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Kurzfassung  
Die funktionelle Organisation des menschlichen Gehirns basiert auf neuronalen 

Verbindungen (Kanten) zwischen kortikalen Regionen (Knoten), bekannt als strukturelle 

Konnektivität. Diese kann durch Tumorwachstum oder multimodale Behandlungen 

gestört werden, was zu kognitiven Beeinträchtigungen führen kann. Die funktionelle 

Konnektivität hingegen ist definiert als die zeitlich korrelierte Aktivität von Knoten, die 

durch mehrere oder alle anatomischen Kanten zwischen ihnen etabliert wird. Wir stellen 

die Hypothese auf, dass tumor- und therapiebedingte Läsionen die Integrität der weißen 

Substanz unterschiedlich beeinträchtigen, was zu einer reduzierten strukturellen 

Konnektivität und verminderter kognitiver Leistung führt. Darüber hinaus sollte der Grad 

der funktionellen Konnektivität zwischen tumorinfiltrierten Hirnregionen und betroffenen 

Hirnnetzwerken mit dem Gesamtüberleben assoziiert sein. 

In 121 vorbehandelten Patienten mit rezidivierendem Gliom wurde zunächst die 

Integrität der weißen Substanz in verschiedenen kortikalen Läsionsgebieten untersucht. 

Dazu wurde die lokale neuronale Faserdichte mittels modernster Traktografieverfahren 

bestimmt. Die zugrundeliegenden Traktografien wurden dann zusammen mit den 

Ergebnissen einer Testbatterie zur kognitiven Leistungsfähigkeit verwendet, um mittels 

maschinellen Lernens einen Zusammenhang zwischen Kognition und Hirnkonnektivität 

herzustellen. Für die Untersuchung der funktionellen Konnektivität im Ruhezustand 

zwischen metabolisch aktiven Gliom-Regionen und Gehirnnetzwerken wurde eine 

Korrelationsanalyse in einer Untergruppe von 82 Patienten durchgeführt. 

Die durch Ödeme und Gliose deutlich beeinträchtigte Integrität der weißen Substanz 

hatte einen ähnlichen negativen Einfluss auf den Leistungsstatus der Patienten wie die 

der kontrastmittel-aufnehmenden Gliomanteile. Die verringerte strukturelle Konnektivität 

zwischen Ruhezustandsnetzwerken erwies sich als kritischer Faktor für die kognitive 

Leistungsfähigkeit, wobei die Mehrzahl der betroffenen Knoten in der linken Hemisphäre 

lagen. Zudem blieb die funktionelle Konnektivität im Ruhezustand zu diesen Netzwerken 

innerhalb der metabolisch aktiven Gliom-Region erhalten, wobei die Konnektivität zu 

bestimmten Netzwerken mit einem besseren Gesamtüberleben assoziiert war. 

Um die Leistungsfähigkeit von Patienten mit Gliomen zu bewahren und den kognitiven 

Abbau zu verringern, sollte die Behandlungsplanung einen eher netzwerkbasierten 

Ansatz verfolgen, wobei der Einfluss von Ödemen und Gliose zu berücksichtigen ist. 

Darüber hinaus liegt ein großes klinisches Potenzial für die Prognose in der funktionellen 

Konnektivität zwischen der Gliom-Region und dem umgebenden Hirngewebe.
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Abstract 

The functional organization of the human brain is based on neuronal connections (edges) 

between cortical regions (nodes), known as structural connectivity. This may become 

disrupted by tumor growth or multimodal treatments, leading to cognitive impairment. 

Functional connectivity, on the other hand, is defined as the temporally correlated activity 

of nodes, established by some or all of the anatomical edges between them. We 

hypothesize that tumor- and therapy-induced lesions differentially affect white matter 

integrity, resulting in reduced structural connectivity and impaired cognitive performance. 

Furthermore, the degree of functional connectivity between tumor-infiltrated brain 

regions and affected brain networks should be associated with overall survival. 

In a cohort of 121 patients with recurrent glioma, the integrity of the white matter in 

various cortical lesions was initially assessed. For this purpose, the local neuronal fiber 

density was determined using state-of-the-art tractography methods. The underlying 

tractographies were then used together with the results of a cognitive performance test 

battery to establish a relationship between cognition and brain connectivity using a 

machine learning approach. To investigate resting-state functional connectivity between 

metabolically active glioma regions and brain networks, a correlation analysis was 

performed in a subset of 82 patients. 

The significantly impaired integrity of the white matter due to edema and gliosis had a 

similar negative impact on the performance status of the patients as that of the contrast-

enhancing tumor parts. Reduced structural connectivity between resting-state networks 

was identified as a critical factor in cognitive performance, with the majority of affected 

nodes located in the left hemisphere. Additionally, resting-state functional connectivity to 

these networks was preserved in the metabolically active glioma region, with connectivity 

to specific networks associated with improved overall survival. 

In order to maintain the overall performance of glioma patients and reduce cognitive 

decline, treatment planning should adopt a more network-based approach, taking into 

account the influence of edema and gliosis. Additionally, a great clinical potential for 

prognostication lies in the functional connectivity between the glioma region and the 

surrounding brain tissue.  
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Due to copyright concerns, some figures in the introduction have been replaced with 

references to the corresponding figures in the original publication, compared to the 

original version of the dissertation. 

1 Introduction 

We live in an increasingly interconnected world. Roads, power grids and, above all, 

computer networks facilitate life as we know it today. In this context, connectivity 

describes the ability of different actors or structures to connect. This concept can also be 

applied to the human brain. Billions of neurons form a unique network via their axons, 

which is not yet fully understood in terms of its function. When describing brain 

connectivity, a distinction is usually made between the spatial and temporal connectivity 

of brain areas, the so-called structural and functional connectivity. Neurological disorders 

such as dementia, multiple sclerosis or stroke may affect connectivity in various forms 

that often lead to cognitive impairments1. Brain tumors are another type of disease with 

equally far-reaching consequences. In patients with brain tumors, the lesion pattern is 

typically heterogeneous due to the infiltrative growth of tumor cells and the effects of 

administered treatments. Thus, induced macroscopic structural brain alterations can be 

detected well with standard anatomical magnetic resonance imaging (MRI) and positron 

emission tomography (PET) using radiolabeled amino acids. 

Nevertheless, microscopic changes in white matter fibers or altered functional 

organization cannot be detected by standard MRI. This requires special imaging 

techniques such as modern diffusion-weighted MRI (DWI) or functional MRI (fMRI) in 

combination with appropriate analysis methods. By means of the latest diffusion models 

and tractography techniques, it is possible to adequately identify individual fibers tracts 

of the white matter2. Among other measures, this allows to determine the local fiber 

density, which can be used as a measure of structural changes. Tractography can also 

be used to create whole brain connectomes that reflect structural connectivity between 

a wide range of different brain regions, based e.g., on a brain atlas. In combination with 

machine learning approaches and graph theory, these are powerful tools that can help 

unravel the effects of structural connectivity changes on cognition.  

As repeatedly shown before, brain tumors also affect functional connectivity3,4. Here, the 

emerging field of Cancer Neuroscience, focusing on the interaction between tumor cells 

and the normal brain, is becoming increasingly important. Recent studies focus 

specifically on resting-state functional connectivity between the tumor region and cortical 

areas or brain networks and have found an association with survival5,6. Different aspects 
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of the above-mentioned approaches to brain connectivity research have been combined 

in this work to provide a more detailed picture of the effects of brain tumors on structural 

and functional connectivity. The newly gained insights contribute significantly to the 

overall understanding of tumor- and treatment-induced changes in brain connectivity and 

have the potential to improve treatment planning and prognosis assessment. 

1.1 Principles of brain connectivity organization 

The brain can be considered as a complex branched network with a hierarchical 

structure, starting with individual neurons that merge into cortical columns and finally 

form distinct brain regions. The interactions between these neuronal elements can be 

described by their structural and functional connectivity at various scales. The physical 

connection of cortical regions via white matter fiber tracts (groups of axons) is generally 

referred to as structural connectivity, where the strength of connection can e.g., be 

quantified by the number of connecting fibers. On the basis of tracing studies, it is 

additionally possible to assess excitatory or inhibitory postsynaptic effects or the 

directional strengths of structural connectivity7. Functional connectivity, on the other 

hand, is characterized by the magnitude of correlation of temporal signal fluctuations 

between two cortical regions as measured by e.g., fMRI, electroencephalogram (EEG) 

or magnetoencephalography (MEG). 

The structural architecture of large-scale brain networks underlying brain functions has 

been characterized to a certain extent by graph theory, a branch of discrete mathematics 

and theoretical computer science which is often used to characterize these networks8 

(see Figure 1 in Sporns et al., 2016 Annu Rev Psychol9). According to this framework, 

structural brain connections are defined as edges and interconnected brain areas as 

nodes. The number of edges connected to a node is indicated by its node degree. The 

structural connectivity pattern follows a “small-world” behavior with short average path 

lengths and strong clustering of edges10. In addition, groups of nodes are assigned to 

network communities, so-called modules. The general concept of structural and 

functional organization of these subnetworks has been described in various 

publications7,9,11-13 and can be summarized as follows: Modules are highly connected 

internally (local integration) and only weakly interconnected via certain critical nodes, the 

hubs (global integration). In this way, functionally distinct areas are segregated from each 

other. Considering the hierarchical structure of the brain, the degree of segregation can 

be further increased by submodules, allowing brain functions to be specified in more 

detail. Overall, specialized brain functions are represented by local modular integration 

within an arbitrary scale, whereby functional processing is ensured by short-range edges. 
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In contrast, perception, cognition and action are associated with the global integration of 

the modules7. Thereby, the neural information flow is mediated via network hubs, which 

are characterized by a high node degree. These connector hubs are different from 

provincial hubs, which only support connectivity within a module. Intermodal exchange 

is further optimized by certain highly interconnected connector hubs. This phenomenon 

is called rich-club organization and is usually established via long-range structural 

connectivity. In this way, the functional global integration of the modules is regulated and 

cognitive processes are optimized11. Rich-club nodes were found predominantly in the 

cingulate and peri-cingulate regions, the medial aspect of the occipital areas, the 

precuneus as well as in important and specialized brain regions such as the orbitofrontal 

cortex, the caudate nucleus, and the hippocampus14. 

1.1.1 Relationship between structural and functional brain connectivity  

Large-scale brain networks can be either characterized as structural or functional, where 

connectivity is either represented by the anatomical neuronal connections or by the time 

series of neuronal activity. The structural and functional connectivity of these network 

types depends considerably on each other and form the basis for the segregation and 

integration of brain functions. Nevertheless, there is no simple relation between brain 

functions, their underlying functional connectivity patterns and the invariant structural 

brain structure. In this context, convergences and divergences between functional and 

structural connectivity can be assessed by means of so-called resting-state networks 

(RSNs)7,13.  

Distinct functional connectivity is not only measurable when the brain is engaged in a 

specific task, but also when it is supposedly at rest. Based on spatially organized 

coherent blood-oxygen-level-dependent (BOLD) signal fluctuations of different nodes 

during a fMRI measurement, circumscribed regions of the whole cerebral cortex can be 

assigned to different large-scale RSNs15. Although different nomenclatures and network 

definitions exist, the most commonly known networks are the default mode, salience, 

visual, control, somatomotor and dorsal attention networks. The topography of the RSNs 

is closely related to the functional specialization of nodes that resemble groups of regions 

co-activated in a variety of cognitive and behavioral tasks16,17. There is also a robust 

relationship between the structural and functional connectivity of individual components 

of the multiple RSNs18-20, whereby the functional connectivity of two nodes correlates 

with the presence and strength of their structural connectivity21. In addition, further 

analysis suggests a similar hierarchical modularity of RSNs compared to the anatomy of 

the brain at different scales22. Their individual modules consist of synchronously active 

voxels with a strong, temporally stable coupling, while the RSNs exhibit a less strong 
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coupling among each other, expressed by a more dynamic and context-sensitive 

functional connectivity7,23,24. The first observation can be attributed to the structural local 

integration and the second to the global integration of these modules7, including a rich-

club organization based on network hubs that form a coherent sub-network between 

RSNs25,26, whereby the participation of networks in the rich-club varies27.  

In addition to a strong convergence between structural and functional networks, there is 

also a divergence that manifests itself in the dynamic nature of functional connectivity. 

The relationships between structural and functional networks are less pronounced when 

looking at the short-term averages of the correlations among spontaneous or resting-

state fluctuations compared to the long-term averages28. Consequently, the spatial 

pattern of functional connectivity changes over time, giving it a dynamic character29. In 

addition, functional connectivity can change depending on individual tasks19 and 

functional networks can slowly remodel during learning28. Various functional connectivity 

patterns can also be observed depending on how directly functionally connected nodes 

are structurally connected. For example, the functionally directly connected left motor 

cortex30 is only indirectly structurally connected to the right cerebellum. In general, 

anatomically directly connected nodes have strong functional connectivity, while nodes 

that are indirectly connected via multiple polysynaptic connections show a wide range of 

functional connectivity patterns21,31. Taken together, different functional connectivity 

patterns can arise from the invariant structural architecture. Therefore, functional 

correlation between brain regions is mainly the result of functional relationships along 

multiple or all anatomical edges that exist between the two nodes28,32. In this case, 

functional connectivity depends not only on the structural presence but also synaptic 

efficiency of these edges, whereby, e.g., the frequent performance of a task can increase 

the correlation between co-activated nodes28,33,34. This divergence between structure 

and function throughout the brain enables the emergence of a variety of functional 

responses and thus flexible cognition31. 

1.1.2 Neurological disorders affecting structural and functional connectivity 

The functional organization of the brain that enables cognition is based on a hierarchical-

modular architecture in which functional connectivity is constrained by its structural 

anatomy. Brain dysfunctions due to neurological disorders are therefore also reflected in 

connectivity disturbances of structural and functional networks. In principal, disorders 

may be localized due to brain lesions in the affected region, or diffuse causing 

interruption of the connections between many areas35. Of note, the brain provides 

mechanisms to respond to brain injuries. This phenomenon is known as neuroplasticity 
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and occurs in various forms, ranging from functional changes in existing structures to the 

formation and proliferation of new structures35,36. 

Neurological diseases such as Alzheimer's, multiple sclerosis, traumatic brain injury, 

schizophrenia, depression or autism are clearly associated with disorders in brain 

connectivity11,35. For example, patients with multiple sclerosis exhibit structural changes 

in network topology in conjunction with an altered structure of “small-world” networks35,37. 

This impairs the efficiency of information transmission and leads to a significant reduction 

in the efficiency of the network35,38. In addition, changes in brain activation and functional 

connectivity have also been observed in multiple sclerosis35,39,40. Another example is 

Alzheimer's disease, in which the degree of cognitive impairment in later stages was 

found to be correlated with the disconnection of various brain regions35,41. The 

disconnection was caused by a decrease in the density of dendritic spines in the cortical 

pyramidal cells and structural changes in the inhibitory circuits35. Additionally, the 

deposition of b-amyloid peptide leads to progressive neurodegeneration, which was 

associated with a reduced connectivity of the default-mode network35,42.  

In particular, rich-clubs are of great importance in psychiatric and neurological disorders 

and are mostly affected by altered functional and structural connectivity11. Also, 

pathological lesions occur more frequently in rich-club regions than in peripheral node 

regions, indicating that brain disorders are more strongly associated with damage to 

central brain regions11. 

1.2 Primary tumors of the central nervous system 

The term cancer is used for a broad spectrum of diseases that can also affect the human 

brain. It is characterized by the development of a solid tumor consisting of a cluster of 

cells with uncontrolled cell proliferation that displaces, infiltrates and destroys the 

adjacent healthy tissue. In general, primary tumors are classified according to their 

growth characteristics into benign, malignant and semi-malignant tumors. In contrast to 

malignant tumors, benign tumors exhibit slow, non-invasive cell proliferation, are well 

delineated and do not penetrate the basal membrane. Nevertheless, displacement of the 

surrounding tissue and compression of e.g., nerves may cause symptoms. Malignant 

tumors destroy the surrounding tissue through their rapid invasive growth, whereby 

nearby blood vessels may be infiltrated. In this way, individual tumor cells can enter the 

bloodstream and spread throughout the body, forming secondary tumors (metastases) 

at distant sites. In order to ensure the supply of nutrients for unrestricted proliferation, 

malignant tumors are able to form their own blood vessels (angiogenesis). Semi-
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malignant tumors share most of the characteristics of malignant tumors but rarely 

develop distant metastases. 

A diverse group of tumors arise from the cells of the central nervous system (CNS). 

Primary CNS tumors are the eighth most common cancer in older adults and the second 

most common in adolescents and young adults43,44. In adults, gliomas are the most 

frequent primary malignant brain tumor, accounting for 78% of malignant brain tumors. 

They remain one of the most difficult cancers to treat, with a 5-year overall survival rate 

of 35% or less45. Apart from ionizing radiation46,47, no other environmental exposure or 

behavior has been identified as a clear risk factor48, including the use of cell phones45,49. 

In adults, primary brain tumors can develop as a result of genetic predisposition 

syndromes (in less than 5% of patients)45, and there is some evidence that an increased 

risk may be associated with hereditary factors50. The symptoms of patients with brain 

tumors can be diverse and include headaches (30%), seizures (35%), cognitive decline 

(36%) and neurological deficits such as aphasia (20%) and motor deficits (20%)44. Their 

occurrence and severity depend on the size, location and growth rate of the tumor51.  

In addition to clinical factors, the prognosis of brain tumors depends on molecular 

changes such as mutation in specific genes, histologic appearance and cell type of 

origin. Most of these features are now integrated into the World Health Organization 

(WHO) CNS tumor classification. The WHO tumor grade ranges from grade 1 to 4, 

reflecting the potential aggressiveness of the tumor type with increasing grade. Overall 

survival is inversely related to tumor grade. Other important tumor features relevant to 

prognosis and classification are molecular changes such as IDH (isocitrate 

dehydrogenase) mutational status and 1p/19q co-deletion in gliomas (see also next 

section). IDH is an enzyme that is part of the citrate cycle. It plays a key role in this 

aerobic pathway and is important for cellular energy metabolism. The IDH mutational 

status comprises two types, the IDH-wildtype with a normal enzyme structure and the 

IDH-mutant with a structure altered by mutation. The combined loss of alleles on the 

short arm of chromosome 1 (1p) and the long arm of chromosome 19 (19q) is known as 

a 1p/19q co-deletion, which is a form of loss of heterozygosity. 

Gliomas arise from glial cells of the brain or spine. The majority of gliomas fall into the 

category of diffuse gliomas (WHO grade 2-4) with IDH-mutant astrocytoma, IDH-mutant 

and 1p19q-codeleted oligodendroglioma and IDH-wildtype glioblastoma being the 

predominant types. Diffuse gliomas are usually characterized by progressive, infiltrative 

growth and are incurable. The average annual age-adjusted incidence rate in the United 

States is 5.95 per 100,000 people, with the majority being glioblastomas (3.23 per 

100,000 people)44,52. They are the most aggressive and deadliest form of glioma with a 
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median survival time of 14-17 months53-55 despite aggressive treatment. In contrast, the 

estimated age-adjusted incidence of IDH-mutant gliomas (astrocytoma or 

oligodendroglioma) is 0.80 per 100,000 people, with astrocytomas slightly 

dominating43,44. Gliomas with mutations in the IDH gene (IDH-mutant gliomas) grow less 

aggressively56, and the 1p/19q co-deletion is associated with a better response to 

radiotherapy and chemotherapy57. Both of these molecular features are therefore 

associated with a longer overall survival. Meanwhile, IDH-mutated gliomas with 

histopathological grade 3 are also considered lower grade gliomas in addition to grade 

1 and 2 tumors due to the long survival time of more than nine years of many patients44,58.  

1.2.1 Brain tumor diagnosis and classification 

The diagnosis of patients with brain tumors is usually based on a combination of different 

imaging techniques and biopsy, where the specimen is analyzed by histological 

examination including molecular testing. For this purpose, structural MRI with pre- and 

post-contrast T1- and T2-weighted sequences is the gold standard. Its diagnostic value 

can be further enhanced by advanced imaging techniques such as perfusion/diffusion 

MRI and PET44. Overall, these modalities enable a better physiological, cellular and 

microstructural representation44,59. As shown in the review by Galldiks et al. (2024 Neuro 

Oncol)60, which I co-authored, amino acid PET in particular offers considerable added 

value in the clinical management of patients with gliomas. Unlike contrast-enhanced 

MRI, the uptake of radiolabeled amino acids does not rely on a disruption of the blood-

brain barrier, thus enabling the identification of non-enhancing tumor regions60. It is 

therefore increasingly used to guide invasive diagnostic procedures and treatment 

planning, e.g., to guide biopsies or to define the target volume for radiotherapy and 

resection in patients with non-enhancing gliomas60. Especially the amino acid O-(2-18F-

Fluoroethyl)-L-Tyrosin (FET) developed at Forschungszentrum Jülich61 is nowadays an 

established PET tracer for brain tumor imaging62. In contrast to 2-[18F]fluoro-2-deoxy-d-

glucose (18F-FDG), which is widely used in oncology, FET shows a low uptake in the 

normal brain tissue, which leads to a considerably improved tumor-to-brain contrast60. 

The most common clinical application of amino acid PET in patients with glioma is the 

differentiation between relapse and treatment-related changes63. Brain metastases are 

beyond the scope of this work; a detailed discussion on the topic of diagnosis and 

assessment of post-treatment relapse in brain metastases using PET can be found in 

another collaboration of mine in the review by Galldiks et al. (2022 Expert Rev 

Neurother)64. Amino acid PET also proved to be useful for the differential diagnosis of 

newly diagnosed brain lesions especially to identify high-grade gliomas65,66.  
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The basis for CNS tumor diagnosis is the current WHO classification, which was 

fundamentally revised in 2021 compared to the previous 2016 edition. The definition of 

CNS tumor classes relies on various criteria such as age, mutations, tumor location, 

histology and DNA (deoxyribonucleic acid) methylation. In particular, molecular markers, 

like the IDH mutational status and 1p/19q co-deletion, gained in importance67. Specific 

point mutations are now crucial for the diagnosis of some CNS tumor types, but more 

often patterns of mutations or other alterations are necessary for diagnostic 

conclusions44. Furthermore, DNA methylation-based classification of CNS tumors 

enables a histology-independent tumor classification of CNS tumors and has been 

adopted for a variety of tumor types, especially for unexplained cases44. With regard to 

the present work, the most important aspects of tumor classification are mainly the 

differences in glioma type grouping between the 2016 and the current 2021 classification 

(see Figure 2A in van den Bent et al., 2023 Lancet44). In the initial classification, gliomas 

were divided into “diffuse astrocytic and oligodendroglial tumors”, “other astrocytic 

tumors” and “other gliomas”, which were then reclassified into four new main groups44. 

Therefore, individual tumor types have been removed and several new ones have been 

introduced, for which molecular characteristics are a prerequisite for diagnosis44. The 

new glioma groups include “circumscribed astrocytic gliomas” and a subdivision of 

diffuse gliomas into adult-type and pediatric-type (low-grade and high-grade), each with 

a distinct spectrum of molecular alterations68. The three predominant types of diffuse 

gliomas - IDH-mutant astrocytoma, IDH-mutant and 1p19q-codeleted oligodendroglioma 

and IDH-wildtype glioblastoma - now represent the adult-type diffuse gliomas. On the 

other hand, diffuse gliomas of the pediatric type are mostly newly introduced tumor types 

based on molecular characteristics, and the old groups of “other astrocytic tumors” and 

“other gliomas” were mostly reclassified as “circumscribed astrocytic gliomas”. Overall, 

the revised classification reflects the fact that molecular profiling is nowadays essential 

for determining the biological behavior of a CNS tumor in addition to morphological 

features from histopathology, immunohistochemistry and radiological imaging68. Thus, 

many brain tumors that morphologically exhibit no features of a higher tumor grade are 

now diagnosed as high-grade tumors on the basis of a molecular examination68. 

1.2.2 Brain tumor treatment 

The histopathological and molecular diagnostic classification of brain tumors is the 

foundation for the selection of an effective tumor therapy, whereby additional risk factors 

such as tumor size, residual tumor, age or tumor-related deficits are also taken into 

account. In general surgery, radiotherapy, chemotherapy, or a combination thereof are 

applied. The aim of brain tumor resection is to obtain a maximum safe resection of the 
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tumor to create an optimal starting point for further therapy. This can be achieved, for 

example, using mapping techniques and intraoperative fluorescence-guided surgery with 

5-aminolevulinic acid44,69. Moreover, tumor tissue is also obtained during surgery for 

histological assessment and classification of the degree of malignancy70. Radiotherapy 

is often combined with tumor resection, especially in cases where complete resection is 

not possible, such as in diffuse gliomas due to their infiltrative growth. Radiotherapy is 

based on the principle of radiation-induced mitotic death, initiated by breakage of DNA 

strands in the cell nucleus. This may result in cell death after the next cell cycle. In this 

way, cell proliferation can be slowed down or stopped, causing the tumor to shrink or 

disappear completely. Radiotherapy can be applied in two forms, teletherapy and 

brachytherapy. In teletherapy, cancer cells are irradiated from the outside the body by 

ionizing radiation, produced for instance by a linear electron accelerator that emits 

photons or electrons with different energies. In brachytherapy, radiation is administered 

from inside the body by implanting or inserting encapsulated radionuclides. It should be 

noted that radiotherapy bears the risk of acute cerebral edema mainly due to blood-brain-

barrier damage and late radiation necrosis caused by an inflammatory reaction of the 

surrounding tissue triggered by tumor cell death. Besides surgery and radiotherapy, 

chemotherapy is applied using mainly alkylating agents, such as temozolomide or 

lomustine, that further reduce the tumor burden by eliminating dividing tumor cells. 

The decision to combine radiotherapy and chemotherapy is not always trivial, depending 

among other factors on the O6-methylguanine-DNA-methyltransferase (MGMT) 

promoter methylation status and whether the adverse effects of radiotherapy 

predominate. The MGMT promoter methylation status in patients with brain tumors 

serves as a clinical biomarker that predicts the efficacy of temozolomide, which is greater 

in patients with a methylated MGMT promoter44. Particularly in the case of combined 

treatment (chemoradiation with temozolomide) with maximum safe resection, the 

standard-of-care treatment for glioblastomas, treatment-related changes such as 

pseudoprogression or radiation necrosis must be expected71. Pseudoprogression 

characterized by an increase of contrast enhancement on MRI, which resolves 

spontaneously without any change of treatment. Unawareness of this phenomenon may 

lead to considerable misinterpretation of further treatment planning. For example, my 

contribution to the publication of Flies et al. (2024 Neuro Oncol)71 showed a higher rate 

of treatment-related changes in MGMT-promoter methylated glioblastomas additionally 

treated with the antiangiogenic drug cilengitide than in glioblastomas treated with the 

standard-of-care. 
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Beyond the standard therapies, experimental therapies such as immunotherapy and 

various targeted therapy options are also available. Ongoing research is focused on a 

better understanding of factors that are important to overcome treatment resistance, 

such as the immunosuppressive tumor microenvironment, the molecular heterogeneity 

of tumors, and the role of microtube network connections between cells in the tumor 

microenvironment44. In addition, studies on immunotherapy of CNS tumors with 

checkpoint inhibitors and vaccination studies have been performed but have so far 

shown no improvement in treatment outcomes for patients with glioblastoma44. 

1.3 Tumor effects on brain connectivity 

Considering the hierarchical structure of the human brain, tumors can affect connectivity 

at different levels, leading to disruptions of structural and functional connectivity. In 

particular, the white matter tracts, which play a decisive role in neurological functions, 

can be spatially and functionally affected by brain tumors. Therefore, pre- and 

intraoperative mapping of the tumor and white matter tracts is frequently performed to 

avoid neurological deficits during tumor treatment. 

1.3.1 Structural effects  

Disturbances of white matter tract integrity may appear in four general patterns: 

displacement, edematous affection, tumorous infiltration and disruption of neural fibers72 

(see Figure 18 in Jellison et al., 2004 Am J Neuroradiol72). Displacement of otherwise 

intact fiber tracts occurs most frequently in all types of gliomas73. In contrast, the 

edematous pattern describes the widening of fiber tracts that run partially through or 

around the tumor without a change in their position and orientation. This is most common 

for metastasis73. White matter tracts can also pass directly through the tumor, either 

remaining identifiable or being completely disrupted, patterns associated with 

astrocytomas and glioblastomas73. 

Diffuse gliomas in particular spread continuously along the white matter tracts and recur 

even after complete resection74. This pathophysiological mechanism has been found to 

rely on various mechanisms of tumor cell migration and invasion74-77. The evaluation of 

structural connectomes, which reflect the white matter architecture, revealed that 

glioblastoma-related connectivity disturbances extend beyond the focal lesion into the 

normal-appearing brain up to the contralateral side74. Pathways connecting distant 

cortical brain regions are most likely to be disrupted and the amount of disruption 

correlates with overall survival74,78. In the case of diffuse gliomas of all grades, a 

recurrence may also develop far from the primary tumor in distant brain regions74. Thus, 

the far-reaching white matter tracts in particular offer the possibility of long-distance 
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migration of tumor cells. Furthermore, brain regions with high tract density are involved 

in long-range white matter tracts (e.g., arcuate and superior longitudinal fasciculus and 

callosum), and glioblastoma-related lesions in these areas were found to result in 

reduced survival, consistent with the finding that tumors spread along white matter 

tracts74. 

