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Abstract

In the quest to realize exotic quantum states of matter, systems with strongly correlated

electrons are of particular interest. Such systems may, e.g., form a Mott insulator, with

localized magnetic moments. The interactions between these moments depend on the inter-

play of charge, lattice, orbital, and spin degrees of freedom. Of particular interest are cases

where strong spin-orbit coupling leads to spin-orbit entangled j = 1/2 magnetic moments,

as realized for Ir4+ ions within an octahedral ligand cage. These moments can give rise to

exotic magnetism. In Kitaev materials with, e.g., a honeycomb lattice of edge-sharing IrO6

octahedra, theory predicts that exchange interactions between j = 1/2 moments predom-

inantly have bond-directional nearest-neighbor character, leading to exchange frustration.

Ideally, this results in a quantum spin liquid ground state. Direct evidence for quantum spin

liquids and bond-directional interactions remains an open experimental challenge. Another

route to realizing exotic quantum states is to search for unusual magnetic moments. We

investigate these in cluster Mott insulators, where electrons are delocalized over a cluster,

such as a dimer, trimer, or tetramer, forming localized quasimolecular magnetic moments.

To probe the excitations in these systems, we use Resonant Inelastic X-ray Scattering

(RIXS). This technique allows us to directly measure the energies of spin and orbital exci-

tations and their dependence on exchanged momentum. When the electrons are delocalized

over a cluster, like a dimer, trimer, or tetramer, the RIXS intensity exhibits a characteristic

periodic modulation as a function of the exchanged momentum. This modulation arises

from interference between the RIXS amplitudes from di�erent sites within the cluster. We

show that this modulation contains valuable information about bond-directional excitations

in Kitaev materials and the quasimolecular wavefunctions in cluster Mott insulators.

Bond-directional magnetic interactions imply the existence of bond-directional magnetic

excitations, spin excitations that render crystallographically equivalent directions magneti-

cally inequivalent. We show how to observe the bond-directional character of the magnetic

excitations using RIXS at the Ir L3 edge in the Kitaev materials Na2IrO3 and α-Li2IrO3.

We identify a low-energy spin-conserving excitation (at 10meV and 15meV, respectively)

and a high-energy spin-�ip excitation (at 45meV and 35meV, respectively). By exploiting

the polarization and exchanged momentum dependence of the RIXS process, we simulta-

neously determine the bond direction and the spin operator involved in a given excitation,

thus proving the bond-directional character of the magnetic excitations.

In cluster Mott insulators, the quasimolecular character can be probed via the modu-

lation of the RIXS intensity. We study Ba4NbIr3O12, which contains Ir3O12 trimers, using

RIXS at the Ir L3 edge. This work represents the �rst RIXS experimental determination

of the quasimolecular electronic structure in a quasimolecular trimer cluster compound.

We show that the modulation reveals information about the symmetry of the quasimolecu-

lar wavefunctions. The lacunar spinel GaTa4Se8 hosts spin-orbit-entangled quasimolecular

wavefunctions on Ta4 tetrahedra. We study the RIXS modulation at the Ta L3 edge and

�nd that it is sensitive to the wavefunction composition, particularly to the mixing between

bonding and antibonding states. This mixing a�ects the quasimolecular magnetic moment

and renormalizes the e�ective spin-orbit coupling. Accurate modeling was crucial for correct

peak assignment and for understanding the tetrahedral quasimolecular magnetic moment.
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Chapter 1

Introduction

Solid-state physics is a branch of condensed-matter physics that focuses on the study of the

physical properties of solids. Often, the atoms in these materials are arranged in a periodic

structure, forming a crystal. These atoms and their electrons interact via electromagnetic

forces. One might think that solid-state physics could be reduced to particle physics, specif-

ically quantum electrodynamics, which describes the interactions of charged particles via

the exchange of photons. However, the large number of particles and the variety of possi-

ble symmetries introduce layers of complexity that give rise to emergent phenomena. As

Anderson famously stated, �more is di�erent� [10]. New phenomena emerge from the collec-

tive behavior of particles that cannot be trivially predicted from the underlying microscopic

physical laws. Some of the most fascinating examples are phenomena where the microscopic

quantum nature of the particles manifests in macroscopic properties, such as superconduc-

tivity and magnetism. The ability to engineer a vast number of di�erent systems with

varying symmetries and interactions allows for the realization and study of many unusual

phenomena. Exotic emergent quasiparticles can arise, such as Cooper pairs (a bound pair of

electrons behaving as a boson), fractional spin or charge excitations (when excitations decay

into quasiparticles with fractional quantum numbers), Majorana fermions (fermions that

are their own antiparticle), magnetic monopoles (which behave as isolated north or south

magnetic poles), magnetic skyrmions (topologically stable vortex-like spin arrangements),

and many more. Some of the phenomena related to these quasiparticles are fascinating for

the potential technological applications, while others are intriguing because they challenge

our fundamental understanding of nature. To study these systems, experimental physicists

often use probes such as static electric and magnetic �elds, photons, electrons, neutrons, or

muons, which have well-understood interactions with the system under investigation. This

broad collection of techniques can reveal information about the microscopic structure and

interactions within the system. In particular, many of the properties of these systems are

determined by the behavior of the valence electrons and how they interact.

In this thesis, we focus on the study of systems with a strong interaction between elec-

trons. In the following, we discuss how this interaction leads to the formation of localized

magnetic moments in Mott insulators. The interactions between these moments depend on

the interplay of charge, orbital, spin, and lattice degrees of freedom. Of particular interest

are systems where strong spin-orbit coupling leads to the formation of spin-orbit entangled

magnetic moments. These moments can give rise to exotic forms of magnetism, such as
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Chapter 1. Introduction

Figure 1.1: Depiction of a linear chain of atoms with one electron and one orbital per site. When
hopping t dominates, electrons delocalize, leading to a metallic state. In Mott insulators, Coulomb
repulsion U localizes the electrons, creating localized magnetic moments. The last row shows a
dimerized chain with one electron per dimer. We can de�ne a hopping tintra inside the dimers
and a hopping tinter between di�erent dimers. In cluster Mott insulators, tintra delocalizes electrons
within clusters, forming quasimolecular orbitals, while the energy cost V prevents charge �uctuations
between di�erent dimers. This leads to the presence of localized quasimolecular magnetic moments.

the quantum spin liquid in Kitaev materials. We also discuss how strong hopping between

orbital degrees of freedom within clusters of transition metals, such as dimers, trimers, or

tetramers, can result in the realization of a cluster Mott insulator. In these systems, elec-

trons form localized quasimolecular magnetic moments, which may lead to new emergent

exotic phenomena. To investigate these systems, we use X-ray photons, which interact with

electrons via electromagnetic interactions. This interaction results in an exchange of energy

and momentum between the electromagnetic �eld and the electrons, allowing us to probe the

electronic structure of the system. In particular, we use Resonant Inelastic X-ray Scattering

(RIXS). We show how RIXS can probe the bond-directional nearest-neighbor magnetic ex-

citations in the Kitaev materials Na2IrO3 and α-Li2IrO3. In cluster Mott insulators, where

electrons are delocalized over a cluster, the RIXS intensity exhibits a characteristic periodic

modulation that contains valuable information about the cluster wavefunction. We system-

atically study these systems and discuss the results on the dimer compounds Ba3Ti3−xIrxO9

to explain the potential of the RIXS interferometry technique. We present the studies of the

electronic structure of Ba4NbIr3O12, containing Ir3O12 trimers, and GaTa4Se8, containing

Ta4 tetramers.

Strongly correlated electrons

A particularly interesting class of materials is those with strong interactions between elec-

trons [11,12]. In such systems, electrons cannot be treated as independent particles but must

instead be considered as part of a strongly correlated electron system. One of the fascinating

consequences of strong electron-electron interactions is the formation of localized magnetic

moments in transition-metal compounds. Figure 1.1 illustrates a linear chain of atoms,

each with one electron and one orbital per site (half-�lling), represented as a density cloud.

The overlap between electrons would typically lead to delocalization, resulting in a metallic

state. Delocalization reduces the kinetic energy of the electrons by e�ectively enlarging the

2



Chapter 1. Introduction

�box� they are con�ned to. This hopping process can be described in second quantization

as Ht = −t
∑

c†iσ cjσ, where c
†
iσ and cjσ denote the creation and annihilation of an electron

with spin σ at sites i and j, respectively. However, when an electron moves to a neighboring

site already occupied by another electron, they will experience an electrostatic Coulomb

repulsion. This interaction is described in second quantization as HU = U
∑

ni↑ ni↓, where

niσ = c†iσ ciσ is the number operator for spin σ at site i. The sum of these two terms forms

the Hubbard Hamiltonian [13, 14]

HH = −t
∑

⟨i,j⟩

c†iσ cjσ + U
∑

i

ni↑ ni↓. (1.1)

When the hopping term t dominates, electrons delocalize across the crystal, resulting in a

metallic state. In contrast, when Coulomb repulsion U dominates, electron delocalization

at half-�lling is suppressed because moving to a neighboring site is too costly in terms of

electrostatic energy. This results in electrons being localized on their atomic sites, forming

localized magnetic moments. The system becomes insulating, with electrons con�ned to their

atomic sites, a state known as a Mott insulator, depicted in the second row of Fig. 1.1. As a

function of t/U , the Hubbard Hamiltonian describes a metal-insulator phase transition [15].

These ideas were proposed by Peierls and Mott in the 1930s, see Appendix A.1 in Ref. [14]

for a brief history. They suggested that localized electrons could arise from electron-electron

interactions [16]. In particular, this idea was proposed to explain the insulating behavior of

materials like NiO, which was predicted to be a metal according to band theory but instead

shows a large band gap.

This deceptively simple Hubbard Hamiltonian hides a rich variety of physical phenomena.

In a Mott insulator, hopping acts as a perturbation, leading to e�ective magnetic interactions

between the localized magnetic moments. These magnetic interactions determine, e.g., the

type of magnetic order (if present) or potentially the properties of a quantum spin liquid.

The interactions can vary depending on the characteristics of the magnetic moments. The

way localized magnetic moments interact depends on the subtle interplay between di�erent

degrees of freedom, such as spin, charge, orbital, and lattice degrees of freedom. For example,

the interplay between lattice and orbital degrees of freedom arises because speci�c lattice

distortions can favor particular orbital occupations. Instead, an interplay between spin and

orbital degrees of freedom can arise since superexchange depends on the orbital occupation,

as discussed in the next paragraph. On top, spin and orbital degrees of freedom may be

entangled by spin-orbit coupling.

Orbital physics

The study of the interactions between orbital degrees of freedom and their impact on material

properties constitutes the rich �eld of orbital physics. The condition of a Mott insulator is

often realized in transition-metal compounds with partially �lled valence d shells. In these

materials, the transition metal often resides within an octahedral ligand cage, forming ML6

octahedra in which the metal sits at the center in the ideal, undistorted case. This reduces

the symmetry from spherical to cubic (or lower, depending on distortions and the rest of

the lattice). This reduction in symmetry gives the orbitals a very speci�c directionality, as

3



Chapter 1. Introduction

discussed in Chap. 2.1. In cubic symmetry, orbitals of t2g symmetry are lowered in energy,

while those of eg symmetry are raised. In systems with densely packed transition metals,

interactions between orbital degrees of freedom across di�erent sites become important.

Orbital degrees of freedom can drastically in�uence the magnetic properties of a material.

The speci�c geometry and orbital occupation play a crucial role. In practice, how the ML6

octahedra are connected (whether in a corner-, edge-, or face-sharing geometry) and how

many electrons occupy which orbitals determine the e�ective magnetic Hamiltonian. The

description of the hopping between orbitals for the di�erent corner-, edge-, and face-sharing

geometries is provided in Chap. 2.2. In some cases, general rules can be formulated to predict

the sign of the superexchange interactions (ferro or antiferro), known as the Goodenough-

Kanamori rules [17�21]. For a detailed book covering these topics, see Ref. [14]. Orbital

physics is a well-established �eld of research and remains very active. Some reviews covering

the development of the �eld and current hot topics can be found in Refs. [22�25].

An extensively studied topic is the cooperative Jahn-Teller e�ect, which arises from a

coupling between the lattice and orbital degrees of freedom. Orbital degeneracy has been

shown to be unstable and prone to a spontaneous distortion of the lattice, leading to a

reduction in the total energy [26]. This results in one or more orbitals being preferentially

occupied in a long-range periodic pattern, a phenomenon known as orbital ordering [27].

Orbital ordering can also arise from a purely orbital mechanism coming from the direction-

ality of the orbitals, as described by the Kugel-Khomskii model [28�30]. This model, which

contains bond-dependent orbital interactions, is referred to as a compass model and is a

source of rich physics [31]. For instance, depending on the parameters this model may yield

an orbital liquid state [32].

The directionality of the orbital interactions can lead to the reduction of the dimensional-

ity of the system. In some cases, it can result from the synergy between the directionality of

the orbital interactions and an orbital-selective Peierls transition [33]. Many examples are re-

ported in Ref. [24]. Some three-dimensional systems can e�ectively become one-dimensional

by forming chains, or even zero-dimensional by forming, for example, dimers, trimers, or

tetramers. A recent example can be found in Ref. [34], where the formation of Ru dimers at

low temperature is proposed, suggested also by a drastic change of the RIXS spectra. In the

course of this thesis, we study dimers, trimers, and tetramers, focussing on the important

information contained in the q dependence of the RIXS intensity.

Spin-orbit entangled moments

A hot topic of research is the study of systems where spin and orbital degrees of freedom are

entangled [35�37]. The spin-orbit coupling entangles orbital and spin degrees of freedom,

leading to spin-orbit entangled magnetic moments, as discussed in Chap. 2.1.2. Of particular

interest is the case of spin-orbit entangled j = 1/2 magnetic moments, realized, e.g., for Ir4+

with t52g con�guration. These moments are a key ingredient for the realization of the Kitaev

quantum spin liquid, a subject of extensive research, as discussed below. Spin-orbit coupling

can remove orbital degeneracies [38] and induce a Mott insulator state, as observed, e.g.,

in Sr2IrO4 [39, 40], Na2IrO3, and α-Li2IrO3 [41]. It can also play a role in Jahn-Teller

distortions. For example, depending on the electronic con�guration, spin-orbit coupling can

4



Chapter 1. Introduction

quench (t22g, t
4
2g, and t52g), partially suppress (t

1
2g), or induce (t

3
2g) Jahn-Teller distortions [42].

The way spin-orbit entangled moments interact is non-trivial and can lead to frustrated

magnetism [43]. To understand this concept, we start with the case of geometrical frustra-

tion, where the lattice geometry itself prevents the simultaneous satisfaction of all magnetic

interactions, even if the interactions are isotropic in spin space. A classic example of geomet-

rical frustration is the triangular lattice, where it is impossible to satisfy all antiferromagnetic

Heisenberg interactions between nearest-neighbor spins simultaneously. This concept was

pointed out by Anderson [44,45], who predicted a spin liquid for this geometry. In contrast,

spin-orbit coupling may lead to exchange frustration, which arises when the magnetic in-

teractions cannot all be satis�ed simultaneously because of anisotropy in spin space, even

though the lattice geometry itself is not frustrated. Spin-orbit coupling may cause exchange

frustration because the directionality of orbital interactions can translate into anisotropic

magnetic interactions.

It was noted in Ref. [46] that when the ML6 octahedra are arranged in an edge-sharing

geometry on a honeycomb lattice, spin-orbit entangled j = 1/2 moments lead to anisotropic

Ising exchange interactions that are bond-dependent, resulting in exchange frustration. In

the ideal case, this realizes the Kitaev model, described by

HK =
∑

γ

K Sγ
i S

γ
j , (1.2)

where γ = x, y, z simultaneously denotes the nearest-neighbor bonds and the component of

the spin1 degree of freedom at sites i and j that are interacting via the Kitaev interaction K.

In this model, only a speci�c spin component interacts along a particular real-space direction.

In other words, the model exhibits bond-directional nearest-neighbor spin-spin correlations,

having many similarities to the compass model mentioned earlier. Kitaev showed in Ref. [47]

that this model has an exactly solvable quantum spin liquid (QSL) ground state [48�50].

In a QSL, the system does not exhibit magnetic order even at zero temperature, despite

the presence of magnetic interactions. This arises from quantum �uctuations among a

massive number of degenerate states, leading to the emergence of a highly entangled many-

body quantum state. A fascinating aspect of the Kitaev QSL is the emergence of exotic

fractionalized quasiparticle excitations. The spin fractionalizes into a Majorana fermion and

a static Z2 gauge �eld that hosts vison excitations [47].

Extensive research has been conducted on Kitaev materials to detect signatures of the

QSL state. For detailed reviews on the topic, see Refs. [51�55]. In Ref. [46], it was suggested

to search for a possible realization of the Kitaev model in Mott insulators with t52g con�g-

uration and strong spin-orbit coupling with the honeycomb structure of A2BO3. The most

extensively studied materials have been the honeycomb materials Na2IrO3, α-Li2IrO3, and

RuCl3 and the hyperhoneycomb material β-Li2IrO3. However, they all exhibit magnetic

order at low temperatures [54, 56]. In contrast, no evidence of long-range magnetic order

has been observed in Cu2IrO3 [57], H3LiIr2O6 [58], and D3LiIr2O6 [59]. However, this has

been discussed as possibly being caused by disorder [54].

1In this context, we refer to the spin-orbit entangled j = 1/2 degree of freedom with �spin�, because it
behaves as a pseudo-spin 1/2 degree of freedom.
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Chapter 1. Introduction

Figure 1.2: Depiction of some structures that can host a cluster Mott insulator state. a) Ba3AM 2O9

shows M 2O9 dimers. b) Ba4AM 3O12 hosts M 3O12 trimers. c) The lacunar spinels AM4X8 contains
M4 tetramers with tetrahedral symmetry.

Cluster Mott insulators

We mentioned how, e.g., the directionality of the orbital interactions can lead to a reduction

of dimensionality and the formation of clusters of transition metals. In other cases, the

transition-metal atoms are intrinsically arranged in clusters, such as dimers, trimers, or

tetramers, due to the speci�c crystal structure. Many examples of these systems can be

found in Refs. [24,60,61]. Some examples of these structures are depicted in Fig. 1.2. In a),

the structure of the Ba3AM 2O9 family is shown. It contains M 2O9 dimers formed by two

face-sharing octahedra. For example, the transition metalM can be Ru [62�66] or Ir [67�72],

and the ion A can be another transition metal or a lanthanide. The A ion determines the

number of electrons in the dimer. Another system showing dimers that has been investigated

is Ba5AlIr2O11 [73, 74]. Figure 1.2b) shows the structure of the Ba4AM 3O12 family, which

contains M 3O12 trimers formed by three face-sharing MO6 octahedra. For example, the

transition metalM can be Mn [75], Ru [76,77], or Ir [76,78�80], and the ion A can be another

transition metal or a lanthanide. The trimers in this structure are detached from each other

and can be considered as isolated clusters. In contrast, compounds such as Ba4Ir3O10 [81,82]

and Ba7Ir6O19 [83] contain trimers that are connected to each other, leading to strong inter-

trimer interactions. Not only linear clusters are possible. There are trimers in a planar

geometry forming a triangle, as in the breathing kagome lattice AxByMo3O8 [84�88] and

clusters of four atoms in a tetrahedral geometry, as in the lacunar spinel AM4X8. Figure

1.2c) shows the structure of the lacunar spinel AM4X8, which containsM 4 tetrahedra formed

by four edge-sharing MX6 octahedra. Systems that have been synthesized include the

elements M=V, Ti, Mo, Nb, Ta; A=Ga, Ge, Al; and X=S, Se, Te [89�95].

We can imagine that there is strong hopping between orbitals on di�erent sites of a

cluster. The distance between the transition-metal ions inside the cluster is sometimes

even smaller than the distance they have in the monoatomic metallic crystal. The last

row of Fig. 1.1 depicts a dimerized linear chain of atoms in which there is a short distance

inside the dimer and a long distance between di�erent dimers. In this case, we have two

di�erent hopping terms: a hopping between the orbitals inside the dimer, tintra, and a

hopping between the orbitals in di�erent dimers, tinter. Suppose that a strong tintra leads

to the delocalization of the electrons inside the cluster, forming bonding and antibonding

quasimolecular orbitals. If we consider one electron and one orbital per ion, the system

6
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would result in a conventional insulator even in the absence of electronic correlations (like

a band insulator), with both electrons occupying the bonding orbital with opposite spin.

Instead, if we consider the case of one electron per dimer, we have a situation of half-�lling

with one unpaired electron in the bonding orbital. To move one electron from a dimer to

another dimer costs an energy V = Edim(n− 1) +Edim(n+ 1)− 2Edim(n), where Edim(n)

is the energy of the dimer with n electrons. A cluster Mott insulator is realized when tinter

is not su�ciently high compared to V to allow charge �uctuations between di�erent dimers.

This results in the formation of localized quasimolecular magnetic moments. We can write

the Hamiltonian as a sum of a cluster Hamiltonian Hc, which depends on tintra and U , and

an interaction Hamiltonian H ′
cc′ between di�erent clusters [96]

H =
∑

c

Hc +
∑

⟨cc′⟩

H ′
cc′ . (1.3)

The cluster Hamiltonian Hc describes the quasimolecular wavefunctions inside the cluster,

while the interaction Hamiltonian H ′
cc′ describes the interaction between the quasimolecular

orbitals at di�erent sites and can be treated as a perturbation to Hc. Compared to standard

Mott insulators, these systems are more complex. The quasimolecular wavefunctions are

determined by internal properties, such as the symmetry of the cluster and the strength of

the hopping inside the cluster. The way the clusters interact with each other is determined by

the hopping paths between di�erent clusters, which can, in general, have di�erent symmetries

and strengths compared to the internal ones. This additional layer of complexity can lead

to novel emergent quantum states.

The complexity manifests in the very rich physics of these systems. For example, the

dimer Ba3AM2O9 and trimer Ba4AM3O12 compounds are so-called hexagonal perovskites

[60] that are proposed as realizations of QSL, as in some cases the clusters are arranged in

a triangular lattice, which leads to geometric frustration. In fact, many claims of behavior

compatible with a QSL have been made [82, 97�103], including Ba3Ti3−xIrxO9 [104, 105]

and Ba4NbIr3O12 [106�108]. Moreover, Ba3AM2O9 and Ba4AM3O12 systems are versatile

since the number of electrons per dimers or trimers can be controlled by the choice of the A

ion. For certain electron counts, there can be many low-lying states, which cause the system

to undergo phase transitions depending on the subtle balance of the di�erent microscopic

interactions [109]. For example, Ba3InIr2O9 can change from a jdim = 1/2 to a jdim = 3/2

ground state depending on the strength of the hopping [6]. Moreover, the transition metal

M can be a 3d, 4d, or 5d, allowing to explore di�erent regions of the parameter space.

The planar trimers of the family AxByMo3O8 are also predicted to exhibit unusual

phenomena, such as spin liquids and plaquette charge order [110�112]. Some are, in fact,

claimed to be spin liquids [113�115]. These systems show an unusual transition with freezing

of the spins [116].

The lacunar spinels exhibit a wide variety of phenomena [94,95,117]. For example, they

host multiferroic phases and skyrmion lattices with Néel-type skyrmions carrying electric po-

larization [118�122], (anti-)ferroelectricity with peculiar domain architectures [123,124], and

magnetism tied to polar domain walls [125]. They also have been claimed to exhibit a cluster

molecular Jahn-Teller e�ect [126]. A pressure-induced insulator-to-metal transition followed

7
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by topological superconductivity has been observed [127�131]. The insulator-to-metal tran-

sition can also be triggered by a strong electric �eld [132]. Some of the lacunar spinels,

such as GaTa4Se8, were predicted to be realizations of spin-orbit entangled quasimolecular

states [133]. In Pub. [3] and Chap. 6 we prove the spin-orbit entangled quasimolecular na-

ture of the wavefunction. Moreover, we show how the mixing of bonding and antibonding

quasimolecular orbitals a�ects the quasimolecular magnetic moment and renomalizes the

e�ective spin-orbit coupling.

Resonant Inelastic X-ray Scattering

We have described how the properties of strongly correlated electron systems depend on the

interplay between di�erent degrees of freedom and interactions. This balance determines the

ground state and the properties of the excitations. The energy and momentum dependence

of the excitations of spin, charge, orbital, and lattice degrees of freedom are the �ngerprints of

the underlying interactions. Through measurement and comparison with theoretical models,

we can extract the parameters and understand the interactions.

We need a probe that can measure the energy and momentum dependence of these

excitations. Scattering techniques can be used to probe the excitations of condensed-matter

systems. Examples of such techniques include electron energy loss spectroscopy (EELS),

inelastic neutron scattering (INS), non-resonant inelastic x-ray scattering (NIXS) (also called

X-ray Raman Scattering (XRS)), and Resonant Inelastic X-ray Scattering (RIXS ). RIXS

is the technique used in the experiments discussed in this thesis and is presented in Chap.

3. The RIXS process can be described as a two-step process. In the �rst step, an incident

photon resonantly excites a core electron into an unoccupied state, creating a core hole. This

intermediate state is highly unstable and decays as the core hole is �lled by an electron from a

higher energy level, emitting a photon in the process. An important point in our discussion is

that the two steps are coherent, such that all the intermediate state paths are superimposed.

The coherence allows the momentum to be conserved in the scattering process, such that the

di�erence in energy and momentum between the incident and emitted photons correspond

to the energy and momentum of the excitations created in the material. By measuring

these di�erences, RIXS gives a direct measurement of the energy of the excitations and their

dependence on the exchanged momentum.

RIXS is a powerful technique for studying condensed-matter systems [134�136]. Its ap-

plications also extend to the �elds of chemistry [137], molecular physics [138], and energy

materials [139]. RIXS allows for the direct measurement of the energy and momentum

dependence of elementary excitations such as phonons, magnons, crystal-�eld (or dd) exci-

tations, charge-transfer excitations, and plasmons. It is capable of covering a large energy

range and a wide momentum range simultaneously. In contrast, neutrons are limited in

the energy range they can cover and do not couple directly to the electronic charge density.

Moreover, neutron experiments require large samples, and some elements, such as Ir, are

strong absorbers of neutrons, making such experiments more challenging. However, INS

provides better energy resolution for low-energy magnetic excitations, with resolutions in

the meV or even µeV range. EELS is instead a surface-sensitive technique, and its analysis

is more complex. RIXS, on the other hand, provides a straightforward and direct probe of
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bulk unoccupied electronic states. It is polarization-dependent, element- and orbital-speci�c,

and requires only a small sample volume. The use of X-rays allows to exchange a large mo-

mentum with the system allowing to cover entirely one or multiple Brillouin zones. Thanks

to resonance and polarization dependence, it is sensitive to orbital occupation. A resolution

of about 20meV can be achieved, although the resolution varies signi�cantly depending on

the resonance energy of the speci�c element being studied.

RIXS has proven to be a powerful experimental technique for studying the electronic

structure of Mott insulators [140]. The �rst RIXS experiments on Mott insulators were

performed on NiO [141�143]. The focus later shifted to cuprates such as La2CuO4 and

related doped materials [144�146], with the hope of gaining insights into the mechanism of

high-temperature superconductivity [147]. It became evident that RIXS can measure the

dispersion of magnetic excitations [148�150], establishing itself as an alternative to INS.

Iridates have also emerged as a highly studied class of materials, starting with Sr2IrO4

[151�153], which is intriguing due to its link to cuprates and its spin-orbit-assisted Mott

insulator state [39]. Additionally, Kitaev materials such as Na2IrO3 and α-Li2IrO3 have

been shown, through RIXS studies of the orbital excitations, to be spin-orbit-assisted Mott

insulators [41].

RIXS on Kitaev materials

Clearly determining that a material is a QSL is a di�cult task [154, 155]. Thermodynamic

measurements, such as magnetic susceptibility and speci�c heat, can show the presence of

frustration and the absence of a transition to a long-range magnetically ordered state or

a spin glass state. Local probes, such as muon spin relaxation, can detect the persistence

of spin dynamics at low temperatures to exclude the freezing of spins. However, these

methods do not clearly identify a spin liquid, as they focus on the negative property of a

QSL, the absence of order. The positive attributes that characterize a QSL are long-range

entanglement and fractionalized spin excitations. A quantized thermal Hall e�ect has been

predicted to be a signature of fractionalized excitations in certain kinds of QSLs [154,155].

Spectroscopies, such as INS, Raman, THz, and RIXS, can be used to study the excita-

tions in these materials and hopefully identify the fractionalized excitations. INS is widely

used for its ability to directly measure the dynamical spin-spin correlations S(q, ω). Ex-

amples include studies on Kagome materials [156,157], the pyrochlore Yb2Ti2O7 [158], Co-

and V-based honeycomb materials [159�162], and the Ru-based honeycomb Kitaev material

α-RuCl3 [163�166]. Among the most cited are the INS studies of α-RuCl3 in Refs. [163,164],

which observed a non-dispersing broad continuum of magnetic excitations persisting up to

a temperature much higher than the ordering temperature. They recorded the intensity as

a function of the exchanged momentum over a broad range of reciprocal space, which was

shown to agree with the Kitaev model.

Measuring INS on iridates is more complicated due to the high neutron absorption of

Ir and the small size of the available samples. However, a few studies have been conducted

on Na2IrO3 [167], α-Li2IrO3 [168], β-Li2IrO3 [169], and D3LiIr2O6 [170]. These studies,

however, have been performed on powder crystals, which do not allow to obtain detailed

information in reciprocal space.
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RIXS can be an alternative technique in these cases, although it has a worse energy

resolution. It can also serve as a complementary technique since RIXS has di�erent selection

rules compared to INS. For example, in α-RuCl3, even though the resolution at the Ru

L3 edge of ≈ 80meV is not high enough to resolve the magnetic excitations, it can still

be used to study the orbital excitations [171] (see also Ref. [172] on RuX 3, X = Cl, Br,

I), that previously have been observed in optical spectroscopy [173]. The study of the

orbital excitations can show wether the system has a j = 1/2 ground state [41] or wether it

deviates substantially [174]. The orbital excitations in Kitaev materials are also interesting

because they show unusual properties [175, 176]. Another advantage of RIXS is its ability

to perform experiments under pressure, in the presence of a magnetic �eld, or using time-

resolved pump-probe techniques. RuCl3 has been proposed to exhibit a spin-liquid state

induced by a magnetic �eld [54]. The hope is that with pressure, magnetic �eld, or optical

pumping, we can induce a QSL state in a material that is not a QSL at ambient conditions.

The Kitaev materials α-Li2IrO3, β-Li2IrO3, and Cu2IrO3 have been studied with RIXS

under pressure [177�179]. The e�ect of a magnetic �eld on β-Li2IrO3 has been studied

with RIXS [180]. Additionally, time-resolved RIXS measurements have been performed on

H3LiIr2O6 [181].

Theoretically, RIXS has been shown to provide insightful information on the magnetic

excitations of Kitaev materials [182�185], which might indicate the fractionalization of the

excitations. In the magnetic scattering process, RIXS contains information about the dy-

namical spin-spin correlations, but this information is mixed with the polarization depen-

dence. While this can pose challenges, it can also be advantageous if the polarization se-

lection rules are properly understood and exploited. Recently, it has been proposed that

RIXS can quantify the entanglement in a system, similar to what has been achieved with

neutrons [186]; see the review in Ref. [136]. RIXS might provide a measurement of the

quantum Fisher information and potentially the quantum entanglement in a QSL.

At the Ir L3 edge, the resolution of 25meV is close to the energy of the magnetic excita-

tions in Kitaev honeycomb materials, which have been observed to be in the range of 10-45

meV. In Na2IrO3, magnetic excitations have been observed using RIXS at the L3 edge as

a broad continuum [187]. Initially, however, the high-temperature data were interpreted as

arising from phonons. In Ref. [188], it was shown via the resonance behavior at the L3 edge

and the comparison between Na2IrO3 and α-Li2IrO3 that the continuum is due to magnetic

excitations persisting up to high temperatures, much higher than the ordering temperature.

Phonons, on the other hand, can be studied by measuring RIXS at the ligand edge, in this

case the O K edge, as demonstrated in Ref. [189] on α-Li2IrO3. In the ordered phase, the

observation of magnons and spinons has been claimed in Na2IrO3 [190], α-Li2IrO3 [191], and

β-Li2IrO3 [180]. The magnetic excitations of (H,D)3LiIr2O6, which do not exhibit magnetic

order, have also been investigated [192], revealing a non-dispersing magnetic continuum.

These RIXS studies would undoubtedly bene�t from improved resolution. A study with

a record resolution for the Ir L3 edge of 12meV was conducted on Na2IrO3 in Ref. [190].

However, the increase in resolving power comes at the cost of signi�cantly lower intensity,

resulting in very noisy data.

Despite multiple claims, no observation has yet been able to unequivocally demonstrate
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the fractionalization of excitations in Kitaev materials. The idea of a proximate spin liquid

has been proposed, where the system is close to a QSL phase, thus showing some of its

properties [54]. With RIXS, valuable information about the magnetic interactions in Kitaev

materials can be extracted. First of all, the energy of the magnetic excitations gives us

information about the strength of the magnetic interactions. In addition, we can detect

signatures of dominant bond-directional nearest-neighbor Kitaev interactions, as explained

below.

The most widely accepted evidence for the presence of dominant bond-directional inter-

actions comes from the Resonant Elastic X-ray Scattering (REXS) measurements reported

in Ref. [193] on Na2IrO3. These measurements focused on the di�use scattering originating

from the remnants of the magnetic Bragg peaks above the ordering temperature, where this

di�use scattering is due to the presence of short-range magnetic correlations. By analyzing

the polarization dependence of the intensity, the study demonstrated the presence of strong

anisotropic bond-directional interactions. However, this approach would be inapplicable in a

true QSL, where no magnetic order, and thus no magnetic Bragg peaks, exists. Other studies

have attempted to quantify the magnetic interactions by analyzing the particular magnetic

order or the dispersion of the magnetic excitations in the ordered phase [180,190,191].

We want to identify the �ngerprints of bond-directional interactions in the magnetic ex-

citations that are not related to the magnetic ordering. In Ref. [188], Revelli et al. detected

the �ngerprints of Kitaev interactions in the magnetic excitations of Na2IrO3 and α-Li2IrO3

by analyzing the dependence of the RIXS intensity on the exchanged momentum along se-

lected directions. This revealed a periodic sinusoidal modulation of the intensity, which is a

signature of the nearest-neighbor character of the interactions. These excitations and their

modulation persist up to temperatures much higher than the ordering temperature, indicat-

ing that they are unrelated to magnetic ordering. In Chap. 4 and Pub. [2], we demonstrate

how to probe the bond-directional character of the magnetic excitations in Na2IrO3 using

RIXS. Similar to the INS measurements on RuCl3 [164], we measure the response over a

broad range of reciprocal space. But in addition, we employ a geometry speci�cally designed

to exploit the polarization dependence of RIXS. This approach enabled us to disentangle two

di�erent excitations: one with spin-conserving character and another with spin-�ip charac-

ter. Moreover, consider the Kitaev model in Eq. (1.2), perturbing the system with the local

operator Sγ
i , where γ = x, y, z, creates a spin-conserving excitation on the γ bond, ren-

dering the three bonds inequivalent and producing bond-directional excitations (BDE). The

spatial orientation of each bond results in a characteristic periodic sinusoidal modulation

of the RIXS intensity as a function of the exchanged momentum, as discussed below and

in Chap. 3.2. Instead, the anisotropic Kitaev interactions between spin components lead to

a characteristic polarization dependence of the BDE associated with a speci�c bond. This

approach allows us to establish the bond-directional character of the magnetic excitations

in Na2IrO3 [2], as discussed in Chap. 4.1, and in α-Li2IrO3, as presented in Chap. 4.3.

RIXS on cluster Mott insulators

The starting point for the discussion of magnetism in cluster Mott insulators is the determi-

nation of the quasimolecular moments. We make full use of the power of RIXS in order to
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quantify the interactions within the cluster and determine the quasimolecular wavefunctions.

In well-separated clusters as in the structures shown in Fig. 1.2, the quasimolecular orbitals

are localized on the cluster, and thus their excitations are generally expected to show little

dispersion. In this case, the role of the exchanged momentum in the RIXS process might

seem to be negligible. However, it was predicted in Refs. [194,195] that, in the case of molec-

ular orbitals, interference e�ects as a function of the exchanged momentum are present due

to the coherence of the RIXS scattering process [196]. Considering the case of a dimer, in

which the electrons are delocalized over the two sites forming quasimolecular orbitals, at

the end of the scattering process there is no information on which of the two sites the core

hole was created in the intermediate state. This leads to a superposition of the two possible

intermediate state paths, which can interfere with each other. This interference e�ect is the

focus of Chap. 3.2.

This phenomenon can be understood through an analogy with Young's double-slit exper-

iment [197], where the slits are analogous to the core holes in the intermediate state. This

results in a sinusoidal modulation of the RIXS intensity as a function of the exchanged mo-

mentum. The period of the modulation is determined by the distance between the two sites

forming the dimer. The �rst observation of this e�ect in a solid was reported in Ref. [197] on

the dimer compound Ba3CeIr2O9. The observation of such a modulation serves as a proof

for the formation of quasimolecular orbitals. Interestingly, the modulation contains infor-

mation about the relative symmetry of the ground state and excited states. This symmetry

information can be highly useful for identifying quasimolecular excitations. For instance,

an excitation from a quasimolecular bonding state to another bonding state will have a

di�erent modulation compared to an excitation from a bonding state to an antibonding

state. In other words, in the presence of quasimolecular wavefunctions, the RIXS intensity

is proportional to the structure factor of the cluster over which the electrons are delocalized.

The phase of the structure factor contains the information about the relative symmetry of

the ground state and excited states.

The use of hard X-rays in Ref. [197] allowed the clear measurement of multiple periods

of the interference pattern. For soft and tender X-ray regimes, observing a full modulation

period is challenging due to the limited momentum transfer [198]. However, this e�ect

must be considered when planning RIXS experiments and analyzing RIXS spectra of cluster

Mott insulators, as certain geometries can lead, for example, to the suppression of speci�c

excitations. The study of the modulation of the RIXS intensity arising from interference

e�ects has been named RIXS interferometry.

Not many studies have been conducted using RIXS on cluster Mott insulators, and

in particular there is a very limited amount of studies using RIXS interferometry. The

most extensively studied systems are dimers, as discussed in Refs. [197�203] and Pubs.

[1, 6]. The �rst observation of the RIXS modulation in Ba3CeIr2O9 [197] demonstrated the

potential of this technique to prove the quasimolecular character of the wavefunction. The

phase of the modulation was used to identify the relative symmetry of the ground state and

excited states, aiding in peak assignment. In Ba3InIr2O9 [6], the modulation similarly proved

the quasimolecular character and helped identify the ground state. In Ba3Ti3−xIrxO9 [1],

the observation of di�erent modulation periods was used to identify the sites on which a
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certain excitation is localized. This revealed the important role of Ti-Ir site disorder in these

materials. Moreover, it was clearly shown that excitations localized on single atomic sites do

not exhibit any modulation. Some of the data published in Pub. [1] are presented in Chap.

3.2 as an example of the RIXS interference e�ect. In Ref. [202], the RIXS modulation of

Ba3CeIr2O9 and Ba3TaIr2O9 is studied to try to extract the Quantum Fisher information

and obtain a measurement of the entanglement in the system. Ru 4d dimers have been

studied in Ref. [198] using RIXS at the Ru M3-edge (Ei ≈463 eV). The resonance energy in

the soft-X-ray range does not allow to exchange enough momentum to observe the periodic

RIXS modulation. However, the formation of quasimolecular orbitals and the consequent

RIXS interference e�ect are considered in the modelling of the RIXS experiments.

The trimer compound Ba4Ir3O10 was investigated in Ref. [204], although the explana-

tion provided does not explicitly involve quasimolecular orbitals. The �rst RIXS study

addressing the quasimolecular electronic structure of the trimer system Ba4NbIr3O12 is pre-

sented in Pub. [4] and reproduced in Chap. 5. This study is also the �rst observation of

the interference e�ect in a trimer compound proving that a quasimolecular orbitals picture

has to be applied to describe these trimer systems. In a trimer with inversion symmetry,

the quasimolecular wavefunctions can be even or odd. The excitations among these states

exhibit characteristic modulations depending on their relative symmetry. This signatures

are observed in the experimental data and used to identify the excitations and ultimately

understand the quasimolecular electronic structure of the trimer.

For the tetramer system GaTa4Se8, the �rst RIXS studies were reported in Refs. [205,

206]. However, the interference e�ect are not considered correctly, leading to a wrong peak

assignment. In Pub. [3] we study GaTa4Se8 using RIXS interferometry at the L3 edge,

representing the �rst study of the RIXS interference e�ect on a tetrahedral cluster. The

RIXS modulation was found to be sensitive to the composition of the wavefunction, which

depends on the competition of di�erent hopping terms that causes a mixing of the cor-

responding bonding and antibonding orbitals. This mixing determines the shape of the

spin-orbit entangled quasimolecular wavefunction and renormalizes the e�ective spin-orbit

coupling. The correct modelling of this e�ect proved to be crucial to have a correct peak

assignment and to understand the quasimolecular electronic structure. These results are

reproduced in Chap. 6.1, and in Chaps. 6.2, 6.3, and 6.4, we further explain the modeling of

the tetrahedral quasimolecular orbitals and how the RIXS modulation reveals information

about them.

In the Kitaev materials Na2IrO3 and α-Li2IrO3, although they are �simple� Mott insu-

lators, modulations of the RIXS intensity of the magnetic and orbital excitations have been

observed by Revelli et al. [175,188]. This arises from the bond-directional nearest-neighbor

character of the excitations, as explained before. When the excitations are localized on a

single bond, the RIXS intensity is modulated similarly to the case of a dimer. We make use

of this modulation in Chap. 4 and Pub. [2]. In the ideal case, we decompose the honeycomb

lattice into independent dimers and each dimer gives rise to a characteristic modulation

and polarization dependence of the RIXS intensity. This is shown to provide a very good

description of the RIXS data, see Chap. 4.2.
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Thesis outline

In this chapter, we provided an overview of the topics covered in the following of the thesis.

We discussed the emergence of phenomena such as Mott insulators, in which Coulomb

repulsion between electrons is so strong that it leads to the formation of localized magnetic

moments. These localized moments interact with each other in ways that depend on the

charge, orbital, spin, and lattice degrees of freedom. We highlighted the importance of

orbital degrees of freedom, particularly their directionality. In Chap. 2.1, we will describe

the 5d orbitals, focusing on the e�ect of octahedral coordination with a cubic crystal �eld,

as discussed in Chap. 2.1.1. In Chap. 2.1.2, we will explore how spin-orbit coupling leads to

the formation of spin-orbit entangled moments, with particular emphasis on the role of the

quantization axis. In Chap. 2.1.3, we will model the electron-electron interaction. In Chap.

2.2, we will go beyond the single site and consider two-site clusters in di�erent geometries,

such as corner-, edge-, and face-sharing con�gurations. We will examine how to model the

hopping within clusters, which is crucial for describing the quasimolecular orbitals in cluster

Mott insulators.

In Chap. 3, we describe the RIXS technique, which is the tool used in this thesis to study

the excitations in Kitaev materials and cluster Mott insulators. In Chap. 3.1, we provide a

theoretical description of the RIXS process. In Chap. 3.2, we focus on the RIXS interference

that arises in clusters with quasimolecular orbitals. We introduce, as an example, the results

on the dimer compound Ba3Ti3−xIrxO9 [1]. In Chap. 3.3, we show how to calculate the RIXS

amplitude in practice. We see, as an example, how the modulation of the RIXS intensity

arises in a dimer and how it contains the information about the relative symmetry of the

eigenstates.

In Chap. 4, we present the results of the RIXS study on Kitaev materials. In Chap. 4.1,

we reproduce Pub. [2] on Na2IrO3. We show how, through the study of the dependence of

the RIXS intensity of magnetic excitations on the exchanged momentum and polarization,

we can demonstrate the bond-directional character of the excitations. The model used to

describe the data is explained in more detail in Chap. 4.2. In Chap. 4.3, we present the

results on α-Li2IrO3 and compare them with Na2IrO3, revealing a common phenomenology

of the magnetic excitations in these materials.

In Chap. 5, we reproduce Pub. [4] on the trimer compound Ba4NbIr3O12. We show

that the electrons form quasimolecular orbitals localized on the trimer by measuring the

modulation of the RIXS intensity as a function of the exchanged momentum. The symmetry

of the wavefunction in this trimer gives rise to characteristic modulations of the RIXS

intensity, which we use to identify the excitations.

In Chap. 6, we present our studies on the lacunar spinel GaTa4Se8, which hosts tetramers

arranged in a tetrahedral geometry. In Chap. 6.1, we reproduce Pub. [3], where we study

the RIXS interference e�ect in this system. This allows us to prove the quasimolecular

character of the wavefunction and clarify the peak assignment. Moreover, we show how the

interference e�ect is sensitive to the mixing of bonding and antibonding states. This mixing

has important consequences for the quasimolecular magnetic moment and the e�ective spin-

orbit splitting. We provide further insights into the tetrahedral quasimolecular orbitals in

Chap. 6.2, where we demonstrate how to calculate the quasimolecular wavefunction and the
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e�ect of spin-orbit coupling. In Chap. 6.3, we show how to calculate analytically the single-

electron RIXS amplitude in the case of tetrahedral quasimolecular orbitals. In Chap. 6.4,

we show how to calculate the quasimolecular orbitals and the RIXS amplitude numerically

using the software Quanty. We discuss numerically the e�ect of electron-electron interaction

on the quasimolecular orbitals and the RIXS amplitude.

Finally, in Chap. 7, we summarize the results and discuss the importance for the future

research in the �eld.
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Chapter 2

From isolated d orbitals to clusters

In Chapter 1, we discussed how, in Mott insulators, the electron-electron interaction in,

e.g., transition-metal compounds leads to the localization of electrons on atomic sites. The

properties of these compounds are largely determined by the non-trivial interplay of di�erent

degrees of freedom: charge, orbital, spin, and lattice. The hopping acts as a perturbation

giving rise to (super-)exchange interactions between the localized magnetic moments. To

understand the magnetism in these systems, we need to understand the magnetic moments

and their interactions. For the description of the local moments in Mott insulators, it is suf-

�cient to consider a single site, taking into account the crystal �eld, spin-orbit coupling, and

the electron-electron interaction. Instead, in cluster Mott insulators, the hopping between

transition-metal ions is not just a perturbation but it leads to the delocalization of electrons

and the formation of quasimolecular magnetic moments.

In Chapter 2.1.1, we present how to describe the interaction of the ion with the nearest-

neighbor ligand ions using crystal-�eld theory. We point out the e�ect of a cubic crystal �eld

on the 5d orbitals, which leads to a speci�c directionality of the orbitals. In Chapter 2.1.2,

we discuss how to describe the relativistic e�ect of spin-orbit coupling, focusing on the role

of the quantization axis and the formation of spin-orbit entangled magnetic moments. Then,

we describe the electron-electron interaction in Chapter 2.1.3. In Chapter 2.2, we extend

the discussion beyond the single-site model to describe the hopping in common geometries

of corner-, edge-, and face-sharing octahedra.

