σ
β

j σ
γ

i ). (4.1)

Let us see how this term makes the visons dynamic. Consider a z bond as shown in Fig. 4.1,
where the Γ terms is given by

∆Hz
Γ
= Γ(σ x

1 σ
y
2 +σ

y
1σ

x
2). (4.2)

Starting with a single vison localized at the plaquette RRR1, the action of each term in Eq.
(4.2) is depicted in Fig. 4.1 using arrows: the vison at RRR1 hops to RRR2. Within the gauge theory,
the gauge variables on the links crossing the arrows are flipped from +1 to −1. Even though
both the terms result in the same physical final state, with a vison at RRR2, there is an important
distinction between them in terms of the Z2 links flipped. The action of the whole term can
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thus be interpreted as an interference of two paths by which the vison can hop to the same final
position. Similar analysis on x and y bonds result in vison hopping along the respective bonds.

We can now calculate using standard degenerate perturbation theory, the matrix elements
corresponding to the hopping process. At linear order, the hopping amplitude is given by

tΓ = ⟨Φ0(RRR1)|∆Hz
Γ
|Φ0(RRR2)⟩ , (4.3)

where the wavefunction Φ(RRR1) is the ground state of the unperturbed system, with a single
vison at RRR1.

The computation of this seemingly harmless quantity is rather complicated due to several
factors. The wavefunctions appearing in the expression are the full many-body ground states of
the Majorana fermions with a vison, a singular scatterer. Due to the underlying gauge theory,
we need to choose a convenient gauge configuration to perform the calculations ( a pattern
of u⟨i j⟩ compatible with the vison positions) for a given wavefunction. This, in turn, enforces
the projection operation Eq. (3.8), that essentially symmetrizes over all gauge transformations.
Periodic boundary conditions used in our calculations permit only an even number of visons.
To study the hopping of a single vison,therefore, requires to have a pair of visons separated by
the maximum possible distance (L/2 for a linear system size L), which may lead to strong finite
size effects.

4.2 Dressed Visons and Hopping Amplitudes

The above discussion emphasizes, once more, that one should think of the vison as a particle
that is dressed by a cloud of Majorana fermions scattered by the gauge flux it carries. It is this
‘polaron-like’ particle whose properties we study here.

4.2.1 Spins to fermions

Let us now calculate the matrix elements of the form Eq. (4.3), describing the vison hopping
process corresponding to Fig. 4.1. Ground state wavefunction of the unperturbed system can be
written as a direct product of the gauge sector, defined in the Fock space of the bond fermions
χ , and the BCS wavefunctions of the corresponding matter fermions, following Eq.(3.26). To
write down the wavefunction of the gauge sector, we first need to choose a gauge configuration
for the initial vison position RRR1. This is done by flipping the gauge variables u⟨i j⟩y

along a chain
of y bonds, of length L/2 in a torus of linear size L, creating two visons separated by a distance
L/2. This gauge configuration is denoted by G1. The ground state of such a configuration can
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be expressed as

|Φ(RRR1)⟩= P̂∏
l∈γ

χ
†
l

∣∣0χ

〉
|M(RRR1,G1)⟩= P̂ |RRR1,G1⟩ |M(RRR1,G1)⟩ , (4.4)

where γ denotes the chain of flipped bonds with a vison at one of its ends, RRR1.
∣∣0χ

〉
denotes the

vacuum of the bond fermions, corresponding to the uniform gauge with all u⟨i j⟩ =+1. Creating
a bond fermion on a link l = ⟨i j⟩ flips the value of u⟨i j⟩ from +1 to −1.

We start by choosing gauge configurations for the two vison positions, such that the ground
states have even matter fermion parity (Eq. (3.27)):

|Φ0(RRR1)⟩= P̂∏
l∈γ

χ
†
l

∣∣0χ

〉
|M0(RRR1,G1)⟩= P̂ |RRR1,G1⟩ |M0(RRR1,G1)⟩ . (4.5)

|Φ0(RRR2)⟩= P̂χ
†
24χ

†
31 ∏

l∈γ

χ
†
l

∣∣0χ

〉
|M0(RRR2,G2)⟩= P̂ |RRR2,G2⟩ |M0(RRR2,G2)⟩ (4.6)

Note that we have ignored the second vison in the system as its position is fixed throughout the
calculation.

The action of χ
†
31 and χ

†
24 amounts to moving the bare vison from RRR1 to RRR2. The projection

operation ensures that the wavefunction is in the physical Hilbert space. Here I show explicitly
the expansion of the matrix element in terms of the fermions:

⟨Φ0(RRR1)|∆Hz
Γ
|Φ0(RRR2)⟩= Γ⟨M0(RRR1,G1)| ⟨RRR1,G1|(by

2bx
1c2c1 +bx

2by
1c2c1)P̂ |RRR2,G2⟩ |M0(RRR2,G2)⟩

= Γ⟨M0(RRR1,G1)| ⟨RRR1,G1|(by
2bx

1c2c1 +bx
2by

1c2c1)P̂′ |RRR2,G2⟩ |M0(RRR2,G2)⟩
= Γ⟨M0(RRR1,G1)| ⟨RRR1,G1|(by

2bx
1c2c1 +bx

2by
1c2c1D̂1D̂2)χ

†
24χ

†
31 |RRR1,G1⟩ |M0(RRR2,G2)⟩

= Γ⟨M0(RRR1,G1)| ⟨RRR1,G1|(by
2bx

1c2c1 + iby
2bx

1û21)χ
†
24χ

†
31 |RRR1,G1⟩ |M0(RRR2,G2)⟩ .

(4.7)

Here, we have used the fact that the ground states have even total fermion parity so that P̂
effectively reduces to P̂′ (Eq. (3.27)). It can be easily observed that the only term in the
expansion of P̂′ that gives a non-zero overlap between the two vison sectors is D̂1D̂2; thus
ensuring the second equality. Substituting for D̂1 and D̂2, Eq. (4.7) becomes

tΓ
z = ⟨Φ0(RRR1)|∆Hz

Γ
|Φ0(RRR2)⟩= Γ⟨M0(RRR1,G1)|(−ic2c1 −1) |M0(RRR2,G2)⟩ . (4.8)

Thus we have reduced the calculation of hopping amplitudes to that of calculating matrix
elements of fermionic operators in the matter Majorana sector alone. Such fermionic matrix
elements can be calculated for large finite size systems as described below.
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4.2.2 Majorana matrix elements

We are interested in matrix elements of the form

⟨M0(R1,G1)|cA
i cB

j |M0(R2,G2)⟩ . (4.9)

We can derive, using simple fermionic algebra, the expression for matrix elements in terms
of the Bogoliubov matrix elements. First, we use the Thouless representation [46] of non-
interacting fermionic many-body Slater determinant states introduced in Chapter 3 to express the
above quantity in terms of the Bogoliubov matrices. Let a and b be the Bogoliubov quasiparticle
operators that diagonalizes the Majorana sector corresponding to the vison positions RRR1 and RRR2

respectively (in the chosen gauges), i.e., a |M(RRR1,G1)⟩= 0, b |M(RRR2,G2)⟩= 0.(
X∗

1 Y ∗
1

Y1 X1

)(
f
f †

)
=

(
a
a†

) (
X∗

2 Y ∗
2

Y2 X2

)(
f
f †

)
=

(
b
b†

)
, (4.10)

which follows from the Bogoliubov transformation.

The two quasiparticle operators a and b obey the following relation:

Θ

(
a
a†

)
=

(
χ∗ Σ∗

Σ χ

)(
a
a†

)
=

(
b
b†

)
, (4.11)

with

χ(R1,R2) = Y2Y †
1 +X2X†

1 , Σ(R1,R2) = Y2XT
1 +X2Y T

1 . (4.12)

This mapping also leads to the following relation between the ground states.

|M0(RRR2,G2)⟩=
√
|χ|exp

{
−Z12

mn
2

a†
ma†

n

}
|M0(RRR1,G1)⟩ (4.13)

where

Z12 = χ
∗−1(R1,R2)Σ

∗(R1,R2) (4.14)

The magnitude of ground states overlap can now be read off from Eq. (4.14) as |
√

|χ||.

However, as discussed briefly in Section 3.2.1, this requires the matter fermionic parity of
the two ground states to be the same. This is however not true for all gauge configurations. In
such cases, det{χ} evaluates to zero. But fortunately, this can always be repaired by choosing
an appropriate gauge configuration to begin with, since a gauge transformations only conserves
the parity of total number of fermions Nχ +N f , allowing us to modify the parity of the matter
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fermions (or c Majoranas) while preserving the flux sector. The total fermionic parity for a
given state can be calculated following [47, 48]. However, this issue does not appear in the case
of Γ induced hopping but poses serious challenge in the case of a Zeeman field.

4.2.3 Overlap of BCS wavefunctions

Although easy to evaluate, the above formula contains no information about the complex phase
of the hopping rate, due to the square root operation in Eq. (4.14). As we shall see later,
this information is necessary to coherently sum over multiple vison hopping processes which
interfere with each other. We turn to nuclear physics for help. A rigorous path integral derivation
using doubled Grassmann variables was introduced by Robledo [86], in the context of nuclear
matrix-elements. We shall adapt this formalism to our problem, with some subtle modifications
as described below.

The key is to choose a ‘good’ reference vacuum for the Thouless form in Eq. (4.14). The
obvious choice would be the vacuum state of the original f fermions defined by f |0⟩= 0. But
this turns out to be a bad one, as the matrices χ may be singular leaving Eq. (4.14) itself invalid.
Instead, we choose as reference vacuum the ground state corresponding to an arbitrary vison
position RRR0 ̸= RRR1 ̸= RRR2. The only constraint that determines the choice of RRR0 is that all three
ground states must have the same fermionic parity, and are not orthogonal to each other.

Let us denote the Bogoliubov quasiparticle operator corresponding to this vison position by
d. i.e., d |M(RRR0,G0)⟩= d

∣∣0̃〉= 0. We can now express the two relevant ground states as

|M0(RRR1,G1⟩= |
√

|χ(RRR0,RRR1)||exp
{
−d† Z01

2
d†
}
|M0(RRR0,G0)⟩ (4.15a)

|M0(RRR2,G2⟩= |
√

|χ(RRR0,RRR2)||exp
{
−d† Z02

2
d†
}
|M0(RRR0,G0)⟩ . (4.15b)

The overlap can be calculated by introducing coherent state path integrals and integrating
out the Grassmann fields resulting in the final expression. See Appendix A for the detailed
derivation.

Pfaffian formula

⟨M0(RRR1,G1)|M0(RRR2,G2)⟩

= |
√

det{χ(RRR0,RRR1)}det{χ(RRR0,RRR2)}|(−1)
N(N+1)

2 Pf

(
Z02 −1
1 −Z01

)
(4.16)
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Fig. 4.2 (a) Vison hopping amplitudes linear in Γ for K = −1, as function of inverse system size,
L = 3k+ n, k ∈ N, n = 0,1,2 for a perturbation by a small Γ term (next-nearest neighbour hopping,
κ = 0). Color code: blue - tΓ

x , green - tΓ
y , red - tΓ

z where ζ = h,Γ. Symbols are used to label different
system sizes. The corresponding vison dispersions are shown in (b).

where the Pfaffian is computed for a 2N ×2N anti-symmetric matrix, numerically imple-
mented using the Python package by Wimmer [87].

4.2.4 Results - FM Kitaev model

We first present the hopping amplitudes and the corresponding dispersion for a single vison,
induced by the Γ term, when the underlying Kitaev interaction is ferromagnetic (K < 0, FM
Kitaev).

Fig.4.2a shows the hopping amplitude tΓ calculated as a function of inverse system size L.
The finite size effects are negligible and the value extrapolates to

Γ - induced hopping

tΓ ≈−1.45Γ. (4.17)

A finite hopping rate in the thermodynamic limit is not a priori obvious for mobile heavy
particles in a gapless bath. For example, it is well-known that moving an impurity in a Fermi
sea results in the famous Anderson orthogonality catastrophe. A strong rearrangement of the
Fermi-sea in response to the perturbation leads to a zero overlap between Slater determinants in
the thermodynamic limit. However, the vanishing density of states of the Dirac dispersion of
the fermions comes to our rescue here.

Assuming a tight-binding model on a triangular lattice with lattice constant
√

3a, where
a is the honeycomb lattice constant, we calculate the vison dispersions. For Γ < 0 there are
6 minima located on the lines connecting the Γ and M points. For Γ > 0, the minima of
the dispersion are located the Γ and K points. The fact that the Γ and K points are exactly
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degenerate is an artefact of our leading-order approximation which includes only next-nearest
neighbour hopping.

4.2.5 Results - AFM Kitaev model

The hopping matrix element for the antiferromagnetic Kitaev coupling (K > 0, AFM Kitaev)
evaluates to zero! This reveals a novel interference phenomenon of vison hopping processes
related by symmetries as we explain now.

A single vison hopping process induced by ∆Hz
Γ
= Γ(∆H1 +∆H2) is a sum of two contribu-

tions, tab = A1 +A2 arising from the two different terms in the Hamiltonian. For instance, on
the z-link shown in Fig. 4.1, ∆H1 = Γσ x

1 σ
y
2 while ∆H2 = Γσ

y
1σ x

2 These two terms are related by
a reflection symmetry (dashed lines in Fig. 4.1), which ensures that A1 =±A2. To fix the sign,
we observe that ⟨∆H1∆H2⟩= ⟨σ z

1σ
z
2⟩ is negative in the AFM Kitaev model while positive in the

FM Kitaev model. This strongly suggests that A1 =−A2 in the AFM phase as we confirmed
numerically by direct evaluation of Eq. (4.3): a destructive interference eliminates the leading
vison hopping process.

This however, does not mean that the vison is localized in an AFM Kitaev model with Γ

term. Higher orders in perturbation theory may lead to coherent hopping processes which we
do not consider here. Instead, we will see how a small magnetic field results in a finite hopping
rate even at linear order in Γ. In Chapter 4, we will study how scattering from Majoranas help
visons become mobile at finite temperatures.

4.3 Heisenberg Interaction

We now turn to a nearest-neighbour Heisenberg interaction.

∆HJ = ∑
⟨i j⟩

σσσ i ·σσσ j. (4.18)

Starting from the vison-free sector, the action of ∆HJ on a given bond creates four visons
around the bond. Therefore, at linear order perturbation analysis like we did for the Γ term,
∆HJ takes the system out of the single vison sector. However, at second order, one can find
several terms that realizes the hopping of a vison. A full calculation at second order involves
the sum over an extensive number of matrix elements which we do not do here. However, we
can argue that all the processes that contribute to the hopping interfere destructively, resulting
in a vanishing hopping rate!
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Consider a vison hopping across two y-links as shown in Fig 4.3. Let us denote the hopping
induced by processes depicted on the left and right side of Fig 4.3 by tL and tR. A mirror
symmetry maps the processes onto each other. We now repeat the argument used in the main
text to discuss the interference of hopping processes induced by Γ or h. By symmetry tL =±tR
and the sign will decide whether there is a destructive interference, tL+ tR = 0, or a constructive
interference tL + tR = 2tL of the two terms.

To determine the sign, we can analyze a simplified question and consider the sign of

t̃L/R =
〈
Φ

0(RRR1)
∣∣(∆HJ∆HJ)L/R

∣∣Φ0(RRR2)
〉
, (4.19)

where we denote by (∆HJ∆HJ)L/R those terms which contribute to the processes on the left/right
side of Fig. 4.3 (written below each figure). Although t̃L/R ̸= tL/R, the two quantities are expected
to have the same symmetry properties.

To map an L process to an R process, we need the information on the flux configuration.
The central plaquette in all diagrams in Fig. 4.3 do not carry any flux in the initial and final state.
The plaquette operator Ŵ = σ x

1 σ
y
2σ

z
3σ x

4 σ
y
5σ

z
6 has eigenvalue +1 (−1) in the absence (presence)

of a flux [40]. Thus the following key observation can be made:∣∣Φ0(RRR2)
〉
= Ŵ

∣∣Φ0(RRR2)
〉
= σ

x
1 σ

y
2σ

z
3σ

x
4 σ

y
5σ

z
6

∣∣Φ0(RRR2)
〉
. (4.20)

Using this formula and the algebra of Pauli operators it is straightforward to show that〈
Φ

0(RRR1)
∣∣σ x

1 σ
x
2 σ

z
2σ

z
3

∣∣Φ0(RRR2)
〉

=−
〈
Φ

0(RRR1)
∣∣σ z

6σ
z
5σ

x
5 σ

x
4
∣∣Φ0(RRR2)

〉
. (4.21)

Therefore the processes shown in Fig. 4.3a and 4.3b contribute with opposite sign.

A straightforward extension of this argument is not possible for all the other processes
shown in Fig. 4.3. But a direct evaluation of t̃L and t̃R in a finite size system reveals that

t̃L =−t̃R. (4.22)

We therefore expect that tL =−tR and processes to order J2 thus cancel by an interference effect
independent of the sign of the Kitaev coupling.

A weak Heisenberg coupling is hence expected to contribute only to order J4 to the disper-
sion of single visons (as J3 terms map a single vison to either 3 or 5 visons). Pairs of visons,
however, can even hop by processes linear in J as has been shown in Ref. [67].
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Fig. 4.3 Heisenberg interaction. Eight single-vison hopping processes (RRR1 → RRR2) appearing at second
order perturbation theory in Heisenberg interaction. All the given processes interfere destructively.
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(a) (b)

Fig. 4.4 Vison hopping induced by a magnetic field term. (a.) The perturbation ∆Hh on a given
bond (shown here for ⟨i j⟩z) has two symmetry related terms that hop a vison from RRR1 to RRR2 through
two different processes. These processes, shown by the two arrows, interfere with each other. (b.) A
magnetic field induces a nearest-neighbour hopping on this lattice.

4.4 Effect of a Magnetic Field

An external magnetic field is a distinct perturbation due to its symmetry properties. We consider
an external field in the [111] direction. This has two effects: to linear order in h it induces
hopping of the visons, to cubic order a gap of size ∆m = 6

√
3κ ∼ h3

K2 is opened [40] in the
Majorana spectrum (here we assume Γ = 0). While this scaling suggests that one may neglect
the effects of κ to lowest order in perturbation theory, the presence of a Majorana zero mode
attached to the vison for κ ̸= 0 (or a quasi-bound state for κ = 0) makes the analysis more
subtle and induces strong finite size effects. 1

Consider a z bond as shown in Fig. 4.4, where the magnetic field perturbation is ∆Hz =

∑α
h√
3
(σα

1 +σα
2 ). Starting with a vison located at RRR1, the z component of the perturbation

induces a hopping across the z bond to RRR2, while the x and y components hop the vison across
the x and y bonds respectively. This defines a triangular lattice for the vison hopping model.
The hopping matrix elements are given by

th
α =

h√
3
⟨Φ(RRR1)|(σα

1 +σ
α
2 ) |Φ(RRR2)⟩ . (4.23)

Using the Majorana representation, and a further gauge transformation for the spin operator
(equivalent to rewriting σ z =−iσ xσ y) the hopping rate, e.g., for the z component can be written

1I am sincerely grateful to Chen, Rao and Sodemann for pointing out this numerical artefact which would
have otherwise lead to wrong conclusions.
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-1+1

+1

+1

Fig. 4.5 Parity constraints and physical states. The pattern of ground-state fermionic parity indicated
as +1 (odd) or +1 (even) in the plaquette where the vison is located. This is fixed for a given position
of the second vison which is placed on the far left separated by a distance dV = L/2 (not shown in the
figure). Here, L = 34, dV = 14. For the odd parity case, one needs to calculate the hopping amplitudes
to states with a single particle added to the BCS vacuum to stay in the physical Hilbert space. The two
levels shown in the odd parity plaquette denote the first two levels of the Majorana spectrum.

as

th
z = ⟨M0(RRR1,G1)|(−i+ c1c2) |M0(RRR2,G2)⟩ . (4.24)

Parity constraints and reference vacuum The above matrix element is finite only if the
states |M0(RRR1,G1)⟩ and |M0(RRR2,G2)⟩ have the same matter fermionic parity. It turns out that
depending on the vison configuration, the physical ground state has an odd fermionic parity.
Therefore in such cases, we have to add an extra Majorana mode on top of the vacuum to obtain
the true physical state. Therefore one should add an extra Boguliubov particle to the vacuum to
get the true physical states. So the physical states in the case of odd parity are given by

∣∣∣Modd
l (RRR,G )

〉
=

∣∣∣∣det
(

χ
(a)
) 1

2
∣∣∣∣a†

l e−
1
2 d†Z(a)d† ∣∣0̃〉 , (4.25)

where
∣∣0̃〉 is an appropriately chosen reference vacuum and χ,Z are the corresponding matrices

derived from the Bogoliubov transformation. Quantum number l = 0 gives the physical ground
state and l = 1 gives the first excited state. This results in a pattern of ground-state parities as
illustrated in Fig. 4.5, for a given position of the second vison and a fixed gauge configuration
(not shown in the figure). While hopping along across the y bond from a plaquette with parity
+1 to one with parity -1, one has to calculate the following overlaps for l = 0 and l = 1:

th(l)
z = Γ

〈
Modd

l (RRR1,G1)
∣∣∣⟨G1|(σ z

i +σ
z
j ) |G2⟩ |M0(RRR2,G2)⟩ (4.26)

= Γ

〈
Modd

l (RRR1,G1)
∣∣∣(ibz

i ci + ibz
jc j)P̂ |M0(RRR2,G2)⟩ .
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(a) (b)

Γ K

M

Fig. 4.6 Field-induced hopping in FM Kitaev model(a) Vison hopping amplitude (magnitude) induced
by a small magnetic field h for K =−1 as a function of Majorana mass parameter κ . The magenta plot
shows the hopping from a ground-state to an excited state of a nearest neighbour site. Color code: blue -
tζ
x , green - tζ

y , red - tζ
z where ζ = h,Γ. Symbols are used to label different system sizes. In panel (b) the

corresponding vison dispersions is shown

These can be evaluated using the same Pfaffian method as described in Appendix.A.

4.4.1 Results - FM Kitaev

In Fig. 4.6, the hopping amplitudes across the three different bonds are plotted as a function of
the Majorana gap parameter κ . We treat κ as an independent parameter to better understand the
finite size effects. Besides the ground-state to ground-state hopping rates, it turns out that in
the small κ limit one also has to include the hopping to an excited state (with energy EV +2κ

where EV is the ground state energy of the vison) for certain directions of hopping. Examining
Fig. 4.6 a, we can identify two regimes defined by the ratio of two length scales: the distance
between the two visons dV and the extend of the Majorana bound state attached to the vison,
ξm ∼ vm/κ . For dV ≫ ξm (corresponding to κ > 0.03 |K| in Fig. 4.6 a) one can ignore the
hopping to the excited state and one obtains a finite, directionally independent hopping rate of
the vison with almost no finite size effects and only a weak dependence on κ . For example, for
|κ|= 0.05 |K| we find

th
x = th

y = th
z ≈−0.6 |h|. (4.27)

Note that the hopping rate is independent of the sign of h.

In the opposite limit, dV ≲ ξm (small κ limit in Fig. 4.6a), in contrast, we obtain very large
finite size effects and the hopping rates across the y bonds become different from those across
the x and z bonds of the Kitaev lattice. This is a consequence of the presence of the second
vison which explicitly breaks the rotational symmetries. Furthermore, in the small κ limit one
cannot ignore the hopping th(2)

y to excited states (magenta lines in Fig. 4.6b) across the y bond
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which becomes much larger than the ground state-to-ground state hopping th
y (green line) for

κ → 0. The case κ = 0 is special and highly singular (th
y = 0 and th(2)

y ≈ th
x ≈ th

z ). As detailed
above, in this case, the relative fermionic parity of the states appearing in Eq. (4.23) depends in
a non-trivial way on the position of the second vison. Thus certain hopping processes are only
allowed if an extra matter Majorana mode is occupied.

This analysis shows that the very notion of a single and independent vison excitation is not
well defined in the limit when the vison-vison distance dV is smaller than ξm. In this case one
cannot formulate a theory of a single vison because the (quasi-) bound Majorana state attached
to one vison interacts with neighbouring visons.

In contrast, for dV ≫ ξm, one can treat a single vison as a well-defined independent particle.
Remarkably, our calculation shows that the situation is also different for the Γ perturbation: in
this case the single-vison hopping is with high precision independent of the presence of the
second vison. This can be traced back to the fact that the Γ term is quadratic in the matter
fermions, while the magnetic field is linear, and thus may modify the matter fermion parity. For
the Γ perturbation, therefore, it is possible to formulate a theory of single visons even for a
gapless Majorana spectrum.

In Fig. 4.6b we show the vison dispersion for dV ≫ ξm for a finite gap m = 0.05 |K| in the
Majorana spectrum. Importantly, the vison hopping rates can be chosen to be real. This implies
that none of the vison lattice plaquettes enclose a non-trivial flux and the vison bands carry no
Chern number. This is, however, not true in the antiferromagnetic model.

4.4.2 AFM Kitaev - Topological vison bands

In the limit of vanishing Majorana gap κ → 0, the hopping rate linear in h also evaluates to
zero through a similar interference effect as for the Γ term. However, a finite κ breaks the
mirror symmetries which lead to this destructive interference. Therefore, both the field-induced
hopping rate th and the Γ induced rate tΓ become finite. In Fig. 4.7 a and c, we plot these
hopping amplitudes as function of κ for different vison separations (dv = L/2). Here, we can
see similar finite size effects as in the FM model (Fig.4.6a), where the second vison breaks the
rotation symmetry in the small mass limit. For dV ≫ ξ , finite size effects are, however, absent.
For κ = 0.05, for example, we find

|th| ≈ 0.07 |h|. (4.28)

Our numerical data is roughly consistent with
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Field-induced hopping

|th| ≈ 0.32 |h|
√

|κ/K| (4.29)

in the regime dV ≳ ξ . If one assumes that the Majorana gap arises solely due to the magnetic
field, i.e., κ ∼ h3/K2, the vison hopping amplitude follows the scaling th ∼ |h|2.5. However,
we emphasize that a reliable extraction of the power-law in κ is not possible from our data.