1.3.2 Functional effects  

Brain tumors also have an impact at the functional level and lead to connectivity 

alterations in individual resting-state networks (e.g., default mode network), 

accompanied by an impairment of the associated functional domain (e.g., language or 

attention)79,80. Multi-network approaches also showed that functional networks far away 

from the tumor site up to the contralateral hemisphere can be functionally altered81-84. 

There was also evidence of functional connectivity between tumor-infiltrated regions and 

resting-state networks, whereby the level of preserved functional connectivity was 

associated with better overall survival85. Specifically, in remote brain regions, functional 

connectivity correlated positively or negatively with overall survival depending on the 

remote brain region6,83. Furthermore, white matter tracts and functional brain networks 

impaired by tumor- and treatment-related brain lesions affect health-related quality of life 

in patients with glioma, as the paper I co-authored by Heinzel et al. (2023 J Neurooncol)86 

showed. Here, especially T2/fluid-attenuated-inversion-recovery (T2/FLAIR) signal 

alterations affecting structural and functional networks in the right hemisphere were 

associated with reduced health-related quality of life scores in most functional domains, 

with the exception of communication ability. 

Beyond that, brain tumors also show functional interactions with neurons at the synaptic 

level. For instance, glioma cells integrate themselves electrically into neuronal circuits 

via synaptic connections87-89. Through a bidirectional neuron-to-glioma interconnection, 

glioblastoma might enhance synaptic activity resulting in an increase (if excitatory 

pathways) or decrease (if inhibitory pathways) functional connectivity74. Moreover, tumor 

proliferation is promoted by membrane depolarization of excitatory electrochemical 

neuron-glioma synapses, and paracrine signaling, depending on neuronal activity, which 

may also contribute to glioma progression89-92. It was also shown that brain regions with 

many synapses have a higher metabolic demand and a higher turnover of glial cells, 

which affects the risk of brain cancer74. This observation was derived from the significant 

spatial relationship between connectivity hubs, gene expression in terms of metabolic 

activity, synaptic signaling and development of gliomas93-96. Glioblastomas preferentially 

occur in functional networks, with a higher frequency in associative networks or more 
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specifically in connector hubs93,94 that are generally important for the integration of 

cognitive functions74.  

1.4 Brain connectivity imaging and analysis  

The measurement of brain connectivity is primarily based on special MRI techniques 

that, in contrast to simple structural MRI, take into account molecular processes in order 

to resolve the cortical microstructures and functions. DWI in particular is well established 

for the non-invasive assessment of structural connectivity and fMRI for functional 

connectivity. Other frequently used functional measurement techniques are 

electrophysiological methods such as EEG, and MEG. In conjunction with adequate data 

analysis approaches, e.g., based on tractography, machine learning or correlation, it is 

possible to detect tumor and treatment effects on brain connectivity. 

1.4.1 Diffusion-weighted imaging and diffusion models 

DWI is an established technique in medicine and neuroscience that enables the mapping 

of neuronal fiber orientations on the basis of water molecule diffusion. According to 

Brownian motion, the change in the position of the water proton spins results in a loss of 

signal intensity due to their molecular movement measured by diffusion-sensitizing 

gradients97. The diffusion-weighted signal intensity Si with the diffusion-sensitizing 

gradients applied along direction i can be described for each voxel in the most 

straightforward manner by the following exponential equation (Equation 1)97: 

(Equation	1)																																															-! = -" ⋅ 0#$⋅&! 																																															(Equation	1) 
S0 represents the signal intensity measured without the diffusion-sensitizing gradients, 

Di denotes the diffusion coefficient in direction i, and b defines the b-value, which is a 

measure of the diffusion weighting97. The latter depends on the strength, duration and 

time interval of the diffusion-sensitizing gradients. Water molecules diffuse mainly in and 

along the structures of the white matter tracts. Their behavior differs significantly from 

unrestricted Brownian motion due to interactions with various tissue components in the 

body. As a result, the diffusion rate along the fibers is faster than perpendicular to them. 

This directed diffusion is called anisotropic diffusion. In contrast, isotropic diffusion, which 

is characterized by uniform diffusion in all directions, occurs in the cerebrospinal fluid 

and gray matter. In DWI, these various diffusion patterns provide information that makes 

it possible to characterize the structural organization of the brain on a microscopic level.  

There are several mathematical models for estimating white matter fiber orientation from 

DWI data. The most popular model is the diffusion tensor model, which serves as the 
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basis for diffusion tensor imaging (DTI), a technique widely used in clinical practice due 

to its ability to map fiber orientation in several major white matter structures98,99. The 

diffusion tensor corresponds to an ellipsoid whose diameter in each direction describes 

the anisotropic diffusion of water molecules along the white matter fibers in that direction 

(see Figure 1 in Jellison et al., 2004 Am J Neuroradiol72): It is based on a symmetric 3 × 3 

matrix derived from diffusion measurements in at least six non-collinear directions72. The 

eigenvectors (e1, e2, e3,) from the diagonalization transformation of the diffusion matrix 

(D) denote the major, middle and minor principal axes of the tensor and the related 

eigenvalues (l1, l2, l3) indicate the diffusivities along the three axes72. 

Despite its broad clinical application, the diffusion tensor is fundamentally limited a priori 

by the fact that it can only resolve a single dominant fiber orientation within an image 

voxel100-102 (see Figure 1B in Farquharson et al., 2013 J Neurosurg103). At current 

scanner resolutions of 2-3 mm, at least 90% of white matter voxels contain multiple fiber 

orientations104, leading to erroneously missing or anatomically implausible fiber tracts 

during the fiber mapping103,104. A much preferable approach is to estimate fiber 

orientation directly from high angular resolution diffusion-weighted imaging (HARDI) 

data105,106. In contrast to the six gradient directions required by DTI, HARDI is based on 

at least 50 directions, which allows a much more accurate representation of the fibers in 

a voxel. To determine the relative proportion of fibers passing through the voxel in 

different directions, an advanced diffusion model based on rotational and spherical 

harmonics, called spherical deconvolution, can be used106,107. Spherical harmonic are 

special functions defined on the surface of a sphere, while spherical deconvolution is a 

mathematical operation that recovers the original signal from a measurement that is the 

result of a known modification (convolution) of that signal.  

Accordingly, the fiber orientations of an image voxel, expressed by the fiber orientation 

distribution function (FOD), can be calculated under the following assumption (Equation 

2): The measured diffusion-weighted signal (S) is given by the spherical convolution of 

the signal expected from a voxel containing a single coherent fiber bundle (response 

function, R) with the FOD (f) of a given voxel105,106. 

Equation	2																																																								- = 2	⨂	4																																																								Equation	2 

Finally, the FOD is derived by an inverse convolution operation known as spherical 

deconvolution (Equation 3), in which the response function is used as a kernel to extract 

the white matter FOD from the measured diffusion-weighted signal within each 

voxel105,106. For this purpose, the response function can be estimated directly from the 

diffusion-weighted image data. 
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Equation	2																																																						4 = 2	⨂#'	-																																																						Equation	3 

In advanced diffusion models, a modified Tikhonov regularization method is usually 

applied to minimize the susceptibility of the spherical deconvolution to noise108. This is 

called constrained spherical deconvolution (CSD) since the false negative lobes caused 

by noise at the FODs are not completely removed, but constrained108. In this way, 

angular resolution is maintained, allowing fiber orientations separated by a smaller angle 

to be resolved. In contrast to other advanced diffusion models, such as Q-ball imaging100, 

this also enables the use of lower b-values around 1000 s/mm2 106. CSD also does not 

require a wide range of b-values like diffusion spectrum imaging109 or the composite 

hindered and restricted model of diffusion (CHARMED)110. Both of these requirements 

are difficult to achieve on clinical systems and would result in impractically long scan 

times106. In addition, these models are based on the q-space formalism, which, among 

other shortcomings, does not allow the resolution of fibers with a crossing angle greater 

than 90 degrees111. There are also several tensor matching algorithms112-114 but they can 

only resolve up to two different fiber orientations105. 

1.4.2 Tractography  

Tractography enables non-invasive mapping of white matter fiber tracts derived from 

DWI data that have been processed by a diffusion model. In the case of an advanced 

CSD model, the resolution of complex fiber architectures during tractography is based 

on the FODs, which represent the estimated fiber orientations in each image voxel. This 

is much more accurate than simple DTI-based tractography, which results in a significant 

underestimation of actual white matter fibers due to its inability to resolve multiple fiber 

orientations (see Figure 4 in Farquharson et al., 2013 J Neurosurg103). In general, a 

tractography algorithm begins by identifying suitable starting points for the fibers to be 

computed, called seeds. Fibers are then propagated along the estimated fiber 

orientations of each voxel and terminated according to certain criteria, such as the FOD 

amplitudes. These depend on the tissue properties and decrease in comparison to the 

white matter within the cerebrospinal fluid or gray matter.  

Fiber mapping is either deterministic or probabilistic, which determines how a connection 

between two brain regions is established. Most tractography algorithms use a 

deterministic approach, in which only a single fiber is propagated per seed. In contrast, 

probabilistic algorithms are generally an extension of this approach, which is in principle 

no more accurate, since they are based on the same underlying concept and constraints. 

However, the advantage lies in the intended use. Connections between any two brain 

regions are much less likely to be identified by deterministic approaches, so they are 
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often applied to investigate the status of known prominent tracts according to region of 

interest (ROI) based mapping protocols115. In contrast, probabilistic tractography can 

identify tracts at any distance from the seeds115. Instead of estimating a single path for 

each seed, the probabilistically estimated fibers are based on probability distributions 

where the direction of each step within the propagation is randomly selected from a set 

of probable orientations115. The estimation of the distribution of probable connections 

results from the generation of many fibers from the same starting point115. The 

connection between a brain region and the seed point is finally determined on the basis 

of the density of the resulting fibers, whereby a higher density is associated with a higher 

connection probability115.  

To increase the accuracy of a tractography, an advanced approach is to take into 

account the biological characteristics of the brain tissue, which enables even more 

precise termination and propagation of the neural fibers. This can be achieved with a 

specialized tractography algorithm called anatomically-constrained tractography 

(ACT)116. It allows the identification of predominantly biologically plausible fibers based 

on anatomical information about brain tissue types (see Section 3.2.3). 

1.4.3 Structural connectomes and fiber density images  

For subsequent evaluation, the tractography images can be converted into brain 

connectomes. This requires them to be combined with a parcellation, which divides the 

brain into individual parcels (regions). It is provided, e.g., by a brain atlas or can be self-

generated. In this way, the calculated fibers (edges) between the individual brain regions 

(nodes) of the parcellation can be analyzed. For this purpose, graph theory offers a large 

repertoire of indicators that describe the structural connectivity of such networks, 

including degree (number of edges connected to a node), shortest path length (measure 

for integration), clustering coefficient (measures for segregation), etc.117. The most 

common approach in connectome analysis is to quantify the connection strength 

between all brain regions and, for example, to correlate them with the location of lesions 

such from tumors or strokes or to compare structural connectivity between two groups, 

e.g., patients with healthy controls. The quantification usually takes the form of a 

connectivity matrix, which is mirrored on a diagonal of zeros and plotted as a square 

divided into four quadrants (Figure 1). The upper left quadrant corresponds to the 

strength of the connections within the left hemisphere, and the lower right one to those 

of the right hemisphere. The other quadrants show the strength of inter-hemispheric 

connections. The connection strength can be specified both relatively or as an absolute 

number of edges between two nodes. 
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Figure 1: Schematic 10x10 connectivity matrix. 
Nodes are labelled from A to J. Each field contains the edge weight of the respective node pair, 
e.g., expressed by the number of fibers (structural connectivity) or the correlation quotient 
(functional connectivity). 

There are also binary connectivity matrices that only indicate whether a connection 

exists. Another approach for analyzing tractographies is to convert them into tract density 

images118,119 (Figure 2). This allows the integrity of local structural connectivity to be 

measured. The pseudo-colorized image contrast in these images is based on the number 

of fibers per voxel. 

 
Figure 2: Generation of white matter fiber density images.  
For this purpose, a tractography is superimposed on a voxel grid with a freely selectable 
resolution. Subsequently, the fibers per voxel are counted and color-coded accordingly, resulting 
in a fiber density image where the image contrast is based on the number of fibers. 

1.4.4 Predictive models from structural connectomes  

In addition, an important goal of modern neuroscience is to establish relationships 

between individual differences in behavior and brain structure120. Accordingly, 

correlations between measurements of individual structural differences and cognitive 

functions can be established on the basis of tractography data and cognitive 
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performance tests, for example. Often, the high dimensionality of the data requires the 

application of machine learning methods, including cross-validation of correlation or 

similar regression models, which tend to overfit the data and render generalization 

difficult120. Cross-validation, in contrast to simple correlation, is a conservative approach 

in which the strength of a relationship is validated in an independent sample which has 

not been used for training the model120. A robust machine learning approach with built-

in cross-validation to relate individual behavior to brain connectivity is the “connectome-

based predictive modeling” (CPM) approach published by Shen and colleagues120. 

According to the published protocol, the method can be summarized as follows (see 

Figure 1 in Shen et al., 2017 Nat Protoc120): The behavioral measurements of each 

subject and their connectivity matrices, which can be derived from structural 

connectomes, serve as input. These input data must be split into a training and test set. 

For feature selection, each edge in the connectivity matrices is related to the behavioral 

measures of all training subjects to determine the significant edges that are relevant to 

the behavior. These features are summed up to a single connectivity value in each 

subject. Afterwards, a prediction model is created that assumes a linear relationship 

between the single subject value and the behavioral score of the training set. Following 

the cross-validation approach, the connectivity values of the individual subjects from the 

test set are inserted into the model to predict their behavioral scores.  

1.4.5 Functional magnetic resonance imaging  

fMRI enables the measurement of brain activity in vivo and represents another essential 

non-invasive imaging method alongside DWI that can be used to investigate brain 

connectivity. It provides further insight into the basic mechanisms of brain function and 

can expand our understanding of how the brain generates behavior, as well as offering 

the opportunity to study pathological changes in brain activation121. In patients with 

glioma, fMRI is often used for preoperative planning to determine the individual functional 

anatomy of the motor and language network so that these functionally eloquent areas 

can be preserved121.  

fMRI is based on the BOLD signal, describing the dependence of the MRI signal on the 

blood oxygen level. Accordingly, neuronal activity and the associated synaptic potentials 

at the microscopic level trigger a local increase in blood flow to meet the neurons' oxygen 

demand for the transmission of action potentials and generation synaptic potentials. This 

leads to an increase in the blood oxygen level, as more oxygen is supplied than is 

consumed. In contrast to the paramagnetic deoxygenated state of haemoglobin, its 

oxygenated state is diamagnetic, which leads to a deviating behaviour in a magnetic 

field. In this way, neuronal activity can be measured indirectly via the altered oxygen 
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level of the blood, which is expressed by the BOLD signal in the MRI122. In its 

measurement, two different methods are applied, task-related and resting-state fMRI (rs-

fMRI). The task-based fMRI generates a statistical map of the localization of neuronal 

activation by comparing the BOLD activity during the task with the activity at rest. This 

allows, for example, to assess the functional integrity of the neural networks involved in 

the information processing of the task being performed121. Similar BOLD activity of brain 

regions may also be used as an indicator for functional connectivity, which is often 

investigated by measuring the spontaneous BOLD fluctuations when the subject is at 

rest and not performing any task122. These fluctuations were found to be spatially 

organized in RSNs15, where their location was found to be closely associated with the 

functional specialization of cognitive and behavioral tasks16,17. Resting-state fMRI 

enables the simultaneous assessment of multiple functional networks, whereas task-

based fMRI uses a measurement with a specific task in order to capture a specific 

functional system121.  

The easiest way to determine similarities between two BOLD signals is to use Pearson 

correlation to check whether their time series correlate with each other. Beside this, many 

other more advanced analysis methods exist that fall into two broad categories: voxel 

based and node-based functional connectivity methods122. The latter is again based on 

graph theory and is comparable to the generation of structural connectivity matrices. This 

includes the definition of nodes via atlas parcellations or directly from the functional data, 

the definition of edges based on correlation similarities between two nodes, and the 

generation of a functional connectivity matrix with edge weights (correlation strengths) 

between each node combination122 (Figure 1). Various other node-based analyses can 

be applied to the matrix, including those already known from structural connectivity 

analysis, such as graph-theoretical analyses or the CPM approach to relate functional 

connectivity to behavioral data. The voxel-based methods, on the other hand, generate 

a connectivity map of the brain with functional connectivity values for each voxel. Most 

common here is the seed-based correlation analysis in which the functional connectivity 

between a brain region (seed) and all voxels in the brain is considered122. This analysis 

is based on three steps (Figure 3): First, a seed region is defined, e.g., a prominent 

cortical region such as an RSN or a lesion in the form of a tumor or stroke. Secondly, the 

mean BOLD time series is extracted from the seed region and finally correlated voxel by 

voxel with each time series of the brain to obtain a connectivity map. This map describes 

the strength of the functional connectivity of each brain voxel in relation to the seed 

region. Or in other words, in this way connectivity between each voxel in the brain and 

the seed region can be characterized. 
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Figure 3: Workflow of a seed-based correlation analysis.  
First, a seed region (ROI, region of interest) is defined, e.g., a prominent cortical region such as 
a node or an entire resting-state network (1.). Then, the mean ROI time series is extracted from 
the seed region (2.) and correlated voxel-wise with each resting-state functional magnetic 
resonance imaging (rs-fMRI) time series (3.). This results in a connectivity map that describes the 
strength of functional connectivity of each brain voxel in relation to the seed region. 

1.5 Objective  

The aim of this dissertation is to further explore tumor- and treatment-induced changes 

in structural and functional connectivity and the resulting effects on cognition and survival 

in patients with recurrent gliomas. We hypothesize that the various tumor- and treatment-

induced structural brain lesions, as indicated by pathological MRI and FET PET findings, 

have a differential impact on white matter integrity. Furthermore, we expect that the 

resulting altered structural connectivity between cortical regions impairs cognitive 

function. In addition, we assume that preserved or absent functional connectivity 

between the tumor infiltrated parts of the brain and the main affected resting-state 

networks can be used as an imaging biomarker for overall survival.  

In the future, these and other insights that further decipher the mechanisms of cognitive 

changes and their underlying altered connectivity profiles may allow a more accurate 

assessment of treatment efficacy through more detailed evaluation of the impact of 

therapeutic procedures on cognition and prognosis. This could be of particular relevance 

when planning local treatments, such as surgery and radiotherapy, where healthy brain 

tissue frequently needs to be damaged to access the treatment site. It would be a 

significant advance to understand exactly which areas need to be spared to avoid 

functional consequences. Preoperative planning for certain medical procedures already 

2.

1. Defining seed region (ROI) 

2. Extracting mean ROI time series

3. Generation of connectivity map 

3.1.
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includes DTI-based identification of vulnerable structural connections that are 

susceptible to neurological or cognitive impairment103,123,124. However, DTI proved to be 

inherently unable to adequately map complex fiber courses104, resulting in anatomically 

invalid or erroneously missing fiber tracts103,104. This may lead to misjudgments that may 

affect survival125 and result in long-term neurological impairment126. To avoid this, we 

here used state-of-the-art tractography methods based on an advanced diffusion model 

with CSD105,106 that is easy to implement in clinical practice106. 

In contrast to previous clinical research in neuro-oncology that focused on identifying 

selected structures at risk, such as the motor and language tracts (neurosurgery) or the 

hippocampus (radiotherapy)103, a growing body of evidence suggests that the long-term 

outcome of higher-order cognitive function in patients with glioma is related to the 

maintained integrity of a variety of distributed networks, instead of single nodes or 

edges124,127,128. Therefore, we investigated the relationship between cognitive 

performance and structural connectivity in gliomas on a network basis using CPM, a 

robust and easy-to-implement machine learning approach to generate generalizable 

results that allow easy translation into clinical application120.  

Furthermore, the preserved functional connectivity between tumor-infiltrated brain 

regions and resting-state networks of primary gliomas has the potential to be used as a 

novel prognostic imaging biomarker. Initial findings in newly diagnosed glioblastomas 

already support this hypothesis5, and we aimed to further substantiate these findings in 

patients who had been treated for recurrent gliomas of various types. This is of particular 

interest because common therapeutic interventions such as resection, radiotherapy and 

alkylating chemotherapy, usually undergone by patients at recurrence, involve 

interactions with glioma cells, neurons and immunogenic/inflammatory cells, which may 

further complicate the establishment of a prognosis129-131.  
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Background: In glioma patients, multimodality therapy and recurrent tumor
can lead to structural brain tissue damage characterized by pathologic findings
in MR and PET imaging. However, little is known about the impact of different
types of damage on the fiber architecture of the affected white matter.

Patients and methods: This study included 121 pretreated patients (median age,
52 years; ECOG performance score, 0 in 48%, 1-2 in 51%) with histomolecularly
characterizedglioma (WHOgrade IV glioblastoma, n=81;WHOgrade III anaplastic
astrocytoma, n=28;WHOgrade III anaplastic oligodendroglioma, n=12), who had
a resection, radiotherapy, alkylating chemotherapy, or combinations thereof. After
a median follow-up time of 14 months (range, 1-214 months), anatomic MR and
O-(2-[18F]fluoroethyl)-L-tyrosine (FET) PET images were acquired on a 3T hybrid
PET/MR scanner. Post-therapeutic findings comprised resection cavities, regions
with contrast enhancement or increased FET uptake and T2/FLAIR
hyperintensities. Local fiber density was determined from high angular-
resolution diffusion-weighted imaging and advanced tractography methods. A
cohort of 121 healthy subjects selected from the 1000BRAINS study matched for
age, gender and education served as a control group.
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Results: Lesion types differed in both affected tissue volumes and relative fiber
densities compared to control values (resection cavities: median volume 20.9
mL, fiber density 16% of controls; contrast-enhanced lesions: 7.9 mL, 43%; FET
uptake areas: 30.3 mL, 49%; T2/FLAIR hyperintensities: 53.4 mL, 57%, p<0.001).
In T2/FLAIR-hyperintense lesions caused by peritumoral edema due to
recurrent glioma (n=27), relative fiber density was as low as in lesions
associated with radiation-induced gliosis (n=13, 48% vs. 53%, p=0.17). In
regions with pathologically increased FET uptake, local fiber density was
inversely related (p=0.005) to the extent of uptake. Total fiber loss associated
with contrast-enhanced lesions (p=0.006) and T2/FLAIR hyperintense lesions
(p=0.013) had a significant impact on overall ECOG score.

Conclusions: These results suggest that apart from resection cavities,
reduction in local fiber density is greatest in contrast-enhancing recurrent
tumors, but total fiber loss induced by edema or gliosis has an equal
detrimental effect on the patients’ performance status due to the larger
volume affected.

KEYWORDS

glioma, multimodal therapy, PET/MR hybrid imaging, high-angular resolution
diffusion-weighted imaging, white matter damage, tractography, fiber density
imaging, constrained spherical deconvolution

Introduction

There is broad evidence that brain functions depend
critically on the integrity of structural connections between
cortical regions (1–6). These connections are built by axon
bundles in the brain’s white matter and can be identified as
single fibers or tracts composed of fiber groups using modern
diffusion-weighted magnetic resonance imaging (DWI)
techniques (7–9). Following multimodal treatment in glioma
patients, fiber connections may become disrupted by structural
tissue damage resulting from tumor resection, radiotherapy,
alkylating chemotherapy, or combinations thereof (10–13), or
by recurrent tumor growth (14). Apart from the fiber tracts
originating in the primary, eloquent cortical regions, tissue
damage may affect larger and wider distributed white matter
areas (15–17) involving structural connections of multiple
functional networks (18). Therefore, glioma patients often
develop deficits in cognition, general performance (19), and
quality of life that increase with the duration of survival and
intensity of therapy (15, 20).

While the gross structural tissue changes induced by
neurosurgical tumor resection, radiation, local tumor
recurrence and edema can be readily made visible by standard
magnetic resonance imaging (MRI) and amino acid positron
emission tomography (PET) such as O-(2-[18F]fluoroethyl)-L-
tyrosine (FET) PET, the resulting damage to white matter

microstructural integrity remains to be elucidated (21, 22). In
principle, fiber tractography methods, based on DWI aiming to
identify individual interconnecting fibers at the submillimeter
level, are best suited to answer this question. Diffusion tensor
imaging (DTI), used to model the MR signal behavior in DWI, is
based on a simple diffusion tensor model and is widely
established in clinical practice, aiding to estimate white matter
fiber orientation (23). However, the model is a priori unable to
resolve multiple fiber orientations, which are present in
approximately 90% of the voxels, causing missing or false
positive fibers (23, 24). Advanced methods that can overcome
the former limitations use DWI data acquired within the so-
called high-angular resolution diffusion-weighted MR imaging
(HARDI) framework. Amongst these methods, constrained
spherical deconvolution (CSD) (25) has been shown to
improve the assessment of complex, intra-voxel fiber
configuration significantly. Thus, fiber-tracking procedures
based on advanced DWI methods allow a more accurate
estimation of complex fiber architectures (7) and are
increasingly used for planning the extent of resection in brain
tumors adjacent to eloquent areas (23, 26–32).

We hypothesize here that, apart from resection, structural
brain damage due to radiation or tumor recurrence, as indicated
by pathologic MRI and FET PET findings, has a differential
impact on local fiber density and affects the patient’s overall
performance status to varying degrees.
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Patients and methods

Patient characteristics

The patient group consisted of 121 patients (73 males,
48 females; mean age, 51.6 ± 11.6 years) with histomolecularly
characterized glioma (World Health Organization (WHO) grade
IV glioblastoma, n=81; WHO grade III anaplastic astrocytoma,
n=28; WHO grade III anaplastic oligodendroglioma, n=12)
according to the WHO classification of 2016 (33), who
underwent resection, radiotherapy, alkylating chemotherapy,
or combinations thereof (Table 1). Most of the patients (77,

64%) received their primary treatment between 2016 and 2019 in
one of the 4 university hospitals of the comprehensive cancer
center ‘Center for Integrative Oncology Aachen-Bonn-Cologne-
Duesseldorf’, and another 21 (17%) were treated at another
university hospital (Frankfurt). Complete resection as
determined from early postoperative contrast-enhanced MR
was achieved in 88 patients (73%), while the others had partial
resection or stereotactic biopsy only. At time of imaging,
adjuvant radiotherapy (60 Gy in most cases) had been applied
in 112 (93%) and simultaneous and/or adjuvant chemotherapy
comprising temozolomide, temozolomide and lomustine
(CCNU) or procarbacine/CCNU/vincristine (PCV) in 108

TABLE 1 Patient characteristics.

n %

Gender (male/ female) 73/ 48 60/ 40

ECOG score (0/ 1/ 2/ 3) 58/ 56/ 6/ 1 48/ 46/ 5/ 1

Tumor type

GBM: IDH-wt/ IDH-mut/ NOS 67/ 10/ 4 56/ 8/ 3

AA: IDH-wt/ IDH-mut/ NOS 5/ 16/ 7 4/ 13/ 6

AOD: IDH-mut-1p-19q-codel 12 10

Glioma Grade 3/ Grade 4 40/ 81 33/ 67

IDH-wt or NOS/ IDH-mut 88/ 37 69/ 31

Tumor location

Left frontal/ parietal/ temporal/ occipital 30/ 8/ 22/ 5 25/ 7/ 18/ 4

Right frontal/ parietal/ temporal/ occipital 28/ 8/ 16/ 4 23/ 7/ 13/ 3

Primary treatment#

Biopsy/ partial/ complete resection 19/ 14/ 88 16/ 11/ 73

Radiotherapy yes/ no 112/ 9 93/ 7

Temozolomide 76 63

Temozolomide + CCNU 27 22

PC/ PCV 5 4

Number of treatment interventions#

Surgery* (1/ 2/ 3/ 4) 101/ 17/ 2/ 1 83/ 14/ 2/ 1

Radiotherapy series (0/ 1/ 2) 7/ 100/ 14 6/ 83/ 12

Chemotherapy courses (0/ 1/ 2/ 3) 10/ 91/ 16/ 4 8/ 76/ 13/ 3

Neurological symptoms

None 40 33

Paresis 29 24

Aphasia 17 14

Visual field/ diplopia 12 10

Other symptoms 23 19

mean ± SD median (range)

Age (years) 51.6 ± 11.6 51.9 (28.1 - 73.8)

Radiation dose (Gy) 59.3 ± 2.6 60.0 (40.1 - 62.0)

of first radiation series (n=114)

Interval (months) 30.4 ± 43.0 14.4 (0.6 - 213.7)

between therapy and imaging

ECOG, Eastern Cooperative Oncology Group; GBM, glioblastoma multiforme; AA, anaplasticastrocytoma; AOD, anaplastic oligodendroglioma; IDH-wt/-mut, mutation status in the
isocitrate dehydrogenase gene (wildtype/mutant); 1p-19q-codel, 1p/19q-codeletion; NOS, not otherwise specified; CCNU, lomustine; PCV, procarbacine/CCNU/vincristine; #received prior
to imaging; *including biopsy and resection.
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(89%). Where ever possible, the final diagnosis was based on the
presence of a IDH (isocitrate-dehydrogenase) mutation and the
1p-19q loss-of-heterozygosity status. Of note, therapy was
initiated between 2000 and 2015 in some patients, so
molecular characteristics were not available. Between 2018 and
2020, structural MRI and metabolic PET findings after treatment
were evaluated in all patients using anatomical MRI and FET
PET acquired on a 3T hybrid PET/MR scanner (Siemens Trim-
TRIO/BrainPET, Siemens Medical Systems, Erlangen). The
median interval between treatment initiation and imaging was
14 months (range, 1-214 months). Of note, 14 patients were
examined more than 60 months (5 years) after therapy
initiation. Regarding general performance status, 58 patients
(48%) had an ECOG score of 0 (fully active, able to carry on all
pre-disease performance without restriction), 56 (46%) were
grade 1 (restricted in physically strenuous activity, but
ambulatory and able to carry out work of a light or sedentary
nature), and 6 (5%) were grade 2 (ambulatory, capable of all self-
care, up and about more than 50% of waking hours, but unable
to work) (19). All patients were free from major depression and
seizures. A total of 81 patients (67%) had mild neurological
(48%) or other symptoms (fatigue, vertigo, 19%) without
requiring assistance for personal needs.

