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Abstract

The lac-operon serves as a key model for understanding gene
regulation and metabolic adaptation in bacteria. Using theoretical
models, computational simulations, and experimental data, this
study elucidates the stochastic switching behavior of the
lac-operon between its induced and uninduced states.

First, a detailed mechanistic model of the lac-pathway is
established from the extensive literature on the biochemistry of
the lac-operon, encompassing sugar import, repressor
production, importer production, dilution rate, and
inducer-repressor-DNA interactions, providing a robust
framework for analyzing the system.

The switching behavior to the induced state is analyzed by
first calibrating stochastic simulations of a detailed mechanistic
model against experimental data on switching rates. This
calibration allows for the identification of rate-limiting fluctuations
that drive the switching process. Consequently, minimal
theoretical models that agree with experimental observations can
be derived and subjected to further study. The study employs the
Michælis constant of inducer import as a fitting parameter and
introduces a smoothening procedure to identify the key
fluctuations influencing the switching curve. This leads to the
development of a closed-form expression for the switching rate as
a function of external inducer concentration that matches with
experiment and simulations across 3 orders of magnitude.

The reverse transition from the induced to the uninduced state
has been difficult to study since the induced state is extremely
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stable and experimental observations of this transitions are
sparse. We start by identifying fluctuations relevant to the
transition using the in silico smoothing procedure, and
constructing simplified theoretical models for each relevant
fluctuation. These are then combined to develop and master
equation for the lac system that can be approximated by a 2D
Fokker-Planck equation for pump and repressor protein dynamics.
This equation is used to calculate the first passage times to the
uninduced state. The theoretical predictions agree qualitatively
with experiment demonstrating the extreme stability of the
induced state and its dependence on repressor numbers and
fluctuations.

By identifying rate-limiting fluctuations and providing a
quantitative framework that links molecular interactions to
phenotypic switching behavior, this work advances our
understanding of stochastic switching in the lac-operon and
introduces techniques that can be used to analyse other systems.



Zusammenfassung

Das lac-Operon dient als ein Modell für das Verständnis der
Genregulation und der metabolischen Adaptation in Bakterien.
Mithilfe theoretischer Modelle, Computersimulationen und
experimenteller Daten beleuchtet diese Studie das stochastische
Schaltverhalten des lac-Operons zwischen seinem induzierten und
nicht-induzierten Zustand.

Zunächst wird basierend auf der umfangreichen Literatur zur
Biochemie des lac-Stoffwechselwegs ein detailliertes
mechanistisches Modell des lac-Stoffwechselwegs erstellt, das den
Zuckerimport, die Repressorproduktion, die Importerproduktion,
die Verdünnungsrate und die Wechselwirkungen zwischen
Induktor, Repressor und DNA umfasst und einen robusten Rahmen
für die Analyse des Systems bietet.

Das Schaltverhalten in den induzierten Zustand wird
analysiert, indem experimentelle Daten zu Schaltraten mit
stochastischen Simulationen des mechanistischen Modells
verglichen werden. Die Studie verwendet die Michælis-Konstante
des Induktorimports als freier Parameter und führt ein
Glättungsverfahren ein, um die wichtigsten Fluktuationen zu
identifizieren, die die Schaltkurve beeinflussen. Dies führt zur
Entwicklung eines geschlossenen Ausdrucks für die Schaltrate als
Funktion der externen Induktorkonzentration, der über 3
Größenordnungen mit Experiment und Simulationen
übereinstimmt.

Der umgekehrte Übergang vom induzierten in den
nicht-induzierten Zustand ist schwierig zu untersuchen, da der
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induzierte Zustand extrem stabil ist und der Übergang somit nur
selten beobachtet werden kann. Wir beginnen damit, die für den
Übergang relevanten Fluktuationen mithilfe des in silico
Glättungsverfahrens zu identifizieren und vereinfachte theoretische
Modelle für jede relevante Fluktuation zu konstruieren. Diese
werden dann kombiniert, um eine Mastergleichung für das
lac-System zu entwickeln, die durch eine 2D
Fokker-Planck-Gleichung für die Dynamik von Pumpen- und
Repressorproteinen approximiert werden kann. Diese Gleichung
wird verwendet, um die first passage times zum nicht-induzierten
Zustand zu berechnen. Die theoretischen Vorhersagen stimmen
qualitativ mit dem Experiment überein und demonstrieren die
extreme Stabilität des induzierten Zustands und seine
Abhängigkeit von der Repressorzahl und Fluktuationen.

Durch die Identifizierung der rate limiting fluctuations und die
Bereitstellung eines quantitativen Rahmens, der molekulare
Wechselwirkungen mit phänotypischem Schaltverhalten verbindet,
verbessert diese Arbeit unser Verständnis des stochastischen
Schaltens im lac-Operon und führt Techniken ein, die zur Analyse
anderer Systeme verwendet werden können.
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1. Introduction

This thesis elucidates the regulatory dynamics of the lac-operon
in Escherichia coli, employing tools from non-equilibrium statistical
physics along with simulations and experiments. The lac-operon
has been a key model system of gene regulation used widely to
analyze the mechanisms of gene regulation and bacterial metabolic
adaptation. Integrating theory and simulations with experimental
data, our investigation aims to provide an understanding of the
operon’s switching behavior.

1.1. The lac-operon of E. coli

The work of François Jacob, Jacques Monod, and their colleagues
in the 1960s marked a seminal advancement in our understanding
of molecular genetics, particularly in gene regulation mechanisms
(see [3] for a wonderful account of these early developments by
Benno Müller-Hill, who contributed significantly to these
advances). This thesis begins with an exploration of the historical
context surrounding these breakthroughs, focusing on diauxie – a
phenomenon that underscores E. coli’s metabolic flexibility in
response to different sugars. Our research contributes to the
wider discourse on genetic regulatory systems by identifying rate
limiting fluctuations and using these to develop quantitative
models for the lac-operon’s transitions between induced and
uninduced states.
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1 . INTRODUCTION

1.1.1. Diauxie

Originally identified in yeast, diauxie describes a two-phase
growth pattern observed in microorganisms when presented with
two distinct carbon sources, such as glucose and lactose (for this
section, see [3] and references therein). Initially, glucose is
consumed preferentially; only upon its exhaustion dœs the
organism adapt to metabolize the alternative sugar, lactose.

Jacques Monod’s subsequent research in E. coli revealed a
similar biphasic growth pattern, with the bacterium initially
metabolizing glucose before transitioning to lactose, depicted in
Figure 1.1. This shift underscored the bacterium’s genetic capacity
to prioritize glucose over lactose, adjusting its metabolic pathway
according to the available carbon sources.

Monod’s findings paved the way for uncovering the lac-operon
— a gene cluster crucial for lactose metabolism in E. coli. The
operon encompasses three structural genes (lacZ, lacY, and lacA)
and a regulatory gene (lacI ), which orchestrate lactose breakdown
and uptake. The lac-operon’s expression is regulated by the lacI
gene product, a repressor that inhibits transcription of the lac genes
in the absence of lactose, an example of the cellular regulatory
mechanisms facilitating metabolic adaptation.

The phenomenon of diauxie, thus, serves as a prelude to the
lac-operon’s intricate regulatory mechanisms, particularly how it
transitions from a state of repression to one of induction in the
absence of glucose. This transition is critical for the bacterium’s
survival, ensuring that it efficiently utilizes available carbon sources
for energy.

1.1.2. Induction

In the absence of glucose, the lac-operon can be induced when
lactose is present in the environment. Lactose, specifically its
isomer allolactose, serves as an inducer molecule that deactivates
the repressor of the lac-operon, allowing the bacterium to
metabolize lactose.

When glucose is absent, the cellular levels of cyclic AMP (cAMP)
increase. cAMP is a secondary messenger that helps in regulating
various cellular processes, including the response to changes in
carbon source availability. As cAMP levels rise, cAMP binds to a
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Figure 1.1: Qualitative illustration based on [3] of the diauxic
growth phenomenon in bacteria. The graph demonstrates the
two distinct growth phases associated with glucose and lactose
metabolism. Initially, bacteria preferentially consume glucose, lead-
ing to a rapid growth phase. Once glucose is depleted, a lag phase
ensues as bacteria adjust their metabolic pathways to utilize lactose,
followed by a slower lactose-driven growth phase.
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1 . INTRODUCTION

protein called catabolite activator protein (CAP), also known as cAMP
receptor protein (CRP). The cAMP-CAP complex then binds to a
specific site near the lac-operon’s promoter. This binding enhances
the binding affinity of RNA polymerase to the promoter, making it
more likely for transcription to occur.

When lactose is available, a small amount is converted into
allolactose, the true inducer of the lac-operon. Allolactose binds
to the lacI repressor protein, causing a conformational change that
prevents the repressor from binding to the operator site. With
the repressor protein no longer inhibiting the process, RNA
polymerase can bind to the promoter and initiate the
transcription of the lacZ, lacY, and lacA genes.

As levels of lactose permease (encoded by the lacY gene) rise,
more lactose is imported into the cell resulting in increased
inducer levels and reducing the probability that a repressor can
successfully bind to the lac operator. Thus, induction of the
lac-operon is a doubly negative feedback mechanism, where
induction of the operon represses its repressor.

1.1.3. A Portrait of the Operon as a Switch

The understanding of the switching dynamics between the induced
and uninduced states of the lac-operon has evolved significantly
over the past several decades. This journey began in 1957 with the
seminal work of Novick and Weiner [4]. They suggested that the
induction of the lac-operon is an “all-or-none” phenomenon at the
cellular level, where the operon is either fully on or fully off.

Novick and Weiner’s hypothesis posited that the operon’s
switch to the induced state is contingent upon the stochastic
appearance of a permease molecule within a bacterium, marking
the initiation of an auto-catalytic process. Upon the addition of
inducer to a bacterial culture, they observed a linear increase in
the rate of enzyme synthesis per bacterium, suggesting that
individual cells were transitioning to full induction rapidly, rather
than gradually increasing their enzyme production. This
“all-or-none” response, further influenced by the concentration of
the inducer and the presence of permease, implies a highly
sensitive and swift decision-making mechanism at the cellular
level. Key to their findings was the recognition that at low
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1.1 . THE LAC-OPERON OF E. COLI

inducer concentrations, a bacterial population consists of cells
either fully induced or not at all, with the transition between
these states being rapid and complete once initiated. This
auto-catalytic induction mechanism explains how a bacterial
population can efficiently respond to environmental changes,
ensuring that once a threshold level of inducer is reached within a
cell, a swift and full switch to enzyme production occurs, adapting
the cell’s metabolism to its environment.

Fast forward to 2004, and the work of Ozbudak et al. [5] built
upon the “all-or-none” hypothesis by exploring the bistability of
the lac-operon. Employing a blend of experimental and
mathematical methods, they delineated the conditions under
which the lac-operon displays bistability - the ability to exist in
either an induced or uninduced state based on the operon’s
history with specific inducer concentrations. Their findings reveal
that in the absence of glucose, the operon switches from
uninduced to induced states at specific threshold concentrations of
TMG, a non-metabolizable lactose analog. Crucially, this switch
exhibits hysteresis; that is, the history of the cell’s exposure to
TMG concentrations influences its current state. This hysteresis
indicates a region of bistability where the operon’s state depends
on its prior condition, further underpinning the operon’s
functionality as a molecular switch. Such bistability was predicted
by the feedback loops inherent in the lac-operon’s regulation but
is demonstrated definitively in the context of the whole organism
by Ozbudak et al. This analysis corroborates the operon’s
bistability and demonstrates how varying degrees of operon
repression impact this dynamic behavior.

In 2008, Choi, Xie, and colleagues made a significant step in
clarifying the molecular mechanisms behind the lac-operon’s
switch to the induced state [6], providing an expansion and
refinement of the initial concepts proposed by Novick and Weiner.
Their investigations revealed that the transition to the induced
state is not merely a consequence of a single permease molecule
being produced inside the cell, as previously theorized. Instead,
they identified that the operon’s induction hinges on a singular,
stochastic event: the complete dissociation of the tetrameric
lactose repressor from all operator sites on the DNA. This critical
insight showed that such complete dissociation events are rare
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but result in substantial bursts of permease expression, which are
essential for crossing the threshold necessary for operon
induction.

Through single-molecule fluorescence microscopy, Choi et al
were able to directly observe these rare molecular events in
real-time, utilizing a significant advancement in experimental
capabilities that were unavailable to Novick and Weiner. They
further demonstrated that the basal level expression observed in
some cells at intermediate inducer concentrations resulted from
partial dissociations of the repressor from one of its operators on
looped DNA, whereas the decisive switch to the induced
phenotype was triggered by the infrequent but significant events
of complete repressor dissociation.

This model contrasts with the earlier hypothesis by Novick
and Weiner, which suggested that the random expression of a
single permease molecule could suffice to trigger induction. Choi
et al.’s findings emphasize the importance of the quantity and
manner of permease expression — highlighting that a threshold of
several hundred molecules, achieved through large expression
bursts following complete repressor dissociation, is necessary for
induction.

In this thesis we aim to identify the stochastic steps that drive
the phenotypic transition in the lac-operon, both from the off
state to the on state, and vice versa. In our 2013 study [1], we
focused on the transition to the induced state of the lac-operon.
We introduced a key tool – the smoothing procedure – to identify
the critical fluctuation driving the transition. By selectively
reducing fluctuations in the regulatory system’s components, this
method helps in pinpointing their impact on the switching rate,
offering a versatile tool for dissecting mechanisms behind
stochastic transitions in gene regulatory systems. We find that for
the transition to the on state, the detachment of the lac repressor
identified by Choi et al. is a necessary condition for the
transition, but not a sufficient one. We not only underscored the
critical role played by the duration for which the lac repressor
remains detached but also introduced a simple model that
includes a closed-form formula for the switching rate. This model
provides a quantitative tool to predict switching behavior under
various conditions, building upon the foundational ”all-or-none”
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1.2 . REVIEW OF STOCHASTIC METHODS

hypothesis by Novick and Weiner and integrating with the insights
from single-molecule observations by Choi et al.

In our 2021 work [2], we focused on the transition from the
induced to the uninduced state of the lac-operon, a process not
previously analyzed in the literature. By employing the smoothing
procedure introduced in our earlier work, we systematically
identified the fluctuations which drive the transition. Our
research revealed that this transition is influenced by fluctuations
in several components: repressor-operator binding/unbinding,
fluctuations in the total number of repressors, and
inducer-repressor binding/unbinding. To model this transition, we
developed mathematical models for each relevant sub-component
of the system, and combined them to construct a 2D
Fokker-Planck (FP) equation for permease and repressor numbers
from which we could derive the first passage times and thus the
switching rates to the uninduced state. Our findings indicate that
these transitions occur over very long timescales, in line with
experimental observations [2].

1.2. Review of stochastic methods

Stochastic systems refer to processes or models in which
uncertainty and randomness are inherently present. These
systems can be found across various fields such as physics,
biology, economics, and engineering. In a stochastic system, the
future state or outcome depends on both the current state and a
random element, making precise predictions challenging.
Probability theory serves as the mathematical foundation for
analyzing and understanding these stochastic systems, providing
tools to quantify and model the inherent uncertainty.

In physics - as in life - there are situations which have multiple
possible outcomes. Implicitly, there is uncertainty (aleatoric as well
as epistemic) as to what the outcome will be. However, to aid
decision making, one might attempt to quantify the uncertainty
associated with each possibility by attaching to each outcome a
number, with larger numbers indicating a higher degree of belief
that that outcome will in fact be the one that transpires. If those
numbers (one for each possible mutually exclusive outcome) are
normalized so that they sum to 1, what we have is a probability
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1 . INTRODUCTION

distribution.
Probability theory deals with the analysis of random

phenomena and the quantification of the likelihood of various
eventualities. In this framework, an event, denoted as A, is a
subset of a sample space Ω, which represents all possible
outcomes of a random experiment. The probability of an event A
occurring is represented as P(A), with the probability measure
satisfying three main axioms:

1. 0 ≤ P(A) ≤ 1 for all events A

2. P(Ω) = 1

3. For any countable collection of mutually exclusive events
A1, A2, . . . , P (

�∞
i=1 Ai) =

�∞
i=1 P(Ai).

These axioms form the basis for understanding and
manipulating probabilities in the context of stochastic systems,
allowing researchers to model uncertainty and make informed
decisions based on the likelihood of various outcomes. In the
following sections, we introduce random variables, random
events, and stochastic processes.

1.2.1. Random variables

A random variable, denoted by X, is a function that assigns a real
number to each outcome in the sample space Ω. It encapsulates
the numerical outcome of a stochastic experiment, allowing for
the quantitative analysis of random phenomena. The probability
distribution of a random variable X characterizes the likelihood of
various outcomes, represented as P(X = x) for discrete variables,
or the probability density function fX(x) for continuous variables,
where x is a value that X can take. For notational convenience,
we will review the theory for continuous random variables. The
extension to discrete cases is usually straightforward, see [7, 8].

The expectation value (or expected value) of a continuous
random variable X, often denoted as E[X], is a measure of the
central tendency of X. For a random variable X with a probability
density function fX(x), the expectation is defined as,
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1.2 . REVIEW OF STOCHASTIC METHODS

E[X] =
�∞

−∞
xfX(x)dx.

This integral sums over all possible values of X, weighted by their
probability density, providing a single value that represents the
average outcome of X if the stochastic experiment were repeated
many times. For such a continuous random variable X, we can
define the expected value of a function g(X), where g is a real-
valued function applied to the random variable. Given the PDF
fX(x), the expected value of g(X) is given by,

E[g(X)] =
�∞

−∞
g(x)fX(x)dx.

Moments are a generalization of the expected value and provide
a way to describe the shape and characteristics of the distribution
of a continuous random variable. The n-th moment about the
origin of a continuous random variable X is defined as the expected
value of Xn, and it can be calculated as,

µn = E[Xn] =

�∞

−∞
xnfX(x)dx,

where n is a positive integer and fX(x) is the PDF of the random
variable X. The n-th central moment is defined as the expected
value of the n-th power of the difference between the random
variable and its mean:

νn = E [(X− E[X])n] =
�∞

−∞
(x− E[X])nfX(x)dx.

The first central moment ν1 is always equal to zero, and the second
central moment ν2 corresponds to the variance of the random
variable X. Higher-order central moments provide further insight
into the shape and properties of the distribution, such as skewness
(measured by the third standardized central moment) and kurtosis.

1.2.1.1. Characteristic function

The characteristic function is an important tool in probability
theory and statistics. For a random variable X with probability

9
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density function fX(x), the characteristic function ϕX(t) is defined
as the expected value of eitX, where i is the imaginary unit and t
is a real variable,

ϕX(t) = E[eitX] =
�∞

−∞
eitxfX(x)dx.

The moments of X are obtained through differentiation at t = 0.
Specifically, the n-th moment of X is retrieved as,

E[Xn] =

�
dn

dtn
ϕX(t)

� �����
t=0

.

The characteristic function, as the Fourier transform of the
probability density function, provides a complete statistical
description of X. It is particularly advantageous for analyzing the
distributional aspects and sum of independent random variables
because the characteristic function of a sum is the product of their
individual characteristic functions. This property simplifies the
analysis of sums of random variables, essential in many stochastic
processes.

Furthermore, the absolute value of the characteristic function
is always bounded by 1, with ϕX(0) = 1, indicating the total
probability. This boundedness and continuity in t make it a
well-behaved mathematical function, facilitating the derivation of
distributional properties and moments. Analyzing the behavior of
ϕX(t) near t = 0 provides insights into the variance and higher
moments, while its decay rate as |t| increases reveals information
about the tails of the distribution.

1.2.1.2. Addition of two random variables

When dealing with the addition of two or more independent
continuous random variables, the characteristic function offers a
convenient approach. Let X and Y be two independent continuous
random variables with characteristic functions ϕX(t) and ϕY(t),
respectively. The characteristic function of the sum of these
random variables, Z = X + Y, can be obtained as the product of
their individual characteristic functions,

10



1.2 . REVIEW OF STOCHASTIC METHODS

ϕZ(t) = ϕX+Y(t) = ϕX(t) · ϕY(t).

This property makes the characteristic function a powerful tool
for analyzing the distribution of sums of independent continuous
random variables, as it simplifies the process of determining their
combined distribution. Once the characteristic function of the sum
Z = X+Y is obtained as the product of their individual characteristic
functions, the probability density function fZ(z) of the sum can be
derived using the inverse Fourier transform,

fZ(z) =
1

2π

�∞

−∞
e−itzϕZ(t)dt.

The advantage of using the characteristic function becomes more
apparent when dealing with multiple independent continuous
random variables. Suppose we have n independent continuous
random variables X1, . . . , Xn, with their respective characteristic
functions ϕX1

(t),ϕX2
(t), . . . ,ϕXn(t). If we want to find the

distribution of their sum, Sn = X1 + X2 + . . . + Xn, the
characteristic function of Sn is given by the product of their
individual characteristic functions,

ϕSn(t) = ϕX1
(t) · ϕX2

(t) · · ·ϕXn(t).

Once the characteristic function of the sum Sn is determined, we
can derive the probability density function of the sum by applying
the inverse Fourier transform.

1.2.1.3. Multivariate Distributions

In the study of stochastic systems, often it is necessary to
consider distributions which describe the behavior of multiple
random variables simultaneously. For a set of continuous random
variables, (X1, . . . , Xn), the joint probability density function
fX1,X2,...,Xn(x1, x2, . . . , xn) captures the likelihood of these
variables simultaneously taking specific values. Marginal
probability density functions are derived from the joint
distribution by integrating out the variables that are not of
interest. For instance, the marginal distribution of X1 is obtained
by integrating the joint distribution over all variables except X1,

11
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fX1
(x1) =

�∞

−∞
· · ·

�∞

−∞
fX1,X2,...,Xn(x1, x2, . . . , xn)dx2 . . . dxn.

This integration process effectively “sums out” the influence of the
other variables, providing a distribution that reflects the behavior
of X1 irrespective of the others.