2.1 5d orbitals

2.1.1 Crystal �eld

In the materials presented in this thesis, the transition-metal elements are found inside a

roughly octahedral cage of so-called ligand ions, forming MX6 octahedra with M = Ta and

Ir and X = O and Se. The interaction of the transition metal with the ligands can be treated

as an e�ective electrostatic potential, called the crystal �eld [207,208]. The presence of the

octahedral crystal �eld has the e�ect of reducing the symmetry from spherical to cubic Oh.

For a single electron, the energy levels of the 5d electrons are tenfold degenerate in spherical

symmetry. In cubic Oh symmetry, they are split into orbitals of t2g and eg symmetry. In

spherical symmetry, a convenient basis for the angular part of the wavefunctions is the
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Figure 2.1: Sketch of the single-electron energy levels of the 5d shell. The 5d electron shell in
spherical symmetry is tenfold degenerate. In octahedral coordination, the symmetry is reduced
from spherical to cubic Oh. The 5d orbitals are split into orbitals of t2g and eg symmetry. This
splitting is 10Dq ≈ 3 eV. On the right, the expressions for the angular parts of the 5d cubic orbitals
z2, x2 − y2, yz, zx, and xy are given as functions of the spherical harmonics with l = 2, Y ml . The
angular density is plotted on the left for the spherical harmonics Y ml and on the right for the cubic
harmonics.

spherical harmonics Y ml with l = 2. In cubic symmetry, the cubic harmonics are used, as

shown in Fig. 2.1. Their expressions can be represented as a transformation matrix from

the spherical harmonics basis [14]




yz

zx

xy

z2

x2 − y2




=




0 i√
2

0 i√
2

0

0 1√
2

0 − 1√
2

0
i√
2

0 0 0 − i√
2

0 0 1 0 0
1√
2

0 0 0 1√
2







Y −2

Y −1

Y 0

Y 1

Y 2




. (2.1)

In Fig. 2.1, the angular densities of the t2g and eg orbitals are depicted. The names we use

to denote the orbitals (yz, zx, xy, z2, x2 − y2) are the actual mathematical expressions for

the angular parts of the wavefunctions (where we simpli�ed 3z2 − r2 to z2). These orbitals

have an ellipsoidal shape and a speci�c orientation in space, which is crucial for many e�ects.

The density of the eg orbitals (z2 and x2 − y2) has lobes pointing toward the ligand atoms,

while the t2g orbitals (yz, zx, and xy) point in between ligand atoms. From the angular

distribution, we can intuitively expect that the interaction with the ligands is stronger for

the eg orbitals than for the t2g orbitals, leading to a splitting of the energy of the t2g and eg

orbitals. The crystal-�eld splitting arises from the combined e�ects of d-p hybridization with

the ligands and the electrostatic interaction between the orbitals and the negatively charged

ligands. Due to the signi�cant extent of the radial part of the 5d orbitals, this results in

a splitting of the energy levels, known as 10Dq, which for 5d elements is typically around

3-4 eV [14]. This large splitting results in the electronic con�gurations 5d4,5,6 adopting a

low-spin state where all electrons occupy the t2g orbitals. For an isolated ion, Hund's rules,

which arise from electron-electron interactions, favor the parallel alignment of spins in the
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ground state. Considering, e.g., three electrons in octahedral symmetry, these will occupy

the t2g with the same alignment of the spin forming S = 3/2. For a fourth electron, the

Coulomb energy is minimized if it is placed in the eg orbitals with parallel spin, leading to a

high-spin state with S = 2. However, it becomes energetically favorable for a fourth electron

to occupy the t2g states if 10Dq > 3JH , leading to a low-spin ground state. This is true for

5d transition metals, where 10Dq is about 3-4 eV and JH amounts to 0.25-0.4 eV, see below.

So, in the cases discussed in this thesis, the eg orbitals will be neglected.

We can make an interesting consideration by calculating the orbital angular momentum

of the cubic orbitals starting from the relations

Lz |Y ml
l ⟩ = mlℏ |Y ml

l ⟩ and L± |Y ml
l ⟩ = ℏ

√
(l(l + 1)−ml(ml ± 1)) |Y ml

l ⟩ , (2.2)

which lead to the following matrices in the cubic basis {yz, zx, xy, z2, x2 − y2}:

Lx =




0 0 0 −i
√
3 −i

0 0 i 0 0

0 −i 0 0 0

i
√
3 0 0 0 0

i 0 0 0 0




, Ly =




0 0 −i 0 0

0 0 0 i
√
3 −i

i 0 0 0 0

0 −i
√
3 0 0 0

0 i 0 0 0




,

and Lz =




0 i 0 0 0

−i 0 0 0 0

0 0 0 0 2i

0 0 0 0 0

0 0 −2i 0 0




.

(2.3)

From these matrices, we observe that the orbital angular momentum in the eg orbital sector

is fully quenched (i.e., it is zero). Instead, the orbital angular momentum of the t2g shell is

only partially quenched, as it is equivalent to a p shell with an e�ective angular momentum

leff = −1. In fact, the same 3 × 3 matrices, multiplied by −1, are obtained using the

expressions in Eq. (2.2) with l = 1 and the p orbitals {x, y, z} de�ned as



x

y

z


 =




i√
2

0 − i√
2

1√
2

0 1√
2

0 1 0






Y −1

Y 0

Y 1


 . (2.4)

Thus, when restricted to the t2g orbitals, the system can be e�ectively treated as having

an orbital angular momentum leff = −1. Note that some authors adopt a convention with

leff = +1, while the sign of the spin-orbit coupling parameter is inverted.

A distortion of the octahedral ligand cage gives rise to deviations from cubic symmetry,

leading to a further splitting of the orbitals. There are di�erent possible distortions [14,209].

For our discussion, we consider a trigonal distortion as obtained for compression or elongation

along one of the four equivalent [111] axes perpendicular to the faces. This yields a single

C3 symmetry axis, and the symmetry is reduced to D3d. The t2g orbitals split into an a1g

singlet and an eπg doublet with an energy di�erence of ∆. In the basis {yz, zx, xy}, for a
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Chapter 2. From isolated d orbitals to clusters

distortion along [111], the trigonal crystal-�eld Hamiltonian can be written as [210]

Htrig = −∆

3



0 1 1

1 0 1

1 1 0


 , (2.5)

where a positive ∆ reduces the energy of the a1g state by −2
3∆ and increases the energy of

the eπg states by 1
3∆. The trigonal orbitals can be written as a real combination of the t2g

orbitals 

a1g

eπg,a

eπg,b


 =




1√
3

1√
3

1√
3

1√
2

− 1√
2

0

− 1√
6

− 1√
6

2√
6






yz

zx

xy


 (2.6)

or as a complex combination



a1g

eπg,a

eπg,b


 =

1√
3




1 1 1

e−2πi/3 ei 2π/3 1

−e2πi/3 −e−i 2π/3 −1






yz

zx

xy


 . (2.7)

2.1.2 Spin-orbit coupling

The spin-orbit coupling is a relativistic e�ect that couples the orbital and spin angular

momentum of electrons. The spin-orbit Hamiltonian can be written as

Hso = ζ
∑

i

li · si, (2.8)

where li and si are the orbital and spin angular momentum operators of the single electron i,

and ζ is a parameter that describes the strength of the spin-orbit coupling. This parameter

can be calculated as

ζ = ⟨R(r)| 1

2m2c2
1

r

dV (r)

dr
|R(r)⟩ , (2.9)

where R(r) is the radial part of the atomic wavefunction and V (r) is the atomic potential.

For a many-body system in LS coupling, the spin-orbit coupling can be written as

Hso = λL · S = λ

(
LzSz +

1

2
(L+S− + L−S+)

)
= λ (LxSx + LySy + LzSz) , (2.10)

where L and S are the total orbital and spin angular momentum operators, respectively,

and λ = ±ζ/(2S), with the �+� sign for less-than-half-�lled shells and the �−� sign for

more-than-half-�lled shells.

We calculate the spin-orbit coupling matrix starting from the Lx, Ly, and Lz matrices

in Eq. (2.3) and the Pauli matrices

σx =

(
0 1

1 0

)
1

2
, σy =

(
0 −i

i 0

)
1

2
, σz =

(
1 0

0 −1

)
1

2
. (2.11)

We aim to derive the spin-orbit coupling Hamiltonian for a generic spin direction in the t2g

basis. The spin quantization axis is important in the calculation of the RIXS intensity, as
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Chapter 2. From isolated d orbitals to clusters

explained, for example, in Ref. [211]. We calculate the spin-orbit coupling by keeping the

de�nition of the orbital operators in the local basis but rotating the local spin operators

to the global spin quantization axis. For a generic spin direction, obtained by rotating the

local reference frame with the rotation matrix Rz(ϕ) ·Ry(θ), where θ is the polar angle and

ϕ is the azimuthal angle, we can rewrite Eq. (2.10) as

Hso(θ, ϕ) = λ[Lx (cos(θ) cos(ϕ)Sx + sin(θ) cos(ϕ)Sy − sin(ϕ)Sz)

+Ly (cos(θ) sin(ϕ)Sx + cos(ϕ)Sy + sin(θ) sin(ϕ)Sz)

+Lz (− sin(θ)Sx + cos(θ)Sz)].

(2.12)

Using the expressions in Eq. (2.3) and (2.11), we obtain a matrix that describes the spin-
orbit interaction in the t2g basis {yz↑, yz↓, zx↑, zx↓, xy↑, xy↓} as a function of the angles
θ and ϕ

Hso(θ, ϕ) =
λ

2



0 0 icθ −isθ −isθsϕ −cϕ − icθsϕ

0 0 −isθ −icθ cϕ − icθsϕ isθsϕ

−icθ isθ 0 0 isθcϕ −sϕ + icθcϕ

isθ icθ 0 0 sϕ + icθcϕ −isθcϕ

isθsϕ cϕ + icθsϕ −isθcϕ sϕ − icθcϕ 0 0

−cϕ + icθsϕ −isθsϕ −sϕ − icθcϕ isθcϕ 0 0


,

(2.13)

where we de�ned, for brevity, cx := cos(x) and sx := sin(x).

An alternative way to derive the same spin-orbit coupling Hamiltonian follows a dis-

cussion similar to Ref. [212]. The spin matrix for a generic spin direction can be written

as

σ = σx sin(θ) cos(ϕ) + σy sin(θ) sin(ϕ) + σz cos(θ), (2.14)

where θ is the polar angle and ϕ is the azimuthal angle. The eigenvectors σ |±⟩ = ±1 |±⟩
can be written as

|+⟩ =
(
α+

β+

)
=

(
e−iϕ cos(θ/2)

sin(θ/2)

)
,

|−⟩ =
(
α−

β−

)
=

(
−e−iϕ sin(θ/2)

cos(θ/2)

)
.

(2.15)

We can write a transformation that changes the spin quantization from the z axis to the

direction described by the polar angle θ and the azimuthal angle ϕ as

Rso(θ, ϕ) =




α+ β+ 0 0 0 0

α− β− 0 0 0 0

0 0 α+ β+ 0 0

0 0 α− β− 0 0

0 0 0 0 α+ β+

0 0 0 0 α− β−




. (2.16)

By applying this change of basis to the spin-orbit coupling Hamiltonian of Eq. (2.10) as

R∗
so ·Hso ·RT

so, we obtain the same matrix as in Eq. (2.13).

The standard convention for the spin quantization axis is along the z axis. In this case,
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Chapter 2. From isolated d orbitals to clusters

Figure 2.2: For a t12g con�guration (or t52g), the spin-orbit coupling Hso = λL ·S lifts the degeneracy

of the t2g states and splits them into a quartet and a doublet with j = 3
2 and j = 1

2 , respectively.
The splitting is 3

2λ, which for 5d transition metals is approximately 0.5 eV. The expressions for the
eigenstates |j, jz⟩ of the spin-orbit Hamiltonian are provided. Spin-orbit coupling mixes t2g orbitals
with di�erent spins, leading to spin-orbit entangled wavefunctions with anisotropic spin distribution.
This is illustrated in the plot of the density of the angular part of the wavefunctions, shown here for
|j,+jz⟩. The color represents the phase on the top and the spin direction on the bottom.

we have θ = ϕ = 0, and the spin-orbit coupling Hamiltonian matrix is [213]

Hz
so =




0 0 i 0 0 −1

0 0 0 −i 1 0

−i 0 0 0 0 i

0 i 0 0 i 0

0 1 0 −i 0 0

−1 0 −i 0 0 0




λ

2
. (2.17)

The spin-orbit interaction lifts the degeneracy of the t2g orbitals and splits them according

to their value of j. Since the t2g electrons have an e�ective orbital angular momentum

leff = −1, the levels split into an e�ective total angular momentum jeff = 3/2 quartet and

a jeff = 1/2 doublet, as shown in Fig. 2.2. In the following, we omit the subscript �eff�

for simplicity. As shown by Eq. (2.9), the spin-orbit coupling parameter ζ changes from

ion to ion. For example, for 5d ions like Ta4+ and Ir4+, the spin-orbit coupling leads to

a splitting of the t2g orbitals of ≈ 0.4 eV [214] and ≈ 0.6 eV [9] [215], respectively. The

eigenstates of the spin-orbit coupling Hamiltonian are denoted by their values of j and jz as

|j, jz⟩: (|12 ,+1
2⟩ , |12 ,−1

2⟩ , |32 ,+3
2⟩ , |32 ,−3

2⟩ , |32 ,+1
2⟩ , |32 ,−1

2⟩). In the basis of the cubic states
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Chapter 2. From isolated d orbitals to clusters

{yz↑, yz↓, zx↑, zx↓, xy↑, xy↓}, they can be written as [216]




|12 ,+1
2⟩

|12 ,−1
2⟩

|32 ,+3
2⟩

|32 ,−3
2⟩

|32 ,+1
2⟩

|32 ,−1
2⟩




=




0 − 1√
3

0 − i√
3

− 1√
3

0

− 1√
3

0 i√
3

0 0 1√
3

− 1√
2

0 − i√
2

0 0 0

0 1√
2

0 − i√
2

0 0

0 − 1√
6

0 − i√
6

√
2
3 0

1√
6

0 − i√
6

0 0
√

2
3







|yz↑⟩
|yz↓⟩
|zx↑⟩
|zx↓⟩
|xy↑⟩
|xy↓⟩




. (2.18)

In Fig. 2.2, the angular densities of the eigenstates are shown. Spin-orbit coupling mixes t2g
orbitals with di�erent spins, leading to spin-orbit entangled wavefunctions with anisotropic

spin distribution. For example, the state

|1
2
,+

1

2
⟩ = (− |yz↓⟩ − i |zx↓⟩ − |xy↑⟩)/

√
3 (2.19)

is composed of a spin-up xy↑ and spin-down yz↓ and zx↓ states. This means that the spin

direction is tied to a certain orbital component, and since the t2g orbitals have a de�nite

spatial orientation, this can lead to anisotropic magnetic interactions. In systems with an

electronic con�guration t52g, such as Ir4+, the ground state can be described as a single hole

in the j = 1/2 doublet. This state can be represented as a pseudo-spin 1
2 state. However,

it shows unusual properties due to the spin-orbit entangled nature of the wavefunction. For

example, the calculation of the expectation values for the spin, orbital, and total angular

momentum of the |j,+jz⟩ wavefunctions gives [212]

Sz Lz Jz

|12 ,+1
2⟩ −1

6 −2
3 −5

6

|32 ,+3
2⟩ +1

2 −1 −1
2

|32 ,+1
2⟩ +1

6 −1
3 −1

6

(2.20)

and opposite signs for the |j,−jz⟩ wavefunctions.

Instead, if the magnetic moment points along the y direction, for example, we have

θ = ϕ = 90◦, and the spin-orbit Hamiltonian is

Hy
so =




0 0 0 −i −i 0

0 0 −i 0 0 i

0 i 0 0 0 −1

i 0 0 0 1 0

i 0 0 1 0 0

0 −i −1 0 0 0




λ

2
. (2.21)

To understand the consequences, we take as an example the j = 1/2 wavefunction. When

the quantization is along y, the wavefunction becomes

|1
2
,+

1

2
⟩
y
= (−i |yz↓y⟩+ |zx↑y⟩+ |xy↓y⟩)/

√
3, (2.22)
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Chapter 2. From isolated d orbitals to clusters

where the subscript ↑y indicates the quantization axis. By comparing Eq. (2.22) with the

expression for the quantization axis along z in Eq. (2.19), one can see that the orbital

with spin-up component is di�erent. Since the spin and orbital degrees of freedom are

entangled, the spin distribution is di�erent. This results in di�erent magnetic interactions

and a di�erent polarization dependence in the RIXS process.

2.1.3 Electron-electron interaction

We saw in Chap. 1 how the electron-electron (e-e) interaction is very important and leads to

the formation of interesting strongly correlated electron systems. Here, we see how to model

the e-e interaction considering a single site. This is important for the multiplet structure of

the energy levels [217], and we will observe its signi�cance when modeling clusters.

Electrons interact via the Coulomb interaction He-e = 1
2

∑
i̸=j

e2

|ri−rj | , where ri is the

position of the i-th electron interacting with the j-th electron at position rj . The e-e

interaction can be treated as a scattering process mediated by the electrostatic force. Two

electrons with quantum numbers τ3 and τ4 scatter into the states with the quantum numbers

τ1 and τ2 where τi : n, l,mi, σi. For the scattering of electrons occupying the same shell, we

have n1 = n2 = n3 = n4 and l1 = l2 = l3 = l4. The Hamiltonian in second quantization can

be written as

He-e =
∑

τ1τ2τ3τ4

Uτ1τ2τ3τ4a
†
τ1a

†
τ2aτ3aτ4 . (2.23)

By expressing the wavefunctions in terms of a radial and an angular part, we can calculate

the coe�cients as an integral over the radial part and one over the angular part. The integral

over the angular part determines which integrals over the radial parts are relevant, known

as the Slater integrals F k. The conservation of angular momentum restricts the number of

parameters such that |lf − li| ≤ k ≤ |lf + li| and k is even. For a d shell with l = 2, this

results in three terms: F 0, F 2, and F 4.

Kanamori proposed a simpli�cation of the full e-e Hamiltonian [218] based on the ap-

proximation that the interaction terms depend only on whether the electrons occupy the

same or a di�erent orbital. When the calculation is restricted to the t2g shell, the approx-

imation is exact. The e-e interaction Hamiltonian can then be written in the so-called

Kanamori scheme as follows [216,219]:

HC = U
∑

α

nα↑nα↓ +
1

2
(U − 3JH)

∑

σ,α̸=α′
nασnα′σ + (U − 2JH)

∑

α̸=α′
nα↑nα′↓

+ JH
∑

α̸=α′

(
c†α↑c

†
α↓cα′↓cα′↑ − c†α↑cα↓c

†
α′↓cα′↑

)
,

(2.24)

where c†ασ (cασ) creates (annihilates) an electron of orbital type α with spin σ =↑, ↓, and
nασ = c†ασcασ is the number operator. The intraorbital Coulomb repulsion is given by U ,

and JH denotes Hund's coupling [14].

As mentioned, when restricted to the t2g orbitals, the Kanamori Hamiltonian and the

full e-e interaction Hamiltonian are equivalent. We can then write a relationship between
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Chapter 2. From isolated d orbitals to clusters

Figure 2.3: Sketch of the corner-sharing geometry showing the allowed hopping paths for the ideal
M -L-M bond angle of 180°. With reference to the local {x, y, z} coordinate frame as de�ned in (a),
the hopping paths are: (a) hopping between xy and xy orbitals; (b) yz and yz; (c) zx and zx. (a)
and (b) are hoppings via the p orbitals of the ligands. See the hopping matrix in Eq. (2.26).

the Slater integrals F 0, F 2, and F 4 and the parameters U and JH [217,219],

U = F 0 +
4

49
F 2 +

4

49
F 4,

JH =
3

49
F 2 +

20

441
F 4.

(2.25)

To complete the conversion, we need to assume a certain ratio F 4/F 2. Their values can

be calculated using Hartree-Fock calculations [217, 220], which indicate a ratio of about

F 4/F 2 ≈ 5/8. Typical values of JH for 5d transition metals are in the range 0.25-0.4 eV,

while U is in the range 1.5-2.5 eV. For example, optical spectroscopy and RIXS studies

on the 5d4 system K2OsCl6 and the 5d3 system K2ReCl6 report values of JH = 0.28 eV

and JH = 0.34 eV, respectively [7, 8]. For 5d4 iridates, RIXS studies �nd JH in the range

0.25-0.4 eV [221�224].

2.2 Corner-, edge-, and face-sharing octahedra

In the following chapter we brie�y discuss how the orbitals of the MO6 octahedra interact

with each other in the corner-, edge-, and face-sharing geometries. More detailed discussions

can be found in Refs. [14, 22�25]. When the hopping is relatively small (t/U ≪ 1), it

can typically be treated as a perturbation to the local single-site wavefunctions giving rise

to (super-)exchange interactions. The resulting interactions depend on the geometry, the

available hopping paths, and the orbital occupation. Instead, when the hopping is large, the

local single-site wavefunctions are no longer a good starting point, and the quasimolecular

bonding and antibonding states formed by their superposition must be considered.

2.2.1 Corner-sharing octahedra

In the geometry depicted in Fig. 2.3, neighboring octahedra share one corner along the y

axis. It is the most commonly studied con�guration, found in systems such as perovskites,

post-perovskites, colossal magnetoresistance (CMR) manganites, high-temperature cuprate

superconductors like (La,Sr)2CuO4, and also in the layered iridate Sr2IrO4. In the ideal

case, the metal-ligand-metal (M -L-M) bond angle is 180◦ and the hopping matrix in the

25



Chapter 2. From isolated d orbitals to clusters

Figure 2.4: Sketch of the edge-sharing geometry showing the allowed hopping paths. With reference
to the local {x, y, z} coordinate frame as de�ned in (a), the hopping paths are: (a) hopping between
xy and xy orbitals; (b) yz and yz; (c) yz and zx. See the hopping matrix in Eq. (2.27).

t2g orbital basis {yz, zx, xy} is

Tcorner = c†2



t1 0 0

0 t2 0

0 0 t1


 c1 + c.c., (2.26)

where c1 = (cyz1 , czx1 , cxy1) are the annihilation operators on site 1, and c†2 = (c†yz2 , c
†
zx2 , c

†
xy2)

are the creation operators on site 2. The hopping matrix is diagonal, with the hopping

parameter t1 between xy and xy, and between yz and yz orbitals, and t2 between zx and

zx orbitals. As shown in Fig. 2.3, t1 involves the hopping via the p orbitals of the ligands,

while t2 is a direct hopping between the d orbitals. Small deviations of the bond angle

allow other o�-diagonal terms to be �nite but these do not play a signi�cant role. However,

large deviations, such as those found in post-perovskites, can have a substantial impact. For

example, values of t1 in Sr2IrO4 are calculated to be around 0.2 eV [225] and dependent on

the M -L-M bond angle. The hopping is not very large and can be treated as a perturbation

in t/U leading to e�ective magnetic (super-)exchange interactions. A general conclusion

derived from studies of 3d compounds, where spin-orbit coupling is negligible, is that ferro-

orbital ordering leads to antiferromagnetic spin ordering, while antiferro-orbital ordering

leads to ferromagnetic spin exchange. In 5d5 systems with strong spin-orbit coupling like

Sr2IrO4, the spin-orbit entangled j = 1/2 ground state is often a good starting point and

the hopping in corner-sharing geometry usually leads to antiferromagnetic interactions.

2.2.2 Edge-sharing octahedra

Figure 2.4 shows two octahedra sharing an edge in the x-y plane, more precisely along

(1, 1, 0). This con�guration is found, for example, in the battery material LiCoO2, in spinels

and lacunar spinels, and in Kitaev materials. The hopping channels in the ideal geometry

are shown in Fig. 2.4, and the hopping matrix in the t2g orbital basis {yz, zx, xy} is [226]

Tedge = c†2



t1 t2 0

t2 t1 0

0 0 t3


 c1 + c.c.. (2.27)

The diagonal hopping channels t1 and t3 are direct hopping between the d orbitals, with

t3 involving orbitals that point directly toward each other, as shown in Fig. 2.4(a). The
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Figure 2.5: Sketch of the face-sharing geometry showing the possible hopping paths. (a) Hopping
paths in the t2g basis: the diagonal hopping t1 (shown for xy-xy) and the o�-diagonal hopping t2
(shown for xy-yz). (b) Hopping paths in the trigonal orbital basis, where the hopping matrix is
diagonal: tσ between a1g-a1g orbitals and tπ between eπg -e

π
g orbitals. Note that the local reference

frames {x1, y1, z1} and {x2, y2, z2} are rotated by 180° with respect to each other around the common
{1, 1, 1} axis. as shown in (b). A global coordinate system {xs, ys, zs} is de�ned. The color represent
the phase of the wavefunction, according to the same color code as in Fig. 2.2.

o�-diagonal t2 has a direct hopping component but, importantly, it has a ligand-mediated

hopping component that scales as t2pd/∆CT , where tpd is the hopping between the transition

metal d and the ligand p orbitals, and ∆CT is the charge-transfer energy. For certain

deviations from this idealized geometry, the other o�-diagonal hopping t4 becomes �nite as

well,

Tedge = c†2



t1 t2 t4

t2 t1 t4

t4 t4 t3


 c1 + c.c.. (2.28)

In this geometry, deviations from the ideal 90° M -L-M angle have important consequences

on the values of the hopping integrals, as shown by Fig. 4.1 in Chap. 4.2. In Na2IrO3, for

example, the angle is almost 100°, and the hopping parameter t2 is calculated to be the largest

at about 250meV, dominated by the hopping via the ligands. The other hopping parameters,

t1 and t3, are calculated to be only about 10-30meV [226�229]. In contrast, in GaTa4Se8,

the bond angle is around 72°, and the direct hopping t3 becomes dominant and quite large,

being about 1 eV [133] [3]. As a consequence, the two cases are very di�erent. In Na2IrO3,

the small hopping can be treated as a perturbation to the local j = 1/2 wavefunction, which

leads to e�ective magnetic exchange interactions, explained in more detail in Chap. 4.2.

Instead, in GaTa4Se8, the large hopping drastically a�ects the wavefunction giving rise to

bonding and antibonding quasimolecular orbitals, more details are provided in Chap. 6.2.

2.2.3 Face-sharing octahedra

The face-sharing geometry is the least studied geometry. It is found, for example, in the

family of compounds Ba3AM2O9 and Ba4AM 3O12 [60], shown in Fig. 1.2 of Chap. 1, which

contain M2O9 face-sharing dimers and M3O12 face-sharing trimers, respectively. In Fig.

2.5(a), the hopping channels in the t2g basis {yz, zx, xy} are shown, and the hopping matrix
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is [109,230]

Tface = −c†2



t1 t2 t2

t2 t1 t2

t2 t2 t1


 c1 + c.c.. (2.29)

A more convenient basis for this geometry is the trigonal basis {a1g, eπg,a, eπg,b}, see Fig. 2.5(b)
and Eq. 2.7, on which the hopping matrix is diagonal

Tface = −c†2



tσ 0 0

0 tπ 0

0 0 tπ


 c1 + c.c.. (2.30)

The relationship between the hopping parameters in the two bases is

tσ = t1 + 2 t2, tπ = t1 − t2. (2.31)

Based on ab-initio calculations [109] on 5d transition metals, t2 is expected to be about

0.2-0.4 eV, and t2 ≫ |t1|. This means that tσ ≈ 2 t2 ≈ 0.4-0.8 eV and f = tπ/tσ ≈ −1/2. So,

in this geometry for 5d elements we expect a strong hopping that gives rise to the formation

of bonding and antibonding states.

We can perform the calculations using for the orbitals the local reference frames {x1, y1, z1}
and {x2, y2, z2}, as shown in Fig. 2.5. The spin-orbit coupling has to be expressed using

a global spin quantization axis, as done in [109]. We introduce a global spin quantization

reference frame {xs, ys, zs} as in Fig. 2.5(b). The angles θ and ϕ that bring the local frames

{x1, y1, z1} and {x2, y2, z2} into the global frame are, respectively, (θ1, ϕ1) = (arccos( 1√
3
), π4 )

and (θ2, ϕ2) = (− arccos( 1√
3
),−3π

4 ), where arccos( 1√
3
) ≈ 54.74◦. We thus have two di�erent

spin-orbit coupling matrices for the two sites, which, by using Eq. 2.13, are given by:

Hso(θ1, ϕ1) =
λ

2


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6

i√
3

0 0


(2.32)

and

Hso(θ2, ϕ2) =
λ

2



0 0 i√
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i
√

2
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− i√
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1√
2
+ i√

6

0 0 i
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0 0

1√
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6

i√
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0 0


. (2.33)

The spin-orbit coupling matrices for a dimer given in Ref. [109] di�er from the ones above

because of a di�erent choice of the direction of the global frame. We have chosen the global

axis along (0, 0, 1)s in the global frame, which is equivalent to (1, 1, 1)i in the local frames
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i = 1, 2. In contrast, the opposite orientation of the global axis is chosen in Ref. [109], such

that the global (0, 0, 1)s axis corresponds to (−1,−1,−1)i in the local frames. The spin-orbit

coupling matrices D1 and D2 given in Ref. [109] can be reproduced by adding π to θ1 and

θ2.
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Chapter 3

Resonant Inelastic X-ray Scattering

on correlated clusters in solids

The technique we used to investigate the electronic excitations in cluster Mott insulators and

Kitaev materials is Resonant Inelastic X-ray Scattering (RIXS). The popularity of RIXS has

grown over the last 30 years thanks to technological, experimental, and theoretical advances,

and it is now a well-established technique [134�139,231�234]. RIXS is an inelastic photon-in,

photon-out spectroscopy technique in which the system under investigation is irradiated with

monochromatic X-ray radiation, and the energy and momentum of the scattered X-rays are

measured. We are interested in observing those scattering processes in which a part of the

energy and momentum is transferred from the X-rays to the system, causing it to transition

to an excited state. The amount of energy and momentum transferred to the system is

determined via energy and momentum conservation by measuring the change in the energy

and direction of the scattered X-rays, which are analyzed through an X-ray spectrometer.

The peculiarity of the RIXS technique lies in the choice of the incident energy, which

is chosen to be in resonance with the excitation energy of a core electron into the valence

shell. In other words, the incident energy is in resonance with an X-ray absorption edge.

The energy of the X-ray absorption edges is characteristic of each element, making RIXS an

element-selective technique. RIXS is denoted by the core-hole excitation, for example, "RIXS

at the L3 edge of Ir4+" means that the incident energy is in resonance with the excitation of

a 2p 3
2
electron. In the symbol Xy, the letter X = (K, L, M, N, . . . ) denotes the principal

quantum number n = (1, 2, 3, 4, . . . ) of the core shell, while the number y = (1, 2, 3, . . . )

speci�es the subshell corresponding to (s, p1/2, p3/2, . . . ). For 5d transition metals like Ta

and Ir, the L3 absorption edge is in the hard X-ray range, respectively at about 9.88 keV and

11.215 keV [235]. The direct valence RIXS process can be described as a two-step process.

First, there is a resonant absorption of the X-ray photon that excites a core electron into

the valence shell, bringing the system into an intermediate state with a very unstable core

hole. The core hole has a very short lifetime, for example, for 2p in 5d transition metals

it is of the order of 1 fs. An electron from the valence shell �lls the core hole and an X-

ray photon is emitted. The energy of the outgoing X-ray depends on which �nal state is

reached. An important aspect for our work is that the absorption and emission processes are

coherent. This means that all the intermediate states paths are summed coherently, leading
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Figure 3.1: A simpli�ed schematic of a RIXS experiment. In a RIXS experiment, X-rays are gener-
ated in a synchrotron using an undulator. The incident energy is selected by a monochromator. The
X-rays are then focused onto the sample under investigation. The scattered X-rays are di�racted
and dispersed by a crystal analyzer. In the Rowland circle geometry, the sample, crystal analyzer,
and detector all lie on the circumference of a circle.

to interference e�ects in the RIXS intensity. The consequences of this coherence are central

to our work and are explained later in the chapter.

A broad variety of excitations can be observed with RIXS: phonons, magnetic excitations,

crystal �eld and orbital excitations, and charge-transfer excitations [134�136]. In this thesis

we focus on magnetic and orbital excitations of the electrons. As seen in the previous

chapter, the energy scale of the orbital excitations is from few meV to several eV. This scale

is determined by parameters such as spin-orbit coupling, crystal �eld, JH , and hopping.

Instead, magnetic excitations have lower energies, up to a few hundred meV, determined by

magnetic interactions. The study of these excitations with RIXS allows us to understand

the electronic structure of the material and quantify the parameters of the hamiltonian.

Resonance enhances the scattering cross section of these excitations and leads to speci�c

polarization selection rules that depend on the RIXS edge. For example, the strong spin-

orbit coupling of the 2p shell allows to probe spin-�ip excitations at the L3 edge of 5d

transition metals [236]. However, even in resonance, the �uorescence decay competes with

other decay channels [231], making the RIXS scattering cross section very small. This

requires a very bright incident X-ray beam for a successful RIXS experiment. For this

reason, the experiments are performed in synchrotrons, and the technique became viable

with the advent of 3rd generation synchrotrons. Figure 3.1 shows a simpli�ed schematic

of a RIXS experiment. A detailed discussion of synchrotron physics and technology can

be found in Refs. [237�239]. In a synchrotron, a beam of electrons travels in a circular

particle accelerator with energies ranging from 0.1 to 10 GeV. Magnets are used to deviate

the electron beam, causing it to emit electromagnetic radiation. Due to the high kinetic

energy, the electron velocity is very close to the speed of light, resulting in a signi�cant

Doppler shift and the emission of photons with very short wavelengths in the direction

parallel to the velocity [237]. In RIXS, we require a highly intense X-ray beam at a speci�c

resonance energy. Undulators are used to achieve high brilliance peaking at certain photon

energies [237]. An array of alternating magnetic dipoles creates an alternating magnetic

�eld perpendicular to the electron path, causing the electrons to oscillate in the synchrotron
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plane. The X-rays emitted along the axis of the undulator add coherently, resulting in

constructive or destructive interference depending on the wavelength of the emitted X-ray.

Which wavelength adds coherently depends on the undulator period and the magnetic �eld

strength. The photons generated in this way naturally have a linear polarization parallel to

the synchrotron plane. X-ray monochromators are used to select the resonance energy of the

beam with momentum kin incident on the sample. In Fig. 3.1 a four-bounce monochromator

is depicted. In the hard X-ray regime monochromators are based on Bragg di�raction from a

crystal. The beam is focused on the sample by a system of X-ray focusing mirrors [240] down

to a spot size of ≈ 10 µm× 10 µm. This allows the measurement of small single crystals.

The radiation scattered from the sample is di�racted and dispersed by a crystal analyzer

exploiting again a Bragg re�ection. By positioning the crystal analyzer at a speci�c scatter-

ing angle 2θ, we can measure the X-rays that transferred a momentum q = kin − kout(2θ)

to the sample. Most RIXS spectrometers employ a Rowland circle geometry [241], where

the sample, crystal analyzer, and detector lie on a circle of radius R. If the crystal analyzer

is of the Johann type [242], meaning it is spherically bent with a radius of curvature of 2R,

all the di�racted X-rays with the same energy are imaged on the detector at the same point.

To achieve the highest resolution, diced spherical analyzers [243] are used to avoid the strain

caused by bending the crystal to the required curvature. Each RIXS edge usually requires

a di�erent crystal analyzer or the exploitation of a di�erent re�ection of the same crystal

analyzer, to adapt to the di�erent resonance energies. So, the energy resolution that can be

achieved changes from element to element. For example, for the Ir L3 edge (≈11.2145 keV)
the energy resolution is ≈ 25meV using a Si(844) backscattering channel cut monochroma-

tor and the Si(884) spherical diced crystal analyzer on a 2m length spectrometer. Instead,

for Ta L3 (9.8 keV) an energy resolution of ≈ 80meV can be achieved using a Si(440) four-

bounce monochromator and a R = 2m Si(066) spherical diced crystal analyzer. The number

of scattered X-rays are then commonly measured with position-sensitive detectors [244,245],

such as a CCD array [246].

So, performing a RIXS experiment requires advanced instrumentation, and a list of

synchrotrons with beamlines where RIXS experiments can be conducted can be found in

Ref. [135].

3.1 Theoretical formulation of RIXS

The interaction between X-rays and matter has been studied for a long time and is well

understood. A detailed derivation and discussion can be found for example in Ref. [134,

232�234]. For our discussion, we summarize the relevant parts of Ref. [134, 234], where

the full Hamiltonian describing the interaction between a system of N electrons and an

electromagnetic �eld is derived. The essential part involves applying a low energy approx-

imation, a non-relativistic approximation, and neglecting magnetic interactions. In these

approximations the Hamiltonian can be split in an electronic and photon-�eld part H0 and

a perturbation partH ′ which describes the electromagnetic interaction between the electrons
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and the photons. The interaction Hamiltonian we want to discuss is

H ′ =
N∑

i=1

[
e

m
A(ri) · pi +

e2

2m
A2(ri)

]
, (3.1)

where pi is the momentum of the electron i and the sum is over all N electrons in the system

and A is the vector potential written in second quantization as

A(r) =
∑

k,ϵ

√
ℏ

2V ϵ0ωk
(ϵ akϵ e

ik·r + ϵ∗ a†kϵ e
−ik·r), (3.2)

with akϵ and a†kϵ being the annihilation and creation operators of a photon with momentum

k and polarization ϵ, ωk the frequency of the photon, V the volume of the system, and ϵ0 the

vacuum permittivity. In the previously mentioned approximations H ′ can be treated as a

perturbation to H0. Fermi's Golden Rule to the second order describes the transition rate w

for a scattering process where the system transitions from an initial state |g⟩ = |g,kϵ⟩ with
energy Eg to a �nal state |f⟩ = |f,k′ϵ′⟩ with energy Ef. Here, |g⟩ and |f⟩ are eigenstates
of the electronic part of H0, and k and k′ are the momenta of the incoming and outgoing

photons. In the scattering process, a momentum q = k−k′ and an energy ℏω = ℏωk−ℏωk′

are transferred from the electromagnetic �eld to the electrons. The transition rate w is given

by

w =
2π

ℏ
∑

f

∣∣∣∣∣⟨f|H
′|g⟩+

∑

n

⟨f|H ′|n⟩ ⟨n|H ′|g⟩
Eg − En

∣∣∣∣∣

2

δ(Ef − Eg), (3.3)

where |n⟩ are eigenstates of the electronic part of H0 with energy En.

The �rst term A · p of Eq. (3.1) is proportional to akϵ and a†kϵ and at the �rst order

in Eq. (3.3) it describes absorption and �uorescence processes. The second term A2 of

Eq. (3.1) at the �rst order in Eq. (3.3) describes instead a two photon process since it is

proportional to akϵa
†
k′ϵ′ and a†k′ϵ′akϵ. This term describes the Thomson scattering as well as

the Non-resonant Inelastic X-ray Scattering. The scattering amplitude is proportional to

Anon-res ∝ ⟨f|
∑

i

A2(ri) |g⟩ ∝ ϵ′∗ · ϵ ⟨f |
∑

i

eiq·ri |g⟩ . (3.4)

At zero energy transfer, this gives rise to the Bragg peaks intensity and to non-resonant

elastic scattering. This scattering process is minimized when ϵ′ and ϵ are perpendicular.

When the incident energy is much larger than any resonance of the material the inelastic

scattering is dominated by this term.

Instead, the second order processes in Eq. (3.3) are dominant when the denominator is

very small. This happens when Eg+ℏωk−En+iΓn is very small, that is, when the incoming

X-rays are in resonance with an excitation in the material, where we introduced the lifetime

broadening of the intermediate state Γn. The �rst term A · p of Eq. (3.1) at the second

order in Eq. (3.3) leads to the Kramers-Heisenberg equation

wres ∝

∣∣∣∣∣∣
∑

n

N∑

i,j=1

⟨f | e−ik′·ri ϵ′∗ · pi |n⟩ ⟨n| eik·rj ϵ · pj |g⟩
Eg + ℏωk − En + iΓn

∣∣∣∣∣∣

2

. (3.5)
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This equation describes a process in which a photon with polarization ϵ and momentum

k is absorbed by the electrons at position rj with momentum pj and the system transi-

tions from the ground state |g⟩ to an intermediate state |n⟩. The system then relaxes from

the intermediate state |n⟩ to the �nal state |f⟩ through spontaneous emission of a photon

with polarization ϵ′ and momentum k′ by deexciting the electrons at position ri with mo-

mentum pi. The amplitude is summed coherently over all the intermediate states and the

denominator determines the weight of a certain intermediate state. The amplitude is also

summed coherently over all the electrons at positions ri,j that participate in the excitation

and deexcitation.

The core states are very much localized having a very small radial wavefunction and

being screened by many higher energy shells which leads to a negligible interaction with the

neighboring atoms. This means that we can assume that the core electron is excited into

high energy states of the same ion. For the same reasons, the core hole does not propagate to

the neighboring atoms in the intermediate state, which means that the core hole is created

and annihilated at the same site.

We can rewrite Eq. (3.5) as

wres ∝
∣∣∣⟨f | D′†GD |g⟩

∣∣∣
2
, (3.6)

where we introduced the transition operators D =
∑N

j=1 e
ik·rj ϵ · rj and D′ (by exploiting

the commutation relations, we replaced the momentum operator with the position operator)

and the propagator of the core hole in the intermediate state G =
∑

n
|n⟩⟨n|

Eg+ℏωk−En+iΓn
. In

the dipole approximation it is assumed that eik·rj is approximately constant over the length

scale of the atomic wavefunctions, so that eik·rj ≈ eik·Rj where Rj is not an operator but

a vector pointing to the nucleus of the atom to which the electron j is bound. Since the

2p radial wavefunction of the core hole in 5d transition metals has a very small extent of

the order of 0.1Å, this is a good approximation even for photon with energies of ≈ 10 keV

which carry a momentum of ≈ 5Å−1. With this approximation we can rewrite the transition

operator as

D =
∑

j

eik·RjDj , (3.7)

with Dj = ϵ · rj . With the assumption introduced previously that the core hole is created

and annihilated at the same site, we can rewrite the amplitude of Eq. (3.6) as:

ARIXS ∝ ⟨f |
N∑

i,j=1

ei(k·Rj−k′·Ri)D
′†
i GDj |g⟩

= ⟨f |
N∑

j=1

eiq·RjD
′†
j GDj |g⟩

= ⟨f |
N∑

j=1

eiq·RjMj |g⟩ ,

(3.8)

where we used the exchanged momentum q = k − k′, de�ned the local RIXS operator

Mj = D
′†
j GDj , and the sum now runs over all the atomic sites j at position Rj that
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Energy loss

Figure 3.2: Schematic representation of the two-step RIXS process for the L3 edge of Ir
4+. The en-

ergies of the many-body eigenstates are represented as horizontal lines. Depending on the resonance
energy, di�erent intermediate states can be reached. At approximately 11.2145 keV, the interme-
diate states with the con�guration 2p33

2

t62g are predominantly reached. If the resonance energy is

increased by 10Dq ≈ 3 eV to approximately 11.2175 keV, the intermediate states with the con�gu-
ration 2p33

2

t52g e
1
g dominate. These two processes are illustrated on the right using a single-electron

picture. Resonance with the t2g states enhances the RIXS intensity of the intra-t2g excitations, while
resonance with the eg states boosts the intensity of the t42g e

1
g excitations. The energy levels and

spectra were calculated using Quanty [247].

contribute coherently to the scattering process.

Figure 3.2 shows the RIXS process for the L3 edge of Ir4+. The energy levels of the

many-body eigenstates of the initial and �nal 2p6 5d5 con�guration and of the intermediate

2p5 5d6 con�guration are represented as horizontal lines. In the ground state |g⟩ of Ir4+,

�ve electrons occupy the t2g states. Spin-orbit coupling splits the t52g con�guration into a

j = 1/2 ground state and j = 3/2 excited states, as discussed in Chap. 2.1.2. The two

steps of the RIXS process are represented. The �rst step is the resonant absorption of the

incoming X-ray with energy ℏωk, which excites the system from the ground state |g⟩ to

the intermediate states |n⟩. The 2p orbitals are split by a strong spin-orbit coupling into a

lower lying 2p 1
2
and upper lying 2p 3

2
multiplets, with a splitting of 1.6 keV. We are going to

consider the intermediate states in which a core hole is created in the 2p 3
2
states, leading

to an intermediate state con�guration 2p33
2

5d6. The second step is the deexcitation from

the intermediate state |n⟩ to the �nal state |f⟩, via the spontaneous emission of an X-ray

photon with energy ℏωk′ . In an experiment, the RIXS intensity (IRIXS) is measured as a

function of the energy loss: ℏωk − ℏωk′ . The incident energy is chosen to resonate with

the excitation of an electron from the core 2p 3
2
states into the valence shell. The weight of

di�erent intermediate states depends on the resonance energy as shown by the denominator

of Eq. (3.5) and on the matrix element ⟨n|D |g⟩. The square of this matrix element gives

the X-ray absorption spectrum. This is plotted in Fig. 3.2 as a function of the incident

energy, with a narrow linewidth (solid line) to highlight the individual contributions and

with a realistic linewidth (dotted line) of about 5 eV [248]. For example, at approximately

36



Chapter 3. Resonant Inelastic X-ray Scattering on correlated clusters in solids

11.2145 keV, the intermediate states with the con�guration 2p33
2

t62g have more weight. If the

resonance energy is increased by approximately 10Dq ≈ 3 eV, the intermediate states with

the con�guration 2p33
2

t52g e
1
g have more weight. These processes are depicted on the right in

a single-electron picture representing the electronic con�gurations of ground, intermediate,

and �nal states. All the intermediate states that can be reached contribute coherently to

the scattering process but the weight determines which excitation path dominates. Di�erent

resonance energies enhance the RIXS intensity of di�erent �nal states. Resonance with the

t2g states boosts the intensity of intra-t2g excitations, while resonance with the eg states

boosts the intensity of �nal states with the con�guration t42g e
1
g. This is represented by the

calculated RIXS spectra plot in Fig. 3.2.

3.2 Interference e�ects in RIXS

In Eq. (3.8) we showed that the RIXS amplitude in dipole approximation contains a sum-

mation over all the ions that contribute coherently to the scattering process. In case of exci-

tations of isolated single ions the summation contains only one site and the RIXS amplitude

can be written simply as ⟨f |M |g⟩. Instead, in the case of molecular orbitals the summation

runs over all the ions over which the initial and �nal states are delocalized [194, 195, 197].

In fact, in this case, at the end of the scattering process the information on which atomic

site the core hole was created in the intermediate state is lost. The excitation paths that

involve the creation of the core hole on each site are summed coherently which gives rise to

constructive and destructive interference e�ects.

To explain the RIXS measurements and the RIXS interference e�ects in a practical way

we present here RIXS measurements on Ba3Ti3−xIrxO9 as an example. These results have

been published in Ref. [1] and introduced in [175]. This material was studied as a function

of the Ir concentration x ∈ {0.3, 0.5, 1.5, 1.8}. The study of the RIXS interference, which

means the study of the RIXS intensity as a function of the exchanged momentum q, allowed

to determine that the physics is dominated by strong site disorder, see Fig. 3.3. These

results highlight the unusual kind of disorder in this material which modi�es the magnetic

moment, changing the character from the localized spin-orbit entangled j = 1/2 moments

to quasimolecular singlet states on Ir2O9 dimers.