Remarkably, the vison acquires a non-trivial phase when hopping around a triangular loop.
The value can be obtained by calculating

arg [⟨RRR1|∆Hh|RRR3⟩⟨RRR3|∆Hh|RRR2⟩⟨RRR2|∆Hh|RRR1⟩] =−sign(h)
π

2
(4.30)

for three vison sites ordered anticlockwise around a honeycomb site, as shown in the inset of
Fig. 4.4c. Thus each triangular vison plaquette (i.e., each site of the original honeycomb lattice)
carries a flux of −π/2 for h > 0 (π

2 for h < 0).

Symmetry fractionalization The non-trivial flux in every triangular loop reveals a phe-
nomenon called “translational symmetry fractionalization" that characterizes topological phases
enriched by translations [88]. In such systems, translation symmetry of the Hamiltonian is only
projectively implemented on its excitations. Here, for the first time, we have shown that the
AFM and FM Kitaev models correspond to different symmetry fractionalization realizations
although the ground state corresponds to the same chiral spin liquid. 2

As a consequence, in the AFM model, there is a doubling of the vison unit cell (containing
four triangular plaquettes each to obtain a flux of 2π) which results in two vison bands in a
reduced Brillouin zone (See Fig. 4.7d). Under the single-vison tight-binding approximation,
the band structure is given by

Hv(ppp) = Ev
01−hhh(ppp) · τττ, where, hhh(ppp) = 2th

 sin(ppp ·ηηη1)

cos(ppp ·ηηη2)

sin(ppp ·ηηη3)

 (4.31)

with η1 = (1
2 ,

√
3

2 ),η2 = (1
2 ,−

√
3

2 ) and η3 = (1,0) are the nearest neighbour vectors of the vison
lattice. τττ denotes the Pauli matrices in the sublattice basis (due to the doubled unit cell). The
corresponding energies are given by Ev

±,ppp = Ev
0 ±|hhh(ppp)|. We have already seen in Chapter 3

that a pivotal quantity that defines the Hall response of a quasiparticle is the Chern number of
its energy bands. As the single vison Hamiltonian given above, Eq. (4.31), is of the form we

2Parallel to this work, in Phys. Rev. Research 4, 043003, Chen, Rao and Sodemann also obtained results
consistent with ours using an exact fermion-flux duality.



60 Quantum Dynamics of Visons

(a) (b)

(c) (d)

Fig. 4.7 Hopping in a magnetic field: AFM Kitaev model: (a) Vison hopping amplitudes for K = 1 as
function of Majorana gap κ , induced by small magnetic field h for different system sizes. (b) Berry phase
θ acquired by a vison while hopping around an elementary triangular loop (inset) for FM v/s AFM Kitaev
models. Every triangle carries a flux of π for the FM model but a flux of −π/2 for the AFM model when
h > 0. (c.) In the presence of a finite Majorana mass, the vison also obtains a next-nearest-neighbour
hopping tΓ linear in Γ. (d.) Two vison bands with Chern numbers ±1 emerge (Γ = 0 in this plot). Inset:
The Brillouin zone is halved due to the doubling of the unit cell.

have already encountered in Chapter 3, we can directly compute the Chern number of the vison
bands. The Chern number of the lowest band is given by

Vison Chern number

Cv =−sgn(hxhyhz). (4.32)

The sign of the Chern number is therefore determined by the sign of the Majorana gap
∆m ∼ (hxhyhz). This also has profound consequences for the thermal Hall effect experiments in
the case of AFM Kitaev materials. This will be discussed in Chapter 8.

Γ induced hopping. As mentioned above, a finite Majorana mass also breaks the destructive
interference that suppressed Γ induced hopping. Fig. 4.7c shows this hopping amplitude as a
function of κ . From our data, an approximately linear behaviour is obtained:
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|tΓ| ≈ 0.2Γ
|κ|
K

. (4.33)

Within our perturbative treatment, it is unlikely that this term dominates; for small h and
thus small κ , higher-order terms in Γ, tΓ ∼ Γ2 will dominate, while for larger h, one reaches the
regime where |th|> |tΓ|.

4.5 Instabilities

Stability of the Kitaev spin liquid phase hinges on the finite energy gap of the gauge field
excitations. Although the resulting phases are difficult to predict, vison gap closing and the
following proliferation of visons will trigger a breakdown of the Kitaev phase. Indeed, this may
occur when the vison band touches zero energy, as perturbations grow stronger.

Remarkably, our calculations can already explain an intriguing behaviour of generic Kitaev
models seen in numerical studies - an AFM Kitaev model is more stable to Γ interaction and
Zeeman terms compared to an FM model[69, 89]. Within our perturbative approach, we found
that the hopping amplitudes, and thus the bandwidth of visons are parametrically larger for
the FM Kitaev model compared to the AFM model. Several studies have also pointed to the
emergence of a gapless U(1)-type spin liquid in an AFM Kitaev model at a critical magnetic
field strength. Although our approach here cannot make predictions on such phase transitions,
our results do point to qualitatively different vison dynamics in FM and AFM models which
may be a good starting point to investigate the nearby phases.

Although single vison gap closing is a prime instability mechanism, it was shown by Zhang
et al. [67] that a bound pair of visons may also obtain a band structure, and therefore form
’magnon’ like bound states which may also drive instabilities. However, it is important to
remember that a single vison is an elementary excitation of the gauge theory and is a stable
quasiparticle due to its topological nature, whereas a vison-pair can easily decay into the
Majorana continuum, leading to a finite lifetime.

In Fig. 4.8, we estimate the critical perturbation strengths for single vison gap closing within
our linear order perturbation theory and compare it with the results of Ref. [67]. Furthermore,
we also compare the result of the two analytical studies to several numerical works. Let us
first discuss the ferromagnetic Kitaev model, believed to be relevant for materials like α-RuCl3
[94–96].

When perturbed by a Γ term, our results suggest that the leading instability arises from the
closing of the single-vison gap, see Fig. 9a. Linear order perturbation theory obtains a closing
of the gap at values roughly consistent with exact diagonalization (ED) results [69, 90] and a
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Fig. 4.8 Vison gap closing instabilities: single vison vs. vison pairs. Energy gap E, visons and vison
pairs, as function of Γ, h and J (solid lines in left, middle, right column) for ferromagnetic (upper panels)
and antiferromagnetic (lower panels). In subfigure (e), the vison gap is calculated using the formula
Eq. (4.33) which results in a scaling of the form Ev ∝ h2.5. The dashed line shows the corresponding
gap of a vison pair, obtained from Zhang et al. [67]. The thick points show numerical predictions for
phase boundaries obtained from the exact diagonalization studies of Ref. [69] (ED1), Ref. [90] (ED2)
and Ref. [91] (ED3), from a tensor-network based approach [92] (TN) and from an iDMRG study [93].

tensor network calculation [92]. Note, however, that a recent iDMRG study [93] predicts an
increased stability of the spin liquid phase.

The situation is very different when one considers perturbations by a magnetic field h,
shown in Fig. 4.8b. Already for rather small fields, vison pairs have a lower energy compared
to single visons suggesting that the proliferation of vison pairs (or other bound states) may
drive the instability. The predicted location of the transition is again roughly consistent with
ED studies.

In the antiferromagnetic case, K > 0, shown in the lower panel of Fig. 4.8 our theory makes
no direct prediction for Γ perturbation as there is no vison hopping to linear order. For the h
perturbation, we find that the single vison gap closes at a similar critical field as the vison pair.
Although the bare vison pair gap closes at a large field value, well beyond the perturbative limit,
Ref.[67] also reported a smaller critical field ≈ 0.5K where a transition to a different type of
spin liquid phase happens, due to the interplay of Majorana-vison-pair hybridization and their
dynamics.

4.6 Summary and Discussion

Given the mounting evidence for Kitaev physics in many materials albeit with several puzzling
observations, a better understanding of realistic models is urgently needed. In any real material
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hosting a spin liquid adiabatically connected to the Kitaev phase, the emergent gauge field will
become dynamical and the visons will be mobile. Our analysis is an important first step towards
understanding their properties and identifying their signatures.

We used a controlled many-body degenerate perturbation theory to obtain the hopping
amplitudes and dispersion of a dressed vison in the presence of experimentally relevant pertur-
bations. Using Kitaev’s parton description, we implemented a Pfaffian technique to calculate
the overlap of many-body wave functions of Majorana fermions. A crucial step was the careful
implementation of the projection operation, necessary to obtain gauge invariant quantities. In
this process, a key computational insight was understanding the fermion parity constraints
imposed by the projector. This forces one to meticulously choose the reference vacua required
to express the Majorana wavefunctions as a BCS state.

Perhaps it is worthwhile to distinguish our work from numerous previous studies on anyon
dynamics in gapped Z2 spin liquids[97, 98]. Importantly, due to the surrounding gapless bath
of Majoranas, the vison is dressed by a cloud of scattering Majoranas and it is a qualitatively
different quasiparticle than the anyons of the toric code. This is most obvious in the gapped
chiral phase where the visons are, in fact, Ising anyons. Indeed, we can also straightforwardly
extend our calculations to the toric code limit of the Kitaev model by setting Kz ≫ Kx, Ky.

Even at the level of linear order perturbation theory, a remarkable result was that the AFM
and Kitaev models realize profoundly different dynamics for the vison, owing to the coherent
interference of vison hopping paths. This immediately offers an intuitive explanation for the
stability of the spin liquid as seen in several numerical studies. For example, it has been well
established that the AFM Kitaev spin liquid is much more stable with respect to perturbations
by Γ and h. This is consistent with the absence of single-vison tunneling linear in Γ or h.

This analysis in turn revealed a more fundamental property - FM and AFM Kitaev models
realize two different symmetry fractionalization patterns. While in the FM model, lattice
translational symmetry is not fractionalized, it is in an AFM model. In this context, it may be
interesting to explore if the proposed emergence of a gapless U(1) spin liquid found only in the
AFM model subjected to a magnetic field is related to symmetry fractionalization properties.
That said, the destructive interference of vison paths hinges on the mirror symmetries of the
model. In a real system, these may be weakly broken, for example Γx ̸= Γy, that may add small
corrections to the results obtained here. Intriguingly, under a staggered magnetic field (±hhh for
A(B) sublattice), an FM Kitaev model would behave like an AFM model as far as the vison
dynamics is concerned. Indeed this is what has been observed in numerical studies [69, 89].

A direct experimental consequence of symmetry fractionalization in the AFM model is an
enhanced periodicity in momentum space probed by, e.g., neutron spectroscopy [99]. During
such an experiment, a single spin flip may create a pair of visons whose band dispersion is
defined on a reduced Brillouin zone. The continuum response will therefore be modulated
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accordingly with an enhanced periodicity compared to the usual hexagonal Brillouin zone of
the honeycomb lattice.

Perhaps one of the most striking results is the emergence of vison Chern bands. This is the
first instance, to the best of my knowledge, where visons have been shown to exhibit topological
bands and as a result, contribute to thermal Hall effect. A detailed discussion of this novel vison
thermal Hall effect is presented in Chapter 8.

We have focused on an isolated vison excitation owing to its gauge charge, assuming a dilute
vison density. However, vison-vison and vison-Majorana interactions will become increasingly
important when there is a finite density of visons. Indeed, we saw in Section 4.4 that when
the vison-vison distance is small the quasi-localized Majorana modes overlap and invalidates a
single vison picture. The back-action of a moving vison on the Majoranas is also an interesting
problem to be explored.



Chapter 5

Mobility and Diffusion

In the previous chapter, we showed that a single vison, dressed by Majorana fermions obtains
a dispersion and therefore a finite effective mass. However, at any finite temperature T > 0,
thermally excited Majoranas can scatter from visons and qualitatively affect its dynamics. This
is what we explore in this chapter. That of a heavy particle interacting with a gapless bath is
in fact one of the earliest applications of quantum mechanics to condensed matter systems. A
classic example is that of polarons, quasiparticles emergent from the interaction of an electron
with the lattice phonons. A moving electrons due to its charge distorts the underlying lattice of
ions forming a phonon cloud around it, increasing its effective mass and lowering its mobility.
However, even before quantum physics, the motion of a heavy particle in an environment held
a special place in classical statistical physics.

The results of this chapter have been published in the article Physical Review X 12, 041004
(2022), co-authored by Achim Rosch.

5.1 The Proverbial Pollen

“These motions were such as to satisfy me, after frequently repeated observation, that they arose
neither from currents in the fluid, nor from its gradual evaporation, but belonged to the particle
itself.” In 1827, the Scottish botanist Robert Brown wrote on his paper on the observation
of jiggly random motion of tiny pollen particles suspended in water. Little did he know that
this simple observation would go on to prove the existence of atoms. According to Brown,
this random motion was unexpected unless the pollen was in some sense “alive”. However,
it took more than 80 years until Albert Einstein’s famous papers published in Annalen der
Physik in 1905, a full understanding of this phenomenon, Brownian motion, was developed.
Einstein argued that the motion must be induced by the bombardment of the water molecules
due to their “motions of heat”. He not only qualitatively explained Brownian motion but also
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correctly predicted that such tiny molecular motion induced jiggling of a bigger particle should
be easily observable under a microscope. What is striking is that the underlying “invisible”
molecules and atoms, though being millions of times lighter that a pollen grain lead to a clearly
observable phenomenon in the macroscopic world. It wouldn’t be overly dramatic to say that
the underlying quantum mechanical motion of particles manifest themselves in the classical
world through Brownian motion.

With the classical Brownian motion in the background, let us come back to the vison,
something way smaller and more ‘quantum’ than a pollen grain. In the previous chapter, we
learned that the vison has a finite hopping amplitude linear in Γ and magnetic field h in the
ferromagnetic Kitaev model. Thus in a generic (perturbed) Kitaev liquid, one should typically
expect the visons to be mobile. However, the vison is not alone, it is dressed by the background
Majorana fermions which have a gapless energy spectrum. This may sound rather dangerous
since the motion of such a strong singular scatterer, vison, may potentially excite or scatter
strongly from the gapless Majoranas at finite temperature. The situation is slightly different in
an AFM model. The hopping vanishes at linear order due to a destructive interference effect.
Therefore, we expect motion only at higher orders in perturbations simply due to the fact that the
vison conservation law is broken. But here again, there is the possibility that the surrounding
gapless Majorana bath may scatter off the vison imparting it some momentum, much like
the pollen grain in water. Therefore, it is important to understand the effects arising from
dissipation and fluctuations due to the surrounding gapless matter fermions (i) to determine
if the vison is actually a well defined and coherent quasiparticle and (ii) fully characterize
the finite temperature dynamics. In this chapter, we answer these questions quantitatively by
computing the mobility µv, or equivalently, the diffusion constant Dv, of a vison.

Mobility of a particle characterizes its response to an applied force FFF through the following
relation

⟨vvv⟩= µFFF . (5.1)

where v is the velocity of the particle, and the ⟨.⟩ imply averaging with respect to the distribution
function. The diffusion constant is related to mobility through the Einstein relation

D = µkBT. (5.2)
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(a) (b)

Fig. 5.1 Visualizing a vison. (a.) Distortion in the spin-spin correlations ⟨σασα⟩v −⟨σασα⟩0, induced
by a static vison located at the center. Thickness of the links represents the magnitude of the distortion.
Subscript v indicates that expectation value is calculated with respect to the ground state with a vison
at the origin. (b.) In the gapless phase, a vison induces a quasilocalized mode with a weakly diverging
wavefunction near the center ψ(r)∼ r−

1
2 . Probability amplitude of the sub-lattice A component of this

mode is plotted and fit to a power law ∼ r−1 (dashed line).

5.2 Vison-Majorana Scattering

Before we dive into the calculation of mobility, let us remind ourselves how a vison scatters the
surrounding Majorana fermions. We will use the low energy Dirac Hamiltonian to formulate
this question as a standard scattering problem. Majorana fermions see a single vison as a source
of π flux, much like an electron going around a solenoid. In the long wavelength continuum
limit, a vison can therefore be approximated as a point vortex located at the origin. This
readily maps the scattering problem to the famous Aharonov-Bohm effect, but for gapless Dirac
particles. Due to the underlying gauge theory, we have the freedom to choose a convenient
gauge to describe the ‘vector potential’ field of the vison. We find that it is most convenient
to work in a singular gauge where the vison imposes an anti-periodic boundary condition on
the free Majorana wavefunctions. Since the effect of scattering has been encoded into the
wavefunction boundary conditions, we can make use of the circular symmetry of the free Dirac
Hamiltonian, and solve it using polar coordinates (r,θ), choosing the vison position as origin:

H̃KKK = vm

 0 ieiθ
(

∂r +
i
r

∂θ

)
ie−iθ

(
∂r −

i
r

∂θ

)
0

 . (5.3)
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The wavefunctions can be obtained in the angular momentum basis, resulting in Bessel functions
Jl(kr) of half-integer orders:

φs,l,k(r) =



√
k

4π

( √
s J−l+ 1

2
(kr)ei(l− 1

2 )θ

−√
s i J−l− 1

2
(kr)ei(l+ 1

2 )θ

)
, l ≤ 0

√
k

4π

( √
s Jl− 1

2
(kr)ei(l− 1

2 )θ

√
s i Jl+ 1

2
(kr)ei(l+ 1

2 )θ

)
, l > 0

, (5.4)

where s =±1 labels the positive and negative energy states respectively The case of l = 0 is
special. The wave function weakly diverges at the origin as r−

1
2 and thus is a quasi-localized

state[100, 101]. This wavefunction is plotted in Fig. 5.1b, obtained for a finite sized system.

The well-known scattering cross-section can then be obtained as (See Appendix C, Ref.[102]
and [103] for details.)

Scattering cross-section

dσ

dϕ
=

1
2πk sin2

ϕ
, ϕ ̸= 0, (5.5)

where ϕ is the angle between incoming and outgoing wave vectors. This rather familiar re-
sult is peculiar due to its momentum dependence; the cross-section diverges for small momenta,
k → 0, as well as for forward-scattering (φ = 0). This singular scattering cross-section reflects
the long ranged nature of the vison. In fact, if one chooses a uniform circularly symmetric
gauge to express the flux of a vison, the vector potential would have a 1

r dependence. This
divergent cross-section is what makes a vison qualitatively different from usual heavy particles
we encounter in standard impurity problems, treated as point scatterers [104].

5.3 Semi-classical Boltzmann Approach

The standard way to calculate the mobility of a heavy particle in a gapless bath is to derive its
effective action by integrating out the bath [105, 106]. This procedure is however complicated
in our case due to the singular nature of Majorana-vison scattering and the underlying gauge
theory (projection is necessary). Instead, we use the insight that a vison is much heavier
(or slower) than the linearly dispersing Majoranas, in the limit of weak perturbations. At
a given temperature T ≪ K, the typical momentum transfer from Majoranas to a vison is
given by |∆ppp| ∼ T/vm. the typical momentum of a vison near its band bottom is given by
pv ∼

√
T/Wv ≫ |∆ppp|. Therefore the momentum transfer from a single scattering event will

be much smaller compared to the typical momentum of the vison. This key insight helps us
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to reformulate the problem in terms of a diffusion in momentum space. As we shall see, this
approach provides a much more intuitive understanding and better analytical control.

Before we begin, it is important to examine the validity of a semi-classical approach for
a phase of matter that is ‘as quantum as’ one could get. For this, we must compare the mean
free path of a vison, lv, with its wavelength, λv. In the limit of a slowly moving vison, we
can use the relation lvσnm = 1 (this basically is the definition of the scattering cross-section),
where σ ∼ 1/k ∼ 1/T is the scattering cross section, and nm ∼ T 2 is the density of thermally
excited Majoranas. This gives the scaling of the mean free path to be lv ∼ 1/T . The wavelength
of a slowly moving vison with a quadratic band bottom scales as λv ∼ 1/

√
T . Since we are

working at temperatures smaller than the vison gap (so that vison-vison and Majorana-Majorana
interactions can be neglected), lv ≫ λv. Hence our semi-classical approach is justified in the
low T limit.

Consider the momentum distribution function of a vison fppp = f 0
ppp +δ fppp, where f 0

ppp = ce−βEv
ppp

is the equilibrium Boltzmann distribution and δ fppp encodes the small deviations induced by
scattering processes. c is the normalization constant that will cancel out in the final result.
Denoting the total force acting on the vison by FFF , the distribution function obeys the linearized
Boltzmann equation

vvv ·FFF
∂ f 0

ppp

∂Ev
ppp
=

(
∂ fppp

∂ t

)
scat

=
∫

M̃pppppp′δ fppp′
d2 p′

4π2 , (5.6)

where vvv=
∂Ev

ppp
∂ ppp is the velocity of the vison obtained from its band structure, M̃pppppp′ is the scattering

rate from momentum ppp to ppp′. M̃pppppp′ can be obtained from the microscopic transition rates Wkkk,kkk′

that describe the scattering of Majorana fermions from the vison:

Mppp,ppp′ =
∫ d2k

(2π)2
d2k′

(2π)2W ppp
kkk,kkk′ n0

k(1−n0
k′)δ (kkk+ ppp− kkk′− ppp′)δ (εkkk +Ev

ppp′ − εkkk′ −Ev
ppp), (5.7)

with M̃pppppp′ = Mpppppp′ −δ (ppp− ppp′)
∫

Mppp′pppd2 p′, where the second term describes the out-scattering
from ppp to an arbitrary momentum ppp′. Here, by using the Fermi distribution n0

kkk, we have
implicitly assumed that the Majoranas which are the fast degrees of freedom thermalize much
faster than the slow moving visons. The energy dispersion of the Majorana fermions is given by
εkkk = vkk.

We can now expand the distribution function as δ fppp = (∂ f0/∂Ev
ppp)φppp, where φppp is a slowly

varying function in momentum ppp and obtain.

FFF · vvvv
ppp =

∫
M̃pppppp′e

β (Ev
ppp−Ev

ppp′)φppp′
d2 p′

(2π)2 (5.8)
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This expression is still no easy task to solve. However, we notice that when the perturbations are
weak, the vison is a slow (or heavy) particle. For example, in the case of a Γ perturbation, vison
mass Mv and its velocity vvvkkk follows 1/Mv,vvvkkk ∝ Γ for an FM Kitaev model and 1/Mv,vvvkkk ∼ Γ2

for an AFM model. The momentum transfer ∆p from massless Majoranas to the vison is small
at low T , ∆p = |ppp− ppp′| ∼ kBT/vm. Therefore, we can Taylor expand the above equation to
leading order in ∆p to obtain

vvvv
ppp ·FFF ≈

∫
M̃pppppp′e

−βvvvv
ppp·(ppp′−ppp)

(
φppp +(ppp′− ppp) ·∇pppφppp +

(p′i − pi)(p′j − p j)

2
∂pi∂p jφppp

)
d2 p′

(2π)2 .

(5.9)

Since we consider a single isolated vison, we have particle conservation built in, which
implies

∫
M̃ppp,ppp′φppp

d2 p
4π2 = 0. Total momentum conservation forces the second term to vanish in

the limit of small vison velocity, vppp → 0. Thus, we need to expand the exponential to linear
order in vppp.

Carrying out the expansion to leading order, we arrive at the expression

∂tφppp + vvvv
ppp ·FFF ≈ Dp∇

2
pppφppp + γ vvvv

ppp ·∇∇∇pppφppp, (5.10)

where we have defined a diffusion constant in momentum space Dppp and a constant γ , antici-
pating friction, as it couples to the velocity. Although it is possible to derive the temperature
dependence of Dppp and γ , it turns out their ratio follows directly from demanding particle number
conservation for arbitrary φppp.

In thermal equilibrium and the absence of an external force, particle conservation demands,

Dp ∇
2
pppφppp + γ vvvv

ppp ·∇∇∇pppφppp = 0. (5.11)

Multiplying the equation with f 0
ppp and integrating by parts results in the following equality for

arbitrary φppp. ∫
Dp (∇ppp f 0

ppp)(∇pppφppp)d ppp =−γ

∫
f 0
ppp vvvppp ·∇φpppd ppp. (5.12)

Using ∇ppp f 0
ppp =

∂ f 0
ppp

∂Ev
ppp
· vppp and

∂ f 0
ppp

∂Ev
ppp
=−β f 0

ppp, we obtain,

γ =−Dp

T
. (5.13)

This simple relation is one of the many forms in which the fluctuation-dissipation theorem, one
of the most fundamental equations in statistical physics, shows up in the dynamics of particles
coupled to a bath: in thermal equilibrium, noise necessarily accompanies dissipation.
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With this, Eq. (5.10) transforms into the following drift-diffusion equation

Drift-Diffusion Equation

∂tφppp + vvvv
ppp ·FFF ≈ Dp

(
∇

2
pppφppp −

1
T

vvvv
ppp ·∇∇∇pppφppp

)
, (5.14)

Let us take a moment to appreciate the above equation and recall the proverbial pollen
grain. For readers who have been exposed to basic statistical physics, this equation may look
familiar. Physically, it describes the venerable Brownian motion. The scattering from massless
Majoranas not only acts as a source of noise, resulting in diffusion but also generates a frictional
force proportional to −vvvppp for the vison.