A control group of 121 healthy subjects was obtained from
the 1000BRAINS cohort study (34) that investigates
environmental and genetic influences on inter-individual
variability in brain structure, function, and connectivity in the
aging brain. Controls were matched for gender (males, n=75;
females, n=46), age (mean 51.7 ± 11.5 years), and educational
status using propensity score matching (35). Both cohorts have
been analyzed in an earlier study presented by our group (36).

Hybrid PET/MR imaging

In all patients, FET PET, as well as anatomical and diffusion-
weighted MR images, were obtained from the 3T hybrid PET/
MR scanner equipped with a birdcage-like quadrature
transmitter head coil mounted on the couch, an 8-channel
receiver coil and a PET insert consisting of 72 rings (axial
field-of-view, 19.2 cm; center spatial resolution, 3 mm
FWHM). The PET image data were corrected for random and
scatter coincidences as well as for dead time, attenuation (based
on a T1-weighted anatomical MRI scan), and motion before
OPOSEM (Ordered Poisson Ordinary Subset Expectation
Maximization) reconstruction (2 subsets, 32 iterations), with
software provided by the manufacturer (37).

The MRI protocol comprised a 3D high-resolution T1-
weighted magnetization prepared rapid acquisition gradient echo
(MPRAGE) native scan (176 slices; TR=2250 ms; TE=3.03 ms;
FoV=256×256 mm2; flip angle=9°; voxel size=1×1×1 mm3), a
contrast-enhanced MPRAGE scan recorded after injection of
gadolinium-based contrast agent, a T2-weighted sampling

perfection with application optimized contrasts (SPACE) scan
(176 slices; TR=3.2 ms; TE=417 ms; FoV=256×256 mm2; voxel
size=1×1×1 mm3), and a T2-weighted fluid-attenuated inversion
recovery (T2/FLAIR) scan (25 slices; TR=9000 ms; TE=3.86 ms;
FoV=220×220 mm2; flip angle=150°; voxel size=0.9×0.9×4 mm3).

The HARDI measurements were performed with a double-
echo diffusion-weighted echo-planar imaging (EPI) sequence. The
protocol parameters were: 55 slices, TR=8 s; TE=112 ms; b-values
(gradient directions)=0 (13, interleaved) and 2700 s/mm2 (120);
voxel size=2.4×2.4×2.4 mm3). An additional non-diffusion-
weighted volume was acquired with the same settings but a
reverse phase-encoding direction for the purpose of EPI
distortion correction. The healthy subjects were measured on a
stand-alone MRI scanner (3T Siemens Tim-TRIO), identical to
the MR component of the hybrid PET/MR system. The body coil
was used for transmission and a 32-channel receive-only head coil
for signal reception. Before the in vivo measurements, a phantom
study was performed as a control that confirmed an equal signal
level, quality and signal-to-noise ratio values between
both scanners.

Lesion segmentation

The local fiber density was evaluated in four different types of
imaging findings: i) hypointense resection cavities, ii) contrast-
enhancing lesions, iii) T2/FLAIR hyperintense regions, and iv)
lesions with pathologically increased FET uptake defined by a
tumor-to-brain ratio (TBR) >1.6. A fully automated software
based on deep-learning algorithms (HD_GLIO-AUTO) was
used to segment T2/FLAIR hyperintense regions and contrast-
enhancing lesions (38).

Resection cavities were manually contoured using the
medical 3D segmentation software ITK-SNAP (http://www.
itksnap.org, vs. 3.8.0, Universities of Pennsylvania and Utah,
USA). The resection cavities were mostly filled with cerebro-
spinal fluid but sometimes also comprised complex,
intermingled structures of undeterminable origin. The mask of
areas with increased FET uptake originated from a semi-
automatic segmentation that identified all voxels with a TBR
above 1.6, which was histologically validated and is highly
predictive for glioma tissue (39). Finally, all masks were
visually examined and manually corrected by i) removing
spurious small-segmented regions that were not connected to
the primary lesion, and ii) padding of necrotic areas surrounded
by contrast-enhancing or FET-enhancing tissue.

T2/FLAIR lesions can be caused by both peritumoral edema
and radiation-induced gliosis which may be present
simultaneously and difficult to distinguish. Therefore, the
prevailing characteristics were used to assign a single
classification to a selection of patients. Such, T2/FLAIR lesions
were classified as perifocal edema in n=27 patients with
recurrent tumors >10 mL in both the contrast-enhancing and
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FET images. In opposite, T2/FLAIR hyperintensities were
classified as radiation-induced gliosis in n=13 patients in the
almost complete absence of contrast enhancement and FET
uptake (<0.1 mL) and a time interval >6 months from
local irradiation.

Tractography and local fiber density

Advanced DWI and tractography methods have rarely been
used to characterize or quantify brain tissue damage caused by
infiltrative tumor growth or treatment effects other than surgery
(40). This reluctance might be related to the observation that
most fiber tracking methods in brain regions affected by
recurrent tumor or other structural changes yield inconsistent
or biased results, usually leading to a severe underestimation of
fiber density (28, 32, 41, 42). Therefore, we applied a recently
developed modification of a widely used fiber-tracking method
that allows for reasonable identification of the fibers passing
through and near tumorous tissue and the surrounding brain
structures (43). In short, the applied constrained spherical
deconvolution (CSD) method (25) assumes that the diffusion-
weighted MRI signal results from the spherical convolution of a
response function with the underlying fiber orientation
distribution function (FOD). The response functions are
tissue-type specific and describe the expected MR signal of a
pure white matter (single oriented white matter fiber bundle),
gray matter, or cerebrospinal fluid image voxel. The estimated
white matter FODs in the original, single-shell CSD model (25)
are usually distorted by signal contributions from different tissue
types within the voxels. This problem has been addressed by the
advanced multi-shell multi-tissue CSD (MSMT-CSD) method,
which also considers the signal contributions of gray matter and
cerebrospinal fluid and exploits their different response
properties at different b-values (44). However, it has also been
shown that MSMT-CSD underestimates or excludes white
matter FODs in tumor tissue, since such areas are often
misclassified as gray matter-like tissue (43). In contrast, the
novel single-shell 3-tissue CSD (SS3T-CSD) method considers
different tissue types from single-shell (single b-value plus non-
diffusion weighted images) HARDI data and estimates white
matter FODs as bias-free as possible, even within different
compartments of a tumor (43, 45, 46). The method is
implemented in the toolkit MRtrix3Tissue (https://3tissue.
github.io, accessed on 1.3.2021), a fork of the widely used fiber
tracking toolkit MRtrix3 [https://www.mrtrix.org, accessed on
1.3.2020 (47)].

The MRtrix3Tissue toolkit steps were embedded in the
following processing pipeline. The image corrections were
passed from MRtrix to the FSL toolbox [FSL version 5.0,
https://fsl.fmrib.ox.ac.uk/fsl (48)] and the ANTs software suite
(https://github.com/ANTsX/ANTs, accessed on 3.1.2020). First,
the HARDI data were subjected to EPI distortion correction

using the script “topup”. Second, eddy-current and motion
distortion correction were performed using the FSL tool
“eddy”, both scripts available in FSL. Afterwards, a bias field
correction based on the N4ITK algorithm was executed by the
ANTs software suite. The white matter, gray matter, and
cerebrospinal fluid response functions were estimated from the
preprocessed HARDI data using an unsupervised method (46).
Afterwards, SS3T-CSD was performed to obtain white matter-,
gray matter- and cerebrospinal fluid-like FODs in all voxels (45).
The response functions for each tissue compartment were
averaged across all patients and subjects in order to ensure
that the FODs were comparable within the group study. In
addition, the FODs were subjected to a global intensity
normalization (49).

Finally, in order to increase the biological plausibility of the
fiber tractograms, the method called Anatomically-Constrained
Tractography (available as part of MRtrix) which makes several
assumptions about the behavior of healthy neuronal fibers in
terms of their propagation and termination was applied to the
obtained fiber tractograms (50). These assumptions were relaxed
in all areas of segmented pathological tissue using a compound
lesion mask containing all segmented lesion types. Apart from
the default settings, the option “backtrack” was activated, the
number of seed points was fixed at 4 million and restricted to a
brain mask, and the cutoff value for the FOD amplitude was set
to 0.01. Lastly, the tractography data were converted into fiber
density images with an isotropic voxel size of 1 mm3. All image
processing steps were also performed for the control group,
except for the EPI distortion correction due to the lack of the
corresponding sequence with reversed phase-encoding. In
Figures 1, 2, representative results for the applied tractography
methods and lesion segmentation are depicted. Although the
lack of the EPI distortion correction could theoretically have led
to an inward-facing deformation mainly of the frontal tracts in
the healthy subjects, there was no indication that this happened
in the fiber density images, probably due to the successful
application of the spatial normalization to the MNI template
(see next section).

Effect of lesion type on local
fiber density

The tractography methods supplied by MRtrix support the
determination of the voxel-wise fiber density [also termed track
density by the developers (51, 52)], which we here used to
measure the integrity of local structural connectivity. For this
purpose, all structural and fiber density images of the patients
and healthy subjects as well as all lesion masks of the patients
were registered from the individual patient space to the standard
MNI space by the unified segmentation method of the SPM12
toolbox (Statistical Parametric Mapping Toolbox, https://www.
fil.ion.ucl.ac.uk/spm/software/spm12/, Matlab R2017b,
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MathWorks, Natick, MA, USA). This method combines tissue
segmentation with elastic registration (53). All further analyses
were done in the MNI standard space. A map of the average fiber
density in the control group (n=121) was computed from the
individual fiber density images of the healthy subjects. Then, the
mean fiber density within the lesion segments of the patients was
computed and compared to the mean fiber density in the
corresponding region of the average normal fiber density map.
In order to check the validity of the fiber density estimation, it
was also evaluated for the manually segmented resection cavities
and later used for calculation of the total fiber loss and its impact
on the ECOG performance status (see next section).

In order to analyze a possible correlation between FET PET
uptake and local fiber density, TBR values were divided into 4
bins, starting from the histologically validated cut-off value for
glioma tissue of 1.6 (binning thresholds, 1.6-2.6; 2.6-3.6; 3.6-4.6;
>4.6). As the tumors also extended into fiber-free areas (gray
matter and ventricles), the following measures were undertaken
to make the resulting TBR-binned lesion segments comparable.
Only patients with pathologically increased FET uptake located

in a region with a reasonable homogenous underlying fiber
density in the reference fiber density image (control group)
were included. Thus, only patients for whom the standard
deviation of the fiber density in the reference region was
smaller than the mean fiber density itself were considered.
Besides, tiny TBR-binned segments (i.e., <0.25 mL) were
excluded within the patients, and one patient was discarded
for whom the displaced fibers probably caused the fiber density
to exceed the reference value. In the remaining 43 patients, the
mean TBR within the TBR-binned segments was computed, and
the mean relative fiber density was expressed as the ratio to the
reference region.

Impact of reduced fiber density on the
ECOG performance status

The effect of reduced fiber density on performance status
was examined to evaluate the clinical impact of reduced
structural connectivity induced by different types of lesions.

FIGURE 1

Probabilistic whole-brain tractography and fiber density image in a patient with recurrent glioma and perifocal edema. In normal brain tissue, a
method that increases the biological plausibility is applied (Anatomically-Constrained Tractography), while this condition is relaxed in
pathologically altered brain regions. In contrast to the standard multi-shell multi-tissue constrained spherical deconvolution (CSD) based
tractography of MRtrix3 (MSMT), the advanced MRtrix3tissue method using the single-shell 3-tissue CSD algorithm (SS3T) detected an adequate
number of fibers also within the tumorous or edematous tissue.
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The total fiber loss caused by each lesion type was calculated
from the relative reduction in fiber density [1 – (patient fiber
density/reference fiber density)] of each segment multiplied by
the corresponding segment volume. In patients where one or
more lesion types were not present, the respective volumes were
set to zero. The patient’s performance status was classified as
either normal/unaffected (i.e., ECOG score of 0) or impaired
(i.e., ECOG≥1).

Statistical analysis

Statistical analysis was performed using the SPSS statistical
software package (version 27, IBM Corporation, Armonk, New
York, USA). All fiber density values were also converted to
fractions relative to the reference values in the corresponding
regions of the healthy subjects. To compare the absolute and
relative fiber densities between patients and healthy subjects, the

FIGURE 2

Representative case of lesion segmentation superimposed on a tractography image in a patient who had undergone surgery and
radiochemotherapy and developed local recurrence near the resection cavity. FET, O-(2-[18F]fluoroethyl)-L-tyrosine; T2/FLAIR, T2-weighted
fluid-attenuated inversion recovery; T1CE, T1-weighted contrast-enhancing image.
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Mann-Whitney U test and one-sample Wilcoxon signed-rank
tests (2-sided) were applied. For 3 lesion types (FET PET, T1CE
and resection cavity), 1-2 outliers were each excluded from
analysis. For evaluation of the differential effect of lesion types
in the patients, the Kruskal-Wallis test (2-sided) and a post-hoc
comparison by the Mann-Whitney U-test (2-sided) were
applied. The relationship between FET uptake and relative
fiber density was determined using linear regression analysis
and a mixed linear model using the TBR as fixed effect and
allowing for random variation of the constant term in each
individual patient. The influence of the total fiber loss caused by
different lesion types on performance status was examined using
univariate and multivariate logistic regression analysis including
a set of clinical variables as potential confounders. In all analyses,
a p-value <0.05 was considered statistically significant.

Results

The probability of lesion location is shown in Figure 3. Most
lesions were located in the frontal and temporal lobes. Average
fiber densities in the healthy subjects and in the unaffected brain
regions of the patients are illustrated in Figure 4, indicating that
the overall pattern of fiber tracts outside the lesions was
maintained in the patients. However, as expected, some of the
main tracts showed a reduced fiber density which we did not
further evaluate here. As shown in Table 2, the median volume
of resection cavities, contrast-enhancing regions, regions with
increased FET uptake, and T2/FLAIR hyperintense regions
amounted to 20.9, 7.9, 30.3, and 53.4 mL, respectively. A
significant decrease in absolute fiber density was observed in
all four major lesion types (p<0.001 in all cases).

The relative fiber densities (fraction of fiber density compared
to the corresponding region in the healthy subjects) in different
lesion types are shown in Table 2 and Figure 5. The relative fiber
density was most decreased in the resection cavities (resulting
mean density 16%, p<0.001), followed by T1-weighted contrast-
enhancing lesions (43%, p<0.001), lesions with pathologically
increased FET uptake (49%, p<0.001) and T2/FLAIR
hyperintense regions (57%, p<0.001) and depended significantly
on lesion type (Kruskal-Wallis-test, p<0.001). A post-hoc analysis
revealed that the contrast-enhancing lesions and FET uptake
regions were associated with a significantly larger decrease in
relative fiber density than the T2/FLAIR lesions (both p<0.001)
and that the relative fiber density in contrast enhancing regions
was significantly lower than in regions with pathologic FET
uptake (p<0.01). Also, the relative fiber densities found in T1-
enhancing lesions and in lesions with pathologic FET uptake did
not differ significantly between grade 3 and grade 4 gliomas.

T2/FLAIR lesions, predominantly related to radiation-
induced gliosis, were identified in n=13 patients (Table 2).
Within these lesions, the mean relative fiber density amounted
to 53% which was not significantly different from that measured

in lesions dominated by tumor-related edema (n=27, 48%,
p=0.17). Representative cases are presented in Figure 6. With
regard to the FET uptake versus fiber density, a significant
(p=0.005, R2= 0.076) inverse linear dependence (constant term
0.59, slope -0.074) of fiber density on the level of FET uptake
(tumor-to-brain ratio, Figure 7) was observed. The mixed linear
model confirmed the highly significant dependency of fiber
density on TBR (p<0.001) and the inverse relationship (mean
constant term 0.61, slope -0.084).

The regression analysis on general performance revealed a
significant influence of the total fiber loss in contrast-enhancing
lesions (p=0.006) and T2/FLAIR hyperintense areas (p=0.013)
on the performance status (ECOG score) of the patients
(Table 3; Figure 8). None of the clinical variables comprising
age, gender, type of resection, grade 3 vs. 4, number of surgical
procedures, number of radiotherapy series, number of
chemotherapy courses and follow-up interval had a significant
impact on the ECOG score. In a multivariate logistic regression
analysis that included the total fiber loss caused by the 4 different
lesion types, only the effect of contrast-enhancing lesions on the
ECOG performance status kept its significant impact (p=0.04).

Discussion

Main findings

This study shows that structural and metabolic imaging
changes after multimodal therapy in glioma patients are
associated with a significant reduction in local white matter
fiber density, as assessed using the DWI single-shell 3-tissue
CSD algorithm. Compared to a matched cohort of healthy
subjects, the reduction was almost total in resection cavities,
strong in contrast-enhancing lesions and regions with
pathologically increased FET PET uptake, and stil l
pronounced in regions with T2/FLAIR hyperintensity. For
lesions with an increased FET uptake, an inverse linear
relationship between the TBR and a reduced fiber density was
observed. The total fiber loss in contrast-enhancing lesions and
T2/FLAIR hyperintense regions was associated with a significant
risk of lowered performance status as assessed by the ECOG
score, while the total fiber loss caused by resection and regions
with increased FET uptake did not impact general performance.
The methodological issues and clinical implications of these
results are discussed below.

Reliability of CSD-based tractography
and fiber density estimation

All tractography methods are based on assumptions that
relate the observed non-isotropic diffusion-weighted MRI signal
to the expected local fiber architecture. The main prerequisites of
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these models for reliable performance are a high angular
resolution of the diffusion-weighted signal and low confounding
of the fiber-associated signal by other sources, e.g., the presence of
freely diffusing water (54, 55) or isotropic diffusion such as present
in grey matter. The HARDI scheme applied here comprised 120
directions at a high b-value of 2700 s/mm2, which ensures optimal
contrast-to-noise properties within the shell and between the
single shell and the b=0 data as detailed in (43). From these

diffusion-weighted data, the composition of every voxel in terms
of grey-matter-like, cerebrospinal fluid-like and white-matter-like
tissue was computed and the respective response functions were
determined from the experimental data themselves (45). Then, the
FODs of the white-matter-like compartments of normal and
pathological brain tissue and the contamination of each voxel
by freely diffusing water as found in cerebrospinal fluid or edema
(48) were calculated by the 3-tissue CSD algorithm (56, 57) for

FIGURE 3

Probability maps for lesion localization. Compound lesion maps comprising T2-weighted fluid-attenuated inversion recovery (FLAIR)
hyperintense lesions, contrast-enhancing lesions, resection cavities, and lesions with pathologically increased FET (O-(2-[18F]fluoroethyl)-L-
tyrosine) uptake on PET images are shown superimposed on images depicting the mean fiber density in a control group (representative sections
of the MNI-152 standard brain template). R, right; L, left; numbers, number of patients.
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subsequent tractography. Thus, effective measures have been
taken to avoid underestimation of fiber density in brain regions
affected by tumor, edema, or other pathological tissue (28, 32,
41, 42).

Due to the inhomogeneous distribution of the fiber tracts in the
normal brain, reference regions for fiber density have to be carefully
selected. This is probably why in a comparable study on fiber
density in different tumor compartments of glioblastoma (58)
reported in due course after the publication of the method (51,
52), a paradoxical positive correlation between the extent of tumor
infiltration and the fiber densitywas observed. In the present paper,
the spatially co-registered data of healthy subjects served as
reference, and all procedures were equally applied to the patient
and healthy subject data, resulting in reasonable fiber density
distributions in both groups. In summary, the methods applied
here can be expected to provide a solid estimate of the local and
relative fiber density in pathologically altered brain tissue.

Fiber density in glioma tissue

Several groups investigated the impact of tumor cell density in
gliomas’ core or infiltration zone on local fiber density. For this
purpose, Stadlbauer et al. (59) applied DTI-based fiber density
mapping in patients with non-enhancing WHO grade II or III
glioma and evaluated 38 biopsies taken from the tumor center,
transition zone, and tumor border. A steep decrease in the fiber
density from the periphery into the tumor center was observed.
However, thefiber loss in the tumor corewasprobably overestimated
mainly due to the above-mentioned methodological limitations to
detect fibers in pathologically altered brain tissue. In a subsequent
study, the choline concentration in the tissue (determined by MR
spectroscopy), which is amarker ofmembrane turnover and cellular
density, was also inversely related to the fiber density (60). It is worth
mentioning thatfiberdensitymapshave alsobeenapplied to evaluate
tumor infiltration of the corticospinal tract inmotor-eloquentWHO

FIGURE 4

Average fiber densities in healthy subjects and in unaffected brain regions of the patients. FD, fiber density; FDmean, whole-brain mean fiber density.
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grade III or IV gliomas, where a significant reduction in fiber density
was found in the peritumoral region as well as in the cortico-spinal
tract itself (61). The observation that an increase in FET uptake is
associatedwith a decrease infiber densityfits well into thesefindings,
as theFETsignalwas found to correlatewith the tumor cell density in
glioma (62, 63). A particular effort was undertaken in the present
study to generate reliable reference regions by using spatially
registered normal brains and excluding patients with tumor
localizations distributed over brain regions with strongly varying
physiological fiber density.

Fiber density in peritumoral edema
and gliosis

It is commonly believed that malignant brain tumors disrupt
the blood-brain barrier, causing intravascular fluid to leak into the
interstitial space and leading to what has been termed as vasogenic
edema (64, 65). This process leads to an increased interstitial
pressure, which can displace, compress, or disrupt the axons that

pass through the affected edematous region (66). In the
preoperative setting, several methodological attempts have been
made to reliably identify the major fibers tracts in the perilesional
tissue of gliomas, including techniques such as free-water modeling
(48) and local connectivity mapping (28), which seem to recover
more fibers in the tracts than the standard methods based on DTI.
We have attempted here for the first time to quantify the relative
fiber loss caused by edema and found it to be in the range of 50%.

Late side effects of radiotherapy have been found to mainly
affect white matter, leading to demyelination, axonal
degeneration, and astrogliosis (15), which, in the absence of
other tissue changes, may be readily detected by a signal increase
in T2-weighted or FLAIR images (67). In order to quantify
radiation-induced white matter damage, surrogate markers for
structural connectivity such as cortical atrophy, fractional
anisotropy, and mean, axial and radial diffusivity determined
from DTI have been applied (22, 68–72). However, in most of
these studies, the analysis was performed on the whole brain or
confined to anatomically predefined regions or tracts. In
contrast, we attempted here to quantify the relative fiber loss

TABLE 2 Volume and fiber density in lesions of different type.

Lesion type n# Lesion size (mL)
mean ± SD (median)

Fiber density Healthy
(fibers/mm3)

Patients
(fibers/mm3)

Patients
(% of reference)

Resection cavity 90 35.8 ± 40.3 (20.9) 45.1 ± 23.0 5.9 ± 7.3*** 15.5 ± 21.1***

T1CE 99 17.2 ± 23.3 (7.9) 76.3 ± 43.5 26.9 ± 19.9*** 42.9 ± 31.7***

FET PET (TBR>1.6) 79 39.5 ± 35.2 (30.3) 62.3 ± 30.6 27.8 ± 17.5*** 49.3 ± 26.1***

T2/FLAIR 121 70.1 ± 55.5 (53.4) 107.6 ± 39.6 60.9 ± 29.1*** 56.9 ± 16.3***

T2/FLAIR (edema) 27 121.1 ± 58.0 (131.8) 88.3 ± 23.2 40.7 ± 12.8*** 48.1 ± 15.5***

T2/FLAIR (gliosis) 13 52.3 ± 45.7 (33.3) 120.4 ± 41.3 62.6 ± 24.8*** 52.7 ± 12.5**

T1CE, T1-weighted contrast-enhancing; FET, O-(2-[18F]fluoroethyl)-L-tyrosine; FLAIR, fluidattenuated inversion recovery; TBR, tumor-to-brain ratio; #patients affected; **p<0.01,
***p<0.001, Mann-Whitney U test (fibers/mm3), one-sample Wilcoxon signed-rank test (% of reference).

FIGURE 5

Distribution of relative fiber densities (fraction of fiber density (FD) of the corresponding region in healthy controls) for the respective imaging
findings. FET, O-(2-[18F]fluoroethyl)-L-tyrosine; T2/FLAIR, T2-weighted fluid-attenuated inversion recovery (FLAIR) hyperintense lesions;
**p<0.01, ***p<0.001, Mann-Whitney U test for comparison between different types of lesions.
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in brain regions affected by radiation-induced damage, which
was also approximately 50%; the same order of magnitude as the
loss caused by edema. However, as the distinction between
edema and radiation-induced gliosis proved difficult, these
numbers have to be taken as largely provisional.

Clinical impact of fiber loss

It remains unclear how the apparent loss of fiber density
detected by MRI tractography methods is related to neuronal
function, e.g., the propagation of action potentials along the
axons in the affected tracts. At least in the case of edema, axons
are still present but may become nonfunctional, for example,
because of compression. However, our data show that the overall
extent of fiber loss in the volumes affected by different lesion
types significantly affects the global performance status. The
differential impact of the lesion types can be explained, at least in

part, by the study population. Most patients had recovered from
surgery without permanent neurological deficits but were at
constant risk of developing radiation-induced damage or
recurrent tumor, the latter diagnosed early enough by FET
PET before it led to performance loss.

Limitations of the study

In the present study, regular follow-up data were available for
only a few patients. Consequently, each patient was examined only
once, resulting in a wide dispersion of intervals between the
initiation of therapy and imaging. Because multiple types of
lesions were present simultaneously in almost all patients,
uncertainties remained regarding the nature and boundaries of
each segment, despite all efforts to achieve a distinct and well-
circumscribed segmentation. Often, the contrast-enhancing and
FET uptaking lesions partially overlapped. However, in a small set

A

B

FIGURE 6

(A) Representative cases with T2/FLAIR hyperintense regions and (B) relative fiber densities (FD) in patients with radiation-induced gliosis or
peritumoral edema. T2/FLAIR, T2-weighted fluid-attenuated inversion recovery.
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of non-overlapping contrast enhancing (n=24) or FET uptake
lesions (n=9), a relative fiber density in the same order of
magnitude as found before (56% and 54%) was observed. Also,
the distinction between edema and radiation-induced gliosis proved
difficult, such that a substantial proportion of patients could not be
classified. Nevertheless, the relativefiber densities in these two lesion
types did not differ significantly. In addition, hyperintense T2/
FLAIR lesions could result from tumor infiltration not leading to
contrast enhancement or pathologic FET uptake.

The minimal remaining fiber density within the resection
cavity can be explained in part by the difficulty of unambiguous
segmentation of the resection cavity boundaries. Therefore, it is
possible that individual voxels that still contained tissue were part
of the segmented area.On the other hand, it should be kept inmind
that nomodel perfectly reflects reality, which in this case obviously
resulted in a small number of false positive fibers inside the
resection cavity. These problems are illustrated in Figure 2.

Conclusions

In summary, we interpret this study as follows: i) The
almost complete fiber loss in the resection cavities was mainly
the result of carefully planned neurosurgical interventions
based on neuroanatomic and neuro-functional expertise,
avoiding neurological deficits in most patients. ii) Most
contrast-enhancing lesions were caused by recurrent tumor
growth, which severely disrupted fiber tracts in deliberate
localizations and thus impacted general performance
significantly. iii) Most regions with increased FET uptake
also resulted from recurrent tumor growth; however, due to
the higher sensitivity of amino acid PET compared to MRI for
detecting early tumor infiltration, the associated fiber density
loss was less pronounced and did not impair general
performance. iv) T2/FLAIR-hyperintense lesions mainly
resulted from radiation injury or peritumoral edema or a

FIGURE 7

Relative fiber density (FD) in PET lesion segments with different tumor-to-brain ratio (TBR) of FET (O-(2-[18F]fluoroethyl)-L-tyrosine) uptake.
Linear regression, R2=0.076, **p<0.01.

TABLE 3 Results of logistic regression analyses for the impact of total fiber loss on general performance status (normal ECOG=0 vs. impaired ECOG ≥ 1).

