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Abstract

B cells are a key component of adaptive immunity in vertebrates. They recognize
pathogens and trigger an immune response, which involves antibody secretion
and the formation of immunological memory. In the context of immune receptor
repertoires, new experimental techniques have provided us with unprecedented
high-throughput genomic and phenotypic data. For instance, it has been observed
that upon immunization, the immune system produces potent, specific and fast
recognition of antigens, while maintaining a spectrum of genetically distinct
activated B cell lineages. Moreover, heavy-tailed clone size distributions have
been observed in different populations of B cells. To explain some of these
observations, I have developed a spatiotemporal model of molecular recognition of
antigens by B cells. Applied to various immunization processes, such as infections
or vaccination, the model studies the collective response of B cells, driven by
proliferation and diffusion of the antigen. The fundamental molecular interaction
between antigens and B cells is mediated by a general kinetic proofreading scheme.
Furthermore, drawing inspiration from the density of states in statistical physics,
I characterize the diversity of the B cell population in terms of its functionally-
determined density of receptors. This approach allows us to study how the immune
system encodes in large but limited receptor repertoires the capacity to recognize
virtually any pathogen that threatens the host. The molecular recognition process,
driven by exponential growth of the antigen, can be mapped onto a generalized
Luria-Delbrück process, akin to the seminal fluctuation experiment in microbial
evolution. Overall, this model predicts key biological and medical phenomena
such as the existence of primary elite neutralizers and the age-related decline in
de novo responses. Finally, application of the model to memory B cell responses
can be used to construct mechanistic in vivo protective functions that have only
been heuristically determined.
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Preface

Five years ago, I was discussing with Michael Lässig in the coffee room of the
Physics Institute about what would be my PhD project. His research group has
been working on the evolution of viruses for the past decade, specially focused on
rapidly evolving viruses like Influenza. For him, it was a completely open problem,
why it is likely that we get an Influenza infection every few years, if each time we
get sick, we generate protective immunological memory. What type of transition
is this? From his research on the virus itself, he knew that each season, when
Influenza produces a wave of new infections in the globe, it accumulates mutations
that change the regions of the proteins that are targeted by immunological memory.
After all, immunological memory relies on the molecular recognition of the viral
proteins. But, what was happening on the immune system side?

In a nutshell, the adaptive immune system in humans faces viral infections in
the following way. Before the infection, the host is equipped with an immense
diversity of receptors that could potentially bind the virus. The diversity is so
large that practically every virus will be recognized. After a primary infection,
the right receptors amplify their copy number and some of them also get even
better at binding. In this way, when the host is exposed to the virus again, those
receptors will more readily neutralize the viral activity. Then, when the virus
mutates, these previously selected receptors loose their recognition capacity, we
can get sick again, and it is necessary to find new good receptors in the background
diversity. In our minds, this problem, and in particular the transition between
being protected and not, was an energy-entropy trade-off problem. When is the
recognition capacity of a few good receptors better than the capacity of billions of
mediocre ones? This could be a nice research problem for a PhD.

In this moment, a terrible pandemic of a newly emerging virus put the whole
world in pause and for many, changed radically their lives. Now working almost
exclusively from home and in front of video calls all the day, for obvious reasons our
research group became occupied with the pandemic. Those were rare times. On one
hand, it was exciting to see almost a unique viral evolutionary experiment on live.
On the other hand, many people around the world suffered not only from infection,
but also from the economic and social burdens of the pandemic. In retrospective,
I learned two important things after the pandemic. One, basic research on viruses,
immune system and epidemiology is extremely relevant. Second, the only way to
overcome difficult times, when economic and social stability is at risk, is to stay
together as a community. The pandemic triggered a collaboration with the group
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of Florian Klein from the University Hospital in Cologne and I got involved with
a massive project for daily preventive testing in daycare facilities in the whole
region of North-Rhein Westfalen. Although this time put me a bit aside from
our immune problem, it resulted in a very interesting publication about the role
of stochasticity in small infectious outbreaks and its consequences for optimal
preventive surveillance. I did not want to leave this epidemiological interlude
outside this dissertation and, therefore, the last chapter is dedicated to it.

After a few months of reviewing the state of the art, I realized that the original
question from that afternoon in the coffee room was still way beyond the scope.
And the main reason was that a more fundamental question was also still an
open problem. Namely, how are the good receptors selected in the first place? So,
before understanding how we loose immunological memory, it was important to
answer how do we create immunological memory. I could not find a satisfactory
answer in current literature. However, the immune recognition problem brought
us to the very foundations of some biophysical concepts.

The partial answer to the immune recognition problem presented in this
dissertation goes back to the seminal fluctuation experiment proposed by M.
Delbrück and S. Luria in the middle of the 20th century. We found the original
idea of this experiment being relevant in the interaction between the immune
system and viruses during acute infections. And because the interaction relies
on molecular binding, very soon we realized that the idea of kinetic proofreading
proposed by J. Hopfield in the 70s was also relevant. The interplay between
this two important concepts, namely, evolution of expanding populations and
nonequilibrium molecular recognition, mark the foundations of this dissertation.
As it is always the case in science, we are standing in the shoulder of giants.

These 5 years of research have raised more new questions than answers, and I
am glad about that. I believe, from my still poor experience and ingenuity, that
the next decades will witness an explosion of new research at the interface between
quantitative immunology and biophysics. Many of the questions have been raised
already more than a century ago. But the access to new experimental technologies
and biophysical frameworks will provide the right tools to finally start answering
them. I hope that the ideas presented here will contribute to this enterprise.

This thesis consists of four parts. Part I, dedicated to the introduction of the
research project, consist of two chapters. In Chapter 1, I provide a brief motivation
to the field and the main problem. In Chapter 2, I introduce three important
topics that together form the main conceptual toolbox of my research: The topics
are the Luria-Delbrück experiment, Kinetic proofreading and an overview on the
Adaptive immune system. In the first two topics, I present the main concepts and
sketch the mathematical models behind them. In the last topic, I present a brief
description of the biology of the adaptive immune response in humans (and mice,
although it is actually shared by all vertebrates). I also review some of the basic
history of immunology and, more specifically, of the problem of specific immune
acquisition. In this way, I do not only place my research questions in the context
of about a century of the scientific development, but I also motivate the relevance
of the topics and questions discussed here.
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Part II of the thesis contains three chapters in which I develop a quantitative
theory of the activation of a repertoire of B cell lineages caused by exposition
to antigens. Chapter 3 formulates a minimal model of antigen-B cell molecu-
lar interaction and its consequences for the rapid and efficient response at the
repertoire level to proliferating antigens during infections. In Chapter 4 I extend
this theory to a spatiotemporal theory in which antigens not only replicate but
also diffuse. This extension of the theory allows for the treatment of the case
of the vaccination. Chapter 5 discusses the activation model in the context of
recall infections, in which acquired immunity is challenge by the same or similar
antigens. Part III consists of a single chapter. In Chapter 6, I present my the
epidemiological interlude on stochasticity in infectious outbreaks. Part IV is the
closure. I summarized the main results of my investigation, I state the main
conclusions and develop the perspectives that emerge from this thesis.

April, 2025, Cologne
Roberto Morán Tovar
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La ĺınea consta de un número
infinito de puntos; el plano de una
número infinito de lineas; el
volumen de un número infinito de
planos; el hipervolumen de un
número infinito de volúmenes ...
No, decididamente no es éste,
more geométrico, el mejor modo de
iniciar mi relato. Afirmar que es
veŕıdico es ahora una convención
de todo relato fantástico; el mio,
sin embargo, es veŕıdico

El libro de arena, J. L. Borges
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Chapter 1

Motivation

1.1 A young physicist looks at the adaptive im-

mune system

Life is a nonequilibrium state of matter in which the dissipation of energy is
harvested by organisms to self-replicate. Moreover, since the first self-replication
event occurred at the origin of life on Earth, evolution, driven by the force of
natural selection (and also just by pure chance), has created an intricate network
that connects all forms of life to that first event. In words of Max Delbrück,
≪...there are no “absolute phenomena” in biology. Everything is time bound and
space bound. The animal or plant or micro-organism [a physicist] is working with
is but a link in an evolutionary chain of changing forms, none of which has any
permanent validity. Even the molecular species and the chemical reactions which
[the physicist] encounters are the fashions of today to be replaced by others as
evolution goes on.≫[1] Perhaps for this and related reasons, for a long time the
interest of physicists in the study of biological systems remained limited to a few
concrete examples.

At the beginning of the 20th century, following the successful development
of the theories of special and general relativity, and quantum mechanics, many
physicists turned their attention to biological systems, in the search for a source
of new fundamental physical laws. There was the hope that living matter, with
its distinctive capacity to evade its own relaxation to a state of equilibrium and
to self-replicate, might safeguard hitherto unknown laws of nature. This interest
was further fueled by the advent of the theory of genetics, which provided a
microscopic and material basis for heredity, thereby establishing a physical entity,
the gene, upon which evolution could act. The venture of physicists into the realm
of biology was very diverse, including topics such as phage-bacteria interactions,
crystallography and DNA structure. All of this eventually played a fundamental
role in the development of molecular biology. An important topic, which we will
return to in the next sections, was the problem of antibody-based immunity.

Evolution has been shown to generate complexity through various mecha-
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nisms [2, 3, 4, 5]. This complexity, in turn, has created new specific demands for
living organisms. Sensing the environment, recognizing signals, and processing
information are critical tasks that organisms face all the time. As a consequence of
increasing complexity, many of these processes involve the interaction of different
levels of biological organization. From the coordinated molecular interactions
that make up cells, to aggregates of cells that form multicellular organisms, to
populations of phylogenetically related individuals. This vast complexity, com-
bined with the nonequilibrium aspect of biological systems, has proven challenging
to study [6]. On the other hand, our understanding of nonequilibrium systems
subjected to constant energy flows has become well established in recent decades,
with general principles for the analysis of stationary states, linear responses, and
fluctuation- dissipation relations. Interestingly, this research has been stimulated
by the study of simple biological systems, which often exhibit phenomena not
found in inanimate matter.

In this context, the immune system is an excellent model to study the fun-
damental properties of non-steady state nonequilibrium physics, for which such
general principles remain unknown. To recognize threats, immune cells integrate
information from complex networks of signaling receptors driven by proliferating
signals in the host, such as pathogens and cancer cells. It is therefore important
to understand the mechanisms by which the immune system harnesses energy
dissipation and time-varying input signals to enhance its recognition and protec-
tion capabilities, as well as the physical constraints under which it operates and
evolves.

Finally, with the adaptive immune system, evolution has created a molecular
machinery capable of effectively recognizing any foreign substance that enters
our bodies, while at the same time being able to tolerate the substances that
make up our own cells. Part of the solution is an immense diversity of receptors.
The diversity is so large that it is fundamentally a statistical problem, and
statistical physics offers a suitable initial toolbox to approach it. Concepts such
as density of states, entropy, temperature, information, disorder, and fluctuations
are cornerstones for studying this problem. After all, the proper functioning of
the immune system relies on billions of different receptors that are always ready
to bind and respond. Therefore, it is important to understand the molecular
mechanisms by which energy dissipation can be harnessed by the immune system
to achieve this exquisitely high specificity under the constraints imposed by the
diversity of receptors itself.

Although much progress has been made in our understanding of adaptive
immunity, many questions remain open. How do immune cells integrate infor-
mation from multiple interacting receptors and multiple signals? How do they
generate collective behavior and mount effective immune responses? I believe
that answering these questions will shed light on new mechanisms by which living
systems adapt their behavior to deal with transient driving forces, as is the case
of the immune system during acute infections. Overall, I believe that the study
of the adaptive immune system could greatly contribute to the advancement of
fundamental physics.



Chapter 2

The foundations

This chapter contains three sections in which we discuss relevant topics that
will serve to understand the models and the results of the main research part
of the thesis. The first two sections discuss paradigmatic models in the field of
biophysics: the Luria-Delbrück fluctuation experiment and kinetic proofreading.
These sections do not contain exhaustive reviews of the topics, but rather introduce
the main concepts, sketch the main calculations, and discuss their historical
influence and relevance in the thesis. The third section introduces the adaptive
immune system, with emphasis on the different ways in which B cells contribute
to the immune response against viral antigens. In addition, it provides a historical
revision of the problem of antigen recognition by the immune system. In this way,
I introduce the main research questions of the dissertation.

2.1 The Luria-Delbrück experiment

2.1.1 The origin of natural variation

This beautiful three-day experiment was one of the milestones in the natural
sciences of the 20th century. For ≪for their discoveries concerning the replication
mechanism and the genetic structure of viruses≫[7] Max Delbrück and Salvador E.
Luria, together with Alfred Hershey, were awarded the Nobel Prize in Physiology
or Medicine in 1969. To explain the main ideas and findings of this seminal work,
let us come back to the original 1943 paper MUTATIONS OF BACTERIA FROM VIRUS

SENSITIVITY TO VIRUS RESISTANCE [8]. Let us dive into the first paragraph and
the first sentence of the second paragraph, where we will readily understand the
question that the experiment was trying to answer. I have taken the liberty of
quoting and commenting on the text literally, line by line.

• ≪WHEN a pure bacterial culture is attacked by a bacterial virus, the culture
will clear after a few hours due to destruction of the sensitive cells by the
virus. However, after further incubation for a few hours, or sometimes days,
the culture will often become turbid again, due to the growth of a bacterial

5
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variant which is resistant to the action of the virus.≫

Bacteria (E. coli B in this case) show at least two different traits regarding
their ability to survive in the presence of a given virus (phage T1 in this case).
This observation also suggest that the resistant trait is perhaps uncommon
compared to the non-resistant one.

• ≪This variant can be isolated and freed from the virus and will in many cases
retain its resistance to the action of the virus even if subcultured through
many generations in the absence of the virus.≫

Such traits, specially the resistant trait can be inherited to new generations
and will persist even in the absence of the virus.

• ≪While the sensitive strain adsorbed the virus readily, the resistant variant
will generally not show any affinity to it.≫

This suggests that in this case, there are not a continuous set of traits from
resistance and non-resistance, but that there are two discrete trait in the
game.

• ≪The resistant bacterial variants appear readily in cultures grown from a
single cell. They were, therefore, certainly not present when the culture was
started.≫

The resistant trait is acquired at some point during cell culture! How?

When I first read the original paper, I was struck by the simplicity with which
the authors introduced the research question. And I was even more astonished to
realize that this was one of the fundamental questions concerning the theory of
evolution. (I was also impressed by the fact that the paper cited only 9 references,
but that is a matter for another discussion). Some would even say that this was
the question whose answer would support either a Lamarckian or a Darwinian
view of evolution.