5.3.1 Diffusion constant in momentum space

The reader may wonder if we have lost all the ‘quantumness’ in the problem and derived a
fully classical Brownian motion. This is not true; Dp holds information about the underlying
quantum processes - scattering from gapless Majoranas. It is by definition, independent of the
vison dispersion, as clear from Eq. (5.9). The transition rates Wkkk,kkk′ and the differential scattering
cross section are directly related as [107]

d2 p′

(2π)2
d2k′

(2π)2Wkkk,kkk′(2π)2
δ (kkk+ ppp− kkk′− ppp′)2πδ (εkkk − εkkk′)≈ vmdθkkk,kkk′

dσ(k,θkkk,kkk′)

dθkkk,kkk′
. (5.15)

Using Eq. (5.5), we obtain

Dp = vm

∫ d2k
(2π)2 dθkkk,kkk′k

2
(

1− cosθkkk,kkk′
) dσ(k,θkkk,kkk′)

dθkkk,kkk′
n(εk)(1−nεk′ ) =

T 3

6v2
m
. (5.16)

In hindsight, the temperature dependence of Dp could have been be guessed from di-
mensional arguments alone. The diffusion constant in momentum space is obtained from
Dp ∼ (δk)2/τ . δk ∼ T/vm is the typical momentum transfer and the scattering time τ is
obtained from σvmτnm ∼ 1. This gives the power law in temperature T 3 as expected from the
derivation above. However, obtaining the pre-factor requires an explicit calculation, as detailed
in Appendix D.
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5.4 Results for Mobility - FM Kitaev

After solving the DDE, Eq. (5.14), for φppp, we can obtain the mobility using Eq. (5.1) and the
expression

⟨vvvv
ppp⟩=

1
Nv

∫ d2 p
(2π)2 vvvv

ppp
∂ f0

∂Ev
ppp

φppp,

with normalization Nv =
∫

f 0
ppp

d2 p
(2π)2 .

First, we present results for the case where the vison dynamics is induced by the Γ term in a
ferromagnetic (FM) Kitaev model. Recalling the dispersion relation from Chapter 4,

Ev(ppp)≈−1.45Γ

6

∑
i=1

cos(ppp ·δδδ nnn
i ) (5.17)

where δδδ
nnn
i denotes the next-nearest-neighbour lattice vectors of the triangular lattice.

5.4.1 Low T limit: Universal mobility

Due to the inverse temperature dependence of the drift term, we can solve the DDE analytically
in both T ≪Wv and T ≫Wv limits, where Wv ≈ 10|Γ| is the vison bandwidth. In the low-T
limit, the drift term dominates and the solution is easily obtained as

φppp ≈− T
Dp

FFF · ppp, (5.18)

which leads us to the result

Universal mobility

µ(T )≈ T
Dp

=
6v2

m
T 2 , for T ≪Wv. (5.19)

This is a remarkable result due to the following reasons. (i) Mobility diverges in the limit
T → 0 which implies that, despite the presence of a gapless fermions that scatter strongly, the
vison is a coherent particle in the zero temperature limit. (ii) The mobility and thus the diffusion
constant are completely independent of the perturbation which caused it to move in the first
place (Γ, in this case). The mobility at low temperatures is a fully universal quantity. Therefore,
in a generic Kitaev spin liquid, the dynamics of single visons is universal at low-T as long
as the non-Kitaev terms are small. The origin of this effect can be traced back to the scale
invariance property of Dirac fermions and the universal cross-section from flux scattering. It is
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worth noting that similar results exists for vortices in d-wave superconductors with different
pre-factors. However, for such systems, long range Coloumb interactions and Goldstone modes
add non-trivial corrections.

5.4.2 High T limit

At temperatures larger than the bandwidth Wv ∼ Γ, we can neglect the drift term and obtain the
solution to the DDE by twice integrating over the momentum.

φppp ≈ F
∫ d ppp

(2π)2

Ev
ppp

Dp
. (5.20)

Carrying out the integration and imposing periodic boundary conditions lead to the high
temperature mobility of the form

High T mobility

µ(T )≈ 3 t2
Γ
Dp

T
=

18 t2
Γ
v2

m

T 4 , for T ≫Wv., (5.21)

where tΓ ≈ −1.45Γ is the previously calculated hopping amplitude of the vison. In this
high-T regime, the vison has a strongly suppressed mobility due to the strong scattering from
Majorana fermions.

5.4.3 Numerical Solution to DDE

Having extracted the asymptotically exact mobilities analytically, we can solve the DDE
numerically over the whole temperature range. Due to the momentum dependence of the drift
term, we solve the equation by first Fourier transforming to the position space, and then inverse
the kernel to obtain φppp. The details are relegated to Appendix D. The resulting mobility µ(T )
is plotted in Fig. 5.2 as a function of temperature.

Although, for concreteness, we focused on the dynamics induced by a Γ term for K < 0,
the same universal low T mobility and high T power law are expected as long as (i) the vison
bandwidth is small compared to the Majorana bandwidth, (ii) their dispersion is quadratic at
the bottom of the band, and (iii) the Majorana dispersion can be described by a Dirac equation.
Thus, in the case of magnetic field, the formula for the mobility is only valid for temperatures
large compared to the field induced gap in the Majorana spectrum.
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Fig. 5.2 Mobility of a vison: FM Kitaev (a.) Band dispersions of a vison in the ferromagnetic Kitaev
model perturbed by a Γ term. (b.) Vison mobility µ(T ), normalized to its low-T universal value
(6v2

m/T 2), plotted as function of T/|Γ| both for Γ > 0 and Γ < 0. Deviations from the universal low-T
mobility are more pronounced for Γ < 0 at low T due to flat regions in the band structure close to the
band minimum as shown in (a). The dashed lines indicate the low-T and high-T asymptotic power-laws,
see Eq. (5.19).

5.5 Majorana-assisted Dynamics

Above, we saw how a coherently propagating vison becomes diffusive and is dampened by
friction, due to scattering from thermal Majoranas; mobility µ decreases with temperature.
In an anti-ferromagnetic Kitaev model, vison hopping is fully suppressed at linear order in
Γ and magnetic field h (in the limit κ → 0), due to interference effects (Recall Chapter 3.).
Coherent hopping is only possible at second or higher orders in perturbation theory. However,
scattering from Majoranas can disturb this perfect destructive interference and help the vison
move. However, this will be a result of random scattering events that are thermally averaged
and thus, incoherent. Such a hopping rate will typically increase with temperature as there
are more Majoranas to scatter from at higher temperatures. Such processes should be taken
into account when discussing vison dynamics in the AFM Kitaev model, as they can occur at
second order in Γ or h, as we will describe now. We use a combination of analytical limits and
low-energy approximations to compute this incoherent, Majorana assisted hopping rate in the
low-T limit.

The incoherent hopping rate of a vison from position RRRb to RRRa is given by Fermi’s golden
rule formula when the perturbation ∆H is weak:

W ab(T ) = 2π ∑
n
| ⟨RRRa,m|∆H |RRRb,n⟩ |2δ (Em −En). (5.22)

Here, |RRRa,n⟩ denotes the many-particle eigenstates of Majorana fermion system labelled by n
with energy En, in the presence of a single vison at RRRa. The golden rule formula thus describes
a vison hopping between two sites by elastically scattering off Majorana fermions.
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Fig. 5.3 Majorana assisted hopping of visons. Due to scattering from thermally excited Majoranas, a
vison incoherently hops from RRRa to RRRb in the presence of a Γ term.

Let us, for concreteness, consider the Γ term, ∆H = ∆HΓ = Γ(σ x
rrr,Aσ

y
rrr,B +σ

y
rrr,Aσ x

rrr,B), with rrr
being the coordinate of the center of the z-bond. This term induces hopping of a vison along a z
bond as shown in the Fig. 5.3. Note that in the AFM Kitaev model, this matrix element between
ground states vanishes due the interference effect. Expanding ∆HΓ in terms of the gauge and
matter fermions gives us

∆HΓ = Γ

[
bx

rrr,Aby
rrr,B

(
cA

rrr − icB
rrr

)(
cA

rrr + icB
rrr

)]
, (5.23)

where we fixed the gauge variables ibz
rrr,Abz

rrr,B = 1 for the two single-vison states. The b-fermions
only affect the gauge fields and realize hopping of the bare vison and can thus be contracted in
the matrix element calculation as shown in Chapter 3. We end up with matrix elements that
involve only the matter Majoranas, thereby reducing our task to that of calculating the following
matrix element, for arbitrary excited states m and n.

w̃ab(m;n) = ⟨Mn(RRRa)|
(

cA
rrr − icB

rrr

)(
cA

rrr + icB
rrr

)
|Mm(RRRb)⟩ . (5.24)

The states appearing above can, in principle, have arbitrary number of Majorana excitations
which makes it hard to gain any analytical control. However, as we are only interested in the low
T limit, T

K ≪ 1, we can use the fact that the Majorana density of states vanishes in the T → 0
limit. This enables us to restrict the initial and final states to those with a single Majorana mode
above the ground state. States with higher number of Majoranas will contribute to the hopping
rate at sub-leading orders in temperature. Furthermore, the low energy Dirac equation and its
exact solutions obtained in Eq.(5.4) allow us to make significant analytical progress.
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We begin by rewriting the Majorana operators in terms of the continuum fields ψ(rrr) that
vary smoothly in the scale of lattice constant:

cA
rrr =

∫
d2r′λ (rrr′)e±i π

4 ψA(rrr′+ rrr)+h.c. (5.25)

λ (rrr) is similar in spirit to a Wannier function, defining an effective cut-off of the low-energy
theory. The unit cell position is parametrized by rrr = RRRa +δδδ = RRRb −δδδ , which means that the
vison hops by the vector 2δδδ , as shown in Fig. 5.3. In the next step, we expand the field operators
in terms of the eigenmodes as follows

ψA/B(rrr−RRRa) = (5.26)

∑
l

∫ dk
2π

√
πk
(
a+,k,l − ia−,k,l

)(
f A/B
l,k (rrr−RRRa)

)∗
.

The single-particle excited states are labelled by n = {s, l,k} where quantum number s = ±
labels particle/hole, l ∈ Z the angular momentum, and energy ε(k) =±vmk. Here a+,k,l(a−,k,l)

denote the eigenmodes with εk > 0 (εk < 0) and

f A
l,k(rrr) =

J−l+ 1
2
(kr)e(l−

1
2 )θ eiKKK·rrr l ≤ 0

Jl− 1
2
(kr)e(l−

1
2 )θ eiKKK·rrr l > 0,

f B
l,k(rrr) =

J−l− 1
2
(kr)e(l+

1
2 )θ eiKKK·rrr l ≤ 0

Jl+ 1
2
(kr)e(l+

1
2 )θ eiKKK·rrr l > 0.

(5.27)

Note that the low-energy wavefunctions are half-integer Bessel functions naturally arising
in fractional vortex-scattering problems, leading to interesting power laws [103, 106]. The
excitations above the ground state (all negative energy states filled), are described by particle
and hole operators which can be easily defined as

A†
+ ≡ a†

+, A†
− ≡ a− with A± |M0(RRRa)⟩= 0. (5.28)

Similarly, we denote by B the corresponding operators using scattering states with a vison
centered at position RRRb.

Expanding the matrix element, Eq. (5.24), results in a sum of various scattering events
described terms of the form ∼ A†B, AB†, A†B† and AB. The matrix element therefore involves
computing overlaps of two-particle states which is quite cumbersome. However, looking
closely we realize that terms of the form A†B describe processes where both initial and final
states contain a single excited Majorana particle and would contribute at the leading order in
temperature. In contrast, the term AB†, for example, acting on initial and final states with single
excitations results in the overlap of vison states with two excitations each. These terms therefore
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only contribute at higher orders in temperature which becomes clear from the calculations
in Appendix E. We therefore focus on the A†B term which admits a straightforward (but still
tedious) analytical calculation shown in its full details in Appendix E. Here, I will outline the
main steps required to arrive at the final result.

Starting from an initial state n0 = {s0,k0, l0}, the transition rate is obtained by summing
over all the final states under the constraint of energy conservation

W̃ ab(s0,k0, l0)≈ Γ
2 |⟨M0(RRRa)|M0(RRRb)⟩|2 (Ss0+(k0, l0)+Ss0−(k0, l0)) , (5.29)

where the overlap of the ground-state wave functions ⟨M0(RRRa)|M0(RRRb)⟩ is calculated numeri-
cally for finite size systems and extrapolated to the thermodynamics limit. We use the shorthand
notation Ss0±(k0, l0) to denote the overlap of singly excited states. For example, for a particle
excitation in the initial state labelled by s0 =+, we obtain

S++(k0, l0) =
2π

vm
∑

l

∫ dk
2π

∣∣∣∣∣∑l1,l2
∫

d2r1d2r2λ (rrr1 −δδδ )λ (rrr2 +δδδ )×

∫ dk1dk2

(2π)2 π
√

k1k2

[
η
+
k1,l1(rrr1)η

−∗
l2,k2

(rrr2)
]
(2π)2

δ (k0 − k1)δ (k− k2)δl0,l1δl,l2

∣∣∣∣∣
2

δ (k0 − k),

where we further introduce the notations

η
±∗
k,l (rrr) = ei π

4 f A∗
k,l (rrr)± e−i π

4 f B∗
k,l (rrr). (5.30)

S+− are obtained by simply replacing η− by η+ in Eq. (5.30). As we saw in Eq. (5.27), f A/B
k,l (rrr)

are essentially half-integer Bessel functions. The localized Wannier functions λ (rrr) can be
approximated by delta functions in the long wavelength limit.

Next, we make a crucial observation that the dominant contribution to Eq. (5.30) arises from
the angular momentum l = 0 since in the low momentum limit k0δ ≪ 1, f B

l,k0
(r)∼ (k0r)−l− 1

2 .
This leads to the leading contribution to W̃ ab given by

Sss′(k0, l0)≈
Ω2

0π2

vm
k2

0

(
k0δ +

1
k0δ

)2

, (5.31)

where Ω0 = a2/2 is area of the real space unit cell. The total incoherent hopping rate as a
function of temperature can be then obtained using the Fermi distribution n0

k0,l0
to sum over all
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initial states.

W ab(T )≈
∫ dk0

2π
∑

s0=±, l0

nk0,l0W̃
ab(s0,k0, l0)≈ Γ

2
π

3
(

0.17 a2kBT
32 v2

m
+

3.04 a4(kBT )3

16 v4
m

)
+O(T 5).

(5.32)

The leading term is linear in T and the sub-leading corrections arise at order T 3.

To obtain the diffusion constant, we assume a random walk of the vison on the triangular
lattice with a hopping rate W ab(T ). This leads to a diffusion constant linear in T and a
temperature independent mobility.

Majorana-Assisted Hopping (AFM Kitaev)

µ(T ) =
D(T )

T
∼ Γ2a2

v2
m

, for K ≫ T ≫
√

ΓK. (5.33)

Let us now examine the temperature range of validity of the above result. Although the
hopping amplitude of a vison in the AFM model vanishes at linear order in Γ, coherent hopping
can occur at higher orders. Assuming that the vison gets a dispersion at second order in Γ, with
a bandwidth W (2)

v ∼ Γ2/K, in the T → 0 limit, we are back in the universal mobility regime, as
in the FM model (Eq. (5.19)). Therefore, to estimate the temperature range where the assisted
hopping dominates, we must compare the high-T mobility in Eq. (5.19) and Eq. (5.33). Thus,
we obtain the crossover temperature T ∗ ≈

√
ΓK, the lower bound in Eq. (5.33). The upper

bound is the vison gap ∼ K, in order to ensure that we are in the dilute vison limit, as usual.

5.6 Summary and Discussion

Friction is a universal phenomenon, and its microscopic description typically relies on coupling
to a gapless bath, that disturbs the moving particle’s coherence. In this chapter, we described
how scattering from thermally excited Majorana fermions leads to frictional forces on the vison,
endowing it with a finite mobility µ(T ). We expect this to be a rather general phenomenon
in gauge theories with gapless matter. In the limit of weak perturbations (equivalently, heavy
vison limit), we analytically obtained the exact temperature dependence of its mobility. In the
limit of weak perturbations, using that the visons are much heavier than the Majoranas, we were
able to formulate the dynamics as a drift-diffusion process in momentum space. Remarkably,
when temperature T is much smaller than the vison bandwidth, the mobility is fully universal
and is entirely determined by the Kitaev interaction strength K. This effect emerges due to a
conspiracy between the singular scattering from the gauge flux and the scale invariance property
of the low energy Majorana modes. In fact, one can arrive at this universal result by purely
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Fig. 5.4 Temperature evolution of vison mobility in a Kitaev model perturbed by a weak Γ term.
Diffusion constant of a vison depends on the temperature and is sensitive to the sign of the Kitaev
coupling K = ± 1. Power laws are indicated (pre-factors are not exact). AFM model has a large
temperature regime where Majorana assisted hopping dominates the dynamics. In all cases, vison
mobility diverges in the T → 0 limit demonstrating that it is a coherently propagating quasiparticle.

dimensional arguments, where the key input is the scale invariance of a Dirac system. At
temperatures larger than the vison bandwidth, a different power-law (µ ∼ T−4) takes over, with
non-universal pre-factors.

That said, the gapless Majorana fermions are not always a vison’s enemies that dampen its
motion. Incoherently scattering off Majoranas can give random kicks to a vison that otherwise
struggles to move. This effect is more pronounced in the AFM Kitaev model, since coherent
vison hopping is strongly suppressed due to interference effects. Although in the T → 0
limit, the mobility is universal, assisted hopping takes over rather quickly in an intermediate
temperature range (Eq. 5.33) and results in a T -independent mobility. The low energy quasi-
localized modes with wavefunctions ψ(r)∼ 1√

r dominate this short range hopping of the visons.
In Fig. 5.4, we have sketched the main results of this chapter showing the different qualitative
behaviour of the vison diffusion constant in FM and AFM Kitaev models.

What are the implications of our results? One upshot is that, in the gapless phase, visons
essentially behave like random walkers with a low-T universal mobility. This determines its
transport and equilibration properties. Consider a thermal quench experiment on a pure Kitaev
model. From a high energy state with a finite density of visons and Majoranas, the system
will relax by quasiparticle collisions and annihilations. The matter Majorana fermions are fast
(velocity ∼ K) whereas the visons are static and hence the system cannot get rid of them. This
changes drastically in a generic Kitaev liquid. Visons are now diffusive and can thus collide
with each other and annihilate. Given that they are much slower than the Majoranas, the long
time relaxation bottleneck is set by the diffusion constant. This follows directly from a simple
diffusion-annihilation model of Brownian walkers, where the density of the walkers follow the
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well known power-law decay [108].

nv(t)∼
log(t)
Dv t

(5.34)

Any physical observable that is sensitive to the density of visons will therefore exhibit
such a long-time behaviour. For example, in the ferromagnetic Kitaev model under an external
magnetic field of strength h, a vison at the band minimum has a kinetic energy of 6th ∝ h,
carrying a magnetization 6ℏdth

dh ≈ 3.6ℏ, parallel to the external magnetic field which follows
from Eq. (4.27). The total magnetization will then be proportional to the density of visons nv,
which could be tracked in real time using optical measurements [109]. A recent pump-probe
experiment on α −RuCl3 has in fact observed excitations two distinct relaxation time scales,
above the ordering temperature [110].

Thus in a material hosting the Kitaev spin liquid phase, long time tails in relaxation
experiments may be a promising signature to look for. Such experiments have been incredibly
successful in proving the existence of emergent magnetic monopoles in spin ice materials. The
effect of disorder and pinning on visons should also be taken into account to make realistic
predictions, where one may speculate the emergence of glassy dynamics [111], as the pinned
visons will require thermal activation to hop. In this case, however, one also has to consider the
effect of disorder on the Majorana fermions as well.



Chapter 6

2D to 3D: Multilayer Spin Liquids

A defining aspect of the Kitaev quantum spin liquid is its two-dimensional nature. However,
we live in a three-dimensional (3D) world and so do real materials. For example, α-RuCl3 is
composed of layers of two-dimensional (2D) honeycomb lattices stacked on top of each other,
weakly coupled by van der Waals interaction. Experimentally, there is strong evidence that the
interlayer interactions are sizeable and they influence the magnetic properties of the materials
[112, 113]. However, this important aspect is often ignored in theoretical considerations. There
have been some recent numerical studies on bilayer Kitaev models, that have provided insights
into phase transitions induced by the interlayer coupling [114, 115]. The pair tunnelling of
Majorana fermions across layers was studied by Werman et al. in Ref.[116]. In a broader
context, in Ref. [117], Devakul et al. showed that 2D topological phases that exist in layered
systems should exhibit a divergence in the ratio of in-plane and out-of-plane resistivity.

Besides its relevance to materials, multilayer topological models have been used to build
more exotic fractonic phases matter, where the emergent quasi-particles display highly restricted
mobility or even complete immobility [118–120]. However, such constructions are often
complicated and involve interactions of more than two spins. In an unrelated development,
it has been discovered that stacking multiple 2D materials on top of each other can lead to
unprecedented control over the electronic and magnetic properties allowing us to tune the
through exotic phases including superconductivity and fractionalized phases [121]. Therefore it
is both timely and important to investigate the effects of stacking multiple layers on a 2D spin
liquid system and its emergent gauge fields.

To make progress, we will consider simple 3D models where Kitaev layers are stacked
on top of each other in different stacking arrangements commonly seen in materials, weakly
coupled by a Heisenberg interaction. Like any other perturbation, the interlayer coupling makes
the static gauge fields of the monolayers dynamic. It is, therefore, natural to ask: (i) What are
the low-energy dynamical excitations of the gauge field? (ii) How do they propagate throughout
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the full 3D system? Even within such a simple construction, rich dynamical behaviours, some
of which are reminiscent of exotic fractons [119], emerge from residual conservation laws.

This chapter is based on the article published as npj quantum materials 9, 62(2024), co-
authored by Achim Rosch. The contents of the chapter closely follow the publication and figures
are mainly reproduced from the paper.

AA AB ABC

Fig. 6.1 Stacking Kitaev spin liquid layers. Top view of multilayer systems of Kitaev spin models
stacked on top of each other in an AA, AB and ABC fashion (darker shaded layers lie above the lighter
shaded ones). For AB stacking every second layer is shifted by (0,a) where a is the nearest-neighbour
distance. For ABC stacking, each layer is shifted by (0,a) relative to the one below it which results in
a three-layer periodic structure in the stacking direction as (0,3a) is a lattice vector. The spins that sit
directly above (or below) each other interact with a weak Heisenberg interlayer coupling. The coloured
bonds denote the type of Kitaev interactions between the sites (x-blue, y-green and z-red).

6.1 The Model

There are different ways of stacking honeycomb lattices. Here we consider three main variants;
AA, AB and ABC stacking patterns. The coupling between the layers is described by a
nearest-neighbour Heisenberg interaction.

AA stacking. The simplest one is the AA stacking where every site is translated by a distance
d⊥ along the z axis which is taken to be the stacking direction perpendicular to the plane. The
interlayer coupling is then expressed as

∆HAA
⊥ = J⊥∑

l
∑
⟨i j⟩⊥

σσσ i,l ·σσσ j,l+1. (6.1)
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AB stacking. For AB stacking, however, adjacent layers obtain an extra in-plane shift com-
pared to the AA stacking, such that atoms on the A sublattice in even layers and atoms of the B
sublattice in odd layers are on top of each other:

∆HAB
⊥ = J⊥∑

l
∑
⟨i j⟩⊥

i∈A, j∈B

σσσ i,2l · (σσσ j,2l+1 +σσσ j,2l−1). (6.2)

ABC stacking. Adjacent layers are all shifted by a lattice constant relative to each other in
the same direction for ABC stacking. See Fig. 6.1. A spin in layer l on the A sublattice interacts
with a spin in layer l +1 on the B sublattice directly above its position. In contrast, a spin in
layer l on the B sublattice interacts with a spin in layer l −1 on the A sublattice directly below
its position:

∆HABC
⊥ = J⊥∑

l
∑
⟨i j⟩⊥

i∈A, j∈B

σσσ i,l ·σσσ j,l+1. (6.3)

In all the above expressions, ⟨i j⟩⊥ denotes nearest neighbour sites separated by interlayer
spacing d⊥ along the stacking axis direction.

The total Hamiltonian of the multilayer system is given by

Multilayer Kitaev model

H = ∑
l

H l
K +∆H⊥, (6.4)

where H l
K = ∑⟨i j⟩α

Kασα
i,lσ

α
j,l is the familiar Kitaev Hamiltonian for the layer l, and ∆H⊥

depends on the stacking. In the limit of J⊥ → 0, the model reduces to many decoupled Kitaev
layers that can be solved exactly. Our approach is to carry out a perturbative analysis of
dynamics of gauge field excitations, in the limit of weak J⊥.

6.2 Conservation Laws

The single layer Kitaev model is exactly solvable due to the extensive number of conserved
plaquette operators. It was this conservation law that prohibited the motion of visons. Adding
further interactions spoils this property as we have seen in the previous chapters. Naturally,
an interlayer coupling also breaks this conservation law. Nevertheless, there exist residual
conserved quantities in the multilayer system we consider here. These conservation laws,
although not sufficient to make the system integrable, govern the dynamics of quasiparticles in
the 3D space.
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Fig. 6.2 Conserved vison-stacks in an AA stacked Kitaev model. In an system where Kitaev models
are stacked in an AA fashion and coupled by Heisenberg interaction, products of plaquette operators Ŵp,l
along a vertical stack (brown tube) is conserved. Single visons therefore cannot move out of the stack.

6.2.1 AA stacking: Vison stacks

In an AA stacked Kitaev model, the parity of visons in a hexagonal vertical column is conserved.
We define vison stack operator Xp as the product of plaquette operators that lie directly on top
of each other, as illustrate in Fig. 6.2.

Xp = ∏
l

Wp,l, (6.5)

where the product is over the layer index l. This quantity is conserved within our model.

This implies that a single vison in a given layer cannot move without creating extra visons
in other layers to preserve the parity of the vison stacks. Moreover, the fact that in each layer,
the vison parity is conserved due to the identity ∏pWp,l = 1 (assuming periodic boundary in
the layer), a single vison cannot tunnel between layers. Therefore, the vison stack conservation
law is sufficient to completely restrict the motion of a single vison. This conservation law was
already pointed out in Ref. [122] and [114]. All the Xp operators are mutually commuting,
resulting in 2L2

conserved quantities for a system with (linear) layer dimension L.

