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1 Introduction 
 

1.1 Research background, objectives, methodology, and thesis 

structure 
 

For more than a century the cause of Quaternary glacial/interglacial cycles has remained a 

research focus. Hays et al. (1976) first provided evidence to the Milankovitch hypothesis and 

suggested that the cyclic variations in the earth’s orbit around the sun corresponded to 

variations in Earth’s climate over the late Quaternary. Shackleton and Opdyke (1976) 

extended the record of orbital-scale variability spanning the entire Pleistocene based on a 

benthic δ18O record from marine core V28-239 in the equatorial Pacific Ocean. The studies 

demonstrate that the oscillation between glacial and interglacial climates is the most 

fundamental characteristic of the Quaternary environment (past 2.588 Myr; International 

Commission on Stratigraphy, 2013). The cyclic pattern of glacial-interglacial climates was 

primarily forced by earth’s orbital parameters: the precession (23-ka cycle), eccentricity (100-

ka cycle), and obliquity (41-ka cycle). This proposal is supported by numerous geological 

archives of various depositional environments, e.g., deep ocean sediments (e.g. Shackleton 

and Opdyke, 1976; Shackleton et al., 1995), continental margin depositional sequences (e.g. 

Cronin et al., 1994; Naish et al., 1997, 1998), and continental records such as loess (e.g. Ding 

et al., 2002) and lacustrine sediments (e.g. Singh et al., 1981; Prokopenko et al., 2006). For 

instance, the long-term periodic ice-sheet changes were registered by the oxygen isotopic 

composition of marine foraminiferas (Lisiecki and Raymo, 2005). A number of international 

research projects are involved, e.g., Deep Sea Drilling Project (DSDP; 1968-1983), Ocean 

Drilling Program (ODP; 1985-2003), Integrated Ocean Drilling Program (IODP; since 2003), 

Greenland Ice Sheet Project (GRIP; 1989-1992), and International Continental Scientific 

Drilling Program (ICDP; since 1996).  

 

Despite the enormous progress obtained from the marine and ice-core records concerning the 

relationship between climate cycles and orbital parameters, long continental records spanning 

the whole Quaternary period are scarce. The Arctic is highly sensitive to climate variations 

and is thus a key region for understanding the present and past climate changes on land. In the 

context of global climate changes, it is vital to investigate the response of the most vulnerable 

ecosystems such as forest tundra, shrub tundra, and steppe in the northern Siberia.  

 

As a powerful tool for reconstructing the paleovegetation, pollen analysis is applied to the 

Lake El’gygytgyn (Northeastern Siberia) sediments. The palynological investigation of the 
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Lake El’gygytgyn sediments was initiated by Shilo et al. (2001). Since then, a number of 

localities in the lake have been studied palynologically. For instance, the c. 13 m long 

sediment core PG1351 were retrieved from the central part of the lake and the obtained pollen 

spectra (Lozhkin et al., 2007) were dated back to 250 ka (Nowaczyk et al., 2007). The pollen 

results prove the capacity of pollen spectra documenting vegetation and climate changes in 

the central Chukotka, Northeast Siberia (Lozhkin et al., 2007). In addition, 310 modern 

lacustrine samples were collected from the Northeast Siberia and Alaska and were analyzed to 

facilitate the interpretation of fossil pollen data (Anderson and Brubaker, 1993; Lozhkin et al., 

2001, 2002; Anderson et al., 2002a, b).  

 

Between 2008 and 2009, the deep-drilled composite core ICDP 5011-1 retrieved 318-m Lake 

El’gygytgyn (Melles et al., 2011) dated back to 3.58 Ma (Melles et al., 2012; Nowaczyk et al., 

2013). Andreev et al. (2014, 2016) present the pollen result of the lower 216-m sediments 

documenting the vegetation and climate changes during the Late Pliocene and Early 

Pleistocene (c. 3.58-2.15 Myr). For the same sediment core, Lozhkin and Amderson (2013) 

compare the pollen spectra of the postglacial thermal maximum (PGTM) and MIS 5 with the 

“super” interglaciations (MIS 11 and 31; Melles et al., 2012). Recently, Lozhkin et al. (2017) 

published a new pollen result from core 5011-1 encompassing a period of the mid-Pleistocene 

(MIS 19-11; 374-790 ka).  

 

This thesis aims to provide new insights into the Quaternary paleovegetation and its response 

to climate forcings in the Northeast Siberia. To achieve this, the thesis includes palynological 

investigation of the Lake El’gygytgyn sediment core 5011-1 concerning the intervals of 

~2150 to 2100 ka (MIS 82-79), ~1091 to 715 ka (MIS 31-18), and ~240.5 to 181.5 ka (MIS 

7.5-6.6). Pollen-based biome reconstruction (also known as biomization) was performed 

following the numerical method described by Prentice et al. (1996). The approach was first 

developed in order to produce a global vegetation map for the Last Glacial Maximum and 

Holocene period, which was a major task of the BIOME 6000 project (Prentice and Webb III, 

1998). For reconstructing past vegetation dynamics of a region, the biomization method 

introduces the calculation of biome affinity scores for each pollen sample using a standard 

equation. Fluctuations in the biome affinity scores can provide information regarding the 

changes in the significance of a specific biome in the region. The method has been utilized in 

fossil pollen studies of different regions and was proved successful (e.g., Williams et al., 2004; 

Rudaya et al., 2009; Müller et al., 2010). Tarasov et al. (2013) verified the reliability of the 

biomization approach based on 43 modern surface pollen samples of the Lake El’gygytgyn 

area (Matrosova, 2009) and applied biome reconstruction to previously investigated Lake 
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El’gygytgyn core 5011-1 fossil pollen samples (Andreev et al., 2014, 2016; Lozhkin and 

Amderson, 2013). Additionally, the pollen-based index landscape openness is employed for 

indicating the regional vegetation cover. 

 

The detailed objectives of this thesis are: 

(i) to reconstruct the vegetation and environmental history in the Siberian Arctic during the 

intervals of ~2150 to 2100 ka (including the Réunion Subchron polarity reversal event; 

chapter 2), ~1091 to 715 ka (encompassing the Mid-Pleistocene Transition; chapter 3), and 

~240.5 to 181.5 ka (the penultimate interglacial; chapter 4); 

(ii) to discover the pattern of vegetation succession during glacials and interglacials based on 

qualitative and quantitative pollen analysis;  

(iii) to infer the response of Arctic vegetation to changes in orbital forcings by a detailed 

comparison between the pollen data and astronomical parameters;  

(iv) to reveal possible mechanisms driving climatic variations in the high latitudes during the 

Quaternary. 

 

At last, chapter 5 synthesizes pollen data presented in chapters 2, 3, and 4. It compares 

vegetation successions during different stages of the Quarternary, probes into the 

environmental settings of characteristic interglaciations and glaciations, and attempts to reveal 

the dynamics of earth’s orbital and internal forcings influencing Arctic vegetation and climate 

over the Quaternary. 

 

 

1.2 Study region 
 

1.2.1 Lake El’gygytgyn 

 

Lake El’gygytgyn, located ~100 km to the north of the Arctic Circle in Northeast Russia 

(67º30 Ń, 172º05 É), was formed by a meteorite impact ~3.58 Myr ago (Layer, 2000). The 

lake is 170-m deep and ~12 km in diameter (Melles et al., 2012). The meteorite crater is a ~18 

km-diameter flat-bottom circular basin that is located on the southeastern slope of the 

Akademik Obruchev Ridge in the central Chukotka. The surrounding crater rim is 100-130 m 

above lake level. The vegetation of the Lake El’gygytgyn basin is dominated by lichen and 

herbaceous taxa and is often discontinuous, especially on higher slopes (Kozhevnikov, 1993). 
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Fig. 1.1 Map of the study region: (A) location of Lake El’gygytgyn marked by a circle, (B) bathymetric map of 

Lake El’gygytgyn and topography of its catchment, after Swann et al. (2010). The drilling site 5011-1 is indicated 

as a black dot. 

 

The lake has a surface area of 110 km2 and a relatively small catchment of 293 km2, with ~50 

creeks discharging into the lake and the Enmyvaan River outlet flowing southeastward to the 

Bering Sea (Nolan and Brigham-Grette, 2007). The lake is covered by seasonal ice between 

mid-October and July (Nolan et al., 2002). The inlets deliver ~350 t yr-1 of sediments into the 

lake, with spring and early summer being the main periods of sediment influx. Discharge of 

the Enmyvaam River is limited to the summer months and is estimated to be c. 0.05 km3 yr-1 

(Fedorov et al., 2013). The residence time of the lake water is c. 100 years (Fedorov et al., 

2013; Fig. 1.1). 

 

1.2.2 Climate 

 

The climate of the northern Siberia is characterized by long cold winters and short hot 

summers. The thermal regimes are mainly controlled by the geographical setting of high 

latitude and continental location (Shahgedanova, 2002). The winters in the region are marked 

by cold air mass brought by the strong Aleutian highs over the Beaufort and Chukchi Seas. In 

contrast, during the summers, warm Pacific air is transported into the lake area (Nolan and 

Brigham-Grette, 2007). 

 

In the crater region, the mean annual air temperature is low and displays an increasing trend 

over the last half-century (Fig. 1.2). Air temperatures data between 1948 and 2002 (Kalnay et 

al., 1996) for this region show a mean annual air temperature of -8.3°C. The mean air 
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temperature ranges from -35ºC in winter to 8°C in summer. Extremely high summer 

temperature can reach as high as 26ºC.  

 

 

Fig. 1.2 (A) Mean daily average air temperatures for the period 1948-2002, (B) mean annual air temperatures from 

1948 to 2002, after Nolan and Brigham-Grette (2007). 

 

The El’gygytgyn crater is generally dry, which is typical of the Arctic region. The mean 

annual precipitation is ~200 mm yr-1, with ~80 mm occurring during summers (from June to 

September) and ~110 mm as snowfall during other seasons. Extreme climate events, e.g., in 

2002, showed that air temperatures between mid-May and late-September dropped to nearly 

0ºC and the snowfall (>5 cm) started in mid-July and accumulated to c. 0.40 m in 2002. 

Strong winds are characteristic of the region. In winter, particularly, the wind speed averages 

17.8 m s-1 (Nolan and Brigham-Grette, 2007).  

 

1.2.3 Vegetation 

 

In the Arctic region, not only the harsh climate but also the existence of polar day and night 

play dominant roles on the vegetation (Lavrushin and Alekseev, 2005). In the following, 

information of the Siberian and Alaskan plant communities are summarized mainly according 

to the description by Viereck et al. (1992), Viereck and Little (1975), and Lozhkin et al. (2007; 

Fig. 1.3). 

 

The low-lying areas of the crater slopes and lake terraces is primarily covered by hummock 

tundra with Eriophorum vaginatum, E.callitrix, E.polystachion, Pedicularis pennellii, P. 

albolabiata, Carex rotundata, C. lugens, Salix fuscescens, S.reticulata, Senecio 

atropurpureus, and Vaccinium uliginosum. In the higher elevations of the crater slopes, moss-

lichens tundra occurs and is mainly composed of Cassiope tetragona, Rhododendron 
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parvifolium, Senecio resedifolus, Ermania parryoides, Silene stenophylla, Dryas octopetala, 

Potentilla elegans, and Anderosace ochotensis. The upper mountain plains are covered by 

sterile tundra, where Salix phlebiphylla, Artemisia furcate, and Saxifraga serpyllifolia are 

found (Lozhkin et al., 2001). 

 

 

Fig. 1.3 Key to the vegetation, after Lozhkin et al. (2007): (1) polar desert with discontinuous herb-dominated 

vegetation, (2) wet arctic tundra dominated by Eriophorum spp. with some low-growth shrubs, (3) upland and 

mesic tundra, (4) moist tundra often with low to mid-sized shrubs and Cyperaceae, (5) boreal forest dominated by 

Larix gmelinii and Pinus pumila, (6) high shrub tundra, and (7) location of Lake El’gygytgyn. 

 

Riparian plants, especially along the Enmyvaam River and large inlet creeks, are mainly low 

shrubs of willow communities, e.g. Salix tschuktschorum, S. saxatilis, Androsace ochotensis, 

Empetrum subholarcticum, Pleuropogon sabinii, Polemonium spp., Beckwithia chamissonis, 

Saussurea tilesii, and Chamerion latifolium (Belikovich, 1994). 

 

In terms of the regional vegetation, a sparse tundra interspersed by a few low shrub species is 

the most widespread in the Chukchi uplands. Low shrubs such as Salix krylovii and 

S.alaxensis are found in the valleys. Betula exilis is restricted to better organically 

accumulated areas such as alpine valleys, terraces, and saddles. In the southern Chukchi 

uplands, common shrubs are Pinus pumila and Alnus fruticosa (~2 to 3 m). 

 

Nearest coniferous forest appears ~150 km to the south and west of Lake El’gygytgyn. The 

main body of the forests is at a ~300 km distance, with Larix dahurica being the most 
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widespread deciduous trees. The vegetation of the northeastmost Siberia, located ~600 km to 

Lake El’gygytgyn, is a discontinuous herb-dominated tundra and polar desert. The only shrub 

species (Salix. spp.) typically grows in prostrate form (~1 m) in protected valleys (Lozhkin et 

al., 2007). 

 

 

1.3 The Lake El’gygytgyn sediment core 5011-1 
 

1.3.1 Drilling campaign and sediment cores 

 

The drilling operation was conducted by the U.S. consortium DOSECC using a modified 

GLAD 800 drilling system (Russian FLAD 800; Melles et al., 2011). LacCore at the 

University of Minnesota handled core curation. The research is financed by International 

Continental Scientific Drilling Program (ICDP), the U.S. National Science Foundation (NSF), 

the German Federal Ministry of Education and Research (BMBF), Alfred Wegener Institute 

(AWI) and GeoForschungsZentrum Potsdam (GFZ), the Russian Academy of Sciences Far 

East Branch (RAS FEB), the Russian Foundation for Basic Research (RFBR), and the 

Austrian Federal Ministry of Science and Research (BMWF; Melles et al., 2011). 

 

Three parallel holes were drilled at ICDP Site 5011-1 in the central part of Lake El’gygytgyn 

(Fig. 1.1). The drilling penetrated all the sediments deposited since the formation of the lake. 

A composite sediment profile of 318 m is obtained by correlating magnetic susceptibility 

measurements of the parallel cores (Melles et al., 2011). The uppermost sediment gaps was 

filled by comparing with the 16-m sediment core (Lz1024) drilled in 2003. The resultant 

composite core sediments display no signs of hiatuses (i.e., no evidence of basin glacial or 

desiccation). The lacustrine sediments are mainly clastic and highly variable in composition, 

with five different lithofacies being assigned to specific depositional conditions (for details 

see Melles et al. (2012)). Event indicators include the occurrence of prominent MMD 

(Sauerbrey et al., 2013), tephra layers (van den Bogaard et al., 2014), and fossil redox layers 

(Wennrich et al., 2014).  

 

1.3.2 Chronology 

 

The timing of the El’gygytgyn impact was dated by 40Ar/39Ar to 3.58±0.04 Ma ago on the 

impact-melted rocks derived from the crater rim (Layer, 2000). The age is also confirmed by 
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paleomagnetic data measured on the impact breccia and bedrock material recovered by core 

5011-1C (Maharaj et al., 2013).  Paleomagnetic measurements on U-channels and discrete 

samples yielded distinct down-core variations in inclination of the ChRM that could be 

addressed to three polarity chrons (Gauss, Matuyama, and Brunhes) and five subchrons 

(Jaramillo, Olduvai, Réunion, Kaena, and Mamooth; Melles et al., 2012; Fig. 1.4). The 

geomagnetic reversals and age of the impact were used as first order tie points for the 

composite profile of core 5011-1. 

 

The second order tie points were obtained by correlating the XRF-scanning-based Si/Ti ratios 

and Ti contents and the Fourier transform infrared spectroscopy (FTIRS) derived biogenic 

silica (BSi) contents with the global marine isotope stack LR04 record (Lisiecki and Raymo, 

2005). The third order tie points were a result of comparing the variations in the total organic 

carbon (TOC) contents and the magnetic susceptibility (MS) with the cumulative 65°N 

summer insolation (Laskar et al., 2004). Subsequently, an iterative tuning approach was 

applied to the tie points of all three orders to refine the age/depth model (Nowaczyk et al., 

2013). 

 

 

Fig. 1.4 (A) Age/depth model for the Lake El’gygytgyn ICDP 5011-1 composite core, after Melles et al. (2012). 

The black dots indicate the first-order tie points and the blue curve denotes the second- and third-order tie points. 

The red cross marks the time of the meteorite impact at 3.58±0.04 Ma. The black and white bars along the age and 

depth axes denote normal and reversed polarity, respectively, (B) age/depth model of the uppermost 35 m for the 

ICDP 5011-1 composite core (the blue curve) with a consolidation of luminescence ages, after Wennrich et al. 

(2016). Ages of tephra T1 (van den Bogaard et al., 2014; red triangle) and the Brunhes/Matuyama polarity change 
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(Haltia and Nowaczyk, 2014; black diamond) are also indicated. The extended triangle in the lower right corner 

correlates with the sample from the B/M boundary and illustrates a pIRIR290 age of >700 ka. 

 

Age/depth model of the uppermost 35 m was consolidated by luminescence ages determined 

by different dating protocols on the fine-grained quartz and the polymineral fraction (Zander 

and Hilgers, 2013). The dating protocols involved a multiple aliquot additive dose IRSL 

protocol and a single aliquot regeneration dose (SAR)-IRSL protocol, which have been 

successfully applied to the cores PG1351 (Forman et al., 2007) and Lz1024 (Juschus et al., 

2007) of Lake El’gygytgyn sediments younger than 300 ka. 

 

To conclude, the Lake El’gygytgyn sediment core 5011-1 yields great opportunities for filling 

the gap of a continuous Quaternary vegetation history in the high latitudes. With multi-proxy 

analysis (e.g., Melles et al., 2012; Brigham-Grette et al., 2013; Francke et al., 2013; Tarasov 

et al., 2013; Wennrich et al., 2013, 2016), it is possible to comprehensively understand the 

long-term environmental change and its climate forcings.  
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2 The Réunion Subchron vegetation and climate 

history of the northeastern Russian Arctic inferred 

from the Lake El’gygytgyn pollen record* 
 

 

 

Abstract 

 

The 318-m-thick sediment record from Lake El’gygytgyn provides unique opportunities for a 

detailed examination of environmental changes during the Réunion Subchron polarity 

reversal event (2.1384-2.1216 Myr BP) in the northeastern Russian Arctic. The paper 

describes vegetation and climate fluctuations between ~2.150 and 2.100 Myr BP as inferred 

from palynological data. Biome reconstructions indicate that throughout this interval the 

tundra (TUND) biome generally has higher affinity scores as compared to cold steppe (STEP) 

or cold deciduous forest (CLDE). An exception is the climatic optimum between ~2.139-

2.131 Myr BP, coinciding with Marine Isotope Stage 81 (approximately the Réunion 

Subchron), when the CLDE biome has the highest scores. Landscape-openness indices 

suggest that more closed vegetation characterized most of the interval between 2.146-2.127 

Myr BP, when deciduous forest and shrubs expanded in the regional vegetation and climate 

was relatively warm and wet. Peaks in green algal colonies (Botryococcus) and Zygnema-type 

spores ~2.150-2.146, ~2.131-2.123, and ~2.112-2.102 Myr BP indicate expansions of 

shallow-water habitats and lowered lake levels. Comparisons with biome reconstructions 

from other interglacial intervals at Lake El’gygytgyn suggest that precession-related summer 

insolation intensity and obliquity-related duration of summer daylight are major controls on 

the onset of interglaciations, whereas obliquity probably plays a more significant role on 

vegetation succession at northern high latitudes during the Pleistocene. 

 

Keywords: Pollen, Early Pleistocene, Biome, Orbital forcing, Northeastern Russian Arctic  

 

 

 

                                                      

* This chapter is based on Zhao, W.W., Andreev, A.A., Wennrich, V., Tarasov, P.E., Anderson, P., Lozhkin, A.V., 

Melles, M., 2015. The Réunion Subchron vegetation and climate history of the northeastern Russian Arctic 

inferred from the Lake El’gygytgyn pollen record. Palaeogeography, Palaeoclimatology, Palaeoecology 436, 167-

177. 
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2.1 Introduction  
 

Lake El’gygytgyn, located in northeastern Russia (67°30' N, 172°05' E; Fig. 2.1), hosts the 

oldest continuous terrestrial sediment record from the Arctic (Melles et al., 2012; Brigham-

Grette et al., 2013). In spring 2009, a 318-m-thick composite record was recovered in the 

center of the lake (ICDP Site 5011-1, Fig. 2.1), penetrating the last 3.6 Myr BP, with full 

recovery down to 2.8 Myr BP (Melles et al., 2011). A suite of multi-disciplinary studies on 

this record has been reported previously (Melles et al., 2012; Brigham-Grette et al., 2013; 

special issue of Climate of the Past: http://www.clim-past.net/special_issue48.html), 

including ones using palynological data to reconstruct past vegetation and climate (Lozhkin et 

al., 2007; Lozhkin and Anderson, 2013; Tarasov et al., 2013; Andreev et al., 2014). These 

earlier studies revealed a number of major shifts in vegetation, perhaps none more noteworthy 

than those of the Late Pliocene to Early Pleistocene (3.575-2.150 Myr BP). Until ~2.93 Myr 

BP, the vegetation was dominated by taxon-rich, cool-mixed and cool-conifer forests, 

Pliocene remnants representing climates significantly warmer and wetter than the present. 

After ~2.725 Myr BP, cold deciduous forests and tundra characterized the El’gygytgyn region. 

Beginning ~2.6 Myr BP, the cool conifer and cold deciduous forests were gradually replaced 

by tundra. Despite the onset of glaciation in the northern hemisphere (Brigham-Grette et al., 

2013), warmer-than-present Arctic summers persisted at Lake El’gygytgyn until ~2.2 Myr BP, 

when glacial episodes started to gradually increase in frequency (Melles et al., 2012; 

Brigham-Grette et al., 2013). 

 

The Lake El’gygytgyn sediments indicate clear polarity zonations and thus provide 12 first-

order tie points to pin down the age of the longest paleoclimate record from the continental 

Arctic (Haltia and Nowaczyk, 2014). The mean sedimentation rate decreases rapidly from 

~50 cm ka-1 to 4-5 cm ka-1 at the onset of the Pleistocene, when polarity shifts from the Gauss 

Chron to the Matuyama Chron. This reversal likely was associated with the reorganization of 

circumpolar atmospheric circulation through climate changes that have caused variations in 

sediment deposition (Haltia and Nowaczyk, 2014; Fig. 2.2). The Réunion Subchron, which is 

the first polarity reversal within the Quaternary recognized in the Lake El’gygytgyn sediment 

record, provides exceptionally good age control for early Quaternary deposits. This quality 

allows the unequivocal identification of glacial and interglacial events the specific orbital 

parameters associated with these climate shifts. 

 

It is well documented that oscillations in glacial and interglacial periods since the onset of the 

Pleistocene (~2.6 Myr) have been controlled by the astronomical parameters of eccentricity, 
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obliquity, and precession (Milankovitch, 1941; Hays et al., 1976). Obliquity and precession 

are dominant influences on the duration of climatic cycles, whereas eccentricity only “paces” 

rather than “drives” climatic change (Maslin and Ridgwell, 2005). Obliquity at high latitudes 

has a profound effect on seasonal insolation (Berger and Loutre, 2004; Liu and Herbert, 2004), 

although precession is the dominant factor at lower latitudes (Ruddiman and McIntyre, 1984; 

Shakleton et al., 1999; Ruddiman, 2003; Liu and Herbert, 2004; Maslin and Ridgwell, 2005; 

Joannin et al., 2011). According to grain-size data from the Lake El’gygytgyn record, the 

glacial-interglacial cycles during the Early Pleistocene in that area are mainly controlled by 

the 41 ka (obliquity) cycle, whereas after ~ 0.67 Myr BP the 100 ka (eccentricity) cycle is 

dominant (Francke et al., 2013). 

 

Several studies have examined the relationship of long-term vegetation change during the 

Pleistocene and relevant astronomical forcing (e.g., Tzedakis et al., 1997; Bar-Matthews et al., 

2003; Prokopenko, et al., 2006; Joannin et al., 2007, 2008, 2011). However, most of these 

studies are limited to middle-to-low latitudes of the northern hemisphere. In this paper, we 

present the Réunion Subchron pollen data from the composite core of Lake El’gygytgyn in 

Chukotka. The objectives of this study are (1) to provide the first high-resolution Réunion 

Subchron pollen record in the high Arctic and (2) to evaluate the relative importance and 

influence of the obliquity-related duration of seasonal sunlight and precession-related levels 

of summer insolation on regional vegetation and climate changes by comparing the study 

interval with MIS 5 and MIS 11 pollen records. 

 

 

2.2 Study region and site description 
 

Lake El’gygytgyn, located in northeastern Russia, was formed by a meteorite impact ~3.58 

Myr ago (Layer, 2000; Fig. 2.2). The meteorite crater is a c. 18 km-diameter flat-floored 

circular basin that is located in the central part and southeastern slope of the Akademik 

Obruchev Ridge in central Chukotka. The lake floor is bowl-shaped with a diameter of ~12 

km and a maximum water-depth of ~170 m. The surrounding crater rim is 100~130 m above 

lake level. 

 

The lake has a relatively small catchment of 293 km2, with ~50 creeks discharging into the 

lake and the Enmyvaan River outlet flowing to the southeast (Nolan and Brigham-Grette, 

2007). Lake El’gygytgyn is an oligotrophic to ultra-oligotrophic and cold-monomictic lake 

(Cremer and Wagner, 2003) with 9-10 months ice-cover resulting in a very short open-water 
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season (Nolan et al., 2003). The inlets deliver ~350 t yr-1 of sediment into the lake, with 

spring and early summer being the main times of sediment influx (Fedorov et al., 2013). 

Considerable phytoplankton growth also takes place in winter time beneath the ice cover and 

contributes to the sedimentation (Cremer et al., 2005). 

 

 

Fig. 2.1 Map showing the location of Lake El’gygytgyn and a simplified distribution of the major vegetation types 

in northeastern Russia. (A) Location of the study site (image source: Google Earth). (B) Key to the vegetation 

(modified from Lozhkin et al., 2007) with (1) polar desert with discontinuous herb-dominated vegetation, (2) wet 

arctic tundra dominated by Eriophorum spp. with some low-growth shrubs, (3) upland and mesic tundra, (4) moist 

tundra often with low to mid-sized shrubs and Cyperaceae, (5) boreal forest dominated by Larix gmelinii and 

Pinus pumila, (6) high shrub tundra, and (7) location of El’gygytgyn Lake. (C) Satellite image of the El’gygytgyn 

crater showing the location of the drilling site 5011-1 (image source: http://www.geo.umass.edu/lake_e/media. 

html). 

 

Lake El’gygytgyn is situated within the zone of continuous permafrost, exhibiting a mean 

annual ground temperature of -10°C at 12.5 m depth (Schwamborn et al., 2008). The region is 

characterized by extremely harsh climate with mean annual air temperature (MAT) of c. -

10°C and average July and January temperatures of 8°C, and -35°C, respectively. Mean 

annual precipitation is ~200 mm yr-1 with 80 mm summer rainfall (June-September) and ~110 

mm water-equivalent in snowfall (Nolan and Brigham-Grette, 2007). 

 

The modern vegetation in the El’gygytgyn Crater is generally sparser with fewer shrub 

species as compared to the surrounding Chukchi uplands (Lozhkin et al., 2001; Lozhkin and 

Anderson, 2013). Low-shrub and herb-dominated tundra populate the uplands surrounding 

the crater. They are mainly composed of Salix polaris, Cassiope tetragona, Carex tripartite, 

Phippsia algida, Koenigia islandica, Saxifraga hyperborean, Eritrichium villosum, Primula 

tschuktschorum, Hierochloe pauciflora, together with small populations of Pinus pumila and 



CHAPTER 2 

14 

 

Alnus fruticosa (Belikovich, 1994; Andreev et al., 2012). Scattered stands of Larix gmelinii 

and Pinus pumila appear ~100 km to the south and west of Lake El’gygytgyn, while the main 

body of the forest is ~300 km away. 

 

The carter is covered primarily by Cyperaceae-hummock and moss-lichen tundra that is 

dominated by herbaceous and lichen species (e.g., Eriophorum spp., Pedicularis spp., Carex 

spp., Salix spp., Senecio atropurpureus, Ledum decumbens, Andromeda polifolia, Vaccinium 

uliginosum, Cassiope tetragona, Rododendron parvifolium, Ermannia parryoides, Silene 

stenophylla, Dryas octopetala, Crepis nana, Potentilla elegans, and Androsace ochotensis). 

Small thickets of Alnus fruticosa (shrub alder) are found ~10 km to the south of the 

Enmyvaan River (Fig. 2.1C). 