The alternative models Although DNA was only established as the hereditary
material after the work of Franklin, Watson and Crick in 1953, the concepts of
heredity and mutations were accepted in the scientific community by this time.
Genes were known to be indivisible entities located in chromosomes. Two models
on how the mutant trait is acquired were in force at that time. Again, in the
words of of the authors [8]

• ≪D’HERELLE(1926) and many other investigators believed that the virus
by direct action induced the resistant variants.≫

This model assumes that mutations occur by some sort of pressure to change
and adapt. In this case, the presence of a viral infection would induce
bacteria to generate mutants to acquire resistance.
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A B C

Fig. 2.1. Luria-Delbrück fluctuation experiment I Here we sketch the 1943 Luria-Delbrück
experiment in three basic steps. A Bacteria are grown from an single cell and for a specific
time T . B At time T , a sample from the culture is plated in dishes that contain phages. C
Survival colonies are counted in the plates. Here the two alternative hypothesis are described.
(top) Mutations occur in bacteria after the transfer to plates as an adaptation to the attack of
phages. (bottom) Mutations occur spontaneously all the time during the experiment, including
the time before the transfer to plates.

• ≪GRATIA(1921), BURNET(I929), and others, on the other hand, believed
that the resistant bacterial variants are produced by mutation in the culture
prior to the addition of virus. The virus merely brings the variants into
prominence by eliminating all sensitive bacteria.≫

This model assumes that mutations occur spontaneously all the time and not
as an adaptive response to any pressure. They create natural variation within
a population. When survival pressures occur, the response is determined by
the existing variation. In this case, the presence of a viral infection selects
existing resistant variants.

2.1.2 The experiment

When Max Delbrück and Salvador Luria first met in 1940, they were both actively
working on bacterial growth under the attack of viral infection [1]. Soon after
they began working together, they became interested in the rise of secondary
growth, namely, the growth of resistant bacterial variants after phage infection.
The possibility that secondary growth was the result of spontaneous mutants
occurring prior to exposure to the phage attack was now on the table.
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According to Luria [1], the first written statement about the experiment is
found in one of his letter to Delbrück dated January 20, 1943: ≪I though that a
clean cut experiment would be to find out how the fluctuations in the number
of [T1 phage]-resistants depend on the culture from which they come. That is:
If I plate with [T1 phage] ten samples of the same culture of B[acteria], I find
numbers of resistants which fluctuates according to Poisson’s Law. If I plate 10
samples of 10 different cultures of B[acteria], all containing the same amount of
B[acteria], I find larger fluctuations. If the resistant were produced on the plate,
after contact with [T1 phage], they should show the same fluctuations in both
cases≫ [1].

Let us break down and sketch Luria’s experiment proposal. The experimental
setup is shown in Figure 2.1 and was the following:

1. Grow up bacteria starting from a single non-resistant cell for a controlled
time T . The introduction of the time variable is fundamental here.

2. At time T , plate cultured bacteria together with the phage. Let them
interact and wait until colonies from resistant cells may form.

3. Count the number of resistant colonies.

4. Repeat steps 1-3 and collect statistics about the number of resistant colonies
in each plate.

The final statistics of the number of colonies in the plates should disentangle
the debate between the two initial hypothesis. Let us see why.

2.1.3 The basic theoretical model

Here I sketch the logic of the theory of the problem as presented in the original
paper by Luria and Delbrück, with some extra considerations discussed in the
research group of M. Lässig.

Clonal dynamics of mutants in an expanding population Let us consider
that bacteria in cell culture proliferate at a rate:

dN(t)

dt
= λN(t) (2.1)

where N(t) denotes the total number of bacterial cells. Assuming that each cell
culture starts from a single cell, we have that

N(t) = eλt (2.2)

The basic assumption of the spontaneous mutations model is that, at any point
in time during growth, bacteria have a mutation probability µ per cell per unit of
time. Thus, the total number of new mutations occurring at time t is given by

dm(t)

dt
= µN(t) (2.3)
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Spontaneous mutations
Ti
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B

Fig. 2.2. Luria-Delbrück fluctuation experiment II A During the initial time of bacterial
growth, mutants are likely to appear proportionally to the wild-type population size. The time of
appearance will determine the final frequency on the population. B The spontaneous mutation
model predicts large fluctuations in the number of growing survival colonies after exposure to
phages. We expect many plates with a number of colonies closed to the expected value and a
few jackpots with many colonies.

where m(t) denotes the total number of mutation events. The total number of
mutations that have occurred up to time t is given by

m(t) =
µ

λ
(N(t)− 1) ≈ µ

λ
N(t) (2.4)

Let M(t) be the average total number of mutant cells at time t. The rate of
change of this number has two terms: i) the production of new mutants and ii)
the growth of existing mutants. Assuming that mutants grow at the same rate as
the unmutated cells (neutral mutation), we obtain for the growth of the average
total number of mutants

dM(t)

dt
= µN(t) + λM(t) (2.5)

using the integrating factor e−t and assuming that M(t = 0) = 0, the solution to
this equation is given by

M(t) = µN(t)t (2.6)
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From here it is interesting to see that the average total fraction of mutants in the
population increases linearly in time

M(t)

N(t)
= µt (2.7)

A key observation at this point is that all mutants cells can be grouped in clones,
which correspond to all cells deriving from a single mutation event. It is possible
to have clones within clones defined by mutations occurring in an already mutated
cell. For the moment, because of the nature of the problem investigated here
(phage resistance mutation neglecting back mutation), we only consider mutants
that are produce from the unmutated population. Additionally, we can group
clone by their age, or time of appearance, τ . Let nτ (t) be the expected clone size
of a clone of age τ given by

nτ (t) = eλ(t−τ) for t > τ (2.8)

and let us calculate the expected total number of mutants cells of the same age
(belonging to clones of the same age)

nτ (t) ·
dm(τ)

dt
= µN(t) (2.9)

Interestingly, this number does not depend on the age. This means that at a
given observation time t, we would expect to find, on average, the same number
of mutants from each past generation, either the first generation after the culture
was started, or the last generation before the observation. This result follows
from the fact that the expected clone size of each clone increases exponentially
with the age, but the production of new clones decreases exponentially with the
age. An intuitive explanation is the following: mutant cells produced early in the
culture will produce large clones by the time of observation, but the probability
of their occurrence is low. Conversely, mutant cells produced in later generations
will produce smaller clones, but they are more likely to occur.

Equation 2.6 shows the average number of mutants at time t. Now, let us
estimate the variance of the number of mutants. To do that, let us follow original
Delbrück reasoning. Consider a time interval [τ, τ + dτ ] with τ < t. The number
of mutants produced in this time interval is a Poisson process with average and
variance given by µN(τ)dτ . But we are interested not in the number of new
mutants but in the number of cells emerging from these mutation events. All
mutants that emerged at time t′ will expand a factor et−τ by time τ . We can then
assume that the distribution of the number of mutants of age τ has average and
variance given by

dM = µeλtdτ and dVarM = µe2λte−λτdτ (2.10)

We can now sum over the variable τ in the interval [0, t]. We obtain

M = µN(t)t and VarM =
µ

λ
N(t)[N(t)− 1] (2.11)
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The average number of mutants cells is the same as Equation 2.6. We can now
compare variance and average as

VarM

M
=

N(t)− 1

λt
. (2.12)

This calculation suggests that the spontaneous mutations hypothesis predicts a
larger relative variance as the Poisson process of the adaptive mutations hypothesis.

The clone-size spectrum We can ask what is the expected number of mutant
clones with clone size larger than n at time t, M(n, t). To answer this question
we recall the clone size of a clone of age τ given by Equation 2.8. This can be
rewritten as

τ = t− 1

λ
log nτ (2.13)

All clones older than τ have on average clone size larger than nτ . Therefore, to
estimate the expected number of mutant clones with clone size larger than nτ , we
need to count the number of clones with age τ ′ < τ . This is given by Equation 2.4
evaluated at τ

M(nτ , t) =

{
m(τ) for τ < t
m(t) for τ > t

(2.14)

Using Equation 2.13 in the previous expression we obtain

M(n, t) =
µ

λ
N(t)

{
n−1 for n > 1
1 for n < 1

(2.15)

where we have now omitted the dependence in τ . Note that here n < N(t) for all
t. From M we can compute the clone-size spectrum P (n, t) of mutant clones as

P (n, t) = −dM(n, t)

dn
=

µ

λ
N(t)

{
n−2 for n > 1
0 for n < 1

(2.16)

2.1.4 Luria-Delbrück dynamics in the immune system

Although Luria and Delbrück, and many scientists since then, were more concerned
about the total mutant population size spectrum, the clone-size spectrum results
also useful for various reasons. New technological advances allows nowadays to
track single mutations and their progeny in microbial populations[9]. With such
a high resolution, we can now investigate P (n, t) and learn about the evolution
under expanding populations.

As shown in Equation 2.16, the distribution of clone size shows a heavy tail
of large clone size that decays as a power law. This means that large clones
are not exponentially rare, as is the case, for example, of Gaussian distributions.
These large clones are often called jackpot events and are a hallmark of the Luria-
Delbrück experiment. The existence of this heavy tail and of jackpots explain the
large relative variance calculated in Equation 2.12.
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Interestingly, power-law distributions have also been observed in the clonal
composition of B cells in the immune system [10, 11, 12]. Although different
explanations have been proposed for this property of the immune system [13, 14,
15], we argue in the work presented below that the origin of power laws in the
clone-size distribution of B cells can have similar origin as the one of mutants in
the fluctuation experiment described above. As we will study in the next chapters,
the immune response to acute infections resembles the dynamics of mutants in
the Luria-Delbrück setup. This will be one of the main topics in Chapter 3.

2.2 Kinetic proofreading

2.2.1 Discrimination in equilibrium

Living systems are constantly transforming energy far from thermodynamic equi-
librium. Nevertheless, there are many examples where the assumption of thermo-
dynamic equilibrium has been successfully applied to study problems in biological
systems. Examples include the folding of proteins, the activity of ion channels, the
regulation of DNA by transcription factors, and the catalytic activity of enzymes.
Due to an appropriate separation of time scales, it is common to model these sys-
tems as consisting of a few meso-states in contact with a heat bath or other types
of reservoirs. Despite the high complexity and diverse driving forces that affect
such systems, those equilibrium models are not only good and handy descriptions
of the real systems, but have also allowed to accurately predict quantities like, for
example, the half-maximal inhibitory concentration (IC50) of antibody-antigen
binding dynamics.

This section concerns about the problem of specificity in enzyme catalysis. Let
us consider the perhaps simplest case of biochemical discrimination. An enzyme
E catalyzes substrate S in solution. A nice way to picture the catalytic process is
by the state of the enzyme

E ES
kon[S]

koff + ω

(2.17)

where E is the state of free enzyme, ES is the substrate-enzyme complex, kon[S] is
complex formation rate, koff the dissociation rate, and ω the catalysis rate. Here
we are assuming that after catalysis, the enzyme comes back directly to its free
state. In steady-state, the concentration of associated complex [ES] is given by

[ES] = kon[S]

koff + ω
[E ] (2.18)

To avoid cumbersome notation, all calculations are in the steady-state unless
otherwise noted. The total catalytic rate is given by

[ES] · ω (2.19)
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Now assume that a second undesired substrate S ′ is also present in solution at
the same concentration as S, and that its properties are also similar to those of S.
In particular, assume that the association rate with the enzyme and the further
catalysis rate are the same as for S, but that the substrate S dwells longer in the
complex with the enzyme than the substrate S ′. So we have that koff < k′

off. The
complete catalytic process is described by

E ESES ′

kon[S]

koff + ω

kon[S
′]

k′
off + ω

(2.20)

and in analogy with the analysis for S, the total catalytic rate given by

[ES ′] · ω =
kon[S

′]

k′
off + ω

[E ] (2.21)

If we assume that the desired product is the one formed after catalysis of S and
the undesired after catalysis of S ′, we define the error fraction, ς, as the ratio
between the rate of undesired product formation over the rate of desired product
formation

ς =
koff + ω

k′
off + ω

(2.22)

The minimum error fraction is achievable when the catalytic rate is much smaller
than the dissociation rates

ς −→ ς0 =
koff
k′
off

=
K

K ′ ≡ e−∆GSS′ for ω ≪ koff, k
′
off (2.23)

with K ≡ koff/kon and ∆GSS′ the difference in the standard free energy change
for the desired and undesired substrate-enzyme binding in kBT units. In this case,
the error fraction is upper bounded by ∆GSS′ . Interestingly, this error fraction
shows a trade-off between specificity and catalytic speed. The minimum error, or
maximum specificity, is achieved at the expense of a slower reaction.

The Pauling’s problem In the late 50’s of the last century, when the central
dogma of molecular biology had just taken off, L. Pauling posed the problem of
accuracy in the synthesis of proteins [16]. He knew that proteins are synthesized
by the catalytic activity of enzymes. According to Pauling, this process must work
by distinguishing different amino acids (the monomers that make up proteins) on
the basis of molecular interaction. But he also knew that some amino acids can
be very similar to each other and therefore interfere with the enzymatic reaction.
This will promote errors in the process and affect in the final composition of the
protein. Based on thermodynamic equilibrium assumptions about this chemical
reaction, Pauling predicted errors that greatly exceeded experimental observations
at the time [17]. In retrospect, this was a great, but not surprising observation.
After all, the synthesis of proteins take place inside cells, and we know that living
things are constantly challenging thermodynamic equilibrium.
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2.2.2 The Hopfield-Ninio Model

In the 70s, John Hopfield [18] and Jaques Ninio [19] independently proposed
a model that could beat the upper bound described above an achieved higher
molecular discriminatory power. The Hopfield-Ninio Model consists of an en-
zymatic reaction with a two-step enzyme-substrate complex preceding catalysis.
The complete enzymatic reaction is now given by

E ES

ES∗

ES ′

ES ′∗

kon[S]

koff

r+

r−lon[S]

loff + ω

kon[S
′]

k′
off

r+

r− lon[S
′]

l′off + ω

(2.24)
where it is assumed that the reactions between the two states of the complex, r+
and r−, are insensitive to the difference between S and S ′. The expression for ς
in this case is given by

ς =
[k′

offlon[S
′] + r+(kon[S

′] + lon[S
′])] [r+(loff + ω) + koff(loff + r− + ω)]

[kofflon[S] + r+(kon[S] + lon[S])] [r+(l′off + ω) + k′
off(l

′
off + r− + ω)]

(2.25)

which is a more cumbersome expression as in the previous case. In addition, in
order to satisfy detailed balance, we have the conditions

r+
r−

=
lonkoff

(loff + ω)kon
=

lonk
′
off

(l′off + ω)kon
(2.26)

Using this conditions in the expression of ς we get

ςeq =
[l′offlon[S

′] + r−(kon[S
′] + lon[S

′])] [loff(loff + 2r−) + ω(loff + r−)]

[lofflon[S] + r−(kon[S] + lon[S])] [l′off(l
′
off + 2r−) + ω(l′off + r−)]

. (2.27)

which is never smaller than ς0. Let see this more clearly. Let us assume for a
moment kon = lon. We obtain

ςeq =
[(l′off + 2r−)] [loff(loff + 2r−) + ω(loff + r−)]

