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Automatic speech analysis combined with
machine learning reliably predicts the
motor state in people with Parkinson’s
disease
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It is still under debate whether levodopa treatment improves speech functions in Parkinson’s disease
(PD). Therefore, speech functions of people with PD were compared in medication-OFF condition
(withdrawal of PD medication for at least 12 h) and medication-ON condition (after receiving 200 mg of
soluble levodopa). A total of 78 participants, including 51 males and 27 females, performed predefined
standard speech tasks. Acoustic speech features were automatically extracted with the algorithm
given by the Dysarthria Analyzer. Results suggest that acute levodopa intake improves phonatory-

respiratory speech functions and speech planning abilities, while the articulatory system remains
unaffected. Furthermore, the study provided preliminary evidence that speech function is able to
predict the medication status in individuals with PD as the constructed speech-based biomarker score
did not only correlate with established measures of (speech) motor impairment but could also
differentiate between the medication OFF and ON status. A post-hoc machine learning model yielded

similar results.

Levodopa is an effective treatment for improving motor performance in
Parkinson’s disease (PD)'. However, the exact effect of levodopa on speech
motor control is under debate. It is still under debate how the different
subsystems of speech production are changed in neurodivergent speech
production, and how to quantify the changes in the acoustic domain related
to respiration, phonation, and articulation in a reliable way. The respiratory-
phonatory subsystem involves characteristics related to the air flow that
passes from the lungs to the vocal cords (respiration), causing them to
vibrate and creating voiced sounds (phonation) and speech melody to
convey linguistic meaning. The articulatory system involves the movements
of the articulators related to syllable production. This includes tongue tip
and tongue dorsum, upper and lower lip, velum and the jaw to distinguish
between the different sound qualities of consonants and vowels in a lan-
guage system. By extracting reliable acoustic features as measurable prop-
erties the speech performance can be described, assessed, and monitored. In
this regard, acoustic features of speakers are related to perceived parameters
of listeners. For example, intensity corresponds to how loud a produced
sound is perceived by the listener, while fundamental frequency corre-
sponds to the perception of voice pitch.

Previous studies that investigated levodopa effects on acoustic speech
features report inconsistent findings. Whereas some studies found increased
intensity’, better voice control’, faster articulation rates of syllable
production4 (i.. faster, louder and more sonorous speech), others found no
change regarding pitch*™, articulation/speech rate>'*", and intensity™"’.
With regard to vowel space changes, smaller vowel spaces'” but also larger
vowel spaces” (only in a subgroup of people with PD") were observed. Note
that larger vowel spaces are related to a more distinct and clear articulation.
Two recent studies propose that only respiratory-phonatory features of
speech are responsive to levodopa, while articulatory features are not'>"’.
This might indicate that acoustic features related to breath and vocal cord
control, such as intensity and voice-related characteristics (e.g., pitch
modulation, voice quality), change under levodopa, while the movement
control of oral articulatory patterns for consonant and vowel productions do
not (e.g., vowel frequencies, vowel durations).

With respect to the automated screening of levodopa-related speech
performance changes, predicting motor status (medication-ON versus
medication-OFF) is a binary classification problem. However, considering
previous work, automatic detection of motor status seems possible. One study
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determined that phonatory speech features improve after levodopa intake'”.
By combining acoustic voice features, such as jitter, shimmer, and harmonics-
to-noise ratios that were automatically extracted from phoneme production
(/a, 0, m/), a support vector machine classifier was able to differentiate a bad
motor status (medication-OFF) from a good motor status (medication-ON)
with an AUC of 0.81. Changes in the sound production of /o/ and /m/ were
reported to be most sensitive to quantify levodopa-related voice changes.