The crystal structure of Ba3Ti3−xIrxO9 is shown in Fig. 3.3. It belongs to the family

of the hexagonal iridate family Ba3AIr2O9. If the structure is perfectly ordered, for x = 2

the Ir occupies all the 4f sites forming Ir2O9 face-sharing dimers and Ti the 2a sites, but,

as we are going to see, this material shows a strong Ir-Ti site disorder. This leads to the

coexistence in the crystal of single-site isolated Ir4+ j = 1/2 moments, face-sharing dimers,

and corner-sharing dimers.

We performed RIXS measurements at the Ir L3 edge at beamline ID20 at the European

Synchrotron Radiation Facility (ESRF) [249,250]. First, we studied the resonance behavior

by measuring RIXS spectra as a function of the incident energy Ein from 11.213 to 11.222

keV on the sample with x = 1.8 with a low-resolution (0.4 eV). The result is shown in the

resonance map in Fig. 3.4(a). The energy loss of the inelastic features is independent of

the incident energy while the RIXS intensity shows a strong resonance behavior. Two main
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Figure 3.3: Crystal structure of Ba3Ti3−xIrxO9 which highlights the e�ect of site disorder. In the
fully ordered structure Ir occupies the 4f sites and Ti the 2a sites. Using RIXS interferometry we
observed the presence of site disorder. As a function of increasing concentration of Ir x, the system
changes from being dominated by localized single-site Ir j = 1/2 moments to showing the formation
of dimers hosting quasimolecular orbitals. Our results reveal the coexistence of dimers formed by
both face-sharing and corner-sharing geometries, in which the Ir atoms occupy the 4f -4f and 4f -2a
sites, respectively.
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Figure 3.4: Resonance map of Ba3Ti3−xIrxO9 for x = 1.8. The RIXS intensity is shown as a color
map as a function of energy loss and incident energy. Two spectra are shown, acquired at the maxima
of the t2g (red) and eg (blue) resonances.
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Figure 3.5: (a)-(d) RIXS spectra of Ba3Ti3−xIrxO9 at T = 20K for x = 0.3, 0.5, 1.5, 1.8 showing
single-site and dimer excitations. At small x, the spin-orbit exciton dominates, indicating single-site
j = 1/2 moments. At large x, broad features above 0.2 eV indicate quasimolecular excitations on
Ir2 dimers, as shown by the sin2(qcd/2) modulation with period 2Qd = 2π/d. (e) and (f) show the
integrals of the RIXS intensity. The single-site spin-orbit exciton at 0.57 eV (orange) is constant,
while the 0.35 eV peak (dark blue) shows a sin2(qcd/2) modulation, proving the dimer character.
The larger period below 0.25 eV for x = 1.5 (dark green) indicates a di�erent origin related to Ir
ions on 2a sites. Figure reproduced from Ref. [1].

inelastic features can be identi�ed: one peaking at about 0.5 eV and one at 3.25 eV. The two

features show a di�erent dependence of the RIXS intensity on the incident energy. The 0.5

eV feature is maximized for an incident energy of about 11.215 keV, while the 3.25 eV feature

at 11.218 keV, see Fig. 3.4(b). The di�erences in energy loss and resonance energy are both

about 3 eV, which agrees with the value of 10Dq expected for the t2g-eg splitting. In fact,

the 0.5 eV feature can be identi�ed as intra-t2g excitations while the 3.25 eV feature with

t2g-eg excitations. As explained in Chap. 3.1, the intensity is maximized when we resonate

with certain intermediate states. The resonance behavior allows to identify the character

of certain excitations and to maximize the intensity measured during the experiment. In

this experiment (as well as in the rest of the thesis) we focused on the intra-t2g excitations

and choose accordingly a Ein = 11.215 keV. Notice that the exact value of the resonance

energy can change from material to material. We now analyze how the RIXS spectra of

Ba3Ti3−xIrxO9 change as a function of the Ir concentration x ∈ {0.3, 0.5, 1.5, 1.8}. In Fig.

3.5(a) and (b), we can see the spectra for x = 0.3 and 0.5. The spectra are dominated by

the so-called spin-orbit exciton at 0.57 and 0.70 eV, which are excitations of the Ir4+ ion

from the j = 1/2 ground state to the j = 3/2 states split by a trigonal crystal �eld. This

re�ects the presence of mainly isolated IrO6 octahedra at low concentrations. As we move

to higher concentrations, from Fig. 3.5(a) to (d), the spectra change and show many more
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features. This is because the occupation of neighboring 4f sites becomes more likely, leading

to the formation of dimers. The strong interaction inside the dimers leads to the formation

of bonding and antibonding orbitals, which increases the number of possible excited states

and results in a much richer spectrum. At x = 1.8, the spectra are dominated by dimer

excitations, with the most intense in the range 0.275-0.45 eV and less intense ones in the

ranges 0.125-0.25 eV, 0.65-0.80 eV, and 0.85-1.15 eV. These excitations can also be seen with

lower intensity for x = 1.5, while only the most intense in the range 0.275-0.45 eV can be

identi�ed for x = 0.5. In the panels Fig. 3.5(a)-(d), spectra acquired at di�erent exchanged

momentum q for di�erent values of l are plotted. The single-site excitations at 0.57 and

0.70 eV do not show any q dependence, re�ecting their localized single-site nature. Instead,

the dimer excitations show a pronounced dependence of their intensity on l. We can see this

dependence in more detail by plotting the integral of the RIXS intensity as a function of l,

as shown in Fig. 3.5(e)-(f) for x = 0.5 and x = 1.5, respectively. The dimer excitations show

a pronounced sinusoidal modulation. The modulation of the strongest dimer excitation can

be well described by

If (qc) = (a0 + a1qc + a2q
2
c ) sin

2(qcd/2) + c0 + c1qc, (3.9)

where qc is the projection of exchanged momentum q along the c axis, and d is the distance

between two Ir ions occupying the 4f sites, and the �t parameters ai and ci describe the

modulation amplitude and the o�set. From the �t we obtain the period of the sinusoidal

part sin2(qcd/2) equal to 2Qd = (5.34 ± 0.04)2π/c = 2π/d, from which we can obtain the

distance d = (2.66 ± 0.02)Å at 20K knowing that c = 14.1516Å. The presence of this

modulation allows us to determine that this excitation involves quasimolecular orbitals that

are delocalized over Ir ions at a distance d. This distance agrees with the value of 2.65Å

reported in Ref. [251] from X-ray di�raction for the distance inside the Ir2O9 dimers at the

4f position. In Fig. 3.5(f) we can see that the integral in the range 0.65-0.80 eV is also

modulated with the same period but a lower amplitude. The lower amplitude re�ects the

overlap in this region of dimer and single-site excitations. Something very interesting is

observed by integrating in the range 0.125-0.25 eV. The period observed is about 17% larger,

pointing to a di�erent origin of the excitations, in particular pointing to a smaller distance in

real space. Further details will be discussed below. The modulation arises from the coherent

scattering over the two sites of the dimer as sketched in the inset in Fig. 3.5(e). When the

wavefunction is delocalized over multiple sites, at the end of the scattering process there is

no information about the site on which the core hole was created in the intermediate state.

In addition to summing over all the intermediate states that can be reached, we sum over all

the sites over which the initial and �nal states are delocalized. This means that the RIXS

scattering amplitude has to be summed coherently for the two excitation paths which leads

to interference terms. The amplitude can be written as:

Af (q) ∝ ⟨f |
∑

j=1,2

eiqRjMj |g⟩ , (3.10)

where Mj is the local dipole matrix element for the RIXS process at site Rj and eiqRj the
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Figure 3.6: RIXS interference patterns of Ba3Ti3−xIrxO9 for x = 1.5 as a function of h. The
dominant dimer peak at 0.35 eV, integrated from 0.275 to 0.45 eV (blue), does not depend on h
since the dimer axis is parallel to c. In contrast, the 0.15 eV (dark green) shows a modulation with
two di�erent periods along h. The solid line is the total �t, while the light green lines show the two
contributions with periods 3 and 3/2 in h. Figure reproduced from Ref. [1].

phase factor. For a dimer with inversion symmetry, the matrix elements on the two sites

have the same modulus but can have di�erent sign which yields

Ainv
f (q) ∝ (eiqcd/2 ± e−iqcd/2) ⟨f |M |g⟩ . (3.11)

The RIXS intensity is proportional to the square of the modulus of the amplitude. So,

we obtain a sinusoidal modulation of the RIXS intensity equal to either cos2(qcd/2) or

sin2(qcd/2), depending on the ± sign.

The excitation observed at 0.15 eV shows a modulation period of 2Q2a = (6.27 ±
0.08)2π/c, larger than for the other dimer excitations. This corresponds to a distance of

d2a = 2.26± 0.03Å, that agrees with the projection along c of the distance between the 4f

and 2a sites. The vector connecting the atoms inside a 4f -2a dimer is not only parallel to

the c axis but it has a component perpendicular to c. In Fig. 3.6 is plotted the integrated

RIXS intensity for x = 1.5 as a function of h, so for a direction of ∆q perpendicular to the

c axis. The integrals of the dominant dimer peak at 0.35 eV and of the 0.15 eV feature are

shown. We can see that while the integral of the �rst does not depend on h, the second

shows a certain modulation that can be �t using two contributions with periods of 3 and 3/2

in h. In the inset of Fig. 3.6 is plotted the projection of the six possible Ir2a-O-Ir4f bonds

onto the ab plane. We can see that the scalar product between the exchanged momentum

and the bonds will lead to two di�erent projections for the bonds labeled 1 and 2 and for

the bonds labeled 3. This results in two di�erent periods of the modulation that can be

observed in the data. These Ir2a-O-Ir4f bonds are in a corner-sharing geometry which is in

agreement with the large exchange energy observed.

By measuring the RIXS modulation we were able to prove the quasimolecular character

and determine to which crystallographic sites the excitations belong through the analysis of

the modulation period.
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Figure 3.7: Graphical representation of the RIXS transition operator M = D
′† GD for the L3 edge

with a single hole in the t2g shell. Reproduced from [252] with focus on the t2g orbitals.

3.3 RIXS matrix elements for the t2g shell at the L3 edge

We calculate in the following chapter the RIXS amplitude at the L3 edge for an excitation

within the t2g orbitals in a single-hole picture. We start by considering a single site and

then extend the calculation to the case of a dimer where interference e�ects arise. A visual

representation of the RIXS operator M = D
′†GD for the t2g shell is shown in Fig. 3.7. The

�rst step of the RIXS process is a dipole transition that excites the hole from the t2g shell

into the core 2p shell. We can write it as a matrix in the basis {x↑, x↓, y↑, y↓, z↑, z↓} for the p
orbitals and {yz↑, yz↓, zx↑, zx↓, xy↑, xy↓} (sometimes denoted as {X↑, X↓, Y ↑, Y ↓, Z↑, Z↓})
for the t2g orbitals as

D =




0 0 ϵz 0 ϵy 0

0 0 0 ϵz 0 ϵy

ϵz 0 0 0 ϵx 0

0 ϵz 0 0 0 ϵx

ϵy 0 ϵx 0 0 0

0 ϵy 0 ϵx 0 0




, (3.12)

where ϵi are the components of the incident polarization. In the intermediate state the core

hole propagates due to the strong spin-orbit coupling. The propagation matrix for the L3

edge can be written as [253]

G = −i(Id + L · S) =




−i Id −σz σy

σz −i Id −σx

−σy σx −i Id


 , (3.13)

where Id is the identity matrix and L · S is the spin-orbit coupling operator acting on the p

shell. We employ the z axis as the spin quantization axis. When the spin quantization axis

is di�erent from the z axis, L · S can be calculated using the procedure explained in Chap.

2.1.2. In Fig. 3.7, a propagation opposite to the arrow direction introduces a minus sign.

After the propagation, we reach the �nal state through the emission of a photon, which

can be described by D
′†, coinciding with Eq. (3.12) but with the outgoing polarization ϵ

′†
i .

In our experiments, the polarization of the outgoing beam could not be resolved, so we

decompose the outgoing polarization into horizontal (parallel to the scattering plane) and
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vertical (perpendicular to the scattering plane) outgoing linear polarization ϵ′i. Being linear,

the polarization is real, and we drop the †. So, we can write a matrix that describes the

single-hole, single-site RIXS transition operator as M = D′ ·G ·D:

M =




−2i (yy′ + zz′) zy′ − yz′ zz′ − 2ixy′

zy′ − yz′ −2i (yy′ + zz′) −xz′ − izy′

−zz′ − 2iyx′ zx′ − iyz′ −2i (xx′ + zz′)

zx′ + iyz′ zz′ − 2iyx′ i (xz′ − zx′)

−zy′ − 2izx′ −y (x′ + iy′) z (x′ − 2iy′)

−y (x′ − iy′) z (y′ − 2ix′) −x (x′ − iy′)

−xz′ + izy′ (y − 2ix)z′ (x+ iy)y′

−zz′ − 2ixy′ (x− iy)y′ (−y − 2ix)z′

i (zx′ − xz′) − ((x+ 2iy)z′) (x+ iy)x′

−2i (xx′ + zz′) (x− iy)x′ (x− 2iy)z′

−x (x′ + iy′) (y − 2ix)x′ − (x+ 2iy)y′ 0

−z (x′ + 2iy′) 0 (−y − 2ix)x′ + (x− 2iy)y′




(3.14)

where I simpli�ed ϵi as x, y, z for the incident polarization and ϵ′i as x
′, y′, z′ for the outgoing

polarization. Note that, in the matrix connecting the xy orbitals, the o�-diagonal terms

are zero. This is because, as shown in Fig. 3.7, the xy orbitals are connected only via −i

and σz when the spin quantization axis is along the z axis. As a result, spin-�ip transitions

of the xy orbitals are forbidden. In contrast, spin-�ip transitions are allowed for the other

orbitals (yz and zx). Changing the spin-orbit quantization axis changes the matrix elements.

For example, when the quantization axis is along x (y), the spin-�ip transitions that are

forbidden are those of the yz (zx) orbitals.

Consider two eigenstatesΨi andΨf as vectors de�ned in the {yz↑, yz↓, zx↑, zx↓, xy↑, xy↓}
t2g basis. We can calculate the RIXS scattering amplitude for the excitation from Ψi to Ψf

as Ψ∗
f ·M ·Ψi. Alternatively, we can calculate it as the sum of all the elements of the matrix

obtained as M⊙(Ψ∗
f ⊗Ψi). As an example, we calculate the transitions between the j = 1/2

states of Eq. (2.18) [234,254]. We have the wavefunctions

|1
2
,+

1

2
⟩ = − 1√

3
|yz↓⟩ − i√

3
|zx↓⟩ − 1√

3
|xy↑⟩

|1
2
,−1

2
⟩ = − 1√

3
|yz↑⟩+ i√

3
|zx↑⟩+ 1√

3
|xy↓⟩

(3.15)

and we want to calculate the 4 transition amplitudes for the spin-conserving ⟨12 ,±1
2 |M |12 ,±1

2⟩
and the spin-�ip ⟨12 ,∓1

2 |M |12 ,±1
2⟩ excitations. Consider the excitation ⟨12 ,+1

2 |M |12 ,+1
2⟩.
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Calculating ⟨12 ,+1
2 | ⊗ |12 ,+1

2⟩ allows us too see which transition paths are possible,

1

3




0 0 0 0 0 0

0 1 0 i 1 0

0 0 0 0 0 0

0 −i 0 1 −i 0

0 1 0 i 1 0

0 0 0 0 0 0




. (3.16)

There are 9 possible transition paths

⟨yz↓|M |yz↓⟩ , ⟨zx↓|M |yz↓⟩ , ⟨xy↑|M |yz↓⟩ ,
⟨yz↓|M |zx↓⟩ , ⟨zx↓|M |zx↓⟩ , ⟨xy↑|M |zx↓⟩ ,
⟨yz↓|M |xy↑⟩ , ⟨zx↓|M |xy↑⟩ , ⟨xy↑|M |xy↑⟩ ,

(3.17)

that are summed coherently in amplitude. Each path can be walked in multiple ways, for

example, the excitation path ⟨xy↑|M |xy↑⟩, shown in Fig. 3.7, can go through the creation

of the intermediate state core hole in a x or y orbital of the p shell. The �nal state can then

be reached from the same orbitals (gaining a phase −i) or the core hole can propagate from

x to y due to spin-orbit coupling (trough σz). Instead, for the excitation ⟨12 ,−1
2 |M |12 ,+1

2⟩
we have the excitation paths

⟨yz↑|M |yz↓⟩ , ⟨zx↑|M |yz↓⟩ , ⟨xy↓|M |yz↓⟩ ,
⟨yz↑|M |zx↓⟩ , ⟨zx↓|M |zx↓⟩ , ⟨xy↓|M |zx↓⟩ ,
⟨yz↑|M |xy↑⟩ , ⟨zx↑|M |xy↑⟩ , (((((((⟨xy↓|M |xy↑⟩.

(3.18)

We notice again that, for spin-quantization along the z axis, the matrix element ⟨xy↓|M |xy↑⟩
is zero. By summing the matrix elements in amplitude and with the correct factors we obtain

the expressions

⟨1
2
,+

1

2
|M |1

2
,+

1

2
⟩ = Az

↑↑ = −i(x′x+ y′y + z′z)− (x′y − y′x)/2

⟨1
2
,−1

2
|M |1

2
,−1

2
⟩ = Az

↓↓ = −i(x′x+ y′y + z′z) + (x′y − y′x)/2

⟨1
2
,−1

2
|M |1

2
,+

1

2
⟩ = Az

↑↓ = (−(y′z − z′y)− i(z′x− x′z))/2

⟨1
2
,+

1

2
|M |1

2
,−1

2
⟩ = Az

↓↑ = (−(y′z − z′y) + i(z′x− x′z))/2,

(3.19)

where we introduced the RIXS scattering amplitudes Az
σσ′ within the j = 1/2 sector for spin

quantization along z.

RIXS interference in a dimer

We show now how to calculate the RIXS intensity in the case of more than one site consider-

ing the simple case of a dimer formed by 2 ions at positions R1 = (0, 0, 0) and R2 = (0, 0, d).

To simplify the calculations, but also to prepare for the calculations performed in Chap.

4.2, we restrict to the j = 1/2 wavefunctions. To calculate the RIXS intensity we have to

44



Chapter 3. Resonant Inelastic X-ray Scattering on correlated clusters in solids

calculate ⟨Ψf |
∑

j=1,2 e
iq·RjMj |Ψi⟩. We consider the wavefunctions

|Ψ0⟩ =
∣∣∣∣(
1

2
,+

1

2
)1, (

1

2
,+

1

2
)2

〉
= |↑↑⟩

|Ψ1⟩ =
∣∣∣∣(
1

2
,−1

2
)1, (

1

2
,−1

2
)2

〉
= |↓↓⟩

|Ψ2⟩ =
(∣∣∣∣(

1

2
,−1

2
)1, (

1

2
,+

1

2
)2

〉
−
∣∣∣∣(
1

2
,+

1

2
)1, (

1

2
,−1

2
)2

〉)
/
√
2 = (|↓↑⟩ − |↑↓⟩)/

√
2

|Ψ3⟩ =
(∣∣∣∣(

1

2
,−1

2
)1, (

1

2
,+

1

2
)2

〉
+

∣∣∣∣(
1

2
,+

1

2
)1, (

1

2
,−1

2
)2

〉)
/
√
2 = (|↓↑⟩+ |↑↓⟩)/

√
2,

(3.20)

where we denoted for simplicity the wavefunction |j,±jz⟩i of site i with the (pseudo)spin

direction. We calculate as an exercise the excitations from Ψ0 to Ψi with i = 0, 1, 2, 3.

The elastic excitation from Ψ0 to Ψ0 can be reached in 2 di�erent ways: a spin-conserving

transition either on site 1 or on site 2. The RIXS intensity can be calculated as:

I00 = | ⟨↑↑|
∑

j=1,2

eiq·RjMj |↑↑⟩ |2

= |Az
↑↑ e

iq·R1 +Az
↑↑ e

iq·R2 |2

= |Az
↑↑ (1 + eiq·∆R)|2

= |Az
↑↑|2 |eiq·∆R/2(e−iq·∆R/2 + eiq·∆R/2)|2

= |Az
↑↑|2 4 cos2(qzd/2),

(3.21)

where we de�ned ∆R = R2 −R1. With the single-site RIXS amplitude being the same, it

can be collected and the complex exponentials interfere giving rise to a cos2(qzd/2) sinusoidal

modulation with a period as function of qz related to the distance d inside the dimer.

The excitation from |↑↑⟩ to |↓↓⟩ cannot be reached. As discussed in Chap. 3.1, because

the core holes are very deep, the RIXS operator is local, meaning it involves the excitation

and deexcitation of the electrons at the same site. So, we cannot excite two sites simultane-

ously.

The other two excitations we compute here are (⟨↑↓| ± ⟨↓↑|)∑j=1,2 e
iq·RjMj |↑↑⟩. This

excitation can be reached in 2 ways: by �ipping the spin on the �rst site with amplitude

Az
↑↓ and phase ±e0 = ±1 depending on the sign of the �nal state, or equivalently �ipping

the spin on the second site with the same amplitude but with exponent eiq·R2 . The RIXS

intensity can be calculated as:

I02/3 = |(⟨↑↓| ± ⟨↓↑|)
∑

j=1,2

eiq·RjMj |↑↑⟩ |2

= | ±Az
↑↓ e

iq·R1 +Az
↑↓ e

iq·R2 |2

= |Az
↑↓ (±1 + eiq·∆R)|2

= |Az
↑↓|2 (2± 2 cos(qzd))

= |Az
↑↓|2 4 cos2(qzd/2 + (1∓ 1)π/4),

(3.22)

which shows that, depending on the phase of the wavefunction, whether + or −, gives rise
to a cos2(qzd/2) or a sin2(qzd/2) modulation. So, the modulation contains the information
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about the relative phase of the ground state and �nal state wavefunctions. However, this

information is mixed with the polarization dependence given by the matrix elements.
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Chapter 4

Bond-directional excitations in

Kitaev materials

4.1 RIXS observation of bond-directional nearest-neighbor ex-

citations in the Kitaev material Na2IrO3

At the basis of the Kitaev model is the bond-directional nearest-neighbor character of the

exchange interactions. In Ref. [188], Revelli et al. observed in the Kitaev materials Na2IrO3

and α-Li2IrO3 a nearest-neighbor modulation of the RIXS intensity similar to the one ob-

served in dimer systems [197] [1,6]. Experimentally, it is very challenging to collect evidence

for the bond-directional character of the exchange interactions, as discussed in Chap. 1. In

the following chapter, we address this issue via the magnetic excitations. A bond-directional

character of exchange interactions implies a corresponding bond-directional nature of the

magnetic excitations, and we show how RIXS can be used to identify the corresponding

signatures. In particular, the task is to show that, e.g., a spin-conserving excitation involv-

ing the spin operator Sz creates an excitation only on the z bond. We therefore have to

�nd a way to simultaneously determine the bond direction and the spin operator involved.

We have solved this by making e�cient use of the nearest-neighbor or two-site character of

the spin correlations and the RIXS polarization dependence. Altogether, this provides the

�rst observation of bond-directional excitations, validating the Kitaev character of exchange

interactions in the Kitaev materials Na2IrO3 and α-Li2IrO3. The results on Na2IrO3 are

published in Pub. [2], which we reproduce in the following. In Chap. 4.2, we add an extended

discussion on the model used to describe the data. At the end, in Chap. 4.3, we show that

in α-Li2IrO3 we observe a similar bond-directional behavior of the magnetic excitations as

in Na2IrO3.
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Spin-orbit coupling locks spin direction and spatial orientation and generates, in semi-classical magnets, a
local spin easy-axis and associated ordering. Quantum spin-1/2’s defy this fate: rather than spins becoming
locally anisotropic, the spin-spin interactions do. Consequently interactions become dependent on the spatial
orientation of bonds between spins, prime theoretical examples of which are Kitaev magnets. Bond-directional
interactions imply the existence of bond-directional magnetic modes, predicted spin excitations that render crys-
tallographically equivalent bonds magnetically inequivalent, which yet have remained elusive experimentally.
Here we show that resonant inelastic x-ray scattering allows us to explicitly probe the bond-directional character
of magnetic excitations. To do so, we use a scattering plane spanned by one bond and the corresponding spin
component and scan a range of momentum transfer that encompasses multiple Brillouin zones. Applying this
approach to Na2IrO3 we establish the different bond-directional characters of magnetic excitations at ∼ 10 meV
and ∼ 45 meV. Combined with the observation of spin-spin correlations that are confined to a single bond, this
experimentally validates the Kitaev character of exchange interactions long proposed for this material.

The physics of quantum magnets with bond-directional in-
teractions can be captured by so-called compass models [1],
quantum theories of matter in which the couplings between
different spin components are inherently spatially (typically,
direction) dependent. Theoretically, this class of models har-
bors a range of interesting emergent physical phenomena, in-
cluding the frustration of (semi-)classical ordered states on
unfrustrated lattices, and a boost of quantum effects, prompt-
ing, in certain cases, the appearance of quantum spin liquids
[2–4] – Kitaev spin liquids are well-known examples [5, 6].
In spin-1/2 materials, spin-orbit coupling naturally induces
bond-directional spin-spin interactions. These can dominate
when spin-orbit coupling becomes large, e.g., in 4d and 5d
transition metal compounds [7–9]. However it has remained a
principal challenge to experimentally identify the fingerprints
of bond-directional magnetic interactions [10] and to estab-
lish methods to systematically explore their consequences for
elementary magnetic properties.

Here we show that bond-directional excitations (BDE) –
spin excitations that render crystallographically equivalent di-
rections magnetically inequivalent – are a hallmark of bond-
directional magnetic interactions and demonstrate how to use
resonant inelastic x-ray scattering (RIXS) to directly probe
these BDE. The challenge to resolving the bond-directional
character of magnetic modes is that it requires simultaneous
knowledge of both the spin operator creating the excitation
and the direction of the bond involved. We introduce a RIXS
geometry that yields the former via the polarization depen-
dence and the latter by measuring across multiple Brillouin
zones. Using this method on Na2IrO3, a Kitaev material ex-

hibiting a proximate spin liquid regime [11–13], we establish
the different bond-directional characters of spin-conserving
and spin-flip excitations at ∼ 10 meV and ∼ 45 meV, respec-
tively.

Resolving BDE with RIXS on Na2IrO3 is based on polar-
ization selection rules but a polarization analysis of the scat-
tered x-rays is not available at the commonly used Ir L edge.
We have solved this problem by exploiting a tilted sample
geometry which highlights polarization effects over the large
range of q space that can be covered with hard x-rays, see
Fig. 1. Tilting the sample puts the spin-orbit entangled jz

component of the local pseudo-spin j = 1/2 moments into the
scattering plane. This allows us to disentangle excitations of
jz from those of jx or jy . The anisotropy in j space trans-
lates into a characteristic q dependence of the intensity that
provides a direct signature of bond-directional behavior.

Bond-directional character: To illustrate the conceptual
relation between bond-directional interactions and BDE we
consider a central spin on site i surrounded by sites j, con-
nected by bonds γ⟨ij⟩ along crystallographically equivalent
directions. When exchange interactions are bond-directional,
the magnetic Hamiltonian Hγ for two spins on bond γ has
the property that in general Hγ ̸=Hγ′ even if bonds γ and
γ′ are equivalent from a structural point of view. When one
now creates a magnetic excitation by perturbing the central
spin by operator Ôi, the commutator

[
Hγ⟨ij⟩, Oi

]
in general

depends on γ. As a consequence this magnetic excitation
distributes unevenly over the crystallographically equivalent
bonds, breaking lattice symmetry.
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FIG. 1. (a) Sketch of scattering geometry with tilted sample. We
use incident π polarization while the RIXS intensity is summed over
outgoing π and σ polarizations. (b) Front and side views of a single
IrO6 octahedron. For a tilt angle χ=54.7◦, jz lies in the scattering
plane. (c) 2D high-symmetry points in the first and second Brillouin
zones around Γ. A Γ point occurs for h + k even and k = 3m with
integer m and h, see (d). BDE are most evident around Xγ . (d)
Polarization factor |P z(q)|2 across the covered q range. The dashed
line corresponds to scanning θin from 5◦ to 65◦ for χ= 54.7◦ and
scattering angle 2θ = 90◦. Experimentally, we vary χ between 52◦

and 64◦. Symbols mark the q points addressed in Fig. 2. For the
high-symmetry points, symbol colors refer to the sketch in c).

An elementary example in which BDE emerge is the honey-
comb Kitaev model with Hγ =K Sγ

i S
γ
j where γ =x, y, z si-

multaneously denotes the three nearest-neighbor bonds and
the three spin components, signifying the bond-directional
character of the interaction. A local operator Sx

i commutes
with Hx but not with Hy and Hz on the other two bonds, so
that perturbing the system by Sx

i renders the three crystallo-
graphic bonds inequivalent and produces BDE. In particular
Sx
i creates localized flux excitations on the two hexagons that

share the x bond, while the third hexagon connected to site
i remains unaffected, manifestly breaking the three-fold rota-
tional symmetry of the flux distribution and consequently the
Majorana modes scattered by the fluxes.

Single crystals of Na2IrO3 were grown following the pro-
cedure described in [14] with 10 % extra Ir at 1323 K for
14 days. To establish the presence of BDE we measured RIXS
at the Ir L3 edge at beamline ID20 at the ESRF [15, 16]. The
incident energy Ein = 11.2145 keV resonantly enhances mag-
netic excitations of the j = 1/2 moments. The sample surface
is parallel to the honeycomb plane, i.e., the ab plane. The
b axis contains the z bond and lies in the horizontal scat-
tering plane such that the incident beam is parallel to b for
a vanishing angle of incidence θin, see Fig. 1. With a tilt
of the sample of χ= 54.7◦ around b, where χ is the angle
between the vertical and the honeycomb ab plane, jz is ly-
ing in the scattering plane. The elastic contribution due to
Thomson scattering is almost fully suppressed by strictly us-
ing a scattering angle 2θ = 90◦, where all outgoing polariza-
tion contributions are perpendicular to the incident π polariza-
tion. The resolution δq of the transferred momentum equals
about (±0.05 ± 0.1 ± 0.05) reciprocal lattice units (r.l.u.)
using a 60 mm iris on the R = 2 m Si(844) spherical diced an-
alyzer. The energy resolution is δE = 25 meV. All RIXS data
were corrected for self-absorption [17].

FIG. 2. RIXS spectra at 5 K at selected q points. (a) Γ′ to Xz , (b)
Γ to K, (c) Xx and Xz , cf. Fig. 1. The spectra show two peaks at
about 10 meV and 45 meV which we attribute to predominantly local
nearest-neighbor excitations. Dash-dotted lines in (a) distinguish the
two peaks at (5 -6.95). Reference spectra recorded with 2θ ̸=90◦

and a corresponding large elastic line mark zero energy loss (open
symbols, scaled down as indicated). In (c), the different intensities
of the two peaks at Xx and Xz provide direct evidence of BDE.

RIXS spectra measured at 5 K at selected q points show
two inelastic features peaking around 10 meV and 45 meV, see
Fig. 2. Their magnetic character is demonstrated by the reso-
nance behavior measured at 30 K, i.e., above the 3D ordering
temperature TN = 15 K, see Supplementary Information [18].
Our focus is on the bond-directional character of excitations
expected for a Kitaev material, not on low-energy magnons
of the ordered state. In previous RIXS studies, the broad
continuum peaking around 45 meV has been established as
a generic, quasi-2D magnetic excitation of the j = 1/2 honey-
comb iridates which persists up to 300 K [13, 19–21]. A sim-
ilar continuum has been observed in the j = 1/2 honeycomb
compound α-RuCl3 [22, 23]. The 10 meV peak is particularly
pronounced at the K point, which agrees with first RIXS re-
sults collected with improved energy resolution δE = 12 meV
[19]. Observation of the 10 meV feature with δE = 25 meV
requires excellent suppression of elastic Thomson scattering
which we achieve by using 2θ = 90◦. For comparison, ref-
erence spectra (open symbols) measured with 2θ ̸=90◦ are
peaking at zero energy loss.

In general, RIXS spectra as a function of energy loss are
appropriate to study dispersive modes. However, for both
inelastic features the peak energies hardly depend on q, see
Fig. 2. The key to a microscopic understanding of the two
predominantly local excitations is the q-dependent intensity
I(q, ω). This is most evident from the astounding behavior
at Xx and Xz , see Fig. 2c). These q points are fully equiva-
lent for the honeycomb lattice but probe different bond direc-
tions in the case of nearest-neighbor excitations, as argued be-
low. We will show that a small value of the polarization factor
|P z(q)|2 depicted in Fig. 1d) suppresses jz-conserving exci-
tations and enhances jz-flip modes. This suppresses the spin-
conserving 10 meV feature and enhances the 45 meV spin-flip
mode at Xz but not at Xx, i.e., on z bonds but not on x
bonds. Hence I(q, ω) demonstrates that the magnetic hon-
eycomb lattice of Na2IrO3 hosts BDE that have spin-flip or
spin-conserving character.
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FIG. 3. RIXS intensity maps at different temperatures, integrated
from -15 to 15 meV (top) and from 45 to 125 meV (bottom), focusing
on the behavior of the two peaks shown in the spectra, cf. Fig. 2. At
low energy, the narrow spots for integer h and k such as at (6 2)
correspond to tails of structural Bragg peaks.

RIXS intensity maps: Figure 3 depicts 2D q-space maps
of I(q) integrated below 15 meV and above 45 meV, respec-
tively. The integration ranges have been chosen to disentangle
the different behavior of the two peaks observed in the spec-
tra. For the continuum peaking around 45 meV, the quasi-2D
character is supported by the gradual evolution with tempera-
ture T , see bottom panels in Fig. 3. This insensitivity to T and
in particular to TN agrees with previous RIXS results [13] for
selected values of q. The overall behavior with a broad peak
centered at Γ can be described by nearest-neighbor correla-
tions (see below).

To study the 10 meV peak, we have to cope with the fact
that the dominant contribution to the low-energy intensity be-
low TN stems from elastic magnetic Bragg scattering with
the 3D ordering wave vector Q0 = (0 1 1/2) [24, 25] and from
low-energy magnons that are expected to emerge from there.
In the 2D (h k) maps, the magnetic Bragg spots are not hit per-
fectly since the value of l is adapted to achieve 2θ = 90◦. Nev-
ertheless we find pronounced maxima at M =Γ± (0 1) and
enhanced intensity at M ′, cf. Fig. 1c). The narrow features at
M and M ′ are evident in Fig. 4a), which shows the same 5 K
data as panel b) but on another color scale. Chun et al. [10]
analyzed the elastic scattering at M and M ′ to derive the ex-
istence of dominant Kitaev exchange interactions in Na2IrO3.
In contrast, we focus on the inelastic response not too close to
M and M ′.

With decreasing temperature, the low-energy maps in the

FIG. 4. Maps of the RIXS intensity at 5 K integrated from -15
to 15 meV ((a), (b)) and from 45 to 125 meV (d). Compared to
Fig. 3, the data were measured on a finer mesh in q space. Pan-
els (a) and (b) show the same data on different color scales. The
bond-directional character is apparent from polarization-related dif-
ferences of the RIXS intensity at, e.g., the Xγ points (white circles).
(c), (e): Predictions of a simple bond model for BDE with spin-
conserving and spin-flip character, respectively, see Eqs. (1) and (2).
Excitations are restricted to either an x, y, or z bond with corre-
sponding correlations of jx, jy , or jz , respectively. The calculated
modulation pattern reflects nearest-neighbor correlations, cf. Fig. 5.

top panels of Fig. 3 show the building up of intensity close to
M , reflecting the evolution of longer-range 3D correlations.
However, central to our study is the behavior in q ranges not
too close to M such as around the four Xγ points marked
by white symbols in Fig. 4b). There, also the low-energy
maps are insensitive to T , and the data at 5 K and 30 K≈ 2TN

are very similar. In agreement with the spectra, cf. Fig. 2c),
the low-energy maps show extended ranges of low intensity
around Xz = (5 -6) and Xz = (6 -3) but larger intensity around
Xx = (4.5 -7.5) and Xx = (5.5 -4.5). The opposite behavior is
observed for the 45 meV continuum in the high-energy maps,
again in agreement with the spectra. The tilted sample geom-
etry of our experiment has been designed to address this par-
ticular behavior via the polarization factors, revealing a clear
signature of bond-directional behavior, as we will show below.

Below TN , magnetic order breaks the three-fold rotational
symmetry of the honeycomb lattice. However, immediately
above TN short-range zigzag correlations of all three domains
were observed with equal strength [10]. Therefore, the in-
equivalence of Xx and Xz above TN and the corresponding
breaking of rotational symmetry cannot be attributed to long-
range magnetic order. Furthermore, the RIXS intensity at Xγ

is insensitive to l, and the intensity maps measured at 5 K on
two different magnetic domains are very similar, see Supple-
mentary Information [18]. All of these results firmly establish
the quasi-2D character of the studied excitations.

Nearest-neighbor correlations: From the RIXS intensity
maps we now establish the predominance of nearest-neighbor
correlations, which will allow us to, e.g., identify the re-
sponse at Xγ with the γ bond. A magnetically ordered state
is characterized by long-range spin-spin correlations. Above
the ordering temperature TN , thermal fluctuations yield a
strong decrease of the correlation length. In quasi-2D com-
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pounds, short-range correlations typically survive at tempera-
tures much higher than TN [26]. The Kitaev model describes a
very different case in which spin-spin correlations are strictly
restricted to two nearest neighbors on a single bond.

This unusual scenario of nearest-neighbor correlations
leaves clear fingerprints in the q dependence of the RIXS in-
tensity [13]. The dynamical structure factor of two sites has
sinusoidal shape, i.e., the two-site scattering problem is equiv-
alent to an inelastic incarnation of Young’s double-slit exper-
iment [27]. Summing over the three different bonds one finds

Inn(q) = I0 +
∑

γ

Iγ(q) cos
2(q ·∆Rγ/2) , (1)

where ∆Rγ =R2 − R1 denotes a γ bond with two corre-
lated nearest-neighbor Ir sites, I0 is a background intensity,
and Iγ depends on the polarization. Such sinusoidal behavior
has been observed for the continuum in the Kitaev material
α-RuCl3 in inelastic neutron scattering [23]. In RIXS on the
honeycomb iridates, Eq. (1) has been found to describe the in-
tegrated intensity of the continuum along Γ-M -Γ′ and Γ-K-X
[13], treating I0 and Iγ as empirical fit parameters. In Fig. 5,
we visualize the sinusoidal intensity modulation of each bond
for Iγ = 1 and I0 = 0. The sum Inn(q) in the right panel yields
broad maxima at Γ and reduced intensity at Γ′. Comparing
Inn(q) with the high-energy maps in the bottom panels of
Fig. 3 demonstrates that already this simple picture of indi-
vidual bonds describes the behavior of the continuum surpris-
ingly well. For integration below 15 meV, the RIXS intensity
in the first Brillouin zone is dominated, at low temperature, by
longer-range correlations of zigzag type, as discussed above.
For q points not too close to M and M ′, a convincing de-
scription in terms of the nearest-neighbor model requires con-
sidering the polarization-dependent matrix elements, as done
in Fig. 4c) and discussed below.

In such a nearest-neighbor scenario with two-site structure
factors Fγ = cos2(q·∆Rγ/2), the data at Xγ selectively probe
the response of the γ bond. For instance Xz = (5 -6) hosts a
maximum of Fz with vanishing contributions from x and y
bonds, see Fig. 5, while Xx = (4.5 -7.5) shows a maximum of
Fx with Fy =Fz = 0.

Bond-directional excitations: With this information on the
bond direction, we utilize polarization selection rules to ad-
dress bond-directional behavior, i.e., whether the application
of, e.g., the local operator Sx

i creates an excitation connected
to a specific bond. In the Kitaev model, a RIXS excitation on
the γ bond requires to apply P γSγ

i [28, 29] with the polariza-
tion factor P= iε′ × ε and the incident and outgoing polariza-
tions ε and ε′, respectively. As shown below, this describes the
behavior of the 10 meV feature but disagrees with the different
polarization properties of the 45 meV continuum. Therefore,
we employ a complementary microscopic approach and start
from the RIXS matrix element for magnetic excitations of a
j = 1/2 moment at site Ri [30]. With the outgoing π and σ
polarizations being perpendicular to the incident polarization,
see Fig. 1, this matrix element is proportional to P ·Si, where
Si operates within the j = 1/2 subspace. For the two sites of,
e.g., a z bond, we consider that Sz

i creates a spin-conserving
(sc) excitation while Sx

i or Sy
i yield a spin flip (sf) of the z

FIG. 5. Sinusoidal two-site modulation patterns. The three panels
on the left depict the structure factor Fγ = cos2(q · ∆Rγ/2) for in-
dividual γ bonds with γ =x, y, z, see Eq. (1). The measured q range
is highlighted, cf. Fig. 3. Right: Sum over x, y, and z bonds. White
circles mark Xx and Xz points, these are relevant for the discussion
of the bond-directional character, see Fig. 2c).

component. For Iγ(q) in Eq. (1) this yields

Iscz (q) ∝ |P z(q)|2 and Isfz (q) ∝ |P x(q)|2 + |P y(q)|2 (2)

and equivalent expressions for x and y bonds. We have chosen
the experimental geometry with the aim to strongly suppress
|P z(q)|2 in the lower parts of the maps, see Fig. 1d). More
precisely, |P z|2 ∝ sin2(θin), and the angle of incidence θin
is varied from about 5◦ to 65◦. This corresponds to an (h k)
range where k roughly runs from -8 to 4 and depends roughly
linearly on θin. In contrast, |P x(q)|2 and |P y(q)|2 are nearly
constant and large, see Supplementary Information [18]. In
the bond-directional scenario described by Eq. (2), the sup-
pression of |P z|2 switches off spin-conserving excitations on
z bonds while it reduces the intensity of spin-flip excitations
on x or y bonds by about a factor 2. This explains the stunning
difference of the spectra measured at Xz and Xx, see Fig. 2c),
if we attribute the peaks at 10 and 45 meV to spin-conserving
and spin-flip excitations, respectively, and identify Xγ with
the γ bond, as appropriate for nearest-neighbor correlations.

Finally, we calculate maps of the RIXS intensity Inn(q)
expected for BDE, see Eq. (1). This combines the sinusoidal
structure factors Fγ of the nearest-neighbor model, contain-
ing information on the bond direction, with the polarization-
dependent Iγ(q) given in Eq. (2), reflecting the involved
spin component. Figures 4c) and 4e) plot Inn(q) for spin-
conserving and spin-flip excitations, respectively. The excel-
lent agreement with the RIXS data in panels b) and d) corrob-
orates the above assignment of spin-conserving and spin-flip
excitations at low and high energies, respectively. The contin-
uum, integrated above 45 meV, is described very well over the
entire range of q and for all studied temperatures. For integra-
tion below 15 meV, our nearest-neighbor model represents the
RIXS data very well at high T such as 70 K or 150 K. At 5 K,
it still captures the behavior not too close to M , while the re-
sponse in the vicinity of M reflects longer-range correlations.
Altogether, bond-directional behavior is most evident around
Xγ points. For instance Xx and Xz are equivalent on the
honeycomb lattice and within the nearest-neighbor model for
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isotropic Iγ = 1, see Fig. 5. The anisotropic, bond-directional
character of the magnetic excitations in Na2IrO3 yields very
different RIXS intensities around Xx and Xz as well as dif-
ferent behavior at low and high energy.

Outlook: In the quest to identify Kitaev materials, the
observation of bond-directional excitations via our advanced
RIXS scheme can play a decisive role in validating, for a
given compound, the presence of bond-directional interac-
tions. These are appreciated as a source of frustration be-
yond the geometric frustration of non-bipartite lattices and
key to the emergence of non-conventional forms of magnetism
(such as recently discussed for fcc j = 1/2 Ba2CeIrO6 [31])
and potentially spin liquid ground states (as hypothesized [32]
for j = 1/2 pyrochlore Yb2Ti2O7). A first step in this direc-
tion might be to apply our approach to other honeycomb Ki-
taev materials, but also to j = 1/2 systems which have not at-
tracted primary interest for bond-directional exchanges such
as Sr2IrO4. In further developing our experimental approach a
natural next step is to validate other forms of bond-directional
interactions, such as dominating off-diagonal Γ-interactions
[8, 9], and their manifestation in bond-directional excitations.
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and M. Grüninger, Fingerprints of Kitaev physics in the mag-
netic excitations of honeycomb iridates, Phys. Rev. Research 2,
043094 (2020).

[14] Y. Singh and P. Gegenwart, Antiferromagnetic Mott insulat-
ing state in single crystals of the honeycomb lattice material
Na2IrO3, Phys. Rev. B 82, 064412 (2010).

[15] M. Moretti Sala, C. Henriquet, L. Simonelli, R. Verbeni, and
G. Monaco, High energy-resolution set-up for Ir L3 edge RIXS
experiments, Journal of Electron Spectroscopy and Related
Phenomena 188, 150 (2013).

[16] M. Moretti Sala, K. Martel, C. Henriquet, A. Al Zein, L. Si-
monelli, C. J. Sahle, H. Gonzalez, M.-C. Lagier, C. Ponchut,
S. Huotari, R. Verbeni, M. Krisch, and G. Monaco, A high-
energy-resolution resonant inelastic X-ray scattering spectrom-
eter at ID20 of the European Synchrotron Radiation Facility,
Journal of Synchrotron Radiation 25, 580 (2018).

[17] M. Minola, G. Dellea, H. Gretarsson, Y. Y. Peng, Y. Lu, J. Por-
ras, T. Loew, F. Yakhou, N. B. Brookes, Y. B. Huang, J. Pelli-
ciari, T. Schmitt, G. Ghiringhelli, B. Keimer, L. Braicovich, and
M. Le Tacon, Collective nature of spin excitations in supercon-
ducting cuprates probed by resonant inelastic x-ray scattering,
Phys. Rev. Lett. 114, 217003 (2015).

[18] The Supplementary Information discusses the resonance behav-
ior, the insensitivity to l and to magnetic domains, and the full
polarization factors.

[19] J. Kim, J. Chaloupka, Y. Singh, J. W. Kim, B. J. Kim, D. Casa,
A. Said, X. Huang, and T. Gog, Dynamic Spin Correlations in
the Honeycomb Lattice Na2IrO3 Measured by Resonant In-
elastic x-Ray Scattering, Phys. Rev. X 10, 021034 (2020).