[(loff + 2r−)] [l′off(l
′
off + 2r−) + ω(l′off + r−)]

. (2.28)

which in the limit of very slow catalysis rate is given by

ςeq −→
loff
l′off

for ω ≪ loff, l
′
off. (2.29)
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Using the detail balance condition from Equation 2.26 in the same limit of slow
catalysis rate we have that loff/l

′
off = koff/k

′
off and therefore

ςeq =
koff
k′
off

= ς0 (2.30)

Equilibrium imposes a lower limit on the error fraction, even in this more sophis-
ticated reaction scheme. Is there a change to do better? ≪Liberated from the
constraints of equilibrium (detailed balance), new properties emerge≫[17] in nature.
This was the insight of Hopfield and Ninio. In this particular case, they proposed
that the intermediate reaction that transforms ES into ES∗ (and equivalent for
ES ′ into ES ′∗) can be driven out of equilibrium by an external force. It can be
assumed then that the new intermediate state is a high energetic state due to the
external driving. In this case, most of the transition to the exited state comes
from the driven reaction and one can neglect the reactions coming directly from
the free enzyme (we neglect lon). In this case, the complete enzymatic reaction
can be approximated as

E ES

ES∗

ES ′

ES ′∗

kon[S]

koff

r+loff + ω

kon[S
′]

k′
off

r+ l′off + ω

(2.31)
For this nonequilibrium model of enzymatic catalysis, the error ratio is given by

ς =
(koff + r+)(loff + ω)

(k′
off + r+)(l′off + ω)

(2.32)

which in the case of slow catalysis rate gives

ς =
(koff + r+)loff
(k′

off + r+)l′off
for ω ≪ loff, l

′
off. (2.33)

We saw above that in the slow catalysis rate regime, the simple enzymatic reaction
setup of Equation 2.20 achieves its lowest error fraction ς0. In this case, there is a
new relevant time-scale defined by the driven reaction rate: ∼ r−1

+ . If the driven
rate is fast, then we obtain again

ς =
loff
l′off

= ςeq for r+ ≫ koff, k
′
off. (2.34)

which is the same as the equilibrium error rate. The lowest rate is achieved for
slow driven reactions

ς =
koffloff
k′
offl

′
off

≈ ς20 for r+ ≪ koff, k
′
off. (2.35)
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An intuitive way to understand this is the following: once the first enzyme complex
has been formed, the probability of forming the intermediate state is given by

p∗ =
r+

r+ + koff
. (2.36)

If the proofreading reaction is on average faster than the dissociation events of
both substrates (r+ ≫ koff), then it cannot be used to discriminate between them
because p∗ → 1 for all koff. Only if the proofreading reaction is on average slower
than the dissociation events (r+ ≪ koff), it can be used to discriminate between
two different dissociation rates koff and k′

off because p∗ ∼ k−1
off . The trade-off

between catalysis speed and specificity is again present here because of the delay
caused by the slow proofreading reaction.

2.2.3 Proofreading in the immune system

As it has been shown above, enzymes can be driven by external work to increase
the specificity of their catalytic activity. The problem of specificity is ubiquitous
in nature and is a fundamental aspect when we study information processing
in biological systems [20, 21, 22, 17]. In this context, 20 years after the kinetic
proofreading model was proposed, Timothy W. McKeithan realized that it could
also play an important role in the study of the immune system. McKeithan
proposed a kinetic proofreading scheme for the recognition of epitopes by T
cells [23]. His model, based of the auto-phosphorylation of intra-membrane
regions of T cell receptors, has been extended with a focus in the phenotype [24].
Moreover, some recent experiments have claimed to have measured the strength
of kinetic proofreading in T cells, estimating 2.6 effective steps taking place in
the discrimination process [25].

2.3 The adaptive immune system

2.3.1 The multifaceted B cell response to viral antigens

We begin this brief review of the adaptive immune system at the end of the story.
During the 20th and 21st centuries, our understanding of the mechanisms by which
the immune system fights off infection has increased enormously. Thanks to the
advent of new technologies, combined with the great dedication and astuteness of
many scientists, we now have very detailed descriptions of the biology of immune
responses. In this section, we describe the main biological paradigms necessary to
understand the subject of this dissertation: the immune response of B cells during
immune challenges.

The immune system of vertebrates consists of a complex network of agents
that respond in a coordinated manner to all types of threats and protect the host.
In the literature, the immune system is divided into at least two subsystems: the
innate and the adaptive immune system. After physical barriers such as the skin,
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the innate immune system is the first line of defense against pathogens. It is
responsible for protecting us from very well known pathogens. And by “very well
known”, I mean pathogens with which vertebrates have co-evolved over very long
time scales and have developed mechanisms to recognize them well. A key point
here is that we have learned to recognize features of these pathogens that have
not changed much in all that time. In addition, the innate immune system is also
responsible for directing important immunological processes such as inflammation
and the spread of immune alert signals throughout the host.

The adaptive immune system is also very complex and consists of different
types of cells. The two most important are B cells and T cells. B from Bone
marrow, and T from Thymus, the places where they mature. The bone marrow
and the thymus are the primary lymphoid organs in humans. B and T cells are
able to recognize a special type of pathogens and threats. They can fight out
infections caused by pathogens that the host has never seen before. An example of
such pathogens is SARS-CoV-2, the coronavirus that caused the 2019 pandemic.
Similarly, they can also protect us against pathogens that evolve fast. So fast that
each time we get infected with them, they look very different from each other.
This is the case of the seasonal Influenza A virus, that has been circulating for
decades in the world populations. B and T cells can also protect us from corrupted
versions of ourselves: cancer. They can recognize very small differences between
mutated cancer cells and destroy them. We see that the main power of B and T
cells is that they can protect us from unknown threats.

T cells have two main functions: to kill infected or malignant cells and to
regulate B cells. The former is done by cytotoxic T cells and later by helper T
cells. The world of T cells is a fascinating one. T cells are not only important for
protection against pathogens, but also for protection against cancer cells, which
they can also recognize as threats. But here I will focus on B cells, which are
responsible for producing antibodies and much more.

B cells B cells recognize pathogens using specialized receptors in their membrane
called B cell receptors (BCRs). Roughly speaking, these receptors are the bound
version of the soluble antibodies. Some B cells have them attached in their
membrane, others secrete them. BCRs bind to certain regions of pathogens called
antigens. Moreover, pathogenic antigens are known to have localized sub-regions
on their surface that are more immunogenic to B cells [26]. These regions are
known as epitopes. What makes one region an epitope and others not is not clear.
Some intrinsic properties of the antigen may play a role. For example, the amino
acid composition or steric and geometric effects [27]. On the other hand, as we
will discuss later, intrinsic properties of the immune system may also determine
which regions of the antigen are efficiently targeted. Overall, this remains one of
the fundamental open problems in immunology.

As we discussed above, each host is able to produce a very large amount
of different BCRs. This is know as the BCR repertoire. The rule is that each
different B cell expresses in its membrane a unique type of BCRs, and therefore
some time we would refer to the BCR repertoire as the B cell repertoire. In each
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Fig. 2.3. B cell immune response Summary of the different subpopulations of B cells as
explained in the main text.

host, a very large number of circulating naive B cells are present all the time.
Naive means that after they were produced, they have not yet engaged in any
immune response. This number can be on the order of 108 in mice or 1011 in
humans, with a similar number of different BRCs [10, 28, 29, 30].

Viral infections In primary viral infections, B cells can encounter viral antigens
in the affected tissue. However, there is a draining system, the lymphatic system,
that can transport antigens from one place to another. It turns out that B cells
are most likely to encounter antigens in lymph nodes or secondary lymphoid
organs, such as the spleen and tonsils. The high concentration of antigens and B
cells in these regions of the lymphatic system increases the chances that B cells
will recognize threats. The antigens that bind to BCRs may be soluble antigens
floating in the tissue where the B cells reside. However, there are also specialized
cells that can unspecifically retain antigens on their surface and present them to
B cells, facilitating BCR-antigen encounters.

When B cells successfully recognize a pathogenic antigen, they begin to mount
an immune response (I in Figure 2.3). A first step is the proliferation of B cells
that have recognized the antigen (II in Figure 2.3). Each B cell undergoes multiple
cell divisions to form a larger clonal population. As discussed in this dissertation,
this is a fundamental step in our understanding of how the immune system works
and, in my opinion, remains understudied. Of the billions of different B cells
that that make up the naive repertoire, it has recently been observed that about
102 − 103 different B cells respond [31, 32]. This is a larger number compared to
the handful of B cells that were originally thought to respond. Still, this is a large
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bottleneck of diversity. On average, only one in a million B cells will respond to
an infection.

B cell fate During or after proliferation, B cells differentiate into new phenotypes.
Initially, B cells choose between three different fates: i) plasmablasts (III in
Figure 2.3), ii) memory B cells (IV in Figure 2.3), or iii) germinal center (GC)
B cells (V in Figure 2.3). The mechanisms by which this decision is made are
not fully understood and are beyond the scope of this thesis. Plasmablasts are
antibody-secreting cells and are rapidly generated upon recognition of an ongoing
infection. They are capable of producing up to tens of thousands of antibodies per
second during their lifetime. In the literature it is usually said that the antibodies
produced by plasmablasts are of low affinity. We note that this depends on what
we compare them to. These antibodies help to clear viruses from the body by
neutralizing their ability to infect new cells or by marking them as a threat for
other arms of the immune system. Plasmablasts survive for a few weeks after
infection. For this reason, they are sometimes called short-lived plasma cells.

The second of the possible fates for B cells is to become memory B cells. Two
main features distinguish memory from naive B cells. First, memory B cells are
part of larger clones compared to naive B cells. This is a consequence of the initial
proliferation during the primary immune response. Second, memory B cells are
more ready to engage in an immune response than naive B cells. They are very
sensitive to exposure to the antigen that generated them in the first place and
undergo rapid proliferation and differentiation into plasmablasts. As we discuss
later, this two features are crucial for the protection they confer against recurrent
infections.

The third and final fate that B cells can take is to become GCs B cells. GCs
are temporary tissues formed by responding B cells in lymph nodes after an
immunization event. In GCs, B cells undergo a process called affinity maturation.

First, B cells migrate to the so-called dark zone of the GC. There, B cells
accumulate somatic mutations in the genes that encode for the BCR. This process
is carried out by a specialized enzyme called activation induced cytidine deaminase
(AID). Once modifications in the BCR have occurred, the B cells migrate to the
so-called light zone. The light zone is populated by follicular dendritic cells and
helper T cells. The former carry antigen in their membrane to be presented to B
cells, and the latter are ready to provide survival signal to B cells. Mutated B cells
coming from the dark zone will capture antigen from follicular dendritic cells and,
based on this, will request help from T cells in order to survive and proliferate.
Most B cells go through several rounds of dark and light zones: several rounds
of mutation and selection. At the end of the process, B cells that have acquired
mutations that increase their affinity with the antigen are able survive and further
proliferate. Affinity-maturated B cells leave GCs in two different forms. They
can become memory B cells (VI in Figure 2.3) or long-lived plasma cells (VII in
Figure 2.3). Memory B cells, similar to those produced before the formation of
GCs, will circulate between lymph nodes and other tissues awaiting reactivation.
Long-lived plasma cells will migrate to the bone marrow and secrete high-affinity
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antibodies for up to decades. This is the beautiful process of affinity maturation,
a Darwinian process of very rapid evolution of BCRs.

A note on time scale The multifaceted immune response of B cells occurs on
different time scale. Production of plasmablasts and secretion of non-affinity mat-
urated antibodies begins a few days after the onset of the infection. Plasmablasts
then survive in the host for several weeks. They then die of exhaustion. This part
of the immune response is called the extrafollicular response. As we can see, this
does not provide long-term protection for the host against reinfection with the
same pathogen. At the same time, many memory B cells are produced directly
from the primary responding B cells [32, 33, 34]. Although it is unclear for how
long will those memory B cells circulate in the host, they probably stay survive in
the host its lifetime. It is believed that in aged individuals, up to 20% of all B
cells are memory B cells. In this sense, they provide long-term immunity against
the infecting pathogen.

For several weeks or up to a few months after resolution of the primary infection,
affinity maturation takes place in the previously formed GCs. The reason for the
termination of GCs is not completely clear, but it may be a combination of several
factors, including exhaustion of antigen in the GC, extinction of all participating
B cells, and a pre-defined period of existence. During all this time, memory B
cells are exported from GCs. It has been observed that there is no particular
bias as to the point in the GC reaction at which memory B cells are exported.
On the other hand, long-lived plasma cells are typically exported later in the life
of a GC. Both GC-derived memory B cells and long-lived plasma cells provide
long-term protection for the host. It is interesting to notice that GCs do not seem
to play an important role in the primary infection. Affinity maturation is usually
understood as an adaptation for long-term immunity.

Now that we have a better picture of how B cells work, let us go back a century
to the discovery of acquired immunity. From this point, we will explore the history
behind the paradigm shifts that have occurred in our understanding of the nature
of antibody production. In doing so, we will recapture and contextualize some of
the key issues explored in this thesis.

2.3.2 The birth of immunology and the antibody specificity
problem

Since the discovery by E. von Behring and S. Kitasato in the late 19th century
that sera from animals infected with diphtheria could be used to protect or treat
non-immunized animals, immunology became a new and important scientific field
in its own right. In the 20th and 21st centuries, it has had a major impact not
only on medical applications, such as vaccination or serological therapy, but also
on the development of new tools for research and disease diagnosis, such as the
hemagglutination [35] and ELISA assays [36].

In the decades following the work of Behring and Kitasato, it was shown that
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the so-called antibodies (at that time hypothetical entities present in the sera of
immunized animals) are proteins [37, 38], that they are Y-shaped [39, 40], and
that they bind to antigens through specific molecular interactions [41].

At the same time that the physicochemical properties of antibodies were being
characterized, accumulating evidence showed that they were produced by the
host after immunization with exquisite specificity against many different antigens.
These observations set off a fundamental scientific debate that, in my opinion,
still puzzles researchers today. Conceptually, the big question was what are the
mechanisms common to all vertebrates that allow organisms to produce highly
specific antibodies after immunization.

The first type of theories about antibody production suggested that antigens
serve as templates for antibody production [42, 43]. These theories proposed
that immune cells were initially able of producing generic antibodies that lacked
any particular specificity. During immunization, foreign antigens could physically
interfere with the process of antibody formation and change their shape to one
compatible with the antigen. These types of theories were called instructional
theories, because they assumed that the organisms actually used the contents
of injected antigens as instructions to produce specific antibodies. Instructional
theories were specially motivated by a specific type of experimental observation:
under the right conditions, antibodies were elicited by virtually any chemical
structure, even synthetic ones [44]. In this way, they became the first paradigm
on antibody production during the first decades of the 20th century [45]

However, instructional theories could not properly explain at least three key
observations about immunization processes. First, under this theories, the delay
between inoculation and antibody production should be shorter for larger antigen
doses because [43], but this contradicted experimental observations [44] In
addition, they could not explain the exponential rise in antibody concentration
soon after immunization. This would require a self-replicating template, which
was not a feasible assumption for the theories. Without a self-replicating template,
the increase in antibody concentration could not be faster than linear. Finally,
experiments suggested discrepancies between template acquisition and antibody
production. Foreign substances were taken up by macrophages, while antibodies
were produced by plasma cells. Under these circumstances, how could a antigens
be used as a template for antibody production?