Conditional probability density functions, on the other hand,
express the probability distribution of one or more variables given
the values of others. For example, the conditional distribution of
X1 given X2 is defined as,

fX1|X2
(x1|x2) =

fX1,X2
(x1, x2)

fX2
(x2)

,

provided that fX2
(x2) > 0. This conditional distribution describes

how the distribution of X1 changes when the value of X2 is known.

1.2.1.4. Random Events

Imagine receiving text messages at various times throughout the
day. This scenario can be modeled as a series of random events,
where the exact timing of each message is unpredictable. In the
mathematical framework of probability theory these events are
defined within the context of a sample space Ω, representing all
possible outcomes of a random experiment. A random event A
can be considered as a subset of the sample space Ω, where each
element of A corresponds to a specific outcome, such as receiving
a text message within a particular hour. Mathematically, if we
denote the occurrence of an event A at time t as A(t), the
waiting time for event A to occur can be modeled as a random
variable. The distribution of these waiting times provides insight
into the underlying stochastic process governing the events.

1.2.1.5. Poisson Distribution and Exponential Waiting Times

A special case of random events occurs when each event is
independent of others and happens at a constant average rate λ,
this is called the Poisson process. In this context, the Poisson
distribution provides the probability of a given number of events

12
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occurring within a fixed time interval. We want to find the
probability of observing k events in a fixed time interval of length
t.

Let’s divide the time interval t into n equal sub-intervals of
length ∆t = t/n. For sufficiently small ∆t, the probability of an
event occurring in a sub interval is approximately λ∆t, and the
probability of more than one event occurring in a sub-interval is
negligible. The probability of observing k events in the entire
interval t is equal to the probability of observing k successes in n
independent Bernoulli trials, each with success probability p = λ∆t.
This is given by the binomial distribution,

P(k events in t) =

�
n

k

�
(λ∆t)k(1− λ∆t)n−k. (1.1)

Taking the limit as n → ∞ (and consequently ∆t → 0), we have:

lim
n→∞

P(k events in t) = lim
n→∞

�
n

k

�
(λt/n)k(1− λt/n)n−k

=
(λt)k

k!
lim

n→∞

n!

(n− k)!nk
(1− λt/n)n−k

=
(λt)k

k!
lim

n→∞

�
1−

λt

n

�n �
1−

λt

n

�−k

=
(λt)k

k!
e−λt.

Thus, the probability of observing k events in a time interval of
length t for a Poisson process with rate λ is given by the Poisson
distribution,

P(k events in t) =
(λt)k

k!
e−λt. (1.2)

For the Poisson process, the waiting times between successive
events are exponentially distributed. If T denotes the waiting time
for the next event, its probability density function (PDF) reflects
the memory-less property of the Poisson process, where the
probability of an event occurring is independent of the elapsed
time since the last event,

fT (t) = λe−λt.

Now, we take a look at more general stochastic processes.
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1.2.2. Stochastic processes

In physics, biology, finance, and other fields, stochastic processes
play a crucial role in modeling systems where outcomes are
inherently uncertain and influenced by random factors. For
instance, in physics, the random motion of particles in a fluid,
known as Brownian motion, exemplifies a stochastic process
where the future position of each particle depends on its current
state and a random component reflecting molecular collisions.
Similarly, in biology, the process of gene expression in cells,
where the timing of transcription and translation events is subject
to random fluctuations, can be modeled as a stochastic process.
These examples underscore the universality and importance of
stochastic modeling in capturing the dynamics of systems
influenced by random interactions and events.

Stochastic processes provide a mathematical framework to
describe and predict the behavior of such systems over time or
space. By considering each possible state of the system as a
random variable and indexing these variables by time or space,
we can construct a model that reflects the system’s evolution
under uncertainty. This approach allows for the analysis of
complex phenomena where deterministic models fall short,
offering insights into the probabilistic behavior and the underlying
mechanisms driving the random dynamics observed in physical
and biological systems.

A general stochastic process can be defined as a collection of
random variables Xt : t ∈ T and an underlying probability space
(Ω,F ,P), where:

1. Xt is a random variable representing the system’s state at
time (or position) t.

2. T is the index set, which is often a subset of the real numbers
R or the integers Z. For instance, if T is a subset of R,
the stochastic process is called a continuous-time stochastic
process; if T is a subset of Z, the process is called a discrete-
time stochastic process.

3. Ω is the sample space, which is the set of all possible
outcomes or states of the system.

14



1.2 . REVIEW OF STOCHASTIC METHODS

4. F is a σ-algebra (sigma-algebra) on Ω, representing the
collection of all events, where an event is a subset of Ω. F
must satisfy certain properties, such as being closed under
complementation and countable unions, and containing the
empty set and the sample space itself.

5. P is a probability measure that assigns probabilities to the
events in F . It must satisfy the axioms of probability: P(∅) =
0, P(Ω) = 1, and for any countable sequence of mutually
exclusive events E1, E2, . . . , P(

�
Ei) =

�
P(Ei).

We can now define a general stochastic process as a family of
random variables {Xt : t ∈ T }, where each Xt maps outcomes
ω ∈ Ω of a probability space (Ω,F ,P) to states in a state space S,

Xt(ω) : Ω → S.

For this process, the joint probability distribution for a sequence
of times t1, t2, . . . , tn within the index set T defines the stochastic
process’s complete statistical description,

P(Xt1 ∈ A1, Xt2 ∈ A2, . . . , Xtn ∈ An),

for all n ∈ N and for all sets A1, A2, . . . , An in the σ-algebra of S.
Here, each Ai represents a possible state or range of states at time
ti.

The Markov property is a specific characteristic of certain
stochastic processes, which states that the future evolution of the
process depends only on the present state and is independent of
its past history. In other words, a stochastic process with the
Markov property has no memory of its past beyond the current
state. Stochastic processes that exhibit the Markov property are
called Markov processes or Markov chains. Formally, for every s, t
in T with s < t and states x, y in S, the Markov property is given
by,

P(Xt = y|Xs = x, Xs1
= x1, . . . , Xsk

= xk) = P(Xt = y|Xs = x).

For a continuous-time stochastic process Xt : t ∈ R≥0 with state
space S, the Markov property holds if, for any 0 ≤ t1 < t2 <
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· · · < tn < t and any sequence of states x1, x2, . . . , xn, x ∈ S, the
following conditional probability holds:

P(Xt = x | Xt1 = x1, Xt2 = x2, . . . , Xtn = xn) = P(Xt = x | Xtn = xn).

In this case, the probability of being in state x at time t depends
only on the current state xn at time tn and is independent of the
process’s history. The Markov property is a simplifying assumption
in many stochastic models, as it reduces the complexity of analyzing
the process by only considering the current state’s influence on
future states.

1.2.3. Chapman-Kolmogorov equation

The Chapman-Kolmogorov equation is a fundamental relationship
in probability theory and stochastic processes. It connects the
joint probabilities of a Markov process at different time points and
is commonly used in the study of random walks, Brownian motion,
and other time-dependent processes.

Suppose we have a Markov process X(t), where t denotes
time. The transition probability of the process going from state x
at time t to state y at time t + τ is given by p(y, t + τ|x, t). The
Chapman-Kolmogorov equation relates the transition probability
over different time intervals, providing a method to compute the
probability of transitioning between two states over a time
interval t1 + t2 using the probabilities of transitioning over time
intervals t1 and t2 separately. Mathematically, the equation is
expressed as,

p(y, t2 + t1|x, 0) =

�
p(y, t2 + t1|z, t1)p(z, t1|x, 0)dz. (1.3)

In this equation, p(y, t2 + t1|x, 0) represents the transition
probability from state x at time 0 to state y at time t2 + t1. The
integral on the right-hand side sums over all possible intermediate
states z at time t1. The Chapman-Kolmogorov equation thus
states that the probability of transitioning from state x to state y
over time t2 + t1 is equal to the sum of probabilities of
transitioning from state x to any intermediate state z at time t1,
and then from state z to state y over the remaining time t2.
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1.2.3.1. The differential Chapman-Kolmogorov equation

The differential form of the Chapman-Kolmogorov equation
provides the clearest bridge from the basic concepts we have
already seen, to the master and Fokker-Planck equations that are
often used to model stochastic processes. We require the
following conditions to be true for all ϵ > 0, in order to express
the Chapman-Kolmogorov equation as a differential equation (for
simplicity, we consider just 1 dimension throughout this section):

1. Jump transitions are finite:

lim
τ→0

1

τ
p(y, t+ τ|x, t) = W(y|x, t) for |y− x| ≥ ϵ,

2. Drift term is finite:

lim
τ→0

1

τ

�

|y−x|<ϵ

dy(y− x)p(y, t+ τ|x, t) = A(x, t) +O(ϵ),

3. Diffusion term is finite:

lim
τ→0

1

τ

�

|y−x|<ϵ

dy(y− x)2p(y, t+ τ|x, t) = B(x, t) +O(ϵ),

4. All higher order terms disappear.

The details for the derivation of the differential
Chapman-Kolmogorov equation are well explained in Section 3.4.1
of Gardiner’s book [7], and we will not go over it here. The
derivation entails taking the time evolution of the expectation
value of some function f(y) which is twice differentiable, applying
the Chapman-Kolmogorov equation, then considering the tailor
expansion of f(y) to the second order, and using the three
conditions above to get,

∂p(y, t|x, t1)

∂t
= −

∂

∂y
[A(y, t)p(y, t|x, t1)]

� �� �
Drift term

+
1

2

∂2

∂y2
[B(y, t)p(y, t|x, t1)]

� �� �
Diffusion term

+

�
dz [W(y|z, t)p(z, t|x, t1)−W(z|y, t)p(y, t|x, t1)]

� �� �
Jump term

. (1.4)
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If we consider the evolution of the probability distribution
p(y, t|x, t1) with respect to the initial variables x, t1, we can
derive what is known as the backward differential
Chapman-Kolmogorov equation (see Section 3.6 in Gardiner’s text
[7]). Using the same methods as used to derive the forward
differential Chapman-Kolmogorov equation we get the following
form for the backward differential Chapman-Kolmogorov
equation,

∂p(y, t|x, t1)

∂t1
= −A(x, t1)

∂p(y, t|x, t1)

∂x
−

1

2
B(x, t1)

∂2p(y, t|x, t1)

∂x2

+

�
dzW(z|x, t1) [p(y, t|x, t1)− p(y, t|z, t1)] . (1.5)

The forward and backward equations are - in principle -
equivalent to each other, but in practice, they are used in
different contexts. The forward equation gives us the evolution of
measurable quantities in terms of the time of observation. The
backward equation on the other hand helps us understand the
past of a system given a final state, and these equations are most
often used in the study of first passage times. Since a switching
rate can be thought of as the mean first passage time to a different
meta-stable state, we will look into backward equations and the
first passage time in a subsequent section. Now, we delve into the
special cases that arise from the different terms of Eq. (1.4), and
are commonly used in the analysis of stochastic processes.

1.2.4. Master equations and jump processes

The master equation provides a particularly useful formulation for
the evolution of states in jump processes, providing a mathematical
description of the time evolution of a probability distribution in
a discrete-state, continuous-time Markov process. In particular, it
is a specific case of the differential Chapman-Kolmogorov equation
when A(y, t) = 0 and B(y, t) = 0 in Eq. (1.4). We can also derive
the master equation from the Chapman-Kolmogorov equation by
considering the transition probabilities between states.

Let p(i, t) be the probability of being in state i at time t. The
master equation describes the time evolution of pi(t). Using the
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Chapman-Kolmogorov equation, we can write the probability of
being in state j at time t+ τ as,

p(j, t+ τ|i0, t0) =
�

i

p(j, t+ τ|i, t)p(i, t|i0, t0).

We define the transition rate Wji from i → j to be,

Wji = lim
τ→0

p(j, t+ τ|i, t)

τ
.

Now, we can write the probability to be in state j at time t + τ,
p(j, t+ τ|i, t) in terms of the transition rate Wji,

p(j, t+ τ|i, t) = Wjiτ+ δji,

where the term δji represents the case when j = i and no transition
happens. We can now substitute this expression back into the
Chapman-Kolmogorov equation,

p(j, t+ τ|i0, t0) =
�

i

[Wjiτ+ δji]p(i, t|i0, t0).

Rearranging we have,

p(j, t+ τ|i0, t0)− p(j, t|i0, t0)

τ
=

�

i

Wjip(i, t|i0, t0)−
�

i

Wijp(j, t|i0, t0).

Taking the limit as τ approaches zero,

lim
τ→0

p(j, t+ τ|i0, t0)− p(j, t|i0, t0)

τ
=

∂p(j, t|i0, t0)

∂t
,

which gives us the master equation describing the evolution of the
probability in terms of transition rates between states,

∂p(j, t)

∂t
=

�

i

[Wjip(i, t)−Wijp(j, t)],

where we have omitted the reference to the initial state (i0, t0)
everywhere for brevity. In this equation, the first term represents
the probability flow out of state i, and the second term represents
the probability flow into state i.
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1.2.4.1. Revisiting the Poisson process

As an illustration, we consider the master equation approach to one
of the simplest stochastic processes - the Poisson process. We have
a system where events occur at a constant rate, λ, independent of
the current state.

Let us denote pn(t) as the probability of having n events at
time t. For the Poisson process, the rate of change of pn(t) can be
described by the master equation,

dpn(t)

dt
= λpn−1(t)− λpn(t).

This equation reflects the fact that the probability of having n
events increases due to transitions from n − 1 to n and decreases
due to transitions from n to n+ 1. To solve this, we introduce the
generating function,

G(z, t) =
∞�

n=0

pn(t)z
n.

Taking the time derivative of G(z, t) and substituting the master
equation, we get,

∂G(z, t)

∂t
=

∞�

n=0

dpn(t)

dt
zn = λ

∞�

n=0

pn−1(t)z
n − λ

∞�

n=0

pn(t)z
n.

By shifting the index in the summation and recognizing the terms
of the generating function, we find,

∂G(z, t)

∂t
= λz

∞�

n−1=0

pn−1(t)z
n−1 − λG(z, t) = λzG(z, t)− λG(z, t).

This leads to a partial differential equation,

∂G(z, t)

∂t
= λ(z− 1)G(z, t).

Solving this differential equation gives the generating function for
the Poisson distribution,

G(z, t) = G(z, 0)eλ(z−1)t.
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If at t = 0 the system starts with zero events, p0(0) = 1, then
G(z, 0) = 1. Therefore,

G(z, t) = eλ(z−1)t.

Expanding this exponential as a power series in z, we obtain the
probabilities pn(t) as cœfficients in the series, leading to the
familiar Poisson distribution,

pn(t) =
(λt)ne−λt

n!
.

1.2.4.2. Constitutive gene expression

As a further illustration of the master equation approach, we set
up the master equation for constitutive gene expression. In
constitutive gene expression, proteins are produced at a constant
rate regardless of the cell’s environmental conditions or internal
state. We consider a system where the gene product (protein) is
synthesized and degraded over time. The master equation for
constitutive gene expression is given by (see [9] for other
examples),

dpn(t)

dt
= λpn−1(t)− (λ+ nµ)pn(t) + (n+ 1)µpn+1(t).

Here, pn(t) is the probability of having n proteins at time t, λ is the
rate of protein synthesis, and µ is the rate of protein degradation.
The terms in the equation represent the processes affecting the
state n:

• λpn−1(t): the rate of entering state n from n − 1 (protein
synthesis),

• (λ + nµ)pn(t): the rate of leaving state n due to either
synthesis (adding another protein, moving to state n + 1) or
degradation (removing a protein, moving to state n− 1),

• (n + 1)µpn+1(t): the rate of entering state n from n + 1
(protein degradation).

21



1 . INTRODUCTION

1.2.5. Simulating master equations – the Gillespie algorithm

The Gillespie algorithm is instrumental in simulating the time
evolution of stochastic processes described by master equations.
It is particularly valuable in scenarios like chemical kinetics or
gene expression, where system dynamics are driven by discrete
random events. The Gillespie algorithm effectively manages
simulations involving reactions with diverse time scales, allowing
for accurate representation of systems where events unfold at
markedly different frequencies without necessitating impractically
small timesteps that a deterministic model might need to use.

The algorithm operates as follows:

1. Initialization: Set the initial state of the system, with pi(t =
0) representing the probability of each state at the start, and
initialize the time t = 0.

2. Reaction Propensity Calculation: For each possible
reaction or transition, calculate the propensity function aj,
which quantifies the likelihood of the reaction occurring per
unit time.

3. Time Step Determination: Determine the time ∆t until the
next reaction occurs, typically using an exponential distribu-
tion with parameter equal to the total propensity of all reac-
tions, a0 =

�
j aj.

4. Reaction Selection: Randomly select which reaction will
occur next, proportional to the propensity of each reaction.

5. State Update: Update the system state to reflect the occur-
rence of the selected reaction.

6. Time Update: Increment the time by ∆t.

7. Iterate: Repeat steps 2 through 6 until the simulation end
time or condition is reached.

We now illustrate this with a concrete example. For the
master equation describing constitutive gene expression, the
algorithm proceeds by calculating the propensity of each reaction,
determining when the next reaction will occur, and deciding
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which reaction takes place based on these propensities. The steps
of the Gillespie algorithm for constitutive gene expression, where
proteins are produced at rate λ and degrade at rate µ, are as
follows:

1. Initialize the number of proteins, n, and set time t to zero.

2. Calculate the propensity functions: αprod = λ, and αdeg = µn.

3. Determine the time τ until the next reaction by drawing a
random number r1 and calculating τ = (1/

�
α) ln(1/r1).

4. Choose which reaction will occur next by comparing a second
random number r2 with the relative propensities.

5. Update the number of proteins and time, then repeat from
step 2.

In Julia, a simple implementation for constitutive gene expres-
sion could look like this:

using Random

function gillespie_constitutive(lambda, mu, n0, t_max)
t = 0.0
n = n0
while t < t_max

alpha_prod = lambda
alpha_deg = mu * n
alpha_total = alpha_prod + alpha_deg

r1, r2 = rand(), rand()
tau = (1/alpha_total) * log(1/r1)
t += tau

if r2 < alpha_prod / alpha_total
n += 1 # Protein production

else
n = max(n - 1, 0) # Protein degradation

end
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println("Time: $t, Protein count: $n")
end

end

With that short overview of master equations – how to set them
up and how to simulate them – we are well placed to survey the
Fokker-Planck equation which can also serve as an approximation
to the master equation in some circumstances.

1.2.6. Fokker–Planck equation

The Fokker-Planck equation follows from the differential
Chapman-Kolmogorov equation Eq. (1.4) when the jump transition
probabilities disappear for all states, W(y|x, t) = 0, ∀ x, y, t.
Then, the Fokker-Planck equation takes the form,

∂p(y, t|x, t1)

∂t
= −

∂

∂y
[A(y, t)p(y, t|x, t1)]

� �� �
Drift term

+
1

2

∂2

∂y2
[B(y, t)p(y, t|x, t1)]

� �� �
Diffusion term

.

In physical processes, we can often make the approximation that
the distribution p(y, t|x, t1) is sharply peaked enough in y, that y
derivatives of A(y, t) and B(y, t) can be ignored when compared
to the y derivative of p(y, t|x, t1). This gives us a more tractable
form of the Fokker-Planck equation,

∂p(y, t|x, t1)

∂t
= −A(y, t)

∂p(y, t|x, t1)

∂y
+

1

2
B(y, t)

∂2p(y, t|x, t1)

∂y2
.

(1.6)
Similarly, from the backward differential Chapman-Kolmogorov
equation we get the backward Fokker-Planck equation,

∂p(y, t|x, t1)

∂t1
= A(x, t1)

∂p(y, t|x, t1)

∂x
+

1

2
B(x, t1)

∂2p(y, t|x, t1)

∂x2
.

(1.7)

1.2.6.1. The Fokker-Planck equation as an approximation of the
master equation

When a jump process can be approximated by a continuous process
(for example a jump from n to n+ 1 molecules for n ≫ 1), we can
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approximate the master equation by a Fokker-Planck equation. We
will illustrate the techniques involved using the master equation for
the birth death process, and tackle the slightly more useful master
equations for gene expression in later chapters.

The master equation for a birth-death process with a constant
(independent of population) birth rate and a death rate proportional
to the population is given by,

dP(n, t)

dt
= λP(n−1, t)+µ(n+1)P(n+1, t)− (λ+µn)P(n, t), (1.8)

where,

• P(n, t) is the probability of having n individuals at time t.

• λ is the constant birth rate.

• µ is the death rate per individual.

We consider the case when n ≫ 1, so that jumps are small
compared to n. The Taylor series expansion of some function
f(n+ δn) can be written as,

f(n+ δn) =
�

i

1

i!
(δn)i(∂n)

if(n)

= eδn∂nf(n) = Eδnf(n), (1.9)

where we define Eδn as the translation operator that takes f(n) to
f(n+δn). Rewriting the master equation in terms of the translation
operator (in n, δn), we have,

dP(n, t)

dt
= λ(E−1 − 1)P(n, t) + µ(E1 − 1)nP(n, t). (1.10)

From Eq. (1.9) we can expand the translation operator E−δn to
second order (assuming that higher orders make negligible
contributions since n ≫ δn) and substitute it into Eq. (1.10) to
yield,

dP(n, t)

dt
= λ

��
1−

∂

∂n
+

1

2

∂2

∂n2

�
− 1

�
P(n, t),

+ µ

��
1+

∂

∂n
+

1

2

∂2

∂n2

�
− 1

�
nP(n, t).

(1.11)
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Simplifying this expression, we get,

∂P(n, t)

∂t
= −

∂

∂n
A(n)P(n, t) +

1

2

∂2

∂n2
B(n)P(n, t), (1.12)

where,
A(n) = λ− µn (drift term),
B(n) = λ+ µn (diffusion term).

