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1 Introduction

Canonical correlation analysis (CCA) was first discovered in 1935 by Hotelling (reprinted in

Hotelling, 1992) and is one of the oldest multivariate techniques. CCA investigates the re-

lationship between two different sets of quantitative variables measured across the same ob-

servations. The statistical method finds linear combinations of both sets (canonical variates)

to maximize their correlation. The sets contain different type of variables e.g.: personality

traits and ability measures, price indices and production indices or ecological variables and

environmental variables (Rencher & Christensen, 2012). Therefore, CCA has applications

across many fields such as Psychology, Economics and Ecology. Recent studies have tried

to apply CCA to more than two sets of variables and developed cross validation approaches

to improve stability towards unseen data (Abdi et al., 2018).

A convenient way to apply CCA is: find the canonical variates (see section 3.2), per-

form tests of significance (see section 3.3) and interpret the results (see section 3.4). The first

objective of this paper is to provide an explanation of the method of CCA including signif-

icance tests. The second objective is to apply CCA to a dataset investigating students’ life

circumstances and mental well-being (Kaggle, 2024). The dataset is described within sec-

tion 2. During the last decade, studies have detected a decline of students’ mental well-being

(Pietch, 2025; The Lancet Psychiatry, 2024). The Healthy Minds Study collected data of 373

campuses in the United States during 2013 and 2021 (Lipson et al., 2022). The study shows

that in 2021 over 60% of students’ fulfilled at least one criteria for mental health problems

- an increase of over 50% from 2013. Therefore, examining the extent to which students’

well-being is associated with their life circumstances is expected to provide valuable insights.

If there is significant correlation, we are interested in the factors contributing the most to

students’ unhappiness (see section 4).
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2 Problem

The original data set consists of 21 variables measured across 1238 students. We have created

a subset with the variables of interest splitted into two sets: life circumstances and mental

well-being. The variables included in each set are presented in table 1 and table 2 along with

their descriptive statistics:

Table 1: life circumstances

Statistic Min Max St. Dev. Mean

Social_Support 2.24 10.00 1.47 6.93

Financial_Status 1.00 10.00 1.96 5.89

Work_Life_Balance 1.00 10.00 2.01 5.94

Freedom_to_Make_Life_Choices 1.00 10.00 1.94 5.94

Sports_Engagement 1.00 10.00 2.00 5.09

Average_Sleep_Hours 4.00 10.00 1.00 7.04

Anxiety 1.00 10.00 1.71 3.22

Isolation 1.00 9.23 1.71 3.13

Table 2: mental well-being

Statistic Min Max St. Dev. Mean

Mental_Health 1.25 10.00 1.52 7.00

Healthy_Life_Expectancy 5 10 1.69 7.52

Happiness_Level 1.00 7.84 1.00 4.81

We will perform CCA to identify the most influential factors within life circumstances

affecting mental well-being, as well as the variables in mental well-being most impacted by

these factors. By construction, the variables in one set are expected to share a high correlation

which with CCA is not problematic but helpful.

2



Further information regarding the observation of the variables is unknown. We assume

variables such as happiness level, freedom to make life choices etc. to be metric. However,

this assumptionmay not hold as individuals have different internal scales. The findings should

therefore be interpreted carefully as measurement errors cannot be ruled out.

3 Canonical Correlation Analysis (CCA)

This section is based on Rencher and Christensen (2012, pp. 361-373).

3.1 Mathematical Background

Let x ∈ Rq and y ∈ Rp be two sets of variables. If used, the index j = 1, ..., q refers to

j-th Variable in x and k = 1, ..., p refers to the k-th variable in y. For instance, the sample

covariance between xk, yj will be written as skj.

The portioned sample covariance matrix S contains of the covariance entries in and

between x and y:

S =

Syy Syx

Sxy Sxx


.

• Syy ∈ Rp×p contains p distinct covariance entries for y.

• Sxx ∈ Rq×q contains q distinct covariance entries for x.

• Sxy ∈ Rq×p and Syx ∈ Rp×q contains the covariance entries between x and y.