6.2.2 AB and ABC stacking: Sheet operators

For AB and ABC types of stacking, however, such a local conservation law cannot be defined
due to the relative shift between the layers. Nevertheless, we identify a novel set of global
conservation laws. Consider the following operators
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Conserved sheets

Sαβ
m = ∏

l
Lαβ

m,l = ∏
l

 ∏
⟨i j⟩∈C

αβ

m,l

K̂l
⟨i j⟩

 , (6.6)

where K̂l
⟨i j⟩ = σα

i,lσ
α
j,l are the Kitaev terms on the bond ⟨i j⟩. C αβ

m,l label a zig-zag chain made
of α and β type bonds in layer l that wraps around the torus (periodic boundary conditions are
assumed) as shown by the thick lines in Fig. 6.3. m = 1, . . . ,L indexes the position of the chain
within the layer.

Since the operator Sαβ
m is a product of Wilson loops, Lαβ

m,1, that are parallel to each other
along the stacking direction, they form a sheet. Every sheet commutes with the Hamiltonian
and is, hence, a conserved quantity. For AB stacking the sheets are perpendicular to the layer
plane but are tilted for the ABC stacking as shown in the lower panel of Fig. 6.3. Sxy

m , Syz
m and

Sxz
m do not commute with each other but the product Sαβ

m1 Sαβ
m2 commutes with all other operators.

This results in the number of commuting operators scaling with 23L

8 . This number is lower
compared to the AA stacking case where it was found to be 2L2

. Nevertheless, how do they
affect the dynamics of the gauge excitations?

Single visons are immobile Let us start with a single vison, which was immobile in the AA
stacked model due to the local conservation law of vison stacks. Analysing its dynamics in
AB and ABC stacks is more subtle due to the sheet conservation laws. Moving a single vison
in layer l, within the layer, must be induced by an open string of spin operators, C1, which
must arise from the interlayer coupling at some order n in perturbation theory. i.e, C1 ∼ ∆Hn

⊥.
However, such a string will inevitably cross a Wilson loop Lαβ

l,m for some m and flip its parity.

The conservation of Sαβ
m will force a Wilson loop in another layer, that is part of the sheet, to flip

its parity and ultimately lead to the creation of visons in that layer. Therefore, it is impossible
to move a single vison across a sheet without creating extra visons in other layers. Together, the
three sheets around a given plaquette effectively trap a single vison and completely localize it.

How do we describe the dynamics of the gauge field then? The strategy is to look for
composite excitation of visons that are mobile due to the inter-layer coupling. We start with
pairs of visons, as they form the lowest energy excitations above single visons. It turns out
that there exists a rich zoo of vison-pairs which exhibit exotic dynamics due to the interplay of
conservation laws and topology. We will now explore them one by one.
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AB
ABC

Fig. 6.3 Conserved sheet operators. Conservation laws in AB (left) and ABC (right) stacked Kitaev
models are shown for a bilayer and trilayer respectively (darker shaded layers are above the lighter
shaded ones.). A single sheet operator is defined as the product of Kitaev terms along a thick coloured
chain. This defines three types of sheets formed by x and y bonds (cyan), y and z bonds (yellow), and, x
and z bonds (violet). The full 3D representations for the sheet operators are shown in the lower panels.
For ABC stacking the sheets are tilted.

6.3 Intra-layer Vison Pair: AA Stacking

We will first focus on the AA stacking to elucidate the dynamic properties of mobile vison-pairs.
We define an intra-layer vison pair, vpα , as a localized pair of visons sharing an α = x,y,z
type link in a single layer. The vison stack conservation law, X̂p, prohibits their motion within
the layer. However, the action of ∆Hα

⊥ on a state with a single vpα excitation effectively hops
it to an adjacent layer directly above or below. This is illustrated in Fig. 6.4 b. This leads to
an effective one dimensional motion of a given intra-layer pair along the z axis. The hopping
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(a)
(b)

(c) (d)

Fig. 6.4 Visons in an AA stacked Kitaev model. (a) A single vison (shaded plaquette) excitation is
immobile. (b) An inter-layer vison pair vpI can hop in a plane parallel to the layers. (c) An intra-layer
vison pair vpα (α = x, y, z) can only hop between layers along the stacking direction. (d) Another
inter-layer pair vp′I , flips between two states by exchanging the vison positions. In (b), (c) and (d), the
inter-layer coupling induces transitions between the light- and dark-shaded plaquette pairs.

amplitude for a vpz can be computed using

tvpz

J⊥
=
(〈

Φ
2
0( /0)

∣∣⊗〈Φ1
0(RRR,RRR+ηηηz)

∣∣)∆H⊥
(∣∣Φ1

0( /0)
〉
⊗
∣∣Φ2

0(RRR,RRR+ηηηz)
〉)

=
∣∣∣〈Φ1

0(RRR,RRR+ηηηz)
∣∣σ z

i,1

∣∣Φ1
0( /0)

〉∣∣∣2 + ∣∣∣〈Φ1
0(RRR,RRR+ηηηz)

∣∣σ z
j,1

∣∣Φ1
0( /0)

〉∣∣∣2, (6.7)

where RRR is the position vector of a vison in the given layer and ηηηz is a unit vector perpen-
dicular to the z-link. The states appearing in the above expression are the eigenstates of the
multilayer system in the J⊥ = 0 limit. These are simply the tensor products of the single layer
wavefunctions. As already described in Chapter 3, the single layer wavefunction can in turn be
decomposed into a direct product of the matter fermion (ci) and gauge sector (bi).

Using the Pfaffian method described in Chapter 4, we numerically evaluate the matrix
element. Fig. 6.5 shows the hopping rate of the vison-pair as a function of system size. The
value extrapolates to zero in the thermodynamic limit implying that there is no coherent hopping
at linear order in J⊥. This surprising result can be rationalized by analysing the vison-pair wave-
function. It was pointed out in previous works [48, 47] that when one compares the ground-state
wave functions in the presence and absence of a vison pair, they have different matter-Majorana
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Fig. 6.5 Hopping of intra-layer vison pairs in the AA stacked model. (a) Inter-layer hopping amplitude
tvpz of intra-layer vison pairs, as a function of inverse system size at the isotropic point, λ = 1. In the
thermodynamic limit, tvpz vanishes. (b) For anisotropic Kitaev couplings, λ = 0.6, the vison pair vpz

obtains a finite hopping amplitude while vpx and vpy do not. (c) Hopping amplitude of vpz as a function
of anisotropy λ for linear system size L = 70. The dashed lines are guides to the eye.

parity. Thus, the only way to create or destroy a vison pair, is to simultaneously change the
Majorana parity. Technically, in the calculation of Eq. (6.7) this is accomplished by occupying
the lowest-energy Majorana state. In the gapless phase, this mode is delocalized and hence the
tunnelling of such an extended object (vison pair + fermion) vanishes in the thermodynamic
limit. While Eq. (6.7) is only valid to linear order in ∆H⊥, the ‘parity-obstruction argument’
applies to all orders in ∆H⊥ as long as the Kitaev phase is stable.

6.3.1 Effect of anisotropy

One of the important parameters of the Kitaev model is the anisotropy of couplings, parametrized
by λ = Kx/Kz = Ky/Kz. For λ < 0.5, the matter fermions are gapped out and the model
undergoes a phase transition to a gapped Z2 spin liquid which is adiabatically connected to
the toric code phase. As we are interested in the gapless spin liquid phase and moreover, a
strong anisotropy of λ ∼ 0.5 is perhaps not experimentally relevant for real materials, we stay
in the regime λ > 0.5. Although the ground states are not affected by tuning λ , the dynamics
of excitations are qualitatively modified as we describe below.

As shown in Fig. 6.5b and c, the vison pair vpz obtains a finite hopping matrix element in
the thermodynamic limit when λ > 0.72. In contrast, the other two types of vison pairs vpx

and vpy are still not able to hop coherently. This sudden change in the nature of the vison-pair
can be rationalized by observing that the matter-fermion parity of the physical vison-pair
state changes abruptly at λ ≈ 0.72. For λ ? 0.72, the physical vison-pair state has an odd
matter fermionic parity, making its wavefunction extended due to the extra matter Majorana
mode added. However, for λ > 0.72, the extra matter Majorana is no more required and the
wavefunctions is therefore localized. An interesting consequence of this effect is that the lowest
energy vison-pair changes from a fermionic (λ ? 0.72) to a bosonic excitation (λ > 0.72).
Only the boson can hop coherently as discussed in detail later. This is consistent with the
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Fig. 6.6 Effect of anisotropy on interlayer tunnelling.. Within the gapless phase of the pure Kitaev
model (unshaded triangle), the intra-layer tunnelling is strongly influenced by the Kitaev anisotropy
λ . This defines regions, within the gapless phase, separated by the red arcs, exhibiting an incoherent
tunnelling and a coherent hopping behaviour of vison-pair excitations. The coherent excitations are
denoted in colours.

principle that only a topologically trivial (vacuum sector) excitation can move between layers.
This change of quantum numbers of an excited state is sometimes called a ‘dynamical quantum
phase transition’ (DQPT) as at this point, time-dependent correlation functions change their
qualitative properties. This was, in fact pointed out in some previous works that calculated the
dynamical response of the Kitaev model [47, 48, 123].

6.3.2 Majorana-assisted hopping

In the isotropic limit (or, λ ? 0.72), we showed that the interlayer hopping of a vison pair
(vpα ) is always accompanied by the creation (or destruction) of Majorana modes in the two
layers. Although this leads to vanishing coherent hopping rate at zero-temperature, incoherent
Majorana-assited hopping processes are allowed at finite temperature. Such a hopping rate can
be computed using Fermi’s golden rule formula

Γ
z
⊥ =

2π

ℏ ∑
m,n

| ⟨Ψm(RRRl)|∆H |Ψn(RRRl+1)⟩ |2e−βEnδ (Em −En). (6.8)

The states |Ψ(RRRl)m⟩= |Φm1(RRRl)⟩ |Φm2( /0)⟩ are constructed by populating the Majorana states
of layer l and l +1 labelled by ml and ml+1, respectively, with m = {ml,ml+1}.

It turns out that in the low energy (equivalently low T ) limit, one can neglect the scattering
of Majorana fermions from the vison pair. We can confirm this by calculating the full Green’s
function of the Majoranas in the presence of a vison-pair, which approaches the free particle
Green’s function as ω → 0. See Appendix F for details (also Ref. [124]). In this limit, using
the Lehmann representation approximately transforms the above expression into a convolution
of two local Majorana spectral functions Cαβ (ω,0) ∝ |ω| in each layer. (Due to the lengthy
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Fig. 6.7 Ising anyon pairs - AA stacking. (a) The energy of intra-layer vison pairs (Ising anyon pairs)
in the non-abelian phase (for κ = 0.1, J⊥ = 0) as a function of the anisotropy λ . The colours label the
type of bond shared by the anyons - vpx and vpy vison-pairs (green) have the same energy, the vpz pair is
colored in red. Circles and diamonds denote bosonic and fermionic vison pairs, respectively. A level
crossing between the fermionic and bosonic vison-pairs occurs at λ ≈ 0.72. (b) Inter-layer hopping
amplitudes of the vison pairs. Only pairs that belong to the vacuum sector (i.e, bosons) can coherently
hop. (c) The one dimensional dispersion of the bosonic vpz along the z direction for λ = 1 and κ = 0.1
for different signs of J⊥.

expressions and overwhelming number of indices, the derivation is relegated to Appendix F).
This leads to an inter-layer diffusion constant for the intra-layer pairs

Interlayer diffusion

D⊥ = Γ
z
⊥d2

⊥ ∼ J2
⊥d2

⊥T 3

K4 , (6.9)

where d⊥ is the inter-layer separation. The Majorana-assisted hopping of vison pairs is,
therefore, possible, but strongly suppressed at low temperatures.

6.3.3 Non-abelian phase and anyon tunneling

Adding an external magnetic field can transform the gapless spin liquid into a gapped chiral
gapped spin liquid with a Majorana gap ∆m. As detailed in the Chapter 3, the visons in this phase
are Ising anyons with localized Majorana zero modes attached to them. The intra-layer vison-
pairs (anyon pairs) now carry a localized fermion mode with energy ε0, where ∆m > ε0 > 0,
arising from the hybridization of the Majorana modes of the two visons that are now close to
each other. This mid-gap mode can be occupied or empty, defining two types of intra-layer
vison pairs. In the language of topological field theories, the Ising anyons can fuse in two
different ways, σ ×σ = 1 or σ ×σ = ψ . An anyon pair that is created by any physical operator
out of vacuum is a boson whereas a pair that fuses to release a fermion (ψ) is fermionic in
nature. The energies of these vison pairs in J⊥ → 0 limit are shown in Fig. 6.7a. The two types
of pairs have different total fermionic parity and do not hybridize with each other, signifying
that they belong to different superselection sectors.
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Fig. 6.8 Dynamics of inter-layer vison pairs - AA stacking. In Figure (a), the hopping amplitude of
the interlayer-vison pair, vpI , is plotted as a function of Majorana mass κ for the AA stacked model.
The corresponding 2D dispersion of the vpI is shown in (b) and (c). The dispersions are obtained for
κ = 0.05.

We can now calculate the hopping rates of the two different intra-layer vison pairs to linear
order in J⊥ which is shown in Fig. 6.7b. At T = 0, only the bosonic pair can tunnel between the
layers (to arbitrary order in J⊥), whereas the fermionic pair requires assistance from thermally
excited Majorana fermions which are gapped in the non-abelian phase.

The level crossing between the fermionic and bosonic vpz pair at λ ≈ 0.72 shown in Fig.
6.7 has important physical consequences in the κ → 0 limit, when the gap closes. It explains
our previous finding from Fig. 6.5c that the nature of a vison-pair changes suddenly at this point
in a so-called ‘dynamical quantum phase transition’.

When κ and therefore the Majorana gap is reduced, the fermionic bound state grows in
size. Thus, for κ → 0, only the vison pair without a fermion bound to it (the lower energy state)
remains as a point-like particle. Therefore, the ‘physical’ vpz pair at κ = 0 changes its statistics
and ability to tunnel at λ ≈ 0.72. In contrast, the vpx and vpy pairs do not tunnel in this limit.

Note that, we expect that the critical value, λ ≈ 0.72 calculated above in the J⊥ → 0 limit,
will be shifted to larger values upon increasing J⊥ as the bosonic vison gains extra kinetic
energy by inter-layer tunnelling.

6.4 Inter-layer Vison Pair: AA Stacking

A second kind of dynamical excitation, an inter-layer vison pair, vpI , is made of two visons
from adjacent layers, as shown in Fig. 6.4b for an AA stacked model. We will see later that
it can also be defined in AB and ABC stacked models. An inter-layer vison pair is always
confined to move in a plane (as the vison parity of a given plane cannot change) but can hop
between nearest neighbour plaquettes within each layer due to the inter-layer perturbation ∆H⊥.
The vpI pair thus moves on a triangular lattice formed by the plaquettes of the honeycomb
lattice.



92 2D to 3D: Multilayer Spin Liquids

We can now calculate the hopping matrix elements of an inter-layer pair across an α-bond,
tα
vpI

, induced by ∆HAA
⊥ to leading order in J⊥. For a vison pair in the layers 1 and 2 hopping

across the z bonds, we find

tz
vpI

J⊥
=
〈
Φ

2
0(RRR)

∣∣⊗〈Φ1
0(RRR)

∣∣∆Hz
⊥
∣∣Φ1

0(RRR
′)
〉
⊗
∣∣Φ2

0(RRR
′)
〉

(6.10)

=
〈
Φ

1
0(RRR)

∣∣σ z
i,1

∣∣Φ1
0(RRR

′)
〉2

+
〈
Φ

1
0(RRR)

∣∣σ z
j,1

∣∣Φ1
0(RRR

′)
〉2
,

where i and j refer to the sites sharing a z-link. The second equality is due to the decoupled
nature of the layers in the unperturbed limit. The hopping amplitude is thus directly related to a
magnetic field induced hopping rate of a vison in a monolayer Kitaev model. The single vison
hopping rate was calculated in [85, 125] and it was found that in the gapless phase, for a single
vison hopping due to a σα operator, a quasi-bound Majorana state leads to strong finite size
effects. To avoid this issue, we open a small gap κ in the Majorana spectrum by adding a time
reversal symmetry breaking nnn hopping. The calculation for one layer is done using periodic
boundary conditions in a finite size system of width L. Thus, we are forced to consider two
visons per layer at a distance of approximately L/2. For κ → 0 the results depends sensitively
on L, the precise location of the two visons and the direction of hopping as the quasi-bound
Majorana states of the two vison pairs overlap. No such problem exist for sufficiently large κ

as shown in Fig. 6.8a. At a small κ ≈ 0.02K, the hopping amplitude can be read off from the
plot as

tx
vpI

= ty
vpI

= tz
vpI

≈ 0.35 J⊥ (6.11)

Using this, we can calculate the dispersion of vpI as shown in Fig. 6.8b. The excitation gap
evolves as ∆vpI ≈ E0

vpI
−6 |tvpI | for J < 0 with a band minimum at the Γ point. For J > 0, the

gap is given by ∆vpI ≈ E0
vpI

−3 |tvpI | with multiple band minima at the K points of the Brillouin
zone.

It is interesting to point out that the dynamics of the inter-layer vison pair induced by the
inter-layer Heisenberg coupling J⊥ is strikingly different from the dynamics of a single vison
induced by an external magnetic field (See Chapter 4). In both cases the same type of σ z

matrix elements Ai =
〈
Φ1

0(RRR)
∣∣σ z

i,1

∣∣Φ1
0(RRR

′)
〉

needs to be calculated. The single vison hopping
is then determined by Ai +A j while the hopping rate of the pair arises from (Ai)

2 +(A j)
2. For

K > 0 one has Ai =−A j and thus a destructive interference prohibits field-induced single vison
hopping [85, 125]. This effect is absent for the inter-layer pair hopping. For antiferromagnetic
Kitaev coupling, K > 0 and finite κ , the single-vison band is topological as has been shown in
Ref. [85, 125]. Again this effect is absent for the inter-layer pair.

However, an interesting situation arises when a ferromagnetic Kitaev model is coupled to an
antiferromagnetic model. In this case, the hopping amplitude vanishes in the limit κ → 0 due to
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the destructive interference arising from the AFM layer. This would mean that such an alternate
stacking pattern would be more stable to inter-layer pair softening induced instabilities. It has
been shown that field induced phases are qualitatively different for FM and AFM Kitaev models
which seems to be strongly related to the strikingly different vison dynamics [89, 69, 126]. It is
tempting to speculate that novel topological phases may exist for an FM-AFM Kitaev bilayer
for an intermediate J⊥. In fact, Ref. [115] has presented numerical exact diagonalization results
roughly consistent with this argument.

Inter-layer vison pair - type 2 There exists a second type of inter-layer vison pair, shown in
Fig 6.4d which also acquires dynamics due to ∆H⊥. This excitation is bound to a bilayer and
does not de-localize in space. However, it has an internal dynamics arising from the coupling
(linear in J⊥) between two states that differ by their vison positions as shown in Fig 6.4d.
Solving a two-level problem for this mode gives the energy levels,

Evp′I
= E0

2v ± J⊥tvpI (6.12)

6.5 Inter-layer Vison Pairs: AB Stacking

Let us now look at the AB stacked model. The strikingly different conservation laws for AA
and AB models directly translates to qualitatively different vison-pair dynamics in the two
models. While for AA stacking, the vison stack operators, Eq. (6.5), are conservation laws, for
AB stacking, sheet operators, Eq. (6.6), are conserved instead. Let us see how this profoundly
influences the dynamics of inter-layer vison pairs and their quantum numbers.

The sheet conservation laws help define three species of inter-layer pairs, as illustrated in
Fig. 6.9b. Remarkably, a given inter-layer pair is restricted to move along a one-dimensional
channel within the 2D plane! The 1D channel is essentially the sheet operator of the bilayer
and thus the three species vpAB

xy , vpAB
yz and vpAB

zx propagate along the sheets Sxy
m , Syz

m and Szx
m

respectively for a given index m. This sub-dimensional mobility is a direct consequence of the
conservation laws (Eq. (6.6)) which prevent single visons from crossing a sheet.

The hopping amplitudes are evaluated using the same methods as in the AA case leading to
the relation

tvpAB
αβ

= J⊥
〈
Φ

1
0(RRR)

∣∣σ γ

i,1

∣∣Φ1
0(RRR

′)
〉〈

Φ
2
0(RRR)

∣∣σ γ

j,2

∣∣Φ2
0(RRR

′)
〉

(6.13)
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Fig. 6.9 Dynamics of vison pairs - AB stacking. (a) Inter-layer vison pairs are illustrated for an AB
stacked bilayer using ellipses that cover the centers of the two visons (one from each layer). Each of the
three species, vpAB

xy (cyan), vpAB
yz (yellow) and vpAB

zx (violet)), is forced to move along the corresponding
sheet operator (shown in Fig. 6.3), indicated by the arrows. Figure (b) illustrates intra-layer vison pairs
that can only move out of plane along the z axis. The interlayer coupling induces hopping between the
lightly shaded visons in the lower layer (dashed lines) and the darker shaded pair in the upper layer (solid
lines), thus tracing a zig-zag path along the z axis. Lower panel shows dispersions of the three inter-layer
vison pairs, vpAB

xy -(c), vpAB
zx -(d) and vpAB

yz -(e). The black solid line shows the first Brillouin zone. The
one-dimensional nature of the excitations is highlighted by the colored arrows consistent with (a). The
plots are obtained for J⊥ = .1|K| and κ = 0.05.

where i ∈ sublattice A, j ∈ sublattice B and α ̸= β ̸= γ . The magnitude of the hopping rate is
exactly half of that of the AA-model computed in Eq. (6.11),

|tvpAB
αβ

|= |tγ
vpI |
2

. (6.14)

The factor of 1
2 relating the AA and AB stacked models simply arises from the fact that only one

out of the two sublattices of a given monolayer unit cell contributes to the interlayer coupling
in the AB model while both the sublattices additively contribute to the hopping in the AA case.

The corresponding dispersions are plotted in Fig. 6.9 showing their 1D nature which is to be
contrasted with the fully 2D dispersion of inter-layer vison pairs in the AA model (Fig. 6.8c).
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6.6 Intra-layer vison pair - AB stacking

Similar to the AA case, intra-layer vison pairs in the AB model, vpAB
α , sharing an α bond in

a layer can only hop across layers. In-plane motion of such pairs are forbidden by the sheet
conservation laws discussed earlier. This hopping process is illustrated for a bilayer in Fig. 6.9b,
where three different species of intra-layer vison pairs that share x, y and z bonds are shown. As
in the AA case, near the isotropic point λ ? 0.72, the excitations can only incoherently tunnel
via Majorana assisted hopping with a diffusion constant

DAB
⊥ =

D⊥
2

(6.15)

For λ > 0.72, however, the intra-layer vison pair vpAB
z can coherently hop with a hopping

amplitude

tvpAB
α

=
tvpα

2
(6.16)

The factor of 1
2 relating the AA and AB stacked models has already been discussed above.

While the dispersions of the AA and AB intra-layer pairs are one-dimensional in the z axis, the
vpAB

z traces a zig-zag path in real space.

The dynamics of intra-layer vison pairs (Ising anyon pairs) in the chiral spin liquid phase
was also discussed for the AA model. It turns out that all the results are also applicable to the
AB stacked model (up to the extra factor of 1

2 in the hopping amplitudes).

6.7 Dynamics in ABC Stacked Model

For ABC stacking, a simple observation makes our life easier. A pair of neighbouring layers in
the ABC model is (up to translations) equivalent to a bilayer in the AB model. The dynamics of
inter-layer vison pairs in an ABC stacked model is therefore identical to that of the AB model.
For an inter-layer vison pair in a given bilayer, the sheet conservation law restricts its motion to
a 1D channel along the line obtained by projecting the sheet on to the bilayer. At linear order in
J⊥, the hopping is induced by the coupling between the two layers.

tvpABC
αβ

= tvpAB
αβ

(6.17)

This similarity of AB and ABC models, however, does not translate directly to the intra-layer
pairs. It is affected qualitatively by the ABC stacking. In this case, the sheet operators are tilted.
For a given intra-layer pair, there are two relevant sheet operators which cut the pair into half.
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Fig. 6.10 Inter-layer coupling induced instabilities. Gap closing instabilities of the chiral KSL as
a function of the anisotropy λ and the inter-layer Heisenberg coupling J⊥. The left panel applies to
AA stacking, the right panel to both AB and ABC stacking. Vison-pair excitations become gapless
when crossing the solid lines (estimated from perturbation theory linear in J⊥). Across blue lines, the
intra-layer pairs close the gap while the red lines indicate the gap closing due to inter-layer pairs (vpI .).
This plot is obtained for κ = 0.05.

Sheet-operator conservation then enforces that the pair moves parallel to these two sheets. Thus
it can only move along the line obtained by the crossing of the two sheets shown in Fig. 6.3.

Importantly, three types of intra-layer pairs (vpABC
x , vpABC

y and vpABC
y ) now move in three

different directions, (0,
√

3a,3d⊥),(−
√

3
2 a,−3

2a,3d⊥),(
√

3
2 a,−3

2a,3d⊥), where d⊥ is the dis-
tance of layers, see Fig. 6.3. The hopping amplitude is however identical to that in the AB
model due to the same arguments discussed above.

tvpABC
α

= tvpAB
α

(6.18)

6.8 Instabilities

An important consequence of the gauge excitations acquiring dynamics is the possibility of vison
proliferation when the energy of the excitations become negative. Assuming our perturbation
theory is still valid, we can estimate the critical strength of J⊥ where such an instability may
arise. As we saw that the Kitaev coupling anisotropy also has a strong influence on the dynamics,
we can compute a stability region for the Kitaev spin liquid in the λ − J⊥ parameter space. The
resulting estimate for the locations of the phase transitions is shown in Fig. 6.10 where we
assumed a small but finite Majorana gap, κ = 0.05, to avoid large finite-size effects.