(1.13)

This expansion of the translation operator is called the
Kramers–Moyal expansion and the non-rigorous derivation of the
Fokker–Planck equation sketched in this section was first given by
Kramers (see [7]). Van Kampen addresses the lack of a clear small
parameter in the Kramers–Moyal expansion using a system size
expansion (see Chapter X in [8] and see [7, 8] for further
discussion). However for our purposes, the naive approximation
to the Fokker–Planck equation works very well. It is worth noting
that in general, the specific form of the Fokker–Planck equation
derived might depend on the specific approximation procedure
used on the master equation.

Similar techniques can be used to derive the Fokker-Planck
equation for the master equation for constitutive gene expression
and other more complex situations that we will encounter while
modeling the lac-operon.

1.2.7. First passage times

First passage times are relevant to analysis of switching behaviour
since the transition rate from some state 1 to another state 2 can
also be computed as the inverse of the mean first passage time
from state 1 to state 2. To analyse first passage times for a given
stochastic system for which we know the Fokker-Planck equation,
we present a concise version of the exposition in Gardiner [7]
Section 5.5. Define G(x, t) as the probability that a system
starting from state x has not reached the boundary by time t,
which implies G(x, t) = P(T > t) for the first passage time T . The
mean first passage time, denoted by Γ(x), is the expected time for
the system to reach the boundary from x,

Γ(x) =

�∞

0

t

�
−
∂G(x, t)

∂t

�
dt.
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Integration this by parts, considering the boundary conditions
G(x, 0) = 1 and G(x, t) → 0 as t → ∞, leads to,

Γ(x) =

�∞

0

G(x, t)dt. (1.14)

The function G(x, t) satisfies the backward Fokker-Planck
equation because it is the backward evolution of the probability
distribution given a future final condition of escape at time T . The
backward Fokker-Planck equation describes how probabilities
diffuse backward in time from the boundary to the starting point
in the present, x. Therefore,

∂G(x, t)

∂t
= A(x)

∂G(x, t)

∂x
+

1

2
B(x)

∂2G(x, t)

∂x2
.

Integrating the backward Fokker-Planck equation from 0 to infinity
yields a differential equation for the mean first passage time,

�∞

0

∂G(x, t)

∂t
dt = −

�∞

0

�
−A(x)

∂G(x, t)

∂x
+

1

2
B(x)

∂2G(x, t)

∂x2

�
dt.

(1.15)
In Eq. (1.15), the left-hand side integrates to G(x,∞) − G(x, 0) and
G(x, 0) = 1 (as the probability of not crossing the boundary by
time 0 is 1), and G(x,∞) = 0 (since eventually, the boundary will
be crossed). Therefore, the left hand side of Eq. (1.15) simplifies
to -1. On the right hand side, we can use Eq. (1.14) to yield the
differential equation for the first passage time,

A(x)
∂Γ(x)

∂x
+

1

2
B(x)

∂2Γ(x)

∂x2
= −1. (1.16)

As long as we can derive a Fokker-Planck equation for a
stochastic system, we can use Eq. (1.16) to analyse the switching
behavior without having to simulate the entire system.

1.3. Structure of this thesis

With the background provided in this introductory chapter, we are
well prepared to tackle the problem of switching of the lac-operon.
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Chapter 2 gives a detailed overview of the mechanistic model
of the operon that underlies this thesis, considering the
biochemical reactions relevant to the regulation of the lac-operon
in the absence of glucose. Once we have identified these reactions
along with their rates using the extensive literature on the
biochemistry of the lac-operon (see for instance [3] and
references therein), we use Gillespie’s algorithm for simulating
stochastic systems to simulate the lac system to calibrate the
switching rate in our simulations to flow cytometry experiments
with single cell resolution (see our work published in [1] and [2],
and for an overview of the experiments conducted by Robin A.
Sorg from the lab of J. W. Veening see Appendix A). Having
established that our simulations of the model of the lac-operon
described in Chapter 2 match the switching behavior in
experiments, we analyze the switching behaviour of this system
in Chapters 3 and 4.

In Chapter 3 we analyse the switching behavior from the
uninduced to the induced state (also see [1]). We find excellent
agreement with experiment, and introduce the smoothing
procedure for identifying rate limiting fluctuations that influence
the switching behavior. We identify operator state fluctuations
via repressor-DNA loop to be the rate limiting fluctuation and use
our mechanistic model to derive a simple formula for the
switching rate of the lac-operon under different external
concentrations of the inducer molecule.

In Chapter 4 (also see [2]), we analyse the reverse transition –
that from the induced to the un-induced state. We find that this
transition is influenced by multiple fluctuations and derive
simplified mathematical models for each relevant subsystem to
derive a 2D Fokker-Planck equation for pump protein dynamics.
We use the Fokker–Planck equation to numerically calculate the
first passage times to the uninduced state, and find that this
switch occurs on timescales far longer than the lifetime of a cell
which agrees qualitatively with experimental results.

Finally in Chapter 5, we summarize and discuss these results.
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2. The model

In this chapter we establish a mechanistic model of the lac-pathway.
The material presented in this chapter is based on published work
done by this author, see [1, 2]. For the purposes of this thesis we
use the model we described in [2] which is an updated version of
the model we described in [1].

2.1. Introduction

In order to analyse the switching behavior of the lac-pathway, we
must first identify some set of chemical reactions as constituting
the system that we want to study. In particular, we must consider
all chemical reactions relevant to the regulation of the lac-pathway
in the absence of glucose.

Table 2.1: Summary of the detailed mechanistic model of the lac-
system presented in this chapter.

I The number of inducer molecules inside the
cell. The inducer TMG is an analog of galac-
tose that is imported by LacY but cannot be
metabolized by E. coli.

E The external concentration of the inducer TMG.
Y LacY, the surface protein that imports inducer

into the cell.

Inducer transport E
α(Y)
−−−−−→ I m = 1260 /min from [10]

α(Y) = m E
Eh+E

Y Eh = 1.05 ×
105[µM]

fitting parameter

Inducer diffusion I
fout
−−−→ E fout = 3.4 ×

10−4 /min

based on [11]
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E
fin
−−−→ I fin = 0.14 /min based on [6, 12, 13,

14, 11]
lacI the gene which encodes for the LacI protein.
mRNAI Messenger RNA for the produced after tran-

scription of the lacI gene.
LacI Monomer of the lac-repressor. Four of these

come together to form the repressor.

LacI production lacI cR
−−−→ lacI + mRNAI cR = 0.1336 /min [15]

mRNAI
lR
−−−→ mRNAI + LacI lR = 3.33 /min est. by setting burst

parameter to 5
LacI2 Dimer of LacI molecules.

LacI dimerization LacI + LacI u2R
−−−→ LacI2 u2R = 103 /min est. [16] for fast

dimerization

LacI2 v2R
−−−→ LacI + LacI v2R = 10−5 /min based on [16]

R The lac-repressor which is a dimer of LacI2
molecules.

Repressor production LacI2 + LacI2 u4R
−−−→ R u4R = 103 /min est. [16] for fast

dimerization

R
v4R
−−−→ LacI2 + LacI2 v4R = 10−5 /min based on [16]

lacY The gene which encodes for the LacY protein.
mRNAY Messenger RNA produced after transcription of

the lacY gene.
Plac The operator region of the lac-genes when it

is free of repressors.

LacY production Plac cY
−−−→ Plac + mRNAY cY = 6 /min based on [17]

Plac1 cY
−−−→ Plac1 + mRNAY cY = 6 ×

10−3 /min

based on [17, 6]

mRNAY
lY
−−−→ mRNAY + LacY lY = 20 /min based on [17] and

burst parameter
30

Rj , ∀j ∈
{0, 1, 2, 3, 4}

Each repressor molecule has four binding sites
for the inducer. InRj , the subscript j refers to
the number of free binding sites on the repres-
sor. So, R4 is a repressor with no inducers
bound to it, whileR0 has four inducers bound.

Inducer-repressor
binding

Rj + I
0.25jb
−−−−−−→ Rj−1 ,∀j ∈

{4, 3, 2, 1}

b = 2.29 ×
10−3 /min

from [18]

Inducer-repressor un-
binding

Rj
(4−j)d
−−−−−−−→ Rj+1 + I,∀j ∈

{0, 1, 2, 3}

d = 12 /min from [18]

Plac1Rj
The operator region of the lac-genes when a
repressor (with (4 − j) inducers bound to
it) is bound to any one of its binding sites.

Plac2Rj
The DNA-repressor loop formed when a re-
pressor (with (4 − j) inducers bound to it)
is bound to two binding sites on the DNA.

Inducer binding to DNA
bound repressor

Plac1Rj
+ I

0.25jb
−−−−−−→ Plac1Rj−1

,∀j ∈

{4, 3, 2, 1}

b = 4.98 ×
10−4 /min

from [18]

Inducer binding to
DNA-repressor loop

Plac2Rj
+ I

0.25jb
−−−−−−→

Plac2Rj−1
,∀j ∈ {4, 3, 2, 1}

b = 2.707 ×
10−5 /min

set by detailed bal-
ance, see Section
2.6

Inducer unbinding from
DNA bound repressor

Plac1Rj

(4−j)d
−−−−−−−→ Plac1Rj+1

+I,∀j ∈

{0, 1, 2, 3}

d = 48 /min from [18]

Inducer unbinding from
DNA-repressor loop

Plac2Rj

(4−j)d
−−−−−−−→ Plac2Rj+1

+

I,∀j ∈ {0, 1, 2, 3}

d = d same as d

Repressor binding to
DNA

Rj + Plac
g
−−→ Plac1Rj

∀j ∈

{0, 1, 2, 3, 4}

g = 0.166 /min from [19]

Repressor unbinding
from single operator
site

Plac1R0

w0−−−→ Plac + R0 w0 =
274710.82 /min

set by detailed bal-
ance, see Section
2.6
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Plac1R1

w1−−−→ Plac + R1 w1 =
14935.15 /min

set by detailed bal-
ance , see Section
2.6

Plac1R2

w2−−−→ Plac + R2 w2 = 811.97 /min set by detailed bal-
ance , see Section
2.6

Plac1R3

w3−−−→ Plac + R3 w3 = 44.14 /min set by detailed bal-
ance , see Section
2.6

Plac1R4

w4−−−→ Plac + R4 w4 = 2.4 /min from [18]

Repressor unbinding
from either end of DNA
loop

Plac2R0

2w0−−−−→ Plac1R0

Plac2R1

2w1−−−−→ Plac1R1

Plac2R2

2w2−−−−→ Plac1R2

Plac2R3

2w3−−−−→ Plac1R3

Plac2R4

2w4−−−−→ Plac1R4
DNA loop formation
from singly bound
repressor

Plac1Rj

c
−−→ Plac2Rj

,∀j ∈

{0, 1, 2, 3, 4}

c = 568.8 /min from [17, 1]

Dilution Y
φ
−−→ ∅ φ = 0.0167 /min from [1], Appendix A

LacI φ
−−→ ∅

LacI2 φ
−−→ ∅

R4
φ
−−→ ∅

R3
φ
−−→ ∅

R2
φ
−−→ ∅

R1
φ
−−→ ∅

R0
φ
−−→ ∅

I φ
−−→ ∅

mRNA degradation mRNAI
ϕ
−−→ ∅ ϕ = 0.6666 /min from [17]

mRNAY
ϕ
−−→ ∅

ξ = cY

ϕ
lY Effective production rate for pump proteins

when the operator is free of repressors
ξ̄ = 0 Effective production rate for pump proteins

when the repressor is bound to operator form-
ing the DNA-repressor loop

⟨Y⟩ = η
η+β

ξ
φ

Mean number of pump proteins

The lac-pathway is formed by the lac-genes lacY, lacZ, and
lacA, which are under joint regulatory control, thus forming a
so-called operon. In the induced state of the lac-pathway, lactose
(‘inducer’) is imported across the cell membrane by the LacY
protein (‘pumps’) and metabolized by the enzyme LacZ into
glucose and galactose. Allolactose, a lactose variant originating
from LacZ activity, binds to the repressor of the lac-genes and
drastically reduces the affinity of the lac-repressor to its DNA
binding sites [3, 6]. The lac-repressor is formed by a dimer of
LacI dimers which are expressed constitutively. The reduced
affinity causes the repressor to unbind from the lac-regulatory
region, enabling the transcription of the lac-genes and production
of the Lac proteins and further import of lactose. In the uninduced
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Figure 2.1: Feedback in the lactose-uptake pathway. Three genes
under common regulatory control constitute the lactose-uptake pathway:
lacZ encodes the enzyme to break down lactose, lacY encodes a permease
(importer of lactose, shown in green), which actively imports lactose from
the environment (here: the non-metabolizable lactose-analogue TMG, blue
wedge), and lacA encodes a transacetylase. Bi-stability is achieved by a
positive feedback-loop; the imported TMG acts as an inducer of the lac-
genes by increasing the unbinding rate of LacI tetramers (red) from the so-
called operator binding sites in the lac-regulatory region. LacI tetramers
inhibit the expression of the lac-genes. As a result, the induced state shown
on the right, with the lac-genes expressed, is stable if the permease im-
ports enough inducers to deactivate the repressors. The uninduced state
shown on the left can also be stable, since in the absence of lac-expression,
the repressors prevent expression of the lac-genes by binding to the reg-
ulatory region and forming a DNA loop. However, this regulatory circuit
is built from stochastic components and can be interrupted by random
fluctuations of the number of mRNA, proteins, inducer, repressors, or the
binding state of repressors to DNA. These fluctuations lead to transitions
between the induced and uninduced states. This figure is reproduced from
published work by the author [1]. I would like to thank M. Markus for help
preparing this figure.
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state on the other hand, the repressor frequently binds to two
DNA sites in the regulatory region of the lac-operon and forms a
DNA-repressor loop that effectively blocks transcription of the
lac-genes and thus the import of lactose into the cell. For a
graphical representation, see Fig. 3.6.

Our model describes the transcription and translation of
mRNA and protein, both of LacY proteins (lactose importer or
‘pumps’) and of LacI proteins (the monomers of the lac-repressor),
repressor binding to DNA at its binding sites, DNA looping, the
uptake of lactose (inducer) or its analog into a cell, inducer
interactions with the repressor in solution and bound to DNA, and
the passive diffusion of inducers into the cell [1]. Almost all rates of
these processes are taken from the experimental literature (see
the following sections and Table 2.1). The exceptions are the
Michælis constant of inducer import by LacY, which we use to
calibrate our model against the experimental measurements of
switching rates from the uninduced to the induced state presented
in [1], and some of the dissociation rates of DNA and repressors,
which we determine using the principle of detailed balance (see
Section 2.6 and [1]).

2.1.1. Comparison to previous models

Along with experimental work that has is cited throughout this
chapter, many computational studies have examined different
aspects of the lac-system. A small sample of this rich literature is
outlined here.

Modeling the dynamics of the lac-system, Mettetal et al. [20]
formulate a deterministic model of the lac-system which they fit
to experiment using several fitting parameters (using the
deterministic framework published earlier in [5]) and then
experimentally estimate protein number fluctuations and burst
sizes (number of proteins produced per mRNA molecule) for LacY,
LacI and GFP. Using these parameters, they formulate a stochastic
model consisting of bursts of protein production (mRNA
production followed by instantaneous protein production and
mRNA degradation), protein degradation and extrinsic noise which
is modeled using a single noise parameter. Repressor binding to
regulatory DNA is not modeled explicitly. However, Choi et al. [6]
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show that repressor dissociation from its binding sites on DNA
plays a crucial role in the switch from the uninduced to the
induced state.

Roberts et al. [21] construct a detailed spatially resolved model
of the lac-operon. They examine the switching behavior and the
effects of such phenomena as spatial crowding. Their results are
consistent with the findings of Choi et al. but they further
conclude that both mRNA and protein thresholds are crossed
during the phenotypic switch.

Stamatakis et al. [22] also construct a detailed, computational,
spatially homogeneous stochastic model of the lac-operon,
including sources of stochasticity such as cell division, operator
fluctuations, mRNA and protein number fluctuations and the effect
of dilution. They focus on describing mathematically the effects of
this stochasticity at the single cell level on population dynamics
and compare it with a deterministic model of the lac-system.
None of the previous models have attempted to identify the rate
limiting fluctuation of the switch to the induced state of the
lac-system. Details of our model and literature sources for
parameters follow below

We do not model the spatial heterogeneity of the bacterial cell.
Experiments by Kuhlman and Cox [23] show that repressor
concentration – and thus the binding probability – depends on
the distance between the lacI genes and the lac-operon. As this
distance is fixed in our experiments, a constant rate of binding per
repressor molecule is appropriate (this rate would change if the
distance between genes were changed). A different effect arising
from spatial heterogeneity is that a particular repressor molecule
that has just been released from the regulatory region might
rebind more quickly than one of the other repressor molecules in
the system, on account of its spatial proximity to the regulatory
region. This is a competition between spatial proximity to the
regulatory region (of the originally bound repressor) and the
larger number of other repressors (potentially more distant, but
more numerous). Roberts et al. [21] estimate the probability that a
given repressor molecule binding to the regulatory region is the
same molecule that has just unbound (rebinding probability) to be
in the range of 0.15 and 0.24, comparable to the result under
perfect mixing (0.1 for 10 repressor molecules). This suggests that
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2.2 . IMPORT OF SUGAR INTO THE CELL

spatial effects do not make a large difference to the rebinding
probability of a repressor that has just dissociated from DNA. In
our case, this effect would lead to an increased binding rate that
would be absorbed into the one fitting parameter of our model.

In the following sections, we look at the chemical reactions in
each subsystem of the lac-operon and its regulation.

2.2. Import of sugar into the cell

First, we examine the passive and active import of the inducing
sugar into the cell.

We refer to the concentration of TMG present outside the cell
as E and the number of sugar molecules inside the cell as I. TMG
can enter the cell in two ways : (i) active import by importers LacY
and (ii) passive diffusion. For sugar transport by importers we can
write

E
α(Y)
−−−→ I, (2.1)

where Y denotes the number of LacY molecules in the cell. We
base our model of active sugar transport (characterized by the
function α(Y)) on [24], where the transport of a lactose-like sugar by
importers is found by in vitro measurements to follow a hyperbolic
function

α(Y) = m
E

Eh + E
Y, (2.2)

where the maximum rate of sugar transport by inducer
m = 1260 /min is measured in [10] and we use the
Michælis-Menten cœfficient Eh as a fitting parameter to calibrate
our simulations to experiments described in [1, 2] and Appendix A.
To the best of our knowledge, measurements of the quantity Eh

are not available for TMG, the lactose analog used in our
experiments [1]. From Eq. (4.25) (which relates the internal inducer
number to external inducer concentration and pump number,
from Eq. (2.2), I = α(Y)/φ) it is clear that assumptions about the
value of m will strongly affect the fitting value for Eh. In our
mechanistic model, we use the value of m reported in [25] by
Smirnova et. al for the sugar NPG (1260 /min). We determine the
Michælis constant Eh by fitting simulations of the detailed
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mechanistic model to experimental data on the switching from the
uninduced to the induced state from [1] (the reverse transition to
the one considered here, see SI Section S3 for details). The best
fit was obtained for Eh = 1.05 × 105µM. For comparison, values
of the Michælis constants Eh for lactulose transport by LacY
(2.4 × 102µM), and sucrose (6.7 × 103µM), fructose (3.5 × 104µM)
transport by CscB are reported by Sugihara et. al in [24]. Since
there are significant variations between different sugars, the fitted
value of Eh for TMG is not implausible, however it is sensitive to
other parameters of the model for which TMG-specific
measurements are not available. Specifically, for large values of
Eh, Eq. (4.25) depends on m and Eh only through their ratio. The
value obtained for Eh might thus reflect simply a value of the
parameter m that is not correct for the inducer TMG used here.
However, while Eh ≫ 100µM the ratio of m and Eh will be
independent of inaccuracies in the value of m.

For passive diffusion of sugars in and out of the cell we have

I
fout
−−→ E , (2.3)

E
fin
−→ I . (2.4)

We take fin = 0.14 /min based on [11]. Using the cellular dimensions
of E. coli from [13, 14] we estimate the surface area of E. coli to be ≈
4×10−12m2 while E. coli cell volume is taken to be 6×10−19m−3[13].
Using these, we can calculate the rate of sugar diffusing out (per
sugar molecule in the cell) as fout = 3.4×10−4 /min [6, 12, 13, 14, 11].

2.3. Repressor production

Having seen how sugar/inducer is imported into the cell, we now
look at the lac-repressor. The repressor is a dimer of LacI dimers
and has 4 binding sites for inducers (one on each LacI molecule).

The lacI gene is expressed constitutively, and when
transcribed, it produces the messenger RNA mRNAI that when
translated produces the LacI protein, the monomer of the
tetrameric repressor that can bind to the lac-regulatory region,
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lacI cR

−−→ lacI +mRNAI , (2.5)

mRNAI
lR
−→ mRNAI + LacI. (2.6)

Measurements reported in [15] indicate that the typical E. coli cell
produces around 10 complete repressors in one cell cycle. Since
the repressor is a tetramer, we have around 40 monomers in the
cell. We denote the rate of mRNA degradation by ϕ. Based on
mRNA lifetimes reported in [26, 17], we have ϕ = 0.6666min. The
burst sizes (the ratio of translation rate to mRNA degradation rate)
and burst frequencies (ratio of transcription rate to dilution rate)
for the lac-operon and other genes in E. coli have been extensively
studied, for example in [27, 28, 29, 17, 30]. We take a burst size of
5 and burst frequency of 8 (estimated for a low abundance protein)
from [28, 30] to obtain the transcription rate (cR = 0.1336 /min)
and the translation rate (lR = 3.33 /min) for lacI.

