
Generation of Counterfactual Explanations in
Smart Environments

Master Thesis

Author: Anna Trapp (Student ID: 7354713)
Supervisor: Prof. Dr. Andreas Vogelsang
Co-Supervisor: Dr. Mersedeh Sadeghi

Chair of Software and Systems Engineering
Faculty of Mathematics and Natural Sciences

University of Cologne

December 23, 2024



Anna Trapp Master Thesis

Contents

1 Introduction 1

2 Background and Related Work 4

2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Approach 9

3.1 Different States and Rules with True Preconditions . . . . . . . . . . 11
3.2 Cases of Explanation Needs . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Collection of Candidates . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4 Desirable Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5 Minimal Change Computation . . . . . . . . . . . . . . . . . . . . . . 18
3.6 Generation of the Counterfactual Explanation . . . . . . . . . . . . . 19
3.7 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Evaluation 23

4.1 Study Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1.1 Sampling and Participants . . . . . . . . . . . . . . . . . . . . 23
4.1.2 Study Format . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1.3 Experiment Design . . . . . . . . . . . . . . . . . . . . . . . . 24
4.1.4 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.1.5 Scenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5 Discussion 39

5.1 General Preferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2 Contexts Influencing the Preferences . . . . . . . . . . . . . . . . . . 40

5.2.1 User-Centric Contexts . . . . . . . . . . . . . . . . . . . . . . 40
5.2.2 Situational Contexts . . . . . . . . . . . . . . . . . . . . . . . 41
5.2.3 Explanation-Specific Contexts . . . . . . . . . . . . . . . . . . 44

5.3 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6 Conclusion 52

References 54

I



Anna Trapp Master Thesis

1 Introduction

Smart environments consist of sensor-enabled devices that work together to support
users through decision-making, monitoring and controlling systems, and managing
abnormal situations. Prominent examples include smart homes, offices, and build-
ings (El-Din et al., 2021; Ahmed et al., 2016). The adoption of smart environments
is rapidly increasing, driven by advancements in the Internet of Things (IoT) and
Artificial Intelligence (AI), decreasing costs of smart devices, and the growing avail-
ability of integration systems (Li et al., 2021).

In this thesis, we focus on rule-based smart environments, as they are one of
the most common approaches to implementing such systems (Nandi & Ernst, 2016).
Rule-based smart environments operate by executing predefined rules whenever their
preconditions are satisfied (Sadeghi et al., 2024). However, these systems are often
perceived as black boxes with users expressing the desire to understand their be-
havior (Jakobi et al., 2018). Furthermore, Bunt et al. (2012) found that while most
users understand the general concept of such systems, they often lack knowledge
about their details and how they interact.

Providing explanations can address this issue, as explanations significantly en-
hance user understanding (Chazette & Schneider, 2020). Lombrozo (2006) also
highlights the significance of explanations, as "they are central to our sense of un-
derstanding, and the currency in which we exchange beliefs". Furthermore, the
provision of explanations can enhance performance, user perception, and learning,
empowering users to predict and control future outcomes by offering insights about
the past and highlighting key information (Lombrozo, 2006; Gregor & Benbasat,
1999). Additionally, integrating an explanation layer significantly improves users’
trust in a system. This is particularly crucial when there is a mismatch between
user expectation and system behavior, which is often the case in smart environ-
ments (Lim et al., 2009; Sadeghi et al., 2021). Winikoff (2018) even argues that
explainability is a prerequisite for trust. In contrast, Kästner et al. (2021) cautions
that explainability should not be used as a substitute for trust but also argues that
to make a system more trustworthy, explainability is still important. Moreover,
Balasubramaniam et al. (2023) identify a strong connection between explainability,
trust, and the transparency of AI systems. Finally, explainability is increasingly
recognized as a non-functional requirement of its own (Köhl et al., 2019).

Counterfactual explanations represent one type of explanation that focuses on
counterfactual ("contrary-to-fact") events. They provide insights into how an out-
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come A could have been achieved by analyzing what would be different from the
current situation if the counterfactual events had happened ("A would have hap-
pened if. . . ") (Stepin et al., 2021). The concept of thinking about counterfactual
events is deeply rooted in humans as it plays a crucial role in how children learn
(Guidotti, 2022). Research even suggests that humans derive stronger causal conclu-
sions from counterfactual than from factual reasoning (Mandel et al., 2005). Hence,
counterfactual explanations amplify causal judgments (Byrne, 2019). Mandel et al.
(2005) even argue that counterfactual thinking is a defining characteristic of human-
ity. Furthermore, Wachter et al. (2017) examine the EU General Data Protection
Regulation (GDPR) and the concept of a Right to Explanation from the perspective
of the individual whose data is processed. They propose three aims that explanations
should achieve in this context: (1) informing and helping users understand system
decisions, (2) providing a basis for reversing incorrect decisions, and (3) clarifying
what changes could lead to a desired outcome. Since counterfactual explanations
meet these objectives without having to open the black box of the decision-making
process, they provide a powerful tool in the context of machine learning and in ex-
plaining its decisions to users.

In addition, counterfactual explanations can not only be helpful in the context of
machine learning but have the potential to show great results when applied to smart
environments. Firstly, a key purpose of explanations is to enhance system usabi-
lity by aiding user understanding and teaching users how to operate the system
more effectively (Chazette & Schneider, 2020). This is precisely what counterfac-
tual explanations in smart environments accomplish when they are designed in a
way that enables users to implement the proposed changes. Additionally, Roese
(1997) argues that counterfactual thoughts are most prevalent when there is a need
for correction and are most effective in situations that are controllable and likely
to repeat in the future. This aligns seamlessly with the use case of explanations in
smart environments, making counterfactual explanations particularly well-suited for
such contexts. Moreover, Lim et al. (2009) speculate that proactive systems such
as smart environments may benefit more from explanations answering how to and
what if rather than why questions. Counterfactual explanations are an example
of explanations answering exactly these questions (Woodward, 2003) and, as such,
have the potential to show excellent results when applied in smart environments.

Despite these promising propositions, there is currently no consensus on a formal
definition of counterfactual explanations in the context of rule-based smart environ-
ments, nor are there any methods for their generation. To address this gap, we
propose a formal definition of counterfactual explanations in smart environments
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grounded in existing literature. Furthermore, we present a framework for generat-
ing counterfactual explanations in rule-based smart environments and provide an
implementation to evaluate its feasibility. Additionally, we conduct a user-centric
evaluation, addressing a significant gap in the field as these types of evaluations re-
main rare and pose an open research challenge (Guidotti, 2022; Verma et al., 2024).

This work is organized as follows: Section 2 provides background by introducing
relevant concepts related to counterfactual explanations and smart environments.
Additionally, we give an overview of related work. In Section 3, we define counter-
factual explanations in the context of smart environments, propose a framework for
their generation, and describe the implementation. To assess the practical value of
our framework, we conduct a user study, described in Section 4. The results are
discussed in Section 5. Finally, Section 6 concludes our work with a summary of our
contributions and a discussion of future work.
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2 Background and Related Work

Before we propose our framework for generating counterfactual explanations in
rule-based smart environments, we introduce the relevant concepts and provide an
overview of the related work.

2.1 Background

To begin with, the term smart environment system refers to a connected system
where sensor-enabled devices work together to improve the comfort of their users
(Ahmed et al., 2016). These systems typically possess autonomous perception, rea-
soning, and action capabilities within their environment (Alam et al., 2012). So-
called rule-based systems are commonly used in smart environments (Nandi & Ernst,
2016). They contain two primary components: a knowledge base and an inference
engine. The knowledge base contains all necessary information, such as the rules and
the state of each device within the smart environment (Masri et al., 2019; Hayes-
Roth, 1985). Each state of a device, like the "color of the desk lamp", can either
be manipulated by the user directly or via the action of a rule. Typically, a rule
consists of two components: preconditions and actions. Preconditions are logical ex-
pressions that determine the truth value of device states in the smart environment,
such as "the desk lamp is green" (Herbold et al., 2024). Actions, for example "turn
on the fan", describe what a rule should do once all of its preconditions are met and
it fires (Nandi & Ernst, 2016). The rules are controlled by the inference engine of
the rule-based system. It checks whether preconditions are true and fires the rules.
Furthermore, conflicting situations may arise when multiple rules with contradic-
tory actions simultaneously have true preconditions. For such situations, conflict
resolution techniques determine what rule should be fired. Common examples in-
clude minimum specificity (choosing the rule with minimal preconditions), regency
(determining the changes that occurred most recently and taking the rule that uses
them), breadth-first (choosing the rule that has true preconditions the longest), or
a random strategy (Ali et al., 2018). However, we apply priority-based scheduling
to our framework as it is especially suitable for IoT systems with overriding precon-
ditions (Shah et al., 2019). Here, each rule is associated with a priority, and when a
conflicting situation arises, only the rule with the highest one is fired (Hayes-Roth,
1985). Notably, no rules have the same priority.

Rule-based smart environment systems can be equipped with an explanation
layer that enables them to explain their behavior (Masri et al., 2019). Formally, a
system is considered explainable if, and only if, it can provide information (the ex-
planation) to the explainee, such that the explainee understands the explanandum
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(Köhl et al., 2019; Chazette et al., 2021). The explanandum refers to the event to
be explained, and the explainee is the user that requests an explanation (Madumal
et al., 2020). Typically, the provided explanation describes how the internal logic
of an algorithm led to a decision. Counterfactual explanations, on the other hand,
clarify how external facts influenced the outcome (Wachter et al., 2017) and contain
instructions on how it could have been changed. In natural language, they consist of:
(1) a condition C describing an alternative event to an actual one, (2) an outcome
A that would have occurred had the condition been true, and (3) a relation between
them, expressed as: A would (not) have happened if C had (not) happened. But def-
initions of counterfactual explanations and their relation to causation still compete
(Stepin et al., 2021). Therefore, we provide an overview before utilizing them to pro-
pose our definition of counterfactual explanations in rule-based smart environments.

Theories on counterfactual explanations presupposing a causal nature (as is the
case in rule-based systems) can be divided into four milestones (Stepin et al., 2021):
Firstly, Stalnaker (1968) and Lewis (1973) consider possible worlds, which are worlds
that coincide with the real one except for a specified difference. Then, the coun-
terfactual statement "if A was true, then B was true" holds in the real world if,
and only if, there is a possible world where both A and B are true and that is
more similar to the real world than any possible world where A is true but B is
not. Secondly, Pearl (2000) proposes the Structural Causal Model centered around
the notion of sustenance. It states that A causally sustains B (ensures B remains
unchanged during an intervention) if A is both necessary and sufficient to sustain
B. Furthermore, Woodward (2003) proposes an Interventionist Account of Expla-
nation: "It is only when one has identified conditions relevant to the manipulation
of the explanandum that one has provided an explanation." Finally, the Neyman-
Rubin Causal Model interprets counterfactuals in terms of potential outcomes of a
dependent causal variable given some intervention (Stepin et al., 2021).

In practice, these theories have been used to develop several definitions of coun-
terfactual explanations. Especially in the context of eXplainable Artificial Intelli-
gence (XAI), numerous definitions have emerged. Wachter et al. (2017) implicitly
include the notion of possible worlds by defining counterfactual explanations in ma-
chine learning as statements of the form: score p was returned because variables V

had values (v1, v2, . . .) associated with them. If V instead had values (v01, v02, . . .), and
all other variables had remained constant, score p0 would have been returned. In con-
trast, Bertossi (2020) uses the interventionist account of explanation by Woodward
(2003) to define an explanation for classification as a set of original feature values
that are altered by a minimal counterfactual intervention. Guidotti (2022) also in-

5



Anna Trapp Master Thesis

cludes minimality in his definition of counterfactual explanations for classification
by stating that they consist of an instance that differs minimally from the original
input but receives a different classification. All in all, the most commonly accepted
definition of counterfactual explanations in the context of XAI includes a minimal
set of changes to features such that the model changes its prediction (Stepin et al.,
2021).