[20] S. H. Chun, P. P. Stavropoulos, H.-Y. Kee, M. Moretti Sala,
J. Kim, J.-W. Kim, B. J. Kim, J. F. Mitchell, and Y.-J. Kim, Op-
tical magnons with dominant bond-directional exchange inter-

53

https://doi.org/10.1103/RevModPhys.87.1
https://doi.org/10.1126/science.aay0668
https://doi.org/10.1126/science.aay0668
https://doi.org/10.1088/0034-4885/80/1/016502
https://doi.org/10.1088/0034-4885/80/1/016502
https://doi.org/10.1146/annurev-conmatphys-031218-013401
https://doi.org/10.1146/annurev-conmatphys-031218-013401
https://doi.org/https://doi.org/10.1016/j.aop.2005.10.005
https://doi.org/https://doi.org/10.1016/j.aop.2005.10.005
https://doi.org/10.1146/annurev-conmatphys-033117-053934
https://doi.org/10.1146/annurev-conmatphys-033117-053934
https://doi.org/10.1103/PhysRevLett.102.017205
https://doi.org/10.1146/annurev-conmatphys-031115-011319
https://doi.org/10.1146/annurev-conmatphys-031115-011319
https://doi.org/https://doi.org/10.1016/j.physrep.2021.11.003
https://doi.org/https://doi.org/10.1016/j.physrep.2021.11.003
https://doi.org/10.1038/nphys3322
https://doi.org/10.1038/nmat4604
https://doi.org/10.1038/nmat4604
https://doi.org/10.1103/PhysRevB.95.144406
https://doi.org/10.1103/PhysRevResearch.2.043094
https://doi.org/10.1103/PhysRevResearch.2.043094
https://doi.org/10.1103/PhysRevB.82.064412
https://doi.org/https://doi.org/10.1016/j.elspec.2012.08.002
https://doi.org/https://doi.org/10.1016/j.elspec.2012.08.002
https://doi.org/10.1107/S1600577518001200
https://doi.org/10.1103/PhysRevLett.114.217003
https://doi.org/10.1103/PhysRevX.10.021034


6

actions in the honeycomb lattice iridate α-Li2IrO3, Phys. Rev.
B 103, L020410 (2021).

[21] J. Kim, H. Zhao, and G. Cao, Resolution of zigzag magnetic
correlations in Na-deficient NaxIrO3 without long-range or-
dering, Phys. Rev. B 106, 075157 (2022).

[22] H. Suzuki, H. Liu, J. Bertinshaw, K. Ueda, H. Kim, S. Laha,
D. Weber, Z. Yang, L. Wang, H. Takahashi, K. Fürsich,
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I. RESONANCE BEHAVIOR

The resonance behavior at the Ir L3 edge provides an un-
ambiguous proof of the magnetic nature of the excitations at
about 10 meV and 45 meV. For Ir4+ ions, magnetic excitations
within the j = 1/2 subspace are resonantly enhanced in a direct
RIXS process that involves the promotion of a 2p core elec-
tron to the t2g orbitals [1]. For Na2IrO3, this t2g resonance
occurs for an incident energy Ein = 11.2145 keV [2]. For com-
parison, the RIXS intensity of excitations to eg orbitals in the
iridates is maximized by choosing a 3 to 4 eV larger value
of Ein [3]. We observe pronounced t2g resonance behavior
both around 10 meV and around 45 meV, see Fig. 1. The right
panel shows a resonance map measured at (5 -5.9 -5) where
the 45 meV continuum is pronounced while the 10 meV peak
is suppressed, as demonstrated by the RIXS spectra in Fig. 2c)
of the main text. In contrast, the data in the left panel of Fig. 1
were measured at (4.5 -7.1 -4.7) and show a dominant con-
tribution of the 10 meV feature. The common t2g resonance

FIG. 1. Resonance maps of the magnetic excitations at 30 K. The
10 meV peak dominates for transferred momentum (4.5 -7.1 -4.7)
(left), while the 45 meV continuum prevails at (5 -5.9 -5) (right).
Both features show t2g resonance at Ein = 11.2145 keV (vertical
scale). There is no evidence for an eg resonance at Ein = 11.218 keV.
The elastic line at zero loss (solid black line) is suppressed by using
a scattering angle 2θ = 90◦.

behavior firmly corroborates the magnetic character of both
excitations.

In contrast, the excitation of phonons corresponds to an in-
direct RIXS process that is boosted if eg orbitals are involved
[4]. However, phonons have not been detected in L3 edge
RIXS data of Mott-insulating 5d5 iridates with Ir4+ ions, see,
e.g., Refs. [2, 3, 5–11]. The suppression of the phonon contri-
bution can be explained by the well-screened and short-lived
intermediate state Ir 2p5 t62g at the L3 edge. This has to be
distinguished from the case of RIXS at the O K edge with
Ein ≈ 0.53 keV, where the observation of phonon features in
α-Li2IrO3 [12] can be attributed to the very different, long-
lived intermediate state.

II. 2D CHARACTER OF EXCITATIONS AND
INSENSITIVITY TO MAGNETIC DOMAINS

A. l dependence

Below the Néel temperature TN = 15 K, Na2IrO3 hosts
long-range magnetic order with the 3D propagation vector
Q0 = (0 1 1/2) [13, 14]. In the 3D ordered state, low-energy
magnons are expected to emerge from Q0 and to show a dis-
persion as a function of the transferred momentum q. How-
ever, we focus on the magnetic excitations at about 10 meV
and 45 meV that cannot be described as magnons of the long-
range ordered phase. These features persist to temperatures
far above TN , see Fig. 3 of the main text, which provides
strong evidence for a predominantly 2D character. Our study
highlights the RIXS intensity of these 2D excitations in (h k)
space not too close to M = (0 ±1) and M ′ = (±1/2 ±1/2),
cf. Fig. 1c) in the main text. In the (h k) range relevant to
us, the RIXS intensity is insensitive to l even at 5 K, which
is demonstrated in Fig. 2, using Xz = (5 -6), Xx = (5.5 -4.5),
and K = (5.66 -3) as examples. Panels a) and b) show data
as a function of l for integration of the RIXS intensity below
15 meV and above 45 meV. In the latter case, the RIXS in-
tensity is roughly constant as a function of l. In particular,
the intensity of the 45 meV feature is significantly lower at
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FIG. 2. 2D character of magnetic excitations. Panels a) and b)
depict the RIXS intensity at (5.66 -3 l), (5.5 -4.5 l), and (5 -6 l) for
integration below 15 meV and above 45 meV, respectively. The data
have been collected at 5 K. Panels c) and d) show the same data plot-
ted as a function of the scattering angle 2θ. At low energy, the con-
tribution of the elastic line is suppressed for 2θ = 90◦.

Xx than at Xz for all studied values of l. The 15 meV shows
the opposite behavior, the RIXS intensity is higher at Xx than
at Xz , again for all l. For integration from -15 to 15 meV,
the contribution of the elastic line has to be considered. In the
data shown in Figs. 2, 3, and 4 of the main text, the elastic line
has been suppressed by choosing a scattering angle 2θ = 90◦.
This, however, fixes l for a given (h k) point. Measuring the l
dependence requires to change 2θ away from 90◦. Therefore,
we replot the same data in panels c) and d) as a function of
2θ. Close to 90◦, the RIXS intensity is roughly constant also
for integration below 15 meV, which strongly corroborates the
2D character. The increase of the low-energy intensity for 2θ
further away from 90◦ arises from the increasing elastic con-
tribution of Thomson scattering.

B. 3D magnetic domains

The 2D character is further supported by the insensitivity
of our results to 3D magnetic domains. The ideal 2D hon-
eycomb lattice exhibits threefold rotational symmetry, such
that the M points (0 ±1) and the M ′ points (±1/2 ±1/2) all
are equivalent. However, the 3D crystal structure of Na2IrO3

shows a small monoclinic distortion, hence (0 ±1 1/2) and
(±1/2 ±1/2 1/2) are not equivalent. With the 3D prop-
agation vector Q0 = (0 1 1/2) of long-range magnetic order
[13, 14], the orientation of the zigzag ordering pattern is tied
to the crystal structure.
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FIG. 3. Quasielastic scans across a magnetic Bragg peak. The
scattered intensity was integrated from -15 meV to +15 meV. Full
and open symbols show data across (6 -1 -5.5) and (5.5 -0.5 -5.5),
respectively. At 20 K, above TN , both q points show the same inten-
sity. At 5 K, (6 -1 -5.5) hosts a magnetic Bragg peak.

Laue diffraction of our samples indicates structural 120◦

twinning in the honeycomb plane. The structural twins dictate
the formation of corresponding magnetic domains. The cross
section of the incident x-ray beam of roughly (15 × 15)µm2

allows us to select the measurement spot such that a given twin
domain dominates the response, as demonstrated by scans
across M3D = (6 -1 -5.5) and M ′

3D = (5.5 -0.5 -5.5) for zero
energy loss, see Fig. 3. At 20 K, i.e., above TN , we observe
clear peaks of the elastically scattered intensity along h and
k but a broad intensity distribution along l. Furthermore, the
intensity is very similar at M3D and M ′

3D. This suggests the
coexistence of short-range 2D zigzag fragments running along
three equivalent directions, in agreement with the results of
Chun et al. [15]. At 5 K, we find a magnetic Bragg peak at
M3D that is characterized by a pronounced peak as a function
of l. In contrast, the intensity at M ′

3D is much lower and the
peak still is very broad as a function of l. This demonstrates
that the measurement predominantly probes a single magnetic
domain.

In Fig. 4 we compare (h k) maps of the RIXS intensity
measured at 5 K on two different spots of the sample that
correspond to two different twin domains rotated by 120◦.
For each spot, we study the intensity integrated from -15 to
15 meV and from 45 to 125 meV. The intensity maps for the
two different domains are very similar. In particular, the dis-
tinct behavior at different Xγ points is observed equivalently.
This result corroborates that the different intensities at Xx and
Xz cannot be attributed to small differences arising from the
3D crystal structure but reflect bond-directional excitations
that are detected based on the polarization dependence. Note
that the unambiguous determination of the character of a spe-
cific domain requires to address specific (h k l) points, the
domain character cannot be read from (h k) maps measured
with 2θ = 90◦.
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FIG. 4. Maps of the RIXS intensity of two twin domains measured
at 5 K. Domain B is rotated by 120◦ with respect to domain A, as
indicated by the coordinate frame in panel c). The intensity has been
integrated from -15 to 15 meV and from 45 to 125 meV. The data
agree on the bond-directional character of the magnetic excitations.

FIG. 5. Polarization factors of the three bonds. Left: |P γ(q)|2,
applicable to spin-conserving excitations on a γ bond, as observed
at 10 meV, cf. Eq. (5). The central feature is the suppression of
|P z(q)|2 in the lower part of the map, while |P x|2 and |P y|2 do
not vary strongly with q. Right: The panel for the z bond depicts
|P x(q)|2 + |P y(q)|2, which is applicable to spin-flip excitations on
the z bond, cf. Eq. (7). The other panels show equivalent expressions
for x and y bonds. This describes the behavior of the 45 meV feature.

III. POLARIZATION FACTORS

At the Ir L edge, the RIXS intensity I(q, ω) for excitations
from the ground state |0⟩ to a final state |f⟩ is given by a coher-
ent sum of scattering processes localized on individual sites.
The sum is running over all sites Ri at which a given final
state |f⟩ can be reached, i.e., over which |f⟩ is delocalized. In
dipole approximation one finds [1]

I(q, ω) =
∑

f

∣∣∣∣∣⟨f |
∑

i

eiq·Ri
[
D†D

]
Ri

|0⟩
∣∣∣∣∣

2

δ(ℏω − Ef )

(1)
where Ef denotes the excitation energy and D is the local
dipole operator. In general, magnetic excitations can be gener-
ated via different polarization channels [16]. We use 2θ = 90◦

for the scattering angle, hence the outgoing vertical and hori-
zontal polarizations ε′σ and ε′π are perpendicular to the linear
incident polarization ε. In this case, the single-site RIXS ma-
trix elements for magnetic excitations within the j = 1/2 man-

ifold at site Ri are given by [17]

[D†D]Ri
=

2

3
P · Si (2)

with the polarization factor P= iε′×ε, and Si operates within
the j = 1/2 subspace. In the employed experimental geometry
with 2θ = 90◦, see Fig. 1 of the main text, the polarization
factor mainly depends on the angle of incidence θin, which
translates to a q dependence of the polarization factor.

In terms of the diagonal components of the dynamical spin
structure factor S(q, ω),

Sγγ(q, ω) =
∑

f

∣∣∣∣∣⟨f |
∑

i

eiq·Ri Sγ
i |0⟩

∣∣∣∣∣

2

δ(ℏω − Ef ) , (3)

the RIXS intensity can be written as

I(q, ω) ∝
∑

γ∈{x,y,z}
|P γ(q)|2Sγγ(q, ω) , (4)

where, as usual, we neglect the off-diagonal components of
S(q, ω). In this form, the RIXS intensity thus measures
the sum of the dynamical spin structure factor components
weighted by their respective momentum-dependent polariza-
tion factors. We have chosen the experimental geometry such
that |P z(q)|2 strongly differs from the other components, see
Fig. 5. By varying q, one can thus vary the weighting of the
different components of S(q, ω), e.g. suppressing the contri-
bution of Szz(q, ω).

Considering only nearest-neighbor correlations, the q de-
pendence of the dynamical structure factor is captured using
only cos2(q · ∆Rγ/2) terms. For the 10 meV peak (spin-
conserving excitations), the total intensity is well described
by

Iscnn(q) =
∑

γ

|P γ(q)|2 cos2(q ·∆Rγ/2) , (5)

where the q dependence of the structure factor is given by

Sγγ(q, 10meV) ∝ cos2(q ·∆Rγ/2) , (6)

meaning that jγ correlations dominate on γ bonds. For the
45 meV peak (spin-flip excitations), our data agree with

Isfnn(q) =
∑

γ


∑

γ′ ̸=γ

|P γ′
(q)|2


 cos2(q ·∆Rγ/2) (7)

=
∑

γ

|P γ(q)|2

∑

γ′ ̸=γ

cos2(q ·∆Rγ′/2)


 ,

which yields

Sγγ(q, 45meV) ∝
∑

γ′ ̸=γ

cos2(q ·∆Rγ′/2) . (8)

This means that, e.g., application of Sx
i creates a spin flip on

either a y bond or a z bond. From Eqns. (5) and (7) one can
read off Iscγ and Isfγ used in Eqns. (1) and (2) of the main text.
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and M. Grüninger, Fingerprints of Kitaev physics in the mag-
netic excitations of honeycomb iridates, Phys. Rev. Research 2,
043094 (2020).

[3] E. Lefrançois, A.-M. Pradipto, M. Moretti Sala, L. C.
Chapon, V. Simonet, S. Picozzi, P. Lejay, S. Petit, and
R. Ballou, Anisotropic interactions opposing magnetocrys-
talline anisotropy in Sr3NiIrO6, Phys. Rev. B 93, 224401
(2016).
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T. Lorenz, M. Moretti Sala, G. Monaco, F. L. Buessen, J. Attig,
M. Hermanns, S. V. Streltsov, D. I. Khomskii, J. van den Brink,
M. Braden, P. H. M. van Loosdrecht, S. Trebst, A. Paramekanti,
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Chapter 4. Bond-directional excitations in Kitaev materials

NaLi

Figure 4.1: (a) Dependence for A2IrO3 of the hopping integrals t1, t2, and t3 and of the empirical
damping factor f(ϕ) on the M -L-M bond angle ϕ. (b) Resulting magnetic interactions J , K, and
Γ obtained using the expressions in Eq. (4.6). Figure reproduced from Fig. 10 of Ref. [226].

4.2 Dimer model for the microscopic description of Kitaev

materials

We present here a simple microscopic model to describe the honeycomb Kitaev materials,

which has proven to be very e�ective in describing the RIXS measurements. We use a

straightforward single-bond model in which each x, y, and z bond is treated as an indepen-

dent dimer and described by the JKΓΓ′ Hamiltonian. This model is justi�ed for describing

local excitations if only the nearest-neighbor Kitaev interaction is present. Consider the

Kitaev model

HK =
∑

γ

K Sγ
i S

γ
j , (4.1)

and a spin-conserving excitation. The application of the Sγ
i operator, where γ = x, y, z,

would create an excitation on the γ bond, while the other bonds would remain unperturbed.

The materials investigated here exhibit magnetic order, indicating the presence of additional

magnetic interactions (non-Kitaev interactions and longer-range ones). However, we employ

this model because of the surprising number of features in the RIXS data that it can success-

fully describe. Also, being simple, it gives us valuable insights into the fundamental physics

of the magnetic excitations in these materials.

Na2IrO3 and α-Li2IrO3 contain IrO6 octahedra in an edge-sharing geometry like the one

described in Chap. 2.2.2 and depicted in Fig. 2.4. Iridium is found in a 4+ valence state,

which leads to a t52g electronic con�guration. With strong spin-orbit coupling, this results in a

j = 1/2 ground state. We wrote down the most general hopping matrix in Eq. (2.27). In this

case, the metal-ligand-metal angle is important and a�ects the values of the hopping terms,

see Fig. 4.1 reproduced from Ref. [226]. Theoretical calculations show, in Na2IrO3 for exam-

ple, that t2 is about 250 meV while the moduli of t1, t3, and t4 are about 10-30meV [226�229].

The direct hopping is suppressed and the hopping though the ligands t2 becomes the dom-

inant one. The hopping describes the interaction between the orbital degrees of freedom

of the two di�erent sites. However, since spin-orbit coupling mixes the spin and orbital

degrees of freedom, in the |j, jz⟩ basis, the hopping between states with di�erent jz becomes

possible. By expanding the basis of the hopping matrix in Eq. (2.27) to include the spin and
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changing the basis to the |j, jz⟩ states {|12 ,+1
2⟩ , |12 ,−1

2⟩ , |32 ,+3
2⟩ , |32 ,−3

2⟩ , |32 ,+1
2⟩ , |32 ,−1

2⟩}
using the de�nitions in Eq. (2.18) we obtain

T j
edge =




1
3 (2t1 + t3) 0 (1+i)√

6
t4 i

√
2
3 t2

√
2
3 (t1 − t3) − (1−i)√

2
t4

0 1
3 (2t1 + t3) i

√
2
3 t2

(1−i)√
6
t4 − (1+i)√

2
t4

√
2
3 (t3 − t1)

(1−i)√
6
t4 −i

√
2
3 t2 t1 0 − (1−i)√

3
t4

i√
3
t2

−i
√

2
3 t2

(1+i)√
6
t4 0 t1 − i√

3
t2

(1+i)√
3
t4

√
2
3 (t1 − t3) − (1−i)√

2
t4 − (1+i)√

3
t4

i√
3
t2

1
3 (t1 + 2t3) 0

− (1+i)√
2
t4

√
2
3 (t3 − t1) − i√

3
t2

(1−i)√
3
t4 0 1

3 (t1 + 2t3)




(4.2)

which, when only t2 is present and t1 = t3 = t4 = 0, becomes

T j
edge =




0 0 0 i
√

2
3 t2 0 0

0 0 i
√

2
3 t2 0 0 0

0 −i
√

2
3 t2 0 0 0 i√

3
t2

−i
√

2
3 t2 0 0 0 − i√

3
t2 0

0 0 0 i√
3
t2 0 0

0 0 − i√
3
t2 0 0 0




. (4.3)

We can see that the hopping between the j = 1/2 states is zero. The only non-zero hop-

ping channels are |1/2,±1/2⟩ → |3/2,∓3/2⟩ and |3/2,±3/2⟩ → |3/2,∓1/2⟩. The hopping

is between states with opposite jz direction. However, the expectation value for the spin

operator of both the |1/2,+1/2⟩ and the |3/2,−3/2⟩ wavefunctions is negative, as shown
in Table (2.20). This is a consequence of the spin-orbit coupling that mixes the spin and

orbital degrees of freedom. Via the hopping t2, the j = 1/2 hole can jump to the neigh-

boring site into the j = 3/2 quartet yielding a d4d6 electronic con�guration. To reach this

con�guration, however, costs electrostatic repulsion U . But at the same time JH acts on

the d4d6 intermediate state lowering the energy of the con�gurations with the electrons with

parallel spin. The hole can then jump back to its original site. This ultimately leads to

a ferromagnetic Ising-type interaction ∝ t22JH
U2 [24, 51, 255]. By restricting to the j = 1/2

sector, this hopping matrix gives rise to an e�ective magnetic interaction Hamiltonian, as

derived explicitly by Winter et al. in Ref. [226], that can be written as

Hz
JKΓ = J

−→
S 1 ·

−→
S 2 +KSz

1S
z
2 + Γ(Sx

1S
y
2 + Sy

1S
x
2 ), (4.4)

where we consider only two sites 1 and 2 of a given z bond. When the symmetry deviates

from the ideal one, an additional interaction related to t4 becomes possible

Hz
Γ′ = Γ′(Sx

1S
z
2 + Sz

1S
x
2 + Sy

1S
z
2 + Sz

1S
y
2 ). (4.5)

The parameters describing the magnetic interactions J , K, Γ, and Γ′ are related to the
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hoppings t1, t2, t3, and t4 through the expressions [226]

J =
4A
9
(2t1 + t3)

2 − 8B
9
[9t24 + 2(t1 − t3)

2]

K =
4B
3
[(t1 − t3)

2 + 3t24 − 3t22]

Γ =
8B
3
[3t24 + 2t2(t1 − t3)]

Γ′ =
8B
3
[t4(3t2 + t3 − t1)],

(4.6)

where the parameters are

A =− 1

3
[

JH + 3(U + 3λ)

6J2
H − U(U + 3λ) + JH(U + 4λ)

]

B =
4

3
[
3JH − U − 3λ

6JH − 2U − 3λ
η]

η =JH/[6J2
H − JH(8U + 17λ) + (2U + 3λ)(U + 3λ)],

(4.7)

where intraband processes, i.e., hopping of holes between j = 1/2 states, are proportional

to A while interband processes, i.e., hopping between j = 1/2 and j = 3/2 states, are

proportional to B. Note that if JH is zero, B = 0 and the only term that remains is

the isotropic Heisenberg exchange J = 4
9
(2t1+t3)2

U , arising from the direct hopping between

j = 1/2 states, see Eq. (4.2). So, the Hund's coupling JH , which acts on the virtual d4d6

con�gurations, is essential for the presence of the Kitaev interaction. We can also see that

when t1 = t3 = t4 = 0 and t2 ̸= 0, only K is non-zero.

In the basis (|↑↑⟩ , |↑↓⟩ , |↓↑⟩ , |↓↓⟩) the Hamiltonians in Eq. (4.4) and (4.5) describing the

magnetic interactions for the z bond can be written as

Hz
JKΓΓ′ =

1

4




J +K (1− i)Γ′ (1− i)Γ′ −2iΓ

(1 + i)Γ′ −J −K 2J (−1 + i)Γ′

(1 + i)Γ′ 2J −J −K (−1 + i)Γ′

2iΓ (−1− i)Γ′ (−1− i)Γ′ J +K




, (4.8)

by using the de�nitions of the Pauli matrices in Eq. (2.11). If only K is non-zero, the matrix

is diagonal and the eigenstates split into two doublets |0⟩a = |↑↑⟩ and |0⟩b = |↓↓⟩ with energy
+K/4 and |1⟩a,b = |↑↓⟩ ± |↓↑⟩ at −K/4. A negative K favors a ferromagnetic alignment of

the spins. By introducing also J and Γ, the doublets split into

|0⟩ = (i |↑↑⟩+ |↓↓⟩)/
√
2; E0 = (−2Γ + J +K)/4

|1⟩ = (−i |↑↑⟩+ |↓↓⟩)/
√
2; E1 = (2Γ + J +K)/4

|2⟩ = (|↓↑⟩ − |↑↓⟩)/
√
2; E2 = (−3J −K)/4

|3⟩ = (|↓↑⟩+ |↑↓⟩)/
√
2; E3 = (J −K)/4

, (4.9)

where the |1⟩a,b levels are split by J and |0⟩a,b are mixed and split by Γ. For positive Γ the

ground state is |0⟩ and for negative Γ it is |1⟩. A positive (negative) J leads to the energy

of |2⟩ being lower (higher) than |3⟩. By considering also the Γ′ term, |0⟩ and |3⟩ are mixed
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leading to the eigenstates

|0′⟩ =(|0⟩+ γ e−iπ/4 |3⟩)/
√

1 + γ2

|3′⟩ =(γ |0⟩ − e−iπ/4 |3⟩)/
√

1 + γ2
(4.10)

with eigenvalues

E0′ =(J − Γ−
√

8Γ′2 + (Γ−K)2)/4

E3′ =(J − Γ +
√

8Γ′2 + (Γ−K)2)/4
(4.11)

where

γ =
K − Γ +

√
8Γ′2 + (Γ−K)2√
8Γ′

. (4.12)

The other 2 eigenstates are not a�ected by Γ′.

We show in the following how these states can be distinguished based on the RIXS

polarization dependence. For this we need the RIXS amplitudes calculated in Eq. (3.19) for

the excitations within the j = 1/2 doublet, that we report and rewrite here by introducing

the polarization factors

Px = i(y′z − z′y)

Py = i(z′x− x′z)

Pz = i(x′y − y′x)

P∥ = x′x+ y′y + z′z,

(4.13)

so that

Az
↑↑ =− i(x′x+ y′y + z′z)− (x′y − y′x)/2 = −i P∥ + i Pz/2

Az
↓↓ =− i(x′x+ y′y + z′z) + (x′y − y′x)/2 = −i P∥ − i Pz/2

Az
↑↓ =(−(y′z − z′y)− i(z′x− x′z))/2 = (i Px − Py)/2

Az
↓↑ =(−(y′z − z′y) + i(z′x− x′z))/2 = (i Px + Py)/2.

(4.14)

We performed the experiments with a scattering angle of 2θ = 90◦ to suppress the elastic

scattering, which means P∥ = 0. In case only the Kitaev interaction is present, we have the

eigenstates |0⟩a,b and |1⟩a,b introduced previously. The calculation of the RIXS amplitude

for the excitations from |0⟩a to the excited states has already been discussed in Chap. 3.3 in

Eq. (3.20), (3.21), and (3.22). The calculation here is the same but we use the de�nitions of

the polarization factors of Eq. (4.13) and de�ne the position of the two sites forming the z

bond as R0 = (0, 0, 0) and Rz = (0, b/3, 0) where b is the lattice constant, such that for the

z bond the ions are connected by the vector ∆Rz = Rz −R0. So, the scattering amplitude

for the spin conserving excitation |↑↑⟩ to |↑↑⟩ is

Az
↑↑(1 + eiq·∆Rz) =

i

2
Pz(1 + eiq·∆Rz) (4.15)
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and the intensity is proportional to

Iz↑↑ = P 2
z cos2(kb/6). (4.16)

The same intensity is obtained for the scattering from |↓↓⟩ to |↓↓⟩ but the amplitude di�ers

for a minus sign, see Eq. (4.14). Instead, the scattering from |↑↑⟩ to |↓↓⟩ is not possible
as explained in Chap. 3.3. The states |2⟩ and |3⟩ can be reached from the |0⟩ state with a

spin-�ip excitation, the amplitude of which can be written as

Az
↑↓(±1 + eiq·∆Rz) =

1

2
(iPx − Py)(±1 + eiq·∆Rz) (4.17)

and the intensity as

Iz↑↓ = (P 2
x + P 2

y ) cos
2(kb/6 + (1∓ 1)π/4). (4.18)

The modulation depends on the phase of the �nal state. We �nd a sin2(kb/6) for the

excitation to |2⟩ = (− |↑↓⟩+ |↑↓⟩)/
√
2 and a cos2(kb/6) for |3⟩ = (|↑↓⟩+ |↑↓⟩)/

√
2. Instead

the spin-�ip scattering amplitude from the |↓↓⟩ state is

Az
↓↑(±1 + eiq·∆Rz) =

1

2
(iPx + Py)(±1 + eiq·∆Rz) (4.19)

and the intensity is

Iz↓↑ = (P 2
x + P 2

y ) cos
2(kb/6 + (1∓ 1)π/4). (4.20)

So, the RIXS spin-�ip scattering intensity from |↑↑⟩ and from |↓↓⟩ is the same but the

amplitudes di�er in phase.

So far, the calculation is valid when the spin-quantization axis is de�ned along the z

axis, i.e. for the z bond. An important assumption of our model is that for each bond we

need to calculate the RIXS amplitude assuming the spin-quantization axis along the axis

of the Kitaev interaction for that bond. In RIXS, the scattering intensity depends on the

direction of the quantization axis as discussed in Chap. 3.3. In Na2IrO3 and RuCl3, for

example, the polarization dependence of the REXS intensity has been used to determine

the direction of the magnetic moment in the ordered phase [193, 256]. As I am going to

argue in the following, the fact that each bond x, y, and z has to be treated as if it has its

own quantization axis is the characteristic of bond-directional excitations. To calculate the

RIXS intensity for the other bonds in this case we can permute cyclically the polarization

as xyz → zxy → yzx to calculate the z → y → x bonds and use the same expressions above

for the amplitude. The other bonds are de�ned to be at positions ∆Rx = (−a/2,−b/6, 0)

and ∆Ry = (a/2,−b/6, 0). So, for the y and x bonds we have the intensities

Iy↑↑ = (P 2
y ) cos2(haa/4− kb/12),

Iy↑↓ = (P 2
z + P 2

x ) cos2(haa/4− kb/12),

and

Ix↑↑ = (P 2
x ) cos2(−haa/4− kb/12),

Ix↑↓ = (P 2
y + P 2

z ) cos2(−haa/4− kb/12),

(4.21)
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Figure 4.2: Colormaps for the sin2 modulation for the x, y, and z bond and their sum.

where ha = cos(19.034◦)h is the projection of the exchanged momentum along the crys-

tallographic a axis which lies in the honeycomb plane. These expressions give rise to the

modulation plot in Fig. 5 of Chap. 4.1. The polarization factors are plotted as colormaps

in Fig. 5 of the Supplementary Information of Chap. 4.1. As depicted in Fig. 1 of Chap.

4.1, in the experimental geometry used in the experiments, a small incident angle θ (for

negative and large k) results in the incident polarization ϵ being almost parallel to the local

z axis. Consequently, the x and y components of the incident polarization are negligible.

This implies that the polarization factor Pz (see Eq. (4.13)) is nearly zero for small θ but

increases as θ grows, see Fig. 1(d) of Chap. 4.1. Therefore, spin-conserving scattering on the

z bond is suppressed in the lower part of the map. In contrast, spin-�ip scattering, which

is proportional to P 2
x + P 2

y , remains allowed for the z bond in the lower part of the map.

To generate the maps shown in Fig. 4 of Chap. 4.1, we calculate the RIXS intensities for

the three bonds (x, y, and z) independently and sum them incoherently. This approach

treats each bond as a distinct and independent scattering channel. In a pure Kitaev model,

where only the K term is non-zero, the interaction is purely bond-directional. For example,

consider a spin-conserving process. Perturbing the z component of the spin a�ects only the

other ion belonging to the z bond as their Sz components interact. The other bonds x and

y do not feel the perturbation as they do not interact with the Sz component. The same

reasoning applies to the x and y bonds for a perturbation of the Sx and Sy components

of the spin. This bond-speci�c nature of the excitations is what de�nes bond-directional

excitations.

Opposite to the cos2 modulation, the sin2 modulation of the x bond, for example, has a

maximum at theXy andXz points but a minimum at theXx points. The resulting colormaps

of the sin2 modulations are shown in Fig. 4.2. Overall, the sum of the modulation of the

three bonds gives rise to minima at the Γ points and maxima at the Γ′ points. When |2⟩
is the ground state, the magnetic excitations show a sin2 modulation with minima at the Γ

points. This modulation is not observed in the data of Na2IrO3, see Fig. 3 and 4 of Chap.

4.1. This means that we can exclude that |2⟩ is the ground state. So, for the moment we

neglect the |2⟩ state, but we will come back to it in the discussion of the data of α-Li2IrO3.

We consider now the e�ect of the Γ term. As said, Γ mixes and splits the |↑↑⟩ and |↓↓⟩
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Chapter 4. Bond-directional excitations in Kitaev materials

Figure 4.3: Maps for the spin-�ip excitation for di�erent ground states, |0⟩a = |↑↑⟩ or |0⟩b = |↓↓⟩ in
a), |0⟩ = i |↑↑⟩+ |↓↓⟩ in b), and |1⟩ = −i |↑↑⟩+ |↓↓⟩ in c).

states giving rise to |0⟩ = (i |↑↑⟩+ |↓↓⟩)/
√
2 and |1⟩ = (−i |↑↑⟩+ |↓↓⟩)/

√
2 with an energy

splitting of Γ. In this simple model, the ground state depends on the sign of Γ. We show

in the following how the two states can be distinguished based on the RIXS polarization

dependence. Consider �rst the excitation within those two states ⟨1|∑j=0,z e
iq·RjMj |0⟩.

We have to sum in amplitude the two excitation paths i |↑↑⟩ to i ⟨↑↑| (note the complex

conjugate of −i) and |↓↓⟩ to ⟨↓↓|. This gives

(−Az
↑↑ +Az

↓↓)(1 + eiq·∆Rz) = (− i

2
Pz −

i

2
Pz)(1 + eiq·∆Rz) (4.22)

leading to an intensity identical to Iz↑↑ and to Iz↓↓

Iz01 = Iz10 = P 2
z cos2(kb/6). (4.23)

Instead, the spin-�ip excitations depend on which is the ground state. We calculate the

amplitude

(⟨↓↑|+ ⟨↑↓|)
∑

j=0,z

eiq·RjMj(±i |↑↑⟩+ |↓↓⟩)

= (±iAz
↑↓ +Az

↓↑)(1 + eiq·∆Rz)

= (±i(iPx − Py) + (iPx + Py))/2(1 + eiq·∆Rz)

= (i∓ 1)(Px ∓ Py)/2(1 + eiq·∆Rz),

(4.24)

which, when squared to obtain the intensity, gives rise to an interference term

Iz0
13

= (P 2
x + P 2

y ∓ 2PxPy) cos
2(kb/6). (4.25)

The sign of the interference term 2PxPy depends on the sign of Γ, such that it is negative

(positive) for positive (negative) Γ. The e�ect of this interference term can be observed

in Fig. 4.3 where we compare the maps for polarization dependence P 2
x + P 2

y in a), P 2
x +

P 2
y − 2PxPy in b) and P 2

x +P 2
y +2PxPy in c). Remember that this polarization dependence
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Chapter 4. Bond-directional excitations in Kitaev materials

Figure 4.4: Maps for the spin-�ip excitation as a function of the temperature. The top row shows
the maps calculated supposing |0⟩ as the ground state and an excited state |1⟩ at 10meV thermally
populated according to the Bose factor. The bottom row shows the experimental data on Na2IrO3.
As the temperature increases, the intensity at the (5.5 − 1.5) point decreases, aspect that is quali-
tatively reproduced by the calculations.

is for the z bond and the polarization dependence of the other bonds can be obtained

via permutations of x, y, and z. The maps correspond respectively to the ground states

|0⟩a = |↑↑⟩ and |0⟩b = |↓↓⟩ in a), |0⟩ = i |↑↑⟩+ |↓↓⟩ in b), and |1⟩ = −i |↑↑⟩+ |↓↓⟩ in c). As

described in Chap. 4.1, P 2
x +P 2

y overall describes the data very well, in particular at the Xx

and Xz points where the bond directional behavior is most clear. However, the polarization

dependence P 2
x +P 2

y − 2PxPy that arises from a ground state |0⟩ = +i |↑↑⟩+ |↓↓⟩, describes
some aspects better than the simple spin-�ip model. The di�erence is most clear at the

Xy point at (5.5 −1.5). At this point the calculated map b) has a relatively high intensity

compared to c), while a) is in between. By comparing with the data at the bottom of Fig.

3 and Fig. 4d) of Chap. 4.1, we see that the data at low temperature are best described by

the map b) of Fig. 4.3.

Another aspect that the ground state |0⟩ reproduces better is the temperature evolution

of the intensity at (5.5 −1.5). In fact, the high temperature data at the bottom of Fig. 3 of

Chap. 4.1 are reproduced better by the map a). We can describe this temperature evolution

by supposing a ground state |0⟩ and the thermal population of the excited state |1⟩ lying
10meV higher. This means summing in intensity the maps b) and c) of Fig. 4.3, weighting

c) by the Bose factor e−E1/(kbT ), where E1 is the energy of |1⟩ relative to the ground state,

kb the Boltzmann factor, and T the temperature. This sum can be seen in Fig. 4.4 where

the calculations at the top are compared to the data at the bottom. By increasing the

temperature, the intensity at (5.5 −1.5) decreases and tends to the intensity of the map a).
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Figure 4.5: a) RIXS spectra acquired at the Xx, Xy, Xz, and Γ points on a Na2IrO3 sample oriented
with the (010) and (001) directions in the scattering plane at 30K. b) Calculated RIXS intensity
map for spin-conserving transitions described by the polarization factor P 2

z . c) Calculated RIXS
intensity maps for spin-�ip transitions with di�erent ground states |0⟩a = |↑↑⟩ or |0⟩b = |↓↓⟩ in (i),
|0⟩ = i |↑↑⟩+ |↓↓⟩ in (ii), and |1⟩ = −i |↑↑⟩+ |↓↓⟩ in (iii).

This reproduces qualitatively the behavior observed in the experimental data. So, we have

seen how from this simple single-bond JKΓΓ′ model we would conclude that the ground

state is the |0⟩ = i |↑↑⟩+ |↓↓⟩ state.
This conclusion is further supported by the data obtained from the sample in a di�erent

orientation. The spectra in Fig. 4.5a) are acquired at the Xx, Xy, Xz, and Γ points on

the same Na2IrO3 sample measured in Chap. 4.1 but oriented with the (010) and (001)

directions in the scattering plane. Accordingly, the honeycomb planes are perpendicular

to the scattering plane. Two excitations can be distinguished at 10 and 45 meV. The low

energy excitation shows a high intensity at Xy and a low intensity at the Xx points. This

behavior can be described by the map in Fig. 4.5b) which shows the calculation for a spin-

conserving transition described for the z bond by the polarization factor P 2
z . On top of the

map are marked the points at which the spectra have been acquired. The map reproduces

the lower intensity at the Xx points compared to the Xy points and that the intensity is

maximum at the Γ point. Remarkably, it even reproduces the relative intensity at di�erent

Xx points. The intensity is minimum at (−0.5 1.5), then it gradually increases moving to

(0.5 −1.5) and (−0.5 −4.5). The high-energy excitation instead shows a small di�erence

in intensity between X points, but a much higher intensity at Γ. Panel c) shows di�erent

calculations that suppose di�erent ground states like in Fig. 4.3. One can see that both

P 2
x + P 2

y and P 2
x + P 2

y + 2PxPy predict a strong di�erence between the Xx and Xy points,

while P 2
x + P 2

y − 2PxPy correctly predicts that the intensity at the Xx and Xy is similar.

In conclusion, the data acquired in this orientation support the conclusion that the ground

state in this bond model is |0⟩ = i |↑↑⟩+ |↓↓⟩.
In the simple model presented, the sign of Γ determines the ground state, suggesting that

Γ must be positive. However, we can consider Γ as an e�ective parameter that encapsulates

the complexity of the real material, where interactions are not strictly limited to nearest-

neighbors. For instance, Ref. [226] demonstrates that the parameters of the JKΓΓ′ model

depend on the number of sites considered in the calculations and whether crystal �eld

splitting is included.
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Figure 4.6: a) Spectra of α-Li2IrO3 acquired at 5K at Xx, Xy, and Xz points showing the bond-
directional behavior of the excitations. b) and c) maps of the RIXS integrated intensity of α-Li2IrO3

in a wide range of reciprocal space, measured above (80K) and below (5K) the Néel temperature of
15K. The spectra are integrated below 10meV in b) and above 35meV in c).

It can be shown that Γ′ has no e�ect on the polarization dependence of the RIXS intensity

of the spin-�ip excitation when the ground state is |0′⟩. Instead the Γ′ term has an e�ect

on the spin-conserving excitation from |0′⟩ to |1⟩. However, it is shown in Fig. 4a) and b)

of Chap. 4.1 that the magnetic Bragg peaks overlap with the magnetic excitations, making

a quantitative analysis hard.

4.3 Common phenomenology of the Kitaev materials Na2IrO3

and α-Li2IrO3

In Ref. [188], Revelli et al. studied the similar phenomenology of the magnetic excitations

in Na2IrO3 and α-Li2IrO3, showing a nearest-neighbor character of the continuum. The

electronic excitations also exhibit a similar behavior in the Kitaev materials [175, 176, 188].

To observe the bond-directional character of the excitations, we measured α-Li2IrO3 using

the same experimental setup as for Na2IrO3 at ID20 of the ESRF, employing the same tilted

sample geometry. The di�erent sizes of Li and Na result in di�erent lattice constants. In

order to cover the same range of hk reciprocal space at 2θ = 90◦, the sample tilt angle

required for α-Li2IrO3 was approximately 2◦ larger than for Na2IrO3. We thus measured

the RIXS intensity of the magnetic excitations over a large range of reciprocal space. As

with Na2IrO3, the spectra of α-Li2IrO3 at the X points, shown in Fig. 4.6(a), show most

clearly the bond-directional behavior. In α-Li2IrO3, we also identify two distinct features in

the magnetic excitations exhibiting di�erent behavior. However, the energy scale is smaller

than in Na2IrO3, with a low-energy feature peaking at about 15meV and a high-energy

feature at around 35meV. With a resolution of 25meV, the two features do not show as

clearly separated peaks as in Na2IrO3. Nevertheless, they can be distinguished based on

their di�erent RIXS polarization dependencies. Figures 4.6(b) and (c) show the integrated

RIXS intensity of the regions below 10meV and above 35meV, respectively, measured both

below and above the Néel temperature of 15K [257], at 5K and 80K. Comparing the maps

of Na2IrO3 and α-Li2IrO3, the main di�erence in the low-energy map at low temperature is
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Figure 4.7: Comparison of the RIXS intensity maps of the low energy loss part of Na2IrO3 and
α-Li2IrO3 at 5K. The position of the magnetic Bragg peaks inside the extended Brillouin zone of
Na2IrO3 and α-Li2IrO3 are shown in the inset. The presence of di�erent domains rotated by 120◦

gives rise to additional Bragg peaks.

that di�erent magnetic Bragg peaks arise from their di�erent magnetic ordering patterns. In

α-Li2IrO3, with a magnetic propagation vector of (0.32 0 0) [51,257], magnetic Bragg peaks

appear around the Γ and Γ′ points, as shown in the sketch in Fig. 4.7. Instead, Na2IrO3 has

a magnetic propagation vector (0 1 0.5) [167,258] which results in magnetic Bragg peaks at

the M points as in Fig. 4.7. Due to the presence of twin domains rotated by 120◦, three

domains are observed simultaneously, resulting in six magnetic Bragg peaks around each

Γ and Γ′ point. This can be observed in the maps of the low-energy part of the magnetic

excitations in Fig. 4.7. Instead, in the map in Fig. 4.6(b) acquired at 80K, above the Néel

temperature, the intensity of the magnetic Bragg peaks becomes broader in q space. This

broadening reveals the underlying behavior of the low-energy excitations more clearly. The

behavior is particularly evident at the X points, as shown by the spectra. Around the Xz

points, the low-energy intensity is low, while at the Xx points, the intensity is higher. As for

Na2IrO3, the behavior of the low-energy excitation can be reproduced by the spin-conserving

excitation, as shown by the calculated map in Fig. 4.8(a).

In the maps of the high-energy part of the magnetic excitations, the most notable dif-

ference between α-Li2IrO3 and Na2IrO3 is the higher intensity at the Xy = (5.5 −1.5)

point in α-Li2IrO3, compare Fig. 4.6(c) with the bottom of Fig. 4.4. The high intensity at

Xy = (5.5 −1.5) can be explained by the overlap of the excitation from the ground state

|0⟩ = i |↑↑⟩ + |↓↓⟩ to |2⟩ = |↓↑⟩ − |↑↓⟩ and to |3⟩ = |↓↑⟩ + |↑↓⟩. The calculated maps are

shown in Fig 4.8(a), (b), and (c) for the excitations from |0⟩ to |1⟩, |2⟩, and |3⟩ respectively.
As explained, these correspond to a spin-conserving excitation, a spin-�ip excitation with

a change of phase that gives rise to a sin2 modulation, and a spin-�ip excitation with the

same phase. Di�erent from the case of Na2IrO3, in α-Li2IrO3 the map (c) cannot fully de-

scribe the experimental data of the high energy part of the magnetic excitations. However,

it still correctly reproduces the complementary and alternating intensity at the Xx and Xz

points shown by the spectra in Fig. 4.6(a). Figure 4.8(d), (e), (f), and (g) depict the maps

obtained by summing to the map (c) the map (b) weighted by a factor 0.2, 0.4, 0.6, and 0.8

respectively. The excitation to |2⟩ shows a maximum at Xy = (5.5 −1.5), and thus as the
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Figure 4.8: (a), (b), (c) Calculated RIXS intensity maps for α-Li2IrO3 from the |0⟩ ground state to
the |1⟩, |2⟩, and |3⟩ states, respectively. These excitations correspond to a spin-conserving transition
(a) and two spin-�ip transitions (b) and (c), with (b) showing a sin2 modulation. (d), (e), (f), (g)
Sum of the intensity of map (c) with increasing contributions from map (b).

admixture increases the intensity at the Xy increases, such that a factor of 0.4 reproduces

the experimental map, compare Fig. 4.6(c) and Fig. 4.8(e).

Through the study of the RIXS modulation and polarization dependence we were able to

determine that the magnetic excitations in α-Li2IrO3 hide three di�erent bond-directional

excitations. Even though the resolution was not su�cient to resolve the three excitations,

the polarization dependence of the RIXS intensity allows us to distinguish them. A very

simple single bond dimer model proved to be su�cient to describe the RIXS intensity of

the magnetic excitations in Na2IrO3 and α-Li2IrO3. The model is based on the JKΓΓ′

Hamiltonian and gives us insight into what kind of excitations are present. We identify in

Na2IrO3 and α-Li2IrO3 a low-energy (peaking at approximately 10meV and 15meV) spin-

conserving excitation and a high-energy (peaking at approximately 45meV and 35meV)

spin-�ip excitation. In Na2IrO3 the high-energy excitation can be described by a spin-�ip

excitation from |0⟩ to |3⟩. Instead in α-Li2IrO3 the high-energy excitation can be described

by the overlap of the spin-�ip excitations from |0⟩ to |2⟩ and |3⟩. In both materials the

ground state is best described by |0⟩ = i |↑↑⟩ + |↓↓⟩, obtained by a positive Γ parameter.

The presence of the excitation to |2⟩ could not be observed in Na2IrO3. This observation

is missing a clear explanation but we can make some speculations. The parameters of the

JKΓΓ′ Hamiltonian are expected to be di�erent in Na2IrO3 and α-Li2IrO3. As shown in

Fig. 4.1, the parameters of the JKΓΓ′ Hamiltonian depend, for example, on the M -L-M

angle. The angles are known to be di�erent in Na2IrO3 and α-Li2IrO3 due to the di�erent

sizes of the ions. Experimentally, the magnetic order in the two materials is di�erent and the

energy of the magnetic excitations observed is di�erent, which also points toward di�erent

values of the parameters. We can speculate that the observation of the excitation to the

state |2⟩ in α-Li2IrO3 and not in Na2IrO3 is related to the di�erent sign of J in the two

materials. If J is negative, see Eq. (4.9), the energy of |2⟩ is higher than that of |3⟩. This
would place the excitation to |2⟩ at higher energy, where it may become observable. Instead,

if J is positive, the energy of |2⟩ is lower than that of |3⟩, and the excitation to |2⟩ would
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be in between the other two excitations, making it more di�cult to detect. This would be

in agreement with the results of Ref. [226], where the sign of J is positive for Na2IrO3 and

negative for α-Li2IrO3, see Fig. 4.1. Other estimates for the parameters are reported in

the literature from the analysis of the magnetic excitations in terms of magnon dispersion,

such as in α-Li2IrO3 in Ref. [191] and in Na2IrO3 in Ref. [190]. Both suggest positive Γ

and J for both compounds. However, our results show that the magnetic excitations, far

from the magnetic Bragg peaks, exhibit a very similar nearest-neighbor local behavior both

above and below the magnetic phase transition. This result suggests that these excitations

are not related to the magnetic order. An analysis in terms of dispersion might therefore

not be reliable. For example, the spectra acquired at equivalent X points shows that the

main e�ect as a function of the exchanged momentum is a change in the intensity of the

excitations, while the energy of the excitations remains approximately constant.