Another study also investigated speech features related to voice func-
tions automatically extracted from sustained phonation of the vowel /e/"*. In
line with the first study, voice features changed under levodopa indicating
that phonatory control improved while articulatory features in terms of
vowel frequencies reflecting tongue body configurations seem to be less
levodopa-responsive. The authors further highlight that classic machine
learning models perform better in differentiating medication conditions
compared to convolutional neural networks. However, both studies inclu-
ded non-speech tasks, i.e. sustained vowel phonation. Only one study
automatically derived speech features of natural speech tasks, such as
reading or storytelling, highlighting that classifier results are highly
dependent on the speech task””. Natural speech tasks seem more sensitive in
accurately defining medication condition and motor status respectively.

Acoustic (automatic) speech feature analyses can be used as a pro-
mising tool to analyze speech performance changes in PD. Assessing speech
performance can have several advantages for clinical implications, such as
monitoring overall motor status of the people with PD (PwPD), deter-
mining subtle changes in motor control that are also manifested in speech
performance, or assessing the response to levodopa. Continuous speech
analyses offer the opportunity to track fluctuations clinicians might be
interested in, to gain insights into the effectiveness of levodopa on motor
control over time to improve personalizing treatment plans. As speech is
critical for communication and maintaining social interaction, integrating
(automatic) speech analysis into clinical routine, healthcare providers can
focus on quality-of-life improvements for PWPD by addressing not just
gross motor symptoms, but also the often-overlooked impact of speech
impairments on daily functioning and social engagement.

However, it remains a challenge to detect levodopa effects on speech as
there are no established tools that can be used in clinical practice to deter-
mine clinically relevant speech changes in PD so far. To date, no study
proved the applicability of a comprehensive automatic analysis for mea-
suring short-term effects of levodopa treatment on acoustic speech features.
Thus, in this paper, we investigate levodopa-related speech changes in a
large and well-characterized cohort of PwPD. Speech changes will be
characterized in terms of analytical and clinical validation (Table 1). For
clinical validation, we report group comparisons based on fitted linear
mixed models between single speech features and our established speech-
based composite score and whether they change depending on the medi-
cation status (med-OFF vs med-ON). Further, associations between single
speech features as well as the composite score with the total motor score
assessed with the ‘Unified Parkinson’s Disease Rating Scale’ (UPDRS III)
will be presented. For analytical validation, we report associations between
single speech features and the composite score with the UPDRS IIL

Validation will be performed at three levels of granularity: 1) single
speech features, 2) a composite score built from multiple acoustic speech

Table 1 | Overview over analysis process

features using conventional statistics and 3) an algorithm to automatically
differentiate between medication ON and OFF state using machine learning
and single speech features. Thus, this study is a step to an automated speech
analysis that contributes to a comprehensive screening of motor status in PD
via automatic speech assessment to use speech as a sensitive indicator of
motor function in the future.

Results

Motor assessment

Descriptive statistics of the motor assessment results are depicted in Table 2.
The linear mixed models reveal a significant effect of levodopa on the total
UPDRS III score [X’(1)=162.63, p<0.001] and the speech score
[X*(1) =32.472, p < 0.001]. The mean difference of the total UPDRS III
score was 15.8 points and of the speech item 0.4 points respectively.

Levodopa effect on single speech features

An overview over single speech features that significantly differed between
both treatment conditions is given in Table 3 (left column). The mean
difference and the p-values given from the post-hoc analyses are reported. In
the following, the statistical results will be outlined in more detail for sig-
nificant comparisons only.

For the oral diadochokinesis task (DDK)), statistical analyses revealed
that VOT differed significantly between OFF and ON condition with
smaller values in the ON condition, the mean difference was 0.951 [OFF:
289+5.7, ON: 28.0 +4.67, #(79) =2.188, p=0.032]. Further, DDKI sig-
nificantly diverged between both conditions [OFF: 62.6 + 33, ON: 56.8 + 26,
t(79) = 2.196, p = 0.031]. In addition, stdPWR was higher in the OFF con-
dition compared to the ON condition [OFF: 3.1 +1.3, ON: 2.8+ 1.1,
£(79) = 2.626, p = 0.010].