 

 

2.3 Methods 
 

2.3.1 Laboratory methods and age model 

 

 

Fig. 2.2 Age/depth model with resulting sedimentation rates for the ICDP 5011-1 core composite from Lake 

El’gygytgyn, based on magnetostratigraphy and correlation between sediment proxy data, the LR04 marine isotope 

stack (Lisiecki and Raymo, 2005), and regional spring and summer insolation (Laskar et al., 2004). Initial first-

order tie points are indicated by black dots; second- and third-order tie points are denoted by the black curve. The 

red star marks the time of the impact inferred from 40Ar/39Ar dating at 3.58 Ma (Layer, 2000). Black and white 

bars denote normal and reversed polarity, respectively. The gray bar indicates the studied interval. This figure is 

adapted from Melles et al. (2012). 
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Pollen subsamples of ~1.5 g were taken at ~1000 yr (1 ka) increments from 101.91 to 99.59 m 

depth in the composite core 5011-1 from Lake El’gygytgyn. This core interval according to 

the age model provided by Melles et al. (2012) and Nowaczyk et al. (2013) encompasses a 

period of ~50,000 years between ~2.15 and 2.10 Myr BP (Fig. 2.2). 

 

Samples were processed following standard techniques (Fægri and Iversen, 1989), with 

additional fine sieving to remove clay-sized particles. A tablet containing Lycopodium 

clavatum spores was added to each sample for calculation of pollen concentrations and pollen 

accumulation rates (PAR; Stockmarr, 1971). The pollen concentrate was mounted in water-

free glycerol. Palynomorphs were identified at 400× magnification, with the aid of several 

pollen keys and atlases (Kupriyanova and Alyoshina, 1972, 1978; Bobrov et al., 1983; Reille, 

1992, 1995, 1998). In this paper, the so-called non-pollen-palynomorphs (NPPs) include 

spores, fungi, and algal colonies, which were identified and counted according to van Geel 

(2001). In most samples, >250 terrestrial pollen grains were identified, with this sum used to 

calculate the percentages of tree, shrub, and herb pollen. Percentages of NPPs are based on 

terrestrial pollen counts plus sums of the respective NPP category (e.g., sporetype1 percentage 

equals to sporetype1 counts divided by sum of pollen and spore). Poor pollen concentration in 

some samples resulted in insufficient counts to provide reliable percentages. These samples 

are excluded from further analysis. Pollen accumulation rates (grains cm-2 yr-1) of each taxon 

are computed by multiplying pollen concentration (grains ml-1) by the sedimentation rate (cm 

yr-1). 

 

2.3.2 Reconstructing biomes and landscape openness 

 

Reconstructing plant biomes (a process also known as “biomization”) was done following the 

techniques of Prentice et al. (1996) that include calculating biome or affinity scores for each 

pollen sample using their standard equation. This method has been applied successfully to the 

Late Pliocene-Early Pleistocene part of the Lake El’gygytgyn pollen record (Tarasov et al., 

2013). Pollen taxa and their associated biomes are summarized in Table 2.1. The taxa-to-

biome assignment and biome score calculations used in this study follow the matrix presented 

in Tarasov et al. (2013). 

 

Landscape openness is another criterion that has proved useful in paleovegetation 

reconstructions (Tarasov et al., 2013). This method provides a qualitative assessment of 

changes in vegetation cover by evaluating the difference between maximum forest biome 
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(MFBS) and maximum open biome (MOBS) scores. In our study, the forest biome is 

represented by cold deciduous (CLDE), taiga (TAIG), cool conifer (COCO), and cool mixed 

(COMX) biomes; more open vegetation is indicated by tundra (TUND) and steppe (STEP) 

biomes. Biomes and landscape openness were also calculated for two other intervals in the 

Lake El’gygytgyn record that center on the MIS 11c super interglacial (Lozhkin and 

Anderson, 2013) and the MIS 5e interglacial (Lozhkin et al., 2007). Each of these intervals 

encompasses c. 50,000 yr. All results were compared qualitatively to examine the relationship 

of vegetation change to variations in orbital parameters.  

 

Table 2.1 Terrestrial pollen taxa identified in the Quaternary part of the Lake El’gygytgyn record and their 

associated biome assignments. Among MIS 81, MIS 11 and MIS 5, the biomes TAIG and COCO are only 

recognized during the superinterglacial MIS 11. Taxa, whose percentages in the biome-taxon matrix are <0.5% 

(threshold suggested by Prentice et al., 1996) and which do not influence the results of the biome reconstruction, 

are marked with an asterisk between ~2.15 and 2.10 Myr BP. 

Biome Terrestrial pollen taxa  

TUND/Tundra 

Alnus fruticosa-type (shrub), Betula sect. Albae-type (tree)*, B.sect. Nanae-type 

(shrub), B. undif, Cyperaceae, Ericales, Poaceae, Polemoniaceae, 

Polygonaceae, Rubus chamaemorus, Salix, Saxifragaceae, Valerianaceae 

CLDE/Cold 

deciduous forest 

Alnus fruticosa-type (shrub), Betula sect. Albae-type (tree)*, B. sect. Nanae-

type (shrub), B. undif, Ericales, Larix/Pseudotsuga, Pinus subgenus 

Haploxylon, Pinaceae undif, Rubus chamaemorus, Salix 

TAIG/Taiga 

Alnus sp, Abies*, Betula sect. Albae-type (tree)*, B. sect. Nanae-type (shrub), 

B. undif, Ericales, Larix/Pseudotsuga, Picea*, Pinus s/g Haploxylon, Pinaceae 

undif, Rubus chamaemorus, Salix 

COCO/Cool 

conifer forest 

Alnus sp, Abies*, Betula sect. Albae-type (tree)*, B. sect. Nanae-type (shrub), 

B. undif, Carpinus-type*, Corylus*, Ericales, Larix/Pseudotsuga, Picea*, Pinus 

subgenus Haploxylon, Pinaceae undif, Salix, Tilia*, Tsuga* 

STEP/Cold steppe 

Artemisia, Asteraceae, Asteraceae Cichorioideae*, Caryophyllaceae, Cannabis-

type, Chenopodiaceae, Fabaceae, Lamiaceae, Onagraceae, Papaveraceae, 

Poaceae, Polygonaceae, Ranunculaceae, Rosaceae*, Thalictrum, Valerianaceae 
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2.4 Results 
 

2.4.1 Pollen 

 

A total of 69 pollen, spore and NPP types have been identified in the 47 samples investigated 

(Fig. 2.3 and 2.4). Major trends in the taxa are described in Table 2.2. The diagrams have 

been subdivided into 7 pollen zones (PZ), based on stratigraphically constrained cluster 

analysis (CONISS) and visual inspection of the percentages. PZ numbers are assigned 

following those in Andreev et al. (2014) to insure chronological continuity and compatibility 

of comparison. Four general pollen assemblages characterize the record between ~2.15 and 

2.10 Myr BP: (i) herb dominated (PZ-58), (ii) deciduous shrub-graminoid dominated (PZ-61, 

PZ-62, PZ-63, PZ-64), (iii) deciduous shrub dominated (PZ-59), and (iv) Pinus/deciduous 

shrub dominated (PZ-60). Note that Larix pollen occurs in all zones except PZ-58.  

 

2.4.2 Biome reconstructions 

 

Four samples with low counts (<50 terrestrial pollen grains; Fig. 2.3) were excluded from 

biomization. The results obtained on the remaining samples show that the Lake El’gygytgyn 

record between 2.15 and 2.10 Myr BP is characterized by tundra (TUND), cold steppe 

(STEP), and cold deciduous forest (CLDE) (Fig. 2.5). Tundra and cold deciduous forest (i.e., 

larch forest) are common in northeastern Siberia today (Fig. 2.1), while all three biomes are 

found in neighboring areas of eastern Siberia. The TUND biome has the highest affinity 

scores throughout our record, and tundra biomes predominate (Fig. 2.5A, B). The exceptions 

are two short intervals at 2.138-2.131 and ~2.111 Myr BP, with CLDE and STEP biome, 

respectively. Relatively high CLDE affinity scores occurred at 2.145-2.127 and 2.117-2.112 

Myr BP. Between 2.123 and 2.117 Myr BP, the affinity scores of CLDE and STEP are close. 

 

The landscape around Lake El’gygytgyn was relatively open for most of the 2.150-2.099 Myr 

BP interval (Fig. 2.5C). An exception occurred between 2.138 and 2.131 Myr BP, when 

pollen of Pinus s/g Haploxylon (Fig. 2.5D) was abundant.  
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Fig. 2.3 Summary diagram showing percentages of major pollen, spore, fungal and algal taxa between ~2.15 and 2.10 Myr BP in Lake El’gygytgyn. 
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Fig. 2.4 Summary diagram of pollen accumulation rates (grains cm-2 yr-1) for major taxa between ~2.15 and 2.10 Myr BP in Lake El’gygytgyn. 
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Table 2.2 Description of the pollen zones that occur in the sediments of Lake El’gygygyn formed between 2.150 

and 2.099 Myr BP. PZ=pollen assemblage zone, AP=arboreal pollen, NAP=non-arboreal pollen, LB=lower 

boundary, NPP=non-pollen-palynomorph. 

PZ Age (Myr BP) Features PAR 

Deciduous 

shrub taxa  

PZ-64 

 

2.099-2.102 

 

AP: predominance of Betula 

sect. Nanae-type and Alnus 

NAP: predominance of 

Cyperaceae 

NPP: higher values of 

Sphagnum 

LB: increase of Artemisia 

(>20%) and decrease of 

Sphagnum (<4%) 

AP: low PAR 

NAP: high PAR of Poaceae, 

Cyperaceae and Polygonaceae 

NPP: high PAR of Sphagnum 

and Gelasinospora 

Herbaceous 

taxa  

PZ-63 

 

2.102-2.112 AP: remarkable amounts of 

Larix and Salix 

NAP: predominance of Poaceae, 

Cyperaceae and Artemisia, some 

Caryophyllaceae  

NPP: higher values of 

Selaqinella rupestris and 

Botryococcus  

LB: decrease of Artemisia and 

Selaqinella rupestris and 

Botryococcus  

AP: relatively high PAR of 

Larix and Salix 

NAP: high PAR of Poaceae, 

Cyperaceae, Artemisia and 

Caryophyllaceae  

NPP: higher Botryococcus  

 

Deciduous 

shrub taxa  

PZ-62 

 

2.112-2.117 

 

AP: predominance of Betula 

sect. Nanae-type and Alnus 

NAP: low values of Artemisia and 

Poaceae  

NPP: higher values of 

Sphagnum 

LB: increase of Artemisia and 

Poaceae 

AP: high PAR of Larix, Betula 

sect. Nanae-type, Alnus and 

Salix 

NAP: high PAR of Poaceae, 

Cyperaceae and 

Caryophyllaceae  

NPP: high values of Sphagnum 

and Gelasinospora 

Mixed 

herb- and 

shrub- taxa  

PZ-61 

 

2.117-2.131 

 

AP: predominance of Betula 

sect. Nanae-type and Alnus 

NAP: the opposite trend of AP 

in Poaceae, Cyperaceae and 

Artemisia 

NPP: higher values of 

Botryococcus 

LB: increase of Pinus s/g. 

Haploxylon 

AP: high PAR of Larix, Ericales 

and Salix 

NAP: high PAR of Poaceae, 

Cyperaceae, Artemisia, 

Caryophyllaceae, Ranunculaceae 

and Polygonaceae 

NPP: high values of Sphagnum 

and Botryococcus 

Deciduous 

forest taxa  

PZ-60 

 

 

 

 

2.131-2.139 

 

 

 

 

 

AP: highest values of Pinus s/g. 

Haploxylon (>40%) 

NAP: low values of herbaceous 

taxa 

NPP: remarkable amounts of 

Sphagnum 

LB: decrease of Pinus s/g. 

Haploxylon to 7% 

AP: high PAR of Larix, Pinus 

s/g. Haploxylon, Alnus, Betula 

sect. Nanae-type and Salix 

NAP: high herbs PAR 

NPP: high values of Sphagnum, 

Polypodiaceae and 

Gelasinospora  
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PZ Age (Myr BP) Features     PAR 

Deciduous 

shrub taxa  

PZ-59 

 

2.139-2.146 

 

AP: predominance of Betula sect. 

Nanae-type and Alnus 

NAP: low values of Artemisia 

NPP: predominance of Sphagnum 

LB: decrease of Betula sect. 

Nanae-type (<10%) and Alnus 

(<2%) 

AP: high PAR of Larix, 

Alnus, Betula sect. Nanae-

type and Salix 

NAP: high herbs PAR 

NPP: high values of 

Sphagnum, Polypodiaceae, 

Gelasinospora, 

Botryococcus and Zygnema  

Herbaceous 

taxa  

PZ-58 

 

2.146-2.150 AP: absent  

NAP: remarkable percentage peaks 

of Poaceae, Artemisa and 

Thalictrum 

NPP: higher values of 

Botryococcus and Zygnema  

LB: see PZ-58 in previous study 

(Andreev et al., 2014) 

AP: high PAR of Salix 

NAP: high PAR of 

Poaceae, Artemisia, 

Caryophyllaceae and 

Thlictrum  

NPP: high values of 

Botryococcus and Zygnema  

 

Table 2.2 Continued 

 

 

2.5 Interpretation and discussion 
 

To describe the vegetation history of the Lake El’gygytgyn region, it is necessary to address 

several caveats when interpreting the pollen record. The first concerns the taxonomic 

ambiguity associated with Pinus pollen. Currently, three species of pine grow in northern 

Siberia: P. pumila, P. sibirica and P. sylvestris. The latter produces P. s/g Dyploxylon-type 

pollen which is a taxon not found in this part of the Lake El’gygytgyn core. P. s/g 

Haploxylon-type pollen, a key component of our record, is produced by both P. pumila and P. 

sibirica. Dwarf stone pine (P. pumila) is found as (1) an understory shrub in larch forests 

(Larix gmelinii); (2) a component of lowland shrub tundra; (3) a number of shrub tundra 

communities found above the altitudinal tree limit. Today the coniferous shrub is located 

~100 km to the south and west of Lake El’gygytgyn (Galanin et al., 1997). Siberian pine (P. 

sibirica) and Picea obovata are typical members of the conifer forests across much of Siberia. 

These evergreen forests benefit from a relatively warm climate and generally are restricted to 

lowland and valley settings (Lozhkin and Anderson, 2013). Stone pine can survive under 

cooler temperatures and a wider range of elevations as compared to Siberian pine. Given the 

absence of Picea pollen during the interval studied, and the wide range of elevations 

represented in the Lake El’gygytgyn record, we think it is most likely that the P. s/g 

Haploxylon-type pollen was produced by stone and not by Siberian pine. 
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A second consideration is that of Larix pollen, which is known both for its short-distance 

dispersal from the larch tree and for its poor preservation (Andreev et al., 2001; Kataoka et al., 

2003). Thus, Larix pollen is often considered the equivalent of a plant macrofossil. 

Consequently, we interpret the low but consistent presence of the taxon in our fossil pollen 

spectra to indicate the presence of larch in the lake crater and/or the surrounding uplands.  

 

Thirdly, Betula sect. Nanae-type pollen is characteristic of modern pollen assemblages from 

tundra habitats in many areas of Siberia (Kunes et al., 2008; Andreev et al., 2012 and 

references therein). Dwarf birches do grow today with shrub alder (Alnus fruticosa-type 

pollen) in mesic settings, but these birches also can be found to the north and east of the 

current alder distribution occurring in more severe tundra landscapes.  

 

2.5.1 Environmental conditions at Lake El’gygytgyn during ~2.15-2.10 Myr BP 

 

The vegetation history provided in this paper is based on the qualitative interpretations of 

pollen-vegetation-climate relationships and the more quantitative assessments of plant biomes 

and landscape openness (Fig. 2.3 to 2.6). 

 

 

Fig. 2.5 Summary diagram for 2.15-2.10 Myr BP showing: (A) time series of individual biomes, (B) dominant 

biomes, (C) qualitative characteristic of landscape openness reflected by the difference between the maximum 

score of forest biomes (MSFB) and the maximum score of open biomes (MSOB) at each level, (D) tree and shrub 

pollen percentages (green line) compared with percent pine pollen (black histogram), (E) inclination of the 

characteristic remanent magnetization (Nowaczyk et al., 2013) with the positive (negative) value indicate normal 

(reversed) polarity and sedimentation rate in the sediment record, and (F) LR04 global marine isotope stack (black 

dots and line, Liesecki and Raymo 2005) and mean July insolation for 67.5°N (red line, Laskar et al., 2004). 
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Between 2.150 and 2.146 Myr BP (PZ-58; late MIS 82), the vegetation was dominated by 

graminoid communities that included drought- and cold-tolerant herbs (e.g., Artemisia, 

Thalictrum, Caryophyllaceae, Ranunculaceae). The predominance of herb taxa and low PAR 

suggest open habitats. However, one sample includes Larix pollen, thus suggesting a possible 

presence of small stands in protected areas of the catchment. Woody taxa were certainly 

limited in distribution, with Salix being most common. Although PZ-58 dates to late MIS 82, 

the paleobotanical data are similar to those that prevailed throughout the isotope stage (2.163-

2.150 Myr BP), when Poaceae, Cyperaceae, and Artemisia communities likely were common 

around the lake and climates were inferred to be extremely dry and cold (Lozhkin et al., 2007; 

Andreev et al., 2014). According to the biomization (Fig. 2.5A), STEP biome scores are 

relatively high at one level (Fig. 2.5A, B, C), but TUND scores are dominant, suggesting the 

presence of tundra-steppe. Numerous remains of green algal colonies (Botryococcus) and 

spores of Zygnema-type algae indicate the widespread occurrence of shallow-water habitats 

and relatively low lake-levels, as previously concluded also for the early MIS 82 (Andreev et 

al., 2014). 

 

Between 2.146 and 2.139 Myr BP (PZ-59), increased pollen percentages and PAR of Betula 

sect. Nanae-type and Alnus, low values for Poaceae and Artemisia pollen, and higher PAR for 

Salix indicate that shrub tundra became common regionally. These changes reflect the 

beginning of climatic amelioration within MIS 81. The more consistent appearance of Larix 

pollen suggests the local establishment of this tree, probably in isolated and scattered stands. 

Increases in CLDE and TUND scores, from low values occurring in PZ-58, suggest the onset 

of wetter and warmer conditions. A moister climate, resulting in locally mesic substrates, is 

also indicated by higher percentages of Sphagnum spores. The interpretation of a temperature 

increase at the beginning of MIS 81 is supported by a change towards a sedimentary facies B 

that reflects only semi-permanent lake-ice coverage (Melles et al., 2012). 

 

The pollen spectra between 2.139 and 2.131 Myr BP (PZ-60, MIS 81) are characterized by 

the highest percentages and PAR of Pinus s/g Haploxylon and the highest total PAR in this 

portion of the El’gygytgyn record. Sedimentation rate of this period is lower than that at PZ-

59. Alnus and Betula sect. Nanae-type, although remaining important components of the 

pollen assemblages, are lower in PZ-60 than in PZ-59. Larix pollen has a low but consistent 

presence and relatively high PAR. The shift in the pollen spectra between PZ-59 and PZ-60 

indicates the establishment of larch forest with stone pine-birch-alder shrub communities in 

the understory and at higher elevations beyond the altitudinal treeline. The dominance of 

woody taxa is reflected in an increase of CLDE scores to the highest in the record. Reductions 
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in steppe and tundra communities and the widespread presence of larch forests with a rich 

shrub understory clearly mark the presence of wet and warm summer climates, associated 

with the MIS 81 thermal optimum (Fig. 2.5F). The relatively high sedimentation rates coeval 

with PZ-59 (Fig. 2.5E) suggest more terrestrial material was transported into the lake by inlet 

streams (Fedorov et al., 2013; Wennrich et al., 2013). Subsequently, the increased vegetation 

cover leads to less soil erosion and mud flows, contributing to markedly low sedimentation 

rate during the Réunion Subchron (c. 3.8 cm/ka), which covers the period from the MIS 81 

climate optimum to the MIS 81/80 transition (2.138-2.122 Myr BP; Fig. 2.5E). 

 

The transition from PZ-60 into PZ-61 at 2.131 to 2.123 Myr BP (representing the latter part of 

MIS 81) documents the return to shrub tundra-dominated landscapes as the climate cooled 

towards the MIS 80 glaciation. This shift is evident in the decline in P. s/g Haploxylon pollen 

percentages and PAR, the decrease in total PAR, and the increase in herb pollen (mainly 

Poaceae and Artemisia). Birch and alder were the dominant shrub species, possibly with 

scattered thickets of stone pine. Larix PAR suggests that during early PZ-61 larch forests 

persisted but were reduced to isolated stands by c. 2.128 Myr BP. This shift may have been 

gradual, as suggested by the landscape-openness scores (Fig. 2.5C). Biomization results show 

an increase in STEP scores and a reduction in CLDE scores (Fig. 2.5A), although TUND 

scores predominant. These trends are consistent with a cooling and drying climate. 

 

The peak in Artemisia percentages at ~2.123 Myr BP also reflects cooler and drier conditions 

than before and coincides with the transition to MIS 80. A peak in Botryococcus green algal 

colonies between 2.126 and 2.121 Myr BP implies expanded shallow-water habitats, most 

likely associated with drier conditions. This suggestion is supported by the lowest 

sedimentation rates in the entire record at the same time, indicating declined inflow. A 

simultaneous decline in P. s/g Haploxylon pollen suggests that this drying may reflect a 

decline in effective moisture during the cool seasons, as stone pine requires a sufficient snow 

cover to protect the evergreen shrub from winter desiccation. 

 

In PZ-62 (between 2.117 and 2.112 Myr BP, early MIS 79), relatively high percentages and 

modest PARs of Alnus and Betula sect. Nanae-type pollen indicate that shrub tundra 

communities were characteristic of the regional vegetation. Larix percentages and PAR 

suggest the continued albeit restricted presence of larch. Percentages of Poaceae and 

Artemisia are lower than those of MIS 80. However, Cyperaceae PAR and, to a lesser extent, 

its percentages and the greater values for Sphagnum spores suggest that mesic conditions 

occurred locally. Higher CLDE scores support the presence of conditions sufficiently warm to 
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allow the widespread distribution of deciduous shrubs. The climate inferred for PZ-62 

resembles that of PZ-59, which represents the glacial-interglacial transition from MIS 82 to 

MIS 81. 

 

Between 2.112 and 2.102 Myr BP (PZ-63, central MIS 79), individual taxon and total PAR 

generally are low. Although Betula pollen percentages are lower than in PZ-62, the values are 

still sufficiently high to suggest the shrub’s presence. However, Betula PAR and Alnus 

percentages and PAR suggest these shrubs were not common, making willow the only 

significant shrubby taxa in the regional landscape. Small increases in Pinus s/g Haploxylon 

and Larix pollen suggest that larch stands accompanied by shrub birch and shrub alder were 

scattered in protected sites such as valley bottoms. Compared to trees and shrubs, herb taxa 

(particularly Poaceae and Artemisia) generally have higher PAR. Selaginella rupestris spores, 

a taxon associated with well-drained, dry habitats, also have high abundances. At that time, 

stadial herb communities were common in the region, thus characterizing a rather cool and 

particularly dry climate. A significant peak in Botryococcus algae between ~2.110 and 2.105 

Myr BP suggests an increase in shallow-water habitats consistent with drier conditions. High 

TUND and STEP biome scores are indicative of open vegetation dominated by arctic herb 

tundra. 

 

The PZ-64 (2.102-2.099 Myr BP, upper MIS 79) pollen assemblages contain similar spectra 

to those of PZ-62, with (1) relatively high percentages of Alnus, Betula sect. Nanae-type, and 

Cyperaceae pollen; (2) low percentages of Artemisia pollen; and (3) high percentages of 

Sphagnum spores. Although herb tundra still dominated the landscape, a reduction in STEP 

affinity scores suggests the climate was more favorable than before. 

 

2.5.2 Response of biomization-inferred vegetation successions to orbital forcing 

 

The oscillation between glacial and interglacial climates, which is the most fundamental 

characteristic of the Pleistocene, is controlled primarily by changes in the Earth’s orbital 

parameters (Hays et al., 1976). Milankovitch (1941) argued that the intensity of summer 

insolation at 65°N was a critical influence in regulating glacial-interglacial cycles. In other 

words, when summer insolation at 65°N was reduced sufficiently to minimize summer snow-

melt, then ice sheets would eventually form. As to the orbital parameters themselves, 

precession mediates the Earth-Sun distance and thus is the dominant influence on insolation 

intensity and also closely correlates to incoming July insolation (Berger et al., 1999; Maslin 
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and Ridgwell, 2005; Fig. 2.6C, D). Changes in obliquity also play an important role; for 

example an increase in obliquity results in a greater seasonal difference in duration of 

daylight that in turn leads to warmer summers and colder winters. Hence, regional vegetation 

changes at high latitudes should show responses to variations both in precession-related levels 

of summer insolation and obliquity-related duration of seasonal sunlight. However, it should 

be noted that modeling results indicate that precession is clearly stronger than obliquity in 

driving the 65°N summer insolation in northern and central Eurasia (Ruddiman, 2003). 

 

 
Fig. 2.6 Summary diagrams showing the relationship between biomes with: (A) biome reconstruction for 2.15-

2.10 Myr BP (this study), 90-140 ka BP and 370-420 ka BP (Tarasov et al., 2013), (B) landscape openness 

calculated as the difference between MSOB and MSFB, (C) LR04 global marine isotope stack (Liesecki and 

Raymo, 2005) and mean July insolation for 67.5°N (red line, Laskar et al., 2004), and (D) precession curve (black 

line) and obliquity curve (red line) from Laskar et al. (2004). 
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Given the importance of the above parameters, we examined more closely selected 

interglacials/interstadials at Lake El’gygytgyn in order to assess possible similarities or 

dissimilarities in patterns of vegetation change as they relate to precession, obliquity and July 

insolation (Fig. 2.6). We draw examples from this study (late MIS 82 to MIS 79), the MIS 11 

super-interglacial (Melles et al., 2012; Lozhkin and Anderson, 2013) and MIS 5 (Lozhkin et 

al., 2007). Each of these intervals represents ~50,000 yr. 

 

The vegetation succession and astronomical configuration ~2.150-2.100 Myr BP displays a 

pattern similar to those for MIS 5. At first, open vegetation (TUND and/or STEP) 

characterized the late glacial stages (~2.150-2.146 Myr BP and ~140-135 ka BP, respectively), 

when the precession-related summer-insolation intensity and obliquity values were relatively 

low. During the glacial-interglacial transitions (~2.146-2.139 Myr BP and ~135-128 ka BP, 

respectively) the CLDE biome increased in significance. The onset of interglacial conditions 

is correlated with rising summer-insolation intensity and higher obliquity values. High CLDE 

affinity scores occur ~2.146-2.127 Myr BP and ~128-115 ka BP, although the TUND biome 

in both cases remained an important landscape component. CLDE scores reach maximum 

values ~2.139-2.131 Myr BP and ~125-123 ka BP, reflecting the presence of optimal warm 

and moist climates. These interglacial optima are represented by high summer-insolation 

intensity and high obliquity. 

 

The ~2.127-2.117 Myr BP and ~115-105 ka BP intervals are characterized by a progressive 

decrease in CLDE and an accompanying increase in STEP scores, although the TUND biome 

was still dominant, marking the onset of glacial conditions. Abrupt declines in CLDE scores 

coincide with both low summer insolation intensity and low obliquity. The 

interglacial/interstadial MIS 79 (~2.117-2.100 Myr BP) and MIS 5c (105-92 ka BP) are 

similar in that both show the replacement of CLDE by STEP biome, except during early MIS 

79 (~2.117-2.112 Myr BP), when CLDE scores are higher than STEP scores. 

 

The onset and end of MIS 81 and MIS 5e both correspond to the high-amplitude downward 

trend of precession and obliquity, from peak to trough, respectively. This phenomenon is also 

recorded in the Mediterranean Sea (Joannin et al., 2008; 2011) and Lake Baikal (Prokopenko 

et al., 2006). Peaks of obliquity-related daylight duration and precession-related summer 

insolation intensity lead to the peak annual mean temperature, which triggered the onset of 

interglaciation and forest expansion. When the obliquity and precession move to the trough, 

herbaceous components increase in significance due to a deteriorated climate. The succeeding 

interglacial/interstadial MIS 79 and MIS 5c do not witness such a prominent change in 
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vegetational landscape, which possibly was induced by a combination of peak precession-

related summer insolation intensity but relatively low obliquity values. 

 

The vegetation history of super interglacial MIS 11 to differs from those of MIS 5 and of this 

study in terms of both the biome types involved and the duration of the optimal conditions. 