Imaging finding# Total fiber loss median (range) p-value univariate p-value multivariate

Resection cavity 7506 (0 - 171033) 0.906 0.692

Increased FET uptake 3977 (0 - 204533) 0.054 0.462

Contrast enhancement 1774 (0 - 102088) 0.006** 0.040*

T2/FLAIR hyperintensities 20265 (0 - 168450) 0.013* 0.310

FET, O-(2-[18F]fluoroethyl)-L-tyrosine; T2/FLAIR, T2-weighted fluid-attenuated inversion recovery; *p<0.05; **p<0.01; #including patients not affected by respective lesion type (lesion-
specific volume/total fiber loss set to zero).

Friedrich et al. 10.3389/fonc.2022.998069

Frontiers in Oncology frontiersin.org13



Publications 

 
35 

 

 

 
 

 

combination thereof and affected larger brain areas. Although
the reduction in fiber density was less pronounced, the larger
affected brain volume likely led to dysfunction in many brain
regions, resulting in impaired general performance.
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FIGURE 8
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density) multiplied by lesion volume), partitioned into quartiles of observed values confined to contrast-enhancing lesions (A) and hyperintense
T2/FLAIR regions (B). ECOG, Eastern Cooperative Oncology Group; T1CE, T1-weighted contrast-enhancing; T2/FLAIR, T2-weighted fluid-
attenuated inversion recovery.
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Abstract 
Background.  In glioma patients, tumor growth and subsequent treatments are associated with various types of 
brain lesions. We hypothesized that cognitive functioning in these patients critically depends on the maintained 
structural connectivity of multiple brain networks.
Methods.  The study included 121 glioma patients (median age, 52 years; median Eastern Cooperative Oncology 
Group performance score 1; CNS-WHO Grade 3 or 4) after multimodal therapy. Cognitive performance was as-
sessed by 10 tests in 5 cognitive domains at a median of 14 months after treatment initiation. Hybrid amino 
acid PET/MRI using the tracer O-(2-[18F]fluoroethyl)-L-tyrosine, a network-based cortical parcellation, and advanced 
tractography were used to generate whole-brain fiber count-weighted connectivity matrices. The matrices were ap-
plied to a cross-validated machine-learning model to identify predictive fiber connections (edges), critical cortical 
regions (nodes), and the networks underlying cognitive performance.
Results.  Compared to healthy controls (n = 121), patients’ cognitive scores were significantly lower in 9 cognitive 
tests. The models predicted the scores of 7/10 tests (median correlation coefficient, 0.47; range, 0.39–0.57) from 
0.6% to 5.4% of the matrix entries; 84% of the predictive edges were between nodes of different networks. Critically 
involved cortical regions (≥10 adjacent edges) included predominantly left-sided nodes of the visual, somatomotor, 
dorsal/ventral attention, and default mode networks. Highly critical nodes (≥15 edges) included the default mode 
network’s left temporal and bilateral posterior cingulate cortex.
Conclusions.  These results suggest that the cognitive performance of pretreated glioma patients is strongly re-
lated to structural connectivity between multiple brain networks and depends on the integrity of known network 
hubs also involved in other neurological disorders.

Structural connectome-based predictive modeling of 
cognitive deficits in treated glioma patients  

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://
creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, 
provided the original work is properly cited.
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Key Points

• Cognitive performance is closely related to structural connectivity between  
multiple brain networks.

• Critically affected cortical nodes are mainly located in the left hemisphere.

• Involvement of bilateral cortical hubs known from other neurological disorders.
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Gliomas are the most common malignant primary brain 
tumors in adults.1 The prognosis of patients with gliomas 
mainly depends on molecular and histomorphologic tumor 
features that determine the growth rate and pattern of in-
vasion into the normal brain tissue.2 Apart from a reduced 
survival time, glioma patients frequently experience dis-
turbances of cognitive function3 that are potentially related 
to the structural damage imposed on the brain by the tumor 
itself or therapeutic interventions. Compared to other neu-
rological disorders, such as stroke, multiple sclerosis, or 

dementia, the pattern of brain lesions in glioma patients 
is more heterogeneous, as it may comprise brain infiltra-
tion by residual or recurrent tumor growth, disruption of 
the blood-brain barrier, neurosurgical resection of cortical 
or subcortical brain tissue, or radiation- or chemotherapy-
induced damage of white matter.4

So far, clinical research in neuro-oncology has prima-
rily aimed at identifying selected vulnerable structures at 
risk of neurologic or cognitive deficits, such as the motor 
or language pathways (neurosurgery) or the hippocampus 

Importance of the Study
We here studied the association of whole-brain 
structural connectivity with cognitive performance 
in pretreated CNS WHO Grade 3 or 4 glioma pa-
tients through a network-based approach that in-
cluded a recent cortical parcellation, advanced 
tractography methods, and a well-established method 
for connectome-based predictive modeling. We found 
that reduced fiber numbers in subsets of connections 
between different brain networks were significantly 
related to performance in various cognitive domains. 

Critical cortical regions, identified by their adjacency to 
predictive connections, were mainly located in the left 
hemisphere but also included bilateral cortical hubs, 
such as the precuneus and posterior cingulate cortex, 
which also play a significant role in other neurolog-
ical diseases such as Alzheimer’s disease. This finding 
implies that cognitive decline in treated brain tumor 
patients shares a common mechanism with other psy-
chiatric and neurological disorders.
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(radiation therapy),5 which in turn are preferably spared 
from treatment-related damage. The relationship between 
white matter alterations and cognitive deficits in glioma 
patients has been mainly established in the perioperative 
setting where single, anatomically defined tracts and their 
associated functions were identified. These include, among 
others, the right frontal aslant tract (executive functions, 
attention shift, verbal fluency),6 the right superior longi-
tudinal fascicle/frontostriatal tract/orbitofrontal cortex 
(mentalizing/visuospatial function),7–10 and the right infe-
rior frontostriatal tract/inferior frontal gyrus (inference con-
trol processes).11 Moreover, radiation-induced alterations 
in the parahippocampal cingulum of the medial temporal 
lobes correlated with a decline in verbal memory and 
verbal fluency.12

However, a growing body of evidence indicates that the 
long-term outcome of higher-order cognitive functioning 
in glioma patients depends on the preserved integrity of 
several distributed networks rather than individual nodes 
or tracts,13–16 which has led several groups to investigate 
the relation between cognitive outcome and structural 
connectivity in glioma on a more network-oriented level.17–

19 We also took this approach here and hypothesized that 
the various structural brain lesions in treated glioma pa-
tients impair cognitive functions through a common 
mechanism, namely the reduced structural connectivity 
between cortical regions, resulting from altered integrity of 
the cortical gray matter or the adjacent white matter fiber 
tracts. Therefore, we constructed whole-brain structural 
connectomes in pretreated patients with CNS WHO Grade 
3 or 4 gliomas characterized according to the 2021 WHO 
classification of Tumors of the CNS,2 and used advanced 
structural and diffusion-weighted MRI20 as well as amino 
acid PET21 imaging techniques to identify fiber tracts and 
structural brain lesions. In addition, a recent functional 
parcellation of the cortex22 and tractography tools capable 
of reasonable fiber tracking within or close to tumor- or 
treatment-related lesions were applied.23,24 The individual 
connectomes were used to develop a predictive machine-
learning-based model25 that identified networks, nodes, 
and connecting fiber tracts critical for performance in dif-
ferent cognitive domains.

Patients and Methods

Patient Characteristics

From February, 2018 to September, 2020, we prospec-
tively evaluated 121 pretreated glioma patients (73 men, 
48 women; mean age, 51.6 ± 11.6 years) who had under-
gone multimodal therapy, including resection, radio-
therapy, alkylating chemotherapy, or combinations thereof 
(Supplementary Table 1). Patients were referred for follow-up 
from main academic institutions that had regular access to 
the 3T hybrid PET/MR imaging facility where simultaneous 
PET/MR imaging was performed using the radiolabeled 
amino acid O-(2-[18F]fluoroethyl)-L-tyrosine (18F-FET) at dif-
ferent time points after first-line therapy (median time, 14 
months; range, 1–214 months). 18F-FET PET is a sensitive 
method for early assessment of residual metabolically active 

tumors after surgery, evaluation of response to adjuvant che-
motherapy using alkylating agents, and differentiation of 
tumor relapse from treatment-related changes.26

The inclusion criteria comprised a favorable general con-
dition defined by a performance score of 0 or 1 according to 
the Eastern Cooperative Oncology Group27 criteria, absence 
of major depression, and fluency in the German language. 
In case of a history of seizures, appropriate anticonvulsive 
medication was mandatory. Patients were screened and 
registered for the study by phone calls, reviewed on the 
day of imaging, and were included in the study after pro-
viding informed written consent following the Declaration 
of Helsinki. The local ethics committee approved the pro-
tocol (17–365). Of the 121 patients included, 104 (86%) had 
completed primary treatment according to the guidelines 
at the time of diagnosis. As shown in Supplementary Table 
1, patients had either received tumor resection (n = 108) or 
biopsy (n = 13), and the majority (n = 100) had undergone 
at least 1 series of local radiotherapy (60 ± 2 Gy in 92% of 
patients) at a median interval of 13 months (range, 2–213 
months) between the start of radiotherapy and imaging. 
Fourteen patients had 2 radiotherapy series. In 6 patients, 
planned postoperative radiotherapy/chemo-radiotherapy 
was pending; in 11 patients, adjuvant chemotherapy was 
incomplete. In order to quantify treatment intensity, the 
number of different types of oncologic interventions was 
assessed and analyzed about cognitive outcome.

The study included patients with adult-type diffuse 
glioma of Grades 3 and 4 according to the 2021 WHO clas-
sification.2 All original neuropathological reports were 
re-classified mainly based on the isocitrate dehydrogenase 
(IDH)-gene mutation and 1p/19q loss-of-heterozygosity 
status. Most of the patients suffered from an IDH-wildtype 
glioblastoma (60%), but CNS WHO Grade 3 IDH-mutant 
astrocytomas (12%) and CNS WHO Grade 3 IDH-mutant 
1p/19q co-deleted oligodendrogliomas (11%) were also 
prevalent. A total of 72 patients (60%) had anticonvulsive 
medication, and 81 patients (67%) had mild neurolog-
ical (48%) or other symptoms (19%) without requiring as-
sistance for personal needs. All patients except 1 were 
right-handed. Based on clinical deterioration, MRI findings, 
and 18F-FET PET results, the diagnosis of glioma relapse 
was obtained in 58 of 121 patients.

Imaging Protocols

Simultaneous MR/PET imaging was performed on a 3T 
hybrid scanner (Siemens Trim-TRIO/BrainPET, Siemens 
Medical Systems, Erlangen, Germany) equipped with a 
PET insert.  18F-FET PET images were obtained as described 
in detail before.28 The presence or absence of metabolic 
active residual/recurrent tumor sites was assessed by a 
nuclear medicine physician (K.-J.L.) from the summed ac-
tivity from 20 to 40 min post-injection and the time-activity 
curves according to established protocols.26

The MRI protocol comprised a 3D high-resolution 
T1-weighted magnetization-prepared rapid acquisition 
gradient echo (MPRAGE) native scan (176 slices; TR = 2250 
ms; TE = 3.03 ms; field of view (FoV) = 256 × 256 mm2; 
flip angle = 9°; voxel size = 1 × 1 × 1 mm3), a contrast-
enhanced MPRAGE scan recorded after injection of 
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gadolinium-based contrast agent, a T2-weighted sam-
pling perfection with application-optimized contrasts 
using different flip angle evolution (SPACE) scan (176 
slices; repetition time TR = 3.2 ms; echo time TE = 417 
ms; FoV = 256 × 256 mm2; voxel size = 1 × 1 × 1 mm3), 
and a T2-weighted fluid-attenuated inversion recovery 
(T2/FLAIR) scan (25 slices; TR = 9000 ms; TE = 3.86 
ms; FoV = 220 × 220 mm2; flip angle = 150°; voxel 
size = 0.9 × 0.9 × 4 mm3).

High-angular-resolution diffusion imaging (HARDI) 
measurements were acquired using a diffusion-weighted 
double-echo echo-planar imaging (EPI) sequence (55 
slices; TR = 8000 ms; TE = 112 ms; b-values (gradient dir-
ections) = 0 (13, interleaved) and 2700 s/mm2 (120); voxel 
size = 2.4 × 2.4 × 2.4 mm3). Afterward, a nondiffusion-
weighted (b = 0) volume was acquired with the same 
parameters but with a reversed phase-encoding direction 
needed for the EPI distortion correction.

Cognitive Performance

Cognitive performance was assessed on the day of im-
aging and based on 10 cognitive tests selected from a 
more extensive test battery developed for the 1000BRAINS 
study, a population-based cohort study that included over 
1300 older subjects and investigated environmental and 
genetic influences on the interindividual variability of brain 
structure, function, and connectivity in the aging brain.20 
The applied test and the respective cognitive domains 
are shown in Supplementary Table 2. They included tests 
for attention/processing speed (Trail-making Test A [TMT-
A]), executive function/concept shifting (Trail-making Test 
B [TMT-B]), semantic word fluency (Imagined Shopping 
Tour) and language processing (Number Transcoding), 
as well as tests for verbal working memory (Digit Span 
forward/backward), verbal episodic memory (Word List, 
immediate and delayed recall) and visuospatial working 
memory (Corsi Block Tapping test forward/backward).

For the generation of a control group, 121 healthy subjects 
who had performed the same cognitive tests were selected 
from the 1000BRAINS study. Propensity score matching29 
(R software package, https://www.r-project.org/) was ap-
plied to build a cohort that matched the patient population 
in terms of sex, age, and educational level according to the 
International Standard Classification of Education (ISCED) 
classification (http://uis.unesco.org/sites/default/files/docu-
ments/international-standard-classification-of-education-
1997-en_0.pdf). This procedure resulted in a control group 
that broadly resembled the patient group (age 51.7 ± 11.5 vs 
51.6 ± 11.6 years, 2-sided t-test P = .96; men/women 75/46 vs 
73/48, 2-sided Chi-square test P = .90; ISCED-level 7.4 ± 1.7 
vs 7.1 ± 2.1, 2-sided Mann–Whitney U-test P = .41). The cog-
nitive deficits of the patients were classified as clinically 
relevant if their scores were lower than the mean—1.5× 
standard deviation of the control group.

Whole-brain Structural Connectome

The main steps for determining the whole-brain structural 
connectome and prediction modeling of cognitive perfor-
mance are shown in Figure 1. We used the tractography 

imaging pipeline based on the GitHub-fork MRtrix3Tissue 
(https://3tissue.github.io), a recently developed modi-
fication of the widely accepted fiber-tracking software 
MRtrix3 (https://www.mrtrix.org). The novel single-shell 
3-tissue constrained spherical deconvolution (SS3T-CSD) 
method generates estimates of white matter fiber orien-
tation distribution functions (FODs) as bias-free as pos-
sible, even within different compartments infiltrated by 
the tumor.23,30,31 This is mainly achieved by estimating the 
composition of each voxel in terms of white-matter-like, 
gray-matter-like, and cerebrospinal fluid-like tissue compo-
nents, which are computed from single-shell HARDI data 
(single b-value 2700 s/mm2 and nondiffusion-weighted 
images). CSD-based fiber mapping assumes that the 
diffusion-weighted MRI signal results from the spherical 
convolution of a response function with the underlying 
FOD function.32 The response function, which is deter-
mined from the diffusion-weighted data itself, represents 
the expected MR signal from a pure white matter (a single-
oriented white matter fiber bundle), gray matter, or cere-
brospinal fluid voxel. Unlike the clinically widely used 
diffusion tensor model, CSD models can resolve multiple 
fiber orientations within an image voxel.

The HARDI data underwent image preprocessing fol-
lowing published recommendations (https://osf.io/ht7zv) 
and comprised corrections for EPI distortion, eddy current, 
motion distortion, and bias field. An unsupervised method 
was used to estimate the tissue-specific white matter, 
gray matter, and cerebrospinal fluid response functions 
from the preprocessed HARDI data. The response func-
tions for each tissue compartment were averaged across 
all patients, and the tissue component fractions were cor-
rected for the effects of residual intensity inhomogeneities 
by global intensity normalization33 to ensure that FODs 
estimated by SS3T-CSD30 were comparable within this 
group study. The subsequent fiber mapping was based 
on Anatomically Constrained  Tractography, which poses 
physiological restrictions on the behavior of healthy 
neuronal fibers in terms of their propagation and termi-
nation.24 These assumptions were lifted in the area of 
pathologic tissue by masking out the entire lesioned areas. 
For this purpose, resection cavities were manually con-
toured by a radiation oncologist (M.K.), the T1-contrast-
enhancing lesions and T2/FLAIR hyperintensities were 
automatically segmented using the deep-learning-based 
software HD-GLIO-AUTO (https://github.com/NeuroAI-HD/
HD-GLIO-AUTO), and 18F-FET PET segmentation was im-
plemented by an FSL (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki) 
custom script using a tumor-to-brain ratio of 1.6 (20–40 min 
summed activity) as the lower threshold.34 All segmenta-
tions were visually inspected, manually corrected, and 
added to form a composite lesion mask. Besides the de-
fault settings of MRtrix3Tissue, the number of seed points 
was set to a constant of 4 million seeds randomly placed 
in a whole-brain mask, the backtrack option was enabled, 
and the cutoff value for FOD amplitude was set to 0.01. In 
a former study,4 we found that this setup could reasonably 
identify fibers passing through and near tumor tissue and 
the surrounding brain structures.

In order to obtain structural whole-brain connectivity 
matrices for each patient, the resulting set of fibers was 
combined with the functional cortical Schaefer-Yeo Atlas,22 
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5Friedrich et al.: Structural connectivity in gliomas

which comprises 100 nodes (50 in each hemisphere) at 
its lowest resolution, belonging to the following 7 net-
works: visual, somatomotor, dorsal attention, ventral at-
tention, limbic, frontal control, and default mode network. 
The number of fibers connecting any 2 nodes was used to 
enter a 100 × 100 structural connectivity matrix, thus rep-
resenting the edge weight between 2 nodes. Whole-brain 
tractography and structural connectivity matrices for 2 
exemplary patients with left frontal and right temporal 
gliomas are shown in Figure 2.

Connectome-based Predictive Modeling

The relationship between structural brain connectivity and 
cognitive functions was analyzed using a well-established 
method (connectome-based predictive modeling [CPM]) 
initially described by Shen et al.25 that uses machine-
learning methods and cross-validation to predict behav-
ioral outcomes from brain connectivity measures. CPM 
has been proven to perform equally or better compared to 
many existing approaches in brain-behavior prediction.25 

Also, compared to other machine-learning models, it has 
the advantages that it makes only use of linear operations, 
is purely data-driven, and can be clearly interpreted.

The CPM protocol comprises 4 steps which were per-
formed in Matlab (Matlab R2022a, MathWorks, Natick, 
MA, USA). The structural connectivity matrices and cor-
responding cognitive test scores served as inputs. The 
main diagonal containing 100 meaningless entries was 
removed from the matrices for all further steps, leaving 
([100 × 100]−100) = 9900 valid entries. For feature selec-
tion (i), each fiber count (edge weight) in the connectivity 
matrix was related to any of the cognitive test scores 
using Spearman’s rank correlation, and only significant 
(P < .001) edges were selected. Next, summary connec-
tivity values (ii) were calculated from the selected edges 
by separately summing the fiber counts of edges with neg-
ative or positive associations with the cognitive scores. 
For model construction (iii), linear regressions between 
the cognitive scores and the summary connectivity scores 
were computed. Furthermore, the relation between dem-
ographic, clinical, histomolecular and other tumor-related 
variates and cognitive performance was evaluated at this 
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 6 Friedrich et al.: Structural connectivity in gliomas

step by nonparametric statistical methods: age, educa-
tion, time since treatment initiation, number of surgical 
interventions, number of radiotherapy series, number of 
chemotherapy courses, lesion volumes (Spearman rank 
correlation); sex, IDH mutation status (wildtype vs mutant), 
glioma Grade 3 versus Grade 4, presence of a recurrent 
tumor (Mann–Whitney U-Test); tumor location (Kruskal–
Wallis analysis of variance). Univariate and multivariate 
models were constructed where the significant variables 
from this analysis were included in the CPM model as con-
founding covariates. Finally, the model’s generalizability 
and predictive power (iv) were evaluated by leave-one-out 
cross-validation. The cognitive scores for each single pa-
tient were predicted using the described feature (edge) se-
lection method and linear regression from the data of the 
remaining patients. The predicted scores were then com-
pared to the patient’s actual scores using both Pearson cor-
relation and a permutation test with 100 iterations.

Brain Mapping of Edges and Nodes

As an additional step, binary matrices were constructed 
such that only those edges that correlated significantly 
with the cognitive scores in at least 90% of the cross-
validation iterations (validated predictive edges) and had 

been included in the models with significant predictive 
power (P < .05) were labeled. For descriptive purposes, 
critically involved nodes of each network were identified 
from their degree, that is, the number of adjacent valid-
ated edges. The nonzero-degree-nodes’ degree distribu-
tion was used for setting thresholds for critically involved 
nodes (degree ≥ mean + 1× standard deviation) and highly 
critical nodes (degree ≥ mean + 2× standard deviation). 
In addition, all validated edges were classified according 
to their belonging to within- or between network connec-
tions. The nodes and their degrees were then visualized in 
their anatomic location using the Connectivity Viewer of 
the BioImage Suite Web 1.2.0 (https://bioimagesuiteweb.
github.io/webapp/connviewer.html?species=human).

Results

Cognitive Performance

The detailed cognitive test scores in glioma patients and 
healthy individuals are shown in Supplementary Table 3. 
Glioma patients performed significantly lower than healthy 
individuals in all tests except for the Number Transcoding 
test. The highest deviation from the control group was ob-
served in trail-making tests (TMT-A, time needed: +53.1%; 
TMT-B, time needed: +72.4%), followed by the semantic 
word fluency test (Imagined Shopping Tour, number of 
items: −24.6%). The lowest deviation was observed in 
a test on verbal working memory (Digit Span Forward, 
items: −7.5%). Depending on the test applied, 10%–47% of 
the patients were prone to a clinically relevant deficit.

Connectome-based Predictive Modeling

As shown in Figure 2, the edge values (fiber counts) were 
clustered within the ipsilateral nodes of the different net-
works such that intra-hemispheric connectivity was more 
pronounced than inter-hemispheric connectivity. The 
number of connecting fibers of each node to any ipsi- or 
contralateral nodes spanned a wide range but was nearly 
equally distributed in the right (median fiber number, 48; 
range, 0–4462 fibers) compared to the left (median fiber 
number, 43; range, 0–4604 fibers) hemisphere. In lesions 
of both sides, the median nodal fiber count for intra-
hemispheric connections was lower in the affected than in 
the contralateral hemisphere: median fiber number in left-
sided lesions, 41 (range, 0–4035 fibers) versus 52 (range, 
0–4849 fibers); median fiber number in right-sided lesions, 
40 (range, 0–4013 fibers) versus 47 (range, 0–5265 fibers), 
representing an average fiber loss of 15%–20% per node in 
the affected hemisphere.

In the first step of the CPM analysis, 2770 node-to-node 
fiber counts with a significant correlation to any of the 10 
cognitive test scores (predictive edges) were identified. In 
the vast majority (2704/2770 = 98%) of node-to-node fiber 
counts, the sign of the correlation indicated a positive as-
sociation between fiber counts and cognitive scores (neg-
ative sign for the TMT-A and  TMT-B, positive sign for all 
other tests, see  Supplementary Table 4). A median number 
of 254 of the positively associated predictive edges per 
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cognitive test (range, 32–542) was selected for linear re-
gression modeling between the connectivity values and 
the corresponding cognitive performance scores of all 
121 patients. All linear relationships were significant (P < 
.001), and most of them had a coefficient of determination 
(R2) in the range between 0.35 and 0.45, examples shown 
in Supplementary Figure 1. Conversely, models built from 
the negatively associated edges had R2-values in the range 
of 0.02 to 0.16 (Supplementary Table 4). The analysis of the 
demographic, clinical, or tumor-related variables showed 
significant (P < .01) relations with cognitive scores for age 
(9 of 10 scores), education (8 of 10 scores), tumor location 
(3 of 10 scores), lesion volumes (1–5 of 10 scores depending 
on lesion type) and tumor recurrence (1 of 10 scores), but 
no significant associations for sex, tumor grade, IDH-
status, interval, surgical procedures, radiotherapy series, 
or chemotherapy courses (Supplementary Table 5).

The predictive abilities of different models including the 
above-mentioned variates alone or in combination with 
the positively associated summary connectivity values are 
shown in Figure 3 and Supplementary Table 6. The pure con-
nectivity models had a significantly higher mean coefficient 
of determination (0.330 ± 0.083) than the combined models 
from either age and education (0.141 ± 0.037) or recurrence 
and lesion volumes and tumor location (0.208 ± 0.071; both 
P < .001, t-test). The coefficient of determination of the latter 
models increased significantly by including the connec-
tivity values (mean increase by 0.190 and 0.225, respec-
tively; both P < .001), and all connectivity values proved 
their independent relation with the cognitive scores (all 
P < .001) in the combined multiple regression models.

Therefore, the edges with a positive association to 
cognitive scores were exclusively used for the final, 
cross-validated model. The results for the correlation and 
permutation analyses between the predicted scores from 
the leave-one-out cross-validation and the actual scores 
are shown in Table 1 and Figure 4. The models predicted 
7 out of 10 scores (median correlation coefficient, 0.47; 
range, 0.39–0.57) from 64 to 530 of 9900 (0.6%–5.4%) of the 
possible edges, underpinning the predictive value and po-
tential generalizability of the developed model; illustrative 
examples are shown in Figure 4. However, the final model 
did not accurately predict the scores for the digit span tests 
evaluating the verbal working memory.

Brain Mapping of Validated Edges and Critical 
Nodes

The binary matrices of the cross-validated edges for 
some cognitive tests are shown in Figure 5A–C and 
Supplementary Figure 2 together with an anatomical 
representation of the validated edges and their adjacent 
nodes. The validated edges followed a pattern of mainly 
left intra-hemispheric as well as inter-hemispherical con-
nections. Of note, the majority (overall 1660/1982 = 84%; 
Table 1) of the validated edges were between nodes of 
different networks (inter-network connections, median 
208, range 38–386) rather than between nodes of the 
same network (median 19, range 5–41). This observation 
is also evident from the binary matrices (Figure 5A–C, 
Supplementary Figure 2) where all potential intra-network 
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connections are displayed in gray. The few negatively as-
sociated edges (identified in Step 1) were sparsely distrib-
uted with a tendency to be situated between nodes of the 
right hemisphere (Supplementary Figure 3).

A detailed heatmap of the network nodes and their de-
grees of adjacent validated edges concerning the raised 
cognitive scores are shown in Figure 5D. The nodes adja-
cent to a nonzero number of validated edges had a degree 
of 5.4 ± 5.2; therefore, nodes with a degree ≥10 validated 
edges were regarded as critical for descriptive purposes 

here. The distribution of these critically involved nodes 
varied considerably between domains. Critical nodes for 
attention/processing speed (TMT-A) and executive func-
tion/concept shifting (TMT-B) were mainly located in the 
left visual and somatomotor networks but also included 
nodes from the bilateral dorsal attention and default mode 
networks. For performance in visual working memory 
(Corsi Block Tapping), mainly nodes of the right dorsal at-
tention and bilateral default mode networks proved critical 
and were predominantly connected by inter-hemispherical 

Table 1. Results of Model Cross-validation (CV)

Model cross-validation (CV)* Identification of validated edges†

Test
(cognitive domains)

Average
edge number 
included (%)‡

RMSE Correla-
tion coef-
ficient (r)

P-value 
permu-
tation

Validated 
intra-network 
edges

Validated 
inter-network 
edges

Total valid-
ated edges 
(%)‡

Trail-making Test A (s) 514 (5.2%) 31.61 0.388*** 0.01* 82 344 426 (4.3%)

(Attention, processing 
speed)

Trail-making Test B (s) 530 (5.4%) 71.66 0.470*** 0.01* 74 386 460 (4.6%)

(Executive function, 
concept shifting)

Imagined shopping tour 
[items]

205 (2.1%) 6.82 0.481*** 0.01* 26 148 174 (1.8%)

(Language, semantic 
word fluency)

Number transcoding 
[items]

64 (0.6%) 0.99 0.411*** 0.01* 10 38 48 (0.5%)

(Language processing)

Digit span Fw [weighted 
items]

30 (0.3%) 2.43 0.123 0.13 CV not 
passed

CV not 
passed

CV not 
passed

(Verbal working 
memory)

Digit span Bw [weighted 
items]

56 (0.6%) 2.58 0.132 0.16 CV not 
passed

CV not 
passed

CV not 
passed

(Verbal working 
memory)

Corsi block tapping Fw 
[weighted items]

224 (2.3%) 2.32 0.202* 0.11 CV not 
passed

CV not 
passed

CV not 
passed

(Visuospatial working 
memory)

Corsi block tapping Bw 
[weighted items]

319 (3.2%) 1.99 0.433*** 0.01* 56 208 264 (2.7%)

(Visuospatial working 
memory)

Word list, immediate 
recall [items]

440 (4.4%) 3.08 0.570*** 0.01* 38 336 374 (3.8%)

(Verbal episodic 
memory)

Word list, delayed recall 
[items]

272 (2.7%) 2.38 0.525*** 0.01* 36 200 236 (2.4%)

(Verbal episodic 
memory)

Notes: Fw = Forward; Bw = Backward; RSME = Root (of) Mean Squared Error.
*Models based on edges positively associated with cognitive performance.
†Edges significant in 90% of cross-validation iterations.
‡No edges from the nodes to themselves, n = ([100 × 100]–100) = 9900 possible edges.
*P < .05. ***P < .001.
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9Friedrich et al.: Structural connectivity in gliomas

fibers. Nodes and connections critically involved in verbal 
semantic memory (Word List, immediate and delayed re-
call) were almost exclusively left-sided and included nodes 
from the visual, somatomotor, and default mode networks 
(Figure 5A–C; Supplementary Figure 2). Interestingly, 
highly critical nodes (degree ≥15 adjacent validated edges) 
included the default mode network nodes in the left tem-
poral/parietal or bilateral posterior cingulate cortex in 4 to 
5 of the 7 predictive models.