The clonal selection theory Interestingly, even before the development of
the instructional paradigm, P. Ehrlich first reported a different type of theory of
antibody formation in 1900 [46]. Based on the initial observations of the high
specificity shown by antitoxins elicited after immunization, and inspired by his
own work in organic chemistry, Ehrlich proposed that host cells carry side chains
in their membranes that can specifically interact with soluble substances. When
such an interaction occurs, the host cells are stimulated to produce more of the
specific side chain. In this case, the central idea was that the exposure to a
foreign substance induces the production of antitoxins (antibodies) in the host
from a set of pre-existing side chains. The difference between this theory and
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the instructional theories resembles the difference between the Lamarck’s and
Darwin’s theories of evolution discussed above. Although Ehrlich’s theory could,
in principle, explain the exponential increase in antibody levels after immunization,
his theory lost acceptance as more and more chemical structures were found that
could induce the production of new specific antibodies.

With no further evidence supporting instructional theories, in 1955 Niels
Jerne reformulated a theory similar to that proposed by Ehrlich more than half a
century earlier [47]. N. Jerne published his Natural-Selection Theory Of Antibody
Formation, which challenged the instructional paradigm [43]. Instead of using
foreign antigens as templates to produce specific antibodies, Jerne postulated that
there is always a large diversity of antibodies with all kinds of specificities in a host
organism. The theory further proposed that, in the presence of a foreign antigens,
only a fraction of the best-fitting antibodies were chosen from this underlying
diversity. These chosen antibodies would somehow instruct the cells to replicate
them.

Jerne’s theory itself had some problems. One of them was the need for a
mechanism that could produce all this pre-existing diversity in the first place. It
also contradicted the already established idea that proteins were not self-replicating
units. However, the theory was rich and, under certain assumptions, could provide
explanations for central tolerance and affinity maturation. Thus, the theory
resonated with the scientific community and began a paradigm shift.

Two years after the publication of Jerne’s idea, David Talmage [48] and
Frank M. Burnet [49] made an important conceptual leap (in the direction of
Ehrlich’s model). Instead of antibodies replicating themselves, they proposed
that antibodies might be found in the membrane of immune cells, and that upon
binding to foreign antigens present in the host, would trigger the proliferation of
the cell that produces the antibodies.

This idea was not isolated, but was inspired by the ≪current concept that the
configuration of a protein is determined solely by information contained in the
heredity units of the cell, the nucleic acids≫ [48]. Burnet’s seminal paper, titled
“A Modification of Jerne’s Theory of Antibody Production units the Concept of
Clonal Selection” speeded up the paradigm shift (and also rose a controversy, not
uncommon in the history of science, about who had been the first who had the
idea. In this case Burnet or Talmage [50]) Burnet theory was later termed the
clonal selection theory of antibody production.

In the years after the first publication, Burnet explored the implication of
his theory. He argued that the clonal selection theory could explain immunologi-
cal memory (expanded clones), original antigenic sin (undesirable expansion of
low-affinity clones), mucosal immunity (presence of expanded clones), natural
antibodies (spontaneous production of antibodies by some cells), and autoimmune
disease (expansion of self-reactive clones) [51, 43]. He also proposed that since it is
unlikely that the huge diversity of antibodies was encoded in the germline, it must
be produced by somatic mutations in early stages of lymphocyte development [51,
43]. The discovery of VDJ recombination in the 70’s by Susumu Tonegawa [52,
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53] will prove Burnet’s ideas right.

In the middle of the century, a paradigm shift took place [45] and new ideas
began to emerge from it. As correctly proposed by the work of N. Jerne, M. Burnet
and D. W. Talmage, and others, in order to recognize the unknown, the immune
system has come to a solution: create enough diversity in the form of a large
repertoire of lymphocyte receptors. However, since the formulation of the clonal
selection theory, an important question has been how this selection process occurs.
At the heart of the theory, there is the central question of how antigen-specific,
high-affinity immune cells are selected during immunization. It appears that the
larger the repertoire, the smaller the antigen-specific subset of receptors specific
for a given antigen. This is reminiscent of the energy-entropy trade-off commonly
found in statistical physics. This question will become particularly relevant in the
context of expanding antigen signals, like is the case in acute infections.

First mathematical models In the 70’s, physicists became interested in
immunology, and in particular, in the theory of clonal selection. Perhaps the
first mathematical model was proposed by George I. Bell [54]. Bell proposed a
sophisticated model of clonal dynamics in which naive lymphocytes (or target
cells, as they used to be called) were stimulated for proliferation by the interaction
with a specific foreign antigen. The interaction between the cells and the foreign
antigens was determined by the equilibrium occupancy of receptor sites in the
membrane of the cells. The dynamics of proliferating cells was described by [54]

dN(t)

dt
= (1−R)F (R)NT (t) + λH(R)N(t) (2.37)

where N(t) denotes the population size of proliferating cells and NT the population
size of target cells. The first term corresponds to a source of cells from stimulated
target cells, and the second term corresponds to the growth of proliferating cells.
Here F (R) andH(R) are functions of the average number of occupied receptor sites
in the cells, R, and were used to model the dynamics of target and proliferating
cells as a function of the foreign antigen concentration. For instance, they chose

F (R) =
R

1 +R
(2.38)

so that when R ≪ 1 and F (R) ≪ 1, no target cell begins to proliferate, and when
R ≫ 1 and F (R) ≈ 1, target cells are likely to become proliferating cells.

Bell’s model produced an exponential increase in the average binding constant
of antibodies after immunization. By correctly setting the initial affinity of
the target cells in the model, this increase was comparable to that observed in
experiments. The model also allowed for the incorporation of tolerance mechanisms
and considered different protocols of foreign antigen administration (although
he did not consider exponential growth as in acute infections). An important
limitation of Bell’s model was that it did not account for the real diversity of
receptors in the population of target cells. However, this is not surprising given
the lack of experimental estimates of the diversity at the time.
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The model proposed by Bell served as inspiration and guided the production
of new models in the coming years [55]. An important extension to Bell’s model
was proposed by Alan S. Perelson, Majdedin Mirmirani and George F. Oster in
1976 [56, 57]. They included a new important experimental observation regarding
the interaction of immune receptors with foreign antigens. Namely, that cells were
more efficiently triggered to proliferate whenever their receptors were cross-linked.
Receptor cross-linking consists of the ability of some multivalent foreign antigens
to bind to different receptors in the same cell at the same time. This forced the
receptors to remain close to each other. The cross-linked receptors were then able
to interact with each other and further signal the cell to proliferate.

An important consequence of cross-linking was that, if bivalent antigens were
considered in the model, this could explain the “log-bell-shaped” curve of antibody
levels as a function of administered antigen observed in experiments [55]. Although
this prediction failed when antigens with valency greater than two were considered,
“log-bell-shaped” curves remained to be used as an input for further mathematical
models [55].

New directions for the theory In the following decades, mathematical models
focused on the dynamics of the affinity maturation process described by Herman
N. Eisen and Gregory W. Siskind in 1964 [58]. This was probably fueled by
exciting new discoveries, such as somatic hypermutation [53] and class-switch
recombination [59]. These models include [60, 61]. Moreover, because affinity
maturation allows for very rapid evolution of antibodies, new models also include
long-term clonal dynamics under recurrent immunization with the same or related
foreign agents [13, 14, 30]. However, some central aspects of the clonal selection
theory were put on the side without a proper answer.

The problem of antigen recognition in acute infections As it has been
discussed above, the study of host-pathogen interactions is a rich and complex
field. In this dissertation, I have identified a concrete problem related B cell
antigen recognition. The problem concerns immune recognition of non-steady
signals by large receptor repertoires. In the following paragraphs, I will develop
in more detail what are the contradictions or conundrums that exist in this case.

In the majority of cases, if not all, the initial acute phase of an infection is
characterized by the self-replication of pathogens within the host. This process,
whether local or systemic infections, results in the exponential growth of pathogenic
antigen concentration inside the host. Now consider the large pre-existing diversity
of B cell receptors ready to recognize the foreign antigen and respond against
the infection. We can assume that a very small number of receptors bind to
the antigen with high affinity (often referred to as specific binding), and that
this number grows exponentially when we consider lower binding affinities (often
referred to as nonspecific binding).

If the difference in affinity between specific and nonspecific B cells is not
sufficient to compensate for the difference in their numbers, it is possible that the
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activation of nonspecific B cells occurs before the activation of antigen-specific B
cells. This would have a significant impact on the quality of antibodies subsequently
secreted. It would also contradict the assumption that highly diverse repertoires
have evolved in order to produce specific receptors for each unknown antigen. Are
there any conditions under which specific binding predominates over nonspecific
binding? In other words, what are the conditions under which specific binders are
“chosen” from the underlying existing diversity?

I have recognized this open problem as a cornerstone of the clonal selection
theory. Many other questions arise from it. What are the molecular mechanisms
by which B cells translate their interaction with non-steady antigens into a
coordinated and controlled activation of only the fraction of the repertoire with
the best-matching receptors? What are the consequences for the resulting clonal
composition of memory B cell clones after a primary infection? How do these
mechanisms affect memory B cells and determine how do they prevent reinfections?
How is this protection affected by antigenic evolution? I hope to provide partial
answers to some of these questions in this dissertation.
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Part II

The Activation Of The B Cell
Repertoire
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Can the truth (the capability to
synthesize an antibody) be learned?
If so, it must be assumed not to
pre-exist; to be learned, it must be
acquired. We are thus confronted
with the difficulty to which
Socrates calls attention in Memo
(Socrates, 375 B.C.), namely that
it makes as little sense to search
for what one does not know as to
search for what one knows, what
one knows one cannot search for,
since one know it already, and
what one does not know one
cannot search for, since one does
not even know what to search for.
Socrates resoles this difficulty by
postulating that learning is
nothing but recollecting. The
truth (the capability to synthesize
an antibody) cannot be brought on,
but was already inherent.

A quote of the Philosophical Bits
or a Bit of Philosophy

(Kierkegaard, 1844) by N. K.
Jerne [1]
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Chapter 3

Primary infection: A
Luria-Delbrück activation model

The content of this chapter has appeared as part of,

• Morán-Tovar, R. & Lässig, M. Nonequilibrium Antigen Recognition during
Infections and Vaccinations. Phys. Rev. X 14, 031026 (2024)[62].

On this work, I am first author and I have performed the research and analysis
under supervision of the last author. The paper is co-written with the last author.

In accordance with the doctoral regulations, this article, already published in a
peer-reviewed scientific journal, is not attached in the published version of this
thesis.

3.1 Summary

During acute viral infections, the immune system of vertebrates is capable of
mounting effective and rapid responses to eliminate the pathogen from the host.
This includes the activation, proliferation and differentiation of B cells, which
not only secrete specific antibodies to neutralize the pathogen activity, but also
produce immunological memory in the form of memory B cells and long-lived
plasma B cells. The number of naive B cells can be on the order of 108 in mice or
1012 in humans, with a similar number of B cell clones. However, the number of
responding B cell clones has been observed to be on the order of 102 in mice. This
means that only 1 in a million B cell clones participate in the response. This is a
puzzle in itself. Why hundreds and not tens or thousands?, has it to do with the
diversity of the naive repertoire?, are the responding clones the ones with high
affinity for the viral antigen?, and even more intriguingly, why do these hundreds
of B cell clones respond and not the other hundreds of millions? This last question
is one of the central building blocks of the clonal selection theory discussed in
the introduction. The mechanism by which specific responding B cell clones are
chosen from the naive repertoire remains an open problem in immunology.
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The problem becomes clearer (and even more puzzling) when we seriously
consider the dynamics of the antigen. During an acute infection, the viral antigen
concentration in the host changes dramatically. Starting from a few viral particles,
the viral load can reach up to > 1011 viral particles at its peak. Although this is a
short time from the perspective of the host, it is a much longer time scale for the
binding kinetics that take place between BCRs and viral antigens. Thus, we can
assume that the change in antigen concentration is adiabatic. Now imagine that
at some point during the acute phase of the infection, the B cell clones with the
highest affinity with the viral antigen in the repertoire recognize the antigen and
begin to mount an immune response. In the next few hours, when the antigen
concentration would have increased a hundredfold, many more B cell clones with
lower affinity would have a chance to participate in the response. Assuming that
the number of low affinity B cell clones increases exponentially, this creates a
scenario where a B cell activation catastrophe can occur, in which many low
affinity B cells dominate the response, compromising its quality.

We consider a minimal model of the B cell immune response. It consists of
three main aspects: i) the exponentially increasing concentration of antigen, ii) the
molecular recognition of the antigen by the B cells based on kinetic proofreading,
and iii) the proliferation of the B cells after activation. The increasing concentration
of antigen adiabatically changes the probability of each B cell of being activated,
by increasing the average number of association events, which are initially rare at
the single B cell level. BCRs associated with antigens must undergo a series of
irreversible steps before triggering full activation of the B cell. When an engaged
BCR successfully completes all the required steps, it triggers activation and
proliferation of the B cell. In this way, activated B cells form clonal populations.
Under this framework, we calculate the activation probability of all B cells in the
repertoire as a function of its binding affinity with the antigen.

The work presented in this chapter shows that the immune response governed
by this dynamics has two distinct regimes of low and high specificity, dictated
by the complexity of the immune repertoire and the strength of the proofreading
mechanism. In the low specificity regime, low affinity B cells are activated before
high affinity ones. This occurs because the difference in activation probability does
not compensate for the difference in numbers: entropy dominates the response.
In the high specificity regime, a larger difference in activation probability between
low and high affinity B cells gives high affinity B cells a chance to be activated
first, even though they are completely outnumbered by low affinity B cells. The
amount of proofreading necessary to ensure an immune response in the high
specificity regime is dictated by the complexity of the immune repertoire.

The resulting clonal dynamics of B cells resembles that of the classical Luria-
Delbrück model of microbial evolution in expanding populations. In such a model,
an exponentially proliferating wild-type population generates mutants. Each new
mutant cell itself proliferates exponentially. A hallmark of this dynamics is the
existence of jackpot mutation events: mutants that appear exceptionally early can
overtake a large fraction of the total population. In the case of immune cells, the
exponentially growing concentration of antigen leads to an exponentially growing
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activation rate of B cells, which in turn proliferate exponentially upon activation.
Independently of the specificity regime, this theory predicts jackpot activation
events in the immune system. More remarkably, in the high specificity regime,
the activation time of each B cell is correlated with its affinity: high affinity B
cells are activated earlier. This correlation, together with the existence of jackpot
clones, predicts the existence of so-called elite neutralizers in primary responses:
high-affinity B cells that generate exceptionally large B cell clones during the
immune response.