Using the symbol LacI2 for the dimer, and R for the tetrameric
repressor, we represent the tetramerization process through the
following reactions

LacI+ LacI u2R

−→ LacI2 (2.7)

LacI2 v2R
−→ LacI+ LacI (2.8)

LacI2+ LacI2 u4R

−→ R (2.9)

R
v4R
−→ LacI2+ LacI2. (2.10)

While the rates at which the tetramerization proceeds are not
well known, the affinity of the dimer to tetramer reactions is
known to be 108/M [16]. Thus, it is reasonable to expect that
most LacI molecules will occur as the tetrameric repressor R
rather than in the monomeric or dimeric states. To reflect this,
we take the association rates u2R = u4R = 103 /min and the
dissociation rates v2R = v4R = 10−5 /min.
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2.4. Importer production

Having dealt with inducers and repressors in the previous two
sections, in this section we consider the third intracellular
molecule relevant to our system - the pump LacY. TMG is
imported into the cell by the LacY protein acting as a importer
(pump). LacY is produced by a lac-gene controlled by the
lac-regulatory region of the lac-genes we refer to as Plac. It is
known that the repressor can form a DNA loop by binding to two
operator sites, thus effectively hindering transcription of the
lac-genes [6]. We refer to a lac-regulatory region with the
DNA-loop formed as Plac2.

Using the measurements from [17], which indicate that the
number of LacY proteins in the cell (if there are no active
repressors present) is 10000, we take the rates of lacY
transcription cY = 6 /min and translation lY = 20 /min to obtain
a burst size (ratio of translation rate to mRNA degradation rate) of
30 consistent with [27, 31].

However, when the repressor is bound to DNA forming the
repressor-DNA loop (the Plac2 state), one end of the repressor
can come undone causing the DNA loop to open, leading to leaky
production of importers [6], a state we refer to as Plac1. With the
lac-genes repressed, the cell is expected to have approximately 10
importer proteins [17], giving a transcription rate of
cY = 6× 10−3 /min,

Plac cY

−−→ Plac+mRNAY , (2.11)

Plac1 cY

−−→ Plac1+mRNAY , (2.12)

mRNAY
lY
−→ mRNAY + LacY . (2.13)

Here, the mRNAY is the messenger RNA that when translated
produces the importer protein LacY. The degradation rate of mRNA
is taken to be ϕ = 0.6666 /min from [26]

mRNAY
ϕ
−→ ∅ (2.14)

mRNAI
ϕ
−→ ∅. (2.15)
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2.5. Inducer-repressor-DNA interactions

In this section we deal with the chemical reactions that complete
the doubly negative feedback loop that causes the bi-stability of the
lac-operon - the interactions of inducer molecules with repressors,
both in the cell and while bound to DNA.

Once the sugar (lactose, here TMG) has been imported into the
cell it can bind to the repressor at four sites, one on each monomer.
The sugar-bound repressors are less effective at curbing production
of importers (see below) and thus the sugar is also referred to
as an inducer (of importer production). Each repressor has four
binding sites for inducer molecules. We represent the number of
free binding sites on the inducer with the subscript. So, R4 is just
a free repressor R, where as a repressor with one inducer bound
is R3, and so on. In general, a repressor denoted by Rj has (4− j)
repressors bound to it. We take b to be the rate at which an inducer
binds to a repressor molecule with four free binding sites, while
d is the dissociation rate of one inducer molecule from its binding
site on the repressor,

R+ I
b

−→ R3 (2.16)

R3 + I
3b
4−→ R2 (2.17)

R2 + I
b
2−→ R1 (2.18)

R1 + I
b
4−→ R0 (2.19)

R0
4d
−→ R1 + I (2.20)

R1
3d
−→ R2 + I (2.21)

R2
2d
−→ R3 + I (2.22)

R3
d

−→ R+ I. (2.23)

The rates of inducer-repressor binding and unbinding were
investigated in vitro by Dunaway et al. [18]. They give the binding
rate as b = 2.29 × 10−3 /min and the dissociation rate as
d = 12 /min.

Dunaway et al. also find that interactions between inducers and
DNA-bound repressors are weaker than the interactions between
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inducers and free repressors. In particular, DNA-bound repressors
bind to inducers at a rate b that is 4.6 times more slowly, and
dissociate at a rate d that is 4 times faster. We represent the DNA-
repressor-inducer complex by Plac1Rj

if the repressor is bound
to one operator site and Plac2Rj

if the repressor is bound to two
operator sites forming a DNA loop. As before, the subscript in Rj

stands for the number of unoccupied inducer binding sites on the
repressor. We take b to be the rate at which an inducer binds to
an inducer free repressor bound to one binding site on the DNA,
while d is the dissociation rate of an inducer molecule from its
binding site on a DNA bound repressor. The rate b at which an
inducer binds to a repressor DNA loop is set by detailed balance
(see Section 2.6) where as we take the rate d at which an inducer
dissociates from the DNA repressor loop to be the same as the rate
d, with the reduced affinity of the repressor in a DNA loop to the
inducer being wholly reflected in the difference between the rates
b and b. Dunaway et al. measure the rates d, b, d, b, while the
rate b is set by detailed balance (see Section 2.6),

d = 12 /min, (2.24)

d = 48 /min, (2.25)

b = 4.98× 10−4 /min, (2.26)

b = 2.29× 10−3 /min. (2.27)
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Plac1R4
+ I

b
−→ Plac1R3

, (2.28)

Plac1R3
+ I

3b
4−→ Plac1R2

, (2.29)

Plac1R2
+ I

b
2−→ Plac1R1

, (2.30)

Plac1R1
+ I

b
4−→ Plac1R0

, (2.31)

Plac2R4
+ I

b
−→ Plac2R3

, (2.32)

Plac2R3
+ I

3b
4−→ Plac2R2

, (2.33)

Plac2R2
+ I

b
2−→ Plac2R1

, (2.34)

Plac2R1
+ I

b
4−→ Plac2R0

, (2.35)

Plac1R0

4d
−→ Plac1R1

+ I, (2.36)

Plac1R1

3d
−→ Plac1R2

+ I, (2.37)

Plac1R2

2d
−→ Plac1R3

+ I, (2.38)

Plac1R3

d
−→ Plac1R4

+ I, (2.39)

Plac2R0

4d
−→ Plac2R1

+ I, (2.40)

Plac2R1

3d
−→ Plac2R2

+ I, (2.41)

Plac2R2

2d
−→ Plac2R3

+ I, (2.42)

Plac2R3

d
−→ Plac2R4

+ I. (2.43)

The interactions between the lac-regulatory region and the
repressor depend on the number of inducers bound to the
repressor. In general, repressors with different number of
inducers bound to them might bind and unbind from the
lac-regulatory region at different rates. However Winter et al.
[32] find that inducer binding states do not significantly change
the rate of repressor-lac-regulatory region binding. This is
consistent with the idea that the binding rate of the repressor to
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the operator (g) is limited by the 3D and 1D random searches that
the repressor conducts to find its binding site [33, 34]. Thus, we
have

R+ Plac
g

−→ Plac1R4
, (2.44)

R3 + Plac
g

−→ Plac1R3
, (2.45)

R2 + Plac
g

−→ Plac1R2
, (2.46)

R1 + Plac
g

−→ Plac1R1
, (2.47)

R0 + Plac
g

−→ Plac1R0
. (2.48)

The binding rate of a single repressor to its binding sites has been
measured in [19, 17] and they put an upper bound of 6 minutes for a
single repressor to find one of its binding sites. This corresponds to
g = 0.166 /min. We represent the dissociation rate of a repressor
with j free binding sites (4 − j inducers bound) from one of its
binding sites on the DNA by wj,

Plac1R0

w0−→ Plac+ R0, (2.49)

Plac1R1

w1−→ Plac+ R1, (2.50)

Plac1R2

w2−→ Plac+ R2, (2.51)

Plac1R3

w3−→ Plac+ R3, (2.52)

Plac1R4

w4−→ Plac+ R . (2.53)

When one end of the repressor is bound, the rate at which the
other end binds to a second site to form the repressor-DNA loop
is represented by c. Either of two ends of the repressor can
unbind from the DNA to open the loop. DNA loop formation is

42



2.5 . INDUCER-REPRESSOR-DNA INTERACTIONS

then described by

Plac1R4

c
−→ Plac2R4

, (2.54)

Plac1R3

c
−→ Plac2R3

, (2.55)

Plac1R2

c
−→ Plac2R2

, (2.56)

Plac1R1

c
−→ Plac2R1

, (2.57)

Plac1R0

c
−→ Plac2R0

, (2.58)

Plac2R0

2w0−→ Plac1R0
, (2.59)

Plac2R1

2w1−→ Plac1R1
, (2.60)

Plac2R2

2w2−→ Plac1R2
, (2.61)

Plac2R3

2w3−→ Plac1R3
, (2.62)

Plac2R4

2w4−→ Plac1R4
. (2.63)

The rate w4 = 2.4 /min (the dissociation rate of repressor molecule
from its binding site) has been measured by Dunaway et al. in
[18]. The rates w3, w2, w1, w0 are determined by the condition of
detailed balance as described in Section 2.6.

The rate at which the repressor unbinds from both its binding
sites and dissociates completely from the lac-regulatory region in
the absence of inducer molecules is estimated in [17] to be
≈ 0.02 /min. Following the reasoning of Choi et al., total
unbinding of the repressor from the DNA occurs when there are
two consecutive unbinding events. The repressor-DNA loop is
broken by the first unbinding event and if the second unbinding
event occurs before the loop is re-formed, the repressor
completely unbinds from the lac-regulatory region. The rate of
complete dissociation of the repressor (η) from the DNA depends
on the rate at which the repressor unbinds from one of its
binding sites (w4) and the rate at which the loop reforms if the
repressor is bound to one operator site represented by c. As
discussed earlier in this section, w4 and η have been measured in
[18, 17]. To compute c, we must determine the relationship
between η, c and w4.

We assume that the two ends of the repressor bound to DNA
unbind independently of each other at rate w4 and that successive

43



2 . THE MODEL

unbinding events are also independent of earlier binding,
unbinding events. Thus, we can treat the unbinding of the
repressor from each of its binding sites as independent Poisson
processes both characterized by the rate w4. Similarly, we can
treat the re-formation of the loop when one end of the repressor
is bound to DNA as a Poisson process characterized by the rate c.

We can write down simple linear equations that express the
lifetime of the repressor in the DNA-repressor loop τL, and of the
repressor with one leg bound to DNA τl in terms of the microscopic
rates w4 and c, as well as the experimentally measured effective
rate of dissociation η. We have,

τL −

�
1

2w4
+ τl

�
= 0, (2.64)

τl −

�
w4

(w4 + c)2
+

c

w + c

�
1

w4 + c
+ τL

��
= 0. (2.65)

Solving these equations

τL =
c+ 3w4

2w2
4

, (2.66)

τl =
c+ 2w4

2w2
4

, (2.67)

where we know,

η =
1

τL
= 0.02. (2.68)

Thus, we can write down the expression for c in terms of the
known rates η and w4,

c =
2w2

4

η
− 3w4 = 568.8. (2.69)

2.6. Detailed balance

While the lac-operon has been studied extensively, several
microscopic rates in the network of DNA-repressor-inducer
binding/unbinding reactions remain unavailable in the literature,
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see Figure 4.4. Fortunately, we can estimate these using the
principle of detailed balance.

In a system composed of many elementary processes (such as
chemical reactions), the principle of detailed balance applies when
every elementary process is time reversible. At equilibrium, this
microscopic reversibility implies that every elementary process
must be balanced by its reverse process. While detailed balance
dœs not apply to irreversible processes such as transcription and
translation, we can use it to constrain rates in reaction networks
involving binding and unbinding of ligands and their substrates.
Tree-like reaction networks (which do not have any cycles) in
equilibrium always obey detailed balance. For reaction networks
which do include cycles, detailed balance provides a relationship
between the rates of the reactions involved in each cycle [35]. As
an illustration, consider the following cycle:

A1
k12−−��−−
k21

A2
k23−−��−−
k32

A3...Ap

kpq
−−−��−−−
kqp

Aq...An
kn1−−−��−−−
k1n

A1. (2.70)

Then, the relationship between the rates is given by

k12k23...kpq...kn1 = k21k32...kqp...k1n. (2.71)

Thus, the principle of detailed balance can be used to determine
one rate in each reaction cycle in terms of the others.

In Figure 4.4, the timescales implied by microscopic reactions
rates (denoted by lowercase letters next to the relevant
transitions, see Table 2.1) are all a lot shorter than the timescales
over which inducer concentrations change appreciably (the
lifetimes of the quasi-stable induced and uninduced states). So, it
is reasonable to assume that this reaction system is always in a
local equilibrium, letting us use the principle of detailed balance to
deduce unknown reaction rates.

We use the reaction loops in Figure 4.4 to derive the rates of
some of the reactions in our model (for more on the various rates
involved, see Table 2.1). While the dissociation rate of a repressor
with one leg bound to the operator in the absence of inducers (w4)
has been measured in [18], the dissociation rates when one or more
inducers are bound to the repressor have not. These we can derive
by the principle of detailed balance.
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g
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c

2w0
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β

Figure 2.2: The repressor-DNA-inducer reaction system. This figure is
reproduced from published work by the author [2].
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Considering the topmost loop on the left in Figure 4.4 the
principle of detailed balance implies,

w3 =
w4 · d · b

d · b
. (2.72)

Considering the topmost loop on the right, we establish the
relationship between the rate of inducer dissociation from repressor
with one leg bound to DNA (b) and two legs bound to DNA b,

b = b
w4

w3
. (2.73)

Similarly,

w2 =
w3 · d · b

d · b
, (2.74)

w1 =
w2 · d · b

d · b
, (2.75)

w0 =
w1 · d · b

d · b
. (2.76)

We consider the reactions involving inducer (TMG) binding to
the repressor and the repressor binding to the operator (Eq. (17)
to Eq. (60)). The rates of total repressor dissociation η, repressor
dissociation from one binding site w4, inducer binding to repressor
bound and unbound from DNA (b, b) and inducer unbinding from
repressor bound and unbound from DNA (d, d) have been measured
in experiments (see Table 2.1). Dunaway et al. [18] report that rates
at which repressors with one or more inducers bound to them
dissociate from DNA (w3, w2, w1, w0), are too fast to measure. We
use the detailed balance condition to deduce these rates along with
the rate at which inducers dissociate from a repressor bound to the
DNA at both ends (b).

Substituting the numeric values of the relevant rates (see Table
2.1 for a summary) in the expressions for the wj∀j < 4 derived
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above, we obtain,

w3 = 44.144 /min , (2.77)

b = 2.707× 10−5 /min , (2.78)
w2 = 811.97 /min , (2.79)
w1 = 14935.15 /min , (2.80)
w0 = 274710.82 /min. (2.81)

2.7. Dilution rate

All molecular species inside the cell are subject to dilution via cell
growth,

LacY φ
−→ ∅ (2.82)

LacI φ
−→ ∅ (2.83)

LacI2 φ
−→ ∅ (2.84)

R
φ
−→ ∅ (2.85)

R3
φ
−→ ∅ (2.86)

R2
φ
−→ ∅ (2.87)

R1
φ
−→ ∅ (2.88)

R0
φ
−→ ∅ (2.89)

I
φ
−→ ∅ . (2.90)

In our experiments the dilution rate is φ = 0.0167 /min, see
Appendix A.

2.8. Other factors

Apart from the chemical reactions and the stochasticity intrinsic to
them and to the small numbers of molecules they produce, there are
other sources of noise that could be salient to switching behavior.
We consider a couple of these below.
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2.8.1. Cell Divisions

Cell growth and division involve random partitioning of molecules
between the daughter cells which is a source of mRNA and protein
number fluctuations. If there are n molecules of a particular type
inside the cell just before division and each molecule is equally
likely to go to either of the two daughter cells, the probability that
m molecules go to one daughter cell while (n−m) go to the other
is distributed binomially [36] as

Pn(m) =

�
n

m

�
2−n. (2.91)

Every doubling period (60 minutes, in our case) and for each
type of molecule (j) in our system (sugars, mRNA, proteins) with
abundances nj, we use the distribution given by Eq. (2.91) to draw a
number mj. In Eq. (2.91) cell division is assumed to be symmetrical
and thus the mean ⟨mj⟩ is given by ⟨mj⟩ = nj/2. To normalize the
number of molecules per unit volume (the daughter cell has half the
volume of the mother cell) we take the abundance of molecule (j)
in the daughter cell to be 2mj. The variance in mj implied by Eq.
(2.91) is nj2

−2. Since the variance is proportional to abundance nj,
the cœfficient of variance (the ratio of the standard deviation to the
mean) is proportional to 1/

√
nj showing that partitioning noise is

more significant for molecules with low abundances.

2.8.2. Delays

Delays between different events in a gene regulatory model can
be used to effectively describe mechanisms that are not modeled
explicitly. For instance, in a model describing gene expression by
a single step (omitting RNA production) one can use a delay
between transcription factor binding and protein production to
account for the intermediate steps of transcription and translation.
Such delays, whose duration is a random variable drawn from
some distribution, can affect the switching behavior between
phenotypic states [37]. In our approach we aim at first for a
highly detailed model, which explicitly includes intermediate steps
such as transcription and translation. Each of these steps happens
at a finite rate, hence delays e.g. between transcription factor
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binding and protein production emerge naturally from the model,
rather than being put in by hand via an ad-hoc delay distribution.
It might be that our detailed model is still not sufficiently detailed,
requiring the inclusion of either further explicit reactions, or
alternatively delays. An example for such a step is the folding of
proteins. However, the good match between experimentally
determined switching rates and the switching rates observed in
the model suggest that we have already captured the relevant
processes.

2.8.3. Simulating the model

We performed stochastic simulations of the detailed mechanistic
model using the Gillespie algorithm [38] in FORTRAN and Julia. To
measure first passage times to the induced state at a given inducer
concentration, we first initialized the cells in the uninduced state
(0µM TMG) for 60 minutes, and then changed the concentration
to the one at which switching behavior was being measured. We
simulate each cell until a threshold close to the number of pumps in
the induced state ≈ 10000 (see [17]) has been crossed. Conversely, to
measure the first passage times to the uninduced state, we initialize
the cells at 250µM TMG, and then change the concentration to the
one at which switching behavior is to be measured, and simulate
each cell until a threshold close to the number of pumps in the
uninduced state ≈ 10 (see [17]) has been crossed.

2.9. Summary

In this chapter we considered various subsystems involved in the
lac-operon and its regulation. We associated microscopic rates
measured in the literature to each chemical reaction, thus
establishing the detailed mechanistic model of the lac-system that
our analysis of switching behavior will be based on. In particular,
we considered sugar import, repressor production, pump protein
production and the network of inducer-repressor-DNA binding
and unbinding reactions.

While the model has a large number of parameters, we
identified the Michælis cœfficient of inducer import by pumps as
the single parameter we will use to calibrate our simulations
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against experiments based on the switch to the induced state that
is considered in the next chapter.
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3. Switching on

In this chapter analyse the switch to the induced state of the
lac-pathway. The material presented in this chapter is based on
published work done by this author [1]. Experiments referred to
in this chapter were performed by Robin A. Sorg from the lab of
J. W. Veening and published in joint work with this author [1, 2].

3.1. Introduction

In the previous chapter, we saw a detailed model of the
lac-pathway that includes the transcription and translation of
LacY (lactose importer or ‘pumps’) and LacI proteins (the
monomers of the lac-repressor), repressor binding to DNA , DNA
looping, the uptake of lactose (inducer) or its analog into a cell,
inducer interactions with the repressor in solution and bound to
DNA, and the passive diffusion of inducers into the cell. As has
been discussed before in Chapters 1 and 2, the lac-system has
two metastable states. In the induced state the lac-genes are
expressed, the pump molecule LacY exists in the cell in large
quantities, the inducer (in our case TMG) is being imported into
the cell, and most repressors are bound to one or more inducer
molecules making them unlikely to remain on their binding sites
on DNA for very long. On the other hand, in the uninduced state,
a repressor is tightly bound to its two binding sites forming a
stable repressor-DNA loop that effectively inhibits any production
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of the pump molecule, and there are very few inducers in the cell.
In this chapter, we will elucidate the mechanism of switching

from the uninduced state to the induced state. First, in Section
3.2, we illustrate the analysis of experimental data from
experiments reported in joint work with this author (see [1]) to
compute the dependence of the switching rate to the induced
state on external TMG concentration. We show that stochastic
simulations of the model described in Chapter 2 match the
experimental rate curve using the Michælis constant of inducer
transport as a free parameter. Then, in Section 3.3, we describe
the smoothening procedure introduced by this author and
collaborators in [1] to identify what fluctuations influence the
switching curve. In Section 3.4 we develop a closed form
expression for the switching to the induced state and describe the
match with experiment and simulation.

3.2. Switching curves from experiments

To assess expression of the lac-genes at the single-cell level flow
cytometry was used on a population of E. coli strain CH458,
which contains a gfp-cat cassette inserted downstream of the
lac-operon [39] (see Appendix A for details). The switching rate
from the uninduced state to the induced state is the number of
cells per unit time which switch from low numbers of
lac-proteins to a state with high number of lac-proteins. To
determine the rate of switching to the induced state, a population
of uninduced cells was prepared and the fraction of cells in the
uninduced state at subsequent times was fit to an exponential
decay. Examples are shown in Figure 3.1. Switching rates are
determined at different external inducer concentrations, resulting
in a rate curve of the switching rate against inducer concentration
(see Figure 3.7).