71



Chapter 4. Bond-directional excitations in Kitaev materials

72



Chapter 5

Trimers in Ba4NbIr3O12

5.1 Quasimolecular electronic structure of the trimer iridate

Ba4NbIr3O12

The trimer compound Ba4NbIr3O12 has attracted attention due to claims of behavior com-

patible with a spin-liquid ground state [106�108]. However, ab-initio calculations have in-

stead proposed a quasimolecular Jtrimer = 0 state [259]. In this chapter, we present the

results of RIXS measurements at the Ir L3 edge on the trimer compound Ba4NbIr3O12.

These results are published in Pub. [4], which we reproduce in the following. The observa-

tion of the modulation of the RIXS intensity demonstrates the quasimolecular character of

the wavefunctions. The calculations show that the Jtrimer = 0 ground state is in agreement

with the experimental data. This RIXS study is the �rst experimental determination of

the quasimolecular electronic structure of a quasimolecular trimer cluster compound. In

the theoretical analysis, we discuss the general features of the trimer quasimolecular wave-

functions and the resulting RIXS modulation. In particular, the di�erent symmetries of the

trimer eigenstates result in a characteristic RIXS modulation pattern observable in the ex-

perimental data. This will serve as a solid basis for future studies of the electronic structure

of trimer quasimolecular wavefunctions.
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A. Sandberg, M. Hermanns, and M. Grüninger wrote the manuscript with input from all

authors.
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The insulating mixed-valent Ir+3.66 compound Ba4NbIr3O12 hosts two holes per Ir3O12 trimer unit. We address
the electronic structure via resonant inelastic x-ray scattering (RIXS) at the Ir L3 edge and exact diagonalization.
The holes occupy quasimolecular orbitals that are delocalized over a trimer. This gives rise to a rich intra-t2g

excitation spectrum that extends from 0.5 eV to energies larger than 2 eV. Furthermore, it yields a strong
modulation of the RIXS intensity as a function of the transferred momentum q. A clear fingerprint of the
quasimolecular trimer character is the observation of two modulation periods, 2π/d and 2π/2d , where d and
2d denote the intratrimer Ir-Ir distances. We discuss how the specific modulation reflects the character of the
wave function of an excited state. Our quantitative analysis shows that spin-orbit coupling λ of about 0.4 eV is
decisive for the character of the electronic states, despite a large hopping ta1g of about 0.8 eV. The ground state
of a single trimer is described very well by both holes occupying the bonding j = 1

2 orbital, forming a vanishing
quasimolecular moment with J = 0.

DOI: 10.1103/PhysRevB.111.085122

I. INTRODUCTION

In the pursuit of discovering novel magnetic phases,
particularly quantum spin liquids, a promising approach is
the engineering of unusual interactions between neighbor-
ing magnetic moments. An intriguing way to achieve this is
through first engineering the character of the local moments
themselves. This is possible in cluster Mott insulators, a novel
class of transition-metal compounds where electronic degrees
of freedom are delocalized only over individual, small clusters
such as dimers, trimers, or tetramers [1–12]. The characteris-
tics of the emerging quasimolecular magnetic moments are
determined by a complex interplay of spin and orbital degrees
of freedom, Coulomb interactions, and intracluster hopping
that depends on the cluster shape. For instance, the magnetic
moments were predicted to be effectively temperature de-
pendent and in particular anisotropic in iridate dimers [13].
In general, the unconventional quasimolecular character of
the moments is expected to enable magnetic exchange be-
tween neighboring clusters that significantly deviates from the
conventional Heisenberg exchange, notably permitting bond-
direction-dependent exchange interactions.

In a similar fashion, different types of exchange inter-
actions have been realized in, e.g., 5d5 iridates with t5

2g

configuration, where spin-orbit entangled j = 1
2 moments

emerge due to strong spin-orbit coupling. In fact, exchange
couplings depend strongly on the bonding geometry of, e.g.,
IrO6 octahedra. They vary from isotropic Heisenberg ex-
change for 180◦ bonds in corner-sharing configuration to Ising
coupling on 90◦ bonds in edge-sharing geometry [14]. The
latter allows for the realization of bond-directional Kitaev
exchange on tricoordinated lattices [14,15]. Bond-directional
magnetic excitations are a hallmark of bond-directional ex-
change and have been observed in Na2IrO3 in resonant
inelastic x-ray scattering (RIXS) [16].

Face-sharing IrO6 octahedra, however, feature a very short
Ir-Ir distance of roughly 2.5–2.7 Å [17–19]. This yields much
larger hopping t , reaching values of the order of 1 eV [7,20].
Accordingly, the existence of exchange-coupled local mo-
ments is questionable [7,13,21]. Metallic behavior but also a
metal-insulator transition have been observed in, e.g., differ-
ent polytypes of BaIrO3 with face-sharing octahedra [22–25].
Insulators are found in the Ba3MIr2O9 family hosting Ir2O9
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dimers. The Ir valence and hence the number of holes per
dimer depends on the choice of the M ions. RIXS data for
M = Ce4+, Ti4+, and In3+ [7–9] demonstrate that the holes
occupy quasimolecular orbitals and are fully delocalized over
a given dimer.

Spin-orbit coupling has been found to be decisive for the
character of these quasimolecular dimer orbitals [7,8,13]. For
example, with three holes per dimer in face-sharing geome-
try, the magnetic moment changes from Jdim = 1

2 to 3
2 with

increasing intradimer hopping [13], and the spin-liquid can-
didate Ba3InIr2O9 [26] has been found to be close to this
transition [8]. Another example for the versatile character of
the novel quasimolecular moments in cluster Mott insulators
is found in the lacunar spinel GaTa4Se8 [10,27,28]. RIXS
data show that the Ta4 tetrahedra host quasimolecular Jtet = 3

2
moments for which the actual wave function is governed by
spin-orbit coupling and the competition of different intratetra-
hedral hopping channels [10].

RIXS is the ideal tool to unravel the quasimolecular elec-
tronic structure of cluster Mott insulators [7–10,28–31]. In
the fast-collision approximation [32–35], the RIXS inten-
sity I (q) of an electronic intracluster excitation at energy
h̄ω0 reflects the dynamical structure factor S(q, ω0), where
q denotes the transferred momentum. The modulation of
I (q) is equivalent to an interference pattern that arises due
to coherent scattering on all sites of a cluster. Such RIXS
interferometry allows us to probe the quasimolecular wave
function and to uncover the symmetry and character of the
electronic states, as successfully demonstrated for dimers and
tetrahedra [7–10]. A corresponding modulation of the RIXS
intensity can also be studied for, e.g., homonuclear diatomic
molecules [29,30,36,37], bilayer compounds [38], or the
Kitaev magnets Na2IrO3 and α-Li2IrO3 with nearest-neighbor
spin-spin correlations [16,39]. Furthermore, it has been dis-
cussed in the context of witnessing entanglement, using iridate
dimers as a model system [40]. For the interpretation of the
RIXS data, it is useful to remember that trimers built from
face-sharing IrO6 octahedra exhibit inversion symmetry, in
contrast to, e.g., face-sharing dimers or tetrahedra. The mid-
dle site M2 acts as the center of inversion [see Fig. 1(b)].
All electronic states of a trimer can be classified by their
parity. Upon inversion, even states are invariant while odd
states acquire an overall minus sign. The inversion eigenvalue
plays a pivotal role for many observables, also for the RIXS
intensity I (q). We show that I (q) of a trimer behaves qualita-
tively different for transitions that flip the inversion eigenvalue
compared to those that do not. As such, RIXS interferometry
gives an unambiguous fingerprint of the symmetry of the
eigenstates.

Trimer compounds such as Ba4NbM3O12 have been re-
ported for 3d , 4d , and 5d transition-metal ions M = Mn, Ru,
Rh, and Ir [41–47], and a gradual transition from localized
electrons for M = Mn to quasimolecular orbitals for M = Ir
has been discussed based on ab initio calculations [21]. For
instance Ba4NbIr3O12 adopts a hexagonal-perovskite struc-
ture with well-separated Ir3O12 trimers that form triangular
layers [see Fig. 1(a)]. Particularly rich physics ranging from
a quantum spin liquid to heavy-fermion strange metal be-
havior has been claimed for Ba4Nb1−xRu3+xO12 [47]. Iridate
trimers have been reported with different crystal structures

FIG. 1. (a) Sketch of the trigonal crystal structure (R3̄m)
of Ba4NbIr3O12 with face-sharing IrO6 octahedra forming well-
separated Ir3O12 trimer units. The trimer axis is parallel to c. The
two coordinate frames (black, pink) refer to obverse and reverse
twinning. (b) An Ir3O12 trimer with the three Ir sites Mi. The middle
site M2 is at the center of inversion and is crystallographically distinct
from the outer sites M1 and M3. Black: Global coordinate system.
Green and blue: Local coordinate systems for the outer and inner
octahedra, respectively, with (1,1,1)loc being parallel to the global
c axis.

and different hole counts [18,19,42–45,48–55]. Shimoda et al.
synthesized polycrystalline Ba4LnIr3O12 with different Ln3+
and Ln4+ ions, giving rise to four and three t2g holes per trimer,
respectively [18]. Based on measurements of the magnetic
susceptibility χ , the paramagnetic behavior of the Ln3+ com-
pounds with four holes per trimer entirely results from the
Ln3+ ions while the Ir trimers are found to be nonmagnetic
[18]. In contrast, the three-hole trimers (Ln = Ce4+, Pr4+,
Tb4+) order antiferromagnetically at low temperature. An
interesting variant is realized in Ba4BiIr3O12 for which the
highly unusual Bi4+ valence has been discussed in connection
with a magnetoelastic effect [48,49]. Three-hole trimers are
also realized in Ba5CuIr3O12 [50–52] and Ba4Ir3O10 [53–55].
In the latter, adjacent trimers are connected in corner-sharing
geometry suggesting large exchange couplings, and a quan-
tum spin liquid state persisting down to 0.2 K with a very
large frustration parameter has been claimed [53]. RIXS data
of Ba4Ir3O10 have been interpreted in terms of a spinon
continuum extending up to 0.2 eV [54]. However, also the oc-
currence of antiferromagnetic order below TN = 25 K has been
reported [55], while 2% Sr substitution yields TN = 130 K
[53]. Remarkably, very different points of view have been re-
ported for these three-hole trimers. The physics of Ba4Ir3O10

has been discussed in terms of exchange-coupled j = 1
2

moments [53,54], while a molecular-orbital picture with a
covalency-driven collapse of spin-orbit coupling has been
claimed for Ba5CuIr3O12 [51].

In Ba4NbIr3O12 with nonmagnetic 4d0 Nb5+ ions, the av-
erage formal Ir valence amounts to 3.66 for the stoichiometric
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compound, which corresponds to two t2g holes per Ir trimer.
Also, this compound has been discussed as a spin-liquid can-
didate [43–45]. Here, we address the quasimolecular structure
via RIXS and exact diagonalization. We show how the q-
dependent RIXS intensity entails the specific quasimolecular
trimer character of a given excited state. Our central result is
that the electronic structure of Ba4NbIr3O12 qualitatively can
be understood in a picture of quasimolecular trimer orbitals
built from spin-orbit-entangled j states, in close analogy to the
case of face-sharing dimers in Ba3MIr2O9 [7–9]. For a single
two-hole trimer, we find a nonmagnetic ground state for any
realistic set of parameters.

The paper is organized as follows. Section II addresses
experimental aspects such as crystal growth, characterization,
and RIXS measurements. In Sec. III we present our RIXS
data, while Sec. IV is devoted to the theoretical analysis
of RIXS of two-hole trimers. We introduce the Hamiltonian
and, for an intuitive picture, discuss the single-particle states.
Furthermore, we analyze the generic properties of the RIXS
response, highlighting the prominent role of inversion sym-
metry. Finally, we compare theory and experiment in Sec. V.
Beyond the excitation spectrum, we address the J = 0 ground
state in Sec. V A and the emergence of a small contribution
to the magnetic susceptibility in an applied magnetic field in
Sec. V C.

II. EXPERIMENTAL ASPECTS

We collected RIXS data on two different single crystals
of Ba4Nb1−xIr3+xO12. Sample A has been grown in Cologne,
sample B in Dresden. The RIXS data measured on the two
crystals are in excellent agreement with each other (see be-
low). The growth of the Dresden crystal B has been described
in Ref. [44]. For sample A, we first prepared polycrystalline
Ba4NbIr3O12 using conventional solid-state reaction. A stoi-
chiometric mixture of BaCO3, Nb2O5, and IrO2 was ground
and heated in an alumina crucible at 1100 ◦C for 48 h, similar
to the method given in Ref. [43]. The resulting Ba4NbIr3O12

was identified as being single phase by powder x-ray diffrac-
tion. Then, single crystals of Ba4Nb1−xIr3+xO12 were grown
using a flux method inspired by Ref. [44]. The prereacted
polycrystalline compound was mixed with BaCl2 · 2H2O in
a 1:30 molar ratio, heated in an alumina crucible to 1100 ◦C,
and slowly cooled down to 950 ◦C at a rate of 1 ◦C/h. Remains
of BaCl2 were dissolved with distilled water.

The isostructural ruthenate Ba4Nb1−xRu3+xO12 has been
reported to change from metallic to insulating behavior as
a function of the Nb concentration [47]. For the iridate
Ba4Nb1−xIr3+xO12 grown in Dresden, the resistivity reveals
insulating behavior with an activation energy of 43 meV [44].
We thoroughly addressed the Nb-Ir ratio of our samples. For
crystals from Dresden, energy-dispersive x-ray spectroscopy
(EDX) shows a Nb-Ir ratio 1/3.3, i.e., x ≈ 0.1, while the
analysis of single-crystal x-ray diffraction points to x ≈ 0.2
with both Nb5+ and excess Ir5+ ions occupying the 3a site
[44] that connects adjacent trimers and shows 100 % Nb occu-
pation in ideal Ba4NbIr3O12 [see Fig. 1(a)]. The 5d4 Ir5+ ions
are expected to yield nonmagnetic J = 0 moments [56–61].
For crystals grown in Cologne, the chemical composition and
homogeneity have been determined using an electron beam

microprobe (see Appendix A for details). The average Nb-Ir
ratio is approximately 1/3.4, close to the value found on the
Dresden crystals. In some crystals, the image of the backscat-
tered electron detector (BSE) of the microprobe revealed
well-separated Ir inclusions and intergrowths with BaIrO3.
We selected several crystals with mostly no inclusions or
intergrowth and measured the Nb-Ir ratio via EDX. Sample
A, studied in RIXS, shows a Nb-Ir ratio 0.97/3.06 that is
very close to the nominal value 1

3 of the stoichiometric com-
pound Ba4NbIr3O12. As discussed below, our RIXS results
on samples A and B are fully equivalent and do not show
any clear contribution of nonmagnetic 5d4 Ir5+ J = 0 ions on
Nb sites that may arise in the case of Nb-Ir site disorder or
off-stoichiometry.

At 300 K, Ba4Nb1−xIr3+xO12 exhibits a trigonal crys-
tal structure with space group R3̄m and lattice constants
a = 5.7733(6) Å and c = 28.720(5) Å (sample A). The in-
tratrimer Ir-Ir distance is d = 2.54 Å. The Ir3O12 trimers are
oriented parallel to c [see Fig. 1(a)]. Sample A (B) shows an
area of about 0.6 mm × 0.3 mm (2 mm × 1 mm) perpendic-
ular to the c axis and roughly 0.1 mm (0.3 mm) along c. On
both samples, RIXS data were collected on the (001) surface
with the (110) direction in the horizontal scattering plane. The
quasimolecular trimer character gives rise to a periodic mod-
ulation of the RIXS intensity as a function of the transferred
momentum q. The period depends on the Ir-Ir distance d .
Since d is incommensurate with the lattice constant c, we use
absolute units for q while still using reciprocal lattice units for
(h k l).

We performed Ir L3-edge RIXS measurements at beam
line ID20 at the ESRF at 300 K [62]. The synchrotron was
operated with a ring current of about 65 mA (16-bunch mode),
which is roughly 1

3 of the maximum current. The beam line
offers two equivalent spectrometers in Johann geometry with
a Rowland circle diameter of 1 or 2 m [62]. With 1 m, the
overall intensity of inelastically scattered photons is roughly
a factor 4 larger compared to the 2 m version that offers
a better energy resolution. To compensate for the reduced
ring current that leads to a reduced photon flux, we used the
1 m Rowland circle spectrometer employing a diced Si(844)
Johann crystal (1 m radius of curvature) with an aperture of
80 mm. The resonance behavior has been studied by col-
lecting low-energy-resolution RIXS spectra (�E = 0.3 eV)
with the incident energy in the range from 11.211 to 11.222
keV using a Si(311) channel-cut monochromator (see Fig. 2).
The advantage of the low-resolution setup is the high signal-
to-noise ratio. For all other measurements, we employed a
Si(844) backscattering monochromator and set the incident
energy to 11.215 keV to resonantly maximize the RIXS
intensity of intra-t2g excitations. For these data, the over-
all energy resolution was �E = 63 meV as estimated by
the full width at half-maximum of elastic scattering from a
piece of adhesive tape. The momentum resolution at, e.g.,
(h k l) = (0.7 0 28.35) was δhkl = (0.18 0.18 0.8). The in-
cident photons were π polarized in the horizontal scattering
plane. All RIXS data have been corrected for self-absorption
based on the scattering geometry [63]. Error bars for the
integrated RIXS intensity denote the standard deviation and
have been determined from the Poisson noise of the detector
image.
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FIG. 2. Resonance map of the RIXS intensity of Ba4NbIr3O12

(sample A) measured at 300 K with the low-resolution setup
(�E = 0.3 eV) at (0.7 0 36.7). The scattering angle 2θ was
close to 90◦. Excitations to eσ

g state are peaking at an energy loss
of about 3.5 eV for an incident energy Ein = 11.218 keV. The
intra-t2g excitations at lower energy loss are resonantly enhanced
around Ein = 11.215 keV. The color is interpolated between adjacent
data points. The color scale is logarithmic to highlight the intra-t2g

excitations.

III. RIXS RESULTS

The resonance behavior of the RIXS intensity is given in
Fig. 2, which shows low-resolution RIXS spectra at (h k l)
= (0.7 0 36.7) for incident energies in the range from 11.211
to 11.222 keV. The dominant RIXS feature is observed at an
energy loss of about 3.5 eV. It peaks for an incident energy
Ein,eg ≈ 11.218 keV and corresponds to excitations to eσ

g
states. The excitation energy of about 3.5 eV provides an
estimate of the cubic crystal-field splitting 10 Dq. The RIXS
peaks at still larger energy loss can be attributed to charge-
transfer excitations. We focus on the intra-t2g excitations with
an energy loss below 2 eV. Their intensity is resonantly en-
hanced for Ein,t2g = 11.215 keV. The two different resonance

energies Ein,eg and Ein,t2g reflect the x-ray absorption step of
the RIXS process, where a 2p core electron is promoted to
either an eσ

g or a t2g orbital, respectively.
Figure 3(a) shows RIXS spectra of Ba4NbIr3O12 measured

with Ein,t2g = 11.215 keV and 63 meV resolution for trans-
ferred momentum (0.7 0 l) at selected values of l . The
data cover a very large range of l from 17.1 to 36.6, which
is possible through the use of hard x-rays at the Ir L3 edge. As
discussed above (cf. Fig. 2), we attribute the inelastic features
between about 0.5 and 2.2 eV to intra-t2g excitations. Beyond
inelastic features, the spectra in Fig. 3(a) also show the elastic
line at zero loss. Since the data were collected with incident
π polarization, the elastic line is suppressed for a scattering
angle 2θ= 90◦. The data with l = 36.6 are closest to this case
and accordingly exhibit the smallest elastic line. In contrast,
the small value of 2θ= 40◦ for l = 17.1 gives rise to a large
elastic line that dominates the data up to 0.4 eV.

Our main experimental result is the pronounced depen-
dence of the RIXS intensity on l , i.e., on the component qc of
the transferred momentum parallel to the trimer axis. In fact,
the RIXS intensity is modulated periodically as a function
of l , as evident from the color map shown in Fig. 3(b). This
provides strong evidence for the quasimolecular character of
the excitations [7,8,10,29], as discussed in the Introduction
and below. In particular, we can identify two different peri-
odicities along l . In the range from about 1 to 2 eV, the data
show a period 2l0 = 11.3 (or 2Q = 11.3 × 2π/c in absolute
units), while a different intensity modulation with half the pe-
riod, 1Q ≈ 5.67 × 2π/c, is observed around 0.5–0.8 eV [see
Fig. 3(b)]. The two different periods can also be seen in Fig. 4,
which shows the RIXS intensity as a function of l for integra-
tion over four different energy windows, as given in the plot.
Note that the RIXS spectra in Fig. 3(a) have been measured at
integer and half-integer values of Q, highlighting the features
for minimum and maximum intensity of the two different
modulations. Considering, e.g., the range from 1 to 1.5 eV
and a transferred momentum of mQ, maximum intensity is
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FIG. 3. (a) RIXS spectra of Ba4NbIr3O12 (sample A) at (0.7 0 l) for selected values of l and (b) RIXS intensity map as a function of l at
300 K. The data do not show any dispersion as a function of the transferred momentum q. Instead, they reveal a pronounced, periodic intensity
modulation with two periods, Q and 2Q, where Q = π/d ≈ 5.67 × 2π/c with the intradimer Ir-Ir distance d . The data in (b) were merged
from measurements at (0.2 –0.2 l) for 10.25 � l � 30.25 and at (0.7 0 l) for 20.25 � l � 43.25. We used finite h and/or k to avoid enhanced
elastic scattering close to a Bragg peak. The very different intensities of the elastic line below about 0.3 eV reflect the large differences in the
scattering angle 2θ .
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FIG. 4. Integrated RIXS intensity as a function of l , obtained by
integrating the data shown in Fig. 3(b) for the integration ranges
given in the plot. With increasing energy, the data have been
shifted vertically by 0, 1, 2, and 3, respectively. The top scale uses
Q = π/d as unit for the component qc of the transferred momentum.
Two periodicities can be identified, 2Q = 11.3 × 2π/c and half of
this, 1Q.

reached for odd m while the intensity minimum is reached for
even m. With the lattice constant c = 28.72 Å, the long period
2Q corresponds to a real-space distance d = 2π/2Q = 2.54 Å.
This agrees with the nearest-neighbor intratrimer Ir-Ir distance
determined by x-ray diffraction, 2.54 Å. Accordingly, the
short period 1Q corresponds to 2d in real space, equivalent
to the distance between the two outer sites of a trimer. This
period 1Q is a clear signature of a quasimolecular excitation
that mainly involves the two outer trimer sites, as discussed in
Sec. IV C.

Qualitatively, the overall features of our RIXS data of
Ba3NbIr3O12 are very similar to results obtained on the
closely related dimer compounds Ba3MIr2O9 with M = Ce
and In [7,8]. First, the spectra exhibit broad peaks with ex-
citation energies that strongly differ from the RIXS response
of other iridate Mott insulators with j = 1

2 moments localized
on individual sites [9,64–66]. Second, the inelastic features
show a pronounced modulation of the RIXS intensity that
depends on the component of q projected onto the trimer axis.
In contrast to the strong q dependence of the intensity, the
excitation energy is insensitive to q. These properties reflect
the localized, quasimolecular nature of the excitations, with
charge carriers localized on a given cluster but fully delocal-
ized over the sites of this cluster. The actual q dependence
may serve as a fingerprint of the specific cluster shape. Dimers
with Ir-Ir distance d host a sinusoidal interference pattern with
period 2Q = 2π/d [7–9,29]. The three-dimensional shape of
tetrahedral clusters allows for a more complex behavior [10].
The presence of two periods, 1Q and 2Q, is characteristic for a
linear trimer with Ir-Ir distances d and 2d (see Sec. IV C). Our
RIXS data hence unambiguously demonstrate the quasimolec-
ular character of the electronic structure of Ba4NbIr3O12.

For a trimer running along the c axis, the RIXS intensity
strongly depends on l . In contrast, h and k are expected to play
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FIG. 5. Effect of a change of q perpendicular to c (sample A).
(a) RIXS spectra at (h h l) and (0.7 0 l). For each, we compare
two values of l = 33.8 (dotted) and 39.7 (solid line), equivalent to
roughly 6Q and 7Q, respectively. (b) Integrated RIXS intensity along
(h h 31.2) for two different energy windows. The choice l = 31.2,
equivalent to 5.5Q, yields sizable intensity for all RIXS peaks [see
Fig. 3(a)]. The quasimolecular character of the electronic excitations
on a trimer causes a strong modulation as a function of l (cf. Fig. 4
and Sec. IV C). In contrast, the moderate, nonoscillatory intensity
variation as a function of h for h = k with constant l can be attributed
to the polarization dependence. In the energy range 0.95 to 1.25 eV,
the maximum intensity in (b) occurs for large h around 1.5, in
agreement with the data in (a).

a minor role. Also this is supported by experiment (see Fig. 5).
Figure 5(a) shows RIXS spectra for different (h k l). For
each set of h and k, data are given for l = 33.8 and 39.7. For
l0 = 5.67, these l values roughly correspond to 6l0 and 7l0 (or
6Q and 7Q), respectively. For comparison, Fig. 5(b) depicts
the integrated RIXS intensity in the energy ranges 0.5–0.8 eV
and 0.95–1.25 eV for l = 31.2 or 5.5Q. The insensitivity to
h and k is particularly evident for the data in Fig. 5(a) with
6Q, i.e., minimum intensity, and for the window 0.5–0.8 eV.
Around 1–1.5 eV, the intensity moderately increases with h
and k. We emphasize that this slow increase as a function of h
and k strongly differs from the oscillating behavior as a func-
tion of l . This slow increase can be attributed to a polarization
effect since the large change of q requires a corresponding
change of the scattering geometry. Very similar polarization
effects as a function of h and k have been observed in iridate
dimer compounds [8].
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FIG. 6. Comparison of (a) RIXS spectra and (b) the q-dependent RIXS intensity of the two different samples A (full) and B (open symbols)
(see Sec. II). The data agree very well with each other, pointing towards a negligible role of Nb-Ir disorder.

Finally, we address the possible role of Nb-Ir site disorder.
We first consider a single 5d4 Ir5+ ion on a Nb5+ site (Wyckoff
position 3a), forming a local J = 0 moment. These could be
identified by observing two characteristic narrow peaks in the
energy range up to 3/2 λ [56–61], roughly 0.6 to 0.7 eV.
Similarly, a single 5d5 Ir4+ ion would cause a sharp feature at
3/2 λ. The absence of such narrow peaks in our data suggests
a minor role of Nb-Ir site disorder. This is supported by the q
dependence of the RIXS intensity that reflects which Ir sites
are involved in a given excitation. It thus can be used to detect
signatures of disorder, e.g., excitations related to Ir ions lo-
cated on the Nb 3a site that interact with Ir ions on trimer sites.
This has been shown for the dimer compound Ba3Ti3−xIrxO9

[9] with a sizable contribution of Ti-Ir site disorder. The Ti
sites connect neighboring Ir2O9 dimers in the same way as the
Nb 3a sites connect the trimers in Ba4NbIr3O12 [see Fig. 1(a)].
Considering the projection onto the c axis, the Nb and Ir sites
are displaced by 2.24 Å, which is smaller than the intratrimer
Ir-Ir distance d = 2.54 Å. Accordingly, Ir3a-Ir pairs with one
Ir ion on the Nb 3a site are expected to cause a modulation
with a larger period lNb = 12.8. This is not present in our
data. In addition, such pairs are also displaced perpendicu-
lar to c such that corresponding excitations would show a
sinusoidal modulation as a function of h or k, as discussed
below in Sec. IV C. Such a modulation indeed has been ob-
served in Ba3Ti3−xIrxO9 [9]. Figure 5(b) depicts the integrated
RIXS intensity along (h h 31.2) for two different energy
ranges. Along this direction, Ir3a-Ir pairs would yield an in-
tensity modulation following either sin2[π (h ± 31.2/12.8)]
or cos2[π (h ± 31.2/12.8)] with a period of 1 in h, in close
analogy to the case of Ba3Ti3−xIrxO9 [9]. However, such
modulation as a function of h is not observed in Fig. 5(b).
We conclude that Nb-Ir site disorder is negligible for the
discussion of our RIXS data. This is further supported by
the comparison of data of the two different samples A and
B, grown in Cologne and Dresden (see Sec. II). Figure 6
compares RIXS spectra of the two samples in Fig. 6(a) and
the q-dependent RIXS intensity in Fig. 6(b). The data of the
two samples agree very well with each other.

IV. THEORETICAL ANALYSIS

A. Hamiltonian for a single trimer

In the following, we address the RIXS response of
Ba4NbIr3O12 below 2 eV. Due to the large cubic crystal-field
splitting 10 Dq (see Sec. III), we restrict the discussion to t2g

orbitals. For a trimer with two holes, the full Hamiltonian
consists of spin-orbit coupling, noncubic crystal-field split-
ting, Coulomb repulsion and Hund’s coupling [67], as well
as hopping between neighboring sites,

H =
∑

i

(Hsoc,i + H�,i + HC,i ) + Ht , (1)

where i runs over the three trimer sites. The first two terms,
Hsoc,i and H�,i, describe the single-ion physics in the case of a
single t2g hole per site [68]. The spin-orbit coupling term has
the form

Hsoc,i = λ Li · Si, (2)

where λ is the effective coupling constant, Li the effective
orbital momentum on site i, and Si the spin. Iridium is a
heavy atom with large λ = 0.4–0.5 eV [7,64,65]. For an Ir
site with a single t2g hole, a positive λ splits the t2g orbitals
into a low-lying j = 1

2 doublet and a j = 3
2 quadruplet that

is 3/2 λ higher in energy. We use the global z axis as spin
quantization axis [13] since the local coordinate systems for
the IrO6 octahedra have a different orientation for the middle
and outer Ir sites [see Fig. 1(b)].

The second term of the Hamiltonian, the trigonal crystal-
field splitting, is given by

H�,i = �iL
2
z,i − E�,i, (3)

where Lz,i is the orbital momentum along the global z axis
and E�,i denotes the average energy. For the trimer, a trigonal
crystal-field splitting �i arises for a corresponding distortion
of the IrO6 octahedra. However, finite �i is also caused by
the linear arrangement of the Ir neighbors even in the case of
perfectly cubic octahedra [69]. The t2g orbitals are split into
a1g and eπ

g orbitals with an energy gap �i. Our convention in
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the hole picture is such that the a1g orbitals are lower in energy
for positive �i.

As the middle (m) and outer sites (o) are crystallo-
graphically distinct [see Fig. 1(b)], we allow for different
crystal-field splittings �m and �o. In fact, ab initio sim-
ulations suggest that the two may differ substantially in
magnitude and even have opposite signs [21]. In Eq. (3),
we subtract the average energy E�m or E�o for each site to
balance the energies around zero. This term is important for
�m �= �o. Without it, the relative energies of middle and outer
sites become incorrect. For �m = �o, it only adds an overall
energy constant.

Onsite Coulomb interactions are described by the third
term in the Hamiltonian, Eq. (1), as follows [67]:

HC,i =U
∑

α

niα↑niα↓ + 1

2
(U − 3JH )

∑
σ,α �=α′

niασ niα′σ

+ (U − 2JH )
∑
α �=α′

niα↑niα′↓

+ (U − 2JH )

(
15 − 5

∑
α,σ

niασ

)

+ JH

∑
α �=α′

(c†
iα↑c†

iα↓ciα′↓ciα′↑ − c†
iα↑ciα↓c†

iα′↓ciα′↑),

where c†
iασ (ciασ ) creates (annihilates) a hole at site Mi, with

i = 1,2,3, of orbital type α with spin σ =↑,↓, and niασ =
c†

iασ ciασ counts the number of holes. The intraorbital Coulomb
repulsion is given by U , and JH denotes Hund’s coupling.
The third line applies in the hole picture and takes care of
the relative energies between different sites.

For the value of JH , one has to distinguish different cases
[70]. For a free ion, Hund’s coupling can be expressed as
J free

H,d = (F 2 + F 4)/14 if one considers the entire d shell, where
F 2 and F 4 denote Slater integrals and the index “free” marks
values without screening. For a t2g-only model as used by
us, J free

H = (3/49)F 2 + (20/441)F 4 applies [70]. The com-
mon choice of F 4/F 2 ≈ 5

8 results in J free
H ≈ 0.77 J free

H,d .
Furthermore, screening causes a reduction of Hund’s cou-
pling by 20%–30% in a solid. Experimentally, the screened
Hund’s coupling can be determined from the multiplet ener-
gies of local excitations. The different values for the entire
5d shell and a t2g-only model have recently been studied in
5d4 K2OsCl6 (5d3 K2ReCl6), where JH,d = 0.43 eV (0.46 eV)
and JH = 0.28 eV (0.34 eV) were reported [61,71]. For a
t2g-only model, RIXS studies of different 5d4 iridates find JH

in the range of 0.25 to 0.4 eV [56–60], while the RIXS results
of 5d4/5d5 Ir dimer compounds yield 0.30 to 0.33 eV [7,8].
In the following, we employ JH = 0.33 eV but we find very
similar results for 0.25 eV � JH � 0.4 eV.

Finally, the hopping of holes between neighboring Ir sites
is described by the last term of the Hamiltonian,

Ht =
∑

〈i, j〉,α,α′,σ

tαα′
i j c†

iασ c jα′σ . (4)

In face-sharing geometry, as a result of the threefold sym-
metry around the trigonal axis, direct Ir-Ir hopping and
ligand-mediated hopping both are diagonal in the a1g/eπ

g basis

FIG. 7. Formation of quasimolecular B/NB/AB orbitals from
single-site a1g and eπ

g states as a function of t = ta1g for f = teπ
g /ta1g =

− 1
2 in a single-particle picture with λ = 0. (a) �m = �o = 0.3 eV.

(b) �m = 0.3 eV, �o = −0.2 eV. Blue (yellow) denotes even (odd)
states.

[69]. In other words, the only nonzero hopping elements are
those between the same a1g or eπ

g orbitals on neighboring sites.
Their respective hopping strength is denoted by ta1g and teπ

g
,

respectively, with realistic values for their ratio f = teπ
g
/ta1g

being close to f = − 1
2 [13]. We will use t = ta1g and f to

parametrize the hopping.

B. Single-particle states

For an intuitive picture, we consider the noninteracting
case U = JH = 0, and discuss the formation of quasimolecu-
lar orbitals in two different limits � 
 λ vs � � λ. First,
we address the effect of hopping on the a1g and eπ

g orbitals
for λ = 0. Due to the very short Ir-Ir distance, we expect
hopping to be large. Values of ta1g = 0.5–1.1 eV have been
derived from the analysis of RIXS data of the face-sharing
dimer compounds Ba3CeIr2O9 and Ba3InIr2O9 [7,8]. In the
trimer, hopping yields bonding (B), nonbonding (NB), and
antibonding (AB) orbitals. The energy of nonbonding states
is not affected by t , while the shift of B/AB states in the
simplest case, �m = �o, is linear in t [see Fig. 7(a)]. For
�m �= �o, the hopping Hamiltonian Ht does not commute
with the crystal-field term H�, which scrambles the order of
states for small t and leads to a more complicated behavior
[see Fig. 7(b)]. For realistic, large values of t , however, the
qualitative behavior is the same in Figs. 7(a) and 7(b).

The opposite limit is achieved for �m = �o = 0, describing
the effect of hopping on the spin-orbit entangled j states. In
general, hopping mixes the j = 1

2 and 3
2 multiplets [8,13].

There is, however, a special value f = −1, for which Ht and
Hsoc commute such that j remains a good quantum number
of the B/NB/AB states [see Fig. 8(a)]. Although f = −1 is
not realized in Ba4NbIr3O12, this case is helpful to simplify
some of the discussion below. For �m = �o = 0 and f = −1,
the quasimolecular states are B/NB/AB doublets built from
j = 1

2 states or B/NB/AB quartets made from j = 3
2 states.

Note that a further limit, considering exchange-coupled local
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FIG. 8. Quasimolecular orbital picture for strong spin-orbit cou-
pling and vanishing trigonal field � = 0. (a) Effect of hopping t
on the spin-orbit entangled j states in a single-hole picture for
λ = 0.4 eV. The plot depicts the special case with f = −1, for which
j remains a good quantum number of the B/NB/AB states. (b)–(f)
RIXS intensity for a single hole per trimer with q along the trimer
axis and Q = π/d . The five panels show the rich behavior of the q
dependence for excitations from the bonding j = 1

2 ground state to
each of the excited states.

j moments, requires to consider finite U . However, two holes
on three sites remain delocalized even for t � U such that this
limit cannot be realized here.

In the presence of inversion symmetry, it is easy to verify
that the single-particle bonding and antibonding states of a
trimer are even under inversion, while the nonbonding states
are odd. A generic inversion-odd single-particle state can be
written as

|ψo〉 = 1√
2

(|m〉1 − |m〉3), (5)

where |m〉i is a generic single-particle state on site Mi. The
hopping amplitudes towards the middle site M2 cancel, and
hence the energy of an odd state does not depend on (nearest-
neighbor) hopping, i.e., odd states are nonbonding. The odd
nonbonding states built from single-site a1g and eπ

g orbitals
have a2u and eπ

u character, respectively. In contrast a generic
inversion-even state can be written as

|ψe〉 = v|m〉1 + u|n〉2 + v|m〉3, (6)

where |m〉 and |n〉 are generic single-particle states and u and
v are complex parameters with |u|2 + 2|v|2 = 1. This form of
the even and odd states will prove useful in the next section to
gain a better understanding of the RIXS intensities for the
trimer system.

C. Generic properties of RIXS intensities
for inversion-symmetric trimers

To put the RIXS response of trimers into perspective, we
briefly recap the behavior of dimers. Coherent summation

over resonant scattering processes on the two sites of a dimer
yields a q-dependent modulation of the RIXS intensity. This
interference pattern can be described in terms of an inelastic
version of Young’s double-slit experiment [7,29]. In other
words, RIXS probes the dynamical structure factor S(q, ω0)
of a dimer excitation at energy h̄ω0 that exhibits a sinusoidal q
dependence. In the presence of inversion symmetry, the RIXS
intensity for a dimer is given by

Idim
eo (q) ∼ sin2(qd/2), Idim

ee (q) ∼ cos2(qd/2), (7)

where d is the distance between the two sites of a dimer, q
denotes the component of q parallel to the dimer axis, and Idim

eo
refers to excitations on the dimer that flip the symmetry from
even to odd or vice versa while Idim

ee corresponds to excitations
from even to even or from odd to odd states. The period of
the interference pattern 2Q = 2π/d measures the intradimer
distance, while a cos2(qd/2) or sin2(qd/2) behavior reveals
the symmetry and character of the states involved in the exci-
tation. A trimer offers similar but richer behavior.

Before we consider RIXS on Ba4NbIr3O12, let us first dis-
cuss some general properties of inversion-symmetric trimers.
For direct RIXS processes with excitation energies that are
smaller than the inverse core-hole lifetime � ≈ 3 eV [72,73],
we may employ the fast-collision approximation [32–35].
This allows for the factorization of the direct RIXS amplitude
into a resonant prefactor and the dynamic structure factor.
Considering a constant incident energy, we may ignore the
resonant prefactor. In this case, the RIXS amplitude A(q) is
given by [34,35]

A(q) ∼ 〈ψ f |
∑

R

eiqR[D†(ε∗
out )D(εin )]R|ψi〉, (8)

where R = (0, 0, 0), (0, 0,±d ) for the three sites of the
trimer, D is the local dipole transition operator, |ψi〉 and
|ψ f 〉 denote the initial and final state, respectively, and εin

and εout denote the incident and outgoing polarization, re-
spectively. The corresponding RIXS intensity is obtained as
I (q) ∼ |A(q)|2. In the experiment, εin was oriented within the
horizontal scattering plane. For the total intensity, we sum the
intensities for vertical and horizontal outgoing polarization
εout. For Ba4NbIr3O12, we additionally take into account that
obverse and reverse twinning is common in rhombohedral
structures. The two twins cannot be distinguished in, e.g.,
a Laue x-ray diffraction image. For the two-hole RIXS in-
tensities discussed in Sec. V, we hence sum over the two
possible trimer orientations, rotated by π around the c axis,
that correspond to the two twin domains. This has only a
minor effect on the result. It only affects the polarization and
thus the slowly varying envelope of the interference pattern.
Note that the single-hole RIXS intensities as depicted in Fig. 8
only consider one orientation.

For a dispersionless trimer excitation at energy h̄ω0, the
intensity I (q) ∝ |A(q)|2 [cf. Eq. (8)] reflects the dynamical
structure factor S(q, ω0). We will argue for its form using
the single-particle expressions in Eqs. (5) and (6), but the
resulting Eqs. (9) and (11) are valid also for the many-body
case (see Appendix B). With the generic single-particle states
|m〉i and |m̃〉i on site i, the matrix elements 〈m̃|D†D|m〉i may
be different for the inner site M2 compared to the outer sites.
On the equivalent outer sites M1 and M3, they have to be
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FIG. 9. Generic interference patterns for a trimer with inversion
symmetry, carrying information on the character and symmetry of
the states involved. Note that q is the component of q parallel to the
trimer axis, with Q = π/d . (a) |aeo|2 sin2(qd ) = |aeo|2 sin2(πq/Q) be-
havior is characteristic for excitations from even to odd states or vice
versa [see Ieo(q) in Eq. (9)]. (b) The interference between inner and
outer sites of the trimer yields a richer behavior for excitations from
even to even or odd to odd states [see Iee(q) in Eq. (11)]. The plot
shows Iee(q) for different c/|a|2, illustrating the qualitatively differ-
ent behavior of |c| = 2|a|2 (blue/red), |c| = |a|2 (dashed blue/dashed
red), and c = 0 (black). To improve visibility, we have chosen a = 1,
1.2, and 1.5 for |c/a2| = 2, 1, and 0, respectively. Here, we neglect
the change of polarization with q that adds a slow envelope.

identical. However, the relative sign in the sum over sites in
Eq. (8) is governed by the symmetry of the wave functions
in the initial and final states, and the interference additionally
depends on q via the phase factors eiqR. For an excitation that
flips the symmetry from even to odd or from odd to even,
the intensity is particularly simple. Since an odd state has no
occupation on the middle site M2, the amplitude contains only
two terms,

Aeo(q) ∼ v√
2
[eiqd〈m̃|D†D|m〉1 − e−iqd〈m̃|D†D|m〉3],

where q denotes the z component, parallel to the trimer axis.
As the sites M1 and M3 are equivalent, their matrix elements
are identical, which yields

Ieo(q) ∼ |aeo|2 sin2(qd ). (9)

This is valid also in the many-body case (see Appendix B).
The parameter aeo depends on the initial and final states but
also on the scattering geometry and the corresponding polar-
ization, which causes an effective q dependence of aeo. For
hard x-rays at the Ir L3 edge, covering a large range of q,
aeo(q) serves as a slow envelope to the sinusoidal modula-
tion. Neglecting this envelope, the intensity Ieo(q) exhibits
a period Q = 2π/2d since it is blind to the middle site and
consequently shows the sinusoidal intensity modulation of an
effective “dimer” with distance 2d [see Eq. (7) and Fig. 9(a)].
Intensity maxima occur for q = (m + 1

2 )Q with integer m. This
agrees with the experimental result at low energies (see black
curve in Fig. 4 and Sec. V).

For an even-to-even excitation, the RIXS intensity of a
trimer is more abundant. Using the generic form of even states
given in Eq. (6) and the equivalence of the matrix elements
on the outer sites M1 and M3, the RIXS amplitude can be

written as

Aee(q) ∼ (eiqd +e−iqd )ṽ∗v〈m̃|D†D|m〉3 + ũ∗u〈ñ|D†D|n〉2

≡ a cos(qd ) + b, (10)

where a cos(qd ) is the sum of the amplitudes on the outer
sites while b is the amplitude on M2. This implies

Iee(q) ∼ |a|2 cos2(qd ) + c cos(qd ) + |b|2 (11)

where c = (a∗b+b∗a) captures the interference between the
outer sites and the middle site M2. In this general form, Iee(q)
applies to the many-body case for both even-to-even and odd-
to-odd excitations (see Appendix B).

Note that a ∼ vṽ∗ and b ∼ uũ∗ reflect the coefficients of
the wave functions of initial and final states [see Eqs. (6) and
(10)]. The rich structure of Iee(q) hence contains substantial
information on these states. Again neglecting the slow q de-
pendence of the envelope caused by polarization, Iee(q) in
general has a period of 2Q = 2π/d , different from Ieo(q). We
distinguish three different cases: (i) |c| 
 |a|2, (ii) c = 0, and
(iii) 0 < |c| � |a|2. (i) |c| 
 |a|2 implies that the interference
term between middle and outer sites dominates the modu-
lation, which requires a dominant occupation of the middle
site. Beyond occupation, the interference term depends on
the phases of the states and on the matrix elements, which
are also sensitive to polarization effects. Using the trigono-
metric identities 2 sin2(x/2) = 1 − cos(x) and 2 cos2(x/2) =
1 + cos(x), one can find the limiting behavior of Iee for large
|c|. For c 
 |a|2, the modulated part of the RIXS intensity
roughly is given by cos2(qd/2) and for c � −|a|2 it be-
comes sin2(qd/2). Qualitatively, this behavior persists even
for small values of |c| as long as |c|/|a|2 � 2 [see Fig. 9(b)].
The sin2(qd/2)-type modulation agrees with the experimental
observation at high energies (see Fig. 4). (ii) A special case is
achieved for c = 0, i.e., vanishing interference between middle
and outer sites. This gives rise to cos2(qd ) behavior, i.e., the
system again mimics a dimer with site distance 2d and period
1Q, similar to the case of Ieo but with different phase [see black
curve in Fig. 9(b)]. (iii) Finally, 0 < |c| � |a|2 corresponds
to a small but finite interference term between the middle and
outer sites, which yields secondary maxima. These still can be
observed for, e.g., c = |a|2 at q = mQ with odd m [see dashed
curves in Fig. 9(b)].

These results promise that the measured q-dependent RIXS
intensity provides important information on the wave func-
tions, as recently demonstrated for the tetrahedral clusters in
GaTa4Se8 [10]. However, the situation is more complex when
states with different symmetry are close in energy. Consider,
e.g., the sum of RIXS intensities with Ieo(q) ∼ sin2(qd ) and
Iee(q) as given by Eq. (11). The latter contains a cos2(qd )
term that competes with Ieo(q) such that the sin2(qd ) character
becomes visible only for sufficient intensity. Also, this obser-
vation will be relevant for the comparison of our experimental
and theoretical results (see Sec. V).