Two additional biomes (taiga, TAIG and cold coniferous forest, COCO) established during 

the super interglacial. The glacial-interglacial transition is marked by a decrease in STEP and 

an increase in TUND, TAIG, CLDE and COCO scores within a rather short time (~430-424 

ka BP as compared to the ~135-128 ka BP and ~2.146-2.139 Myr BP transitions in MIS5 and 

MIS81, respectively). The TUND biome is dominant and during this interval low-amplitude 

changes in precession result in relatively stable and high summer-insolation. Therefore, the 

rapid vegetation succession likely responds primarily to the increasing obliquity values. A 

“plateau” of TAIG and CLDE scores occurs between 424 and 399 ka BP (MIS 11c), whereas 

high COCO scores exist between 424 and 415 ka BP. This pattern was mainly influenced by 

the presence of Corylus pollen, which was likely subject to long-distance transport (Lozhkin 

and Anderson, 2013). However, mixed spruce-larch-birch-alder forest certainly was 

widespread in the region. The maximum summer temperatures and annual precipitation 

values of MIS 11c are estimated to be ~4°C to 5°C and ~300 millimeters higher than those of 

MIS 5e by employing pollen-based modern analogue approach (Melles et al., 2012). Between 

399 and 395 ka BP, coniferous forest declined slightly, whereas shrub tundra increased on the 

landscape. Around ~395 ka BP, TUND and STEP scores return to high values. Roughly at the 

same time, summer insolation and obliquity were both minimal. Since 390 ka BP, the TAIG 

biome has been absent. Declining CLDE and TUND scores and increasing STEP scores 

indicate a gradual cooling and drying of climate with the beginning of MIS 11b. 

 

During all interglacial optima (MIS 81, 11c and 5e) high forest biome scores correlate well 

with respective patterns in precession-related high summer-insolation intensity and high 

obliquity values. MIS 11c is clearly the warmest and longest of the three interglacial optima 

(Melles et al., 2012). This character of super interglacial MIS 11c is widely shared by records 

from North Atlantic marine sediment cores (Voelker et al., 2010; Lawrence et al., 2009) and 

Lake Baikal (Prokopenko et al., 2001). Low-amplitude precession changes during the MIS 

11c led to relatively stable and moderate summer-insolation intensity, thus contributing to the 

long-term establishment of regional forests. When the obliquity increases and reaches a 

certain threshold, the precession and obliquity-controlled temperature rises and triggers the 

onset of interglaciation at c. 424 ka BP. When the obliquity moves to the trough, despite 

moderately low precession-related summer insolation intensity, the dominance of taiga is 
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replaced by tundra. More concisely, the Lake El’gygytgyn data suggest that obliquity perhaps 

plays a more significant role in triggering vegetation succession or biome type in the northern 

high latitudes, while both precession and obliquity rather impact the onset of interglaciation. 

 

The onset of glacials/stadials (MIS 80, MIS 11b and MIS 5d) is characterized by minimized 

obliquity and simultaneously reduced precession-related summer insolation intensity. Short 

daylight and low temperature in the summer likely contributed to the ice-sheet formation and 

further limited the extent of shrub or herb tundra. 

 

The early Pleistocene Mediterranean vegetation succession is largely controlled by 

precession-related summer-insolation intensity instead of obliquity change (Joannin et al., 

2008). However, our results suggest that during the Pleistocene the role of precession on 

vegetation change at northern high latitudes possibly was not as significant as at low- to mid-

latitudes (Joannin et al., 2007, 2008 and 2011). With regard to climatic forcing, global 

modeling results (e.g. Paillard, 1998; Khodri et al., 2001; Parrenin and Paillard, 2012) also 

show that precession and obliquity have a similar influence on the deglaciation, with obliquity 

playing a marginally more important role. 

 

 

2.6 Conclusions 
 

This study provides a detailed examination of the Lake El’gygytgyn pollen record in the 

interval ~2.150 to 2.100 Myr BP (late MIS 82 to MIS 79), which includes the Réunion 

Subchron polarity reversal event, and uses both qualitative interpretations of the pollen 

assemblages as well as biome and landscape openness reconstructions. 

 

During late MIS 82, vegetation was characterized by drought- and cold-tolerant herbaceous 

communities reflecting an extremely dry and cold climate. Increases in shrub and Larix pollen 

and Sphagnum spores suggest climate amelioration at the beginning of MIS 81. Optimal 

climatic conditions were reached in the middle part of MIS 81, when the extent of larch-

dominated deciduous forest and stone pine populations were at a maximum. A gradual 

increase of herbaceous taxa in late MIS 81 suggests a drying and cooling trend and greater 

openness to the landscape. During MIS 80 high percentages of herb-taxa imply cold and dry 

climatic conditions. Subsequent expansion of shrub birch, shrub alder, and Sphagnum during 

early MIS 79 reflects the onset of wetter and warmer conditions. After this period, the greater 

abundance of herb pollen and Selaginella rupestris spores suggests rather cold and dry 
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climates, while larch, shrub birch, and possibly shrub alder have survived in protected areas 

throughout MIS 79. A slightly wetter climate in the upper part of MIS 79 (c. 2.102-2.100 Myr 

BP), is indicated by increases in shrub pollen and Sphagnum spores with an accompanying 

decline in herb pollen. 

 

From the comparison of the results from MIS 82 to MIS 79 with those from MIS 11 and MIS 

5, it becomes evident that vegetation change at Lake El ǵygytgn clearly responded to the 

combined effects of the precession-related summer-insolation intensity and obliquity-related 

daylight duration. On the one hand, MIS 82 to MIS 79 have a similar vegetation succession 

and astronomical configuration as that for MIS 6 to 5c. Nearly simultaneous peaks of 

obliquity and precession trigger the onset of interglaciation and forest expansion, while 

minimal values of both correspond to increases in herbaceous components in the regional 

vegetation, marking the end of the interglacials. On the other hand, the super interglacial MIS 

11c is warmer and longer compared to MIS 81 and MIS 5e, due to stable and moderate 

precession. Obliquity probably is more significant in triggering vegetation succession, while 

both precession and obliquity control the onset of the MIS 11c interglacial. 
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3 High-latitude vegetation and climate changes 

during the Mid-Pleistocene Transition inferred 

from a palynological record from Lake El’gygytgyn, 

NE Russian Arctic* 
 

 

 

Abstract 

 

A continuous pollen record from Lake El’gygytgyn (northeastern Russian Arctic) provides 

detailed information concerning the regional vegetation and climate history during the Mid-

Pleistocene Transition (MPT), between 1091 ka (end of Marine Isotope Stage (MIS) 32) and 

715 ka (end of MIS 18). Pollen-based qualitative vegetation reconstruction along with biome 

reconstruction indicates that the interglacial regional vegetation history during the MPT is 

characterized by a gradual replacement of forest and shrub vegetation by open herbaceous 

communities (i.e. tundra/cold steppe). The pollen spectra reveal seven vegetation successions 

that have clearly distinguishable glacial-interglacial cycles. These successions are represented 

by the intervals of CLDE biome scores changing from high to low, which are basically in 

phase with the variations of obliquity from maxima to minima. The dominating influence of 

obliquity forcing on vegetation successions contradicts with the stronger power of eccentricity, 

as demonstrated by the result of wavelet analysis based on landscape openness reconstruction. 

This discrepancy shows that a single index is insufficient for catching signals of all the 

impacting factors. Comparisons with vegetation and environmental changes in the Asian 

interior suggest that global cooling during the MPT was probably the key force driving long-

term aridification in the Arctic region. The accelerated aridification after MIS 24-22 was 

probably caused by the additional effect of the Tibetan Plateau uplift, which played an 

important role on intensification of the Siberian High and Westerly jet systems. 

 

Keywords: Lake El’gygytgyn, Mid-Pleistocene transition, Palynological record, ICDP, 

North-eastern Russian Arctic 

 

 

                                                      
* This chapter is based on Zhao, W.W., Tarasov, P.E., Lozhkin, A.V., Anderson, P., Andreev, A.A., Korzun, J.A., 

Melles, M., Nedorubova, E.Yu., 2017. High-latitude vegetation and climate changes during the Mid-Pleistocene 

Transition inferred from a palynological record from Lake El’gygytgyn, NE Russian Arctic. Boreas doi: 10. 

1111/bor. 12262. 
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The MPT (Mid-Pleistocene Transition) marks a fundamental change in the Earth’s climate 

system between 1250 and 700 ka, when the dominant climate cycles changed from 41 to 100 

kry without substantial change in orbital configuration (Medina-Elizalde & Lea, 2005; Clark 

et al., 2006; Elderfield et al., 2012). High-resolution marine oxygen isotope records reveal a 

remarkable ice volume increase and deep-water temperature decrease during the MPT (e.g. 

Lisiecki & Raymo, 2005). The most conspicuous “900 ka event” (MIS 24-22) is indicated by 

a notable advance of continental ice masses (Maasch, 1988) and the sudden stagnation of 

deep-water circulation, as indicated by the minimal carbonate accumulation in the South 

Atlantic (Schmieder et al., 2000). Consequently, the MPT also witnessed profound variations 

in biota and environments in many localities around the globe (Raymo et al., 1997; Head & 

Gibbard, 2005; Li et al., 2008). 

 

Pollen data from the eastern Mediterranean show that the floristic diversity significantly 

declined during the interglacial intervals following MIS 24-22 (Tzedakis et al., 2006). This 

decline was traced back to a response of the vegetation succession to obliquity and precession 

changes (Joannin et al., 2011). Palynological records from the South China Sea provide 

evidence for a strengthened winter monsoon after 900 ka (Sun et al., 2003). West African C4 

plants (mainly grasses and sedges) gradually decreased in abundance with the tropical 

Atlantic Ocean warming because of precession-related high insolation values (Schefuβ et al., 

2003). The regional vegetation history also shows well-pronounced glacial-interglacial cycles 

after MIS 24-22 (Dupont et al., 2001). 

 

Most of the marine and ice core records indicate that orbital variations are responsible for 

global ice volume and deep-water temperature changes during the MPT. As continuous long-

term terrestrial records are usually very rare and low in temporal resolution, we still lack 

understanding of how these changes have influenced the terrestrial environment, especially in 

the high latitudes. Previous studies imply that orbital parameters have different levels of 

forcing on climate change at different latitudes (e.g. Berger & Loutre, 2004; Maslin & 

Ridgwell, 2005). More specifically, the obliquity of the Earth’s axis is more important in 

driving vegetation succession at higher latitudes, while precession has a more significant 

influence on climate change at lower latitudes, although it remains a key factor in amplifying 

feedback mechanisms in the high latitudes as well (Maslin & Ridgwell, 2005). 

 

Lake El’gygytgyn has yielded a unique continuous terrestrial record of Arctic climate 

fluctuations back to the middle Pliocene. Three parallel holes drilled in 2009 at ICDP Site 

5011-1 in the central part of Lake El’gygytgyn (Fig. 3.1) have resulted in a 318-m long 



CHAPTER 3 

37 

 

composite sediment core that comprises the entire lake sediment succession (Melles et al., 

2011) above a suevite layer that was formed by a meteorite impact event 3.58±0.04 Ma ago 

(Layer, 2000). 

 

High-resolution multi-proxy studies of this core have provided invaluable insights into 

regional and global climatic response to changes in orbital forcing (e.g. Melles et al., 2012; 

Brigham-Grette et al., 2013; Francke et al., 2013; Tarasov et al., 2013; Wennrich et al., 2014, 

2016; Andreev et al., 2014). Amongst these studies, palynological analyses provide insights 

into the vegetation and climate history since the upper Pliocene (Lozhkin et al., 2007; 

Andreev et al., 2012, 2014, 2016; Lozhkin & Anderson, 2013; Tarasov et al., 2013; Zhao et 

al., 2015). In this study, we continue to explore the Lake El’gygytgyn sediments, adding new 

pollen data from the MPT interval. The aims of the current study are (i) to infer MPT 

vegetation succession in the northeastern Siberian Arctic based on biome reconstructions; (ii) 

to discover the response of Arctic vegetation to changes in orbital forcing; (iii) to detect the 

dominant orbital forcing that controls the cyclic pattern of vegetation change; (iv) to discuss 

possible mechanisms driving climatic variations in the high latitudes during the MPT. 

 

 

3.1 Study site 
 

Lake El’gygytgyn (67°30' N, 172°05' E; Fig. 3.1) is located at 492 m above sea level in the 

Far East Russian Arctic, 100 km to the north of the Arctic Circle. The modern lake has a 

diameter of ~12 km and a bowl-shaped morphology with a maximum water depth of 175 m. 

The catchment area of 293 km2 is about three times the lake’s surface area of 100 km2, being 

fed by ~50 ephemeral streams, which form multiple alluvial fans, particularly in the west and 

north (Nolan & Brigham-Grette, 2007; Schwamborn et al., 2012). The inlets deliver ~350 t a-1 

of sediment into the lake, with spring and early summer being the main seasons of sediment 

influx (Fedorov et al., 2013). Today, Lake El’gygytgyn is a cold-monomictic, ultra-

oligotrophic lake with slightly acidic pH (Nolan & Brigham-Grette, 2007). However, 

phytoplankton growth significantly contributes to the sedimentation, taking place even 

beneath the ice cover in winter times (Cremer et al., 2005). 

 

The climate in the region is dry and cold, with a mean annual air temperature (MAT) of about 

-10 °C and mean July and January temperatures of 8 and -35 °C, respectively (Melles et al., 

2012). Mean annual precipitation (MAP) is about 200 mm a-1, consisting of ~90 mm summer 
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rainfalls (June-September) and ~110 mm water-equivalent snowfalls (Nolan & Brigham-

Grette, 2007). 

 

 

Fig. 3.1 A. Location of the study area marked with red rectangular (source: Google Earth). B. Bathymetric map of 

Lake El’gygytgyn and topography of its catchment (modified from Swann et al., 2010). The drilling site 5011-1 is 

marked with a black dot. 

 

Due to the harsh climatic conditions as well as barren edaphic conditions caused by the 

meteorite impact, the catchment of Lake El’gygytgyn is generally sparsely vegetated, with 

patches of shrub willows (Salix krylovii and S. alaxensis) and dwarf birch (Betula exilis) 

limited to protected habitats in valleys and saddles (Lozhkin & Anderson, 2013). The 

surrounding uplands are populated by low-shrub and herb-dominated tundra communities, 

which are mainly composed of Salix polaris, Cassiope tetragona, Carex tripartite, Phippsia 

algida, Koenigia islandica, Saxifraga hyperborean, Eritrichium villosum, Primula 

tschuktschorum, Hierochloe pauciflora, together with small populations of Pinus pumila and 

Alnus fruticosa (for details see Belikovich, 1994; Andreev et al., 2012; Lozhkin & Anderson, 

2013 and references therein). Scattered stands of Larix gmelinii appear ~150 km to the south 

and west of the lake and the continuous forest belt is located ~300 km south of the lake 

(Tarasov et al., 2013). 
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3.2 Material and methods 
 

3.2.1 Pollen analysis 

 

Palynological analyses were carried out on 250 samples from the depth interval between 

43.55 and 29.62 m (~1091-715 ka, between the end of MIS 32 and MIS 18) of the composite 

core from ICDP Site 5011-1 in the central part of Lake El’gygytgyn. The temporal resolution 

of the samples varies between 1 and 4 ka. The samples of ~1.5 g dry weight were subject to 

successive chemical treatments with HCl, KOH, and HF, following acetolysis, as described in 

Fægri & Iversen (1989). A tablet of Lycopodium marker spores was added to each sample for 

calculating total pollen and spore concentrations following Stockmarr (1971). The 

concentrated pollen residues were preserved in glycerol for further identification and counting. 

About 400 terrestrial pollen grains were counted in most samples using a light microscope at 

400× magnification. Identification of pollen, spore, and non-pollen-palynomorphs (NPPs) is 

in accordance with relevant regional keys and atlases (Kupriyanova & Alyoshina, 1972; 

Bobrov et al., 1983; Reille, 1992, 1995, 1998; Van Geel, 2001). Palynomorph percentages 

and concentrations are calculated in each sample (for details see Zhao et al., 2015). 

Pollen data of 250 samples are involved in this study, comprising (i) 204 samples (696.0-

1055.8 ka) analyzed by W.W. Zhao (this study), (ii) 18 samples (1057.2-1091.4 ka) published 

by Lozhkin & Anderson (2013), and (iii) 28 samples (720.2-917 ka) published by Lozhkin et 

al. (2016). 

 

3.2.2 Biome and landscape openness reconstructions 

 

Pollen-based ‘biomization’ is a quantitative approach, which was first designed and tested 

using a limited number of key pollen taxa digitalized from the 0 and 6 ka pollen spectra from 

Europe (Prentice et al., 1996). The method has been further adapted for reconstructing the 

main vegetation types (biomes) present in northern Eurasia (Tarasov et al., 1998, 2000, 2013). 

In recent years, it has been successfully applied to the modern and fossil pollen spectra from 

Lake El’gygytgyn, in order to reconstruct the vegetation and climate history of this Arctic 

region since the late Pliocene (Brigham-Grette et al., 2013; Tarasov et al., 2013; Andreev et 

al., 2014, 2016; Zhao et al., 2015). Pollen taxa found in the Lake El’gygytgyn record and their 

assignments to the respective biomes are presented in Table 3.1 (for further details see also 

Tarasov et al., 2013). By calculating the difference between the maximal forest biome score 

(MFBS) and the maximal open biome score (MOBS), a qualitative assessment of the 
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landscape openness can be achieved with a higher confidence compared to a more traditional 

approach using arboreal and non-arboreal pollen percentages (Tarasov et al., 2013). 

 

Table 3.1 Terrestrial pollen taxa identified in the Lake El’gygytgyn sediments accumulated between 1091 and 715 

ka and their corresponding biomes (following Tarasov et al., 2013). Taxa, whose percentages in the biome-taxon 

matrix are <0.5% (threshold suggested by Prentice et al., 1996), and which do not influence the results of the 

biome reconstruction, are marked with an asterisk. 

Biome Terrestrial pollen taxa  

TUND/Tundra 

Alnus fruticosa-type (shrub), Betula sect. Albae-type (tree)*, B.sect. Nanae-type 

(shrub), B. undif, Cyperaceae, Ericales, Poaceae, Polemoniaceae, 

Polygonaceae, Rubus chamaemorus, Salix, Saxifragaceae, Valerianaceae 

CLDE/Cold 

deciduous forest 

Alnus fruticosa-type (shrub), Betula sect. Albae-type (tree)*, B. sect. Nanae-

type (shrub), B. undif, Ericales, Larix/Pseudotsuga, Pinus subgenus 

Haploxylon, Pinaceae undif, Rubus chamaemorus, Salix 

TAIG/Taiga 

Alnus sp, Abies*, Betula sect. Albae-type (tree)*, B. sect. Nanae-type (shrub), 

B. undif, Ericales, Larix/Pseudotsuga, Picea*, Pinus s/g Haploxylon, Pinaceae 

undif, Rubus chamaemorus, Salix 

COCO/Cool 

conifer forest 

Alnus sp, Abies*, Betula sect. Albae-type (tree)*, B. sect. Nanae-type (shrub), 

B. undif, Carpinus-type*, Corylus*, Ericales, Larix/Pseudotsuga, Picea*, Pinus 

subgenus Haploxylon, Pinaceae undif, Salix, Tilia*, Tsuga* 

STEP/Cold steppe 

Artemisia, Asteraceae, Asteraceae Cichorioideae*, Caryophyllaceae, Cannabis-

type, Chenopodiaceae, Fabaceae, Lamiaceae, Onagraceae, Papaveraceae, 

Poaceae, Polygonaceae, Ranunculaceae, Rosaceae*, Thalictrum, Valerianaceae 

 

 

3.3 Results 
 

3.3.1 Chronology and sedimentation rates 

 

The age-depth model of the composite core at ICDP Site 5011-1 was developed based upon 

palaeomagnetic data and tuning of sediment proxies to the local summer insolation and a 

global marine isotope stack (for details see Melles et al., 2012; Nowaczyk et al., 2013). The 

model provides detailed information concerning the chronology and sedimentation rates for 

the time interval between ~1100 and 715 ka ago. The sedimentation rates generally show 
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rather strong fluctuations and a mean value of 0.04 m ka -1. Within the studied time interval 

the highest sedimentation rates appear during MIS 24 (up to 0.2 m ka -1; Fig. 3.3D). 

 

3.3.2 Results of pollen and NPP analyses 

 

A total of 69 pollen, spore, and NPP types have been identified in the 250 investigated 

samples. Among the 250 samples, pollen data of 47 samples, which contain only a few pollen 

grains, are not presented in the pollen diagram (Fig. 3.2). Major changes in pollen 

assemblages are described in Table 3.2. The pollen spectra are subdivided into 16 pollen 

assemblage zones (PAZs) based on the visual inspection of the major percentages and 

stratigraphically constrained cluster analysis (CONISS). Alnus and Betula are most important 

taxa in PAZ-II and PAZ-VII, where total pollen concentrations are particularly high. Major 

herbaceous taxa are Poaceae, Cyperaceae, and Artemisia. Herbaceous pollen taxa percentages 

reach high values in PAZ-III, PAZ-V, PAZ-VIII, PAZ-IX, PAZ-XI, and PAZ-XIV. 

 

3.3.3 Biome reconstruction 

 

A total of 86 samples with very low pollen counts of <50 terrestrial pollen grains (labeled in 

Table 3.2) were excluded from biome score calculations due to statistical uncertainties. The 

reconstruction performed for the remaining pollen spectra shows that five biomes, comprising 

tundra (TUND), cold steppe (STEP), cold deciduous forest (CLDE), taiga (TAIG) and cool 

conifer forest (COCO), appeared at least once as the dominant vegetation type during the 

studied interval between 1091 and 715 ka. Major changes in reconstructed biome scores are 

described in Table 3.2. TUND and STEP have the highest affinity scores, with the exception 

of PAZs II and VII, in which CLDE, COCO, and TAIG scores are relatively high. 

 

The biome score calculations reveal that the landscape around Lake El’gygytgyn became 

gradually more open after 940 ka (PAZ-VIII), with the higher proportion of woods occurring 

in PAZ-II and PAZ-VII (Fig. 3.3C). 
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Fig. 3.2 Summary diagram showing percentages of major pollen, spore, fungal and algal taxa that accumulated between 1091 and 715 ka in the Lake El’gygytgyn sediments. 



CHAPTER 3 

43 

 

Table 3.2 Characteristic pollen assemblages and biomization results for the pollen assemblage zones (PAZ) 

revealed in the Lake El’gygytgyn sediments accumulated between 1091 and 715 ka. 

PAZ Age (ka) Sample 

number 

(excluded 

samples)/ 

temporal 

resolution 

(ka) 

Characteristic pollen 

assemblages 

Biomization results 

I 1091-1090 1 (0) /1 Low amount of tree pollen and 

high percentage of Poaceae 

TUND is the dominant biome, 

STEP scores are higher than 

CLDE scores 

II 1090-1055 17 (0) /2 Peaks of tree and shrub pollen  

percentages, highest pollen 

concentrations; high percentages 

of Sphagnum spores in the upper 

MIS 31 

TAIG biome becomes 

dominant, COCO replaces 

TAIG biome within the 

optimum of super interglacial 

MIS 31 

III 1055-1027 29 (14) /2 Drastic decrease in tree and shrub 

pollen percentages and increase in 

herb pollen; appearance of 

Selaginella rupestris spores 

STEP becomes the dominant 

biome 

IV 1027-1020 8 (3) /1.4 Increase in Betula and Alnus 

pollen percentages, larger 

amounts of Sphagnum spores 

TUND becomes the dominant 

biome, CLDE scores are 

higher than STEP scores 

V 1020-1000 11 (6) /4 Decrease in shrub pollen 

(particularly Alnus), small amount 

of Salix and Ericales pollen; 

increase in herb pollen 

STEP replaces TUND biome, 

and CLDE scores are lowest in 

this zone 

VI 1000-960 34 (17) 

/2.4 

Increase in Betula and Alnus 

shrub pollen; Artemisia pollen 

significantly decreases 

TUND biome is dominant and 

CLDE scores increase. At 965 

ka, CLDE scores abruptly 

decrease 

VII 960-940 12 (7) /4 High shrub pollen percentages 

(mainly Alnus and Betula) 

CLDE expands and becomes 

the dominant biome, STEP 

scores have the lowest value 

VIII 940-918 12 (3) /2.4 Remarkable increase in herb 

pollen; few Salix pollen 

TUND and STEP scores 

increase 

 918-895 10 (10) 

/2.3 
No pollen 

 

IX 895-865 9 (1) /4 High percentages of herb pollen 

and relatively high content of 

Selaginella rupestris spores; tree 

and shrub pollen are almost 

absent, few Salix pollen 

STEP becomes the dominant 

biome, CLDE scores drop 

markedly 

X 

 

 

 

865-845 

 

 

 

17 (2) /1.3 

 

 

 

Notable increase in Betula and 

Alnus pollen, small amounts of 

Pinus pollen and Sphagnum spore, 

occurrence of Botryococcus 

CLDE scores increase and 

exceed STEP, but TUND 

remains dominant 
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PAZ Age (ka) Sample 

number 

(excluded 

samples)/ 

temporal 

resolution 

(ka) 

Characteristic pollen 

assemblages 

Biomization results 

XI 845-810 23 (0) /1.5 Decrease in Alnus pollen 

percentages, increase in 

Botryococcus 

CLDE and TUND scores 

decrease but TUND remains 

dominant 

XII 810-790 15 (2) /1.5 Increase in herb pollen 

percentages, particularly 

Artemisia, decrease in Betula, 

significantly higher contents of 

Selaginella rupestris 

STEP scores reach their peak 

for the entire study interval 

XIII 790-755 16 (8) /4 Increase in Alnus, Betula and 

Salix pollen percentages, high 

contents of Sphagnum spores 

CLDE and TUND scores 

increase and TUND becomes 

dominant 

XIV 755-735 17 (10) /3 Disappearance of tree and shrub 

pollen, high percentages of herb 

pollen (mainly Poaceae and 

Artemisia) 

STEP becomes dominant, 

CLDE and TUND scores 

decrease 

XV 735-720 14 (2) /1.2 Increase in Betula pollen; small 

amount of Alnus, Ericales and 

Salix, high content of Sphagnum 

and Selaginella. rupestris spores 

 

CLDE and TUND scores 

increase slightly, TUND is 

dominant 

XVI 720-715 5 (1) /1.2 Betula pollen disappears again, 

while herb (particularly 

Artemisia) pollen percentages 

significantly increase 

CLDE and TUND scores 

decrease, STEP is dominant 

biome 

Table 3.2: Continued. 

 

 

3.4 Discussion 
 

3.4.1 Vegetation and environmental conditions during the MPT 

 

The pollen assemblages from Lake El’gygytgyn document distinct changes of regional 

vegetation and climate during the MPT (Fig. 3.2 and 3.3). Shrub tundra and cold steppe 

communities dominated in the area between 1091 and 715 ka. During the colder (glacial) 

intervals, relatively low pollen concentrations and high percentages of herbaceous pollen taxa 

(mainly Poaceae, Cyperaceae, and Artemisia) suggest open (i.e. treeless and/or shrubless) 

vegetation as a result of severe (very cold and dry) climate conditions. High contents of 

Selaginella rupestris spores also indicate harsh climate (Lozhkin et al., 2007). In contrast, 
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interglacial intervals are characterized by increased amounts of tree and shrub pollen. Dwarf 

birch (Betula) is the most common shrub throughout the studied interval, usually 

accompanied by shrub alder (Alnus). These shrubs generally dominated the vegetation cover 

during interglacials, while trees are subordinate with sporadic occurrences of larch (Larix). 

Remains of green algae colonies (mainly Botryococcus), which are most frequent in the 

sediments accumulated between 865 and 810 ka, suggest the widespread occurrence of 

shallow-water habitats during this interval (Andreev et al., 2014). 

 

 

Fig. 3.3 Summary figure. A. Time series of individual biomes. B. Dominant biomes (the blank zone denotes the 

period without available information from pollen). C. Qualitative characteristic of landscape openness, reflected by 

the difference between the maximum score of forest biomes (MSFB) and the maximum score of open biomes 

(MSOB) at each level. D. Total diatom concentration (black line, according to Snyder et al., 2013) and 

sedimentation rate (red line, according to Nowaczyk et al., 2013). E. LR04 global marine isotope stack (black line, 

according to Lisiecki & Raymo 2005) and mean July insolation for 67.5° N (red line, according to Laskar et al. 

2004). F. precession curve (red line), obliquity curve (black line) and eccentricity curve (blue line, according to 

Laskar et al., 2004). G. pollen zones according to Fig. 3.2. H. Marine Isotope Stages (MIS) according to Lisiecki & 

Raymo (2005). I. Paleomagnetic chrons and subchrons according to Nowaczyk et al. (2013). The onset of each 

vegetation succession is marked with grey horizontal bars and labeled from O1 to O7. The arrows on obliquity line 

correlated with successions O1-O7 (between A and B) indicate the obliquity shift from maxima to minima. Biome 

names are abbreviated as follows: COCO - Cool conifer forest, TAIG - Taiga, CLDE - Cold deciduous forest, 

TUND - Tundra, STEP - Cold steppe. 