Statistical analyses of features extracted from the monologue revealed
that DPI significantly differed between OFF and ON condition [OFF:
305 + 121, ON:285 + 113, #(79) = 2.455, p = 0.016]. Values are smaller in the
ON condition.

The phonation of the vowel /a/ significantly differed between OFF and
ON condition, as the values of the jitter [OFF: 0.58 + 0.36, ON: 0.50 + 0.20,
#(79) =2.335, p=0.022] and shimmer features [OFF: 3.46 £2.92, ON:
3.06 +2.30, #(79) = 2.168, p = 0.033] decreased.

Two features that were extracted from the reading tasks, significantly
differed between OFF and ON condition, namely RST [OFF: 389 + 63, ON:
378 £60, 1(79) =2.411, p=0.018] and stdPWR [OFF: 3.34 +0.69, ON:
3.54 +0.73, {(79) = —3.339, p = 0.001]. While values of the RST decreased,
values of the stdPWR increased in the ON condition.

Composite score building: correlations of speech features and
UPDRS scores
Each extracted speech feature was correlated with the UPDRS III total score.
Correlation coefficients and p-values are reported in Table 3 (middle col-
umn). With the exception of the DDKI feature, every feature found in the
group comparisons also correlates with the UPDRS III total score. In
addition, the stdF0 feature extracted from the reading text correlates with
the UPDRS III total score.

Each extracted speech feature was also correlated with the UPDRS
speech score. Correlation coefficients and p-values are reported in Table 3
(right column). As can be seen, only four features correlate with the UPDRS

Analytical Clinical
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Table 3 | Results of post-hoc group comparisons between single speech features that significantly differed between both
medication conditions as well as correlation coefficients between UPDRS lll scores and single speech features

group comparison correlation with UPDRS Il correlation with UPDRS Il
total score speech item
dif- p coef- p coef- p
ference value ficient value ficient value
DDKI (DDK) 5.77 0.031 - n.s. - n.s.
VOT (DDK) 0.85 0.032 0.23 0.043 - n.s.
stdPWR (DDK) 0.30 0.010 0.30 0.007 - n.s.
DPI (monologue) 19.7 0.016 0.29 0.01 0.33 0.003
jitter (phonation A) 0.079 0.022 0.26 0.021 0.27 0.018
shimmer (phonation A) 0.405 0.033 0.23 0.038 - n.s.
RST (text) 10.6 0.018 0.24 0.031 - n.s.
stdPWR (text) —0.202 0.001 —0.36 0.002 —0.43 <0.001
stdFO (text) - n.s. -0.23 0.04 —0.39 <0.001
Non-significant results are indicated by n.s.
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Fig. 1 | Composite score analysis across medication conditions and its correla-
tion with UPDRS III measures. A Group comparison of composite score between
both medication conditions. B Correlation between UPDRS III total score and

created composite score. C Correlation between UPDRS III speech score and cre-
ated composite score. Jitter was added along the x-axis to increase readability of
the data.

I1I speech score. These are DP, jitter as well as stdPWR and stdF0 extracted
from the reading text.

Composite score validation

The composite score was constructed from all features listed in Table 3
except for the DDKI feature and the stdF0 extracted from the text. As shown
in Fig. 1A, the composite score could significantly differentiate between the
medication conditions [X*=12.909, p < 0.001].

The clinical validation of the constructed composite score showed a
significant moderate correlation with the established UPDRS III total score
(r=0.40, p < 0.001, Fig. 1B). The result was proven by fitting a linear mixed
effect model. The effect of the UPDRS III total score on the composite score
was significant [ = 0.007, SE = 0.002, #(100.80) = 3.872, p < 0.001].

The analytical validation of the constructed composite score showed a
significant low correlation with the speech item 18 of the UPDRS III
(r=0.23, p = 0.044, Fig. 1C). The result was also proven by the fitted linear
mixed effect model, as the effect of the UPDRS III speech score on the
composite score was significant [B=0.09, SE=0.04, #(151.77) =2.424,
p=0.0165).