3.2.1. Simulations and fitting to experiment

We simulate the mechanistic model defined in Table 2.1, and use the
parameter Eh (the Michælis constant of inducer import by LacY) to
fit to experimental measurements of the transition to the induced
state presented in [1]. The best fit is obtained for Eh = 1.05×105. As
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Figure 3.1: Single-cell analysis and the rate of phenotype switching.
A: (Schematic) We take hourly samples from populations of E. coli cells
growing at different concentrations of the external inducer. Through dilu-
tion at regular intervals we keep the populations under constant conditions,
see Appendix A and [1]. A fluorescent reporter indicates the expression
levels of the lac-genes in individual cells. B: Fluorescence data taken at
30µM of TMG (smoothened with a moving average filter for visual clarity)
showing the bimodal distribution of reporter expression with high and low
levels corresponding to cells in uninduced (OFF) and induced (ON) states.
Initially, all cells are in the uninduced state. With time, the fraction of cells
in the induced state increases and the fraction of cells in the uninduced
state decreases (shown here: purple 3h, blue 4h, green 5h, yellow 6h, red
7h, other time points not shown). C: The fraction of cells in the uninduced
state decays approximately exponentially with time. Fitting an exponen-
tial function (black line) to the data points gives the switching rate to the
induced state. For this particular concentration of TMG the switching rate
is 3.9× 10−3 ± 3.3× 10−4/min. This figure was jointly made with Robin A.
Sorg and is reproduced from published work by the author [1].
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Figure 3.2 shows, this one fitting parameter is enough to capture
the switching rates seen in experiments over several orders of
magnitude.

Figure 3.2: Fitting simulations to experiments: Simulations of the
mechanistic model with the single fitting parameter Eh = 1.05×105 match
experimental observations taken from [1] over several orders of magnitude
of the switching rate, and external TMG concentrations (denoted by E)
ranging from 10µM to 200µM. The straight line fit to experiments is
shown as a visual guide.

3.3. The smoothening procedure

In the previous section we described how the switching curve is
measured in flow cytometry experiments and how we caliberate
the free parameter of our model of the lac-operon against the
experimental rate curve using stochastic simulations. In this
section, we will describe smoothening procedure we introduced
in [1] and use it to identify the fluctuations that influence the
transition to the induced state.

Multistable gene regulatory systems use specific mechanisms
like feedback to stabilize expression patterns defining different
phenotypic states [5, 40, 41, 42, 43, 44, 45, 46]. However, no
natural system is strictly multistable since it will not persist in
any one of its states indefinitely. Instead, the lifetimes of stable
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states are finite, with random fluctuations causing transitions
between different states. In gene regulatory systems the copy
numbers of mRNA molecules, proteins, and ligands fluctuate over
time due to the random timing of transcription, translation,
transport, and binding [47, 29, 48, 49, 20, 50, 51, 52]. These
fluctuations can trigger a switch from one phenotype to
another [53, 54, 6, 55, 56]. However, when all components of a
multistable system fluctuate, what are the fluctuations causing the
transition? In other words, what are the rate-limiting fluctuations?

Such rate-limiting fluctuations are difficult to identify
experimentally, because it is hard to monitor and control
variation in molecular copy numbers inside a cell. In an ideal
scenario, one would take a multistable system and reduce the
amplitude of fluctuations of each of its components in turn. If
reducing the fluctuations of a particular component affects the
switching rate between different states, then one can consider
fluctuations in that component rate-limiting to the transition. This
strategy has been implemented experimentally by Maamar et
al. [53] for a single component of a bi-stable signaling pathway in
Bacillus subtilis. The comK -pathway enables B. subtilis to take up
new genetic material, which may offer fitness advantages [57].
Maamar et al. increased the transcription rate of comK and
simultaneously decreased its translation rate. Average protein
levels were left unaffected, but fluctuations around this mean due
to the random timing of mRNA production were reduced. Maamar
et al. observed a decrease in the switching rate between the
states with low levels of ComK and high levels of ComK, showing
that mRNA-fluctuations affect the switching rate. But are these the
only rate-limiting fluctuations in the system? Repeating this
procedure for all components in a pathway is cumbersome for
small pathways and unfeasible for larger pathways. Moreover,
transitions could be driven by fluctuations in ligand numbers,
protein conformations or binding state, which are even harder to
control in experiments.

If rate-limiting fluctuations are hard to identify experimentally,
they cannot be identified purely on the basis of regulatory network
models and computer simulations either. Any model describes a
restricted number of molecular species and replaces the rest with
effective reaction rates. The formulation of a model thus already
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constitutes an a priori assumption on the relevant constituents.
Being rare events, transitions between stable states are strongly
influenced by the molecular details. Two models can thus exhibit
the same bi-stable expression patterns as a function of external
parameters, e.g. hysteresis plots [5], yet differ markedly in the
mechanisms and rates of switching between states. Indeed the rate-
limiting fluctuation is thought to differ drastically across pathways:
mRNA fluctuations in the comK -pathway [53], fluctuations in initial
pump numbers in the arabinose-uptake pathway [54], and gene
activity bursts in the λ-phage lysogeny [56]. Hence, transitions
between stable states can act as a sensitive probe into molecular
details of a pathway.

We described a detailed mechanistic model of the lac-system
in Chapter 2. To assess the effect of fluctuations in specific
components of the lac-pathway on the switching rate, we put
forward a simple scheme to control fluctuation amplitudes in
silico. Take a particular component, e.g. lacY -mRNA that is
produced in units of 1 molecule at some rate. (This rate changes
over time due to repressor binding and unbinding to the
lac regulatory region.) We now change the number of molecules
produced in each transcription event by a smoothening factor
s < 1, and simultaneously divide the transcription and
degradation rates by the same factor. For a smoothening factor
s = 0.1, mRNA molecules are produced in units of 1/10 but at 10
times the rate. In general this leads to non-integer numbers of
molecules in the system. Nevertheless, a well-defined stochastic
system results from this procedure: for instance, the Gillespie
algorithm simulates transitions between states a, b, c, . . .. For
s = 1 these states correspond to (0, 1, 2, 3, ..) molecules in the
system, while at s = 0.1 they are (0, 0.1, 0.2, 0.3, . . .). The
application of this procedure to molecular species like importers
and repressors is straightforward, but smoothening the
lac-regulatory region state requires separate consideration (see
Section 3.3.1).

This is impossible to do experimentally but feasible in silico;
downstream, the rate of protein production will now simply be
proportional to a non-integer number of mRNA molecules, and
analogously for other molecules and binding states. The effect of
this procedure is illustrated in Fig. 3.3. The mean number of
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Figure 3.3: The smoothening procedure is illustrated with a birth-death
process where some molecule is created and degraded at constant rates.
Plot (A) shows the time series of molecular copy numbers with a mean of 10
molecules (red line). For the smoothened dynamics (green line), step sizes
are multiplied by the smoothening factor s = 0.01 and rates are divided by
s, leaving the mean unchanged. Plot (B) shows the standard deviation of
molecular copy numbers against the smoothening factor s. The amplitude
of fluctuations around the mean increases with s. This figure is reproduced
from published work by the author [1].
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molecules is preserved, but the fluctuations about this mean are
reduced by a factor of s. Deterministic dynamics (which can be
described by ODEs) corresponds to s = 0, while finite values of s
result in some degree of stochasticity. If smoothening fluctuations
in a particular component affects the switching rate between
phenotypic states, we conclude that these fluctuations are rate
limiting to the particular transition. On the other hand, if
smoothening fluctuations in a particular component is found not
to affect the switching rate, its dynamics can be modeled by an
ordinary (deterministic) differential equation. In this way, the
minimal model describing a particular transition can be
determined systematically.

We also found that the noise introduced by random partitioning
at cell division dœs not play a role in the switch to the induced
state. We eliminated the noise from cell division by skipping the
random partitioning step (see Section 2.8.1) and found no effect on
the switching rate curve. As has been pointed out earlier (in Section
2.8.1), fluctuations due to random partitioning are more significant
for molecules with low abundances. While there are only about
10 repressors in the E. coli cell, the lac-system is unaffected by
changes in repressor numbers as long as a repressor is bound to
the lac-regulatory region. Since the lifetime of the repressor-DNA
loop is large (approximately 40 min) as compared to the time scale of
repressor mRNA transcription (approximately 7 min), the switching
rate is insensitive to smoothening of repressor number fluctuations
including those caused by cell division.

3.3.1. Smoothening operator state fluctuations

The regulatory region of a gene has only two states with respect
to its repressors, occupied and unoccupied. We aim to smoothen
the fluctuations in the operator state without changing the mean
production rate of gene product. For this discussion, we assume
that the regulatory region undergœs the transition occupied →
unoccupied at a rate u and the reverse transition at a rate b. If
the rate of production of gene product when the operator is
unoccupied is r while the rate of production when operator is
occupied by the repressor is approximately zero, the mean rate of
production of gene product is ru

u+b .
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Figure 3.4: Shown is the change in mean first passage time to the induced
state as different fluctuations are smoothened. We see that the dominant
influence is from operator state fluctuations (repressor-DNA interactions)
rather than fluctuations in repressor or pump numbers. Values of the
smoothening parameter s < 1 indicate reduced fluctuations, where as s = 1
reproduces the mechanistic model detailed in Chapter 2.

To smoothen the fluctuations in lac-regulatory region state by
a factor s, we picture a population of pseudo-promoters which can
reach a maximum number of 1

s pseudo-promoters, each producing
gene product at a rate rs. Now, we define the birth rate of pseudo-
promoters

u(n) = u

��
1

s

�
− n

�
, (3.1)

where n is the current population of pseudo-promoters. Note that
the birth rate is dependent on n and gœs to 0 as n approaches
its maximum value of 1/s. The death rate is the usual population
dependent death rate

b(n) = bn. (3.2)

Thus, the mean population of pseudo-promoters is

nmean =
u
s

u+ b
(3.3)
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and the mean rate of production of gene product

rs
u
s

u+ b
= r

u

u+ b
(3.4)

as expected. For s → 0 the fluctuations around the mean tend to
zero.

For this binary system (occupied and unoccupied state), a
simpler smoothening procedure is also feasible [58], namely to
increase of both binding and unbinding rates keeping their ratio
constant. However, the limit of this procedure is not a
deterministic process, whereas the method based on a population
of pseudo-operators generalizes the smoothening described above
to binary systems. Nevertheless we expect the two methods to
yield identical results in practice.

We find that for our system the only relevant fluctuations for the
uninduced → induced switch are fluctuations in the operator state.
smoothening the fluctuations in other species dœs not affect the
rate of switching, while smoothening fluctuations in the operator
state slows down the rate of phenotypic switching to the point of
being unobservable over the timescale of our simulations.

3.4. The switching rate γ

In the previous section, we applied the smoothening procedure to
various components of our model of the lac-system and found
that the switching rate curve is unaffected by reducing
fluctuations in all components except the operator state. Notably,
fluctuations arising from the finite number of lacY mRNA and
protein, partitioning due to cell division, or the random timing of
transcription and translation do not affect the switch to the
induced state. Only the random timing of repressors binding to
and unbinding from the lac-operator affects the switching rate.
Reducing these fluctuations, the switching rate decreases until no
more transitions to the induced state are observed on the
timescale of our simulations. The stochastic dynamics of all other
components can be replaced by a smoothen deterministic
dynamics without affecting the switching rate (see Section 3.3).
Fluctuations in the operator state are thus the rate-limiting
fluctuations for the transition to the induced state.
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Figure 3.5: Sample time series of the transition to the induced state at
an external TMG concentration of 40µM.

In the lac-system, LacI molecules can tetramerize and bind
simultaneously to two different operator sites, forming a DNA loop
that results in a very effective repression of transcription. A
mechanism proposed by Choi et al. [6] is that the repressor
unbinds from both operator sites, triggering a burst of mRNA
production taking the lac-pathway to the induced state. However,
we find that full repressor unbinding takes place at a far higher
rate than the transition to the induced state (see Fig. 3.7). An
additional mechanism must be involved.

Once the repressor has released the lac-operon, the same
repressor molecule (or a different one) might quickly bind again.
Alternatively, the operator might remain unbound for a time
period τ long enough for sufficient numbers of LacY to be
produced and for sufficient inducer molecules to be pumped into
the cell to deactivate repressors and switch the cell to the induced
state.

Accounting for this threshold period gives a simple but
accurate theory of the transition to the induced state of the
lac-system, analogous to the theory developed by Walczak,
Onuchic and Wolynes for a simple model of a self-activating
gene [59]. The effect of lac expression on the repressors of the
lac-genes is mediated by the inducing sugars imported by the
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β

η

Repressor bound Repressor unbound

Figure 3.6: Repressor binding and unbinding. The lac-repressor (red)
binds the lac regulatory region with two of its ‘legs’ forming a DNA loop
that prevents transcription of the lac-genes (center left). Without a re-
pressor bound, the lac-genes are expressed, and the pumps LacY (green)
import the inducer lactose (blue triangles). The rate of repressor binding
β depends on the number of repressors present in the cell (top), the rate of
unbinding η depends on the number of inducers bound to the DNA bound
repressor (bottom). This figure is reproduced from published work by the
author [2]. I would like to thank M. Markus for help preparing this figure.

64



3.4 . THE SWITCHING RATE γ

importer LacY. The threshold period τ is then given by the time
required to express a number of importers sufficient to maintain a
certain concentration of inducers in the cell. This critical number
of importers is set by the requirement that repressors are
deactivated by binding to the imported inducers. Thus, the time
period τ is a function of external inducer concentration.

The time period for which the operator is free of repressors
depends on the binding and unbinding rates of repressor to the
operator. In the uninduced state, there are very few inducers in
the cell, so the rate η at which the repressor completely unbinds
is known (see Table 2.1). In Chapter 2 we had denoted the rate at
which a single repressor will bind to the operator by g (see Table
2.1). If R is the number of repressors in the cell, then the rate at
which the lac-regulatory region will be found by some repressor
is β = Rg. In the lac-system there are approximately 10 repressors
in the cell [15], giving β = 10× g = 1.66.

First, we derive an expression for the switching rate γ in terms
of the rates η, β and the threshold period τ. In a subsequent step,
we will calculate the expression for the threshold period τ, and
caliberate it against data from experiments and simulations.

We derive an expression for the threshold rate γ in two steps.
First, we compute the expected time taken for one complete
binding-unbinding cycle between the repressor and the DNA,
assuming that the operator dœs not stay free of repressors longer
than the threshold period τ. Then, we calculate the expected
number of such cycles until the operator dœs stay free of
repressor for τ minutes, and the system switches to the induced
state. Multiplying these two quantities together gives us the
expected waiting time to the switch to the induced state, the
inverse of which is the switching rate γ.

We treat binding and unbinding of the repressor from the lac-
regulatory region as independent Poisson processes characterized
by the rates g and η respectively. We note again that the time
intervals t between successive events in a Poisson process with
a rate parameter λ are independently distributed according to an
exponential distribution p(t) = λe−λt.

Let pb(tb) denote the probability distribution of time periods
tb over which the lac-regulatory region remains occupied by a
repressor, i.e. tb is the time interval between a binding and a
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successive complete unbinding event. Similarly, we denote by tu
the time intervals for which the lac-regulatory region remains
free of repressors, i.e. tu is the time period between a complete
unbinding event and a binding event that follows it.

Let the probability distribution of times tu < τ for which the
lac-regulatory region remains free of repressors for a period less
than the threshold period τ be ptu<τ(tu). We denote the Laplace
transform of pb(tb) by Pb(s) and the Laplace transform of
ptu<τ(tu) by Pu(s). Then we have

pb(tb) = η · e−η·tb (3.5)

Pb(s) =
η

s+ η
(3.6)

ptu<τ(tu) =

�
β·e−β·tu

1−e−β·τ if tu < τ,
0 if tu > τ.

(3.7)

Pu(s) =
β

eβ·τ − 1
· e

β·τ − e−s·τ

β+ s
. (3.8)

We now consider a cycle of binding, complete unbinding and
rebinding before the threshold period τ has elapsed, taking the time
tb plus tu < τ. We denote the Laplace transform of the distribution
of the time taken by each cycle (tu + tb) by Pcy(s). Since the time
taken by each unbinding-binding cycle is just the addition of two
random variables (time intervals over which the operator region is
bound tb and unbound tu) with known distributions pb(tb) and
ptu<τ(tu), in the Laplace domain we have

Pcy(s) = Pb(s) · Pu(s) . (3.9)

Using Pcy(s) we can calculate the average time taken for one
unbinding-rebinding cycle E(tcy),

E(tcy) =
�
−

d

ds
Pcy(s)

�

s→0

(3.10)

=

�
1

β
+

1

η

�
−

τ

eβ·τ − 1
. (3.11)

The number of unbinding-rebinding cycles before the
lac-regulatory region finally remains unoccupied for a time
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greater than τ is a random number. Let pcy(n) be the probability
that n such unbinding-binding cycles occur before the
lac-regulatory region finally remains unoccupied for time greater
than τ and let Gcy(s) be the corresponding probability generating
function,

pcy(n) =
�
1− e−β·τ�n · e−β·τ (3.12)

Gcy(s) =
1

(1− e−β·τ)

∞�

n=0

�
1− e−β·τ�n · e−β·τ · sn (3.13)

=
e−β·τ

(1− e−β·τ)

1

1− s · (1− e−β·τ)
. (3.14)

If E(n) is the average number of unbinding-rebinding cycles
before the operator region remains unoccupied for a time τ, we
can calculate E(n)

E(n) =
�
d

ds
Gcy(s)

�

s→1

(3.15)

=

�
e−β·τ

(1− e−β·τ)

d

ds

�
1

1− s · (1− e−β·τ)

��

s→1

(3.16)

=

�
e−β·τ

(1− e−β·τ)

� �
1− e−β·τ�

(1− s · (1− e−β·τ))2

��

s→1

(3.17)

=
e−β·τ

e−2β·τ (3.18)

= eβ·τ. (3.19)

Given that successive binding and unbinding events are
statistically independent, the expected time of switching E(tsw) is
the average time taken by every binding-unbinding-rebinding
cycle E(tcy) multiplied by the average number of such cycles
E(n)

E(tsw) = E(n) · E(tcy). (3.20)

We then calculate the rate of switching γ = 1/E(tsw) using E(tcy)
from Eq. (3.11) and E(n) from Eq. (3.19) to obtain

1

γ
= eβ·τ ·

��
1

β
+

1

η

�
−

τ

eβ·τ − 1

�
. (3.21)
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Equation (3.21) gives the switching rate from the uninduced state
to the induced state γ as a function of τ. The terms 1/η and 1/β
represent the average periods for which the lac-regulatory region
is occupied and unoccupied by the repressor respectively (tb, tu as
defined previously in this section), while the τ

eβ·τ−1 term accounts
for the fact that the operator region is never unoccupied for a
period greater than τ until the switch occurs.

In the next section, we derive an expression for the threshold
period τ in terms of the external inducer concentration E.

3.4.1. The threshold period τ

The threshold period connects the switching rate γ to external
inducer concentration. The time interval τ needs to be long
enough to produce enough pumps (LacY) such that positive
feedback kicks in and the system switches to the induced state.
As has been discussed in earlier chapters, the LacY protein
modulates its own production via two intermediaries – a sugar
(TMG in this case) which is imported by LacY, and a repressor
whose activity is reduced upon being bound by the sugar. The
sugar thus acts as an inducer for LacY production,

Yτ = Iτ
φ+ fout

m

�
1+

Eh

E

�
, (3.22)

where Eh is the Michælis constant for inducer import by pumps, m
is the rate of inducer import by 1 pump in the presence of an infinite
concentration of external inducers (see Table 2.1), φ is the dilution
rate, fout is the diffusion rate of inducer out of the cell through the
cell membrane and Iτ is a free parameter of effective switching to
be calibrated against experiment and simulation.

At low external inducer concentrations more pumps are required
to maintain a certain inducer level inside the cell. The threshold
time period τ is the time needed to make Yτ proteins if the operator
remains free of repressors. Thus, τ is related to Yτ via the rates of
transcription (cY ), translation (lY ) and the mRNA lifetime (ϕ),

τ = Yτ
ϕ

cYlY
. (3.23)
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Using Eq. (3.22) and Eq. (3.23) we obtain for the threshold period

τ = Iτ
ϕ

cYlY
φ+ fout

m� �� �
ω

�
1+

Eh

E

�
(3.24)

= ω

�
1+

Eh

E

�
, (3.25)

where,

ω = Iτ
ϕ

cYlY
φ+ fout

m
. (3.26)

We substitute Eq. (3.25) in the equation for the switching rate Eq.
(3.21), and then with Iτ as the free parameter of effective
switching rate, caliberate against experiment to obtain Iτ = 5292,
which implies ω = 3.9 · 10−4. Figure 3.7 shows the match
between experiment, simulation and the effective theory for the
switching rate.

3.4.2. Simplified expression for γ

The switching rate γ is high when τ is small (high external
concentration of inducers) and when the rate of repressors
binding to the operator β is small. Thus, the threshold period
theory explains the observation in theoretical models that
speeding up the rate of repressor-operator binding and unbinding
leads to a decrease of the switching rate [60, 9, 61]. Fig. 3.7
shows excellent agreement between the experimentally
determined switching rate, the mechanistic model, and the
theoretical switching rate curve Eq. (3.21). If the gene is in the
repressed state for most of the time (β ≫ η), the switching rate
(3.21) simplifies to

γ = ηe−βτ = ηe
−βω

(
1+

Eh
E

)

, (3.27)

which is the rate of repressor unbinding η divided by the
expected number of unbinding-rebinding events eβτ per switch
derived earlier in this section. This expression predicts a linear
relationship between the logarithm of the switching rate and the
inverse external inducer concentration, see Fig. 3.8.
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Figure 3.7: The transition from uninduced to induced state of the
lac-system. The unshaded region indicates the range of external inducer
(TMG) concentration where switching rates from the uninduced to the in-
duced state of the lac-system could be determined experimentally. Orange
triangles give the switching rates as determined in Fig. 3.1 for different
inducer concentrations. The experimentally determined switching rates
agree closely with the switching rates observed in computer simulations
of the mechanistic model (blue circles). The rate of unbinding of the re-
pressor from both its binding sites (simulations, dashed blue line) which
was established by Choi et al. [6] as a necessary condition for a switch
to occur, is up to 3 orders of magnitude greater than the switching rate.
The full green line gives our theoretical result Eq. (3.21) for the switching
rate, which takes into account the threshold time period between repressor
unbinding and rebinding. This figure is reproduced from published work by
the author [1].
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Figure 3.8: Linear relationship between switching rate and inducer
concentration on a logarithmic/inverse plot. We re-plot data from
Fig. 3.7 in the form suggested by equation (3.27). The logarithm of the
switching rate turns out to be in good approximation a linear function of
the inverse external inducer concentration. The slope −ωβEh and the
intercept ln(η) −ωβ of this plot allow to directly read off the parameters
Eh and ωβ from the experimentally measured switching rates (given the
unbinding rate η). This figure is reproduced from published work by the
author [1].
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3.5. Summary

In this chapter we combined data from experiments and stochastic
simulations, and identified the rate limiting fluctuation driving the
switch to the induced state of the lac-operon by smoothening out
each source of fluctuation in turn to observe in silico the effect
each fluctuation had on the switching behavior. We found that the
fluctuations in the operator state drove the switch to the induced
state.