 

PAZs I and II (~1091-1055 ka) encompass late MIS 32 and MIS 31 and are described in 

detail by Lozhkin & Anderson (2013). Vegetation responses are initially marked by the 

spread of Betula-Alnus shrub tundra, which is accompanied by small amounts of larch and 

subsequently followed by the evergreen conifers. MIS 31 is reported to be one of the warmest 

interglacials during the entire Quaternary and the optimum of the so-called ‘superinterglacial’ 

corresponds to the onset of the palaeomagnetic polarity event Jaramillo Subchron (Melles et 
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al., 2012, Fig. 3.2). Biome reconstructions show that the decline of STEP and TUND scores 

marks the transition from MIS 32 to MIS 31, when TAIG replaced TUND as the dominant 

biome (Tarasov et al., 2013). During MIS 31, between 1078 and 1066 ka, the COCO biome, 

which requires warmest conditions among the here reconstructed biomes (Prentice et al., 1992; 

Kaplan, 2001), appeared in the region closest to the lake. Towards the late MIS 31, increasing 

contents of herbaceous pollen and Sphagnum spores suggest cooler, though still wet 

conditions. This trend culminates at the end of MIS 31, when the TUND biome regained 

dominance, implying that the climate became colder. 

 

Between 1055 and 1027 ka (PAZ-III, MIS 30) cold steppe and meadow plant communities 

became common in the region, as indicated by significantly increased herbaceous pollen 

(Artemisia, Poaceae, Cyperaceae, Caryophyllaceae, and Thalictrum) and Selaginella rupestris 

spore contents, as well as a much lower pollen concentration. STEP scores remarkably 

increase at the onset of MIS 30 and later exceed TUND scores. This suggests the presence of 

a steppe-tundra in the area, being indicative of a severe climatic deterioration. The cold and 

dry climate conditions resulted in open vegetation, as reflected by increased abundance of 

Artemisia pollen and Selaginella rupestris spores. However, the continued presence of a few 

Larix and Pinus pollen suggests the existence of scattered woodland (or krummholz) stands, 

probably limited to protected areas in the lake vicinity. 

 

In the sediments accumulated between 1027 and 1020 ka (PAZ-IV, MIS 29), the percentages 

of Alnus and Betula pollen are significantly higher than those in MIS 30, suggesting that 

shrub alder and dwarf birch became more widespread in the area. High contents of 

Cyperaceae pollen and Sphagnum spores indicate the presence of locally mesic habitats. 

Increased CLDE scores and increased forestation of the landscape provide further evidence 

for climate conditions warmer than during MIS 30. 

 

Between 1020 and 1000 ka (PAZ-V, MIS 28), shrubby vegetation (dwarf birch and shrub 

alder) decreased in the region again, while larch probably still grew in the lake vicinity. 

Simultaneous increases in Artemisia and Caryophyllaceae pollen percentages as well as 

Selaginella rupestris spores suggest an expansion of open steppe habitats and cold and dry 

climate conditions. This interpretation is supported by increased STEP scores. 

 

Environmental conditions ameliorated between 1000 and 960 ka (PAZ-VI, MIS 27 and 26), 

as reflected by a further increase of larch, dwarf birch, and alder percentages and presence in 

the local vegetation, although herb communities were still common in the region. Biomization 
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results show a slight increase in the CLDE scores and a reduction in the STEP scores, 

indicating warmer and wetter conditions. An abrupt increase in the STEP scores at ~975 ka 

points to a climatic deterioration at the onset of the short MIS 26 glacial. 

 

Between 960 and 940 ka (PAZ-VII, MIS 25) Betula and Alnus pollen percentages increased 

significantly, accompanied by minor contents of Pinus and Larix pollen, as well as the 

occasional occurrence of Picea pollen. The absolute predominance of Betula and Alnus in the 

pollen spectra is indicative of vegetation dominated by relatively dense tree-sized shrubs. This 

conclusion is supported by the high-affinity scores of CLDE, TAIG, and COCO biomes, and 

correspondingly low STEP scores. These data evidence that Arctic climate experienced short-

term moist and warm conditions during MIS 25, which is coeval with the frequent presence of 

thermophilic diatoms in Lake Baikal sediments (Khursevich et al., 2005). 

 

During MIS 24 (940-918 ka, PAZ-VIII) the vegetation was dominated by gradually 

expanding xeric Poaceae-Artemisia habitats with some Betula-Alnus-Salix shrubby 

communities, suggesting significantly regional cooling. Other woody plants are stone pine 

shrubs, which might have benefited from insulating effects of sufficiently deeper winter snow 

cover due to increased moisture availability (Lozhkin et al., 2007) during early MIS 24. 

Similar conditions are also inferred from the coevally decreased frequencies of planktonic 

diatoms showing that Lake El’gygytgyn was covered by permanent ice with a thick 

blanketing snow cover during summertimes (Snyder et al., 2013). Furthermore, maximum 

sedimentation rates during late MIS 24 probably reflect larger exposed areas in the catchment 

due to declined vegetation cover in consequence of increased aridity. Particularly high 

sedimentation rates interpreted to reflect severe climatic deterioration also occurred in Lake 

Baikal during MIS 24 (Prokopenko et al., 2006). 

 

It is elusive why pollen is absent in the sediments accumulated between 918 and 895 ka (MIS 

23) despite high values in total organic carbon concentrations, Si/Ti ratios and biogenic silica 

(BSi) percentages (Nowaczyk et al., 2013). We speculate that the following two scenarios 

might account for the absence of pollen. Firstly, a prominent feature in the respective 

sediments is the 6.9-cm thick T3 tephra at ~918 ka (van den Bogaard et al., 2013). 

Contemporaneous tephra layers are also observed in the Alaska interior (Westgate et al., 1990) 

and in the State of Washington, USA (Easterbrook et al., 1981). All these tephra layers were 

deposited after the well-defined normal polarity event Jaramillo Subchron. Hence, the T3 

tephra obviously represented a large-scale volcanic eruption event. Tephra layers were 

indicated to have buried former vegetation and they may even have contributed to the 
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formation of permafrost in Alaska (Matheus et al., 2003). Therefore, we speculate that the T3 

tephra partly may have led to particularly sparse vegetation during MIS 23, although this 

tephra layer probably is too thin to have prohibited plant growth for more than 20 ka. 

Secondly, an alternative explanation is related to pollen delivery. Previous studies have 

shown that MIS 23 in the Lake El’gygytgyn sediment record was characterized by low diatom 

concentrations (Snyder et al., 2013) and low BSi contents (Nowaczyk et al., 2013). These data 

imply that permanent lake ice has covered the lake, thereby potentially limiting the supply of 

allochthonous material to the lake, including pollen grains, and thus ultimately leading to 

relatively low pollen loads (Fig. 3.3D). 

 

During MIS 22 (895-865 ka, PAZ-IX) open steppe communities dominated the landscape. 

However, dwarf birch and willow grew in more protected areas, while conifer and shrub alder 

stands probably completely disappeared from the lake vicinity. Dry and cold climate 

conditions are also suggested by an increase in Selaginella rupestris spore content. 

 

The pollen assemblages that accumulated between 865 and 810 ka (MIS 21) can be 

subdivided into 2 subzones. In the lower subzone (PAZ-X, 865-845 ka) Betula and Alnus 

pollen are abundant and small amounts of Pinus and Larix pollen occur. Such pollen spectra 

reflect that shrubby communities (stone pine, birch, and alder) returned to the lake vicinity. 

An increase in Sphagnum spore contents points to the presence of wet swampy habitats 

around the lake (Kozhevnikov, 1993). Generally, the revealed pollen assemblages indicate 

relatively warm and probably wet climate conditions. However, relatively high amounts of 

Artemisia pollen and Selaginella rupestris spores point to the presence of open tundra-steppe-

like communities around the lake as well. In the lower subzone (PAZ-XI, 845 and 810 ka) 

larch and shrub alder stands were rather limited, probably related to decreased summer 

insolation (Fig. 3.3E). The broadly distributed open steppe communities in this period 

indicate colder climate conditions. 

 

Between 810 and 790 ka (PAZ-XII, MIS 20) a further decline of Betula pollen, together with 

an increase in herb pollen, suggest climate conditions harsher than during the previous 

interval. Cold and dry conditions are also indicated by the highest affinity scores of the STEP 

biome in the entire record. Significantly drier environmental conditions are also confirmed by 

a remarkable increase of Selaginella rupestris contents. 

 

The PAZ-XIII (790-755 ka, MIS 19) pollen assemblages indicate that the local vegetation 

was codominant by herb and shrub communities, sharing characteristics with pollen spectra of 
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MIS 24, although percentages of shrubby taxa are higher during MIS 19. This indicates that 

climatic amelioration during this interglacial was moderate. The relatively open landscape 

also suggests that shrubs were scattered and restricted to protected habitats (e.g. river valleys). 

Increased contents of Sphagnum spores provide evidence for moister soil conditions. The 

lower boundary of PAZ-XIII is coeval with the palaeomagnetic Matuyama-Brunhes polarity 

change at ~780 ka (Fig. 3.2), as identified in the sediment record by magnetostratigraphic 

studies (Melles et al., 2012; Nowaczyk et al., 2013). 

 

Shrub alders were nearly absent in the study region between 755 and 715 ka (PAZ-XIV to 

PAZ-XVI, MIS 18), while herb communities with Poaceae, Cyperaceae, and Caryophyllaceae 

significantly increased. The occurrence of Selaginella rupestris spores suggests that soils 

around the lake were relatively dry. Among the three pollen zones, relatively high amounts of 

dwarf birch pollen are characteristic of PAZ-XV. At the same time, the minor presence of 

Cyperaceae pollen and Sphagnum spores imply that relatively mesic habitats existed during 

mid-MIS 18. A small peak in spores of Encalypta points to the occurrence of disturbed soils 

around the lake (van Geel, 2001). 

 

3.4.2 MPT vegetation succession and astronomical configuration 

 

Vegetation succession is an ecological term referring to progressive vegetation development 

over time. Long-term ecosystem evolution is mainly controlled by ecological development 

with increasing productivity and nutrient availability (Wardle et al., 2004). This process is 

most obvious at the onset of interglacials and reflected by the improvement of soil fertility 

(Birks & Birks, 2004). 

 

The vegetation successions and the corresponding astronomical configurations during three 

interglacials (MIS 81/79, MIS 11c/11b, and MIS 5e/5c) have been investigated based on the 

Lake El’gygytgyn pollen record by Zhao et al. (2015). It was concluded that obliquity has a 

more significant influence on vegetation successions in the Arctic than precession, while the 

onset of interglacials is rather triggered by both effects. More specifically, when obliquity 

moves from peak to trough, an increased difference in the seasonal daylight duration could 

eventually drive the replacement of forest and shrub vegetation by open steppe and tundra 

communities. Precession, in contrast, affects climate variations through its control on the 

intensity of summer insolation at high latitudes. Simultaneous maxima in obliquity and 

precession are characteristic of an interglacial onset. 
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During the MPT, seven complete vegetation successions (marked as O1-O7 in Fig. 3.3) are 

recognized and characterized by the replacement of trees and shrubs by herbs, which 

presumably responded to climatic changes from relatively warm-humid boreal towards cold-

arid arctic conditions. The onset of each vegetation succession is marked by maximized 

CLDE scores coinciding with peak precession and obliquity, which led to high insolation and 

triggered the onset of interglacials. Conversely, minimal CLDE scores, indicating the ends of 

the successions, are in line with obliquity minima. Hence, the vegetation successions are 

generally in phase with obliquity cycles. 

 

PAZ-VI (MIS 27) shows relatively subtle changes in biome scores. With the predominance of 

the TUND biome, CLDE scores gradually increase, exceed STEP scores at 980 ka, and 

abruptly decline at 965 ka. Other proxies, showing low diatom concentrations, low BSi 

percentages, and low Si/Ti ratios, also suggest rather interstadial conditions around 985 ka. 

Hence, we assume that vegetation dynamics in PAZ-VI was influenced by the antiphase 

relationship between precession and obliquity, which have offset their effects on the summer 

insolation and impeded vegetation development (Fig. 3.3A). Consequently, this orbital setting 

probably excluded the development of full interglacial conditions within MIS 27. Such a 

vegetation change implies that the high-amplitude precession forcing may have remained the 

dominant factor at high latitude. 

 

STEP biome scores significantly increased since ~890 ka, suggesting increasing aridification 

of the northeastern Russian Arctic. Changes in landscape openness are also closely correlated 

with changes in global ice volume, as inferred from the LR04 records (Fig. 3.3C, E). The time 

interval around ~890 ka as a turning point reveals a more open vegetation in the regional 

landscape and climatic deterioration during the MPT. After 890 ka, the increasingly open 

landscape and low diatom concentrations correspond to low-amplitude changes in the three 

orbital parameters. Glacial-interglacial cycles also became longer than before. 

 

Although the existing pollen record is still not highly resolved enough to reveal eccentricity’s 

modulation of the climate throughout the whole Quaternary, the existing data clearly show the 

crucial role of eccentricity in forcing long-term vegetation changes in the high latitudes 

through the synchronous changes in landscape openness and the 100 ka eccentricity cycle. 

According to Maslin & Ridgwell (2005), a higher eccentricity makes a more elliptical orbit 

that exaggerates the difference of season length between northern and southern hemispheres 

despite the weaker performance of eccentricity on insolation change as compared to other 

orbital parameters. 
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3.4.3 Spectral analysis of the landscape openness 

 

Spectral and wavelet analysis is applied to landscape openness data from the time interval 

between 1091 and 900 ka (Fig. 3.4). The results reveal a long eccentricity (400 ka) signal, 

which, due to the limited length of our record, cannot be interpreted. The secondary power is 

the 100-ka modulation, which clearly shows up between 1080 and 960 ka. Precession and 

obliquity, in contrast, do not exhibit strong power throughout the entire studied interval. 

 

 

Fig. 3.4 A. Landscape openness time series created by IDL wavelet software. B. The wavelet power spectrum, 

computed by Torrence & Compo (1998). The color represents the amplitude of the signal at a given time and 

spectral period (red equals the highest power, white equals the lowest). The black contour is the 10% significance 

level, using a red-noise (autoregressive lag 1) background spectrum. C. The global wavelet power spectrum (black 

line). The dashed line is the significance for the global wavelet spectrum, assuming the same significance level and 

background spectrum as in (B). D. “Morlet” wavelet used for (B). 

 

Time series analysis on PC1 values of grain-size data from the same core has shown different 

results in the relative dominance of orbital cycles (Francke et al., 2013). According to these 

data, a 98.5 ka cycle became initiated about 1250 ka ago. After 1000 ka, the eccentricity 

modulation weakens, while the obliquity signal strengthens. At c. 670 ka, obliquity oscillation 

decreased its relative power, thereby marking the end of the MPT. The differences reflected 

in the analysis of grain-size and landscape-openness data might be due to different signals of 
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superimposed climate dynamics caught by these two proxies. Grain-size changes reflect the 

duration of lake-ice cover and thickness of the active layer in the summertime (Francke et al., 

2013), while changes in landscape openness point to variations in the regional vegetation 

cover. Local responses of the lake surface and regional vegetation cover to orbitally-

controlled climate change might exhibit diverse patterns. 

 

Spectral analysis of arboreal pollen percentages from the Tenaghi Philippon record, Greece, 

has shown strong response during the MPT only to eccentricity modulation on eastern 

Mediterranean climate (Tzedakis et al., 2006). However, combing wavelet analysis on 

arboreal pollen percentages and sea surface temperatures (Lourens et al., 1992), Tzedakis et al. 

(2006) underline the pervasive influence of precession and obliquity on Mediterranean 

climates. Joannin et al. (2011) applied modern analogues techniques based on western 

Mediterranean pollen data to reconstruct a climate index for the first half of the MPT. 

Analysis of further time series displays discontinuous and weak signals of precession and 

obliquity (Joannin et al., 2011). Analysis of the Lake El’gygytgyn record also reveals that 

precession and obliquity played an important role in regulating vegetation and climate 

changes, whereas wavelet analysis only captures the power of the eccentricity cycle. Hence, 

we support the interpretation proposed by Joannin et al. (2011) that a single parameter is 

insufficient for revealing the full complexity of superimposed forcing. 

 

3.4.4 Regional environmental implications 

 

The MPT is a prominent interval in the Quaternary. According to marine oxygen isotope 

records, the MPT is marked by a gradual increase in average global ice volume and a decrease 

in deep-water temperature (Rial, 2004). Global cooling and the expansion of Arctic ice sheets 

presumably caused the strengthening of the Siberian high-pressure cell, leading to 

significantly intensified aridity in the Asian interior (Ruddiman & Kutzbach, 1989; Guo et al., 

2002; Han et al., 2014). On this basis, we compare the reconstructed vegetation and 

environmental changes in the northeastern Russian Arctic (Lake El’gygytgyn) with proxy 

data reflecting developments in the interior of Asia (soil organic matter δ13C and Pinus 

contents in China) and globally (marine benthic δ18O), in order to reveal possible driving 

mechanisms for climatic variations during the MPT (Fig. 3.5). 
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Fig. 3.5 Correlation of records in different latitudes. A. Landscape openness (indicative of vegetation cover in 

Lake El’gygytgyn vicinity). B. Soil organic matter δ13C from Lantian, China (An et al., 2005). C. LR04 global 

marine isotope stack (Lisiecki & Raymo, 2005). D. Pinus percentage from ODP Site 1144 (Sun et al., 2003), red 

lines illustrate the base-line level drop during the MPT. 

 

Zonation and biomization of the pollen data presented in our study show three main 

vegetation phases during the MPT (Fig. 3.2 and 3.3). The first phase (~1091-930 ka) was 

characterized by a gradual opening of the vegetation cover (Fig. 3.5A), with decreasing trees 

and shrubs, being replaced by increasing herbs. This suggests that the high latitudinal study 

region experienced cooler and dryer conditions, which well agrees with the aridification of 

the Chinese Loess Plateau that is indicated by decreasing A/C ratios of pollen spectra (Cai et 

al., 2013). 

 

The next phase comprises MIS 24-MIS 22 (c. 930-865 ka). Globally, this is a remarkable 

interval during the MPT, because it represents the first large glaciation, extreme SST cooling, 

and a decline in thermohaline circulation (Schmieder et al., 2000; Clark et al., 2006). In the 

Lake El’gygytgyn sediments, the absence of pollen during MIS 23 (Fig. 3.2) prohibits to 

analyze the mechanisms behind the vegetation change in high northern latitudes. Nevertheless, 

low diatom concentrations indicate that the time interval between 930 and 715 ka was 

characterized by rather cold conditions (Snyder et al., 2013). Coevally, on the Chinese Loess 

Plateau, soil organic matter experience a shift previously high δ13C values to notably depleted 

δ13C (Fig. 3.5B). This suggests the virtual absence of C4 plants in the vegetation, which 

indicates extremely cold and dry conditions (An et al., 2005). This interval also coincides 
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with the prevalence of the coarse-grained L9 loess unit in the Chinese Loess Plateau, which is 

a cold event indicative of severe climatic deterioration (Kukla & An, 1989). 

 

The third vegetation phase (865-715 ka), marked by maximum affinity scores of the STEP 

biome (Fig. 3.3), is characterized by high abundances of drought-enduring herbs (e.g. 

Artemisia), thus suggesting that a dry climate prevailed during this interval. The Chinese 

Loess Plateau records during this interval show generally low soil δ13C values (Fig. 3.5B), 

suggesting moderate amounts of C4 plants in the local vegetation, indicative of dry climate 

conditions (An et al., 2005). Similar conditions are also inferred from a pollen record of 

Chinese Loess Plateau, which shows that steppe dominated the vegetation landscape, 

replacing forest-steppe that existed before 0.95 Ma (Wu et al., 2007). 

 

The long-term drying and cooling trend during the MPT corresponded with a global ice sheet 

expansion (Lisiecki & Raymo, 2005; Fig. 3.5C). This led to a significant sea-level lowering, 

exposure of continental shelves and enhancement of the westerly jet. The consequent 

enhancement of sinking winter cold-dry airmass intensified the Siberian High (Ruddiman & 

Kutzbach, 1989). As a result, the Siberian High and the Polar Front shifted southward, and 

thus significantly strengthened the Asian winter monsoon circulation (Yoshino, 1978) as 

demonstrated by notably increased pine pollen contents in the northern South China Sea (Sun 

et al., 2003; Fig. 3.5D). 

 

The persistent and pronounced dry conditions in the high latitudes and the Asian interior after 

865 ka may be explained by a significant intensification of the westerly jet and the Siberian 

High. This was probably facilitated at least to some extent by the concomitant uplift of the 

northeastern Tibetan Plateau since ~0.9-0.8 Ma (Ruddiman & Kutzbach, 1989; Li, 1995; 

Fang et al., 2005, 2007). 

 

 

3.5 Conclusions 
 

The millennial-scale resolution pollen record from Lake El’gygytgyn documents in details the 

history of vegetation and climate changes in the high Arctic during the MPT (1091-715 ka). It 

provides the basis for qualitative analysis of the pollen assemblages and for the calculation of 

biome scores and landscape openness. 
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Seven vegetation successions following glacial-interglacial oscillations occurred between 

1091 and 715 ka. The glacials are characterized by a predominance of open herbaceous 

communities, and the interglacials by a predominance of boreal trees and shrubs. The long-

term vegetation history shows a gradual replacement of shrubby vegetation, dominated by 

Pinus, Alnus, and Betula, by herbaceous communities, dominated by Poaceae, Cyperaceae, 

and Artemisia. This reflects a general cooling and drying trend throughout the entire MPT. 

 

From MIS 24-22, CLDE biome scores significantly declined, indicating that the initially 

forested landscape became more open. Afterwards, the study area became mostly dominated 

by open herbaceous communities. Nevertheless, during the interglacials, the presence of trees 

and shrubs in the regional vegetation increased. 

 

The vegetation successions in the northeastern Russian Arctic clearly responded to obliquity 

cycles, with both CLDE scores and the corresponding obliquity signal shifts from maximum 

to minimum values. However, wavelet analysis of landscape openness change does not reveal 

a strong obliquity signal. Instead, eccentricity exhibits a stronger power in regulating 

landscape openness. This suggests that time-series analysis of a single parameter may not 

catch the full complexity of its superimposed controls. 

 

Global cooling, especially in the high latitudes of the Northern Hemisphere, is probably the 

driving force of long-term vegetation deterioration trend during the MPT. The accelerated 

increase in aridification that occurred after MIS 24-22 was possibly associated with the 

tectonic uplift of Tibetan Plateau, which forced intensification of cold-dry flow of the 

Siberian High and the westerly jet systems. 
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4 The penultimate interglacial vegetation and climate 

of the northeastern Russian Arctic inferred from 

the Lake El’gygytgyn pollen record 
 

 

 

Abstract 

 

We present a high-resolution pollen record from Lake El’gygytgyn, Northeast Siberia and 

analyze the dynamics of vegetation and climate between 240.5 and 181.5 ka (Marine Isotope 

Stage (MIS) 7.5-6.6). The penultimate interglacial vegetation was characterized by mixed 

herb and shrub (mainly alder and birch) dominated plant communities. Pollen-based biome 

reconstruction shows that the vegetation landscape was generally open due to the high affinity 

scores of the TUND (tundra) biome. The warm intervals (MIS 7.5, 7.3, and 7.1) were marked 

by an increase in the CLDE (cold deciduous forest) biome scores and a synchronous decrease 

in the STEP (cold steppe) biome scores. The climatic optimum occurred during MIS 7.1. It 

was marked by the highest CLDE biome scores and lasted ~10 ka, possibly favored by the 

high precession-related summer insolation and a legacy of the preceding mild stadial. In 

contrast, MIS 7.5 and 7.3 were characterized by shorter durations (~4 ka) and lower summer 

temperatures. The preceding cold glacial/stadial might have led to an extensive distribution of 

permafrost that further hindered subsequent vegetation development during warm intervals. 

The MIS 7.4 and 6.6 were cold and wet, triggered by low obliquity values and coevally low 

precession-related summer insolation. As a result, these periods were marked by a 

significantly reduced summer temperature and an enhanced snow-ice albedo feedback. This 

study provides potential scenarios for future climate pattern and allows a better understanding 

of the relationship between vegetation, climate, and external/internal forcings in the high 

latitudes. 

 

Key words: Lake El’gygytgyn, Penultimate interglacial, MIS 7.4, MIS 6.6, pollen, ICDP, 

Northeast Russian Arctic 
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4.1 Introduction 
 

The warm interglacial periods during the late Quaternary are considered potential analogs for 

the present climate conditions. Therefore, understanding the climate variabilities during past 

interglacials can provide valuable insights into the future. Despite the extensive studies on the 

last and present interglacial, the timing, duration, magnitude, and climatic mechanisms of the 

penultimate interglacial received much less attention (e.g. Kukla et al., 1997; Winograd et al., 

1997; Tzedakis et al., 2004). Pollen data from terrestrial records (Tzedakis et al., 1997; de 

Beaulieu et al., 2001; Tzedakis et al., 2004), marine records (Desprat et al., 2006), and sea-

level records (Dutton et al., 2009) show that the Marine Isotope Stage (MIS) 7 was marked by 

an alternation of five warm and cold periods. So far, ongoing debates are focused on the 

timing of the climatic optimum during MIS 7. On one hand, MIS 7.5 is considered as a 

climatic optimum as warm as the Holocene (de Beaulieu et al., 2001). On the other hand, the 

climate state of substage MIS 7.3 is argued to be similar as the MIS 7.5 (Tzedakis et al., 1997, 

2004). 

 

Compared to the warm substages of MIS 7, climate information concerning the cold intervals 

is inadequate. In Siberia, calculations of energy balance suggest that the maximum summer 

temperature reductions during the past 500 ka occurred during the MIS 7.4 and MIS 6.6, and 

the decrease was greater than MIS 4 and MIS 2 (Short et al., 1991). At Lake El’gygytgyn, 

multi-proxy analyses of lithology, biogeochemistry, inorganic geochemistry, and diatoms 

indicate the intervals of MIS 7.4 and MIS 6.6 were relatively cold and wet (Melles et al., 2007; 

Minyuk et al., 2014; Snyder et al., 2013).  

 

Despite the ongoing discussions on the relationship between the climate and limnological 

conditions at Lake El’gygytgyn, little is known about the detailed history of regional 

vegetation between MIS 7.5 and MIS 6.6. Existing palynological records based on the cores 

PG 1351 and LZ 1024 from Lake El’gygytgyn cover the past 300 ka (Lozhkin et al., 2007). 

However, the temporal resolutions of these records were low and the characteristics of 

different warm/cold intervals were not sufficiently analyzed. In this study, high-resolution 

pollen data of the deep-drilled core 5011-1 from Lake El’gygytgyn are analyzed aiming: i) to 

reconstruct a detailed vegetation and environmental history of the Lake El’gygytgyn region 

between 240.5 and 181.5 ka, and ii) to discuss the possible mechanisms behind the climatic 

pattern and the influence of orbital and/or internal forcings in the Arctic region. 
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4.2 Regional setting 
 

   

Fig. 4.1 Map of the study region. (A) Location of Lake El’gygytgyn marked by a circle. (B) Bathymetric map of 

Lake El’gygytgyn and topography of its catchment, after Swann et al. (2010). The drilling site 5011-1 is indicated 

as a black dot. 

 

Lake El’gygytgyn is located ~100 km to the north of the Arctic Circle in Northeast Siberia (c. 

67°30'N, 172°05'E; 492 m above sea level; Fig. 4.1). The 170-m deep and 12-km diametric 

lake currently covers an area of 110 km2 within a 293-km2 large catchment that is defined by 

the meteorite impact crater rim. The area is characterized by extremely harsh climate with a 

mean July temperature of 8°C and a mean annual precipitation of 200 mm (Nolan and 

Brigham-Grette, 2007). As a result, the local vegetation is dominated by herb tundra. In 

protected habitats with more favorable climatic conditions, patches of dwarf shrubs occur 

(Andreev et al., 2012; Lozhkin and Anderson, 2013 and references therein). The surrounding 

upland vegetation is dominated by shrub-tundra with dwarf birch (Betula exilis), shrub alder 

(Alnus fruticosa), stone pine (Pinus Haploxylon), and different species of willow (Salix) and 

Ericales. 

 

 

4.3 Material and methods 
 

In spring 2009, the sediment cores retrieved at site 5011-1 in central Lake El’gygytgyn 

yielded a composite core of 318 m. The age/depth model applied in this study is according to 

Melles et al. (2012) and Nowaczyk et al. (2013). 

 

Pollen subsamples of ~1.5 g were investigated between 8.13-12.41 m (181.5-240.5 ka) of the 

composite depth below the lake floor. The average temporal resolution is c. 1 ka. The samples 
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were processed following the standard HF technique (Fægri and Iversen, 1989) and by 

ultrasonic sieving to remove clay-sized particles. Generally, around 300 terrestrial pollen 

grains were counted for each sample. In the case of samples with extremely low pollen 

concentration, less than 50 terrestrial pollen grains were counted. 

