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Abstract

In this thesis we study the Poisson Boolean model where the grains are ran-
dom convex bodies with a rotation-invariant distribution, i.e. we have a Pois-
son Boolean model where the locations of the vertices are distributed in Rd

according to a Poisson process . The vertices are than given by i.i.d. copies
of a random convex body attached to the individual locations. The random
convex bodies are called the grains of the vertices

We say that a grain distribution is dense if the union of the grains covers the
entire space and robust if the union of the grains has an unbounded connected
component irrespective of the intensity of the underlying Poisson process. If
the grains are balls of random radius, then density and robustness are equiva-
lent, but in general this is not the case. In this work we are dealing with the
Poisson Boolean model where convex bodies are rotation-invariant distributed
and have regularly varying diameters with indices −α1 ≥ · · · ≥ −αd where
αk > 0 for all k ∈ {1, . . . , d}. We show in this model that in any dimension
d ≥ 2 there are parameter regimes for the indices such that the grain distribu-
tion is robust but not dense. We give on the one hand some universal criteria
for density and robustness of a grain distribution and on the other hand also
some special criteria on the grain distribution being robust. In addition to
that we prove non-robustness for a generalisation of a 2-dimensional ellipses
model.

We further investigate the behaviour of the chemical distance in the robust
but not dense regime. We will see in this work that the universal criterium for
a grain distribution being robust is the existence of some k ∈ {1, . . . , d} such
that αk < min{2k, d}. To avoid that this connected component covers the
entire Rd almost surely we also require αk > k for all k ∈ {1, . . . , d}. We show
that under these assumptions, the chemical distance of two far apart vertices
x and y behaves like c log log |x − y| as |x − y| → ∞, with an explicit and
very surprising constant c that depends only on the model parameters. We
furthermore show that if there exists k such that αk ≤ k, the chemical distance
is smaller than c log log |x− y| for all c > 0 and that if αk ≥ min{2k, d} for all
k, the chemical distance is bigger than c log log |x− y| for all c > 0.
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Chapter 1

Introduction

1.1 Motivation

The area of networks and random graphs has a lot of real-world applications
and is an important topic in research. For us, graphs consist of vertices and
edges between pairs of vertices, representing a connection between the pairs.
This simple structure allows for the modelling of many complex systems. In
social networks like Facebook, the vertices represent the users and edges their
friendship. Another example is the structure of the world wide web. For that
the vertices are the websites and edges represents the links between them. In
this example one could add more information by introducing directed edges. A
directed edge then goes for example from one website to another if it includes
a hyperlink to the other page. If both sites link to each other we have an
edge which is undirected. Beyond the internet, networks also play a role in
other fields. In neurobiology, for instance, vertices are the neurons and edges
are given between two neurons if they interact directly. Graphs can also be
used to study infection chains, where vertices are the infected individuals and
edges indicate disease transmission. In such example one have on the one hand
direction of an edge, i.e. if one person has infected the other, and on the other
hand we can depict the chronological sequences of disease transmission by a
time component. A further example are air-traffic routes, where vertices are
the countries and two vertices are connected by an edge if and only if there
exists a direct flight between these two counties.

We see that various types of graphs can be studied: spatially embedded
graphs (e.g. countries and corresponding flights) and non-spatial graphs (e.g.
world wide web with links). But we can also add some temporal developments
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1.1. Motivation

in a graph, such as the spread of diseases. Alternatively, stationary networks
without a time component can be analysed.

In this thesis, we are interested in spatially embedded graphs that do not
involve a temporal component and have no direction on the edges, i.e. we just
know if two vertices are connected or not and have no additional information
about that. Therefore, we focus next only on examples with these character-
istics before proceeding to interesting properties and some results related to
them.

1.1.1 Spatial random graphs

In this thesis we are interested in graphs G := (V ,E ) with V is the vertex set
and E is the edge set which is a subset of (unordered) pairs of vertices. We
use the convention that (u, v) ∈ E , that the vertices u, v ∈ V are connected
via an (unoriented) edge. We are interested in spatially embedded graphs.
For that we can for example look at V ⊂ Zd, i.e. looking at lattice graphs
or V ⊂ Rd, i.e. some continuum percolation models. In the following we give
some example.

Bernoulli bond percolation

One model, which was often studied and is of interest is G = (V ,E ) with
V = Zd for d ≥ 1. In this model we say that two vertices are neighours if
and only if the Euclidean distance between them is 1 and first start with all
edges between the neighours. Looking now at two vertices that are neighbours,
we fix p ∈ (0, 1) as a retention parameter and have a coin flip for every edge
so that we keep independent from each other edges an edge with probability
p and remove it with probability 1 − p. This model was first introduced by
Broadbent and Hammersley in [6] and is called Bernoulli bond percolation; as
edges are also referred to in this model as bonds and we have for every edge
an i.i.d. Bernoulli random variable with Parameter p that decides whether we
keep or remove it. If we keep an edge we say that this edge is open. One can
find an extensive introduction to this model in the book of Grimmett [29].

The Bernoulli bond percolation model is a discrete model where, as de-
scribed, positions of the vertices are given deterministically as the elements of
Zd. It is a model with limitations that make it less than ideal for modelling
phenomena where more randomness is present. For other examples like chains
of infections, neuronal networks and a lot of more, it is important to use ad-
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1.1. Motivation

ditional of randomness in space that place vertices not on lattices but in a
more flexible way. For this, one can look at continuum models that allow to
have vertices with locations in Rd like in the random connection model or the
Poisson Boolean model in Rd. Both models have been frequently analysed and
we briefly introduce them here.

Stationary marked random connection model in Rd

For the random connection model we use a point process that places points
randomly on a measurable space (X,B), where X is a complete separable metric
space and B is its Borel-σ-algebra. We focus here on the models which are
generated via a Poisson point process ξ with a σ-finite intensity measure ν. A
Poisson point process with intensity measure ν satisfies the following properties
for all sets A,A1, . . . , An ∈ X and n ∈ N:

• ξ(A) is Poisson distributed with parameter ν(A),

• if the sets A1, . . . , An are pairwise disjoint, then ξ(A1), . . . , ξ(An) are
independent.

These properties are discussed for instance in the book of Last and Penrose
[40].

To define connections between points x, y ∈ ξ, we use a connection function,
which is a measurable and symmetric function ζ : X×X → [0, 1]. Given such a
function, an edge between x and y is placed with probability ζ(x, y). This type
of model has been studied for example in [42, 9], while the general framework
was first introduced by Penrose [47].

Since the general random connection model includes a broad class of pro-
cesses, we focus on a particular subclass: the stationary marked random con-
nection model in Rd driven by a spatial Poisson point process, which is for
example described in the work of Chebunin and Last [9].

In particular, we are interested in the case where Rd is the space for the
locations of the vertices and the connection structure depends on additional
marks. In this setting, we consider therefore a product space X = Rd × M,
where M denotes the mark space, and each point in the process is assigned a
mark in M. The intensity measure ν is then given by uλ⊗ µ, where u > 0, λ
is the d-dimensional Lebesgue measure on Rd, and µ is a probability measure
on M. This construction yields a stationary random connection model, as the
intensity of the points in the process is a multiple of the Lebesgue measure
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1.1. Motivation

(see e.g. [40, 9]). We therefore have that the process fulfils

Txξ
d
= ξ,

for Tx a translation by x ∈ Rd, i.e. the distribution of the process does not
change under translations (cf. [40]). We also have that this kind of process is
ergodic, i.e. the process is degenerate on translation invariant measurable sets
(see e.g. [40, 9]).

In this thesis the main interest is on the Poisson Boolean model which is
a special case of the stationary marked random connection model. The marks
will be the before mentioned grains.

Poisson Boolean model in Rd

The Poisson Boolean model in Rd is studied in many works. We start with a
homogeneous Poisson Point process P in Rd. For every x ∈ P we want to
attach in some C̃x, an i.i.d. copy of a random mark C ⊂ Rd, which we call the
grain at x, and shift it by x, i.e.

Cx := x+ C̃x.

There are several studies of the Poisson Boolean model, see for example the
work of Meester and Roy [45] for an introduction, or Hug et al. [36]. Note
that the underlying point process has intensity measure uλ with u > 0 and
again λ is the d-dimensional Lebesgue measure.

Let C be a random or deterministic ball, i.e. we have a random or fixed
radius and the corresponding ball has its center in the origin. C̃x is then an
i.i.d. copy of C and Cx is a ball centered in x. This choice of grains is the
typical model that has been studied in different works [31, 45, 40, 22].

Looking now at the case d = 2 and letting C be an ellipse with heavy
tailed distributed major axis and a fixed minor axis with length one, we get
the model which was studied in [53, 34]. Related, one can also consider “sticks”
instead of ellipses. Two works on these are [49, 7]. We also mention some work
with more general shapes, namely general convex shapes, as in [50, 23].

Note that depending on the literature and the object of interest in the
Poisson Boolean model, one can find the name Booelan model when focusing
on the covering of the process, i.e. the union of the grains (see e.g. [45, 40, 41])
or the Gilbert graph associated to the Boolean model (see e.g. [20, 16, 40, 48]).
For the Gilbert graph, the vertices are given via the points driven by the
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1.1. Motivation

Poisson point processes including its grains. The grains are relevant for the
connection probability, and we say that two vertices are connected by an edge
if and only if the corresponding grains are intersecting, but then do not affect
the resulting graph otherwise. An illustration of the Boolean model including
the corresponding graph can be seen in Figure 1.1.

(a) Example in R2 for the Poisson Boolean model with balls as grains.

(b) Example in R2 for the Poisson Boolean model with ellipses as grains.

Figure 1.1: Example in R2 for the Poisson Boolean model with convex grains.
From left to right: Points placed by the Poisson point process, covering of the
process by the random marks, edges constructed via the corresponding marks
and on the right side the Gilbert graph.

1.1.2 Properties of geometric random graphs

After introducing some examples for spatially embedded graphs, we provide
some definitions and corresponding motivations in order to describe the be-
haviour and properties of the graphs.

Percolation The concept of percolation is interesting for example in theory
of probability and physics and has a lot of real world connections. One can
observe percolation in the real world for example when we look at the spread
of a fire in a forest and look at the event that when the fire starts from one
side of the forest that it reaches the other side of it. The same principle is
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1.1. Motivation

seen when looking at a big stone which is porose, when dropping water on it
and looking at the event that the stone gets wet in the middle resp. the water
percolates through the stone so that the other side of it is wet. This kind of
phenomena, i.e. having some “path” that goes from one side of a medium to
another, is called percolation. Both examples and more can be found in the
book of Grimmett [29]

If we want to formalise the concept of percolation, a natural concept in
graph theory is to ask whether there exists an infinite cluster, that is, whether
there a self avoiding infinite path can be found. To answer this question, we
first have to define a path. We already established that two vertices x, y ∈ V

are connected (directly) if (x, y) ∈ E , that is the edge (x, y) exists. We denote
this by x ∼ y.

We say that a path between x and y exists if and only if there exist vertices
x1, x2, . . . , xn ∈ V such that x ∼ x1, xi ∼ xi+1 for i ∈ {1, . . . , n − 1}, and
xn ∼ y, with n ∈ N. More precisely we say there exists a path of length n

that connects x and y. We denote this by x
n∼ y. If there exists a path of

infinite length somewhere in the graph, for which none of the vertices appear
more than once, we say that the model percolates. In the literature, this is
also often referred to as the model being supercritical or having a supercritical
phase. When all paths are finite, the terminology subcritical or subcritical
phase (cf. [45, 29]) is used.

When studying the Poisson Boolean model, percolation can also be under-
stood in terms of coverage, rather than in terms of the graph. In this case,
we ask whether an unbounded connected component exists, where a connected
component is defined as a maximal union of intersecting grains.

Once we know that the model percolates, we can further study the percola-
tion probability, which is the probability that a point of the process lies in the
unbounded connected component or in the infinite cluster, which is the same
as asking if the vertex is connected to an infinite path. This probability typi-
cally depends on some of the model parameters. Similarly the existence of an
unbounded connected component or infinite path itself also depends on these
parameters. In the case of Bernoulli bond percolation, for example, it depends
on the retention probability p and the dimension d. Similarly, for the Poisson
Boolean model, both the dimension and the choice of grain distributions play
a crucial role.

Beyond the question of the existence of an unbounded connected compo-
nents, we are also interested in whether the unbounded connected component
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1.1. Motivation

(or path) is, in some sense, trivial or non-trivial. For instance, we ask whether
all vertices are connected to each other or in terms of coverage if the entire
space is covered almost surely. In addition to that it is also interesting to look
at the uniqueness of such an unbounded connected component resp. infinite
cluster.

Looking at the triviality of the unbounded connected component, i.e. wheter
all vertices are connected or the entire space is covered, the question is also
closely related to the degree of a typical vertex. If the grains of the vertices are
for example of infinite size in expectation in the Poisson Boolean model, this
leads to a total covering of space and all points being connected to each other,
so the degree becomes infinite. Such a setting is generally not of interest, as it
does not realistically model connectivity observed in real-world situations. We
are therefore more interested in non-trivial cases where such full connectivity
or complete coverage does not occur.

Chemical distance A key topic in percolation theory and, more broadly, the
study of geometrically embedded random graphs is the relationship between
the Euclidean distance of two points and their graph distance, commonly re-
ferred to as the chemical distance. The chemical distance is defined as the
lenght of the minimal path connecting two vertices. The chemical distance
is not only an interesting concept in theory, but also a relevant measure in
real-world situations. First, let us give some examples in non-spatial graphs
that show why the minimum length of a path connecting two nodes might
be interesting. Consider a graph in which vertices are represented as actors
and an edge exists between them if they have appeared in the same film. The
so-called Kevin Bacon number indicates the minimum number of edges con-
necting an actor to Kevin Bacon. A similar concept is the Erdös number,
where mathematicians are connected by an edge if they have co-authored a
paper. Since Paul Erdös wrote over 1500 papers and had more than 500 co-
authors, the Erdös number serves as an equivalent to the Kevin Bacon number
in this academic collaboration graph. Both examples can be found in the book
of Durrett [13] and are examples for the observation of the small-world effect
that was described in the social experiment that was of interest for Milgram.
He looked at the question of how many intermediaries one needs so that two
randomly chosen Americans can get in touch with each other. Surprisingly
this number was on average equal five (cf. [46]).

It is of course also possible to embed both examples spatially if we use
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1.1. Motivation

the birthplace or similar as the location for the individuals. Another example
is the spread of diseases, which has become a highly relevant topic in recent
years. Here, the chemical distance can describe how many transmission steps
are needed for a disease to spread from one side of the world to the other.
Looking now at the chemical distance in percolation theory, we have that this
is an interesting property when there exists an infinite path or an unbounded
connected component. For that, when points belong to the unbounded con-
nected component and are sufficiently far apart in Euclidean space, the aim is
to understand how the Euclidean distance of these points affects in the chemi-
cal distance. One can observe different type of behaviours. There exist models
in which the chemical distance is of linear order of the Euclidean distance.
One can also study models where distance scales as a power of the logarithm
(cf. [4]) or even as an iterated logarithm of the Euclidean distance. When
the latter occurs, the graph is said to be ultrasmall. This phenomenon has
been observed, for example, in geometric random graphs with long edges and
scale-free degree distribution as in the work of Gracar et al. [24].

Besides the results concerning some Poisson Boolean models and the Bernoulli
bond percolation there exist a lot of other works about chemical distance.
There is research about chemical distances extended to models incorporating
long-range interactions, such as random interlacements (Černý and Popov [8]),
its vacant set, and the Gaussian free field (Drewitz et al. [14]).

In the following we focus on the models from above and summarise some
results.

1.1.3 Summary of established results

We start with the Bernoulli bond percolation and summarise some important
results for it which can be found for example in [29]. For this model it is known
that there exists for every dimension d ≥ 2 a critical retention parameter
pc(d) ∈ (0, 1) such that the model is supercritical if p > pc(d) and subcritical
if p < pc(d). For d = 2 it is known that pc(2) =

1
2
. For all other dimensions

d > 2, the exact value of pc(d) is not known. There exists inequalities and
asymptotic estimates for pc(d) for large dimensions. It is known for example
that pc(d) ≥ 1

2d−1
and pc(d) ∼ 1

2d
(cf. [29]).

Let us now have a closer look at the percolation probability. There are
a few results and conjectures concerning its behaviour for p close to pc(d)

with p > pc(d). It is conjectured that there exists a critical exponent β,
depending on the dimension, such that the percolation probability behaves
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1.1. Motivation

like (p− pc(d))
β. For d larger than 19, this has already been confirmed in the

work by Hara and Slade in [33] for β = 1. For small dimensions the question
remains open. More results on the critical percolation probability can be also
found in for example [21]. It is also known that the percolation probability
is continuous for p > pc(d), as shown in the work of Aizenman and Pisztora
[1]. Moreover it is proven in the supercrital phase that the infinite cluster is
unique, which can be also found in [1].

For the chemical distance in Bernoulli bond percolation in the supercritical
regime, it is known that it grows linearly with the Euclidean distance (cf. [2]).
Further results concerning the chemical distance can be found in [18, 19, 11].

To conclude, note that instead of Bernoulli bond percolation, where edges
are removed with probability 1 − p and retained with probability p, one may
also consider Bernoulli site percolation, where the retention parameter p de-
termines whether a vertex is retained or removed. Corresponding results have
also been established in that context. Some works and introduction on the
Bernoulli bond percolation can be found in [29, 10, 21].

We state next a few results on random connection models driven by a Pois-
son point process in Rd. Chebunin and Last show in [9] that under certain
condition the unbounded connected component, if it exists, is unique. The
relevant condition is irreducibility, which states that the probability that any
two vertices x, y ∈ ξ are connected is strictly positive.

There is also research by Last et al. [42], where general properties of func-
tions of marked random connection models driven by a Poisson point process
are studied. Here, “marked” includes also the setting of the stationary marked
random connection model, as it only refers to the random connection modes
where each vertex is assigned a random mark from some mark space.

There is also a work by Gracar et al. [28], where a phase transition for
percolation in the weight-dependent random connection models is studied. The
connection probability between two vertices depends in their model on weights
of the vertices as well as on their spatial distance. They identify conditions
depending on the model parameters so that a phase transition occurs, i.e. a
nontrivial critical intensity is given.

Further contribution is the work of Meester et al. [44], where conditions are
provided under which one can determine the behaviour of the critical intensity
of the Poisson point process as d → ∞ for the random connection model.

There are certainly many more results that could be mentioned here. How-
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1.1. Motivation

ever, each of them requires specific additional assumptions, and no general re-
sults can be stated for the stationary marked random connection model driven
by a Poisson point process with respect to the percolation probability and the
chemical distance, as the behaviour of the models can vary significantly. This
will become evident in the following part, where we turn to various results
concerning the Poisson Boolean model.

Finally, we present therefore results for the Poisson Boolean model with various
choices of grains. This not only illustrates how differently the models behave
depending on the type of grains one chooses, but also provides the motivation
for the topic of this thesis.

We start here with the work of Gouéré where he looks at the set K as the
grain which is compact, convex, symmetric, and a subset of Rd. In addition
to that he assumes that the Lebesgue measure of K is equal 1 (see [23]). He
studies the asymptotic behaviour of the percolation probability and the critical
intensity in two different settings. One of the settings considers attaching
convex bodies to the points of a point process, where the bodies are scaled by a
factor of 1/2. In this context, it is shown that the percolation probability for all
λ as the underlying intensity, converges as d → ∞ to the survival probability of
a Galton–Watson process with Poisson(λ) offspring distribution. Furthermore,
it is proven that the critical intensity converges to 1. In the second setting, the
scaling factor of the convex body is chosen randomly from two values. One of
the scaling factors is a parameter ρ ∈ (1, 2). Depending on ρ, the intensity λ

of the Poisson point process is chosen, where λ is also a function of a further
parameter, namely β. For d → ∞, the asymptotic behaviour of the percolation
probability and the critical intensity is then established depending on β and
ρ. For further details on the second setting see [23].

In addition to that there exists a result on the critical intensity depending
on the shape of the convex body. Roy showed in [50] that for the Poisson
Boolean model the critical intensity with convex shapes of volume one is mini-
mal when using triangles or regular polytopes; for all other shapes, the critical
intensity is higher.

We now look at so called stick percolation. As mentioned previously, the
works [49, 7] deal with this model, where Roy [49] treats the 2-dimensional
case and Broman [7] deals with the more general case d ≥ 2. In [49], bounded
sticks, i.e. lines through a vertex of bounded length are studied, which all
are uniformly rotated. Specifically, the critical intensity with respect to the
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1.1. Motivation

percolation probability is investigated and it is shown to coincide with other
terms of criticality, such as the one where the expected number of sticks in
the cluster of the origin is infinite. In [7], sticks of length L and width 1 are
considered. The asymptotic behaviour of the critical intensity as L → ∞ is
studied. Two different distributions of the rotation of the stick are considered,
including uniform rotation. In both cases, boundaries for the critical intensity
is given which shows that it is non-trivial (bigger than zero) and finite.

We now look at the classical case, i.e. with balls as grains. In this model
we first consider the existence of an unbounded connected component. It is
well known that such a component exists the expected volume of the ball is
infinite (cf. [31, 45, 22]). It is also known that this unbounded connected
component almost surely covers the whole space Rd. Due to [9] it is clear that
this is unique as well for the choice of all other grains, where irreducibility is
satisfied, as Poisson Boolean models with grains are also stationary marked
random connection models. It is also known that the percolation probability
is continuous for u ̸= uc as u is the intensity of the underlying point process
and uc is the critical intensity. The proof of it can be found in [45, 51].

Considering the critical intensity of the Poisson Boolean model, one can
find a result for d = 2 with constant radius (radius equal to one) in the book
of Meester and Roy [45]. There, a lower and an upper bound for the critical
intensity are proven, which implies that it is neither trivial (equals zero) nor
infinite. For d ≥ 2 and bounded radii, it is shown in [45] that the critical
intensity is non-trivial and finite. From this we can surmise that the same
holds for arbitrary radius distributions with finite dth moment of the radius.
Hence, a supercritical phase exists. However, more general conditions or an
explicit formula for the critical intensity are not known.

We now consider ellipses percolation. Teixeira and Ungaretti introduced
this model in [53]. There and in the work of Hilário and Ungaretti [34] several
fundamental properties of this model are identified. On the one hand, they
showed under which conditions the 2-dimensional ellipse model, with a fixed
minor axis and a heavy-tailed distributed major axis covers the entire space
[53]. This is the case, as in the model with balls as grains, when the expected
volume of the grain is infinite. Furthermore, they identify a parameter regime
for the tail exponent α in which an unbounded connected component exists
that does not cover the entire Rd. This occurs, except in boundary cases, when
the tail parameter is such that the first moment of the volume is finite, but the
second moment is infinite, i.e. α ∈ (1, 2). For α ≥ 2, the model has a subcritical
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phase, so there exists some non-trivial critical intensity such that the model
does not percolate if the intensity is smaller than this critical one. These
results can be found in [53]. In [34], the chemical distance is analysed. The
authors show that the chemical distance exhibits double logarithmic behaviour
with respect to euclidean distance. Although the exact constant in front of the
logarithmic term is not given, they give upper and lower bounds for it, which
depend on the tail parameter α. In this work, we confirm the log log behaviour
of the chemical distance and determine the precise value of the corresponding
constant.

These results on the Poisson Boolean model, especially the last two mod-
els, are the main motivation for this thesis. In the classical model with balls
as grains, it is known that total covering of the space and the existence of
an unbounded connected component independently from the intensity u are
equivalent. However, in the 2-dimensional case with ellipses as grains, this
equivalence does not hold. There exists a regime for the tail parameter α

in which an unbounded connected component exists independently of the in-
tensity u of the Poisson point process, while the space is not almost surely
covered. We therefore ask ourselves whether we can find grain distributions
in all dimensions d ≥ 2 such that this property of the unbounded connected
component holds, i.e. such that this is not equivalent to total covering occurs.
For that, one has to make clear what is required for the grain so that one can
find such distributions. We know that the radius of a ball describes the grain
completely in the sense that having the center, the distance from this to the
boundary of the ball is in every direction the same. For ellipses this is clearly
not the case. In contrast it is possible to get ellipses that are very long but thin
as in the above mentioned model. This makes the orientation in this model
crucial. In our work we define diameters so that one can control the shape of
a grain and also determine the orientation of a grain.

1.2 Structure

In this section we give an overview of the structure of this thesis. In addition
to that we explain which part of the results and proofs are based on which
paper and describe my contribution to them.

Chapter 2 gives the detailed definition of the model and its behaviour, includ-
ing terminology (a grain distribution being dense, robust and non-robust), in

12



1.2. Structure

order to describe this. More precisely you can find in Section 2.1 the formal
definition of the model we are interested in and a definition of a sequence of
diameters so that one has some control of the shape and size of the grains. In
addition to that one can find the result concerning the behaviour of the grain
distribution being dense, robust and non-robust. For density and robustness
we state some universal criteria. In addition to that we provide some special
criteria for robustness that extend the universal criteria for particular kinds
of grain distribution. Moreover we prove criteria on the non-robustness for a
generalisation of 2-dimensional ellipses model introduced by Teixera and Un-
garetti in [53]. In Section 2.2 one can find the proofs of the results on the
behaviour. All results, definitions and proofs from Chapter 2 are based on the
work [25].

Chapter 3 is based on the work [26]. Here, we present the results on the chem-
ical distance for far apart vertices and the proofs on it. In Section 3.1 we state
the main result on the chemical distance and discuss the nature of the con-
stant that appears there. In Section 3.2 we give the proof of the lower bound
of the chemical distance while the proof of the upper bound can be found in
Section 3.3.

In Chapter 4 we discuss examples and state their properties given by our re-
sults from Chapter 2 and Chapter 3. We consider also a further example,
where we have parameters such that with strong positive correlations between
diameters, we get a robust grain distribution, but get non-robustness with the
same parameters if we change the grain distribution. All these examples and
results for them are taken from [25, 26].

Finally, in Chapter 5 we round this thesis up by discussing briefly some possi-
ble future research directions.

In the appendix of this thesis, one can find results on bounds of intersection
probabilities and some geometrical tools. Some but not all, are taken from [26].

This thesis includes the work of the following two arXiv preprints.

[25] Gracar, P., Korfhage, M. and Mörters, P. (2024) Robustness in the
Poisson Boolean model with convex grains.
Preprint arXiv:2410.13366
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1.2. Structure

[26] Gracar, P. and Korfhage, M. (2025) Chemical distance in the Pois-
son Boolean model with regularly varying diameters.
Preprint arXiv:2503.18577

My contribution is essential in both preprints and is as follows. In the [25],
I took part in all group discussions and worked out ideas that were jointly
developed there and made the main contribution to filling in the technical
details. The proof of the density of a grain distribution and connection to
all other properties where developed together. The idea of the proof of the
universal criteria for the robustness was developed in group discussions after
I set the ground for the definition of the model. The calculations where then
made by my own with the help of the group discussions with both co-authors.
The preprint was then written primarily by me, and polished by my coauthors.

The idea for the second paper was initially developed in collaboration with
Peter Gracar and Peter Mörters, when we first discussed the 2-dimensional
ellipses model of Teixeira and Ungaretti from [53] and the results from [34].
We were interested in refining the result of [34] by finding the exact factor in
front of the log log term. The idea of the truncated moment method came up
in this discussion. In addition to that in discussions with Peter Gracar the
use of a sprinkling argument as in [24] was suggested . Subsequently, I did a
substantial part of the work on my own and then discussed the results with
Peter Gracar and carried out revisions together with him. The paper was then
written up and I wrote up a significant part of the proofs of the bounds for the
chemical distance. Together with my coauthor we corrected mistakes, made
the paper complete with introduction, motivation and discussion of the result
and rewrote proofs to be precise and formally correct.

This thesis is written in sciebo Overleaf version: 3.5.13 | Integration version:
2.1.0 from the university of cologne. Figures, which are mostly also used in the
preprints where all generated on my own with Matlab (Version 24.2.0.2863752
(R2024b) Update 5).
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Chapter 2

Poisson Boolean model with regularly varying di-

ameters and its behaviour

2.1 Framework and behaviours of the model

In the this section we first start with the formal definition of the Poisson
Boolean model with convex grains and give some definition to describe prop-
erties of the model. These includes the definition of grain distribution being
dense, robust and non-robust to give some terminology on the behaviour of
the model. After that we state our result about this model for grain distribu-
tions being not dense. More precisely we state equivalent conditions on total
covering of the space. We give then the definition of a decreasing sequence of
diameters in order to describe the size and shape of a convex body and state
in addition to that our main results concerning the behaviour of the Poisson
Boolean model with convex grains that has some given marginal distribution
on the diameters. Note that, except for a few changes, the following chapter
is taken from [25].

2.1.1 Definitions and result on total covering of the space

As described in the previous chapter we take a homogeneous Poisson point
process P in Rd of dimension d ≥ 2 with positive intensity u and mark every
point x of P with an independent copy C̃x of a random convex body C ⊂ Rd.
We assume that the distribution of C is rotation invariant about the origin.
We will write Vol(C) for the Lebesgue measure, i.e. the volume of the convex
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2.1. Framework and behaviours of the model

body C. We denote

Cx := x+ C̃x = {y ∈ Rd : y − x ∈ C̃x},

and following [31] let C be the union of the convex bodies (Cx)x∈P , i.e.