The mechanistic model of B cell repertoire activation presented in this chapter
bridges different levels of biological complexity. Starting from the molecular
details of the recognition process of single antigens by BCRs, we have established
quantitative laws for the clonal composition of the activated repertoire during
acute infections. Interestingly, such laws also depend on the complexity of the
naive repertoire itself, here characterized by the density of B cell clones in a
biophysically motivated binding affinity space. This multi-scale approach opens
new way to investigate the adaptive immune system and its design principles.
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Chapter 4

Vaccination: A minimal
spatiotemporal model

The content of this chapter has appeared as the subsections II.H. Spatiotempo-
ral antigen dynamics, II.I. Immune response to vaccination, and III.C.
Activated B-cell repertoires in mice, as part of1,

• Morán-Tovar, R. & Lässig, M. Nonequilibrium Antigen Recognition during
Infections and Vaccinations. Phys. Rev. X 14, 031026 (2024)[62].

On this work, I am first author and I have performed the research and analysis
under supervision of the last author. The paper is co-written with the last author.

In accordance with the doctoral regulations, this article, already published in a
peer-reviewed scientific journal, is not attached in the published version of this
thesis.

4.1 Summary

The exponential proliferation of antigens during acute infections investigated in
the previous chapter may have played an important role in the evolution of the
adaptive immune system in all vertebrates. One can speculate that some of the
key features of the immune response are optimized to protect the host against
primary and recurrent acute infections. It is important to recognize that viral
antigens also diffuse within the host and can also be subjected to active transport
from peripheral tissues to lymph nodes. Vaccination is an interesting case of
study in this sense. The different types of vaccines developed to date provide a
richer set of antigen dynamics, including exponential proliferation and diffusion of
antigens in live attenuated vaccines, only diffusion of antigens in dead/inactivated
vaccines, or linear growth and diffusion of antigens in mRNA vaccines. As we

1This project was originally formulated and developed as a separate publication from the
previous chapter. However, due to the peer-review process, we decided to include it in a compact
form in the same publication.
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have shown in the previous chapter, antigen dynamics is an important driving
force that ultimately shapes the clonal composition of responding B cells and thus
the quality of the overall immune response.

In this chapter, we develop a minimal spatiotemporal model that includes
antigen diffusion and proliferation within the host and that accounts for two
important aspects of an immunization event: i) antigen particles begin to spread
within the host from a highly localized point in space, and ii) B cells are located at
a given effective distance, r0, from the starting point of the antigens. In this case,
the antigen concentration is generally described by a reaction-diffusion equation.
Furthermore, the number of antigen particles that can interact with B cells and
could potentially trigger their activation is now limited to those that have traveled
beyond r0.

Our spatiotemporal model shows two distinct regimes for the activation dy-
namics of B cells, determined by the ratio between the effective distance, r0, and
the average distance traveled by antigen particles due to diffusion before the
first B cells are activated (Dt∗)1/2. If the ratio is smaller than a given threshold,
corresponding to antigen particles diffusing rapidly beyond r0, B cell activation
occurs within the deterministic diffusion front. In this case, diffusion does not
strongly limit antigen recognition of by B cells. When the ratio is greater than
the threshold, diffusion strongly constrains antigen recognition. In this case, B
cell activation occurs through rare diffusive paths, which significantly affects the
quality of the immune response. The model presented here shows that, under
physiologically relevant parameters, acute infections occur in the former regime,
which is not limited by diffusion. Thus, the homogeneous theory presented in the
previous chapter provides a good approximation of the B cell activation dynamics
during acute infections.

In the case of vaccination with inactivated particles, the system is always
limited by diffusion. In this case, the initial dose of antigen in the vaccination
determines the scaled recognition radius of antigen diffusion, which in turn defines
a new immune response onset and an effective growth rate of the antigen at
r0. Surprisingly, our model showed that under certain physiologically relevant
parameters, the generalized Luria-Delbrück dynamics is also valid in the case of
vaccination. In this case, observables such as the clone size exponent derived for
the homogeneous model in the previous chapter become diffusion dependent. The
model predicts a window of antigen dose in which the immune response is optimal.
On one hand, for a too low antigen dose, the onset of B cell activation is delayed
and restricted to rare events. On the other hand, for too high dose, the resulting
activated repertoire is less focused on the high-affinity B cell clones, jeopardizing
the quality of the overall response.

Finally, we analyzed data collected from vaccination in mice. As a proxy
for the initial activation of B cell clones, we used only data from early germinal
centers before high levels of somatic hypermutation and affinity maturation have
occurred. We compute the clonal entropy as well as the rank-size relation, as
presented in the previous chapter. Both measures suggest that B cells in mice use
about three steps of proofreading for activation. Moreover, the clone size exponent
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found in the data set is remarkably similar to a clone size exponent measured in
human B cell repertoire data that included memory B cells. Power laws in the
rank-size relation of human data have been attributed to long-term interaction of
memory B cell clones with antigens during recurrent infections. Preliminarily, our
analysis suggests that these two similar exponents in two different subpopulations
of B cells may have a similar dynamical origin. Overall, this chapter provides a
minimal spatiotemporal model of B cell repertoire activation that could improve
our understanding of the immune response in different vaccination protocols that
have been heuristically optimized in this sense in the past.
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Chapter 5

Memory response: In vivo
protection

Some of the content of this chapter has appeared as the section VI. COMPLEX-
ITY OF IMMUNE RECOGNITION, as part of the preprint,

• Röschinger, T., Morán-Tovar, R., Pompei, S. & Lässig, M. Adaptive ratchets
and the evolution of molecular complexity 2025. arXiv: 2111.09981 [62].

currently under peer-review process. On this work, I am second author and I have
performed the research and analysis of the section in collaboration with the rest
of the authors. The paper is co-written with the rest of the authors.
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5.1 Introduction

This chapter contains the work in progress of the last project I worked on during
the last part of my PhD time. The current version presents the mathematical
foundations of the model and some preliminary simulations. From basic assump-
tions about how memory B cell clones are formed, we aim to develop an in vivo
response function against recurrent infections.

As discussed in Chapter 2, immune protection conferred by B cells after a
primary infection comes in two flavors: antiserum antibodies and memory B cells.
Antiserum antibodies are maintained at homeostatic levels by affinity-matured
long-lived plasma cells residing in the bone marrow. If the formation of long-lived
plasma cells is corrupted, even affinity-matured plasma cells cannot maintain high
levels of antibodies and they would have a decay time on the order of months
or a few years [63]. Memory B cells reside in the various lymphoid organs as
well as in other tissues, waiting to be reactivated. Although both plasma cells
and memory B cells are derived from the same set of activated B cells (like the
one studied in Chapters 3 and 4) they have an important difference. According
to recent findings, the level of affinity maturation of long-lived plasma cells is
significantly higher than that of memory B cells [32, 34]. Some studies have even
observed that most of the B cell clones populating the memory compartment do
not undergo affinity maturation at all [33]

What is the role of each arm of protection in preventing reinfection with the
same pathogen that triggered the primary response? To answer this question,
we must first understand the mechanism of action of each arm of protection. In
the case of antiserum antibodies, they protect against reinfection by binding,
in quasi-equilibrium conditions, to any viral particle that arrives in the host
and neutralizing its ability to infect cells. (Although it is the case that some
antibodies bind but do not neutralize the action of viruses, we assume here that
all binding results in full neutralization). In the case of memory B cells, they
recognize viral particles again and, similar to naive B cells, go through a round
of activation-proliferation, differentiation into plasma cells, and finally antibody
shedding. In this case, the initial recognition of the viral antigen by memory B
cells requires that the infection has taken off with an exponential increase in viral
load.

These different mechanisms of action suggest that B cell-acquired immunity
operates in at least two layers (See Figure 5.1). First, antiserum antibodies prevent
proliferation of the pathogen by binding. When binding between viral particles and
circulating antibodies becomes inefficient, memory B cells recognize the growing
virus and massively produce new antibodies to stop growth. Whenever memory B
cells are unable to rapidly stop viral growth, a de novo näıve response is triggered
and full breakthrough infection is expected.

This view, common among immunologists, is supported by the observation that
immune protection correlates with antibody titer drops. Let us break down this
statement. Antibody titers are measurements from in vitro essays that quantify
the binding probability, Pbinding, of antibodies in serum with a given antigen. Let
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us start from the basic equilibrium form of the binding probability

Pbinding =
1

1 + K
[Ab]

(5.1)

where K is the effective dissociation constant and [Ab] the concentration of
antibodies in the serum. In these assays, a series of twofold dilutions of serum are
performed to find the transition from bound to unbound states by a change in
the chemical potential of the reaction. In this case, the binding probability as a
function of the number of dilutions x is given by

Pbinding(x) =
1

1 + K
[Ab]2−x

(5.2)

In this case, the number of twofold dilutions that a serum can afford before losing
binding for a given antigen is called the titer.

Pbinding(T ) =
1

2
−→ T = − log2K + const (5.3)

The titer measured with the antigen that elicited the antibodies is called the
homologous titer.

Thomo = − log2Khomo + const (5.4)

A titer measured with an antigen different from the one that elicited the antibodies
is called an heterologous titer.

Thete = − log2Khete + const (5.5)

The difference between an heterologous and the homologous titer is called a titer
drop.

∆T = Thomo − Thete = log2Khete/Khomo ∼ ∆∆G (5.6)

where ∆∆G is an effective difference in free energy in units of kBT and measure
a distance between the homologous and the heterologous antigens. What is
important here is at constant antibody concentration, binding probably gets
reduced between different antigens by increasing ∆∆E. This can occur, for
example, by mutations in the region targeted by antibodies. We will discuss this
in more detail below. We can then define a binding probability that depends on
the titer drop as

Pbinding(∆T ) =
1

1 + Khomo2∆T

[Ab]

(5.7)

Difference studies have found a correlation between titer drops and the im-
munological protection [64, 65]. For example, as shown in Figure 5.1, at a titer
drop ∆T1, the chance of the virus being able to grow in a host becomes of 50%.
However, it is also reported that at a second titer drop ∆T2 > ∆T1, the chance
for the host of getting a severe infection is of 50%.
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Fig. 5.1. Layers of Immune protection As described in the main text, it has been found
that titer drops correlate with different stages of immune protection. Here we show a layer model
in which antibody protect for a first range of titer drop. After that, when the binding capacity of
antibodies has decrease enough (see right), memory B cells confer an in vivo protection against
severe infections. When memory protection fails, a de novo response will occur.

Assuming that ∆T1 marks the transition point at which the neutralization
quality of antibodies in serum has decreased enough to properly impede growth
of the virus

1

2
=

1

1 + Khomo2
∆T1

[Ab]

(5.8)

and further assuming that this transition occurs in a sharp way, it is unlikely that
the severity of the infection is determined by the quality of the antibodies. There-
fore, we hypothesize that memory B cells provide an in vivo protection beyond
equilibrium antibody binding, extending immune protection over a longer range
of antigenic viral evolution, and explaining why severe breakthrough infections
are likely to occur at ∆T2 > ∆T1.

In this chapter, we study the in vivo protection conferred by memory B cells
during reinfection. We analyze how such in vivo protection depends on how the
memory compartment is formed, how memory B cells are reactivated, and finally
how much the antigen has changed by evolution between primary and recurrent
infections.

5.1.1 A note on disorder and fluctuations in the Immune
System

As discussed in the previous section, the immune system is equipped with a very
large and diverse repertoire of receptors ready to recognize any potential threat
that enters the host. An important aspect of this process is that during the time
scale of a single infection, we can assume that the repertoire is quenched, with a
much longer turnover time scale. In this case, what we assume to be quenched
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Fig. 5.2. Different levels of disorder in the immune system. A For a given realization
of the B cell repertoire, the genotypes of BCRs are fixed (quenched) during the relevant time
scale of an infection. Here, this is shown by fixed positions in the genotype axis. For a given
viral antigen, each B cell clone is also characterized by a binding affinity, here represented by
the color. B After an infection, responding clones change their clones size, here represented by
the size of the antibody figure. Hypothetical different infections in the same host at the same
time would fluctuate due to the intrinsic stochastic nature of the activation-proliferation process.
C A different realization of the B cell repertoire than in A. D Two different infections occurring
in the naive repertoire in C.

are the genotypes of all the BCRs in the repertoire. Now, if we consider a given
antigen, say α, and map the genotype of each BCR to its binding affinity for α,
then we can say that the affinities of the B cell repertoire are quenched.

As a gedanken experiment, we can imagine repeated infections with the
same pathogen in the same host at the same time (in the same realization of
the repertoire disorder). In Figures 5.2A and B we sketch different infections
occurring in the same realization of the naive disorder by the same viral strain.
In this case, the fluctuations in the different responses are due to the stochastic
nature of the activation of the different B cells.

Although this gedanken experiment is useful for understanding the collective
activation of the B cell repertoire, it is not very biologically relevant. Given the
stochastic generation of the B cell repertoire and the separation of time scales,
it is reasonable to assume that each host represents a different realization of the
naive disorder. We show in Figures 5.2A and C two different realizations of the B
cell repertoire and in Figures 5.2B and D, the result of two independent infections
occurring with the same virus in each of the repertoire realizations. It can also be
assumed that, even in the same host, different infections with the same pathogen
occur with a time interval greater than the turnover rate of the disorder. In other
words, each infection experiences a different disorder of the repertoire, even in the
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Fig. 5.3. Different levels of disorder in the immune system. The same host (or the
same realization of shapes of the B cell repertoire), maps each B cell clone to a different affinity
for different viral antigens. Here, exchanging viral antigen (pink for green) changes the binding
affinities of the same BCRs in the naive repertoire, and consequently the outcome of the immune
response.

same host. We thus assume that the different realizations of the B cell repertoire
shown in Figures 5.2A and C, may then represent two different hosts, or the same
host at different times during its lifetime. In this context, the host population
averages considered in our work (denoted as ⟨·⟩) always assume that each host
represents a different realization of the B cell repertoire.

As discussed in Chapter 3, the immune response in a high-specificity regime
of recognition depends strongly on the disorder of the repertoire. The inter-
play between the Luria-Delbrück dynamics of infections and the nonequilibrium
mechanism of molecular recognition introduces correlations between the large
fluctuations in clone size and the quenched affinities of the rare high-affinity B
cell clones [62]. This is the proposed mechanism by which these rare high-affinity
B cell clones can overcome the large entropy of the naive repertoire.