 

For biome reconstruction, the assignments of pollen taxa to respective biomes were made in 

accordance with the criteria presented by Tarasov et al. (2013; Table 4.1). Biome affinity 

scores (Fig. 4.3A) were calculated for each sample following the equation of Prentice et al. 

(1996). Landscape openness, which provides a qualitative assessment of changes in 

vegetation cover, was calculated by evaluating the difference between maximum forest biome 

scores and maximum open biome scores (for details see Tarasov et al., 2013). 

 

Table 4.1 Terrestrial pollen taxa identified in the Lake El’gygytgyn sediments accumulated between 240.5 and 

181.5 ka and their corresponding biomes (following Tarasov et al., 2013). Taxa, whose percentages in the biome-

taxon matrix are <0.5% (threshold suggested by Prentice et al., 1996), and which do not influence the results of the 

biome reconstruction, are marked with an asterisk. 

Biome Terrestrial pollen taxa  

TUND/Tundra 

Alnus fruticosa-type (shrub), Betula sect. Albae-type (tree)*, B.sect. Nanae-type 

(shrub), B. undif, Cyperaceae, Ericales, Poaceae, Polemoniaceae, 

Polygonaceae, Rubus chamaemorus, Salix, Saxifragaceae, Valerianaceae 

CLDE/Cold 

deciduous forest 

Alnus fruticosa-type (shrub), Betula sect. Albae-type (tree)*, B. sect. Nanae-

type (shrub), B. undif, Ericales, Larix/Pseudotsuga, Pinus Haploxylon, 

Pinaceae undif, Rubus chamaemorus, Salix 

STEP/Cold steppe 

Artemisia, Asteraceae, Asteraceae Cichorioideae*, Caryophyllaceae, Cannabis-

type, Chenopodiaceae, Fabaceae, Lamiaceae, Onagraceae, Papaveraceae, 

Poaceae, Polygonaceae, Ranunculaceae, Rosaceae*, Thalictrum, Valerianaceae 

 

 

4.4 Results 
 

A total of 69 pollen, spore, and non-pollen-palynomorph types were identified in 65 samples. 

Eight of these samples were excluded from further analysis because they have extremely low 

pollen concentration. The most abundant pollen types are presented in Fig. 4.2. Pollen 

assemblage zones (PAZs) were subdivided by visual inspections of major changes in pollen 

assemblages and the presence/absence of indicator taxa.  
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Corresponding MIS boundaries according to Liesecki and Raymo (2005) are also shown in 

the pollen diagram. The investigated sediments of the composite core 5011-1 encompass the 

penultimate interglacial MIS 7 as well as MIS 6.6. The pollen assemblages are generally 

characterized by two vegetation types: (i) mixed shrub- and herb-dominated (PAZs-I, III, V, 

VII, and VIII) and (ii) herb-dominated (PAZs-II, IV, VI and IX). Besides, moderate amounts 

of Pinus Haploxylon pollen occur in PAZs-III, VII, and IX. The investigated interval is 

marked by three biome types including the CLDE, TUND and STEP biome. Characteristics 

of the pollen assemblage zones and reconstructed biomes are described in Table 4.2.  

 

Table 4.2 Description of the pollen assemblage zones (PAZs) and the biomization result from sediments of Lake 

El’gygytgyn accumulated between 240.5-181.5 ka. 

PAZs Age (ka) Characteristic pollen assemblage Reconstructed biome 

I 240.5-236.5 High Betula and Poaceae pollen contents; high 

amounts of Sphagnum and Selaginella rupestris 

spores 

Lowest affinity scores of 

STEP biome; 

Predominance of TUND 

biome  

II 236.5-230.5 A significant decrease in Betula pollen contents 

and an increase in herb pollen (particularly 

Artemisia); Sphagnum spore almost disappears 

STEP scores abruptly 

increase; TUND remained 

the dominate biome type 

III 230.5-225 A significant increase in Betula pollen and 

moderate amounts of Pinus Haploxylon and Alnus 

pollen; appearance of Sordaria fungi spores and 

the decrease in Selaginella rupestris spores 

CLDE scores significantly 

increase but remain lower 

than STEP and TUND 

scores 

IV 225-213.5 Betula pollen drastically decreases and Pinus 

Haploxylon pollen is almost absent, while Poaceae 

and Artemisia pollen increase; the presence of 

Salix and Thalictrum pollen in the upper part 

STEP biome became the 

dominate type 

 

V 213.5-209.5 An increase in Betula, Alnus and Ericales pollen 

contents and Sphagnum spores 

CLDE scores gradually 

increase 

VI 209.5-203 The disappearance of Alnus pollen and an increase 

in herb pollen contents 

STEP became the 

dominate biome; CLDE 

scores drop markedly 

VII 203-193 A remarkable increase in Betula and Alnus pollen 

percentages; high contents of Sphagnum spores 

occur in the part 

CLD scores increase and 

exceed STEP, while 

TUND remains dominant 

VIII 193-188 A gradual decrease in Alnus pollen and an increase 

in Poaceae, Artemisia, and Polygonaceae pollen as 

well as Selaginella rupestris spore contents. 

CLDE and TUND scores 

gradually decrease, while 

STEP scores increase 

IX 188-181.5 Pinus Haploxylon and Alnus pollen and Sphagnum 

spores are in small quantities. 

STEP biome was the 

dominate type 
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Fig. 4.2 Summary diagram showing percentages of major pollen, spore, fungal and algal taxa that accumulated between 240.5 and 181.5 ka in the Lake El’gygytgyn sediments.
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4.5 Discussion and conclusion 
 

4.5.1 Vegetational and climatic variability 

 

The high percentages of Betula and Poaceae pollen in PAZ-I suggested that low shrub dwarf 

birch-herb tundra dominated the Lake El’gygytgyn area between 240.5 and 236.5 ka (Fig. 

4.2). This period represents the entire MIS 7.5, because PAZ-I is parallel to the pollen zone 

E2 of the Lake El’gygytgyn PG 1351 record, which is dated back to 300 ka (back to MIS 8.4; 

Lozhkin et al., 2007). The low affinity scores of the STEP biome implied that generally 

moderate climatic conditions prevailed in the region (Fig. 4.3A). However, the decreasing 

amounts of Sphagnum spores and increasing Selaginella rupestris spores suggest a drying 

trend in the local habitats. 

 

Between 236.5 and 230.5 ka (PAZ-II, lower MIS 7.4), the pollen spectra showed some 

decrease in dwarf birches and an expansion of graminoid communities, suggesting cold and 

dry climatic conditions. This interpretation is also supported by the biome reconstruction, 

which shows an increase in STEP scores and a decrease in CLDE and TUND scores. Peak 

percentages of Selaginella spores in this PAZ pointed to drier local conditions than the 

previous interval (Lozhkin et al., 2007). Hence, the shift between MIS 7.5/7.4 was 

characterized by a gradual climatic deterioration. 

 

The notable increase of Betula pollen in PAZ-III (mid-MIS 7.4) as well as the slightly 

increased Pinus Haploxylon pollen suggested the expansion of shrubby communities in the 

lake vicinity, mirroring slightly ameliorated climatic conditions between 230.5 and 225 ka. In 

terms of biomization, the CLDE scores slightly increased but STEP biome remained 

dominant. The stone pines might have benefited from the insulating effects of sufficiently 

deep snow cover in the winter (Lozhkin et al., 2007). In addition, the plankton rareness 

(Snyder et al., 2013) and the absence of coarse material (Minyuk et al., 2014) of the 

El’gygytgyn Lake sediments indicated a significantly reduced light penetration and a declined 

delivery of materials into the lake. This is related to the snowcover blanketing the permanent 

lake ice, implying generally humid conditions in the area. High contents of coprophilous 

Sordaria fungal spores indirectly pointed to the presence of herbivores around the lake (Baker 

et al., 2013) and thus confirmed the occurrence of open habitats.  
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Fig. 4.3 Summary figure. A. Time series of individual biomes (biome names are abbreviated as follows: CLDE = 

cold deciduous forest; TUND = tundra; STEP = cold steppe). B. Qualitative characteristic of landscape openness 

reflected by the difference between the maximum score of forest biomes (MSFB) and the maximum score of open 

biomes (MSOB) at each level. C. Total diatom concentration (red line, Snyder et al., 2013) and sedimentation rate 

(black line). D. LR04 global marine isotope stacks (black line, Lisiecki & Raymo 2005) and mean July insolation 

for 67.5° N (red line, Laskar et al., 2004). E. Precession curve (red line) and obliquity curve (black line), after 

Laskar et al. (2004). F. pollen assemblage zones (PAZs) according to Fig. 4.2. G. Marine Isotope Stages (MIS) 

according to Lisiecki & Raymo (2005).  

 

In PAZ-IV (upper MIS 7.4, 225-213.5 ka), the pollen spectra suggested that vegetation near 

Lake El’gygytgyn was predominantly herb tundra, with some patches of dwarf birches and 

shrub willows growing in protected habitats (e.g. creeks and river valleys). The reduced 

affinity scores of CLDE biome also indicated that effective moisture was lacking for the 

growth of woody taxa. The concomitant numerous diatom shells (Snyder et al., 2013) in Lake 

El’gygytgyn implied the decline of permanent snow cover in summer.  

 

Between 213.5 and 209.5 ka (PAZ-V, upper MIS 7.3), the environmental condition 

ameliorated as reflected by the high percentages of Alnus, Betula and Ericales pollen 

representing the expansion of shrub components. The increased CLDE scores and decreased 

STEP scores further suggested a climatic amelioration. The remarkable increase in Sphagnum 

spores pointed to the presence of wet swampy habitats around the Lake (Kozhevnikov, 1993).  

 

Between 209.5 and 203 ka (PAZ-VI, MIS 7.2), dwarf shrubs (birches and alder) decreased in 

the region, while simultaneous increases in herb pollen suggested an expansion of open 
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steppe vegetation and cold and dry climate conditions. The abrupt decrease in the CLDE 

scores and landscape openness provide further evidence to a climatic deterioration. 

 

High contents of Betula and Alnus pollen accumulated in the sediments between 203 and 196 

ka (PAZ-VII). It suggested the presence of dwarf birches and shrub alder in the region and 

favorable climatic conditions during MIS 7.1. The TUND biome was in predominance but 

CLDE biome had high affinity scores as well. The comparatively dense vegetation cover led 

to less soil erosion and mud flows, probably resulting in the low sedimentation rate (c. 2.5 cm 

yr-1) during this time interval. 

 

Since the late MIS 7 (196-188 ka, PAZ-VIII), a tendency of climatic deterioration was 

evident as indicated by the decreasing significance of shrubby components in the landscape 

and corresponding increases in herb pollen. This shift is also obvious in the biomization 

results which show a decrease in CLDE and TUND affinity scores. These changes implied a 

gradual cooling towards the MIS 6. Artemisia pollen and Selaginella rupestris spores notably 

increased reflecting a broader distribution of dry habitats in the lake vicinity. The transition 

from the penultimate interglacial to the penultimate glacial was also marked by the start of an 

increase in sedimentation rate in Lake El’gygytgyn (Fig. 4.3C). It was probably due to 

aggravated soil erosion induced by a vegetation cover decline (Zhao et al., 2015). 

 

Between 188 and 181.5 ka (PAZ-IX, MIS 6.6), the pollen spectra were similar to that of PAZ-

III (mid-MIS 7.4) showing graminoid tundra dominated the landscape, although slightly 

higher Artemisia pollen percentages in PAZ-IX indicated marginally drier conditions. The 

STEP biome had the highest affinity scores and was the dominant vegetation type. Small 

amounts of Pinus Haploxylon pollen suggested the presence of a thick snow cover in the 

winter that protected pines from desiccation. The similarity between MIS 7.4 and MIS 6.6 

also lies in the remarkably low diatom concentration in lake sediments, reflecting the 

coverage of thick snow over permanent lake ice in the summertime (Snyder et al., 2013). 

 

4.5.2 Climate variability and astronomical configurations 

 

Previous studies show that vegetation successions in the Arctic were unambiguously linked to 

the astronomical configurations (Zhao et al., 2015, 2017). The evidence show that nearly 

simultaneous highs of obliquity and precession-related summer insolation triggered the onset 

of interglaciation and forest expansions (e.g. MIS 5.5 and MIS 31). In contrast, inverse orbital 
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configurations corresponded to the increases of herbaceous components in the regional 

vegetation, marking the end of an interglaciation (e.g. MIS 5.4). For the period between MIS 

7.5 and MIS 6.6, a close association between vegetation successions and the orbital 

parameters can be observed as well (Fig. 4.3).  

 

4.5.2.1 The warm intervals of MIS 7 

 

The vegetation landscape in the Northeast Siberia was consistently open between MIS 7.5 and 

MIS 6.6 (240.5-181.5 ka), due to the stable and high affinity scores of the TUND biome. The 

warm stages (MIS 7.5, 7.3 and 7.1) were generally marked by increased CLDE biome scores 

and synchronously decreased STEP biome scores. Nevertheless, the CLDE biome scores were 

consistently lower than that of the MIS 5.5 and the postglacial thermal maximum (PGTM; 

Tarasov et al., 2013). It suggests that the climate conditions of MIS 7 warm intervals were 

comparatively harsh, which agrees with the result of the Lake El’gygytgyn PG 1351 pollen 

record (Lozhkin et al., 2007). 

 

All the MIS 7 warm intervals coincided with the periods when the obliquity showed a 

decreasing trend. However, different conditions of precession-related summer insolation 

marked each interval. The MIS 7.5 was characterized by the synchronous decreasing trend of 

obliquity and precession-related summer insolation. The MIS 7.3 (~4 ka duration) was 

coincident with the interval of high obliquity values and low precession-relation summer 

insolation. The MIS 7.1 had a similar orbital configuration as the MIS 7.5 (~4 ka duration), 

but lasted much longer (~10 ka) and involved a long period of high precession-relation 

summer insolation. The orbital configurations of these warm stages were reflected by the 

differences in vegetation and climate dynamics. 

 

The MIS 7.1 is the most prominent in terms of its long duration and relatively high CLDE 

biome scores (8.39-12.18), as compared to the MIS 7.3 (4.29-9.78) and MIS 7.5 (4.79-7.49). 

This feature is also expressed by remarkably high contents of alder pollen, suggesting the 

MIS 7 climatic optimum in the northern Siberia occurred at the stage MIS 7.1. This 

conclusion disagrees with the pollen results from southern Europe indicating that MIS 7.5 and 

MIS 7.3 were the most climatically favorable intervals as marked by the pronounced spread 

of tree populations (Tzedakis et al., 2004). Moreover, a recent palynological study in the Near 

East suggests that the highest proportions of temperate trees occurred during MIS 7.3 

(Pickarski and Litt, 2017; Fig. 4.4B).  
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Fig. 4.4 Summary figure. A. Arboreal pollen percentages (AP) from Lake El’gygytgyn 5011-1 sediments. B. 

Percentages of AP (green line) and deciduous Quercus (red line) from Lake Van pollen record (Pickarski and Litt, 

2017). C. LR04 global marine isotope stacks (black line, Lisiecki & Raymo, 2005) and mean July insolation for 

67.5° N (red line, Laskar et al., 2004). D. Compiled Antarctic ice-core CO2 (red line, Lüthi et al., 2008) and 

EPICA Dome C temperature record (blue line, Jouzel et al., 2007).  

 

In the Northeast Siberia, the presence of climatic optimum at stage MIS 7.1 can be 

alternatively explained by the legacies of glacials/stadials on subsequent warm intervals. 

Based on multivariate analyses of pollen data from Lake El’gygytgyn 5011-1 sediments, 

Herzschuh et al. (2016) indicate that mild glacials led to the proximity of arboreal refugia to 

the investigated site as well as labilization of the permafrost. Indeed, the MIS 7.2 was short-

lived and mild according to the record of sea level (Dutton et al., 2009) and the marine 

isotope stack LR04 (Lisecki and Raymo, 2005; Fig. 4.4C). Consequently, the subsequent MIS 

7.1 was exceptionally long and warm under favorable orbital configurations. 

 

The MIS 7.5 and 7.3 share strong similarities in terms of pollen spectra and biome 

distributions, as well as a preceding long and cold glacial/stadial (MIS 8 and MIS 7.4, 

respectively; Lozhkin et al., 2007) imposing on the development of trees and shrubs. In 

particular, the MIS 7.4 stadial was dinstinctive by the large magnitude of ice-sheet that 

approached the extent of a glacial period (Huybers and Wunsch, 2005). As a result, the 

widespread and deep permafrost was stabilized and required millennia for the active layer to 

respond to summer insolation maxima (Herzschuh et al., 2016). This might explain the late 

onset of increases in CLDE biome scores (~213.5 ka) during MIS 7.3 (~216-209.5 ka), which 

is in line with the lag of peak CO2 concentrations (Lüthi et al., 2008) and peak Antarctic 

temperatures (Jouzel et al., 2007) following the onset of deglaciation (Fig. 4.4C, D).  
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4.5.2.2 The cold but wet MIS 7.4 and MIS 6.6 

 

Multi-proxy analyses of lithology, biogeochemistry (Melles et al., 2007), inorganic 

geochemistry (Minyuk et al., 2014), and diatoms (Cherepanova et al., 2007; Snyder et al., 

2013) based on the Lake El’gygytgyn 5011-1 sediments indicate pronouncedly cold and wet 

conditions during MIS 7.4 and 6.6. This climate regime pointed to a temperature reduction 

and a source of sustainable atmospheric moisture.  

 

In the Northeast Siberia, the moisture is mainly brought by the westerlies from the warm 

surface of the North Altantic. During cold and wet glacial intervals, however, the westerlies 

was probably not the moisture source due to a >3000 km distance of Lake El’gygytgyn to the 

eastern margin of the Eurasian Ice Sheet (Melles et al., 2007). At the onset of mid-MIS 7.4 

(PAZ-II) and MIS 6.6, the extent of ice-sheet rapidly reached maximum when minimum 

precession-related summer insolation nearly coincided with the lowest obliquity values (Fig. 

4.3D, E), resulting in extremely low summer temperatures. Hence, a possible explanation 

might be that the cold airs in the East Siberia acted as a “cryogenic pump” drawing moisture 

from coastal Arctic seas to Northeast Siberia, so that large glaciations initiated. This 

mechanism was first proposed based on a Lake Baikal sedimentary record and was suggested 

to have existed throughout the late Pleistocene (Karabanov et al., 1998). In turn, the increased 

snowfall and continuously augmented snowfields would lead to a stronger snow- and ice-

albedo feedback that can cause further summer termperature reductions (Milankovitch, 1941). 

The deep snowcover and its insulating effects during mid-MIS 7.4 and MIS 6.6 probably 

accounted for the survival of Pinus Haploxylon (Fig. 4.2). 
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5 Synthesis and Discussion 
 

5.1 Main results and conclusions 
 

5.1.1 Arctic vegetation successions of glacial-interglacial cycles during the Quaternary 

 

 

Fig. 5.1 Summary diagram showing percentages of major pollen and spore taxa of the Lake El’gygytgyn 5011-1 

core sediments for the intervals of 2150-2100 ka (MIS 82-79), 1091-715 ka (MIS 31-18), and 240.5-181.5 ka (MIS 

7.5-6.6). Note the breaks in temporal scale. 

 

In the previous chapters (2, 3, and 4), the investigated pollen assemblages from Lake 

El’gygytgyn 5011-1 core sediments document regional vegetation and climate history during 
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the intervals of ~2150 to 2100 ka (MIS 82-79), ~1091 to 715 ka (MIS 31-18), and ~240.5 to 

181.5 ka (MIS 7.5-6.6). In this section, all the pollen data are synthesized (Fig. 5.1) and the 

features of glacial and interglacial vegetation successions during different stages of the 

Quaternary are described.  

 

5.1.1.1 Glacials 

 

In general, the pollen and palynomorph assemblages during the glacials are marked by i) high 

contents of Poaceae and Artemisia pollen from the herb tundra dominated local and regional 

vegetation; ii) moderate percentages of regional shrubby taxa of Salix (in prostrate form) or 

Betula, Alnus and Pinus Haploxylon pollen that were wind-blown from a further distance; iii) 

some Larix pollen from trees in the lake basin or sheltered sites; and iv) the presence of 

Ranunculaceae pollen and Selaginella repestris spore that were found in specific 

microhabitats (e.g., xeric and/or rocky sites). 

 

Despite the similarities, the features of glacial vegetation during different stages of the 

Quaternary are distinctive. During the early Pleistocene, the MIS 80 was marked by high 

contents of Betula and Alnus pollen (mean of 30.1% and 7.4%, respectively) and low amounts 

of Artemisia and Poaceae pollen (mean of 15.1% and 19.7%, respectively). During the mid-

Pleistocene, the glacial pollen spectra before the first large glaciation (MIS 24-22) were 

composed of relatively high Poaceae and Artemisia pollen percentages (mean of 28.7% and 

27.5%, respectively). Shortly after the first large glaciation, the glacial vegetation cover 

became lower, as indicated by very low shrub pollen contents (mean of <6.2%) and abundant 

Artemisia and Poaceae pollen (mean of 38.5% and 35.9%, respectively). During the late 

Pleistocene, the shrub pollen nearly disappeared during MIS 6 and MIS 2 (Lozhkin et al., 

2007). 

 

It can be indicated that the glacials during the early Pleistocene were comparatively warm. 

Towards the late Pleistocene, the xeric herb communities gradually increased at the expense 

of the declined diversity and populations of shrubs. As a result, the vegetation landscape 

became more open and a long-term cooling and drying trend can be inferred for the regional 

climate.  

 

In addition, some of the cold intervals (glacials/stadials) were relatively wet, including MIS 

80, MIS 30, MIS 28, MIS 26, MIS 24, MIS 7.4 and MIS 6.6. These periods were 
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characterized by the presence of some Pinus Haploxylon (stone pine) pollen, suggesting the 

presence of a sufficient snow cover protecting the evergreen shrub from winter desiccation. 

 

5.1.1.2 Interglacials 

 

As compared to the glacials, interglacials can be distinguished by the predominance of shrub 

components (Betula-Alnus-Salix) in the regional vegetation. The pollen spectra resemble 

Holocene pollen assemblages of Lake El’gygytgyn PG1351 core sediments, demonstrating a 

similarly warm climate setting (Lozhkin et al., 2007). Nevertheless, differences between the 

interglacials are also evident in terms of tree and shrub compositions.  

 

Firstly, as a major pollen taxon of MIS 81 optimum (mean of 44.8%; ranging from 28.4% to 

65.8%), MIS 5 and the Holocene (Lozhkin and Anderson, 2013), Pinus Haploxylon of MIS 

79, MIS 27, MIS 25 and MIS 21 had very low pollen proportions (c. <5%). Secondly, the 

“super” interglacials (MIS 31 and MIS 11; Melles et al., 2012) were marked by the 

establishment of dark conifers (mainly Picea and Pinus) and deciduous forests (mainly Larix) 

accompanied by tree/high-shrub Betula and Alnus locally and regionally (Lozhkin and 

Anderson, 2013).  

 

In terms of vegetation succession patterns, the interglacials preceding and following the first 

large glaciation show distinct shifts. Before MIS 24-22, the onset of interglacials was 

characterized by a progressive increase in tree/shrub components. In contrast, the subsequent 

interglacials were initiated by a rapid expansion of trees/shrubs followed by a gradual return 

to full glacial conditions. 

 

5.1.2 Arctic biome variations during the Quaternary and the orbital forcings  

 

The biome reconstruction provides a quantitative evaluation of vegetation changes that allows 

an explicit comparison with other paleoclimatic records (Tarasov et al., 2013). As shown in 

Fig. 5.2A, the biomization results derived from the Lake El’gygytgyn 5011-1 pollen records 

show distinct Arctic biome variations for the intervals of 2150-2100 ka (MIS 82-79), 1091-

715 ka (MIS 31-18), and 240.5-181.5 ka (MIS 7.5-6.6; this study) and for the periods of 90-

140 ka (MIS 5), 380-430 ka (MIS 11), and 1091-1060 ka (MIS 31; Tarasov et al., 2013). 
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Fig. 5.2 Summary diagrams showing: (A) biome reconstructions of Lake El’gygytgyn 5011-1 core sediments for 

the intervals of 2150-2100 ka (MIS 82-79), 1091-715 ka (MIS 31-18), and 240.5-181.5 ka (MIS 7.5-6.6; this study) 

and previous biomization results for the periods of 90-140 ka (MIS 5), 380-430 ka (MIS 11), and 1091-1060 ka 

(MIS 31; Tarasov et al., 2013), (B) landscape openness calculated as the different between MSFB and MSOB, (C) 

LR04 global marine stack (black line, Liesecki and Raymo, 2005) and mean July insolation for 67.5ºN (red line, 

Laskar et al., 2004), and (D) precession curve (red line) and obliquity curve (black line), after Laskar et al. (2004). 

 

A total of five biomes existed during the investigated periods, comprising tundra (TUND), 

cold steppe (STEP), cold deciduous forest (CLDE), taiga (TAIG), and cool conifer forest 

(COCO). The increases in CLDE biome affinity scores and simultaneous decreases in STEP 

biome scores characterized the interglacials and vice verse for the glacials. The “super” 

interglacials (MIS 31 and 11) were marked by the high scores of two additional biomes, the 

TAIG and COCO (Tarasov et al., 2013).  

 

The cyclic pattern of glacial-interglacial climates was primarily forced by the variations in the 

earth’s orbital parameters: the precession (23-ka cycle), eccentricity (100-ka cycle), and 

obliquity (41-ka cycle; Hays et al., 1976). According to Maslin and Ridewell (2005), 

obliquity and precession are the dominant influences on the glacial-interglacial cycles, 

whereas eccentricity “paces” rather than “drives” climatic change due to the very minor 

variations. The Lake El’gygytgyn biomization results show close associations with the 

changes in obliquity and precession (Fig. 5.2). The major control of these orbital parameters 
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is expressed as a combined effect of daylight duration and summer insolation intensity, 

respectively, which are vital for vegetation successions in the high latitudes. 

 

During the early stage of most interglacials (i.e., MIS 81, 31, 29, 25, 21.1, 21.3 19,18.2, and 

5.5), the onset of relatively high CLDE and/or TAIG and COCO biome scores corresponded 

with the nearly simultaneous peaks of obliquity and precession-related summer insolation 

(Fig. 5.2). Hence, this mode of orbital configuration probably triggered the onset of most 

interglacials. However, the onset of MIS 27 and 7 was coincident with high obliquity values 

and synchronously low precession-related summer insolation (Fig. 5.2D). During these 

interglacials, the increases in CLDE biome scores were minor, which might be explained by a 

weaker snow melt during springs/summers and a relatively stabilized permafrost due to the 

offset in orbital parameters.  

 

The interglacial periods of high CLDE and/or TAIG and COCO biome scores were basically 

in phase with the intervals of obliquity values shifting from maxima to minima. It highlights 

the key role of obliquity cycle driving Arctic vegetation successions during the Quaternary.  

 

5.1.3 Arctic vegetation and climate in response to internal forcings 

 

In addition to the dominant influence of orbital forcings, the internal forcings of the earth 

system further modulated the regional vegetation and climate through snow- and ice-albedo 

feedbacks, as inferred from the Lake El’gygytgyn pollen records.  

 

During the Mid-Pleistocene Transition, the pronounced ice-sheet expansion led to a 

significant sea-level lowering and an exposure of continental shelves. The consequently 

enhanced Siberian High and the westerly jet may have caused the long-term drying in the 

high latitudes following the first large glaciation. Moreover, the climate pattern might have 

been intensified by the concomitant uplift of the northeastern Tibetan Plateau since ~0.9-0.8 

Ma. The prominent cooling probably resulted in a subdued snow melt and an expanded ice 

sheet that aggravated the earth-albedo feedback (Calov et al., 2005). As a consequence, deep 

permafrost was widely distributed in the Arctic region and the growth of trees/shrubs was 

hampered.  

 

The duration and state of each warm stages (interglacial/interstadial) differs between one 

another, as reflected by the pollen spectra and biome reconstructions of Lake El’gygytgyn 
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sediments. Apart from the differential orbital configurations, the proposal of Herzschuh et al. 

(2016) provides additional explanations. That is, the climate conditions of preceding 

glacial/stadials had strong imprints on the subsequent warm intervals in the high altitudes at 

the Pliocene-Pleistocene transition. In this study, the phenomenon is also observed from the 

Lake El’gygytgyn pollen records for the warm intervals of MIS 21, 19, and 7.  

 

As the most prominent example, the MIS 7 involves three warm intervals (MIS 7.5, 7.3, and 

7.1) and two cold intervals (MIS 7.4 and 7.2). The climatic optimum occurred at the substage 

MIS 7.1 (~10 ka duration), as identified by the highest CLDE biome affinity scores and 

maximum arboreal pollen contents. In addition to the persistently high precession-related 

summer insolation, the MIS 7.1 was preceded by the mild short-lived MIS 7.2 stadial. As a 

result, the arboreal refugia were probably close to the Lake El’gygytgyn area and the 

permafrost was moderately distributed.  