C :=
⋃
x∈P

Cx.

The set C is called the Poisson Boolean model with convex grain C and inten-
sity u. As described in Chapter 1, there is also a natural graph G = (P,E )

associated with this model, where the points of the Poisson process P consti-
tute the vertex set and there is an (unoriented) edge connecting distinct points
x, y ∈ P if and only if Cx ∩ Cy ̸= ∅.

There is little interest in the Boolean model if C = Rd and we call the grain
distribution dense if this is the case almost surely, for any Poisson intensity u >

0. Otherwise it is called sparse. We now give a few equivalent characterisations
of a grain distribution being sparse. For that define

• M0 as the number of grains containing the origin,

M0 :=
∑
x∈P

10∈Cx .

• Nx as the degree of the vertex x ∈ P in the graph G ,

Nx :=
∑
y∈P
y ̸=x

1Cx∩Cy ̸=∅

• NA as the degree of the set A ∈ B(Rd),

NA :=
∑
x∈P

1A∩Cx ̸=∅.

With that we get Nx = NCx for x ∈ P. Note that B(Rd) is the Borel-σ-
algebra regarding to Rd.

Proposition 2.1. Let P be a homogeneous Poisson point process in
Rd and mark the points with independent random convex bodies C ⊂ Rd

containing a ball of fixed radius. Let P0 be the Palm version of the
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2.1. Framework and behaviours of the model

marked Poisson point process, and denote its law by P0 and by E0 the
corresponding expectation. The statement

E[Vol(C)] < ∞ (2.1)

and the following statements are equivalent:

(a) P(C = Rd) < 1 (b) P(C = Rd) = 0 (c) P(0 ∈ C ) < 1

(d) E0[N0] < ∞ (e) P0(N0 = ∞) < 1 (f) P0(N0 = ∞) = 0

(g) E[M0] < ∞ (h) P(M0 = ∞) < 1 (i) P(M0 = ∞) = 0

Remark: Statement (2.1) is only about the grain distribution and therefore
does not depend on the Poisson intensity u. Hence all other statements are
independent of u as well. The statements (a), (b) and (c) are about the random
sets C , the statements (g), (h) and (i) about the covering and (d), (e), (f) about
the corresponding random graph. Recall that the grain distribution is sparse
if one, and hence all, of the conditions in Proposition 2.1 hold for one, and
hence all, values of u > 0.

We say that the grain distribution is robust if, for all u > 0, the set C has
an unbounded component, i.e. a component of infinite volume. This is easily
seen to be equivalent to the fact that, for every intensity u > 0, the graph
G percolates, or in the Palm version there is a positive probability that there
exists an infinite self-avoiding path in G starting at the origin. Conversely,
the grain distribution is non-robust if there exists uc > 0 such that for all
0 < u < uc every component of C is bounded.

In the case that C is a centred ball of random radius, recall that Gouéré [22]
has shown that non-robustness is equivalent to sparseness, i.e. to the state-
ments in Proposition 2.1. Recall also that this is however not true in the case of
general convex grains. Remember that Teixeira and Ungaretti [53] have shown
that for grains in R2 which are ellipses with a major axis of heavy tailed ran-
dom length with index −2 < α < −1 and a minor axis of unit length, for every
u > 0, we have C ̸= R2 even though C has an unbounded component, almost
surely. We are therefore interested in some general result on robustness for
every dimension.

Our main result gives universal criteria that ensure that the grain dis-
tribution is robust, independently of how the diameters (defined below) are
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2.1. Framework and behaviours of the model

correlated. We also show that there exist robust grain distributions that do
not satisfy the universal criteria, but instead satisfy specific criteria, which
also put restrictions on the correlation structure of the diameters. Finally, we
provide a (trivial) universal criterion and a specific criterion for a grain distri-
bution to be non-robust. The latter applies in particular to a generalisation of
the ellipses percolation model in [53].

Definition 2.1.1. Let K ⊂ Rd be a convex body, i.e. a compact convex set
with nonempty interior. The first diameter, or just diameter of K, is defined
as

D(1)

K := diam(K) = max{|x− y| : x, y ∈ K}.

Let p(1)

K be the orientation of D(1)

K , i.e. p(1)

K = x−y
|x−y| where x, y are any (measur-

able) choice of maximizers in the definition of the diameter D(1)

K . We define
the second diameter as

D(2)

K := diam
(
PH

p
(1)
K

(K)
)
,

where PH(B) is the orthogonal projection of B ⊂ Rd onto the linear subspace
H ⊂ Rd, and where H

p
(1)
K

is the hyperplane perpendicular to p(1)

K . Denote
the orientation of D(2)

K by p(2)

K ∈ H
p
(1)
K

and let H
p
(2)
K

be the hyperplane in H
p
(1)
K

perpendicular to p(2)

K .

Iterating this procedure, given H
p
(i)
K

for some 2 ≤ i < d, the (i + 1)st
diameter is

D(i+1)

K := diam
(
PH

p
(i)
K

(K)
)

and we denote by p(i+1)

K its orientation. By construction we have D(i+1)

K ≤
D(i)

K for all i ∈ {1, . . . , d − 1}. Note that an illustration of this construction
of diameters and some example for diameters in R3 is given in Figure 2.1.
Although the sequence of diameters D(1)

K , . . . , D(d)

K thus defined involves the
non-unique choice of orientations, our results do not depend on any of these
choices as the following assumption on the grain distribution holds true by any
choice of these diameters. The proof of this claim is given in Section A.2.

We assume for our grain distribution that the tails of the random variables
D(i)

C are regularly varying with index −αi, i.e.

lim
r→∞

P(D(i)

C ≥ cr)

P(D(i)

C ≥ r)
= c−αi for all c > 1.

We include the case of bounded diameters D(i)

C , in which case we put αi = ∞.
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2.1. Framework and behaviours of the model

(a) Example for the construction of diam-
eters in R3. (b) Ellipsoid with its diameters in R3.

(c) Further examples for convex grains with its diameters in R3.

Figure 2.1: Example in R3 for the construction of the diameters for an ellipsoid.
In pink the ellipsoid with the red line as the first diameter, the ellipses on
the grid in picture (a) as the orthogonal projection of the ellipsoid onto the
hyperplane, given as the grid, the blue line as the second diameter and in
green the orthogonal projection of the set onto the hyperplane and the third
diameter.

Note that, by definition, α1 ≤ α2 ≤ · · · ≤ αd. Theorem 2.2 gives sufficient
conditions for a grain distribution to be robust, either universally or provided
the diameters are sufficiently strongly correlated. Theorem 2.3 gives a sufficient
condition for non-robustness for grain distributions in d dimensions with k

‘large’ diameters and d − k diameters of bounded diameters length. This
includes a higher dimensional generalisation of the two-dimensional ellipses
model studied in [53].
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2.1. Framework and behaviours of the model

2.1.2 Results on robustness and non-robustness

Theorem 2.2. In the Poisson Boolean model given by a d-dimensional
random convex body C with rotation invariant distribution, containing a
ball of fixed radius such that, for all 1 ≤ k ≤ d, the kth diameter D(k)

C has
regularly varying tail with index −αk, we have that the grain distribution
is robust if

(a) there exists 1 ≤ k ≤ d such that αk < min{2k, d}.

Additionally, if there exist a random variable D which is regularly varying
with index −α for α > 0 and there exist 1 = γ1 ≥ γ2 ≥ · · · ≥ γd ≥ 0 such
that D(k) = Dγk for all k ∈ {1, ..., d}, we have that the grain distribution
is robust if either of the following two conditions holds:

(a) ∃k > ⌊d/2⌋ such that α < dγk, or

(b) ∃k ≤ ⌊d/2⌋ such that α < 2kγk +
∑d−k

j=k+1 γj.

Note that the two criteria denoted (a) agree. Next, we consider a large class
of grain distributions for which non-robustness can be shown under sufficient
conditions on the tail exponents of the convex grains.

Theorem 2.3. In the Poisson Boolean model given by a d-dimensional
random convex body C with rotation invariant distribution, if diameters
fulfil D(1) = D(k) for some fixed k ∈ {1, . . . , d− 1} with D(k) is regularly
varying with index −αk and D(j) ≤ M almost surely for some deter-
ministic M ∈ (0,∞), for j ∈ {k + 1, . . . , d}, the grain distribution is
non-robust if

(c) Vol(C) ∈ L2 and αk > 2k.

Also, the grain distribution is non-robust for the Poisson Boolean model
if D(1)

C ∈ Ld.

Remarks:

• The first half of Theorem 2.2 only refers to the individual tail probabil-
ities of the diameters. In particular, no further assumption is made on
the joint distribution of the diameters D(1)

C , . . . , D(d)

C .
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2.2. Proofs on the behaviour of the model

• The condition Vol(C) ∈ L2 of Theorem 2.3 implies that αk ≥ 2k for fixed
1 ≤ k ≤ d and D(1)

C ∈ Ld implies α1 ≥ d. Note however that αk > 2k

does not imply that Vol(C) ∈ L2.

• The universal condition in Theorem 2.2 implies Vol(C) ̸∈ L2 and D(k)

C ̸∈
Ld (and in particular also D(1)

C ̸∈ Ld), while the non-robustness condition
in Theorem 2.3 implies Vol(C) ∈ L2 or D(1)

C ∈ Ld. One might be tempted
to conjecture that these weaker conditions are sufficient in the specific
model stated in Theorem 2.3. However, it turns out that this is not the
case, as [53] provides an example of a non-robust grain distribution in
R2 with Vol(C) ̸∈ L2 and D(1)

C ̸∈ Ld.

• Note that in Theorem 2.3 we omit the case k = d as this is the case of the
Poisson Boolean model with grains given by balls, which is non-robust
when D(1) ∈ Ld; this was shown in [22].

• One might hope that we could find a more general result for a grain
distribution being non-robust, similar to the universal criterion in Theo-
rem 2.2. This is likely not possible without having more information on
the diameter distribution beyond the trivial case of α1 > d as in Chap-
ter 4 we present in the last example some parameter regime where we
see that it can be crucial to know more about the correlation structure
of the diameters to that the grain distribution is robust or non-robust.

2.2 Proofs on the behaviour of the model

In order to prove our result we first formalise our setup. Denote by Cd the
space of convex bodies in Rd with the Hausdorff metric. Recall that we assume
that, for some fixed ϵ > 0, the ϵ-interior of C is nonempty almost surely. We
assume that PC is a law on Cd × Rd such that, for PC-almost every (C,m)

the point m is in the ϵ-interior of C. We further assume that PC is invariant
under simultaneous rotations of C and m about the origin. We now define the
Poisson-Boolean base model, which we use in our proofs.

Definition 2.2.1. The Poisson-Boolean base model is the Poisson point pro-
cess on

S := Rd ×
(
Cd × Rd

)
with intensity

uλ⊗ PC
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2.2. Proofs on the behaviour of the model

where λ is the Lebesgue measure. The corresponding point process is denoted
by X . We call any x ∈ X a vertex and its first component x ∈ Rd its location.
By P we denote the Poisson point process of locations. The second component
is denoted by (C̃x,mx) and C̃x is called the grain at x. We denote its diameters
by D(1)

x , . . . , D(d)
x and the corresponding directions by p(1)

x , . . . , p(d)
x .

Then we set
Cx := x+ C̃x

and define
C :=

⋃
x∈P

Cx,

which is a representation of the Poisson-Boolean model. When considering two
vertices x,y ∈ X , we say they are connected by an edge, if and only if the sets
Cx and Cy intersect. Recall, that we denote this by writing x ∼ y. If x and y
are connected through n edges recall that we write x n∼ y and say x and y are
connected by a path of length exactly n.

2.2.1 Criteria for density

In all our proofs we use the notation Bε(x) := {y ∈ Rd : |y − x| ≤ ε}. We also
write ηK := {ηx : x ∈ K} for the blow-up of the set K ⊂ Rd about the origin
by a factor η > 0. Let (ei)i∈{1,...,d} be the canonical basis of Rd and for ϑ ∈ Sd−1

let rotϑ be an arbitrary but fixed rotation such that rotϑ(e1) = ϑ. Throughout
the proofs we use c ∈ (0,∞) as a generic constant which may change its value
at every inequality, but is always finite and may depend on d, k, αk and on
ε > 0 appearing in the Potter bounds only. It depends also on ϵ > 0 while ϵ is
the radius of the ball which is completely included in C.

Proof of Proposition 2.1. This proof does not require rotation invariance. By
the mapping theorem, see e.g. Theorem 5.1 in [40], the point process given by
the points x +mx, x ∈ P is again a homogeneous Poisson point process. We
may therefore assume, without loss of generality, that there is a fixed ϵ > 0

such that Bϵ(x) ⊂ Cx for all x ∈ P.

(a) ⇔ (b) is clear by ergodicity. (1) ⇒ (a) follows because, by Section 2 of
[31], we have P(Vol(Rd \C ) = 0) = 1 if and only if E[Vol(C)] = ∞. To also get
¬(1) ⇒ ¬(a) from this statement we apply it to ηC, for some fixed 0 < η < 1,
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2.2. Proofs on the behaviour of the model

and get that E[Vol(C)] = ∞ implies E[Vol(ηC)] = ηdE[Vol(C)] = ∞ and hence

P
(
Vol
(
Rd \

⋃
x∈P

(ηC)x

)
= 0

)
= 1,

This event implies
⋃

x∈P Cx = Rd. Indeed, if y ̸∈
⋃

x∈P(ηC)x there exists a
sequence of points (xn)n in P such that the distance of y and (ηC)xn goes to
zero. If we replace (ηC)xn by Cxn , the distance to y is reduced by at least the
fixed amount ϵ(1− η) > 0, because Dist(x, ηC) ≥ Dist(x,C) + Dist(∂C, ∂ηC)

and Dist(∂C, ∂ηC) ≥ (1 − η)ϵ, where dist(A,B) is the standard Hausdorff
distance for A,B ⊂ Rd. Hence there exists n with y ∈ Cxn . This completes
the proof of (a) ⇔ (1).

The implication (c) ⇒ (a) is immediate from {C = Rd} ⊂ {0 ∈ C }.

To show that (1) ⇔ (g) we use Campbell’s theorem to calculate

E[M0] = u

∫
P(0 ∈ x+ C) dλ(x) = u

∫
P(x ∈ C) dλ(x) = uE[Vol(C)],

which readily implies the equivalence.

To show that (d) ⇒ (1) observe that under the Palm distribution P(C0 \
{0}) = k implies that N0 ≥ k. Hence E0[N0] ≥ E0[P(C0) − 1] = uE[λ(C)],
from which the implication follows. For the implication (1) ⇒ (d) we enlarge
the sets Cx, for each x ∈ P, to become rectangles Rx taken as the sum of
x and the cartesian product of the intervals [−D(i)

x , D(i)
x ] with respect to the

orthonormal basis given by the directions p(i)

Cx
. The enlargement increases the

volume of the sets by no more than a constant factor. Indeed, if R is the
rectangle constructed from C we have Vol(R) = 2d

∏
D(i) . As the convex

hull of the points, which define the length and orientation of the diameter, is
contained in C we can lower bound its volume iteratively via the formula of
the volume of hyperpyramids (see e.g. [38]) and get

Vol(R) ≤ (2d · d!)Vol(C).

We write ÑA and Ñ0 for the degrees defined like NA and N0 but with respect
to the enlarged sets.

By assumption we have x + [−ϵ/
√
d, ϵ/

√
d]d ⊂ Rx. As Cx ⊂ Rx we have

N0 ≤ Ñ0 and we can bound the expected degree of the origin from above,

E0[N0] ≤ E0[Ñ0] ≤ E0

[ ∑
x∈(ϵ/

√
d)Zd

1R0(x)ÑBϵ(x)

]
,
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2.2. Proofs on the behaviour of the model

where in the second inequality we use that [−ϵ/
√
d, ϵ/

√
d]d ⊂ R0 and hence

balls of radius ϵ centred in the points of (ϵ/
√
d)Zd ∩R0 cover R0. Now 1R0(x)

and ÑBϵ(x) − 1R0∩Bϵ(x)̸=∅ are independent and we get an upper bound of

E0[N0] ≤ E0

[
#((ϵ/

√
d)Zd ∩R0)

]
E
[
ÑBϵ(0) + 1

]
.

By [17] there exists a constant c(d, ϵ) which only depends on the dimension
and ϵ such that the number of lattice points in K can be bounded from above
by c(d, ϵ)Vol(K). Looking now at the last factor we use

E
[
ÑBϵ(0)

]
= u

∫
P0(Bϵ(0) ∩ (x+R) ̸= ∅) dx = u

∫
P(Bϵ(x) ∩R ̸= ∅) dx.

As {Bϵ(x) ∩ R ̸= ∅} ⊂ {x ∈ 2R} we can bound the previous term from
above by

uE[Vol(2R)] = u2d E[Vol(R)] ≤ u 22d · d!E[Vol(C)].

Hence we get that E0[N0] is finite if E[Vol(C)] is finite.

The equivalence of (g), (h), (i) and (1) follows because M0 is Poisson dis-
tributed with parameter uE[Vol(C)] and therefore finite almost surely if and
only if the parameter is finite. The implications (d) ⇒ (f) ⇒ (e) are trivial.
The implications (f) ⇒ (i) and (e) ⇒ (h) follow as N0 ≥ M0 − 1 under the
Palm distribution. Finally, to show the implication (1) ⇒ (c) we note that
P(0 ∈ C ) = P(M0 ≥ 1) < 1 because M0 is Poisson distributed with parameter
uE[Vol(C)] < ∞.

2.2.2 Universal criteria for robustness

We now prove the first part of Theorem 2.2. The idea of the proof is to
construct, for every u > 0, an infinite self-avoiding path in G . The path
is constructed such that the convex bodies attached to the vertices on the
path are growing faster than a given increasing threshold sequence. Note that
without loss of generality we can assume that αk ≥ k, for all k ∈ {1, . . . , d},
since otherwise Vol(C) ̸∈ L1 and by Proposition 2.1 there is nothing left to
show. Again we use c ∈ (0,∞) as a generic constant which may change its
value at every inequality, but is always finite with possibly dependence on
d, k, αk and ε > 0.

Remark 2.2.1. In this and the following section we bound the set of ori-
entations which result in an intersection of two convex bodies using the fol-
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2.2. Proofs on the behaviour of the model

lowing known geometric property. Consider two points x, y ∈ Rd at distance
a := |x − y|. Let A be a (d − 1)-dimensional set which contains y and lies in
the hyperplane through y perpendicular to x− y. Denote further by λd−1 the
(d − 1)-dimensional Lebesgue measure. Then, if a > diam(A), the volume of
the set of orientations of (infinitely long) lines that go through x and intersect
A can be bounded from below by λd−1(A)

2d−1ad−1 and from above by λd−1(A)

ad−1 . Note
that the upper bound is not only true for a > diam(A).

Proof of Theorem 2.2, part one. As in the proof of Proposition 2.1 the point
process given by the points x + mx, x ∈ P is a homogeneous Poisson point
process. As done there, we also replace the independent attachments (C,m)

by (C −m, 0) so that the new grains contain a ball of radius ϵ around the ori-
gin and, by the rotation invariance assumption, their distribution is invariant
under rotations around the origin. Reverting to the original notation we may
assume henceforth that Bϵ(x) ⊂ Cx for all x ∈ P.

For 1 ≤ k < d with αk ̸= k we define the increasing threshold sequence
(fn)n∈N by

fn :=
(
fn−1

)min{d−k,k}
αk−k

−ϵ
, for n ∈ N, (2.2)

where f0 > 1 can be chosen arbitrarily and will be set large later in the proof,
and 0 < ϵ < 1

4
is such that the exponent in this sequence is strictly bigger

than 1 in order to guarantee that the sequence is increasing. This is possible
by our assumption that αk < min{2k, d}. Note that we can without loss of
generality take this ϵ to be the same as in the requirement that Bϵ(0) ⊂ C, by
replacing the larger of the two with the smaller if necessary. We comment on
the cases k = d and αk = k at the end of the proof.

Let therefore k ∈ {1, . . . , d− 1} and assume for now that f0 > 1. Further-
more let

A0 :=
{
∃x0 ∈ X ∩Bf0

(0) : D(k)
x0 ≥ 22(d−1)+ϵf0

}
.

We will remark on the factor 22(d−1)+ϵ later when considering a more general
case of A0. As D(k) is regularly varying with index −αk, we have that the
probability of A0 is

P(A0) = 1− exp
(
−u

∫
Bf0

(0)

P(D(k) ≥ 22(d−1)+ϵf0) dλ(x)
)

≥ 1− exp
(
−ucfd−αk−ε

0

)
, (2.3)

where we note that ε > 0 was chosen such that d − αk − ε > 0. In the last
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2.2. Proofs on the behaviour of the model

inequality we have applied the Potter bounds (see [39, Prop. 1.4.1]), which for
a non-negative regularly varying random variable X with index −α < 0 and
every ε ∈ (0, α) yield a constant c(ε) > 0, such that

c(ε)−1 x−α−ε ≤ P(X > x) ≤ c(ε)x−α+ε

holds for x ≥ ε. For x ∈ X we define the set

O
i
(x) :=

{
y ∈ Rd : |x− y| ∈ [1

2
f
i
, f

i
],∡
(
x− y, v

)
> φ,

for v ∈ span{p(j)
x : 1 ≤ j ≤ k}

}
, (2.4)

where φ = 2−(d+1)(d+ 1)−1 and ∡(x, y) denotes the angle between vectors
x, y ∈ Rd. For y ∈ Rd we define

B∗
fi−1

(x, y) = PHx−y

(
Cx ∩Bfi−1

(x)
)
, (2.5)

where Hx−y is the hyperplane perpendicular to x−y with |Hx−y ∩ ∂Bfi−1
(x)| = 1

and Dist(Hx−y, x) < Dist(Hx−y, y), i.e. the hyperplane that touches the ball
of radius f

i−1
with x as the centre, see Figure 2.2 on this page.

Figure 2.2: The various sets and their relationships from the proof of the first
part of Theorem 2.2: The point y is in pink, x in red. The yellow area is
Cx. The orthogonal projection of Cx is dark blue and Hx−y is the grey plane
with the red grid. B∗

fi−1
(x, y) is lime green. Drawn in black are the line with

orientation x − y, the point lying in Hx−y ∩ ∂Bfi−1
(x) and the ball Bf i−1

(x)
containing the location x of the vertex x corresponding to Cx.
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2.2. Proofs on the behaviour of the model

For n ∈ N, define the events

An :=

{
∃x1, . . . ,xn ∈ X : xi ̸= xm for all i ̸= m,D(k)

xi ≥ 22(d−1)+ϵf
i
,

xi ∈ Oi(xi−1) and Cxi
∩B∗

fi−1
(xi−1, xi) ̸= ∅ for all 1 ≤ i ≤ n

}
.

(2.6)

Note that An is implicitly dependent on x0, but we omit this in the notation
to keep it concise and we will use this sequence in Chapter 3 to prove results
on the chemical distance as the construction in the proof of the robustness is
crucial for it. Roughly speaking, An is the event that we find a path of length
n with the properties that, for every i ∈ {1, . . . , n},

• the first k diameters of the convex body Cxi
do not fall below the thresh-

old 22(d−1)+ϵf
i
. For the choice of factor 22(d−1)+ϵ, it can easily be checked

that a convex body with diameters D(1) , . . . , D(d) contains a rectangle
with side-lengths 22(d−1)D(1) , . . . , 22(d−1)D(d) . This claim is stated in
Lemma A.1. This Lemma and its proof can be found in Section A.1.

• xi does not lie “too close” to the affine subspace through xi−1 spanned by
the orientations p(1)

xi−1 , . . . , p
(k)
xi−1 of the big diameters of xi−1. More pre-

cisely, we require the angle between any spanning vector of this subspace
through xi−1 and the vector xi − xi−1 to be larger than φ. This is in
order to keep the condition on the orientation of xi from becoming too
restrictive when we formulate the requirement that Cxi

intersects Cxi−1
.

Finally,

• the convex body Cxi
intersects a part of a hyperplane “behind” the convex

body Cxi−1
, see Figure 2.2.

In addition to these restrictions that ensure that the points and their respective
convex bodies are sufficiently close, suitably aligned and large enough to keep
the chain of intersections going, An also gives

• The distance between points xi−1 and xi is at least 1
2
f
i
and xi ∈ B2fi

(0).

This last property allows us to search for each point xi in an annulus disjoint
from those of the previous points x1, . . . , xi−1.

We now construct an infinite sequence of points x1,x2 . . . ∈ X such that
the first n points satisfy the event An with a probability bounded from below.
Recall that the existence of x0 satisfying A0 has already been taken care of
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2.2. Proofs on the behaviour of the model

in (2.3). We let Fn be the σ-algebra generated by the restriction of the Poisson
Boolean base model to the points with locations in B2fn (0). Then An is Fn-
measurable and we find xn+1, assuming that x1, . . . ,xn ∈ X have been found
satisfying An, such that x1, . . . ,xn+1 ∈ X satisfy An+1 with a conditional
probability bounded from below. Figures 2.3(a) and 2.3(b) are sketches of the
(n+ 1)st step in the construction. On the event An we calculate

(a) ith step of the construction in R3 with
k = 2.

(b) ith step of the construction in R3 with
k = 1.

Figure 2.3: The recursive construction of the proof of the first part of
Theorem 2.2. The convex set Cxi−1

is in yellow. Mint green is used for
Bfi (xi−1) \Bfi/2

(xi−1); i.e. the possible area for xi. The part in which xi

is not permitted to be is in red. Grey is used for Hxi−1−xi
, with dark blue

for the orthogonal projection of Cxi−1
. In pink, the orthogonal projection of

Bfi−1
(xi−1). Finally, the black point is a possible position for xi.

P[Ac
n+1 | Fn] ≤ P

[
there exists no x ∈ X with x ∈ B2fn+1

(0)\B2fn (0) such

that D(k)
x ≥ 22(d−1)+ϵfn+1 , x ∈ On+1(xn) and

Cx ∩B∗
fn
(xn, x) ̸= ∅ | Fn

]
.

Recall that rotϑ is a rotation such that rotϑ(e1) = ϑ. For our purpose it
matters only that the shortest diameter is suitably oriented after this rotation.
For x, y ∈ Rd we define ρx,y := x−y

|x−y| ∈ Sd−1 as the orientation of the vector
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2.2. Proofs on the behaviour of the model

x− y. With that we define

Qfn (x, y) := rotρx,y

(
conv

({
− ϵ

2
ei,

ϵ
2
ei : 1 ≤ i ≤ d− k

}
(2.7)

∪
{
−fn

2
em,

fn
2
em : d− k + 1 ≤ m ≤ d

}))
+ x

with conv(A) being the convex hull of the set A and define

Q∗
fn
(x, y) := PHx−y

(
Qfn (x, y)

)
.

Choosing y = xn the choice of Qfn (xn, x) allows us to obtain a lower bound for
the probability that D(k)

x ≥ 22(d−1)+ϵfn+1 and Cx ∩B∗
fn
(xn, x) ̸= ∅, uniformly

across all Cx satisfying D(k)
x ≥ 22(d−1)+ϵfn+1 , for all x ∈ On+1(xn), by replacing

B∗
fn
(xn, x) with the set Q∗

fn
(xn, x). To see why, note that Q∗

fn
(xn, x) has

smaller (d− 1)-dimensional Lebesgue measure than B∗
fn
(xn, x) for all xn that

satisfy D(k) ≥ 22(d−1)+ϵfn .

Abbreviating In+1 :=
(
B2fn+1 (0)

\B2fn (0)

)
∩On+1(xn) we get

P[Ac
n+1|An]

≤ E
[
P
[

there exists no x ∈ X such that x ∈ B2fn+1
(0) \B2fn(0)

D(k)
x ≥ 22(d−1)+ϵfn+1 , x ∈ On+1(xn) and Cx ∩B∗

fn
(xn, x) ̸= ∅ | Fn

]
×1An

]/
P(An)

= E
[
exp
(
−u

∫
In+1

PC(D
(k)

C ≥ 22(d−1)+ϵfn+1 , (x+ C) ∩B∗
fn
(xn, x) ̸= ∅

)
dλ(x)

)
×1An

]/
P(An)

≤ E
[
exp
(
−u

∫
In+1

PC(D
(k)

C ≥ 22(d−1)+ϵfn+1 , (x+ C) ∩Q∗
fn
(xn, x) ̸= ∅

)
dλ(x)

)
×1An

]/
P(An).

We rewrite the last term as

E
[
exp
(
−u

∫
In+1

PC

(
(x+ C)∩Q∗

fn
(xn, x) ̸= ∅

∣∣D(k)

C ≥ 22(d−1)+ϵfn+1

)
× PC(D

(k)

C ≥ 22(d−1)+ϵfn+1) dλ(x)
)
1An

]/
P(An)

and focus on the integrand. First, we bound the conditional probability from
below. We use rotation invariance of the law of C to bound the probability
of the intersection from below by the (d − 1)-dimensional Lebesgue measure
of a subset of Sd−1 of rotations of C for which we can ensure a non-empty
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2.2. Proofs on the behaviour of the model

intersection with Q∗
fn
(xn, x). Using that C, having k diameters of size at least

22(d−1)+ϵfn+1 , needs to hit a target with k diameters with size of order fn , at
distance at most 2fn+1 , we find using a simple inductive argument over d and
Remark 2.2.1 such a set of rotations that has measure cfmin{d−k,k}

n
f−d+k
n+1

. Note
that the proof of this lower bound is given in Section A.3.