When determining the minimal change, we employ a Multi-Criteria Decision
Making (MCDM) method. MCDM methods determine the best choice among a fi-
nite set of alternatives available to the decision maker. The choice is determined by
considering multiple decision criteria, which are desirable properties of the best so-
lution. These criteria may be conflicting, and the MCDM method must weigh them
against each other. Additionally, the criteria may be associated with weights that
influence their importance in the decision making process (Triantaphyllou, 2000).
One of the most widely used MCDM methods is TOPSIS (Technique for Order
Preference by Similarity to Ideal Solution) (Taherdoost & Madanchian, 2023). It
was first proposed by Hwang and Yoon (1981) and is based on the concept that
the selected alternative should have the shortest distance from the ideal and the
longest distance from the worst solution. TOPSIS assumes that each criterion is
either beneficial or non-beneficial. It starts by determining the performance mea-
sure xi,j of alternative Ai in terms of the j-th criterion for all i 2 {1, . . . ,m} and
j 2 {1, . . . , n}. Then, all xi,j are normalized using (usually) the Euclidean distance
and, if available, multiplied by their according weights wj:

vi,j :=
xi,jqPm
k=1 x

2
k,j

· wj. (1)

Afterward, the ideal and worst solution are determined. For the ideal solution A⇤,
among the alternatives, the maximum for each beneficial criterion and the minimum
for each non-beneficial criterion is taken. Contrarily, for the worst solution A�, the
minimum for each beneficial and the maximum for each non-beneficial criterion is
taken. Subsequently, for each alternative, the Euclidean distance to the optimal and
worst solution is determined:

Si,⇤ =

vuut
nX

j=1

(vi,j � v⇤,j)2, for i = 1, . . . ,m (2)

Si,� =

vuut
nX

j=1

(vi,j � v�,j)2, for i = 1, . . . ,m, (3)
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where v⇤,j is the best and v�,j the worst result for each criterion. Next, the relative
closeness of each alternative Ai is determined:

Ci,⇤ =
Si,�

Si,⇤ + Si,�
. (4)

Finally, the best alternative is determined by choosing the alternative with the
lowest Ci,⇤, which corresponds to the shortest distance to the optimal solution. From
Equation (4), it is apparent that the best alternative also has the longest distance
to the worst solution (Triantaphyllou, 2000).

2.2 Related Work

There are several works associated with either explainable smart environments or
counterfactual explanations in the context of XAI.

Smart Environments Blumreiter et al. (2019) propose the framework MAB-EX
(Monitor, Analyze, Build, Explain) intended for cyber-physical systems, such as
smart environments. It sketches how to build self-explainable systems that evalu-
ate requirements and explainability models at run-time. Furthermore, Houzé et al.
(2022) deliver a modular XAI reference architecture for explainable smart homes. It
contains LECs (Local Explanatory Components) that each can explain the behavior
of one device in the smart home. They are extendable at run-time and communi-
cate with each other. Additionally, a central component to coordinate the LECs
and to generate system-wide explanations is included. Dobrovolskis et al. (2023)
introduce an agent-based approach to develop explainable IoT systems. The frame-
work incorporates various types of agents, including those responsible for sensing,
data collection, decision-making, and executing physical activities. Their proposed
method was applied to create an explainable, rule-based smart home system, which
was subsequently evaluated through a one-year study conducted in three labora-
tory rooms. In addition, Das et al. (2023) propose an explainable Human Activity
Recognition (HAR) framework that leverages state-of-the-art XAI methods to gen-
erate natural language explanations for why a specific activity was detected. The
framework is evaluated in the context of smart homes, where caregivers remotely
monitor individuals who live alone or require assistance. Sadeghi et al. (2024) pro-
pose SmartEx, a framework for generating user-centric explanations in rule-based
smart environments by including different contexts in the explanation. Moreover,
Herbold et al. (2024) extend SmartEx to include contrastive explanations, which
explain why an event occurred instead of another one.
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Counterfactual Explanations Counterfactual explanations are commonly used
in the context of XAI. For example, Madumal et al. (2020) offer an approach that
learns a Structural Causal Model as introduced by Pearl (2000) through reinforce-
ment learning. Then, counterfactual explanations are generated through an analysis
of the model. Furthermore, Poyiadzi et al. (2020) argue that a generated counter-
factual may not represent the underlying data distribution and prescribe unrealistic
goals. Therefore, they introduce FACE (Feasible and Actionable Counterfactual
Explanations), a method to generate counterfactual explanations in the context of
machine learning. FACE uncovers feasible paths between the current and desired
state of the object by considering the shortest path distances defined via density-
weighted metrics. Del Ser et al. (2024) use a GAN (Generative Adversarial Network)
and multi-objective optimization weighing plausibility, the intensity of changes, and
adversarial power to model the distribution of an input into a black box model
and to generate a counterfactual explanation from it. In contrast, Mothilal et al.
(2020) focus on diversity and feasibility. They propose DiCE (Diverse Counter-
factual Explanations), a framework to explain machine learning classifiers through
the generation and evaluation of a diverse set of counterfactual explanations. They
incorporate Determinantal Point Processes (DDP) to promote diversity and include
proximity and sparsity for feasibility. DiCE, however, assumes the underlying classi-
fication model to be differentiable and, therefore, excludes tree ensembles. Lucic et
al. (2022) resolve this problem by presenting FOCUS (Flexible Optimizable Counter-
factUal Explanations for Tree EnsembleS), which formulates the problem of finding
counterfactuals as a gradient-based optimization task. FOCUS provides an optimal
counterfactual example by determining a minimal change to the input that results
in an alternative prediction. Bertossi (2020) suggest an ASP (Answer-Set Program)
that determines counterfactual interventions to explain decisions made by classifica-
tion models. Their approach focuses on determining the features most responsible
for the classification and can be applied to black box models as well as rule-based
classifiers. Van der Waa et al. (2018), in contrast, argue that this approach becomes
infeasible in a high-dimensional feature space. Therefore, they deliver a method
using one-versus-all decision trees to identify the set of rules that led the classifier
to identify it as the foil and not the fact. Thus, they provide contrastive instead of
counterfactual explanations. Finally, Ranjbar et al. (2024) present three methods
to explain recommendation systems using counterfactual textual explanations.

But to the best of our knowledge, no work on counterfactual explanations in rule-
based smart environments has been done. We try to close this gap by introducing
our framework for generating counterfactual explanations.
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3 Approach

In the following, we define counterfactual explanations in rule-based smart environ-
ments by adopting the notion of minimal change utilized by several related works
mentioned in Section 2. Subsequently, we provide a framework for their generation
and its implementation.

Definition (Counterfactual explanations in smart environments). A counterfactual
explanation in a smart environment is an explanation containing the minimal change
to explanation constructs, such that a specific foil would have occurred instead of the
fact.

Here, we follow Sadeghi et al. (2024) and define explanation constructs as a set of
specifications, facts, propositions, and events related to both the internal elements
and the external world. The notions of fact and foil stem from contrastive explana-
tions that ask the question, "Why did the fact occur rather than the foil?" (Lipton,
1990). The fact refers to the event or piece of information that caused the need
for an explanation, whereas the foil refers to the event the user expected to happen
(T. Miller, 2021). Definitions of counterfactual explanations differ in their dealing
with the foil. While Guidotti (2022) and Bertossi (2020) define the foil as any event
different from the fact, Wachter et al. (2017) fix the foil to a specific incident. We
argue that in the context of smart environments, the user is not only interested in
undoing the fact but also wants to achieve a particular foil. Thus, we follow Wachter
et al. (2017) by selecting a particular event as the foil. Furthermore, we adopt the
concept of minimal change, as research shows that humans typically consider only
one or two causes when explaining an event and prefer to avoid unnecessary infor-
mation (T. Miller, 2019; Chazette & Schneider, 2020). Therefore, providing as little
information as possible while still enabling users to resolve the confusing situation
leads to the most effective outcomes.

Moreover, counterfactual explanations can be distinguished by their structure;
there are additive and subtractive ones. Additive counterfactual explanations add
new information to the situation while subtractive counterfactual explanations re-
move them (Roese & Epstude, 2017). We adapt this definition to rule-based systems
and define additive counterfactual explanations as explanations concerned with the
firing of rules. Conversely, we define subtractive counterfactual explanations in
rule-based smart environments as explanations concerned with the removal of rules,
where the removal refers to changing the system so that the rule no longer has true
preconditions. Markman et al. (2007) showed that additive counterfactual expla-
nations evoke an expansive processing style and, therefore, favor creative problem-
solving, whereas subtractive ones evoke a relational processing style that facilitates
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analytic task performance. Together, they allow users to apply cognitive processes
triggered in one task to another.

After formalizing the definition, we now present our framework to generate these
counterfactual explanations in rule-based smart environments. The framework uti-
lizes the foil determination method by Herbold et al. (2024) and determines the
minimal change mentioned in the definition of counterfactual explanations. Finally,
the framework uses a natural language pattern to transform the determined mini-
mal change into a natural language explanation. Our framework assumes that the
need for an explanation has already been identified, either by a user or through a
dedicated system. We assume that a mismatch between reality (the fact) and the
user’s expectation (the foil) has occurred and define this as a confusing situation.
Furthermore, we assume the inference engine of the underlying rule-based system
works correctly, and the confusing situation was not caused by an error. In such
cases, we redirect to the work by Herbold et al. (2024).

Three states and
rules with true
preconditions

Candidates to override or
reverse disturbing rules and

fire an appropriate rule

Candidates to fire an
appropriate rule

Cases of
explanation

needs

Minimal
change

Candidates to override or
reverse disturbing rules

[2.1.1]

[1, 2.2, 3.2.1,
3.2.2]

[2.1.2, 3.1.1,
 3.1.2]

Counterfactual
explanation

Figure 1: Procedure for developing a counterfactual explanation

In the following chapter, we describe the procedure for developing a counterfac-
tual explanation, as illustrated in Figure 1. In Section 3.1, we begin by identifying
the current, previous, and expected states of the device that caused the confusing
situation and the rules with true preconditions whose actions result in the system
to assume these states. The states and rules are then used in Section 3.2 to deter-
mine the appropriate case of the explanation need. Based on the identified case, the
framework calculates multiple candidates for the minimal change required to achieve
the foil, as detailed in Section 3.3. Each candidate consists of a set of explanation
constructs requiring either general or specific state changes so that the system would
result in the foil instead of the fact. To reduce the number of candidates, several
minima are computed during the collection phase, and once all candidates are col-
lected, the minimal one is determined. All minima are computed the same way using
the desirable properties outlined in Section 3.4. The specific computation process
for determining the minimal change is detailed in Section 3.5. The selected minimal
candidate is then transformed into a natural language counterfactual explanation
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using the pattern described in Section 3.6. Finally, in Section 3.7, we provide an
implementation of our framework.

3.1 Different States and Rules with True Preconditions

In the following, we refer to the device responsible for the confusing situation as the
device of interest. To determine the minimal change, three states of this device are
relevant:

• The current state: The state at the moment the need for an explanation arises.

• The previous state: The state before the current state if the state change
caused the need for an explanation. If this is not the case, the previous state
is set equal to the current one.

• The expected state: The state the user expected.

While the current and previous states are among the explanation constructs, the
expected one is derived from the foil, which is determined using the framework by
Herbold et al. (2024). It is important to note that the previous state may coincide
with either the expected or current one. However, the current and expected state
must differ as we assume the existence of a need for an explanation. Using these three
states, we can identify the sets of rules leading to each state. A rule is said to lead
to a state if its actions result in the device of interest to assume that specific state.
The rules with true preconditions leading to the current, previous, and expected
states are then used to determine the candidates for the minimal change. Notably,
although there may be multiple rules with true preconditions, only the rule with
the highest priority is actually fired. Additionally, the fired rule must lead to the
current state as it is the state the device of interest is in at the time the need for an
explanation arises.

3.2 Cases of Explanation Needs

Similarly to Herbold et al. (2024) and based on the current, previous, and expected
states, we present three different cases for explanation needs, which are displayed in
Table 1. We further categorize them into sub-cases, determined by the rules with
true preconditions leading to the three states. Each sub-case resolves the confusing
situation differently, as displayed in Figure 1. For each case, there are disturbing
rules, which are the rules with true preconditions that caused the confusing situation
and prevent us from achieving the foil. To resolve the confusing situation, the
disturbing rules must be overridden or removed. A rule is overridden by firing
another rule with higher priority, which executes an action that changes the state of
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Table 1: Three cases of explanation needs

Case Fact Foil State equal to the previous one

1 Event y occurred No event occurred Expected state

2 No event occurred Event z occurred Current state

3 Event y occurred Event z occurred None

the device specified in the actions of the original rule to a different one. Then, the
original rule does not affect the system anymore as it is nullified by the rule with
the higher priority. To fire the higher-priority rule, the states associated with its
preconditions are changed to the states required to make the preconditions true. A
rule is removed by making one of its preconditions false. This is done by changing
a state mentioned in a precondition to any other state.