 

In contrast, the MIS 7.5 and 7.3 were short (~4 ka duration) and were characterized by much 

fewer trees and shrubs in the relatively disadvantageous orbital settings. Both intervals were 

preceded by a long and cold glacial/stadial (MIS 8 and MIS 7.4, respectively). In particular, 

the MIS 7.4 stadial was marked by a large glaciation, which was triggered by coevally low 

values of obliquity and precession-related summer insolation. The significantly reduced 

summer temperatures in the high latitudes resulted in a strong snow- and ice-albedo feedback. 

Consequently, the permafrost was extensive and stabilized preventing vegetation 

development.  

 

 

5.2 Future perspective 
 

The Lake El’gygytgyn 5011-1 sediments and pollen data allow a further analysis beyond the 

topics of chapters 2, 3, and 4. The ongoing work addresses:  

 

5.2.1 Comparisons with mid- and low- latitude climate records during the Mid-

Pleistocene Transition  

 

The MPT is a prominent climate event in the entire Quaternary. According to the marine 

oxygen isotope records, the MPT is reflected by a gradual increase in average global ice 

volume and a decrease in deep-water temperature (Rial, 2004). Vegetation in the high, mid, 
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and low latitudes demonstrates various sensitivities to these changes under different climate 

systems (e.g. Singarayer and Valdes, 2010; Maslin and Ridgwell, 2005), because each of 

these climate systems has a different dominant effect of feedback mechanisms, which 

primarily include the feedback of snow-ice, thermohaline circulation and tropical SST (Clark 

et al., 2009). Tenaghi Philippon pollen data from the eastern Mediterranean (Tzedakis et al., 

2006) and Angola Basin alkenone data from the eastern tropical Atlantic (Schefuβ et al., 2003) 

reflect vegetation changes throughout the entire MPT in the mid and low latitudes, 

respectively (Fig. 5.3B, C). 

 

 

Fig. 5.3 Correlation of paleorecords in different latitudes for the Mid-Pleistocene Transition. (A) Trees and shrubs 

pollen (AP%) in Lake El’gygytgyn 5011-1 sediments. (B) AP percentages from Tenaghi Philippon record 

(Tzedakis et al., 2006). (C) C4 plant fraction of the plant wax n-alkanes using δ13C values of the n-C31 alkane 

(Schefuβ et al., 2003). (D) Tropical alkenone-derived SST (°C) record at ODP Site 1077 (red line, Schefuβ et al., 

2004) and LR04 global marine isotope stack marked with numbers of marine isotope stages (black line, Lisiecki 

and Raymo, 2005). (E) Precession curve (red line) and obliquity curve (black line), after Laskar et al. (2004). 

 

In the initial stage of the MPT, synchronous peaks of precession and obliquity may have 

triggered the onset of the MIS 31 super interglacial (Melles et al., 2012) with high summer 

insolation intensity and long daylight in the high latitudes, which also had led to strikingly 

limited global ice volume, as reflected by the lowest oxygen isotope values in the benthic 

LR04 stack (Lisiecki and Raymo, 2005; Fig. 5.3F). With analogous orbital configuration, 

MIS 25 in both high and mid-latitudes was characterized by forested landscape regionally 

(Fig. 5.3A, B). These two interglacials were separated by the weak MIS 27 and 29 

interglacials as a result of relatively low precession and obliquity values. In the low latitudes, 
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the gradual cooling of the tropical Atlantic did not follow the saw-tooth-like pattern as 

observed in the LR04 record. Instead, glacials appeared relatively rapid and are reflected by 

sharp drops in SSTs (Fig. 5.3E). Tropical SST declines resulted in large-scale aridification 

and favored the establishment and expansion of C4 grassland (Schefuβ et al., 2004). Thus, 

low-latitude vegetation dynamics are more closely linked with tropical SSTs changes and do 

not show a clear pattern of glacial-interglacial oscillations during the initial stage of the MPT. 

 

MIS 24-22 is a remarkable interval during the MPT because it represents the first large 

glaciation, extreme SST cooling, and thermohaline circulation decline (Schmieder et al., 2000; 

Clark et al., 2006). Extremely low pollen concentrations in Lake El’gygytgyn within MIS 23 

make it impossible to analyze the mechanisms behind the vegetation change in the high 

northern latitudes during this period. Comparing with other interglacials, trees and shrubs 

were much less floristically diversified in the eastern Mediterranean, while herbaceous taxa 

remained important components in the vegetation during MIS 23 (Tzedakis et al., 2006). 

African C4 plants also significantly expanded as a result of a cooling Atlantic and a reduced 

thermohaline circulation (Schefuβ et al., 2003). 

 

Since c. 930 ka, the changes in the mean state and frequency of ice volume variations have an 

increasingly important impact on the variability of global vegetation. The LR04 benthic δ18O 

record shows that global ice volume significantly increased after MIS 24-22 (Lisiecki and 

Raymo, 2005), suggesting a prominent cooling trend. Consequently, the relatively more open 

landscape persisted in the high latitudes with an orbital configuration similar to that during 

the MIS 29-27. The limited summer insolation intensity and daylight duration may have 

prevented snow from melting and led to an extended ice volume which in turn has caused 

strong earth-albedo feedback effect that aggravated glacial conditions in accordance with 

climate modeling studies (Calov et al., 2005). 

 

In the mid-latitudes, forest expansions/contractions in the eastern Mediterranean region were 

closely linked to the global ice volume extent (Tzedakis et al., 2006). In the low latitudes, the 

C4 plant expansion was suppressed by the prominently strengthened thermohaline circulation 

and a long-term warming of the tropical Atlantic Ocean that was likely generated by 

extremely northward displaced Southern Ocean Fronts (Schefuβ et al., 2004). The tropical 

climate variability was also increasingly influenced by the glacial-interglacial variations of 

continental ice sheets. According to the tropical Atlantic palynological records (Dupont et al., 

2001), warm-dry interglacial and cool-humid glacial environmental conditions prevailed in 

Africa after the first large glaciation. 
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During the MPT, the vegetation changes in the high latitudes exhibit a much higher amplitude 

in response to the external and internal forcings. Thus, a sensitive feedback of the Arctic 

ecosystems to future climate variations can be expected. It further underscores the potential 

and importance of Arctic paleoenvironmental researches.  

 

5.2.2 A more continuous and detailed Arctic vegetation history over the Quaternary 

 

The investigated intervals of the Lake El’gygytgyn pollen records covered the most 

characteristic periods of the Quaternary. Relevant studies of more time intervals would 

provide a more complete and continuous record of the Arctic vegetation and climate history, 

deepening the understanding of regional climate mechanisms. 

 

As one of the most characteristic interglacial, MIS 25 is intriguing for a more detailed 

vegetation reconstruction due to the exceptionally high contents of Betula and Alnus pollen 

indicating the presence of dense tree-sized shrubs in the region. Given the mild and short 

preceding glacial, MIS 25 was probably marked by more favorable environmental settings as 

compared to other interglacials. However, herb pollen were almost absent while other 

arboreal pollen were not found as well, which is different from the pollen spectra of a “super” 

interglacial (e.g., MIS 31). However, a higher-resolution pollen analysis for MIS 25 is 

challenging because most samples are of extremely low pollen concentration.  

 

Information of the vegetation conditions for the MIS 23 is missing due to the nearly absence 

of pollen grains in the Lake El’gygytgyn sediments. As the interglacial within the first large 

glaciation, MIS 23 is interesting considering the high values in total organic carbon 

concentrations, Si/Ti ratios and biogenic silica (BSi) percentages of Lake El’gygytgyn 

sediments (Nowaczyk et al. 2013).  

 

In this case, increasing the sample volume may yield enough pollen counts. Otherwise, a 

parallel sedimentary record in the vicinity of Lake El’gygytgyn (e.g., in Alaska) possibly 

would fill the gaps. 
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Summary 
 

The thesis aims to reconstruct the Arctic vegetation during the Quaternary and to provide 

insights into the orbital and internal forcings of the regional climate changes. The sedimentary 

record of the Lake El’gygytgyn is vital for understanding the response of the vulnerable 

ecosystems in the Northeast Siberia to climate variations. With the successful recovery of the 

deep-drilled ICDP 5011-1 sediment cores, high-resolution palynological analysis and biome 

reconstruction are applied to the time intervals of ~2150 to 2100 ka (MIS 82-79, including the 

Réunion Subchron polarity reversal event), ~1091 to 715 ka (MIS 31-18, encompassing the 

Mid-Pleistocene Transition), and ~240.5 to 181.5 ka (MIS 7.5-6.6; mainly the penultimate 

interglacial).  

 

For the interval of 2150-2100 ka (MIS 82-79) during the early Quaternary, the tundra (TUND) 

biome generally has higher affinity scores as compared to cold steppe (STEP) or cold 

deciduous forest (CLDE). An exception is a climatic optimum between ~2139-2131 ka, 

coinciding with MIS 81 (approximately the Réunion Subchron) when the CLDE biome has 

the highest scores. The coeval pollen spectra indicate that deciduous forest and shrubs 

expanded in the regional vegetation and the climate was relatively warm and wet.  

 

Over the Mid-Pleistocene Transition (1091-715 ka), the pollen spectra reveal seven 

vegetation successions that have clearly distinguishable glacial-interglacial cycles. Comparing 

the interglacials during the course of the Mid-Pleistocene Transition, a tendency of a gradual 

replacement of trees and shrubs by open herbaceous communities can be observed. Since the 

first large glaciation (MIS 24-22), the long-term tendency of decreasing CLDE biome scores 

and landscape openness index indicates a prominent aridification in the Northeast Siberia.  

 

During the late Quaternary at 240.5-181.5 ka (MIS 7.5-6.6), mixed herbs and shrubs (mainly 

alder and birch) dominated the regional vegetation. The high affinity scores of the TUND 

biome show that the vegetation landscape was generally open. The warm intervals (MIS 7.5, 

7.3, and 7.1) were marked by an increase in the CLDE biome scores and a synchronous 

decrease in the STEP biome scores. Among them, the MIS 7.1 was a climatic optimum phase 

marked by the highest CLDE biome scores and lasted ~10 ka.  

 

The vegetation of cold intervals (glacials/stadials) were dominated by herb tundra. Some of 

the cold intervals were relatively wet supporting the survival of some stone pines with a 

sufficient snow cover. In contrast, interglacials/interstadials can be distinguished by the shrub 
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dominated regional vegetation (Betula-Alnus-Salix). Correspondingly, increases in CLDE 

biome affinity scores and simultaneous decreases in STEP biome scores characterized the 

interglacials and vice versa for the glacials.  

 

The cyclic pattern of glacial-interglacial climates was primarily forced by the earth’s orbital 

parameters. The nearly simultaneous peaks of obliquity and precession-related summer 

insolation probably triggered the onset of most interglacials. The high CLDE biome scores 

during interglacial periods were basically in phase with the intervals of obliquity values 

shifting from maxima to minima, highlighting the key role of obliquity cycle driving Arctic 

vegetation successions during the Quaternary.  

 

The internal forcings of the earth system further modulated the regional vegetation and 

climate. The global cooling during the first large glaciation may have prevented snow from 

melting and led to an extended ice volume. It in turn have caused strong snow- and ice-albedo 

feedback effect that aggravated glacial conditions causing the significant decline in the 

diversity and populations of trees and shrubs. The climatic optimum at the substage MIS 7.1 

benefited from the preceding mild short-lived MIS 7.2 stadial, whereas the long and cold MIS 

7.4 and 8 resulted in extensive and stabilized permafrost preventing vegetation development 

during MIS 7.3 and 7.5, respectively. It shows the strong imprints of glacials/stadials on the 

subsequent warm intervals in the high latitudes. 

 

This thesis fills the gap of the Arctic vegetation history for the concerned time intervals. It 

underlines pollen analysis and biome reconstruction as invaluable methods and highlights the 

potential of Lake El’gygytgyn as a key archive for establishing the framework of long-term 

Arctic paleoenvironmental changes. This study offers insights into potential scenarios for 

future climate pattern in the high latitudes and allows a better understanding of the 

relationship between vegetation, climate, and possible mechanisms.
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Zusammenfassung 
 

Das Ziel dieser Doktorarbeit ist es, die arktische Vegetation während des Quartärs zu 

rekonstruieren und neue Erkenntnisse über die orbitalen und internen Einflüsse auf regionale 

Klimaänderungen zu erlangen. Das Sedimentprofil des El’gygytgyn-Sees eignet sich 

hervorragend, um die Auswirkungen von Klimaänderungen auf das verwundbare Ökosystem 

Nordost-Sibiriens zu untersuchen. Die erfolgreiche Bergung des langen ICDP 5011-1 

Sedimentbohrkerns machte es möglich, eine hochauflösende palynologische Analyse und 

Biomrekonstruktion für den Zeitraum von ~2150 bis 2100 ka (MIS 82-79, inklusive des 

Réunion-Subchron-Polaritätswechsel-Ereignisses), ~1091 bis 715 ka (MIS 31-18, inklusive 

des Mittelpleistozänen Übergangs) und ~240,5 bis 181,5 ka (MIS 7.5-6.6; überwiegend das 

vorletzte Interglazial) anzuwenden. 

 

Für den Zeitraum von ~2150 bis 2100 ka (MIS 82-79) während des frühen Quartärs hat das 

Tundra-Biom (TUND) generell höhere Zugehörigkeitswerte im Vergleich zur kalten Steppe 

(STEP) oder zum kalten sommergrünen Wald (CLDE). Eine Ausnahme bildet das 

Klimaoptimum zwischen ~2139 und 2131 ka, welches mit MIS 81 übereinstimmt (ungefähr 

das Réunion-Subchron). Hier zeigt das CLDE-Biom höchste Werte. Das gleichaltrige 

Pollenspektrum deutet auf eine Ausbreitung sommergrüner Wälder und Sträucher in der 

regionalen Vegetation sowie auf ein relativ warmes und feuchtes Klima. 

 

Zur Zeit des Mittelpleistozänen Übergangs (1091-715 ka) offenbart das Pollenspektrum 

sieben Vegetationssukzessionen, die deutlich abgrenzbare Glazial-Interglazial-Zyklen 

anzeigen. Beim Vergleich der Interglaziale des Mittelpleistozänen Übergangs wird eine 

Tendenz zum schrittweisen Austausch der Bäume und Sträucher durch offene 

Krautvergesellschaftungen deutlich. Seit der ersten langen Vergletscherung (MIS 24-22) 

weist die Langzeittendenz des rückläufigen CLDE-Biomwerts und Offenlandschaft-Indexes 

auf eine starke Austrocknung in Nordost-Sibirien hin. 

 

Während des späten Quartärs bei 240,5-181,5 ka (MIS 7.5-6.6) dominierten gemischte 

Kräuter und Sträucher (vor allem Erle und Birke) die regionale Vegetation. Der hohe 

Zugehörigkeitswert des TUND-Bioms zeigt, dass die Vegetationslandschaft generell offen 

war. Die warmen Zeitspannen (MIS 7.5, 7.3 und 7.1) zeichneten sich durch einen Anstieg der 

CLDE-Biomwerte und eine gleichzeitige Abnahme der STEP-Biomwerte aus. Darunter war 

MIS 7.1 eine Phase klimatischen Optimums mit höchsten CLDE-Biomwerten und einer 

Dauer von ~10 ka. 
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Die Vegetation kalter Zeitintervalle (Glaziale/Stadiale) wurde von Krauttundra dominiert. 

Manche dieser Kältephasen waren relativ feucht, was das Überleben von Haploxylon-Kiefern 

durch eine ausreichend dicke Schneedecke begünstigte. Im Gegensatz dazu können 

Interglaziale/Interstadiale durch eine Strauch-dominierte regionale Vegetation (Betula-Alnus-

Salix) unterschieden werden. Dementsprechend werden Interglaziale durch Anstiege der 

CLDE-Biomwerte und zeitgleiche Rückgänge der STEP-Biomwerte gekennzeichnet, 

während umgekehrte Verhältnisse Glaziale charakterisieren. 

 

Das zyklische Muster glazialer-interglazialer Klimate wurde primär durch orbitale 

Erdparameter bestimmt. Die nahezu zeitgleichen Peaks der Obliquität- und Präzession-

abhängigen Sommerinsolation verursachte wahrscheinlich den Anfang der meisten 

Interglaziale. Die hohen CLDE-Biomwerte während der Interglaziale waren grundsätzlich 

phasengleich mit Zeitabschnitten, in denen Obliquitätswerte von Maxima zu Minima 

wechselten. Dies unterstreicht die Schlüsselfunktion der Obliquitätszyklen für arktische 

Vegetationssukzessionen während des Quartärs. 

 

Die internen Einflüsse auf das Erdsystem modulierten zusätzlich die regionale Vegetation und 

das regionale Klima. Die globale Abkühlung während der ersten langen Vergletscherung 

könnte eine Schneeschmelze verhindert und zu einem ausgedehnteren Eisvolumen geführt 

haben. Dies wiederum führte zu starken Schnee- und Eis-Albedo-Rückkopplungen, die 

glaziale Bedingungen verschärften und dadurch einen signifikanten Rückgang der Diversität 

und Populationen von Bäumen und Sträuchern verursachten. Das Klimaoptimum von MIS 7.1 

wurde von dem vorangegangenen milden und kurzen MIS 7.2-Stadial begünstigt. Hingegen 

verursachten die langen und kalten MIS 7.4 und 8 ausgedehnte und stabilisierende 

Permafröste, die die Vegetationsentwicklung während MIS 7.3 bzw. 7.5 verhinderten. Dies 

zeigt den starken Einfluss von Glazialen/Stadialen auf die darauffolgenden Warmphasen in 

den hohen Breiten. 

 

Diese Doktorarbeit schließt eine Wissenslücke über die arktische Vegetationsgeschichte für 

den untersuchten Zeitraum. Sie stellt die Wichtigkeit der Pollenanalyse und 

Biomrekonstruktion als unschätzbare Methode heraus und zeigt das Potenzial des 

El’gygytgyn-Sees als Schlüsselarchiv für die Etablierung eines Rahmenkonzepts für 

Langzeitänderungen der arktischen Paläoumwelt. Durch diese Studie wurden Erkenntnisse 

über potenzielle Szenarien zukünftiger Klimamuster in den hohen Breiten gewonnen. 

Außerdem ermöglicht sie ein besseres Verständnis der Zusammenhänge zwischen Vegetation, 

Klima und möglichen Mechanismen. 
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Appendix 
 

Table A.1. Counts of fossil pollen and non-pollen-palynomorphs of the sediment core 5011-1 from Lake 

El’gygytgyn. 
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181500 0 0 6 0 0 0 2 0 16 68 5 0 0 0 0 0 1 

182696 0 0 2 0 0 0 0 0 7 39 0 0 0 0 0 0 0 

183637 0 0 4 0 0 0 0 0 2 31 0 0 0 0 0 1 1 

184592 0 0 3 0 0 0 1 0 11 129 0 0 0 0 0 1 3 

185548 0 0 5 0 0 0 2 0 3 32 0 0 0 0 0 1 0 

186503 0 0 5 0 0 0 2 0 6 61 0 0 0 0 0 0 0 

187459 0 0 2 0 0 0 1 0 9 67 0 0 0 0 0 0 2 

188696 0 0 0 0 0 0 0 0 8 54 1 0 0 0 0 1 2 

189682 0 0 1 0 0 0 2 0 4 36 0 0 0 0 0 2 2 

190595 0 0 1 0 0 0 0 0 5 19 0 0 0 0 0 0 0 

191483 0 0 5 0 0 0 0 0 17 78 0 0 0 0 0 6 2 

192469 0 0 4 0 0 0 0 0 30 91 0 0 0 0 0 1 4 

193160 0 0 4 0 0 0 3 0 55 111 0 0 0 0 0 3 2 

194311 0 0 0 0 0 0 0 0 16 42 0 0 0 0 0 0 0 

195462 0 0 0 0 0 0 0 0 34 43 0 0 0 0 0 0 0 

197765 0 0 0 0 0 0 0 0 55 48 0 0 0 0 0 0 2 

198916 0 0 1 0 0 0 0 0 38 26 0 0 0 0 0 0 3 

200067 0 0 4 0 0 0 0 0 90 114 1 0 0 0 0 1 4 

201218 0 0 5 0 0 0 0 0 55 88 0 0 0 0 0 1 5 

202369 0 1 0 0 0 0 0 0 27 59 0 0 0 0 0 0 4 

203520 0 0 0 0 0 0 0 0 15 60 0 0 0 0 0 0 3 

204112 0 0 0 0 0 0 0 0 0 11 0 0 0 0 0 0 1 

205208 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 

206303 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

206577 0 2 0 0 0 0 0 0 0 16 0 0 0 0 0 0 0 

206960 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

209580 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 

210071 0 0 0 0 0 0 0 0 52 111 3 0 0 0 0 0 2 

210533 0 0 0 0 0 0 0 0 27 43 0 0 0 0 0 2 2 

211579 0 0 0 0 0 0 0 0 8 15 0 0 0 0 0 0 4 

212102 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 2 

212625 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 1 4 

213148 0 1 0 0 0 1 0 0 1 57 0 0 0 0 0 0 3 

213671 0 1 0 0 0 0 0 0 1 30 0 0 0 0 0 4 1 

214194 0 0 0 0 0 0 0 0 1 11 0 0 0 0 0 0 0 

215240 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 
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216286 0 0 0 0 0 0 0 0 1 14 1 0 0 0 0 3 0 

217220 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 

218235 0 1 0 0 0 0 0 0 0 22 0 0 0 0 0 5 0 

219251 0 3 0 0 0 0 0 1 6 34 0 0 0 0 0 8 1 

220151 0 2 0 0 0 0 0 0 1 16 0 0 0 0 0 6 0 

221310 0 0 0 0 0 0 0 0 1 7 0 0 0 0 0 0 0 

222082 0 0 0 0 0 0 0 0 1 24 0 0 0 0 0 1 0 

223241 0 2 0 0 0 0 0 0 2 14 0 0 0 0 0 0 0 

224014 0 1 0 0 0 0 0 0 1 19 0 0 0 0 0 2 1 

225128 0 2 0 0 0 0 0 0 0 49 0 0 0 0 0 1 0 

226155 0 5 0 0 0 0 0 0 5 60 0 0 0 0 0 0 0 

227182 0 5 0 0 0 0 0 0 1 33 0 0 0 0 0 0 1 

228209 0 4 0 0 0 0 0 0 0 36 0 0 0 0 0 0 0 

229181 0 0 0 0 0 0 0 0 1 17 0 0 0 0 0 0 0 

230228 0 0 0 0 0 0 0 0 3 32 0 0 0 0 0 0 1 

231229 0 0 0 0 0 0 0 0 2 64 0 0 0 0 0 0 4 

233633 0 3 0 0 0 1 0 0 1 20 0 0 0 3 0 1 4 

234438 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 1 

235244 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 

236854 0 0 0 0 0 0 0 0 1 17 0 0 0 0 0 0 3 

238674 0 0 0 0 0 0 0 0 0 81 0 0 0 0 0 1 2 

239587 0 0 0 0 0 0 0 0 0 19 0 0 0 0 0 0 0 

240499 0 0 0 0 0 0 0 0 0 17 0 0 0 0 0 0 0 

715202 0 0 0 0 0 1 0 0 0 4 0 0 1 0 0 0 0 

717253 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 

718205 1 0 0 0 0 3 0 0 1 4 0 0 0 0 0 0 0 

719218 2 0 0 0 0 1 0 0 4 16 0 1 0 0 1 5 1 

720231 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 1 

721244 0 0 0 0 0 2 0 0 5 52 0 0 2 0 0 3 9 

722257 0 0 0 0 0 1 0 0 5 36 0 1 0 0 0 1 3 

723270 0 0 0 0 0 0 0 0 0 15 0 0 0 0 0 0 7 

724320 0 0 0 0 0 0 0 0 3 59 0 0 0 1 2 3 6 

725400 0 0 0 0 0 0 0 0 5 29 0 1 0 0 0 4 2 

726481 2 0 0 0 0 1 0 0 13 73 0 0 0 0 0 4 9 

727561 0 0 0 0 0 0 0 0 14 99 0 1 0 0 1 1 8 

728479 0 0 0 0 0 0 0 0 1 44 0 0 0 0 1 0 2 

731888 0 0 0 0 0 0 0 0 3 138 0 0 1 0 1 1 4 

732400 0 0 0 0 0 0 0 0 3 64 0 0 1 1 0 3 3 

733890 0 0 0 0 0 0 0 0 0 10 0 0 0 1 0 1 0 

Table A.1. Continued 
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737700 0 0 0 0 0 7 0 0 2 7 0 0 0 0 0 0 1 

738543 0 0 0 0 0 0 0 0 2 3 0 0 0 0 0 2 1 

740458 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 

741412 0 0 0 0 0 0 0 0 1 4 0 0 0 0 0 2 0 

742365 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 

747215 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

748018 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

755500 0 0 0 0 0 0 0 0 14 19 0 0 0 0 0 10 1 

767500 0 0 0 0 0 1 0 0 35 29 0 0 0 0 0 37 0 

767560 1 0 0 0 0 1 0 0 0 2 0 0 0 0 0 1 0 

772280 0 0 0 0 0 0 0 0 1 27 0 0 0 0 0 3 2 

775100 0 2 0 0 0 0 0 0 19 23 0 0 0 0 0 24 0 

780100 0 9 0 0 0 0 0 0 39 54 0 0 0 0 0 4 3 

786400 0 0 0 0 0 0 0 0 4 13 0 0 0 0 0 2 1 

796517 0 0 0 0 0 0 0 0 5 7 0 0 0 0 0 0 0 

797429 1 0 0 0 0 0 0 0 3 8 0 0 0 0 0 0 0 

798341 0 0 0 0 0 0 0 0 0 3 0 0 0 1 0 0 0 

799378 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 

801729 0 0 0 0 0 0 0 0 1 4 0 0 0 0 0 0 0 

802893 1 0 0 0 0 0 0 0 6 26 0 0 0 0 0 1 2 

804056 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

805220 2 0 0 0 0 0 0 0 1 16 0 0 0 0 0 0 1 

806384 0 0 0 0 0 0 0 0 3 14 0 0 0 0 0 0 1 

809389 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

812900 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 1 

813577 2 0 0 0 0 0 0 0 1 63 22 0 5 0 0 0 4 

814670 2 0 0 0 0 0 0 0 5 25 2 0 0 0 0 0 1 

815822 0 0 0 0 0 0 0 0 5 67 33 0 0 6 0 1 6 

816975 0 0 0 0 0 0 0 0 1 8 0 0 0 0 0 2 1 

817551 0 0 0 0 0 1 0 0 0 5 0 0 0 0 0 1 0 

818703 0 0 0 0 0 0 0 0 6 16 4 0 0 0 0 3 1 

819856 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 

820432 0 0 0 0 0 0 0 0 4 15 3 0 0 0 0 0 0 

822737 0 0 0 0 0 0 0 0 4 75 21 0 0 2 0 1 2 

823314 2 0 0 0 0 0 0 0 3 63 25 0 1 0 1 0 6 

824005 3 0 0 0 0 0 0 0 3 27 10 0 0 0 0 0 2 

826299 4 0 0 0 0 0 0 0 15 147 5 0 0 0 0 0 2 

828795 3 0 0 0 0 0 0 0 1 19 0 0 0 0 0 0 2 

830821 0 0 0 0 0 0 0 0 4 19 0 0 0 0 0 0 0 

832461 1 0 0 0 0 0 0 0 7 29 0 1 0 0 0 0 2 
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834102 1 0 0 0 0 2 0 0 5 25 5 0 0 0 0 3 0 

