Matgadorena Ganzale




LOCALIZATION AND TOPOLOGY IN SURFACE
STATES OF DISORDERED TOPOLOGICAL
INSULATORS
Inaugural-Dissertation
zur
Erlangung des Doktorgrades
der Mathematisch-Naturwissenschaftlichen Fakultit

der Universitiat zu Koln
vorgelegt von

MATEO MORENO GONZALEZ
aus

San Rafael, Antioquia, Kolumbien

Koln 2024



Berichterstatter: Prof. Dr. Alexander Altland
(Gutachter) Prof. Dr. Achim Rosch

Vorsitzender der Priifungskommission: Prof. Dr. Joachim Krug

Tag der miindlichen Priifung: 19.11.2024

ii



ABSTRACT

In condensed matter physics topology has fundamentally reshaped our under-
standing of phases of matter and the transitions between them. New phases,
such as topological insulators, have introduced innovative perspectives on band
theory, where for each band in the bulk of these systems topological invariants
can be defined. One significant consequence of bulk topological invariants is the
emergence of topologically protected gapless boundary states that are robust
against symmetry-preserving perturbations.

However, all real systems exhibit some degree of impurities or disorder.
Disorder breaks translation invariance, a critical feature for band theory, and
can lead to the localization of states through Anderson localization. Ander-
son localization and topology act as opposing forces in electronic systems:
while topology protects gapless states, Anderson localization tends to localize
them. Consequently, Anderson localization can potentially drive a topological
insulator through topological phase transitions.

This thesis investigates the impact of disorder on topological insulators in
two and three dimensions. First, it presents a comprehensive study of the
disordered Chern insulator, detailing its phase diagram and identifying the
energy positions of delocalized states responsible for quantized Hall responses.
Secondly, it explores disordered higher-order topological insulators, examining
the preservation of boundary modes and topological invariants under disorder.
Lastly, it addresses the surface states of three-dimensional chiral topological
insulators, revealing their fragility and localization properties. These questions
are addressed using analytical methods from topological quantum field theory
and by deriving non-linear ¢ models from microscopic models. These findings
allow us to comprehend the interplay between Anderson localization and
topology in some topological insulators in two and three dimensions.
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ZUSAMMENFASSUNG

In der Physik der kondensierten Materie hat Topologie unser Verstandnis der
Phasen der Materie und der Ubergénge zwischen ihnen grundlegend veréndert.
Neue Phasen, wie z. B. topologische Isolatoren, haben innovative Perspektiven
fiir die Bandentheorie eroffnet, in der fiir jedes Band des Systems topolo-
gische Invarianten definiert werden konnen. Eine wichtige Konsequenz der
topologischen Invarianten ist das Auftreten von topologisch geschiitzten Rand-
zustanden ohne Energieliicke, die gegeniiber symmetrieerhaltenden Stérungen
robust sind.

Alle realen Systeme weisen jedoch ein gewisses Maf} an Verunreinigungen
oder Unordnung auf. Unordnung bricht die Translationsinvarianz, eine ent-
scheidende Voraussetzung fiir die Bandtheorie, und kann zur Lokalisierung
von Zustianden durch Anderson-Lokalisierung fithren. Anderson-Lokalisierung
und Topologie wirken in elektronischen Systemen als gegensitzliche Kraf-
te: Wahrend die Topologie Zustinde ohne Energielticke schiitzt, neigt die
Anderson-Lokalisierung dazu, sie zu lokalisieren. Folglich kann die Anderson-
Lokalisierung einen topologischen Isolator potenziell durch topologische Pha-
seniibergidnge treiben.