Case 1 In the first case, the user encounters a confusing situation because an
unexpected event occurs. Therefore, the expected state of the device of interest
is identical to the previous one, as mentioned in Table 1. We assume that it is
too complex for a user to know that a rule has been overridden and to, therefore,
expect nothing to happen. Hence, we exclude this case and suppose that there are
no rules with true preconditions leading to the expected state. However, there has
to be at least one rule with true preconditions leading to the current state, as a rule
must have caused the event to occur. To achieve the foil, the system must return
to the previous state. Consequently, the disturbing rules are the rules with true
preconditions leading to the current state. As shown in Figure 1, removing all rules,
without overriding any, is possible as we end up in the previous state, which is equal
to the expected one.

Case 2 In the second case, the user is confused because they expected an event that
did not happen. Hence, the previous state is equal to the current one, as displayed
in Table 1. There can be rules with true preconditions leading to the expected and
current states. Firstly, we call the case where there are no such rules case 2.1.1. As
there are no rules with true preconditions, there are also no disturbing rules. In this
case, achieving the foil requires firing one rule that leads to the expected state.

In case 2.1.2, there are still no rules with true preconditions leading to the ex-
pected state, but some leading to the current one. These are disturbing rules as
they must be removed or overridden to achieve the foil. Removing all rules without
firing any is not possible, as we would remain in the current state and not reach the
expected one.
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Finally, if there are rules with true preconditions leading to the expected state,
they must be overridden by at least one rule with true preconditions leading to the
current state. Otherwise, there would be no need for an explanation as the device
of interest would be in the expected state. We refer to the situation where there
are rules with true preconditions leading to both the current and expected states as
case 2.2. The disturbing rules are those leading to the current state again. If any
of them are already overridden by a rule leading to the expected state, they require
no additional change and, therefore, do not influence the minimal change. Hence,
for simplicity, such rules can still be included in the disturbing rules. As outlined in
Figure 1, removing all disturbing rules and overriding none is possible, as the rules
with true preconditions leading to the expected state ensure that we end up at the
foil.

Case 3 In the third case, the user undergoes a confusing situation because some-
thing other than what they expected happened. In this case, the current, previous,
and expected states are all different from each other, as showcased in Table 1. Be-
cause the current state is not equal to the previous one, a rule must have fired.
Thus, there are rules with true preconditions leading to the current state. However,
rules leading to both the expected and previous states can exist but do not have to.
Therefore, there are four sub-cases:

Firstly, case 3.1.1 refers to the situation where there are no rules with true
preconditions other than the ones leading to the current state. Here, a rule was
fired, but the user expected a different action to happen. The disturbing rules
are the rules with true preconditions leading to the current state as they must be
removed or overridden. Additionally, a rule leading to the expected state must be
fired because just removing all disturbing rules results in the previous and not the
expected state.

Next, in case 3.1.2, there are rules with true preconditions leading to the current
and previous states but none leading to the expected one. Notably, as the current
state is not equal to the previous one, the rules with true preconditions leading to
the previous state are overridden by at least one rule leading to the current one.
In contrast to case 3.1.1, the disturbing rules also include the ones leading to the
previous state. The reason for this is that when the user applies the changes, the
rules with true preconditions leading to the current state may get removed. Then,
a rule leading to the previous state may have the highest priority and impact the
state of the device of interest and, hence, the minimal change. Similarly to case 2.2,
we can add these rules to the disturbing rules as they require no additional change
if they are already overridden. Again, firing is necessary as removing all rules would
result in the previous and not the expected state.
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Moreover, case 3.2.1 is concerned with rules with true preconditions leading to
the current and expected states but none leading to the previous one. This case
covers the situation where a user knew of a rule that would fire in this situation but
is caught off guard because the rule is overridden by another one. The disturbing
rules are the ones leading to the current state. Firing is not necessary as there are
rules with true preconditions leading to the expected state, which ensure that we
end up at the foil when all disturbing rules are removed.

The final case 3.2.2 has rules with true preconditions for all three states. To
the user, the situation looks similar to case 3.2.1, but, as in case 3.1.2, the rules
with true preconditions leading to the previous state may impact the computation
of the minimal change. Therefore, the rules with true preconditions leading to the
previous and current states are disturbing. Again, firing is not necessary as there
are rules with true preconditions leading to the expected state.

3.3 Collection of Candidates

After the disturbing rules have been determined, they must be removed or overrid-
den. Overriding a rule results in an additive counterfactual explanation, as we fire
a new rule that introduces changes to the system ("A had happened"). In contrast,
removing a rule results in a subtractive counterfactual explanation, as it removes
changes from the system ("A had not happened"). We further also refer to the
changes as additive and subtractive if they add or remove events. As outlined at the
beginning of this section, additive and subtractive counterfactual explanations have
different strengths. To maximize their benefits and not restrict ourselves unnecessa-
rily, we incorporate both structures into our counterfactual explanation. Therefore,
we can override or remove each disturbing rule independently. If there are multiple
disturbing rules, the possible combinations of overriding some rules and removing
others increase exponentially. Thus, we reduce them using the following approach:

If there are two rules, they must have different priorities. Then, if the rule with
the higher priority is overridden by a third rule with even higher priority, the rule
with lower priority is automatically also overridden. Hence, we sort all disturbing
rules by their priority and determine the changes to the system if, for each rule r:

1. All rules with lower or equal priority than r (including r) are overridden by a
rule.

2. All rules with higher priority than r are removed.

For each rule r, we derive a set of changes, where each set represents a candidate
for the minimal change. As displayed in Figure 1, in cases 1, 2.2, 3.2.1, and 3.2.2, it
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is possible to remove all disturbing rules and not fire any. Therefore, we add this as
an additional option to the set of candidates. In contrast, in cases 2.1.2, 3.1.1, and
3.1.2, it is not possible to remove all disturbing rules and not fire any. Hence, we add
the option of removing all disturbing rules and firing a rule leading to the expected
state with arbitrary priority to the set of candidates. Finally, in case 2.1.1, there
are no disturbing rules, we just have to fire any rule leading to the expected state.
Notably, just like overriding, the firing of rules introduces an additive component to
our counterfactual explanation. The next step is to determine the specific changes
required to fire, override, or remove these rules.

Additive Counterfactual Explanations To achieve the expected state through
the firing of a rule, all rules leading to the expected state are collected. If another
rule must be overridden, only rules with a higher priority are considered. Then, for
each of these rules, the minimal change to fire them is determined. To fire a rule,
all of its preconditions must be true. Therefore, all false preconditions of the rule
are collected. In addition to directly changing the state of a device mentioned in
a precondition to the desired one, rules whose actions result in the altering of the
state can also be fired if they exist. For these new rules, the minimal change to fire
them is determined in the same way. Then, for each precondition, the minimum
between directly changing the precondition or firing any of the rules with according
actions is determined. This process is repeated for all false preconditions, and the
changes to the system are collected in a set containing the minimal changes required
to make the rule fire. When the minimal change for each rule is determined, the rule
requiring the minimal change among them is chosen. Then, the changes required to
fire the chosen rule are the minimal changes needed to achieve the expected state
through the firing or overriding of a rule.

Subtractive Counterfactual Explanations To remove a rule, that is, change
something in the system such that the rule does not have true preconditions any-
more, it is enough to change one precondition as they all need to be fulfilled for
a rule to be able to fire. Therefore, the minimal change to make a precondition
false is determined for each precondition, and a minimum is computed among them.
When determining the changes required to make a precondition false, two additional
aspects must be taken into account. Firstly, as in the additive case, once we deter-
mine the change to the system that would make the precondition false, this change
can also be implemented through the actions of a rule that fired instead of a direct
manipulation. We implement this concept just as in the additive case. Secondly,
imagine the precondition we want to make false is "device d has state s1". Then,
there may be a rule r1 with true preconditions that has an action "change device
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d to state s1". If we change device d to any other state, r1 changes d back to s1

instantly, making it impossible to turn the precondition false. To solve this issue,
r1 must be removed as well. Therefore, we check for these rules and remove them
before removing the original precondition.

3.4 Desirable Properties

We identify five desirable properties that the minimal change that is contained in the
counterfactual explanation should have. These properties majorly influence the de-
termination of the minimal change during the collection process and the minimality
computation.

Controllability Firstly, we consider the property of controllability. It refers to the
ability of a user to implement the changes to the explanation constructs described
in the explanation themselves (Byrne, 2019). We distinguish between three different
levels of controllability, as suggested by Karimi et al. (2021) and adapt it to rule-
based smart environments: A change to an explanation construct is called actionable
if the user can directly change it, such as the temperature of a heater. Secondly, we
call the change to an explanation construct mutable but non-actionable if it cannot
be manipulated by the explainee directly but through the action of a rule. For
example, consider a lab whose door is usually closed for all staff members. In this
scenario, the explainee is a staff member and, therefore, cannot open the lab door.
Hence, the opening of the lab door is not actionable. However, there is a rule that
opens the lab door if the manager is on the same level as the lab. Thus, the lab door
can be opened, though not by the explainee themselves. They have to manipulate
the situation, such as asking the manager to come to the floor, to make the rule fire,
and to enter the lab. Finally, a change to an explanation construct is immutable if
the explainee cannot change them in any way, such as the weather.

Controllability is often considered the most important property of counterfac-
tual explanations, as people, when thinking about alternatives, mentally alter events
within their control over ones that are not and want to actually implement the mini-
mal change contained in the explanation (Guidotti et al., 2018; Poyiadzi et al., 2020;
Karimi et al., 2021). Therefore, we do not include controllability in the computation
of the minimal change but directly in the collection of the candidates: Immutable
changes to explanation constructs are only included if there are no actionable ones.
For mutable but non-actionable changes to explanation constructs, we search for
rules to change them and then consider the controllability of the preconditions of
these rules.
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Sparsity The first property that is directly included in the computation of the
minimal change is the sparsity of a set of changes to explanation constructs. It
refers to the number of changes to the system required to achieve the foil (Mothilal
et al., 2020). For example, consider the candidate "the door should be closed, the
light should be on, and the temperature should not be over 20°C". Then, the spar-
sity of this candidate is three as there are three features to change. Effectively,
sparsity is determined by the size of the set. It is considered a non-beneficial prop-
erty as the user wants to change as few features as possible and receive a short
explanation (Verma et al., 2024). Dai et al. (2023) found that users prefer short and
simple explanations in smart homes, further underlining the importance of sparsity
in the context of smart environments. In addition to the use as a property for the
computation of the minimum, sparsity is also included as a constraint: If a rule
requires more than three changes to its preconditions to fire, it is excluded, as the
explanation would get too long.

Temporality The notion of temporality considers the fact that people tend to
mentally undo more recent events over ones that happened longer ago, as shown in
two studies by D. T. Miller and Gunasegaram (1990). Therefore, the more recent
an event is, the more likely it should be chosen to be manipulated. Temporality is
directly included in the computation of the minimum and determined by considering
each change to an explanation construct separately and then taking the average
across all determined temporality scores. The temporality of a change is computed
by taking the difference in seconds from the point where the explanandum occurred
to the point where the change to the explanation construct last happened. If no such
point exists, the change is assigned the maximum integer value to ensure that it will
not be contained in the minimal change. Temporality is not a beneficial property
as the longer ago the state contained in the change was last true, the less likely it
should be chosen to be manipulated.