Second, we look at the factor PC(D
(k)

C ≥ 22(d−1)+ϵfn+1) and recall that the
tail of D(k)

C is a regularly varying function with index −αk. Using the Potter
bounds we get

PC

(
(x+ C)∩Q∗

fn
(xn, x) ̸= ∅ |D(k)

C ≥ 22(d−1)+ϵfn+1

)
PC(D

(k)

C ≥ 22(d−1)+ϵfn+1)

(2.8)

≥ c
fmin{d−k,k}
n

fd−k
n+1

f−(αk+ε)
n+1

,

where c > 0 depends again only on ε, αk, d, k and ϵ. As there exists a further
c > 0 such that, for f0 big enough, points in On+1(xn) have distance bigger
than cfn+1 from the origin, the volume of In+1 is of order fd

n+1
. This yields for

P[Ac
n+1|An] the bound

E
[
exp
(
−u

∫
In+1

c
fmin{d−k,k}
n

fd−k
n+1

f−(αk+ε)
n+1

dλ(x)
)
1An

]/
P(An)

≤ E
[
exp
(
−ucfmin{d−k,k}

n
f−(αk+ε−k)
n+1

)
1An

]/
P(An).

For fixed 0 < ε < (αk − k)2ϵ
/(

2min{d− k, k}
)

we get the inequality

−ε
min{d− k, k}

αk − k
+ ϵ(αk + ε− k) >

ϵ

2
(αk − k) > 0,

and combining the above with the definition of our threshold sequence and the
Potter bounds we get for P[Ac

n+1|An] the upper bound

exp
(
−ucf−(αk+ε−k)

n+1
fmin{d−k,k}
n

)
≤ exp

(
−ucf ϵ(αk−k)/2

n

)
.

We can now bound the probability of An from below as follows.

P(An) = P(A0)
n−1∏
ℓ=0

P[Aℓ+1|Aℓ]

≥
(
1− exp

(
−ucfd−αk−ε

0

)) n−1∏
ℓ=0

(
1− exp

(
−ucf ϵ(αk−k)/2

ℓ

))
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= exp
{
log
(
1− exp(−ucfd−αk−ε

0
)
)
+

n−1∑
ℓ=0

log
(
1− exp(−ucf ϵ(αk−k)/2

ℓ
)
)}

.

Using that for small x < 0 we have log(1 + x) ≥ 2x and exp(−x) ≥ 1− x we
get

P(An) ≥ 1− 2 exp(−ucfd−αk−ε
0

)− 2
∞∑
ℓ=0

exp(−ucf ϵ(αk−k)/2
ℓ

)

= 1− 2 exp(−ucfd−αk−ϵ
0

)− 2
∞∑
ℓ=0

exp
(
−uc

{
f ϵ(αk−k)/2
0

}(min{d−k,k}
αk−k

−ϵ
)ℓ)

.

Due to our assumption that k < αk < min{2k, d}, the last sum is finite and
by choosing f0 large enough this lower bound can be made arbitrarily close to
1.

If αd < d we can look at the classic Poisson Boolean model with balls as
convex grains with radius D(d) . Then this grains distribution is dense and
therefore also robust. In the case that there exists k such that αk = k, we can
choose fn = fn

0
for n ∈ N with f0 > 0 large enough. Using (An)n∈N as before

we get by the same arguments

P(A0) ≥ 1− exp
(
− ufd−k−ε

0

)
and

P
(
Ac

n+1 |An

)
≤ exp

(
−ucf−ε

n+1
fmin{d−k,k}
n

)
= exp

(
−ucf−ε(n+1)+min{d−k,k}n

0

)
.

The rest of the calculation can be done analogously to the calculation for
αk ̸= k by choosing ε > 0 small enough.

2.2.3 Specific criteria for robustness

In this section we are dealing with the diameters that are strongly correlated
as follows. Let D be regularly varying with index −α1 < 0. Let D(1) = D and,
for k ∈ {2, ..., d}, let γk ∈ (0, 1) and D(k) = Dγk , i.e. D(k) is regularly varying
with parameter αk = α1

γk
. To get the correct ordering of the diameters we use

γj ≥ γj+1.

Proof of Theorem 2.2, part two. The proof is similar to the one in the previous
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section. We therefore only point out the differences here and omit the details
that remain unchanged. As before let k ∈ {1, . . . , d − 1}. Note that we still
assume that αk > k. Furthermore, we only need to argue the case k ≤ ⌊d/2⌋,
since the case k > ⌊d/2⌋ follows from the previous section. We consider, as in
the previous proof, a threshold sequence; let (f̃n)n∈N be this sequence defined
as

f̃n := f̃

k+ 1
γk

d−k∑
j=k+1

γj

αk−k
−ϵ

n−1 ,

where f̃0 > 1 will be set large later in the proof. Let also 0 < ϵ < 1
4

be
small enough to obtain that the exponent is strictly bigger than one in order
to guarantee that the sequence is increasing. Note that due to our assumption
this is possible.

We argue again that an infinite path exists in the Palm version of the
process. For this we need again a sequence of events (Ãn)n∈N that describe
the properties of this infinite path. The first element of the sequence remains
unchanged, i.e. Ã0 := A0. For n ∈ N we need to make some further changes
to the definitions of the relevant sets. For x ∈ X we modify the set Oi(x) and
instead consider the set

Õ
i
(x) :=

{
y ∈ Rd : |x− y| ∈ [1

2
f̃
i
, f̃

i
],∡
(
x− y, v

)
> φ,

for v ∈ span{p(j)
x : 1 ≤ j ≤ d− 1}

}
,

with φ = 2−(d+1)(d+1)−1. The relevant change here is that compared to Oi(x)

we impose requirements on the orientations p(k+1)
x , . . . , p(d−1)

x . For n ∈ N we
define

Ãn :=

{
∃x1, . . . ,xn ∈ X : xi ̸= xm for all i ̸= m,D(k)

xi ≥ 22(d−1)+ϵf̃
i
,

xi ∈ Õi(xi−1) and Cxi
∩B∗

f̃i−1
(xi−1, xi) ̸= ∅ for all 1 ≤ i ≤ n

}
.

Compared to (An)n∈N we have that we additionally do not allow xi to lie
“to close” to the affine subspace through xi−1 spanned by the orientations
p(1)
xi−1 , . . . , p

(d−1)
xi−1 of first d − 1 diameters of xi−1 for all i ∈ {1, ..., n}. All other

properties of (An)n∈N still hold for (Ãn)n∈N by replacing (fn)n∈N by the new
threshold sequence (f̃n)n∈N.

To get now a suitable lower bound for P(Ãn) we find similarly as before
an upper bound for P[Ãc

n+1|Ãn]. We use the same considerations as in the
previous section but replace the definition for x, y ∈ Rd of Qfn (x, y) by
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Q̃f̃n
(x, y) := rotρx,y

(
conv

({
− f̃

γk+i/γk
n

2
ei,

f̃
γk+i/γk
n

2
ei : 1 ≤ i ≤ d− k

}
∪
{
− f̃n

2
em,

f̃n
2
em : d− k + 1 ≤ m ≤ d

}))
+ x.

and define

Q̃∗
f̃n

(x, y) := PHx−y

(
Q̃f̃n

(x, y)
)
.

Recall that the key step of the calculation in the previous section was to find
a lower bound for PC

(
(x+C)∩Q∗

fn
(xn, x) ̸= ∅ |D(k)

C ≥ 22(d−1)+ϵfn+1

)
PC(D

(k)

C ≥
22(d−1)+ϵfn+1). Using the same reasoning as there, we get

PC

(
(x+ C)∩Q̃∗

f̃n
(xn, x) ̸= ∅ |D(k)

C ≥ 22(d−1)+ϵf̃n+1

)
PC(D

(k)

C ≥ 22(d−1)+ϵf̃n+1)

≥ c
f̃
k+ 1

γk

d−k∑
j=k+1

γj

n

f̃d−k
n+1

f̃−(αk+ε)
n+1

, (2.9)

where the extra term in the exponent of f̃n is given due to the bigger area that
is crucial for the intersection of Cxn+1 and Cxn . Completing the calculation
with this new lower bound we get that

P(Ãn) ≥ 1− 2 exp(−ucfd−αk−ϵ
0

)−2
∞∑
ℓ=0

exp
(
−uc

{
f ϵ(αk−k)/2
0

}( k+ 1
γk

d−k∑
j=k+1

γj

αk−k
−ϵ
)ℓ)

.

The sum is finite due to our assumption α1 < 2kγk +
∑d−k

j=k+1 γj as this can be
translated to the inequality αk < 2k + 1

γk

∑d−k
j=k+1 γj and this lower bound is

strictly positive by choosing f0 large enough.

Remark 2.2.2. The model in this section is a reparametrisation of ellipsoids
with strongly dependent axes which can be found in Chapter 4, obtained by
setting γk =

βd−k+1

βd
for k ∈ {1, . . . , d}. This can be seen by D(k) is regularly

varying with parameter − α
γk

= − 1
βd−k+1

for k ∈ {1, . . . , d}.

2.2.4 Specific criteria for non-robustness

In this section we prove non-robustness for a generalisation of the 2-dimensional
ellipses model of [53] in higher dimension. Since the second criterion of Theo-
rem 2.3 is true by dominating the model with a Poisson Boolean model with
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balls of radius D(1) , we only have to argue the first criterion, that is, we prove
that if Vol(C) ∈ L2 and αk > 2k for some k ∈ {1, . . . , d − 1} the grain dis-
tribution is non-robust. The proof is based on the idea of Section 4 in [31].
We show that in the Palm version of the point process the expected number
of vertices that are connected by a path to the origin is finite for small enough
intensity u. The result follows from this. Note again that c ∈ (0,∞) is a
generic constant just depending on the model parameters and may change in
different inequalities.

Proof of Theorem 2.3. We prove our claim by induction and use throughout
the proof the notation

̸=∑
x1,...,xn∈X

n∏
i=1

1xi−1∼xi
:=
∣∣{xn ∈ X :

∑
x1,...,xn−1∈X

n∏
i=1

1xi−1∼xi
> 0
}∣∣,

that is the number of vertices xn that are the final vertex of a path of length
n starting in the vertex x0.

Assuming without loss of generality that the origin is the location of a
vertex of X we are first interested in the expected number of vertices that are
connected to the origin via a path of length two. This is given by

E0

[∑
y∈X

1
0 2∼y

]
= E0

[ ̸=∑
x,y∈X

10∼x1x∼y

]
.

After finding an upper bound for this expectation, we will bound

E0

[∑
x∈X

10n∼x

]
= E0

[ ̸=∑
x1,...,xn∈X

n∏
i=1

1xi−1∼xi

]
from above for x0 = 0, first for n ∈ N even and after that for n odd, and show
that choosing u small enough ensures that∑

n∈N

E0

[∑
x∈X

10n∼x

]
< ∞.

Note that the upper bound for the case n = 1 is already done in the proof of
Proposition 2.1. To bound the expectations from above we dominate our model
by replacing the convex body C with diameters D(1) , . . . , D(d) with rectangles
R̄ similar to Section 2.2.1. Instead of Cx we look at rectangles R̄x taken as the
sum of x and the cartesian product of the intervals [−D̄(i)

x , D̄(i)
x ] with respect
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to the orthonormal basis given by directions p(i)

Cx
, where we use the notation

L̄ := min{n ∈ N : n > L}, for L ≥ 0.

Note that the tails of D̄(1), . . . , D̄(d) can also be bounded via suitable Potter
bounds since D(1) , . . . , D(d) are regularly varying. For x,y ∈ X we get

1Cx∩Cx ̸=∅ ≤ 1R̄x∩R̄y ̸=∅.

We therefore get, by denoting D̄ := (D̄(1), . . . , D̄(d)),

E0

[∑
y∈X

1
0 2∼y

]
≤ E0

[∑
y∈X

1y∈2R̄0

]
+ E0

[∑
y∈X

1y∈(2R̄y−y)

]
+ E0

[ ∑
j0 ,j2∈Nd

∑
x,y∈X

10∼x1x∼y1D̄0=j0
1D̄y=j2

1y ̸∈2R̄0
10̸∈2R̄y

1R̄0∩R̄y=∅

]
,

(2.10)

bounding the expectation from above by counting every vertex in 2R̄0, every
vertex y such that 0 ∈ 2R̄y, and for every other vertex y all the vertices x
connected by an edge to 0 and y. In addition, we have rewritten the second
term using distributional symmetry.

We now focus on the last term in the expression. Recall that ρv,w is the
orientation of the vector v − w. Set

W−
w,v := rotρv,w

(
(−∞, 0]× Rd−1

)
+ w, W+

w,v := rotρv,w
(
[0,∞)× Rd−1

)
+ v,

and Ww,v := Rd \
(
W−

w,v ∪ W+
w,v

)
. Define for w,v ∈ X the sets Tw,v :=

T (w,v) ∪ T (v,w) where T is given as

T (w,v) :=
{
rotρv,w

(
{D̄(d)

w +λ}×
d−1×
i=1

[−D̄(i)
w−fi

(w,v, λ), D̄(i)
w + f

i
(w,v, λ)]

)
+ w : λ ∈ (0,∞)

}
with

f
i
(w,v, λ) := λ

D̄(i)
v −D̄(i)

w

|v − w| − D̄(d)
v − D̄(d)

w

1
D̄

(i)
v ≥D̄

(i)
w

+ (D̄(i)
v − D̄(i)

w )1
D̄

(i)
v <D̄

(i)
w
,

for 1 ≤ i < d. We define a partition
(
Am(w,v)

)
m=1,...,8

of Rd which only
depends on the locations w and v and the corresponding diameters of w and
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v, as

A1(w,v) := rotρv,w
(
[−D̄(d)

w , D̄(d)
w ]×

d−1×
i=1

[−D̄(i)
w , D̄(i)

w ]
)
+ w,

A2(w,v) := A1(v,w)
(2.11)

A3(w,v) := Tw,v ∩W−
w,v \

(
A1(w,v) ∪ A2(w,v)

)
,

A4(w,v) := Tw,v ∩W+
w,v \

(
A1(w,v) ∪ A2(w,v)

)
,

A5(w,v) := Tw,v ∩Ww,v \
(
A1(w,v) ∪ A2(w,v)

)
,

A6(w,v) := W−
w,v \

(
Tw,v ∪ A1(w,v) ∪ A2(w,v)

)
,

A7(w,v) := Ww,v \
(
Tw,v ∪ A1(w,v) ∪ A2(w,v)

)
,

A8(w,v) := W+
w,v \

(
Tw,v ∪ A1(w,v) ∪ A2(w,v)

)
.

Figure 2.4 on the current page is a visualisation of Tw,v as a union of T (w,v)

Figure 2.4: Visualisation of Tw,v in 3 dimensions by colouring of the different
parts of T (w,v) and T (v,w). The perspective in the top figure is along
rotρv,w(e2) and along rotρv,w(e3) in the bottom figure. The turquoise rectangle
represents the set rotρv,w([−D̄(d)

w , D̄(d)
w ]××d−1

i=1
[−D̄(i)

w , D̄(i)
w ]) and the dark green

one represents rotρv,w([−D̄(d)
v , D̄(d)

v ]××d−1

i=1
[−D̄(i)

v , D̄(i)
v ]). The light orange area

and the area on the left side of the orange dashed line is W−
w,v and the light

blue area and the area on the right side of the blue dashed line W+
w,v. The

green line is the connection line of w and v given as the red and blue point.
The purple lines are fi(w, v, λ) and the black lines fi(v, w, λ) for i ∈ {2, 3} and
λ > 0.

and T (v,w). To help with understanding how Tw,v relates to the partition
(Am(w,v))m=1,..,8, see also Figures 2.5(a) to 2.5(c) on the facing page. In
all sub-figures of Figure 2.5, Tw,v is the union of the black (middle), pink
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2.2. Proofs on the behaviour of the model

(rightmost) and red (leftmost) shaped volumes. In Figure 2.5(c) the red (left)
plane is the boundary of W−

w,v and the pink (right) plane the boundary of
W+

w,v. It is now possible to recognise the partition
(
Am(w,v)

)
m=1,...,8

: The set
A1(w,v) is the turquoise part and A2(w,v) the dark blue part. Furthermore
A3(w,v),A4(w,v) and A5(w,v) are given respectively by the red, pink and
black shapes in the figures. In Figure 2.5(a) and 2.5(b) we see that A6(w,v)
is the white part on the left side of the first orthogonal black line including the
line itself, A7(w,v) the white part between both orthogonal black lines and
A8(w,v) the white part on the right side of the second orthogonal black line,
again including the line itself. Looking at Figure 2.5(c), the first black line is
the red plane and the second black line the pink plane, i.e. A6(w,v) is the
white part on the left side of the red plane joined with the red plane, A7(w,v)
the white part between the red and pink plane and A8(w,v) the white part
on the right side of the pink plane joined with the pink plane.

(a) The perspective along rotρv,w(e2). (b) The perspective along rotρv,w(e3).
A1(w,v) A2(w,v)

A3(w,v)

A4(w,v)A5(w,v)

A6(w,v)A6(w,v)

A7(w,v)A7(w,v) A8(w,v)A8(w,v)

(c) Tw,v is the union of A3(w,v), A4(w,v) and A5(w,v).

Figure 2.5: The partition
(
Am(w,v)

)
m=1,...,8

of R3 from various perspectives.
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We now return to considering the full expression in (2.10). Using the above
partition and setting pq to be the probability that (D̄(i))i∈{1,...,d} is equal to
q ∈ Nd, we can upper bound (2.10) by

u⌈M⌉
∑
j0∈Nd

pj0

d−1∏
i=1

4j(i)
0

+ u⌈M⌉
∑
j2∈Nd

pj2

d−1∏
i=1

4j(i)
2

+
8∑

m=1

E0

[ ∑
j0 ,j2∈Nd

∑
x,y∈X

10∼x1x∼y1D̄0=j0
1D̄y=j2

1x∈Am(0,y)1y ̸∈2R̄0
10̸∈2R̄y

1R̄0∩R̄y=∅

]

=: u4d⌈M⌉
∑

j0j2∈Nd

pj0pj2

(d−1∏
i=1

j(i)
0

+
d−1∏
i=1

j(i)
2

)
+

8∑
m=1

Sm, (2.12)

where each individual Sm corresponds to the expectation in (2.12) within the
area Am. Recall that D̄(d) ≤ ⌈M⌉ almost surely by definition of the general-
isation of the ellipses model as we have k ∈ {1, . . . , d − 1}; this is where the
⌈M⌉ term in the previous bound comes from. Note that we have pq = 0 for all
q in

{
q = (q(1), . . . , q(d)) : q(i) ≥ ⌈ϵ⌉, i ≤ k, q(j) ≤ ⌈M⌉, ∀j ≥ k + 1

}c
.

Since we use the structure of the proof on the example in Chapter 4 we keep
the notation general with q = (q(1), . . . , q(d)) ∈ Nd and do not use, for example,(
j
(1)
0

)k⌈M⌉d−k when looking at an upper bound for ⌈M⌉
∏d−1

i=1 j
(i)
0 .

We abbreviate γ = 2j
(d)
0 and get upper bounds for (Sm)m=1,...,8 as

Sm ≤ u2
∑

j0 ,j2∈Nd

pj0pj2

∫
Rd\Bγ(0)

∫
Am(0,y)

P0,x,y(0 ∼ x,x ∼ y,0 ̸∼ y, 0 ̸∈ 2R̄y)

dλ(x)dλ(y).

Looking at P0,x,y(0 ∼ x,x ∼ y,0 ̸∼ y, 0 ̸∈ 2R̄y) we use that the event {0 ∼
x,x ∼ y} roughly corresponds to the event that the diameters of x are “big
enough” and their orientations are “good enough” so that intersections of the
rectangles R̄0 and R̄x, and of R̄x and R̄y are possible. In addition to that we
bound the permissible area for the orientation of the diameters of R̄x from
above by assuming that the largest face of R̄0, resp. R̄y, is perpendicular to
the vector x ∈ Rd, resp. y − x ∈ Rd. It can easily be checked that given j0,
resp. j2, the set of rotations that result in an intersection under this assumption
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2.2. Proofs on the behaviour of the model

is larger than for any other rotation of R̄0, resp. R̄y. We have

P0,x,y

(
0 ∼ x,x ∼ y,
0 ̸∼ y, 0 ̸∈ 2R̄y

)
≤ P0,x,y

(
D̄(k)

x ≥ max
(
dist(R̄0, x), dist(R̄y, x)

)
,

R̄0 ∩ R̄x ̸= ∅, R̄x ∩ R̄y ̸= ∅, 0 ̸∼ y, 0 ̸∈ 2R̄y

)
.

(2.13)
Looking now just at the first summand S1 from (2.12) and considering a given
pair j0 , j2 ∈ Nd, we can bound the integral of S1 from above by

∫
Rd\Bγ(0)

∫
A1(0,y)

P0,x,y

(
D̄(k)

x ≥ max
(
dist(R̄0, x), dist(R̄y, x)

)
,

R̄0 ∩ R̄x ̸= ∅, R̄x ∩ R̄y ̸= ∅, 0 ̸∼ y

)
dλ(x)dλ(y)

≤
∫

Rd\Bγ(0)

∫
A1(0,y)

c(|x|+ |y|)−(αk−ε)

d−k∏
s=1

j(s)
2

|x|+ |y|
dλ(x)dλ(y),

where we used that max{dist(R̄0, x), dist(R̄y, x)} ≍ |x| + |y| and the above
assumption on the orientation of R̄x. We also used the Potter bounds resulting
in the ε term. Note that similar Potter bounds will also appear in the upper
bounds of Sm for m ∈ {2, 3, . . . , 8}. Using that the exponent −(αk− ε+d−k)

is negative we bound |x| from below by 0 and obtain the following upper bound
for the last expression

d−k∏
s=1

j(s)
2

∫
Rd\Bγ(0)

c|y|−(αk−ε+d−k)λ(A1(0,y)) dλ(y)

≤ c
d−1∏
s=1

j(s)
2

d−1∏
l=1

j(l)
0

∫
Rd\B1(0)

|y|−(αk−ε+d−k) dλ(y)

= c

d−1∏
s=1

j(s)
2

d−1∏
l=1

j(l)
0

∞∫
1

r−(αk−ε+d−k−d+1) dr,

while c ∈ (0,∞) depends additionally here and also in the rest of the section
on M . In the inequality we also use that the diameters of R̄0 are all at least 1,
which has as a consequence that |y| ≥ 1. Remember that the Potter bounds
are given for every ε > 0 and so taking ε small enough, the last integral is
finite if αk > k, which is the case. We consequently have

S1 ≤ cu2
∑

j0 ,j2∈Nd

pj0pj2

d−1∏
s=1

j(s)
2

d−1∏
l=1

j(l)
0
, (2.14)
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and can obtain an analogous upper bound for S2, namely

S2 ≤ cu2
∑

j0 ,j2∈Nd

pj0pj2

d−1∏
s=1

j(s)
0

d−1∏
l=1

j(l)
2
. (2.15)

By using similar observations, i.e. max{dist(R̄0, x), dist(R̄y, x)} ≍ |x| + |y|
in Am(0,y) for m ∈ {3, 4, 6, 7, 8} and max{dist(R̄0, x), dist(R̄y, x)} ≍ |y| in
A5(0,y), the calculation of the upper bounds of Sm for m ≥ 3 can be related
to the bounds for S1 and S2 as follows. For S3 we, like before, focus first on
the integral with fixed j0 , j2 ∈ Nd and get, defining j := 2(j(d)

0 + j(d)
2 ), that∫

Rd\Bj(0)

∫
A3(0,y)

P0,x,y(0 ∼ x,x ∼ y,0 ̸∼ y, 0 ̸∈ 2R̄y) dλ(x)dλ(y)

≤ c

∫
Rd\Bj(0)

∫
A3(0,y)

d−k∏
s=1

min{j(s)
0 , j(s)

2 }
|x|+ |y|

(|x|+ |y|)−(αk−ε) dλ(x)dλ(y)

≤ c
d−k∏
s=1

min{j(s)
0
, j(s)

2
}

∫
Rd\Bj(0)

∫
A3(0,y)

(|x|+ |y|)−(αk−ε+d−k) dλ(x)dλ(y).

In the first inequality we use the Potter bound to get (|x| + |y|)−(αk−ε). The
product in the integral appears since we consider orientations of R̄0 and R̄y

such that all of the diameters have pairwise the same orientation (i.e. the
first diameter of R̄0 has the same orientation as the first diameter of R̄y, and
similarly for the remaining d − 1 diameters), which gives an upper bound for
the largest set of orientations of R̄x that result in an intersection with both.
The min{j(s)0 , j

(s)
2 } part appears as R̄x has to intersect R̄0 and R̄y so that the

minimum determines the size of this largest set. Together with |x| + |y| and
using Remark 2.2.1 this gives the probability of an appropriate orientation of
R̄x existing.

The set A3(0,y) can be split in two parts. For that we define

A′
3(0,y) := rotρy,0

(
[−D̄

(d)
0 , D̄

(d)
0 ]× Rd−1

)
+ 0

and look at A3(0,y)∩A′
3(0,y) and A3(0,y)\A′

3(0,y). Since −(αk−ε+d−k)

is negative we can bound the first part of A3(0,y) from above via

c

d−k∏
s=1

min{j(s)
0
, j(s)

2
}

∫
Rd\Bj(0)

∫
A3(0,y)∩A′

3(0,y)

(|x|+ |y|)−(αk−ε+d−k) dλ(x)dλ(y)
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≤ c
d−1∏
s=1

min{j(s)
0
, j(s)

2
}

d−1∏
t=1

max{j(t)
0
, j(t)

2
}

∫
Rd\Bj(0)

|y|−(αk−ε+d−k)dλ(y)

≤ c
d−1∏
s=1

min{j(s)
0
, j(s)

2
}

d−1∏
t=1

max{j(t)
0
, j(t)

2
}

∞∫
j

r−(αk−ε+d−k−d+1)dr,

which is finite for αk > k. In the first inequality we use that |x| ≥ 0 and bound
the volume of the first part of A3(0,y) from above by

c
d−1∏
t=1

max{j(t)
0
, j(t)

2
}.

To see how, we use that the minimal distance of R̄0 and R̄y is bigger then

Figure 2.6: Visualisation of the role of ℓ in the calculation for S3, with the
perspective along rotρv,w(e2) in the top and rotρv,w(e3) in the bottom figure.
Note also that A′

3(0,y) represents the everything “above” and “below” of the
turquoise box including the box itself. Consequently, A3(0,y) ∩A′

3(0,y) rep-
resents the two small red areas “above” and “below” the turquoise box.

j(d)

0 + j(d)

2 so that the boundary of A3(0,y) has in the direction of the ith
diameter of A1(0,y) distance from A1(0,y) given bounded from above by
max{j(i)

0 , j(i)

2 } (see Figure 2.6). Looking now at A3(0,y) \ A′
3(0,y) we are
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interested in

ℓ := Dist
(
x, rotρy,0

(
{0} × Rd−1 + D̄

(d)
0 e1

)
+ 0
)
,

that is, the distance from x to the hyperplane orthogonal to y − 0 and inter-
secting with A1(0,y) that is furthest away from x (see again Figure 2.6). This
gives us the following upper bound for the second part of A3(0,y)

c

d−k∏
s=1

min{j(s)
0
, j(s)

2
}
∫

Rd\Bj(0)

∞∫
j
(d)
0

(ℓ+ |y|)−(αk−ε+d−k)

d−1∏
t=1

2

{
min{j(t)

0
, j(t)

2
}1

min{j(t)0 ,j
(t)
2 }=j

(t)
0

+
[
max{j(t)

0
, j(t)

2
}+ ℓ|j(t)

0 − j(t)
2 |

|y| − j/2

]
1
max{j(t)0 ,j

(t)
2 }=j

(t)
0

}
dℓdλ(y)

≤ c
d−k∏
s=1

min{j(s)
0
, j(s)

2
}

d−1∏
t=1

max{j(t)
0
, j(t)

2
}
∫

Rd\Bj(0)

∞∫
j
(d)
0

(ℓ+ |y|)−(αk−ε+d−k)

×
(
1 +

ℓ

|y| − j/2

)d−1

dℓdλ(y)

≤ c
d−1∏
s=1

min{j(s)
0
, j(s)

2
}

d−1∏
t=1

max{j(t)
0
, j(t)

2
}

∞∫
j

rd−1(r/2)1−d

∞∫
j
(d)
0

(ℓ+ r)−(αk−ε+1−k) dℓdr,

where we used in the last inequality that |y| ≥ j to obtain the term (r/2)1−d.
This integral is finite if αk > k + 1, which is the case. In summary we get

S3 ≤ cu2
∑

j0 ,j2∈Nd

pj0pj2

d−1∏
s=1

j(s)
0
j(s)
2
. (2.16)

Using the symmetry of the partition we get the same upper bound for S4. For
S5 we get∫

Rd\Bγ(0)

∫
A5(0,y)

P0,x,y(0 ∼ x,x ∼ y,0 ̸∼ y, 0 ̸∈ 2R̄y) dλ(x)dλ(y)

≤ c

∫
Rd\Bγ(0)

∫
A5(0,y)

d−k∏
s=1

min{j(s)
0 , j(s)

2 }
|y|

|y|−(αk−ε) dλ(x)dλ(y).