The portioned correlations matrix sums up the correlation structure in and between x and

y. The dimensions of the entries in R are analogous to S. We define:

R =

Ryy Ryx

Rxy Rxx



with Rxx = D
− 1

2
xx SD

− 1
2

xx , Rxy = RT
yx = D

− 1
2

xy SD
− 1

2
xy , Ryy = D

− 1
2

yy SD
− 1

2
yy

whereDyy = diag(s2y1 , . . . , s
2
yp), Dxy = diag(sx1y1 , . . . , sxqyp), Dxx = diag(s2x1

, . . . , s2xq
).
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The coefficient of multiple determination R2
M is a measure for the (linear) relationship

between y and x:

R2
M = |S−1

yy SyxS
−1
xx Sxy︸ ︷︷ ︸

My|x

| = |S−1
xx SxyS

−1
yy Syx︸ ︷︷ ︸

Mx|y

|.

R2
M can be written in terms of it’s (non-zero) eigenvalues r21, ...r

2
s :

R2
M = |My|x| = |Mx|y| =

s∏
i=1

r2i (1)

with s = min(q, p). In (1), R2
M corresponds to the share of variation in y which is ex-

plained by the linear relationship to x. In the multivariate case, this is equivalent to the share

of variation in x which is explained by the linear relationship to y. However, the product of

the eigenvalues will be too small to contain any meaningful information about the correlation

between x, y. The eigenvalues provide a good measure for the correlation between both sets

and are important for the development of CCA.

3.2 The Principle

CCA aims to find linear combinations of x and y maximizing the correlation between

both sets.

Definition 1. The linear combinations of x and y are called canonical variates.

ui =
∑
j

aijyij, i = 1, ...s, j = 1, ..., p

vi =
∑
k

bikxik, i = 1, ...s, k = 1, ..., q

Definition 2. The canonical correlations correspond to the correlation of the canonical vari-

ates.

The squared canonical correlations are identical to the eigenvalues of My|x and Mx|y.

ri = max
ai,bi

rui,vi
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In general, there are s = min(q, p) canonical correlations with corresponding canonical vari-

ates. However, the first canonical correlation is the maximum correlation between both sets.

The computation of the canonical correlations and canonical variates is based on (1).

1. Compute the eigenvalues

|My|x − r2I| = 0 (2)

|Mx|y − r2I| = 0 (3)

Solving equation (2) and (3) will lead to the same eigenvalues (see (1)).

The s eigenvalues are ordered respectively, that is: r21 ≥ r22... ≥ r2s .

2. Compute the coefficient vectors or eigenvectors ai, bi

(
My|x − r2i I

)
ai = 0 (4)

(
Mx|y − r2i

)
bi = 0 (5)

An example is calculated in A.1. The canonical correlations and canonical variates are com-

puted using the CCA software package by González et al. (2008). In most studies, p is smaller

than q. As rank(My|x) = p, solving (2) and (3) will lead to p non-zero eigenvalues and (q−p)

eigenvalues corresponding to zero. Therefore, there are s = min(q, p) = p canonical corre-

lations with corresponding canonical variates. The canonical variates u1, ..., us and v1, ..., vs

are uncorrelated with each other:

ruj ,vk = ruj ,uk
= rvj ,vk = 0 for all j, k = 1, ..., s and j≠k.

Not all canonical correlations provide useful information regarding the correlation be-

tween both sets. The relative importance of ri can be judged by:

r−i =
r2i∑
j≠i r

2
j

.

Instead of the method above, we can obtain the canonical correlations and corresponding

variates by using the portioned correlation Matrix. My|x is replaced by R−1
yy RyxR

−1
xxRxy and

Mx|y is replaced by R−1
xxRxyR

−1
yy Ryx. The eigenvalues are identical. The coefficient vectors

are now standardized which is beneficial for the interpretation (see section 3.4).

5



3.3 Tests of Significance

We present four possibilities to test the significance of the canonical correlations. Each is

contained in the later used software package by Menzel (2020).

Testing for independence

If x and y are independent, they share no relationship and the canonical correlations are in-

significant. We have:

H0 : Σ =

Σyy 0

0 Σxx

 = 0 vs. H1 : Σ 6= 0.