Then, we derived an expression for the switching rate γ and
linked it to the external inducer concentration via the notion of
the threshold period for which the operator needed to be free of
repressor to cause a switch to the induced state, and matched this
with experiments and simulation with one free parameter
representing the number of inducers needed to tip the cell over to
the induced state.

Finally, we simplified the expression for the switching rate to
predict that there would be a linear relationship between the
logarithm of the switching rate and the inverse of the external
inducer concentration, and found that this matches very well with
observations from experiments.

72



4. Switching off

In this chapter, we analyse the switch to the uninduced state of the
lac-pathway. The material presented in this chapter is based on
published work done by this author [2]. Experiments referred to
in this chapter were performed by Robin A. Sorg from the lab of J.
W. Veening and published in joint work with this author [1, 2].

4.1. Introduction

After examining the transition from the uninduced to the induced
state of the lac-operon, we turn to the reverse transition - the
transition from the induced to the uninduced state. The induced
state of the lac-system is long lived and the transition to the
uninduced state is hard to observe (see Section 4.1.1 and Appendix
A).

In this chapter, we will first present analysis of data from flow
cytometry experiments to infer switching rates at different levels
of external inducer concentrations (see Sections (3.2, 4.1.1 and
Appendix A). Then, we present the results of the smoothening
process introduced in [1] and Section 3.3 to identify the key
fluctuations influencing the transition to the uninduced state. We
find that several different sub-systems are involved in this
transition, and we consider these in order to derive effective
rates of repressor binding and unbinding to the operator. We then
use these effective rates to write master equations for protein
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production, from which we derive the Fokker-Planck equation for
protein evolution following the methodology outlined in [9, 7]. We
also derive a Fokker-Planck equation for repressor numbers and
use both of these to set up the 2D backward Fokker–Planck
equation in repressor and pump numbers. Using the backward
Fokker–Planck equation, we derive the differential equation for
mean first passage times to the uninduced state. We solve this
equation numerically and compare the results to experiments.

4.1.1. Experimental measurements

First, we consider the experimental data for the transition to the
uninduced state. See [1, 2] for details. Following the methodology
outlined in [1], we estimate the first passage times (the inverse of the
switching rate) from the induced to the uninduced state by fitting
exponential curves to experimental measurements of the fraction
of cells in the induced state as a function of time.

For TMG concentrations below 5µM, we see a
population-wide collapse to the uninduced state - implying that
the induced state is not viable at these concentrations. This
graded dynamic response has been called “ballistic” [20] (as
opposed to the stochastic switching that occurs in the bi-stable
regime). At TMG concentrations of 5µM and 7.5µM we can
measure the switching rates (see Fig. 4.1), whereas for
concentrations of 10µM and over, no switching events are
observed at all.

Since we have approximately 106 cells in our experiment (see [1]),
the lack of a single transition over the 480 minutes of experimental
observations leads to an estimate of the lifetime of the induced
state (approximately 2× 109) minutes with a probability of 0.8, for
concentrations of external TMG of 10µM and above.

4.1.2. Smoothening curves for different fluctuations

Before we attempt to analyse the transition to the uninduced state
we must identify the key fluctuations that play a role in determining
the switching rate. Following the methodology established in [1] and
Section 3.3, we “smoothen” various fluctuations of interest to see
if this affects the MFPT to the induced state for the lac-system.
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Figure 4.1: Inferring switching rates: Shown above are fits for external
TMG concentrations 5µM and 7.5µM, which give us switching rates of
8.51× 10−3 and 1.08× 10−3 respectively.

Fluctuations in binding-unbinding interactions were
smoothened by dividing the binding as well as unbinding rates by
the smoothening parameter s (so, s = 0.1 would mean that the
binding-unbinding process happens on a time scale that is 10x
faster). On the other hand, fluctuations in production processes
(transcription, translation) were modeled by dividing the rate or
production by s, and multiplying the quantum of production by s.
So, if a transcription process produced one mRNA per minute on
average, a smoothening of s = 0.1 would mean that mRNA is
produced in “units” of 0.1, but ten times faster. The mean level of
mRNA would remain the same, but the fluctuations in mRNA levels
would decrease.

For the transition to the uninduced state of the lac-system,
Figure. 4.2 shows the evolution of the MFPT as various
fluctuations are smoothened. We find that operator state
fluctuations have the largest influence on switching to the
uninduced state, but repressor numbers and inducer-repressor
interactions also play a role, see Figure. 4.2 and Figure. 4.8.
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Figure 4.2: We plot the mean first passage time to the uninduced state as
a function of the smoothening parameter swhen the smoothening of fluctu-
ations is applied to different types of fluctuations. Values of the smoothen-
ing parameter s less than 1 represent smoothened fluctuations (reduced
fluctuations) compared to the baseline parameters of the model, whereas
values of s greater than 1 represent artificially enhanced fluctuations. Fluc-
tuations in the binding state between repressor and DNA (caused by the
formation and breakage of the repressor-DNA loop) have the strongest
influence on the mean first passage time; the mean first passage time
rapidly increases for s less than one. Fluctuations in transcription events
of repressors and pumps affect the mean first passage time comparatively
weakly (the lacI gene is expressed constitutively, so there are no operator
state fluctuations).
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4.2. The unbinding rate η

In the previous section, we determined that operator state
fluctuations play a major role in the transition to the uninduced
state. The state of the operator depends on two effective rates,
the rate at which a repressor binds to the operator β, and the
rate at which a repressor completely unbinds from the operator -
η. In this section we analyse the network of reactions that define
interactions between DNA, repressor, and inducer molecules to
calculate an effective rate η(E, Y) as a function of pump numbers Y
and external inducer concentration E.

The unbinding of the lac-repressor from the regulatory region
of the lac-operon is a composite event for two reasons: First, the
repressor consists of two ‘legs’, both of which need to unbind from
their binding sites. Second, the unbinding rate of each leg depends
on the number of inducers bound to the repressor, and that number
can change even while the repressor is bound to the lac-operon.

Each lac-repressor can bind up to 4 inducer molecules (one
per LacI protein, four of which make a single repressor) and the
repressor-operator affinity decreases with each successive inducer
bound to the repressor. For instance, a repressor with two inducers
bound to it will dissociate from one operator site at the rate of
811/min (see Table 2.1), while a repressor with no inducers bound
to it has a much lower dissociation rate of 2.4/min[18].

The repressor-operator system can thus be characterized by
the number of inducers bound to a repressor, and the number of
legs bound to the regulatory region. These configurations are
shown in Fig. 4.3, along with the transitions between them.
Unfortunately, not all rates of repressor binding and unbinding in
the presence of different numbers of inducers have been measured
experimentally (to the best of our knowledge). We use the
detailed balance condition to infer some of these rates, see Section
2.6.

The lac-repressor can bind to 3 different sites on DNA – the
primary operator O1, and two so-called pseudo operators O3
(which is 92 bp upstream from O1) and O2 (401 bp downstream of
O1). In [62], Œhler et. al report that in the presence of O1 and O2,
O3 dœs not seem to play any role in DNA loop formation. So, we
assume that the DNA-repressor loop formation is between O1 and
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Figure 4.3: Repressor unbinding. The repressor unbinding rate
depends on the number of inducers bound to the repressor, which
changes over time. From left to right, 0, 1, 2, 3 or 4 inducers are
bound to the repressor, with the changes in the number of in-
ducers are indicated by horizontal arrows. The effective rates of
inducer binding to the inducer-DNA system are given by b̂j and
the dissociation rate for a single inducer is given by d (see Table
2.1 and Section 2.5 for details). The two legs of the repressor can
unbind individually (diagonal arrows in each subplot). When both
legs have unbound, the repressor dissociates from the regulatory
region. This figure is reproduced from published work by the author
[2].
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O2, and we do not consider the marginal role O3 might play.
Assuming that the repressor is bound to DNA in the

O1-repressor-O2 loop, the model for the effective dissociation
rate η can be broken up into a series of simpler computations,
which will be implemented in the sub-sections that follow:

1. First, we compute the dissociation rates from DNA {ηj} of
repressors with j inducers bound to them under the
simplifying assumption that there are no inducer
interactions with the DNA bound repressors. See Section
4.2.1.

2. Then, we calculate the effective inducer interaction rates for
DNA bound repressors with j inducers bound to them, which
we denote by {b̂j}. See Section 4.2.2.

3. We add the inducer interactions to the DNA bound repressor
system and use the {ηj}s and the {b̂j}s calculated in Sections
4.2.1 and 4.2.2 to compute the DNA residence times {τj} of
repressors that from a DNA-repressor loop with j inducers
bound. See Section 4.2.3.

4. From the fractions of repressors in the cell with j inducers
bound to them {rj}, we calculate the probability for a DNA-
repressor loop form with j inducers bound to it, {r̂j}. See
Section 4.2.4.

The dissociation rate η is then the inverse of the expectation of
lifetimes {τj} over the probabilities {r̂j}.

4.2.1. Repressor unbinding without inducer interaction – the
{ηj}

We want to investigate the rate of dissociation of a repressor with
j inducers bound to it if no further inducer-repressor
binding-unbinding events are possible. This means (in Figure 4.4)
traversing the horizontal row from the brown box to the green
box, right to left.

Let the time to escape if we start in the repressor-inducer loop
be denoted by τL and the time to escape if we start in the single
leg bound state be denoted by τl. Since we know the microscopic
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Figure 4.4: The repressor-DNA-inducer reaction system. This fig-
ure is reproduced from published work by the author [2].
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4.2 . THE UNBINDING RATE η

rates of every reaction in the system shown in Figure 4.4, we can
express the residence times in each state of the reaction system
in terms of residence times at other states, and the microscopic
reaction rates. This yields linear equations relating the residence
times in different states of one horizontal row in Figure 4.4,

τjL −

�
1

2w4−j
+ τjl

�
= 0, (4.1)

τjl −

�
w4−j

(w4−j + c)2

+
c

w4−j + c

�
1

w4−j + c
+ τjL

��
= 0. (4.2)

Solving these equations we have,

τjL =
c+ 3w4−j

2w2
4−j

, (4.3)

τjl =
c+ 2w4−j

2w2
4−j

, (4.4)

(4.5)

and
ηj =

1

τjL
. (4.6)

We have computed the dissociation times for repressors with
different numbers of inducers bound to them if no further inducer
binding or unbinding events take place.

4.2.2. Effective inducer interactions with the repressor-DNA
loop

Now, we analyse the interactions of inducers with the DNA bound
repressor so that we can include these and combine them with
the {ηj} calculated in Section 4.2.1 in order to compute the effective
dissociation rate. In the DNA-repressor loop, the rate at which
inducers bind is b whereas with just one leg bound to DNA, it
is b. The effective rate of inducer-repressor interactions is thus
an average between these rates taking into account (for j inducers
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bound to the repressor) the lifetimes of the states (with two and
one legs bound to the DNA), and the probability that an inducer
binds to the repressor in each of those states.

The lifetime of a repressor with j inducers bound to it in the
DNA-repressor loop (time until one leg unbinds or an inducer binds
or unbinds) is

tLj =
1�

2w4−j + jd+ 4−j
4 bI

� , (4.7)

whereas the probability that it will exit this state when an inducer
binds to it is

pL
j =

4−j
4 bI�

2w4−j + jd+ 4−j
4 bI

� . (4.8)

Similarly, for the state with one leg of the repressor bound to the
inducer we have

tlj =
1�

w4−j + c+ jd+ 4−j
4 bI

� , (4.9)

and

pl
j =

4−j
4 bI�

w4−j + c+ jd+ 4−j
4 bI

� . (4.10)

Using these, we can write the effective rate of inducer interaction
with the DNA-repressor loop as,

b̂j =

�
tLj p

L
j (1/b) + tljp

l
j(1/b)

tLj p
L
j + tljp

l
j

�−1

∀j ∈ {0, 1, 2, 3}. (4.11)

4.2.3. Including inducer interactions

Armed with the dissociation rates without further inducer
interaction {ηj} and the effective rates {b̂j} of inducer binding to
DNA bound repressors, we can set up equations for the
dissociation times of the repressors with j inducers bound to
them. See Figure 4.3. As before, we write linear equations relating
lifetimes in different states (see Figure 4.3) and the {τj} – the
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average residence times on the operator for repressors with j
inducers bound to them starting in the DNA-repressor loop,

τ0 −
η0

�
η0 + b̂0I

�2
−

b̂0I

η0 + b̂0I

�
1

η0 + b̂0I
+ τ1

�
= 0, (4.12)

τ1 −
η1

�
η1 + d+ 0.75b̂1I

�2

−
d

η1 + d+ 0.75b̂1I

�
1

η1 + d+ 0.75b̂1I
+ τ0

�

−
0.75b̂1I

η1 + d+ 0.75b̂1I

�
1

η1 + d+ 0.75b̂1I
+ τ2

�
= 0,

(4.13)

τ2 −
η2

�
η2 + 2d+ 0.5b̂2I

�2

−
2d

η2 + 2d+ 0.5b̂2I

�
1

η2 + 2d+ 0.5b̂2I
+ τ1

�

−
0.5b̂2I

η2 + 2d+ 0.5b̂2I

�
1

η2 + 2d+ 0.5b̂2I
+ τ3

�
= 0,

(4.14)

τ3 −
η3

�
η3 + 3d+ 0.25b̂3I

�2

−
3d

η3 + 3d+ 0.25b̂3I

�
1

η3 + 3d+ 0.25b̂3I
+ τ2

�

−
0.25b̂3I

η3 + 3d+ 0.25b̂3I

�
1

η3 + 3d+ 0.25b̂3I
+ τ4

�
= 0,

(4.15)
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τ4 −
η4

�
η4 + 4d

�2

−
4d

η4 + 4d

�
1

η4 + 4d
+ τ3

�
= 0, (4.16)

which can be solved simultaneously for the {τj} with Mathematica.
To calculate the effective dissociation rate η, we need to combine
these {τj} with the probabilities for an repressor-DNA loop to form
with j inducers bound to it.

4.2.4. Probability of forming a repressor-DNA loop with j
bound inducers

Now that we know the lifetime of the repressor with j inducers
bound to it in a DNA-repressor loop, the expected lifetime of such
a loop is an average over the probabilities that the DNA-repressor
loop with j inducers bound exists in the first place. This is what
we will tackle in this section.

Let the number of inducers inside the cell be I. The details re-
garding rates of inducer-repressor binding and unbinding are dis-
cussed in Section 2.5. For convenience, we define

a =
Ib

d
, (4.17)

where b is the rate at which an inducer binds to a repressor free
of inducers and d is the rate at which an inducer dissociates from
a repressor with with all its inducer binding sites occupied as
described in Section 2. If we represent the fraction of repressors
bound to j sugars by rj, at equilibrium we have

r1
r0

= a, (4.18)

r2
r1

=
3

8
a, (4.19)

r3
r2

=
a

6
, (4.20)

r4
r3

=
a

16
. (4.21)
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Since
�4

j=0 rj = 1, we can calculate the fraction of repressor
molecules which are free from inducers to be

r0 =
1

1+ a+ 3
8a

2 + a3

16 + a4

256

. (4.22)

In order to form a DNA repressor loop, when the repressor is
bound to one operator site, it must bind to the other operator
site before it unbinds from the first one. The unbinding rates for
repressors with j inducers bound to them are w4−j (see Table 2.1),
whereas the looping rate is c. Thus, the probability of forming
a repressor-DNA loop with j inducers bound is proportional to
rj

c
c+w4−j

. Normalizing to get the probabilities we have,

r̂j =
rj

c
c+w4−j�4

j=0 rj
c

c+w4−j

. (4.23)

Then, the repressor unbinding rate is given by the expectation
value,

η =




4�

j=0

r̂jτj




−1

. (4.24)

In Eq. (4.24), the residence times {τj} and the probabilities {r̂j}
are functions of the number of inducers in the cell, which in turn
is a function of number of pump proteins and external inducer
concentration. At a fixed number of pumps, an equilibrium
between inducer import and inducer dilution through cell growth
is established. The mean number of inducers I can then be
written as a function of pump number Y, see Table 2.1,

I(Y) =
m

φ

E

Eh + E
Y , (4.25)

where φ is the dilution rate, m is the rate of inducer import per
pump, Eh is the Michælis constant which we use as a fitting
parameter (see Section 2.2).

Equations (4.24) and (4.25) jointly establish a relationship
between the number of pumps and the repressor dissociation
rate. This is an effective rate, which results from inducers
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repeatedly binding/unbinding from repressors and influencing the
residence time of repressors on the regulatory region. Equations
(4.24) and (4.25) quantify the amount of feedback in the
lac-pathway: The more pumps there are, the faster the
lac-repressor will unbind from the regulatory region, enabling the
production of further pumps. In Fig. 4.5 we compare the results
from Equations (4.24) and (4.25) for the effective dissociation rate
to the rate at which repressors unbind from the regulatory region
in simulations of the detailed mechanistic model and find very
good agreement. This effective repressor dissociation rate will be
used below as the rate at which the lac-operon turns from the
transcriptionally inactive to the active state, which enters the
diffusion model of the pump numbers.

4.3. Calculating the binding rate β

It is clear from the discussion above that repressors with different
numbers of inducers bound to them have very different
probabilities of forming a repressor-DNA loop, since the rates
w4−j are very different for different values of j. For R repressors
present in the cell, the rate at which a repressor-DNA loop might
form is given by,

β = gR
4�

j=0

rj
c

c+w4−j
, (4.26)

where g is the rate of a repressor finding its binding site on DNA.
The quantity R

�4
j=0 rj

c
c+w4−j

could be interpreted as the
“effective” number of repressors in the cell. The {rj} are functions
of pump numbers and external inducer concentration, and thus
we can compute β(Y, E) for any pump numbers Y and inducer
concentration E.

4.4. Modelling pump dynamics with β and η

Pump protein dynamics are overwhelmingly influenced by the
binding and unbinding of the repressor to DNA, where it forms a
repressor DNA loop (see Figure 4.2) and completely suppresses
transcription of the lac-genes. We can thus ignore the
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Figure 4.5: Rate of repressor dissociation from the operator.
This figure shows the rate of repressor dissociation from the reg-
ulatory region at different copy numbers of the pumps. Pump
numbers affect the dissociation rate via the number of inducers, as
an inducer-bound repressor dissociates quickly from the regulatory
region. Blue circles show the dissociation rate under the detailed
mechanistic model, the green line shows the results of equations
(4.24) and (4.25) without any parameter fitting. This figure is repro-
duced from published work by the author [2].
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complexities of the DNA-repressor loop formation and breakage,
and use the effective unbinding rate η and binding rate β as
functions of pump numbers Y and the external inducer
concentration E to represent the rates of transition between two
states of the lac-system in which the genes are expressed and
repressed respectively. With this approximation and using these
effective rates. we can write the master equations for pump
protein dynamics in terms of operator fluctuations.

We start with a master equation for protein production with
repressors binding and unbinding from the operator at rates β
and η respectively [9]. This is a standard model of gene
regulation; later we will add the dependencies of β and η on
repressor numbers and inducer numbers which are specific to the
lac-pathway. p0Y(t) denotes the probability that the lac-genes are
transcriptionally inactive (the operator is bound by a repressor, a
state denoted 0), and there are Y pump proteins in the cell, while
p1Y(t) denotes the probability that the lac-genes are
transcriptionally active (the operator is free of a repressor; state 1)
and there are Y pump proteins in the cell. The master equation of
this process is,

dp0Y
dt

= −
�
Yφ+ ξ̄+ η

�
p0Y + (Y + 1)φp0Y+1 + ξ̄p0Y−1 + βp1Y (4.27)

dp1Y
dt

= − (Yφ+ ξ+ β)p1Y + (Y + 1)φp1Y+1 + ξp1Y−1 + ηp0Y , (4.28)

where ξ and ξ̄ are the effective pump protein production rates
when the operator is free of repressors and bound to a repressor
respectively, η and β have been computed in previous sections, and
the other rates are given in Table 2.1. Then, using Table 2.1, we can
write

ξ =
cY

ϕ
lY = 180/min, (4.29)

ξ̄ = 0, (4.30)

where cY is the transcription rate, ϕ is the rate of mRNA degradation
and lY is the translation rate.
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4.4.1. Deriving the Fokker–Planck equation for pump proteins

Operator fluctuations happen much faster than the time scale of
switching since the induced state is very stable compared to
repressor binding and unbinding rates (see Table 2.1), and the
number of pump proteins in the induced state is large enough that
the discreteness in pump dynamics can be ignored. These
approximations (detailed below) help us go from the discrete
master equation to the continuous Fokker–Planck equation. In
order to derive the Fokker–Planck equation corresponding to
equations (4.27) and (4.28), we follow the framework introduced
by Kepler and Elston in [9]. First, we cast equations in a more
tractable form. Let us denote the operator state by s ∈ {0, 1}, with
0 being the state when the repressor is bound to DNA, while 1
denotes the state when DNA is free of repressor. Let ŝ denote the
other state from s. Let K = η + β be the sum of the effective
DNA-repressor binding and unbinding rates, while k0 = η

K and
k1 = β

K . To make the notation uniform, denote the protein
production rate when repressor is bound by ξ0 and the protein
production rate when repressor is unbound by ξ1. Then,
equations (4.27) and (4.28) can be written as,

dps
Y

dt
= φ

�
(Y + 1)ps

Y+1 − Yps
Y

�
+ ξs(p

s
Y−1 − ps

Y)

+K
�
kŝp

ŝ
Y − ksp

s
Y

�
for s ∈ {0, 1}.