Discussion

As demonstrated in recent randomized trials and the 
present study, glioma patients are at high risk of devel-
oping cognitive decline during their course of disease.3 
Although the relationship between brain damage and 
neurological function is generally well established for the 
eloquent primary cortical areas and their associated fiber 
tracts,35 the underlying causes of cognitive deterioration 
in brain tumor patients remain poorly understood.36–38 
Nevertheless, initial studies in glioma patients suggested 
that evaluating brain networks may help further elucidate 
the cognitive decline of various domains.13–15,39,40 In the 
present study, we hypothesized that decreased structural 
connectivity in whole-brain networks is associated with 
cognitive deterioration in glioma patients. Therefore, we 
applied an innovative tractography algorithm4,23 in combi-
nation with a network-based parcellation that allowed the 
construction of a whole-brain connectome of the structur-
ally altered brain of pretreated glioma patients in conjunc-
tion with a well-developed method for predicting traits and 
symptoms from connectivity data.25 Thus, we could show 
that reduced fiber numbers in subsets of connections 
mainly connecting different brain networks were signifi-
cantly related to performance deficits in different cognitive 

domains. Critical cortical regions (nodes) having cross-
validated connections to a high number of other nodes in-
cluded mainly left-hemispheric cortical regions nodes and 
several cortical regions known as hubs, such as the bilat-
eral precuneus or posterior cingulate cortex.41

As expected, lesion location concerning the major cere-
bral lobes was significantly associated with reduced scores 
in a subset of cognitive tests. Of note, this only gives a 
rough orientation and does not allow for a fine-grained 
characterization of the cortical regions and fiber tracts in-
volved in the performance of specific cognitive domains. 
In principle, the relation between lesion location and 
symptom severity could have been brought down to the 
voxel level, resulting in the widely used method of voxel-
based lesion-symptom mapping which has also been ap-
plied in brain tumors.42 However, despite the high spatial 
resolution, this method has the disadvantage that it arbi-
trarily maps gray and white matter and can only be ap-
plied in brain locations with a representative number of 
lesions. This may result in diverging results depending on 
the pathology under investigation, for example, for tumors 
versus stroke.43

Whole-brain Connectome: The Importance of 
Networks and Hubs

Although the integrity of single fiber tracts appears to 
have a measurable impact on different aspects of cogni-
tive functioning, most higher brain functions are probably 
supported by more general organizational principles gov-
erning the information flow in the brain. Regarding struc-
tural connectivity, several highly connected cortical regions 
have been identified and termed the “rich club.”41 Most 
of these are also present in functional resting-state net-
works (RSN)44,45 and are predominantly located in the pos-
terior part of the default mode network.45,46 Functionally, 
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they seem to serve primarily for connectivity between the 
RSNs, especially between the default mode, attention, and 
control networks.45

These findings and the availability of advanced MR im-
aging techniques in the clinic have led to more network-
oriented approaches for investigating the dependence 
of cognitive performance on structural connectivity in 
perioperative glioma patients. In patients with low-grade 
gliomas, Cocherau et al.17 studied a more extensive set of 
tracts using tract-wise lesion-symptom mapping and found 
the integrity of the left superior longitudinal fascicle and left 
frontal aslant/frontostriatal tracts to be most predictive for 
the development of postoperative disturbances in executive 
functioning and phonologic fluency. Liu et al.18 constructed 
a whole-brain structural connectome from deterministic 
tractography in preoperative glioma patients. They ob-
served that local (node) efficiency, a measure for commu-
nication strength among the first neighbors of a node, was 
generally reduced in tumor patients and particularly related 
to memory function in temporal tumors and to informa-
tion processing speed in frontal tumors. Zhang et al.16 ap-
plied navigated transcranial magnetic stimulation (nTMS) 
and whole-brain deterministic tractography in left-sided 
tumors and observed a correlation between the average 
node degree (and other connectome properties) of the 
left-hemispheric/nTMS-positive networks and the degree 
of aphasia. A network-level approach was also adopted by 
Mrah et al.,19 who computed lesion overlap and white matter 
dysconnectivity scores for several atlas-based functional 
networks in low-grade glioma. Through a machine-learning 
algorithm, lesions or disconnections of the frontoparietal 
(control) network proved to be most predictive for postoper-
ative deterioration in cognitive set-shifting.

In the present study, we used a network and node defini-
tion scheme encompassing the entire cerebral cortex and 
considered all potential structural connections between 
cortical nodes, including those lying outside anatomically 
designated tracts. Despite significant variation between 
cognitive domains, most predictive connections were 
those between different RSNs rather than within single 
RSNs. The distribution of critically involved nodes also 
varied considerably between domains but included nodes 
of the left visual and somatomotor networks and bilateral 
nodes of the dorsal attentional and default mode networks 
in several domains. Particularly critical nodes included the 
default mode network’s left temporal and bilateral poste-
rior cingulate cortex. These findings fit well with the view 
that structural connections between RSNs form the back-
bone of functional connectivity, enabling higher cogni-
tive processes. From a more general point of view, these 
results may imply that cognitive decline in treated brain 
tumor patients shares a common mechanism with other 

major psychiatric and neurological disorders where the 
rich club nodes were also found to be predominantly in-
volved,47 such as the precuneus/posterior cingulate cortex 
in Alzheimer’s disease.48

As cognitive performance depends on several nodes of 
different networks, the present models could be used to 
predict cognitive decline in individual glioma patients es-
pecially when local treatments such as surgery and radio-
therapy are planned. In these situations, post-therapeutic 
cognitive deficits could arise unforeseen by clinical judg-
ment or standard neuro-navigation, but may be anticipated 
or avoided by pre-therapeutic whole-brain tractography 
and critical node definitions as provided here.

Limitations

This study included patients with substantial variability in 
treatment intensity and time between treatment initiation 
and imaging/neurocognitive assessment. In addition, each 
patient was observed only once, such that longitudinal ob-
servations were not available. On the other hand, while 
group analyses are usually challenging to perform in this 
constellation, a rich, diverse pattern of structural damage 
may have facilitated the construction of a predictive model 
for cognition performance. From a methodological point 
of view, applying an atlas-based parcellation created from 
healthy subjects may be questionable because a functional 
restructuring of the brain, including shifts and deformations 
of cortical nodes, may have occurred in the patients. Finally, 
fiber tractography always approximates the actual white 
matter structure because even the most advanced methods 
may fail, especially in structurally altered brain tissue.

Conclusion

In summary, the present results suggest that the cogni-
tive performance of pretreated glioma patients is strongly 
related to the structural connectivity between multiple 
brain networks and the integrity of known network hubs. 
This mirrors a pattern observed for other major neurolog-
ical disorders. Whole-brain tractography in conjunction 
with the definition of critical cortical nodes should be fur-
ther evaluated for improving local treatment planning in 
glioma patients.

Supplementary Material

Supplementary material is available online at Neuro-
Oncology (https://academic.oup.com/neuro-oncology).

immediate recall (verbal semantic memory). (D) Heatmap of the networks and nodes and their degrees of adjacent cross-validated predictive 
edges concerning the raised cognitive scores. Bw, Backward; L, left; R, right; Vis, visual; SM, somatomotor; dAtt, dorsal attention; vAtt, ventral 
attention; Limb, limbic; Ctrl, frontal control; DMN, default mode network; Temp, temporal; TMT-A (A), Trail-Making Test A (attention); TMT-B (E), 
Trail-Making Test B (executive function); SupM (L), Imagined Shopping Tour (language); DSf (VM), Digit Span Forward (verbal working memory); 
DSb (VM), Digit Span Backward (verbal working memory); CBTf (vM), Corsi Block Tapping Forward (visuospatial working memory); CBTb (vM), 
Corsi Block Tapping Backward (visuospatial working memory); WLi (eM), Word List, immediate recall (verbal episodic memory); WLd (eM), Word 
List, delayed recall (verbal episodic memory); PCC, posterior cingulate cortex.
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Table S1 Patient characteristics 

   
Sex (male/female) 73/48  
Age (years) 52 (28-74) 
ECOG-PS (0/1/2/3) 58/56/6/1  
Education (ISCED-Score) 8  (3-10) 
Employment (no/yes) 45/76  
Follow-up Interval (months) 14.4 (0.6-213.7) 
   
Presenting Symptoms   
  Aphasia 17 (14%) 
  Paresis 29 (24%) 
  Fatigue 19 (16%) 
  Vision disturbance 12 (10%) 
  Vertigo, Confusion 4 (3%) 
   
WHO CNS 2021 Tumor Type   
  GBM, IDH wildtype 72 (60%) 
  GBM, NOS 4 (3%) 
  Astrocytoma, IDH-mutated Grade 4 8 (7%) 
  Astrocytoma, IDH-mutated Grade 3 15 (12%) 
  Astrocytoma, NOS Grade 3 6 (5%) 
  Oligodendroglioma, IDH-mutated, 1p19q codeleted G3 13 (11%) 
  Oligodendroglioma NOS/NEC Grade 3 3 (2%) 
   
Tumor Locationa   
  Frontal Left/Right 31/28 (26%/23%) 
  Parietal Left/Right 7/8 (6%/7%) 
  Temporal Left/Right 22/16 (18%/13%) 
  Occipital Left/Right 5/4 (4%/3%) 
   
Lesion Volumes (mL)   
  Resection cavity (n= 90) 20.9 (0.3-172.5) 
  FLAIR hyperintense (n=121) 53.4 (3.4-252.9) 
  T1 contrast-enhancing (n= 99) 8.3 (0.01-122.9) 
  18F-FET PET (TBR > 1.6) (n= 79) 30.3 (2.6-227.8) 
   
Treatment (Number of Procedures)   
  Surgeryb (1/2/3/4) 101/17/2/1  
  Radiotherapy (0/1/2) 7/100/14  
  Chemotherapy (0/1/2/3) 10/91/16/4  
   
Corticosteroids (no/yes) 91/30 (75%/25%) 
Anticonvulsants (no/yes) 49/72 (40%/60%) 
18F-FET PET diagnosed recurrence (no/yes) 63/58 (52%/48%) 
   

 
Median (Range) unless otherwise stated; ECOG-PS, Eastern Cooperative Oncology Group Performance Score; 
ISCED, International Standard Classification of Education (1997); GBM, glioblastoma; IDH, Isocitrate-
Dehydrogenase; NOS, not otherwise specified; NEC, not elsewhere classified; AA, anaplastic astrocytoma; AOD, 
anaplastic oligodendroglioma; 1p19q codel, 1p19q co-deleted; amain lobe involved; FLAIR, fluid-attenuated 
inversion recovery; 18F-FET, O-(2-[18F]fluoroethyl)-L-tyrosine; TBR, tumor-to-brain ratio; bincluding biopsy 
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Table S2 Description of Neurocognitive Tests 

All tests were done with paper and pencil. The tests are shown here in the order in which they 
were presented to the patient. 
 
- Trail-Making Test A: This widely used test assesses processing speed and attention. Small 
circles enclosing the numbers 1-25 are randomly distributed on a sheet of paper, and the patient 
is instructed to draw a connecting line in ascending order as quickly as possible without lifting 
the pencil. The time for completion is measured and given in seconds.1,2 
 
- Trail Making Test B: This is a variant of the Trail-Making Test A, which measures executive 
function and concept shifting. Small circles with the numbers 1-13 and the letters A-L are 
randomly distributed on a sheet of paper, and the patient has to connect them in ascending, 
alternating order as quickly as possible, measured in seconds.1,2 
 
- Digit Span forward: This is a common test for verbal working memory.3 Increasingly long 
lists of number words are read to the patient, who is asked to recall each list immediately from 
memory. Two points are awarded for success on the first attempt. In the event of a failed 
attempt, another list of the same length is read to the patient, for which she receives one point 
if recalled correctly. After two failed attempts, the test is stopped, and the total score is counted. 
 
- Word List, immediate recall: This test is part of the DemTect4 battery widely used for 
dementia screening. A list of 10 items is read to the patient, who is instructed to recall as many 
items as possible immediately after presentation. The same list is then presented a second time, 
and the total number of correctly recalled items from these two runs (up to 20) is counted. No 
instruction is given to remember the items for later recall. 
 
- Imagined Shopping Tour: This test is also part of the DemTect and is used to assess semantic 
word fluency. The patient is instructed to imagine a shopping trip in a supermarket, imagining 
and pronouncing as many products as possible within 60 seconds. The total number of items is 
counted (up to 30). 
 
- Number Transcoding: This test is also part of the DemTect battery and tests aspects of 
language processing. Two numbers presented in numerical notation have to be transformed into 
whole words, and two numbers written in whole words have to be transformed to numerical 
notation. The number of successes (out of four) is counted. 
 
- Digit Span backward: Same as Digit Span forward, but with the instruction to recall the list 
of numbers in reverse sequence. 
 
- Word List, delayed recall: The patient is asked to recall the list of 10 items from the word 
list presented before (typical interval of 5-10 minutes), maximum score of 10 items. 
 
- Corsi Block Tapping Test: This is a test for visual-spatial working memory.5 The examiner 
taps increasingly long sequences of 10 small blocks mounted on a board, and the patient is 
asked to reproduce the sequence forward/backward by tapping the blocks himself. The same 
scoring scheme as for the digit span tests is applied. 
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Table S3 Cognitive test scores in glioma patients and healthy subjects 

Test 

(Cognitive Domains) Glioma Patients 
Healthy 

Subjects 

Difference 

(%) 

Patients (%) 

with 

Clinically 

Relevant 

Deficita 

     

Trail-Making Test A [seconds] 47.3 ± 33.9 *** 30.9 ± 12.1 +53.1 39 (32%) (Attention, processing speed) 
     

Trail-Making Test B [seconds] 117.6 ± 80.2 *** 68.2 ± 40.1 +72.4 34 (28%) (Executive function, concept shifting) 
     

Imagined Shopping Tour [items] 20.2 ± 7.7 *** 26.8 ± 4.4 -24.6 57 (47%) (Language, semantic word fluency) 
     

Number Transcoding [items] 3.3 ± 1.1 n.s. 3.6 ± 0.6 -8.3 21 (17%) (Language processing) 
     

Digit Span Forward [weighted items] 7.4 ± 2.3 ** 8.0 ± 2.3 -7.5 12 (10%) (Verbal working memory) 
     

Digit Span Backward [weighted items] 6.5 ± 2.5 *** 8.3 ± 2.3 -21.7 20 (17%) (Verbal working memory) 
     

Corsi Block Tapping Fw [weighted items] 6.6 ± 2.3 * 7.4 ± 1.9 -10.8 27 (22%) (Visuo-spatial working memory) 
     

Corsi Block Tapping Bw [weighted items] 4.8 ± 2.2 *** 6.0 ± 2.0 -20.0 28 (23%) (Visuo-spatial working memory) 
     

Word List, Immediate Recall [items] 11.7 ± 3.7 *** 14.1 ± 2.6 -17.0 34 (28%) (Verbal episodic memory) 
     

Word List, Delayed Recall [items] 4.5 ± 2.8 * 5.4 ± 2.4 -16.7 22 (18%) (Verbal episodic memory) 
     

 
Fw, Forward; Bw, Backward; abelow the mean - 1.5 x the standard deviation of healthy subjects.  
* p < 0.05, ** p < 0.01, *** p < 0.001, two-sided Mann–Whitney U-test   
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Table S4 Coefficients of determination (R2) of univariate linear regression analysis for 
cognitive scores of the entire patient group. Summary connectivity values served as predictors 
and were calculated separately for edges positively and negatively associated with cognitive 
performance. 

 Edges positively associated 
with cognitive performance 

Edges negatively associated 
with cognitive performance 

Test 
(Cognitive Domains) 

Edge 
Number 

Coefficient of 
Determination 
(R2) 

Edge 
Number 

Coefficient of 
Determination 
(R2) 

     
     
Trail-Making Test A  

524 0.255 *** 16 0.070 ** 
(Attention, processing speed) 
     
Trail-Making Test B  

542 0.365 *** 8 0.086 ** (Executive function, concept 
shifting) 
     
Imagined Shopping Tour  

206 0.374 *** 6 0.093 ** 
(Language, semantic word fluency) 
     
Number Transcoding  

66 0.369 *** 6 0.154 *** 
(Language processing) 
     
Digit Span Forward  

32 0.161 *** 0 ------- 
(Verbal working memory) 
     
Digit Span Backward 

56 0.271 *** 4 0.024 
(Verbal working memory) 
     
Corsi Block Tapping Forward 

226 0.294 *** 0 ------- 
(Visuo-spatial working memory) 
     
Corsi Block Tapping Backward 

316 0.370 *** 12 0.158 *** 
(Visuo-spatial working memory) 
     
Word List, Immediate Recall  

454 0.442 *** 2 0.128 *** 
(Verbal episodic memory) 
     
Word List, Delayed Recall 

282 0.398 *** 12 0.107 *** 
(Verbal episodic memory) 
     

 
** p < 0.01, *** p < 0.001  
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Table S5 Clinical factors mainly unrelated to cognitive test scores in treated glioma patients 

Test 
(Cognitive Domains) Se
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Trail-Making Test A 

0.167 0.045 0.014 * - 0.175 - 0.107 - 0.001 - 0.043 
(Attention, processing speed) 

        
Trail-Making Test B 

0.159 0.223 0.101 - 0.134 - 0.090 - 0.036 - 0.003 (Executive. function, concept 
shifting) 

        
Imagined Shopping Tour 

0.361 0.464 0.969 - 0.024 - 0.038 - 0.015 - 0.088 (Language, semantic word 
fluency) 

        
Number Transcoding 

0.482 0.426 0.765 - 0.051 - 0.074 - 0.047 - 0.075 
(Language processing) 

        
Digit Span Forward 

0.685 0.107 0.129 - 0.031 - 0.066 - 0.083 - 0.026 
(Verbal working memory) 

        
Digit Span Backward 

0.564 0.153 0.190 0.214 * 0.143 0.082 0.136 
(Verbal working memory) 

        
Corsi Block Tapping Forward 

0.288 0.055 0.086 - 0.005 - 0.031 - 0.163 - 0.114 (Visuo-spatial working 
memory) 

        
Corsi Block Tapping 

Backward 0.726 0.099 0.049 * 0.041 0.042 0.044 0.015 (Visuo-spatial working 
memory) 

        
Word List, Immediate Recall 

0.477 0.574 0.518 - 0.064 0.003 - 0.018 - 0.079 
(Verbal episodic memory) 

        
Word List, Delayed Recall 

0.911 0.610 0.078 - 0.014 0.054 0.034 - 0.094 
(Verbal episodic memory) 

        
Number of tests with p < 0.01 0/10 0/10 0/10 0/10 0/10 0/10 0/10 

 
* p < 0.05, ** p < 0.01, *** p < 0.001; MWU, two-sided Mann–Whitney U-test; ISCED, International Standard 
Classification of Education 
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Table S6 Coefficients of determination (R2) of multiple linear regression models of cognitive scores for the entire patient group, using different combinations of 
predictors.  

Test 
(Cognitive Domains) 

PET- 
Recurrence 

Lesion 
Volumes 

Lesion 
Location 

Age 
+ ISCED 

Recurrence + 
Volumes 

+ Location 

Summary 
Connectivity 

Values 

Age 
+ ISCED 

+ Connectivity 

PET-Recurrence 
+ Volumes 
+ Location 

+ Connectivity 
Trail-Making Test A 

0.039 * 0.060 0.130 * 0.131 *** 0.201 * 0.255*** 0.291 *** 0.331 *** 
(Attention, processing speed) 
Trail-Making Test B 

0.036 * 0.052 0.080 0.179 *** 0.144 0.365*** 0.392 *** 0.415 *** 
(Executive function, concept shifting) 
         
Imagined Shopping Tour 

0.003 0.080* 0.155 ** 0.118 ** 0.222 ** 0.374*** 0.389 *** 0.430 *** 
(Language, semantic word fluency) 
         
Number Transcoding 

0.009 0.009 0.131 * 0.141 *** 0.143 0.369 *** 0.401 *** 0.443 *** 
(Language processing) 
         
Digit Span Forward 

0.000 0.032 0.170 ** 0.060 * 0.212 ** 0.161 *** 0.217 *** 0.301 *** 
(Verbal working memory) 
Digit Span Backward 

0.004 0.042 0.078 0.144 *** 0.124 0.271 *** 0.314 *** 0.315 *** 
(Verbal working memory) 
         
Corsi Block Tapping Forward 

0.018 0.084* 0.110 0.181 ** 0.179 * 0.294 *** 0.343 *** 0.325 *** 
(Visuo-spatial working memory) 
Corsi Block Tapping Backward 

0.101 *** 0.056 0.108 0.175 *** 0.203 * 0.370 *** 0.410 *** 0.409 *** 
(Visuo-spatial working memory) 
         
Word List, Immediate Recall 

0.032 * 0.089* 0.225 *** 0.120 ** 0.325 *** 0.442 *** 0.467 *** 0.515 *** 
(Verbal episodic memory) 
Word List, Delayed Recall 

0.037 0.073 0.266 *** 0.165 ** 0.331 *** 0.398 *** 0.436 *** 0.493 *** 
(Verbal episodic memory) 
         
Mean (Standard Deviation) of R2 0.028 (0.030) 0.058 (0.025) 0.145 (0.061) 0.141 (0.037) 0.208 (0.071) 0.330 (0.083) 0.366 (0.075) 0.398 (0.076) 
p(Connectivity) in Combined Models       all < 0.001*** all < 0.001*** 

 
* p < 0.05, ** p < 0.01, *** p < 0.001; ISCED, International Standard Classification of Education (1997) 



Publications 

 
59 

 
 
 

 
 
 
 

 

 

 

Figure S1 Linear regression analysis for the dependency of cognitive test scores for verbal 
episodic memory (immediate recall) and language fluency on the individual connectivity scores 
(summed fiber counts) in 121 glioma patients. R2, coefficient of determination. 
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Figure S2 Left: Binary connectivity matrix labeling cross-validated predictive edges; node 
membership to networks marked in gray. Middle/Right: Anatomical representation of the 
critical nodes by visualization of node degree and connecting edges. Results are shown for four 
representative cognitive tests. A: Number transcoding (language processing), B: Trail-Making 
Test A (attention/processing speed), C: Imagined Shopping Tour (semantic word fluency), D: 
Word List, delayed recall (verbal episodic memory). Vis, visual; SM, somatomotor; dAtt, dorsal 
attention; vAtt, ventral attention; Limb, limbic; Ctr, frontal control; DMN, default mode 
network  
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Figure S3 Binary connectivity matrices labeling predictive edges for two exemplary tests of A) 
Attention/processing speed (Trail-Making Test A) and B) Verbal episodic memory (delayed 
recall of word list). Node membership to networks marked in gray. Left: Edges positively 
associated with cognitive performance. Right: Edges negatively associated with cognitive 
performance. Vis, visual; SM, somatomotor; dAtt, dorsal attention; vAtt, ventral attention; 
Limb, limbic; Ctr, frontal control; DMN, default mode network 
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Abstract 
Background.  Amino acid PET using the tracer O-(2-[18F]fluoroethyl)-L-tyrosine (FET) is one of the most reliable im-
aging methods for detecting glioma recurrence. Here, we hypothesized that functional MR connectivity between 
the metabolic active recurrent tumor region and resting-state networks of the brain could serve as a prognostic 
imaging biomarker for overall survival (OS).
Methods.  The study included 82 patients (26–81 years; median Eastern Cooperative Oncology Group perfor-
mance score, 0) with recurrent gliomas following therapy (WHO-CNS 2021 grade 4 glioblastoma, n = 57; grade 3 
or 4 astrocytoma, n = 12; grade 2 or 3 oligodendroglioma, n = 13) diagnosed by FET PET simultaneously acquired 
with functional resting-state MR. Functional connectivity (FC) was assessed between tumor regions and 7 canon-
ical resting-state networks.
Results.  WHO tumor grade and IDH mutation status were strong predictors of OS after recurrence (P < .001). 
Overall FC between tumor regions and networks was highest in oligodendrogliomas and was inversely related 
to tumor grade (P = .031). FC between the tumor region and the dorsal attention network was associated with 
longer OS (HR, 0.88; 95%CI, 0.80–0.97; P = .007), and showed an independent association with OS (HR, 0.90; 95%CI, 
0.81–0.99; P = .033) in a model including clinical factors, tumor volume and MGMT. In the glioblastoma subgroup, 
tumor volume and FC between the tumor and the visual network (HR, 0.90; 95%CI, 0.82–0.99, P = .031) were inde-
pendent predictors of survival.
Conclusions.  Recurrent gliomas exhibit significant FC to resting-state networks of the brain. Besides tumor type 
and grade, high FC between the tumor and distinct networks could serve as independent prognostic factors for 
improved OS in these patients.

Key Points

• Recurrent gliomas exhibit functional connectivity to resting-state networks.

• Functional connectivity is higher in IDH-mutant gliomas than in glioblastomas.

• Tumor connectivity to visual/attention networks is a factor for survival.

Functional connectivity between tumor region and 
resting-state networks as imaging biomarker for overall 
survival in recurrent gliomas diagnosed by O-(2-[18F] 
fluoroethyl)-L-tyrosine PET  

© The Author(s) 2025. Published by Oxford University Press, the Society for Neuro-Oncology and the European Association of 
Neuro-Oncology.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://
creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, 
provided the original work is properly cited.
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Graphical Abstract 

1. Evaluation of functional connectivity (FC)
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2. Overall survival (OS) analysis:
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Gliomas are primary brain tumors with a strong tendency 
to infiltrate the normal brain tissue diffusely.1 This growth 
pattern leads to a close interaction between tumor cells 
and the local microenvironment that comprises neurons, 
normal glia, and immunogenic and inflammatory cells.2 In 
particular, the interaction between neuronal elements and 
glioma cells has recently attracted considerable attention 
and is now considered a critical aspect in the emerging 
field of Cancer Neuroscience.3,4

From a neurooncological perspective, the impact of neu-
ronal activity on glial cells is an important issue, and there 
is clear evidence that neuronal activity induces and pro-
motes glioma growth through paracrine signaling and the 

formation of excitatory glutaminergic synapses between 
neurons and glioma cells.5–8 Conversely, developing a mac-
roscopic glioma may affect neuronal activity and signal 
conduction locally and at distant sites. The functional im-
pact of local glioma infiltration into the adjacent cortex has 
mainly been studied in the context of presurgical map-
ping before tumor resection. Typical task-evoked patterns 
of neuronal activity, assessed using electrophysiological 
methods9–13 or magnetencephalography,13,14 may be pre-
served in the glioma-infiltrated cortex.

Besides local effects, glioma growth and invasion may 
affect the integrity of whole-brain neural networks. Resting-
state functional magnetic resonance imaging (rs-fMRI) has 

Importance of the Study
There is increasing evidence in oncological neurosci-
ence that preserved functional connectivity (FC) be-
tween tumor-infiltrated brain regions and resting-state 
networks of the brain influence overall survival in pri-
mary gliomas. Here, we found that FC between the brain 
region infiltrated by metabolically active tumors and 

different resting-state networks also prevails in recur-
rent gliomas of different types and grades and is asso-
ciated with overall survival. These results suggest that 
FC can be used as a novel prognostic biomarker for im-
aging in patients with recurrent glioma.
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been used to characterize alterations in whole-brain con-
nectivity in patients with glioma, with consistent evidence 
of disturbed functional connectivity (FC) extending to the 
contralateral hemisphere.15,16 Moreover, global network 
connectivity changes may serve as imaging biomarkers 
predicting survival predominantly in glioblastomas.17–20 
In addition, FC between tumor-infiltrated regions and net-
works of the brain has been investigated in newly diag-
nosed glioblastoma21 and mixed cohorts of patients with 
primary and recurrent CNS WHO grade 2–4 gliomas.22 In 
these studies, tumor voxels were frequently functionally 
connected to resting-state networks21 or otherwise identi-
fied cortical areas,22 and preserved FC was associated with 
better overall survival in certain subgroups.