Machine learning

The machine learning experiment showed the best classifier with a ROC-
AUC of 0.74 using all tasks’ features and feature selection to classify between
medication OFF and ON condition (Fig. 2).

Discussion

This study captured acute levodopa effects on acoustic speech features in a
large cohort of PwPD. Findings indicate that particularly phonatory and
respiratory as well as speech timing patterns improve under levodopa.

Phonatory changes were observable in terms of voice quality (jitter,
shimmer) revealing reduced hoarseness during sustained phonation of the
vowel /a/. This indicates a change in voice quality due to improved vocal fold
control as it has been shown before’.

As the loudness variation was reduced in the oral diadochokinesis
(DDK) task, the production of fast syllable repetitions is stabilized under
levodopa. For the reading task, an increase in loudness variation was found
indicating more vivid speech production and mitigation of monoloudness
under levodopa'’. Thus, the control over the respiratory system improved
under levodopa as it has been observed before>”’. In parallel, there is also an
increase in fundamental frequency variation indicating a reduction of
monopitch. Both phenomena can possibly be explained based on reduced
rigidity and hypokinesia of the relevant musculature.

In addition, articulatory timing in the DDK task was improved as the
variation decreased, further highlighting more stable DDK production. The
reading text was produced with a slower articulation rate reducing accel-
eration of speech tempo and rushes of speech. In addition, fewer difficulties
initiating speech and shorter pause durations during the picture description
tasks indicate that dopamine is involved in speech motor preparation and
execution. The production of precise temporal coordination patterns in the
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syllable-internal consonant-vowel production was also found to change
under levodopa**".

No changes were detected in articulatory features of oral vocal tract
movements, such as vowel duration and articulation rate. This fits the recent
assumption that speech subsystems respond differently to levodopa™.
Although the VOT feature of stop consonants in the fast syllable repetition
task /pa-ta-ka/ has been found to differ between medication conditions.
However, this variation in the timing of phonation relative to the release of a
stop consonant in the oral vocal tract is not particularly meaningful and
should be interpreted with caution.

To summarize, the articulatory system remains rather unaffected by
levodopa, while the phonatory-respiratory system benefits from acute
levodopa intake and seems to depend on dopaminergic brain circuits.

Interestingly, diadochokinetic irregularity (DDKI) was the only feature
that significantly differed between medication conditions but that did not
correlate with the measure of motor impairment severity (UPDRS III). DDKI
refers to the standard deviation of the measured durations between con-
secutive voice onsets in a fast syllable repetition task of /pa-ta-ka/. The mean
value in med-OFF status seems comparable to what was reported by Hlav-
nicka for severely affected people with PD”. As the value decreases under
levodopa, the pace of alternating motion rates improves. Inappropriate
timing in fast syllable repetitions (as captured by DDKI) might not be directly
linked to aspects of motor impairment assessed with the UPDRS III as the
assessment primarily evaluates the amplitude and speed of the movement
rather than stability of movement repetitions over a longer period of time.

Our findings underscore the utility of a composite score that distin-
guishes between medication conditions in PwPD. The significant differ-
entiation between medication ON and OFF condition confirms the score’s
sensitivity to changes in motor status, indicating its potential as a reliable
biomarker for monitoring therapeutic effects™”".

The composite score also displayed a moderate correlation with the
established UPDRS III total score which further substantiates the composite
score’s relevance in clinical settings. This correlation suggests that the
composite score not only reflects levodopa-induced changes but also aligns
well with a widely accepted clinical measure of motor function severity. Such
alignment reinforces the composite score’s potential to complement existing
clinical assessments, providing a more nuanced understanding of patient
status.

The results from the machine learning experiment highlights feasibility
of using speech features alongside an automatic decision support algorithm
in classifying medication OFF and ON conditions. While recent advances in
deep learning for speech analysis are promising, our feature engineering
approach remains more appropriate given our relatively small sample size,
which is insufficient for robust deep learning models. Additionally, com-
posite scores offer greater interpretability, which is crucial in clinical settings
where transparency is key for decision-making. From a regulatory stand-
point, methods like ours may also be easier to validate and approve for
clinical trials or medical devices. In the future, integrating more advanced
techniques like deep learning could be valuable, but will require larger
datasets and further validation.