835743 3 0 0 0 0 0 0 0 7 27 10 0 0 0 0 0 0 

840161 1 0 0 0 0 0 0 0 10 30 3 0 0 0 0 0 0 

844437 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 

846186 2 0 0 0 0 0 0 0 18 26 3 0 0 0 0 0 4 

847936 1 0 0 0 0 0 0 0 5 24 5 0 0 0 0 0 1 

849711 2 0 0 0 0 0 0 0 45 84 29 0 0 0 0 0 0 

851510 1 0 0 0 0 0 0 0 3 14 0 0 0 0 0 0 1 

853310 8 0 0 0 0 0 0 0 154 173 12 0 0 0 0 0 6 

854756 11 0 0 0 0 2 0 0 107 209 3 0 0 0 0 0 3 

855848 22 0 0 0 0 2 0 0 47 109 4 0 0 0 0 0 5 

856939 4 0 0 0 0 0 0 0 22 68 0 0 0 0 0 0 2 

857943 4 0 0 0 0 1 0 0 12 33 0 0 0 0 0 0 2 

858970 0 0 0 0 0 0 0 0 8 19 0 0 0 0 0 0 0 

860834 0 0 0 0 0 0 0 0 0 11 0 0 0 0 0 0 2 

861000 0 2 0 0 0 14 0 0 51 31 0 0 0 0 0 21 20 

863100 0 0 0 0 0 0 0 0 46 99 0 0 0 0 0 3 5 

867260 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 

867800 0 0 0 0 0 0 0 0 4 22 0 0 0 0 0 3 2 

872300 0 0 0 0 0 2 0 0 1 0 0 0 0 0 0 8 2 

875600 2 0 0 0 0 0 0 0 0 3 0 0 0 0 0 1 0 

881600 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 9 0 

891300 1 0 0 0 0 8 0 0 17 11 0 0 0 0 0 33 9 

892970 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 2 0 

918100 1 0 0 0 0 0 0 0 6 7 0 0 0 0 0 2 1 

918900 0 0 0 0 0 0 0 0 2 2 0 0 0 0 0 13 0 

920270 0 0 0 0 0 0 0 0 1 6 0 0 0 0 0 0 0 

921000 0 0 0 0 0 7 0 0 16 47 0 0 0 0 0 4 3 

924500 2 0 0 0 0 5 0 0 20 60 0 0 2 0 0 20 10 

924860 0 0 0 0 0 0 0 0 2 12 0 0 0 0 0 0 0 

927800 8 0 0 0 0 5 0 0 51 58 0 0 0 0 0 40 7 

930155 2 0 0 0 0 0 0 0 13 48 0 0 0 0 0 0 0 

933500 12 14 0 0 0 18 0 0 12 15 0 0 2 0 0 1 4 

937900 0 0 0 0 0 5 0 0 0 43 0 0 0 0 0 0 4 

942500 40 25 0 15 0 18 0 0 61 102 0 0 13 0 0 9 14 

951510 0 0 0 0 0 2 0 0 99 562 0 0 0 0 0 7 2 

952500 0 0 0 0 0 2 0 0 140 173 0 0 8 3 0 5 1 

962600 6 0 0 0 0 7 0 0 30 27 0 0 0 0 0 3 2 

964000 10 0 0 0 0 1 0 0 26 68 0 0 0 0 0 4 11 

964060 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 
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974200 9 5 0 0 0 11 0 0 54 48 0 0 0 0 0 1 3 

987400 3 0 0 0 0 13 0 0 32 34 0 0 0 0 0 2 22 

988880 0 0 0 0 0 0 0 0 3 10 0 0 0 0 0 1 0 

992526 15 0 0 0 0 0 0 0 1 7 0 0 0 0 0 0 1 

993451 21 0 0 0 0 0 0 0 68 119 20 0 0 0 0 0 1 

994376 9 0 0 0 0 0 0 0 38 75 22 0 0 0 0 0 0 

996226 0 0 0 0 0 0 0 0 6 20 3 0 0 0 0 0 0 

999639 0 0 0 0 0 2 0 0 0 3 0 0 0 0 0 0 1 

1003539 1 0 0 0 0 0 0 0 4 18 0 0 0 0 0 1 0 

1004745 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 

1005953 3 0 0 0 0 0 0 0 2 8 0 0 0 0 0 1 0 

1006573 2 0 0 0 0 0 0 0 1 11 0 0 0 0 0 0 0 

1009000 0 3 0 0 0 11 0 0 33 56 0 0 0 0 0 38 18 

1009675 0 0 0 0 0 0 0 0 1 3 0 0 0 0 0 0 0 

1012157 2 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1 

1013647 5 0 0 0 0 0 0 0 1 8 0 0 0 0 0 0 0 

1014400 3 4 0 0 0 10 0 0 11 38 0 0 5 3 0 7 11 

1016391 0 0 0 0 0 3 0 0 6 24 2 0 0 0 0 0 2 

1017368 0 0 0 0 0 0 0 0 6 10 0 0 0 0 0 0 0 

1018346 0 0 0 0 0 2 0 0 12 26 4 0 0 0 0 0 1 

1021278 2 0 0 0 0 0 0 0 53 91 14 0 0 0 0 3 2 

1022255 2 0 0 0 0 1 0 0 64 156 22 0 0 0 0 2 5 

1023598 0 0 0 0 0 0 0 0 148 192 26 0 0 0 1 1 1 

1024485 0 0 0 0 0 0 0 0 8 7 0 0 0 0 0 0 0 

1025372 0 0 0 0 0 0 0 0 11 30 3 0 0 0 0 0 0 

1026370 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 

1027928 5 0 0 0 0 0 0 0 2 140 6 0 1 0 0 1 1 

1028975 6 0 0 0 0 0 0 0 7 223 1 0 0 0 0 2 4 

1030255 3 0 0 0 0 0 0 0 2 20 0 0 0 0 0 1 0 

1031534 1 0 0 0 0 0 0 0 1 17 0 0 0 0 0 0 0 

1032814 0 0 0 0 0 0 0 0 1 17 0 0 0 0 0 0 0 

1037359 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1038551 13 0 0 0 0 0 0 0 13 41 0 0 0 0 0 2 0 

1039743 31 0 0 0 0 1 0 0 8 24 0 0 0 0 0 1 0 

1040339 3 0 0 0 0 0 0 0 0 7 0 0 0 0 0 1 0 

1041531 7 0 0 0 0 2 0 1 5 47 0 0 0 0 0 2 0 

1042977 0 0 0 0 0 0 0 0 2 10 0 0 0 0 0 0 0 

1043919 1 0 0 0 0 1 0 1 2 12 0 0 0 0 0 0 0 

1045800 0 0 0 0 0 5 0 0 5 5 0 0 0 0 0 1 0 

1047573 0 0 0 0 0 2 0 0 0 3 0 0 0 0 0 0 0 
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1049333 0 0 0 0 0 1 0 0 1 3 0 0 0 0 0 0 0 

1051878 0 0 1 0 0 0 0 0 0 4 0 0 0 0 0 0 0 

1054596 1 0 0 0 0 0 0 5 6 36 0 0 0 0 0 1 0 

1055813 23 0 0 0 0 0 0 6 1 35 0 0 0 0 0 0 0 

1057190 20 4 2 0 0 8 0 0 95 84 0 0 0 0 0 5 7 

1058490 15 3 0 0 0 5 0 0 89 132 0 0 0 0 0 2 11 

1059595 0 0 0 0 0 6 0 22 77 111 0 0 1 0 0 7 11 

1061800 3 2 0 0 0 5 0 20 93 105 0 0 0 0 0 4 8 

1062580 12 12 4 3 0 9 0 9 151 152 0 0 0 1 0 5 11 

1063210 0 36 0 11 0 9 0 24 204 307 0 1 0 0 0 9 19 

1064560 13 22 11 20 15 1 0 0 222 150 0 0 15 2 0 13 4 

1066560 21 89 17 24 0 7 0 41 350 310 0 0 0 0 0 16 12 

1067420 26 128 2 60 7 6 2 0 287 281 0 1 12 2 0 11 5 

1068240 2 70 0 49 0 5 0 60 189 346 0 0 0 0 0 18 3 

1070530 16 158 7 137 23 4 0 0 153 255 0 0 2 0 0 8 2 

1072920 40 55 17 135 14 2 1 0 180 298 0 0 1 0 0 10 4 

1074460 19 68 31 65 3 10 0 92 112 417 0 0 0 0 0 5 1 

1074970 46 63 29 76 35 4 2 0 98 231 0 3 3 1 0 5 2 

1077580 0 20 30 31 1 4 0 0 98 333 0 0 0 0 0 7 1 

1083930 4 0 0 1 0 11 0 0 152 305 0 2 8 13 0 7 3 

1085990 0 4 0 0 0 4 0 5 353 218 0 0 0 4 0 19 2 

1091420 0 1 0 0 0 0 0 0 6 19 0 0 0 0 0 3 1 

2099100 9 0 0 0 0 0 0 0 46 64 0 7 19 0 0 0 0 

2100143 5 0 0 0 0 4 0 0 19 93 0 8 17 9 13 4 0 

2101185 0 0 0 0 0 0 0 0 33 140 0 3 12 2 9 17 2 

2102149 0 0 0 0 0 1 0 0 16 61 0 2 5 1 3 8 2 

2104258 4 0 0 0 0 0 0 0 5 41 0 0 4 0 2 13 0 

2105105 1 0 0 0 0 3 0 0 3 14 0 3 2 0 0 4 0 

2106376 0 0 0 0 0 3 0 0 7 28 0 1 4 0 4 12 0 

2107224 2 0 0 0 0 1 0 0 3 8 0 0 0 0 0 5 0 

2108071 1 0 0 0 0 1 0 0 0 4 0 0 0 0 0 0 0 

2108993 1 0 0 0 0 4 0 0 10 19 0 0 3 0 0 12 4 

2110015 3 0 0 0 0 2 0 0 26 114 0 2 7 0 13 6 5 

2111038 0 0 0 0 0 0 0 0 0 7 0 0 0 0 1 1 1 

2112061 1 0 0 0 0 1 0 0 35 190 0 0 2 2 11 11 6 

2113083 1 0 0 0 0 1 0 0 88 172 0 0 25 0 19 5 2 

2114055 0 0 0 0 0 2 0 0 49 95 0 4 26 2 8 4 0 

2115151 0 0 0 0 0 4 0 0 21 81 0 1 5 0 6 3 3 

2116247 0 0 0 0 0 0 0 0 25 197 0 1 5 0 4 8 3 

2117307 0 0 0 0 0 1 0 0 13 36 0 3 1 0 1 6 0 
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2119152 5 0 0 0 0 1 0 0 20 121 0 5 12 7 7 15 9 

2119883 3 0 0 0 0 3 0 0 16 50 0 11 9 0 0 0 0 

2120979 5 0 0 0 0 3 0 0 32 106 0 2 9 0 8 9 1 

2121902 7 0 0 0 0 0 0 0 19 50 0 0 1 0 3 14 7 

2122907 6 0 0 0 0 2 0 0 0 43 0 2 1 0 0 4 1 

2123913 4 0 0 0 0 0 0 0 9 71 0 3 4 0 6 13 2 

2124918 6 0 0 0 0 2 0 0 5 51 0 0 0 0 4 2 5 

2125924 19 0 0 0 0 0 0 0 5 50 0 5 8 0 0 3 5 

2126929 45 0 0 0 0 6 0 0 11 168 0 5 7 0 7 7 7 

2127934 10 0 0 0 0 6 0 0 41 101 9 3 0 0 1 11 0 

2128670 18 0 0 0 0 5 0 0 13 130 0 6 20 0 6 1 1 

2129273 22 0 0 0 0 8 0 0 53 166 0 6 0 8 2 6 21 

2130322 38 0 0 0 0 2 0 0 42 162 0 8 6 0 2 6 6 

2131371 190 0 1 0 0 4 0 8 41 229 0 5 15 0 2 0 2 

2132499 133 0 2 0 0 4 0 0 63 188 0 9 17 5 6 2 0 

2133548 207 0 0 0 0 2 0 19 35 206 0 6 38 0 18 5 8 

2134579 308 0 0 0 0 2 0 24 29 141 0 2 23 0 15 1 1 

2135646 250 0 1 0 0 0 0 0 59 86 0 1 19 9 0 3 0 

2136695 385 0 0 0 0 3 0 21 18 87 0 1 27 0 3 6 0 

2137744 218 0 1 0 0 3 0 0 24 168 0 0 10 8 13 3 3 

2138801 14 0 0 0 0 1 0 0 22 109 0 4 4 0 0 0 0 

2139805 0 0 0 0 0 2 0 0 31 71 0 0 1 3 1 0 2 

2143787 1 0 0 0 0 3 0 0 13 86 0 1 3 5 10 5 2 

2144342 3 0 0 0 0 10 0 0 90 198 0 25 24 0 14 7 0 

2145174 0 0 0 0 0 0 0 0 58 149 0 0 40 0 0 12 0 

2146292 0 0 0 0 0 2 0 0 6 39 0 0 11 0 0 19 2 

2147097 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 3 0 

2148169 0 0 0 0 0 0 0 0 7 13 0 0 7 0 0 17 1 

2149242 1 0 0 0 0 1 0 0 0 2 0 0 0 0 0 0 1 
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181500 109 25 261 9 0 5 2 1 0 1 0 0 2 1 0 0 0 

182696 54 9 157 6 1 4 1 1 0 0 0 0 1 0 0 1 3 

183637 15 9 85 8 0 3 2 0 0 1 0 0 0 1 0 0 2 

184592 46 53 191 22 0 5 2 2 0 1 0 0 1 1 0 0 0 
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185548 32 11 109 6 1 5 0 5 0 0 0 0 3 0 0 1 0 

186503 54 24 277 13 1 6 2 1 0 0 0 0 2 1 0 1 3 

187459 57 21 153 11 1 2 3 0 0 0 0 0 2 0 0 2 2 

188696 84 93 151 11 1 8 4 0 0 19 0 0 0 3 0 2 1 

189682 52 6 119 9 1 3 0 0 0 10 0 0 2 0 0 8 0 

190595 35 11 26 2 1 0 0 0 0 9 0 0 0 0 0 3 0 

191483 72 30 123 8 1 2 2 1 0 15 0 0 0 1 0 10 1 

192469 71 20 84 13 1 4 0 0 0 6 0 0 0 1 0 12 0 

193160 50 44 37 3 3 5 1 0 0 1 0 0 0 0 0 0 0 

194311 24 7 28 3 1 1 0 0 0 1 0 0 0 0 0 1 0 

195462 20 19 29 2 0 3 0 0 0 2 0 0 0 0 0 1 0 

197765 24 17 23 1 0 3 0 0 0 1 0 0 0 0 0 0 0 

198916 8 9 14 0 1 1 0 0 0 0 0 0 0 0 0 2 0 

200067 38 55 22 0 1 0 0 0 0 3 0 0 0 0 0 0 0 

201218 31 62 24 5 3 3 1 0 0 2 0 0 0 0 0 0 0 

202369 36 50 37 1 1 1 1 0 0 5 0 0 0 0 0 0 0 

203520 59 60 31 2 3 0 1 0 0 5 0 0 0 0 0 0 0 

204112 116 27 93 8 5 16 2 0 0 8 0 0 0 0 0 0 0 

205208 11 3 7 0 0 1 0 0 0 1 0 0 0 0 0 0 0 

206303 3 0 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

206577 31 22 30 3 1 9 1 0 0 5 1 0 0 0 0 0 0 

206960 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

209580 12 9 15 0 2 2 0 0 0 4 0 0 0 0 0 0 0 

210071 58 28 93 2 4 5 0 0 0 1 0 0 1 1 0 1 0 

210533 66 77 30 5 0 1 1 0 0 3 0 0 0 0 0 0 0 

211579 26 20 22 4 0 4 0 0 0 2 0 0 0 0 0 0 0 

212102 10 2 9 1 0 2 0 0 0 0 0 0 0 1 0 0 0 

212625 12 24 9 3 0 1 0 0 0 2 0 0 0 0 0 0 0 

213148 57 41 63 25 0 6 2 0 0 3 0 0 1 4 0 3 0 

213671 72 64 50 15 5 1 0 0 0 3 1 0 0 0 0 2 0 

214194 74 20 79 13 1 6 1 1 0 4 0 0 0 1 0 0 0 

215240 21 7 22 2 11 1 0 0 0 0 0 0 0 0 0 0 0 

216286 86 42 132 20 9 15 2 0 0 3 0 0 0 1 0 1 0 

217220 27 6 31 10 3 1 1 0 0 0 0 0 0 0 0 0 0 

218235 91 38 156 1 1 10 2 1 0 1 1 0 2 0 0 0 0 

219251 147 55 204 20 5 15 1 0 0 5 0 0 0 1 0 0 2 

220151 61 18 160 8 2 7 6 3 0 2 1 0 0 0 0 0 1 

221310 29 9 76 2 1 3 1 0 0 0 0 0 0 0 0 0 0 

222082 68 33 154 12 1 5 1 2 0 2 3 0 0 0 0 0 1 

223241 47 15 37 8 0 2 1 0 0 0 3 0 0 0 0 0 0 

224014 22 14 97 8 1 4 0 0 0 0 0 0 0 0 0 0 4 

225128 28 20 58 12 1 2 1 9 0 2 0 0 1 0 0 0 0 

226155 16 23 41 9 0 6 1 1 0 1 0 0 0 0 0 0 3 
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227182 13 19 39 14 0 3 0 1 0 1 0 0 0 0 0 0 0 

228209 14 12 20 8 0 0 4 1 0 0 0 0 0 0 0 3 0 

229181 17 7 66 5 0 4 2 0 0 0 0 0 0 0 0 0 0 

230228 33 6 45 24 0 0 5 0 0 0 0 0 2 0 0 0 0 

231229 93 43 69 8 0 8 1 0 0 12 0 0 0 0 0 0 1 

233633 47 60 35 7 0 1 0 0 0 3 0 0 0 0 0 0 0 

234438 19 11 11 1 1 1 0 0 0 1 0 0 0 0 0 0 0 

235244 9 2 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

236854 14 13 8 2 0 0 0 0 0 1 0 0 0 0 0 0 1 

238674 31 29 8 2 0 0 0 0 0 1 0 0 0 0 0 0 1 

239587 20 8 5 3 1 0 0 0 0 1 0 0 0 0 0 0 0 

240499 45 12 23 8 1 0 0 0 0 0 0 0 0 0 0 0 0 

715202 47 12 128 9 13 3 5 0 0 4 1 0 1 0 0 0 0 

717253 17 2 25 0 1 1 0 0 0 1 0 0 0 0 0 0 0 

718205 52 6 127 11 1 6 3 0 0 2 0 1 0 0 0 0 0 

719218 50 16 138 6 1 9 4 2 0 7 0 1 1 0 0 5 1 

720231 4 3 62 0 1 3 0 0 0 0 0 1 1 0 0 1 1 

721244 45 34 60 14 3 5 1 0 0 10 0 0 3 0 0 0 1 

722257 60 34 59 8 4 7 1 0 0 5 0 0 1 0 0 4 1 

723270 34 9 34 2 1 4 2 0 0 13 0 0 0 0 5 0 4 

724320 112 46 56 19 2 16 0 1 0 14 0 1 1 0 9 2 4 

725400 78 18 39 7 3 4 0 0 0 11 0 0 0 0 9 1 1 

726481 177 47 57 15 6 6 3 1 0 6 0 0 1 5 1 0 3 

727561 135 34 53 10 1 7 3 0 0 8 0 1 0 3 1 0 0 

728479 117 12 25 2 0 4 2 0 0 1 0 0 0 2 0 1 0 

731888 113 41 46 10 0 8 2 0 0 5 1 0 0 1 0 0 0 

732400 126 2 8 6 5 1 2 0 0 2 1 0 0 0 2 0 0 

733890 68 2 8 8 3 1 1 0 0 0 2 0 0 0 0 0 0 

737700 108 4 5 5 0 1 0 0 0 0 0 0 0 0 0 0 0 

738543 84 4 130 5 3 2 1 0 0 1 0 0 0 0 0 0 0 

740458 53 2 38 3 6 2 0 0 0 0 0 0 1 0 0 0 0 

741412 57 1 180 5 7 5 0 0 0 1 0 0 0 0 1 0 0 

742365 49 7 98 3 7 6 1 0 0 6 0 0 0 0 0 0 0 

747215 21 3 78 6 7 3 0 0 0 4 0 0 0 0 0 1 0 

748018 15 0 23 0 4 1 1 0 0 0 0 0 0 0 1 0 0 

755500 59 12 78 3 6 6 3 0 0 1 0 0 0 0 0 0 0 

767500 119 69 38 18 4 4 2 0 0 0 0 0 0 2 0 0 0 

767560 12 3 26 3 1 0 0 0 0 0 0 0 0 1 0 2 0 

772280 31 6 27 6 1 2 2 0 0 1 0 0 0 0 0 1 2 

775100 54 26 5 9 1 0 0 0 0 0 0 0 0 0 0 0 0 

780100 40 31 4 4 4 2 0 0 0 0 1 0 0 0 0 0 0 

786400 49 3 57 10 0 0 1 0 0 0 0 0 0 0 0 0 0 

796517 53 2 65 3 5 5 0 0 0 1 0 0 0 0 0 0 0 
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797429 57 3 97 10 2 4 2 0 0 1 0 0 0 0 2 1 0 

798341 52 3 66 5 21 2 0 0 0 5 1 0 0 0 0 2 0 

799378 21 0 16 3 7 1 0 0 0 4 0 0 0 0 0 0 0 

801729 23 4 17 6 2 6 4 0 0 4 0 0 0 3 0 0 0 

802893 116 33 93 30 5 9 5 0 0 0 0 0 0 2 0 2 9 

804056 25 2 39 2 5 1 0 0 0 0 0 0 0 0 2 0 0 

805220 106 14 28 22 0 6 2 0 0 3 0 0 0 1 1 1 0 

806384 104 17 24 12 5 9 0 0 0 5 0 1 0 4 0 0 0 

809389 25 0 6 4 0 2 0 0 0 2 1 0 0 0 0 0 0 

812900 34 9 4 4 3 0 0 0 0 0 0 0 0 0 0 0 0 

813577 138 58 68 11 4 8 5 0 0 3 1 0 0 0 1 0 0 

814670 82 32 64 0 0 14 0 0 0 4 0 0 1 0 1 0 6 

815822 110 55 55 0 3 7 2 0 0 6 0 0 0 2 1 0 4 

816975 58 32 25 4 4 0 1 0 0 0 0 0 0 1 0 0 0 

817551 67 33 50 8 0 8 3 0 0 1 4 0 0 0 1 0 0 

818703 76 18 193 5 1 10 4 0 0 0 0 0 0 1 0 0 0 

819856 37 24 21 3 2 4 3 2 0 2 0 0 0 0 0 0 0 

820432 59 16 24 9 2 4 1 0 0 1 0 0 0 0 0 0 2 

822737 78 32 50 4 3 6 2 0 0 0 2 0 0 1 0 0 0 

823314 151 70 68 11 3 9 7 0 0 3 0 0 0 0 0 0 1 

824005 196 72 89 20 5 17 3 0 0 0 1 0 0 0 0 0 1 

826299 32 22 36 20 1 0 2 0 0 8 0 0 0 0 2 1 1 

828795 21 5 112 2 0 5 0 0 0 1 1 0 0 0 0 0 0 

830821 54 6 108 5 0 1 3 0 0 0 0 0 0 0 0 2 1 

832461 54 15 54 4 0 5 1 0 0 3 0 0 0 0 0 0 4 

834102 51 21 162 4 5 9 3 0 1 1 0 0 0 0 0 0 2 

835743 98 31 75 4 2 7 5 0 0 6 0 0 0 0 0 0 0 

840161 127 35 80 11 6 8 7 0 0 2 0 0 0 0 0 0 0 

844437 24 3 52 6 1 3 1 0 0 1 0 0 1 0 0 0 1 

846186 50 20 24 6 2 7 0 0 0 15 2 0 0 0 0 0 0 

847936 41 12 15 5 1 5 4 0 0 1 0 0 0 0 0 0 0 

849711 139 58 71 14 2 4 3 0 0 5 0 0 0 0 0 0 0 

851510 78 27 31 11 2 9 4 0 0 6 0 0 0 1 0 0 0 

853310 107 64 74 9 3 9 3 0 0 5 1 0 0 2 1 0 0 

854756 91 68 64 5 1 5 3 0 0 0 0 0 0 0 0 0 0 

855848 71 51 44 13 1 4 3 0 0 7 0 0 0 3 0 0 0 

856939 28 18 26 3 0 1 0 0 0 1 0 0 0 2 0 0 0 

857943 13 16 13 2 0 1 0 0 0 1 0 0 0 0 1 0 0 

858970 45 27 29 4 5 3 0 0 0 1 0 0 0 3 1 0 0 

860834 26 14 10 0 0 2 0 0 0 0 0 0 0 2 0 2 0 

861000 272 35 16 10 0 0 3 0 0 0 0 0 0 1 0 0 0 

863100 40 10 16 3 3 3 0 0 0 0 0 0 0 0 0 0 0 

867260 20 3 79 8 0 1 0 3 0 0 0 0 0 0 0 0 0 
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867800 83 27 66 11 4 0 0 0 0 0 0 0 0 0 0 0 0 

872300 46 30 32 4 7 4 0 0 0 0 0 0 0 0 0 0 0 

875600 27 4 157 3 2 3 1 2 0 0 0 0 0 1 0 0 0 

881600 68 18 6 3 2 0 0 0 0 0 0 0 0 0 0 0 0 

891300 148 27 20 6 4 0 8 4 0 3 0 0 0 0 0 0 0 

892970 12 5 44 10 0 5 0 1 0 3 0 0 1 0 0 0 0 

918100 50 4 13 1 6 2 2 1 0 0 0 0 0 0 0 0 0 

918900 75 16 10 3 1 0 0 2 0 0 0 0 0 0 0 0 0 

920270 6 1 35 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

921000 177 10 49 4 7 5 2 0 0 0 0 0 2 0 0 0 0 

924500 108 1 2 17 5 0 4 9 0 0 0 0 2 0 0 0 0 

924860 19 7 81 6 1 0 1 1 0 0 0 0 3 0 0 2 0 

927800 199 11 14 13 4 0 5 13 0 0 0 0 0 0 0 0 0 

930155 79 41 28 13 6 5 0 0 0 8 0 0 0 0 0 6 0 

933500 55 6 2 1 3 0 0 0 0 0 0 0 0 0 0 0 0 

937900 176 19 3 10 0 0 10 0 0 0 0 0 0 0 0 0 0 

942500 33 3 5 1 2 0 0 0 0 0 0 0 0 1 0 0 0 

951510 4 7 4 0 0 1 0 0 0 1 0 0 0 0 0 0 0 

952500 13 3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

962600 137 15 34 5 7 4 2 1 0 0 0 0 2 0 0 0 0 

964000 34 11 12 11 3 0 12 0 0 0 0 0 0 0 0 0 0 

964060 2 0 1 1 0 0 0 1 0 1 0 0 1 0 0 0 0 

974200 96 26 38 11 3 2 2 0 0 0 0 0 0 0 0 0 0 

987400 143 8 14 15 1 3 3 0 0 0 0 0 4 0 0 0 0 

988880 6 9 6 3 1 0 0 0 0 0 0 0 1 0 0 0 0 

992526 19 19 12 14 0 3 4 0 0 0 0 0 0 0 1 0 0 

993451 72 40 63 19 2 4 2 0 0 0 0 0 0 0 0 0 0 

994376 56 25 46 21 3 4 4 0 0 3 0 0 0 0 0 2 0 

996226 19 20 8 5 0 2 0 0 0 0 0 0 0 0 1 0 0 

999639 5 1 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 

1003539 60 24 116 21 12 8 1 0 2 2 0 0 0 1 0 0 0 

1004745 46 6 34 5 3 3 0 2 0 0 1 0 0 0 0 1 0 

1005953 44 7 111 6 0 6 0 0 0 1 2 0 1 0 0 0 1 

1006573 24 2 82 4 3 9 0 0 0 0 1 0 0 0 0 0 0 

1009000 162 43 18 16 5 6 6 1 0 1 0 0 2 0 0 0 0 

1009675 20 13 26 5 1 0 0 0 0 0 0 0 0 1 0 1 0 

1012157 4 1 20 6 0 0 1 0 0 0 0 0 1 0 0 2 0 

1013647 11 7 20 13 0 2 0 0 0 0 0 0 0 2 0 1 0 

1014400 68 18 9 7 4 0 2 1 0 2 2 0 0 2 0 0 0 

1016391 21 4 10 2 2 0 1 0 0 1 0 0 0 1 0 3 0 

1017368 8 3 6 3 0 2 0 0 0 1 0 0 0 0 0 1 0 

1018346 22 3 9 5 0 1 0 0 0 0 0 0 0 0 0 0 0 

1021278 74 26 44 14 2 2 0 0 0 3 0 0 0 0 0 3 0 
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1022255 123 33 94 24 1 7 5 0 1 2 0 0 0 1 0 0 0 

1023598 42 26 20 5 0 4 0 0 0 1 0 0 0 0 0 0 0 

1024485 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1025372 10 12 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 

1026370 11 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1027928 24 46 39 11 0 3 1 0 0 0 0 0 0 0 0 0 0 

1028975 117 60 74 20 3 6 5 2 0 1 0 0 0 0 0 1 0 

1030255 60 11 79 20 2 4 6 2 0 4 0 0 0 0 0 5 0 

1031534 56 10 33 13 6 2 4 0 0 0 2 0 0 4 0 4 0 

1032814 35 1 13 6 2 1 1 0 0 3 3 0 0 0 0 1 0 

1037359 7 0 25 1 1 3 1 1 0 0 0 0 0 0 0 0 0 

1038551 53 17 113 6 1 7 1 1 0 0 0 0 0 0 0 0 0 

1039743 8 0 44 8 0 3 0 1 0 1 0 0 0 0 0 0 0 

1040339 0 0 71 1 2 1 0 0 0 0 0 0 0 0 0 0 0 

1041531 37 17 115 9 10 6 0 0 0 0 0 0 0 0 0 2 0 

1042977 22 4 25 4 11 2 0 0 0 2 0 0 0 0 0 1 0 

1043919 21 3 19 4 3 0 0 0 0 2 1 0 0 0 0 0 0 

1045800 42 0 4 2 1 0 0 0 0 0 0 0 1 0 0 0 0 

1047573 8 0 2 0 3 2 0 0 0 0 0 0 0 0 0 0 0 

1049333 5 1 10 2 4 1 1 1 0 0 1 0 0 0 0 1 0 

1051878 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

1054596 19 2 27 4 3 0 1 0 0 0 0 0 0 0 0 1 0 

1055813 11 4 23 6 1 2 0 0 0 0 0 0 0 0 0 0 1 

1057190 106 8 4 1 1 3 1 0 0 0 0 0 0 0 0 0 0 

1058490 136 3 13 0 0 1 1 0 0 0 0 0 2 0 0 0 0 

1059595 78 4 12 3 0 5 3 0 0 1 1 0 0 0 0 0 0 

1061800 82 7 8 0 1 3 2 0 0 10 0 0 2 0 0 0 0 

1062580 46 16 3 4 2 1 1 0 0 0 0 0 0 0 0 0 0 

1063210 24 14 10 2 1 2 2 0 0 1 0 0 0 0 0 0 0 

1064560 13 25 2 2 1 0 1 0 0 0 0 0 0 0 0 0 0 

1066560 10 16 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1067420 16 23 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 