Another case worth discussing is how the viral antigen under consideration
determines the disorder of the repertoire. This point can be a bit involved, so let
us break it down carefully. The affinity of a given BCR (or antibody) for a given
antigen (pink in Figure 5.3) is determined by its genotype and, of course, by the
antigen itself. This means that, for the same realization of quenched genotypes,
exchanging the antigen (pink for green in Figure 5.3) would map each genotype to
a potential different binding affinity. As we show in Figure 5.3, two hypothetical
infections with two different antigens in the same realization of the repertoire
disorder will then produce completely different responses. Although this concept
sounds trivial in the case of completely different viral antigens, it will be relevant
when we consider antigenic evolution and therefore phylogenetically related viral
antigens.
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Fig. 5.4. Memory B cell formation A We consider memory formation through the path
I-II-II, which includes activation and proliferation of naive B cell and direct differentiation into
memory B cells. We do not consider for the moment the complementary path IV-V, which
includes germinal center visit and subsequent differentiation into memory B cells. B Comparison
between naive and activated density of states, Ω0 and ΩB. We use the density of activated B
cells as the source of memory B cell affinities.

5.2 The B cell memory compartment

Primary response As shown in Chapter 3, during an acute infection, a set of
B cell clones B, whose affinities are sampled from the density Ω0(K), recognize
the pathogen, proliferate at a rate λB, and mount a rapid and potent immune
response [62]. This process is characterized by the binding affinities of the respond-
ing set , {Kb}b∈B, and their corresponding clone sizes, {Nb}b∈B. Figure 5.4B
shows a comparison between the affinity spectrum of the naive repertoire, Ω0, and
the affinity spectrum of the responding set, ΩB

1.

Despite the stochastic nature of this process, we have derived mean-field
equations that describe the average affinity, ⟨K⟩(t′, t∗), and clone size, ⟨N⟩(t′, t),
of B cell clones as a function of their activation time, t′, given by

⟨K⟩(t′, t∗) = K∗ exp [v(t′ − t∗)] (5.9)

⟨N⟩(t, t′) = exp [λB(t− t′)]. (5.10)

with

t∗ = t0 +
1

λA

log

[( K∗

Kstep

)p]
and t0 =

1

λA

log

[(
λA

b0konρB

)p]
(5.11)

where K∗ is the expected highest available binding affinity in the repertoire, t∗ is
the expected activation time of a clone with binding affinity K∗2, and v = λA/p,

1In reference [62], we have denoted ΩB as Ωact
2In references [62, 5], we have denoted the host population average of the highest available
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λA is the exponential growth rate of the pathogen, λB is the exponential growth
rate of activated B cells, p is the number of proofreading steps, b0 is the number
of BCRs in the surface of a single B cell, kon is the diffusion-limited association
rate and ρB the molar concentration of B cell clones [62].

Additionally, we have derived an equation for the expected total number of
activated B cell clones, Lact(t, t

∗), given by

⟨Lact⟩(t, t∗) = exp [vβ∗(t− t∗)] (5.12)

where β∗ measures the density of B cell clones at K∗ in affinity space. Activated
B cell clones proliferate until they reach a common carrying capacity N̄ . Here
we neglect the nonlinear effects on growth due to saturation closed to N̄ . Equa-
tions 5.9-5.12 describe the response dynamics of the B cell repertoire facing a
proliferating antigen. An important consequence of Equations 5.9 and 5.10 is that
the expected clone size of activated B cell clones is related to its corresponding
expected binding affinity by the relation

⟨N⟩(t) = ⟨N∗⟩(t)
(⟨K⟩

K∗

)−λB/v

with ⟨N∗⟩(t) = exp[λB(t− t∗)] (5.13)

where ⟨N∗⟩(t) is the expected clone size of a B cell clone with affinity K∗. We
quantify the quality of the response by the potency function Z(t), a combined
quantity of clone size and affinity, given by

Z(t) =
∑
b∈B

zb(t) with zb(t) ≡
Nb(t)

Kb

. (5.14)

Using the potency of a set of B cells, we can estimate the neutralization
capacity of antibodies produced by such set after differentiation into plasma cells.
For that, we calculate the probability of finding a viral particle bound by an
antibody, pbound, as

pbound = 1− punbound

= 1−
∏
b

(
1− 1

1 + Kb

ρabb

)
. (5.15)

where ρb is the concentration of antibodies secreted by plasma cells derived from
B cell clone b. Assuming Kb/ρ

ab
b ≫ 1 for all b, and neglecting terms of order

O((ρabb /Kb)
2) we can approximate Equation 5.15 as

pbound ≈
∑
b

ρabb
Kb

(5.16)

binding affinity in a given repertoire as K∗. In this chapter, we call K∗ the random variable
that is independently realized in each immune repertoire, distributed according to P (K∗), and
we call its host populations average ⟨K∗⟩ ≡ K∗.
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Now, assuming that the concentration of antibodies is proportional to the number
of B cells that produce them, we obtain

pbound ≈
∑
b

αNb

Kb

= αZ (5.17)

This relationship between Z and the total binding probability will become relevant
to the in vivo protection conferred by memory B cells, as we discuss below.

Memory formation As we discussed above, we assume that memory B cell
clones are formed directly after the activation-proliferation process during a
primary response, neglecting the role of affinity maturation for the moment (See
Figure 5.4A). We say that a fraction ν = M/N̄ of activated B cells become
memory B cells. Here we assume that the participation of each clone to memory
does not depend on its affinity [32]. Here we assume that ν is of the order of 10%.
We therefore assume that the expected size of a memory B cell clone, N̂b,0, is
proportional to its final clone size after a primary infection. We use ·̂ to denote
quantities in the memory compartment. Using Equation 5.13, we say that the
expected clone size of a memory B cell clone with binding affinity K̂ is given by

⟨N̂0⟩(K̂) = µ⟨N̄∗⟩
(
⟨K̂⟩
K∗

)−λB/v

. (5.18)

where ⟨N̄∗⟩ is the expected clone size of a clone with affinity K∗ at carrying capacity
at the end of a primary response. Assuming that during a memory response, all
members of a given memory clone are activated and start proliferating at the
same time, this leads to a modification in Equation 5.10; the initial clone size
at activation is now given by N̂0(K̂). The expected clone size of memory B cell
clones activated at time t′ is given by

⟨N̂⟩(t, t′) = ⟨N̂0⟩(K̂) · exp [λB(t− t′)]. (5.19)

= µ⟨N̄∗⟩
(
⟨K̂⟩
K∗

)−λB/v

· exp [λB(t− t′)]

5.3 Immune potency dynamics

During a primary infection, the peak viral load and the severity of the infection are
not determined solely by the B cell response. In fact, the role of the innate immune
system is extremely important, perhaps even more so. Although this process is not
fully understood, it is thought that viruses reach a carrying capacity determined
by cell death, innate immunity induced inflammation, antibody neutralization
from the plasmablast response, and other factors. However, we assume that the
severity of a recurrent infection is largely determined by the effective and rapid
recall of memory B cells. For that reason, in this section we study the dynamics
of the potency function.
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5.3.1 Naive vs. Memory dynamics

Primary response We begin to study the dynamics of potency elicited from
the naive B cell repertoire during a primary infection. We can approximate ⟨Z(t)⟩
in Equation 5.14 as

⟨Z⟩(t) =
∫ t

t∗

⟨N⟩(t, t′)
⟨K⟩(t′, t∗)⟨L̇act⟩(t′, t∗) dt′ (5.20)

where the sum in Equation 5.14 is approximated by an integral using the density
of activated clone in the interval [t′, t′ + dt′]. Using Equations 5.9-5.12 we obtain

⟨Z⟩(t) = vβ∗ 1

K∗ e
λBtevt

∗
e−vβ∗t∗

∫ t

t∗
e−λBt′e−vt′evβ

∗t′ dt′

=
vβ∗

σ

⟨N∗⟩(t)
K∗

[
eσ(t−t∗) − 1

]
(5.21)

with σ = vβ∗ − v − λB.

An equivalent result is obtained by integrating over affinities K instead of
time t as follows

⟨Z(t)⟩ =
∫ ⟨K⟩(t)

K∗

⟨N⟩(K)

K
Ω0(K)d logK (5.22)

Using Equations 5.9 and 5.13, and assuming that the density of B cell clones
closed to K∗ is given by Ω0(K) ≈ β∗(K/K∗)β

∗
[62]

⟨Z(t)⟩ =
β∗⟨N∗⟩(t)
K∗β∗−λB/v

∫ ⟨K⟩(t)

K∗
Kβ∗−1−λB/vd logK

=
β∗⟨N∗⟩(t)
K∗K∗σ/v

∫ ⟨K⟩(t)

K∗
Kσ/vd logK

=
vβ∗

σ

⟨N∗⟩(t)
K∗

[
eσ(t−t∗) − 1

]
(5.23)

recovering the result from Equation 5.21. This equivalence, resulting from the rela-
tionship between clone size (or time) and affinity, demonstrates the computational
power of this mean-field solution.

From Equation 5.21 we have two distinct regimes for the exponential growth
rate of the potency, λZ . If σ < 0, the first term inside the squared brackets
decays rapidly for t > t∗ and thus we have that ⟨Z⟩(t) ∼ ⟨N∗⟩(t) ∼ exp[λBt]. If
σ > 0, we have a modified exponent ⟨Z⟩(t) ∼ exp[(λB + σ)t] = exp[(vβ∗ − v)t].
In summary we can approximate the potency as

⟨Z⟩(t, t∗) = ⟨Z0⟩ exp[λZ(t− t∗)] (5.24)

with

λZ = max[λB, v(β
∗ − 1)] and ⟨Z0⟩ =

vβ∗

|σ|
1

K∗ . (5.25)
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Fig. 5.5. Potency and viral dynamics A and B show potency Z as a function of time
for primary infections (naive responses) and corresponding memory responses. Transparent
thin lines represent single trajectories and thick line average over ensemble of trajectories.
Dashed horizontal lines denotes Z0 = 1/K1 ; C and D show viral load NA as a function
of time for primary infections (naive responses) and corresponding memory responses. Each
curve corresponds to a single trajectory shown in A and B. In A and C we show memory
B cells activated with the same strength of proofreading as the naive B cells (pmem = 1)
In B and D we show memory B cells activated without proofreading . (pmem = p). Other
parameters are: growth rates λA = 6d−1 ; λB = 2d−1 ; kinetic parameters kon = 106M−1s−1

and kstep = 0.5min−1; number of BCRs per cell, b0 = 105; repertoire size L0 = 107; carrying
capacity N̄ = 2× 104.

The limit λZ = λB represents the case where the potency is growth-dominated:
few early activated clones take over the activated repertoire and the total potency
is dominated by their contribution. The limit λZ = v(β∗ − 1) represents the
case where the potency is activation-dominated: the activation of B cell clones
contributes significantly compared to the growth of individual clones. Interestingly,
with physiological values λB = 2days−1, λA = 6days−1, p = 3, and β∗ = 2.2,
we have an estimate σ ≈ 0.4 days−1, which means that a primary response is
activation-dominated, but not far from the transition point.

Memory response During a recurrent infection, activation of memory B cell
clones follows a similar dynamics as naive B cell clones. We can estimate the
potency due to memory as

Ẑ(t) =
∑
b

N̂b

K̂b

(5.26)
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Simlarly, we can approximate the host population average as

⟨Ẑ⟩(t) =
∫ t

t∗

⟨N̂⟩(t, t′)
⟨K⟩(t′, t∗)⟨L̇act⟩(t′) dt′ (5.27)

Note that the difference between Equation 5.20 and Equation 5.27 is the initial
clone size of the activated B cell clones. Using Equations 5.9,5.12, 5.19 we obtain

⟨Ẑ⟩(t) = ⟨N̄∗⟩νvβ∗ 1

K̂∗
eλBt∗eλBtevt

∗
e−vβ∗t∗

∫ t

t∗
e−2λBt′e−vt′evβ

∗t′ dt′

=
νvβ∗

σ̂

⟨N̂∗⟩(t)
K̂∗

[
eσ̂(t−t∗) − 1

]
(5.28)

with σ̂ = vβ∗− v− 2λB = σ−λB and where ⟨N̂∗⟩(t) = ⟨N̄∗⟩ exp[λB(t− t∗)]. Note
that K̂∗ in Equation 5.28 is not always the same as the naive equivalent K∗ in
Equation 5.21. Initially they correspond to the same values but, as we discuss
below, this might change due to antigenic viral evolution. Similar to a primary
response, we can approximate the potency as

⟨Ẑ⟩(t, t̂∗) = ⟨Ẑ0⟩ exp[λ̂Z(t− t∗)] (5.29)

with

λ̂Z = max[λB, v(β
∗ − 1)− λB] and ⟨Ẑ0⟩ =

νvβ∗

|σ̂|
⟨N̄∗⟩
K̂∗

(5.30)

This last expression suggests that after the first activation, the potency has an
initial value a factor ν⟨N̄∗⟩ larger than in the primary response. Under our
assumptions, this is not possible because B cells clones do not change their affinity
when they become memory. Simulations show that the increase in initial clone
size is translated into an earlier activation time for memory responses. Based on
that, we define a memory activation time

t̂∗ = t∗ − 1

λ̂Z
log
[
ν⟨N̄∗⟩

]
. (5.31)

The final mean-field approximation for the potency is given by

⟨Ẑ⟩(t, t̂∗) = ⟨Ẑ0⟩ exp[λ̂Z(t− t̂∗)] (5.32)

with

⟨Ẑ0⟩ =
vβ∗

|σ̂|
1

K̂∗
(5.33)

In this case, for physiological relevant parameters, σ̂ < 0. This means that
a memory response is dominated by growth with negligible contribution from
activation. This represents a change compared to a primary response. Figure 5.5A
shows individual potency trajectories for primary and memory responses, as well
as the population average over an ensemble of different infections with the same
antigen.
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Memory depth We can now estimate the expected average potency difference
between a recall memory response and a naive response as follows

⟨∆Ẑ⟩ ≡ log

[
⟨Ẑ⟩(t, t̂∗)
⟨Z⟩(t, t∗)

]

= log

[
⟨Ẑ0⟩
⟨Z0⟩

]
+ λ̂Z(t− t̂∗)− λZ(t− t∗)

= log
[σ
σ̂

]
+ t
(
λ̂Z − λZ

)
+ λZt

∗ − λ̂Z t̂
∗ (5.34)

Note that this is a definition. We call ⟨∆Ẑ⟩ the depth of the B cell memory protec-
tion. It can be understood as the time-dependent expected gain in neutralization
capacity of a in vivo memory response compared to a naive primary response.
Assuming λ̂Z ≈ λZ and σ̂ ≈ σ, we get that

⟨∆Ẑ⟩ ≈ λZ(t
∗ − t̂∗) ≈ log(ν⟨N̄∗⟩) (5.35)

In the following sections, we will study how memory potency is reduced due
to viral antigenic evolution. In this context, the depth of the response can be
interpreted as the necessary decrease of memory potency at which a memory
response is basically indistinguishable from a typical naive response. This can be
used to estimate the transition from a memory protective response to a new naive
response triggered by a breakthrough infection.