D. RIXS intensity for a single hole

As a simple example that showcases the features found in
the previous section, we address a face-sharing trimer with a
single hole for strong spin-orbit coupling, zero trigonal field
� = 0, and hopping ratio f = −1. The energies are plotted
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in Fig. 8(a) and have been discussed above. Bonding and
antibonding states are even under inversion (blue), the non-
bonding states are odd (yellow). Figures 8(b)–8(f) depict the
q-dependent RIXS intensity for all possible excitations. First,
the two excitations 8(d) and 8(e) from the even ground state
to the odd nonbonding states stand out by showing sin2(qd )
behavior with period 1Q, as described by Ieo(q) [cf. Eq. (9)].
Second, excitation (c) to the antibonding j = 1

2 state agrees
with dominant sin2(qd/2) behavior as discussed above for
Iee(q) with c � 0, i.e., strong occupation of the middle site.
Finally, excitations to j = 3

2 [Figs. 8(b) and 8(f)] feature sec-
ondary maxima that are expected for |c| < 2|a|2. This occurs,
e.g., for small occupation of the middle site M2, but in this
case it is due to destructive interference. The finite background
stems from summing the intensities for vertical and horizon-
tal outgoing polarization that exhibit different q dependence.
Note that the relative strength of main and secondary maxima
changes with q, reflecting the slow change of prefactors upon
changing the scattering geometry and thus polarization.

V. COMPARISON OF THEORY AND EXPERIMENT

A. Ground state of a single trimer

The compound Ba4NbIr3O12 previously has been dis-
cussed as a spin-liquid candidate [43–45]. We therefore first
discuss the ground state of a trimer with two holes. The
Hamiltonian in Eq. (1) has seven parameters. We fix spin-orbit
coupling λ = 430 meV and Hund’s coupling JH = 330 meV to
realistic values for Ir oxides [7,64,65] (see also Sec. IV A).
Large values are expected for the intraorbital Coulomb inter-
action, U ≈ 1–2 eV, and for the hopping t = ta1g = 0.5–1 eV
[7,8] due to the short Ir-Ir distance. The ratio f = teπ

g
/ta1g is

expected to be negative, roughly f = − 1
2 [13]. Finally, the

trigonal crystal-field splitting may reach values as large as a
few hundred meV and may differ substantially between the
inner and outer sites, �m �= �o [21]. Given these physical
constraints, the ground state of a single two-hole trimer is
always a singlet and even under inversion, with the two holes
filling a bonding orbital. This is intuitively evident in the
noninteracting case depicted in Figs. 7 and 8, but is stable also
in the presence of strong correlations [21], as discussed below.
This already implies that a single trimer in zero magnetic
field carries a vanishing quasimolecular moment, J = 0. The
experimental observation of a q-dependent RIXS intensity,
modulated with periods 1Q and 2Q, firmly establishes that
the quasimolecular picture is applicable to Ba4NbIr3O12. This
predicts a nonmagnetic ground state for Ba4NbIr3O12 as long
as defects and interactions between trimers can be neglected.

In polycrystalline Ba4NbIr3O12, the magnetic susceptibil-
ity has been reported to follow the Curie-Weiss law with a
small magnetic moment of 0.8 μB per trimer or 0.3 μB per Ir
site [43,45]. Similar values have been found in single crystals
[44]. It has been argued that this magnetic moment, even
though small, is too large to be caused by defects [43]. From
the refinement of powder x-ray diffraction data, 8%–10% of
Nb-Ir site mixing have been claimed [45]. A possible spin-
liquid behavior of Ba4NbIr3O12 has been discussed on the
basis of the small magnetic moment, the absence of long-
range magnetic order down to 0.05 K, the specific heat, and

μSR data [43–45]. Before discussing how a small but finite
magnetic susceptibility may emerge from J = 0 trimers in
an external magnetic field (cf. Sec. V C), we first address the
excitations of Ba4NbIr3O12.

B. Excitations

For the discussion of the low-energy excitations, we start
by summarizing the main features in the experimental data. A
trimer exhibits a large number of eigenstates, in particular at
higher energies, and the average over different contributions
washes out the characteristic features. We thus will focus on
the excitations below about 1.5 eV, even though the overall
behavior is similar up to 2 eV. (i) Up to 0.4 eV, the RIXS
intensity is negligible. (ii) At low energies, 0.5–0.8 eV, there
is a clear sin2(qd ) behavior with period 1Q (see Figs. 3 and
4). (iii) In the range 0.95–1.55 eV the dominant behavior
is sin2(qd/2) with period 2Q. On top, the integrated RIXS
intensity, in particular from 0.95 to 1.25 eV, exhibits shoul-
ders at half-integer values of Q, indicating a small sin2(qd )
contribution (see Fig. 4).

Observation (ii) of a sin2(qd ) modulation with period 1Q at
low energy is well suited to narrow down the relevant parame-
ter regime. It agrees with Ieo(q) [see Eq. (9)]. Since the ground
state is even, theory should yield a dominant inversion-odd
state in the range 0.5–0.8 eV and no states with substantial
RIXS intensity below. In the same spirit, this observation may
serve to answer the question which, if any, noninteracting
limit offers a simple, intuitive starting point to understand the
full, interacting system. For instance, consider the noninter-
acting case studied in Fig. 7 for vanishing spin-orbit coupling.
A first excited state with odd symmetry (yellow) exists only
for small hopping t and only if �m ≈ �o [see Fig. 7(a)]. How-
ever, the lowest excited state is even under inversion (blue) for
realistic, larger values of t , in particular for the realistic case
of opposite signs of �m and �o [see Fig. 7(b)]. Since this
even-symmetry lowest excited state yields substantial RIXS
intensity, the overall low-energy behavior of the noninteract-
ing limit with λ = 0 disagrees with the experimental findings.
In the following we will show that the correct low-energy
behavior is obtained for realistic values of λ, highlighting the
important role of spin-orbit coupling.

In addition to spin-orbit coupling, realistic hopping with
|teπ

g
| < |ta1g|, i.e., 0 > f > −1, is an essential ingredient to

get a qualitatively correct q dependence at low energies. To
see this, we first consider the simple, idealized case f = −1
which does not mix states with j = 1

2 and 3
2 . We address the

noninteracting case for λ = 430 meV and vanishing trigonal
crystal field (see Fig. 8). This scenario has the same problems
as discussed above for the other limit, λ = 0 (cf. Fig. 7): the
lowest excited state for not too small hopping t is even (blue
curve) and thus exhibits the wrong symmetry. It gives a domi-
nant cos2(qd/2) behavior in the RIXS intensity [see Fig. 8(h)]
in contrast to the experimental low-energy result sin2(qd ).
This first excited state is the quasimolecular equivalent of the
spin-orbit exciton, i.e., the excitation of one of the holes from
the j = 1

2 bonding to the j = 3
2 bonding multiplet at energy

E = 3/2λ. The discrepancy with experiment persists upon
considering the trigonal crystal-field splitting and/or finite
Coulomb interactions, even though the trigonal crystal field
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FIG. 10. Quasimolecular orbital picture for strong spin-orbit
coupling and vanishing trigonal field. Same as Fig. 8 but for realistic
f = −0.5. The corresponding mixing of j = 1

2 and 3
2 states lifts the

degeneracy of bonding and antibonding j = 3
2 quartets. (a) Effect of

hopping t for λ = 0.4 eV. (b)–(h) RIXS intensity for a single hole per
trimer. The panels show the q dependence for excitations from the
bonding j = 1

2 ground state to each of the excited states.

also mixes the j = 1
2 and 3

2 multiplets. The idealized case
f = −1 hence fails to describe the dominant q dependence
of the RIXS intensity.

However, the behavior is qualitatively different for realistic
values of both f = − 1

2 and λ = 430 meV (see Fig. 10). By
mixing with the j = 1

2 states, the j = 3
2 multiplets split into

two bonding doublets (blue), two antibonding doublets (blue),
and a nonbonding quadruplet (yellow). For simplicity, we
denote, e.g., the bonding doublets as bonding j = 3

2 1 and 3
2 2.

Strictly speaking, j is not a good quantum number anymore,
but most of the weight of a given wave function still lies in
either j = 3

2 or 1
2 states. The essential point is that the lowest

excitation to bonding j = 3
2 1 carries nearly vanishing RIXS

intensity [see Fig. 10(h)]. At the same time, the higher bond-
ing branch j = 3

2 2 remains above the lowest inversion-odd
nonbonding state, as long as the hopping t does not become
too large. Altogether, the sin2(qd ) behavior of the nonbonding
branch [cf. Fig. 10(g)] dominates the RIXS intensity at low
energy, in agreement with experiment.

In fact, this noninteracting scenario with strong spin-orbit
coupling, large hopping t ≈ 0.8 eV, and f = − 1

2 already
yields a qualitatively correct description of the three main
experimental features. It has basically no RIXS intensity
below 0.5 eV, a dominant sin2(qd ) modulation with period Q
at low energies, and a dominant sin2(qd/2) contribution with
period 2Q at intermediate energies of about 1.5 eV. The latter
originates from the excitation to antibonding j = 1

2 states [see
Figs. 10(a) and 10(d)]. Moreover, excitations to nonbonding

j = 3/2 states add enhanced intensity at half-integer Q in the
same intermediate energy range [see Fig. 10(e)], and this can
be identified with the shoulders at (m + 1

2 )Q observed in our
RIXS data (see Fig. 4).

For a quantitative comparison between theory and experi-
ment, we have to go beyond the scenario plotted in Fig. 10 and
include the trigonal crystal-field splitting as well as Coulomb
interactions. Their effect on the two-hole energies is shown
in Fig. 11. Figure 11(a) depicts the noninteracting case for
� = 0 with f = − 1

2 and λ = 430 meV, as discussed above.
It features an even ground state, and the lowest excited state
for small t shows odd, nonbonding character (yellow). At
t = 800 meV, the bonding j = 3

2 1 state (blue dashed) is even
lower in energy, but it carries very little RIXS intensity. At
high energies, there are a multitude of states even in the nonin-
teracting case. This makes it difficult to identify the dominant
behavior, as mentioned above. Note that the states starting
with an energy of 3λ = 1290 meV at t = 0 have both holes in
the j = 3

2 multiplet. For t = 0, these states cannot be reached
by the promotion of a single hole from the ground state in
which both holes occupy j = 1

2 states. This rule is not valid
anymore for finite t and interactions, but the RIXS intensity
of these states remains small.

In Fig. 11(b), the trigonal crystal-field splittings �m and
�o simultaneously are tuned from zero on the left to �m =
−200 meV and �o = 300 meV on the right. For these realistic
values, the trigonal crystal field has hardly any effect on the
low-energy states. Similarly, Fig. 11(c) shows the increase
of Coulomb interactions from zero to U = 1200 meV and
JH = 330 meV. This causes a splitting of the multiplets and
generically lowers the excitation energies. However, the qual-
itative behavior changes very little. We thus conclude that a
substantial part of the excitation spectrum of the two-hole
trimer can be motivated and discussed in a noninteracting
picture as long as realistic values for λ, t , and f are consid-
ered. Despite the large value of U , this may not come as a
surprise. In cluster Mott insulators, the main role of a repulsive
U is to prevent charge fluctuations between different clusters,
turning the entire system insulating. In other words, U sup-
presses the small hopping between clusters. Within a given
cluster, however, the large hopping strongly competes with
Coulomb correlations and charge carriers are fully delocalized
over the cluster. Furthermore, correlations are less relevant
for the present case with less holes than sites. Together, this
intuitively explains the success of the noninteracting scenario
for the discussion of a single trimer.

The q-dependent RIXS intensity for the interacting system
is shown as a heat map in Fig. 11(d), and the correspond-
ing RIXS spectra for selected q values are given in Fig. 12.
Both plots use the parameter set that corresponds to the right
end of Fig. 11(c). The most important qualitative features of
the experimental data, in particular (i)–(iii) mentioned at the
beginning of Sec. V B, are well reproduced. Note that the
seven parameters in the Hamiltonian (1) span a large space,
such that not all of them, in particular �m and �o, can be
determined accurately. However, these results of the interact-
ing model support the general outcome of the noninteracting
case: the physics of Ba4NbIr3O12 is governed by strong spin-
orbit coupling λ of order 0.4 eV, large hopping ta1g of order
0.8 eV, and f = teπ

g
/taqg ≈ − 1

2 . Large hopping is required to
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FIG. 11. Left: Energies of the two-hole eigenstates of a face-sharing trimer, relative to the ground state at zero. Blue (yellow) denotes
states that are even (odd) upon inversion. The blue dashed lines refer to the bonding j = 3

2 1
state which carries very little RIXS intensity.

(a) Noninteracting case with spin-orbit coupling λ = 0.43 eV and vanishing trigonal crystal field � = 0. Hopping t = ta1g increases linearly
from zero to 0.8 eV for fixed f = teπ

g /ta1g = − 1
2 . For t = 0, both holes are in a j = 1

2 state in the ground state, and there are two possible
excitation energies, 3/2 λ and 3 λ, that correspond to one or two holes being excited to j = 3

2 , respectively. In (b), �o and �m are turned on
simultaneously. In (c), Coulomb interactions are switched on, with U and JH increasing up to 1.2 and 0.33 eV, respectively. The full parameter
set at the very right reads as λ = 0.43 eV, t = 0.8 eV, f = − 1

2 , �o = −0.2 eV, �m = 0.3 eV, U = 1.2 eV, and JH = 0.33 eV. The same parameters
are used in (d), which shows the RIXS intensity on a color scale normalized to the maximum value.

achieve vanishing RIXS intensity at low energy, i.e., below
0.4 eV, and the combination with strong λ and f ≈ − 1

2 is
necessary to reproduce the observed 1Q-periodic intensity
modulation of the low-energy RIXS peak. Accordingly, the
ground state of a single trimer is well described by putting
both holes in the quasimolecular bonding j = 1

2 orbital,
resulting in a total J = 0 state with even symmetry. Concern-
ing the spatial distribution of the two holes, we first consider
U = JH = �m = �o = 0. In this simple case, we find one hole
on the middle site while the outer sites carry half a hole each.
For the realistic values of U , JH , �m, and �o discussed above,
these numbers change by less than 10%.

FIG. 12. Calculated RIXS spectra of intra-t2g excitations of the
two-hole trimer for different values of q/Q. The parameters are the
same as used in Fig. 11(d), i.e., λ = 0.43 eV, t = 0.8 eV, f = − 1

2 ,
�o = −0.2 eV, �m = 0.3 eV, U = 1.2 eV, and JH = 0.33 eV.

Our results challenge previously reported points of view
on face-sharing iridate trimers. These have been discussed in
terms of two limits λ 
 t or t 
 λ [21]. The first limit with
extreme spin-orbit coupling considers local j = 1

2 moments
on individual Ir sites, where finite hopping yields exchange
interactions between these local moments. The compound
Ba4Ir3O10 with three holes per trimer or one hole per Ir
site has been discussed in this limit [53,54]. The opposite
limit of extreme hopping t 
 λ considers quasimolecular
orbitals that are built from a1g and eπ

g orbitals [21], i.e., it
also assumes � 
 λ. Ye et al. [51] claimed the covalency-
driven collapse of strong spin-orbit coupling for Ba5CuIr3O12

with three holes per trimer. Based on Raman scattering and
density functional theory, they discussed the local j = 1

2
scenario against a quasimolecular-orbital scenario where spin-
orbit coupling was applied only to the bonding a1g and eπ

g
states (in the hole picture). Concerning Ba4NbIr3O12, Bandy-
opadhyay et al. [45] discussed several properties in a j = 1

2
scenario but at the same time interpreted the small mag-
netic moment and the suppressed bandwidth as support for
a quasimolecular picture. Analyzing the Ir L3 and L2 white-
line intensities in x-ray absorption (XAS), they claim that
spin-orbit coupling is suppressed to a moderate value. How-
ever, this analysis of the branching ratio employs a single-site
picture, which is not appropriate for the trimer compound
Ba4NbIr3O12, in particular not for a quantitative analysis. Our
results highlight the quasimolecular nature of the trimer states
but at the same time emphasize the important role of spin-
orbit coupling, despite the large hopping. For a quantitative
description, one has to treat spin-orbit coupling, hopping,
Coulomb interactions, and the trigonal crystal field on equal
footing. However, we have shown that a qualitative un-
derstanding can be achieved by considering quasimolecular
orbitals built from spin-orbit-entangled j states but not from
a1g or eπ

g states for λ = 0.
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FIG. 13. (a) Calculated RIXS spectra and (b) q-dependent RIXS intensity for the same parameters as in Figs. 12 and 11(d). The single
exception is the linewidth of excitations to j = 3

2 type states, which here we choose to be 375 meV, i.e., three times larger than for excitations
to j = 1

2 states. Overall, this yields good agreement with the experimental result (cf. Fig. 3). We propose that the enhanced linewidth reflects
the interaction with continuum states above the Mott gap.

Finally, we comment on the shortcomings of our theo-
retical approach. First, the RIXS data at 1–1.5 eV show a
dominant 2Q-periodic sin2(qd/2) modulation and addition-
ally weak shoulders at half-integer Q, i.e., a weak sin2(qd )
contribution (see Fig. 4). The former is well described by
the excitation to the quasimolecular antibonding j = 1

2 state
[see Fig. 10(d)]. However, theory overestimates the intensity
of the 1Q-periodic features, i.e., the sin2(qd ) contribution of
excitations to nonbonding j = 3

2 states [cf. Figs. 10(e) and
11]. Second, just below 1 eV theory shows a predominant
cos2(qd ) = cos2(πq/Q) behavior with maximum intensity for
integer Q, out of phase with the sin2(qd ) modulation around
0.7 eV. In contrast, our experimental data show a clear min-
imum for 4Q and 6Q (see red and black curves in Fig. 4).
Also, this shortcoming can be viewed as an overestimation of
excitations to j = 3

2 states, in this case to bonding orbitals [see
Figs. 10(f) and 10(h)].

To find a possible reason for the overestimated intensity
of excitations to j = 3

2 states, we discuss the assumptions
employed in our theoretical approach. First, we neglect the
small admixture of eσ

g orbitals. With the cubic crystal-field
splitting 10 Dq ≈ 3.5 eV, we expect this to have a minor
effect on the intra-t2g excitations below 2 eV (see Fig. 2).
Second, we neglect the possible dynamics in the intermediate
state of the RIXS process. This is very well justified for a
single Ir site, where the Ir 2p5t6

2g intermediate state has a
full t2g shell. For a trimer, there are different intermediate
states with one hole in the quasimolecular t2g orbitals (and the
second one in a 2p core state). However, the large width of a
few eV of the RIXS resonance curve and its featureless line
shape suggest that all intermediate states contribute equally to
the RIXS amplitude. Using this assumption, the dynamics in
the intermediate state can be neglected. Third, we consider a
single trimer and ignore interaction effects with the electronic
continuum above the Mott gap, i.e., intertrimer excitations.
The actual size of the gap is not known well thus far. The
activation energy �act determined from the electrical resis-
tivity may serve as a lower limit. Values of �act = 0.05 eV

[43,44] and 0.22–0.25 eV [45] have been reported. Typically,
the size of the Mott gap cannot be determined from RIXS
at the transition-metal L edge [74]. With a 2p core hole in
the intermediate state, the RIXS process in good approxima-
tion can be viewed as a coherent superposition of single-site
scattering events [see Eq. (8)]. It is nevertheless possible
that the RIXS spectra exhibit a weak, broad, and featureless
contribution of intertrimer excitations across the Mott gap.
In particular, the small RIXS intensity of the latter may be
enhanced in the case of hybridization between intratrimer
and intertrimer excitations. Our single-trimer theory predicts a
nearly vanishing RIXS intensity just below 1.5 eV for q = 4Q
or 6Q (see Fig. 12). In contrast, the RIXS data between 1 and
1.5 eV show a weak background that indeed may indicate a
finite contribution of intertrimer excitations (see blue curves
in Fig. 3). A way to explain both the overestimated intensity
of excitations to j = 3

2 type of states and a finite continuum
contribution is to assume a certain hybridization between such
excitations to j = 3

2 states and electronic continuum states. To
mimic this, we empirically assume a linewidth of 375 meV for
excitations to j = 3

2 states, which is three times larger than
for j = 1

2 . In this case, the calculated result in fact shows
good agreement with the experimental data (see Figs. 13
and 3).

C. Magnetism vs J = 0

From our analysis of a single trimer, the ground state is
very stable and given by a singlet. This raises the question
of the origin of the Curie-Weiss contribution observed in the
magnetic susceptibility χ (T ), corresponding to a small mag-
netic moment of about 0.3 µB per Ir site [43–45]. Excitonic
magnetism emerging from a nonmagnetic ground state has
been discussed for, e.g., d4 J = 0 systems [75,76]. It arises
in the case of condensation of a magnetic excited state that
exhibits large dispersion [75,77]. In other words, the system
flips to an excited magnetic state on every site since the
energy cost is overruled by the gain of exchange energy. Such
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condensation yields an entirely different ground state, which
we rule out for Ba4NbIr3O12 based on the good agreement
between our experimental and theoretical results. Moreover,
excitonic magnetism requires strong intertrimer exchange in-
teractions and a corresponding pronounced dispersion that,
however, is absent in our RIXS data.

Furthermore, spin-orbit coupling causes Van Vleck param-
agnetism in an external magnetic field since the magnetization
operator mixes the zero-field eigenstates. This may give rise
to the admixture of a magnetic state to the ground state, as
discussed, e.g., for the 5d4 J = 0 ground state of K2OsCl6

[61]. We consider local excited states of individual, nonin-
teracting trimers as well as excitations across the Mott gap
that may admix states with different hole count via inter-
trimer hopping. The lowest excitation energy of a single
trimer amounts to about 0.5 eV, and a lower limit for in-
tersite excitations is given by the activation energy 0.25 eV
[45], as discussed above. Given these large excitation ener-
gies, the Van Vleck contribution to χ (T ) is certainly small
and nearly independent of temperature below 300 K. Alto-
gether, we expect a small Van Vleck contribution in χ (T )
of Ba4NbIr3O12 but rule out that the trimers with two holes
cause a finite Curie-Weiss contribution in a small magnetic
field.

VI. CONCLUSION

In conclusion, we find that the RIXS spectra and in par-
ticular the momentum dependence of the RIXS intensity I (q)
of Ba4NbIr3O12 yield clear fingerprints of the quasimolecular
electronic structure of this trimer compound. In insulating
Ba4NbIr3O12, the two holes per trimer are delocalized in
quasimolecular trimer orbitals. One characteristic feature of
a trimer is the existence of two different periods in I (q) that
reflect the intratrimer Ir-Ir distances d and 2d . Beyond the
two periods, the presence of inversion symmetry for Ir3O12

trimers in face-sharing geometry yields characteristic inter-
ference patterns in I (q) that facilitate the interpretation of the
RIXS spectra. This allows us to determine a realistic range of
parameters. Remarkably, a noninteracting picture with strong
spin-orbit coupling λ ≈ 0.4 eV and large hopping ta1g ≈ 0.8 eV
with teπ

g
/ta1g ≈ − 1

2 already describes the main qualitative fea-
tures of the RIXS data. In this regime, a trigonal crystal field
of up to a few hundred meV has only a small effect on the
RIXS response and does not seem essential to understand
the qualitative physics. Concerning Coulomb interactions, we
employ U = 1.2 eV and JH = 0.33 eV, but also these are not
essential for a qualitative description of the properties of a
single trimer. On a trimer, hopping wins against correlations,
in particular for a hole count smaller than the number of Ir
sites.

In the literature, the physics of 5d iridate trimers has
been discussed in two limits, either extreme spin-orbit cou-
pling with local j = 1

2 moments or extreme hopping, i.e., a
quasimolecular-orbital picture based on a1g and eπ

g orbitals
[21,45,51,53,54]. In the quasimolecular scenario, spin-orbit
coupling has either been neglected or applied only to the
bonding states [51]. We find that a quantitative descrip-
tion requires to consider spin-orbit coupling and hopping on
the same footing and we show that the trimer physics of

Ba4NbIr3O12 can be understood very well in terms of quasi-
molecular states that are formed from spin-orbit-entangled j
moments. This agrees with previous RIXS results on iridate
dimers [7,8]. Remarkably, a different scenario has been found
in RIXS on Ta tetrahedra in GaTa4Se8, where an intuitive
picture is obtained by first considering hopping and then
applying spin-orbit coupling only to the quasimolecular t2
orbitals [10]. The choice of an appropriate intuitive model
hence depends on the cluster shape and the relative size of
electronic parameters. The essential role of spin-orbit cou-
pling in these cluster Mott insulators promises a nontrivial
character of the magnetic moments in, e.g., trimers with an
odd number of holes. In general, theoretical investigations of
exchange interactions between neighboring clusters are highly
desirable.

For realistic parameters, we show that the ground state
of a trimer with two holes is a nonmagnetic singlet that is
even under inversion. Both holes occupy the bonding j = 1

2
orbital, which yields a total J = 0. A nonmagnetic ground
state has also been obtained in density-functional calculations
for Ba4NbIr3O12 [21]. Actually, the insulating character arises
as soon as realistic spin-orbit coupling is included, i.e., even
without correlations, which has been rationalized by the two
holes filling the lowest cluster orbital [21]. This raises the
question on the classification of Ba4NbIr3O12 as either a clus-
ter Mott insulator or a cluster-type band insulator. Our RIXS
data show that the excited states can be assigned to a given
trimer, supporting a significant role of intertrimer Coulomb
interactions and a cluster Mott picture.
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APPENDIX A: SAMPLE CHARACTERIZATION

For crystals grown in Cologne, the chemical composition
and homogeneity were determined with a JEOL JXA-8900RL
Electronbeam Microprobe. On a polished planar surface, the
Ba and Nb concentrations were measured using a PET crystal
spectrometer with baryte and elemental Nb as standards. The
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Ir concentration was measured using a LiF crystal spectrome-
ter with an IrO2 crystal as standard.

APPENDIX B: DETAILS ON THE RIXS INTENSITY

Here, we review how to derive Eq. (9). A generic state on
the trimer can be written as

|ψ〉 =
∑
i jk

ci jk|i; j; k〉, (B1)

where i, j, k denote the basis states on the sites M1, M2, and
M3 (see Fig. 1). In general, i, j, k denote many-body states
and need not have fixed particle number individually. Only
the total particle number is fixed. How the single-particle
orbitals transform under inversion depends on the material
at hand. For the trimers in Ba4NbIr3O12, the single-particle
basis states, and consequently the many-particle ones as well,
transform in a very simple way under inversion,

Î|i; j; k〉 = |k; j; i〉. (B2)

Thus, inversion constrains the coefficients ci jk to

ci jk = ±ck ji, (B3)

where the + (−) sign denotes even (odd) states under inver-
sion. For instance, bonding and antibonding states are both
inversion symmetric (even), while nonbonding states are anti-
symmetric (odd).

For a single trimer, the RIXS amplitude for generic initial
and final states |ψi〉 and |ψ f 〉 reads as [cf. Eq. (8)]

A(q) ∼
∑

R

eiqR〈ψ f |
[
D†(ε∗

out )D(εin )
]

R|ψi〉

= eiqd
∑
i, j,k

∑
i′, j′,k′

c̃∗
i′ j′k′ci jkδ j, j′δk,k′ 〈i′|D†D|i〉1

+ e−iqd
∑
i, j,k

∑
i′, j′,k′

c̃∗
i′ j′k′ci jkδ j, j′δi,i′ 〈k′|D†D|k〉3

+
∑
i, j,k

∑
i′, j′,k′

c̃∗
i′ j′k′ci jkδi,i′δk,k′ 〈 j′|D†D| j〉2, (B4)

where the subscript of | . . .〉m denotes the site. We can com-
bine the terms in the second and third lines, using that the
RIXS amplitudes for the outer sites are identical due to in-
version symmetry, i.e., 〈 j|D†D|i〉1 = 〈 j|D†D|i〉3. To obtain
a compact expression, we rename the dummy indices label-
ing the states on each site (e.g., in line three, we change
indices as k → i, k′ → j, j = j′ → α, and i = i′ → β).

This yields

A(q) ∼
∑

i, j,α,β

[(c̃∗
jαβciαβeiqd + c̃∗

βα jcβαie
−iqd )〈 j|D†D|i〉1

+ c̃∗
α jβcαiβ〈 j|D†D|i〉2]. (B5)

Note, that the RIXS amplitude on the middle site M2 may
differ from the ones on the outer sites and, thus, cannot be
combined with the other two terms. This is, e.g., the case for
a face-sharing trimer, where the middle octahedron is rotated
by 180◦ around the global z axis compared to the outer ones.

If the initial and final states have different symmetry,
one may use c̃∗

βα jcβαi = −c∗
jαβciαβ to simplify the expression

further,

Aeo(q) ∼
∑

i, j,α,β

c̃∗
jαβciαβ (eiqd − e−iqd )︸ ︷︷ ︸

2i sin(qd )

〈 j|D†D|i〉1, (B6)

where the contribution from the middle site vanishes under
summation over α and β. The full intensity for an excitation
that flips the symmetry is then given by

Ieo(q) ∼ 4 sin2(qd )

∣∣∣∣ ∑
i, j,αβ

c̃∗
jαβciαβ 〈 j|D†D|i〉1

∣∣∣∣2

, (B7)

as claimed in the main text [see Eq. (9)].
For excitations between states with the same symmetry, we

also can combine the terms from the outer sites (now with a
plus sign), but the contribution from the middle site will not
vanish (the only difference is that cα jα is required to vanish
for odd states),

Aee(q) =
∑

i, j,α,β

c̃∗
jαβciαβ 2 cos(qd )〈 j|D†D|i〉1

+ c̃∗
α jβcαiβ 〈 j|D†D|i〉2

= cos(qd )
∑

i, j,α,β

2c̃∗
jαβciαβ〈 j|D†D|i〉1

︸ ︷︷ ︸
a

+
∑

i, j,α,β

c̃∗
α jβcαiβ〈 j|D†D|i〉2

︸ ︷︷ ︸
b

. (B8)

Note that a and b may have a different dependence on q, even
in the case where the dipole matrix elements are the same
for all three sites since the summation over the eigenstates
may differ for outer and inner sites. From the amplitude in
Eq. (B8), it immediately follows that the RIXS intensities for
excitations between states with the same symmetry are given
as claimed in Eq. (11),

Iee(q) ∼ |a|2 cos2(qd ) + (a∗b + b∗a) cos(qd ) + |b|2. (B9)
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Chapter 6

Tetramers in GaTa4Se8

6.1 Quasimolecular Jtet = 3/2 Moments in the Cluster Mott

Insulator GaTa4Se8

The lacunar spinel GaTa4Se8 attracted attention for the presence of a pressure-induced

insulator-to-metal transition followed by topological superconductivity [127�131]. GaTa4Se8
was predicted to host a novel spin-orbit entangled quasimolecular state [133]. In Ref. [205],

Jeong et al. performed RIXS measurements at the Ta L3 and L2 edges with the aim to deter-

mine the ground state. However, the interference e�ect has not been considered correctly,

leading to a wrong peak assignment. In the following chapter, we present the results of

our RIXS interferometry measurements on the tetrahedral cluster Mott insulator GaTa4Se8.

These results are published in Pub. [3], which we reproduce in the following. This represents

the �rst study of the RIXS interference e�ect on a tetrahedral cluster. Our results demon-

strate that the RIXS modulation is highly sensitive to the detailed composition of the wave-

function. The wavefunction is determined by the competition of di�erent hopping channels,

which causes a mixing of the corresponding bonding and antibonding orbitals. Moreover,

the mixing causes a renormalization of the e�ective spin-orbit coupling. This sensitivity

proved crucial for the correct peak assignment and for understanding the quasimolecular

electronic structure. In Chap. 6.2, we provide further insights into the quasimolecular or-

bitals of the tetrahedral cluster. Chapter 6.3 discusses the calculation of the RIXS intensity

and the interference e�ects within the tetrahedron. Finally, Chap. 6.4 outlines the setup for

calculating quasimolecular orbitals and RIXS intensity for the tetrahedron using Quanty.
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Quasimolecular Jtet = 3=2 Moments in the Cluster Mott Insulator GaTa4Se8
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Quasimolecular orbitals in cluster Mott insulators provide a route to tailor exchange interactions, which
may yield novel quantum phases of matter. We demonstrate the cluster Mott character of the lacunar spinel
GaTa4Se8 using resonant inelastic x-ray scattering (RIXS) at the Ta L3 edge. Electrons are fully delocalized
over Ta4 tetrahedra, forming quasimolecular Jtet ¼ 3=2moments. The modulation of the RIXS intensity as
function of the transferred momentum q allows us to determine the cluster wave function, which depends
on competing intracluster hopping terms that mix states with different character. This mixed wave function
is decisive for the macroscopic properties since it affects intercluster hopping and exchange interactions
and furthermore renormalizes the effective spin-orbit coupling constant. The versatile wave function,
tunable via intracluster hopping, opens a new perspective on the large family of lacunar spinels and cluster
Mott insulators in general.

DOI: 10.1103/PhysRevLett.133.046501

With strong spin-orbit coupling, novel forms of quantum
magnetism may emerge from unconventional magnetic
moments that exhibit exotic exchange couplings. The
Kitaev spin liquid is a prominent example [1,2]. Bond-
directional Kitaev exchange has been realized in, e.g., 5d5

honeycomb iridates with spin-orbit-entangled j ¼ 1=2
moments [3–7]. Another intriguing case is given by 5d1

j ¼ 3=2 moments on an fcc lattice, e.g., in double perov-
skites. These moments experience bond-dependent multi-
polar interactions, giving rise to a rich phase diagram that
includes multipolar order and a chiral quantum spin liquid
with Majorana fermion excitations [8–11].
Exchange-coupled local moments exist in Mott insula-

tors, where electrons are localized on individual sites. A
new flavor is offered by cluster Mott insulators, which can
be viewed as the electronic equivalent of a molecular
crystal [12–17]. In these, electrons occupy quasimolecular
orbitals that are delocalized over a cluster, e.g., a dimer or
trimer, while intercluster charge fluctuations are suppressed
by Coulomb repulsion. The emerging quasimolecular
magnetic moments are the fundamental units determining
the macroscopic low-energy properties. Importantly, the
character of these moments can be tuned by internal
degrees of freedom. One example is an Ir2O9 dimer with
three holes as in the spin-liquid candidate Ba3InIr2O9 [18].
With increasing intradimer hopping, the dimer moments
change from Jdim ¼ 1=2 to 3=2 [19,20]. In general, the
quasimolecular wave function depends on competing

intracluster hopping terms and is highly sensitive to the
cluster shape. The ability to tune intracluster hopping via
external or chemical pressure offers the promising per-
spective to tailor the moments and thereby the character and
symmetry of intercluster exchange interactions with the
aim to realize novel magnetic quantum phases of matter.
We focus on the transition-metal M4 tetrahedra in the

large family of lacunar spinels AM4X8 (M ¼ V, Ti, Mo,
Nb, Ta; A ¼ Ga, Ge, Al; X ¼ S, Se, Te) [12,21–24], see
Fig. 1. With one electron in a quasimolecular t2 orbital,
ideal Jtet ¼ 3=2 moments forming an fcc lattice have been
claimed to be realized in 5d GaTa4Se8 [25,26].
Remarkably, a cluster Mott character has also been pro-
posed, mainly based on band-structure calculations,
for the 4d and even the 3d compounds, where smaller
hopping competes with larger on-site Coulomb repulsionU
[12,13,24,25,27–33]. However, a direct experimental proof
of quasimolecular electronic states in the lacunar spinels is
still lacking. Such a quasimolecular character is particularly
intriguing in light of the complex phase diagrams of the
lacunar spinels, which include multiple multiferroic and
skyrmion-lattice phases with, e.g., Néel-type skyrmions
carrying electric polarization [34–37], (anti-)ferroelectric
states with peculiar domain architectures [38–40], and
magnetism tied to polar domain walls [41]. The 5d Ta
compounds host a pressure-induced insulator-to-metal
transition followed by topological superconductivity
[13,42–44] and an avalanche-type dielectric breakdown
of the Mott gap [45].
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Here, we address the cluster wave function, which is the
essential starting point for a comprehensive understanding
of the lacunar spinels. We study GaTa4Se8 via resonant
inelastic x-ray scattering (RIXS) at the Ta L3 edge. RIXS
directly probes the quasimolecular nature of, e.g., intra-t12
excitations and pinpoints that the electrons are fully
delocalized over a Ta4 tetrahedron while correlations
hardly affect the t12 manifold. We find that the quasimo-
lecular Jtet ¼ 3=2 wave function deviates from the ideal-
ized case assumed previously [25,26], since competing
intracluster hopping terms mutually mix the corresponding
bonding and antibonding orbitals. In GaTa4Se8, this mixing
reduces the effective spin-orbit coupling constant ζeff by
roughly 1=3. Arising from strong hopping, the mixing is
not a small perturbation and can be expected to affect the
exchange interactions. Based on this mixing, the cluster
wave function is sensitive to structural changes due to, e.g.,
external pressure or chemical substitution, which provides
a new perspective on the entire family of lacunar spinels.
The delocalization of electrons over a cluster yields a

characteristic modulation of the RIXS intensity IðqÞ as
function of the transferred momentum q [46,47]. This
modulation reflects the dynamical structure factor Sðq;ωÞ
and reveals the character and symmetry of electronic states.
For a dimer, RIXS can be described as an inelastic version
of Young’s double-slit experiment [46]. The corresponding
sinusoidal interference pattern has been observed recently
in Ba3CeIr2O9 and related dimer compounds [20,47,48].
Stunningly, a sinusoidal intensity modulation has also been
found in the Kitaev material Na2IrO3 where it unravels the
bond-directional nearest-neighbor character of the mag-
netic excitations [7,49]. Careful consideration of these
interference effects is a prerequisite for the analysis of
RIXS in cluster Mott insulators and provides a powerful
tool to address the electronic states of GaTa4Se8.
Single crystals of GaTa4Se8 were grown by chemical

vapor transport [50]. At 300 K, GaTa4Se8 shows the
noncentrosymmetric cubic space group F4̄3m with lattice
constant a ¼ 10.382 Å [23], see Fig. 1. The short intra-
tetrahedral Ta-Ta distance d ¼ 3.0 Å suggests a quasimo-
lecular character. The optical conductivity characterizes the
lacunar spinels as narrow-gap insulators and reveals a Mott
gap of 0.12 eV in GaTa4Se8 [45,51,52]. Experimental
results for the magnetic moment per Ta4 cluster yield
0.7–1.2 μB [23,53–55]. The magnetostructural transition at
Tms ¼ 53 K is accompanied by a strong drop in the
magnetic susceptibility [53,55,56], but the crystal sym-
metry at low temperature is still under debate [24,55–57].
We first focus on cubic symmetry and then address the
effect of distortions.
We measured RIXS at the Ta L3 edge at Sector 27 at the

Advanced Photon Source [58]. The incident energy
9.879 keV resonantly enhances excitations within the
Ta t2g orbitals [26]. We studied a (111) surface with the
(110) and (001) directions in the horizontal scattering

plane, using incident π polarization. An energy resolution
ΔE ¼ 76 meV was achieved using a Si(440) four-bounce
monochromator and a R ¼ 2 m Si(066) spherical diced
crystal analyzer.WemeasuredRIXS spectra by scanning the
energy loss at constant q, see Fig. 2(a), and the intensity
modulation by scanning q at constant energy loss, see
Figs. 2(b), 2(c). We subtracted a constant background inten-
sity that was determined by averaging over a range of nega-
tive energy loss.All data have been corrected for geometrical
self-absorption [59]. We express q in reciprocal lattice units
(r.l.u.). The q resolution equals Δq ¼ ð0.1 0.1 0.3Þ.
The RIXS spectra of GaTa4Se8 show three peaks A, B,

and C at about 0.25, 0.62, and 1.2 eV, see Fig. 2(a). The
peak energies hardly show any dispersion but the intensity
strongly depends on q, in agreement with the data of Jeong
et al. [26]. This is a first indication of the local, quasimo-
lecular character of the electronic states. For the peak
assignment, we address the electronic structure of a single
Ta4 tetrahedron, starting with a noninteracting picture in
the undistorted cubic case. Note that the RIXS data at 20
and 100 K, i.e., above and below the structural transition at
53 K, are very similar.
Because of the large cubic crystal-field splitting 10 Dq ≈

3 eV [26], it is sufficient to consider the Ta t2g states. Direct
σ-type hopping tσ ≡ tddσ of order 1 eV [25] yields bonding
(b) and antibonding (ab) states at �tσ . Adding π-type
hopping tπ ≡ tddπ results in the quasimolecular orbitals a1,
e, and t2 at low energy and further states at high energy, see
Fig. 3(a). With 7 electrons per Ta4 cluster, the ground state
shows fully occupied a1 and e orbitals plus a single electron
in the t2 states, a21e

4t12. The three t2 orbitals are central to
our discussion. Because of tπ , they are mixtures of bonding
and antibonding states of tσ , see Fig. 3(a). We will show the
relevance of this mixture below but first follow the typical
assumption where only the bonding ones are considered.

FIG. 1. (a) Simplified sketch of cubic GaTa4Se8 [23]. Not all
Ga and Se ions are shown. The structure corresponds to a NaCl-
like lattice of tetrahedral ðGaSe4Þ−5 (red) and heterocubane
ðTa4Se4Þþ5 units. Tetrahedral Ta4 clusters (yellow) arise from
edge-sharing TaSe6 octahedra (blue) and form an fcc lattice. The
intracluster Ta-Ta distance d ¼ 3.0 Å is much shorter than the
intercluster one (4.3 Å, edges of green tetrahedron). (b) Bonding
quasimolecular xyb orbital, see Eq. (1). (c) t2ðxyÞ orbital with
sizable antibonding character, see Eq. (3) for α ¼ 2.
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This yields [cf. Fig. 1(b)]

xyb ¼ ðxy1 þ xy2 þ xy3 þ xy4Þ=2 ð1Þ

and equivalent for yzb and xzb, where i ¼ 1–4 denotes theTa
sites. Projecting spin-orbit coupling ζ onto the subspace of
these t12 states yields a cluster Hamiltonian that is fully
equivalent to the single-site case [3], see Supplemental
Material [60]. It shows a Jtet ¼ 3=2 ground state and a Jtet ¼
1=2 excited state at 1.5ζ [25]. The latter, the so-called spin-
orbit exciton, corresponds to peakA, while peaksB andC in
this non-interacting scenario are assigned to excitations
from e to Jtet states, i.e., from e4t12 to e3t22, see Fig. 3(a).

This peak assignment is supported by quantum chemistry
calculations [54] and is confirmed by the characteristic q
dependence of the RIXS intensity. Figure 2(b) is a color plot
for energies up to 1.6 eV for q along ð7.35 7.35 lÞ, while
Fig. 2(c) shows the corresponding integrated RIXS intensity
of peaksA,B, andC together with results of a single-particle
calculation (see below). Peak B hardly depends on q, while
A and C show a pronounced sin2ðπl=4.9Þ and cos2ðπl=4.9Þ
behavior, respectively, reflecting the different symmetries of
the corresponding states. The period l0 ¼ 4.9 points to a
Ta-Ta distance of a=4.9 ≈ 2.12 Å that agrees with the c-axis
projection d=

ffiffiffi
2

p
≈ 2.12 Å of the intratetrahedral Ta-Ta

distance d. For h ¼ k ¼ 7.35 ¼ 1.5l0, spectra for l ¼ l0
and l ¼ 1.5l0 correspond to extrema of the intensity modu-
lation, cf. Fig. 2(a).
The dominant sin2ðπl=4.9Þ behavior of peak A is a clear

fingerprint of the quasimolecular intra-t12 spin-orbit exciton.
In general, the RIXS intensity for an excitation from the
ground state j0i to a final state jfi is described by [65,66]

Ifðq;ωÞ ¼
����hfj

X
γ

eiq·RγD†
γDγj0i

����
2

δðℏω − EfÞ ð2Þ

where Ef denotes the excitation energy and Dγ ðD†
γÞ is the

local dipole operator for resonant scattering at the Ta site
Rγ . This coherent sum of local scattering processes is
running over all Rγ from which the final state jfi can be
reached. For the quasimolecular states in GaTa4Se8, this
refers to the four Ta sites of a tetrahedron. For q along
ð7.35 7.35 lÞ ¼ ð1.5l0 1.5l0 lÞ, the physics is particularly
simple if we stick to the contribution of bonding states to
the quasimolecular t2 orbitals, see Fig. 3(a), i.e., we employ
Eq. (1) and the associated Jtet states for spin-orbit coupling
within the t2 states, as discussed above. In this case,

(a) (b) (c)

FIG. 2. RIXS data of GaTa4Se8 along ð7.35 7.35 lÞ. (a) Spectra acquired at 20 and 100 K show the three peaks A, B, and C. Changing
q strongly affects the intensity. (b) Color map of the RIXS intensity at 20 K. Independent of the cluster modulation, the elastic line is
suppressed around l ¼ 5.4 due to a scattering angle 2θ close to 90°. (c) Integrated intensity of peaks A, B, and C. Integration intervals are
given in the panel. The data of peak C are scaled down by a factor 5 to facilitate comparison. Peaks A and C show dominant sin2ðπl=4.9Þ
and cos2ðπl=4.9Þ behavior, respectively. Solid lines: Results of the single-particle model, where the intensity has been adapted to the
experimental data. Very similar behavior of the q-dependent intensity is observed at 100 K, see Supplemental Material [60].