As before we used the Potter bound to get |y|−(αk−ε), and consider again that
the orientations of R̄0 and R̄y are such that all of the diameters have pairwise
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the same orientation. Additionally the smallest diameters are taken to have
the same orientation as |y|. This gives us the largest possible area relative to
the location of the connector x, which we use to obtain an upper bound for the
size of the sets of orientations that result in an intersection of R̄x with both R̄0

and R̄y, giving the stated inequality. For the orientation of x we use Remark
2.2.1 as before.

Using how A5(0,y) is defined, we can bound the last expression from above
as

c

∫
Rd\Bγ (0)

d−k∏
s=1

min{j(s)
0 , j(s)

2 }
|y|

λ(A5(0,y))|y|−(αk−ε) dλ(y)

≤ c
d−1∏
s=1

min{j(s)
0
, j(s)

2
}

∫
Rd\B1(0)

|y|
d−1∏
t=1

(j(t)
0

+ j(t)
2
)|y|−(αk−ε)−(d−k) dλ(y)

≤ c
d−1∏
s=1

min{j(s)
0
, j(s)

2
}

d−1∏
t=1

(j(t)
0

+ j(t)
2
)

∞∫
1

r−(αk−ε−k) dr.

As before, the last expression is finite, since αk > 2k and therefore αk > k+ 1

is fulfilled. For t ∈ {1, . . . , d − 1} we have j(t)
0

+ j
(t)
2 ≤ 2max{j(t)

0
, j(t)

2
}, so we

can bound S5 from above by

S5 ≤ cu2
∑

j0 ,j2∈Nd

pj0pj2

d−1∏
s=1

j(s)
0
j(s)
2
. (2.17)

It remains to find bounds for S6, S7 and S8. As before it is enough to find upper
bounds for S6 and S7, as the upper bound for S6 is also the upper bound for
S8 due to symmetry. For the integral of S6 we get∫
Rd\Bγ (0)

∫
A6(0,y)

P0,x,y(0 ∼ x,x ∼ y,0 ̸∼ y, 0 ̸∈ 2R̄y) dλ(x)dλ(y)

≤ c

∫
Rd\Bγ (0)

∫
A6(0,y)

d−k∏
s=1

j(s)
0 j(s)

2

(|x|+ |y|)2
max

{
dist(R̄0, x), dist(R̄y, x)

}−(αk−ε)dλ(x)dλ(y)

≤ c

∫
Rd\Bγ (0)

∫
A6(0,y)

d−k∏
s=1

j(s)
0 j(s)

2

(|x|+ |y|)2
(|x|+ |y|)−(αk−ε) dλ(x)dλ(y) (2.18)
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= c
d−k∏
s=1

j(s)
0
j(s)
2

∫
Rd\Bγ (0)

∫
A6(0,y)

(|x|+ |y|)−(αk−ε+2d−2k) dλ(x)dλ(y).

In the first inequality, the product is an upper bound for the probability that
R̄0 and R̄y intersect with R̄x under the condition that the diameters are large
enough to result in an intersection. As in the previous calculations, we used
Remark 2.2.1. The second term, namely max{dist(R̄0, x), dist(R̄y, x)}−(αk−ε)

comes from the Potter bounds.

Remark 2.2.3. A careful reader might note that for S6, S7 and S8 it does not
suffice that only the largest diameter of the connector is big. To ensure that
R̄x intersects with R̄0 and R̄y, at least two of the diameters of x have to be
large enough.

Focusing now on the construction of A6(0,y), we begin by reformulating
it. Using j := 2(j(d)

0 + j(d)

2 ) as before, we define ai(ℓ) for i ∈ {2, . . . , d} and
ℓ > 0, as

ai(ℓ) := ei min{j(i−1)
0

, j(i−1)
2

}1
min{j(i−1)

0 ,j
(i−1)
2 }=j

(i−1)
0

+ei

(
max{j(i−1)

0
, j(i−1)

2
}+(ℓ+ j

(d)
0 )|j(i−1)

0 − j(i−1)
2 |

|y| − j/2

)
1
max{j(i−1)

0 ,j
(i−1)
2 }=j

(i−1)
0

(see Figure 2.7; ai(ℓ) is one of the two vertical values, depending on which of
the two ith diameters considered is the larger one). With this, we define

A′
6(j0, j2) :=

{
x ∈ Rd : x(1) ∈ (−∞, 0], x(i) ∈

(
−∞,−|ai(x(1))|

]
∪
[
|ai(x(1))|,∞

)
,

i ∈ {2, . . . , d}
}
.

Using this we can rewrite A6(0,y) and bound (2.18) from above by

c
d−k∏
s=1

j(s)
0
j(s)
2

∫
Rd\Bγ(0)

∫
rotρy,0

(
A′

6(j0,j2)
)
+0

(
|x|1 + |y|

)−(αk−ε+2d−2k)

dλ(x)dλ(y)

≤ c
d−k∏
s=1

j(s)
0
j(s)
2

∫
Rd\B1(0)

( d∑
i=2

min{j(i)
0
, j(i)

2
}+ |y|

)−(αk−ε+d−2k)

dλ(y)

≤ c

d−k∏
s=1

j(s)
0
j(s)
2

∞∫
1

rd−1r−(αk−ε+d−2k)dr,
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with | · |1 denoting the 1-norm. In the first inequality we bound the integral
from above by integrating over x coordinate by coordinate, using the additivity
of the 1-norm and by increasing the integration area of y. Using polar coordi-
nates yields the second inequality. The last expression is finite since αk > 2k.
Therefore the upper bound for S6 is given by

S6 ≤ cu2
∑

j0 ,j2∈Nd

pj0pj2

d−1∏
s=1

j(s)
0
j(s)
2
. (2.19)

For S7 we similarly define

Figure 2.7: Visualisation of the role of ℓ in the calculation for S6, with the
perspective along rotρv,w(e2) in the top and rotρv,w(e3) in the bottom figure.
Note that ℓ is different from ℓ in the calculation of S3.

A′
7(j0 , j2) := (0, |y|)×

( d×
i=2

(
−∞,−min{j(i−1)

0
, j(i−1)

2
}
]
∪
[
min{j(i−1)

0
, j(i−1)

2
},∞

))
.

Using the definition of A7(0,y) we bound the integral S7 for fixed j0 , j2 from
above by replacing A7(0,y) in the bound of the integral with the larger
A′

7(0,y). Moreover we use the 1-norm as before and get the following up-
per bound, by using the same considerations about the orientation of R̄x that
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2.2. Proofs on the behaviour of the model

result in an intersection with R̄0 and R̄y, as well as the Potter bounds to obtain

c
d−k∏
s=1

j(s)
0
j(s)
2

∫
Rd\Bγ(0)

∫
rotρy,0

(
A′

7(j0,j2)

)
+0

(|x|1 + |y|)−(αk−ε+2d−2k) dλ(x)dλ(y)

≤ c

d−k∏
s=1

j(s)
0
j(s)
2

∫
Rd\B1(0)

( d∑
i=2

min{j(i)
0
, j(i)

2
}+ |y|

)−(αk−ε+d−2k)

dλ(y)

≤ c

d−k∏
s=1

j(s)
0
j(s)
2

∞∫
1

rd−1r−(αk−ε+d−2k)dr.

In the first inequality we integrated over x, bounded the integrand from above
and increased the integration area of y. We see that the last integral is finite
since αk > 2k. This yields the following upper bound for S7

S7 ≤ cu2
∑

j0 ,j2∈Nd

pj0pj2

d−1∏
s=1

j(s)
0
j(s)
2
. (2.20)

Putting equations (2.14), (2.15), (2.16), (2.17), (2.19), and (2.20) together, we
get for u ∈ (0, 1) the bound

E0

[∑
y∈X

1
0 2∼y

]
≤ cu

∑
j0 ,j2∈Nd

pj0pj2

( d−1∏
i=1

j(i)
0

+
d−1∏
i=1

j(i)
2

+ 8
d−1∏
i=1

j(i)
0
j(i)
2

)
. (2.21)

Since D̄(k) ≥ 1 for all k ∈ {1, .., d} we have

V 2 ≥ V :=
d∏

k=1

D̄(k) ≥
d−1∏
k=1

D̄(k) .

With this we show now that the key bound of this proof is

E0

[∑
x∈X

1
02n∼x

] (IH)

≤ uncn
∑

j0 ,j2 ,...,j2n∈Nd

pj2n

n−1∏
k=0

pj
2k

(d−1∏
i=1

j(i)

2k
+

d−1∏
i=1

j(i)

2k+2
+ 8

d−1∏
i=1

j(i)

2k
j(i)

2k+2

)
≤ uncn10nE

[
V 2
]n+1

.

Note that the second inequality can easily be checked by using that the diam-
eters of different vertices are i.i.d. For n = 1, we have just proved the claim in
(2.21). We now proceed to show it for n ≥ 2.
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2.2. Proofs on the behaviour of the model

Proof of (IH): We split the expected number of vertices connected to 0 via
the partition (2.11) as we have done for n = 1 and use induction over n. For
that let n ≥ 2. Recall that in the path of length 2n we are interested in vertices
such that the last vertex satisfy 2R̄x2n−1 ∩ 2R̄x2n = ∅ and count vertices that
does not satisfy this as vertices that are the last vertex in a path of length
2n− 1. We obtain

E0

[∑
x∈X

1
02n∼x

]
= E0

[ ̸=∑
x2,x4,...,x2n∈X

n∏
i=1

1
x2i−2

2∼x2i

]

≤
8∑

m=1

E0

[ ∑
x2,x4,...,x2n−2∈X
j0 ,j2 ,...,j2n∈N

d

n∏
i=0

1D̄x2i=j2i
1

x2i−2
2∼x2i

1x2n ̸∈2R̄x2n−2
1x2n−2 ̸∈2R̄x2n

× 1x2n−1∈Am(x2n−2,x2n)1R̄x2n−2∩R̄x2n=∅

]
+E0

[ ∑
x2,x4,...,x2n−2∈X
j0 ,j2 ,...,j2n∈N

d

n∏
i=0

1D̄x2i=j2i
1

x2i−2
2∼x2i

1x2n∈2R̄x2n−2

]

+E0

[ ∑
x2,x4,...,x2n−2∈X
j0 ,j2 ,...,j2n∈N

d

n∏
i=0

1D̄x2i=j2i
1

x2i−2
2∼x2i

1x2n−2∈2R̄x2n

]
=:

10∑
m=1

S(n)
m

Using Pr as shorthand for P0,x1,...,xr , we can write S(n)
m , for m ∈ {1, . . . , 8},

as

S(n)
m =u2n

∑
j0 ,j2 ,...,j2n∈Nd

n∏
i=0

pj2i

∫
Rd

. . .

∫
Rd

P2n

( ⋂2n
i=1{xi−1 ∼ xi} ∩ {x2n−2 ̸∼ x2n}

{x2n−2 ̸∈ 2R̄x2n} ∩ {x2n ̸∈ 2R̄x2n−2}

)
×1x2n−1∈Am(x2n−2,x2n) dλ(x1) . . . dλ(x2n),

while for m ∈ {9, 10} we have

S(n)

9 =u2n
∑

j0 ,j2 ,...,j2n∈Nd

n∏
i=0

pj2i

∫
Rd

. . .

∫
Rd

P2n(
2n−2⋂
i=1

{xi−1 ∼ xi} ∩ {x2n ∈ 2R̄x2n−2})

dλ(x1) . . . dλ(x2n)

and

S(n)

10 =u2n
∑

j0 ,j2 ,...,j2n∈Nd

n∏
i=0

pj2i

∫
Rd

. . .

∫
Rd

P2n(
2n−2⋂
i=1

{xi−1 ∼ xi} ∩ {x2n−2 ∈ 2R̄x2n})

dλ(x1) . . . dλ(x2n).
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Defining now (F (n)
m )m∈{1,...,10} for n ∈ N as

F (n)
m =

d−1∏
s=1

j(s)
2n−2

j(s)
2n
, with 1 ≤ m ≤ 8, F (n)

9 =
d−1∏
s=1

j(s)
2n−2

, F (n)

10 =
d−1∏
s=1

j(s)
2n
,

we claim that S(n)
m can be bounded from above for m ∈ {1, . . . , 10} and n ∈ N

by

S(n)
m ≤ uncn

∑
j0 ,j2 ,...,j2n∈Nd

pj2npj2n−2

n−2∏
k=0

pj
2k

(d−1∏
i=1

j(i)

2k
+

d−1∏
i=1

j(i)

2k+2
+ 8

d−1∏
i=1

j(i)

2k
j(i)

2k+2

)
F (n)
m .

Observe that the case n = 1 was shown in (2.21), so it remains to consider n > 1

and focus on the induction step. We show the claim for m ∈ {1, 9, 10} and note
that the inequalities for m ∈ {2, 3, . . . , 8} can be proved similarly to m = 1.
We first focus on the integral terms of S(n)

m before looking at the rest. Moreover,
we roughly do the following. First, we look in every integral at the last three
vertices in the path of length 2n. We count how many vertices can connect
R̄x2n−2 with R̄x2n and ignore the rest of the path. After that we integrate over
x2n before we move on to the rest by using the induction hypothesis. Note
that in the following calculations we use the same consideration for x2n, x2n−1

and x2n−2 as we do for y, x, and 0 in the case n = 1. In addition to that we
define similarly to the calculation for n = 1 the value γ̃ := 2j

(d)
2n−2.

m = 1: We rewrite the integral of S(n)
1 and bound it from above so we get∫

Rd

. . .

∫
Rd\Bγ̃(x2n−2)

∫
A1(x2n−2,x2n)

P2n

( 2n⋂
i=1

{xi−1 ∼ xi} ∩ {x2n−2 ̸∼ x2n}
)
dλ(x1) . . . dλ(x2n−2)

dλ(x2n)dλ(x2n−1)

≤ c

∫
Rd

· · ·
∫

Rd\Bγ̃(x2n−2)

∫
A1(x2n−2,x2n)

P2n

( 2n−2⋂
i=1

{xi−1 ∼ xi} ∩ {x2n−2 ̸∼ x2n}
)

× (|x2n−1 − x2n−2|+ |x2n − x2n−1|)−(αk−ε+d−k)

d−k∏
s=1

j(s)
2n

dλ(x1) . . .

dλ(x2n−2)dλ(x2n)dλ(x2n−1).

The inequality is derived as in the case n = 1 by using that the connections
between x2n, x2n−1 and x2n−2 are conditionally independent of the preceding
2n − 3 vertices. We are now covering the cases where the kth diameter of
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2.2. Proofs on the behaviour of the model

R̄x2n−1 is big enough, i.e.

max{dist(R̄x2n , x2n−1), dist(R̄x2n−2 , x2n−1)} ≍ |x2n−1 − x2n−2|+ |x2n − x2n−1|.

Using this and the Potter bounds yields the sum over k and αk−ε in the expo-
nent of |x2n−1 − x2n−2|+ |x2n − x2n−1|. We assume also that the orientation of
R̄x2n is such that the largest face of this rectangle is perpendicular to the vector
x2n − x2n−1 to get an upper bound for the set of orientations that result in an
intersection of R̄x2n−1 with R̄x2n . Note that here we again use Remark 2.2.1. In
the next step we use substitution and λ

(
A1(x2n−2,x2n)

)
= c

∏d−1
s=1 j

(s)
2n−2 which

leads to the following upper bound

c

∫
Rd

. . .

∫
Rd\Bγ̃(x2n−2)

∫
(
A1(x2n−2,x2n)−x2n−2

)P2n−2

( 2n−2⋂
i=1

{xi−1 ∼ xi}
)

× (|x̃2n−1|+ |x̃2n|)−(αk−ε)−d+k

d−k∏
s=1

j(s)
2n

dλ(x1) . . . dλ(x2n−2)dλ(x̃2n)dλ(x̃2n−1)

≤ c
d−1∏
s=1

j(s)
2n

d−1∏
s=1

j(s)
2n−2

∫
Rd

· · ·
∫
Rd

P2n

( 2n−2⋂
i=1

{xi−1 ∼ xi}
)

dλ(x1) . . . dλ(x2n−2).

Together with the induction hypothesis this leads to the claimed upper bound
for S

(n)
1 .

m = 9: To bound the integral of S
(n)
9 from above we count every vertex

inside 2R̄x2n−2 , i.e. we assume that every vertex in this set is connected to
x2n−2 via a path of length 2. Therefore the integral of S(n)

9 can be bounded
from above via∫
Rd

· · ·
∫
Rd

P2n−2

( 2n−2⋂
i=1

{xi−1 ∼ xi} ∩ {x2n ∈ 2R̄x2n−2}
)
dλ(x1) . . . dλ(x2n−2)dλ(x2n)

≤ c
d−1∏
s=1

j(s)
2n−2

∫
Rd

· · ·
∫
Rd

P2n−2

( 2n−2⋂
i=1

{xi−1 ∼ xi}
)
dλ(x1) . . . dλ(x2n−2).

Using now the induction hypothesis leads the required upper bound

S(n)

9 ≤ uncn
∑

j0 ,j2 ,...,j2n∈Nd

pj2npj2n−2

n−2∏
k=0

pj
2k

( d−1∏
i=0

j(i)

2k
+

d−1∏
i=1

j(i)

2k+2
+8

d−1∏
i=1

j(i)

2k
j(i)

2k+2

) d−1∏
s=1

j(s)
2n−2

.
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m = 10: Except for a single step the calculation is similar to the case m = 9.
Looking at the integral of S(n)

10 we want to count every vertex x2n such that
x2n−2 ∈ 2R̄x2n . We therefore assume that each such vertex is connected to
x2n−2 via a path of length 2. In the first step we rewrite the integral by
using the distributional symmetry of R̄. So we get for the integral of S(n)

10 the
following

∫
Rd

· · ·
∫
Rd

P2n

( 2n−2⋂
i=1

{xi−1 ∼ xi} ∩ {x2n−2 ∈ 2R̄x2n}
)

dλ(x1) . . . dλ(x2n)

≤ c

d−1∏
s=1

j(s)
2n

∫
Rd

· · ·
∫
Rd

P2n−2

( 2n−2⋂
i=1

{xi−1 ∼ xi}
)

dλ(x1) . . . dλ(x2n−2).

The inequality follows from the distributional symmetry of R̄. Using now the
induction hypothesis leads to the claimed upper bound

S
(n)
10 ≤ uncn

∑
j0 ,j2 ,...,j2n∈Nd

pj2npj2n−2

n−2∏
k=0

pj
2k

( d−1∏
i=1

j(i)

2k
+

d−1∏
i=1

j(i)

2k+2
+8

d−1∏
i=1

j(i)

2k
j(i)

2k+2

) d−1∏
s=1

j(s)
2n
.

Putting everything together, this gives us an upper bound for the expected
number of vertices that are connected via a path of length 2n to the origin,
for n ∈ N, that is

E0

[∑
x∈X

1
02n∼x

]
≤ uncn

∑
j0 ,j2 ,...,j2n∈Nd

pj2n

n−1∏
k=0

pj
2k

( d−1∏
i=1

j(i)

2k
+

d−1∏
i=1

j(i)

2k+2
+8

d−1∏
i=1

j(i)

2k
j(i)

2k+2

)
.

It remains to show that there exists a suitable upper bound also for the ex-
pected number of vertices with distance 2n + 1 to the origin, for n ∈ N. We
have

E0

[∑
x∈X

1
02n+1∼ x

]
= E0

[ ̸=∑
x2,x4,...,

x2n,x2n+1∈X

n∏
i=1

1
x2i−2

2∼x2i
1x2n+1∈2R̄x2n

]

+ E0

[ ̸=∑
x2,x4,...,

x2n,x2n+1∈X

n∏
i=1

1
x2i−2

2∼x2i
1x2n∈2R̄x2n+1

]

+ E0

[ ̸=∑
x2,x4,...,

x2n,x2n+1∈X

n∏
i=1

1
x2i−2

2∼x2i
1x2n ̸∈2R̄x2n+1

1x2n+1 ̸∈2R̄x2n

]
.
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To find an upper bound for this expression we are again looking at the indi-
vidual summands. The first summand can be rewritten as

u2n+1
∑

j0 ,j2 ,...,

j2n ,j2n+1∈N
d

n+1∏
i=0

pj2i

∫
Rd

· · ·
∫
Rd

∫
R̄x2n

P2n

( n⋂
k=1

{x2(k−1)
2∼ x2k}

)
dλ(x1) . . . dλ(x2n+1)

≤ cn+1un+1
∑

j0 ,j2 ,...,

j2n ,j2n+1∈N
d

d−1∏
s=1

j(s)
2n
pj2n+1

pj2n

n−1∏
k=0

pj
2k

(d−1∏
i=1

j(i)

2k
+

d−1∏
i=1

j(i)

2k+2

+ 8
d−1∏
i=1

j(i)

2k
j(i)

2k+2

)
.

We obtain the inequality by first using that λ(R̄x2n) = c
∏d−1

s=1 j
(s)
2n and then the

previously shown result for the expected number of vertices that are connected
via a path of length 2n from the origin. Similar to the previous calculations
we get by using the distributional symmetry of R̄ for the second summand

E0

[ ̸=∑
x2,x4,...,

x2n,x2n+1∈X

n∏
i=1

1
x2i−2

2∼x2i
1x2n∈2R̄x2n+1

]

= E0

[ ̸=∑
x2,x4,...,

x2n,x2n+1∈X

n∏
i=1

1
x2i−2

2∼x2i
1x2n+1∈(2R̄x2n+1−x2n+1+x2n)

]

≤ cn+1un+1
∑

j0 ,j2 ,...,

j2n ,j2n+1∈N
d

d−1∏
s=1

j(s)
2n+1

pj2n+1
pj2n

n−1∏
k=0

pj
2k

(d−1∏
i=1

j(i)

2k
+

d−1∏
i=1

j(i)

2k+2

+ 8
d−1∏
i=1

j(i)

2k
j(i)

2k+2

)
.

Looking now at the last summand we get

E0

[ ̸=∑
x2,x4,...,x2n∈X

n∏
i=1

1
x2i−2

2∼x2i
1x2n ̸∈2R̄x2n+1

1x2n+1 ̸∈2R̄x2n

]
= u2n+1

∑
j0 ,j2 ,...,j2n∈Nd

pj2n+1

n∏
m=0

pj2m

∫
Rd

· · ·
∫
Rd

P2n+1

( 2n+1⋂
i=1

{xi−1 ∼ xi}
)
1x2n ̸∈2R̄x2n+1

× 1x2n+1 ̸∈2R̄x2n
dλ(x1) . . . dλ(x2n+1)

≤ cu2n+1
∑

j0 ,j2 ,...,j2n∈Nd

pj2n+1

n∏
m=0

pj2m

∫
Rd

· · ·
∫
Rd

∫
B1(x2n)

P2n

( 2n⋂
i=1

{xi−1 ∼ xi}
)

×(|x2n − x2n+1|)−(αk−ε)

d−k∏
s=1

j(s)
2n

|x2n − x2n+1|
dλ(x1) . . . dλ(x2n+1).
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We get the inequality since we first start again by looking at the last connection
of the path. We therefore first count how many vertices are connected to x2n

by an edge. As before we look at the kth diameter of R̄x2n+1 is big enough
so that an intersection of R̄x2n+1 and R̄x2n is possible. For that we use similar
considerations as before, namely

Dist(R̄x2n , x2n+1) ≍ |x2n − x2n+1|.

This leads to the term with the exponent −(αk − ε). Moreover we bound the
(d − 1)-dimensional Lebesgue measure of the set of orientations that results
in an intersection from above by assuming again that the R̄x2n is oriented in
such a way that the largest face of it is perpendicular to the orientation of
x2n+1 − x2n. This and the use of Remark 2.2.1 leads to the product term.
Using now substitution we rewrite the last expression to

cu2n+1
∑

j0 ,j2 ,...,j2n∈Nd

pj2n+1

n∏
m=0

pj2m

d−1∏
s=1

j(s)
2n

∫
Rd

· · ·
∫

B1(0)

P2n

( 2n⋂
i=1

{xi−1 ∼ xi}
)

×(|x̃2n+1|)−(αk−ε+d−k)dλ(x1) . . . dλ(x̃2n+1)

≤ cu2n+1pj2n+1

n∏
m=0

pj2m

d−1∏
s=1

j(s)
2n

∫
Rd

· · ·
∫
Rd

∞∫
1

P2n

( 2n⋂
i=1

{xi−1 ∼ xi}
)

× r−(αk−ε+d−k)+d−1dλ(x1). . .dλ(x2n)dr

≤ cu2n+1pj2n+1

n∏
m=0

pj2m

d−1∏
s=1

j(s)
2n

∫
Rd

· · ·
∫
Rd

P2n

( 2n⋂
i=1

{xi−1 ∼ xi}
)

dλ(x1) . . . dλ(x2n).

In the first inequality we use polar coordinates and in the second inequality we
integrate over r, which leads to a finite term since αk > 2k. Using now (IH)
leads to the following upper bound

un+1cn+1
∑

j0 ,j2 ,...,j2n∈Nd

pj2n

d−1∏
s=1

j(s)
2n

n−1∏
k=0

pj
2k

(d−1∏
i=1

j(i)

2k
+

d−1∏
i=1

j(i)

2k+2
+ 8

d−1∏
i=1

j(i)

2k
j(i)

2k+2

)
.

All together this yields the upper bound for the expected number of vertices
that are connected to the origin via a path of length 2n+ 1

E0

[∑
x∈X

1
02n+1∼ x

]
≤ un+1cn+110n+1E

[
V 2
]n+2

.
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Choosing now u < (10cE[V 2])−2 gives us
∑

n∈N E0[
∑

x∈X 10n∼x] < ∞, as de-
sired. We therefore have non-robustness if the second moment of Vol(C) is
finite and αk > 2k.
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Chapter 3

Chemical distance

As we have now universal criteria on the grain distribution being robust,
we study in this chapter the chemical distance in the Poisson Boolean model
with convex grains and establish a universal limit theorem for typical distances
in such graphs. Note that, except for a few changes, the following chapter is
taken from [26].

3.1 Main results on the chemical distance

For this model we have established that the grain distribution is robust if there
exists k ∈ {1, . . . , d} such that αk < min{2k, d} (see Theorem 2.2). The main
result of this chapter gives us the behaviour of the chemical distance in the
robust (but not dense) regime. For all other cases, i.e. having density or the
universal criteria of robustness does not hold, we remark in Theorem 3.1 that
the chemical distance have some different behaviour than in the robust but
not dense case. For that let

M :=
{
k ∈ {1, . . . , d− 1} : αk ∈ (k,min{2k, d})

}
,

which can intuitively be thought of as the index set of tail exponents that
are sufficiently small for their corresponding diameters to be able to affect
the chemical distances in the graph no matter which correlation is given for
the diameters. We define PA for A = {x1, ..., xn} ⊂ Rd for n ∈ N to be
the probability measure of the Poisson point process under the condition that
x1, ..., xn ∈ P, i.e. the Palm version of the process and dist(x,y) to be the
chemical distance. Recall that this is the length of the shortest path between
x,y ∈ X . Then, the following holds.
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3.1. Main results on the chemical distance

Theorem 3.1. In the Poisson-Boolean base model with regularly varying
diameters with u > 0 and κ := argmax

s∈M

min{d−s,s}
αs−s

we have for x, y ∈ P

and δ > 0 in the case M ≠ ∅ and αk > k for all k ∈ {1, . . . , d} that

lim
|x−y|→∞

Px,y

(
(2−δ) log log |x−y|
log
(

min{d−κ,κ}
ακ−κ

) ≤ dist(x,y) ≤ (2+δ) log log |x−y|
log
(

min{d−κ,κ}
ακ−κ

) ∣∣∣ x ↔ y
)
= 1.

Furthermore if there exists k ∈ {1, . . . , d} such that αk ≤ k we have
that dist(x,y) is smaller than c log log |x − y| for all c > 0 with high
probability. In all other cases, namely αk ≥ min{2k, d} for all k ∈
{1, . . . , d}, we have that dist(x,y) is bigger than c log log |x − y| for all
c > 0.

Recall that in this theorem, x ↔ y denotes the event that there exists a
path in G between x and y, or equivalently that x and y belong to the same
connected component of C .