5.3.2 Do memory B cells proofread?

An important quality of memory B cells is that they are stimulated by the presence
of the cognate antigen easier than naive B cells. We ask the question whether
it makes sense for memory B cells to reduce the strength of proofreading that
characterizes the naive response. Let us define the number of proofreading steps
that memory B cells perform as pmem. Figure 5.5B shows individual potency
trajectories for primary and memory responses, as well as the population average
over an ensemble of different infections with the same antigen. In this case, memory
B cells perform a single activation step in the recognition process (pmem = 1, no
proofreading). Compared to Figure 5.5A in which memory B cells perform the
same amount of proofreading steps as naive B cells (pmem = p), it is clear that the
non-proofreading case produces a more rapid response than the proofreading case.

We interpret this result as follow. As it was shown in Chapter 3, a tuned
strength of proofreading (p ≈ β∗) is used by the naive B cells in order to overcome
the high entropy of the naive repertoire. In this case, a high-specificity response
is achieved at expense of a delay in response time. However, proofreading is
justified because the average affinity of the B cell clones that would dominate
a low-specificity response is significantly lower than that of a high-specificity
response. In this case, proofreading solves the problem of selecting for activation
the rare high-affinity B cell clones in the vast B cell repertoire. In the case of a
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memory response, by removing the need for proofreading, we eliminate the delay
in response of the previously selected B cell clones.

Is there another reason why memory B cell would prefer to avoid kinetic
proofreading? As mention above, with a minimum strength of kinetic proofreading
it is possible to generate immune responses in the high-specificity regime [62].
In this regime, we showed that affinity and clone size are correlated as given by
Equation 5.13. We can rewrite the potency of an individual activated B cell clone
from Equation 5.14 as

zb = Nb exp [−∆Eb] with ∆Eb ≡ logKb (5.36)

and define a probability distribution over B cell clones as

Pb =
zb
Z . (5.37)

The distribution Pb becomes the Boltzmann distribution if all clones have clone
size Nb = 1. When this is not the case and B cell clones have in general clone
size different than 1, we can rewrite Pb as

Pb =
exp [−∆Eb + logNb]

Z . (5.38)

Now, using the mean-field Equation 5.13 we can rewrite

Pb =
exp

[
−∆Eb − λB

v
∆Eb + const

]
Z

=
exp

[
−(1 + λB

v
)∆Eb + const

]
Z (5.39)

From this last expression, we can define a new probability distribution over B
cells clones with a different effective inverse temperature as

Pb(θ) =
exp [−θ∆Eb]

Zθ

with θ = 1 +
λB

v
(5.40)

and with Zθ =
∑

b exp [−θ∆Eb]. The new effective inverse temperature θ mea-
sures how much concentrated are cells in the high-affinity B cell clones. In other
words, how strong are affinity and clone size correlated. In order to read θ from
the simulations, we calculate the entropy of Pb(θ) as

S(Pb(θ)) = −
∑
b

Pb(θ) logPb(θ)

= −
∑
b

exp [−θ∆Eb]

Zθ

log
exp [−θ∆Eb]

Zθ

= θE[∆Eb] + logZθ (5.41)

where the expected value E[·] is calculated over B cells clones.

We perform a linear fit on the S(P) − logZ vs. E[∆E] plot as shown in
Figure 5.6A. Figure 5.6B shows the effective temperature θ−1 for different pop-
ulations of B cell clones after primary and memory responses. Let us break
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Fig. 5.6. Effective temperature of an immune response A Linear fit of Equation 5.41. We
show the entropy/average energy relation for an ensemble of 80 primary infections for different
values of p. Inferred inverse temperatures are shown in the caption. B Effective temperature
for the set of 10 largest B cell clones in a primary response (stars), 10 highest-affinity B cell
clones in a primary response (diamonds) and 10 highest-affinity clones in B cell a memory
response (circles). In stars and diamonds, each symbol corresponds to a value of p given by
its x-coordinate. In this case, each color is associated with a value of p. For circles, the color
corresponds to the value of p used in the corresponding primary infection and pmem is given by
its x-coordinate. Other parameters as in Figure 5.5

down the content of this Figure 5.6B. First, we consider the population of the 10
largest clones after a primary response (see stars). As expected from the results
of Chapter 3, the mean-field solution for the largest B cell clones is only valid
in the high-specificity given by p ≳ β∗. If we consider the population of the B
cell clones with the highest affinity after a primary response (see diamonds), they
follow the mean field solution. Interestingly, for p = 1 corresponding to no kinetic
proofreading, we observe an effective temperature smaller than 1. In this case, we
define a modified inverse temperature

θ0 = 1 +
λB

λA

(5.42)

as the strength of exponential proofreading, a new mechanism by which a system
can harvest exponential growth to generate greater specificity beyond the limits
of equilibrium.

We generate memory responses in which memory B cell clones are produced
during primary responses with p = 4 (see circles). In this case, we vary pmem.
Preliminary results show that although the effective temperature decrease com-
pared to the one achieved during the primary response, the relation with pmem

is now opposite. Smaller values of pmem generate smaller effective temperatures,
although the effect is not large.

5.3.3 Viral collapse under in vivo memory response

Now we want to investigate the effect of the rapid increase of Ẑ on the viral
load. For that, we start by considering the relation between Z and the binding
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Fig. 5.7. Predicting memory response from potency of primary response A Linear fit
of log-log plot of Equation 5.48. We show the viral load peak in memory responses as a function
of the potency at carrying capacity of the corresponding primary infection. We show results for
an ensemble of 80 primary/memory infections for different values of pmem and p = 4 B Inferred

exponent λA/λ̂Z. Diamonds show the values from linear fits and dashed line the expectation
from theoretical model. Other parameters as in Figure 5.5

probability of the virus and all circulating antibodies. Let assume that the
dynamics of the number of viral particles is given by

ṄA = λA(Ẑ)NA + decay terms, (5.43)

We consider a potency-dependent viral growth of the virus as follows

λA(Ẑ) = λA

[
1− pbound(Ẑ)

]
(5.44)

where we have assumed that only the unbound fraction of viruses are able to
replicate and with pbound(Ẑ) given by Equation 5.17. In the limit low binding
probability regime given by αẐ ≪ 1, the modified viral growth rate is given by

λA(Ẑ) ≈ λA · (1− αẐ(t)). (5.45)

We define the viral collapse as the time point when the viral growth is approxi-
mately zero. This condition defines a viral collapse time tc. Using our mean-field
approximation of Equation 5.32, the condition of viral collapse is given by

α⟨Ẑ0⟩ exp
[
λ̂Z(t

c − t̂∗)
]
= 1. (5.46)

From here we get that the mean-field critical collapse time is given by

tc = t̂∗ − 1

λ̂Z
log
[
α⟨Ẑ0⟩

]
. (5.47)

Equation 5.44 implies that the neutralization produced by antibodies shifts rapidly
from very weak to almost complete as the potency grows exponentially. Assuming
that the number of antigen particles grows as NA(t) = exp (λAt) (neglecting
saturation at carrying capacity), the collapse viral load is given by

N c
A ≡ NA(t

c) =
[
α exp[−λ̂Z t̂

∗]Ẑ0

]−λA/λ̂Z
(5.48)
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Fig. 5.8. Fluctuations of potency and critical viral load A Fluctuations in the potency
at carrying capacity after a primary response. Circles show the probability distribution over
an ensemble of 105 infections. Black dashed line shows the expected fluctuations from the
clone-size fluctuations deriving from the Luria-Delbrück dynamics. Grey dashed curve shows
the Gumbel distribution that describes the probability of the highest affinity B cell clones in
the repertoire P (K∗). Potency axis is scaled by Z = 1/K∗ B Fluctuations in the critical viral
load of hypothetical memory responses for each primary response in A. The critical viral load is
calculated using Equation 5.48. All parameters as in Figure 5.5

As discussed above, the term inside the squared brackets in Equation 5.48 is fully
determined by the primary response. This suggests that we can estimate the
collapse viral load from the potency of the primary response. We generated an
ensemble of primary and memory responses and show the outcome in Figure 5.7
Here we show the collapse viral load of a memory response, N c

A, as a function
of the carrying capacity potency, Z̄ of the corresponding primary response. We
show the results for different values of pmem. In this case, the potency exponente
is given by

λ̂Z = max

[
λB,

λA

pmem

(β∗ − 1)− λB

]
(5.49)

We found a strong correlation between N c
A and Z̄, following a power-law behavior.

However, the exponent differs from the expected λA/λ̂Z . The accurate calculation
of this exponent remains an open problem in the project.

Memory B cell protection In this section, we would begin to construct a in
vivo protection function for the memory B cell response. First, we can ask how
likely is that a host is protected against a reinfection with the same virus. To
do this, we want to consider how much the final potency can fluctuate after a
primary infection. As we have shown in Chapter 3, potency has large fluctuation
characteristic of a generalized Luria-Delbrück dynamics. Therefore, we would
expect that protection also has large fluctuations at the population level. This is
also shown in Figure 5.5C and D, where the peak of the different viral load curves
fluctuates over several order of magnitude for different memory responses against
the same viral strain.
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5.3.4 Antigen viral evolution

As discussed in the introduction of the present chapter, when a virus changes by
an antigenic mutation, we can model such change by an effective increase in the
binding energy, ∆∆Eb, with the different memory B cell clones targeting such
epitope

K̂b → K̂b · exp (∆∆Eb) (5.50)

We call ∆∆E the average of ∆∆Eb over all memory B cell clones.

We are interested to understand how antigenic changes affect the memory
potency Ẑ(t, t̂∗). We model the collective shift in binding energy at the level of
the memory repertoire as a modification on K̂∗ given by

K̂∗ → K̂∗ exp (∆∆E). (5.51)

This shift in K̂∗ has an additional effect on the response; the expected activation
time of the memory B cell clones targeting changes by

t̂∗ → t̂∗ +∆∆E/v. (5.52)

Given these two changes, we can express the memory potency from Equation 5.32
as

⟨Ẑ⟩(t, t̂∗,∆∆E) =
vβ∗

|σ̂|
1

K̂∗ exp (∆∆E)
exp

[
−λ̂Z

(
t− t̂∗ −∆∆E/v

)]
= ⟨Ẑ⟩(t, t̂∗) exp

[
−(1 + λ̂Z/v)∆∆E

]
= ⟨Ẑ⟩(t, t̂∗) exp

[
−ϕ̂∆∆E

]
(5.53)

with ϕ̂ = 1 + λ̂Z/v

Antiserum vs. memory antigen effects As mentioned above, antiserum
antibodies produced by long-lived plasma cells have undergone substantial affinity
maturation, increasing their affinity by up to 103 times compared to their germline
counterparts. As shown in Figure 5.9A, this means that these new B cell clones
that are successfully produced during affinity maturation are located closer to the
master sequences (in K space) than any other naive B cell clone . As a result
of the different mutations acquired by mature antibodies, the expected effect of
antigenic changes in viral epitopes on these mature antibodies is different from
the effect on the unmatured and clonally related memory B cell clones.

5.4 Multi-epitope system

Among the available epitopes, some of them are preferentially targeted by an
immune response, a phenomenon known as immunodominance. For example,
in the case of Influenza, 5 different epitopes have been characterized, three of
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Fig. 5.9. Global epistasis in the underlying energy model A For three random mutations
of the initial epitope, we show an scatter plot of the initial binding constant K and the effect of
the mutation on the binding energy ∆∆Eb of different populations of B cell clones. Red dots
represent the master sequence: best binder for an epitope. Blue dots represent B cell clones
drawn from ΩB closed to K∗ in affinity space. B Histogram of the mutational effects ∆∆Eb
from A. Dashed lines show average mutational effect. Binding energies are calculated using the
same linear model as in Chapter 3 and we used the TCRen matrix for the energy effects [66, 62].

which tend to be the ones more frequently targeted by B cell immunity, or more
immunodominant [26, 27].

The theory presented in Chapters 3 and 4 and in this chapter has so far
assumed that B cells target a single epitope in the viral antigen. In this section
we extend the activation-proliferation theory, and in particular Equation 5.24, to
the case of a multi-epitope viral antigen. First, we assume that a viral antigen
has g independent, equally accessible, and statistically equivalent epitopes [5]. By
this we mean that the immune response to all epitopes is characterized by the
different densities of state Ωe(K), and therefore different distributions for the best
available binding affinity in each realization of the repertoire, P e(K∗e). We say
that the average best available binding affinity of epitope e is K∗e.

The g distinct epitopes are characterized by g independent realizations

{K∗1, K∗2, . . . , K∗g} (5.54)

in each realization of a B cell repertoire. The ranking of affinities in this set
defines the immunodominance of the viral epitopes. For a given realization of a
B cell repertoire and an ordered set of g independent realizations {K∗e}, let us
express

K∗e = K∗1 · exp [∆∆Ee] with


∆∆Ee = 0 (e = 1)

∆∆Ee ⩾ 0 (e = 2, 3, . . . , g)
. (5.55)

Note that energy differences ∆∆E are different from intrinsic energy differences
∆∆E . The former are intrinsic epitope energy differences with respect to the
immunodominant epitope. The later are energy differences due to changes in the
binding epitope with respect to the WT one.
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5.4.1 Multi-epitope potency dynamics

Primary response Let us first calculate the potency dynamics against a single
epitope e assuming that it does not interact with any other epitopes. In this case,
we are assuming that the mean-field solution applies for each single realization of
a B cell repertoire. Thus, in this section we do not use the average brackets ⟨·⟩.
We have for the potency of epitope e the following expression

Ze(t, t∗, K∗e) =
vβ∗

σ

1

K∗e exp[λZ(t− t∗e)] (5.56)

where t∗e is the associated expected activation time for epitope e. We know that
this time is determined by K∗e [62]. Using our formalism we can express this
time in terms of the energy difference as ∆t∗e = ∆∆Ee/v. This means that, from
Equation 5.56 the expected behavior of the e−specific potency is given by

Ze(t, t∗,∆Ee) =
vβ∗

σ

1

K∗e exp[λZ(t− t∗e)]

=
vβ∗

σ

1

K∗1e∆∆Ee exp[λZ(t− t∗ −∆∆Ee/v)]

=
vβ∗

σ

1

K∗1 exp[λZ(t− t∗)] exp[−∆∆Ee(1 + λZ/v)]

= Z(1)(t, t∗) exp[−∆∆Ee(1 + λZ/v)] (5.57)

with Z(1)(t, t∗) as given by Equation 5.24. From here we can see that the intrinsic
drop in potency due to immunodominance is independent of time and given by

Ze(t, t∗,∆Ee)

Z(1)(t, t∗)
= exp[−∆∆Ee(1 + λZ/v)] (5.58)

Until here, we have calculated the potency dynamics specific for epitope e
assuming that it is independent of the other epitopes. However, we would like
to assume that multi epitopes do not generate a greater response, but that the
hypothetical response of a dominant epitope is distributed among all epitopes
according to the energy differences {∆∆Ee}, this suggest the following construction
for the potency dynamics specific for epitope e as