Or in short: Σyx,Σxy = 0 as there are no restrictions regarding the correlation structure

in one set. Testing for independence means testing if the correlations entries in Σyx,Σxy are

(jointly) significantly different from zero. Wilk’s lambda test statistic is given by:

Λ1 =
|S|

|Syy||Sxx|
=

|R|
|Ryy||Rxx|

∼ Λp,q,n−1−q (6)

with p number of variables in y, q number of variables in x and (n − 1 − q) degrees of

freedom (d.o.f). H0 is rejected at α% , if Λ1 < Λα where Λα corresponds to the α% quantile

for Wilk’s lambda test statistic. The critical values for α = .05% can be found in Rencher

and Christensen (2012, pp. 566–573). Under H0, |S| ≈ |Sxx||Syy| as there is almost no

correlation between x, y. Therefore, the smaller Λ1, the more correlation between both sets.

It holds that |S| < |Sxx||Syy| (Rencher & Christensen, 2012, p. 260).

Alternatively, we can construct the test based on the eigenvalues ofMy|x:

Λ1 =
s∏

i=1

(1− r2i ) ∼ Λq,p,n−1−p (7)

with s = min(q, p), p, q and d.o.f. defined as in (6). IfH0 is rejected taking r1 into account,

there is no information regarding the significance of the succeeding canonical correlations.

The test for the k-th canonical correlation is performed using (7), removing r1, ...rk−1 and

adjusting p, q and (n− 1− p) d.o.f. accordingly (see A.2).
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Often the range of parameters exceeds the range of critical values for Λ. By transforming

Λ1, we can test significance of the canonical correlations with a Fisher approximation:1

Λ1 ≈
1− Λ

1
t
1

Λ
1
t
1

· df2
df1

∼ Fdf2,df1 (8)

with df2 = pq,

df1 = t[n− 1
2
(p+ q + 3)]− 1

2
pq + 1 and t =

1 ; pq = 2√
(pq)2−4
p2+q2−5

; otherwise.

Testing canonical correlations

The canonical correlations can be tested directly for significance.2 The presented test statistics

follow the same idea: the larger r1, ..., rs, the more likely the null is about to be rejected. If

the test result is significant, (at least) r1 is significantly different from zero. If the test result is

insignificant, the s canonical correlations are not significantly different from zero. We have:

H0 : r1, ...rs = 0 vs. H1 : r1, ...rs 6= 0 (for at least r1).

Again, approximations of the test statistics are needed if the range of parameters exceeds

the range of critical values. For Fisher approximations of the following tests, see Rencher and

Christensen (2012, chapter 6)

1. Pillai´s test statistic

V (s) =
s∑

i=1

r2i (9)

For large values of V (s), the null is rejected. Upper percentage points for α = .05%

are given in Rencher and Christensen (2012, pp. 578–581) with s = min(q, p),m =

1
2
(|q − p| − 1) and N = 1

2
(n − q − p − 2). For testing the significance of the k-th

canonical correlation, r1, ...rk−1 are removed and s,m and N adjusted respectively.

1A Chi-square approximation is applicable but not further addressed in this context. For more details, see

Rencher and Christensen (2012, p. 367)). For s = {1, 2}, the test statistic in (8) follows an exact F-distribution

and the Fisher approximation is preferred over the Chi-square approximation.
2Pillai´s test statistic (9) and Lawley’s Hotelling test statistic (10) are defined differently throughout the book.

Here, we adhere to the definition established within the framework of CCA.
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2. Lawley Hotelling statistic

U (s) =
s∏

i=1

r2i
1− r2i

(10)

Again, the null is rejected for large values of U (s). Upper percentage points for α =

.05%can be found in Rencher and Christensen (2012, pp. 582–586) with vE = n−q−1

and vh = q. Testing the k-th canonical correlation is analogous as discussed in (9) with

vE, vH and s being adjusted respectively.

3. Roy´s largest root statistic

θ = r21 (11)

The null is rejected for large values of θ. Upper percentage points for α = .05% can

be found in Rencher and Christensen (2012, pp. 574–577) with s = min(q, p),

m = 1
2
(|q− p| − 1) andN = 1

2
(n− q− p− 2). Note that Roy´s test statistic only tests

the significance of the first canonical correlation.