Despite the promising results, these results have several limitations.
Firstly, the motor status was evaluated only in a binary fashion (medication
ON versus medication OFF) without considering the severity of motor
impairment. This binary approach may overlook the nuances of motor
function changes, limiting the ability to fully capture the spectrum of disease
progression and treatment response. It would be interesting to investigate
whether the composite score could also predict general motor function, but
a larger dataset is needed for this. Nevertheless, it can be summarized that
the OFF/ON analysis also has its relevance, as, for example, in the appli-
cation of closed-loop therapy systems, it would be clinically very relevant to
determine the patient’s current motor state through speech.

As data was collected by means of a levodopa challenge test, the order
of test conditions was fixed and not randomized. However, this test is not
only a standard assessment in clinical practice, also speech data has been
collected during such assessments in many previous studies”**. While a

randomized sequence of medication conditions would be ideal, it is not
logistically feasible in a clinical setting. The fixed order of medication
administration may lead to practice or fatigue effects, which could con-
tribute to the observed medication effects. If fatigue had occurred during the
second assessment, it would have systematically reduced performance on
the subsequent speech task, thereby enhancing rather than diminishing the
observed levodopa effect. Furthermore, conducting tests on different days
would necessitate a medication withdrawal period of at least 12h in
between, potentially introducing additional confounding effects as it is also
essential to recognize that speech function can be influenced by various
factors, including sleep quality, time of day, and the participant’s daily status
or feelings—elements that are inherently challenging to control. To enhance
the rigor of future studies and better account for confounding effects, the
inclusion of a placebo and control group should be considered.

Thirdly, the study lacks validation through a second dataset, which
would enhance the generalizability of the findings. Validation using an
independent dataset is crucial to confirm the robustness and applicability of
the composite score across different patient populations. As we only
included participants that responded to levodopa therapy, future analyses
need to explore if the results are reproducible if also non-responders were
included.

Additionally, the study did not assess perceptual factors such as speech
intelligibility™', which could provide a more comprehensive under-
standing of the impact of speech impairment on daily life. Intelligibility, as a
measure of how well speech is understood by listeners, is directly relevant to
patients’ communication abilities and overall quality of life. Including such
measures in future research would offer a more holistic view of the func-
tional consequences of motor impairments. However, as previous studies
have shown, particularly measures of vocalic contrast and vowel space as
well as consonant production correlate with intelligibility’*~*, which were
not assessed in this study, so that future investigation needs to test whether
intelligibility could be predicted from our data. In addition, the relation
between other acoustic features and intelligibility prediction are
complex’>*, another study showed that feature sets of each of phonatory,
articulatory, and prosodic subsystems could discriminate intelligibility at
least in a binary fashion”.