Proximity When determining a minimum, we want the change to the system to
be as minimal as possible. To account for this, the non-beneficial proximity score is
added to the computation of the minimum. It counts how many resulting changes
to the system there are if all changes in a candidate set were applied (Mothilal
et al., 2020). Our notion of proximity also considers what rules would be fired
if the explanation constructs were changed and how these rules would override or
make other rules fire that have actions themselves. Additionally, the proximity
score is determined differently depending on whether the change corresponds to
an additive or subtractive explanation. Changes relating to additive explanations
contain instructions, such as "the lamp was turned on". Therefore, we consider the
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state of the device after this change is implemented and what effects it would have.
For changes related to subtractive explanations, we consider the state the device of
interest had before the current state and its effects. This is due to changes relating
to subtractive explanations containing the removal of actions, such as "the lamp was
not turned on".

Abnormality As argued by Kahneman and Tversky (1982), people do not just
undo the most unlikely event out of all necessary conditions for an event but the most
exceptional one. This finding motivates the concept of abnormality as a measure of
how unusual an event is (Byrne, 2019). The abnormality of a change is determined
by the percentage of how often the state mentioned in the change was true in the
past compared to the other states of the device. For additive changes, abnormality
is a non-beneficial property, as the more abnormal an event, the less likely we want
to make it happen. In contrast, abnormality is a beneficial property for subtractive
changes as we remove events. To make abnormality beneficial for additive changes,
we alter the computation. Instead of determining the abnormality of the state we
want to achieve, the abnormality of all other states of the device is determined and
summed up. The determined abnormality then represents how abnormal it is for
the device not to be in the according state. But this coincides with determining how
normal it is for the device to be in the according state. Hence, the score is beneficial
and comparable to subtractive changes. Finally, the average across all changes in a
candidate set is taken to determine the abnormality of the candidate.

3.5 Minimal Change Computation

Once all candidates are collected, the optimal candidate is determined and selected
as the final minimal change that is included in the explanation. Additionally, several
minima are determined during the collection process, as outlined in the previous
sections. To determine the minimum, firstly, all duplicates within and between the
candidate sets are removed. Then, for each candidate, we calculate its sparsity,
temporality, proximity, and abnormality scores, as outlined in Section 3.4. These
properties serve as the decision criteria for selecting the optimal candidate. To
compute the minimum, we employ TOPSIS, an MCDM method outlined in Section
2. TOPSIS was chosen due to its widespread use (Taherdoost & Madanchian, 2023)
and its integration in the framework by Herbold et al. (2024), which we also use
for the foil determination. During the TOPSIS computation, sparsity, temporality,
and proximity are treated as non-beneficial criteria, while abnormality is considered
beneficial. Furthermore, users can assign weights to the criteria based on their
preferences or if they consider certain criteria to be more important than others.
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3.6 Generation of the Counterfactual Explanation

The returned minimum contains a set of state changes to explanation constructs
where the change is either specific ("device d should have had state s") or general
("device d should not have had state s"), depending on if it is an additive or sub-
tractive change. We use a natural language pattern to transform the changes into a
counterfactual explanation, which is provided to the explainee. The pattern refer-
ences (1) the device of interest, (2) the expected state, followed by (3) all additive,
and (4) all subtractive changes that must be implemented to achieve the foil. To
convey that the explanation is concerned with the minimal change that should have
happened, the tense is adjusted. The resulting pattern is as follows:

The device of interest would be expected state if additive changes

had happened and subtractive changes had not happened.
(5)

For example, the user is at home and watching TV when the TV suddenly turns
off. The user asks for an explanation and receives the following: "The TV would
be on if it was not after 11 pm." Here, the device of interest is the TV, and the
expected state is the TV being on. The framework determines that the minimal
change to achieve the foil is to remove the rule: "If it is after 11 pm, the TV turns
off." The required subtractive change is "not after 11 pm", which is added to the
natural language pattern.

3.7 Implementation

We implement our proposed framework as a plugin1 for SmartEx by Sadeghi et al.
(2024). SmartEx is a RESTful web service that can generate causal and context-
aware explanations in rule-based smart environments and is implemented in Java
using MongoDB as a database. It can be integrated into existing smart environ-
ments and provides an explanation layer for them while remaining decoupled from
the core intelligent system. SmartEx utilizes Home Assistant2 to take advantage of
the inference engine and to fetch runtime data such as rules, device states, and a log
of all past activities and states through a RESTful API. Additionally, SmartEx can
provide contrastive explanations through a plugin designed by Herbold et al. (2024).
We present a reference architecture of our implemented Counterfactual Explanation
Service and the components from SmartEx it interacts with in Figure 2.

When a counterfactual explanation is requested, the Case Distinction component
identifies the appropriate case of explanation need. This process involves determin-

1https://github.com/ExmartLab/SmartEx-Engine/tree/counterfactual
2https://www.home-assistant.io/
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Figure 2: Reference architecture of SmartEx and the Counterfactual Explanation
Service

ing the three relevant states (current, previous, and expected) and identifying the
rules with true preconditions that lead to these states. The Contrastive Explanation
Service is utilized to determine the foil from which the expected state is extracted.
The current and previous states are provided by the Explanation Service, which
retrieves them from the Home Assistant Logs provided by the Smart Environment
Manager. The three states are further used in almost all components of the Coun-
terfactual Explanation Service. The Algorithmic Explanation Generator is capable
of determining the rules that lead to a particular state. It is equipped with this
capability, as it allows the determination of all potential rules that may have fired,
which is necessary for generating causal explanations as they include the precondi-
tions of the fired rule if such a rule exists. Therefore, the Algorithmic Explanation
Generator is used to determine the rules leading to the three states and passes them
to the Case Distinction component. Subsequently, the rules without true precon-
ditions are excluded. Finally, the remaining rules and the three identified states
are used by the Case Distinction component to determine the appropriate case of
explanation need, as described in Section 3.2.

The appropriate case is provided to the Candidate Collection component. Based
on the case, it determines which rules need to be overridden or removed and whether
another rule must be fired, as shown in Figure 1. The computation of the change
to fire or remove a rule is done separately from the Candidate Collection component.
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To fire a rule, the Rule Firing Computation component uses the Algorithmic Ex-
planation Generator to determine all rules leading to the expected state. If another
rule must be overridden, only the rules with higher priority are considered. Then,
for each rule, the minimal change required to make the rule fire is computed, as de-
scribed in the subsection regarding additive counterfactual explanations in Section
3.3. Additionally, the Rule Firing Computation component considers whether it is
more minimal to fire another rule that causes a precondition of the current rule to
change its state rather than changing the state directly. Finally, the rule requiring
the minimal change to fire is determined. This is achieved by passing the necessary
changes for each rule to the Minimal Change Computation component. The mini-
mal candidate is then sent back to the Rule Firing Computation component, which
forwards it to the Candidate Collection component.

To remove a rule, the Rule Removal Computation component identifies all pre-
conditions of the rule that must be removed, as outlined in the subsection regarding
subtractive counterfactual explanations in Section 3.3. Then, the Smart Environ-
ment Manager is used to assess the controllability of the change required to make
each precondition false. If any change is actionable, all immutable ones are ex-
cluded. For each remaining precondition of the rule that must be removed, the
component evaluates whether there are rules with true preconditions that enforce
the state of the precondition. Such rules make it impossible to alter the precondition
directly, as their actions would immediately restore the original state. These rules
are subsequently also removed. Next, the component determines whether firing an
alternative rule would result in a smaller change than directly manipulating the
precondition. Finally, a minimal change computation across all preconditions of the
rule is performed. Again, the Minimal Change Computation component is used,
and the resulting change is provided to the Candidate Collection component.

When the Candidate Collection component receives the appropriate changes to
fire/override or remove the rules, it creates combinations of how rules can be overrid-
den or removed while reducing the number of combinations by using the approach
outlined at the beginning of Section 3.3. Each combination forms one candidate
for the final minimal change computation and is provided to the Minimal Change
Computation component.

The Minimal Change Computation component removes any duplicates and ex-
cludes all candidates that are not actionable if there are fully actionable ones. The
controllability of each candidate is determined by using the Smart Environment
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Manager. The remaining candidates are provided to the Property Score Determi-
nation component, where the scores for sparsity, temporality, proximity, and abnor-
mality are determined.

The Property Score Determination component computes the scores separately
for each candidate and for each property. The sparsity of a candidate is determined
by the size of the candidate set. The temporality of the candidate is calculated as
the average across the temporality scores of the changes in the candidate set. For
each change, the temporality score is determined as the difference in seconds from
the point where the explanandum occurred to the point where the state mentioned
in the change last turned true. The proximity of a candidate is determined as the
number of resulting changes to the system if all additive changes are implemented
and all subtractive changes are removed. Here, rules that may fire if the changes
are implemented and how their actions influence the system further are considered.
The abnormality of a candidate is determined as the average across the abnormality
scores of the changes in the candidate set. For additive changes, the abnormality
scores of all states of the device other than the one contained in the change are
determined and summed up. For subtractive changes, only the state mentioned in
the change is considered. The abnormality score of a change is calculated as the
percentage of occurrences in which the state matched the current state relative to
all states of the device of interest. After all property scores are determined, they
are provided to the Minimal Change Computation component.

The determined scores are used as input into TOPSIS, which is provided by the
Contrastive Explanation Service. The Minimal Change Computation component de-
termines the minimal candidate and the corresponding minimal change is sent to
the Natural Language Transformation component. It utilizes a pattern to create the
explanation, which is then issued to the user.
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4 Evaluation

To review how well our generated counterfactual explanations are received in prac-
tice, we conducted a quantitative human-centered evaluation as suggested by Vilone
and Longo (2021). In the following, we discuss the study design and present the
results, which form the basis of a further discussion in Section 5. To clearly define
the scope of our evaluation, we present two research questions:

RQ1: Do users prefer counterfactual or causal explanations in smart environments?

RQ2: In which contexts do users prefer counterfactual or causal explanations in

smart environments?

Here, causal explanations refer to the most commonly used explanations in smart
environments (Sadeghi et al., 2024). A further definition is given in Section 4.1.3.

4.1 Study Design

The study was conducted as an in-person interview and followed a within-subject
design. Participants were presented with six scenes depicting confusing situations
caused by automation in smart environments and received multiple explanations for
them. As we followed a within-subject design, all participants were exposed to the
same explanations. The scenes were experienced through a series of slides shown
during the interview. Furthermore, all participants went through the same set of
scenes in the same order.

4.1.1 Sampling and Participants

A total of 17 participants were recruited through personal contacts, though no de-
mographic data was collected. In addition, no exclusion criterion was applied.

4.1.2 Study Format

Subjects did not experience a real smart environment but were presented with slides
containing confusing situations in smart environments. Due to time and cost re-
straints, we refrained from placing subjects in real smart environments. Addition-
ally, unlike in a long-term study where participants live in a smart environment, we
could ensure that all participants experienced the same situations, making compari-
son easier. Moreover, we decided on an interview format as they are commonly used
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(a) Social room with music playing (b) Bob’s room with blinds down halfway

Figure 3: Reference images for participants

in XAI system evaluations (Lopes et al., 2022), and allowed us to clarify uncertain-
ties during the study. To strengthen the mental model of the smart environment,
the slides were enhanced via reference images, as shown in Figure 3. Addition-
ally, animations and sounds were added to some images to emphasize the confusing
situation.

4.1.3 Experiment Design

As we employed a within-subject design, participants received both causal and coun-
terfactual explanations during the study. The causal explanations served as the con-
trol group as they are commonly used in smart environments (Sadeghi et al., 2024).
They were determined by the Algorithmic Explanation Generator from SmartEx
and are structured as follows:

X happened because preconditions of the fired rule are true. (6)

X remains current state because no rule was executed. (7)

Explanation (7) was shown in the case where no rule was fired, which corresponds
to explanation need case 2.1.1 (Sadeghi et al., 2024). In contrast, the counterfactual
explanations were generated using the plugin for SmartEx presented in Section 3.7.
A complete list of all provided explanations that were provided during the study is
displayed in Table 2. Finally, before experiencing each scenario, participants were
asserted that all explanations were correct to ensure no influence on the rating of
the explanation.

The counterfactual plugin utilizes the foil determination capabilities developed
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Table 2: Explanations provided to participants

Scene Exp. Type Explanation

1 Causal The speaker is on because no meeting is going on in a
meeting room, and the social room is not empty.

Counterfactual The speaker would be off if there was a meeting going on
in a meeting room.