Discussion of result. Before proceeding with the proof of this theorem, we
quickly discuss the unusual nature of the scaling of chemical distances. More
precisely, we comment on the scaling factor log

(
min{d−κ,κ}

ακ−κ

)
/2 that relates the

chemical to the Euclidean distance. The most illustrative comparison comes
from so-called scale-free networks. These networks tend not to be modelled as
spatial graphs, so chemical distances must be given in terms of the number of
vertices in the graph rather than the Euclidean distance, with the number of
vertices N roughly corresponding to |x − y|d. Then, the mean-field analogue
of the classical Boolean model with Pareto(−γ/d) radius distribution exhibits
ultrasmallness with the scaling factor log

(
γ

1−γ

)
/4, whenever γ ∈ (1/2, 1) - see

for example [12]. Since this condition on γ also corresponds to the model
being robust, one would naturally expect a similar correspondence between
the parameter that leads to robustness and the scaling factor to exist in our
model. Surprisingly, this is not the case.

As mentioned above Theorem 3.1, robustness in our model emerges if there
exists at least one index −αk such that the associated diameter is sufficiently
heavy tailed relative to both the spatial dimension d and the relative ordering
of the diameter k (times two), no matter which correlation is given for the
diameters. The natural assumption would therefore be that the scaling of the
chemical distance depends on the largest or possibly smallest diameter that
satisfies this requirement. Instead, the scaling is determined by the diameter
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3.2. Proof of the lower bound

that is, in relative terms (i.e. how αk−k compares to min{d−k, k}), the most
heavy-tailed; see the definition of κ in Theorem 3.1. To understand how this
comes to be, one has to remember that each “step” in a path requires two convex
bodies to intersect. Consider for the sake of argument that M = {1, . . . , d−1}
and αk − k = cmin{d − k, k} for some constant c > 0 and all k ∈ M, that
is, all k ∈ M equal κ. Consider also two vertices whose locations are at a
fixed large distance. Then, using basic trigonometry one can calculate the
probabilities (in terms of random rotations) that two chosen diameters (one
for each body) are roughly co-linear. When combined with the distributions of
said two diameters and accounting for the combinatorics of different diameter
pairings, one obtains (up to constants) that each diameter contributes equally
to the probability of an intersection. If, however, one of the d − 1 diameters
(say k) is made even slightly more heavy-tailed, and consequently κ ≜ k, as the
distance between the two vertices tends to infinity, this diameter’s contribution
to the probability of an intersection asymptotically dominates all others.

We find that this unexpected behaviour, as well as the decoupling of the
dense and robust regimes shown in Section 2.2.2, makes the Poisson-Boolean
model with regularly varying diameters uniquely interesting among its Boolean
model cousins, in particular since it exhibits these features without requiring
the introduction of “long edges” (in the sense of long-range percolation, see for
example [27]).

3.2 Proof of the lower bound

In this section we will prove the lower bound for the chemical distance. For
this and also for the upper bound we will use a construction of infinite paths
similar to the one introduced in Chapter 2 and define sequences of events.

We first consider the case M ̸= ∅ with αk > k for all k ∈ {1, . . . , d} and
recall the definition of the increasing threshold sequence (fn)n∈N from (2.2)
and make a slight change, that is,

fn =
(
fn−1

)min{d−κ,κ}
ακ−κ

−ϵ
, for n ∈ N.

Here, f0 > 1 is again chosen arbitrarily big and κ is defined as in Theorem 3.1.
So we change k into κ. Note that the ϵ in the definition of fn is again the same
as previously defined in Chapter 2 and without loss of generality we assume
also that 0 < ϵ < 1

4
; this ensures again that the exponent in the above sequence

is strictly bigger than 1 and makes the sequence increasing. As κ ∈ M this is
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3.2. Proof of the lower bound

possible since ακ < min{2κ, d}.
For x ∈ P the two afore mentioned sequences of events (Ax

n)n∈N and
(Āx

n)n∈N are defined as

Ax
n :=


∃x1, . . . ,xn ∈ X : xi ̸= xm for all i ̸= m,D(κ)

xi ≥ 22(d−1)+ϵf
i
,

D(1)
xi ≤ 22(d−1)+ϵf

2ακ
α1

i , xi ∈ Oi(xi−1) and Cxi
∩B∗

fi−1
(xi−1, xi) ̸= ∅

for all 1 ≤ i ≤ n, with x0 = x.


(3.1)

and

Āx
n :=


∃x1, . . . ,xn ∈ X : xi ̸= xm for all i ̸= m,D(κ)

xi ≥ 22(d−1)+ϵf
i
,

xi ∈ Oi(xi−1) and Cxi
∩B∗

fi−1
(xi−1, xi) ̸= ∅

for all 1 ≤ i ≤ n, with x0 = x.

 .

(3.2)

Note that in both sequences we highlight x ∈ P as the starting vertex in
the event, as we are interested in the chemical distance of x,y ∈ X .

The sequence (Ax
n)n∈N will be used to construct the paths in the current

proof for the lower bound of the chemical distance, while (Āx
n)n∈N, which is the

same as in (2.6) but here we highlight the dependence on the starting vertex,
will play a similar role for the upper bound.

Remark 3.2. Note that the definitions of Ax
n and Āx

n should now depend κ

so that we replace k in this section in (2.6) by κ. Later on, in Section 3.3,
when we will be working with Āx

n, we will replace κ with some fixed k ∈ M.
This change does not affect any of the calculations that relate to Āx

n we do
in this section. However, in order to avoid writing all calculations twice, or
repeatedly pointing out that κ should be replaced by k when working with Āx

n,
we allow ourselves this small abuse of notation and simply write κ overall. We
will remind the reader when κ is to be replaced with k at the appropriate step
in Section 3.3.

Recall the intuition of the sequence (Āx
n)n∈N. The same intuition also holds

for (Ax
n)n∈N but we have one additional property that has to be fulfil. In the

event Ax
n we have additionally that for x ∈ X and for every i ∈ {1, . . . , n}

we have that the first diameter of xi is bounded from above by 22(d−1)+ϵf
2ακ
α1

n
.

This property is necessary for the proof in the lower bound to get an upper
bound for the distance that can be covered by the first n vertices of a path,
and is also the only difference from the other sequence.
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3.2. Proof of the lower bound

Using (Ax
n)n∈N combined with the truncated first moment method of [24]

will give us the lower bound for the chemical distance. The idea of the
truncated first moment method is to choose ∆ ∈ N big enough such that
Px,y(dist(x,y) ≤ 2∆) is arbitrarily small. Defining G

(x,y)
n as the event that a

good (in some yet to be determined sense) path of length n connecting x,y

exists, and B
(x)
n as the event that a bad (i.e. not good) path starting in x of

length n exists, we have by counting the numbers of bad and good paths of
length ∆, respectively 2∆, the following inequality:

Px,y(dist(x,y) ≤ 2∆) ≤
∆∑

n=1

Px(B
(x)
n ) +

∆∑
n=1

Py(B
(y)
n ) +

2∆∑
n=1

Px,y(G
(x,y)
n ).

We now formalise what a good path is. We say that a path of length n

connecting x and y via vertices x1, . . . ,xn−1 ∈ X such that with x0 = x

and xn = y is good, if the vertices x0, . . . ,x⌈n/2⌉ imply that Ax
⌈n/2⌉ holds and

xn, . . . ,x⌈n/2⌉ imply that Ay
⌈n/2⌉ holds. For n ∈ N and x ∈ X we say that a

path consisting of vertices x0, . . . ,xn is bad, if the vertices x0, . . . ,xn−1 imply
that Ax

n−1 holds, but x0, . . . ,xn do not imply that Ax
n holds.

Consider now a good path of length n and note that the property of being
good imposes a maximum Euclidean distance such a path can reach starting
from a location x ∈ P. Setting ∆ small enough so that the sum over the
maximum lengths of the first diameters of the n convex bodies in this path
is smaller than |x − y|, we get that

∑2∆
n=1 Px,y(G

(x,y)
n ) = 0. By definition, a

good path of length n satisfies D(1)
xi < 22(d−1)+ϵf

2ακ
α1

i for i ∈ {0, . . . , ⌈n/2⌉} and

D(1)
xn−i+1 < 22(d−1)+ϵf

2ακ
α1

i for i ∈ {1, . . . , ⌈n/2⌉}. We therefore have to find the
maximal even m ∈ N such that

2

m/2∑
n=1

22(d−1)+ϵf
2ακ
α1

n
< |x− y|,

which will give us the largest possible value for ∆. Using the definition of the
threshold sequence leads to the following inequality

2

m/2∑
n=1

22(d−1)+ϵf
2ακ
α1

(min{d−κ,κ}
ακ−κ

−ϵ)
n

0 < |x− y|. (3.3)
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3.2. Proof of the lower bound

Choosing f0 big enough it follows that

2

m/2∑
n=1

22(d−1)+ϵf
2ακ
α1

(min{d−κ,κ}
ακ−κ

−ϵ)
n

0 ≤ 3 · 22(d−1)+ϵf
2ακ
α1

(min{d−κ,κ}
ακ−κ

−ϵ)
m/2

0 .

With that we have that (3.3) is true if

3 · 22(d−1)+ϵf
2ακ
α1

(min{d−κ,κ}
ακ−κ

−ϵ)
m/2

0 < |x− y|.

Applying a double logarithm on both sides of the inequality we see that this
is equivalent to

m

2
log
(min{d− κ, κ}

ακ − κ
− ϵ
)
+ log

(2ακ

α1

log(f0) + log(3)+ log
(
22(d−1)+ϵ

))
< log log |x− y|.

This leads to the following upper bound for m:

m < 2
log log |x− y| − log

(
2ακ

α1
log(f0) + log(3) + log

(
22(d−1)+ϵ

))
log
(min{d−κ,κ}

ακ−κ
− ϵ
) . (3.4)

Let δ > 0. If we choose m small enough to satisfy

m ≤ (2− δ) log log |x− y|
log
(min{d−κ,κ}

ακ−κ
− ϵ
) ,

we get that as |x − y| → ∞, such an m also satisfies inequality (3.4) and
therefore also (3.3). Choosing now

2∆ =
(2− δ) log log |x− y|
log
(min{d−κ,κ}

ακ−κ
− ϵ
)

therefore yields
∑2∆

n=1 Px,y(G
(x,y)
n ) = 0 for |x− y| large enough, as desired.

Looking now at the bad paths we will show that

∞∑
n=1

Px(B
(x)
n ) < δ(f0),

where δ is a function satisfying limt→∞ δ(t) = 0. We have by definition that

Px(B
(x)
n ) = Px

(
(Ax

n)
c ∩ Ax

n−1

)
≤ Px

(
(Ax

n)
c |Ax

n−1

)
.
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3.2. Proof of the lower bound

Finding a suitable summable upper bound for Px((A
x
n)

c |Ax
n−1) for all n ∈ N

will complete the proof. For this we adapt a calculation from Section 2.2.2
and highlight here only the relevant changes. Note that these changes are not
necessary to prove the same statements for the events Āx

n which we will use
in the proof of the upper bound. To continue, recall the definitions Qfn (x, y)

from (2.7) and Q∗
fn
(x, y) from (2.2.2).

The key step in the proof of the universal criteria of robustness was to get
a suitable lower bound for

PC

(
(x+ C) ∩Q∗

fn
(xn, x) ̸= ∅ |D(κ)

C ≥ 22(d−1)+ϵfn+1

)
PC(D

(κ)

C ≥ 22(d−1)+ϵfn+1).

Following the same arguments as in Section 2.2.2, this is equivalent to finding
a lower bound for

PC

(
(x+C)∩Q∗

fn
(xn, x) ̸= ∅

∣∣∣∣∣D
(κ)

C ≥ 22(d−1)+ϵfn+1 ,

D(1)

C ≤ 22(d−1)+ϵf
2ακ
α1

n+1

)
PC

(
D(κ)

C ≥ 22(d−1)+ϵfn+1 ,

D(1)

C ≤ 22(d−1)+ϵf
2ακ
α1

n+1

)
.

(3.5)
The conditional probability depends only on the volume of the set of suitable
orientations for C that result in an intersection of (x+C) with Q∗

fn
(xn, x). As

in Section 2.2.2 we get

PC

(
(x+ C) ∩Q∗

fn
(xn, x) ̸= ∅

∣∣∣∣∣ D(κ)

C ≥ 22(d−1)+ϵfn+1 ,

D(1)

C ≤ 22(d−1)+ϵf
2ακ
α1

n+1

)
≥ c

fmin{d−κ,κ}
n

fd−κ
n+1

.

For the second probability term in (3.5) we have to use again the Potter bounds
for regularly varying random variables. We therefore have for s > ε

PC

(
D

(κ)
C ≥ s,D

(1)
C ≤ s

2ακ
α1

)
= PC

(
D

(κ)
C ≥ s

)
− PC

(
D

(κ)
C ≥ s,D

(1)
C > s

2ακ
α1

)
≥ c−1(s−(ακ+ε) − s−2ακ+ε).

For s big enough we then have

c−1(s−(ακ+ε) − s−2ακ+ε) ≥ 1
2
c−1s−(ακ+ε),

since for ε > 0 small enough we have −(ακ + ε) > −2ακ + ε. This gives us the
following lower bound for the second probability factor of (3.5)

PC

(
D(κ)

C ≥ 22(d−1)+ϵfn+1 ,

D(1)

C ≤ 22(d−1)+ϵf
2ακ
α1

n+1

)
≥ cf−(ακ+ε)

n+1
.
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3.2. Proof of the lower bound

Following now the rest of the calculation as in Section 2.2.2 we get

Px((A
x
n)

c |Ax
n−1) ≤ exp

(
−ucf ϵ(ακ−κ)/2

n

)
.

which finally gives us

∞∑
n=1

Px(B
(x)
n ) ≤

∞∑
n=1

exp
(
−ucf ϵακ−κ

2
n

)
=

∞∑
ℓ=0

exp
(
−uc

{
f ϵ(ακ−κ)/2
0

}(min{d−κ,κ}
ακ−κ

−ϵ
)ℓ)

=: δ(f0).

This can be made arbitrary small by choosing f0 big enough. Putting all of
the bounds together, we obtain

Px,y(dist(x,y) ≤ 2∆) ≤
∆∑

n=1

Px(B
(x)
n ) +

∆∑
n=1

Py(B
(y)
n ) +

2∆∑
n=1

Px,y(G
(x,y)
n )

< 2δ(f0)
f0→∞
−→ 0.

Remark 3.3. If αk ≥ min{2k, d} for all k ∈ {1, .., d} and therefore M = ∅,
we use a standard almost sure coupling argument as follows. For an arbi-
trary realisation of the model we extend for all x ∈ X their first diameters
D(1)

x using the following deterministic transformation. Let F be the cumulative
distribution function of the first diameter in the model, and G the cumulative
distribution function of an arbitrary regularly varying random variable with in-
dex −(2−ρ) for small ρ > 0. We replace a given first diameter ℓ by G−1(F (ℓ))

when this value is larger than ℓ and keep it as before otherwise. One can quickly
check that the resulting model dominates the original one in the sense that all
extended convex bodies contain their original versions; all of the bodies also
remain convex and their further diameters remain unchanged. Crucially, the
tail index of the first diameter in this updated model is −(2− ρ) and therefore
the updated model has M = {1} and αk > k for all k ∈ {1, ..., d}, so the main
statement of Theorem 3.1 applies. Since this model dominates the original
model for each realisation, the lower bound for its chemical distance is a lower
bound for the original model as well.

As proven in this section, the lower bound is then with high probability equal
to 2−δ

log(2/(1−ρ))
log log |x− y| for all δ > 0. The factor in front of the log log term

is strictly increasing and converges to infinity as ρ ↓ 0. Consequently, we get
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3.3. Proof of the upper bound

that for models with M = ∅ such that αk ≥ min{2k, d} for all k ∈ {1, . . . , d}
the chemical distance is bigger than c log log |x − y| with high probability for
any c > 0.

3.3 Proof of the upper bound

In this section we first focus on the case that M ̸= ∅ and αk > k for all
k ∈ {1, . . . , d}. The proof of the upper bound will be shown for a fixed
k ∈ {1, . . . , d − 1} which satisfies αk ∈ (k,min{2k, d}), i.e. k ∈ M. Since
the result will hold uniformly in k, it will in particular also hold for κ as
defined in Theorem 3.1. We consider the “smallest” Boolean model satisfying
the condition αk ∈ (k,min{2k, d}), which has the first k diameters almost
surely of the same size and regularly varying with index −αk. The other
diameters are set to be deterministic of size ϵ > 0. Since we are interested
in smallest convex bodies, note that the smallest convex bodies that have
diameters of size D(1) , . . . , D(d) are the convex hulls of the endpoints of all
of the diameters, i.e. the d-dimensional convex polytopes with 2d vertices.
Each such convex polytope with diameters D(1) , . . . , D(d) contains a box with
side-lengths 2−2(d−1)D(1) , . . . , 2−2(d−1)D(d) , which is stated in Lemma A.1 in
Section A.1. So we work from here on out with these boxes instead of the
larger polytopes that they are contained in. We can do this without affecting
our final result, as we explain next.

For u > 0 we define uP as the probability measure of the Poisson-Boolean
base model where the underlying Poisson point process for the locations of the
vertices has intensity u > 0. Let C∞ be an unbounded connected component
of this model. Recall that by [9], if C∞ exists, it is almost surely unique. We
define the percolation probability

θ(u) := uP(0 ∈ C∞).

As we work here with a fixed vertex intensity u > 0 we can therefore write
P and θ instead of uP and θ(u). Furthermore, we omit the scaling factor
2−2(d−1) and assume that the boxes have side-lengths D(1) , . . . , D(d) . We can
do this without loss of generality, since constant factors do not affect the reg-
ularly varying distribution of the diameters (and by extension side-lengths of
our boxes), and the Poisson point process of intensity u rescaled by a factor
2−2(d−1) remains a Poisson point process (with intensity 2−2(d−1)u). Conse-
quently, using that we are in the robust regime of the model, we can start
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3.3. Proof of the upper bound

with intensity 2−2(d−1)u instead of u for the original model and proceed with
our assumption. Furthermore, using the same property of regularly varying
distributions as above, we will treat the side-lengths of the boxes as if they
were the de facto diameters in order to keep geometric arguments easier to
follow and the notation more concise (if we were being precise the calculations
would, up to constant multiplicative factors, remain the same). We will use for
the remainder of this section the terms convex body and box interchangeably,
depending on which helps understand the current argument better.

With this we can proceed to the proof of the upper bound. We use a similar
argument as in [35] and [24], which relies on a classical sprinkling argument to
connect various parts of the graph with each other.

Recall the definition of a ball Br(y) for r > 0, y ∈ Rd. We focus first on
the regions around of 0 and x, namely B 3

8
|x|(0) (resp. B 3

8
|x|(x)) and show that

0 (resp. x) is connected via a path to a vertex z0 (resp. zx), with D(k)
z0 > f0

(resp. D(k)
zx > f0) in this region, where f0 will be chosen later and the entire

path is contained inside B 3
8
|x|(0) (resp. B 3

8
|x|(x)). Note that f0 above is the

first element of the threshold sequence that was introduced in Section 3.2.

Recall from Section 3.2 the definition (Āz
n)n∈N for a given vertex z ∈ X .

As promised in Remark 3.2, we remind the reader now that from here on out,
when referring to the arguments that we used in Section 3.2 they are to be
read with k ∈ M instead of with κ. Due to Section 2.2.2 we know that starting
with a convex body with D

(k)
z > f0 , for some z ∈ X , the probability that we

cannot find a path consisting of convex bodies which fulfil the events (Āz
n)n∈N

is smaller than

2

(
exp(−ucfd−αk−ϵ

0
) +

∞∑
ℓ=0

exp
(
−uc

{
f ϵ(αk−k)/2
0

}(min{d−k,k}
αk−k

−ϵ
)ℓ))

=: Γ(f0).

(3.6)
As in Section 2.2.2, f0 can be chosen large enough to guarantee Γ(f0) < 1. To
that end, let now ρ := ρ(u, d, k, αk, ϵ) > 1 be such to ensure Γ(ρ) < 1. Consider
now the event Zn that no path fulfilling the events (Āz

i )i∈N with f0 = ρn exists.
By the above, the probability of this event is Γ(ρn) and furthermore, by (3.6)
we also have

∞∑
n=1

P(Zn) =
∞∑
n=1

Γ(ρn) < ∞.

By Borel-Cantelli, it follows that

P(lim inf
n→∞

Zc
n) = 1.
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Consequently, there exists an almost surely finite m ∈ N such that starting
the threshold sequence with f0 = ρm, there exists almost surely a path that
satisfies the events (Āz

n)n∈N. Using this to get an infinite path we claim that
the paths starting from 0 and from x are connected to vertices that fulfil the
condition D(k)

z0 , D
(k)
zx ≥ ρm and that both paths (which exists almost surely by

the above argument) are connected with each other sufficiently early along
each of them, by using a single further vertex, all of which occurs with high
probability. From here on out, when requiring that f0 is large enough, we will
implicitly also assume that the above construction is followed.

Connecting 0 and x to infinite paths in almost surely bounded many
steps. We need to ensure that the construction of the path from 0 to z0

(resp. x to zx) is independent of the path between z0 and zx, so we use the
superposition and thinning properties of the Poisson point process to split it
into two independent thinned versions, similarly to how it is done in [35] or
[24]. With that in mind, let b ∈ (0, 1) be an arbitrary number; we colour
each vertex of X black with probability b and red with probability r := 1− b,
independently of everything else. We write G b

u (resp. G r
u ) for the graph induced

by the black (resp. red) vertices in Gu := G , where we write u to emphasise
the dependence of the model on the density parameter u. Moreover let Cb

∞

(resp. Cr
∞) be the unbounded connected component in G b

u (resp. G r
u ). Since

we are working in the robust regime of the model, both of these components
exist almost surely.

We define Eb
0(n, s, v) to be the event that there exists a vertex z0 in the

graph G b
u with D(k)

z0 > s such that |z0−0| < v and z0 and 0 are connected via at
most n further convex bodies. Similarly we define Eb

x(n, s, v) for x. In addition
to that we define for z0 ∈ X Eb

0,z0
(n, s, v) as the event that Eb

0(n, s, v) occurs
and the vertex with location z0 is the vertex that makes it occur. Similarly, we
write Eb

x,zx(n, s, v) for zx ∈ X as the corresponding asked vertex in Eb
x(n, s, v).

Moreover we also note that {0 ↔ x} ∩ {0,x ∈ C∞} converges from below
to the event {0,x ∈ C∞} as |x| goes to infinity due to the uniqueness of the
unbounded component (see [9]).

To prove the full claim it suffices to show that for every s > 0 there exists
almost surely a finite random variable N(s) such that

lim
b↑1

lim inf
s→∞

lim inf
|x|→∞

P0,x({0,x ∈ Cb
∞}∩Eb

0(N(s), s, |x|/8)∩Eb
x(N(s), s, |x|/8)∩F ) ≥ θ2,

(3.7)
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3.3. Proof of the upper bound

where F is the event that there exists a path such that 0 and x are connected
in fewer than (2 + δ) log log |x|/

(
log(min{d − k, k}) − log(αk − k)

)
) steps for

small δ > 0. We show first

lim inf
s→∞

lim inf
|x|→∞

P0,x({0,x ∈ Cb
∞}∩Eb

0(N(s), s, |x|/8)∩Eb
x(N(s), s, |x|/8)∩F ) ≥ θ2b ,

from which (3.7) follows by the following Proposition.

Proposition 3.4. The function u 7→ θ(u) is continuous for the Poisson
Boolean model with boxes as grains for u ̸= uc.

Proof of Proposition 3.4. The proof can be adapted to the proof with balls as
convex grains as in [51, Theorem 3.9] or [45]. The only thing we have to check
is P0,x({Cx ∩ ∂C0 ̸= ∅} ∩ {Cx ∩ int(C0) = ∅}) = 0 for all x ∈ P, which is
stated in Lemma A.5 and proven in Section A.6.

To show the upper bound of θb note that

P0,x({0,x ∈ Cb
∞} ∩ Eb

0(N(s), s, |x|/8) ∩ Eb
x(N(s), s, |x|/8) ∩ F )

= E0,x

[
P0,x,z0,zx({0,x ∈ Cb

∞}∩ Eb
0,z0

(N(s), s, |x|/8)∩ Eb
x,zx(N(s), s, |x|/8)∩F )

]
≥ P0,x({0,x ∈ Cb

∞})

− P0,x({0 ∈ Cb
∞} \ Eb

0(N(s), s, |x|/8))

− P0,x({x ∈ Cb
∞} \ Eb

x(N(s), s, |x|/8)) (3.8)

− E0,x

[
P0,x,zx,z0

(
(Eb

0,z0
(N(s), s, |x|/8) ∩ Eb

x,zx(N(s), s, |x|/8)) \ F
)]
.

We now show that the last three summands converge to zero as s and |x|
are made large. Due to the translation invariance of the Poisson process, the
second and third summands are equal. Considering the limit s → ∞ and
using the same arguments as for the proof in [24, Lemma 3.2] gives that the
second and third term converge to 0, since the probability of arbitrary big
convex bodies belonging to the unbounded connected component is positive.
It remains to consider the last summand of (3.8). For this we need two things.
First, we will use the properties of the infinite path that satisfies (Āz0

n )n∈N

(resp. (Āzx
n )n∈N), so that we have two growing sequences of convex bodies.

Second, we will find a single convex body to ensure that the two infinite paths
are connected to each other “early on”.
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3.3. Proof of the upper bound

Reaching sufficiently powerful vertices in fewer than
(1+δ)

log
(

min{d−k,k}
αk−k

) log log |x−y| many steps, with high probability. As argued

before, we know that an infinite path exists when starting with a convex body
which is large enough, namely if its threshold sequence begins with f0 > 0

big enough. We focus now on the infinite path started from z0 using that
(Āz0

n )n∈N holds and denote by n1 the first index i in the path, for which the
corresponding threshold f

i
≥ |x|/8. For the path starting in z0 we denote this

convex body with its location by y0 (resp. yx for the path starting in zx).
To avoid confusion, note that y0 is not the n1th vertex of the path started in
0, but is instead only the n1th vertex after z0, which is itself almost surely
finitely many steps along the path. The same observation of course holds also
for yx. Let now, as before, f0 be large enough. This leads to

fn1 ≥ |x|/8

⇔ f

(
min{d−k,k}

αk−k
−ϵ
)n1

0 ≥ |x|/8

⇔ n1 log
(min{d− k, k}

αk − k
− ϵ
)
+ log log f0 ≥ log log(|x|/8).

Recall that we are interested in an upper bound for the chemical distance. We
choose therefore

n1 ≥

⌈
log (log |x| − log(8))− log log f0

log
(min{d−k,k}

αk−k
− ϵ
) ⌉

.

We can assume without loss of generality that |x| is large enough so that
the locations of the vertex y0 as well as all preceding vertices are in B 3

8
|x|(0)

and by translation invariance the same is true for yx and the ball B 3
8
|x|(x).

We can assume without loss of generality that fn1 = |x|/8 as we have that
⌈|x|⌉/|x| converges to 1 as |x| → ∞. In all other cases we get some (bounded)
multiplicative factors in the calculations which do not affect the results.

Before proceeding to the final missing step, let us summarise our work so
far. Once (3.7) is established, we have that on the event {0,x ∈ C∞}, one
can in at most almost surely finitely many (in fact and crucially, almost surely
bounded many) steps connect 0 to some vertex z0 with high probability as
|x| → ∞. The convex body of this vertex is then sufficiently large that it is
almost surely the first vertex of an infinite path satisfying the events (Āz0

n )n∈N,
whose n1th vertex y0 has the kth side-length larger than |x|/8 and the path
from z0 to y0 takes fewer than (1 + δ) log log |x|/ log

(min{d−k,k}
αk−k

)
many steps

66



3.3. Proof of the upper bound

for small δ > 0; the same is true also for the vertex x. Once we establish that
y0 and yx are connected to the same vertex with an even larger convex body
with high probability, (3.7) will be proven and the proof of the upper bound
complete. The above construction is outlined in Figur 3.1, showing how the
path connecting 0 with x arises.

Figure 3.1: In cyan blue 0 and x, in black the path connecting 0 with z0 (resp.
x with zx), in blue z0 and zx, the path connecting z0 with y0 in red (resp. zx
with yx), y0 and yx in pink and in orange the vertex y connecting y0 and yx.
The dashed gray circles are the boundary of B|x|/8(0), B3|x|/8(0), B|x|/8(x) and
B3|x|/8(x). v0 and vx as defined in (3.13) and (3.14).