FIG. 3. (a) Single-particle energy levels of a Ta4 tetrahedron.
Intracluster hopping (see bottom left) yields quasimolecular
orbitals and an a21e

4t12 ground state. Because of tπ , the t2 orbitals
show contributions of bonding (b) and antibonding (ab) states of
tσ . Spin-orbit coupling within the t12 states forms a Jtet ¼ 3=2
ground state. A, B, and C refer to the RIXS peaks, see Fig. 2.
(b) The admixture of antibonding character renormalizes the
energy of peak A, see Eq. (3). Red (blue): single-particle result for
spin-orbit coupling within t2 (all) states. Black: many-body
cluster calculation using Quanty [63], see Supplemental Material
[60]. Dashed lines: value of α derived from the q dependence and
corresponding excitation energy.
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IB=CðlÞ ∝ cos2ðπl=4.9Þ for all excitations from e to t2,
while only the spin-orbit exciton is expected to show
IAðlÞ ∝ sin2ðπl=4.9Þ, see dashed lines in Figs. 4(a)–4(c).
This firmly supports our interpretation of peak A.
Our central goal is to determine the cluster wave

function. Thus far, we considered only the bonding con-
tributions to the t2 orbitals, see Eq. (1), a common
approximation [25,26] that, e.g., led to a different peak
assignment in Ref. [26]. In this simple bonding picture,
ICðlÞ describes the overall behavior of peak C but IBðlÞ
does not explain the nearly q-independent intensity of peak
B. Furthermore, this approximation predicts the spin-orbit
exciton at 1.5ζ, as for a single site, which is hard to
reconcile with the energy of peak A at 0.25 eV. The
equivalent excitation for weakly interacting Ta 5d1 ions
has been observed in RIXS on Rb2TaCl6 at 0.4 eV [67],
resulting in ζ ≈ 0.27 eV. Compared to 0.4 eV, the energy of
peak A is about 40% smaller. As shown below, these critical
issues are resolved by considering the admixture of anti-
bonding character to the t2 orbitals. With the intracluster
hoppings tσ and tπ , the eigenstate t2ðxyÞ of the hopping
Hamiltonian reads

t2ðxyÞ ¼ ½xyb − ðyzab − xzabÞ=α�=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð2=α2Þ

q
ð3Þ

with the antibondingorbitals yzab¼ðyz1−yz2þyz3−yz4Þ=2
and xzab ¼ ðxz1 − xz2 − xz3 þ xz4Þ=2. The approximation
of Eq. (1) corresponds to α ¼ ∞. The mixing coefficient
reads

α ¼ jtσ=tπj − 3=2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjtσ=tπj − 3=2Þ2 þ 2

q
: ð4Þ

Projecting spin-orbit coupling onto this t12 subspace yields
the same cluster Hamiltonian as above [60] but with re-
normalized coupling constant ζeff ¼ ζ · ðα2 − 1Þ=ðα2 þ 2Þ.
Accordingly, the peak assignment of Fig. 3(a) is still valid but
α renormalizes in particular the energyof peakA, cf. Fig. 3(b),
and changes the character of the quasimolecular Jtet states.
UsingHarrison’s empirical d dependence of the Slater-Koster
parameters [64], we find jtσ=tπj ¼ 1.5jVddσ=Vddπj ≈ 2.8.
This yields a first estimate α ≈ 3.2. Taking into account
hopping tSe via the Se ligands reduces α, for instance to α ≈ 2
for tSe ≈ tπ. The t2ðxyÞ orbital for α ¼ 2 is depicted in
Fig. 1(c).
Experimentally, the q-dependent RIXS intensity is the

ideal tool to determine the mixing coefficient α. Via the
matrix elements in Eq. (2), RIXS is directly sensitive to the
quasimolecular wave function and hence to the admixture
of antibonding orbitals. We calculated the RIXS response
in the single-particle picture for spin-orbit coupling within
the t2 states, taking into account polarization selection
rules. Results for the normalized RIXS intensities of peaks
A, B, and C along ð7.35 7.35 lÞ and two further q directions
are plotted in Fig. 4. Along ðkþ0.15 k 4.8Þ, the dominant
term for peak A is cos4ðπk=4.9Þ while a more complex
behavior is observed along ðh h 1.65½10-h�Þ. The single-
particle picture captures the behavior of all three peaks
surprisingly well. We emphasize that α is the only free
parameter in Fig. 4, reflecting the dependence of the wave
function on tσ and tπ . These results unambiguously
establish the quasimolecular cluster-Mott character of
GaTa4Se8 and that the admixture of antibonding character
is sizable, i.e., 1=α is not small.
The single-particle picture is expected to work particu-

larly well for the intra-t12 excitation of the spin-orbit
exciton, peak A. Peaks B and C with e3t22 final states will
be more sensitive to interactions. Peak C is the least
sensitive to α. The single-particle model reproduces the
overall q dependence but fails to describe the minima
quantitatively. To some extent, this may reflect a possible
background contribution of excitations across the Mott gap
at high energies. In contrast, peak B is highly sensitive to α.
Its nearly constant behavior as a function of q is reproduced
in a narrow window α ¼ 1.8–1.9. For peak A, excellent
agreement is found for α ¼ 2.4� 0.3.
These results for α fall in the range predicted above

based on Harrison’s rules. The precise value depends on
details of the model concerning the range of spin-orbit
coupling, distortions, subleading hopping terms, and cor-
relations. Above, spin-orbit coupling was projected onto t2
orbitals only. If we instead consider all orbitals, in
particular, including e and t1 [see Fig. 3(a)], peak A is
best described for α ¼ 2.9� 0.4. Furthermore, we dis-
cussed regular tetrahedra but the symmetry is lower than
cubic below Tms ¼ 53 K. Recent x-ray and neutron results
on the pair distribution function [57] point to dynamical
local distortions up to temperatures far above Tms. For

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

FIG. 4. Normalized RIXS intensity (symbols) along three q
directions for peaks A, B, and C at 20 K with integration ranges as
in Fig. 2. Lines: Results of the single-particle model for spin-orbit
coupling within the t2 states. Note that α is the only free
parameter. For peaks A and B, best agreement is obtained for
α ¼ 2.4� 0.3 and 1.8–1.9, respectively. Dashed: Result for
α ¼ ∞, neglecting antibonding states. For the normalization,
an appropriate q point has been chosen for each panel.
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trigonally distorted tetrahedra, we find that RIXS is
sensitive to the distortion if a single orientation can be
studied while the average over different orientations is very
close to the cubic case, see Supplemental Material [60].
The latter applies to both 20 and 100 K and validates our
approach. However, a distortion of the tetrahedra with less
than trigonal symmetry affects the value of α for which
peak B is nearly independent of q, see Ref. [60]. Note that
different results were reported for the crystal symmetry at
low temperature [24,55–57], impeding an even more
precise determination of α at present.
In a cluster Mott insulator, electron-electron interactions

suppress intercluster charge transport. Within a cluster,
correlations compete with dominant hopping that deloc-
alizes the electrons in quasimolecular orbitals. To study the
effect on the RIXS response, we performed many-body
calculations for a single tetrahedron using Quanty [63], see
Supplemental Material [60]. Interactions yield a fanning
out of the a21e

3t22 energy levels that is relevant to explain the
width of peak C and the energies of B and C, supporting
our peak assignment. For peak A, we find that electron-
electron interactions have only a minor effect on both the
energy and the q-dependent intensity, in particular for
comparison with the case where spin-orbit coupling is not
restricted to t2, see [60]. The many-body calculations thus
support the overall picture of the single-particle model.
The renormalized energy of the spin-orbit exciton, peak

A, provides an independent means to test our results for α.
Figure 3(b) shows the single-particle result for spin-orbit
coupling within t2, ESO¼ 1.5ζeff ¼ 1.5ζðα2−1Þ=ðα2þ2Þ.
For comparison, the excitation energy is also given for spin-
orbit coupling acting on all states and for the many-body
cluster calculation. For the latter we change α by changing
tσ , cf. Eq. (4), with all other parameters fixed. The overall
behavior is very similar. For all three cases, the dashed lines
denote the value of α that best describes the q dependence.
This yields an excitation energy of 0.9–1.0ζ and hence
ζ ≈ 0.27–0.30 eV, in very good agreement with both quan-
tum chemistry calculations [54] and the value 0.27 eV
reported for 5d1 Rb2TaCl6 [67].
In conclusion, our results establish GaTa4Se8 as a

fascinating example of a cluster Mott insulator. The valence
electrons are fully delocalized over a Ta4 tetrahedron, while
intercluster charge fluctuations are suppressed. A thorough
analysis of the modulated RIXS intensity IðqÞ reveals the
quasimolecular wave function, which is the essential
starting point for exploring the physics of cluster Mott
insulators. The spin-orbit exciton, an excitation within the
t12 manifold, is particularly well described in a single-
particle scenario that is coined by competing hopping
terms, tσ and tπ . This competition shapes the wave function,
renormalizes the effective spin-orbit coupling constant by
roughly 1=3, and hence affects the nature of the quasimo-
lecular magnetic moment. We expect that this is decisive
for intercluster exchange coupling, calling for future

theoretical investigations. In general, the mixing coefficient
α also depends on tddδ and on the indirect hopping via
ligands. Therefore, it is reasonable to assume that α can be
tuned in the lacunar spinels by external pressure and
chemical substitution, and one may speculate that even
temperature may tip the balance in certain cases. Our
results on the quasimolecular character, the particular role
of antibonding states, and the tunability of the wave
function are relevant for many of the open questions on
the large family of lacunar spinels.
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cluster Jahn-Teller effect as a possible route to antiferro-
electricity, Phys. Rev. Lett. 126, 187601 (2021).

[40] L. Puntigam, M. Altthaler, S. Ghara, L. Prodan, V. Tsurkan,
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I. SPIN-ORBIT COUPLING ON THE CLUSTER

Before addressing the tetrahedral cluster, we start by con-
sidering a single site in cubic symmetry with the three t2g
orbitals X = yz, Y = zx, and Z =xy. Applying spin-orbit cou-
pling HSOC = ζ l⃗ s⃗ to the single electron configuration t12g
couples |X ↑⟩, |Y ↑⟩, and |Z ↓⟩ as well as |X ↓⟩, |Y ↓⟩, and
|Z ↑⟩ [1], which is described by the two Hamiltonians

HX↑,Y ↑,Z↓ =




0 i −1
−i 0 i
−1 −i 0


 ζ

2
(S1)

HX↓,Y ↓,Z↑ =




0 −i 1
i 0 i
1 −i 0


 ζ

2
(S2)

where the indices denote the basis states. Altogether, this
yields a j = 3/2 ground state and a j = 1/2 excited state at 3/2 ζ.

For the four Ta sites of a tetrahedron, we consider hopping
tσ and tπ between the 4 × 3 t2g orbitals as well as spin-orbit
coupling on each of the four sites. Then we transform to
the quasimolecular basis states of the hopping Hamiltonian,
see Fig. 3a) of the main text. For the single-particle model,
we project spin-orbit coupling to the quasimolecular t2 states.
(For comparison, we also consider the case of spin-orbit cou-
pling acting on all states. These exceptions are clearly marked
in the main text.) This is a reasonable approximation as long
as the energy difference between the quasimolecular states is
large. In spirit, it is analogous to neglecting the eg orbitals in
the discussion of a single site. We find a Hamiltonian that is
equivalent to the single-site case,

HXtet↑,Ytet↑,Ztet↓ =




0 i −1
−i 0 i
−1 −i 0


 ζ

2

α2 − 1

α2 + 2
(S3)

HXtet↓,Ytet↓,Ztet↑ =




0 −i 1
i 0 i
1 −i 0


 ζ

2

α2 − 1

α2 + 2
(S4)

with

|Xtetσ⟩ =β

(−1

α
, 1,

1

α
,

1

α
, 1,

1

α
,

−1

α
, 1,

−1

α
,

1

α
, 1,

−1

α

)

σ
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|Ztetσ⟩ =β

(
1,

−1

α
,
1

α
, 1,

1

α
,
−1

α
, 1,

−1

α
,
−1

α
, 1,

1

α
,
1

α

)

σ

where

β =
1

2
√

1 + (2/α2)
. (S5)

These states are expressed in the basis xy1, yz1, zx1, xy2,
yz2, zx2, ..., where the index i= 1-4 denotes the site within
the Ta4 cluster. Note that |Ztetσ⟩= t2(xy)σ as defined in Eq.
(3) of the main text. The Jtet = 3/2 eigenstates of Eqs. (S3)
and (S4) are given by

∣∣∣∣
3

2
,
3

2

〉
=

−1√
2
[|Xtet ↑⟩+ i|Ytet ↑⟩] , (S6)

∣∣∣∣
3

2
,
−3

2

〉
=

1√
2
[|Xtet ↓⟩ − i|Ytet ↓⟩] , (S7)

∣∣∣∣
3

2
,
1

2

〉
=

−1√
6
[|Xtet ↓⟩+ i|Ytet ↓⟩ − 2|Ztet ↑⟩] , (S8)

∣∣∣∣
3

2
,
−1

2

〉
=

1√
6
[|Xtet ↑⟩ − i|Ytet ↑⟩+ 2|Ztet ↓⟩] , (S9)

while the Jtet = 1/2 states read
∣∣∣∣
1

2
,
1

2

〉
=

−1√
3
[|Xtet ↓⟩+ i|Ytet ↓⟩+ |Ztet ↑⟩] ,(S10)

∣∣∣∣
1

2
,−1

2

〉
=

−1√
3
[|Xtet ↑⟩ − i|Ytet ↑⟩ − |Ztet ↓⟩] .(S11)

The corresponding single-site states of Eqs. (S1) and (S2) are
obtained by replacing Xtet by X = yz and equivalent for Ytet

and Ztet [1, 2]. For a Ta4 cluster, the central role of α is to
shape these basis states, as described above and in Eq. (3),
and to renormalize the energy scale, see Eqs. (S3) and (S4)
and Fig. 3b) in the main text. The energy normalization factor
approaches 1 in the limit α =∞.
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FIG. S1. RIXS intensity of peak A for q along (7.35 7.35 l) for a
distorted tetrahedron with ∆= 0.2 eV and α= 2.4. For this q direc-
tion, the results for distortions with either site 1 or 2 as unique site
are identical. The average over the four different orientations of the
distortion (solid blue line) is hard to distinguish from the undistorted
case (solid orange line).

II. EFFECT OF NON-CUBIC DISTORTIONS

In cubic symmetry, all Ta-Ta edges of the regular tetrahe-
dron are of equal length d= 3.0 Å. However, the symmetry is
lower than cubic below Tms = 53 K. Furthermore, recent x-
ray and neutron results on the pair distribution function [3]
point to dynamical local distortions up to temperatures far
above Tms. These dynamical distortions are of similar size
as the static distortions at low temperature. RIXS averages
over different orientations of the dynamical distortions above
Tms and different domains below Tms. Even within a single
domain, different tetrahedra within the unit cell show differ-
ent orientations [3]. For a single tetrahedron, we approximate
the distorted case by three short and three long bonds with
3.0 ± 0.04 Å, where the long bonds meet at one Ta site [3].
We implement such a trigonal distortion of the tetrahedron via
the size of σ-type hopping, for which we assume tσ ∓ ∆/2.
With tσ ∝ 1/d5 [4], we estimate ∆/tσ ≈ 0.13. Below we
use ∆= 0.2 eV, which somewhat overestimates the effect of a
trigonal distortion.

As in the cubic case, we employ the single-particle pic-
ture and first calculate the eigenstates of the hopping Hamil-
tonian for a single, distorted tetrahedron. Then we apply
spin-orbit coupling within the t12 states. The distortion splits
the Jtet = 3/2 quartet into two doublets, in close analogy to
the single-site case. We calculate RIXS for the four equiv-
alent orientations of the distortion and finally average over
the four curves. Figure S1 shows the result for peak A along
(7.35 7.35 l) for ∆= 0.2 eV and α = 2.4. We find clear differ-
ences for different orientations of the distortion. RIXS thus
would be sensitive to the distortion if a single orientation of
the distortion could be measured. However, the average over
the four distorted results is very close to the RIXS response
of the undistorted case. This is a plausible explanation for our
RIXS data being very similar at 20 K and 100 K and validates
the description of the data in terms of a cubic model.

Peak B corresponds to excitations from e to Jtet = 3/2
states. The Jtet = 3/2 quartet contains states with Jz =±1/2
and Jz =±3/2, and these show a different q dependence,
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FIG. S2. The α dependence of the RIXS intensities of the two dif-
ferent contributions to peak B. Left (right): Excitations from an e
orbital to Jtet = 3/2 with Jz =±1/2 (±3/2).

see Fig. S2. In particular a nearly q-independent behav-
ior is observed for α≈ 1.1 for Jz =±1/2 but for α≈ 3 for
Jz =±3/2. The trigonal distortion considered above mixes
these two states with equal weight, and hence has little effect
on the q dependence. However, a distortion of lower symme-
try may cause preferential occupation of, e.g., Jz =±1/2 in
the ground state, which will partially block the corresponding
contribution. In this case, a q-independent behavior is ex-
pected for a larger value of α up to α = 2.2. It is plausible that
such a low-symmetry distortion may describe the behavior of
peaks A and B for the same value of α.

III. ELECTRON-ELECTRON INTERACTIONS

Beyond the calculations within the single-particle model,
we also performed many-body cluster calculations using
Quanty [5]. For the seven t2g electrons on a Ta4 tetrahedron,
we consider the model Hamiltonian H = Ht + Hζ + He−e

that takes into account hopping tσ and tπ , spin-orbit coupling
ζ, and electron-electron interactions, i.e., on-site Coulomb re-
pulsion U and Hund’s coupling JH . We first diagonalize Ht

and then consider the lower nine (a1, e, t2, and t1) out of 12
quasimolecular orbitals, see Fig. 3a) of the main text.

Taking into account electron-electron interactions is in par-
ticular necessary in order to correctly reproduce the excita-
tion energies of peaks B and C as well as the width of peak
C. Figure S3 shows the low-energy excitation energies of a
Ta4 tetrahedron, in particular for intra-t2 and e-to-t2 excita-
tions. The first panel on the left depicts the effect of hopping
tσ and tπ for a fixed ratio |tσ/tπ| ≈ 2.6, i.e., α = 2.9, while
the second panel introduces spin-orbit coupling ζ. Both pan-
els employ He−e = 0, i.e., the non-interacting scenario. For
ζ = 0, the ground state configuration is within the a21e

4t12 man-
ifold, while the lowest excited states correspond to a21e

3t22.
Finite ζ yields a Jtet = 3/2 ground state and a Jtet = 1/2 dou-
blet at an energy of roughly ζ, i.e., the excitation energy is
reduced from the expectation 1.5 ζ for α =∞, see Fig. 3b) of
the main text. Figure 3b) also shows that the renormalization
is slightly different compared to our single-particle calcula-
tions and that the normalization depends on the set of orbitals
to which spin-orbit coupling is restricted. At higher energy, ζ
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FIG. S3. Excitation energies of a single Ta4 tetrahedron (left) com-
pared to a RIXS spectrum (right). The plot focuses on the low-energy
sector, in particular on intra-t2 and e-to-t2 excitations. First panel:
effect of hopping tσ for fixed |tσ/tπ| ≈ 2.6, i.e., α= 2.9. Beyond the
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energy, the states a2

1e
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1
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1e
3t12t

1
1. Second

panel: finite ζ lifts the degeneracy of the a2
1e

3t22 states at about 1 eV
while the a2

1e
4t12 ground state is split into Jtet = 3/2 and 1/2 with an

excitation energy of about ζ. Third panel: Electron-electron inter-
actions are necessary to correctly describe the excitation energies of
peaks B and C. The scale 0 to 1 encodes the linear increase from
JH =U = 0 to JH = 0.4 eV and U = 1.75 eV.
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FIG. S4. Effect of electron-electron interactions on the q dependence
of the normalized RIXS intensity of peak A along (7.35 7.35 l) for
α= 2.9.

splits the a21e
3t22 manifold into three energy levels that, in the

absence of electron-electron interactions, can be distinguished
according to the occupation of the t2 states: J2

3/2, J1
3/2 J

1
1/2,

and J2
1/2. Note that the latter state cannot be reached from

a J1
3/2 ground state in a single-particle scenario. The two

lower branches hence correspond to peaks B and C. Electron-
electron interactions cause a fanning out of energies for the
a21e

3t22 states but have little effect on the low-energy a21e
4t12

states, i.e., Jtet = 3/2 and 1/2. Based on the RIXS peak ener-
gies and the q dependence, we employ α = 2.9, tπ = 0.45 eV,
tσ ≈ 1.17 eV, ζ = 0.27 eV, U = 1.75 eV, and JH = 0.4 eV. These
parameters have also been used for Fig. 3b) of the main text,

where α has been changed by varying tσ .
The single-particle model offers a very good description of

peak A, the excitation from Jtet = 3/2 to 1/2 within the a21e
4t12

manifold. This result is stable against the addition of electron-
electron interactions. For α = 2.9, Fig. S4 compares the q-
dependent intensity of peak A along (7.35 7.35 l) for vanish-
ing, intermediate, and sizable electron-electron interactions.
For all three curves, spin-orbit coupling acts within the lower
nine quasimolecular orbitals, i.e., a1, e, t2, and t1. The be-
havior is very similar, and we conclude that electron-electron
interactions have only a minor effect on peak A.

IV. RIXS INTENSITY

Finally, we provide further information on the RIXS inten-
sity. Figure 2c) in the main text shows the integrated RIXS in-
tensity of peaks A, B, and C for q along (7.35 7.35 l) at 20 K
in comparison to results of the single-particle model. Figure
S5 highlights that the q dependence of the intensity is very
similar at 20 K and 100 K.

The color maps in Fig. S6 depict the RIXS intensity at 20 K
for q along (k+0.15 k 4.8) and (h h 1.65(10-h)). The data in
Fig. 4d)-i) in the main text show the corresponding integrated
intensity with integration ranges as given in Fig. S5.

2 3 4 5 6 70 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0
1 . 2

Int
eg

rat
ed

 RI
XS

 (a
rb.

 un
its)

( 7 . 3 5   7 . 3 5   l )   ( r . l . u . )

2 0 K   1 0 0 K
   A :  0 . 1 2  -  0 . 3 8  e V
   B :  0 . 4 7  -  0 . 7 4  e V   
   C :  0 . 8 3  -  1 . 6 0  e V

FIG. S5. Integrated intensity of peaks A, B, and C at 20 K (full sym-
bols) and 100 K (open), cf. Fig. 2c) in the main text. Integration
intervals are given in the figure. The data of peak C are scaled down
by a factor 5 to facilitate comparison.
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main text.
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Chapter 6. Tetramers in GaTa4Se8

6.2 Tetrahedral quasimolecular orbitals

In the previous chapter, we have seen how, in the cluster Mott insulator GaTa4Se8, the

formation of tetrahedral quasimolecular orbitals is crucial for understanding the electronic

structure of this material. We showed, in particular, how the balance of the strength of

di�erent hopping paths determines the mixing of bonding and antibonding quasimolecular

orbitals. This was shown to be crucial for understanding the RIXS spectra and the intensity

modulation. Additionally, it was shown to result in a renormalization of the spin-orbit

coupling. The correct modeling of the quasimolecular orbitals is important. In the following,

we present further insights into the modeling of the tetrahedral molecular wavefunctions and

the calculation of the RIXS intensity. As shown in Fig. 1(a) of Chap. 6.1, the Ta ions are

found in an octahedral environment. From the RIXS experiments [205], we observe that the

eg orbitals are at about 3 eV, so 10Dq ≈ 3 eV. In the following, we neglect the eg orbitals

and restrict the calculations to the t2g orbitals. A Ta4 cluster is formed by four edge-sharing

TaSe6 octahedra and the quasimolecular orbitals arise from the hopping between the local t2g
orbitals of the Ta ions. The same edge-sharing geometry is present in the Kitaev materials

discussed in Chap. 4. However, in that case, the M -L-M bond angle is greater than 90◦ (see

Fig. 4.1), while in GaTa4Se8 the bond angle is about 72◦. This results in the fact that, in

Na2IrO3, the direct t3 hopping is reduced, and the hopping through the ligands is dominant,

while in GaTa4Se8, t3 is the dominant hopping path [3] [205].

The hopping matrix between the orbital degrees of freedom of the four sites in the

{yz1, zx1, xy1, yz2, . . . , xy4} basis, where the subscript identi�es the site number as de�ned

in Fig. 1(b) of Chap. 6.1, reads

Htetra =




0 T12 T13 T14

T21 0 T23 T24

T31 T32 0 T34

T41 T42 T43 0




, (6.1)

where Tij = T ∗
ji are the matrices describing the hopping between the sites number i, j =

1, 2, 3, 4. For example, using the de�nition of the geometry as in Fig. 1(b) of Chap. 6.1,

the hopping matrix T12 between sites 1 and 2 can be calculated starting from the analytical

expressions in Ref. [260] as

T12 =




1
2(Vddπ + Vddδ)

1
2(−Vddπ + Vddδ) + tpdd 0

1
2(−Vddπ + Vddδ) + tpdd

1
2(Vddπ + Vddδ) 0

0 0 3
4Vddσ + 1

4Vddδ


 , (6.2)

where Vdd are the direct interatomic matrix elements between d orbitals and tpdd is the

hopping mediated by the p orbitals of the ligands. In Chap. 6.1, we neglected Vddδ and

tpdd which means considering only tπ = 1
2Vddπ and tσ = 3

4Vddσ hoppings. To remain more

general here we allow 1
2(Vddπ + Vddδ) and 1

2(Vddπ − Vddδ)− tpdd to be di�erent and call them

respectively t1 and t2. Furthermore, we employ t3 = 3
4Vddσ + 1

4Vddδ. Which orbitals are

connected by which hopping changes for di�erent sites, such that in the geometry de�ned
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in Fig. 1(b) of Chap. 6.1, we can write the hopping matrices as

T12 : yz2 zx2 xy2

yz1 t1 −t2 0

zx1 −t2 t1 0

xy1 0 0 −t3

T13 : yz3 zx3 xy3

yz1 t1 0 t2

zx1 0 −t3 0

xy1 t2 0 t1

T14 : yz4 zx4 xy4

yz1 −t3 0 −t2

zx1 0 t1 0

xy1 −t2 0 −t1

T23 : yz3 zx3 xy3

yz2 −t3 0 0

zx2 0 t1 t2

xy2 0 t2 t1

T24 : yz4 zx4 xy4

yz2 t1 0 −t2

zx2 0 −t3 0

xy2 −t2 0 t1

T34 : yz4 zx4 xy4

yz3 t1 t2 0

zx3 t2 t1 0

xy3 0 0 −t3

(6.3)

One can see that the dominant hopping t3 connects the yz orbitals of sites 1-4 and 2-3, the

zx orbitals of sites 1-3 and 2-4, and the xy orbitals of 1-2 and 3-4. So, if we consider only

the t3 hopping we form bonding (b) and antibonding (ab) orbitals at an energy ±t3 that can

be written as

yzb± = [(yz1 + yz4)± (yz2 + yz3)]/2

yzab± = [(yz1 − yz4)± (yz2 − yz3)]/2

zxb± = [(zx1 + zx3)± (zx2 + zx4)]/2

zxab± = [(zx1 − zx3)± (zx2 − zx4)]/2

xyb± = [(xy1 + xy2)± (xy3 + xy4)]/2

xyab± = [(xy1 − xy2)± (xy3 − xy4)]/2.

(6.4)

In this basis the hopping matrix Htetra becomes block diagonal such that we can rewrite the

individual blocks as

yzb− zxb− xyb−

yzb− −t3 − 2t1 t2 −t2

zxb− t2 −t3 − 2t1 t2

xyb− −t2 t2 −t3 − 2t1

yzab− zxab− xyb+

yzab− t3 t2 t2

zxab− t2 t3 −t2

xyb+ t2 −t2 −t3 + 2t1

yzb+ zxab+ xyab+

yzb+ −t3 + 2t1 −t2 t2

zxab+ −t2 t3 t2

xyab+ t2 t2 t3

yzab+ zxb+ xyab−

yzab+ t3 −t2 −t2

zxb+ −t2 −t3 + 2t1 −t2

xyab− −t2 −t2 t3

(6.5)

Note that if t2 is zero the matrices are diagonal which means that there is no mixing between

bonding and antibonding states. The �rst matrix has the eigenvalues

Ea1 = −t3 − 2t1 − 2t2

Ee = −t3 − 2t1 + t2.
(6.6)
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Each of the other three matrices has the eigenvalues

Et2b = t1 − t2/2−
√

4(t3 − t1)(t3 − t1 − t2) + 9t22

Et2ab = t1 − t2/2 +
√
4(t3 − t1)(t3 − t1 − t2) + 9t22

Et1 = t3 + t2.

(6.7)

The eigenstates can be written as

a1 = (yzb− − zxb− + xyb−)/
√
3

eα = (zxb− + xyb−)/
√
2

eβ = (−2yzb− − zxb− + xyb−)/
√
6

t2bα = (α yzb+ + zxab+ − xyab+)/
√

2 + α2

t2bβ = (yzab+ + α zxb+ + xyab−)/
√

2 + α2

t2bγ = (−yzab− + zxab− + αxyb+)/
√

2 + α2

t2abα = (−2yzb+ + α zxab+ − αxyab+)/
√

4 + 2α2

t2abβ = (−α yzab+ + 2zxb+ − αxyab−)/
√

4 + 2α2

t2abγ = (−α yzab− + α zxab− − 2xyb+)/
√

4 + 2α2

t1α = (zxab+ + xyab+)/
√
2

t1β = (yzab+ − xyab−)/
√
2

t1γ = (yzab− + zxab−)/
√
2.

(6.8)

where we introduced the parameter

α =
t3 − t1

2
− 1

2
+

1

2t2

√
4(t3 − t1)(t3 − t1 − t2) + 9t22, (6.9)

that describes the mixing of the states with t2 symmetry. These quasimolecular wave-

functions are represented in Fig. 6.1, plotting the angular density of the projection of the

wavefunctions onto the single-site basis states. In Fig. 6.1 the e�ect of the hopping on the

12 t2g orbitals of the Ta4 tetrahedral cluster is shown. The lines represent single electron

energy levels and are Kramers doublets. The dominant hopping t3 splits the levels in six

bonding (b) and six antibonding (ab) orbitals leading to the eigenstates written in Eq. (6.4).

The hopping t1 splits the bonding orbitals in two triplets, b+ and b−. The levels are further
split by t2 leading to the tetrahedral quasimolecular orbitals a, e, t2, t2, and t1

1, where the

letters refer to the irreducible representations of the Td symmetry group. The stoichiometry

nominally gives Ga3+(Ta4)13+(Se8)16−, which results in a fractional valence for Ta of 3.25+

and 7 electrons per Ta4 tetrahedron. In a single-electron picture, this results in a complete

�lling of the a and e orbitals and one single electron in the lowest t2 orbital. In the fol-

lowing, we are going to see how the RIXS intensity can be well described by single-electron

calculations. Expressions in Eq. (6.8) show that as α tends to in�nity, either due to t3

becoming very large or t2 approaching zero, the t2b states simplify to purely b+ orbitals.

1Note that in Chap. 6.1 the labels of the highest two quasimolecular orbitals are exchanged
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Figure 6.1: Sketch of the energy levels of the tetrahedral quasimolecular orbitals in GaTa4Se8 as a
function of the hopping parameters t3, t1, and t2 and the e�ect of the spin-orbit coupling on the t2
quasimolecular orbitals. The density plots show the angular density of the projection of the orbitals
over each local t2g single-site basis states. For the spin-orbit entangled states on the very right-hand
side, the color represents the spin-up (red) and spin-down (blue) components. For the other orbitals
the color represents the phase of the wavefunction.

Figure 6.2: Left : dependence of the splitting between the Jtet=3/2 and the 1/2 states in units of λ
as a function of α. Right : at the bottom angular density of the Ztet orbital as a function of α where
the color represents the phase of the wavefunction. On top the Jtet = 3/2 and 1/2 states are shown
as a function of α where the color represents the spin component.

110



Chapter 6. Tetramers in GaTa4Se8

These b+ orbitals are the bonding combinations of one type of the single-site t2g orbitals,

see Eq. 6.4. So, yzb+, zxb+, and xyb+ are analogous to a single site t2g shell and we can call

these quasimolecular orbitals in a similar way as Xtet, Ytet, and Ztet.

In the t2g basis {yz1, zx1, xy1, yz2, . . . , xy4}, for each Ta site, the spin-orbit Hamiltonian

with quantization along z applies as in Eq. (2.10). We want to restrict the discussion to the

lowest t2 quasimolecular orbitals {Xtet↑, Xtet↓, Ytet↑, Ytet↓, Ztet↑, Ztet↓}. In this basis we

obtain the spin-orbit coupling Hamiltonian

Hso,t2 =




0 0 i 0 0 −1

0 0 0 −i 1 0

−i 0 0 0 0 i

0 i 0 0 i 0

0 1 0 −i 0 0

−1 0 −i 0 0 0




ζ

2

α2 − 1

α2 + 2
. (6.10)

By comparing with Eq. 2.17, we can see the similarity to the single-site Hamiltonian, however

renormalized by the factor (α2 − 1)/(α2 + 2). The t2 orbitals split into a lower Jtet = 3/2

quartet and an upper Jtet = 1/2 doublet. Both the eigenstates and the eigenvalues of this

Hamiltonian depend on the mixing parameter α. The eigenstates are analogous to the single-

site ones written in Eq. (2.18) but with the quasimolecular orbitals instead of the single-site

ones. The eigenvalues are also written in the Supplementary Information of Chap. 6.1 in

Eq. (S6)-(S11).

The dependence of the spin-orbit splitting on α is shown in Fig. 6.2. For α → ∞, the

spin-orbit splitting is 1.5λ, as in the single-site case. As α decreases, the spin-orbit splitting

also decreases, eventually reaching the point of being suppressed at α = 1. At the bottom

right of Fig. 6.2, the angular density of the Ztet orbital is plotted as a function of α. For

α → ∞, the quasimolecular orbital Ztet is composed of local xy orbitals on each site with

the same phase. The color indicates the phase of the wavefunction. For the Jtet states, the

color instead represents the spin component. As α → ∞, these states are composed of the

single-site j = 1/2 and j = 3/2 states, as shown in Fig. 2.2. As α decreases, the mixing with

the antibonding states increases, which a�ects the shape of the quasimolecular magnetic

moments. This is determined by the balance of the di�erent hopping channels, represented

by α, see Eq. 6.9.

6.3 RIXS interference on a tetrahedron

We see in the following how the RIXS modulation can be calculated for the tetrahedral

quasimolecular orbitals in a single-electron picture. In particular, we demonstrate how

the modulation is sensitive to the phase of the quasimolecular wavefunctions and their

dependence on the mixing parameter α. First, we make some general considerations on

the modulation expected for a tetrahedron. We de�ne the positions of the Ta ions as

R1 = (0, 0, 0), R2 = (−1, 1, 0)d/
√
2, R3 = (−1, 0,−1)d/

√
2, and R4 = (0, 1,−1)d/

√
2,

where d = 3.0Å is the distance between the Ta ions. This geometry is de�ned in Fig. 1(b)

of Chap. 6.1, with the origin set at site 1. We use q in absolute units 1/Å and h, k, and l in
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Figure 6.3: Integrated RIXS intensity of GaTa4Se8 along (7.35 7.35 l), (k + 0.15 k 4.8), and
(h h 1.65(10 − h)). For the integrals of peak A and peak C the �ts of the modulation are also
plot. For peak A it corresponds to a structure factor with coe�cients fa = (1, 1, 1, 1) while peak C
to fb = (1, 1,−1,−1).

r.l.u.. With the cubic lattice constant a = 10.38Å, the structure factor for the tetrahedron

is

F =
4∑

i=1

fi e
iq·Ri = f1 + f2 e

i(−h+k) d√
2

2π
a + f3 e

i(−h−l) d√
2

2π
a + f4 e

i(k−l) d√
2

2π
a , (6.11)

where we introduced the coe�cients f = (f1, f2, f3, f4). The complex exponential fac-

tors are related to the optical path di�erence between the di�erent sites, while the co-

e�cients contain the information about the phase of the quasimolecular wavefunctions.

The RIXS intensity modulation (neglecting the polarization dependence) is proportional

to IRIXS ∝ |F |2. In Fig. 6.3 we show the experimental integrated RIXS intensity along

(7.35 7.35 l), (k + 0.15 k 4.8), and (h h 1.65(10 − h)) and the �ts. The integrated RIXS

intensity of peaks A and C can de described very well by the function a|F |2 + b where

a is a scaling factor and b an o�set. The modulation of the intensity of peak A is de-

scribed very well by the coe�cients fa = (1, 1, 1, 1) while the modulation of peak C is

described by fb = (1, 1,−1,−1). With
√
2a/d ≈ 4.9 = l0 and 7.35 = 1.5l0, the modu-

lation along the (7.35 7.35 l) direction is equal to sin2(πl/4.9) for fa and cos2(πl/4.9) for

fb. Instead, along the (k + 0.15 k 4.8) direction the modulation is sin4(πk/4.9) for fa and

cos4(πk/4.9) for fb. Along (h h 1.65(10 − h)) the modulation is more complicated being

equal to 1 + cos2(2πh/4.9) ± 2 cos(2πh/4.9) cos(2π1.65(10 − h)/4.9) for fa and fb. But in

any case the experimental modulation can be very well described by the structure factor

of the tetrahedron. To understand the origin of the di�erent modulations we look at the

quasimolecular wavefunctions.

To illustrate the calculation of the modulation of peak A, we consider the excitation from

the Jtet = 3/2 quartet to the Jtet = 1/2 doublet. This involves eight excitation paths, each

corresponding to a transition from one of the quartet states to one of the doublet states.

Due to the complexity of the expressions, not all derivations are shown explicitly. We want

to perform single-electron calculations. To use the matrix elements M in Eq. (3.14), which

are derived for a single hole in the t2g shell, we need to switch the initial and �nal states.

Thus, if we excite an electron from the Jtet = 3/2 to the Jtet = 1/2 state, we can use

the expressions derived in Chap. 3.3 with the Jtet = 1/2 state as the initial state and the
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Jtet = 3/2 state as the �nal state. Since the local coordinate axes are the same for all sites,

the matrix elements are identical across sites, and can di�er only in phase. By examining the

bonding and antibonding orbitals in Eq. (6.4), we introduce the coe�cients fa = (1, 1, 1, 1)

for yzb+, zxb+, and xyb+; fb = (1, 1,−1,−1) for yzab+, zxab+, and xyb−; fc = (1,−1, 1,−1)

for yzab−, zxb−, and xyab+; and fd = (1,−1,−1, 1) for yzb−, zxab−, and xyab−. We can

summarize the multiplication of these coe�cients in the following table

fa fb fc fd

fa fa fb fc fd

fb fb fa fd fc

fc fc fd fa fb

fd fd fc fb fa

(6.12)

We can then reduce the basis to a single-site t2g basis {X↑, X↓, Y ↑, Y ↓, Z↑, Z↓} and express

the wavefunctions in terms of these coe�cients. Using the de�nitions of the Jtet = 1/2 and

Jtet = 3/2 wavefunctions in Eq. (S6)-(S11) of the Supplementary Information of Chap. 6.1

and the coe�cients above, we can rewrite them as

|1
2
,+

1

2
⟩ = (fc, −ifb − faα, −fd, −fb − ifaα, −faα, fc − ifd)/(2

√
3
√
2 + α2),

|3
2
,+

3

2
⟩ = (−ifb − faα, 0, −fb − ifaα, 0, fc − ifd, 0)/(2

√
2
√

2 + α2).

(6.13)

The calculation of the excitation paths ⟨32 ,+3
2 | ⊗ |12 ,+1

2⟩ yields

1√
6(4α2 + 8)




−αfc + ifd
(
α2 + 1

)
fa αfd − ifc

0 0 0

−fd + iαfc 2αfb − i
(
α2 − 1

)
fa fc − iαfd

0 0 0

fa + ifb −αfc + fc − i(α+ 1)fd −fb + (−i)fa

0 0 0

2αfb + i
(
α2 − 1

)
fa α(αfa − ifb) −αfc + fc + i(α+ 1)fd

0 0 0(
α2 + 1

)
fa α(fb − iαfa) (α− 1)fd + i(α+ 1)fc

0 0 0

(α− 1)fd − i(α+ 1)fc −(α(fc + ifd)) 2fa

0 0 0




. (6.14)

When α is dominant, the excitation paths simplify to




0 fa 0 ifa fa 0

0 0 0 0 0 0

0 −ifa 0 fa −ifa 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0




, (6.15)
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showing that only the coe�cients fa contribute. This results from the fact that, for α → ∞,

the excitation paths involve only quasimolecular orbitals with the same phase, i.e., the

bonding b+ orbitals. For smaller values of α, the bonding and antibonding states are mixed,

resulting in excitation paths where the phase changes according to the coe�cients fb, fc,

and fd. Each path is then multiplied by the respective matrix elements of Eq. (3.14) and

summed in amplitude. The intensity is proportional to the square of the amplitude. The

modulation arises from the structure factor and the coe�cients via Eq. (6.11). To obtain

the intensity of peak A, we sum the intensities of the excitations from the other quartet

states to the doublet states in all the 8 combinations. The result and its dependence on α

are shown in Fig. 4(a), (d), and (g) of Chap. 6.1.

For peaks B and C, we calculate the excitations of an electron from the e states to the

Jtet = 3/2 and Jtet = 1/2 states, respectively. Using the matrix elements derived in Chap.

3.3, we consider moving a hole from the Jtet = 3/2 or Jtet = 1/2 states to the e states.

This calculation is more complex because, even for dominant α, it involves, in general, a

combination of fa, fb, fc, and fd coe�cients. However, for peak C, the calculation leads

to a dominant fb behavior, as shown in Fig. 4(c), (f), and (i) of Chap. 6.1. Interestingly,

the modulation of peak B also shows a dominant fb behavior for large α. However, it also

contains the coe�cients fa, which instead becomes dominant for small α. So, the modulation

of peak B transitions from dominant fb at large α to dominant fa at small α, passing through

a range of α for which the modulation is quite constant. This behavior is shown in Fig. 4(b),

(e), and (h) of Chap. 6.1.

6.4 Calculation of quasimolecular orbitals with Quanty

We used Quanty [247, 261] to check the correctness of the calculations described in the

previous section and to calculate the e�ect of electron-electron interactions on the quasi-

molecular orbitals and the RIXS intensity. Many tutorials and descriptions of the functions

used here can be found on the Quanty website [262]. In this section, we report the speci�c

physics-related problems we encountered and the solutions we found for the calculation of

the quasimolecular orbitals. To calculate RIXS at the L3 edge of a Ta tetrahedron in Quanty,

we need four sites, each with a p and a d shell. The skeleton of the code for a single Ta

site was created with Crispy [263]. We use 64 basis states, numbered from 0 to 63. They

are ordered as described below, where Dn and Up refer to the spin-down and spin-up states,

respectively.

Ta1_2p_Dn = {0,2,4}; Ta1_2p_Up = {1,3,5}

Ta2_2p_Dn = {6,8,10}; Ta2_2p_Up = {7,9,11}

Ta3_2p_Dn = {12,14,16}; Ta3_2p_Up = {13,15,17}

Ta4_2p_Dn = {18,20,22}; Ta4_2p_Up = {19,21,23}

Ta1_5d_Dn = {24, 26, 28, 30, 32}; Ta1_5d_Up = {25, 27, 29, 31, 33}

Ta2_5d_Dn = {34, 36, 38, 40, 42}; Ta2_5d_Up = {35, 37, 39, 41, 43}

Ta3_5d_Dn = {44, 46, 48, 50, 52}; Ta3_5d_Up = {45, 47, 49, 51, 53}

Ta4_5d_Dn = {54, 56, 58, 60, 62}; Ta4_5d_Up = {55, 57, 59, 61, 63}

All the operators are written in second quantization in terms of annihilation and creation

operators on these basis states. For example, we can create the creation and annihilation
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operators on a certain basis state as

-- total number of basis states

NFermions = 64

-- creation and annihilation operators on basis state 0

Op_C0 = NewOperator("Cr", NFermions, 0)

Op_A0 = NewOperator("An", NFermions, 0)

-- creation and annihilation operator on basis state 1

Op_C1 = NewOperator("Cr", NFermions, 1)

Op_A1 = NewOperator("An", NFermions, 1)

-- print in the terminal the information about the operators

print(Op_C0)

print(Op_A1)

-- print in the terminal the result of the multiplication and summation of

some operators with some factors

print((3-1*I)*Op_C0*Op_A1 + (-2+4*I)*Op_C1*Op_A0)

Executing this script gives the following output in the terminal:

Operator: Creation operator on site 0

QComplex = 0 (Real==0 or Complex==1 or Mixed==2)

MaxLength = 1 (largest number of product of lader operators)

NFermionic modes = 64 (Number of fermionic modes (site, spin, orbital,

...) in the one particle basis)

NBosonic modes = 0 (Number of bosonic modes (phonon modes, ...) in

the one particle basis)

Operator of Length 1

QComplex = 0 (Real==0 or Complex==1)

N = 1 (number of operators of length 1)

C 0 | 1.00000000000000E+000

Operator: Annihilation operator on site 1

QComplex = 0 (Real==0 or Complex==1 or Mixed==2)

MaxLength = 1 (largest number of product of lader operators)

NFermionic modes = 64 (Number of fermionic modes (site, spin, orbital,

...) in the one particle basis)

NBosonic modes = 0 (Number of bosonic modes (phonon modes, ...) in

the one particle basis)

Operator of Length 1

QComplex = 0 (Real==0 or Complex==1)

N = 1 (number of operators of length 1)

A 1 | 1.00000000000000E+000

Operator: Operator

QComplex = 1 (Real==0 or Complex==1 or Mixed==2)

MaxLength = 2 (largest number of product of lader operators)

NFermionic modes = 64 (Number of fermionic modes (site, spin, orbital,

...) in the one particle basis)

NBosonic modes = 0 (Number of bosonic modes (phonon modes, ...) in

the one particle basis)
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Operator of Length 2

QComplex = 1 (Real==0 or Complex==1)

N = 2 (number of operators of length 2)

C 0 A 1 | 3.00000000000000E+000 -1.00000000000000E+000

C 1 A 0 | -2.00000000000000E+000 4.00000000000000E+000

We aim to create the Hamiltonian that describes the tetrahedron in the ground state. This

requires constructing four single-site Hamiltonians that include the spin-orbit coupling and

the electron-electron interaction. Since we will restrict the calculation to the t2g orbitals,

we can omit for simplicity the creation of the crystal �eld Hamiltonian. Next, we need to

construct the hopping Hamiltonian. As the 2p shells are fully occupied in the ground state,

we can skip creating the Hamiltonian for these states. Quanty provides built-in functions

to create these operators.

-- spin-orbit coupling operator

zeta = 0.27

Hso_5d_1 = zeta*NewOperator(’ldots’, NFermions, Ta1_5d_Up, Ta1_5d_Dn)

-- electron-electron interaction operators with input parameters JH and U,

converted into F0, F2, and F4

JH = 0.4

U = 1.75

F2 = JH*1323/121

F4 = F2*2/3

F0 = U - (F2 + F4)*4/49

F0_5d_5d_1 = F0*NewOperator(’U’, NFermions, Ta1_5d_Up, Ta1_5d_Dn, {1, 0, 0})

F2_5d_5d_1 = F2*NewOperator(’U’, NFermions, Ta1_5d_Up, Ta1_5d_Dn, {0, 1, 0})

F4_5d_5d_1 = F4*NewOperator(’U’, NFermions, Ta1_5d_Up, Ta1_5d_Dn, {0, 0, 1})

Hee_5d_1 = F0_5d_5d_1 + F2_5d_5d_1 + F4_5d_5d_1

With this code, we can create the single-site Hamiltonian for the Ta site number 1. Similarly,

the other three single-site Hamiltonians Hso_5d_2, Hso_5d_3, Hso_5d_4, Hee_5d_2,

Hee_5d_3, and Hee_5d_4 can be created by substituting the appropriate basis state num-

bers. Then, we want to create the hopping Hamiltonian, using the hopping matrix T12

between the Ta1 and Ta2 sites as an example. For a given hopping matrix T , we create the

operator

Ht =
∑

i,j

Tij c
†
iσ cjσ + c.c. (6.16)

where c†iσ is the creation operator of an electron with spin σ on site i, and cjσ is the

annihilation operator of an electron with spin σ on site j. The summation runs over the

basis states of the two sites. We de�ne a function hopping_Hamiltonian(NFermions,

Orb1, Orb2, T) to create this operator. The function takes as input the total number of

basis states, the basis states of the two sites, and the hopping matrix.