Ze(t, t∗, θ,∆∆Ee) ≡ Z(1)(t, t∗)Ie(ϕ) (5.59)

with the immunodominance weight given by

Ie(ϕ) =
exp[−ϕ∆∆Ee]∑
e exp[−ϕ∆∆Ee]

and ϕ = 1 + λZ/v. (5.60)

and with Z(1)(t, t∗) given by Equation 5.24. Thus, the total potency is given by

Z(t, t∗, ϕ, {∆∆Ee}) = Z(1)(t, t∗)
∑
e

Ie(ϕ,∆∆Ee) (5.61)

This last expression implies that in our construction, the potency that the most
immunodominant epitope alone would have, is distributed among the remaining
epitopes.
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Memory response We can extend Equation 5.29 to the case of multiple epitopes
in the same way as the construction in Equation 5.61. We have then

Ẑe(t, t̂∗, ϕ̂,∆∆Ee) ≡ Ẑ(t, t̂∗)Ie(ϕ̂) (5.62)

with Ẑ(t, t̂∗) as given by Equation 5.29 and with

ϕ̂ = 1 + λ̂Z/v (5.63)

and thus the total memory potency given by

Ẑ(t, t̂∗, ϕ̂, {∆∆Ee}) = Ẑ(t, t̂∗)
∑
e

Ie(ϕ̂,∆∆Ee) (5.64)

Antigenic evolution From Equation 5.53 we see that an antigen effect on
epitope e, ∆∆Ee, modifies the epitope-specific potency by a factor exp (−ϕ∆∆Ee).
Therefore, using Equations 5.62 and 5.53, we construct the potency dynamics
specific for epitope e as

Ẑe(t, t̂∗, ϕ̂,∆∆Ee,∆∆Ee) = Ẑ(t, t̂∗)χ̂e(ϕ̂,∆∆Ee,∆∆Ee) (5.65)

with

χ̂e(ϕ̂,∆∆Ee,∆∆Ee) = Ie(ϕ̂,∆∆Ee) · exp
[
−ϕ̂∆∆Ee

]
=

exp
[
−ϕ̂ (∆Ee +∆Ee)

]
∑

e exp
[
−ϕ̂∆∆Ee

] (5.66)

and thus the total memory potency given by

Ẑ(t, t̂∗, ϕ̂, {∆∆Ee}, {∆∆Ee}) = Ẑ(t, t̂∗)
∑
e

χe(ϕ̂,∆∆Ee,∆∆Ee) (5.67)

We note that while the immunodominance weights sum up to one∑
e

Ie = 1

this is not the case in general for the weights χe∑
e

χe ̸= 1.

We now evaluate the drop in potency due to antigen evolution as

∆Ẑ = log

[
Ẑ(t, t̂∗, ϕ̂, {∆∆Ee}, {∆∆Ee})

Ẑ(t, t̂∗)

]
= log

∑
e

χe(ϕ̂,∆∆Ee,∆∆Ee)

= log
∑
e

Ie(ϕ̂,∆∆Ee) · exp [−ϕ∆∆Ee] (5.68)
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Fig. 5.10. Trajectories of multi-epitope antigen evolution A Five independent trajectories
∆∆E(τ) for a single epitope system. B For a single trajectory ∆∆E(τ), the five independent
trajectories ∆∆Ee(τ) for a multi-epitope system.

Antigen evolution rate We understand the antigenic evolution of g epitopes
as the independent, parallel, and monotonic increase of all ∆∆Ee values due to
the accumulation of mutations in all epitopes. Assuming a constant mutation
rate per epitope µ, increasing the number of epitopes also increases the number
of mutations that are accumulated in the antigen per unit of time. This means
that the antigenic evolution rate of the whole antigen is the same as the rate of a
single epitope. However, this is not the case for the expected decrease in potency
due to antigenic evolution.

The drop in memory potency from Equation 5.68 is non linear in the quantities
∆∆Ee. This means that the total antigenic change of the different epitopes affects
the potency drop in a different way as is the case of a single epitope. In this case,
the sum is dominated by the epitope with the less antigen evolution (or smaller
value of ∆∆Ee). This means that the drop in potency requires all epitopes to
evolve antigenically.

Let us break up this concept more in detail. Let us consider a vector

∆∆E(τ) = {∆∆E1(τ), . . .∆∆Eg(τ)} (5.69)

that has as components the total energy change in each epitope due to antigen
mutations up to time τ . We measure the time in units of inverse total mutation
rate (gµ)−1. Figure 5.10 shows an example of ∆∆E1(τ) trajectories. Figure 5.10A
shows different trajectories of a single epitope in the case g = 1. Figure 5.10B
shows the trajectory of 5 different epitopes in the same antigen. We see that
each epitope in a multi-epitope antigen evolves identically as a single epitope.
Now we compute the potency drop, ∆Ẑ(τ) due to antigenic evolution given by
Equation 5.68 and parametrized by τ .

We simulate an ensemble of trajectories {∆∆E(τ)} for g = 5 and ∆∆Ee = 0
for all e (potency is distributed equally). To reduce the complexity of the problem
for the moment, we use ϕ̂ = 1. Figure 5.11A shows the drop of potency as a
function of τ . Interestingly, the drop is slower than that for g = 1. Antigen
evolution is slower for greater number of epitopes [5].
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Fig. 5.11. Speed of multi-epitope antigen evolution A For an ensemble of 105 trajectories
{∆∆E(τ)} as in Figure 5.10B, we show the time evolution of χ(τ) for ϕ̂ = 1 and ∆∆Ee = 0
for all e. Lines show the expected behavior for g = 1 (dashed grey) and p = 5 (solid red).
B Distribution of the time for the first g events in a Poisson process with average µ−1. The
distribution for g = 1 is Exponential with rate parameter µ and for g > 1 is Gamma with shape
parameter g and rate parameter gµ. Vertical dashed line shows the shared average value for all
distributions.

The explanation for this decrease in speed for an increase in the number of
epitopes is the following. For g = 1, ∆Ẑ changes proportional to ∆∆E1(τ).

∆Ẑ = −∆∆E1(τ) (5.70)

However, for g > 1, it is given by

∆Ẑ = log
∑
e

exp [−∆∆Ee(τ)] (5.71)

which is dominated by the smallest ∆∆Ee(τ).

In this case, we can say that, approximately, a drop in potency occurs whenever
all g epitopes have acquired at least one mutation. Let us call this time tag.
Mutations in each epitope can be described as a Poisson process with rate µ.
Therefore, for the single epitope case, the waiting time for the next mutation,
which in this case corresponds to tag, is exponentially distributed with average
µ−1 and variance µ−2.

In the multiple-epitope case, tag is the time at which all g epitopes have had a
mutation. In this case, tag is Gamma distributed with average µ−1 and variance
(gµ)−2. Figure 5.11B shows the ditribution P (tag) for different values of g.

Interestingly, although all share the same average value for tag, their variance
are different. A single-epitope antigen is more likely to have antigen mutations
at times tag < µ−1. Multiple-epitopes antigens evolve statistically slower than
single-epitope antigen.

Viral collapse revisited We can now recalculate the dynamics of viral collapse
for a multi-epitope antigen and including antigenic evolution. Using Equation 5.67,
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the condition of viral collapse is given by

αẐ0 exp
[
λ̂Z(t

c − t̂∗)
]∑

e

χe(ϕ̂,∆∆Ee,∆∆Ee) = 1. (5.72)

From here we get that the critical collapse time is given by

tc = t̂∗ − 1

λZ
log

[
αẐ0

∑
e

χe(ϕ̂,∆∆Ee,∆∆Ee)

]
. (5.73)

and the collapse viral load given by

N c
A = exp[λAt̂

∗]

[
αẐ0

∑
e

χe(ϕ̂,∆∆Ee,∆∆Ee)

]−λA/λ̂Z

(5.74)

This expression is the most complete form for the mean-field critical viral load
developed in our mathematical model so far. It incorporates the information of
different epitopes in the form of immunodominance energies {∆∆Ee} and the
effect of antigenic viral evolution {∆∆Ee}. For future work, we expect to properly
understand the fluctuations around the mean-field solutions and used the complete
theory to construct a memory B cell in vivo protective-function that could inform
epidemiological measures and viral surveillance protocols.



Part III

Epidemiology of infectious
outbreaks
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Chapter 6

Infectious outbreaks:
Establishment size and
surveillance

The content of this chapter has appeared as,

• Morán-Tovar, R, Gruell, H., Klein, F. & Lässig, M, Stochasticity of infectious
outbreaks and consequences for optimal interventions. J. Phys. A: Math.
Theor. 55, 384008 (2022). [67].

On this work, I am first author and I have performed the research and analysis
under supervision of the last author. All authors formulated the original research
problem. The paper is co-written with all co-authors.

During a global pandemic, when strict social distancing and confinement
measures are taken, some essential institutions must remain open and functioning.
This is the case of hospitals, schools, daycare facilities or food production plants.
The prevention of local outbreaks in those institutions becomes very relevant and
it is important to formulate appropriate surveillance protocols. In this chapter we
show one way to optimize preventive testing protocols using knowledge about the
underlying stochasticity of the process.

We developed stochastic epidemiological models for small populations. We
decided to work with an extension of the classical SIR model that consider exposed
individuals that carry the infections but are not yet able to infect other individuals:
The SEIR model. Moreover, we consider populations that interact through a
contact network that recreates human interactions. We focus on the initial phase
of an infectious outbreak, in which stochasticity is crucial due to the low number
of infected individuals. In this case, we analyze the transition between a small
outbreak, characterized by few infections and a high probability of extinction of
the infections, and a breakthrough epidemic, in which the infection has taken over
a large fraction of the population. We study the probability of this transition
under different conditions.

In particular, we analyze the probability of a breakthrough epidemic as a
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function of the connectivity of the patience zero within the network of contacts.
We used this analytical result to inform a random testing protocol. Using numerical
simulations of epidemics in scale-free contact networks, we showed that random
testing in which the frequency at which individuals are tested is proportional to
the connectivity of individuals in the population generates overall earlier detection
compared to uniform frequencies.
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Chapter 7

Conclusions and Perspectives

In this dissertation we have presented a biophysically based theory of immune
activation by dynamic antigens: the recognition of proliferating signals. Our
approach, which uses tools from statistical physics, has a novel insight compared
to the state of the art. Namely, we have mapped the diversity of BCRs to their
function: we based our work on statistical properties of the distribution of binding
affinities of the BCR repertoire. This biophysically motivated map allowed us to
reduce the complexity of the problem and characterize the BCR repertoire with
few macroscopic variables. In particular, we proposed the density of high-affinity
BCRs, summarized by the repertoire exponent β∗, as a new relevant quantity
that characterizes adaptive immune responses. In addition, we propose that
the exponent β∗, an emerging quantity of the genotype-phenotype map in the
BCR-antigen binding problem, may be under different evolutionary pressures. For
example, the exponent influences the clone size statistics of responding B cell
clones during immune responses, and therefore it also affects its potency. In this
case, the repertoire exponent can be modulated by the binding motifs of the BCR
or by the size of the repertoire.

Under this framework, we have shown that the immune response against
different immunization protocols resembles a Luria-Delbrück dynamics. In the
case of immune responses, we have extended the initial Luria-Delbrück setup
to a new class of models that we call generalized Luria-Delbrück models. In
this case, exponential growth, which is the main driving force in the problem,
can be harvested to discriminate between energetic states beyond the limits of
thermodynamics equilibrium. We have not yet coined a name for this mechanism
and we continue investigating in what other systems is relevant. For the moment,
we use the term exponential proofreading.

In the case of a primary immune response, we have shown (retrospectively),
that exponential proofreading is not sufficient to overcome the large entropy
contained in the BCR repertoire. In this context, we proposed a combination with
kinetic proofreading as a likely mechanism to generate rapid, potent and highly
specific primary immune responses. We found that the strength of proofreading
required for an optimal response is determined by the repertoire exponent and, in
general, by the repertoire complexity. In the case of memory immune responses,
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where reducing kinetic proofreading to a minimum appears to be optimal, we
continue to investigate the potential relevance of exponential proofreading as a
major source of high specificity in the system. What is the role of these different
forms of proofreading in the process of affinity maturation? We expect that this
new framework will provide the right tools to address this question as well.

Our framework also has important clinical consequences. First, as a hallmark
of generalized Luria-Delbrück processes, we showed that immune responses expe-
rience giant fluctuations. For example, we predict the existence of primary elite
neutralizers. Jackpot individuals in which a single high-affinity B cell clone domi-
nates the immune response, providing protection orders of magnitude higher than
the population average. Second, our model explains the observed age-dependent
decline in the potency of primary immune responses as a result of the decrease
in the density of high affinity B cell clones. Finally, we are working to construct
an in vivo immune cross-protective function. Leveraging our understanding of
the primary immune response, we aim to understand how memory B cell clones
respond rapidly to recurrent infections and are able to neutralize viral proliferation
in real time. Combining such a model with antigenic evolution of the virus could
provide a first answer to what was the initial question of this PhD project. Why do
we get sick again? I believe that this new understanding of the real-time memory
protection will be useful to inform public health measures and preventive protocols
against seasonal and endemic pathogens, as well as potential new pandemics.

The adaptive immune system in vertebrates has proven to be an excellent
system to study general properties of living matter. In recent decades, it has
challenged many paradigms in biology and medicine. For example, it has shown
that mutation rates can be manipulated by cells in order to rapidly generate
diversity in a target gene and selected fitter variants in the course of a few weeks.
Another example, perhaps more important for this dissertation, is that the immune
system has challenged our assumptions about how much information we can store
in the genome. With limited space, the immune system is able to create such a
large diversity of proteins, that for a long time it was not easy to believe it was
true. In this sense, I have learned from this project that it is important to go
back to the origin of the scientific paradigms on which we stand. This process,
we would not only provide us with the right context and the best questions for
our research. It will also show us the intricacies our nowadays assumptions have
gone through. In some cases, it might also show us that many of our current
assumptions are still open problems.

I was surprised to learn how strongly the theory of clonal selection, one of the
major paradigms in immunology, is supported by experimental evidence. I was
also surprised to learn that the theory lacks a complete explanation for one of its
main assumptions. Namely, that antigens choose the right immune receptors from
a diverse set of pre-existing ones. Little progress has been made in mathematical
and mechanistic models of this crucial step of the theory. I hope I did not miss
this in the sea of literature.

Finally, I was surprised to learn how similar the debate about acquired immu-
nity is to the debate in evolution about the source of mutations. And it is with
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this thought that I would like to close this dissertation. Some time ago, I heard
a prominent immunologist say that with the invention of affinity maturation in
GCs, evolution has reinvented itself1. I would say that evolution has actually done
this twice with the adaptive immune system. Before GCs, it also reinvented the
neutral evolution of natural variation in expanding populations.

1The real quote is ≪[Affinity maturation is] “Nature’s most accomplished self-portrait” by
Vasco Barreto. It was shown by Gabriel Victora during a presentation as part of the Delbrück
Lecture series on evolution in April 2022.≫
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