The calculation proceeds as follows. First, we determine, for J⊥ = 0, the energy of the
vison pair. Second, one obtains its hopping rate and thus the correction to the dispersion Ek

linear in J⊥. Solving for Ek = 0 at the band minimum allows to determine the critical J⊥. As
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shown in Fig. 6.10, the instability occurs at relatively small values of J⊥ and thus likely in a
parameter regime where our perturbative approach is approximately valid.

An interesting detail in this diagram is the nature of the excitation that softens. The color
in Fig. 6.10 encodes the type of vison pair which drives the instability. For isotropic Kitaev
couplings, λ = 1, the leading instability for both AB and ABC stacking arises from the motion
of intra-layer vison pairs while for AA stacking it is dominated by inter-layer pairs. This is
because only for AA stacking do the inter-layer pairs have a two-dimensional dispersion and
thus gain much more kinetic energy. For large anisotropies (smaller λ ) in the AA stacked
model, one can also find regimes, where the 1D motion of intra-layer pairs can trigger phase
transitions. The sub-dimensional nature of inter-layer excitations in AB and ABC is likely to
result in a qualitatively different phase compared to the AA model when they proliferate.

6.9 Summary and Discussion

Although we considered three simplest 3D constructions by stacking Kitaev layers, we obtained
a rich zoo of dynamical gauge field excitations. The effect of stacking on the conservation
laws and thus the dynamics of the system was rather surprising. We identified novel sheet
conservation laws reminiscent of certain fracton models in AB and ABC stacked models.
Although still under debate, α −RuCl3 is believed to have an ABC or AB type stacking,
depending on the temperature regime. Our results may therefore be relevant to α −RuCl3
although with additional perturbations taken into consideration.

Intra-layer perturbations In the three simplified models considered in this chapter, we
completely neglected perturbations within the layers, so that we could isolate the effect of
interlayer interactions. However, when looking for experimental signatures arising from the rich
dynamics of vison-pairs, it is essential to include the effect of additional intra-layer perturbations
which are at least as strong as the interlayer coupling. Foremost, they make single visons mobile
as they violate the conservation laws. This effect was comprehensively studied in the previous
two chapters. Moreover, they can give rise to in-plane motion of intra-layer vison pairs which
was studied by Zhang. et. al. in a contemporary work [67]. For inter-layer pairs, intra-layer
perturbations can induce motion only at second order in perturbation theory since two visons in
two different layers have to be moved simultaneously. For example, the hopping amplitude of
an inter-layer pair induced by a Γ term would be ∼ Γ2/εb

vpI
, where εb

vpI
is the binding energy of

the inter-layer pair.

Experimental Signatures We saw that an intricate interplay of conservation laws and topol-
ogy gives rise to sub-dimensional excitations whose dynamics is strongly influenced by the
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Fig. 6.11 Dimensionality of vison-pairs in a layered Kitaev model. Schematic illustration of the
propagation of vison-pair excitations after a spot on the surface of a crystal is heated by a laser pulse.
The laser pulse creates locally a high density of vison excitations. Vison pairs are mobile and move in a
pattern characteristic of the dimensionality of their motion. (Illustration by Achim Rosch.)

stacking pattern. The additional spatial dimension introduced thus has a surprising effect on
the nature and motion of the fractional quasiparticles. One way to probe this rich and peculiar
dynamics is to investigate the relaxation dynamics of a layered Kitaev material. In a typical
pump-probe setup, one would shine a laser beam to the top layer which excites a large number
of Majoranas, visons and vison-pairs. While the interlayer-pairs will diffuse within the layer
plane according to their dimensionality, the intra-layer pairs will penetrate into the bulk. This
may be detected using local optical measurements [109]. Fig. 6.11 shows a sketch of this
dynamics for the three different stacking patterns. Although the conservation laws may be
broken by a generic Kitaev model, the key principle that only vison pairs can diffuse in the
stacking direction is a robust consequence of the topology. This can be used as a guiding
principle to design experiments to track the diffusion and annihilation of visons in layered
spin liquid materials. The coherent propagation of anyon pairs in the out-of-plane direction
in the chiral spin liquid phase may be probed using a momentum dependent inelastic neutron
spectroscopy. This should result in a sharp signature in the (0,0,1) direction [127]. However,
here one has to carefully separate the multi-particle continuum arising due to the presence
of intra-layer perturbations which are of similar or larger strength compared to inter-layer
couplings.

Fusion rules of anyon pairs In the chiral spin liquid phase, visons are Ising anyons. This
immediately begs the question what is the statistics of the vison-pairs discussed in this chapter.
The intra-layer vison pairs can either be bosonic or fermionic as we saw above. However, an
inter-layer anyon pair now has two Majorana zero modes (one in each layer) which makes their
quantum dimension 2. This gives rise to a rich set of fusion rules if two vison-pairs of the same
bilayer meet. Consider AA stacking for example. For a pair, vpI in the bilayer (l,l +1), one
finds four different fusion outcomes, vpI × vpI = 1+ψl +ψl+1 +ψlψl+1, where ψl denotes a
fermionic excitation in layer l. Now imagine a pair in the bilayer (l −1, l) meets a pair in the
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bilayer (l, l +1). Their fusion leads to single visons in layer l −1 and l +2, possibly releasing
a fermion in layer l. For AB stacking, let us consider for simplicity only the case when an
inter-layer vison pair vpAB

xy,l meets a vpAB
yz,l in the same bilayer l. Due to the relative offset of

the visons in the bilayer, only two of the four visons can fuse either in layer l or l +1, leaving
behind an intra-layer pair vpAB

y , able to move in the z direction and either one or no Majorana
modes; vpAB

xy,l × vpAB
yz,l = vpAB

y (1+ψl)+ vpAB
y (1+ψl+1). The same applies to the ABC model,

the only difference being that the intra-layer pair vpABC
y moves in a direction oblique to the z

axis.

Fractons? A recent and perhaps the most exotic addition to the zoo of topological excitations
are fractons. These are quasiparticle excitations of certain 3D topological phases which are
immobile when they are isolated but become mobile when in pairs. In certain sub-class of
fractonic phases (called type-II), excitations are constrained to move in a sub-dimensional
manifold[120]. In the multilayer systems studied here, single visons are immobile and vison-
pairs may have strongly constrained one-dimensional dynamics strikingly similar to fractons.
However, the crucial difference from true fractons is that these properties are not robust
to general symmetry allowed perturbations as discussed above. Although model specific
conservation laws (sheets) were necessary to obtain the sub-dimensional mobilities of the inter-
layer pairs, that the simplest 3D constructions using 2D spin liquid layers led to fracton-like
dynamics is fascinating by itself. The proliferation of these ’approximate fractons’ might be a
route towards truly fractonic phases and other 3D topological phases [128, 129]. Our results
may also suggest that Kitaev materials might also provide a platform to realize highly exotic
fractonic phases by engineering interlayer couplings. The connection of our results to layer
construction models of fractons studied in Ref. [130] is perhaps an interesting direction for
future research.
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Chapter 7

Raman Spectroscopy of Visons

Arguably, spectroscopy is the go-to technique for probing quasiparticle properties in condensed
matter systems. In this approach, photons, electrons, or neutrons are directed at a sample
material, and the scattered signal is detected. The incident particles excite the system at a given
frequency before scattering out, and resulting spectrum carries crucial information about the
energy, spin and lifetimes of the underlying quasiparticles.

In magnetic systems, neutron scattering (with a wavelength ∼ .1 nm) can induce local
spin flips, thereby detecting spin-spin correlations. In a magnetically ordered phase, neutron
scattering can create single magnons leading to a resonant peak in the spectrum at the energy
corresponding to the magnon. However, in a spin liquid, spectroscopic experiments are generally
expected to observe a broad continuum response in energy. This broad response is characteristic
of fractionalization, where a single spin flip produces multiple quasiparticles that can propagate
independently. Indeed, neutron spectroscopy on some Kitaev materials provided the first
glimpses of a liquid-like state[75, 131, 132].

Nonetheless, a broad feature in spectroscopy can also arise from more ‘trivial’ sources, such
as disorder scattering or interactions between conventional quasiparticles. Therefore, it is a
pressing question how to distinguish between these two scenarios in an experimental setting.

In this context, optical Raman spectroscopy has emerged as a complementary tool for
probing the excitations of fractionalized phases [133, 134]. Its main advantage lies in the
ability of long wavelength optical light to probe a variety of excitations, including the ones
with S = 0 quantum numbers (e.g. a pair of magnons), which is ideal for fractionalized
excitations. In contrast, conventional neutron scattering primarily probe spin flip (S = 1)
excitations. Furthermore, the signal intensity in neutron scattering is often limited by the
physical sample volume. Raman scattering also offers the ability to control the polarization of
light which can be used to detect time-reversal or inversion symmetry-breaking orders and even
reveal information about Berry curvature effects [135].
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Fig. 7.1 Raman response of a pure Kitaev model and experimental data in zero-magnetic field. (a.)
In the gapless phase, matter Majoranas are created in pairs and thus contribute a continuum response.
The sharp peak results from the Heisenberg term creating four visons which are gapped. Figure adapted
from Ref. [1]. (b.) Experimental result of Ref. [76] showing the temperature evolution of the Raman
intensity fit with the pure Kitaev model calculations. ( f denotes the Fermi distribution function)

The interaction between optical light and Mott-Hubbard systems has been extensively
studied in early works by Elliot, Loudon and Fleury [136, 137], as well as by Shasthry and
Shairman[138]. This typically leads to a Raman operator, that describes the light-spin coupling,
proportional to the spin exchange Hamiltonian itself. Motivated by intriguing recent experiments
conducted on the Kitaev material α −RuCl3[139, 140], we compute the Raman response from
the Ising anyons of a weakly perturbed ferromagnetic Kitaev chiral spin liquid.

At the time of writing this thesis, a manuscript based on this chapter is being prepared, to
be submitted for publication. "Raman response from anyons in Kitaev materials." A P Joy and
Achim Rosch, in preparation.

7.1 Raman Response of the Kitaev Model: Review

The Raman response of the Kitaev model was first studied by Knolle et al. [1]. The authors
considered a pure Kitaev model with a weak Heisenberg perturbation. Within the Loudon-Fleury
theory, the Raman operator has a similar form to the exchange Hamiltonian.

RLF = (eeein ·ddd⟨i j⟩
α
)(eeeout ·ddd⟨i j⟩

α
)(KRσ

α
i σ

α
j + JRσσσ i ·σσσ j) (7.1)

where ddd⟨i j⟩
α

is the vector connecting the two sites. Crucially, previous theoretical studies
assumed that the visons remain static, neglecting corrections from the Heisenberg term in the
Hamiltonian. Recall the spin-Majorana mapping: the Kitaev term (∼−i u⟨i j⟩cic j) commutes
with the gauge field and only couples to the matter fermions. The Heisenberg term, however,
excites both the matter fermions and the four adjacent visons. See Fig.7.3b. In the gapless
phase, the main result is a broad continuum, reflecting the Majorana density of states, alongside
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(a) (b)

Fig. 7.2 Raman response of α −RuCl3 in the field induced phase. When an external magnetic field
suppresses the magnetic order, α −RuCl3 seems to enter into a disordered phase possibly described
by a perturbed Kitaev model. The Raman response in this regime features both multi-particle continua
as well as sharp peaks. (a.) Figure adapted from Ref. [140] shows sharp modes which were attributed
to bound-states of anyons. (b) Figure adapted from Ref. [139] shows the polarization dependence of
the Raman response, specifically in cross-circularly polarized geometries. Red (blue) corresponds to
LR(RL) polarization channels. Ref. [139] identifies the M0 mode in (b.) with the MB mode of (a.).

a sharp peak at the four-vison energy gap, as shown in Fig. 7.1a. The response from the Kitaev
term was found to be polarization-independent, whereas the Heisenberg contribution exhibits a
weak polarization dependence.

In this chapter, we consider a scenario that may be more relevant to the magnetic field-
induced spin liquid phases suspected to exist in Kitaev materials. We will argue that, in a
generic Kitaev liquid, Raman processes naturally couple to dynamical visons1 (or equivalently,
the Ising anyons) allowing for the direct probing of the emergent gauge sector.

7.2 Raman Experiments on α−RuCl3

As a concrete example, we review some of the main results of Raman spectroscopy experiments
done on α −RuCl3. Early works of Nasu et al.. [76] and Sandilands et al.. [133] analysed the
Raman response at zero external magnetic field. Since α −RuCl3 magnetically orders below
∼ 7 K, the study was conducted at higher temperatures to access the putative proximate spin
liquid regime. The temperature evolution of the spectrum was found to be consistent with
the presence of fermionic quasiparticles which was suggested as evidence for the existence of
matter Majorana fermions in the system. (see Fig. 7.1b.) This was further supported by the

1Since visons become Ising anyons in the chiral phase, the terms ‘vison’ and ‘anyon’ are used interchangeably
in this chapter.
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theoretical claim that the Raman operators in a pure Kitaev model (essentially the Kitaev term),
exclusively excite the matter Majorana fermions, as discussed above.

More recently, Raman spectroscopy experiments were done in a finite magnetic field,
probing the intermediate field regime where a half-quantized thermal Hall effect was observed
in α −RuCl3. However, the interpretation of these results is more involved. In all the studies,
both a continuum and multiple sharp peaks were observed, with the modes displaying strong
polarization dependence. In a study by Wulferding et al.. [140], a sharp mode was detected in
the field range of 7-8 T which was attributed to bound-states of anyons (MB in Fig.7.2a). This
experiment employed a configuration where the incident wave was right-circularly polarized
and the scattered light was detected in left-circularly polarized channel (RL configuration).
Intriguingly, a more detailed polarization-resolved study by Sahasrabudhe et.al. [139] found
that this mode indeed does not show up in an LR configuration. Furthermore, they found other
sharp peaks that only emerge in certain polarization geometries.

This discussion raises important questions about the nature of excitations in the intermediate
field regime of α −RuCl3. It is important to clarify if the features in Raman response arise from
relatively trivial (partially) polarized state or if they are indeed signatures of the fractionalized
quasiparticles characteristic of the chiral spin liquid. Given that the magnetic field ranges used
in Ref. [139] and [140] coincide with the regime where the half-quantized THE was been
observed by Kasaharaet al. [42] (although on different samples), a detailed calculation of
Raman response from a realistic model is necessary. In this chapter, we develop a low-energy
effective model for a generic Kitaev liquid, based on the insights from previous chapters and
study the Raman response from dynamical visons.

We consider a hierarchy of energy levels as sketched in Fig. 7.4a. The Majorana spectrum
has a gap ∆m which we assume to be much larger than the vison gap E0

v . The single anyon band
structure is determined by the static vison gap ∆v and the hopping rates. The relation between
∆m and ∆v in the pure Kitaev model is shown in Fig. 7.4b. For reasonably large values of ∆m

(e.g, ∆m ≈ |K|), the vison gap is well below the Majorana gap. Once dynamical, they acquire
dispersion, further lowering the vison gap. In this framework, within the chiral spin liquid
phase of the Kitaev type, visons are the low-energy bulk degrees of freedom that dominate the
Raman response.

7.3 Light-Vison Coupling

To calculate the Raman response, we first need to understand how optical light interacts with
visons. At first glance, it is not obvious how the emergent gauge field interacts with the real
electromagnetic (gauge) field. At the most fundamental level, electromagnetic fields couple to
the electrons of the magnetic atoms [137, 141], leading to virtual electron hopping between
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them, assisted by photons. This process, in turn, generates spin-spin couplings that are described
by Raman operators.

In the conventional approach, developed by Loudon and Fleury [137], Raman operators
arise from super-exchange processes similar to those that give rise to the spin Hamiltonian
itself. The only difference is that the exchange is photon-assisted, and therefore comes with
polarization-dependent prefactors. However, in a notable recent study, Yang, Li, Rousochatzakis
and Perkins demonstrated that the presence of multiple exchange paths between the magnetic
ions, mediated by ligands, can induce extra contributions beyond the Loudon-Fleury theory
[141]. They derived the most general form of Raman operators for Kitaev magnets, including
α-RuCl3. A full derivation of these operators starting from the underlying Hubbard model is
beyond the scope of this thesis, and I refer the reader to Ref. [141] for a detailed discussion.

Following Yang et al., the full Raman operator for a J−K −Γ model can be written as

R(eeein,eeeout) = ∑
⟨i j⟩α

RK +RΓ +RJ +Rh (7.2)

where

RJ = ∑
⟨i j⟩α

PJ
i jσσσ i ·σσσ j, RK = ∑

⟨i j⟩α

PK
i j σ

α
i σ

α
j

RΓ = ∑
⟨i j⟩α

PΓ
i j(σ

β

i σ
γ

j +σ
β

j σ
γ

i ), Rh = ∑
⟨i j⟩α

Ph
i j(σ

α
i +σ

α
j ). (7.3)

eeein and eeeout are the polarization vectors of the incident and reflected light respectively.

The Kitaev-like term RK ∼ iui jcic j does not excite the visons and only couple to the matter
Majoranas. Within our approach, the Majoranas have a large energy gap compared to the visons.
Therefore, we omit the Kitaev term in our calculations, which is justified in the low-energy limit.
While the off-diagonal term, RΓ, and the magnetic field-like term Rh create pairs of nearest
neighbour and next-nearest neighbour visons respectively, the Heisenberg term, RJ , generates
four visons, which is a higher-energy process. This is illustrated in Fig. 7.3b. Consequently, the
lowest energy Raman processes are primarily contributed by RΓ and Rh, and we will focus on
these terms in the remainder of this chapter.

The coefficients Pi j encode the polarization dependence for a given link ⟨i j⟩. We use the
expressions for these geometric factors as derived in Ref. [141].

PΓ

⟨i j⟩α
=−ΓR

2
eeein ·ddd⟨i j⟩α

eeeout ·ddd⟨i j⟩α
,

Ph
⟨i j⟩α

=−i
hR

2
(eeein ·ddd⊥

⟨i j⟩α
eeeout ·ddd⟨i j⟩α

− eeein ·ddd⟨i j⟩α
eeeout ·ddd⊥

⟨i j⟩α
), (7.4)
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Fig. 7.3 Experimental geometry and coordinate vectors.(a) An incident left-circularly polarized light
(L) is incident on the sample perpendicular to the honeycomb plane. The reflected light is detected in the
right-circular polarization channel (R). (b) Illustration of vison creation/annihilation by different Raman
operators defined in Eq. (7.3). A given term in RΓ and Rh creates pairs of visons while a term in RJ

creates four visons. (c.) Definition of lattice vectors used in the polarization factors of Raman operators.

where ddd⟨i j⟩α
is the vector (from sublattice A to B) corresponding to α-type bond and ddd⊥

⟨i j⟩α
is

the vector perpendicular to it. (See Fig. 7.3a for the definitions.) ΓR and hR define the strengths
of the Raman couplings, whose values are material specific, requiring microscopic details.

7.3.1 Experimental geometry

We have the following experimental geometry in mind. The 2D honeycomb plane lies in the xy
plane, as shown in Fig. 7.3. The incoming light has a wave-vector kkkin =−|kz|ẑ perpendicular
to the plane, and the outgoing light is detected in the −ẑ direction. The polarization vectors of
the incident light eeein and reflected light eeeout , therefore, lie in the xy plane, and are expressed
in terms of the crystallographic axes aaa = (1,0) and bbb = (0,1). Linear polarization channels
are defined by choosing eeein and eeeout to be parallel to aaa or bbb. Right (Left) circular polarized
light has a polarization vector defined in the complex plane as aaa+ ibbb (aaa− ibbb), where the
imaginary part encodes the π/2 phase difference that defines circular polarization. For example,
in the LR polarization channel, shown schematically in Fig. 7.3a, eeein = (aaa− ibbb)/

√
2 and

eeeout = (aaa+ ibbb)/
√

2.
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Fig. 7.4 Hierarchy of excitations in the chiral spin liquid. (a) Schematic band structures of Majorana
fermions (blue) and visons (orange) in a perturbed Kitaev’s chiral liquid considered in this chapter. The
pure Kitaev model has a flat vison band and a gapless Majorana dispersion (dashed lines). In the chiral
phase, Majoranas acquire a gap ∆m and the visons acquire a finite dispersion (solid lines). We consider
the scenario where ∆m ≫ E0

v , making the low-energy bulk degrees of freedom primarily mobile visons.
(b) Vison gap as a function of ∆m computed for the pure Kitaev model.

7.4 Raman response

At zero temperature (T = 0), the Raman intensity can be calculated using linear response theory,

I(t) =⟨Ψ0|R2v(t)R2v(0) |Ψ0⟩= ⟨Ψ0|e−iHtR2v(0)eiHtR(0) |Ψ0⟩ (7.5)

where we have approximated the full Raman operator with the low-energy part within the
two-vison sector defining R2v = RΓ +Rh. |Ψ0⟩ is the ground state of the system described
by a perturbed ferromagnetic Kitaev chiral spin liquid Hamiltonian H. Within our model, the
Majorana fermions are gapped out and the visons obtain a band structure with energy gap E0

v .
(See Fig. 7.4 for a schematic). The ground state therefore has no visons. R2v acting on |Ψ0⟩
creates states with a pair of visons which then evolve according to the unitary operator eiHt/ℏ.

Fourier transforming to frequency space, and using Lehman representation, we can rewrite
the above expression yielding the golden rule formula,

I(ω) =
2π

ℏ ∑
n
| ⟨n|R2v |Ψ0⟩ |2δ (ω − (En −E0)) (7.6)

where |n⟩ corresponds to the eigenstates of the Hamiltonian projected on to the two-vison
subspace. En is the energy of |n⟩ and E0 is the ground state energy which will be assumed to be
zero. Our task now is to find |n⟩ which amounts to solving the Hamiltonian of a pair of visons
in a perturbed Kitaev chiral liquid.
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7.5 Two-particle effective model

In the previous chapters, we showed that in a generic perturbed ferromagnetic Kitaev model,
anyons are mobile and can be described by a tight-binding model on the dual triangular lattice.
In principle, the hopping amplitudes are determined by the weak non-Kitaev terms (as detailed
in Chapter 3. However, here we set aside these microscopic details and treat the hopping rates
as unknown parameters.

In the non-interacting limit, the Hamiltonian of a system of two particles, with coordinates
rrr1 and rrr2 hopping on the triangular lattice is given by

H0 = ∑
j=1,2

∑
rrr j,i

(
tnn(δδδ

nn
i )
∣∣rrr j
〉〈

rrr j +δδδ
nn
i
∣∣+ tnnn(δδδ

nnn
i )

∣∣rrr j
〉〈

rrr j +δδδ
nnn
i
∣∣)+h.c, (7.7)

where δδδ
nn
i and δδδ

nnn
i denote the six nearest (nn) and next-nearest neighbour vectors (nnn). In the

absence of interactions, the dynamical response will therefore be simply given by the two-anyon
continuum, specified by the dispersion

E2v(KKK) = Ev(qqq)+Ev(KKK −qqq), (7.8)

where the single-particle dispersion

Ev(qqq) = E0
v +∑

i
2tnn cos

(
qqq ·δδδ nn

i
)
+2tnnn cos

(
qqq ·δδδ nnn

i
)
. (7.9)

For a given total momentum KKK, there is a continuum of energy levels corresponding to the
values of qqq.A standard approach for studying two-body problems is to utilize relative and center
of mass (COM) coordinates. However, applying this in a lattice model requires some care.

Due to the overall translation symmetry, the total momentum KKK is a good quantum number.
We can thus use the plane wave basis defined by

|KKK,rrr⟩= 1
L ∑

RRR
eiKKK·(RRR+ rrr

2 ) |RRR,RRR+ rrr⟩ , (7.10)

where RRR = (rrr1+rrr2)
2 is the COM position and rrr = rrr1− rrr2 is the relative coordinate. L is the linear

system size required for normalization. The action of H0 on this state does not change the total
momentum KKK, allowing us to derive the following Hamiltonian in the relative coordinate space.

H0
rel = ∑

rrr,i

(
t̃nn(δδδ

nn
i ) |rrr⟩

〈
rrr+δδδ

nn
i
∣∣+ t̃nnn(δδδ

nnn
i ) |rrr⟩

〈
rrr+δδδ

nnn
i
∣∣)+h.c (7.11)

where t̃nn(δδδ
nn
i ) = 2 tnn(δδδ

nn
i )cos

(
KKK·δδδ nn

i
2

)
and t̃nnn(δδδ

nnn
i ) = 2 tnnn(δδδ

nnn
i )cos

(
KKK·δδδ nnn

i
2

)
.
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For a given total momentum KKK, the relative coordinate Hamiltonian thus reduces to a
tight-binding model with modified hopping amplitudes dependent on KKK. In this chapter, we
will focus exclusively on the case where the total momentum KKK = 0. This condition is satisfied
because Raman scattering typically involves zero momentum transfer. Consequently, we will
set t̃nn = 2 tnn and t̃nnn = 2 tnnn for the rest of this chapter.

In the absence of interactions, the eigenstates of the system can be labeled by the total
momentum KKK and the relative momentum qqq:

|Ψ2v(KKK,qqq)⟩= 1
L ∑

RRR
eiKKK·R

∑
rrr

eiqqq·rrr |RRR,rrr⟩ . (7.12)

However, this independent vison approximation is rather incomplete due to the presence of
both long-range and short range-interactions, which we will discuss now.