(4.31)

There are two approximations needed in order to derive a single
Fokker–Planck equation for this system:

1. The fast-operator-fluctuation approximation: We assume that
the time scale for operator fluctuations (given by K−1) is much
shorter than the time scale for protein number evolution. This
enables us to combine the two coupled equations (4.31) into a
single master equation.

2. The diffusion approximation to the master equation: As
outlined and illustrated in Section 1.2.6.1 of the introductory
chapter, we can assume that pump numbers are large
compared to jumps in pump numbers, and so re-write the
master equation in terms of an exponential translation
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operator, and then truncate the expansion of this operator
at the second order to derive a Fokker–Planck equation
corresponding to the master equation.

We now proceed to make these two approximations in turn to
derive the Fokker–Planck equation.

4.4.1.1. The fast operator approximation

Let us consider the marginal distribution, and the difference
distribution,

pY = p0
Y + p1

Y , (4.32)
qY = k0p

0
Y − k1p

1
Y . (4.33)

Equations (4.32) and (4.33) imply,

p1
Y = k0pY − qY , (4.34)

p0
Y = k1pY + qY . (4.35)

Using equations (4.32)–(4.35), we can re-write the master equations
(4.31) in terms of pY and qY ,

ṗY = (ξ0k1 + ξ1k0)(pY−1 − pY) +φ[(Y + 1)pY+1 − YpY ]

+ (ξ0 − ξ1)(qY−1 − qY), (4.36)

q̇Y = −KqY + (k0ξ0 + k1ξ1)(k0 − k1)(qY−1 − qY)

+φ(k0 − k1)
2[(y+ 1)qY+1 − YqY ]

+ k0k1(ξ1 − ξ0)(pY−1 − pY). (4.37)

The fast operator approximation can be made when K is larger
than the other rates in the system. Noting that k1 and k0 are both
small when K is large, we can ignore all the q terms in the LHS
of Eq. (4.37) not multiplied by K can be ignored. This gives us an
equation for qY in terms of the pY when q̇Y = 0,

qY =
k0k1
K

(ξ1 − ξ0)(pY−1 − pY). (4.38)
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We can then use substitute for qY and qY−1 in equation (4.36) to
obtain the following approximate equation for pY ,

ṗY = (ξ0k1 + ξ1k0)(pY−1 − pY) +φ[(Y + 1)pY+1 − YpY ]

+
1

K
k0k1(ξ0 − ξ1)

2(py−2 − 2pY−1 + pY). (4.39)

Next, we apply the diffusion approximation (also known as the
expansion of the master equation) to derive the corresponding
Fokker–Planck equation.

4.4.1.2. The diffusion approximation

Since Y >> 1, and so (Y + 1) ≈ Y, we can use the diffusion
approximation to treat pump numbers as continuous as outlined
in the introductory chapter in Section 1.2.6.1. Replacing the time
derivative with a partial derivative, and let Y now denote the
continuous variable corresponding to the integer valued variable
(the meaning is always clear from the context), we first re-write
the master equation (4.39) in terms of the translation operator E
to give

∂tp(Y, t) = [E−1 − 1](ξ0k1 + ξ1k0)p(Y, t) + [E1 − 1]φYp(Y, t)

+ [E−2 − 2E−1 + 1]
1

K
k0k1(ξ0 − ξ1)

2p(Y, t). (4.40)

Now, we can take a naive expansion of the translation operator up
to second order (as illustrated in the Introduction, Section 1.2.6.1)
to obtain

∂tp(Y, t) =

�
1− ∂Y +

1

2
∂2Y − 1

�
(ξ0k1 + ξ1k0)p(Y, t)

+

�
1+ ∂Y +

1

2
∂2Y − 1

�
φYp(Y, t)

+

�
1− 2∂Y +

4

2
∂2Y − 2+ 2∂Y −+

2

2
∂2Y + 1

�
, (4.41)
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which simplifies to

∂tp(Y, t) = ∂Y [φY − (ξ0k1 + ξ1k0)]� �� �
−AY(Y)

p(Y, t)

+
∂2Y
2

�
(ξ0k1 + ξ1k0) +φY +

2

K
k0k1(ξ0 − ξ1)

2

�

� �� �
BY(Y)

p(Y, t). (4.42)

Equation (4.42) is the Fokker–Planck equation for pump protein
dynamics as defined by equations (4.27) and (4.28). We can read
off the drift term A(Y) and B(Y) from equation (4.42). To obtain
the drift and diffusion cœfficients more explicitly in terms of the
parameters of the lac-operon and the effective rates we have
derived in previous sections, we substitute for K = η + β,
k0 = η/K, k1 = β/K, ξ0 = ξ̄ = 0 and ξ1 = ξ to obtain,

AY(Y) =
η

η+ β
ξ−φY, (4.43)

BY(Y) =
η

η+ β
ξ+φY + 2

ηβ

(η+ β)3
ξ2, (4.44)

see Table 2.1 for details of the parameters. In Figure 4.6, we
compare the theoretical drift and diffusion given by equations
(4.43)-(4.44) and find that our effective theory describes the results
from simulation very well.

4.4.2. Simulating drift and diffusion of pump proteins

In order to compare the theoretical expressions for drift and
diffusion with the simulation (as shown in Figure 4.6), we simulate
a large number of cells starting from the same protein number
(having given other quantities time to settle into their equilibrium
values with protein values held constant) for 1 minute, and
measure the resulting value of the pump protein. The mean of the
differences between the start and end points gives us drift (shown
in the upper panel of Figure 4.6) where as the square root of the
second moment of the displacement in pump proteins gives us an
estimate of the diffusion cœfficient D =

�
δY2

�
/2t, where t is the

time for which the system is simulated and δY the displacement in
pump numbers in that time.
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Figure 4.6: Protein drift and diffusion. With repressor numbers
held constant, protein dynamics can be approximated by a univari-
ate Fokker–Planck equation, Eq. (4.42). In the top panel, we plot the
drift for pump proteins in simulations of our detailed mechanistic
model of the lac-operon (at an external inducer concentration of
15µM where the system is still bi-stable) along with the theoretical
drift term from our calculations, Eq. (4.43) (without any parame-
ter fitting). We observe a very good match between the detailed
mechanistic model and the results of (4.43). The points of zero
drift, YON and YOFF, represent the stable points of the induced and
uninduced states respectively, while YC is the separatrix between
them. In the panel below, we plot the diffusion from simulations of
our detailed mechanistic model along with the theoretical diffusion
obtained from from Eq. (4.44). The agreement is good at inter-
mediate and high pump copy numbers, while at low pump copy
numbers some discrepancy arises. This figure is reproduced from
published work by the author [2].
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4.5. Modelling repressor dynamics

Apart from operator fluctuations and repressor-inducer
interactions, fluctuations in repressor numbers also play a role in
the transition to the uninduced state. In this section, we make a
simple approximation to build an analogy between the repressor
system and the equations for gene product production described
in Section 4.4 . The lacI gene is expressed constitutively, but
from Table 2.1 we see that transcription is much slower (rate
cR = 0.1336/min) than translation (rate lR = 3.33/min). For
analytical tractability, we make the assumption that only one
mRNA molecule corresponding to the LacI protein exists in the cell
at any given moment, however to account for the rare occasions
when there are 2 mRNA molecules present, we modify the
translation rate to

�lR = lR
�
1+

cR

cR + ϕ

�
, (4.45)

ignoring higher order terms that reflect more than 2 mRNA
molecules present. The system thus has two states, one with 0
mRNA molecules and one with a single mRNA molecule present
translating LacI at the rate �lR. The master equations for the
dynamics of LacI can be written as,

dp0LacI
dt

= −
�
LacIφ+ cR

�
p0LacI

+ (LacI+ 1)φp0LacI+1 + ϕp1LacI, (4.46)

dp1LacI
dt

= −
�
LacIφ+ �lR + ϕ

�
p1LacI

+ (LacI+ 1)φp1LacI+1 +
�lRp1LacI−1 + cRp0LacI, (4.47)

where the transition from 0→1 happens at the transcription rate
cR, whereas the transition from 1→0 happens at the rate of mRNA
degradation ϕ = 0.6666/min. Thus, making the approximation that
there is only one mRNA molecule that can produce the LacI protein
at any moment has enabled us to express the system in terms
exactly analogous to the system described in Section 4.4.1.

Proceeding along exactly the same lines as in Section 4.4.1, we
can derive the drift and diffusion cœfficients for the Fokker–Planck
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equation corresponding to the master equations (4.46) and (4.46)
which describe repressor dynamics in the approximation that the
transcription rate is much lower than the transcription rate, so
there is only one repressor mRNA in the cell at any given time.
The drift and diffusion cœfficients obtained are

A(LacI) =
�lRcR

(cR + ϕ)
− LacIφ, (4.48)

B(LacI) =
�lRcR

(cR + ϕ)
+ LacIφ+ 2

cRϕ

(cR + ϕ)3
( �lR)2. (4.49)

In equations (4.48) and (4.49), LacI numbers are taken to be
continuous. This makes it easy to recover the dynamics of
repressor molecules (which consist of 4 LacI molecules) which can
be treated as being produced at a rate (s · �lR) while still being
diluted at the same rate φ, where the smoothening factor s = 1/4.
Substituting for �lR in equations (4.48) and (4.49) and taking into
account the smoothening factor, we can write down the drift and
diffusion for repressor dynamics,

AR(R) = s
lR

�
1+ cR

cR+ϕ

�
cR

(cR + ϕ)
− Rφ, (4.50)

BR(R) = s
lR

�
1+ cR

cR+ϕ

�
cR

(cR + ϕ)

+ Rφ+ 2s2
cRϕ

(cR + ϕ)3

�
lR

�
1+

cR

cR + ϕ

��2

. (4.51)

The steady state distribution is then given by the standard result
for Fokker–Planck equations (see [7, 8] for details),

p(R) =
C

BR(R)
exp

�
1

2

�R

0

AR(r)

BR(r)
dr

�
, (4.52)

where C is a normalization constant.
In Figure 4.7 we compare the theoretical distribution given by

Eq. (4.52) to the distribution observed in simulation.
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Figure 4.7: Distribution of repressor numbers. Repressor num-
ber fluctuate since the lacI -gene is expressed at such low levels that
typically there are none or one copy of lacI -mRNA in the cell. Green
lines show the probability distribution function from the diffusion
model defined by drift (4.50) and diffusion (4.51), blue circles give
the corresponding quantities observed in the detailed mechanistic
model. This figure is reproduced from published work by the author
[2].
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4.6. Computing the MFPT, results

Having obtained the Fokker–Planck equations for pumps and
repressors, we can compute the mean first passage time to the
uninduced state. Drift and diffusion of the pump numbers given
by equations (4.43) and (4.44) depend on the repressor unbinding
rate η and the binding rate β. The unbinding rate depends on the
pump copy number via equations (4.24) and (4.25), and the
binding rate fluctuates along with the number of repressors given
by equations (4.50) and (4.51). These results specify how drift and
diffusion of the protein numbers Y and the repressor numbers R
depend on each other. The bivariate Fokker-Planck equation (4.53)
defined by this drift and diffusion thus couples the stochastic
dynamics of protein numbers Y and the repressor numbers R,

∂tp(Y, R) = −∂YAYp(Y, R) +
1

2
∂Y

2BYp(Y, R)

− ∂RARp(Y, R) +
1

2
∂R

2BRp(Y, R). (4.53)

4.6.1. Mean first passage times from the induced to the
uninduced state

Starting in the induced state, with pump number Y set equal to
YON = 104, the transition to the uninduced state occurs when the
number of pump proteins reaches the vicinity of the zero-drift point
defining the uninduced state YOFF, with O(100) pump proteins. In
the absence of repressor fluctuations, the dynamics of the number
of pump protein can be described by the univariate Fokker–Planck
equation Eq. (4.42). The values of the protein numbers where the
drift Eq. (4.43) equals zero, YON and YOFF, are the stable fixed points
of the Fokker–Planck equation in the noiseless (deterministic) limit.
In the presence of noise, they correspond to the long-lived induced
and uninduced states respectively, while YC corresponds to the
separatrix between them (the unstable fixed point, see Figure 4.6).
Such a visualization of the stationary points in terms of zeros of
a closed-form drift function is not possible for dynamics of pump
proteins in the presence of repressor fluctuations. In this case,
the dynamics of the system is described by the two-dimensional

97



4 . SWITCHING OFF

Fokker–Plank equation (4.53). The mean first passage (MFP) time
Γ from one stable fixed point

�
YON

�
to another

�
YOFF

�
can still be

calculated based on the backward Fokker–Planck equation (see [9, 7]
and Section 1.2.7 for details),

−1 = AY∂YΓ +
1

2
BY∂Y

2Γ +AR∂RΓ +
1

2
BR∂R

2Γ , (4.54)

subject to the boundary conditions

Γ(YOFF) = 0, (4.55)
dΓ

dt

���
YON

= 0 . (4.56)

These boundary conditions state that mean first passage time is
0 when the dynamics starts already at the destination YOFF, while
near the induced state YON, the first passage time is insensitive to
small perturbations in the starting point. Inducer numbers in the
cell at start and end points do not affect the first passage time since
they quickly reach the steady state determined by the number of
pump proteins given by Eq. (4.25).

To determine the mean first passage time, we solve the solve
the differential equation for the mean first passage time ((4.54))
numerically. Fig. 4.8 shows the results as a function of the
external inducer concentration. We compare the first passage
times to the uninduced state obtained from Eq.((4.54)) to
simulations of the detailed mechanistic model and find a good
match between the diffusion model and the detailed mechanistic
model. We find that the mean first passage time increases
exponentially with external inducer concentration once the
induced state is viable. As a result, for concentrations larger than
approximately 10µM, the induced state is extraordinarily stable,
with mean-first passage times exceeding 109 minutes. The
induced state can thus persist over many generations, and is
actually transmitted more stably to subsequent generations than
genetic information: A generation time of 60 min implies a
transition rate to the uninduced state of O(10−7) per generation,
compared to a point mutation rate of O(10−6) per generation. A
similar situation has been found in the dormant state of the
λ-phage [63].
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On the other hand, at external inducer concentrations below
5µM, there is no long-lived induced state, as the lactose that can
be imported at such low external concentrations is not sufficient to
deactivate all repressors and sustain an induced state. Thus, even
if initial pump numbers are large, they quickly decay and the cells
collectively transition to the uninduced state. This dynamics has
been called a ‘ballistic transition’ [20].

Fluctuations in the number of repressors contribute in
different ways to the transition to the uninduced state. Performing
simulations of the detailed mechanistic model at constant number
of repressors (with repressor number equal to their mean R = 10
under the full model), increases the mean first passage time
significantly at high inducer concentrations. Higher-than-average
repressor numbers lead to long periods where the lac-genes are
transcriptionally silenced, making it easier for the pump number
to reach lower levels, which can effectively lower the barrier to
be crossed by diffusion.

4.6.2. Comparison with experiments

Due to the long mean-first-passage time, the transition to the
uninduced state is challenging to observe experimentally.
Specifically, the rapid increase of the MFPT with external inducer
concentration means that the transition can only be observed in a
narrow window where the induced state is stable but the MFPT is
shorter than time scale over which the experiment is performed.
The experiments were performed by Robin A. Sorg in joint work
with the author as described in [1]. We found the induced state to
be unstable at TMG concentrations below 5µM, and observed a
‘ballistic collapse’ of the entire cell population to the uninduced
state. At concentrations greater than 10µM, we did not observe
any transitions over 8 hours in a population of approximately 106

cells, implying that the mean first passage time is greater than
2 × 109 minutes (see Fig 4.8 inset). On the other hand, at an
intermediate concentration of 7.5µM, we did observe transitions
to the uninduced state occurring at a rate of 1.08 × 10−3/min.
This behavior qualitatively matches the numerical simulations.
For a quantitative comparison far higher population sizes of cells
would be needed to observe more transitions to the uninduced
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Figure 4.8: Mean first passage times. The mean first passage
time starting from the induced state with YON pumps to the unin-
duced state with YOFF pumps is plotted against the external inducer
concentration. The results from the minimal diffusion model (4.54)
agree very well with simulations of the detailed mechanistic model
(blue circles and green line, respectively). We also show the results
from the detailed mechanistic model when repressor numbers are
kept constant (red dashed line). Neglecting repressor fluctuations
slows down the transition at high inducer concentrations. The
super-exponential growth of mean first passage times with exter-
nal TMG concentration is consistent with observations from our
experiments (inset). The transition can only be observed at a con-
centrations of 5µm and 7.5µM (estimated MFTP of 117 minutes and
920 minutes respectively, see Section 4.1.1) due to the the first
passage times for concentrations above 10µM being too high to be
observable in our experiments. The duration of our experiments
gives a lower bound of O(109) minutes for the mean first passage
time (see main text). This lower bound is indicated by the rectangle
in the top right of the inset. This figure is reproduced from published
work by the author [2].
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state even when the MFPT is large.

4.7. Summary

In this chapter we examined the transition from the induced to the
uninduced state of the lac-operon. We first used the smoothening
procedure to identify the key fluctuations driving the transition,
and then derived effective rates of repressor binding and
unbinding to the operator as functions of pump numbers and
external inducer concentrations, by formulating mathematical
models of appropriate subsystems. We then used these effective
rates to build master equations for repressor and pump dynamics,
which, in the diffusion approximation, let us compute the
Fokker–Planck equation for the evolution of pump and repressor
distributions. We then derived the differential equation for the
mean first passage time from the backward Fokker–Planck
equation, and solved it numerically to obtain the mean first
passage time to from the induced to the uninduced state.
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5. Discussion

In this thesis, we have presented a comprehensive investigation of
the switching behavior of the lactose uptake pathway in
Escherichia coli, a canonical example of a bi-stable gene
regulatory system. By integrating detailed mechanistic modeling
with stochastic simulations and quantitative experiments, we have
elucidated the key factors governing the transitions between the
induced and uninduced states of the lac-operon. Our results
provide novel insights into the stochastic mechanisms of
phenotypic switching and offer a general framework for
dissecting the dynamics of multistable gene regulatory systems.

5.1. Identification of rate-limiting fluctuations

A central challenge in understanding the stochastic dynamics of
gene regulatory systems is to identify the fluctuations that drive
transitions between distinct phenotypic states. Experimentally,
this is difficult due to the limited ability to selectively control
fluctuations in individual molecular components in vivo. In this
work, we introduced a computational approach, termed
“smoothening”, to systematically modulate the amplitude of
fluctuations in different parts of a regulatory network in silico [1].

By applying the smoothening procedure to a detailed
mechanistic model of the lac-system, we identified the
repressor-DNA binding and unbinding events as the critical
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fluctuations triggering the transition from the uninduced to the
induced state. Notably, this transition was found to be insensitive
to fluctuations in other cellular components such as mRNA and
protein levels. Our finding highlights the importance of the
stochastic operator state in driving the phenotypic switch,
consistent with single-molecule experiments [6].

The smoothening procedure offers a general and powerful tool
to probe the stochastic mechanisms of phenotypic transitions in
complex regulatory networks. By selectively suppressing
fluctuations in different network components, it allows us to
pinpoint the rate-limiting fluctuations without the need for
challenging experimental manipulations. Moreover, as the
smoothening can be applied to any model component, it is not
limited to experimentally accessible quantities such as mRNA or
protein numbers, but can also probe the role of fluctuations in
molecular conformations, binding states, or reaction rates.

Rate-limiting fluctuations can be highly specific to a particular
system and transition. For example, while operator fluctuations
drive the lac-switch, transitions in other systems have been
attributed to fluctuations in mRNA numbers [53], initial protein
numbers [54], or gene activity states [56]. This specificity
underscores the importance of developing detailed mechanistic
models that capture the relevant molecular processes and sources
of stochasticity for each system of interest. The smoothening
procedure can then be used to systematically identify the rate
limiting fluctuations.

5.2. Transition to the induced state

Building upon the identification of repressor-operator binding as
the key fluctuation driving the lac-switch, we derived an analytic
expression Eq. (3.21) for the switching rate from the uninduced to
the induced state [1]. This expression relates the switching rate to
three key parameters: the rates of repressor binding and unbinding,
and a critical time interval that the operator must remain unbound
to accumulate sufficient inducer molecules to drive the transition.

The derivation of the analytic switching rate proceeds in two
steps. First, we compute the mean time for a single repressor
binding-unbinding cycle, conditioned on the operator remaining
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unbound for less than the critical time interval. Second, we
calculate the mean number of such cycles before a successful
transition event, where the operator remains unbound for a time
exceeding the critical interval. Combining these two quantities
yields a concise expression for the mean first passage time to the
induced state, which is inversely related to the switching rate.

Our theory provides a quantitative explanation for the
experimentally observed dependence of the switching rate on the
external inducer concentration. In particular, it predicts that the
logarithm of the switching rate should decrease linearly with the
inverse inducer concentration, with a slope determined by the
critical time interval and the repressor binding rate. This
prediction is in excellent agreement with our experimental
measurements, which span several orders of magnitude in both
the switching rate and inducer concentration. The derivation of
the analytic switching rate illustrates how a complex gene
regulatory network can be reduced to a tractable stochastic
model that captures its key dynamical features.

5.3. Transition to the uninduced state

While the transition to the induced state is driven primarily by
operator fluctuations, the reverse transition from the induced to
the uninduced state involves a more complex interplay of multiple
stochastic processes. By applying the smoothening procedure to
our mechanistic model, we found that fluctuations in repressor-DNA
binding, repressor numbers, and inducer-repressor interactions all
contribute significantly to the transition dynamics [2].