Finally, although our study shares methodological similarities with the
research conducted by Tykalova et al.’, our findings differ, and it is
important to discuss potential reasons for these discrepancies. Both studies
assessed the short-term effects of levodopa following comparable with-
drawal periods and utilized identical speech tasks, analyzing the same
acoustic features. The motor impairment levels in both cohorts were similar;
however, our study included both early and mid-stage PwPD, resulting in
slightly higher impairment levels. Since levodopa responsiveness decreases
and motor complications increase with disease progression, this difference is
unlikely to account for variations in study outcomes. One potential factor
contributing to the differing results is the type of microphone used as
Tykalova et al. employed an omnidirectional microphone, while we used a
cardioid microphone. Omnidirectional microphones capture sound equally
from all directions, whereas cardioid microphones are most sensitive to
sounds from the front, with sensitivity varying based on placement. To
control for placement effects, we maintained a consistent distance between
the mouth and microphone across recording sessions by using a headset
microphone. Cardioid microphones are designed to isolate the main sound
source while minimizing background noise. Therefore, we do not anticipate
that microphone choice significantly affected the extracted features.
Importantly, our study exclusively included PwPD who exhibited a motor
response to levodopa, applying a higher response threshold (30%) com-
pared to Tykalova et al’s (20%). Adhering to guideline-recommended
thresholds might have led them to observe similar results. Language dif-
ferences could also influence outcomes, as German and Czech belong to
different branches of the Indo-European language family (Germanic vs.
West Slavic). While most extracted features are not strongly affected by
language, differences in consonant articulation could play a role, given that
Czech allows more complex consonant clusters. However, our analysis
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specifically focusing on consonant productions was based on the /pa-ta-ka/
task, which does not involve such clusters, making productions comparable.
Conversely, variations in intonation patterns, such as the stronger stress in
German, might impact results. To enhance the generalizability of findings
and conclusively determine levodopa’s effect on speech, future studies
should be conducted across multiple languages using consistent responder
cut-offs.

Methods

Participants

Data of 119 individuals with idiopathic PD were included in the analysis
which were collected during in-hospital stays between 12.02.2021 and
28.11.2023 in the Department of Neurology of the University Hospital
Cologne. The retrospective data analysis was approved by the local ethics
committee (protocol code: 23-1461-retro; date of approval: 6 December
2023). All participants provided written informed consent for their speech
to be recorded and analyzed for research purposes. They were all speakers of
German living in the Rhineland region close to the Benrather isogloss with
at most a dialectal coloring but without a strong dialect. All have been
diagnosed with PD according to the UK brain bank criteria™.

PwPDs’ speech and motor data were tested in two conditions, OFF and
ON medication, by means of a levodopa challenge test. This test examines
the effect of a standardized levodopa dosage on motor functions”. To
achieve the OFF condition, PD medication was withdrawn for at least 12 h.
For the ON condition, each participant received 200 mg soluble levodopa
(2 X 100/25 mg levodopa/benserazide tablets). Data were collected in the
OFF condition first, and second in the ON condition 30-40 min after
levodopa intake.

Part III of the ‘Unified Parkinson’s disease ratings scale® was used to
monitor motor functions of all participants in both conditions. The total
score was used to calculate the levodopa response of each individual®.
According to the response, PwPD were divided into responders and non-
responders as it has been done before by Tykalova et al.”’. In contrast, we
have chosen a cut-off of 30% (not 20%) based on the guidelines of the
German Society for Neurology"'. Non-responders were excluded from the
final analysis in order to have a more uniform group and to reduce the
heterogeneity associated with the disease in one parameter. We hoped to be
able to explicitly investigate the levodopa effect, in which we were interested,
for an initial analysis. Thus, the final number of PWPD is # = 78 (51 m, 27 f),
aged between 33 and 81 years (M = 61.2 years, SD = 8.3).

Elicitation of speech production data

Acoustic speech data were obtained by using a condenser microphone
headset (AKG C 520, 44.1 kHz/16 bit) to keep the mouth-to-microphone
distance constant. As suggested in the relevant literature*>*, a headset
microphone was used and positioned in front of the speaker with a
constant 5 cm distance from the lips at an angle of 45° away from the
mouth. To avoid unwanted room reflections, we used an AKG C 520
microphone with a cardioid pattern (50-20.000 Hz) with a flat frequency
response above 200 Hz for all acoustic recordings. The gain level was not
adjusted between recording sessions and conditions. PWPD were placed in
front of a TV screen that presented the German version of the speech task
protocol of the “Dysarthria Analyzer” (dysan.cz)*>* in a room with low
ambient noise. Speech tasks included maximum phonation of the vowel
/a/ in one breath at comfortable pitch and loudness for as long and steady
as possible, fast syllable repetitions of /pa-ta-ka/ as quickly and accurate as
possible in one breath to test oral diadochokinesis pattern (DDK), reading
of a short text consisting of 80 words and a picture description task
(monologue) to elicit free speech for approximately 90 seconds. Besides
the picture description task, participants were asked to produce the
tasks twice.