Connecting the two sufficiently powerful vertices through a single
connecting vertex with high probability. We now proceed to argue this
last step. For that we define F

(0,z0)
n1 (resp. F

(x,zx)
n1 ) as the event that there

exists a path of length n1 in the graph G r
u such that starting with z0 (resp.

zx) the path satisfies Āz0
n1

(resp. Āzx
n1

). In addition to that we define F
(0,z0,y0)
n1

as the event that in F
(0,z0)
n1 , y0 is the n1th vertex in the path that implies

Āz0
n1

. Analogously we define F
(x,zx,yx)
n1 for yx. Moreover let F (0,x,y0,yx) be

the event that there exists a vertex outside of B
|x|

min{d−k,k}
αk−k

−ϵ
(0) with a cor-

responding box that intersects y0 and yx. Note that under the condition that
0, x, z0, zy, y0, yx ∈ P we have that F

(0,z0,y0)
n1 ∩ F

(x,zx,yx)
n1 ∩ F (0,x,y0,yx) ⊆ F , con-

ditioned on Eb
0(D(s), s, |x|/8) ∩ Eb

x(D(s), s, |x|/8); i.e. the start of the path in
0 and x being successful. From here on we write Eb

0,z0
for Eb

0,z0
(D(s), s, |x|/8)

(resp. Eb
x,zx for Eb

x,zx(D(s), s, |x|/8)) to keep the notation concise. We will now
focus on the probability in the brackets of the last summand in (3.8). We can
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3.3. Proof of the upper bound

rewrite this term to

P0,x,z0,zx

(
(Eb

0,z0
∩Eb

x,zx)\F
)
= P0,x,z0,zx

(
F c |Eb

0,z0
∩Eb

x,zx

)
P0,x,z0,zx

(
Eb

0,z0
∩Eb

x,zx

)
(3.9)

in order to work with the conditional probability given Eb
0,z0

∩ Eb
x,zx , and use

the events defined earlier to bound the last expression from above by using

E0,x,z0,zx

[
P0,x,z0,zx,y0,yx

(
(F (0,z0,y0)

n1
∩ F (x,zx,yx)

n1
∩ F (0,x,y0,yx))c |Eb

0,z0
∩ Eb

x,zx

)
× P0,x,z0,zx,y0,yx

(
Eb

0,z0
∩ Eb

x,zx

)]
≤ P0,x,z0,zx

(
(F (0,z0)

n1
)c ∪ (F (x,zx)

n1
)c |Eb

0,z0
∩ Eb

x,zx

)
(3.10)

+ E0,x,z0,zx

[
P0,x,z0,zx,y0,yx

(
(F (0,z0,y0)

n1
∩ F (x,zx,yx)

n1
)∩ (F (0,x,y0,yx))c |Eb

0,z0
∩ Eb

x,zx

)
× P0,x,z0,zx,y0,yx

(
Eb

0,z0
∩ Eb

x,zx

)]
.

The first summand is by our choice of f0 almost surely equal to 0. In order
to show that the last summand in (3.8) converges to zero it suffices to show
that the second summand in (3.10) or equivalently

E0,x,z0,zx

[
P0,x,z0,zx,y0,yx

(
F (0,z0,y0)
n1

∩F (x,zx,yx)
n1

∩(F (0,x,y0,yx))c∩Eb
0,z0

∩Eb
x,zx

)]
(3.11)

has a uniform bound over all z0 and zx which converges to zero as |x| → ∞;
this implies that integrating (3.9) over z0 and zx leads to a term that converges
to zero as |x| → ∞. We focus now on (F (0,x,y0,yx))c and introduce some new
terminology to help us with that. Recall that p

(i)
v is the orientation of the

ith side-length of the box Cv for v ∈ X and i ∈ {1, . . . , d}. We say a vertex
v ∈ X is good with respect to the vertex w ∈ X if it satisfies the following two
conditions.

(G1) The vertex v has good orientation relative to the orientation of w in the
sense that for all i ∈ {1, . . . , d} the orientation satisfies

p(i)v ∈ {ϕ ∈ Sd−1 : ∡(ϕ, p(i)w ) ≤ ϵ
log |x|}.

(G2) The location v of v has good position relative to w, i.e. it satisfies

v ∈
{
y ∈ Rd : |w − y| ≥ 2fn1 ,∡

(
w − y,±p(j)

v

)
> φ for all 1 ≤ j ≤ k

}
=: A(w, n1),

where φ = 2−(d+1)(d+ 1)−1.
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3.3. Proof of the upper bound

It is useful at this stage to note that by construction |y0 − yx| ≥ 2fn1 , which
is one of the two conditions in (G2). We also observe (and prove later on)
that when v is good relative w we have that the intersection of the orthogonal
projections of Cv and Cw onto a hyperplane perpendicular to v−w, has (d−1)-
dimensional Lebesgue measure of order fk

n1
. In addition to that (G2) gives us

roughly that v does not lie “too close” to the affine subspace through w spanned
by the k large side-lengths of Cw, where φ is chosen as in the definition (2.4).
(G2) also ensures that v has distance at least 2fn1 to w. Note that this is similar
to the definition of (2.4). Observe also that the restriction in (G1) becomes
tighter for large |x|, and so for sufficiently large |x| we get that v being good
with respect to w implies almost surely also the reverse relationship, i.e. w is
good with respect to v.

Using this (in particular, that |x| is large) we can rewrite (F (0,x,y0,yx))c as

(F (0,x,y0,yx))c=
(
{̸ ∃y ∈ P \B

|x|
min{d−k,k}

αk−k
−ϵ
(0) : Cy∩Cyx ̸= ∅ and Cy∩Cy0 ̸= ∅}

∩ {y0 and yx are good with respect to each other.}
)

∪
(
{̸ ∃y ∈ P \B

|x|
min{d−k,k}

αk−k
−ϵ
(0) : Cy∩Cyx ̸= ∅ and Cy∩Cy0 ̸= ∅}

∩ {y0 and yx are not good with respect to each other.}
)

⊆
(
{̸ ∃y ∈ P \B

|x|
min{d−k,k}

αk−k
−ϵ
(0) : Cy∩Cyx ̸= ∅ and Cy∩Cy0 ̸= ∅}

∩ {y0 and yx are good with respect to each other.}
)

∪ {y0 and yx are not good with respect to each other.}

=: (E
(y0,yx)
1 ∩ E

(y0,yx)
2 ) ∪ E

(y0,yx)
3 .

With this we can bound (3.11) from above by

P0,x,z0,zx,y0,yx

(
E

(y0,yx)
1 ∩ E

(y0,yx)
2 ∩ F (0,z0,y0)

n1
∩ F (x,zx,yx)

n1
∩ Eb

0,z0
∩ Eb

x,zx

)
+ P0,x,z0,zx,y0,yx

(
E

(y0,yx)
3 ∩ F (0,z0,y0)

n1
∩ F (xzx,yx)

n1
∩ Eb

0,z0
∩ Eb

x,zx

)
≤ P0,x,z0,zx,y0,yx

(
E

(y0,yx)
1 |E(y0,yx)

2 ∩ F (0,z0,y0)
n1

∩ F (xzx,yx)
n1

∩ Eb
0,z0

∩ Eb
x,zx

)
+ P0,x,z0,zx,y0,yx

(
E

(y0,yx)
3 ∩ F (0,z0,y0)

n1
∩ F (x,zx,yx)

n1
∩ Eb

0,z0
∩ Eb

x,zx

)
.

(3.12)

We will show that this expression has a uniform upper bound over all z0, zx, y0,
yx and that this bound converges to zero as |x| → ∞. For that we define
similarly to Section 2.2.2 the σ-algebra Fx

n, generated by the restriction of the
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3.3. Proof of the upper bound

(simplified box) Poisson-Boolean base model to the points with locations inside
B3fn (0) ∪ B3fn (x). Using this we have that E

(y0,yx)
2 , F (0,z0,y0)

n1 , F (x,zx,yx)
n1 , Eb

0,z0
,

Eb
x,zx are Fx

n1
measurable.

Lemma 3.5. For the events defined as above, we have

P0,x,z0,zx,y0,yx

(
E

(y0,yx)
1 |E(y0,yx)

2 ∩ F (0,z0,y0)
n1

∩ F (x,zx,yx)
n1

∩ Eb
0,z0

∩ Eb
x,zx

)
≤ exp

(
−uc|x|ϵ(αk−k)/2

)
.

Proof. We define for v, w, z ∈ Rd and A ⊆ Rd the set P z
v,w(A) as the orthogonal

projection of A onto the hyperplane through z perpendicular to w − v. In
addition to that define

v0 :=
y0 − yx
|y0 − yx|

γ0(y0, yx) + y0, (3.13)

and
vx :=

yx − y0
|yx − y0|

γx(y0, yx) + yx (3.14)

where γ0(y0, yx), γx(y0, yx) > 0 are chosen such that v0 ∈ ∂B3|x|/8(0) and vx ∈
∂B3|x|/8(x). v0 and vx can be found in Figure 3.1.

With this we define

Kvx := P vx
y0,yx

(Cy0) ∩ P vx
y0,yx

(Cyx),

that is, the intersection of the orthogonal projections of Cy0 and Cyx onto the
hyperplane through vx perpendicular to yx − y0. An example for Kvx in R3 is
pictured in Figure 3.2.

Since we are conditioning on the event that y0 and yx are good with respect
to each other, we can control the size of the area of Kvx . Recall that we assume
|x| is large enough for the good with respect to property to be symmetric, so that
Kvx is a (d− 1)-dimensional polytope with diameters D

(1)
Kvx

, . . . , D
(d−1)
Kvx

which
satisfy D

(i)
Kvx

≥ 1
2
φmin

{
D

(i)
y0 , D

(i)
yx

}
for all i ∈ {1, . . . , d− 1}. Consequently, the

(d− 1)-dimensional Lebesgue mass of Kvx is at most

c
d−1∏
i=1

min
{
D(i)

y0
, D(i)

yx

}
,

where c is a constant that depends only on d and k. Besides, D(1)
Kvx

, . . . , D
(k)
Kvx

≥
1
2
φfn1 and D

(k+1)
Kvx

, . . . , D
(d−1)
Kvx

≥ 1
2
φϵ.
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3.3. Proof of the upper bound

Using now Lemma A.1 we know that there exists a (d−1)-dimensional box
contained in Kvx which is congruent to

c ·
(
[0, 2−2(d−2)fn1 ]

k × [0, 2−2(d−2)ϵ]d−1−k × {0}
)
.

We denote by BKvx
the box which satisfies this. This box is in general not

unique, so we choose without loss of generality BKvx
using an arbitrary lexi-

cographic ordering of the boxes with respect to their centers, orientations and
side-lengths. Note that the set of all possible boxes is closed and as such,
a minimal (or maximal) element of can be uniquely chosen. In addition to
that we define roty0,yx as the rotation that maps the canonical basis vectors
e1, . . . , ed of Rd as follows,

roty0,yx(e1) =
yx−y0
|yx−y0| ,

roty0,yx(ei) = vi, i ∈ {2, . . . , d},

where vi is defined as the orientation of the (i − 1)st diameter of BKvx
, for

i ∈ {2, . . . , d}. Note that the choice of (vi)i∈{2,...,d} is unique up to permu-
tations and mirrorings of the side-lengths of BKvx

(and we pick the first of
these according to some arbitrary ordering). We say a vertex y ∈ X with
corresponding box that intersects y0 and yx is good if it has the following
properties.

(C1) Cy intersects P v0
y0,yx

(BKvx
) and 1

3
(BKvx

− vx) + vx.

(C2) The kth side-length of Cy is at least 2(|vx − v0|+ |y − v0|).

(C3) For the location of y we have

y ∈ Iy0,yx := roty0,yx

({
y = (y(1), . . . , y(d)) ∈ Rd : y(1) ≤ −|x|

min{d−k,k}
αk−k

−ϵ
,

y(i) ∈
[
−c1(|y(1)|+ |v0 − vx|), c1(|y(1)|+ |v0 − vx|)

]
,

y(j) ∈
[
−c2(|y(1)|+ |v0 − vx|), c2(|y(1)|+ |v0 − vx|)

]
,

i ∈ {2, . . . , k + 1}, j ∈ {k + 2, . . . , d}
})

+v0,

where

c1 :=
1
3
· 2−2(d−2)fn1

|v0 − vx|
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3.3. Proof of the upper bound

and

c2 :=
1
3
· 2−2(d−2)ϵ

|v0 − vx|
.

(C1) is chosen such that it implies that Cy intersects with Cy0 and Cyx .
Next, (C2) guarantees that the first k side-lengths of Cy are large enough to
result in an intersection with 1

3
(BKvx

− vx) + vx when the orientation of Cy

is suitable. (C3) ensures that the argument we will use works for all k ∈
{1, . . . , d− 1} and that we do not have to treat the case k = 1 separately. In
particular it, together with (C2), ensures that if Cy intersects 1

3
(BKvx

−vx)+vx,
it must also intersect P v0

y0,yx
(BKvx

). Figure 3.2 depicts the sets (C1) and (C3)
for the 3-dimensional case and Figure 3.3 illustrates the intuition behind the
constants c1 and c2.

To keep notation in the following calculations concise, we write EF z0,zx
y0,yx

instead of E(y0,yx)
2 ∩ F

(0,z0,y0)
n1 ∩ F

(x,zx,yx)
n1 ∩ Eb

0,z0
∩ Eb

x,zx .

P0,x,z0,zx,y0,yx

(
E

(y0,yx)
1 |E(y0,yx)

2 ∩ F (0,z0,y0)
n1

∩ F (x,zx,yx)
n1

∩ Eb
0,z0

∩ Eb
x,zx

)
≤ E0,x,z0,zx,y0,yx

[
P0,x,z0,zx,y0,yx

[
there exists no y ∈ X such that

y ∈ B
|x|

min{d−k,k}
αk−k

−ϵ
(0)c: Cy∩ Cy0 ̸= ∅ and Cy∩ Cyx ̸= ∅ | Fx

n1

]
×1EF

z0,zx
y0,yx

]/
P0,x,z0,zx,y0,yx(EF z0,zx

y0,yx
)

≤ E0,x,z0,zx,y0,yx

[
P0,x,z0,zx,y0,yx

[
there exists no y ∈ X such that y ∈ Iy0,yx :

Cy ∩ Cy0 ̸= ∅ and Cy ∩ Cyx ̸= ∅ | Fx
n1

]
1EF

z0,zx
y0,yx

]
/
P0,x,z0,zx,y0,yx(EF z0,zx

y0,yx
)

= E0,x,z0,zx,y0,yx

[
exp

(
− u

∫
Iy0,yx

PC

(
Cy ∩ Cy0 ̸= ∅ and Cy ∩ Cyx ̸= ∅

)
dλ(y)

)
×1EF

z0,zx
y0,yx

]/
P0,x,z0,zx,y0,yx(EF z0,zx

y0,yx
).

The last inequality follows since Iy0,yx ⊆ B
|x|

min{d−k,k}
αk−k

−ϵ
(0)c. We can continue

bounding the previous expression from above by

E0,x,z0,zx,y0,yx

[
exp
(
−u

∫
Iy0,yx

PC

(
Cy ∩

(
1
3
(BKvx

− vx) + vx
)
̸= ∅ and

D(k)
y ≥ 2(|vx − v0|+ |y − v0|)

)
dλ(y)

)
1EF

z0,zx
y0,yx

]
/
P0,x,z0,zx,y0,yx(EF z0,zx

y0,yx
)
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3.3. Proof of the upper bound

(a) The hyperplane perpendicular to y0−
yx which includes vx depicted as a grid,
Cy0 in blue and its orthogonal projection
in turquoise, Cyx in red and its orthogonal
projection in pink.

(b) Dashed black line the boundary
of Kvx , dotted yellow line the bound-
ary of BKvx

, in blue the boundary of
1
3(BKvx

− vx) + vx, yellow point is vx.

(c) Green lines are the boundary of P v0
y0,yx(BKvx

). The gray lines as the construction
to get the allowed positions for the location of y, i.e. Iy0,yx , whose boundary is in
orange.

Figure 3.2: Example in R3. Visualisation of the possible defined sets in (C1)
and (C3) for the connector y for y0 and yx.

which can be rewritten to

E0,x,z0,zx,y0,yx

[
exp
(
−u

∫
Iy0,yx

PC(Cy ∩ 1
3
(BKvx

− vx) + vx) ̸= ∅∣∣D(k)
y ≥ 2(|vx − v0|+ |y − v0|)

)
× P

(
D(k)

y ≥ 2(|vx − v0|+ |y − v0|)
)
dλ(y)

)
1EF

z0,zx
y0,yx

]
/
P0,x,z0,zx,y0,yx(EF z0,zx

y0,yx
).
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3.3. Proof of the upper bound

(a) Intuition behind the choice of the constants c1 and c2, using the proportion of
the side-length of 1

3(BKvx
− vx) + vx (the blue line on the right side of the picture)

and P v0
y0,yx(BKvx

) (the green line), where ℓi = fn1 for i ∈ {2, . . . , k + 1} and ℓi = ϵ
for i > k + 1.

(b) An illustration of the choice of y(i) in Iy0,yx for i ∈ {2, . . . , d}.

Figure 3.3: Illustration of the role of c1 and c2 in R3. In the above figures, ci
equals c1 for i ∈ {2, . . . , k+1} and equals c2 otherwise. The colour of the lines
constructing Iy0,yx are grey as before; similarly the colours for the boundary of
Iy0,yx , Cy0 , Cyx , P v0

y0,yx
(BKvx

) and 1
3
(BKvx

− vx) + vx are the same as in Figure
3.2.

In order to bound the integrand we use translation and rotation invariance of
the Lebesgue measure, Potter bounds and the size of the set of orientations of
Cy that results in an intersection with 1

3
(BKvx

− vx) + vx) which yields

PC(rot
−1
y0,yx

(Cy − v0) ∩ rot−1
y0,yx

(
1
3
(BKvx

− vx) + vx − v0
)
̸= ∅∣∣D(k)

y ≥ 2(|vx − v0|+ |y|)
)

× P
(
D(k)

y ≥ 2(|vx − v0|+ |y|)
)

≥ c
f
min{d−k,k}
n1

(|vx − v0|+ |y|)d−k

(
|vx − v0|+ |y|

)−αk−ε
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3.3. Proof of the upper bound

and use this lower bound going forward. Using now that |vx−v0| ∈ (|x|/4, 2|x|),
|y| > cfn1+1, |x|/8 = fn1 and the norm equivalence in Rd we can bound the
last term from below by

c
|x|min{d−k,k}

|y|d−k
1

|y|−αk−ε
1 = c|x|min{d−k,k}|y|−αk−ε−d+k

1

where | · |1 is again the 1-norm. Putting it all together, we can therefore bound

P0,x,z0,zx,y0,yx

(
E

(y0,yx)
1 |E(y0,yx)

2 ∩ F (0,z0,y0)
n1

∩ F (x,zx,yx)
n1

∩ Eb
0,z0

∩ Eb
x,zx

)
from above by

E0,x,z0,zx,y0,yx

[
exp
(
−uc

∫
I0,x

|x|min{d−k,k}|y|−αk−ε−d+k
1 dλ(x)

)
1E

z0,zx
y0,yx

]
/
P0,x,z0,zx,y0,yx(E

z0,zx
y0,yx

).
(3.15)

We focus now at the integral. Note that we use in the rest of this section,
compared to Section 2.2.4, another notation for integrals in order to get the
calculation more readable. More precisely the order of the terms in the integral,
as the boundaries of the integrals are more complicated, are different.

Using now the definition of I0,x we get∫
I0,x

|x|min{d−k,k}|y|−αk−ε−d+k
1 dλ(x)

≥
∫ ∞

|x|
min{d−k,k}

αk−k
−ϵ
dy(1)

∫ c1(y(1)+|v0−vx|)

−c1(y(1)+|v0−vx|)
dy(2). . .

∫ c1(y(1)+|v0−vx|)

−c1(y(1)+|v0−vx|)
dy(k+1)

∫ c2(y(1)+|v0−vx|)

−c2(y(1)+|v0−vx|)
dy(k+2)

· · ·
∫ c2(y(1)+|v0−vx|)

−c2(y(1)+|v0−vx|)
|x|min{d−k,k}|y|−αk−ε−d+k

1 dy(d),

where we highlight the change of integration range when going from k + 1 to
k + 2. Using y(1) + |v0 − vx| ≥ 1

2
y(1) we can bound this from below by

∫ ∞

|x|
min{d−k,k}

αk−k
−ϵ

dy(1)
∫ c1

2
y(1)

− c1
2
y(1))

dy(2)· · ·
∫ c1

2
y(1)

− c1
2
y(1))

dy(k+1)

∫ c2
2
y(1)

− c2
2
y(1)

dy(k+2)

· · ·
∫ c2

2
y(1)

− c2
2
y(1)

|x|min{d−k,k}|y|−αk−ε−d+k
1 dy(d)

≥ c

∫ ∞

|x|
min{d−k,k}

αk−k
−ϵ
|x|min{d−k,k}(|y(1)|+ k| c1

2
y(1)|+ (d− k − 1)| c2

2
y(1)|)−αk−ε+k−1

dy(1)
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3.3. Proof of the upper bound

≥ c

∫ ∞

|x|
min{d−k,k}

αk−k
−ϵ
|x|min{d−k,k}|y(1)|−αk−ε+k−1dy(1)

≥ c|x|min{d−k,k}
(
|x|

min{d−k,k}
α−k

−ϵ
)−αk−ε+k

. (3.16)

In the first inequality we integrated over the last d− 1 coordinates of y. The
second inequality is given by using definitions of c1 and c2. Integrating over the
first coordinate of y then gives the final inequality. Continuing the calculation
of (3.15), substituting in the bound from (3.16), we get

E0,x,z0,zx,y0,yx

[
exp
(
−uc|x|min{d−k,k}

(
|x|

min{d−k,k}
α−k

−ϵ
)−αk−ε+k)

1E
z0,zx
y0,yx

]
/
P0,x,z0,zx,y0,yx(E

z0,zx
y0,yx

)

≤ exp
(
−uc|x|−ε

min{d−k,k}
αk−k

+ϵ(αk+ε−k)
)

≤ exp
(
−uc|x|ϵ(αk−k)/2

)
,

where the last inequality follows using that for 0 < ε < (αk − k)2ϵ
/(

2min{d−
k, k}

)
(recall that we can choose ε appearing in the Potter bounds arbitrarily

small) we have

−ε
min{d− k, k}

αk − k
+ ϵ(αk + ε− k) >

ϵ

2
(αk − k) > 0.

as in Section 2.2.2.

With this, we have proven that the first term of (3.12) converges to zero
as |x| becomes large. It remains to prove the same for the second term, which
we do with the following lemma.

Lemma 3.6. We have

P0,x,z0,zx,y0,yx

(
E

(y0,yx)
3 ∩ F (0,z0,y0)

n1
∩ F (x,zx,yx)

n1
∩ Eb

0,z0
∩ Eb

x,zx

)
≤ exp(−uc|x|ϵ(αk−k)−δ)

for 0 < δ < ϵ(αk − k) and |x| large enough.

Proof. Let Ẽ
(y0,yx)
3 be the event defined in such a way that

Ẽ
(y0,yx)
3 ∩F (0,z0,y0)

n1
∩F (x,zx,yx)

n1
∩Eb

0,z0
∩Eb

x,zx = E
(y0,yx)
3 ∩F (0,z0)

n1−1 ∩F
(x,zx)
n1−1 ∩Eb

0,z0
∩Eb

x,zx

holds, i.e. the vertices y0 and yx are good with respect to each other and y0

76



3.3. Proof of the upper bound

(resp. yx) can be used to extend the path of length n1 − 1 starting in z0 (resp.
zx) so that the extended path implies the event F (0,z0,y0)

n1 (resp. F (x,zx,yx)
n1 ). We

have

P0,x,z0,zx,y0,yx

(
E

(y0,yx)
3 ∩ F (0,z0,y0)

n1
∩ F (x,zx,yx)

n1
∩ Eb

0,z0
∩ Eb

x,zx

)
= P0,x,z0,zx,y0,yx

(
Ẽ

(y0,yx)
3 ∩ F

(0,z0)
n1−1 ∩ F

(x,zx)
n1−1 ∩ Eb

0,z0
∩ Eb

x,zx

)
≤ P0,x,z0,zx,y0,yx

(
Ẽ

(y0,yx)
3 |F (0,z0)

n1−1 ∩ F
(x,zx)
n1−1 ∩ Eb

0,z0
∩ Eb

x,zx

)
.

To bound this probability from above recall that in general, for vertices of paths
we consider, for every n ∈ N and suitable z ∈ Rd, i.e. z ∈ On+1(xn), using a
similar argument as for Section 2.2.2, we can obtain the following inequality

PC

(
(z + C) ∩Q∗

fn
(xn, x) ̸= ∅ |D(k)

C ≥ 22(d−1)+ϵfn+1

)
PC(D

(k)

C ≥ 22(d−1)+ϵfn+1)

≥ c
fmin{d−k,k}
n

fd−k
n+1

f−αk+ε
n+1

.

(3.17)

Setting n = n1 − 1, the right hand side of this inequality is a lower bound
for the probability that a vertex with given location in On+1(xn) is the n1th
vertex in the growing path as required for y0 (resp. yx) to satisfy F

(0,z0,y0)
n1

(resp. F (x,zx,yx)
n1 ) under the condition F

(0,z0)
n1−1 ∩F

(x,zx)
n1−1 ∩Eb

0,z0
∩Eb

x,zx . In addition
to that note that y0 (resp. yx) has location in O0 := B3|x|/8(0)\B|x|/8(0) (resp.
Ox := B3|x|/8(x) \B|x|/8(x)). Hence y0 and yx lie in disjoint areas.

Writing from here on F
(0,z0)
n1−1 ∩F

(x,zx)
n1−1 ∩Eb

0,z0
∩Eb

x,zx as G(0,x,z0,zx)
n1−1 and using

properties of the Poisson point process we calculate

P0,x,z0,zx,y0,yx

(
Ẽ

(y0,yx)
3 |F (0,z0,y0)

n1−1 ∩ F
(x,zx,yx)
n1−1 ∩ Eb

0,z0
∩ Eb

x,zx

)
= E0,x,z0,zx,y0,yx

[
P0,x,z0,zx,y0,yx

[
̸ ∃v,w ∈ X that extend F

(0,z0)
n1−1 and F

(x,zx)
n1−1 such

thatv andw are good with respect to each other. |Fx
n1−1

]
×1

G
(0,x,z0,zx)
n1−1

]/
P0,x,z0,zx,y0,yx(G

(0,x,z0,zx)
n1−1 )

≤ E0,x,z0,zx,y0,yx

[
exp
(
−uc

∫
S

dPpv

∫
O0

dλ(w)
∫

Ox∩A(w,n1)

Pv,w,pv

( ∡(p(i)w , p
(i)
v ) ≤ ϵ

log |x| ,

∀i ∈ {1, . . . , d}

)
f
2min{d−k,k}
n1−1

f
2(d−k)
n1

f−2(αk−ε)
n1

dλ(v)
)

×1
G

(0,x,z0,zx)
n1−1

]/
P0,x,z0,zx,y0,yx(G

(0,x,z0,zx)
n1−1 ),

where S is the set of all possible orientations of C (see below for a more
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3.3. Proof of the upper bound

precise definition) and we used (3.17) to thin out the Poisson point process in
the inequality. Note that the bound in (3.17) only holds for pairs of vertices for
which v ∈ On1(xn1−1) (and similarly for w). Since we are restricting ourselves
to O0 and Ox, this assumption is satisfied. In particular, since O0 and Ox are
bounded, there exists a constant c > 0 for which (3.17) holds for all vertices
with locations inside O0 and Ox. Furthermore, in line with our notation, pv in
the index of P signifies that we conditioned on pv.

To continue, define

S :=
d−1×
i=1

Sd−i

to be the set of all possible orientations of C. Here, Sd−i is the set of possible
orientations for p(i)

C , which is the orientation of the ith side of C, for i ∈
{1, . . . , d− 1}, relative to all preceding orientations. Note that the orientation
of p(d)

C is completely determined (up to mirroring) when the orientations of
p(1)

C , . . . , p(d−1)

C are known; also observe that given all preceding orientations,
p(i)

C is distributed uniformly on Sd−i. We write PpC for the law of the vector
(p(1)

C , . . . , p(d)

C ) and Ppv when C is attached to a specific location v ∈ P.

To bound P0,x

(
Ẽ3 |F (0)

n1−1 ∩ F
(x)
n1−1 ∩ Eb

0 ∩ Eb
x

)
from above we calculate

∫
S

dPpv

∫
O0

dλ(w)
∫

Ox∩A(w,n1)

f
2min{d−k,k}
n1−1

f
2(d−k)
n1

f−2(αk−ε)
n1

× Pv,w,pv

(
∡(p(i)w , p(i)v ) ≤ ϵ

log |x| , ∀i ∈ {1, . . . , d}
)
dλ(v)

≥ c

∫
S

dPpv

∫
O0

dλ(w)
∫

Ox∩A(w,n1)

f
2min{d−k,k}
n1−1

f
2(d−k)
n1

f−2(αk−ε)
n1

log(|x|)−(d−1)!dλ(v)

≥ cf 2d
n1

f
2min{d−k,k}
n1−1

f
2(d−k)
n1

f−2(αk−ε)
n1

log(|x|)−(d−1)!.

The first inequality holds since the set of allowed orientations for p(i)w for fixed
p
(i)
v has volume of order log(|x|)−(d−1)!, which can be shown by induction. In-

tuitively, looking at the sets that are given for the orientations of the sides of
C, we first consider the longest side and determine the rotational area which is
allowed so that it has suitable orientation; this is a set of size proportional to
log(|x|)−d+1. Fixing this first orientation, it remains to consider the remaining
d− 1 sides. For the orientation of the second side we have a restriction of the
rotational area which is proportional to log(|x|)−(d−2) and so on, until we are
looking at the second to last side, where we have a rotational area proportional
to log(|x|)−1 left. Altogether this leads to the exponent −(d−1)!. For the final
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3.3. Proof of the upper bound

inequality above we use that the volume of O0 resp. Ox ∩ A(w, n1) for fixed
w ∈ Rd is of order fd

n1
and that Ppv is uniform on S.