In recurrent gliomas, the interactions of different ther-
apeutic interventions comprising tumor resection, radi-
otherapy, and chemotherapy using alkylating drugs with 
glioma cells, neurons, and immunogenic/inflammatory 
cells may further complicate the situation, rendering out-
come and survival less predictable23–25

In the present study, we investigated the FC between 
brain regions infiltrated by metabolic active tumors and 
resting-state networks using rs-fMRI in patients with recur-
rent glioma, including its prognostic value. In addition to 
anatomical MRI, diagnosis, localization, and extent of re-
current gliomas were assessed using amino acid PET with 
the tracer O-(2-[18F]fluoroethyl)-L-tyrosine (FET), one of the 
most reliable noninvasive imaging methods for detecting 
glioma recurrence.26

Patients and Methods

Patient Characteristics

Patients were recruited as part of a prospective study that 
included glioma patients with a suspected recurrence/
progression who were in good general condition (ECOG 
performance score, 0–1 at screening), had no major depres-
sion, were free of seizures (with or without anticonvulsive 
medication), and were able to undergo anatomical MRI, 
functional rs-fMRI and FET PET acquired simultaneously 
on a hybrid MR/PET scanner (for imaging protocols, see 
Supplementary Material). The Ethics Committee of the 
University of Cologne approved the study protocol (pro-
tocol number 17-365), and written informed consent was 
obtained from all patients per the Declaration of Helsinki.

Eighty-two adults (n = 36 women; n = 46 men; median 
age, 53 years; range, 26–81 years) with gliomas at recur-
rence were included. All tumors were histomolecularly 
characterized according to the 2021 classification of the 
WHO for Tumors of the CNS.27 Patients were referred to 
the imaging facility of the Forschungszentrum Juelich 
(Research Center Juelich), Germany, by 5 university hos-
pitals between February 2018 and August 2022. All patients 
had Progressive Disease on anatomical MRI according to 
the RANO 1.0 criteria28 and a metabolically active tumor 
with pathologically increased tracer uptake as assessed 
by FET PET. The criteria for the additional FET PET-based 
diagnosis of glioma recurrence have been described 
previously.29

Fifty-seven patients (70%) had a CNS WHO grade 4 glio-
blastoma, 12 patients (14%) had a CNS WHO grade 3 or 4 
astrocytoma, and 13 patients (16%) had a CNS WHO grade 
2 or 3 oligodendroglioma (Table 1). Overall, 57 (70%) pa-
tients had IDH-wild-type tumors, and 25 (30%) patients 
had IDH-mutant tumors. First-line therapy had been ap-
plied according to respective guidelines at the initial diag-
nosis. For instance, most of the glioblastomas (83%) had 
undergone first-line therapy comprising surgery or biopsy, 
postoperative radiotherapy with concomitant and main-
tenance temozolomide chemotherapy,30 or temozolomide 
plus lomustine chemoradiation according to the CeTeG/
NOA-09 trial.31 In patients with astrocytomas, a combina-
tion of surgery or biopsy, radiotherapy with concomitant 
and maintenance temozolomide chemotherapy was the 
most common first-line therapy (83%). At initial diagnosis, 
patients with oligodendroglioma had undergone either 
surgery alone or surgery followed by radiotherapy and ad-
juvant nitrosourea-based chemotherapy.

The median time interval between initial diagnosis and 
recurrence depended on tumor type (glioblastoma, 9.4 
months; astrocytoma, 44.6 months; oligodendroglioma, 
59.3 months). Table 1 shows the number of therapy lines 
(eg, surgical interventions including stereotactic biopsy, 
radiotherapy series, and chemotherapies) applied until the 
time of diagnosis of recurrence.

Image Preprocessing and Generation of Lesion 
Masks

The functional imaging data passed the standard SPM12/
CONN toolbox preprocessing steps.32 These include mo-
tion correction, removal of outliers, regressing out noise 
signals from the cerebrospinal fluid and white matter, 
slice-timing correction, smoothing with 5 mm FWHM, and 
bandpass filtering to 0.008–0.09 Hz. Afterward, functional 
and structural images were non-rigidly co-registered to the 
MNI-152 standard brain template using the SPM12/CONN 
unified segmentation and registration algorithm. From 
the structural MR and PET images, 4 binary lesion masks 
were generated for the subsequent analysis of FC. These 
included lesions with pathologically increased FET uptake, 
T1 contrast-enhancing lesions, T2/FLAIR hyperintensities, 
and resection cavities. Segmentation of tumor regions with 
pathologically increased FET PET uptake at a tumor-to-brain 
ratio of 1.6 or more33 was performed using an FSL script 
(FSL toolbox, https://fsl.fmrib.ox.ac.uk). For this purpose, 
the PET images were converted into standardized tumor-
to-brain ratio images whereby the average tracer activity 
in the unaffected brain served as the reference. T1 contrast-
enhancing lesions and T2/FLAIR hyperintensities were au-
tomatically segmented using the deep learning software 
HD-GLIO (https://github.com/NeuroAI-HD/HD-GLIO), while 
resection cavities were manually contoured by an experi-
enced radiation oncologist (MK). All segmentations were 
visually inspected, manually corrected, and finally merged 
into a composite lesion mask. The location of the metabolic 
active, FET-avid recurrent tumors with respect to the 4 major 
lobes of each hemisphere was calculated from the maximal 
volumetric overlap of the PET mask with the lobe definitions 
from the MNI-152 standard brain template.
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Determination of FC Between Tumor Region and 
Networks

FC between the metabolically active tumor region and 
a set of specified resting-state networks was determined 
by a variant of the FSL dual regression method34–36 where 
atlas-based network masks served as seeds. We analyzed 
7 resting-state networks defined in the Yeo atlas,37 ie, the 
visual, somatomotor, dorsal attention, ventral attention, 
limbic, fronto-parietal control, and default mode networks. 
The corresponding binary atlas network masks were 
cropped by the individual pathological areas (composite 
lesion masks) and served as seed regions. The average 
blood-oxygen-level-dependent (BOLD) time series from 
the voxels in the cropped network masks was calculated 
and used as a regressor. Network-specific regression co-
efficients were then calculated for all voxels, normalized 
to z-scores, and stored as connectivity maps describing 
the strength of FC between each voxel and the analyzed 
network. Finally, we computed the average normalized 
regression coefficient of the voxels within the segmented 
PET lesion to obtain the FC between the tumor region and 
each of the 7 networks. The average of the individual net-
work connectivity values was used as a measure of whole-
brain connectivity. In addition, the spatial proximity of the 
tumor to the resting-state networks was determined where 
we used the center of gravity of the PET lesion and the cen-
troids of the network nodes to calculate the mean distance 
(proximity) between the PET lesion and each network.

Statistical Analysis

Statistical analysis was performed using the SPSS sta-
tistical software package (version 25, IBM Corporation). 
Independent-sample two-sided t-tests or one-way ANOVA 
were performed to determine group differences for con-
tinuous variates. A mixed, repeated-measures ANOVA 
with Greenhouse-Geisser correction for non-sphericity 
was used to analyze differences in FC between individual 
networks and as a function of tumor type, IDH mutational 
status, and CNS WHO tumor grade. For analysis of overall 
survival, the duration between the date of imaging and 
the date of death was recorded, or data were censored at 
the time of the last available follow-up. The association of 
FC between brain regions infiltrated by metabolic active 
tumor and networks alone as well as along with tumor-
related (tumor type, CNS WHO tumor grade, IDH muta-
tional status) and other common prognostic factors (ie, 
age, the extent of resection, Eastern Cooperative Oncology 
Group (ECOG) performance score, O6-methylguanine-DNA 
methyltransferase (MGMT) promotor methylation status, 
metabolic active tumor volume) on overall survival was es-
timated using Kaplan–Maier analysis with log-rank tests or 
Cox regression analysis. For Kaplan–Maier analysis of FC, 
patients were grouped into quartiles or with respect to the 
median. For the multivariate survival analysis, either a Cox 
regression analysis with simultaneous or stepwise-forward 
inclusion of variables was used (detailed in Results). 
Forward inclusion was additionally validated by stepwise 
backward exclusion. Unless otherwise stated, P-values less 
than .05 were considered statistically significant. Survival 

Table 1. Patient Characteristics

N % or range

Sex (male/female) 46/36 56/44%

Median age and range (years) 53 26 - 81

ECOG score (0/1/2/3) 48/28/5/1 59/34/6/1%

Main symptom

  None 34 41%

  Aphasia 10 12%

  Paresis 17 21%

  Fatigue, Dizziness 12 15%

  Vision Impairment  9 11%

Tumor type and WHO CNS tumor grade

  Glioblastoma, IDH-wild-type, 
CNS WHO grade 4

57 69%

  Astrocytoma, IDH-mutant, 
CNS WHO grade 3/4

9/3 11/4%

  Oligodendroglioma, IDH-
mutant, CNS WHO grade 2/3

10/3 12/4%

IDH mutational status

  Wild-type/mutant 57/25 69/31%

MGMT promoter methylation status

  Methylated/non-methylated/
unknown

47/26/9 57/32/11%

FET PET tumor locationa

  Frontal left/right 16/15 20/18%

  Parietal left/right 6/13 7/16%

  Temporal left/right 13/14 16/17%

  Occipital left/right 2/2 2/2%

  Basal ganglia left 1 1%

Lesion volumes (mL)

  Resection cavity 3.2 0.0 - 124.0

  FLAIR hyperintensity 59.4 8.0 - 250.9

  T1 contrast-enhancing lesions 5.6 0.0 - 80.5

  FET PET (TBR > 1.6) 36.8 2.4 - 226.3

Interval between initial diagnosis and recurrence (months)

  Glioblastoma 9.4 0.4 - 97.5

  Astrocytoma 44.6 0.9 - 80.8

  Oligodendroglioma 59.3 1.3 - 145.4

Pretreatment (number of procedures)

  Surgeryb (1/2/3/4) 69/10/2/1 84/12/3/1%

  Radiotherapy (0/1/2) 9/65/8 11/79/10%

  Chemotherapy (0/1/2/3/4) 14/51/12/3/2 17/62/15/4/2%

Extent of resection at initial diagnosis

  None/biopsy/partial/complete 3/18/9/52 4/22/11/63%

Corticosteroids (no/yes) 63/19 77/23%

Anticonvulsants (no/yes) 27/55 33/67%

Abbreviations: ECOG, Eastern Cooperative Oncology Group 
performance score; IDH, isocitrate dehydrogenase; MGMT, O6-
methylguanine-DNA methyltransferase; FLAIR, fluid-attenuated inver-
sion recovery; FET, O-(2-[18F]fluoroethyl)-L-tyrosine; TBR, tumor-to-brain 
ratio; amain lobe involved; bincluding biopsy.
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analysis was also performed in the subgroup of IDH-wild-
type glioblastoma patients.

Results

Most recurrent tumors were in the frontal (n = 31; 39%) or 
temporal (n = 27; 33%) lobes. The median volume of the 
FET PET-avid lesions was 36.8 mL (range, 2.4–226.3 mL), 
and the median average tumor-to-brain ratio (TBRmean) was 
2.17 (range, 1.88–2.94). Metabolic active tumor volume did 
not depend on the tumor type, CNS WHO tumor grade, 
or IDH mutational status (ANOVA and two-sided t-test, 
P > .05). In contrast, tumor-to-brain ratios depended on 
the CNS WHO tumor grade (ANOVA, P = .031) but not 
on the tumor type or IDH mutational status (ANOVA and 
two-sided t-test, P > .05). Figure 1 shows FET PET images 
of two exemplary patients.

FC Between Tumor Region and Resting-State 
Networks

Overall FC between brain regions infiltrated by metabolic 
active tumor and resting-state networks (mean of all 7 ca-
nonical networks) was significantly higher in IDH-mutant 
gliomas than in IDH-wild-type gliomas (two-sided t-test, P 
= .028; Figure 2A). Also, it depended significantly on the 
WHO CNS tumor type (ANOVA, P = .028; Figure 2B). In IDH-
mutant gliomas, oligodendrogliomas had the highest FC 
(z-score, 6.9 ± 1.9), while in astrocytomas the FC was closer 
to that of the glioblastomas (z-score, 5.5 ± 1.3 vs. 4.9 ± 2.6; 
Figure 2B). In addition, connectivity was inversely related 
to the CNS WHO tumor grade (ANOVA, P = .031; Figure 
2C). FC of the PET-avid tumor regions differed significantly 
concerning the 7 resting-state networks (mixed repeated-
measures ANOVA, within subjects’ effect, P < .001; Figure 
2D-F). Overall, the highest connectivity was observed 
between the tumor regions and the ventral attention 
(z-score, 6.2 ± 3.1), dorsal attention (z-score, 6.0 ± 3.1), de-
fault mode (z-score, 6.0 ± 2.7) and frontoparietal control 
(z-score, 5.8 ± 3.3) networks, while the lowest connectivity 
was to the limbic network (z-score, 3.5 ± 4.2). Furthermore, 
the observed association between tumor type, CNS 
WHO tumor grade, IDH mutational status, and whole-
brain connectivity was well preserved throughout all net-
works (mixed ANOVA, between subjects’ effect, range of 
P-values, .028–.031; Figure 2D-F). Of note, the connectivity 
between the tumor region and networks was not associ-
ated with the tumor location regarding the cerebral lobes 
(ANOVA, P = .96). In addition, the FC was inversely related 
to the proximity of the tumor to the resting-state networks 
(P < .05 for most networks, see Supplementary Table S1 
and Figure S1).

Association of FC Between Tumor Region and 
Resting-State Networks and Overall Survival

The overall survival after diagnosis of tumor recurrence 
diagnosed by FET PET was significantly associated with 
the tumor type, CNS WHO grade, and IDH mutational 

status (Kaplan–Meier analysis, all P < .001; Figure 3A, 3B). 
Univariate Cox regression analysis revealed a significant 
association between improved overall survival and the 
connectivity of brain regions infiltrated by metabolic active 
tumor with the visual, somatomotor, and DAN (range of 
P-values, .041–.007; Table 2). Subsequent stepwise forward 
and confirmatory backward multivariate Cox regression 
analysis including all 7 networks refined this association 
to the dorsal attention network (DAN) alone (HR, 0.88; 95% 
CI, 0.80–0.97; P = .007, Table 2). Figure 1 shows the DAN 
and two exemplary patients with high and low FC between 
the tumor region and the DAN. The connectivity between 
the tumor region and the DAN was almost normally dis-
tributed (z-score, 5.98 ± 3.13; Figure 3C). Patients with 
the highest FC between tumor and DAN (upper quartile, 
z-score > 8.3, n = 21) had a median overall survival of 31.9 
months. In contrast, patients with intermediate (middle 
quartiles, z-score 4.3–8.3, n = 40) or low FC (lower quar-
tile, z-score < 4.3, n = 21) had a median overall survival of 
16.1 months and 10.6 months, respectively (log-rank test, 
P = .023; Figure 3D).

Dorsal attention network (DAN):

R L

High tumor functional connectivity (FC) to DAN:

Low tumor functional connectivity to DAN:

z-score

T1-CE + DAN + FCFET PET

20

–8

TBR
8

0

A

B

C

Figure 1. (A) Location of the dorsal attention network (DAN) in the 
MNI-152 standard space. (B) and (C), exemplary patients with high 
or low functional connectivity between brain regions infiltrated by 
metabolic active tumor and the DAN (right) and the corresponding 
O-(2-[18F]fluoroethyl)-L-tyrosine (FET) PET images (left). Functional 
connectivity (FC) of the tumor region was superimposed on the 
T1-weighted contrast-enhanced (T1-CE) image together with the 
DAN mask from (A). Abbreviation: TBR, tumor-to-brain-ratio.
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Furthermore, FC between the metabolic active tumor re-
gions and the DAN had an independent association with 
overall survival (HR, 0.90; 95% CI, 0.81–0.99; P = .033) 
in a multivariate model (Table 3) that excluded features 
correlated with connectivity (IDH, tumor type, tumor 
grade) but included other tumor-related variables such 
as the metabolically active tumor volume (P = .023) and 
MGMT promoter methylation status (P = .057), as well as 
common prognostic factors such as age (P = .215), extent 
of resection at initial diagnosis (P = .162), and ECOG score 
(P = .172).

In the survival analysis of the subgroup of IDH-wild-type 
glioblastoma patients, univariate and subsequent step-
wise forward and confirmatory backward multivariate Cox 
regression analysis comprising all 7 networks indicated a 
significant association between improved overall survival 
and the connectivity of the metabolic active tumor regions 
with the visual network (P-values, univariate and multi-
variate .023; Table 2). The connectivity with the visual net-
work was almost normally distributed (z-score, 4.26 ± 3.34; 
Figure 3E). Overall survival of the glioblastoma patients 
differed significantly depending on the level of FC be-
tween tumor region and visual network (Kaplan–Maier 
analysis, log-rank test, P = .007; Figure 3F), where patients 
with high FC (z-score > 4.6 [median], n = 29) had a median 
overall survival of 12.5 months and patients with low FC 
(z-score < 4.6 [median], n = 28) one of 9.5 months. A final 
multivariate model including metabolically active tumor 
volume (P = .011), MGMT promoter methylation status 
(P = .314), age (P = .232), extent of resection at initial di-
agnosis (P = .824) and ECOG score (P = .865) confirmed 
the independent association of FC between tumor region 
and the visual network with overall survival (HR, 0.90; 
95% CI, 0.82–0.99; P = .031; Table 3). The mean distances 
(proximities) of the PET lesions to the DAN (all patients, 
P = .34) and to the visual network (IDH-wild-type patients, 
P = .47) were not significantly associated with overall sur-
vival in the univariate analyses and were therefore not in-
cluded in the multivariate models.

Discussion

Main Findings

The present study evaluated FC between the brain region 
infiltrated by metabolic active tumor and a set of canonical 
resting-state networks using the BOLD signal of the meta-
bolic active tumor region in a cohort of patients with recur-
rent gliomas of varying histomorphologic and molecular 
characteristics. Tumor regions were diagnosed by a combi-
nation of anatomical MRI and FET PET, and FC of the meta-
bolic active tumor differed between the networks and was 
highest with the 4 large associative networks (ie, the dorsal 
attention, ventral attention, frontoparietal control, and de-
fault mode network). Overall and network-specific connec-
tivity of tumor regions was highest in oligodendroglioma 
and was significantly higher in IDH-mutant than in IDH-
wild-type tumors. In the overall cohort, CNS WHO tumor 
grade and IDH mutational status were the most significant 
prognostic factors for longer overall survival but preserved 

FC between recurrent glioma and the DAN was also a 
prognostic factor. Importantly, in the subgroup of recur-
rent IDH-wild-type glioblastoma, connectivity between the 
tumor region and the visual network was an independent 
predictor of overall survival. The present investigation dif-
fers from similar recent reports11,13,21,22 in that FET PET was 
used for tumor definition, that FC of gliomas of different 
WHO CNS types and grades was systematically analyzed, 
and that only patients with recurrent gliomas were in-
cluded. FET PET was used because it is a highly reliable 
measure of glioma infiltration. Several biopsy-controlled 
studies have shown that FET PET in conjunction with an 
empirical threshold for tumor-to-brain ratio outperformed 
MRI-based methods in terms of accuracy.38–40

Glioma Interaction Within Directly Infiltrated 
Cortex

From a clinical point of view, glioma infiltration of normal 
brain tissue raises the question of whether the tumor-
infiltrated cortex is still functional and can be safely re-
sected. Classical electrophysiological mapping techniques 
comprising direct cortical stimulation and somatosen-
sory evoked potentials have proven the presence of func-
tional cortex within grossly abnormal tumor tissue.9,10 
These findings were confirmed using advanced elec-
trophysiological methods, such as task-related spectral 
power perturbations in the high-gamma range11–13 and 
magnetoencephalography.14 While these clinical studies 
do not allow for unraveling details and directions of inter-
actions between glioma cells and neurons, ample exper-
imental evidence shows that neurons connect to glioma 
cells via electrically active gap junctions and glutaminergic 
synapses.8 In turn, as Krishna et al. outlined,13 preclin-
ical studies suggest that glioma cells induce neuronal 
hyperexcitability in the tumor-infiltrated cortex by gluta-
mate release41,42 and reduction of GABAergic inhibitory 
interneurons.43 In patients, neuronal hyperexcitability 
has also been observed in the form of increased task-
induced high-gamma power during intraoperative 
electrocorticography.13 Of note, the interaction between 
glioma and neurons went far beyond the directly infiltrated 
cortex, as tasks recruited neighboring cortical areas that 
were not normally involved.13

Connectivity Between Tumor Region and Brain-
Wide Networks

Apart from close local structural and functional connec-
tions between glioma tissue and neural elements as 
characterized above, glioma-infiltrated cortical regions 
maintain long-range functional connections to other 
brain regions and networks. For example, Krishna et 
al. investigated 19 patients with glioblastoma using 
magnetoencephalography and observed that up to 50% of 
the intratumoral voxels included in the contrast-enhanced 
or FLAIR-hyperintense tumor regions were strongly con-
nected to the rest of the brain.13 Furthermore, Mandal and 
co-workers11 used rs-fMRI in 17 low-grade gliomas to eval-
uate the participation of tumor-infiltrated cortex in large-
scale cognitive circuits, using the same network definition 
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Functional connectivity
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Figure 2. Mean overall functional connectivity between brain regions infiltrated by metabolic active tumor and 7 canonical resting-state net-
works (A-C) as well as network-specific connectivity (D-F) in patients with recurrent glioma related to the IDH mutational status (top row), tumor 
type (middle row), and CNS WHO tumor grade (bottom row). Abbreviations: IDH, isocitrate dehydrogenase; ANOVA, analysis of variance; CI, 
confidence interval; VIS, visual; SOM, somatomotor network; DAN, dorsal attention network; VAN, ventral attention network; LIM, limbic network; 
FPC, frontal-parietal control network; DMN, default mode network; GBM, glioblastoma; Astro, astrocytoma; OD, oligodendroglioma
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Survival analysis
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Figure 3. Kaplan–Meier survival curves in patients with recurrent gliomas of different CNS WHO tumor grades (A), different IDH mutational 
status (B), and various levels of functional connectivity (low, middle, and upper quartile) between brain regions infiltrated by metabolic active 
tumor and the dorsal attention network (D). The distribution of network connectivity between the tumor regions and the dorsal attention network 
is visualized as a histogram and boxplot (C). Results for the IDH wild-type glioblastoma subgroup regarding the distribution of network connec-
tivity between tumor and visual network are shown in (E), as well as Kaplan–Meier survival curves with a median (4.6) classification of connec-
tivity into high and low in (F). Abbreviations: IDH, isocitrate dehydrogenase; FC, functional connectivity; DAN, dorsal attention network; N, number 
of patients.
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as in the present study.37 Of note, the tumor locations that 
were active during a task that probed executive functions 
were found to exhibit significant FC with the DAN. More re-
cently, Daniel and colleagues21 evaluated 57 patients with 
newly diagnosed glioblastoma using rs-fMRI. By applying 
a heuristic threshold, up to 60% of intratumoral voxels 
were functionally connected to at least 1 of the 7 canonical 
networks, although this proportion largely varied between 
patients. In addition, tumor voxels did not connect specif-
ically to any resting-state network. Another study evalu-
ated FC between tumor and brain in 54 patients with CNS 
WHO grade 2–4 gliomas in the newly diagnosed or recur-
rent setting.22 Again, significant resting-state FC between 
the tumors and the unaffected brain was observed in that 
study. In the newly diagnosed tumors, the set of brain 
voxels functionally connected with the tumor resembled 
the frontoparietal control network, while in the recurrent 

tumors, the location of the connected brain voxels resem-
bled the DAN.22

Regarding glioma grade and IDH mutational status, it 
can be expected that the lower the tumor grade and the 
less aggressive the tumor growth, the higher the preserved 
neuronal population and the less disturbed the local and 
distant functional organization of the infiltrated cortex, as 
observed here in recurrent gliomas. Taken together, these 
results, including the present study’s findings, suggest that 
in both newly diagnosed and recurrent gliomas, a substan-
tial proportion of cortical tissue infiltrated by the glioma 
is locally functional and remains remotely connected. FC 
between the brain region infiltrated by metabolic active 
tumor and other parts of the brain is present to varying de-
grees in all canonical networks and does depend on the 
location but rather on the tumor’s invasiveness.

Association Between Tumor Region and Brain 
Connectivity and Survival

In the present study, we observed a significant associa-
tion of FC between the region infiltrated by metabolic 
active tumor and the brain and overall survival. In this 
sense, a higher FC between the tumor region and the 
visual, somatomotor, and DAN was associated with a 
lower risk for death. Similarly, Daniel et al.21 found that 
higher tumor intra-network connectivity was associated 
with longer overall survival in patients with newly diag-
nosed glioblastoma. Interestingly, reduced or absent FC 
was observed in the necrotic tumor regions compared 
to the solid, contrast-enhancing regions. The authors hy-
pothesized that tumors with better-preserved physiology 
have a more favorable prognosis, which is supported 
by the observation in the present study that FC between 
tumor regions and networks was higher in CNS WHO 
grade 2 or 3 and IDH-mutant gliomas than in IDH-wild-
type gliomas. Nevertheless, these results are only partly 
in line with those from Sprugnoli et al.22 in newly diag-
nosed gliomas, where the connectivity of the solid tumor 
with various contiguous brain regions correlated either 
positively (right parieto-temporal) or negatively (right 
or left frontal) with the duration of survival. However, 

Table 2. Univariate and Multivariate# Cox Regression Analysis for Association Between Tumor-to-Network Resting-State Functional Connectivity 
and Overall Survival in Recurrent Gliomas

Entire patient cohort Glioblastoma patients

Resting-state network P-value (univariate) P-value (multivariate)# P-value (univariate) P-value (multivariate)#

Visual .036 .677 .023 .023

Somatomotor .041 .720 .794 .329

Dorsal Attention .007 .007 .107 .936

Ventral Attention .246 .101 .875 .222

Limbic .997 .900 .759 .838

Frontoparietal .309 .159 .704 .370

Default Mode .453 .133 .946 .102

#forward stepwise inclusion.

 

Table 3. Univariate and Multivariate Cox Regression Analysis to 
Evaluate Tumor-Related and Common Prognostic Factors on Overall 
Survival in Recurrent Gliomas Diagnosed With FET PET

Entire patient cohort, 
FC between tumor 
and dorsal attention 
network

GBM patients, FC 
between tumor 
and visual network

Factor P-value 
(uni-
variate)

P-value 
(multi-
variate)

P-value 
(uni-
variate)

P-value 
(multi-
variate)

Connectivity 
between tumor 
and network

.007 .033 .023 .031

Metabolic active 
tumor volume

.012 .023 .003 .011

Age .237 .215 .887 .232

MGMT promoter 
methylation 
status

.003 .057 .319 .314

Extent of 
resection at initial 
diagnosis

.008 .162 .961 .824

ECOG score .001 .172 .051 .865
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in recurrent malignant gliomas, only one positively cor-
related cluster (i.e. right frontal) was identified.22 These 
partly discrepant findings may result from the varying 
methods of defining the solid parts in tumors of different 
tumor grades, which we here attempted to overcome by 
adding amino acid PET with the tracer FET to anatomical 
MRI in all examined patients.

The present observation that the connectivity between 
brain regions infiltrated by metabolic active tumor and the 
DAN (whole cohort) and the visual network (IDH-wild-type 
glioblastoma) was associated with a significant improve-
ment in overall survival could be related to the specific 
function of this networks for cognitive performance. The 
DAN is mainly involved in goal-directed, voluntary con-
trol of visuospatial attention,44,45 a cognitive domain that 
plays an important role for executive functioning and is 
naturally also depending on the visual network. In addi-
tion, the visual network is an important resource not only 
for object recognition but also for spatial orientation and 
goal-directed actions with objects46 and for posture47 and 
thus has a major influence on daily physical functioning. 
As mentioned, Mandal and colleagues11 observed that 
tumor-infiltrated cortical regions that were active during 
an executive task may have significant FC with the DAN. 
Although not specifically addressing the DAN, Krishna, 
and colleagues13 also observed that gliomas may remodel 
FC such that task-relevant neural responses activate tumor-
infiltrated cortex well beyond the cortical regions that are 
normally recruited in the healthy brain. Thus, the improved 
survival of IDH-mutant or wild-type gliomas could in part 
be related to the ability of the affected brain to recruit 
tumor-infiltrated, distant regions to serve vision, visual at-
tention, and executive functions which are closely associ-
ated with prognosis.48

Limitations

Only a limited number of patients were available for the 
present study, and these showed some heterogeneity in 
treatment. Therefore, important relationships between FC 
and overall survival may have been overlooked in the anal-
ysis, especially in the group of IDH-mutant gliomas.

Conclusion

The present results indicate that recurrent gliomas, as 
defined by pathologically increased FET uptake, main-
tain functionally connected to most of the major known 
resting-state networks. FC between brain regions infil-
trated by metabolic active tumors and networks was 
generally higher in low-grade and IDH-mutant recur-
rent gliomas, and connectivity with the dorsal attention 
and visual networks proved to be an additional prog-
nostic factor for improved overall survival. Thus, the 
close glioma-neural relationships observed in primary 
gliomas appear also to play a prognostic role in recur-
rent gliomas, suggesting that FC may be used as a novel 
prognostic imaging biomarker in patients with recurrent 
gliomas.