2 Causal The meeting room door is locked because it is before 8:30
am.

Counterfactual The meeting room door would be open if it was not before
8:30 am.

3 Causal The brightness is at 70 % because there is only a single
person in the room.

Counterfactual The brightness would be at 100 % if a device was connected
to the beamer.

4 Causal The speaker remains off because no rule was executed.
Counterfactual The speaker would be on if there was no meeting going on.

5 Causal The air conditioning is on because it is sunny and all win-
dows are closed.

Counterfactual The air conditioning would be off if the door was open
longer than 10 min and not all windows were closed.

6 Causal The blinds are rolled down halfway because the blind’s
controller down button was pressed twice, and the plant
lights are off.

Counterfactual The blinds would be rolled down completely if the plant
lights were not off.

by Herbold et al. (2024), but to isolate the impact of our proposed method for gen-
erating counterfactual explanations, we excluded it from our evaluation. To do so,
we limited our evaluation to devices with binary states, such as lamps that can be
either on or off. In these cases, the foil was defined as the device state opposite to
the current one, making the foil determination component unnecessary for this study.

Across the six scenes, each of the three cases of explanation needs was represented
twice, and sub-cases 1, 2.1.1, 2.2, 3.1.1, and 3.2.1 were incorporated. To address
varying levels of urgency, for each case, one scene where participants were under
time pressure and one where they were not was included. To account for multiple
types of smart environments, the scenes were spread out over two scenarios: a smart
office and a smart home. Furthermore, the causal and counterfactual explanations
differed to various extents across the scenes. In scene 2, the differences were purely
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linguistic, while in scenes 1 and 6, the counterfactual explanations included fewer
details than the causal ones. Moreover, in scenes 3 and 5, the counterfactual expla-
nations were actionable, whereas the causal ones were not. Finally, in scene 4, the
causal explanation issued explanation (7), while the counterfactual one provided a
solution on how the confusing situation could be resolved. Further details regarding
the explanations for each scene are presented in Section 4.1.5.

To evaluate RQ1, participants ranked their preferences for the two explanation
types (causal and counterfactual) and the option of receiving no explanation after ex-
periencing the confusing situation in each scene. Furthermore, a final questionnaire
contained four 5-point Likert-scale questions to determine participants’ agreement
with statements about the content and linguistics of each of the two explanation
types. This approach isolated participants’ opinions of the actual content of counter-
factual explanations generated by our framework. The decision to separate content
from linguistic evaluation stemmed from feedback in a pilot study, where multiple
participants highlighted that the linguistic phrasing of counterfactual explanations
was difficult to understand.

Furthermore, we collected additional contexts to answer RQ2. Before starting
the main study involving the six scenes, participants were asked about their general
preferences regarding explanation length (shorter with fewer details or longer with
more details) and objective (reason or solution). The question regarding explana-
tion length was motivated by the design of counterfactual explanations, which often
excludes details irrelevant to changing the situation. Similarly, preferences regarding
explanation objectives were measured, as counterfactual explanations aim to pro-
vide solutions to resolve the confusing situation (Wachter et al., 2017), while causal
explanations provide reasons by listing the preconditions of the fired rule. More-
over, after each confusing situation and before receiving the possible explanations,
participants were asked whether they wanted to receive an explanation. This ques-
tion allows us to analyze the impact of the need for an explanation on the specific
rankings participants assigned to the provided explanation types.

4.1.4 Procedure

The interview starts with a welcoming of the participant, followed by an introduction
and an overview of the study. Then, participants are given information regarding
data privacy and are asked two preliminary questions:

1. What do you prefer?

(i) Shorter but less detailed explanations.
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(ii) Longer but more detailed explanations.

2. What is more important in an explanation?

(i) Providing a reason for something that happened.

(ii) Providing a solution for changing something that happened.

Subsequently, the main section of the study is started. Subjects experience two
scenarios containing four and two scenes, respectively. In each scene, participants
are introduced to the setting and undergo a confusing situation. Afterward, they
are asked whether they would like to receive an explanation for the confusing sit-
uation and can choose to answer (1) yes, (2) I don’t care, or (3) no. Regardless of
their answer, they are provided with three paper snippets containing a causal and
a counterfactual explanation as well as a snippet saying no explanation. Using the
snippets, participants are asked to provide a ranking based on their preferences. All
provided explanations are listed in Table 2.

After completing all six scenes, participants are introduced to the concepts of
causal and counterfactual explanations. Causal explanations are framed as expla-
nations of the form X happened because. . . , while counterfactual explanations as
explanations of the form Y would have happened if. . . . Participants are then pro-
vided with two reference lists: one containing all causal and another containing all
counterfactual explanations participants received during the study. These lists can
then be used for reference during the final questionnaire. There, they are asked to
rank causal and counterfactual explanations separately on a 5-point Likert scale re-
garding their agreement (1 = strongly disagree, 5 = strongly agree) to the following
two sentences:

(i) I liked the explanations linguistically.

(ii) I liked the explanations content-wise.

This concludes the study, and participants are thanked for their participation. In
summary, the study takes, on average, 15 minutes.

4.1.5 Scenes

In the following, we provide an overview of the six scenes participants experienced,
identify the according case of explanation need as described in Section 3.2, and
elaborate on how the explanations were determined.
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First Scenario The first scenario is set in an office. It is the participant’s first day
working there, and they must hold a presentation at 9:00 am. This setting enables
us to introduce new rules to the participant during the following scenes as they
are placed in an unfamiliar environment. Additionally, the impending presentation
puts the participant under time pressure in the first three scenes. In the beginning,
the participant receives an introduction to the smart office’s capabilities, including
the provision of explanations. Furthermore, they are asserted that all provided
explanations are correct and are informed about one rule in the smart office:

r1: If it is one hour before a meeting starts, open the social and meeting room
doors.

As the participant is told that they arrive at 8:00 am, they assume the social and
meeting room doors to be open.

The first scene takes place in the social room, where the participant wants to get
a coffee. The confusing situation occurs when, as soon as they enter, the speaker
turns on and starts playing music. Along with a reference image of the social room,
the confusing situation is accentuated by music and animation of music notes, as
shown in Figure 3a. The confusing situation corresponds to the explanation need
case 1, as something unexpected occurs. It was caused by the following rule, whose
existence is unknown to the participant:

r2: If no meetings are going on, and the room is not empty, turn on the speaker.

The plugin described in Section 3.7 identifies that the minimal change required to
turn off the music is to remove rule r2 as no rule can override it. Consequently,
the counterfactual and causal explanations share similar content, as both reference
the preconditions of r2. However, the counterfactual explanation contains only the
precondition relevant to the minimal change, while the causal explanation lists all
of them, as shown in Table 2.

Scene 2 takes place when the participant is going to the meeting room. Because
of rule r1, they expect the meeting room door to be open. This assumption is
reinforced by scene 1, where the social room door was opened by r1. However, in
scene 2, the meeting room is locked, creating a confusing situation. The locked door
is emphasized by a rattling sound and an animation of a moving door handle. The
confusing situation was caused by the following rule, which overrides r1 as it has
higher priority and true preconditions:

r3: If it is before 8:30 am, close the meeting room door.
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The need for an explanation in this scene corresponds to case 2.2 as there are rules
with true preconditions leading to the current (r3) and expected state (r1). The
determined counterfactual explanation removes r3 as no rule can override it. As this
rule only has one precondition, the causal and counterfactual explanations contain
the same content and only differ linguistically, as shown in Table 2.

Next, the third scene takes place after 8:30 am in the meeting room. The partic-
ipant must hold the presentation shortly but finds the room to be too dark. Using
a remote, they turn the brightness up from 50 % to 100 %. However, the brightness
is automatically set back to 70 %. An image of the remote is provided to the user,
and an animation setting back the number on the remote is added to reinforce the
mental model. The scene covers case 3.1.1 as the confusing situation arises due to
something other than expected happening and there only being a single rule with
true preconditions leading to the current state:

r4: If there is only a single person in the room, keep the brightness of the light
below 70 %.

Therefore, the causal explanation contains its preconditions, whereas the counter-
factual one considers another rule with higher priority that could be fired:

r5: If there is a device connected to the beamer, turn the brightness to 100 %.

Unlike removing r4, firing r5 is actionable. Hence, it is determined as the minimal
change. Thus, the counterfactual explanation contains the false precondition of rule
r5, and the causal and counterfactual explanations differ starkly, as shown in Table
2. Additionally, the counterfactual explanation is, as opposed to the causal one,
actionable.

Scene 4 takes place in the social room again, but the participant is not under
time pressure anymore since their presentation is over. The confusing situation
arises because, unlike in the first scene, the speaker does not turn on as expected.
Participants thus experience case 2.1.1 where unexpectedly no event occurs. This
is due to the preconditions of r2 no longer being met as a meeting is taking place
in another meeting room that the participant does not know of. Therefore, the
counterfactual explanation identifies the minimal change required to make r1 fire.
In contrast, as no rule was fired, the causal explanation issues explanation (7), which
is its standard explanation for this case.

Second Scenario The second scenario takes place at home after the participant’s
first day at the office. They share their flat with a roommate called Bob, who is on
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vacation and asked the participant to look after his plants. Again, an introduction
to smart devices, rules, and explanations is given, as the flat is a smart home. Once
more, participants are told that all explanations are correct and are informed about
two rules in the smart home:

r6: If a room has been empty for more than 12 hours, turn off the air conditioning.

r7: If the blind’s controller down button is pressed twice, roll down the blinds.

Scene 5 takes place in Bob’s room as he has been on vacation for two days, and
the participant wants to water his plants. When entering the room, the participant
is informed that the air conditioning is on. A reference image of Bob’s room and
an animation portraying wind coming out of the air conditioning are provided to
enhance immersion. Furthermore, the participant is told to feel annoyed due to
concerns about increasing electricity bills. The confusing situation arises as the
participant knows that rule r6 fired. Therefore, they expect the air conditioning to
still be turned off. The confusing situation arises due to the following rule that has
true preconditions and a higher priority than rule r6:

r8: If it is sunny and all windows are closed, turn on the air conditioning.

This scene aligns with case 1 again as something unexpected happened, though with-
out time pressure, as the participant is at home. The causal explanation contains
the preconditions of r8, whereas the counterfactual one considers a third rule:

r9: If the door is open for more than 10 min, turn off the air conditioning.

Since r9 has a lower priority than r8, it is not enough to just fire r9. The framework
determines the minimal change to resolve the confusing situation as firing r9 and
removing r8, thereby providing an actionable counterfactual explanation.

In the final scene, the participant is still in Bob’s room. The instructions from
the issued counterfactual explanation were followed as the door, and a window were
opened to turn off the air conditioning. Now, the participant is told to be worried
that Bob’s room may get too hot. Therefore, they want to roll down the blinds
by utilizing rule r7 presented to them in the introduction of the second scenario.
However, when pressing the blind’s controller down button twice, as suggested by
r7, the blinds only roll down halfway. This surprising situation is again enhanced
by a reference image of Bob’s room as well as animation and the sound of blinds
rolling down, as displayed in Figure 3b. Here, the rule that overrode r7 to ensure
that the plants get enough light is:

r10: If the blind’s controller down button is pressed twice and the plant lights are
turned off, roll down the blinds halfway.
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Thus, the scene covers case 3.2.1. The causal explanation contains all preconditions
of r10, whereas the counterfactual one wants to remove the rule, therefore only
containing one of its preconditions.

4.2 Results

In this section, we present the results of our conducted study, which are the basis of
a further discussion in Section 5. As the number of participants was relatively low,
we performed no statistical analysis.

As shown in Figure 4, participants generally preferred to receive an explanation.
This preference was strongly pronounced in all but the first and fourth scenes, as at
least 65 % of the participants expressed a desire for an explanation. Notably, in scene
5, all 17 participants, without exceptions, expressed the need for an explanation. In
contrast, participants’ opinions were more divided in scene 4. While a majority
still preferred to receive an explanation, a notable proportion showed no preference.
Furthermore, in scene 1, participants predominantly preferred not to receive an
explanation, although this preference was not as strong compared to the other scenes.