-- value of the hopping parameters

t1 = 0.45

t2 = 0.45

t3 = 1.17

-- hopping matrix between Ta1 and Ta2 in the cubic basis: {x2y2, z2, yz, xz, xy}

T12 = {{ 0, 0, 0, 0, 0 },
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{ 0, 0, 0, 0, 0 },

{ 0, 0, t1,-t2, 0 },

{ 0, 0,-t2, t1, 0 },

{ 0, 0, 0, 0,-t3 }}

-- helper function to create the hopping hamiltonian between two orbitals

function hopping_Hamiltonian(NFermions, Orb1, Orb2, T)

Ht = 0

for ii = 1, #Orb1 do

for jj = 1, #Orb2 do

Op_C1 = NewOperator("Cr", NFermions, Orb1[ii])

Op_A1 = NewOperator("An", NFermions, Orb1[ii])

Op_C2 = NewOperator("Cr", NFermions, Orb2[jj])

Op_A2 = NewOperator("An", NFermions, Orb2[jj])

Ht = Ht + T[ii][jj]*Op_C1*Op_A2 + Conjugate(T[ii][jj])*Op_C2*Op_A1

end

end

return Ht

end

Ht12 = hopping_Hamiltonian(NFermions, Ta1_5d_Up, Ta2_5d_Up, T12) +

hopping_Hamiltonian(NFermions, Ta1_5d_Dn, Ta2_5d_Dn, T12)

Analogously, we create the other hopping matrices Ht13, Ht14, Ht23, Ht24, and Ht34.

(The same result can be obtained using the built-in Matrix object and the function

ToOperator, but it requires the full 64 × 64 matrix as input.) For simplicity of their

expressions, the hopping Hamiltonians were created assuming that the basis states are the

cubic basis states. However, the default Quanty operators for the d shells, such as the

spin-orbit coupling and electron-electron interaction operators, are created using the l = 2

spherical harmonics basis, ordered from ml = −2 to +2 with alternating spin-down and

spin-up. So, we need to change the basis of the spin-orbit and electron-electron interac-

tion Hamiltonians before summing them with the hopping Hamiltonian. We can use the

built-in function YtoKMatrix to create the matrix that changes the basis from spheri-

cal harmonics to the cubic basis, following the same de�nitions as in Eq. (2.1) for the d

orbitals and Eq. (2.4) for the p orbitals. Then, we apply the basis transformation using

the Rotate(M,R) function, which performs R∗ ·M · RT . The basis of each p and d shell

will change from the spherical harmonics to {x↓, x↑, y↓, y↑, z↓, z↑} for the p shell and to

{x2 − y2↓, x2 − y2↑, z2↓, z2↑, yz↓, yz↑, zx↓, zx↑, xy↓, xy↑} for each d shell.

M_cubic = YtoKMatrix({"p","p","p","p","d","d","d","d"})

Hso_1234 = Hso_5d_1 + Hso_5d_2 + Hso_5d_3 + Hso_5d_4

Hee_1234 = Hee_5d_1 + Hee_5d_2 + Hee_5d_3 + Hee_5d_4

H_so_ee_cubic = Rotate( Hso_1234 + Hee_1234, M_cubic)

Ht_1234 = Ht12 + Ht13 + Ht14 + Ht23 + Ht24 + Ht34

Hgs_cubic= Hso_ee_cubic + Ht_1234

For example, we can verify that the spin-orbit coupling Hamiltonian is the standard one by

printing the operator in matrix form

print(Matrix.Sub(
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OperatorToMatrix(

Rotate(Hso_5d_1*2/zeta, M_cubic)),

29, 6, 29, 6))

where OperatorToMatrix converts the operator into a 64×64 matrix, and Matrix.Sub

extracts the 6 × 6 submatrix corresponding to the t2g orbitals of site 1. These start at

position 29: 24 p orbitals, 4 eg orbitals, and 1 because Lua uses 1-based array indexing. The

result, in units of λ
2 , is the following:

{ { 0 , 0 , -1 I , 0 , 0 , 1 } ,

{ 0 , 0 , 0 , 1 I , -1 , 0 } ,

{ 1 I , 0 , 0 , 0 , 0 , 1 I } ,

{ 0 , -1 I , 0 , 0 , 1 I , 0 } ,

{ 0 , -1 , 0 , -1 I , 0 , 0 } ,

{ 1 , 0 , -1 I , 0 , 0 , 0 } }

which corresponds to Eq. (2.17), apart from the switching of the order of down and up states.

In our case, we can use the z quantization axis. If we want to change the quantization axis,

to simulate, e.g., a face-sharing geometry as described in Chap. 2.2.3, we can use the rotation

matrix as in Eq. (2.16). It is important to note that the order of the up and down states used

in Quanty di�ers from the one used in Eq. (2.16). We can create the spin-orbit coupling

matrix in Eq. (2.16) as a function of the polar angle θ and the azimuthal angle ϕ, and

then use the function Rotate to apply the rotation to the spin-orbit coupling Hamiltonian

created in Quanty. We do this using the function

function OperatorSpinOrbitThetaPhi(NF, OrbDn, OrbUp, theta, phi)

-- theta and phi in radians

alphap = math.exp(-1*I*phi) * math.cos(theta/2)

alpham = -math.exp(-1*I*phi) * math.sin(theta/2)

betap = math.sin(theta/2)

betam = math.cos(theta/2)

abMat = {{betam, alpham},

{betap, alphap}}

rotMat = ZeroMatrix(NF,NF)

for i = 1, #OrbDn do

rotMat = insertMatrix( rotMat, abMat, OrbDn[i]+1, OrbDn[i]+1)

end

Hso = NewOperator("ldots", NF, OrbUp, OrbDn)

Hso_thetaphi = Rotate(Hso, rotMat);

return Hso_thetaphi

end

where we used the functions

-- Creates a zero-initialized matrix with specified size (nrows x ncolumns).

function ZeroMatrix(nrows, ncolumns)

local matrix = {}

for i = 1, nrows do

matrix[i] = {}

for j = 1, ncolumns do

matrix[i][j] = 0
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end

end

return matrix

end

-- Inserts a submatrix into a larger matrix

-- at a specified starting row and column.

function insertMatrix(matrix, submatrix, startRow, startCol)

for i = 1, #submatrix do

for j = 1, #submatrix[1] do

matrix[startRow+i-1][startCol+j-1] = submatrix[i][j]

end

end

end

We now want to restrict the calculation to the t2g orbitals. There are multiple ways to

achieve this. One approach is to set restrictions when calculating the eigenstates using the

Eigensystem function with the Restrictions option. The restrictions are speci�ed

as a table containing the number of fermions, the number of bosons, and the restrictions

themselves. The restrictions are represented as a string of 64 characters, where each character

corresponds to a basis state. A "1" indicates that the restriction applies to that basis state,

while a "0" means it does not. The string is followed by the minimum and maximum

number of fermions allowed in the basis states marked by "1". In the cubic basis, the eg

states correspond to the following basis state numbers: 24, 25, 26, 27 for site 1; 34, 35, 36,

37 for site 2; 44, 45, 46, 47 for site 3; 54, 55, 56, 57 for site 4. To calculate the eigenstates,

we also need the Hamiltonian (Hgs_t2g), the initial vector (initial_vector), and the

number of eigenstates (NPsis) to compute. Note that the number of electrons occupying

the basis states is not speci�ed during the creation of the Hamiltonian. Instead, it is de�ned

in the initial vector, where we specify the number of electrons present in the system. This is

done similarly to the restrictions, using a string of 64 characters followed by the number of

electrons in the basis states marked by "1". The number has to be speci�ed for each basis

state. In the ground state, the 2p states are fully occupied with 24 electrons, 7 electrons are

shared among the 4 t2g shells, and 0 electrons occupy the eg states.

Neg_min = 0

Neg_max = 0

restriction_eg = { 64, 0,

{’000000 000000 000000 000000 1111000000 1111000000 1111000000 1111000000’,

Neg_min, Neg_max}}

initial_vector = { 64, 0,

{’111111 111111 111111 111111 0000000000 0000000000 0000000000 0000000000’,

24, 24},

{’000000 000000 000000 000000 0000111111 0000111111 0000111111 0000111111’,

7, 7},

{’000000 000000 000000 000000 1111000000 1111000000 1111000000 1111000000’,

0, 0}}

NPsis = 10

eigenstates = Eigensystem( Hgs_cubic, initial_vector, NPsis,

{{’Restrictions’, restriction_eg}})
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In this case, we do not want any electrons in the eg states, so we set the minimum (Neg_min)

and maximum (Neg_max) number of electrons in the eg states to 0. Using these restrictions,

it is possible to allow, for example, at most only 1 electron in the eg states by changing

Neg_max to 1. This way, we could calculate the corrections to the ground state from the

con�gurations with 1 electron in the eg states while neglecting the much higher energy

con�gurations with 2 electrons in the eg states, which would have a negligible contribution.

Another way to restrict the eg states, since we are going to neglect them completely, is

to remove the eg basis states entirely, thus reducing the dimension of the Hilbert space. We

can do this by creating a 48× 64 (r× c) matrix and using the function Rotate. We do not

want to modify the 2p states, so their part will simply be a 24×24 identity matrix. For each

of the d shells, we want to remove the �rst 4 basis states and keep the last 6. We achieve

this with a 6× 10 matrix, as shown in the code here:

M_t2g = ZeroMatrix(48, 64)

insertMatrix(M_t2g, Matrix.ToTable(Matrix.Identity(24)), 1, 1)

M_restr_t2g = {{ 0, 0, 0, 0, 1, 0, 0, 0, 0, 0},

{ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0},

{ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0},

{ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0},

{ 0, 0, 0, 0, 0, 0, 0, 0, 1, 0},

{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}}

insertMatrix(M_t2g, M_restr_t2g, 25, 25)

insertMatrix(M_t2g, M_restr_t2g, 31, 35)

insertMatrix(M_t2g, M_restr_t2g, 37, 45)

insertMatrix(M_t2g, M_restr_t2g, 43, 55)

Hgs_t2g = Rotate(Hgs_cubic, M_t2g)

If we now want to calculate the eigenvectors, we can use the same Eigensystem function

as before, but without the restrictions on the eg states. Since our basis now consists of only

48 fermionic states, the initial vector needs to be modi�ed accordingly.

initial_vector = {48, 0,

{’111111 111111 111111 111111 000000 000000 000000 000000’, 24, 24},

{’000000 000000 000000 000000 111111 111111 111111 111111’, 7, 7}}

eigenstates = Eigensystem( Hgs_t2g, initial_vector, NPsis)

We want to perform an additional basis transformation to rotate the Hamiltonian into the

tetrahedral quasimolecular orbital basis de�ned in Eq. (6.8). This can be achieved similarly

to the previous transformation by constructing a matrix that transforms the cubic basis into

the tetrahedral basis and applying the Rotate function. The upper-left 24×24 block of the

matrix, corresponding to the p basis states, remains an identity matrix since these states are

not modi�ed. The lower-right 24×24 block represents the transformation of the t2g orbitals

into the tetrahedral quasimolecular orbitals. In the resulting basis, the states are ordered

as {a1↓, a1↑, eα↓, eα↑, eβ↓, . . . , t1γ↑}, following the sequence in Eq. (6.8), with alternating

spin-down and spin-up components.

function scaleList(list, multiplier)

-- returns the list with each element scaled by the multiplier

for i = 1, #list do

list[i] = list[i] * multiplier
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end

return list

end

alp = (t3-t1)/t2 - 0.5 + 1/(2*t2)*math.sqrt(4*(t3-t1)*(t3-t1-t2)+9*t2*t2)

c1 = 1/(2*math.sqrt(3))

c2 = 1/(2*math.sqrt(2))

c3 = 1/(2*math.sqrt(6))

c4 = 1/(2*math.sqrt(2+alp*alp))

c5 = 1/(2*math.sqrt(4+2*alp*alp))

c6 = 1/math.sqrt(8)

a1 = scaleList({ 1,-1, 1,-1, 1, 1,-1,-1,-1, 1, 1,-1},c1)

ea = scaleList({ 0, 1, 1, 0,-1, 1, 0, 1,-1, 0,-1,-1},c2)

eb = scaleList({-2,-1, 1, 2, 1, 1, 2,-1,-1,-2, 1,-1},c3)

t2ba = scaleList({alp, 1, -1,alp, 1, 1,alp, -1, -1,alp, -1, 1},c4)

t2bb = scaleList({ 1,alp, 1, 1,alp, -1, -1,alp, -1, -1,alp, 1},c4)

t2bc = scaleList({ -1, 1,alp, 1, -1,alp, -1, -1,alp, 1, 1,alp},c4)

t2aba = scaleList({ -2,alp,-alp, -2, alp,alp, -2,-alp,-alp, -2,-alp, alp},c5)

t2abb = scaleList({-alp, 2,-alp,-alp, 2, alp, alp, 2, alp,alp, 2,-alp},c5)

t2abc = scaleList({-alp,alp, -2, alp,-alp, -2,-alp,-alp, -2,alp, alp, -2},c5)

t1a = scaleList({ 0, 1, 1, 0, 1,-1, 0,-1, 1, 0,-1,-1},c6)

t1b = scaleList({ 1, 0,-1, 1, 0, 1,-1, 0, 1,-1, 0,-1},c6)

t1c = scaleList({ 1, 1, 0,-1,-1, 0, 1,-1, 0,-1, 1, 0},c6)

M_MO = Matrix.AddSpin{a1, ea, eb, t2ba, t2bb, t2bc, t2aba, t2abb, t2abc, t1a,

t1b, t1c}

rot_MO = ZeroMatrix(48, 48)

insertMatrix(rot_MO, Matrix.ToTable(Matrix.Identity(24)), 1, 1)

insertMatrix(rot_MO, M_MO, 25, 25)

Hgs_MO = Rotate(Hgs_t2g, rot_MO)

In the quasimolecular orbital basis, we could restrict the e�ect of the spin-orbit coupling

to only the lowest t2 molecular orbitals. To achieve this, we can use the Rotate function

with a projection matrix. This matrix is initialized with all zeros, except for a 6×6 identity

matrix positioned at row 31 and column 31. The starting position accounts for 24 p orbitals,

2 a1 orbitals, 4 e orbitals, and the 1-based indexing used in Lua. This would ensure that

only the lowest t2 orbitals are a�ected by the spin-orbit coupling.

Hso_1234_cubic = Rotate(Hso_1234, M_cubic) -- spherical to cubic basis

Hso_1234_t2g = Rotate(Hso_1234_cubic, M_t2g) -- t2g restriction

Hso_1234_MO = Rotate(Hso_1234_t2g, rot_MO) -- t2g to MO basis

-- projection matrix for the t2 orbitals

M_so_t2 = ZeroMatrix(48, 48)

insertSublist(M_so_t2, Matrix.ToTable(Matrix.Identity(6)), 31, 31)

Hso_1234_MO_t2 = Rotate(Hso_1234_MO, M_so_t2) -- restriction of so to t2

After transforming the basis to the quasimolecular orbitals, we can apply restrictions to

speed up the calculation. For example, we can restrict the calculation to the lowest 12
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quasimolecular orbitals or allow only a single electron in the uppermost antibonding t2

quasimolecular orbitals. This would reduce the size of the Hilbert space from
(
24
7

)
= 346104

to respectively
(
12
7

)
= 792 and

(
12
7

)
+
(
12
6

)
6 = 6336. These restrictions can be implemented

using the same approach described earlier for the eg states.

restriction_t2t1 = { 48, 0,

{’000000 000000 000000 000000 00 0000 000000 111111 000000’, 0, 1},

{’000000 000000 000000 000000 00 0000 000000 000000 111111’, 0, 0}}

initial_vector = { 48, 0,

{’111111 111111 111111 111111 00 0000 000000 000000 000000’, 24, 24},

{’000000 000000 000000 000000 11 1111 111111 000000 000000’, 7, 7},

{’000000 000000 000000 000000 00 0000 000000 111111 111111’, 0, 0}}

NPsis = 10

eigenstates = Eigensystem(Hgs_MO, initial_vector, NPsis,

{{’Restrictions’, restriction_t2t1}})

To analyze the eigenstates, we can calculate the expectation values of various operators

for these wavefunctions. This can be done using the function Braket(Psi, Operator,

Psi) or simply by doing the product Psi*Operator*Psi. In the following, we calculate

the expectation values of the Hamiltonian to obtain the eigenvalues and, as an example, the

number operator for each molecular orbital shell to determine the orbital occupation.

Na = NewOperator("Number",48, {24,25}, {24,25}, {1,1})

Ne = NewOperator("Number",48, {26,27,28,29}, {26,27,28,29}, {1,1,1,1})

Nt2b = NewOperator("Number",48, {30,31,32,33,34,35},

{30,31,32,33,34,35}, {1,1,1,1,1,1})

Nt2ab = NewOperator("Number",48, {36,37,38,39,40,41},

{36,37,38,39,40,41}, {1,1,1,1,1,1})

Nt1 = NewOperator("Number",48, {42,43,44,45,46,47},

{42,43,44,45,46,47}, {1,1,1,1,1,1})

Na.Name = "Na"; Ne.Name = "Ne"; Nt2b.Name = "Nt2b";

Nt2ab.Name = "Nt2ab"; Nt1.Name = "Nt1"; H_1234_MO.Name = "H_MO"

Egs = eigenstates[1]*H_1234_MO*eigenstates[1] -- ground state energy

PrintExpectationValues(eigenstates,{H_1234_MO-Egs, Na, Ne, Nt2b, Nt2ab, Nt1})

Where NewOperator("Number",NF, {i,k}, {j,l}, {a,b}) creates the operator

a c†i cj + b c†k cl. The function PrintExpectationValues(psiList, opList) prints

the expectation values of a list of operators on the eigenstates on the terminal giving the

following output:

H_MO Na Ne Nt2b Nt2ab Nt1

1 0 1.9862 3.829 1.1567 0.0281 0

2 0 1.9862 3.829 1.1567 0.0281 0

3 0 1.9862 3.829 1.1567 0.0281 0

4 0 1.9862 3.829 1.1567 0.0281 0

5 0.2573 1.985 3.7944 1.1811 0.0394 0

6 0.2573 1.985 3.7944 1.1811 0.0394 0

7 0.5022 1.9896 2.9323 2.0531 0.025 0

8 0.5022 1.9896 2.9323 2.0531 0.025 0

9 0.5256 1.9897 2.9215 2.0627 0.026 0

10 0.5256 1.9897 2.9215 2.0627 0.026 0
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From the eigenvalues we recognize the quartet ground state and the doublet �rst excited

state at ≈ 250meV. From the expectation values of the number operators, we see that the

�rst six eigenstates correspond to an electronic con�guration close to a21 e
4 t12 t

0
2. At higher

energies, we �nd states with con�gurations predominantly close to a21 e
3 t22 t

0
2. To analyze

the eigenstates in more detail, we can save them to a �le and analyze their composition.

print(eigenstates[1])

eigenstates[1].Print({{"file", "eigenstate_1.txt"}})

The output is a list of the Slater determinants that constitute the wavefunction and their

coe�cients.

WaveFunction: Wave Function

QComplex = 1 (Real==0 or Complex==1)

N = 6334 (Number of basis functions used to discribe psi)

NFermionic modes = 48 (Number of fermions in the one particle basis)

NBosonic modes = 0 (Number of bosons in the one particle basis)

#### pre-factor pre-factor Determinant

1 -4.2075706678E-06 2.8025293719E-06 111111111111111111111111010101010101010000000000

2 2.7984526989E-06 4.0582600176E-06 111111111111111111111111010101010101000100000000

3 8.9561740677E-06 4.2354369819E-06 111111111111111111111111101011101010000000000000

4 1.0161618865E-04 4.8058094489E-05 111111111111111111111111100011101110000000000000

5 3.1891479050E-05 -3.1997850585E-05 111111111111111111111111010101111001000000000000

...

6333 3.5522166748E-03 -6.6468439231E-03 111111111111111111111111111110010001000000000000

6334 -5.6889048569E-02 -6.0344871599E-02 111111111111111111111111111111010000000000000000

The Slater determinants are represented as strings of, in this case, 48 characters, where "1"

indicates that the basis state is occupied and "0" that it is empty. We can analyze this �le

to understand the composition of the wavefunction in terms of electronic con�gurations. For

the parameters t3 = 1.17, t2 = t1 = 0.45, λ = 0.27, JH = 0.4, and U = 1.75 we �nd that the

ground state Jtet = 3/2 wavefunctions and the �rst excited states Jtet = 1/2 wavefunctions

are composed of the following electronic con�gurations:

Con�guration Jtet = 3/2 Jtet = 1/2

a21 e4 t12 t02 88.4% 84.8%

a21 e2 t32 t02 5.2% 6.1%

a21 e3 t22 t02 2.9% 4.4%

a21 e3 t12 t12 1.3% 1.2%

a11 e3 t22 t12 1.2% 1.2%

a21 e4 t02 t12 0.2% 1.4%

. . . < 0.2% < 0.2%

(6.17)

The leading con�guration of Jtet = 3/2 and Jtet = 1/2 is a21 e4 t12 t02, with respectively

weights of 88.4% and 84.8%. The main e�ect of the electron-electron interactions JH and

U is to mix into the ground and excited states the con�guration a21 e2 t32 t02, contributing

approximately 5.2% and 6.1% weight, respectively. This is in agreement with the results of

quantum chemistry calculations in Ref. [264], see Table 6 in the Supplementary Information.

The e�ect of electron-electron interactions on the eigenvalues is shown in Fig. S3 of the

Supplementary Information of Chap. 6.1, while their e�ect on the spin-orbit splitting is

shown in Fig. 3 of Chap. 6.1.
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In the following, we examine the impact of electron-electron interactions on the RIXS

modulation. It is important to note that the con�guration a21 e2 t32 t02 in the Jtet = 1/2 state

cannot be reached by the RIXS process from the leading con�guration a21 e4 t12 t02 of the

Jtet = 3/2 ground state. So, we intuitively expect only a minor e�ect on the RIXS amplitude.

Additionally, all the other con�gurations that also involve a change in the orbital occupation

of more than one electron at a time are inaccessible from the leading con�guration of the

Jtet = 3/2 ground state. We now show how to set up the calculation of the RIXS intensity

using Quanty. We use the function CreateResonantSpectra

CreateResonantSpectra(

H_intermediate, -- intermediate state hamiltonian

H_final, -- final state hamiltonian

D_in, -- absorption transition operator

D_out, -- fluorescence transition operator

Psi, -- ground state

{{’restrictions1’, restr_interm}, -- restrictions intermediate states

{’restrictions2’, restr_final}, -- restrictions final states

{’Emin1’, Emin1}, {’Emax1’, Emax1},-- energy range of the resonance energy

{’NE1’, NE1}, -- number of points of the resonance energy

{’Gamma1’, Gamma1}, -- broadening of the intermediate state

{’Emin2’, Emin2}, {’Emax2’, Emax2},-- energy loss range in eV

{’NE2’, NE2}, -- number of points in the spectrum

{’Gamma2’, Gamma2}, -- broadening of the spectrum

})

that calculates the RIXS intensity as a third order Green's function or susceptibility (χ3)

[265] according to

I(ωin,q, ωout) =

− 1

π
Im ⟨Ψi|D†

in

1

ωin −Hm + iΓ1
D†

out

1

ωout −Hf + iΓ2
Dout

1

ωin −Hm + iΓ1
Din |Ψi⟩ (6.18)

where Ψi is the inital wavefunction, ωin, the resonance energy, corresponds to E1, ωout, the

emission energy, to E2, Hm to H_intermediate, and Hf to H_final.

We need to create the intermediate state Hamiltonian. To describe the d shells, we can

use the same Hamiltonian as for the initial state. Now, we need to include a Hamiltonian

to describe the p shell as well. The most signi�cant term is the strong spin-orbit coupling

of the p shell. This is important to split the L3 and L2 edges, which determines the RIXS

polarization selection rules. We can create the spin-orbit coupling operator for the interme-

diate state in the same manner as we did for the ground state. In the intermediate state,

there is also an interaction between the core hole and the valence electrons. However, given

that the broadening of the intermediate state for the L3 edge of Ir is approximately 4-5 eV,

this interaction does not have a substantial e�ect. Therefore, for the sake of simplicity, we

will not discuss it further. Again, Crispy [263] can be used to easily generate the code for

the intermediate state Hamiltonian. For the �nal state Hamiltonian we use the same as the

ground state Hamiltonian.
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Next, we need the transition operators. We want to create the operators

D̂in =
∑

i=1,2,3,4

ekin ·Ri ϵin · r̂i

D̂out =
∑

i=1,2,3,4

ekout ·Ri ϵout · r̂i
(6.19)

We can create the dipole transition operator by expanding it in renormalized spherical

harmonics Cl,ml
:

ϵ · r̂ = (ϵx + iϵy)C1,−1 + (−ϵx + iϵy)C1,1 + ϵzC1,0 (6.20)

where ϵx, ϵy, and ϵz are the components of the polarization vector.

t = math.sqrt(1/2)

Dx_1 = NewOperator(’CF’, 64, Ta1_5d_Up, Ta1_5d_Dn, Ta1_2p_Up, Ta1_2p_Dn,

{{1, -1, t }, {1, 1, -t }})

Dy_1 = NewOperator(’CF’, 64, Ta1_5d_Up, Ta1_5d_Dn, Ta1_2p_Up, Ta1_2p_Dn,

{{1, -1, t * I}, {1, 1, t * I}})

Dz_1 = NewOperator(’CF’, 64, Ta1_5d_Up, Ta1_5d_Dn, Ta1_2p_Up, Ta1_2p_Dn,

{{1, 0, 1 } })

Dx_dag_1 = NewOperator(’CF’, 64, Ta1_2p_Up, Ta1_2p_Dn, Ta1_5d_Up, Ta1_5d_Dn,

{{1, -1, t }, {1, 1, -t }})

Dy_dag_1 = NewOperator(’CF’, 64, Ta1_2p_Up, Ta1_2p_Dn, Ta1_5d_Up, Ta1_5d_Dn,

{{1, -1, t * I}, {1, 1, t * I}})

Dz_dag_1 = NewOperator(’CF’, 64, Ta1_2p_Up, Ta1_2p_Dn, Ta1_5d_Up, Ta1_5d_Dn,

{{1, 0, 1 } })

In this way, we created the operators for the absorption and the emission of the photon of

site 1, which have to be weighted by the respective polarization components. In the same

way we can create the operators for the other sites. These operators are de�ned in the

spherical harmonics basis, so we need to transform them into the quasimolecular orbital

basis before performing the calculation. Fundamental for our purposes, to account for the

interference e�ect between the RIXS amplitudes scattered at the four sites, each operator

must be weighted by the corresponding complex exponential factor before being summed.

d = 3; l = d/sqrt(2);

R1 = { 0, 0, 0 }

R2 = {-l, l, 0 }

R3 = {-l, 0,-l }

R4 = { 0, l,-l }

kin_R1 = R1[1]*kin[1] + R1[2]*kin[2] + R1[3]*kin[3];

kout_R1 = R1[1]*kout[1] + R1[2]*kout[2] + R1[3]*kout[3];

ein_r_1 = e_in[1]*Dx_1 + e_in[2]*Dy_1 + e_in[3]*Dz_1

eouth_r_1 = e_out_h[1]*Dx_dag_1 + e_out_h[2]*Dy_dag_1 + e_out_h[3]*Dz_dag_1

D_in_1 = math.exp(I*kin_R1)*ein_r_1

D_out_1_h = math.exp(I*kout_R1)*eouth_r_1

Here, kin and kout are in units of 1/Å and de�ned in the same reference frame as the position

of the ions Ri. The RIXS transition operators of the other three sites are created in the

same way. Then, we sum them to obtain the total transition operator
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D_in = D_in_1 + D_in_2 + D_in_3 + D_in_4

D_out_h = D_out_1_h + D_out_2_h + D_out_3_h + D_out_4_h

Next, we need the ground state wavefunction from which the RIXS spectrum is calculated.

As with the calculation of the eigenstates, we can apply restrictions to both the intermediate

Hamiltonian and the �nal Hamiltonian.

In Quanty, the energies are relative and not absolute. To �nd the correct resonance

energy for the calculation, we need to determine the energy di�erence between the ground

state of the initial Hamiltonian and that of the intermediate Hamiltonian. This requires cal-

culating the ground state eigenstate of the intermediate Hamiltonian and its energy. We can

compute it by evaluating the expectation value of the intial and intermediate Hamiltonian

on their respective ground states.

initial_state_interm = { 48, 0,

{’111111 111111 111111 111111 00 0000 000000 000000 000000’, 23, 23},

{’000000 000000 000000 000000 11 1111 111111 000000 000000’, 8, 8}}

Psis_m = Eigensystem(H_int_MO, initial_state_interm, 1,

{{’Restrictions’, restriction_t2t1}})

E0m = Psi_m * H_int_MO * Psis_m

E0 = Psi_gs * H_gs_MO * Psi_gs

DeltaE = E0m - E0

Emin1 = -3 + DeltaE

Emax1 = 7 + DeltaE

NE1 = 10

Gamma1 = 5.0

In this way, we are in resonance with the L3 edge, as the states with a core hole in the p3/2

are lower in energy than the p1/2 states. To be in resonance with the L2 edge, we need to

increase Emin1 and Emax1 by 1254 eV, using a spin-orbit coupling constant for the p shell

of 836 eV. However, this code cannot reproduce the resonance map of GaTa4Se8 because we

restricted the calculation to the t2g orbitals. Thus, we can calculate the RIXS intensity at a

single resonance energy selected to resonate with the t2g states. The broadening due to the

core-hole lifetime (Gamma1) is set to 5 eV. The last parameters we need are the energy loss

range and the �nal broadening of the spectrum, which are straightforward to de�ne.

To simulate an experimental spectrum we need additionaly to sum the spectra in intensity

for the outgoing vertical polarization and the outgoing horizontal polarization. Addition-

ally, we sum in intensity over all the degenerate ground states by varying the ground state

eigenstate used in the calculation.

We have seen how to set up a Quanty script to perform calculations on a tetrahedron.

We were particularly interested in studying the e�ect of the electron-electron interaction.

As shown in Table (6.17), in the ground state, the main e�ect is to mix in the con�guration

a21 e
2 t32 t

0
2. The leading con�guration of the Jtet = 3/2 state is a21 e

4 t12 t
0
2, with a weight of

88.4%. This indicates that it can be well described by a single electron in the t2 shell.

As a result, single-electron calculations provide a good approximation to the many-body

calculations. The e�ect of the electron-electron interaction on the modulation of the RIXS

intensity of peak A is shown in Fig. S4 of the Supplementary Information of Chap. 6.1. As

expected, it has only a minor e�ect.
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Conclusions and Outlook

We have seen how RIXS interference e�ects can be exploited to gain valuable information

about bond-directional excitations in Kitaev materials and the quasimolecular wavefunctions

in cluster Mott insulators containing, e.g., dimers, trimers, and tetramers.

We consider strongly correlated electron systems, in particular Mott insulators with

localized magnetic moments, and highlight the important roles of orbitals and spin-orbit

coupling. The directionality of the orbital interactions can, due to spin-orbit coupling,

translate into anisotropic exchange interactions. Particularly interesting is the case of j =

1/2 magnetic moments, which are realized, for example, in the transition metal Ir4+ in

an octahedral coordination with t52g electronic con�guration. Speci�cally, IrO6 octahedra

placed in an edge-sharing geometry in a honeycomb lattice can, in the ideal case, realize

the Kitaev Hamiltonian. This Hamiltonian is characterized by bond-directional nearest-

neighbor magnetic interactions, which lead to exchange frustration and, in the ideal case,

to a quantum spin liquid ground state. Experiments demonstrating the bond-directional

character of the magnetic excitations were still missing.

Strong hopping in cluster Mott insulators lead to the delocalization of electrons over

a cluster, such as a dimer, trimer, or tetramer, forming localized quasimolecular magnetic

moments. We describe the hopping in the cases of edge-, corner-, and face-sharing ML6

octahedra. The quasimolecular electronic structure of these systems is not well studied

even though these materials might provide a source of exotic physics, given their higher

complexity.

RIXS is a powerful technique to study the electronic structure of materials. Spin and

orbital excitations can be measured to obtain information about their energy and the de-

pendence on the exchanged momentum. Due to the coherence of the RIXS scattering pro-

cess, the RIXS intensity exhibits a characteristic periodic modulation as a function of the

exchanged momentum when the electrons are delocalized over a cluster forming quasimolec-

ular wavefunctions. This arises from the interference of the RIXS amplitude scattered by

the di�erent atoms within the cluster. The RIXS interference e�ect has been predicted in

Refs. [194,195] using the example of a dimer molecule. The experimental realization of RIXS

interference in dimers such as Ba3CeIr2O9 [197] and Ba3InIr2O9 [6] has been discussed in the

PhD thesis of A. Revelli [175], where also a �rst analysis of the data of Ba3Ti3−xIrxO9 [1]

can be found. We investigate for the �rst time the RIXS interference e�ects in trimers and

tetramers, demonstrating the applicability of this technique to more complex systems. We
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show in particular how the RIXS modulation contains very useful information about the

composition and the symmetry of the quasimolecular wavefunctions.

Bond-directional excitations in the Kitaev materials Na2IrO3 and α-Li2IrO3

In Ref. [188], Revelli et al. observed a modulation of the RIXS intensity also in the magnetic

excitations of the Kitaev materials Na2IrO3 and α-Li2IrO3. These magnetic excitations were

observed to persist up to temperatures much higher than the ordering temperature, suggest-

ing that they are not excitations of the ordered state. The observation of the modulation

demonstrated the nearest-neighbor character of the magnetic excitations. In Kitaev mate-

rials, the bond-directional nearest-neighbor character of the magnetic interactions is of fun-

damental importance. In the ideal case, these magnetic interactions give rise to a quantum

spin-liquid ground state. A system with bond-directional magnetic interactions is expected

to exhibit bond-directional magnetic excitations, i.e., spin excitations that are magnetically

inequivalent even for crystallographically equivalent directions. We use the honeycob lattice

as an example. Crystallographically, it exhibits a three-fold rotation symmetry on each lat-

tice site. For bond-directional excitations, however, di�erent bond directions correspond to

excitations of di�erent spin components, such that a certain spin excitation can live only on

the corresponding bond, breaking the crystallographic equivalence. However, proving the

bond-directional character of the magnetic excitations is di�cult. Chun et al. [193] showed

the presence of dominant bond-directional interactions by measuring the polarization de-

pendence of the REXS intensity in Na2IrO3. Their investigation focused on the di�use

scattering related to residual magnetic Bragg peak intensity observed above the magnetic

ordering temperature. This di�use scattering originates from short-range magnetic correla-

tions. Through the analysis of the polarization dependence of the intensity, they provided

evidence for dominant anisotropic bond-directional interactions. Instead, we focus on show-

ing the presence of dominant bond-directional interactions via the study of the magnetic

excitations not related to magnetic order. We show in particular how to observe the bond-

directional character of the magnetic excitations using RIXS at the Ir L3 edge in the Kitaev

materials Na2IrO3 and α-Li2IrO3. This is based on the simultaneous determination of the

spin component involved in the excitation (thanks to the RIXS polarization dependence)

and the spatial orientation of the bond involved (thanks to the characteristic modulation of

the RIXS intensity from each bond). This technique provides a tool to search for signatures

of bond-directional interactions in the magnetic excitations and could be applied in the case

of a real spin liquid.

In particular, in the RIXS spectra of Na2IrO3 and α-Li2IrO3, we observe two distinct

features that can be distinguished by their polarization dependence: a low-energy excitation

at 10meV and 15meV, and a high-energy excitation at 45meV and 35meV, in Na2IrO3

and α-Li2IrO3, respectively. Based on their polarization dependence, we identify the low-

energy excitation as a spin-conserving excitation and the high-energy excitation as a spin-�ip

excitation. These excitations do not show strong dispersion, but the main e�ect as a function

of the exchanged momentum is a pronounced periodic modulation of the RIXS intensity.

We measure the RIXS intensity over a broad range of reciprocal space above and below the

ordering temperature. We �nd that a simple model based on independent bonds was able

128



Chapter 7. Conclusions and Outlook

to describe many features of the RIXS data.

We present a model based on a single dimer described by the JKΓΓ′ Hamiltonian. We

explain how the wavefunctions split into |0⟩ = (i |↑↑⟩+ |↓↓⟩)/
√
2, |1⟩ = (−i |↑↑⟩+ |↓↓⟩)/

√
2,

|2⟩ = (|↓↑⟩ − |↑↓⟩)/
√
2, and |3⟩ = (|↓↑⟩+ |↑↓⟩)/

√
2. In particular, if only K ̸= 0, we have

two doublets, |0⟩-|1⟩ and |2⟩-|3⟩, split by K/4. These doublets are further split, respectively,

by Γ and J , where a positive sign of the parameter lowers the energy of |0⟩ and of |2⟩. The
excitations among these states give rise to a peculiar polarization dependence that a�ects the

RIXS intensity modulation. We propose as the ground state for both Na2IrO3 and α-Li2IrO3

the |0⟩ state, obtained in this simple model from a positive sign of Γ. The spin-conserving

excitation is then the transition from the |0⟩ state to the |1⟩ state. In Na2IrO3, the spin-�ip

excitation is the transition from the |0⟩ state to the |3⟩ state. Instead, in α-Li2IrO3, the

spin-�ip excitations can be explained by the superposition of the excitations from the |0⟩
state to the |2⟩ and |3⟩ states. We speculate about the sign of J in Na2IrO3 and α-Li2IrO3

based on the observation or absence of the excitation to the |3⟩ state, suggesting a positive

sign of J in Na2IrO3 and a negative sign in α-Li2IrO3.

Further investigations of Na2IrO3 and α-Li2IrO3 using L3 edge RIXS experiments with

higher resolution at selected q points, chosen based on the presented model to maximize the

intensity di�erence between the excitations, could help to identify the three excitations sep-

arately. The approach presented can be extended to other materials to search for signatures

of bond-directional behavior in the electronic excitations. In Ref. [192], de la Torre et al.

claim the observation of a momentum-independent continuum in H3LiIr2O6. However, their

analysis is restricted to q points close to the Brillouin zone center. It would be interesting

to see if, by measuring over an extended region of the Brillouin zone and using a geometry

that highlights the polarization dependence, one could observe a dependence of the RIXS

intensity of the continuum on the momentum. We have seen that the comparison of di�erent

Xγ points is particularly e�ective in revealing the bond-directional character. However, it

has been proposed that these samples do not show magnetic order because of the presence

of disorder, rather than the realization of a spin-liquid ground state.

Another interesting Kitaev material is β-Li2IrO3, which has a hyperhoneycomb structure.

The 3D spatial arrangement of the bonds leads to a more complex RIXS modulation. How-

ever, we could try to identify the same magnetic excitations as in Na2IrO3 and α-Li2IrO3,

and see if they show a bond-directional character. Unlike in Na2IrO3 and α-Li2IrO3, in

β-Li2IrO3 the Γ term is proposed to be negative [266�268], so the state |1⟩ would be the

ground state. We know how to distinguish the |0⟩ and the |1⟩ ground states based on the

di�erent polarization dependence of the spin-�ip excitations. We can check from the data

and the comparison with our model whether we would reach the same conclusion.

In Ref. [175], it is shown that the orbital excitations also exhibit a RIXS modulation.

Their study could reveal something interesting about these unusual orbital excitations.

The simple model used was able to describe many of the features of the RIXS data and

provided very useful insight into the nature of the excitations in Kitaev materials. However,

it is undoubtedly a very simpli�ed model. It would be interesting to extend the model and

consider, for example, a hexagon, and see if the same conclusions can be drawn.
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Quasimolecular electronic structure of the trimer system Ba4NbIr3O12

In cluster Mott insulators, we show how the modulation of the RIXS intensity contains very

useful information about the quasimolecular wavefunctions.

In the compound Ba4NbIr3O12, which contains Ir3O12 trimers, we observe a rich set

of intra-t2g quasimolecular excitations in the range 0.5�2 eV. These excitations exhibit a

strong periodic modulation of the RIXS intensity as a function of exchanged momentum.

In particular, the modulation is present when varying the exchanged momentum along the

axis of the trimer, while it is absent when varying q in the directions perpendicular to the

trimer. A peculiarity of a trimer system is the observation of two di�erent modulation

periods, 2π/d and 2π/2d, where d is the distance between nearest-neighbor Ir ions inside

the trimer. Our theoretical analysis reveals that the RIXS modulation is sensitive to the

symmetry of the quasimolecular wavefunctions. In a trimer with inversion symmetry, the

states can be even or odd under inversion. In a single-electron (or hole) picture, the even

symmetry is characteristic of bonding and antibonding quasimolecular wavefunctions, while

the odd symmetry is characteristic of the non-bonding ones. In particular, the odd (non-

bonding) states are characterized by having no weight on the central Ir ion. This means

that an excitation involving these states will involve only the two outer Ir ions, having

vanishing RIXS amplitude on the central Ir ion. This results in a RIXS intensity modulation

whose period depends on the distance between the two outer Ir ions, which is 2d. Thus,

from the study of the RIXS modulation, we obtain information about the symmetry of the

quasimolecular wavefunctions involved, aiding in peak assignment. The theoretical analysis

also shows that the experimental data are consistent with a non-magnetic J = 0 singlet

ground state, in agreement with previous theoretical calculations [259]. In Ba4NbIr3O12,

behavior compatible with a spin liquid has been claimed [106�108]. Our results, however,

show that the trimer ground state is non-magnetic, which suggests looking for an explanation

in possible Nb-Ir site disorder. Nevertheless, the trimer excitations seem to dominate the

RIXS spectra, and disorder does not appear to be necessary to explain the data.

Overall, our results represent the �rst experimental RIXS study of the quasimolecular

electronic structure of a quasimolecular trimer compound. Our theoretical analysis also

presents general features of trimer quasimolecular wavefunctions and the resulting RIXS

modulation. This will serve as a solid basis for future studies of similar systems. It would be

interesting, for example, to study other trimer systems with a di�erent number of electrons

per trimer. An odd number of electrons (or holes) per trimer should result in a quasi-

molecular magnetic ground state. In the structure Ba4AM3O12, the choice of the A ion

determines the number of electrons per trimer. Another option is to change the M ion to a

4d or 3d element, such as Ru or Mn. By going from 5d to 4d and 3d, the hopping between

the t2g orbitals is expected to decrease, while the electron-electron interaction increases.

An interesting question is whether the quasimolecular picture still holds or whether a lo-

calized picture is more appropriate. Moreover, systems with interacting magnetic trimers

could be studied to observe the e�ects of interactions between quasimolecular magnetic

moments. For example, the systems Ba4Ir3O10 [81, 82] and Ba7Ir6O19 [83] contain trimers

that are connected to each other, leading to strong inter-trimer interactions. Trimers also

exist in a di�erent planar geometry, forming a triangle as in the breathing kagome lattice

130



Chapter 7. Conclusions and Outlook

AxByMo3O8 [84�88]. The di�erent cluster symmetries lead to di�erent properties of the

quasimolecular wavefunctions and the resulting RIXS modulation. However, the Mo L3

edge is in the tender-RIXS range, making it more di�cult to measure a full period of the

modulation.

From the theoretical side, the e�ect of mixing with the eg orbitals in dimers and trimers

might be investigated. In a trigonal geometry, the eg orbitals are mixed with the t2g orbitals.

This might be relevant for obtaining a better description of the RIXS spectral weight, as

suggested in [202].

Spin-orbit-entangled quasimolecular moments in GaTa4Se8

We present a study of the lacunar spinel GaTa4Se8, which hosts spin-orbit-entangled quasi-

molecular wavefunctions on Ta4 tetrahedra. By measuring RIXS at the Ta L3 edge we

identify three distinct peaks, labeled A, B, and C, at approximately 0.25, 0.62, and 1.2 eV,

respectively. As a function of the exchanged momentum, they display a pronounced pe-

riodic modulation of the RIXS intensity. For example, along (7.35 7.35 l), peak A shows

a cos2 modulation, while peak C shows a sin2 modulation. Peak B, in contrast, remains

almost constant. We demonstrate that the modulations observed for peaks A and C along

(7.35 7.35 l), (k + 0.15 k 4.8), and (h h 1.65(10 − h)) are consistent with the structure

factor of a tetrahedron. We model the quasimolecular wavefunctions of the Ta4 tetrahedra

to calculate and understand the RIXS modulation. The hopping within the tetrahedron can

be described by two parameters, tσ and tπ. The strongest hopping is the direct tσ ≈ 1 eV,

which splits the levels into bonding and antibonding states. The inclusion of tπ give rise

to quasimolecular orbitals with a1, e, t2, t2, and t1 symmetry. With seven electrons per

tetrahedron, the ground state, in a single-particle picture, is the con�guration a21 e
4 t12. This

is split by spin-orbit coupling into a Jtet = 3/2 quartet and a Jtet = 1/2 doublet. Notably,

we �nd that the relative strength of the two hopping parameters, described by a parameter

α, determines the exact shape of the quasimolecular wavefunctions. In particular, there

is signi�cant mixing between the bonding and antibonding states originating from tσ. We

show that this mixing has a noticeable e�ect on both the RIXS modulation and the ef-

fective spin-orbit splitting. We demonstrate that the experimental RIXS modulation can

be reproduced and understood within a single-electron picture. Peak A is identi�ed as the

spin-orbit exciton, corresponding to the excitation from the ground state Jtet = 3/2 to the

excited state Jtet = 1/2. Overall, we show that the RIXS modulation contains a wealth of

information that allows us to achieve a precise modeling of the tetrahedral quasimolecular

wavefunction.

We �nd that the ground state can be described mainly as the Jtet = 3/2 quartet. This

system should therefore be prone to a quasimolecular Jahn-Teller distortion. A reduction

in the symmetry of the tetrahedron, for example by making the bond lengths within the

tetrahedron inequivalent, would lead to a splitting of the quartet into two Kramers doublets.

In fact, there appears to be a dynamical quasimolecular Jahn-Teller distortion in GaTa4Se8,

as pair distribution function studies have found that the bond lengths di�er even at ambient

temperature [269]. However, if the splitting is small, the two doublets at �nite temperature

may remain almost equally populated. For a small splitting, this is valid down to low
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temperatures. If one of the two is favored and the system acquires a quasimolecular orbital

ordering at very low temperature, it should be possible to distinguish the two doublets based

on the RIXS spectra and the RIXS modulation. However, the presence of di�erent domains

might make the analysis di�cult and inconclusive.

We have seen how the RIXS modulation is sensitive to the quasimolecular wavefunction.

It would be interesting to perform measurements under pressure and possibly follow the

change in the quasimolecular wavefunction that gives rise to the superconducting phase by

measuring the RIXS modulation at selected q points guided by our results.

Lacunar spinels can also be formed with tetrahedra containing 4d or 3d transition-metal

elements. The 4d compounds are still predicted to show quasimolecular character, but

according to quantum chemistry calculations, lacunar spinels with 3d transition metals,

with smaller hopping and stronger electron-electron interactions, are better described in a

resonating site-centered picture that, however, still preserves the tetrahedral symmetry [264].

RIXS interferometry could reveal whether the quasimolecular picture still holds or whether

a localized picture is more appropriate.

In conclusion, we present a method to identify the bond-directional character of mag-

netic excitations using RIXS in Kitaev materials and related systems with dominant bond-

directional interactions. We solidify RIXS interferometry as a powerful technique for inves-

tigating the electronic structure of cluster Mott insulators. We go beyond the dimer case,

demonstrating the applicability of RIXS interferometry to more complex systems such as

trimers and tetramers. In particular, we show that the RIXS modulation provides valuable

information about the symmetry and composition of quasimolecular wavefunctions. The

materials we studied belong to families of compounds with intriguing magnetic properties,

where exotic physics arises from the presence of quasimolecular magnetic moments. These

systems are not well studied, and further theoretical studies are highly desirable to inves-

tigate the exchange interactions between quasimolecular magnetic moments. To achieve

accurate modeling, a precise understanding of the quasimolecular wavefunctions is an essen-

tial starting point.
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