7.5.1 Long-range statistical interaction

We now remind ourselves that in the non-Abelian phase under consideration, visons are Ising
anyons characterized by a statistical exchange interaction. For two Ising anyons created out
of the ground state, with coordinates rrr1 and rrr2, the total wavefunction Ψ(rrr1,rrr2) transforms
non-trivially under exchange.

Ψ(rrr1,rrr2) = ei π

8 Ψ(rrr2,rrr1), (7.13)

provided |rrr1 − rrr2| ≫ ξ , where ξ ∝
1

∆m
is the localization length of the Majorana mode

attached to each particle. This was already discussed in Chapter 2. Exchanging them twice is
topologically equivalent to moving one particle around the other. By analogy to the well-known
Aharonov-Bohm effect, a single anyon perceives the other as a source of π

4 flux. This insight
can be used to represent the anyonic nature as a ‘magnetic’ flux attached to each particle. This
flux-attachment process is a powerful tool for understanding anyons in a variety of systems
[142, 143]. In the following, we will employ this technique to solve the dynamics of a pair of
anyons.

7.5.2 Short-range interaction

When the visons are at a finite separation, the Majorana modes attached to them can overlap,
leading to a splitting of the two zero energy modes. This results in an effective interaction
between two anyons that depends on their relative distance. Several early works on the Kitaev
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Fig. 7.5 Two-particle effective model of anyon pair dynamics. (a) Relative coordinate space of a pair
of Ising anyons in the Kitaev model form a triangular lattice. The effective Hamiltonian is mapped to a
tight-binding model on this triangular lattice with nn and nnn hopping. Absence of hopping to the origin
implements the hardcore condition. Away from the origin, universal non-trivial statistics of the anyons
enforce a phase change θ = π

4 , when one particle loops around the other (implemented as Peierls phase
factors multiplying the hopping amplitudes shown in blue). Near the origin, anyon-pairs acquire local
Berry phases θnn (red) and θnnn (magenta) for a nn and nnn pair respectively. Their values, as a function
of ∆m, are shown in (c) and (d). (b) (Physical) Ground state energy of a pair of anyons as a function
of their relative separation (∆m = 1.03,N = 34× 34). The numerically obtained data (points) can be
excellently fitted by the analytical form of Eq. (7.14) (dashed). The plot is obtained for ∆m = 1.0 |K|.

model have thoroughly studied this effect [144–146]. Fig. 7.5b shows the ground state energy
of a two-anyon system (relative to the anyon free ground state) as a functions of their separation
r. The anyons belong to the vacuum sector, created locally by a single spin flip acting on the
ground state. In the pure Kitaev model with a Majorana gap ∆m, the numerical values can be
excellently fitted to an analytical form derived from previous studies

V (rrr) = ∆2v(r → ∞)−∆2v(r → ∞)cos
(

KKKD · rrr
2

)
e−r/ξ . (7.14)
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Here, ξ ≈ 1.43
∆m

(obtained from the fit) denotes the localization length of the Majorana
zero modes, and KKKD = ( 4π

3
√

3
,0) is the Dirac point in momentum space. As a side note, when

calculating the ground state energy for a given vison pair configuration numerically, one has to
implement the projection operator to obtain the correct physical quantities. This interaction is
short-ranged and can be neglected when they anyons are well separated. However, as Fig.7.5
shows, there is a sizeable next-nearest neighbour attractive potential of approximately 0.3 ∆m

which may induce bound states in some cases, as we will see later.

Within our model, anyons are treated as hardcore particles, meaning they cannot occupy
the same site. In fact, two visons at the same site is equivalent to no visons by their Z2 nature,
which would take the system out of the two-particle subspace.

Berry phases of anyon pairs

The universal exchange phase of θ = π

8 is strictly valid only when the anyons are well separated
(r ≫ ξ ). When anyons are close to each other, both the energy splitting and the hopping
amplitudes are modified. We account for this short-range effect by explicitly calculating the
hopping matrix elements for nearest-neighbor (nn) and next-nearest-neighbor (nnn) pairs. In the
relative coordinate space, this leads to a different Berry flux near the origin different than the
universal π

4 . This is illustrated in Fig. 7.5a, where an nn-pair taken around the origin acquires
a phase θnn (red lies) while an nnn-pair acquires a Berry phase θnnn (magneta lines). Fig.7.5
c and d show the values of these phases as a function of the Majorana gap ∆m. Beyond nnn
separation, universal value π

4 is implemented.

7.6 Raman Intensity Calculation

We will now use the two-particle model derived above to compute the Raman response. The
total Hamiltonian of the two-anyon system can be decoupled into center of mass (COM) and
relative coordinate frames. Given the discrete translational symmetry of the system, the COM
motion corresponds to that of a free-particle on a triangular lattice with momentum denoted by
KKK. The relative part of the Hamiltonian is governed by the effective model we derived in the
previous section. (See Fig. 7.5.)

Effective Hamiltonian

Hrel = ∑
rrr,i

t̃nn(rrr,δδδ
nn
i ) |rrr⟩

〈
rrr+δδδ

nn
i
∣∣+ t̃nnn(rrr,δδδ

nnn
i ) |rrr⟩

〈
rrr+δδδ

nnn
i
∣∣+∑

rrr
V (rrr)+h.c, (7.15)
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where t̃nn(rrr,δδδ
nn
i ) and t̃nnn(rrr,δδδ

nnn
i ) are position dependent hopping amplitudes. t̃nn(0,δδδ

nn
i ) =

0 and t̃nnn(0,δδδ
nnn
i ) = 0 encode the hardcore condition. The hopping amplitudes are generally

complex and incorporate the Peierls phase factors which account for the non-trivial exchange
statistics θ as well as the local Berry phases θnn and θnnn. We diagonalize this Hamiltonian on
a finite triangular lattice to obtain the full spectrum and eigenfunctions.

There is, however, an important caveat. Since we model the exchange phase of anyons using
a flux attachment process, we must first define their statistics before attaching the flux. Here,
we choose bosonic statistics, which requires the wavefunctions to be symmetric, restricting
the angular momentum quantum numbers to even values. Technically, we implement this by
diagonalizing the Hamiltonian in the even angular momentum sectors. For a triangular lattice
with symmetry group C6, the allowed angular momenta are l = 0,±2. The Hamiltonian can be
efficiently diagonalized in these sectors for system sizes of the order 104 sites.

The real space wave-functions corresponding to the nth eigenstate can be written as∣∣φ 2v
n
〉
= ∑

rrr
χn(rrr) |RRR,rrr⟩ (7.16)

where |RRR,rrr⟩ denotes the two vison state parametrized by the COM position RRR and relative
coordinate rrr. The energy En

2v, and amplitudes χn(rrr) are obtained numerically. Including the
center of mass dynamics, we can express the full set of eigenstates labelled by COM momentum
KKK and the index n ∣∣Ψ2v(KKK,n)

〉
=

1
L ∑

RRR
eiKKK·RRR ∣∣φ 2v

n
〉

(7.17)

We can now substitute
∣∣Ψ2v(KKK,n)

〉
in Eq. (7.6) to evaluate the Raman spectrum.

I(ω) = ∑
n

2π

ℏ

∫ dKKK
(2π)2 |∑

RRR,rrr

e−iKKK·RRR

L
χ
∗
n (rrr)⟨rrr,RRR|∑

RRR′

(
Rh(RRR′)+RΓ(RRR′)

)
|Ψ0⟩ |2δ (ω −Er

n −ECOM(KKK))

(7.18)

where the total energy of a state |n,KKK⟩ is given by the sum of the COM kinetic energy ECOM(KKK)

and eigen-energies Er
n.

We now parametrize the sum within the Raman operator (over RRR′) using the COM and
relative coordinates. Rh(RRR,δδδ nn

i ) creates a nearest neighbour pair of visons separated by δδδ
nn
i and

center of mass positioned at RRR+δδδ
nn
i /2, as illustrated in Fig. 7.6. RΓ(RRR) creates a next-nearest

neighbour pair of visons separated by δδδ
nnn
i , with the center of mass at RRR+δδδ

nnn
i /2. From the
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Fig. 7.6 Parametrization of Raman operator in the lattice. Raman operator Rh(RRR,δnn) creates a pair
of visons at RRR and RRR+δδδ nn while RΓ(RRR,δδδ nnn) creates a pair at RRR and RRR+δδδ nnn. See main text.

orthogonality of different flux sectors, it follows that

⟨rrr,RRR|Rh(RRR′,δδδ nn
i ) |Ψ0⟩ ∝ δ

(
RRR−RRR′− δδδ

nn
i
2

)
δ (δδδ nn

i − rrr). (7.19)

Using the above relations, and carrying out the sums in Eq.(??), we obtain a concise expression
for the Raman intensity

I(ω) =
2π

ℏ ∑
n
|Mh

n +MΓ
n |2δ (ω −Er

n −ECOM
0 ) (7.20)

where ECOM
0 = ECOM(KKK = 0) gives only a constant shift to the onset of the spectrum. In the

following, we fix this to zero for convenience. The matrix elements for pair creation are given
by

Mh
n = ∑

i
χ
∗
n (δδδ

nn
i )
〈
0,δδδ nn

i
∣∣Rh(0,δδδ nn

i ) |Ψ0⟩ , MΓ
n = ∑

i
χ
∗
n (δδδ

nnn
i )

〈
0,δδδ nnn

i
∣∣RΓ(0,δδδ nnn

i ) |Ψ0⟩

(7.21)

where the sum is over the nn and nnn bonds around the origin. These matrix elements can be
evaluated numerically using the Pfaffian approach. The fact that the COM momenta KKK does not
appear in the response is consistent with the fact that Raman scattering is a zero momentum
transfer process. The absence of the center of mass momentum KKK in the response is consistent
with the nature of Raman scattering as a zero momentum transfer process.

Remark on the superselection sector Note that we have fixed the anyon-free initial state
|Ψ0⟩ to be the ground state of the matter sector. This automatically fixes the superselection
sector to be the vacuum, consequently fixing the value of θ to π

8 . To create an anyon-pair in
the fermionic sector, with θ =−3π/8, the anyon free initial state must have an extra matter
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fermion. However, due to the large Majorana gap ∆m, this process typically requires a finite
temperature.

7.7 Warm-up: Non-interacting Anyons

Before delving into the Ising anyons of the Kitaev liquid, it is helpful to first examine simpler
models of dynamical anyons. By doing so, we can gain insight into certain universal features
in spectroscopy, particularly those that arise when considering free anyons that interact solely
through their statistical exchange phase

7.7.1 Power-law onset: Band with a single minimum

In a significant contribution, Morampudi et al. [147] predicted that the statistical phase of
abelian anyons leads to a characteristic power-law onset in their dynamical response. While
visons are non-abelian anyons, within our effective two-particle model, they behave like abelian
anyons with an exchange phase θ = π

8 . Drawing from the insights of Ref. [147], we anticipate
observing similar a power-law behaviour in Raman spectrum. Let us briefly review the reasoning
behind this.

Consider a tight-binding dispersion of a single anyon E(kkk), which exhibits a single minimum
at the Γ point (kkk = 0). Near the band bottom, the Hamiltonian of a pair of non-interacting
abelian anyons, characterized an exchange phase φ = 2πα , can be expanded and analyzed
using relative and COM coordinates.

In the relative coordinate space, the problem reduces to a free particle of mass µ = m/2
moving in the presence of a “magnetic” flux φ = 2πα located at the origin. Here, the mass of
the particle is defined at the band bottom by m = (∂ 2E(kkk)

∂kkk2 )−1 evaluated at kkk = 0. All interactions
between the particles including their long-range statistical phase, manifest solely in the relative
coordinate frame. The dynamics of the center of mass, on the other hand, is that of a free-particle
with mass 2m. The total Hamiltonian can be expressed as

H =
K2

4m
+

k2
r

m
+

(l −α)2

mr2 , (7.22)

where KKK is the COM momentum, kr is radial component of the relative momentum kkk, and
l ∈ 0,2,4, ... is the angular momentum quantum number of two particle system. Notice the shift
in angular momentum by α , a direct consequence of the statistical phase.
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The solution to the corresponding Schrödinger equation are given by Bessel functions of
fractional order :

ψk,l(rrr)∼
√

k
L3 J|l+α|(kr). (7.23)

where
√

k
L3 is a normalization factor. Next, we consider a local operator R(δδδ ) that creates a

pair of anyons separated by a distance δδδ , which is approximately a few lattice constants. The
intensity at zero net momentum transfer (KKK = 0) can be calculated by following the same steps
as in the previous section, resulting in the response:

I(ω,KKK = 0)∼ ∑
l

∫
dk|
〈
ψk,l
∣∣R(δδδ ) |0⟩ |2δ (ω −E0

2v − k2/2µ). (7.24)

At low frequencies near the band gap, i.e. ω → E0
2v, the response will be dominated by

l = 0 eigenstate. In this limit where kδ ≪ 1, the Bessel functions can be approximated by
J|α|(kδ )∼ (kδ )α . This leads to a power law dependence of the intensity

Power-law onset

I(ω,KKK = 0)∼ (ω −E0
2v)

α . (7.25)

For example, for semions (e and m particles of the toric code [30]), α = 0.5, and α = 1 for
fermions. This effect can also be understood as a generalized exclusion principle, most familiar
in the case of fermions. While multiple bosons can occupy the same quantum state, fermions
exclude each other completely. Anyons are somewhere in between.

Corrections from hardcore constraint

It was noted in Ref.[147] that, for bosons α = 0, short range repulsive interactions, such as
those imposed by the hardcore constraint, significantly alter the power law onset, resulting in a
logarithmic rather than a sharp onset. In our analysis, we extend this discussion to consider
the effect of hardcore constraint on a general abelian phase. We find that the corrections
get increasingly important as α gets below 1

2 . Hardcore condition in the relative coordinates
translates into an infinite potential for r < a, where a is the lattice constant

I(ω) ∝
1

1+ tan2(δα)
|Jα(

√
ω)− tan(δα)Yα(

√
ω)|2 ∼ c1(ω −E0

2v)
α + c2(ω −E0

2v)
2α . (7.26)
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Fig. 7.7 Raman spectrum for free anyons and the power law onset. (a.) Raman spectra obtained
for a pair of free (hardcore) anyons on a triangular lattice with exchange parameter α . E0

2v denotes the
gap to the two-particle continuum and W denotes the width of the continuum. (b.) Log-Log plot of
the low energy onset. The dashed lines show the power law fits predicted by Eq. (7.26). The plots are
obtained for a finite size triangular lattice with linear system size L = 100 sites. A Gaussian broadening
of δ = 0.01 is used in (a.). A smaller value, δ = 0.005 is used to resolve the power-law in (b.)

Here, the phase shift δα is defined by tan(δα) = Jα(a
√

ω)/Yα(a
√

ω), with Yl being the Bessel
function of the second kind. The above expressions recover the power-law ωα with a leading
correction ∼ ω2α .

Strictly speaking, we consider the Raman response and not the dynamical structure factor
(probed by inelastic neutron scattering for example), as discussed in Ref. [147]. However,
the pair production process should share similar physics and reflect the generalized exclusion
principle. Fig. 7.7 shows the Raman spectra for anyons with three different values of α .
Different power-law behaviours can be seen with the curves getting steeper as α decreases, as
expected from Eq.(7.26).

Angular momentum selection rules and circular polarization

One feature that makes Raman scattering a versatile experimental probe is its polarization
degree of freedom. Information about spatial symmetries of excitations can be accessed using
light waves with different polarization vectors.Additionally, the chirality, or handedness, of
excitations can be probed using circularly polarized light. This is best understood by looking at
the angular momentum of the wavefunctions.

Left (Right)-circularly polarized light carries a quantum of angular momentum +ℏ(−ℏ)
[148, 149]. When the incident and reflected light possess the same angular momentum, there is
no net angular momentum transfer to the system. This implies that the anyon-pair states that
are involved in such a scattering process should have angular momentum l = 0. However, when
the incident light is left (right)-circularly polarized and the reflected light is of the opposite
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Fig. 7.8 Multiple band-minima and power-law onset. (a.) Two single-particle band structures on
a triangular lattice with nearest and next-nearest-neighbour hopping rates shown. The anyons have
an exchange parameter α = 3

4 . In (b.), the expected power-law (ω −E0
2v)

3
4 behaviour (dashed line) is

observed for the case with a single band minima (blue), but not for multiple degenerate minima (orange).
See main text for more details.

polarization, there is a net transfer of angular momentum ∆l =±2ℏ. Therefore, such a process
couples only to states with l =±2 depending on the incident polarization.

From the derivation above, it is clear that the power-law onset originates from the l = 0
states. Therefore, we naturally expect it to be most pronounced in the parallel polarization
channel (RR or LL). Indeed we have used an LL channel in Fig. 7.7 to confirm this. Conversely,
in the cross polarized channel (either LR or RL), only wavefunctions with a finite angular
momenta (l =±2) contribute and will lead to different power-laws, as we will see shortly.

7.7.2 Bands with multiple minima

Intuitively, the power-law onset results from the statistical repulsion of a pair of anyons arising
from their exchange phase. Extending this argument, if there are multiple degenerate minima in
the single-particle band structure, one may create two anyons close to each other locally but at
different points in the momentum space. This may affect the power-law onset.

It is instructive to consider the case of fermions. If the band bottom is at the Γ point,
the above described power-law is valid, since a Raman process can only create a pair with
momenta qqq and −qqq near Γ. In the limit qqq → 0, we thus follow the derivation above and obtain
the power-law I(ω)∼ ω . Now imagine that the band E(kkk) has two degenerate minima at KKK0

and −KKK0 in the first Brillouin zone. One can create fermions at the two distinct minima with
momenta KKK0 + qqq and −KKK0 − qqq. In the limit of qqq → 0, or ω → 2E(KKK0), the Raman matrix
element for creating a pair, separated by δδδ , in Eq. (7.21) is finite and proportional to |K0||δδδ |.
This results in a significant deviation from the power-law onset.
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In Fig. 7.8, we confirm this by comparing two band structures: one with a single band
minimum (blue) and another with multiple band-minima (orange). The corresponding low-
energy Raman onset for α = 3/4 is shown as an example. The band with single minima shows
the expected power-law ∼ (ω −E0

2v)
3
4 (dashed line), whereas the band with multiple minima

shows a much flatter curve, qualitatively different from the power-law behaviour.

7.8 Results: Ising Anyons

Finally, we will now present the results for the Ising anyons in the ferromagnetic Ktaev model.

7.8.1 Parameter space

Our effective Hamiltonian Eq. (7.15) has several parameters that are, in principle, determined
by the microscopic exchange couplings. Due to a lack of conclusive estimates, we do the
following to keep the parameter space under control. In the effective two-anyon model, we
consider the following independent parameters: (i.) Anyon hopping amplitudes, tnn and tnnn,
(ii.) Majorana mass gap ∆m that fixes the static vison gap ∆0

v , as shown in Fig. 7.4b. The values
of local Berry fluxes θnn and θnnn are computed explicitly and are determined by ∆m, as shown
in Fig. 7.5. We will also restrict ourselves to the case where tnn < 0, assuming that the dominant
contribution to the nearest neighbour hopping comes from the magnetic field, which always
gives a negative hopping rate (See Section 4.4).

The Raman response calculation also involves the parameters hR and ΓR, which should also
be, in principle, determined by the microscopic model of the material in question. However, in
our model, only the ratio hR/ΓR is relevant (See Eq. (7.18)). The absolute values only affect
the overall magnitude of the response.

7.8.2 Continuum response

When the hopping amplitudes are much larger than the interaction scale, the spectrum of
hardcore anyons exhibits a continuum of energy levels, associated with creating the anyon pairs
with equal and opposite momenta.

We consider six polarization channels in relation with the experimental discussion presented
earlier. In aa(ab) channel, the incident light is polarized along the crystallographic axis aaa,
while the reflected light is detected with polarization along aaa(bbb). In addition, we also consider
circularly polarized channels where the incident and reflected light waves can be left or right
circularly polarized defining four channels: LL,RR (parallel-circularly polarization) and LR,RL
(cross-circularly polarization).
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Fig. 7.9 Continuum response and power-law onset. Raman spectra showing the two-particle continuum
obtained in (a) linear and (b) parallel-circular polarization, and (c) cross-circularly polarized channels.
The dashed lines in the lower panels (d,e) show the predicted power-law onset I(ω) ∼ (ω −E0

2v)
.125

arising from topological spin θ = π

8 (Eq. 7.26). In (c) and (f), the cross-circularly polarized channels only
couple to states with finite angular momenta, resulting in leading power-law behaviours (ω −E0

2v)
1.875

(blue) and (ω −E0
2v)

2.125 (red). The results are obtained for hopping amplitudes tnn =−0.075, tnnn =
−0.01 and Majorana gap m = 2, all expressed in units of the static vison-pair energy gap 2∆v = |K|
(K is the Kitaev coupling). The effective model is diagonalized on a lattice of linear size L = 100 (see
Fig. 7.5). To calculate the Raman spectrum, a Gaussian approximation for the Dirac-delta function with
width δ = .02 is used for the left panel, and δ = .005 is used for the right panel to accurately resolve the
power-laws.

Fig. 7.9 shows the Raman spectrum in different polarization channels for the effective
model parameters ∆m = 2, tnn =−0.075 and tnnn =−0.01, which are expressed in units of the
static vison-pair energy 2∆v = |K|. The low energy regime is dominated by the two-anyon
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continuum. The predicted power-law onset with an exponent 1
8 is shown in the log-log plot on

the right panel.

Comparing to the non-interacting case (see Fig. 7.7), we find that the short range interaction
between anyons only affects the high energy behaviour, while the low-energy onset remains
robust. The large difference in the overall magnitude of the Raman intensity in cross-circularly
polarized channels is due to the vanishing of the Raman operator Rh in LR,RL channels. The
two Raman operators obey the following transformation rules.

PΓ(eeeL,eeeL) = PΓ(eeeR,rrrR), Ph(eeeL,eeeL) =−Ph(eeeR,rrrR) (7.27)

PΓ(eeeR,eeeL) = P∗
Γ(eeeL,eeeR), Ph(eeeR,eeeL) = Ph(eeeL,eeeR) = 0,

Interestingly, an anti-bound state emerges above the continuum which is detected only in the
RL polarization channel. A general discussion on bound states is given below.

Circular polarization and power-law onset

As argued in the previous section, circular polarization channels can be used to efficiently probe
the statistical parameter α . Fig. 7.9 (b) and (e) show the Raman spectra in parallel-circularly
polarized channels LL and RR, which couple only to l = 0 eigenstates, resulting in the power-
law onset consistent with the prediction of Eq. (7.26). In contrast, cross-circularly polarized
channels RL and LR couple to states with l = 2 and l = −2 respectively. Here, as shown in
Fig. 7.9f, the low energy onsets are consistent with the power-laws (dashed lines) (ω −E0

2v)
2−α

and (ω −E0
2v)

2+α . This follows directly from the derivation outlined in Section 7.7, where
the wavefunctions with finite angular momenta scale like (kr)2±α . The anti-bound state above
the continuum has an angular momentum quantum number l = 2 and thus only couples to the
cross-circularly polarized RL channel.

7.8.3 Low-energy bound states

The short-range interaction between anyons, as shown in Fig. 7.5b, although exponentially
small in separation, results in a next-nearest-neighbour attractive interaction. Depending on the
bandwidth of the anyons, this may induce bound states below the continuum.

In Fig. 7.10a, we present the numerically obtained energy spectrum of the effective model
(black) for parameters tnn =−0.025, tnnn = 0.01, ∆ = 1.0, superimposed on the non-interacting
continuum (red) plotted as a function of center of mass momentum. Three bound states emerge
below the continuum. Real space (radial) profiles of these wavefunctions plotted in Fig. 7.10b
show that the bound states correspond to next-nearest-neighbour pairs of anyons, consistent
with the nnn attractive interaction. Indeed, the bound states appear as sharp peaks in the Raman
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Fig. 7.10 Sharp peaks from anyon bound states. Raman spectrum for effective model parameters
∆m = 1, tnn =−0.025,and tnnn = 0.015, shown for two values of hR

ΓR
. (a.) Red points are obtained from

the non-interacting two-particle continuum, plotted as a function of the COM momentum. Black points
are obtained by diagonalizing the interacting problem. Three bound states emerge below the continuum.
(b.) Probability amplitudes of the three bound-states plotted as function of the relative radial coordinate r.
While all three bound states are visible in linear polarization channels, (g,h), they show strong sensitivity
to circular polarizations. LR(RL) channel selectively couples to l =+2(−2) states, (e,f), while only the
l = 0 state is visible in LL and RL channels, (c,d). The value of hR

ΓR
influences the response in linear and

parallel-circularly polarized channels.
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Fig. 7.11 Berry phase effect on helicity dependence. Raman response in the cross-circularly polarized
channel from two bound states vp2 and vp−2. The energy splitting between the states and there relative
Raman intensity is controlled by the Berry flux θnnn. Color code: blue - RL and red - LR.

spectra. In light of the experimental results mentioned before, it is worthwhile to investigate the
polarization dependence of these bound state peaks.

Helicity selectivity and Berry phase effects

For the specified parameter values, there are three low-energy bound states, denoted by
vp−2,vp+2,vp0, where the subscripts label their angular momentum quantum numbers. All
states are visible in linear polarization channels aa and ab. In the case of circularly polarized
channels, vp0 is only visible in the parallel polarization channels LL and RR. The relative
intensity in these two channels is a controlled by the quantity hR/ΓR. This follows directly from
the transformation rules given by Eq. (7.27). In the LL channel, the Ramana matrix element is
proportional to RΓ +Rh, while it is proportional to RΓ −Rh in the RR channel.