Data processing and statistics
Speech features were automatically extracted by means of the MATLAB-
written algorithm of the Dysarthria Analyzer* providing a specific feature

set. An overview of the extracted features per task is given in Supplementary
Table S1. Values were averaged over repetitions per participant and medi-
cation condition.

Group comparisons of levodopa effects on speech features were tested
by performing linear mixed-effects models using the “lme4 package”*
within the software R (version 4.2.2; R Core Team, 2023). 156 productions
went into analysis. 78 were produced in the medication OFF condition and
78 in the medication ON condition. Linear mixed-effects models were built
with treatment conditions, age and sex as predictor variables and random
intercepts per participant. Main effects of treatment condition were vali-
dated by comparing the test model (with the critical predictor) to a reduced
model (without the critical predictor) via likelihood-ratio tests. P-values are
based on these comparisons. Post-hoc analyses were completed by using the
“emmeans package”*® and applying the tukey method to correct for multiple
comparisons if the main effect of the critical predictor was found significant.
The level of significance was p < 0.05.

24 relevant acoustic speech features were selected based on mutual
information for measuring speech motor functions as provided by the
Dysarthria Analyzer* (Supplementary Table S1). Speech features had to be
significantly different between the medication conditions and significantly
correlated with at least one of the two UPDRS scores to be considered for
further analysis. The features for which one of both was the case were then
combined into a single composite score. The composite score was built by
summing up the values of each selected speech feature and then dividing the
sum by the total number of included features. Thus, this composite score
reflects an average of the features which is used as the potential speech
biomarker for determining levodopa-related speech changes.

For feature validation, we followed the V3 framework of the Digital
Medicine Society including analytical and clinical validation®. For analytical
validation, we determined construct validity by correlating the composite
score with an established measure of speech motor deterioration in PD,
namely the speech item (item 18). Since each participant has one mea-
surement in both medication conditions, a repeated-measure correlation
analysis grouped by participant was performed using the “rmcorr” function
in R to account for the non-independence of observations and also to avoid
multiple testing"”. For clinical validation, we also performed a repeated-
measure correlation analysis between the composite score and our measure
of motor deterioration, i.e. total UPDRS III score. The output of the cor-
relations was proven by modeling the effects of medication status and
participant variability using linear mixed-effects models to examine the
effect of the UPDRS scores on the composite score. The model included
subjects as random factor. Furthermore, the differences in composite scores
between OFF and ON medication was evaluated by performing linear
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Fig. 2 | Results of ROC analysis of the linear model considering all recorded
speech tasks. Age and sex were regressed out from the dataset using a linear mixed
effect model beforehand.
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mixed models with treatment conditions, age and sex as predictor variables
and random intercepts per participant.

For the machine learning analysis, age and sex were regressed out
from the dataset using a linear mixed-effects model beforehand. Thus, for
each speech feature, a linear mixed-effects model was built, using age and
sex as predictor variables, and the residuals from these models constituted
the regressed-out speech features. Support Vector Machine, Extra Trees,
Random Forest, Linear and Decision Tree models were trained on this
dataset to classify medication status. The performance of each model was
evaluated using leave-one-group-out cross-validation, where one parti-
cipant performing the tasks twice—once OFF medication and once ON
medication—was considered a group. Additionally, feature selection was
performed in each cross-validation loop using the “SelectKBest” function
from the “sklearn” package in Python, with mutual information as the
scoring method. This integration of feature selection within the cross-
validation process ensures that the model is trained and validated on the
most relevant features without data leakage. The best model was reported,
based on the highest ROC AUC scores (Fig. 2). However, ROC AUC
values of the other models can be found in the Supplementary Table S2.
The model can be shared for validation upon reasonable request to the
corresponding author.

Data availability
The datasets analyzed during the current study and the code supporting the
study results are available upon request to the corresponding author.
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