1068240 3 8 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1070530 4 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1072920 7 10 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

1074460 3 16 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1074970 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1077580 2 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1083930 5 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1085990 7 19 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

1091420 48 0 1 3 0 1 1 0 0 0 1 0 0 0 0 0 0 

2099100 49 74 8 2 0 0 1 0 0 7 0 0 0 0 0 0 0 

2100143 29 83 2 4 0 0 0 0 0 3 0 0 0 0 0 0 0 
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2101185 43 66 22 10 4 0 1 0 0 4 0 0 0 0 0 0 0 

2102149 68 27 67 24 3 1 6 0 0 7 0 0 0 6 0 0 4 

2104258 30 11 68 9 2 1 6 0 0 6 0 0 0 0 2 0 0 

2105105 35 16 10 8 1 3 2 0 1 1 0 0 0 0 0 0 0 

2106376 69 16 28 5 1 2 2 0 0 2 0 0 0 1 0 0 4 

2107224 10 4 2 0 0 0 0 0 0 2 0 0 0 0 0 0 0 

2108071 12 1 4 2 0 0 0 0 0 1 0 0 0 0 0 0 0 

2108993 26 49 15 5 0 4 3 0 3 6 0 1 0 0 0 0 0 

2110015 57 33 40 24 1 2 3 0 1 15 0 0 0 2 0 0 1 

2111038 46 10 24 4 0 2 3 0 0 0 0 0 0 0 0 0 0 

2112061 27 43 12 9 3 0 1 0 1 3 0 0 0 0 0 0 0 

2113083 25 36 17 9 1 2 0 0 0 4 0 0 0 1 1 0 1 

2114055 13 30 2 4 1 0 0 0 3 0 0 0 0 0 0 0 0 

2115151 20 66 6 4 0 1 0 0 0 4 1 0 0 0 0 0 2 

2116247 39 72 1 3 0 0 3 0 1 4 1 0 0 0 0 0 0 

2117307 36 16 16 7 0 1 0 0 0 0 0 0 0 3 0 0 2 

2119152 57 43 37 7 6 2 0 0 0 6 0 0 0 3 4 0 0 

2119883 71 57 23 17 2 18 0 0 0 3 1 0 0 0 0 0 0 

2120979 78 45 38 11 4 4 0 0 0 13 1 0 0 0 3 0 4 

2121902 52 5 38 6 2 0 1 0 1 2 0 0 0 0 0 0 0 

2122907 8 9 40 5 0 0 0 0 0 0 0 0 0 0 0 0 0 

2123913 48 19 51 5 1 4 0 0 1 2 0 0 0 1 0 0 3 

2124918 39 12 13 1 0 0 0 0 0 6 0 0 0 0 0 0 0 

2125924 24 4 21 4 0 1 0 0 0 2 0 0 0 2 0 0 0 

2126929 35 18 14 6 0 2 3 0 0 7 0 0 0 2 2 0 1 

2127934 40 40 10 4 1 4 3 0 0 4 0 0 0 0 0 0 0 

2128670 33 13 6 8 0 7 1 0 0 2 0 0 0 2 0 0 3 

2129273 26 17 13 8 0 6 2 0 0 10 0 0 0 1 0 0 0 

2130322 33 17 10 6 0 4 3 0 0 8 0 0 0 0 0 0 0 

2131371 38 34 16 3 1 0 0 0 0 4 0 0 1 1 0 0 0 

2132499 9 23 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

2133548 11 14 2 2 1 1 0 0 0 2 0 1 0 2 0 0 0 

2134579 4 18 4 6 0 0 0 0 0 4 0 0 1 0 0 0 0 

2135646 6 12 2 1 0 0 0 0 2 0 0 0 0 0 0 0 0 

2136695 7 27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2137744 27 14 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 

2138801 14 26 1 2 0 0 1 0 0 0 0 0 0 0 0 0 0 

2139805 9 8 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 

2143787 3 12 4 2 0 3 0 0 1 2 0 0 0 4 0 0 2 

2144342 52 25 1 3 1 1 1 0 0 3 0 0 0 0 0 0 0 

2145174 49 68 7 6 0 4 0 0 0 3 2 0 0 1 0 0 0 

2146292 115 92 15 8 22 0 2 0 0 1 2 0 0 0 0 0 0 

2147097 21 11 5 3 1 2 0 0 0 2 2 0 0 0 0 0 0 
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2148169 200 57 16 4 40 6 0 0 0 0 0 0 1 0 0 0 0 

2149242 14 1 35 1 4 0 1 0 1 2 0 0 0 0 0 0 0 
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181500 0 0 0 0 0 14 0 8 0 0 0 0 1 0 0 0 

182696 0 0 0 1 0 4 1 5 0 0 0 0 1 0 0 0 

183637 0 0 0 0 0 1 1 3 0 0 0 1 0 0 0 0 

184592 0 0 0 0 0 0 0 1 0 0 0 0 0 3 0 0 

185548 0 0 0 0 0 4 1 6 0 1 0 1 0 0 0 0 

186503 0 0 0 0 0 3 0 7 0 1 0 0 1 0 0 0 

187459 0 0 0 0 0 8 0 14 0 1 0 1 0 2 0 2 

188696 0 0 4 0 0 0 2 18 0 0 0 1 0 4 0 0 

189682 0 0 1 0 0 0 0 25 0 0 0 0 0 1 0 0 

190595 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 

191483 0 0 4 0 0 0 0 35 0 0 0 2 1 4 0 0 

192469 0 0 1 2 0 0 0 28 0 1 0 0 0 0 0 0 

193160 0 0 0 0 0 1 0 27 0 0 1 7 0 1 0 0 

194311 0 0 0 0 0 2 0 18 0 0 0 0 0 0 0 0 

195462 0 0 0 0 1 4 0 4 0 0 1 0 0 1 0 0 

197765 0 0 0 0 0 0 0 12 0 1 6 6 0 0 0 0 

198916 0 0 0 0 0 7 0 6 0 0 0 5 0 0 0 0 

200067 0 0 0 0 0 27 0 6 0 2 0 2 0 1 0 1 

201218 0 0 0 0 0 44 0 6 0 0 0 6 0 2 0 0 

202369 0 0 0 0 0 48 0 16 0 1 0 5 0 1 0 3 

203520 0 0 0 1 0 19 0 4 0 0 0 7 0 5 0 0 

204112 0 0 0 0 0 2 0 12 0 0 0 0 0 1 0 3 

205208 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

206303 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

206577 0 0 0 0 0 2 0 3 0 1 0 0 0 0 0 1 

206960 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

209580 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 1 

210071 0 0 0 0 0 1 0 1 0 0 0 8 0 2 0 0 

210533 0 0 0 0 0 32 0 6 0 2 0 10 0 6 0 2 

211579 0 0 0 0 0 27 0 0 0 1 0 0 0 0 0 4 

212102 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 

212625 0 0 0 0 0 47 0 3 0 2 0 1 0 2 0 0 
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213148 0 0 0 0 0 3 0 6 0 0 0 0 0 1 0 1 

213671 0 0 0 1 0 5 0 2 0 1 0 6 0 6 0 3 

214194 0 0 1 1 0 0 0 4 0 1 0 5 0 2 0 0 

215240 0 0 0 1 0 0 0 2 0 0 0 0 0 1 0 0 

216286 0 0 0 1 0 0 0 4 0 0 0 3 0 1 0 0 

217220 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

218235 0 0 4 1 0 1 0 6 0 2 0 1 0 5 0 0 

219251 0 0 5 0 0 2 0 9 0 2 0 0 0 0 0 0 

220151 0 0 0 0 0 0 0 6 0 0 0 1 0 6 0 0 

221310 0 0 1 0 0 0 0 1 0 1 0 0 0 2 0 0 

222082 0 0 2 1 0 2 0 14 0 0 0 0 0 0 0 0 

223241 0 0 0 0 0 6 0 4 0 0 0 0 0 0 0 0 

224014 0 0 0 0 0 0 0 5 0 1 0 0 0 0 0 0 

225128 0 0 0 0 0 6 0 5 0 0 0 0 0 1 0 0 

226155 0 0 0 0 0 6 0 5 0 0 0 0 0 2 0 0 

227182 0 0 0 0 0 0 0 9 0 2 0 0 0 3 0 2 

228209 0 0 0 0 0 1 0 2 0 0 0 0 0 5 0 0 

229181 0 0 0 0 0 2 0 5 0 1 0 0 0 5 0 0 

230228 0 0 0 0 0 3 0 3 0 0 0 0 0 1 0 0 

231229 0 0 0 0 0 2 0 43 0 0 0 0 0 1 15 0 

233633 0 0 1 2 0 1 0 56 0 0 1 0 0 0 2 2 

234438 0 0 0 1 0 1 0 23 0 0 0 0 0 0 0 0 

235244 0 0 0 1 0 1 0 13 0 1 0 0 0 0 0 0 

236854 0 0 0 0 0 2 0 12 0 0 0 0 0 0 0 0 

238674 0 0 0 0 0 24 0 36 0 0 4 21 0 1 0 0 

239587 0 0 0 0 0 5 0 19 0 0 0 4 0 0 0 0 

240499 0 0 0 0 0 61 0 22 0 0 0 7 0 2 0 0 

715202 0 0 0 0 0 4 0 0 3 0 0 1 0 0 0 2 

717253 0 0 0 0 2 0 0 0 3 0 0 0 0 0 0 0 

718205 0 0 0 0 4 9 1 0 2 0 0 0 0 0 0 0 

719218 0 3 0 0 2 9 0 0 8 0 0 0 0 0 0 1 

720231 0 3 0 0 0 1 0 0 1 0 0 0 1 0 0 0 

721244 0 3 0 0 0 36 1 0 26 10 3 0 0 4 0 5 

722257 0 2 1 0 1 20 0 0 27 7 0 0 0 0 0 0 

723270 0 1 0 0 0 7 1 0 16 5 0 0 0 1 0 0 

724320 0 0 0 0 0 17 0 0 57 17 2 0 0 0 0 5 

725400 0 0 1 0 0 14 0 0 26 11 4 0 0 0 0 4 

726481 0 0 8 0 0 28 1 0 19 3 1 2 0 3 0 0 

727561 0 0 11 0 0 29 2 0 20 6 0 0 0 0 0 0 

728479 0 0 1 1 0 48 0 0 15 9 2 3 0 0 0 0 
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731888 0 0 2 0 0 9 0 0 24 7 1 5 1 6 0 0 

732400 0 0 0 1 0 30 0 0 10 3 0 7 0 4 0 0 

733890 0 0 1 0 0 17 0 0 10 0 1 0 0 0 0 0 

737700 0 0 4 0 0 22 0 0 9 0 3 0 0 0 0 0 

738543 0 0 2 1 0 9 0 0 13 4 1 0 0 0 0 0 

740458 0 0 0 0 0 3 0 0 11 0 0 0 0 0 0 0 

741412 0 0 0 0 0 5 0 0 19 2 0 0 0 0 0 2 

742365 0 0 0 0 0 0 0 0 13 0 1 0 0 0 0 1 

747215 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 

748018 0 0 1 0 0 0 0 0 3 0 0 0 0 0 0 0 

755500 0 4 11 0 0 11 0 0 1 0 3 0 0 0 0 0 

767500 0 0 4 0 0 26 0 0 13 0 5 0 0 0 0 0 

767560 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

772280 0 0 0 0 0 6 0 0 25 2 0 0 0 0 0 0 

775100 0 0 0 0 0 36 0 0 2 0 4 0 0 0 0 0 

780100 0 0 0 1 0 145 0 0 7 0 15 0 0 0 0 0 

786400 0 0 0 0 0 7 0 0 10 0 5 0 0 0 0 0 

796517 0 0 0 0 0 3 0 0 4 0 0 0 0 0 2 0 

797429 0 0 0 0 0 3 0 0 9 1 0 0 0 0 5 0 

798341 0 0 0 0 0 0 0 0 30 1 0 0 0 0 0 1 

799378 0 0 0 1 0 0 0 0 12 2 0 0 0 0 3 1 

801729 0 0 1 0 0 1 0 0 31 4 0 0 0 0 0 1 

802893 0 1 3 0 0 7 0 0 78 0 0 0 0 0 0 2 

804056 0 0 0 0 0 1 0 0 10 1 0 0 0 0 0 0 

805220 0 2 0 1 0 19 0 0 30 0 0 1 1 1 0 0 

806384 0 0 4 1 0 18 0 0 36 4 3 1 0 0 0 0 

809389 0 0 0 0 0 4 0 0 11 2 0 0 0 0 0 0 

812900 0 0 0 0 0 19 0 0 5 0 5 0 0 0 0 0 

813577 0 0 2 0 0 25 1 0 9 3 1 9 1 3 3 0 

814670 0 0 3 0 0 8 1 0 18 5 1 1 0 2 121 0 

815822 0 0 2 0 0 21 0 0 12 2 0 1 0 0 31 0 

816975 0 0 2 0 1 0 0 0 7 4 0 2 0 4 1 1 

817551 0 0 1 0 0 4 0 0 0 8 2 0 0 2 3 0 

818703 0 0 0 0 0 19 0 0 3 1 0 0 0 0 30 0 

819856 0 0 0 0 0 0 0 0 12 1 0 0 0 0 3 2 

820432 0 0 2 0 0 5 0 0 19 0 0 1 0 1 17 0 

822737 0 0 1 0 0 19 0 0 4 1 0 3 0 5 0 1 

823314 0 0 4 0 0 22 0 0 11 1 0 3 0 6 1 0 

824005 0 0 6 0 0 17 0 0 11 0 0 4 0 0 0 2 

826299 0 0 0 0 0 29 0 0 25 0 0 0 0 1 3 1 

Table A.1. Continued  
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828795 0 0 0 0 0 4 1 0 6 1 0 0 0 0 29 0 

830821 0 0 0 0 0 19 0 0 0 2 0 1 0 0 18 1 

832461 0 3 0 0 1 8 0 0 8 5 0 0 0 1 18 0 

834102 0 0 3 0 1 16 0 0 3 0 1 0 0 0 26 0 

835743 0 0 3 0 0 8 1 0 20 2 0 0 0 0 32 2 

840161 0 0 2 0 1 10 1 0 11 14 2 2 0 1 13 1 

844437 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 0 

846186 0 0 1 0 0 14 0 0 8 0 0 0 0 0 23 0 

847936 0 0 0 3 0 8 0 0 19 10 0 0 0 0 9 1 

849711 0 0 7 0 0 7 0 0 24 3 1 2 0 0 1 1 

851510 0 0 2 0 0 3 0 0 18 3 1 0 0 0 5 2 

853310 0 0 8 1 0 6 0 0 24 0 0 10 0 5 0 0 

854756 0 0 6 1 0 34 0 0 6 0 0 0 0 0 0 0 

855848 0 0 1 0 0 52 0 0 20 11 1 0 0 0 3 0 

856939 0 0 0 1 0 43 0 0 9 0 1 0 0 0 0 0 

857943 0 0 0 1 0 14 0 0 9 4 1 0 0 0 5 0 

858970 0 0 0 0 0 6 0 0 11 0 0 1 0 1 6 0 

860834 0 0 0 0 0 4 0 0 6 0 4 0 0 0 7 1 

861000 0 0 19 0 0 44 0 0 26 0 33 0 0 0 0 0 

863100 0 1 3 0 0 40 0 0 2 0 6 0 0 0 0 0 

867260 0 0 0 0 0 1 0 0 27 0 0 3 0 1 0 0 

867800 0 0 0 0 0 2 0 0 13 0 0 0 0 0 0 0 

872300 0 0 2 0 0 2 0 0 1 0 0 0 0 0 0 0 

875600 0 0 1 0 0 2 0 0 24 0 0 0 0 0 0 1 

881600 0 0 2 0 0 0 0 0 4 0 1 0 0 0 0 0 

891300 0 1 21 0 0 30 0 0 7 0 8 0 0 0 0 0 

892970 0 0 1 0 0 2 0 0 16 1 0 0 0 1 0 0 

918100 0 6 10 0 0 5 0 0 2 0 0 0 0 0 0 0 

918900 0 0 1 0 0 5 0 0 2 0 6 0 0 0 0 0 

920270 0 0 0 0 0 2 0 0 1 0 0 0 0 0 0 0 

921000 0 6 32 0 0 20 0 0 2 0 2 0 0 0 0 0 

924500 0 0 17 0 0 52 0 0 3 0 6 0 0 0 0 0 

924860 0 0 0 0 0 6 0 0 5 0 0 0 0 2 0 1 

927800 0 0 52 0 0 56 0 0 4 0 1 0 0 0 0 0 

930155 0 0 0 0 0 18 3 0 24 5 0 0 0 0 1 4 

933500 0 0 0 1 0 81 0 0 6 0 4 0 0 0 0 0 

937900 0 0 0 0 0 73 0 0 3 0 5 0 0 0 0 0 

942500 0 3 5 0 0 41 0 0 3 0 23 0 0 0 0 0 

951510 0 0 0 0 0 20 0 0 2 0 0 4 0 2 0 0 

952500 0 0 0 0 0 24 0 0 1 0 26 0 0 0 0 0 
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962600 0 4 18 0 0 31 0 0 4 0 0 0 0 0 0 0 

964000 0 0 0 0 0 49 0 0 3 0 1 0 0 0 0 0 

964060 0 0 0 0 0 9 0 0 2 0 0 0 0 2 0 0 

974200 0 2 1 0 0 25 0 0 16 0 3 0 0 0 0 0 

987400 0 0 7 0 0 14 0 0 12 0 4 0 0 0 0 0 

988880 0 0 0 0 0 2 0 0 7 0 0 0 0 0 0 0 

992526 0 0 0 0 0 4 0 0 8 2 0 1 0 0 0 1 

993451 0 0 1 0 0 33 0 0 22 5 2 3 0 1 0 0 

994376 0 0 0 0 0 22 0 0 23 1 0 4 0 3 0 0 

996226 0 0 0 1 0 12 0 0 16 0 0 0 0 0 0 0 

999639 0 0 0 0 0 46 0 0 8 0 0 0 0 0 0 1 

1003539 0 0 2 0 0 6 0 0 20 1 0 3 1 8 0 1 

1004745 0 0 0 1 0 3 0 0 15 4 0 0 0 1 0 0 

1005953 0 0 0 0 0 5 0 0 2 1 0 0 0 0 2 0 

1006573 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 

1009000 0 0 10 0 0 61 0 0 9 0 10 0 0 0 0 0 

1009675 0 0 0 0 0 3 0 0 6 1 0 0 0 0 0 2 

1012157 0 0 0 0 0 2 1 0 5 0 0 0 0 2 0 0 

1013647 0 0 0 0 0 3 1 0 17 2 0 0 0 0 0 0 

1014400 0 0 5 0 0 33 0 0 8 0 13 0 0 0 0 0 

1016391 0 0 0 0 0 41 0 0 3 1 0 1 0 1 0 0 

1017368 0 0 0 0 0 29 0 0 7 2 1 2 0 3 0 0 

1018346 0 0 0 1 0 37 2 0 5 0 0 0 0 0 0 0 

1021278 0 0 0 1 0 15 1 0 23 1 0 3 2 6 0 0 

1022255 0 0 0 0 0 28 1 0 35 1 0 0 2 14 0 0 

1023598 0 0 0 0 0 18 1 0 10 0 2 20 0 3 1 0 

1024485 0 0 0 0 0 8 0 0 2 0 2 0 0 0 0 0 

1025372 0 0 1 0 0 30 0 0 3 1 8 2 0 0 0 0 

1026370 0 0 0 0 0 27 0 0 2 0 0 1 0 1 0 0 

1027928 0 0 1 0 0 26 0 0 15 0 2 13 0 10 0 2 

1028975 0 0 6 0 1 8 0 0 13 0 1 12 0 12 0 0 

1030255 0 0 0 0 0 3 0 0 27 0 0 6 0 10 0 0 

1031534 0 0 0 0 0 5 0 0 14 0 0 3 0 0 0 0 

1032814 0 0 0 0 0 8 0 0 5 1 0 2 0 0 0 1 

1037359 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1038551 0 1 1 0 0 22 2 0 6 0 0 0 0 0 0 0 

1039743 0 0 0 0 0 13 0 0 6 0 0 2 0 2 0 0 

1040339 0 0 0 0 0 2 0 0 2 0 1 0 0 0 0 1 

1041531 0 0 3 0 0 10 1 0 10 1 0 0 0 0 0 0 

1042977 0 0 0 0 0 5 0 0 3 0 0 0 0 0 0 1 

Table A.1. Continued  
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1043919 0 0 0 0 0 8 0 0 1 1 0 0 0 0 0 0 

1045800 0 0 0 0 0 17 0 0 4 0 1 0 0 0 0 0 

1047573 0 0 0 0 0 22 1 0 0 1 0 0 0 0 0 0 

1049333 0 0 0 0 0 3 0 0 2 0 0 0 0 0 0 0 

1051878 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 

1054596 0 0 0 0 1 17 0 0 2 1 0 0 0 0 0 1 

1055813 0 0 1 0 0 16 0 0 4 0 0 0 0 0 0 0 

1057190 0 3 6 0 0 100 0 0 2 0 5 0 0 0 0 0 

1058490 0 9 7 0 0 131 0 0 2 0 6 0 0 0 0 0 

1059595 0 3 7 0 0 138 1 0 2 0 4 0 0 0 0 0 

1061800 0 4 2 0 0 112 0 0 2 0 5 0 0 0 0 0 

1062580 0 0 2 0 0 120 0 0 4 0 10 0 0 0 0 0 

1063210 0 0 0 0 0 205 0 0 5 0 16 0 0 0 0 0 

1064560 0 7 2 0 0 69 0 0 5 0 4 0 0 0 0 0 

1066560 0 0 2 0 0 48 0 0 1 0 7 0 0 0 0 0 

1067420 0 0 2 0 0 33 0 0 4 0 7 0 0 0 0 0 

1068240 0 0 0 0 0 24 0 0 0 0 1 0 0 0 0 0 

1070530 0 0 1 0 0 25 0 0 1 0 5 0 0 0 0 0 

1072920 0 0 1 0 0 88 0 0 1 0 20 0 0 0 0 0 

1074460 0 0 0 0 0 30 0 0 0 0 11 0 0 0 0 0 

1074970 0 0 0 0 0 35 0 0 0 0 17 0 0 0 0 0 

1077580 0 0 0 0 0 35 0 0 1 0 16 0 0 0 0 0 

1083930 0 0 0 0 0 16 0 0 1 0 4 0 0 0 0 0 

1085990 0 2 8 0 0 43 0 0 1 0 3 0 0 0 0 0 

1091420 0 7 0 0 0 26 0 0 1 0 2 0 0 0 0 0 

2099100 0 0 0 0 0 118 0 0 24 0 20 9 0 0 17 0 

2100143 0 0 0 0 0 167 0 0 29 10 16 4 0 1 29 0 

2101185 0 0 0 0 0 67 0 0 18 2 17 4 0 1 56 0 

2102149 0 0 0 0 0 14 4 0 53 2 5 7 10 0 15 5 

2104258 0 0 0 0 0 19 3 0 48 5 1 2 6 4 29 0 

2105105 0 0 0 0 0 4 0 0 16 0 3 0 0 0 27 0 

2106376 0 0 0 0 0 8 0 0 26 1 3 0 0 0 272 2 

2107224 0 0 0 0 0 2 0 0 10 0 0 0 0 0 85 2 

2108071 0 0 0 0 0 1 0 0 4 0 0 0 0 0 22 0 

2108993 0 0 0 0 0 5 0 0 38 0 7 2 0 1 13 2 

2110015 0 0 0 0 1 11 11 0 45 7 7 2 0 0 41 2 

2111038 0 0 0 0 0 7 0 0 5 3 2 0 1 0 0 1 

2112061 0 0 0 0 0 39 0 0 22 2 8 6 1 0 6 3 

2113083 0 0 0 0 0 31 2 0 17 3 3 3 0 0 4 1 

2114055 0 0 0 0 0 51 0 0 3 0 6 2 0 0 2 0 

Table A.1. Continued  
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2115151 0 0 0 0 0 93 3 0 27 6 11 10 2 8 3 2 

2116247 0 0 0 0 0 94 0 0 11 0 15 5 0 0 11 0 

2117307 0 0 0 0 0 14 0 0 7 3 4 3 2 0 1 2 

2119152 0 0 0 0 0 24 0 0 10 1 0 3 7 4 17 1 

2119883 0 0 0 0 0 26 0 0 14 0 24 1 0 0 29 3 

2120979 0 0 0 0 1 41 1 0 15 1 0 0 0 0 14 1 

2121902 0 0 0 0 0 50 0 0 3 1 5 0 0 0 42 0 

2122907 0 0 0 0 0 13 1 0 5 2 0 0 0 0 47 0 

2123913 0 0 0 0 0 34 0 0 4 2 0 0 0 0 116 3 

2124918 0 0 0 0 0 9 0 0 0 1 5 0 0 0 80 1 

2125924 0 0 0 0 1 17 0 0 6 1 1 0 0 0 172 1 

2126929 0 0 0 0 0 59 1 0 9 1 4 0 0 0 95 3 

2127934 0 0 0 0 0 36 0 3 15 0 19 0 0 0 9 3 

2128670 0 0 0 0 3 52 2 0 18 2 3 0 0 2 9 2 

2129273 0 0 0 0 0 54 0 0 16 2 2 1 0 0 1 1 

2130322 0 4 0 0 0 44 0 0 17 3 19 0 0 0 5 6 

2131371 0 0 0 0 1 65 3 0 8 4 9 0 0 0 0 0 

2132499 0 0 0 0 0 21 0 0 9 0 7 3 0 0 0 0 

2133548 0 0 0 0 1 19 0 0 6 3 6 3 2 1 1 0 

2134579 0 0 0 0 0 63 0 0 7 1 1 3 0 0 0 0 

2135646 0 0 0 0 0 26 3 0 1 0 3 0 0 0 0 0 

2136695 0 0 0 0 0 32 0 0 5 1 5 3 0 0 0 0 

2137744 0 0 0 0 0 42 0 0 9 0 27 2 0 0 0 1 

2138801 0 0 0 0 0 152 0 0 11 3 4 14 0 0 1 3 

2139805 1 0 1 0 0 56 14 1 3 0 27 1 0 0 0 0 

2143787 0 0 0 0 0 68 0 0 31 3 10 12 4 4 2 0 

2144342 0 0 0 0 0 43 0 0 12 0 12 4 0 0 12 5 

2145174 0 0 0 0 0 54 0 0 13 0 11 4 0 1 23 6 

2146292 0 0 0 0 0 16 0 0 31 1 1 0 0 0 111 26 

2147097 0 0 0 0 0 1 0 0 1 0 0 0 0 1 8 6 

2148169 0 0 0 0 0 16 0 0 8 0 13 0 0 8 73 14 

2149242 0 0 0 0 0 4 0 0 0 0 0 0 0 0 68 1 

Table A.1: Continued. 
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List of abbreviations 
 

14C  radiocarbon dated 

ºC  degree Celsius 

AP  arboreal pollen 

a.s.l  above sea level 

BP  before present (before 1950) 

c.  circa  

ChRM  characteristic remanent magnetization 

CLDE  cold deciduous forest 

COCO  cold conifer forest 

CONISS  constrained incremental sums of squares cluster analysis 

ICDP  International Continental Scientific Drilling Program 

e.g.  exempli gratia, for example 

FTIRS  fourier transform infrared spectroscopy 

km  kilometer 

ka  kilo years 

LW  low boundary 

m  meter 

MPT  middle Pleistocene transition 

Myr  million years 

mblf  meters below lake floor 

Ma  million years 

MIS  marine isotope stage 

MS  magnetic susceptibility 

NAP  non-arboreal pollen 

NE  north-east 

NPP  non-pollen-palynomorph 

PAZ  pollen assemblage zone 

PGTM  postglacial thermal maximum 

SST  sea surface temperature 

STEP  cold steppe 

TAIG  taiga 

TUND  tundra 
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