Figure 4: Explanation needs per scene

As shown in Table 3, participants expressed a strong preference for causal expla-
nations over counterfactual ones linguistically. While counterfactual explanations
were rated averagely on a 5-point Likert scale, causal explanations were rated sig-
nificantly higher. In contrast, participants rated counterfactual explanations more
favorably content-wise. However, the ratings concerned with the content of the
explanations were not as extreme, and the difference between the ratings was sig-
nificantly smaller. Finally, standard deviations were relatively high, indicating vari-
ability in participants’ responses.
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Table 3: Explanation types rated linguistically and content-wise

Explanation Type Criterion Mean Std

Causal Linguistically 4.235 0.752

Counterfactual Linguistically 2.941 1.029

Causal Content-wise 3.529 1.179

Counterfactual Content-wise 3.647 0.996

During the main part of the study, causal explanations were slightly favored over
counterfactual ones, as they were ranked first more often, as shown in Figure 5. How-
ever, causal explanations were also ranked last more often than counterfactual ones,
though the difference in rankings was relatively small. Receiving no explanations
was rarely chosen first and most often ranked last, indicating an overall desire for
some form of explanation. Causal explanations were predominantly preferred in the
first two scenes, where they were almost always ranked first. In contrast, counter-
factual explanations were more frequently ranked first in the subsequent four scenes.
Notably, a majority of the causal explanations that were ranked last came from the
fourth scene, whereas for the counterfactual explanations, a majority belonged to
the first scene. Finally, receiving no explanation was mostly ranked last across all
scenes except for scenes 1 and 4.

Figure 5: Combined rankings of no, causal and counterfactual explanations

When considering a distinction of the scenes, as done in Figure 6, further insides
can be gained. In scene 1, causal explanations were preferred over counterfactual
ones and over receiving no explanation, as they were ranked first most often. Re-
ceiving no explanation was selected second most often, while counterfactual expla-
nations were predominantly ranked last. However, while causal explanations were
strongly preferred over the other two options, the difference in rankings between
counterfactual explanations and receiving no explanation was not as significant.

In scene 2, the ranking was very strongly pronounced. Causal explanations
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(a) Scene 1

(b) Scene 2

(c) Scene 3

(d) Scene 4

(e) Scene 5

(f) Scene 6

Figure 6: Rankings of no, causal, and counterfactual explanations per scene
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were ranked first by all but two participants, while counterfactual explanations were
ranked second, except for four cases. Apart from three exceptions, receiving no
explanation was always ranked last.

Contrarily, in the third scene, counterfactual explanations were strongly preferred
over causal ones as they were ranked first by the majority of participants. However,
causal explanations were strongly favored over not receiving any explanation, as they
were most frequently ranked second. Receiving no explanation was ranked third by
most participants.

In the fourth scene, counterfactual explanations were again strongly favored,
as they were ranked first significantly more often than receiving no explanation
or a causal one. Additionally, getting no explanation was chosen first and second
marginally more frequently than getting a causal explanation. Causal explanations
were ranked last most frequently. Hence, receiving no explanation was slightly
favored over receiving a causal one.

In the fifth scene, subjects again favored counterfactual explanations, ranking
them first more often than causal ones. However, the difference in rankings between
causal and counterfactual explanations was less distinct compared to previous scenes.
Receiving no explanation was preferred the least, as it was ranked last most often.
Interestingly, although counterfactual explanations were ranked first more frequently
than causal ones, they were also ranked last more often, suggesting a divisive opinion
of counterfactual explanations among participants.

Finally, in scene 6, counterfactual explanations were again slightly preferred
over causal ones, as they were ranked first marginally more often. Contrarily, causal
explanations were ranked second and third minimally more often. Not receiving any
explanation was the least preferred option, as it was predominantly ranked last.

In summary, causal explanations were primarily favored in the first two scenes.
The difference was very pronounced as receiving no or a counterfactual explanation
was rarely ranked first. In contrast, counterfactual explanations were preferred in
the subsequent four scenes, with particularly strong preferences in scenes 3 and 4.
The strongest consensus for a distinct rating occurred in scene 2, where at least than
12 out of 17 participants had the same preference for each rank. Across all scenes,
receiving no explanation was generally not preferred, as it was scarcely ranked first
and chosen last in four out of six scenes. In the first scene, receiving a counterfactual
explanation was least preferred, while in the fourth scene, a causal explanation was
most frequently ranked last.

Apart from analyzing preferences on a scene-by-scene basis, we also investigate
the participants’ rankings based on their preferences regarding explanation length
and objective. We divide participants into two groups for each criterion and analyze
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the rankings for each group. The results are presented in Figure 7. Overall, 12 out
of 17 participants expressed a preference for shorter over longer explanations, and
9 out of 17 participants indicated a preference for explanations providing a solution
over a reason.

We begin by investigating the rankings of participants preferring shorter expla-
nations, as displayed in Figure 7a. Among this group, counterfactual explanations
were ranked first slightly more often than causal ones. Receiving no explanation
was generally not preferred, as it was ranked third most often. When analyzing in-
dividual scenes, causal explanations were strongly favored over counterfactual ones
in the first two scenes. However, in the subsequent four scenes, counterfactual ex-
planations were preferred over causal ones, with the preference being particularly
pronounced in scenes 3 and 4.

In contrast, the five participants preferring longer explanations generally strongly
favored causal explanations over counterfactual ones, as they were ranked first most
often, as shown in Figure 7b. Again, receiving no explanation was the least preferred
option, as it was ranked last most frequently. When analyzing the scenes, causal
explanations were favored over counterfactual ones in the first two scenes. However,
in the remaining four scenes, no clear preference emerged as, due to the small number
of participants in this group, no tendency of more than one participant was observed.

Among participants with a preference for explanations providing a solution rather
than a reason, counterfactual explanations were slightly favored over causal ones
as they were ranked first more often, as illustrated in Figure 7c. Receiving no
explanation was the least preferred option, as it was ranked last by a majority of
participants. Causal explanations were strongly preferred in the first two scenes,
as most participants in this group ranked them first. In contrast, counterfactual
explanations were favored in the subsequent four scenes, particularly in scene 3,
where all participants ranked counterfactual explanations first. But counterfactual
explanations were also strongly favored in scenes 4 and 6.

On the other hand, among participants with a preference for explanations pro-
viding reasons, causal explanations were strongly preferred as they were ranked first
most often, as displayed in Figure 7d. Receiving no explanation was not favored as
it was ranked last by most participants. When analyzing the scenes, causal expla-
nations were preferred in scenes 1, 2, and 6, while counterfactual ones were favored
in scene 4. In scenes 3 and 5, first-place rankings for the two explanation types were
relatively evenly distributed, indicating no clear preference for either explanation
type.

In summary, counterfactual explanations were preferred among participants,
with a preference for shorter explanations and explanations providing a solution.
Contrarily, causal explanations were preferred among participants, with a prefer-
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(a) Preference for shorter explanations

(b) Preference for longer explanations

(c) Preference for explanations providing a solution

(d) Preference for explanations providing a reason

Figure 7: Combined rankings of no, causal, and counterfactual explanations by
participants with different preferences
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ence for longer explanations and explanations providing a reason. Again, receiving
no explanation was preferred by neither of the groups. When analyzing each scene,
causal explanations were preferred by all groups in the first two scenes. In scene
3, counterfactual explanations were favored by participants, preferring shorter ex-
planations and explanations providing a solution. No tendency could be observed
in participants favoring longer explanations and explanations providing a reason.
In the fourth scene, counterfactual explanations were favored by all groups except
for the group containing participants who preferred longer explanations. In this
group, no tendency could be observed. In addition, the preference for counterfac-
tual explanations was more pronounced in the groups favoring shorter explanations
and explanations providing a solution. In scene 5, counterfactual explanations were
marginally preferred by participants, favoring shorter explanations and explanations
providing solutions. In contrast, participants preferring longer explanations or ex-
planations providing reasons favored neither of the two explanation types. In the
last scene, counterfactual explanations were preferred among subjects, with a pref-
erence for shorter explanations and explanations providing a solution. However, the
difference was more significant in participants favoring explanations that provide a
solution. Causal explanations were preferred by participants, favoring explanations
that provide a reason, while no tendency could be observed for participants prefer-
ring longer explanations.

Finally, to conduct an analysis per participant, we present Figure 8, which dis-
plays the amount of no, causal, and counterfactual explanations ranked first by
each participant. Among the 17 participants, five showed a preference for causal
explanations, while four favored counterfactual ones. Receiving no explanation was
not favored by any participant, as the remaining eight participants showed no clear
preference towards any option.

Participants indicating a preference for shorter explanations with fewer details
over longer ones with more details preferred counterfactual explanations in three
cases, while causal ones were favored by two participants. The remaining six par-
ticipants showed no clear preference. Conversely, among participants indicating a
preference for longer explanations, causal explanations were preferred by three out
of five participants. One participant preferred counterfactual ones, while another
showed no preference.

Participants preferring explanations that provide a solution over a reason favored
both causal and counterfactual explanations in two cases. The remaining five par-
ticipants showed no preference for any option. In contrast, causal explanations were
favored by three participants who indicated a preference for explanations providing
a reason. Counterfactual explanations were preferred by two participants, while
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Figure 8: No, causal, and counterfactual explanations ranked first per participant

three participants had no preference.
In conclusion, the preference for no, causal, or counterfactual explanations varied

significantly between the participants. Five participants rated one explanation type
first in at least five out of six scenes, indicating a strong preference for one explana-
tion type regardless of the scene. In contrast, about half of the participants (8 out of
17) had no preference. Additionally, among participants with either preference for
an explanation objective, no explanation type was strongly preferred. Participants
with a preference for longer explanations favored causal explanations, though no
preference could be observed among participants favoring shorter explanations.
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5 Discussion

In the following, we discuss the results of our evaluation by answering the research
questions proposed in Section 4 and debate the threats to validity.

5.1 General Preferences

Regarding RQ1, we found that users, in general, do not prefer one explanation type
over the other. Summarized across all scenes, causal explanations were preferred
over counterfactual ones because they were ranked first slightly more often, as dis-
played in Figure 5. However, causal explanations were also ranked last somewhat
more often, indicating a divisive opinion. Most first-place rankings for causal expla-
nations stemmed from the first two scenes. There, causal explanations were strongly
favored over counterfactual ones. However, counterfactual explanations were pre-
ferred in the remaining four scenes, even though in scenes 5 and 6, the difference
among preferences was not as distinct. Receiving no explanation was usually the
least preferred option except for scenes 1 and 4, where counterfactual and causal
explanations were preferred the least, respectively.

When analyzing individual participants’ preferences, no general preference for
one explanation type could be determined, as shown in Figure 8. While approx-
imately the same amount of participants displayed a strong preference for either
causal or counterfactual explanations, about half of the participants indicated no
distinct preference for one explanation type.

Additionally, participants were asked to rank the explanation types based on
their agreement to liking them both linguistically and content-wise. Causal expla-
nations were strongly preferred linguistically over counterfactual ones, while coun-
terfactual explanations were rated slightly better than causal ones in terms of con-
tent. These results indicate a need for linguistic improvements to counterfactual
explanations. Although the use of complex tenses in counterfactual explanations is
necessary to convey the minimal change required to change the outcome, we propose
the use of a large language model to improve their linguistic clarity. By doing so,
counterfactual explanations may show the potential to be consistently rated higher
than causal explanations, as the difference in linguistic ratings was significant, while
the difference in rankings during the main study was relatively small.

In conclusion, no generalization regarding the overall preference for either expla-
nation type can be made. Therefore, we proceed with a discussion of RQ2, where
we analyze the contexts influencing users’ preferences for an explanation type.
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5.2 Contexts Influencing the Preferences

To answer RQ2, we analyze the impact of several user-centric, situational, and
explanation-specific contexts on users’ preferences for causal and counterfactual ex-
planations. Each context is analyzed separately before conclusions about which con-
texts influence the preference for each explanation type are drawn. Finally, based
on the contexts, we offer speculations to explain the rankings observed in each scene
of our study.