Supplementary Material

Supplementary material is available online at Neuro-
Oncology Advances (https://academic.oup.com/noa).
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Lay Summary 
Brain tumors not only affect the connections between different 
parts of the brain, but they can also connect themselves func-
tionally with the healthy brain. The authors of this study wanted 
to see whether the strength of these tumor-to-brain connections 
could be used to see how long patients with a specific brain tumor 
called gliomas would live. To do this, they obtained advanced brain 
imaging on 82 patients who had gliomas that came back after in-
itial treatment. Their results showed that patients with stronger 
connections between the tumor and certain brain networks, like 
those involved in vision or attention, tended to live longer.
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Imaging protocols 
O-(2-[18F]-fluoroethyl)-L-tyrosine (FET) PET, structural MR, and resting-state 

functional magnetic resonance imaging (rs-fMR) images were acquired 

simultaneously using a 3T hybrid scanner (Siemens Tim-Trio/BrainPET, Siemens 

Medical Systems, Erlangen, Germany). For this purpose, the scanner was equipped 

with a birdcage-like quadrature transmitter head coil mounted on the couch, an 8-

channel receiver coil, and a PET insert consisting of 72 rings (axial field-of-view, 19.2 

cm; center spatial resolution, 3 mm FWHM). FET PET images were obtained following 

Herzog et al.1.  

 

The structural MRI protocol comprised a 3D high-resolution T1-weighted 

magnetization-prepared rapid acquisition gradient echo (MPRAGE) native scan (176 

slices; repetition time TR = 2250 ms; echo time TE = 3.03 ms; field of view (FoV) = 

256 × 256 mm2; flip angle = 9°; voxel size = 1 × 1 × 1 mm3), a contrast-enhanced 

MPRAGE scan recorded after injection of gadolinium-based contrast agent, a T2-

weighted sampling perfection with application-optimized contrasts using different flip 

angle evolution scan (176 slices; repetition time TR = 3.2 ms; echo time TE = 417 ms; 

FoV = 256 × 256 mm2; voxel size = 1 × 1 × 1 mm3), and a T2-weighted fluid-attenuated 

inversion recovery (T2/FLAIR) scan (25 slices; TR = 9000 ms; TE = 3.86 ms; FoV = 

220 × 220 mm2; flip angle = 150°; voxel size = 0.9 × 0.9 × 4 mm3). To acquire rs-fMRI 

data, patients were instructed to relax and let their minds wander, but not fall asleep. 

Within 11 minutes, a total of 300 functional volumes were acquired with a gradient-

echo echo-planar imaging pulse sequence (36 axial slices; slice thickness, 3.1 mm; 

TR = 2200 ms; TE = 30 ms; flip angle = 90°; FoV = 200 × 200 mm2; in-plane voxel-

size, 3.1 × 3.1 mm2). 
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Table S1: Regression analyses for the entire patient cohort between the mean 
functional connectivity (z-score) of the metabolically active tumor region and its 
proximity (mm) to the networks. 

Resting-State 

Network 
Coefficient of 

Determination (R2) 

p-value Slope of the 

regression model  

Visual  0.063 0.023 -0.040 

Somatomotor 0.115 0.002 -0.097 

Dorsal Attention 0.103 0.003 -0.071 

Ventral Attention 0.069 0.017 -0.080 

Limbic 0.195 0.001 -0.103 

Frontoparietal 0.040 0.072 -0.059 

Default Mode 0.023 0.174 -0.052 
 

 

 

 
Figure S1: Regression analyses for the entire patient cohort between the mean 
functional connectivity (z-score) of the metabolically active tumor region and its 
proximity (mm) to the dorsal attention network. Abbreviations: R2, coefficient of 
determination; N, number of patients 
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3 Discussion 

This thesis addresses three neuro-oncologically relevant aspects of tumor- and 

treatment-related changes in brain connectivity observed in patients with recurrent 

glioma. Each aspect was investigated in a separate study. The first two studies examined 

the same cohort of 121 patients, while the third study focused on a specific subset of 82 

patients with metabolically active recurrent gliomas. 

Initially, the local white matter integrity of structural brain lesions indicated by pathologic 

MRI and FET PET findings as well as their overall impact on the patients' performance 

status was investigated. The effect of altered integrity of local structural connectivity in 

four different lesion types - resection cavity, FET-avid tumor, contrast-enhanced lesions 

and FLAIR hyperintense signal alterations - on the Eastern Cooperative Oncology Group 

(ECOG) performance score of the patients was assed and compared with a matched 

cohort of 121 healthy controls. For this purpose, fiber density images were used that 

originate from a self-established state-of-the-art tractography pipeline, which enables the 

adequately resolution of the white matter fiber architecture even within tumor affected 

areas (see Section 3.2).  

The second aspect involved a more specific breakdown of the impairment of structural 

connectivity within 100 different brain areas, organized into seven resting-state networks 

of the Schaefer-Yeo brain atlas132, to assess the impact on several cognitive functions. 

For this purpose, an analysis method based on machine learning with integrated cross-

validation was used. The underlying CPM method was originally developed for functional 

data and successfully adapted for the analysis of structural connectomes in the course 

of this work. Based on the tractographies of the first study in combination with a network-

based parcellation, whole-brain connectomes were generated, which were then related 

to the patients' cognitive performance scores using the adapted CPM method. The 

approach was used to identify vulnerable edges, nodes and networks that are relevant 

for specific cognitive functions in treated patients with glioma at recurrence.  

Given that structural organization of brain forms the backbone of functional connectivity, 

the third and final aspect analyzed was the impact on patients' functional connectivity. 

Particular attention was paid to the emerging field of Cancer Neuroscience, which is 

becoming increasingly important in neuro-oncology. Here, the interactions between 

tumor and the normal brain are investigated. With this in mind, the functional connectivity 

between brain regions infiltrated by a metabolic active glioma and set of the seven 

canonical resting-state networks of Schaefer-Yeo brain atlas132 was investigated using 
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seed-based dual regression analysis, a modification of seed-based correlation analysis. 

In addition, the results were linked to the overall survival of the patients. 

Overall, this work deals with the question of how our brain is able to generate adequate 

behavior when the underlying brain connectivity is disrupted at different levels by gliomas 

and their treatment. In this context, a clearer understanding of the pathology of altered 

brain connectivity could additionally provide a more reliable prediction of disease 

progression and side effects and support the choice of tailored therapies, leading to an 

improved quality of life for the patient. 

3.1 Main findings  

The methodological challenges and clinical implications of the following results will be 

elucidated in the course of the discussion. The first study confirmed the hypothesis that 

the various glioma- and treatment-induced structural brain lesions, as indicated by 

pathological MRI and FET PET findings, have a differential impact on white matter fiber 

density2. Local fiber density was significantly reduced in all lesion types examined, 

although to a different extent. The comparison with a matched cohort of healthy controls 

revealed, as expected, an almost complete reduction within the resection cavities. The 

reduction remained strong in contrast-enhanced and FET-avid lesions and was less 

pronounced, but still significant, in regions with FLAIR hyperintense signal alterations. It 

turned out that only the total fiber loss (1 – [patient fiber density / reference fiber 

density] * lesion volume) in contrast-enhanced lesions and FLAIR hyperintense signal 

alterations was associated with a significantly reduced ECOG performance score. 

Moreover, the reduction of fiber density within the metabolically active glioma was 

inversely related to its FET uptake.  

The second study further specified the effects of glioma growth and treatments on the 

structural connectivity of individual network nodes and their associated cognitive 

functions133. It has been shown that a reduced fiber count across subsets of specific 

edges that predominantly interconnect different brain networks was significantly 

associated with impairments in different cognitive domains. In general, the nodes that 

turned out to be critical for cognitive critical function showed a high degree of connectivity 

with other nodes, and comprised mainly left hemispheric nodes and cortical hubs such 

as the bilateral precuneus or the posterior cingulate cortex. 

In a specific subset of patients evaluated in the third study where metabolic active 

recurrent gliomas were diagnosed by a combination of anatomical MRI and FET PET, 

results indicated a preserved functional connectivity between brain regions infiltrated by 
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the metabolic active tumor and various canonical resting-state networks134. The 

functional connectivity differed significantly between networks and was mostly expressed 

to the four major associative networks (i.e., the dorsal attention network, the ventral 

attention network, the frontoparietal control network and the default mode network). In 

terms of tumor type, mean functional connectivity to all networks and individual 

connectivity to each network was highest in oligodendrogliomas, compared to 

glioblastomas and astrocytomas. This relation also applied to the IDH-mutant in contrast 

to IDH-wildtype gliomas. In addition to the most significant prognostic factors, i.e., the 

WHO tumor grade and IDH mutational status, the preserved functional connectivity 

between tumor region and the dorsal attention network appeared to be a potential 

additional prognostic factor for longer overall survival. In the subgroup of IDH wild-type 

glioblastomas, the functional connectivity of the tumor with the visual network even 

proved to be an independent prognostic factor for overall survival. 

3.2 Methods for assessing structural connectivity in patients with 

glioma 

The accurate determination and the subsequent analysis of the white matter fiber 

architecture is of fundamental importance in the context of the present work. The entire 

analysis of the first two studies is based on the same fiber mapping framework. Both the 

fiber density images of the patients and the connectomes were derived from the resulting 

tractographies. The establishment of a reliable tractography pipeline that is applicable to 

patients with treated brain tumor required extensive preparatory work before the actual 

analysis on structural connectivity could be started. Although tractography is already 

used routinely for preoperative planning, it is anything but trivial to perform whole-brain 

fiber mapping in a brain distorted by tumor growth and treatment effects. Tractography 

for treatment planning is usually based on DTI103,123,124, but its ability to resolve complex 

fiber architectures is a priori limited104, resulting in anatomically implausible or 

erroneously missing fiber tracts103,104. However, especially in the local treatment of brain 

tumors, e.g., by surgery and radiotherapy, it is essential to precisely localize the white 

matter tracts in order to spare them. For this reason, we decided to go beyond classical 

DTI and adopt a tractography approach based on an advanced diffusion model that 

avoids the usual limitations that have so far prevented broad clinical application. These 

include, for instance, the need for a large or wide range of b-values, which are difficult to 

achieve on clinical scanners and also lead to impractically long scan times106. A 

promising approach that could be considered are modern diffusion models based on 

CSD, which have improved significantly in recent years in terms of their acquisition 
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requirements and reliability in pathologically disturbed brain regions126. Especially these 

disturbed regions complicate the fiber mapping considerably. 

3.2.1 Potential confounding factors in treated glioma 

White matter fibers may be spatially impaired by brain tumors and treatment effects. 

They can be widened, displaced, infiltrated and/or interrupted by the tumor73. There is 

also the risk of vasogenic cerebral edema in gliomas due to a damaged blood-brain 

barrier. Defective tight junctions can cause plasma components to leak from the blood 

into the extracellular space, leading to cerebral edema and increased intracranial 

pressure, which can damage neuronal fibers. Another trigger for the formation of acute 

cerebral edema is an inflammatory reaction of the surrounding tissue caused by 

radiotherapy. As edema is associated with the increase of intra-tissue water 

compartments characterized by isotropic diffusion, it hampers the determination of 

anisotropic diffusion of the white mater fiber orientations135,136. Radiotherapy can also 

induce necrosis or gliosis in the irradiated brain tissue. The latter leads to hypertrophy of 

the glial cells or to their proliferation, which can result in the formation of scar tissue also 

affecting fiber tracts. However, resection has the most obvious influence on the brain 

structure, as there is no brain tissue left in the resulting resection cavities. All of the above 

factors caused by the tumor or its treatment led to deviations from normal brain tissue, 

which makes correct fiber mapping difficult. How this has presently been taken into 

account by the application of a modified tractography pipeline as discussed in the 

following sections. 

3.2.2 Constrained spherical deconvolution models 

The key requirement for diffusion models that allow the measured non-isotropic diffusion-

weighted MRI signal to be related to the assumed local fiber architecture is a high angular 

resolution of the signal with low influence from other sources, such as freely diffusing 

water135,136 or other tissue types in the brain. In this context, the novel Single-Shell 3-

Tissue CSD (SS3T-CSD)137,138 proved to be the preferred method, which, along with the 

Single-Tissue CSD (ST-CSD)106 and Multi-Shell Multi-Tissue CSD (MSMT-CSD)139, was 

one of the three CSD models available at the time of our studies. The term shell here 

refers to a DWI image with a specific b-value. In the course of the establishment of the 

present tractography pipeline prior to the start of the analysis, all models were compared 

with each other and evaluated for their applicability in patients with glioma. Although 

MSMT-CSD was already well established for healthy brains, it failed to estimate fiber 

orientations in tumor-affected areas, resulting in immense underestimation and exclusion 

of FODs and subsequently calculated fibers2,126. MSMT-CSD is a refined version of the 
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original ST-CSD. Already the ST-CSD showed a significant improvement in tractography 

compared to DTI, even in the presence of tumors103,140. Its major drawback was that the 

estimated FODs suffered from strong distortions due to random noise caused by 

isotropic diffusion signal contributions from other tissue types in the brain126. The MSMT-

CSD improved this by also taking into account the signal contribution of gray matter and 

cerebrospinal fluid based on b-value tissue dependencies139. This enabled a more 

accurate estimation of the FODs at the tissue interfaces and thus even more precise 

fiber tracking139. However, areas affected by the tumor are often misclassified as gray 

matter-like tissue126, leading to underestimation or exclusion of the white matter-specific 

FODs. Another downside of MSMT-CSD is the requirement of a multi-shell imaging 

protocol to adequately account for the signal contributions of the other tissue types. In 

comparison, SS3T-CSD only requires a HARDI protocol with a single b-value and non-

diffusion-weighted images (b-value=0) for superior results. This reduces the acquisition 

effort and computation time for the various pre-processing steps such as motion and 

distortion corrections that need to be performed for each b-value contrast126. But the 

main advantage of the novel SS3T-CSD model is its ability to estimate white matter 

FODs as bias-free as possible, even within the tumor area126,137,138, by accounting for 

contamination of each brain voxel by freely diffusing water, as found in cerebrospinal 

fluid or edema141, or by gray matter isotropic signal contribution. To ensure a high angular 

resolution in our studies and thus the best results of the SS3T-CSD model, a HARDI 

scheme with 120 directions at a b-value of 2700 s/mm2 was applied, providing an optimal 

contrast-to-noise ratio within the shell and between the shell and the non-diffusion-

weighted data126. Nevertheless, lower b-values are also feasible while maintaining the 

quality at a reduced level. 

3.2.3 Anatomically-constrained tractography 

In addition to the state-of-the-art SS3T-CSD diffusion model described above, the 

present tractography framework makes use of another advanced approach called 

anatomically-constrained tractography (ACT)116. It improves the biological plausibility of 

the computed fibers derived from the FODs of the diffusion model by making the 

tractography even more accurate based on prior anatomical information116. This 

information is obtained by segmenting the whole brain into tissue components of the 

white matter, the cerebrospinal fluid as well as the cortical and subcortical gray matter 

on the basis of a structural T1 image. In this way, cerebrospinal fluid filled structures 

such as the ventricles and gray matter are omitted for the fiber propagation. This 

segmentation is clearly to be distinguished from the tissue segmentation of advanced 

CSD models, which is used to correctly scale FOD amplitudes. Although ACT 
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segmentation is also intended to provide more reliable termination criteria, it leaves 

FODs untouched. In this way, fibers based on less accurately estimated FODs can be 

subsequently sorted out at the tractography level, since even the SS3T-CSD does not 

provide completely accurate results, so false positives fibers are still possible. Apart from 

guidance of fiber propagation and termination, the other features of ACT were also used 

to improve tractography. These included the removal of anatomically unrealistic fiber 

courses as well as very short fibers at the gray-white matter interface, which cannot be 

accurately resolved with the low resolution of DWI, and the backtracking option for 

probabilistic tractography116. This option will find a more suitable termination for fibers 

running in an endpoint that was poorly supported by the image data. 

The disadvantage of ACT is that it was developed for use in healthy tissue and would 

otherwise lead to incorrect fiber calculations in brain structures that have been altered 

by tumors and treatment effects, for example. Compared to healthy brains, these regions 

may exhibit atypical fiber tracts that would be incorrectly removed by ACT. Therefore, 

the lesioned regions had to be released from the above-mentioned restrictions for fiber 

propagation. This was done using a composite lesion mask consisting of all types of 

lesions, including resection cavities, FET-avid tumor, contrast-enhanced lesions and 

FLAIR hyperintense signal alterations. In addition, the lesion area also interfered with 

advanced ACT seed point generation, which restricts the seeds to the interface between 

gray and white matter. Theoretically, this would improve the homogeneity of streamline 

density in the entire white matter and thus improve biological plausibility116. However, the 

seeding algorithm proved unable to correctly detect the interface between gray and white 

matter in the lesion area, resulting in an imbalance in the number of seeding points in 

favor of healthy tissue. As a result, the majority of the seeds were accepted as fibers, 

given the higher probability of acceptance in healthy tissue. Accordingly, the number of 

fibers was nearly equivalent or even higher than in healthy controls, despite pathological 

and treatment-related brain damage. Therefore, a random seed point generation was 

applied to ensure a homogeneous seed distribution throughout the brain, even in the 

lesion region. In this way, the propagation of fibers from a seed point depended only on 

the local tissue properties that actually determine the presence of fibers. Even if whole 

brain seeding means a lower homogeneity of the resulting fiber density, a quantitative 

comparison would not have been possible without it. Nonetheless, it should be 

emphasized that this is a common seeding variant offered by the applied tractography 

software. 
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3.2.4 Fiber tracking analysis  

After the development of a tractography pipeline suitable for treated patients with glioma, 

there were also some aspects to consider when analyzing the resulting tractographies in 

order to obtain reliable results. For the initial analysis of integrity of local structural 

connectivity within different lesion types, the tractographies were first converted into fiber 

density images118,119 in which each image voxel is indicative of the number of fibers 

passing through it. The fiber density within the lesions was then compared to a matched 

control group. In a similar study on fiber density in patients with glioblastoma, a 

paradoxical positive correlation was found between the degree of tumor infiltration and 

fiber density for different tumor regions142. This was probably due to a less sophisticated 

tractography pipeline, but also to the fact that a comparable reference fiber density is 

difficult to achieve due to the inhomogeneous distribution of fiber tracts in the brain. In 

order to obtain a solid and comparable estimate of the local and relative fiber density in 

our study, all steps up to the final fiber density images were performed almost identically 

for the patient and subject data, with the exception of the echo-planar imaging distortion 

correction during pre-processing of the DWI data that were not available for the healthy 

subjects. This could cause inward deformation, particularly of the frontal tracts. However, 

there was no evidence of this, presumably as a result of correct spatial normalization of 

the fiber density images to the Montreal Neurosciences Institute (MNI) template. To 

obtain a generally representative reference fiber density, the fiber density images of the 

healthy subjects were transformed into the MNI space for subsequent averaging. Despite 

efforts to obtain a reliable fiber density, it is evident from the results that the resection 

cavities still erroneously contain a minimal residual fiber density. This could be due to 

the difficulty of manually segmenting the boundaries of the resection cavity, which may 

have included individual voxels with tissue in the segmentation. It should also be noted 

that although the tractography framework used here provides a very good approximation 

of the actual fiber architecture, it is not free of false positive fibers, especially when 

considering that the influence of the ACT was omitted in the lesion region (see Section 

3.2.3), which could have filtered out fibers outside of the white matter. 

After analyzing the integrity of the local white matter architecture, the structural 

connectivity at the network level between different nodes was further investigated, 

focusing on the relationship between structural connectivity and cognitive functions. This 

is usually achieved by correlating measurements of individual structural connectivity with 

cognitive function, as was done here, where tractography data were converted into 

structural connectivity matrices and correlated with the results of cognitive performance 

tests. However, simple correlation or similar regression models tend to over-fit the data 
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and make it difficult to generalize the results120. For this reason, a machine learning 

approach, including cross-validation, based on CPM120 was adapted for the analysis. In 

contrast to simple correlation, cross-validation provides a more conservative approach 

by validating the strength of a relationship in an independent sample that was not used 

to train the model120. This ensures independence between feature selection and 

prediction, eliminating confounding effects and false inferences at the population 

level120,143. More generally, the ability to generalize results facilitates the creation of new 

models that advance our understanding of the functional organization of the brain, as 

well as their translation into clinical applications, e.g., in the form of neuroimaging-based 

biomarkers. Other strengths of CPM are that it is purely data-driven and based on linear 

operations, which enables fast computation, simple software implementation and clearly 

interpretable results. In this way, it achieves the same or even better performance than 

comparable approaches120. 

3.3 Alterations of structural connectivity in patients with glioma 

Structural connectivity describes the physical connections between cortical regions 

(nodes) via white matter tracts (edges) that form the basis of the functional organization 

of the brain. In patients with brain tumor, these neural fibers may be structural altered 

such as disrupted by the tumor or recurrent tumor growth144. In addition, structural tissue 

damage resulting from multimodal treatment, including tumor resection, radiation 

therapy, alkylating chemotherapy, or combinations thereof, may also cause further 

disruption145-148. Although standard anatomical MRI and amino acid PET, such as FET 

PET, can reveal these gross structural tissue changes, they do not yet provide any 

insight into the actual damage to the microstructural integrity of the white matter149,150. 

Therefore, modern DWI techniques151-153 are needed and applied in this work. Brain 

tumor patients often develop deficits in general performance154 and cognition that 

increase with survival time and intensity of therapy155,156 as a result of cerebral tissue 

damage. This impairs not only direct fiber tracts of eloquent cortical regions, but also 

more extensive and far-reaching areas of white matter156-158 along with the connections 

of multiple functional networks159. Individualized identification of vulnerable structures at 

risk for neurological or cognitive deficits is therefore of particular interest for local 

treatment planning, such as surgery and radiotherapy. Since damage to healthy brain 

tissue is usually unavoidable, it is important to determine which areas can be damaged 

without functional consequences and what intensity of treatment is acceptable. The field 

of neuro-oncology has already focused on defining selected structures at risk in 

neurosurgery or radiotherapy103. However, a better understanding of the effects of the 

tumor and its treatment on the white matter architecture could further elucidate the 
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pathological mechanisms and facilitate clinical application, e.g., to optimize treatment 

planning.  

To get a first overview of how structural connectivity is impaired within in cohort of 121 

treated patients with glioma at recurrence, local white matter integrity was analyzed in 

different lesion areas and related to the general performance (ECOG score) of the 

patients. Fiber density within the resection cavity, FET-avid and contrast-enhanced 

tumor, as well as FLAIR hyperintense signal alterations were examined and compared 

with a matched cohort of 121 healthy controls. To gain a more detailed understanding of 

how structural connectivity influences patients' behavior apart from their overall 

performance, we also investigated a finer structural organization of the brain together 

with a comprehensive cognitive test battery. As indicated by other studies, the long-term 

outcome of higher-order cognitive function in patients with glioma relies less on the 

integrity of individual nodes or edges than on the preservation of multiple distributed 

networks124,127,128. We therefore investigated the relationship between cognitive 

performance and structural connectivity in gliomas on a network basis. A total of 100 

different brain areas organized into seven networks were examined to identify vulnerable 

nodes, edges and networks relevant to specific cognitive functions. The determination of 

the structural connectivity between the individual nodes as well as the initial 

determination of fiber density was based on the above-mentioned tractography pipeline, 

which has been shown to be able to adequately map neuronal fibers even in the 

structurally distorted brains of treated patients with glioma (see Section 3.2.2). Moreover, 

the network-based analysis that related individual behavior to structural connectivity was 

based on the robust and easy-to-implement machine learning method CPM (see Section 

3.2.4). The integrated cross-validation increases the relevance of the results through 

their generalizability and thus facilitates the possible transfer to clinical applications120. 

3.3.1 Integrity of local structural connectivity 

The local fiber density of the white matter was significantly reduced in all four lesion types 

examined in the patients with glioma. As expected, the reduction in the resection cavity 

was almost total. The residual fibers can be partly explained by inaccurate segmentation 

and fiber tracking (see Section 3.2.4). Apart from the resection cavity, the reduction was 

most pronounced in contrast-enhancing tumor parts, closely followed by the FET-avid 

tumor regions in PET, and was lowest in FLAIR hyperintense signal alterations. In 

comparison, Stadlbauer and colleagues previously found that the fiber density of non-

enhancing WHO grade II or III gliomas decreased sharply from the periphery to the tumor 

center160. However, the fiber loss in the tumor center was most likely overestimated due 

to the inappropriate use of a DTI-based fiber density estimation (see Section 3.2). A 
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significant tumor-induced reduction in fiber density was also found in another study 

focusing on tumor infiltration of the corticospinal tract in motor-eloquent WHO grade III 

or IV gliomas, where fiber density was reduced in the peritumoral region as well as in the 

corticospinal tract itself161. 

Moreover, it seems that the fiber density within the tumor depends on its cell density. As 

shown in our study, the reduction of fiber density within the metabolically active glioma 

was inversely related to its FET uptake, which has been found to be correlated with tumor 

cell density in gliomas in previous studies162,163. This relation was further validated by 

another study that demonstrated an inverse correlation between fiber density and tissue 

choline levels, which is a measure of membrane turnover and cell density164. Thus, tumor 

cell density, which can be measured non-invasively with FET PET, could be a potential 

biomarker indicative of tumor aggressiveness with regard to the amount of destruction 

of the normal fiber architecture.  

The analyzed hyperintense FLAIR signal alterations are mainly representative of 

vasogenic edema caused by tumor-induced disruption of the blood-brain barrier165,166 or 

late side effects of radiotherapy within the white matter167. The latter include 

demyelination, axonal degeneration and astrogliosis156. Here, we attempted to 

distinguish between both lesion classes by visual inspection using morphological criteria. 

The differentiation between edema and radiation-induced gliosis proved to be difficult, 

so that the classification should be treated with caution. Especially in edematous tissue 

regions, the tractography pipeline used in this work should provide a much more reliable 

fiber assessment than the conventional DTI. Edema refers to the presence of 

extracellular water, which interferes with the determination of the anisotropic diffusion 

signal of the white matter fiber135,136 due to the superposition of its isotropic diffusion 

signal. Therefore, in our tractography pipeline, we used the SS3T-CSD diffusion model, 

which also takes into account the contamination of each brain voxel by freely diffusing 

water, as occurs in edema, when calculating fiber orientation126,137,138. This allowed us to 

quantify for the first time the relative fiber loss due to edema, which was approximately 

50%. Fiber loss can be explained by the increased interstitial pressure associated with 

vasogenic edema, which can displace, compress, or disrupt nerve fibers in the affected 

edematous region72. Notably, fiber loss in brain regions affected by radiation damage 

was similar to that induced by edema. In contrast, previous studies have used only 

surrogate markers of white matter integrity based on DTI 150,168-172. 
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3.3.2 Effects of structural connectivity changes on behavioral performance 

The impact of structural connectivity changes on patient behavioral performance was 

first assessed by relating the total fiber loss induced by each of the four lesion types to 

patients' overall performance as expressed by their ECOG score. Surprisingly, only the 

contrast-enhancing glioma and FLAIR hyperintense signal alterations were associated 

with a significantly reduced ECOG score. The different effects of the individual lesion 

types could be due to their specific characteristics and partly to the cohort of patients 

studied. The well-planned neurosurgical interventions that relied on neuroanatomical 

and neurofunctional expertise likely ensured that most patients recovered without long-

term neurological deficits, as reflected by their unaffected ECOG score. Furthermore, 

FET-avid glioma regions and most contrast-enhancing lesions predominantly reflect 

recurrent tumor growth, whereby the higher sensitivity of amino acid PET compared to 

MRI probably led to earlier detection of tumor infiltration. Therefore, the corresponding 

loss in fiber density was not severe enough to affect the patient's overall performance. 

Due to the constant risk of developing radiation-induced damage or a recurrent tumor, 

FET PET was performed regularly during the follow-up. This made early detection of 

asymptomatic, smaller tumors possible, in contrast to initial diagnosis where the tumors 

may already have progressed to advanced stages. Although the FLAIR hyperintense 

signal changes showed the least reduction in fiber density, they were the only ones, apart 

from the contrast-enhanced lesions with a strong reduction, that led to a reduced ECOG 

score. The recurrent glioma growth in contrast-enhanced lesions was most likely 

associated with severe disruption of the fiber tracts in certain locations, leading to the 

reduced ECOG score. The hyperintense FLAIR signal alterations, which were mainly 

associated with vasogenic edema and/or radiation-induced tissue damage, had a similar 

impact on the ECOG score, but probably because they tended to affect a large brain 

volume. In particular, in edema, axons are still present but may become dysfunctional 

due to compression.  

The contrast enhancing lesions and FLAIR hyperintense signal alterations have been 

found to influence the general performance of patients with glioma at recurrence, at least 

in terms of ECOG score. However, it remains unclear how the apparent loss of fiber 

density was related to specific cognitive functions and their corresponding cortical nodes, 

edges, and networks. Therefore, a CPM-based analysis was used to establish 

relationships between their structural connectivity and individual cognitive functions. 