3.4 Interpretation of CCA

Property 1. Canonical correlations are scale invariant, eigenvectors are scale variant.3

Property 2. The first canonical correlation corresponds to the maximum correlations be-

tween any linear function regarding x and y. This holds for for all possible subsets of both

sets.

The coefficient vectors ai, bi contain information about the contribution of each variable to

the correlation between x and y. By property 1, the eigenvectors are not scale invariant and

therefore have to be standardized to control for measuring differences. If ai and bi are com-

puted with the portioned correlation matrix, they are standardized (see section 3.2). If not,

they have to be transformed using:

3For instance: if x and y are originally measured in dollar but now transformed to euros, the canonical

correlations are identical. The eigenvectors are not.
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ci = Dyai di = Dxbi (12)

with Dy = diag(y1, . . . , yp) and Dx = diag(x1, . . . , xq).

After being transformed, the entries in cTi = (c1, . . . , cp) correspond to the relative contribu-

tion of yTi = (y1, . . . , yp) on ui. The interpretation for d
T
i = (d1, . . . , dp), x

T
i = (x1, . . . , xq)

and vi is analogous.

The impact channels for the i-th canonical correlation ri are summarized in figure 1. For

simplicity, let yT = (y1, y2) and x
T = (x1, x2) and therefore s = i = 1, 2.

y1

y2

ui vi

x1

x2

ai1

ai2

bi1

bi2

ri = max
ai,bi

rui,vi

Figure 1: impact channels of canonical correlations

4 Empirical Analysis

For a descriptive analysis and obtaining the canonical variates, we will use the CCA software

package developed by González et al. (2008). The variables in life circumstances correspond

to x and the variables in mental well-being correspond to y. Before applying CCA, visualizing

the correlation matrices is helpful (see figure 2).
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Figure 2: correlation matrices

The correlation between the variables in x and y are shown above, with color coding

according to the given legend. Contrary to our initial assumptions, the correlation between

the variables in x, y is low. The cross-correlation between x,y - that is the correlation between

life circumstances and mental well-being - does not indicate significance either expect at the

bottom.4 The lower part of the cross-correlation matrix represents the correlation between

happiness levels and life circumstances.

Following section 3.2, we now obtain the canonical correlations and their corresponding

canonical variates. Ordering the three canonical correlations respectively we have:

r1 = 0.698 > r2 = 0.066 > r3 = 0.050.

As discussed within the section, not all canonical correlations provide useful information

regarding the correlation between x and y. Here, only the first canonical correlation is worth

considering as a dimension of linear relationship. The corresponding canonical variates for

r1, r2, r3 are denoted in table 3 and table 4:
5

4According to González et al. (2008) the work must be stopped if the visualization of the cross correlation

matrix mostly shows green colors. Here we continue.
5A visualization of the canonical variates is useful if at least more than one canonical correlation is signifi-

cantly different from zero. For more details, see González et al. (2008, pp. 11–12.)
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Table 3: canonical variates life circumstances

Statistic r1 r2 r3

Social_Support 0.462 0.313 -0.087

Financial_Status 0.444 0.330 0.353

Work_Life_Balance 0.460 -0.635 0.495

Freedom_to_Make_Life_Choices 0.273 0.280 -0.456

Sports_Engagement 0.280 0.294 0.180

Average_Sleep_Hours 0.141 -0.407 -0.489

Anxiety -0.343 0.185 0.083

Isolation -0.357 0.129 0.415

Table 4: canonical variates mental well-being

Statistic r1 r2 r3

Mental_Health -0.014 0.399 0.917

Healthy_Life_Expectancy -0.130 0.933 -0.387

Happiness_Level 1.016 -0.044 0.052

Before interpreting the canonical variates, we perform asymptotic tests of significance

as outlined in section 3.3. For this purpose, we use the CCP software package developed

by Menzel (2020). Given the large number of observations, the assumption of asymptotic

multivariate normality for x and y is not a concern. As discussed in section 3.4, there are

multiple ways to access significance. Using a Fisher-approximation of Wilk’s lambda test

statistic or testing for independence as discussed in (8), we show that only the first canonical

correlation is significantly different from zero. The output is summarized in table 5:
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Table 5: significance test for independence

id stat approx df1 df2 p.value

1 Wilks 0.51 38.95 24.00 3562.17 0.00

2 Wilks 0.99 0.60 14.00 2458.00 0.87

3 Wilks 1.00 0.52 6.00 1230.00 0.79

We obtain the same result using any other mentioned test statistic within section 3.3.6