5.2.1 User-Centric Contexts

Firstly, we analyze the effect of user preferences on the preference for an explana-
tion type to provide insight into which users may benefit most from which type
of explanation. Before the main study, participants were asked about their pref-
erences regarding explanation length and objective. A majority preferred shorter
explanations with fewer details over longer ones with more details. In contrast, par-
ticipants’ preferences on the explanation objective (solution vs. reason) were evenly
divided. As shown in Figure 6, counterfactual explanations were slightly preferred
over causal ones among participants with a preference for shorter explanations and
explanations providing a solution. In contrast, participants with a preference for
longer explanations and explanations providing a reason favored causal explana-
tions over counterfactual ones.

However, when looking at each participant individually, as shown in Figure 8,
preferences for any explanation objective and short explanations did not influence
the preference for an explanation type. In contrast, participants preferring longer
explanations favored causal explanations over counterfactual ones. Though, only
five participants expressed a preference for longer explanations, indicating the need
for further research.

Additionally, we consider participants’ preferences for each scene and each group
(shorter vs. longer and solution vs. reason) separately. In the first two scenes, causal
explanations were preferred by all groups. However, in the remaining four scenes,
preferences were more divided. While counterfactual explanations were preferred by
the groups favoring shorter explanations and explanations providing solutions, the
other two groups usually had no tendency. Only participants favoring explanations
that provide reasons preferred causal explanations in scene 4 and counterfactual
ones in scene 6. These findings are consistent with the previous results, as partic-
ipants who preferred shorter explanations or explanations offering a solution gen-
erally tended to favor counterfactual explanations slightly more in each scene than
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the average participant, whereas the other two groups showed a slight preference for
causal explanations in each scene when compared to all participants.

In summary, counterfactual explanations are preferred among users favoring
shorter explanations and explanations providing a solution, while causal ones are
favored by users preferring longer explanations and explanations providing a rea-
son. This result coincides with our expectation outlined in Section 4.1.3. By design,
counterfactual explanations frequently omit details unnecessary for changing the
situation. Additionally, they aim to provide a solution for a confusing situation
(Wachter et al., 2017), which makes them suitable for users liking shorter explana-
tions that provide a solution. In contrast, as causal explanations contain the rule
that fired and caused the confusion, they provide a reason for the current situa-
tion. Furthermore, they mention all preconditions of this rule and, hence, include
more details than counterfactual explanations, making them suitable for users liking
longer explanations that provide a reason.

Additionally, we identify further situational and explanation-specific contexts
that we suspect influence the preference of users for an explanation type. For each
scene, the contexts are presented in Table 4. We identify the effect of each context
on the preference for counterfactual and causal explanations. To do so, we determine
an integer for each explanation type and context, where the larger the integer, the
larger the impact of the context on the preference for the explanation type. The
integer is determined as a sum over all six scenes. For each scene, we add +1 if
the explanation type was preferred and the context applied or if the explanation
type was not preferred and the context did not apply. Conversely, we add �1 if the
explanation type was preferred, but the context did not apply, or the explanation
type was not preferred, but the context applied. Finally, we provide comments and
speculations on the reason for the determined effect.

5.2.2 Situational Contexts

We begin by examining four situational contexts: the smart environment the user is
in, whether they are under time pressure, prefer to receive an explanation, or want
to alter the situation. These contexts are chosen as the relevance of an explanation is
highly dependent on the specific situation in which they are provided (Hanson, 1972).
Additionally, we aim to provide further insights into which types of explanations
should be issued in which situations.

Setting Firstly, we discuss the setting or type of smart environment the user is
in. The study included two types of smart environments: a smart office and a smart
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home. As shown in Table 4, scenes 1 to 4 were situated in a smart office, whereas
scenes 5 and 6 were set in a smart home. In the four smart office scenes, causal
and counterfactual explanations were preferred on two occasions each. Conversely,
in the two smart home scenes, counterfactual explanations were always preferred.
Consequently, the effect of the smart office setting on the preference for causal
explanations is +2, while its effect on the preference for counterfactual explanations
is �2. In contrast, the smart home setting has an effect of �2 on the preference for
causal explanations and an effect of +2 on the preference for counterfactual ones.
In summary, the setting does impact users’ preferences for an explanation type.
Causal explanations are more often favored in smart offices, while counterfactual
explanations are preferred in smart home settings. One participant noted that they
did not care what happened in the office environment as they were not in their own
space. This suggests that the preference for causal explanations in smart offices
may be attributed to their straightforward nature. Meanwhile, the preference for
counterfactual explanations in smart homes may reflect users’ greater willingness
to invest cognitive effort in comprehending more complex explanations within their
personal space. This distinction in cognitive effort requirements was also pointed
out by several participants and is further evidenced by the linguistic ratings, as
shown in Table 3.

Time Pressure Next, we analyze if users prefer different explanations when they
are under time pressure. As displayed in Table 4, we identified that participants
were under time pressure in the first three scenes because they had to hold a pre-
sentation soon. In both cases where participants preferred causal explanations, they
were under time pressure. In contrast, counterfactual explanations were preferred
in one scene where participants were under pressure and in three scenes where they
were not. Therefore, the effect of the existence of a time pressure component on
the preference for causal explanations is +4. Contrarily, its effect on the preference
for counterfactual explanations is �4. Hence, counterfactual explanations are less
preferred in scenes where users are under time pressure, while causal ones are more
preferred. As in the setting context, we hypothesize that users prefer causal expla-
nations when they are under time pressure because they require less time and effort
to comprehend than counterfactual explanations.

Explanation Need Additionally, we examine the effect of the need for an expla-
nation on the preference for an explanation type. After experiencing the confusing
situation and before receiving any explanation, participants were asked if they de-
sired one. As shown in Figure 4, participants generally preferred to receive an
explanation, except in scene 1, where most participants did not express a desire
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for one. Out of the five scenes where receiving an explanation was favored, causal
explanations were preferred once, while counterfactual explanations were favored
four times. In scene 1, where not receiving an explanation was preferred, causal
explanations were favored over counterfactual ones. Therefore, the existence of an
explanation need has a strongly negative effect of �4 on the preference for causal
explanations and a strongly positive effect of +4 on the preference for counterfac-
tual ones. We deduce that counterfactual explanations are preferred when there is
a need for an explanation, while causal ones are not. However, as there is only one
scene where participants generally did not want to receive an explanation, further
research is required to come to a definitive conclusion.

Desire to Change Moreover, we analyze the impact of the user’s desire to change
the situation on the preference for an explanation type. During our study, partici-
pants encountered four scenes where they had the desire to change the situation and
two where they did not. As outlined in Table 4, in scenes 1 and 4, participants did
not care if the speaker was on or off and, therefore, did not have the desire to change
the situation. In contrast, when the meeting room door did not open in scene 2,
participants could not brighten up the room in scene 3, the air conditioning was on
in scene 5, and the blinds only rolled down halfway in scene 6, participants wanted
to manipulate the confusing situation to achieve a goal. Notably, in scene 6, multiple
participants asked whether the blinds that were rolled down halfway were sufficient
for cooling down the room. Additionally, in scene 3, some participants wanted to
know whether a brightness level of 70 % was enough, suggesting that a desire to
change the situation would influence their responses. In the four scenes where users
desired to change the situation, counterfactual explanations were preferred on three
occasions, while causal explanations were preferred once. In the two scenes where
no change was desired, causal and counterfactual explanations were each favored
once. Consequently, the effect of a change being desired on the preference for causal
explanations is �2, while it is +2 for counterfactual ones. Therefore, if there is
a desire to change the situation, counterfactual explanations are usually preferred,
while causal explanations are not. We suspect that this is due to counterfactual
explanations answering how to questions (Woodward, 2003), and hence enabling
users to change the situation. In contrast, causal explanations provide reasons for
the confusing situation, as opposed to solutions to resolve them, as they mention all
preconditions of the rule that fired.

5.2.3 Explanation-Specific Contexts

Next, we analyze multiple contexts regarding the explanations themselves. We con-
sider their length, whether users can implement their proposed changes, and if they
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contain negations. Additionally, we consider the structure of the counterfactual
explanations (additive vs. subtractive) and whether they omit any details.

Length We investigate the effect of explanation length as the literature suggests
that users generally prefer to receive short explanations (Dai et al., 2023). We
consider an explanation to be longer than another one if it contains at least three
more words. Hence, we identified the causal explanations in scene 1 and 6 and the
counterfactual explanation in scene 5 as being longer. As the explanation length
is approximately the same in the remaining scenes, they are excluded from our
analysis, as outlined in Table 4. The longer causal explanations were preferred in one
instance and not preferred in another, while the longer counterfactual explanation
was preferred. Hence, the effect of the explanation being longer on the preference for
both causal and counterfactual explanations is determined as +1, suggesting that
they are preferred if they are longer. However, this contradicts current literature
(Dai et al., 2023) and participants’ answers regarding preferences for explanation
length in the preliminary questionnaire. Moreover, the effect is only marginal, and
just three scenes were included in its determination, indicating the need for further
research.

Actionability Our framework excludes, wherever possible, changes that users
cannot implement themselves, i.e., changes that are not actionable, as outlined in
Section 3.4. Consequently, actionability plays a crucial role. To evaluate this design
decision, we analyze the effect of completely actionable explanations on partici-
pants’ preferences for causal and counterfactual explanations. Causal explanations
were fully actionable only in scene 6, whereas counterfactual explanations were com-
pletely actionable in scenes 3, 5, and 6, as shown in Table 2. Preferences for causal
explanations were determined in two instances when they were non-actionable but
never when they were actionable. Out of the four instances where counterfactual
explanations were preferred, they were actionable in three instances and not action-
able once. Hence, the effect of actionability on the preference for causal explanations
is 0, while for counterfactual explanations, the effect is +4. From this, we infer that
the actionability of an explanation has no impact on the preference for causal ex-
planations. However, as they were only actionable in one scene, further research to
confirm this finding is required. In contrast, the actionability of an explanation has
a significant effect on the preference for counterfactual explanations. This obser-
vation aligns with the argument by Roese (1997), who claims that counterfactual
functionality is maximized in actionable situations. Additionally, it aligns with the
arguments by Poyiadzi et al. (2020), who emphasize the importance of controlla-
bility in counterfactual explanations. Finally, since counterfactual explanations are
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designed to offer solutions for changing the current situation (Wachter et al., 2017),
their actionability becomes particularly crucial, as it constitutes the core purpose
of those explanations. These findings reinforce our design decision to prioritize the
actionability of the generated counterfactual explanation.

Negations As we received feedback from multiple participants that the counter-
factual explanations were difficult to understand due to single and double negations,
we analyze their impact on the preference for each explanation type. First, we de-
termine the effect of any negation. The causal explanations contained negations
in scene 1 and 4 while the counterfactual ones contained them in scenes 2, 4, 5,
and 6, as displayed in Table 2. Causal explanations were preferred once when they
contained a negation and once when they did not. In contrast, counterfactual ex-
planations were preferred in three cases when they contained a negation and once
when they did not. Hence, the effect of a single negation on the preference for causal
and counterfactual explanations is +2, suggesting that both explanation types are
preferred if they contain negations. However, this contradicts our preliminary hy-
pothesis.

We hypothesize that instead of single negations, users mainly dislike double nega-
tions or unnecessarily complex expressions that can be easily simplified, as a second
negation considerably adds to the comprehension time (Sherman, 1976). While the
causal explanations issued in our study did not contain these types of expressions,
the counterfactual explanations contained them in scenes 2, 5, and 6. In scene 2,
not before 8:30 am could be simplified to after 8:30 am, in scene 5, not all windows
were closed could be simplified to a window was opened, and in scene 6, the plant
lights were not off, could be simplified to the plant lights were on. Counterfactual ex-
planations were preferred twice when they contained these types of expressions and
twice when they did not. Additionally, they were not preferred once when they did
not contain them and once when they contained them. Hence, the determined effect
of these phrases on the preference for counterfactual explanations is 0, indicating
no impact. However, in scene 2, we determined the biggest difference between the
rankings of causal and counterfactual explanations, though the explanations only
differed linguistically. Here, the double negation in the counterfactual explanation
was one of the only differences, suggesting that it significantly impacted the ranking.
Moreover, while counterfactual explanations were preferred in scenes 5 and 6, the
preference was not as strongly pronounced, which could be explained by the difficult
phrases contained in the counterfactual explanations. However, these observations
remain speculative, and further research is required.
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Finally, we discuss two additional contexts specific to counterfactual explana-
tions: the explanation structure (additive vs. subtractive) and whether the coun-
terfactual explanation omitted any details, such as additional preconditions.