Choosing again 0 < ε < (αk − k)2ϵ
/(

2min{d − k, k}
)
, the last expression

can be bounded from below by

f ϵ(αk−k)
n1

log(|x|)−(d−1)! ≥ c|x|ϵ(αk−k)−δ,

with δ > 0 small enough such for the exponent of |x| to be positive.
Together we get

P0,x,z0,zx,y0,yx

(
E

(y0,yx)
3 ∩F (0,z0,y0)

n1
∩F (x,zx,yx)

n1
∩Eb

0,z0
∩Eb

x,zx

)
≤ exp(−uc|x|ϵ(αk−k)−δ).

Note that the upper bounds from Lemma 3.5 and Lemma 3.6 do not
depend on z0, zx, y0 and yx. Consequently, integrating over these locations
and using these uniform bounds gives an upper bound for the last term of
(3.8). This implies that the chemical distance for fixed k ∈ M is given by

2+δ

log
(

min{d−k,k}
αk−k

) log log |x| with high probability as |x| → ∞.

Finally, we get the claimed upper bound as follows. Recall that k is such
that αk ∈ (k,min{2k, d}), i.e. k ∈ M. Furthermore, we have proven that
the upper bound holds for the “smallest” Poisson Boolean model with convex
grains. This gives us also an upper bound for the chemical distance for every
other Poisson Boolean base model with αk ∈ (k,min{d, 2k}), for any and
therefore every k ∈ M. Together, we get that dist(0,x) is, under the condition
that 0, x ∈ P and 0 ↔ x, for every δ > 0, bounded from above by

min

{
2 + δ

log
(min{d−k,k}

αk−k

) log log |x| : k ∈ M

}
=

2 + δ

log
(min{d−κ,κ}

ακ−κ

) log log |x|,
with high probability as |x| → ∞.

Remark 3.7. For the case where there exists some k ∈ {1, . . . , d} such that
αk ≤ k this model dominates (in the standard, almost sure coupling sense;
see Remark 3.3) all other models where we replace αk by k + ρ for ρ > 0 in
the “smallest” box model as in the proof of the upper bound. Looking at the
smaller model we have already shown that the upper bound for the chemical
distance is given by (2 + δ)/log

(min{d−k,k}
ρ

)
log log |x|. With ρ ↓ 0 we get that

the factor (2 + δ)/log
(min{d−k,k}

ρ

)
is getting arbitrary small. With this we get
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3.3. Proof of the upper bound

that dist(x,y) grows in the bigger model faster than c log log |x − y| for all
c > 0.
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Chapter 4

Examples

In this chapter, we discuss a few examples. We investigate ellipses with long
and short axes, where the long axes are almost surely the same and regularly
varying, while the short axes are fixed, of size 1. We therefore have that the
long diameters are strongly positive correlated. Another example is the case
where we consider ellipses whose axes are generated by independent random
variables. The diameters are then determined by the ordering of these random
variables according to size. Furthermore, we consider a case where we have
different strong positive correlation. Here, the axes are not almost surely the
same, but are determined by a single random variable to different powers. In
addition, we investigate right triangles. The location of the vertex is then
uniformly chosen as one of the corners.

Moreover, we will also discuss an example in which we observe that we
obtain robustness by applying the second part of Theorem 2.2, but non-
robustness when we keep the parameters and change the correlation structure.

Ellipsoids with long and short axes

We sample a random radius R > 1 from a distribution which has a tail dis-
tribution that is regularly varying with index −α. For integers 0 ≤ m ≤ d

we define a random ellipsoid K with centre in the origin and d−m long axes
of length R and m short axes of length one. We let C be the random convex
set obtained by rotating K about its centre by an independent uniform angle
ϑ ∈ Sd−1. Then

• C is sparse if α ≥ d−m.

• C is robust if α < min{2(d−m), d}.

• C is non-robust if α > min{2(d−m), d}.
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3.3. Proof of the upper bound

Observe that in the case m = 0 the ellipsoid C is a ball of random radius and
in this case there exists no grain distribution that is both robust and sparse,
as observed earlier by Gouére [22]. The case m = 1, d = 2 corresponds to the
case studied by Teixeira and Ungaretti [53] and we recover their result. Note
that in all dimensions d ≥ 2 whenever 0 < m < d there exists α such that C

is both robust and sparse.

As stated in Proposition 2.1 it is known that the model is dense if the
volume of the convex body has infinite expectation. This is equivalent to
requiring that Rd−m has infinite expectation which is guaranteed if α < d−m.

For the grain distribution being robust we look at the first part of Theo-
rem 2.2. The statement in this theorem is equivalent to α < min{2(d−m), d}.
This is clear by looking at the tail indices of the distribution of the diameters.
Let k ≤ d−m. We have for x > 0 and k ≤ d−m that

P(D(k) ≥ x) = P(R ≥ x),

i.e. D(k) has a regularly varying tail distribution with index −α. For k > d−m

we have D(k) = 1 almost surely. So D(k) has a tail distribution with index −∞
for k > d−m. If we are now asking for αk < min{2k, d} for some k ∈ {1, . . . , d}
one can see that this is the same as requiring α < 2(d −m) if d −m ≤ m or
α < d if d−m > d/2. This is equivalent to α < min{2(d−m), d}.

The last criterion, i.e. the criteria on non-robustness is given by Theo-
rem 2.3. The conditions in this theorem, namely that the second moment of
the volume exists or that the diameter, i.e. D(1) is in Ld, gives us α > 2(d−m)

and therefore also that the second moment of the volume is fininte and α > d

to ensure D(1) ∈ Ld. In other words, we require α > min{2(d −m), d}. Note
that this inequality being satisfied also implies the condition on the αk for
k ∈ {1, . . . , d} as required in Theorem 2.3. Ignoring the boundary cases, we
see that our criterion is sharp.

With Theorem 3.1 we can state also something about the chemical distance.
If we have that M ≠ ∅, i.e. α ∈ (d−m,min{2(d−m), d}), the first condition
from Theorem 3.1 on the parameters holds and we get

lim
|x−y|→∞

Px,y

( 2− δ

log
(min{m,d−m}

αd−m−d+m

) ≤ dist(x,y)

log log |x− y|
≤ 2 + δ

log
(min{m,d−m}

αd−m−d+m

)∣∣∣x ↔ y
)
=1,

for x, y ∈ P and small δ > 0. In particular this theorem improves both the
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3.3. Proof of the upper bound

upper and lower bounds shown in [34], where Hilário and Ungaretti considered
the special case, namely d = 2 and m = 1 with ellipses such that the diameters
fulfil P(D(1) ≥ r) = cr−α for c > 0, α ∈ (1, 2) and D(2) = 1 almost surely.

Ellipsoids with independent axes

We sample d independent random radii R1, . . . , Rd ≥ 1 from distributions
which have regularly varying tail distributions with index −βi. We define a
random ellipsoid K ⊂ Rd with axes of length R1, . . . , Rd and let C be the
random convex set obtained by rotating K about its centre by an independent
uniform angle ϑ ∈ Sd−1. Then

• C is sparse if βi > 1 for all 1 ≤ i ≤ d.

• C is robust if there exists 1 ≤ i ≤ d such that βi < 2.

• C is non-robust if β1 > d.

Note that the criteria are not sharp in this example. In this setting we assume
without loss of generality that βi ≤ βi+1 for all i ∈ {1, . . . , d− 1}. We are now
interested in the tail indices of the diameters D(1) , . . . , D(d) . For x > 0 we have

P(D(1) ≥ x) = 1− P(D(1) < x) = 1−
d∏

k=1

(1− P(Rk ≥ x))

by using the independence of the radii. Using now the calculation rule of
regularly varying functions (see for example [3]) we have that D(1) is regularly
varying with index −β1. Using again the independence of the radii and consid-
ering the event {D(k) ≥ x} leads us to the tail indices of the other diameters;
more precisely D(k) is regularly varying with index −

∑k
i=1 βi. Using Propo-

sition 2.1 we get that the grain distribution is sparse if Vol(C) ∈ L1. In our
case we have due to independence

E[Vol(C)] =
d∏

i=1

E[Ri],

which is finite if
d

min
i=1

βi > 1.

The first criterion of Theorem 2.2 gives the condition for the αk :=
∑k

i=1 βi

to ensure robustness. This can be equivalently stated as

(i) There exists 1 ≤ k ≤ d such that αk < min{2k, d}.
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(ii) There exists 1 ≤ i ≤ d such that βi < 2.

(ii) follows from (i) due to the fact that if βi > 2 for all i then we have
αk =

∑k
i=1 βi > 2k for every k ∈ {1, . . . , d}. The other direction is also

true. If αk ≥ min{2k, d} for every k ∈ {1, . . . , d} we have in particular that
β1 = α1 ≥ 2. Due to βi+1 ≥ βi we have βi ≥ 2 for every i ∈ {1, . . . , d}.

The second (trivial) criterion from Theorem 2.3 gives us that β1 > d implies
the grain distribution is non-robust.

We consider now the chemical distance in this example for the robust but
sparse case. For that we assume for 1 ≤ i ≤ d that βi < 2 and additionally
that min1≤i≤d βi > 1 to guarantee that αk > k for all 1 ≤ k ≤ d and therefore
also Vol(X) ∈ L1. Define now as in Theorem 3.1 M :=

{
s ∈ {1, . . . , d − 1} :∑s

i=1 βi ∈ (s,min{2s, d})
}

and recall the definition of κ. We get then that

Px,y

(
2− δ

log min{κ,d−κ}
−κ+

∑κ
i=1 βi

≤ dist(x,y)

log log |x− y|
≤ 2 + δ

log min{κ,d−κ}
−κ+

∑κ
i=1 βi

∣∣∣∣∣ x ↔ y

)
|x−y|→∞−→ 1.

for x, y ∈ P while δ > 0.

Ellipsoids with strongly dependent axes

Let 0 ≤ β1 ≤ . . . ≤ βd and pick U ∈ (0, 1) uniformly at random. We define
a random ellipsoid K ⊂ Rd with axes of length U−β1 , . . . , U−βd and let C be
the random convex set obtained by rotating K about its centre (or indeed any
inner point) by an independent uniform angle ϑ ∈ Sd−1. Then

• C is sparse if
∑d

i=1 βi < 1,

• C is robust if there exists 1 ≤ k ≤ ⌊d/2⌋ such that βd−k+1>
1−

∑d−k
j=1+k βd−j+1

2k

or if there exists k > ⌊d/2⌋ such that βd−k+1 >
1
d
,

• C is non-robust if 1
d
> βd for every 1 ≤ k ≤ d.

In this model we have ellipsoids with axes of length U−βk with k ∈ {1, . . . , d},
U uniformly distributed on (0, 1), and 0 ≤ β1 ≤ .. ≤ βd. For x > 1 we get that

P(U−βk ≥ x) = P(U < x−1/βk) = x
− 1

βk ,

i.e. the diameter D(k) has regularly varying tail distribution with index − 1
βd−k+1

for k ∈ {1, . . . , d}. By the criterion of Proposition 2.1 we see that the model
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3.3. Proof of the upper bound

is sparse if
∑d

i=1 βi < 1. This is true due to the fact that Vol(C) has regu-
larly varying tail distribution with index (

∑d
i=1 βi)

−1. The specific criteria for

robustness of Theorem 2.2, i.e. the second part of the theorem, leads to the
conditions on the βk for k ∈ {1, . . . , d} to results in robustness. For that note
that γk = βd−k−1

βd
. Putting these equations in the specific conditions of the

robustness of Theorem 2.2 leads to the following criteria.

(i) For k ≤ ⌊d/2⌋ we have

α < 2kγk +
d−k∑

j=k+1

γj = 2k βd−k+1

βd
+

d−k∑
j=k+1

βd−j+1

βd
,

which is equivalent to βd−k+1 >
1− 1

βd−k+1

∑d−k
j=k+1 βd−j+1

2k
.

(ii) For k > ⌊d/2⌋ we have that α1 < dγk = βd−k+1

βd
which is the same as

βd−k+1 >
1
d
.

Furthermore, the criterion for non-robustness is given by 1
d
> βd by using the

second part of Theorem 2.3.
We focus now here in the setting M ̸= ∅ with β−1

d−k+1 > k for all k ∈
{1, . . . , d}, while we define M :=

{
s ∈ {1, . . . , d−1} : β−1

d−k+1 ∈ (k,min{2k, d})
}

and κ as in Theorem 3.1. For that we get by Theorem 3.1

Px,y

(
2− δ

log min{κ,d−κ}
β−1
d−κ+1−κ

≤ dist(x,y)

log log |x− y|
≤ 2 + δ

log min{κ,d−κ}
β−1
d−κ+1−κ

∣∣∣∣∣ x ↔ y

)
|x−y|→∞−→ 1,

for x, y ∈ P while δ > 0.

Random triangles

Let R > 1 be random with regularly varying tail of index −α, for α > 0. Take
the right triangle K ⊂ R2 such that R is the length of the hypotenuse and
Vol(K) = 1

4
R1+β, for some β ∈ (0, 1). Note that this describes the triangle

uniquely up to symmetries. Now choose the origin uniformly as one of the
corners of K and let C be the random set obtained by a uniform rotation via
this point. Then

• C is sparse if α > 1 + β,

• C is robust if α < 2,
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3.3. Proof of the upper bound

• C is non-robust if α > 2.

By our triangle construction D(1) is the length of the hypotenuse, i.e. D(1) =

R is regularly varying with tail index −α =: −α1. As the volume of a triangle
is half of the product of one side and the corresponding height and the height
orthogonal to the hypotenuse is the second diameter, we get

λ(C) = 1
4
R1+β = 1

2
D(1)D(2) ,

so that D(2) = 1
2
Rβ. Our proposition states that the model is sparse if λ(C) ∈

L1. In this example this is the case whenever α > β+1. To obtain robustness,
it suffices that D(1) ̸∈ L2, for which α < 2 is sufficient, and that there exists
k ∈ {1, 2} such that αk < min{2k, d}, which also holds if α < 2 as α1 = α.
To obtain non-robustness, it suffices that the second moment of the volume is
finite and the condition of the tail indices is fulfilled, which holds if α > 2+2β,
or that the second moment of the diameter is finite, which holds if α > 2. This
leads to non-robustness if α > 2. Considering now the robust case we focus on
α < 2 and M ≠ ∅ so that α ∈ (1, 2) to ensure the model is sparse. Theorem 3.1
gives us

Px,y

(
2− δ

log 1
α−1

≤ dist(x,y)

log log |x− y|
≤ 2 + δ

log 1
α−1

∣∣∣∣∣ x ↔ y

)
|x−y|→∞−→ 1.

for x, y ∈ P and δ > 0 small.

An example where correlations of the diameters determine robust-
ness

Our next example shows that the existence of a grain distribution where higher
order information about the diameter distributions is crucial to determine
whether it is robust or not. This shows that outside of the universal crite-
ria for robustness, further information can be important to ensure the grain
distribution is robust, which leads us to conjecture that our universal criterion
is in fact best possible.

The example is as follows. Let α1 ∈ (2, 2 + γ2) for some γ2 ∈ (0, 1/2).
We consider the following Poisson Boolean model with d = 3. Let D be a
regularly varying random variable with index −α1 and the diameters of C are
given as follows. For each realisation of C and independently of everything
else, with probability 1

2
, we set D(1) = D and D(2) = D(3) = ϵ and otherwise
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3.3. Proof of the upper bound

set D(1) = D(2) = Dγ2 and D(3) = ϵ. Then, D(1) is regularly varying with index
−α1 and D(2) regularly varying with index −α1/γ2 and the grain distribution
is non-robust. If we instead set D(1) = D, D(2) = Dγ2 and D(3) = ϵ almost
surely we get that the resulting grain distribution is robust. The second case
can be seen quickly as this was shown in Section 2.2.3 while we have that the
strongly positive correlated model can be rewritten so that the model has the
structure of the one in Section 2.2.3 (see Remark 2.2.2). We have for this kind
of correlation that the resulting grain distribution is robust if there exists some
k ≤ ⌊3/2⌋ such that αk < 2k+ 1

γk

∑d−k
j=k+1 γj. Our choice of parameters satisfies

this requirement, since

α1 < 2 · 1 + 1
γ1

3−1∑
j=1+1

γj = 2 + γ2.

We consider now the other case in this example. Let therefore D be a
regularly varying random variable with index −α1. Set, independently of ev-
erything else and with probability 1

2
, the diameters to be D, ϵ, ϵ and otherwise

set the diameters to be Dγ2 , Dγ2 , ϵ. Due to properties of regularly varying
functions, this leads to the claimed marginal distributions of the diameters,
namely D(1) is regularly varying with index −α1 and D(2) regularly varying
with index −α1/γ2. Note that D(3) is as in the previous case regularly varying
with index −∞ as it is almost surely constant.

For this explicit choice of the diameters and parameters, we show in the
following that the grain distribution is non-robust. We do this following the
same construction as in the proof from Section 2.2.4. Since it is now possible
for either the first or second diameter to be too large, the step in (2.13) has to
account for this, leading to

P0,x,y

(
0 ∼ x,x ∼ y,
0 ̸∼ y, 0 ̸∈ 2R̄y

)

≤ 1

2
P0,x,y

(
D̄x ≥ max

(
dist(R̄0, x), dist(R̄y, x)

)
,

R̄0 ∩ R̄x ̸= ∅, R̄x ∩ R̄y ̸= ∅, 0 ̸∼ y, 0 ̸∈ 2R̄y

)
. (4.1)

+
1

2
P0,x,y

(
D̄γ2

x ≥ max
(
dist(R̄0, x), dist(R̄y, x)

)
,

R̄0 ∩ R̄x ̸= ∅, R̄x ∩ R̄y ̸= ∅, 0 ̸∼ y, 0 ̸∈ 2R̄y

)
. (4.2)

where D̄x is defined as in Section 2.2.4 D̄. The above bound arises since
two distinct cases can lead to the diameters being sufficiently large for an
intersection - we are either in the first case where C has one large diameter
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3.3. Proof of the upper bound

and two small ones, or in the second where two of the diameters are large. By
construction, both of these cases can occur only when the matching case of
C occurs, which happens with probability 1

2
. The first summand, except for

the factor 1
2

is a special case of the case k = 1 of Theorem 2.3. The second
summand, again other than the factor 1

2
, is a special case of the case k = 2

from Theorem 2.3. We get by using the same calculation as in Section 2.2.4,
the condition that α1 > 2, α2 > 4 and that the second moment of the volume is
finite in order to get non-robustness. Our grain distribution satisfies all these
condition and in particular also the moment condition since

E[Vol(C)] ≤ 1
2
E[D] + 1

2
E
[
D2γ2

]
,

which is finite due to choice of parameters.

Remark 4.0.1. We have chosen d = 3 in the above case for clarity and concise-
ness. A similar argument can however be done for any d ≥ 2 and an arbitrary
choice of k ∈ {1, . . . , d − 1} for appropriately tuned tail exponents, by con-
sidering the perfectly correlated case which yields a robust grain distribution,
and the bivariate case which is instead non-robust.
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Chapter 5

Possible future work

In this chapter we consider some ideas for possible future work. For that,
we briefly summarise what we have shown so far. On the one hand, we have
proven that there exists conditions (universal or specific) that lead to a grain
distribution being dense, robust or non-robust. The criterion for density is
universal. For robustness we have shown a universal criterion and also a specific
one that applies to certain correlations for the diameters. The non-robustness
criterion refers to a special class of models belonging to Poisson Boolean models
with regularly varying diameters, but we could also apply the proof to other
examples. Furthermore, we have a result concerning the chemical distance for
models that satisfy the universal conditions for robustness, but αk > k for all
k ∈ {1, . . . , d}, so that we can guarantee sparseness. The order here is log log.
For all other ranges, we have shown that the order cannot be log log.

The following list includes questions that arose during this research.

• We have seen that there exists a universal result concerning density and
robustness. During this work we were not able to get any universal
criteria for the non-robustness. As we have seen in the last example
in Chapter 4, it is possible that correlations between the diameters are
crucial to determine whether a grain distribution is robust or non-robust.
One possible future work could therefore be to get more conditions on
volumes or some more information about correlation structures to get
a universal result on non-robustness beyond the trivial case D(1) ∈ Ld

from [22]. Perhaps the use of copulas could lead to insight on the topic.

• A further interesting work could be to focus on the parameters regimes
which were not covered in the first part of Theorem 3.1. In it we get
the exact behaviour of the chemical distance for the case M ̸= ∅ with
αk > k for all k ∈ {1, . . . , d}. In all other cases we argue that the found
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3.3. Proof of the upper bound

order of the behaviour of the chemical distance does not hold. One could
therefore work on the correct behaviour of the chemical distance for all
other parameter regimes. In our work we do not get more information
about these other parameters as the proofs rely on the structure of the
proof for the universal criteria on robustness.

• In our model we work here with a “hard” Poisson Boolean model. There
exist also so-called soft versions of Poisson Boolean model with balls as
convex grains. In these versions of the model, additional randomness
is attached to the existence of edges. For each pair of vertices further
random variable is sampled which influences the connection probability
between this pair. This can be thought of as blow-up of the spheres of
the two vertices of the pair by using this random variable. This soft
version of the Poisson Boolean model was introduced in [27] and one can
find more research on it in for example [37].

Further research opportunities lies in looking at some soft version of our
model by attaching an additional random variable to every pair of ver-
tices to modify the connection probability and get some other conditions
for density, robustness and non-robustness. In connection with this, the
chemical distance could be also interesting.

• In this work we are dealing with rotation invariant distributions of the
convex grains, i.e. we have that the convex bodies are rotated uniformly.
One could introduce some external field such as in the Ising model. Just
briefly: The Ising model is a model which is of interest in the field of
statistical mechanics. It is a model on Zd where the vertices get some
spin (values ±1) and one introduces an external field that influences the
magnetic properties. An introduction on this model can be found for
example in [52, 29].

We could also change just the choice of rotation for the convex grains
by having for example some preference for the first diameter to be ori-
ented in some given direction. This choice of rotation can be found for
example in the work of Broman [7]. There the author investigates stick
percolation and choose two different types of rotation, and looks at the
asymptotic behaviour of the critical intensity parameter. He shows that
in the uniform rotation case that λc(L) ∼ L−2, where L as the length of
the stick. For the case that all sticks are aligned in the same direction
he proves λc(L) ∼ L−1.

90



3.3. Proof of the upper bound

• In this work we deal with criteria on when we can observe a grain distri-
bution being dense, robust or non-robust. For non-robustness we have
that there exists some critical intensity which determines supercritical
behaviour and subcritical behaviour. One could focus on this critical
intensity and look at different features. For example, one could look at
the asymptotic behaviour of it depending on the dimension as Meester
et al. do for the random connection models [44] or the dependence on
other model parameters.

• One interesting feature could also be the degree distribution for our ex-
plicit model. One could try to calculate the exact distribution or on
bounds on them to see the dependence on the tail parameters α1, . . . , αd.
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Appendix A

Further calculation

A.1 Existence of a box inside a convex body K

The next lemma is a tool that is used throughout this thesis. It states that for
convex bodies with given diameters there exists a box with side-lengths which
are of the same order as the diameters of the convex body. To prove this
note that the smallest convex bodies that have diameters of size D(1) , . . . , D(d)

are the convex hulls of the endpoints of all of the diameters, that is, the d-
dimensional convex polytopes with 2d vertices. We will, from here on out,
refer to these endpoints as the polytope corners in order to avoid ambiguity
with the vertices of X . We will also use corners to refer to the vertices of boxes
for the same reason.

Lemma A.1. Let K ⊂ Rd be an arbitrary convex polytope with 2d cor-
ners and diameters 0 < ld ≤ · · · ≤ l1 < ∞. Then there exists a box
B := B(K) ⊂ K which is congruent to

d×
i=1

[0, 2−2(d−1)li].

Proof. We consider first the case d = 2. In this case, it is clear that the
line segment of length l1 connecting two of the polytope corners divides the
polytope into two triangles. Both triangles have a hypotenuse of length l1. We
denote by l̃2 (resp. l̂2) the height relative to the hypotenuse of the first (resp.
second) triangle. The maximum of both is at least l2

2
since together they equal

l2. Looking now at the bigger of the two triangles and using that triangles are
convex, it is clear that there exists a box B of side-lengths at least l2

4
and l1

2
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A.1. Existence of a box inside a convex body K

that is contained in this triangle and therefore also in K (see Figure A.1). It
can be quickly verified that if this is not possible, than l1 would not have been
the first diameter.

Figure A.1: l2 = l̃2 + l̂2. l̃2 = max{l̃2, l̂2} ≥ l2/2. B with side-lengths at least
l1/4 and l2/4.

Assume now that the claim is true for a fixed integer d ≥ 2. We consider
now the induction step for d+1. Due to the rotation invariance of the volume
in Euclidean space, we assume that l1, . . . , ld+1 have orientations e1, . . . , ed+1

corresponding to the canonical basis of Rd+1. We know that in the subspace
spanned by the directions of the first d diameters, i.e. spanned by e1, . . . , ed,
there exists a d-dimensional box of side-lengths 2−2(d−1)l1, . . . , 2

−2(d−1)ld which
we denote by Bd. Due to translation invariance, we assume without loss of
generality that Bd =×d

i=1
[−2−2d+1li , 2

−2d+1li] ×{0}. Looking now at the two
corners of the polytope which give rise to the (d + 1)st diameter with length
ld+1, it is true that at least one of them has distance greater or equal ld+1/2

from Rd × {0}, similar to the d = 2 case above. We focus on the corner which
satisfies this and denote it by p. Note that just like in the case d = 2, p has
to lie “above” a d-dimensional box congruent to×d

i=1
[0, ℓi]×{0} that includes

in its boundary the orthogonal projections of the first 2d corners of K onto
Rd × {0}, since otherwise at least for one ℓi for i ∈ {1, ..., d} could not be
the ith diameter. We next construct a box which is included in K using that
without loss of generality the (d+ 1)st coordinate of p equals ld+1/2.

Looking at the maximal distance of Bd to p in the direction ei for i ∈
{1, . . . , d}, it is clear that this distance is at most (1−2−2(d−1))li, since l1, . . . , ld
are the sizes of the first d diameters and K is a polytope. A visualisation in
3 dimensions is given in Figure A.2. We claim that a box which is congru-
ent to B :=×d+1

i=1
[0, 2−2dli] exists inside of K. To find it, we have to consider

two different cases. The first one is that p(i) ∈ [−2−2d+1li, 2
−2d+1li] for all

i ∈ {1, . . . , d}, i.e. the orthogonal projection of p onto Rd × {0} is contained
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A.1. Existence of a box inside a convex body K

(a) Perspective from above. (b) Perspective in 3 dimensions.

Figure A.2: Visualisation of the maximal distance of Bd and p in the directions
ei for i ∈ {1, . . . , d} for the case d = 2. The blue and red solid lines represent
an upper bound for the polytope with diameters l1 and l2. The black lines
and hatched green area denote the polytope given by the first 2d corners and
the diameters of length l1, . . . , ld. The green rectangle in this convex set is B2

while the rectangle with green boundary and hatched orange is B2 shifted such
that it has the maximal distance to p, which is given as the pink point.

in Bd. Note that the convex hull of Bd and p is a hyperpyramid (see Fig-
ure A.3). Considering now the connection lines of the corners of Bd and p

and choosing the midpoints of these lines we obtain that the convex hull of
these midpoints and their orthogonal projections onto Rd × {0} determine a
(d + 1)-dimensional box, which we denote by B̃. This box is congruent to

×d

i=1
[0, 2−2d+1li]× [0, ld+1/4] using the self-similarity property of hyperpyra-

mids. Since this box contains a smaller box which is congruent to the sought
after box B, we are done with this case. A visualisation of this step for d+1 = 3

is given in Figure A.3.
In the second case we are dealing with p such that the orthogonal projection

of it onto Rd × {0} does not lie in Bd, see Figure A.4. As we are interested in
finding a box which is congruent to the sought after box B, it suffices to look
for a minimal box and show that this is a suitable choice. We assume therefore
as in the previous case, that p has distance ld+1/2 to Rd × {0}.

We consider now the worst case scenario for the location of p, i.e. that it
has the maximal distance to the base Bd in each direction ei, i ∈ {1, . . . , d},
which is (1 − 2−2(d−1))li as discussed above. For that to be the case, p has to
lie in

N :=
{
x ∈ Rd+1 : (±(1− 2−2d+1)l1, . . . ,±(1− 2−2d+1)ld, ld+1/2)

}
.

We will determine now a new vertex which will be used to construct the sought
after box.

Let y ∈ Bd be such that it has maximal distance to p. The coordinates
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A.1. Existence of a box inside a convex body K

(a) 3-dimensional perspective. (b) Perspective from above.