To model this multi-dimensional stochastic process, we first
derived effective rates of repressor binding and unbinding that
depend on the regulatory state of the cell and the intracellular
inducer concentration. These effective rates capture the feedback
between the repressor and inducer dynamics: repressor binding
inhibits inducer import, while inducer binding promotes repressor
unbinding. By averaging over the fast timescales of
inducer-repressor association and dissociation, we obtained a
simplified model of the inducer-repressor dynamics that retains
the essential features of the feedback loop.

We derive the master equation for pump production and dilution
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using the effective binding and unbinding rates calculated earlier,
and use the fast operator fluctuation and diffusion approximations
to derive the Fokker–Planck equation for pump dynamics. To model
repressor number dynamics, we use the fact that translation rates
are much larger than transcription rates of the LacI protein, enabling
us to make the approximation that there at most one mRNA for
LacI at an given time. This enables us to derive the Fokker–Planck
equation for the repressor numbers in the cell in a manner exactly
analogous to pump numbers. We combine these equations to derive
the 2D Fokker–Planck equation for repressor and pumps.

Using the backward Fokker–Planck equation, we derive the
differential equation for mean first passage time and solving it
numerically, we obtained predictions for the stability of the
induced state as a function of the external inducer concentration.
Our results show that the mean lifetime of the induced state
grows super-exponentially with the inducer concentration,
reaching values of 109 minutes or more for modest inducer levels.
This extreme stability, exceeding the typical timescale of cell
division, suggests that the induced state of the lac-system can
function as a robust form of cellular memory.

The analysis of the transition to the uninduced state highlights
the complex, multi-dimensional nature of phenotypic switching in
gene regulatory networks. Unlike the transition to the induced
state, which is driven by a single rate-limiting step (operator
unbinding), the reverse transition involves the concerted action of
multiple stochastic processes.

5.4. Experimental tests of the theory

A key strength of our approach is the close integration of
theoretical modeling with quantitative experiments. Throughout
this work, we have sought to test our models and predictions
against measurements of the switching dynamics at the single-cell
level. To this end, we used fluorescent reporters and flow
cytometry to track the stochastic transitions between the
uninduced and induced states over a wide range of inducer
concentrations [1, 2].

For the transition to the induced state, our experiments
provide a stringent test of the analytic switching rate expression.
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By measuring the fraction of cells that remain in the uninduced
state as a function of time, we estimated the switching rate for
inducer concentrations spanning several orders of magnitude.
The resulting data show excellent agreement with the theoretical
predictions, both in terms of the absolute switching rates and
their dependence on the inducer concentration. This agreement
validates the key assumptions underlying our model, such as the
identification of operator unbinding as the rate-limiting step and
the role of inducer accumulation in driving the transition.

In the case of the reverse transition to the uninduced state, the
extremely long predicted lifetimes of the induced state pose a
challenge for direct experimental verification. For inducer
concentrations above a critical threshold, our model predicts
mean switching times that far exceed the typical duration of an
experiment. Nevertheless, by measuring the stability of the
induced state over a limited range of sub-threshold inducer
concentrations, we were able to place lower bounds on the
switching times that are consistent with the theoretical
predictions. Further experiments with larger populations of cells
and longer observation times could help to quantify these slow
switching rates more precisely.

5.5. Conclusions and outlook

In conclusion, this thesis presents a comprehensive theoretical and
experimental investigation of the stochastic dynamics of the
lac-gene regulatory network. By combining detailed mechanistic
modeling with novel computational methods and quantitative
experiments, we have elucidated the key factors governing the
transitions between alternative phenotypic states. Our results
provide new insights into the molecular mechanisms of
phenotypic variability and the design principles of multistable
gene regulatory systems.

The smoothening procedure introduced in this work offers a
general and powerful tool for identifying the rate-limiting
fluctuations in complex regulatory networks. By selectively
modulating the amplitude of fluctuations in silico, this approach
allows us to dissect the stochastic mechanisms of phenotypic
transitions without the need for challenging experimental
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perturbations. As the smoothening can be applied to any model
component, it could be used to probe the role of fluctuations in a
wide range of cellular processes, from gene expression and signal
transduction to metabolism and cell fate decisions.

Moreover, our analytic theory for the switching dynamics
illustrates how complex regulatory networks can be reduced to
tractable stochastic models based on their rate-limiting
fluctuations. The key steps in this approach are (i) identifying the
relevant molecular species and reactions through smoothening, (ii)
deriving effective transition rates that capture the essential
feedback loops, and (iii) formulating a simplified stochastic process
that reproduces the dynamics of the original system. This
strategy could be generalized to other multistable networks,
providing a systematic way to derive coarse-grained models of
phenotypic variability.

Finally, the lac-operon with its well-characterized molecular
components provides an ideal platform for the rational design of
synthetic gene circuits with desired stochastic properties. Our
quantitative understanding of the switching dynamics could guide
the engineering of novel regulatory architectures with customized
noise characteristics, memory timescales, and sensitivity to
environmental signals. Such endeavors will not only advance our
understanding of the fundamental principles of gene regulation,
but also open new avenues for the control and exploitation of
biological variability in biotechnology and medicine.
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A. Appendix:
Experiments

The experiments described here were performed by Robin A. Sorg
in the group of J. W. Veening, and have been published in joint
work with the present author [1]. We include a description of them
here for convenience and completeness.

A.1. Determining phenotypic switching rates

To assess expression of the lac genes at the single-cell level we
used flow cytometry on a population of E. coli strain CH458, which
contains a gfp-cat cassette inserted downstream of the lac-operon
[39]. To determine the switching rate from the uninduced to the
induced state, cells were first grown overnight for approximately
12 generations in the absence of the inducer (TMG). Then cells were
adapted to a state of steady state exponential growth by re-diluting
the growth culture to optical density (OD) 0.04 every hour for four
hours, resulting in the pre-culture. OD values were thus kept in
a narrow range between 0.03 and 0.08. Cells from the pre-culture
were transferred to media with different inducer concentrations
and cultivated in constant conditions of exponential growth. Cell
cultures were diluted by a factor 2 per hour since the strain CH458
doubled in 60 minutes under our experimental conditions. See [1]
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for details.
We also looked at the switch from the induced state to the

uninduced state, by growing cells overnight and pre-culturing
them at an inducer concentration of 250 µM as described above
for switching to the induced state. However, the induced state is
very stable and we only observed switching to the uninduced
state in a very narrow range of low inducer concentrations.

Cell populations were grown at various inducer concentrations
between 0µM and 250 µM. Growth cultures were analyzed by
flow cytometry on an hourly basis (additional 0.5 hour steps
during the first two hours). For a range of inducer concentrations
between 10 µM to 200 µM we found two peaks in the fluorescence
distribution of the population, corresponding to the uninduced
and to the induced expression state respectively (see Fig. 3.1). The
fluorescence intensity distribution measured at different intervals
yields the fraction of induced cells at various time points, for each
value of external TMG concentration we probed.

A.2. Experimental conditions

We used the non-metabolizable thio-methylgalactoside (TMG) as
an inducer. M9 minimal salts supplemented with thiamine, MgSO4,
CaCl2, and casamino acids were chosen as growth medium for the
CH458 strain used in our experiments. We used succinate instead
of glucose as carbon source to reduce catabolite repression yet
maintain sufficient growth. Chloramphenicol (10 µ g/ml) was
added to reduce the risk of contamination during sampling.
Plasmid pREP4 (Qiagen) was transformed to strain CH458 using
CaCl2 transformation and selecting for kanamycin resistance,
resulting in strain CH458+pREP4.

For rapid and robust optical density (OD) determination,
cultures of 2ml were grown in 5ml tubes fitting directly into the
spectrophotometer. Overnight cultures were grown at different
TMG concentrations for 16 hours (approximately 12 generations) at
37◦C while shaking. In the morning, uninduced cells from 0 µM
TMG and induced cells from 250 µM TMG were diluted to OD
0.04 and grown in the particular TMG concentration for four
additional hours. Cultures were re-diluted every hour to ensure
constant exponential growth within a narrow OD range between
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0.03 and 0.08. After this adaptation phase, cells were spun down
and washed for the change of medium to the desired final TMG
concentration. In the following eight hours, samples were taken
every hour for measurement and cultures were rediluted as
described above to maintain steady state. Fluorescence of
individual cells was determined by flow cytometry of 105 cells at
a time. The fluorescence intensity was measured with a BD FACS
Canto Flow Cytometer of BD Bioscience at medium flow with a
forward scatter (FSC) of 200V and side scatter (SSC) of 400V. A
threshold of 500V was set to exclude recording of particles that
are smaller than normal E. coli cells. The fluorescence detector
FL-1 was set to 800V for a maximal separation of induced versus
uninduced cells. We found it crucial to maintain constant growth
conditions by dilution to keep intra and extra-cellular parameters
stable.

Time-lapse microscopy was carried out by spotting single
cells on a M9 polyacrylamide (10%) slide containing TMG inside a
Gene Frame (Thermo Fisher Scientific). A Nikon Ti-E microscope
equipped with a CoolsnapHQ2 camera and an Intensilight light
source was used in an Okolab climate incubator at 37◦C. Images
with cells expressing the green fluorescent protein (GFP) were
taken with the following protocol and filter set: 200ms exposure
time for phase contrast and 0.5s exposure for fluorescence at
450-490 nm excitation via a dichroic mirror of 495nm and an
emission filter at 500-550 nm. Pictures were taken every 30
minutes.

111



A . APPENDIX: EXPERIMENTS

112



Bibliography

[1] P. M. Bhogale, R. A. Sorg, J-W. Veening, and J. Berg. What
makes the lac-pathway switch: identifying the fluctuations
that trigger phenotype switching in gene regulatory systems.
Nucleic Acids Research, 42(18):11321–11328, 2014.

[2] P. M. Bhogale, R. A. Sorg, J-W. Veening, and J. Berg. Switch-
ing off: The phenotypic transition to the uninduced state of
the lactose uptake pathway. Biophysical Journal, 121:183–192,
January 2022.

[3] B. Müller-Hill. The lac Operon: A Short History of a Genetic
Paradigm. Walter de Gruyter, 1996.

[4] A. Novick and M. Weiner. Enzyme induction as an all-or-none
phenomenon. PNAS, 43:553–566, 1957.

[5] E. M. Ozbudak, M. Thattai, H. N. Lim, B. I. Shraiman, and A. van
Oudenaarden. Multistability in the lactose utilization network
of Escherichia coli. Nature, 427:737–740, 2004.

[6] P. J. Choi, L. Cai, K. Frieda, and X. S. Xie. A stochastic single-
molecule event triggers phenotype switching of a bacterial cell.
Science, 322(5900):442–446, Oct 2008.

[7] Crispin W Gardiner. Handbook of stochastic methods, vol-
ume 3. Springer Berlin, 1985.

[8] N.G. van Kampen. Stochastic Processes in Physics and
Chemistry. Elsevier Science Publishers, Amsterdam, 1992.

113



[9] T. B. Kepler and T. C. Elston. Stochasticity in transcriptional
regulation: origins, consequences, and mathematical represen-
tations. Biophys. J., 81(6):3116–3136, 2001.

[10] Irina Smirnova, Vladimir Kasho, Junichi Sugihara, and
H. Ronald Kaback. Opening the periplasmic cavity in lac-
tose permease is the limiting step for sugar binding. PNAS,
108(37):15147–15151, September 2011.

[11] P. C. Maloney and T. H. Wilson. Quantitative aspects of active
transport by the lactose transport system of Escherichia coli .
Biochim. Biophys. Acta, 330(2):196–205, 1973.

[12] A. Kepes. Kinetic studies on galactoside permease of Es-
cherichia coli . Biochim. Biophys. Acta, 40:70–84, 1960.

[13] B. Volkmer and M. Heinemann. Condition-dependent cell vol-
ume and concentration of Escherichia coli to facilitate data con-
version for systems biology modeling. PLOS One, 6(7), 2011.

[14] H. E. Kubitschek and J. A. Friske. Determination of bacterial cell
volume with the Coulter counter. J. Bacteriol., 168(3):1466–1467,
1986.

[15] B. Müller-Hill, L. Crapo, and W. Gilbert. Mutants that make
more lac repressor. PNAS, 59:1259–1264, 1968.

[16] M. Brenowitz, N. Mandal, A. Pickar, E. Jamison, and S. Adhya.
DNA-binding properties of a lac repressor mutant incapable of
forming tetramers. J. Biol. Chem., 266(2):1281–1288, 1991.

[17] X. S. Xie, P. J. Choi, G-W. Li, N. K. Lee, and G. Lia. Single-
molecule approach to molecular biology in living bacterial cells.
Annual Review of Biophysics, 37:417–444, 2008.

[18] M. Dunaway, J. S. Olson, J. M. Rosenberg, O. B. Kallai, R. E.
Dickerson, and K. S. Matthews. Kinetic studies of inducer
binding to lac repressor-operator complex. J. Biol. Chem.,
255(21):10115–10119, 1980.

[19] J. Elf, G. W. Li, and X. S. Xie. Probing transcription factor
dynamics at the single-molecule level in a living cell. Science,
316(5828):1191–1194, 2007.



[20] J. T. Mettetal, D. Muzzey, J. M. Pedraza, E. M. Ozbudak, and
A. van Oudenaarden. Predicting stochastic gene expression
dynamics in single cells. PNAS, 103(19):7304–7309, 2006.

[21] E. Roberts, A. Magis, J. O. Ortiz, W. Baumeister, and
Z. Luthey-Schulten. Noise contributions in an inducible genetic
switch: a whole-cell simulation study. PLoS Comput. Biol.,
7(3):e1002010, 2011.

[22] M. Stamatakis and K. Zygourakis. Deterministic and stochastic
population-level simulations of an artificial lac operon genetic
network. BMC Bioinformatics, 12:301–318, 2011.

[23] T. E. Kuhlman and E. C. Cox. Gene location and DNA density
determine transcription factor distributions in Escherichia coli.
Mol. Syst. Biol., 8:610, 2012.

[24] J. Sugihara, I. Smirnova, V. Kasho, and H. R. Kaback. Sugar
recognition by CscB and LacY. Biochemistry, 50:11009–11014,
2011.

[25] Irina Smirnova, Vladimir Kasho, Junichi Sugihara, and
H. Ronald Kaback. Opening the periplasmic cavity in lactose
permease is the limiting step for sugar binding. Proceedings of
the National Academy of Sciences, 108(37):15147–15151, 2011.

[26] D. W. Selinger, R. M. Saxena, K. J. Cheung, G. M. Church, and
C. Rosenow. Global RNA Half-Life Analysis in Escherichia coli
Reveals Positional Patterns of Transcript Degradation. Genome
Research, 13:216–223, 2003.

[27] Y. Taniguchi, P. J. Choi, G. W. Li, H. Chen, M. Babu, J. Hearn,
A. Emili, and X. S. Xie. Quantifying E. coli proteome and
transcriptome with single-molecule sensitivity in single cells.
Science, 329(5991):533–538, 2010.

[28] L. Cai, N. Friedman, and X. S. Xie. Stochastic protein expres-
sion in individual cells at the single molecule level. Nature,
440(7082):358–362, 2006.

[29] M. B. Elowitz, A. J. Levine, E. D. Siggia, and P. S.
Swain. Stochastic gene expression in a single cell. Science,
297(5584):1183–1186, 2002.



[30] I. Golding, J. Paulsson, S. M. Zawilski, and E. C. Cox. Real-time
kinetics of gene activity in individual bacteria. Cell, 123(6):1025–
1036, 2005.

[31] M. Stamatakis and N. V. Mantzaris. Comparison of determinis-
tic and stochastic models of the lac operon genetic network.
Biophysical Journal, 96:887–906, 2009.

[32] R. B. Winter, O. G. Berg, and P. H. von Hippel. The Escherichia
coli lac repressor-operator interaction: Kinetic measurements
and conclusions. Biochemistry, 20:6961–6977, 1981.

[33] A. M. Khoury, H. J. Lee, M. Lillis, and P. Lu. Lac repressor-
operator interaction: DNA length dependence. Biochim.
Biophys. Acta, 1087(1):55–60, 1990.

[34] A. M. Khoury, H. S. Nick, and P. Lu. In vivo interaction of
Escherichia coli lac repressor N-terminal fragments with the
lac operator. J. Mol. Biol., 219(4):623–634, 1991.

[35] D. Colquhoun, K. A. Dowsland, M. Beato, and A. J. Plested.
How to impose microscopic reversibility in complex reaction
mechanisms. Biophys. J., 86(6):3510–3518, 2004.

[36] O. G Berg. A model for the statistical fluctuations of protein
numbers in a microbial population. J. Theor. Biol., 71:587–603,
1978.

[37] C. Gupta, J. M. Lopez, W. Ott, K. Josic, and M. R. Bennett.
Transcriptional delay stabilizes bistable gene networks. Phys.
Rev. Lett., 111(5):058104, 2013.

[38] D. T. Gillespie. A general method for numerically simulating
the stochastic time evolution of coupled chemical reactions.
Journal of Computational Physics, 22:403–434, 1976.

[39] A. J. Gordon, J. A. Halliday, M. D. Blankschien, P. A. Burns,
F. Yatagai, and C. Herman. Transcriptional infidelity promotes
heritable phenotypic change in a bistable gene network. PLoS
Biol., 7(2):e44, Feb 2009.



[40] M. Kim, Z. Zhang, H. Okano, D. Yan, A. Groisman, and T. Hwa.
Need-based activation of ammonium uptake in Escherichia coli.
Mol. Syst. Biol., 8:616–626, 2012.

[41] R. A. Fasani and M. A. Savageau. Molecular mechanisms of multi-
ple toxin-antitoxin systems are coordinated to govern the per-
sister phenotype. Proc. Natl. Acad. Sci. U.S.A., 110(27):E2528–
2537, Jul 2013.

[42] S. D. Santos, R. Wollman, T. Meyer, and J. E. Ferrell. Spatial
positive feedback at the onset of mitosis. Cell, 149(7):1500–1513,
2012.

[43] R. Losick and C. Desplan. Stochasticity and cell fate. Science,
320(5872):65–68, 2008.

[44] F. J. Isaacs, J. Hasty, C. R. Cantor, and J. J. Collins. Prediction
and measurement of an autoregulatory genetic module. Proc.
Natl. Acad. Sci. U.S.A., 100(13):7714–7719, 2003.

[45] W. K. Smits, O. P. Kuipers, and J. W. Veening. Phenotypic
variation in bacteria: the role of feedback regulation. Nat. Rev.
Microbiol., 4(4):259–271, 2006.

[46] G. Neuert, B. Munsky, R. Z. Tan, L. Teytelman, M. Khammash,
and A. van Oudenaarden. Systematic identification of signal-
activated stochastic gene regulation. Science, 339(6119):584–
587, 2013.

[47] H. H. McAdams and A. Arkin. Stochastic mechanisms in gene
expression. Proc. Natl. Acad. Sci. U.S.A., 94(3):814–819, 1997.

[48] E. Kussell, R. Kishony, N. Q. Balaban, and S. Leibler. Bacterial
persistence: a model of survival in changing environments.
Genetics, 169(4):1807–1814, 2005.

[49] W. J. Blake, M. Kærn, C. R. Cantor, and J. J. Collins. Noise in
eukaryotic gene expression. Nature, 422(6932):633–637, 2003.

[50] E. Levine and T. Hwa. Stochastic fluctuations in metabolic
pathways. Proc. Natl. Acad. Sci. U.S.A., 104(22):9224–9229,
2007.



[51] J. Paulsson. Summing up the noise in gene networks. Nature,
427(6973):415–418, 2004.

[52] A. D. Weinberger and L. S. Weinberger. Stochastic fate selection
in HIV-infected patients. Cell, 155(3):497–499, 2013.

[53] H. Maamar, A. Raj, and D. Dubnau. Noise in gene expression
determines cell fate in Bacillus subtilis. Science, 317(5837):526–
529, 2007.

[54] J. A. Megerle, G. Fritz, U. Gerland, K. Jung, and J. O. Rädler.
Timing and dynamics of single cell gene expression in the ara-
binose utilization system. Biophysical Journal, 95:2103–2115,
2008.

[55] T. Cagatay, M. Turcotte, M. B. Elowitz, J. Garcia-Ojalvo, and
G. M. Süel. Architecture-dependent noise discriminates func-
tionally analogous differentiation circuits. Cell, 139(3):512–522,
2009.

[56] C. Zong, L. H. So, L. A. Sepulveda, S. O. Skinner, and I. Golding.
Lysogen stability is determined by the frequency of activity
bursts from the fate-determining gene. Mol. Syst. Biol., 6:440–
452, 2010.

[57] P. J. Johnsen, D. Dubnau, and B. R. Levin. Episodic selection
and the maintenance of competence and natural transformation
in Bacillus subtilis. Genetics, 181(4):1521–1533, 2009.

[58] M. J. Morelli and P. R. ten Wolde. Reaction Brownian dynamics
and the effect of spatial fluctuations on the gain of a push-pull
network. J Chem Phys, 129(5):054112, 2008.

[59] A. M. Walczak, J. N. Onuchic, and P. G. Wolynes. Absolute
rate theories of epigenetic stability. PNAS, 102(52):18926–18931,
2005.

[60] M. J. Morelli, S. Tanase-Nicola, R. J. Allen, and P. R. ten Wolde.
Reaction coordinates for the flipping of genetic switches.
Biophys. J., 94(9):3413–3423, 2008.



[61] J. Jaruszewicz, M. Kimmel, and T. Lipniacki. Stability of bac-
terial toggle switches is enhanced by cell-cycle lengthening by
several orders of magnitude. Phys. Rev. E, 89:022710–022720,
Feb 2014.

[62] S. Œhler, E.R. Eismann, H. Krämer, and B. Müller-Hill. The
three operators of the lac operon cooperate in repression. The
EMBO journal, 9(4):973–9, 1990.

[63] M. Santillan and M. C. Mackey. Why the lysogenic state of
phage lambda is so stable: a mathematical modeling approach.
Biophysical Journal, 86(1 Pt 1):75–84, January 2004.