However, the case of cross-circular polarization is more interesting. As Rh = 0 in this
configuration, any difference in the LR and RL spectrum should arise from the intrinsic chirality
of the wavefunctions themselves. While vp−2 couples only to the RL channel, response from
vp+2 only appears in the LR channel. However, they are almost degenerate, making it difficult
to distinguish them in the spectrum. Interestingly, the energy splitting between the vp−2 and
vp+2 states depend strongly on the value of θnnn. This is again consistent with the fact that the
bound state corresponds to a next-nearest pair.

Intuitively, this could be understood by considering the bound-state as a particle on a
hexagonal ring threaded by a flux θnnn. For the parameters used to obtain the results of
Fig. 7.10, θnnn = 0.1π , which is rather small. However, if we allow this to be an independent
parameter, the splitting can be made larger and the response in LR and RL channels will be
strongly asymmetric. Fig. 7.11 shows the spectrum for different values of θnnn, with other
parameters held the same as in Fig. 7.10.
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7.9 Summary and Discussion

Raman spectroscopy is a versatile tool used to study the fundamental excitations in quantum
materials. In fractionalized systems, Raman spectrum is generally expected to show a continuum
response due to the constraint that excitations must always be created in pairs. In Kitaev
materials, Raman experiments have provided valuable insights into the underlying degrees of
freedom, but they have also presented several puzzles. For example, in α −RuCl3, the zero-field
intermediate temperature regime shows a broad continuum consistent with fractionalization,
while sharp peaks appear in the field-induced regime relevant to the half-quantized thermal Hall
experiments.

In this chapter, based on the insights developed in Part I, we considered a simplified model
of a chiral spin liquid with dynamical Ising anyons. In the low-energy limit, where only a single
anyon-pair is created, we derived a two-particle effective model that takes into account the
long-range exchange interaction as well as the short range interaction due to the overlap of
Majorana modes. Within this two-anyon subspace, the exchange statistics is fully determined
by the topological spin of the anyons, θ = π

8 . Raman operators derived by Yang et al. [141]
were used to obtain the response arising from the creation and annihilation processes of anyon
pairs induced by light.

We find that the Raman response can be qualitatively different depending on the micro-
scopic parameters that determine the anyon dynamics. When the kinetic energy of the anyons
dominate over the short range interaction between them, a two-particle continuum results.
When the anyon band structure has a single minimum, the low-energy onset of the spectrum
exhibits a characteristic power-law behaviour, given by I(ω)∼ ωα , where α = 1

8 , reflecting
the topological spin of an Ising anyon - a universal property of the chiral spin liquid. This is a
direct consequence of the anyons exhibiting a statistical repulsion due to their exchange phase.
However, when the band structure exhibits multiple minima, this power law is modified, as
anyons can be created at two different minima, thereby circumventing the statistical repulsion.
Consequently, the observability of this power-law thus strongly depends on the details of the
anyon band structure. Additionally, the experimental resolution required to accurately determine
the exponent is an important consideration that needs to be investigated.

The interaction between anyons, although exponentially small in their separation, may
induce bound-states in certain parameter regimes, contributing sharp peaks in the Raman
response. A robust signature of low-energy bound states was found in the cross-circularly
polarized channel. Two of the lowest energy bound states couple selectively to RL or LR
channels due to angular momentum selection rules.

Our analysis was restricted to the zero temperature limit. At finite temperature, we anticipate
two main effects. First, the gapped continuum will further broaden as the gap gets filled due
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to thermally excited visons. Second, thermally excited Majorana fermions will allow for the
production of anyon pairs that belong to the fermionic superselection sector. For example,
starting from state with a thermally excited matter fermion at the Dirac point KKK with energy ∆m,
a pair of anyons with energy Ev(KKK+qqq) and Ev(KKK−qqq) can be created with arbitrary momentum
qqq. However, this signal will be suppressed by the factor e−β∆m . The reverse process, involving
annihilation of a pair of thermally excited anyons to release a matter fermion, may also occur,
but will be suppressed by a factor e−β (Ev(KKK−qqq)+Ev(qqq)).

What do our results mean for the experiments on α −RuCl3? Although the microscopic
Hamiltonian parameters of α −RuCl3 are currently unknown, our simplified model is generally
consistent with the existing Raman experiments. Within our effective model, bound states
that show strong polarization dependence naturally emerge. However, for a more quantitative
comparison to experiments, a better understanding of the microscopic parameters is necessary.
It is also important to investigate more trivial scenarios where the sharp peaks may arise from
magnons or magnon bound-states in a partially polarized phase. A simple linear spin-wave
theory was employed (not included in this thesis) to calculate the Raman response for such a
model, but the results were inconsistent with the experimental data. Higher order spin-wave
theory may be necessary to fully characterize the Raman spectrum in such a phase.

Another obvious, yet perhaps ambitious goal would be to go beyond the two-anyon subspace,
which will necessarily make non-abelian braiding effects more significant and visible. For
instance, one could trap a single anyon in the sample using a scanning tunnelling microscope
[150] or a vacancy [151, 100, 152] before conducting the Raman experiment. The response
would then include processes where the created pair braids around the trapped anyon, changing
its superselection sector. This may lead to a marked difference in the response compared to the
scenario without any trapped anyons. A related idea was recently applied to predict non-linear
pump-probe relaxation rates in anyonic systems in Ref. [153]. Here, a pump laser pulse creates
a pair of anyons, followed by a probe pulse creating another pair. The long-range statistical
interactions between the two pair was found to result in an anomalous relaxation rate.

In a broader context, recent works have proposed circularly polarized light scattering as a
direct probe of the chirality of excitations. In Ref. [135], Boström et al. argued that magnetic
circular dichroism arising from two-magnon Raman scattering could be used to detect the
Berry curvature of topological magnons. This mechanism is, in a certain sense, similar to
our discussion on the Berry phase-controlled polarization selectivity of anyon bound states
(Fig.7.11). In this regard, one could also ask if the chirality of the matter Majoranas may be
visible in Raman spectroscopy. In fractional quantum Hall systems, it was recently proposed
that a similar circular polarized Raman scattering experiment could detect a chiral neutral
collective mode of a quantum Hall droplet, resembling many similarities to a "graviton"[154].
This has, in fact, been observed experimentally [155]. Given the many similarities between
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quanutm Hall systems and chiral spin liquids, it is intriguing to investigate these connections in
depth.

A natural extension of our analysis to the AFM Kitaev model is possible. Given that
the band structure of anyons is strikingly different compared to an FM Kitaev model, we
expect qualitative differences in Raman signatures for an AFM model. In particular, the Berry
curvature of single-vison bands could produce a strong signature in the helicity dependence of
the spectrum, typically detected through magnetic circular dichroism. This expectation follows
from recent proposals for detecting magnon band topology using circularly polarized Raman
scattering[135]. Here, unlike magnons, which are bosons, the anyonic statistics of visons might
lead to interesting features.





Chapter 8

Thermal Hall Effect

A smoking-gun signature of a chiral spin liquid is its quantized thermal Hall conductivity. In
Chapter 3, we saw how a weak magnetic field gaps out the Majorana fermions, endowing
the bands with finite Chern numbers. A remarkable physical consequence of this is the half-
quantized thermal Hall effect. An equivalent description of this Hall effect exist at the edge
of a system. The chiral spin liquid is characterized by a gapless, propagating Majorana mode
along the edges of the sample. This edge mode is protected from backscattering, such as from
disorder, due to its topological nature, which is responsible for the quantization.

This theory, however, neglects the gauge field completely. At temperatures, much below
the vison energy gap, T ≪ ∆v, this simplification is well justified, as the density of gauge field

excitations will be exponentially suppressed: nv ∼ e−
∆v

kBT . This was also the basis for Kitaev’s
perturbative treatment of the magnetic field, which leads to the chiral phase in the first place.
However, in real systems that always operate at small but finite temperatures, it is important
to understand the role of visons in thermal Hall experiments. In this chapter, we present the
details of a novel thermal Hall effect arising from dynamical visons.

8.1 Thermal Hall effect of visons

A striking result of Chapter 4 was the prediction of Chern bands of single visons (Ising anyons)
in an AFM Kitaev model under a weak [111] magnetic field. What are the physical consequences
of this? The Berry curvature of bands can lead to Hall effects, even in the non-interacting limit
[156]. This naturally predicts a novel thermal Hall effect originating from the gauge degrees
of freedom of the Kitaev spin liquid. In the non-interacting single-particle picture-valid when
the vison density is small- the thermal conductivity can be directly calculated from the Berry
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curvature as follows.

κxy(T ) =− 1
T

∫
∞

0
dε ε

2
σxy(ε)

∂nv(ε)

∂ε
, (8.1)

where n(ε) describes the thermal occupation of the particle as function of their energy and
σxy(ε) is computed from

σxy(ε) =−∑
α

∫ d2k
(2π)2 ΩΩΩαkkkΘ

(
ε −Ev

αkkk
)

(8.2)

where α = 1,2 labels the two vison bands. The above formula for Hall conductivity of general
non-interacting quasiparticles has been derived by various authors using a variety of approaches.
Interested readers may consult Ref. [156].

An important feature that distinguishes the vison Hall effect from those of other (bosonic)
quasiparticles, such as phonons or magnons, is due to their anyonic nature. Although at the
single particle level, statistics is irrelevant, the non-trivial quantum dimension of Ising anyons,
d =

√
2, however, is important. This encodes the degeneracy arising from the zero-energy

fermion mode shared by a pair of well-separated visons in the chiral spin liquid. This results
in an extra entropic factor to the Boltzmann distribution function describing a non-interacting
vison.

nv(Ev
α,ppp)≈ exp

(
−

Ev
α,ppp −T ln

√
2

T

)
(8.3)

Within our approach, visons in an AFM Kitaev model attain nearest neighbour hopping th ∝

h and a next-nearest neighbour tΓ ∝ Γ (for a fixed κ). This leads to the following Hamiltonian
for a single vison on a triangular lattice.

Hv(ppp) = ∆
0
v1−hhh(ppp) ·σσσ

hhh(ppp) = 2th

 sin(ppp ·ηηη1)

cos(ppp ·ηηη2)

sin(ppp ·ηηη3)

+2tΓ

 sin(ppp · (ηηη1 +ηηη3))

cos(ppp · (ηηη2 +ηηη3))

sin(ppp · (ηηη2 −ηηη1))

 (8.4)

with η1 = (1
2 ,

√
3

2 ),η2 = (1
2 ,−

√
3

2 ) and η3 = (1,0). The corresponding energy bands are given by
Ev
±,ppp = ∆0

v ±|hhh(ppp)|. Using the energy dispersion and Eq. (3.38) of Chapter 3, we can compute
the thermal Hall conductivity of a visons.
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Fig. 8.1 Majorana and vison bands in an AFM Kitaev liquid.A likely arrangement of energy bands
of visons and Majoranas in a chiral spin liquid adiabatically connected to the AFM Kitaev model. The
Majoranas are gapped out, making visons the low energy degrees of freedom in the bulk. Predictions for
thermal Hall effect in such a scenario are presented in Fig. 8.2

8.2 Prediction for AFM Kitaev Materials

Having established that not only the Majorana fermions, but visons also contribute to the thermal
Hall effect, the natural question is how it may show up in Kitaev materials that are adiabatically
connected to an AFM Kitaev model. Here, one can have several scenarios distinguished by the
energy hierarchy of Majoranas and visons. The precise values of κ , E0

v , th and tΓ that determine
the band structures depend on the microscopic exchange couplings. For most Kitaev materials
including α −RuCl3 these parameters are still not established. However, looking at the thermal
Hall experiments [42, 43], it is likely that in a field-induced spin liquid regime, the Majorana
gap ( ∆m) has to be sizeable to observe the quantization. This insight may be used to consider
the likely scenario where the vison bands lie within a large Majorana gap as shown in Fig. 8.1.
In such a scenario, the vison thermal Hall effect will be added on top of the half-quantized Hall
effect of Majorana fermions. Since the visons are still gapped, their contribution will follow a
temperature activated behaviour preserving the half-quantized plateau at very low temperatures,
T ≪ ∆0

v . However, the temperature dependence of the thermal Hall signal of the whole system
will be qualitatively modified.

An important factor here is the relative sign of the Majorana and vison Hall contributions.
We find that the vison hopping amplitude is not affected by the sign of the Majorana mass
gap κ . Within our perturbation theory linear in h, the sign of the Chern number of the lowest
vison band is determined by the flux acquired by the vison when it hops along a triangular
loop, using hopping processes triggered by hx, hy and hz. This results in the Chern number
CV =−sgn(hxhyhz) for the lowest vison band. This has to be compared to the Chern number of
the Majorana band [40, 43], Cm = sgn(κ) which leads to Cm = sgn(hxhyhz) for a Kitaev model
solely perturbed by hhh = (hx,hy,hz) [40]. As the signs are opposite, the vison Hall effects of
Majorana fermions and visons are subtractive.



132 Thermal Hall Effect

(a) (b)

Fig. 8.2 (a). Chern number of the lowest vison band in the AFM Kitaev model as a function of the
ratio of tΓ and th. (b). Thermal Hall conductivity of an AFM Kitaev spin liquid with both matter
Majorana and vison contributions. Different curves are obtained for lowest Majorana band having
Chern number +1 and lowest vison band with Chern number (+3,-1,-3) as marked in (a). We assume
that the vison bands lie within a large Majorana gap κ . (See Fig.8.1) The curves in sub-figure (b)
are calculated with the following parameters: (i)∆0

v = 0.6K,κ = 0.25K, th = 0.05K, tΓ =−0.08K,(ii)
∆0

v = 0.6K,κ = 0.25K, th = 0.1K, tΓ = 0.05K, (iii)∆0
v = 0.6K,κ = 0.25K, th = 0.05K, tΓ = 0.07K.

Inset: Experimentally obtained κxy for α-RuCl3 (reproduced from Ref.[43]). The material however,
likely has a ferromagnetic Kitaev coupling.

We find that if the Majorana gap κ arises solely at cubic order in the magnetic field i.e,
κ ∝ h3, then the lowest vison band has the Chern number −1 - opposite sign as that of the
lowest Majorana band. As shown in Fig. 8.2.a, the situation changes when one adds the effect
of tΓ. Depending on the sign and size of tΓ, the Chern number of the lowest vison band takes
the values 3, −1, or −3. Remarkably, the vison band gets a large Chern number +3 when
tΓ/th <−1.

Here we considered a magnetic field in (111) direction, perpendicular to the plane. When
the field is rotated, the sign of the Hall effect (for both the plateau and the peak) in α-RuCl3 is
approximately given by sgn(hxhyhz) [43]. This is consistent with theory, as the Majorana mass
∆m (and thus the Majorana Hall effect) is proportional to hxhyhz [40] in the h field-perturbed
Kitaev model. The Chern number of the vison band, arising from th, is determined by the sign
of the flux enclosed by a triangle, which is also determined by the product hxhyhz. Furthermore,
we find that tΓ → t∗

Γ
for κ →−κ which results, within our approximations, in a jump in the

sign of the vison Chern number simultaneously with that of the Majorana bands.

8.3 Comparison to Experiments

Experimentally, one can expect either a characteristic dip or a peak in the Hall signal depending
on whether the Chern number of the lowest vison band is negative or positive as shown
schematically in Fig. 8.2.
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If we take the half-quantized THE experiments as evidence for the chiral spin liquid
[42, 43], how does our prediction fit into this framework? First of all, a disclaimer is necessary.
Within our approximations, only an AFM Kitaev coupling or a phase with the same symmetry
fractionalization pattern as that of the AFM model can show the vison Hall effect. Nevertheless,
an intriguing observation in α-RuCl3, a characteristic peak above a half-integer quantized
plateau [42, 43], is intriguing. Fig. 8.2 b shows the experimental data in the inset for comparison.
This suggests that the system hosts additional chiral excitations on top of the Majorana fermions.
As the amplitude of the peak is very large, almost twice the plateau value, the experimental
result is consistent with the presence of a gapped excitation with a Chern number larger than
1. It is tempting to associate this feature with a vison Hall effect. While it has been suggested
early on [157] that α-RuCl3 has an antiferromagnetic Kitaev coupling, experimental evidence
is in favour of a ferromagnetic Kitaev coupling, see, e.g., Ref. [72].

An alternate explanation comes from phonons, the dominant energy carriers in any solid
state system. Although electrically neutral and hence no direct coupling to magnetic fields,
phonons have been shown to exhibit thermal Hall effects in a variety of materials[158, 55].
Several mechanisms have been proposed to explain this including coupling to magnons [159],
skew-scattering from impurities [160, 161] and charge puddles [158]. It was shown in two
contemporary works by Winkler and Rosch [56], and Ye et. al. [57] that phonons were
necessary to observe the Majorana Hall effect in a chiral spin liquid. Moreover, Winkler and
Rosch predicted that phonons will also contribute to the thermal Hall effect due to the Berry
phase imprinted on them by the chiral Majoranas. However, this contribution is way too small
to explain the observed peak in α −RuCl3 It is perhaps fair to say that a theory that explains the
anomalously large thermal Hall effects in several Mott insulating materials is urgently needed.

To end this section on an optimistic note, it is encouraging to see the recent reports of
materials with a dominant AFM Kitaev interaction [162, 163]. The detection of a vison thermal
Hall effect in these materials would help establish the presence of emergent dynamical gauge
fields and anyons.





Chapter 9

Conclusions and Outlook

In modern condensed matter physics, the emergence of gauge theories and topological excita-
tions not only define new paradigms for quantum matter but also has far-reaching implications
for future technologies. Quantum spin liquids offer an exciting platform to realize this physics
in real materials. Among the numerous models theoretically proposed, perhaps the most at-
tractive model-thanks to its exact solubility-is the Kitaev spin liquid, which realizes an exotic
phase with fractionalized excitations and an emergent gauge field. This model has become
increasingly relevant as there is a large class of materials, known as Kitaev materials, that
show great promise in realizing the spin-spin interactions necessary to support it. However,
a conclusive evidence for fractionalization and the emergent gauge fields in Kitaev materials
is still lacking, primarily due to the presence of undesirable perturbations inevitable in real
materials. Recent experimental observation of a half-quantized thermal Hall conductivity, a
smoking-gun signature of the Kitaev spin liquid, has generated significant excitement among
researchers. However, strong sample dependence and conflicting experimental results call
for a better understanding of models and materials alike. In this thesis, we explored this gap
between the pure Kitaev model and real material candidates. Our focus was on the nature of the
emergent Z2 gauge field, strongly coupled to Majorana fermions. Static in the pure model, the
gauge field acquires dynamics when perturbations are present. To study this, we focused on
the elementary excitations of the gauge field - visons. In this regard, we distinguish between
the pure Kitaev model and a generic Kitaev liquid by developing a comprehensive theory of
dynamical visons of the latter and predicting novel experimental signatures.

The first and foremost question concerns the coherence of the vison as a quantum particle,
which is not guaranteed a priori in the Kitaev spin liquid. The gauge flux of π carried by
the vison is seen as a singular scattering potential by the gapless Majoranas, as indicated by
the diverging scattering cross section. We described a vison as a quasiparticle dressed by a
cloud of scattered Majorana fermions. To capture its dynamics, we employed a controlled
degenerate perturbation theory, which involved calculating the hopping matrix elements of an
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isolated vison. Although this sounds straightforward, the computation of matrix elements was
complicated by the implementation of projection operation (enforced by the gauge theory) and
selection of appropriate basis states to represent the Majorana many-body wavefunctions.

We used a Pfaffian method, derived from many-body path integrals to calculate wavefunction
overlaps between different ground states of the fermionic system. Considering a weak off-
diagonal Γ term and an external magnetic field (h), we obtained the dispersion of a vison. A
surprising result was the profound influence of the sign of Kitaev coupling (K) in determining
the vison dynamics. While in an FM Kitaev model (K < 0), single visons acquire dispersion
linear in these perturbations, all processes linear in Γ and h are suppressed by a destructive
interference in an AFM Kitaev model (K > 0). This effect was found to hinge on the symmetries
of the system and revealed a more fundamental property of the topological phase - symmetry
fractionalization. The visons of the AFM model carry fractional crystal momentum, resulting
in an enhanced periodicity in their dispersion.

When a [111] magnetic field opens up a gap in the Majorana spectrum, the system becomes
a chiral spin liquid, with the visons transforming into Ising anyons in the bulk. Here, a
remarkable consequence of the non-trivial symmetry fractionalization in the AFM Kitaev model
is the emergence of Chern bands of visons. Vison bands were found to carry Chern numbers
+3,+1,−1,−3, determined by the relative strengths of the magnetic field h and Γ term. As
a result, a novel experimental signature, thermal Hall effect from thermally excited visons
could be predicted within our theory. However, detecting this would require a material with
an AFM Kitaev coupling. Although most materials currently being investigated are believed
to posses FM Kitaev interactions, recent reports of AFM Kitaev interactions in materials like
Na3Co2SbO6 and Na2Co2TeO6 are encouraging [164].

In Chapter 5, we investigated the effects of scattering from gapless Majoranas on a moving
vison. This was essential to answer the question about the coherent propagation of the vison.
There are two important effects arising from scattering of Majoranas - friction and diffusion, a
classic manifestation of the fluctuation-dissipation theorem. When a vison moves according to
its band dispersion, its motion is dampened by the scattering of Majorana fermions which are
much faster and lighter than the vison. By expressing this problem as a drift-diffusion equation
in momentum space, we extracted the temperature dependence of the vison mobility.

In a ferromagnetic Kitaev liquid, where the vison is highly mobile (velocity linear in
perturbations), this leads to a decreasing mobility as the temperature increases. Remarkably,
in the low-T limit, the vison mobility was found to be universally given by µ(T ) ≈ v2

m
6 T 2 ,

completely determined by the Majorana velocity vm ∝ |K|. At higher temperatures, the power
law is modified to µ(T ) ∼ 18 t2

v v2
m

T 4 , which depends on the hopping rate tv of the vison. A
diverging mobility in the T → 0 limit confirms the notion that a vison is indeed a coherent
quasiparticle despite the its gauge flux. In hindsight, this result is the consequence of a interplay
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between the diverging scattering cross-section and scale invariance property of the Majorana
fermions.

An initially immobile vison can hop incoherently by scattering from Majorana fermions.
In an AFM Kitaev model, where interference effects strongly suppress vison motion, such an
assisted hopping may become the dominant mechanism for vison dynamics. By solving the
Dirac equation in the presence of a vison, we obtained the vison hopping rates by analytically
calculating the golden rule transition rates. Here, a quasi-localized Majorana mode was found
to give the dominant contribution to the hopping rate at low temperatures. Although in the
limit T → 0, the universal mobility remains valid due to higher-order coherent vison hopping
processes, we identified an intermediate temperature regime where a T -independent mobility
dominates the dynamics, driven by Majorana-assisted processes. This is reminiscent of Ohmic
friction typically found in metals, which arises from entirely different mechanisms, such as
Landau damping.

Next, motivated by the three-dimensional (layered) nature of Kitaev materials, we took a
step toward understanding the effects of a third-dimension on a 2D emergent gauge field. In
Chapter 6, we investigated three simple models of multilayer Kitaev spin liquids. We stacked
pure Kitaev models on top of each other, in AA, AB and ABC stacking patterns, weakly coupled
by a nearest neighbour Heisenberg interaction. Interplay of topological order and model-specific
conservation laws led to a rich dynamics of the gauge field in these models.

We identified novel conservation laws in AB and ABC stacked models, which could be
visualized as 2D sheets of operators crisscrossing the multilayer system. While topological order
prohibited single visons from tunnelling between layers, these conservation laws prevented
their in-plane motion, completely immobilizing single visons! This forced them to form pairs in
order to become mobile. We identified two types of excitations: inter-layer and intra-layer pairs.
They were found to exhibit qualitatively different dynamics, governed by the conservation laws
specific to each stacking pattern.

In AB and ABC stacked systems, inter-layers pairs were constrained by the sheet conser-
vation laws to move in 1-D channels, while in the AA model, they enjoy a fully 2D mobility.
Intra-layer pairs, however, could move between layers, with their direction of motion determined
by the conservation laws. Additionally, depending on the anisotropy of Kitaev interactions, an
intra-layer pair could hop either coherently or incoherently. In the chiral spin liquid phase, we
identified two types of intra-layer vison pairs: bosonic and fermionic ones. Only a bosonic intra-
layer pair was able to coherently tunnel between layers, while the fermionic one could not. This
rich zoo of dynamical vison-pairs could be probed through their characteristic dimensionality
of motion.

In Chapter 7, we explored how traditional Raman scattering could be used to probe vison
dynamics in a generic chiral Kitaev spin liquid. Motivated by recent experiments on the Kitaev
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material α −RuCl3, we computed the Raman spectrum of a ferromagnetic Kitaev spin liquid in
the chiral phase. We assumed a plausible experimental scenario where the Majorana fermions
are gapped out by a magnetic field, and the low-energy degrees of freedom are mobile Ising
anyons. Since low-energy Raman processes primarily create pairs of anyons, we first derived
an effective two-particle Hamiltonian for a pair of Ising anyons. The effective model included
the universal long range statistical phase as well as the short range interacting arising from
the localized Majorana zero modes. Using Raman operators derived by Yang. et al [141], we
calculated the zero temperature Raman response.

When the vison bandwidth, or equivalently the hopping amplitudes, are large, the spectrum
exhibits a two-particle continuum, a hallmark of fractionalization. Existing literature predicts
that dynamical correlation functions could display signatures of anyonic statistics. Indeed,
we found that the universal parameter α = 1/8, characterising the chiral spin liquid, could
be detected in the scaling of the Raman intensity as I(ω) ∼ (ω −E0

2v)
α , where E0

2v is the
two-particle gap. However, in order to observe this power-law, the anyon band structure must
have a single minimum, which depends sensitively on the strength and signs of non-Kitaev
interactions.