Figure A.3: Example for the induction step for the first case of Lemma A.1
from d = 2 to d + 1 = 3 from different perspectives. B2 is in gray, p is the
pink point, in green are the connection lines of p and the corners of B2, the
orange points as the midpoints of these lines and the orthogonal projection of
the midpoints, and B̃ is the box represented by the black mesh.

of such a vertex y fulfil y(i) = ∓2−2d+1li for all i ∈ {1, . . . , d} and y(d+1) =

0. Due to the symmetry of Bd we can without loss of generality look at
p = ((1− 2−2d+1)l1, . . . , (1− 2−2d+1)ld, ld+1/2) ∈ N and consequently set y :=

(−2−2d+1l1, . . . ,−2−2d+1ld, 0) ∈ Bd. Consider now the point

z := 2−2(d−1)(p− y) + y = (2−2d+1l1, . . . , 2
−2d+1ld, 2

−2d+1ld+1)

which lies in the convex hull of Bd and p, and in particular lies “above” Bd (as
indicated in the example of Figure A.4). We claim even more, namely that
the convex hull of z and Bd is a minimal hyperpyramid which is also included
in K, whereby it is minimal in the sense that its volume is minimal across for
all choices of p. To see the latter, note that we are considering the worst case
location of p, but that there exists an actual corner of the polytope that has
the same distance from Rd × {0} as p. If one were to construct the point z

(call it z̃) for this corner, one would immediately have that z̃ lies in K and
that the distance of z̃ to Rd × {0} is not smaller than that of z (since z has
the minimal possible distance for a vertex constructed in this way).

With z taking the role of p we are back in the first case and using convexity
and the midpoints of the connection lines from z to the corners of Bd gives us
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A.1. Existence of a box inside a convex body K

the desired box. The midpoints and their orthogonal projections are given by

Ñ :=
{
x ∈ Rd+1 : x(i) ∈ {0, 2−2d+1li},∀i ∈ {1, . . . , d}, x(d+1) ∈ {0, 2−2d}

}
.

The resulting box, denoted as B, has side-lengths 2−2dl1, . . . , 2
−2dld which con-

cludes the proof.

(a) Induction step from d = 2 to d = 3 of the second case of p.

(b) Induction step zoomed in from d = 2 to d = 3 of the second case for p.

Figure A.4: Example for the described induction step of Lemma A.1 from
d = 2 to d + 1 = 3 of the second case for p. B2 in gray, p the pink point, in
turquoise z = (2−2d+1l1, . . . , 2

−2d+1ld, 2
−2d+1ld+1), yellow the connection line of

p and y, in green the connection line of z and y, the orange points as Ñ and
in purple the boundary of B. The hyperpyramid is given as the convex hull of
the turquoise point and B2. The boundary of B2 is indicated via the red and
blue lines.

We note that it is possible for one of the two hyperpyramids can be degen-
erate, that is, have 0 volume. This however does not affect the proof, since we
always work with the larger of the two when choosing the corner p.
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A.2 Results are independent of the choice of di-

ameters

The next lemma shows that the results of this thesis are independent from the
choice of diameters given the indices of the regularly varying diameters are
always the same, it does not matter in what order we chose the diameters, if
the sequence of diameters is not unique.

Lemma A.2. Let C ⊂ Rd be a random convex body such that there
exists a ball of radius ϵ > 0 which is included in C. We assume that
the diameters of C are given by D(1) , .., D(d) and that D(k) has regularly
varying distribution with index −αk for some positive αk for all k ∈
{1, ..., d}. We assume that α1 ≤ · · · ≤ αd.
Let D̃(1) , .., D̃(d) be another choice of diameters of C. Then D̃(1) , .., D̃(d)

also have regularly varying distribution with the same indices −α1 ≥
−α2 ≥ ... ≥ −αd.

Proof. Looking at the definition of the first diameter it is clear that D(1) = D̃(1)

almost surely. Otherwise one of them can not be the first diameter of C. In
addition to that we know that there exists rectangles R1 and R̃1 which are
congruent to

d×
i=1

[0, D(i) ] and
d×

i=1

[0, D̃(i) ]

and fulfil C ⊂ R1 and C ⊂ R̃1 almost surely. Using Lemma A.1 we have that
there exists also rectangles R2 and R̃2 which are congruent to

d×
i=1

[0, 2−2(d−1)D(i) ] and
d×

i=1

[0, 2−2(d−1)D̃(i) ]

and satisfy R2, R̃2 ⊂ C. To prove the claim note that a rectangle with side-
lengths l1 ≥ l2 ≥ · · · ≥ ld includes an d-dimensional ellipsoid with axes of
length l1, . . . , ld. Note also that the intersection of an ellipsoid with a hy-
perplane, which includes the center of the ellipsoid, is a (d − 1)-dimensional
ellipsoid [43]. Fix now an arbitrary hyperplane that includes the center of the
ellipsoid and let l′1 ≥ l′2 ≥ · · · ≥ l′d−1 be the axes of the (d − 1)-dimensional
ellipsoid resulting as the intersection of the d-dimensional ellipsoid with the
hyperplane. We have that l′i ≥ li+1 for all i ∈ {1, . . . , d − 1}. In other words
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the smallest intersection is to choose a hyperplane that is perpendicular to the
orientation of the biggest axis. Furthermore we know that

PH
p
(1)
C

(R1) ⊃ PH
p
(1)
C

(R̃2),

while p(1)

C is the orientation of D(1) . We also have that PH
p
(1)
C

(R̃2) includes the

orthogonal projection of an ellipsoid with axes 2−2(d−1)D̃(1) , . . . , 2−2(d−1)D̃(d)

onto H
p
(1)
C

. Using now all of these properties we have that this orthogo-
nal projection includes an (d − 1)-dimensional ellipsoid with axes of length
2−2(d−1)D̃(2) , . . . , 2−2(d−1)D̃(d) . With Lemma A.1 there exists some (d − 1)-
dimensional rectangle of side-length c1D̃(1) , . . . , c1D̃(d) for suitable c1 > 0 which
only depends on the dimension. So we get that

D(2) ≥ c1D̃(2)

almost surely. Conversely the same argumentation leads to the existence of
some finite c̃1 > 0 such that

D̃(2) ≥ c̃1D(2) .

Doing this procedure now for PH
p
(1)
C

(R1) and PH
p
(1)
C

(R̃2) resp. PH
p
(1)
C

(R2) and

PH
p
(1)
C

(R̃2) we get the existence for two constants c2, c̃2 ∈ (0,∞) such that

D(3) ≥ c2D̃(3)

and
D̃(3) ≥ c̃2D(3) .

This can be done iteratively. We get the existence of constants c1, . . . , cd−1,

c̃1, . . . , c̃d−1 ∈ (0,∞) such that for all i ∈ {1, . . . , d}

D(i) ≥ ci−1D̃(i) ≥ ci−1c̃i−1D(i)

almost surely. Due to the properties of regularly varying functions this shows
the claim.
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A.3 Proof of the inequality of (2.8)

In this section, we consider the key inequality (2.8) that is used in the proof
of the universal criteria of robustness, i.e. the first part of Theorem 2.2.

Lemma A.3. With the definitions from Chapter 2 we get for k ∈
{1, . . . , d− 1} that the following holds

PC

(
(x+ C)∩Q∗

fn
(xn, x) ̸= ∅ |D(k)

C ≥ 22(d−1)+ϵfn+1

)
PC(D

(k)

C ≥ 22(d−1)+ϵfn+1)

≥ c
fmin{d−k,k}
n

fd−k
n+1

f−(αk+ε)
n+1

for some constant c ∈ (0,∞) that depends only on d, k, ϵ and ε.

Proof. First, we note that the condition in the first term ensures that the first
k diameters of C are large enough so that C ∩On(xn) can occur. The reason
for this is, on the one hand, that the box, which is almost surely included in C

according to Lemma A.1, is large enough so that the convex body can intersect
with Cxn if the orientation is suitable. On the other hand, the sequence (fn)n∈N

grows super-exponentially, which means that the distance |xn+1 − xn| is of the
order of fn+1 . We have therefore that |xn+1 − xn| ≫ fn .

Looking now at the second factor on the left side of the inequality we can
use Potter bounds to get the lower bound which gives us the second factor on
the right side of the inequality. What now needs to be considered is the set of
all orientations that lead to an intersection or rather a lower bound of the size
of this set of orientation to prove the whole inequality, i.e. we have to show
that

PC

(
(x+ C)∩Q∗

fn
(xn, x) ̸= ∅ |D(k)

C ≥ 22(d−1)+ϵfn+1

)
≥ c

fmin{d−k,k}
n

fd−k
n+1

.

Recall that we are looking at fix k and ask for D(k) to be large enough and do
not look at D(j) for j ≤ k, as we know that this diameters are almost surely
bigger than D(k) . For all other diameters we assume them to be equal ϵ as we
are just interested in a lower bound.

We prove the claim in the following by induction over d.
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Base case d = 2: The only case to consider here is d − k = k = 1. Under
the condition that D(1) ≥ 22+ϵfn+1 , we can assume, in order to estimate the
intersection probability from below, that the second diameter has size ϵ. We
now consider the box centered at xn with side-lengths fn and ϵ. As x ∈ On(xn)

we have that the orthogonal projection of Cxn onto a hyperplane perpendicular
to xn−x includes a 1-dimensional box (given via Lemma A.1), i.e. a line which
has at least length cfn, while c ∈ (0,∞) only depending on φ from (2.4). This
means for the orientation of D(1)

x that the set of all possible orientations that
results in an intersection is of order cfn/fn+1 for suitable c ∈ (0,∞) by using
inequalities of trigonometrical functions for small angles. As min{d−k, k} = 1

we prove the base case.

Induction step d 7→ d + 1: For the induction step, we have to look at two
different cases. The first one is k ∈ {1, . . . , d− 1} and the second one k = d.

We first starts with k ∈ {1, . . . , d − 1}. Note that only the size of the
orthogonal projection of Cxn onto a hyperplane perpendicular to xn − x is
relevant as we have that first k diameters of x are large enough to result in an
intersection and we think of all other diameters being fix equal ϵ in order to
get a lower bound for the intersection probability. We assume without loss of
generality, in order to simplify notation, that the (d−1)-dimensional box which
is included in B∗

fn
(xn, x), due to Lemma A.1 is centered in the origin. Note

that we can assume that this box has k side-lengths of size cfn and all others
of side-length cϵ for some c only depending again on d and φ, as again we are
interested in a lower bound. This assumption is possible due to translation
invariance of the Lebesgue measure. And with the same reason we assume
that

1

2

(
{0} ×

k×
j=1

[−cfn , cfn ]×
d×

i=k+1

[−cϵ, cϵ]
)
=: BB∗

and x = (|x|, 0, . . . , 0). Note that |x| is of order fn+1 as |xn − x| is of order
fn+1 . Defining B̃B∗ as

B̃B∗ :=
1

2

(
{0} ×

k×
j=1

[−cfn , cfn ]×
d−1×

i=k+1

[−cϵ, cϵ]× R
)

we want to focus on

PC

(
(x+ C) ∩ B̃B∗ ̸= ∅ |D(k)

C ≥ 22(d−1)+ϵfn+1

)
,
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A.3. Proof of the inequality of (2.8)

i.e. the probability that Cx is well oriented in the sense that the orthogonal pro-
jection of Cx onto the hyperplane perpendicular to ed+1 := (0, . . . , 0, 1) ∈ Rd+1,
intersects with the orthogonal projection of BB∗ onto the same hyperplane. In
this event we have one restriction fewer as in the original conditional probabil-
ity (see first factor of (2.8)), i.e. this event reduces to an intersection problem
in d dimensions as we have uniformly rotation of the convex bodies. Using
induction hypotheses leads to

PC

(
(x+ C) ∩ B̃B∗ ̸= ∅ |D(k)

C ≥ 22(d−1)+ϵfn+1

)
≥ c

fmin{d−k,k}
n

fd−k
n+1

.

To get now the requested lower bound for the probability stated in this lemma,
note that for all orientations of the diameters that results in some intersection
with B̃B∗ , not all are suitable to results in an intersection with BB∗ . To get a
lower bound for that we get the additional factor cϵ/fn+1 as the proportion of
the set of all orientations to that Cx results in an intersection with BB∗ from
all other orientations that results in an intersections with B̃B∗ .

We can now consider the case k = d. Let Hx be the hyperplane defined as

Hx := x+ {y ∈ Rd+1 : ⟨y, p(d+1)
x ⟩ = 0},

i.e. the hyperplane that includes x and is perpendicular to the orientation
p
(d+1)
x . Recall that p

(d+1)
x is the orientation of the (d + 1)st diameter of Cx.

Note that the probability that Cx intersects with BB∗ (similar defined as in
the case k ∈ {1 . . . , d − 1}), under the condition that the first d diameters of
Cx are big enough, is smaller than the probability Hx intersects with BB∗ as
D

(d+1)
x > 0.

Let now T−x : Rd+1 → Rd+1 be the translation by −x, i.e.

T−x(M) = {y ∈ Rd : y − x ∈ M},

i.e. the translation by −x so that 0 ∈ T−x(Hx) and −x ∈ T−x(BB∗). This does
not effect the probability again due to translation invariance of the Lebesgue
measure. We have therefore

T−x(Hx) = {x ∈ Rd : ⟨y, p(d+1)
x ⟩ = 0}.

Again we assume without loss of generality that x = (|x|, 0, . . . , 0). As the
distance of y ∈ Rd+1 to T−x(Hx) is given as |⟨y, p(d+1)

x ⟩| we have to look at all
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possible orientations of p(d+1)
x such that this distance is smaller than cfn . As

we choose without loss of generality that x = (|x|, 0, . . . , 0), we have that the
following inequality should be satisfied

|⟨−x, p(d+1)
x ⟩| = |x|(p(d+1)

x )(1) < cfn

as we denote by (p
(d+1)
x )(1) the first coordinate of p(d+1)

x . Recall that |x| ≍ fn+1

and we get therefore the condition

(p(d+1)
x )(1) < cfn/fn+1 .

Due to the rotation invariance of the distribution of C we have that the orien-
tation of C is uniformly distributed. We therefore get that the probability of
having this restriction on p

(d+1)
x is of order fn/fn+1 as this is the order of the

proportion of all y = (y(1), . . . , y(d)) ∈ Sd which satisfy y(1) < cfn/fn+1 . This
leads to the required inequality and we are done with the proof. Note that the
fundamental properties of hyperplanes including distances of points to them
can be found for example in [15].

Remark A.3.1. Note that the whole calculation can be done similar to get
(2.9) in the proof of the specific criteria robustness of part (b) from Theo-
rem 2.2.

A.4 Intersection probability for A1(0,y)-A5(0,y)

In this section we prove a lemma that is crucial for the inequalities for the
intersection probabilities in A1(0,y)-A5(0,y). This lemma includes a result of
an upper bound of the probability that a random box intersects a box with fixed
side-lengths. Recall that in A1(0,y)-A5(0,y) the location of the connector x

for 0 and y is chosen in such a way that we reduce the intersection probability
by a suitable intersection of Cx with some special box, that is either the box
concerning to 0 or y or a box that can be constructed with the help of side-
lengths of these two boxes. For more details look again at Section 2.2.4.

This is the reason why the following lemma is useful to bound the inter-
section probability from above.
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Lemma A.4. Let R̄0 be a box that is congruent to

d×
i=1

[−j
(i)
0 , j

(i)
0 ]

while j0 ∈ Nd with j
(i)
0 ≥ j

(i+1)
0 for i ∈ {1, . . . , d − 1}. Denote R̄x as

the box which is centered in x with diameters D̄(1) , . . . , D̄(d) as defined
in Section 2.2.4. Let M ∈ (0,∞) be a constant and we assume that
D(i) = D(k) for all i ∈ {1, . . . , k − 1} and D(ℓ) ≤ M almost surely for
all ℓ ∈ {k + 1, . . . , d}. In addition to that we assume without loss of
generality that x = (|x|, 0, . . . , 0) and furthermore that x ̸∈ R̄0. We
are therefore looking at the generalisation of the ellipses model [53] as
described in Theorem 2.3. For that we have for large |x|

P(R̄x ∩ R̄0 ̸= ∅) ≤ c|x|−(αk−ε)

d−k∏
s=1

j
(s)
0

|x|
.

Proof. The proof is quite similar to the proof of Lemma A.3. We therefore
only point out what has to be change to get the upper bound. We have

P(R̄x ∩ R̄0 ̸= ∅) = P(R̄x ∩ R̄0 ̸= ∅ | D̄(k)
x ≥ dist(R̄0, x))P(D̄(k)

x ≥ dist(R̄0, x)).

For the calculations it is important that |x| is big so that dist(R̄0, R̄x) ≍ |x|.
We therefore get the first factor of the inequality, stated in this lemma, due
to Potter bounds. Note that as D(k) is regularly varying with index −αk the
Potter bounds also apply here. In addition to that we know that D(j) ≤ M

for j ∈ {k + 1, . . . , d} almost surely. We therefore bound the box R̄x from
above by replacing D̄(j) by ⌈M⌉. We assume that the box R̄0 is oriented in
such a way that the orientation of the smallest diameter is the same as the
orientation of (x−0)/|x| to get an upper bound for the intersection probability.
Similar as in the proof of Lemma A.3 we look at the orthogonal projection
of R̄0 onto a hyperplane perpendicular to x. For that we can bound the
probability from above by the probability of the intersection between R̄x and a
(d−1)-dimensional box with diameters of size j(1)0 , . . . , j

(d−1)
0 . We can therefore

show, via repeating the calculations in the proof of Lemma A.3 that the set of
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orientations of R̄x that results in an intersection can be bound from above by

c
(j

(1)
0 + ⌈M⌉)min{d−k,k}⌈M⌉max{0,d−k,k}

|x|d−k
≤ c

d−k∏
s=1

j
(s)
0

|x|
,

while we used the definition of the model so that D̄(1) = D̄(k) for j ∈ {1, . . . , k−
1} and D̄(ℓ) = D̄(d) ≤ ⌈M⌉. In addition to that we get on the left side of this
inequality the term with +⌈M⌉ as the size of the small diameters of R̄x is
crucial for the set of orientations. But as this M ∈ (0,∞) is deterministic
we can hide this M in the upper bound by some constant factor c that now
depends also in M .

Note that we assume in the lemma that x ̸∈ R̄0 as this is the important
part for the calculations in A1(0,y)-A5(0,y). In addition to that, we have
that in the calculation in Section 2.2.4 instead of |x| the term |x| + |y| in the
upper bound of the intersection probability. To see this additional +|y| one
transfer this to the explicit situations in the individual parts of the calculations
and note that the distance of R̄x and R̄0 but also the distance from R̄x and
R̄y (from Section 2.2.4) are crucial. This leads to this extra term +|y|.

A.5 Intersection probability for A6(0,y)-A8(0,y)

In this section we prove the upper bound of the connection probability that is
used in Section 2.2.4 in A6(0,y),A7(0,y) and A8(0,y).

Lemma A.5. Let R̄0 and R̄y be boxes which are congruent to

d×
i=1

[−j
(i)
0 , j

(i)
0 ] resp.

d×
i=1

[−j(i)y , j(i)y ]

while j0, jy ∈ Nd with j
(i)
0 ≥ j

(i+1)
0 and j

(i)
y ≥ j

(i+1)
y for i ∈ {1, . . . , d− 1}.

Denote R̄x as the box which is centered in x with diameters D̄(1) , . . . , D̄(d)

as defined in Section 2.2.4. We assume that D(i) = D(k) for all j ∈
{1, . . . , k − 1} and D(ℓ) ≤ M almost surely for all ℓ ∈ {k + 1, . . . , d}.
In addition to that we assume that without loss of generality that x =

(|x|, 0, . . . , 0) and y = (|y|, 0, . . . , 0). We are therefore looking at the
generalisation of the ellipses model of [53] as described in Theorem 2.3.
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For that we have for large |x|, |y|

P(R̄x ∩ R̄0 ̸= ∅, R̄x ∩ R̄y ̸= ∅) ≤ c(|x|+ |y|)−(αk−ε)

d−k∏
s=1

j
(s)
0 j

(s)
y

(|x|+ |y|)2
.

Proof. In order to proof the claim we use as in the proof of the inequality (2.8)
conditional probability that the diameters are big enough i.e.

P(R̄x ∩ R̄0 ̸= ∅, R̄x ∩ R̄y ̸= ∅) ≤ cP(D̄(k) ≥ max{|x|, |x− y|, |y|}))

× P
( R̄x ∩ R̄0 ̸= ∅,

R̄x ∩ R̄y ̸= ∅

∣∣∣D̄(k) ≥ max{|x|, |x− y|, |y|}
)
.

Note that the max term is given as the diameters of R̄x should be big enough
to reach R̄0 and R̄y but also, due to convexity of the box, to bridge the distance
between R̄0 and R̄y. As we are interested in the case that R̄x is the connector
between R̄0 and R̄y and that R̄0 and R̄y do not intersect with each other, we
can use that the distance are proportional to |x|, |x−y| and |y| for the distance
of R̄x to R̄0 and R̄y and the distance of R̄0 to R̄y. Due to the Potter bounds
and the fact that max{|x|, |x − y|, |y|} ≍ |x| + |y| we get that the first factor
of the inequality, i.e.

P(D̄(k) ≤ max{|x|, |x− y|, |y|})) ≤ c(|x|+ |y|)−(αk−ε).

Note again that the Potter bounds holds also for D̄(k) . It remains to prove the
following

P(R̄x ∩ R̄0 ̸= ∅, R̄x ∩ R̄y ̸= ∅ | D̄ ≥ max{|x|, |x− y|, |y|}) ≤ c

d−k∏
s=1

j
(s)
0 j

(s)
y

(|x|+ |y|)2
.

We already now from Lemma A.4 that the probability of R̄x ∩ R̄0 ̸= ∅ under
the condition that the kth diameter of R̄x is big enough can be bound from
above by

c

d−k∏
s=1

j
(s)
0

|x|+ |y|
.

We must now consider what is necessary for R̄x to intersect R̄y. If we
are looking all possible orientations of R̄x so that an intersection with R̄0

is possible, we know that if R̄x ∩ R̄0 ̸= ∅ is occurs, we have to restrict all
these possible orientations so that this leads to an intersection with R̄y . This
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proportion of the orientations of R̄x can be bounded from above by

c

d−k∏
s=1

j
(s)
y

|x|+ |y|
.

Intuitively speaking, this can be achieved by again using the inequalities for
trigonometrical frunctions and considering that if one of the axes is rotated
so that R̄x ∩ R̄0 ̸= ∅ you only have d − 1 axes available to achieve R̄y. This
reduces the whole problem to a (d− 1)-dimensional problem, whereby we only
have k − 1 large diameters available. Overall, Lemma A.4 then provides the
above factor and thus the required inequality is obtained.

A.6 Continuity of the percolation probability

In this section we want to prove the key lemma that is necessary to prove the
continuity of the percolation probability in the Poisson Boolean model with
boxes as convex grains stated in Proposition 3.4. For that we denote in the
following for K ⊂ Rd the interior of K as int(K) and the boundary of K as
∂K.

Lemma A.6. For every x ∈ P we have

P0,x({Cx ∩ ∂C0 ̸= ∅} ∩ {Cx ∩ int(C0) = ∅}) = 0.

Proof. Let PC0,Dx be the probability measure under the condition that C0 and
the size of the diameters of Cx are fixed i.e. the only random part is the rotation
of Cx. We will argue the claim by using contradiction. Let rotC0 be the rotation
for which

C0 = rotC0

( d×
i=1

[−2−2d+1D(i) , 2−2d+1D(i) ]
)
.

Define the δ-reduction of C0 as

Cδ
0 := rotC0

( d×
i=1

[−2−2d+1D(i) + δ, 2−2d+1D(i) − δ]
)
,

and set Cδ
0 = ∅ if δ > ϵ2−2d+1. It holds that

int(C0) =
⋃
m∈N

C
1/m
0 .
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Moreover we also have

int(C0) =
⋃
m∈N

int(C
1/m
0 ).

Furthermore, it holds that

∂C0 = lim
m→∞

∂C
1/m
0 .

Assume now, incorrectly, that

PC0,Dx({Cx ∩ ∂C0 ̸= ∅} ∩ {Cx ∩ int(C0) = ∅}) > 0. (A.1)

Using the preceding observations, we can obtain

PC0,Dx(Cx ∩ int(C0) ̸= ∅) = lim
m→∞

PC0,Dx(Cx ∩ C
1/m
0 ̸= ∅)

= lim
m→∞

PC0,Dx(Cx ∩ int(C
1/m
0 ) ̸= ∅)

+ lim
m→∞

PC0,Dx({Cx ∩ ∂C
1/m
0 ̸= ∅}

∩ {Cx ∩ int(C
1/m
0 ) = ∅})

> PC0,Dx(Cx ∩ int(C0) ̸= ∅),

where the inequality follows from (A.1) and the third observation above. Since
this yields

PC0,Dx(Cx ∩ int(C0) ̸= ∅) > PC0,Dx(Cx ∩ int(C0) ̸= ∅),

which is a contradiction, we must have that

PC0,Dx({Cx ∩ ∂C0 ̸= ∅} ∩ {Cx ∩ int(C0) = ∅}) = 0.

Integrating this over all possible C0 and Dx leads then to the stated claim.

107



Appendix B

List of Notation

Basic notation
N Natural numbers
Nd Set of all d-dimensional vectors with natu-

ral numbers as entries
R Real numbers
Rd d-dimensional Euclidean space
Zd Integer lattice
Sk k-dimensional unit sphere
B(Rd) Borel-σ-algebra of Rd

H
p
(i)
K

, Hv, H Hyperplanes

K Convex set K ⊂ Rd

e1, . . . , ed Canonical vectors in Rd

φ, ϑ Angles
R,Rx, R̄, R̄x Rectangles
Cd Space of convex bodies in Rd with the Haus-

dorff metric
conv(A) Convex hull of A ⊂ Rd

diam(K) Classical Euclidean diameter of a set
K ⊂ Rd

Dist(A,B) Hausdorff distance between A,B ⊂ Rd

∡(x, y) The angle between vectors x, y ∈ Rd

PH(B) Orthogonal projection of a set B ⊂ Rd onto
a hyperplane H

P z
v,w(A) Orthogonal projection onto hyperplane

that includes z and is perpendicular to v−w

rotϑ Rotation concerning ϑ ∈ Sd−1
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rotx,y Special kind of rotation defined by
x, y ∈ Rd

1A indicator function
a+K Set K shifted via a ∈ Rd, i.e.

{x ∈ Rd |x = (a+ y), for y ∈ K}
rK Blow-up of a set K by a factor r > 0, i.e.

rK := {rx : x ∈ K}
Tx Translation in Rd concerning x ∈ Rd

|x− y| Euclidean distance for x, y ∈ Rd, i.e.√∑d
i=1 |x(i)|2, while |a| is the absolute

value for a ∈ R
|x|1 1-norm, i.e.

∑d
i=1 |x(i)|

ρx,y Orientation of the vetcor x− y

L̄, ⌈x⌉ Rounding up of L ∈ R resp. of x ∈ R
Br(x) Ball of radius r > 0 around x ∈ Rd, i.e.

{y ∈ Rd | |x− y| < r}
Vol(C) Volume/ d-dimensional Lebesgue measure

of the set C

λ d-dimensional Lebesgue measure
λd−1 (d− 1)-dimensional Lebesgue measure

Measures, random objects
X Poisson point process corresponding to the

Poisson-Boolean model on S
S Rd ×

(
Cd × Rd

)
P Poisson point process of the locations
P0 Palm version of a Poisson point process
u Intensity of the underlying Poisson point

process of the locations
P Probability measure
PA Law of X under the condition A ∈ P with

A = {x1, . . . , xn} ⊂ Rd, i.e. the palm ver-
sion

E Expectation corresponding to P
Ex Expectation under Px for x ∈ P

C Random convex body with rotation invari-
ant distribution
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C̃x i.i.d. copy of C for x ∈ P

Cx Convex body shifted via its location, i.e.
Cx := x+ C̃x

PC Law of C
C Union of convex bodies, i.e.

⋃
x∈P Cx

D(1)

C , . . . , D(d)

C Diameters of a convex body C

D(1)
x , . . . , D(d)

x Diameters of Cx

p(1)

C , . . . , p(d)

C Orientations of D(1)

C , . . . , D(d)

C

p(1)
x , . . . , p

(d)
x Orientations of D(1)

x , . . . , D(d)
x

Graph theory
G = (P,E ) Graph G with vertex set P and edge set E

G = (V ,E ) Graph G with vertex set V and edge set E

G b
u , G r

u Graph with underlying vertex intensity ub

resp. ur
C∞, Cb

∞, Cr
∞ Unbounded connected component of G

resp. G b
u resp. G r

u

x ∼ y Vertices x and y are connected by an edge
x

n∼ y Vertices x and y are connected via a path
of length n ∈ N

x ↔ y Vertices x and y are connected via a path
dist(x,y) Chemical distance of two vertices x, y
θ, θu, θb Percolation probability

Others
α, αi, γi, βi Model parameters
ϵ Radius of the ball that is almost surely in-

cluded in C

ε Constant appearing from Potter bounds
M {k ∈ {1, . . . , d− 1} : αk ∈ (k,min{2k, d}})
κ argmax

s∈M

min{d−s,s}
αs−s

(fn)n∈N, (f̃n)n∈N Threshold sequences ( on page 25, on
page 32)

(An)n∈N, (Ā
x
n)n∈N, (A

x
n)n∈N Sequences of events ( on page 27, on

page 57)
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