Therefore, we only consider the canonical variates for r1. For life circumstances, social sup-

port, financial status and work–life-balance show the most positive contribitution to mental

well-being whereas anxiety and isolation contribute negatively. For mental well-being, only

happiness level makes a relevant contribution to the correlation. Since the variables in mental

well-being share little correleation (see figure 2), CCA limits the relationship to the variable

the most correlated with life circumstances - happiness level. As discussed in section 2, mea-

surement errors may reduce the correlation between variabels in mental well-being.

5 Conclusion

We have presented a methodological overview of CCA including the computation of the

canonical correlations and canonical variates, performing tests of significance and the inter-

pretation of the results. We then applied the method of CCA to a data set focusing on students’

life circumstances and their mental well-being. The variables in both sets share little correla-

tion for which measurement errors could be responsible. After performing asymptotic tests,

only the first canonical correlation remained significant. To counter the decline of students’

mental well-being, we found that social support, financial status and work life balance have

the most positive impact on student mental well-being whereas anxiety and isolation have

a negative impact. For mental well-being, CCA effectively only considers happiness level.

Further research could employ non-parametric CCA or investigate new data to find additional

dimensions of relationship extracting more information related to mental well-being.

6Note that Roy’s test statistic only tests the significance of the first canonical correlation. Therefore, the

outcome only shows that the first canonical correlation is significant.
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A Appendix

A.1 Calculation of the Canonical Correlations and Canonical Variates

Let x, y ∈ R2. Therefore, the number of non-zero eigenvalues is s = min(2, 2) = 2. The

eigenvalues have to be computed first by (2) and (3).

|My|x − λ1I| = 0 ⇐⇒

∣∣∣∣∣∣
m1 − λ m2

m3 m4 − λ

∣∣∣∣∣∣ = 0

⇐⇒ (m1 − λ)(m4 − λ)−m2m3 = 0 ⇐⇒ λ2 +m1m4 − λ(m1 +m4)−m2m3 = 0

Solving the quadratic equation leads to two eigenvalues λ1, λ2 or squared canonical cor-

relations. The squared canonical correlations are ordered respectively: λ1 = r21 ≥ λ2 = r22.

The first canonical variate is obtained by inserting λ1 and solving both (4) and (5).

I :

m1 m2

m3 m4

− λ1I·

 ai = 0 ⇐⇒

m− λ1 m2

m3 m4 − λ1

 ·

a11

a12

 =

0

0



II :

m1 m2

m3 m4

− λ2I·

 b1 = 0 ⇐⇒

m− λ2 m2

m3 m4 − λ2

 ·

b11

b12

 =

0

0



The solution for a1, b1 corresponds to the first canonical coefficients a1 = (a11, a12),

b1 = (b11, b12). Therefore, the first canonical variates are u1 = aT1 y and v1 = bT1 x. The second

canonical variate is computed analogously by inserting λ2.

A.2 Testing the k-th Canonical Correlation

The k-th canonical correlation is tested using (7) and adjusting p, q and d.o.f.

accordingly:

Λk =
s∏

i=k

∼ Λp−k+1,q−k+1,n−k−1.
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The null is rejected, ifΛk < Λα. If the range of parameters exceeds the range of critical values,

a Fisher approximation is needed. The test statistic is given by:

Λk ≈
1− Λ

1
t
k

Λ
1
t
k

· df2
df1

∼ Fdf2,df1

with df2 = (p− k + 1)(q − k + 1),

df1 = t[n− 1
2
((p− k + 1) + (q − k + 1) + 3)]− 1

2
(p− k + 1)(q − k + 1) + 1

and t =
√

(p−k+1)2(q−k+1)2−4
(p−k+1)2+(q−k+1)2−5

.
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