In some parameter regimes, the interaction between anyons was found to induce multiple
bound states. We computed the Raman response from these bound states and analysed their
sensitivity to circularly polarized light. Robust sharp peaks arising from anyon bound states were
found to appear only in specific polarization channels, determined by the angular momentum
quantum number of the wavefunctions. Such helicity-selective modes have been observed
in recent experiments on α −RuCl3 , in the purported field-induced spin liquid regime[139].
Although our calculations were restricted to the two-anyon sector and zero temperature, it
provides a controlled calculation of Raman response from anyons in the Kitaev liquid beyond
the integrable limit.

9.1 Outlook

As with all scientific endeavours, this thesis raises more questions than it has answered. We
have already presented detailed discussions on the limitations and open questions pertaining
to the respective chapters. Here, I will take a step back and make an attempt to gather some
thoughts on a few odds and ends.

An obvious question concerns the experimental signatures of dynamical gauge fields in
Kitaev materials. The consequences of the diffusive motion of visons in relaxation experiments
were discussed in detail in Chapter 5. By combining insights from Chapter 6, one could propose
a universal signature of topological excitations in quasi-2D layered spin liquid systems. With
Roman Lange, we have recently explored a simple model of visons diffusing in a layered
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system, which has shown novel corrections to relaxation times of a purely 2D model. Here a
concrete experimental proposal needs to be developed with the microscopic details taken into
account.

The softening of the vison gap and the resulting instabilities of the spin liquid phase require
a much deeper understanding. Our perturbative approach was able to give a rough estimate of
the critical points where the gaps close but is incapable of describing the phase transitions (if
any). What is the resulting state when the visons proliferate? To the best of my knowledge, this
remains an open problem. A major obstacle is the non-abelian nature of the particles, which
prohibits a description in terms of a confinement-deconfinement type transition well understood
in Z2 gauge theories [98, 165]. Phase transitions induced by the condensation of bosonic bound
states of visons or vison-Majorana composites have been explored [166, 67, 167].

What is the edge theory corresponding to the topological vison bands that we have discov-
ered in the AFM Kitaev liquid? The edge modes will be Ising anyons themselves, and their
stability is an interesting question, as they may scatter from the gapless Majorana edge modes.
A channel of propagating Ising anyons at the boundary may also have direct implications for
topological quantum computing. For example, one could consider utilising these edge states for
braiding.

An exciting recent development is the emergence of noisy intermediate-scale quantum
(NISQ) devices, comprising a few (10-100) qubits, realized on a variety of hardware platforms.
While nature has been hard on us in the real materials front, physicists have turned to these
devices to simulate and study exotic many-body phases. An interesting question is how to
describe and detect the dynamics of topological excitations in these simulated phases. Unlike a
real material described by a Hamiltonian, quantum devices employ discrete quantum gates and
measurement protocols to realize exotic states.

These are just a few of the many exciting questions that have crossed my mind throughout
the course of this thesis. I believe the work presented here will not only contribute to our
current understanding but also guide future experiments and theoretical advances in our search
for dynamical emergent gauge fields, one of the most extraordinary predictions of modern
condensed matter physics. That said, we shall remind ourselves to keep an open mind, for
science has an uncanny way of surprising us in the most unexpected ways.
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Appendix A

Overlap of BCS Vacua: Path Integrals

In this appendix, we derive the Pfaffian formula to calculate the overlap between two Bogoliubov
vacua. This was first introduced by Robledo to calculate nuclear matrix elements inside a
nucleus [86]. We begin by introducing some of the important properties of Pfaffians which
will aid us along the derivation. The pfaffian of a 2N dimensional anti-symmetric matrix M is
defined as

Pf(M) =
1

n!2n ∑
{P}

ε(P)Mi1,i2Mi3,i4 . . .Mi2n−1,i2n (A.1)

where {P} is the set of all possible permutations of (i1, i2 . . . i2n) and ε(P) =±1 for even (odd)
permutations. Some of the useful properties of Pfaffian are

Pf(ST MS) = det(S)P f (M) (A.2)

Pf

(
0 M

−MT 0

)
= (−1)N(N−1)/2 det(M) (A.3)

|Pf(M)|= |
√

det(M)| (A.4)

Consider two BdG Hamiltonians H1 and H2 in fermion operators f which are diagonalized
by Bogoliubov transformations X (1),Y (1) and X (2),Y (2) respectively. Let the corresponding
quasiparticle operators be a(1) and a(2) respectively.

X (l)
i j f †

j +Y (l)
i j f j = a(l)†i (A.5)
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Using Thouless parametrization we can express the Bogoliubov vacua (ground state) as

∣∣∣ψ l
〉
= |Nl|exp

{
−1

2

N

∑
i< j

Z(l)
i j f †

i f †
j

}∣∣0 f
〉

(A.6)

where l takes values 1 or 2 corresponding to the labels. The total dimension of the single particle
Hilbert space is N.

∣∣0 f
〉

denotes the vacuum of the f fermions - f
∣∣0 f
〉
= 0. Note that we have

implicitly fixed the phase of the wavefunction by taking the modulus of the normalization factor
N(l). Z(l) is a N ×N anti-symmetric matrix given by

Z(l) = ((X (l))−1Y (l))∗ (A.7)

The overlap between the two vacua is given by〈
ψ

(1)
∣∣∣ψ(2)

〉
=
〈
0 f
∣∣e 1

2 Z(1)∗
i j fi f je−

1
2 Z(2)

i j fi f j
∣∣0 f
〉

(A.8)

Introducing fermion coherent states |z⟩ which have the corresponding anti-commuting Grass-
mann variables zk and z∗k obeying the following properties

fk |z⟩= zk |z⟩ ⟨z| f †
k = z∗k ⟨z| (A.9)

we can insert the identity operator defined as

1=
∫

∏(dzkdz∗ke−z∗kzk) |z⟩⟨z| (A.10)

into the overlap expression to obtain〈
ψ

(1)
∣∣∣ψ(2)

〉
=
∫
(∏dz∗kdzk)

〈
0 f
∣∣e 1

2 Z(1)∗
kk′ fk fk′e−z∗kzk |z⟩⟨z|e− 1

2 Z(2)
kk′ f †

k f †
k′
∣∣0 f
〉

=
∫
(∏dz∗kdzk)e

1
2 Z(1)∗

kk′ zkzk′e−z∗kzke−
1
2 Z(2)

kk′ z
∗
kz∗k′

(A.11)

The integration is Grassmann variables can be carried out using conventional methods. But in
order to carefully track the sign of the overlap, we introduce some intermediate steps. The terms
that appear in the exponents can be written in a compact form using a bipartite skew-symmetric
matrix.

Z
(12) =

(
−Z(2) −1
1 Z(1)∗

)
(A.12)
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and a Grassmann vector zµ = (z∗k ,zk) to give

〈
ψ

(1)
∣∣∣ψ(2)

〉
=
∫
(∏dz∗kdzk)e

1
2 zµZ

(12)
µµ ′ zµ ′ (A.13)

The skew-symmetric matrix Z
(12) can always be transformed to a canonical form by unitary

transformation U .

UT
Z
(12)U = Zc =

(
0 B
−B 0

)
(A.14)

where B is an N dimensional diagonal matrix with Bii = βi which are real and positive. In terms
of the canonical Grassmann variable ηµ =Uµ ′µz′µ ,〈

ψ
(1)
∣∣∣ψ(2)

〉
=
∫
(∏dη

∗
k dηk)e∑

N
k=1 βkη∗

k ηk det{(U)} (A.15)

where det(U) is the Jacobian of the transformation. The overlap can now be easily calculated
since

∫
dη∗dηeβη∗η =−β . With the help of Eqn. A.3

〈
ψ

(1)
∣∣∣ψ(2)

〉
= (−1)N det(U)

N

∏
k=1

βk (A.16)

The product of β can be precisely expressed as the Pfaffian of Zc using its very definition A.1
as ∏

N
k=1 βk = (−1)N(N−1)/2Pf(Zc). Using Eqn. A.2, we can finally express the Pfaffian formula

of the overlap with the correct sign as〈
ψ

(1)
∣∣∣ψ(2)

〉
= (−1)N(N+1)/2Pf(Z(12)) (A.17)





Appendix B

Diagonalizing the Majorana Hamiltonian

(a) (b)

Fig. B.1 (a.) Honeycomb lattice with bond dependent interactions. (b.) The z bonds are mapped on to
the sites of a square lattice, where a unit cell of the honeycomb lattice resides.

In this appendix I will describe how the numerical diagonalization is setup for the Majorana
fermions for different vison positions. Let us start with the vison free sector. The fermion
Hamiltonian on the honeycomb lattice is mapped to an effective square lattice by shrinking one
of the bonds to a point (say z bond) as shown in Fig. B.1, resulting in a square lattice with linear
size L1aaa1 and L2aaa2 +Maaa1. M, termed as the ’twist factor’, determines how the two edges are
joined to form a periodic boundary. Indexing the sites of the new square lattice according to the
periodic boundary conditions, the x and y couplings of the Kitaev Hamiltonian can be encoded
as couplings between the sites and the z type couplings as the diagonal elements. The Kitaev
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Hamiltonian has the form

H =
(

cA
1 ,c

A
2 , ..,c

A
N

)( D iM
−iM −D

)


cB
1

cB
2

.

.

cB
N

 (B.1)

The matrices obtained in this definition can be easily manipulated as described in the Chapter 2
to obtain the corresponding Hamiltonian of the complex fermion operators f and f †.

Mki = KxukAiB Mi j = KyuiA jB Mii = KzuiAiB

where iA(B) labels the A(B) sublattice sites in the ith unit cell, defined at every site of the square
lattice. Next-nearest neighbour hopping enters via

Dik = KxuiA jBu jBkA

which was defined in Chapter 2. Visons can be added by flipping a string of u⟨i j⟩. Due to
periodic boundary conditions we can only add visons in pairs. In our calculations we add a pair
of visons by flipping a chain of u⟨i j⟩y

where the chain is parallel to the x axis of the (reduced)
square lattice.



Appendix C

Scattering Cross-section of a vison

In this appendix, we reproduce the well known result for Aharonov-Bohm scattering of Dirac
fermions from a localized point flux. Due to its π flux, we choose a gauge where the vison is
implemented as an anti-periodic boundary condition for the wavefunctions. This is equivalent
to a singular gauge where the vison is a semi-infinite branch cut in space.

An incoming wave in this gauge can be written in the coordinate space (r,ϕ)

ψin(rrr) = e−i ϕ

2 eikkk·rrr
(

e−i θ

2

ei θ

2

)
(C.1)

where the factor e−i ϕ

2 implements the singular gauge that we are working with. We therefore
look for a solution of the scattering problem which has an asymptotic form

ψ̃(kr) kr>>1−−−−→ e−i ϕ

2 eikr cosϕ

(
e−i θ

2

ei θ

2

)
+ f (k,ϕ)

eikr
√

r

(
e−i φ

2

ei φ

2

)
(C.2)

The second term is the scattered wave and f (k,ϕ) gives the scattering amplitude. Below, I
focus on the first spinor component and extract the scattering amplitude to avoid clutter.
General solution to the Dirac equation with antiperiodic boundary condition is given by Eq.C.2

ψ̃s,l,k(r) =

(
i−l+ 1

2 J−l+ 1
2
(kr)ei(l− 1

2 )θ

−si−l− 1
2 J−l− 1

2
(kr)ei(l+ 1

2 )θ

)
, l ≤ 0 (C.3)

(
il−

1
2 Jl− 1

2
(kr)ei(l− 1

2 )θ

sil+
1
2 Jl+ 1

2
(kr)ei(l+ 1

2 )θ

)
, l > 0 (C.4)
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Using the following asymptotic form of Bessel functions we can expand the solutions and read
off the pre-factor of the outgoing spherical wave.

Jl(kr)≈
√

2
πkr

cos(kr− lπ
2
− π

4
) (C.5)

This gives the scattering amplitude

f (k,ϕ) =
2√
πk

(
∑
l≤0

(−i)eilϕ + ∑
l>0

eilϕ

)
(C.6)

this sum can be carried out using analytic continuation of ϕ from the complex plane to the real
axis. The scattering cross-section is then given by

dσ

dϕ
= | f (k,ϕ)|2 = 1

2πk sin2
ϕ

(C.7)

for ϕ ̸= 0



Appendix D

Solving the drift-diffusion equation

Here, I outline the details of numerically solving the drift-diffusion equation Eq. (5.14). Due
to the momentum dependence of the drift term, we use Fourier transformation to write the
equation in a matrix form. For simplicity, we can assume the force FFF is in the x direction,
denoted by superscript ‘(1)’. In steady state, using φppp = ∑rrr e−ippp·rrrφrrr,

F(1)
∑
rrr

vvv(1)rrr e−ippp·rrr = Dp

(
−∑

r
r2

φrrre−ippp·rrr + i∑
rrr,rrr′

rrr′ · vrrrφrrr′e
−ippp·(rrr′+rrr)

)
(D.1)

Here, the sum ∑rrr is taken over real space, which is discretized on a triangular lattice. For each
Fouroer component, this leads to a matrix equation

vvv(1)rrr0 δrrr,rrr0 =

(
−r2

δrrr,rrr0 + i ∑
r

vvvrrr+rrr0 · rrr
)

φrrr (D.2)

This can be written as a matrix equation

V = KΦΦΦ (D.3)

in the discretized real space lattice of linear size L. Inverting this gives the solution to Φ. While
solving the linear equation, an important subtlety is that the rrr0 = 0 component of the equation
results in a singular matrix K as vrrr0 = 0. We fix this by defining K0,0 = 1, which does not affect
the final solution. The obtained φrrr is then Fourier transformed back to the momentum space. At
low-T , it is also important to include sufficiently many Fourier modes (real space points) since
the solution φppp develops features of order

√
T . Fig. D.1 shows this finite size effect which is

more pronounced for smaller number lattice points.
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Fig. D.1 Numerical solution to the drift-diffusion equation at D/T = 0.1 and Γ =−1 for various number
of Fourier modes used. The matrix equation Eq. (D.3) is diagonalized on a lattice of L linear size.
Features of width

√
T develops for small L.

D.0.1 Calculation of the Diffusion constant

In this subsection, we provide the details of the calculation of the momentum space diffusion
constant of the vison. In the heavy vison limit, we can approximate the scattering cross-section
with that of a single vison. For the vison, the transition rate between two momentum states ppp
ans ppp′ due to scattering from Majoranas is given by

Mppp,ppp′ =
∫ d2k

4π2
d2k′

4π2 Wkkk,kkk′nk(1−nk′)δ (kkk+ ppp− kkk′− ppp′)δ (εkkk − εkkk′). (D.4)

Here, an incoming Majorana fermion with momentum kkk is scattered into a state with
momentum kkk′, by the vison potential, with the scattering rate determined by Wkkk,kkk′ . nk denotes
the Fermi function specifying the occupation of the Majoranas. The delta functions implement
the total momentum and energy conservation. Note that within our approximation, we have
neglected the recoil energy of the vison and assume an elastic scattering.

Wkkk,kkk′ . nk is directly related to the scattering cross-section:

d2 p′

4π2
d2k′

4π2 Wkkk,kkk′(2π)2
δ (kkk+ ppp− kkk′− ppp′)2πδ (εkkk − εkkk′)≈ vFdθkkk,kkk′

dσ(k,θkkk,kkk′)

dθkkk,kkk′
. (D.5)
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Using this, we can derive an analytical expression for the diffusion constant Dp

Dp =
∫ d2 p′

4π2
d2k
4π2

d2k′

4π2

∣∣ppp′− ppp
∣∣2Wkkk,kkk′nk(1−nk′)(2π)2

δ (kkk+ ppp− kkk′− ppp′)2πδ (εkkk − εkkk′)

=vF

∫ d2k
4π2 dθkkk,kkk′k

2
(

1− cosθkkk,kkk′
) dσ(k,θkkk,kkk′)

dθkkk,kkk′
n(εk)(1−nεk)

=vF

∫ dk
2π

k3
σtr(k)n(vFk)(1−n(vFk))

=
1

2π2v2
F

∫
ε

2n(ε)(1−n(ε))dε

=
1

2π2v2
Fβ 3

∫
∞

0
x2n(x)(1−n(x))dx

(D.6)

where we used σtr =
1

πk , defined as the transport scattering cross-section, which neutralises the
divergent forward scattering. Solving the integral gives the diffusion constant given in the main
text.





Appendix E

Majorana assisted hopping of single visons

In this appendix, I will present the detailed expressions required to obtain the Majorana assisted
hopping rate in Eq. (5.33). We start with the following expression in the main text (Eq. (5.29))

W̃ (1)(s,k0, l0)

Γ2 |⟨0A|0B⟩|2
= ∑

s
(Ss+(k0, l0)+Ss−(k0, l0)) (E.1)

(E.2)

S(k0, l0)++ =
2π

vF
∑

l

∫ dk
2π

∣∣∣∣∣∑l1 ,l2
∫

d2r1d2r2ε(rrr1 −δδδ )ε(rrr2 +δδδ )
∫ dk1dk2

4π2 π
√

k1k2

[
η
+
k1,l1

(rrr1)η
−∗
l2 ,k2

(rrr2)
]

4π
2
δ (k0 − k1)δ (k− k2)δl0 ,l1 δl,l2

∣∣∣∣∣
2

δ (k0 − k)

(E.3)

S(k0, l0)+− =
2π

vF
∑

l

∫ dk
2π

∣∣∣∣∣∑l1 ,l2
∫

d2r1d2r2ε(rrr1 −δδδ )ε(rrr2 +δδδ )
∫ dk1dk2

4π2 π
√

k1k2

[
η
+
k1,l1

(rrr1)η
+
l2 ,k2

(rrr2)
]

4π
2
δ (k0 − k1)δ (k− k2)δl0 ,l1 δl,l2

∣∣∣∣∣
2

δ (k0 − k)

(E.4)

η
±∗
k,l (rrr) = ei π

4 f A∗
k,l (rrr)± e−i π

4 f B∗
k,l (rrr) (E.5)

We now approximate the smoothing function to a delta function centred around the unit cell
ε(rrr)≈ Ω0δ 2(0) where rrr is measured from the unit cell position. This approximation can be
verified to ensure the commutation relations of the Majorana operators.

S(k0, l0)++ =
Ω2

0π2

vF
k2

0

∣∣∣η+
k0,l0

(−δδδ )
∣∣∣2[∑

l

∣∣∣η−∗
k0,l

(δδδ )
∣∣∣2] (E.6)

where ±δδδ = (δ ,±π

2 ).
Since we are in the low energy long wavelength limit, we can approximate the Bessel functions
with their small argument forms. Jl(ρ)≈ ρ l . Since k0δ << 1. The most diverging contribution
in the above sum thus comes from the l = 0 angular momentum channel. Similarly,
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S(k0, l0)++ ≈Ω2
0π2

vF
k2

0

∣∣∣η+
k0,l0

(−δδδ )
∣∣∣2 ∣∣∣∣∣i√k0δ − 1√

k0δ

∣∣∣∣∣
2

=
Ω2

0π2

vF
k2

0

∣∣∣η+
k0,l0

(−δδδ )
∣∣∣2(k0δ +

1
k0δ

)
(E.7a)

S(k0, l0)+− ≈Ω2
0π2

vF
k2

0

∣∣∣iη+
k0,l0

(−δδδ )
∣∣∣2(k0δ +

1
k0δ

)
(E.7b)

S(k0, l0)−+ ≈Ω2
0π2

vF
k2

0

∣∣∣−iη−∗
k0,l0

(−δδδ )
∣∣∣2(k0δ +

1
k0δ

)
(E.7c)

S(k0, l0)−− ≈Ω2
0π2

vF
k2

0

∣∣∣η−∗
k0,l0

(−δδδ )
∣∣∣2(k0δ +

1
k0δ

)
(E.7d)

The full transition rate can be therefore calculated by carrying out a thermal average over the
initial states. The dominant contribution is

W (1) ≈
∫ dk0

2π
∑
l0

nk0,l0W̃
(1)(k0, l0)

=
N Γ2Ω2

0π2

2δvF

∫ dk0

2π
(1+ eβvF k0)−1

=
N Γ2Ω2

0π3

32βδ 2v2
F

∫
du

1
1+ eu

(E.8)



Appendix F

Majorana assisted hopping of intra-layer
vison pairs

Here, we calculate the Golden-rule transition rate of a (fermionic) vison pair in the gapless
phase for the isotropic Kitaev model. As described in the main text, the assisted hopping rate
Γ⊥ (Eq. (6.8) in the main text) calculation can be carried out analytically in the low T limit.
Let us look at the transition rate from layer l to layer l +1

Γ⊥ = ∑
m,m′,n,n′

e−β (E l
n+E l+1

n′ )
〈

Φ
l
m(RRR)

∣∣∣〈Φ
l+1
m′ ( /0)

∣∣∣∆H
∣∣∣Φl

n( /0)
〉∣∣∣Φl+1

n′ (RRR)
〉

δ (E l
m +E l+1

m′ −E l
n −E l+1

n′ )

(F.1)

where the many body wavefunctions of layer l with quantum number n is given by

∣∣∣Φl
n(RRR)

〉
= P̂l |G (RRR)⟩l |M(G (RRR))⟩l , (F.2)

and we denote by
∣∣Φl

n( /0)
〉

the wave function without any vison pair.

We now explain why in the low energy limit, vison pair-Majorana scattering can be neglected
and one may replace the scattering states with free Majorana wavefunctions.
Scattering from a vison-pair is described by the full Green’s function of the Majorana fermions
in the presence of a potential term V =−2Kicic j at a single link ⟨i j⟩z. This can be calculated
using the Dyson equation.

G(kkk,kkk′; iω) = G0(kkk,kkk′; iω)+
∫

dkkk1dkkk2G0(kkk,kkk1; iω)Vkkk1,kkk2G(kkk2,kkk′; iω) (F.3)
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with the scattering potential in the momentum space Vkkk1,kkk2 = −4Kτy where τττ = (τx,τy,τz)

denotes the Pauli matrices in the sublattice basis. Integrating over kkk and kkk′ on both sides of
the Dyson equation gives us the self consistent equation for the dressed local Green’s function
g(iω) =

∫
dkkkdkkk′G(kkk,kkk′; iω)

g(iω) = g0(iω)−4Kτ
yg0(iω)g(iω) (F.4)

which gives

g(iω) = g0(iω)(1+4Kτ
yg0(iω))−1 (F.5)

The local bare Green’s function is given by is

g0(iω) =
∫ dkkk

(2π)2
1

iω − vmτττ · kkk (F.6)

Analytically continuing by iω → ω + iδ sign(ω), we get, in the low ω limit,

g0(ω) =
1

2π

∫
Λ

0
dk

1
ω − vmτττ · kkk+ isign(ω)δ

(F.7)

=
ω

2π
log
(

ω2

v2
mΛ2

)
+ i

|ω|
2vm

where Λ is a high energy cut-off defining out low energy limit. The above equation reproduces
the linear density of states for Dirac particles. Plugging this into Eq. F.5, we can see that in the
ω → 0 limit, the full Green’s function approaches the bare one. Hence we replace the scattered
states with the free particle states as |Ψml(RRRl)⟩ = P̂l |G (RRRl)⟩l |Mml( /0)⟩l where ml labels the
many-body eigenstates of the matter fermions. While this is not valid for Majorana states at
high energy, it is approximately valid at low energies.

Expanding the interlayer Hamiltonian in terms of the Majorana fermions ∆Hz
⊥(i)=−bz

i,lb
z
i,l+1ci,lci,l+1

and contracting the gauge fermions we get

Γ⊥ ≈ J2
⊥ ∑

m,m′
n,n′

e−β (E l
n+E l+1

n′ )|
〈

Ml
m( /0)

∣∣〈Ml+1
m′ ( /0)

∣∣ci,lci,l+1 + c j,lc j,l+1
∣∣Ml

n( /0)
〉∣∣Ml+1

n′ ( /0)
〉
|2δ (E l

m +E l+1
m′ −E l

n −E l+1
n′ )

(F.8)

= J2
⊥ ∑

p,q={i, j}
m,m′
n,n′

e−β (E l
n+E l+1

n′ )
〈

Ml
m( /0)

∣∣cp,l
∣∣Ml

n( /0)
〉〈

Ml
n( /0)

∣∣cq,l
∣∣Ml

m( /0)
〉

×
〈

Ml+1
m′ ( /0)

∣∣cp,l+1
∣∣Ml+1

n′ ( /0)
〉〈

Ml+1
n′ ( /0)

∣∣cq,l+1
∣∣Ml+1

m′ ( /0)
〉

δ (E l
m +E l+1

m′ −E l
n −E l+1

n′ )



169

which can be identified as a convolution of Majorana spectral functions on each layer.

Γ⊥(β )≈ J2
⊥ ∑

α,β=A,B

∫
∞

−∞[
Cα,β (ω,rrr = 0)Cα,β (−ω,rrr = 0)

]
dω (F.9)

where C(ω,rrr = 0)=−2 n f (ω) Im
∫ d2k

4π2 GR(ω,kkk) is the spectral function of the matter Majorana
fermions obtained from the free particle (retarded) Green’s function written in the sublattice
basis (A,B). In the low energy Dirac description of the Majoranas, the Green’s function is

G(iω,kkk) =
1

iω − vmkkk · τττ (F.10)

where, τττ = (τx,τy) are the Pauli operators. This leads to a linear density of states, characteristic
of Dirac fermions, reflected in the spectral function.

Cα,β (ω,0) = n f (ω)
|ω|
v2

m
δα,β (F.11)

Plugging this into the equation for Γ⊥, we get

Γ⊥(T )≈ J2
⊥

2 π

ℏ

∫
∞

∞

n f (ω)(1−n f (ω))
ω2

v4
m

dω =
2πT 3

ℏv4
m

(F.12)

While the prefactor of this formula is not exact (we neglected the effect of scattering of high-
energy Majorana states from the vison pair), the T dependence is expected to be exact in the
low-T limit.
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