While the effects of brain lesions in eloquent primary cortical areas and their 

corresponding fiber tracts on neurological function are generally well known173, the 

underlying mechanisms of cognitive decline in patients with gliomas have not been 
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clearly elucidated174-176. In this context, initial studies in patients with glioma indicated 

that the evaluation of brain networks could facilitate a deeper understanding of this 

decline177-181. Therefore, we analyzed the structural connectivity within and between 

seven networks defined of the Schaefer-Yeo brain atlas132 that span the entire cerebral 

cortex, and comprise the visual, somatomotor, dorsal attention, ventral attention, limbic, 

frontal control, and default mode networks. This approach had the advantage of 

considering all potential structural connections between cortical nodes, even those 

outside the anatomically defined pathways. Our results show that reduced fiber count in 

specific subsets of edges was significantly associated with lower performance in several 

cognitive domains. This was particularly true for edges between different resting-state 

networks rather than within individual networks. The corresponding nodes were 

predominantly located in the left hemisphere, along with the bilateral precuneus or 

posterior cingulate cortex. Despite the different distribution of identified nodes within the 

investigated cognitive domains, several of the node sets contained the same nodes, e.g., 

within the left visual and somatomotor networks as well as bilateral nodes of the dorsal 

attention network and the default mode network. Critical nodes were defined by a high 

node degree, which here refers to the number of cross-validated critical edges connected 

to the node. Among the most critical nodes were the left temporal and the bilateral 

posterior cingulate cortex of the default mode network. 

These results fit seamlessly into the general concept of the structural and functional 

organization of the human brain, according to which functionally similar nodes are 

grouped into modules (e.g., resting-state networks) that are globally integrated by certain 

critical nodes (connectivity between modules). These so-called connector hubs mediate 

neural information and are characterized by a high node degree. This global integration 

of modules is associated with perception, cognition and action7. Some of the connector 

hubs are also highly interconnected to further optimize intermodal exchange by 

regulating the global integration of modules and optimizing cognitive processes11. This 

phenomenon is called rich-club organization and is usually established by long-range 

structural connections. Rich-club nodes have been identified primarily in functional 

resting-state networks26,182 and in the posterior part of the default mode network including 

the cingulate regions and the precuneus26,183. 

In terms of our results, this means that the edges that were significantly associated with 

reduced performance in different cognitive domains took part in global integration, as 

they were connected to different resting-state networks, with several nodes showing a 

very high degree of adjacent edges. These nodes especially comprised prominent 

network hubs known to be involved in the rich-club, such as the bilateral precuneus or 
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the posterior cingulate cortex. In particular, these two regions are also strongly linked to 

other neurological disorders, such as Alzheimer's disease184. This suggests that 

cognitive decline in patients with treated glioma may be driven by a mechanism similar 

to other major psychiatric and neurological disorders, where the rich-club nodes have 

also been found to be predominantly involved185. In general, the rich-club nodes are 

particularly important in psychiatric and neurological disorders and are usually affected 

by altered functional and structural connectivity11. In addition, pathological lesions occur 

more frequently in rich-club regions than in peripheral nodal regions, suggesting that 

brain disorders are more strongly associated with damage to central brain regions11. 

3.4 Functional connectivity in patients with glioma 

Beyond the tumor- and treatment-related effects on structural connectivity and the 

resulting consequences for patient behavior, these effects should also be reflected in 

altered functional connectivity, since functional connectivity is based on the structural 

organization of the brain via the white matter fiber tracts. In contrast to structural 

connectivity, functionally connected areas do not necessarily have to be directly 

connected. Functional connectivity merely indicates whether the activity of two brain 

areas correlates with each other in time. However, different functional connectivity 

patterns can arise independent of the invariant structural architecture of the brain. 

Therefore, functionally correlated brain regions can be more accurately described as 

having a functional relationship along multiple or all anatomical edges that exist between 

the two nodes28,32. This means that functional connectivity provides a complementary 

perspective on connectivity changes in treated patients with glioma at recurrence. 

Of particular interest in the field of neuro-oncology is the consideration of functional 

connectivity within glioma infiltrated tumor regions. The key question that arises from a 

clinical perspective during treatment planning is whether or to what extent the infiltrated 

tissue is still functional. Therefore, the functional evaluation of the local cortex infiltrated 

by gliomas has been mainly investigated in the context of preoperative mapping using 

electrophysiological methods87,186-189 or magnetoencephalography87,190. It has been 

shown that typical task-evoked patterns of neuronal activity are preserved in glioma-

infiltrated cortex. Nevertheless, the tumor affects the integrity of neuronal networks 

throughout the brain as shown by the observation that patients with gliomas showed 

changes in resting-state functional connectivity of the entire brain, even extending to the 

contralateral hemisphere3,4. Recently, research has increasingly focused on the effects 

of connectivity between tumor regions and the healthy brain at different scales. It turns 

out that the diffuse infiltration of gliomas into normal brain tissue75 is accompanied by a 



Discussion 

 
93 

close interaction between tumor cells and the local microenvironment191. Especially the 

emerging field of Cancer Neuroscience is concerned with the microstructural interaction 

between neurons and glioma cells192,193. Current findings suggest that paracrine 

signaling and the formation of excitatory glutaminergic synapses between neurons and 

glioma cells induce and promote glioma growth through neuronal activity91-93,194. From a 

more macroscopic point of view, tumor-infiltrated brain regions also exhibit functional 

connectivity to resting-state networks. For example, studies in newly diagnosed 

glioblastomas5 and patients with primary and recurrent CNS WHO grade 2-4 gliomas6 

revealed that tumor voxels were often functionally associated with resting-state 

networks5 or other identified cortical areas6. Notably, preserved functional connectivity 

was even associated with better overall survival in certain subgroups, making the results 

particularly interesting for clinical application as a diagnostic biomarker5,6.  

Therefore, we hypothesized that functional connectivity between tumor-infiltrated brain 

regions and resting-state networks is also impaired in pretreated gliomas at recurrence 

and, furthermore, that preserved functional connectivity is associated with improved 

overall survival. This was investigated in a subset of 82 treated patients with 

metabolically active glioma at recurrence diagnosed using a combination of anatomical 

MRI and FET PET. As one of the most reliable non-invasive imaging modalities for the 

detection of glioma recurrence195, FET PET was used to delineate the tumor region of 

interest. Based on this definition, functional connectivity between metabolically active 

glioma regions and seven resting-state networks was investigated using rs-fMRI in 

combination with seed-based correlation analysis. Here we again assessed the seven 

resting-state networks from the Schaefer-Yeo brain atlas132 covering the visual, 

somatomotor, dorsal attention, ventral attention, limbic, frontal control, and default mode 

network. Finally, the functional connectivity was associated with patients' overall survival. 

New insights from this approach may contribute to a new prognostic biomarker 

specifically for treated patients with glioma at recurrence. This is important because, 

compared to patients with newly diagnosed gliomas, current therapeutic interventions 

such as resection, radiotherapy, and alkylating chemotherapy may lead to interactions 

with glioma cells, neurons, and immunogenic/inflammatory cells that further complicate 

prognosis129-131. 

3.4.1 Functional connectivity between glioma region and brain networks  

In the present work, the metabolically active glioma region showed significantly varying 

degrees of functional connectivity to each of the seven canonical resting-state networks, 

with the highest connectivity to the four major associative networks dorsal attention, 

ventral attention, frontoparietal control, and default mode network. Our analysis of fiber 
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density already suggested that brain connectivity is preserved within the tumor, as 

residual fiber density was measured in both the contrast-enhanced and metabolically 

active glioma regions (see Section 3.3.1). Several recent studies using rs-fMRI have also 

shown that cortical regions infiltrated by gliomas are functionally connected to other 

cortical areas and networks5,6,87,188. For example, Sprugnoli and colleagues showed in 

54 patients with newly diagnosed and recurrent CNS WHO grade 2-4 gliomas that there 

was significant resting-state functional connectivity between the tumors and the 

unaffected brain6. The functional connectivity of recurrent gliomas proved to be different 

from that of newly diagnosed ones, which underlines the need for a specific biomarker 

for recurrent patients (see Section 3.4). In the above mentioned work, the distribution of 

brain voxels functionally connected to recurrent gliomas resembled the dorsal attention 

network, whereas in newly diagnosed gliomas it resembled the frontoparietal control 

network6. 

The overall functional connectivity (i.e., the mean of all seven canonical networks) 

between metabolically active glioma regions and resting-state networks in our work was 

higher in IDH-mutant gliomas than in IDH-wildtype gliomas, with oligodendrogliomas 

showing the highest preserved connectivity. This was also true for each individual 

network. With regard to tumor type and IDH mutational status, the findings indicate that 

the less aggressively the tumor grows, the higher the residual functional connectivity in 

recurrent gliomas. It seems likely that this is due to a maintained neuron population 

preserving the functional local and remote architecture of the infiltrated brain regions. 

This is also consistent with our findings that the reduction in fiber density in the 

metabolically active glioma was inversely related to FET uptake (see Section 3.3.1), 

where FET uptake has been correlated with glioma cell density in previous studies162,163. 

Thus, the increased tumor cell density indicates higher tumor aggressiveness, which 

reduces local structural connectivity that serves as the basis for functional connectivity. 

This could be the underlying mechanism for the reduced functional connectivity 

depending on tumor aggressiveness.  

3.4.2 Prognostic value of glioma-whole brain functional connectivity  

Recent studies suggest that the connectivity between the glioma region and the rest of 

the brain may have some prognostic potential5,6,87. Most comparable to our work is the 

study by Daniel and colleagues, who also found that higher intra-network connectivity of 

the tumor was associated with longer overall survival5. However, these results focus only 

on patients with newly diagnosed glioblastoma and do not relate survival to individual 

resting-state networks. In contrast, we examined functional connectivity of the 

metabolically active tumor region in treated patients with recurrent gliomas, including 
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glioblastoma, astrocytoma, and oligodendroglioma. We observed that high functional 

connectivity between the recurrent glioma and specific networks, such as the visual, 

somatomotor, and dorsal attention networks, was associated with overall survival. In 

particular, functional connectivity to the dorsal attention network for the entire patient 

cohort and to the visual network for glioblastoma patients proved to be an independent 

prognostic factor for improved overall survival. This is of particular interest for 

glioblastoma patients, which is one of the most aggressive and lethal forms of glioma 

with a median survival time of 14-17 months53-55 despite aggressive treatment. In terms 

of clinical application, we have shown that in glioblastoma patients, functional 

connectivity between the tumor and the visual network can be used to classify patients 

into better and worse prognosis groups. This may be particularly useful for treatment 

planning and patients’ management. Daniel and colleagues also found reduced or 

absent functional connectivity in necrotic tumor regions, as opposed to solid, contrast-

enhanced tumor parts, leading them to assume that brain tumors with better preserved 

physiology would also have a better prognosis5. This is consistent with our findings that 

functional connectivity with the rest of the brain was inversely related to WHO tumor 

grade and was higher in IDH-mutant than in IDH-wildtype gliomas. Sprugnoli and 

colleagues also examined functional connectivity between the tumor region and several 

adjacent brain regions in recurrent and newly diagnosed patients with glioma and the 

association between functional connectivity and survival6. Interestingly, the brain voxels 

functionally connected to the tumor resembled the dorsal attention network in the 

recurrent tumors. However, the functional connectivity correlated either positively or 

negatively with survival in newly diagnosed glioma. This may reflect the different way in 

which the solid brain tumor was delineated compared to our work. In addition to 

anatomical MRI, we used amino acid PET with the tracer FET, which allows for more 

accurate diagnoses and delineation of the solid tumor196.  

Due to actual lack of further research that deals with functional connectivity between 

tumor region and distinct brain networks it is difficult to find a convincing explanation why 

the functional connectivity to the dorsal attention and visual network was decisive for the 

prognosis. Given the current state of knowledge, it is tempting to speculate that the 

association with improved overall survival is related to specific preserved cognitive 

functions of these networks and their underlying connectivity. The dorsal attention 

network is primarily related to the goal-directed, voluntary control of visuospatial 

attention197,198 which also depends on the visual network. This cognitive domain is 

particularly important for executive function. It has been shown that cognitive 

performance in various domains of executive functioning, but also attention, are of 

particular importance for the survival of patients with newly diagnosed glioblastoma199. 
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Interestingly, in a recent study, functionally active cortical regions infiltrated by a glioma 

showed significant connectivity with the dorsal attention network during an executive 

function task188. In addition, gliomas may remodel functional neuronal circuits so that 

task-relevant neuronal responses activate the tumor-infiltrated cortex far beyond the 

cortical regions normally recruited in the healthy brain87. In this way, the preserved 

functional connectivity with the dorsal attention and visual networks could be partly 

explained by the ability of the affected brain to recruit tumor-infiltrated distant regions, 

possibly in an attempt to preserve important cognitive functions that affect survival87,199. 

3.5 Limitations 

All three studies included in this thesis have the same limitations in terms of the patient 

cohort studied. We focused on treated patients with recurrent glioma, but repeated, 

regular radiological follow-up data was only available for a few patients. Due to the lack 

of longitudinal follow-up, the intensity of treatment as well as the time between treatment 

initiation and imaging along with the timing of neurocognitive assessment (on the day of 

imaging) varied widely between them. Nevertheless, it seems plausible that a 

representative cross-section of treated patients, who collectively display a wide range of 

structural damage patterns, may have contributed to the development of robust CPM 

prediction models for cognitive performance. 

Furthermore, despite all efforts, boundaries of the individual segmented brain lesions 

were still difficult to determine, as they usually occurred simultaneously and even 

overlapped in contrast-enhanced and FET-avid glioma regions. However, in a sub-

analysis of non-superimposed contrast-enhanced (n=24) and FET-avid gliomas (n=9), 

the fiber density obtained was within the range of the entire cohort. In addition, 

hyperintense FLAIR signal alterations may be a surrogate of tumor infiltration without 

contrast enhancement. Overall, the fiber densities observed in the four lesion areas 

appear to correctly reflect the intensity of the pathologic and therapeutic effects, as they 

differed significantly from each other and also fell within the expected intensity ranges. 

This indicates that the above limitations only apply to a minor extent and that the 

tractography framework used provides reliable results. However, it is striking that the 

resection cavity exhibited a minimal but obviously incorrect residual fiber density. As 

already discussed, (see Section 3.2.4), this can be partly explained by the difficulty in 

achieving precise segmentation of the resection cavity boundaries. In general, it should 

be noted that even the well adapted tractography framework for patients with gliomas 

used here, which is based on state-of-the-art techniques, is in the end only able to 

approximate the actual fiber architecture as closely as possible, without being completely 
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free of false positive fibers. In addition, the subclassification of hyperintense FLAIR signal 

alterations into edema and radiation-induced gliosis proved to be highly challenging and 

should be considered with appropriate caution (see Section 3.3.1). In the end, a 

considerable fraction of patients remained unclassified, nevertheless it was shown that 

there was no significant difference between the lesion types in their effect on fiber 

density. 

Another aspect to consider is that shifts and deformations of cortical areas cannot be 

excluded in brains affected by pathology and treatment. Neither are the effects of 

neuroplasticity, which can take various forms, ranging from functional changes in existing 

structures to the formation and proliferation of new structures35,36. Of course, such 

changes cannot be taken into account in an atlas-based parcellation that originates from 

healthy subjects, as in the Schaefer-Yeo brain atlas132 used here. However, this seems 

to play only a minor role in the patients we studied, as the results of the second study fit 

seamlessly into the general concept of the structural and functional organization of the 

human brain and also reflect features known in other neurological disorders. 

The determination of functional connectivity between the glioma region and the rest of 

the brain was based on resting-state fMRI, which has the great advantage that it can 

also be used in patients who are unable to perform a task, e.g., patients with neurological 

deficits. Unfortunately, this does not identify the actual source of the measured 

connectivity. On the one hand, it is possible that functionally intact brain tissue was 

preserved within the tumor region186,188,190, maybe to the diffuse infiltration of gliomas. On 

the other hand, the measured functional connectivity may also originate from the tumor 

itself. There is clear evidence that high-grade gliomas integrate into neuronal networks 

through bidirectional interactions87. In this way, gliomas promote tumor proliferation 

through neuron-glioma synapses and paracrine signiling89-92, increase neuronal 

excitability200-203 and even remodel functional neuronal circuits87. Contrary to our and 

other findings5,204,205, Krishna and colleagues showed that an overall high functional 

connectivity as measured by MEG between glioblastomas and the rest of the brain 

shortens overall survival87. They assumed that reduced survival is driven by the 

connectivity of the tumor, which seems plausible since neuronal activity of the tumor 

promotes tumor proliferation. In the present analysis, however, it is possible that we 

measured both, the connectivity of functionally intact brain tissue and the connectivity of 

the glioma itself, whereby the connectivity of the remaining brain tissue to brain regions 

important for survival (see Section 3.4.2) predominates. This assumption is further 

supported by the fact that the diagnosis of recurrent glioma was based on amino acid 

PET using the tracer FET, in addition to anatomical MRI. It is likely the enhanced 
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sensitivity of amino acid PET in comparison to MRI have facilitated an earlier detection 

of glioma infiltration. As a result, the tissue damage caused by glioma growth may be 

less pronounced, while the functionality of the infiltrated brain tissue remains intact. 

Similar effects were already observed in our first study, where the associated loss of fiber 

density was less pronounced in the FET-avid gliomas region then in the contrast-

enhanced lesion and did not affect overall performance (see Section 3.3.2). This 

suggests that functionally active tissue was largely preserved in our cohort and was the 

main source of connectivity that influenced overall survival.  
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4 Conclusion and Outlook  

The present work constitutes a substantial contribution to a broader comprehension of 

tumor- and treatment-induced alterations in brain connectivity and their resulting impact 

on cognitive function and survival in patients with recurrent glioma. Our findings on the 

structural and functional organization of patients with glioma may promote the 

improvement of treatment efficiency in the future, especially with regard to the planning 

of local therapies such as surgery and radiotherapy. 

In particular, it should be noted that FLAIR hyperintense signal alterations, which are 

mainly associated with vasogenic edema and/or treatment-induced tissue damage, have 

a similar impact on the overall performance (ECOG) of patients as contrast-enhanced 

lesions, which are mainly associated with glioma. In this regard, FLAIR hyperintense 

signal alterations showed the least reduction in fiber density, and it appears that 

radiation-induced damage was of the same magnitude as that caused by edema. In 

addition, fiber density was inversely related to glioma cell density, which can be 

measured non-invasively by FET PET uptake and may be a potential biomarker that 

provides an initial indication of tumor aggressiveness. 

To further elucidate the impact of structural changes on the underlying cognitive 

functions, we have gathered a growing body of evidence suggesting that the outcome of 

higher-order cognitive function in patients with glioma depends on the preserved integrity 

of multiple distributed networks. These results perfectly complement and consolidate the 

current state of research in this area124,127,128. Moreover, they are clinically translatable. 

Despite clinical assessment or standard neuro-navigation, cognitive deficits still occur 

following treatment. These could be reduced or even eliminated if the definition of critical 

nodes presented here would be taken into account. Therefore, the long-term focus 

should no longer be on protecting single vulnerable structures, such as the motor and 

language pathways in neurosurgery or the hippocampus during radiotherapy, but rather 

on preserving the integrity of multiple interconnected brain networks, including known 

network hubs. Thus, our results suggest that efforts should be made to preserve edges 

between resting-state networks with corresponding nodes located primarily in the left 

hemisphere, as these are particularly important for maintaining cognitive function. Most 

affected nodes were concentrated in the left visual and somatomotor network and 

included bilateral nodes of the dorsal attention network and the default mode network. 

Especially the left temporal and bilateral posterior cingulate cortices of the default mode 

network are considered highly valuable for preservation. 
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In this context, it would be conceivable to further develop the machine-learning 

approaches like the CPM model of the present study in order to use it in the future for 

the prediction of cognitive decline in individual patients with glioma, in particular for the 

planning of local therapies. However, this only yields meaningful in conjunction with 

advanced tractography methods. It is time to move beyond the outdated DTI-based 

tractography techniques. Their inability to resolve complex fiber architectures104 leads to 

anatomically implausible or erroneously missing tracts103,104, which threaten survival125 

and may cause irreparable neurological deficits126. Consequently, advanced 

tractography techniques will be essential in the coming years and we have already 

demonstrated state-of-the-art tractography methods based on an advanced diffusion 

model with CSD105,106 that would be easy to implement in clinical practice106. Given the 

high potential to improve local treatment planning in patients with glioma, further 

exploration of modern whole-brain tractography that goes beyond DTI in conjunction with 

the definition of critical cortical nodes is strongly recommended. 

Our results on functional connectivity, including those of other present studies5,6,87,188, 

suggest that gliomas generally exhibit varying degrees of functional connectivity with all 

canonical networks in a substantial portion of the cortical tissue infiltrated by the tumor, 

regardless of disease and treatment outcome. As a result, the inclusion of functional 

connectivity promises to add significant value to future clinical diagnosis and may open 

the door to a variety of therapeutic strategies aimed at improving cognitive outcomes and 

survival. Our findings indicate that functional connectivity between recurrent gliomas and 

diverse networks may serve as an additional prognostic factor for improved overall 

survival. This has the potential to provide a novel imaging-based prognostic biomarker 

for patients with recurrent gliomas. Especially glioblastomas can be classified into groups 

with better and worse prognosis based on their connectivity to the visual network. This 

is a very sensitive group of patients who have the lowest survival rates in tumor diseases, 

so treatment planning and patients' management could be better adapted accordingly. 

In conclusion, the present work demonstrates the particular need to go beyond outdated 

DTI methods to improve brain tumor treatment. To maintain the overall performance of 

patients with gliomas and reduce cognitive decline, treatment planning must adopt a 

more network-based approach to preserve eloquent structures. In this context, the 

influence of edema and gliosis is a factor that should not be overlooked. Finally, the 

functional connectivity between the glioma region and the surrounding brain holds great 

clinical potential for prognostication.  
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Geleistete Beiträge an den Publikationen 

Die für die kumulative Dissertation verwendete Publikationen sind thematisch 

miteinander verknüpft und beschäftigen sich mit dem Einfluss von Hirntumoren auf die 

strukturelle und funktionelle Konnektivität im Gehirn. Im Folgenden werden die Beiträge 

der Mitautoren sowie mein eigener Beitrag zu den Veröffentlichungen im Einzelnen 

beschrieben: 

Bei den zugrundeliegenden Publikationen handelt es sich um drei retrospektive 

Analysen basierend auf einem Patientenkollektivs, das von unserer Forschungsgruppe 

bereits in früheren Studien genutzt wurde. Die Studie zur funktionellen Konnektivität (3. 

Veröffentlichung) beschränkt sich dabei auf Patienten mit einem PET-positiven Tumor. 

Innerhalb aller drei Projekte konnte somit auf die bereits erhobenen MR- und PET-

Rohbilddaten sowie auf die Befunde der Patienten zurückgriffen werden. Alle Patienten 

waren im Rahmen einer Nachuntersuchung mittels PET/MR-Hybridbildgebung mit der 

radioaktiv markierten Aminosäure FET an das Forschungszentrum Jülich überwiesen 

worden. Rekrutiert wurden sie seinerzeit von Herrn Prof. Dr. Fink, Herrn Prof. Dr. Kocher, 

Herrn Prof. Dr. Galldiks, Herrn Prof. Dr. Langen, Herrn Prof. Dr. Goldbrunner, Herrn Prof. 

Dr. Mottaghy, Herrn Prof. Dr. Ruge und Frau Dr. Weiss Lucas. Die Nachuntersuchungen 

wurden von Herrn Prof. Dr. Kocher, Frau Dr. Stoffels und Herrn Dr. Filss durchgeführt. 

Die dafür notwendigen MR- und PET-Messverfahren wurden von Herrn Prof. Dr. Langen, 

Herrn Prof. Dr. Shah, Herrn Priv.-Doz. Dr. Lohmann, Herrn Dr. Farrher und Herrn Dr. 

Lerche entwickelt und für die Scanner am Institut etabliert.  

1. Publikation: Alterations in white matter fiber density associated with structural MRI 

and metabolic PET lesions following multimodal therapy in glioma patients, 

veröffentlicht am 14. November 2022 in Frontiers in Oncology (IF 5.7).  

Die initiale Idee für das Forschungsprojekt stammte von meinem Betreuer, Herrn Prof. 

Dr. Kocher. In Absprache mit ihm und meinem zweiten Betreuer, Herrn Prof. Dr. Galldiks, 

habe ich das Projekt ausgearbeitet und umgesetzt. Abgesehen von der Hybrid PET/MR-

Bildgebung habe ich die in der Publikation beschriebenen Methoden allesamt 

selbstständig angewendet. Besonders hervorheben möchte hierbei die von mir etablierte 

Traktografie-Pipeline zur Untersuchung der Faserdichte bei Patienten mit Hirntumoren, 

die ich sowohl bei den untersuchten Patienten als auch bei der Kontrollgruppe 

angewendet habe. Die dafür notwendigen Rohbilddaten der Kontrollgruppe stammen 

aus der am Forschungszentrum Jülich durchgeführten 1000Brains-Studie und wurden 

freundlicherweise von Frau Prof. Dr. Dr. Caspers zur Verfügung gestellt. Alle weiteren 
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Daten für das Projekt habe ich selbst erhoben, statistisch ausgewertet, interpretiert und 

abschließend beurteilt. Der erste Entwurf des Manuskripts, einschließlich aller 

Abbildungen, wurde von mir erstellt und nach entsprechender Korrektur durch Herrn 

Prof. Dr. Galldiks und Herrn Prof. Dr. Kocher fertiggestellt. Anschließend wurden noch 

kleinere Korrekturvorschläge der übrigen Koautoren eingearbeitet.  

2. Publikation: Structural connectome-based predictive modeling of cognitive deficits in 

treated glioma patients, veröffentlicht am 15. November 2023 in Neuro-Oncology 

Advances (IF 3.5).  

Die zweite Projektidee stammte ebenfalls von Herrn Prof. Dr. Kocher und wurde von mir 

erneut in Abstimmung mit meinen Betreuern geplant und realisiert. Das Projekt baut 

dabei auf die von mir im Rahmen des ersten Projekts erhobenen Konnektivitätsdaten 

auf. Um die Auswirkungen struktureller Konnektivitätsveränderungen auf die Kognition 

von behandelten Patienten mit Hirntumoren untersuchen zu können, habe ich das in der 

Arbeit vorgestellte Connectome-based Predictive Modeling (CPM) Verfahren 

eigenständig für die strukturellen Konnektivitätsdaten adaptiert und erweitert, so dass es 

zur Identifizierung kognitiv kritischer Verbindungen verwendet werden konnte. Alle 

Patienten wurden daraufhin von mir entsprechend den beschriebenen Methoden 

ausgewertet, statistisch analysiert und abschließend beurteilt. Ausgenommen sind die 

Messungen der PET/MR-Hybridbildgebung und die Bewertung der kognitiven Leistung 

der Patienten, die ich nicht selbst durchgeführt habe. Die kognitive Leistung der 

Patienten erfasste Herr Prof. Dr. Kocher am Tag der Nachuntersuchung anhand 

geeigneter Tests. Die zugehörigen Kontrolldaten gesunder Probanden stammen 

wiederum aus der 1000Brain-Studie und wurden von Frau Prof. Dr. Dr. Caspers zur 

Verfügung gestellt. Auch der erste Entwurf des zweiten Manuskripts, einschließlich aller 

Abbildungen, wurde von mir verfasst und, wie beim ersten Projekt, anschließend von 

Herrn Prof. Dr. Galldiks und Herrn Prof. Dr. Kocher korrigiert. Im Anschluss daran 

erhielten wieder alle weiteren Koautoren die Möglichkeit, das Manuskript zu korrigieren.  

3. Publikation: Functional connectivity between tumor region and resting-state networks 

as imaging biomarker for overall survival in recurrent gliomas diagnosed by FET PET, 

veröffentlicht am 29. Januar 2025 in Neuro-Oncology Advances (IF 3.7).  

Die dritte Projektidee wurde von Herrn Prof. Dr. Norbert Galldiks eingebracht und 

abermals gemeinsam mit Herrn Prof. Dr. Kocher konzipiert und schließlich von mir 

umgesetzt. Alle im Rahmen dieser Studie neu gewonnenen Daten wurden von mir selbst 

erfasst. Einschließlich der funktionellen Konnektivität zwischen Tumorregion und 

Ruhezustandsnetzwerken unter Verwendung der „Seed-based Dual Regression 
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Analysis“, einer modifizierten Version der „Seed-based Correlation Analysis“, die von mir 

eigenständig für die untersuchten Patienten etabliert und durchgeführt wurde. Ebenso 

wie die anschließende statistische Auswertung (einschließlich der Überlebensanalyse), 

Interpretation und abschließende Beurteilung aller Daten. Die zugrunde liegenden 

Überlebensdaten stammen aus insgesamt fünf Universitätskliniken und wurden von 

Herrn Prof. Dr. Steinbach (Frankfurt), Herrn Prof. Dr. Sabel (Düsseldorf), Herrn Prof. Dr. 

Herrlinger (Bonn), Herrn Prof. Dr. Piroth (Wuppertal) und Herrn Dr. Werner (Köln) 

bereitgestellt. Die Rohfassung des Manuskripts, samt aller Abbildungen, wurde von mir 

erstellt und von Herrn Prof. Dr. Galldiks und Herrn Prof. Dr. Kocher korrigiert und ergänzt. 

Geringfügige Korrekturen der anderen Koautoren wurden nachträglich eingearbeitet.  
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