Explanation Structure Instead of considering negations as a directly influencing
factor, we hypothesize that the structure of the explanation affects its preference,
as subtractive explanations inherently include a negation, whereas additive explana-
tions do not. Moreover, additive and subtractive counterfactual explanations pos-
sess different benefits and, hence, should be used in different contexts (Byrne, 2019;
Markman et al., 2007). Among the six provided counterfactual explanations, two
were additive, three were subtractive, and one explanation contained additive and
subtractive components, as explained in Section 4.1.5. One additive and one sub-
tractive counterfactual explanation were not preferred over the causal one, whereas
two subtractive ones, an additive one and the explanation containing both, were
preferred. Therefore, the effect of an additive component in the explanation on
the preference for counterfactual explanations is 0, while for subtractive ones, it is
+2. Hence, counterfactual explanations are preferred if they contain subtractive
elements. We speculate that this is due to subtractive explanations usually being
the more obvious ones. They contain information that is directly related to the con-
fusing situation, while additive explanations include new rules and, therefore, add
new and not directly related information. Additionally, subtractive counterfactual
explanations evoke a relational processing style (Markman et al., 2007), which may
be more suitable to grasp the interactions of rules in rule-based systems.

Omission of Details As the omission of unnecessary details is an integral part
of our framework, we analyze its effect on the preference for counterfactual expla-
nations. We define an explanation as omitting information when it does not include
all preconditions of the referenced rule. Notably, causal explanations did not omit
details. As described in Section 4.1.5, counterfactual explanations excluded details
in scenes 1, 4, 5, and 6. Among the four instances where counterfactual explana-
tions were preferred, three excluded details, while one contained all information.
Conversely, when counterfactual explanations were not preferred, they excluded de-
tails in one instance and contained all information in another. Thus, the effect
of an information omission on the preference for a counterfactual explanation is
+2. We conclude that users generally prefer explanations that omit unnecessary in-
formation, a finding consistent with current literature (Chazette & Schneider, 2020).

In summary, we could not determine a general preference for counterfactual
or causal explanations. While causal explanations were overall ranked first more
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frequently, counterfactual explanations were favored in more scenes. Counterfactual
explanations were criticized for their complex linguistics, though their content was
slightly preferred. Additionally, participants’ preferences varied considerably.

We analyzed several contexts contributing to a preference for each explanation
type. Causal explanations were preferred by users, favoring longer explanations and
explanations providing a reason. Moreover, they were preferred when users were
in an office environment or under time pressure. In contrast, counterfactual ex-
planations were favored by users, preferring shorter explanations and explanations
providing a solution. In addition, they were preferred when users were at home,
wanted to change the situation, or when the explanation was actionable. Further-
more, subtractive explanations were favored over additive ones, and counterfactual
explanations that excluded details over ones that did not.

We conclude that counterfactual explanations, due to their linguistic complexity,
should not be issued in scenarios where users lack the time or willingness to com-
prehend them. In these situations, such as when the user is under time pressure or
at the office, causal explanations should be used as they are more straightforward.
However, when the user is willing to invest the effort to comprehend the counterfac-
tual explanations, such as when they are at home or want to change the situation,
they should preferably be issued to the user, though user preferences should be
taken into account. The provided counterfactual explanations should be concise
and, where possible, actionable and subtractive rather than additive.

Considering this analysis, we suspect the high ranking of causal explanations in
the first two scenes to be due to the office setting and the user being under time pres-
sure. Additionally, the counterfactual explanations were not actionable, and in scene
1, there was no need for an explanation, while in scene 2, the only difference between
the explanations was linguistically where the counterfactual explanation contained
the unnecessarily complex phrase not before 8:30 am. Moreover, we suspect that
the low ranking of counterfactual explanations in the first two scenes is due to the
participants needing time to familiarize themselves with the linguistic structure of
these explanations. Counterfactual explanations contain complex tenses, making
them challenging to comprehend, as pointed out by several participants. However,
since the order of scenes was not randomized, definite conclusions cannot be drawn.

In scenes 3 and 4, counterfactual explanations were strongly preferred. We hy-
pothesize that this is due to the counterfactual explanation being actionable in scene
3 and change being desired, while in scene 4, the issued causal explanation was ex-
planation (7), which provided no real insight into the situation.

We speculate that the slight preference for counterfactual explanations over

48



Anna Trapp Master Thesis

causal ones in scenes 5 and 6 was due to change being desired and the counter-
factual explanations being actionable. Additionally, participants were at home, not
under time pressure and used to the counterfactual explanations. We suspect that
they were only slightly preferred because they contained double negations.

5.3 Threats to Validity

Finally, we discuss the threats to validity of our evaluation. We differentiate between
internal, external, and construct threats (Cook et al., 2002).

Internal Threats Firstly, participants were not selected independently, as they
were recruited through personal contacts, potentially introducing selection bias. Ad-
ditionally, a within-subject design was employed, meaning that the explanation types
and the option of receiving no explanation could not be evaluated independently.
Participants were asked to rank the three options, requiring that they receive all
of them simultaneously. This could have influenced their ranking, as they noticed,
for example, when the counterfactual explanations omitted details, leading them to
believe they were wrong or incomplete.

Moreover, during the study, participants were instructed on when to feel sur-
prised and what outcome to expect. However, as we only included devices with
binary states, the expected states could easily be inferred. In addition, since mea-
suring explanation needs was not a primary objective of our study, this guidance
did not significantly impact the results.

Furthermore, participants were only informed about the distinction between
causal and counterfactual explanations after the main study and were asked to
rank the two types separately. It is unclear whether participants were really able
to differentiate between them, though they were not surprised to learn that they
always received the same two types of explanations.

In addition, some participants observed that, by the end of the study, their pref-
erences differed from the expectations they initially reported regarding explanation
length and objective. This discrepancy suggests that self-reported preferences before
experiencing any explanations may not be an appropriate measure.

Furthermore, the lack of randomization in the order of scenes introduced the
risk of sequencing effects. In addition, participants were exposed to multiple scenes,
potentially introducing a maturation effect. Together, these factors may have sig-
nificantly impacted the rankings. This is especially likely as causal explanations
were ranked first in the first two scenes, suggesting that participants needed time to
comprehend the complex linguistic structure of counterfactual explanations.

Additionally, the analyzed contexts were not isolated within the scenes, com-
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plicating the interpretation of results since multiple contexts likely influenced par-
ticipants’ ratings simultaneously. For instance, setting and time pressure strongly
correlated in the scenes as they both applied in the first three scenes. Finally, the
distribution of contexts was uneven. For example, two scenes were set in a smart
home, while four took place in a smart office, resulting in an overrepresentation of
the latter. Finally, while for some contexts, an objective measure for when they ap-
plied could be used, other measures were more subjective. For example, the desire
to change a situation may be subjective, as indicated by participants asking if a
brightness of 70 % or the blinds rolling down halfway was enough.

External Threats Our findings may lack generalizability due to several limiting
factors. First, the number of participants was relatively low, making the results
vulnerable to sampling bias. Additionally, the study was conducted in an interview
format with slides rather than in a real-life smart environment, which could impact
the ecological validity of the findings. However, the slides used in the interview were
enhanced with images and animations to facilitate the participants’ development of
a mental model of the smart environment.

To isolate the effect of our counterfactual explanation generation, we limited
the study to devices with binary states, thereby excluding the foil determination
method proposed by Herbold et al. (2024). While this approach ensured that our
study only evaluated the counterfactual explanation framework, it also reduced the
generalizability of the results to smart environments involving more complex devices.

Moreover, only six scenes were included in the study, and these were restricted to
two settings: a smart home and a smart office. While we aimed to design the scenes
to be as diverse as possible, the limited number may still restrict the applicability
of our findings. Each scene referred to a distinct sub-case of explanation need, and
all three primary cases of explanation needs were covered twice. Nevertheless, not
all sub-cases described in Section 3.2 were included, further limiting the study’s
generalizability across all possible explanation needs.

Construct Threats Since our study was conducted as an in-person interview,
the presence of an interviewer aware of the desired responses was necessary but may
have introduced an observer bias. However, the use of standardized slides minimized
variability between interviews and, therefore, reduced its potential impact.

Additionally, we analyzed several contexts that we hypothesize influenced partic-
ipants’ ratings of the explanation types. While these contexts were carefully moti-
vated and supported by participant feedback, we cannot guarantee that all relevant
factors were identified.

Furthermore, the decision on these contexts was made after the study, which
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allowed us to incorporate valuable participant insights. However, this approach also
introduced the risk of confirmation bias, as the analysis could have unknowingly
been influenced by preexisting expectations or interpretations of the results.
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6 Conclusion

Counterfactual explanations offer insights into how an outcome could have been
changed by examining what would have happened if an alternative event had oc-
curred in the past (Stepin et al., 2021). They are especially valuable in rule-based
smart environments as they enhance causal understanding and are most effective
in situations that are controllable and likely to repeat in the future (Byrne, 2019;
Roese, 1997).

Therefore, in this thesis, we proposed a framework for generating counterfac-
tual explanations in rule-based smart environments. The framework determines the
minimal change required for the system to align with the user’s expectation. It
begins by identifying the previous, current, and expected states of the device that
caused the confusion and collects all rules with true preconditions whose actions
result in the changing of the device to either of the three states. The rules are sub-
sequently used to determine the appropriate case of explanation need. Depending
on the case, the rules that must be reversed or overridden are determined. The
framework then calculates the minimal change to override or remove each of these
rules separately, prioritizing changes the user can implement themselves. Then, all
possible combinations of overriding some rules and removing others are considered,
and the minimal option is chosen. All minima are calculated using TOPSIS, which
considers the properties sparsity, temporality, proximity, and abnormality. Finally,
using a natural language pattern, the minimal change is transformed into an ex-
planation that is issued to the user. This approach ensures that explanations are
concise, actionable, and aligned with human reasoning, acknowledging that humans
prefer to avoid unnecessary information and tend to select only one or two causes
that they can manipulate as the explanation (Chazette & Schneider, 2020; T. Miller,
2019; Girotto et al., 1991).

To test the feasibility of our proposed framework, we implemented it as a plugin
to SmartEx, a RESTful web service by Sadeghi et al. (2024) that can be integrated
into pre-existing smart environments and offers an explanation layer for them while
staying separate from the core intelligent system. Moreover, we conducted a user
study to evaluate our framework in practice, thereby addressing a significant gap
in the research of counterfactual explanations (Guidotti, 2022). The study followed
a within-subject design and was conducted as an interview of 17 participants who
experienced six confusing scenes in smart environments. Due to time and cost
restraints, participants were not placed in real-life smart environments but were
presented with slides that were enhanced with images and animations of smart
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environments. After each scene, participants were asked to rank their preference
among receiving no, a causal, or a counterfactual explanation.

We found out that users prefer to receive an explanation but do not generally fa-
vor one explanation type over the other. Counterfactual explanations were criticized
for their complex linguistics, as participants found them difficult to comprehend.
However, the content of counterfactual explanations was marginally preferred.

We could identify several contexts in which one explanation type was preferred
over the other. Causal explanations were favored when users were under time pres-
sure, in an office setting, or preferred longer explanations providing a reason. In con-
trast, counterfactual explanations were preferred when users were at home, wanted
to change the situation, preferred shorter explanations that offered a solution, and
when the explanation was actionable. Furthermore, counterfactual explanations
that omitted details were preferred over those that did not, and subtractive expla-
nations were preferred over additive ones.

In the future, further research in real-life smart environments is needed. Par-
ticipants should experience more scenes in a random order, where the contexts are
isolated and evenly distributed. Furthermore, a between-subject design should be
adopted to allow for independent measuring of the explanation types.

Finally, we suggest the development of a system where counterfactual explana-
tions are only issued when users are willing to invest time and effort into under-
standing them, such as when they desire to change the situation. A large language
model should be employed to improve the complex tenses and negations of coun-
terfactual explanations, and user preferences should be considered, as suggested by
Liao et al. (2020). The provided counterfactual explanations should be concise and,
where possible, actionable and subtractive rather than additive.
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