In dieser Arbeit wird der Einfluss von Unordnung auf topologische Isolatoren
in zwei und drei Dimensionen untersucht. Zunédchst wird eine umfassende
Studie tiber den ungeordneten Chern-Isolator vorgestellt, in der das Phasendia-
gramm detailliert beschrieben und die Energien der delokalisierten Zustinde
identifiziert werden, die fiir die quantisierten Hall-Antwort verantwortlich sind.
Zweitens werden ungeordnete topologische Isolatoren hoherer Ordnung er-
forscht, wobei die Erhaltung von Randmoden und topologischen Invarianten
unter Unordnung untersucht wird. Schlieflich werden die Oberflichenzustan-
de dreidimensionaler chiraler topologischer Isolatoren behandelt, wobei deren
Zerbrechlichkeit und Lokalisierungseigenschaften aufzeigt wird. Diese Fragen
werden mit analytischen Methoden aus der topologischen Quantenfeldtheo-
rie und durch die Herleitung nichtlinearer c-Modelle aus mikroskopischen
Modellen behandelt. Diese Erkenntnisse ermoglichen es uns, das Zusammen-
spiel zwischen Anderson-Lokalisierung und Topologie in einigen zwei- und
dreidimensionalen topologischen Isolatoren zu verstehen.
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INTRODUCTION

The relevance of topology in condensed matter started with the discovery of
the integer quantum Hall effect [1]. It was found that the mechanism behind
the quantization of the Hall conductance had a topological origin and therefore
its value was protected against any perturbations [2, 3]. This discovery also
opened the door to phases of matter beyond the Landau-Ginzburg paradigm.
The proposal of having the phenomenology of the integer quantum Hall effect
without magnetic fields and in translational invariant systems was put forward
by Haldane [4], where the topological invariant was defined using the eigen-
states of the electronic band. Years later, after the discovery of the quantum
spin Hall effect, it was clear that topological invariants could be defined using
the bands of the system. This class of non-interacting phases of matter with
topological bands were called topological insulators.

Topological insulators are phases of matter that, like ordinary insulators, have
an energy gap between the highest occupied band and the lowest empty band.
The difference is that they posses gapless states propagating at the boundaries.
The integrity of the boundary gapless modes is guaranteed by the powerful
principle of bulk-boundary correspondence, where the topological invariant defined
from the bulk bands is directly related to the properties of the boundary modes.
With the help of the 10-fold way [5], which classifies Hamiltonians into ten
different symmetry classes, it was possible to classify topological insulators in
all symmetry classes and in all dimensions.

This discovery motivated a vast amount of work both in the theoretical and
in the experimental directions. From the theoretical side it was clear that it was
possible to go beyond the 10-fold way classification if crystalline symmetries
were included. The addition of crystalline symmetries allowed for the possibility
of realizing higher order gapless boundary modes propagating (or residing)
along the higher order boundaries of the systems. These systems are called
higher order topological insulators.

On the other hand, we know that disorder is unavoidable and it is present in
all real materials. In 1-d and in some 2-d systems we know that states localize
in the presence of disorder [6]. However, gapless states are resilient towards
localization because of topological protection. It was clear from the quantum
Hall effect case that disordered samples were needed to match the experimental
data. Disorder localized all states in the sample except for one. This sole state
was the responsible for all the transport of states from boundary to boundary
as well as for the edge modes observed at the boundaries. Disordered electron
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INTRODUCTION

systems, and in particular the low energy degrees of freedom in the scale of
the mean-free path, can be described from the point of view of field theory
using a non-linear ¢ model [7]. In the field theory setting the description of the
integer quantum Hall effect is given by a non-linear ¢ model augmented with a
topological 6 term [8, 9]. For topological insulators it was clear that symmetry
preserving disorder must not destroy the topological phases and that their
description when disorder is added must be of a non-linear ¢ model with a
topological term [10]. The type of topological term that can be added depends
on the topological properties (homotopy groups) of the low energy manifold
of the effective degrees of freedom. However, one must take into account that
the definition of the topological invariants in terms of electronic bands is only
valid in the limit of no disorder. That is due to the fact that disorder destroys
translational invariance. This is why when disorder is added to a translational
invariant system some concepts must be rethought, for example, spectral gaps
are to be replaced with mobility gaps. In the limit of very strong disorder the
topological phase gets compromised and a phase transition to a trivial phase is
expected.

Therefore the study of the effect of disorder on topological insulators is an
exciting task on its own. An analytical study and characterization of the effect
disorder in (quasi-) one dimensional topological insulators was accomplished
in [11] where it clear that depending on the amount of dirt on the system there
could be phase transitions between different topological sectors of the theory.

The purpose of this thesis is then to study and characterize some disordered
topological insulators in two and three dimensions. In chapter 3 we completely
characterize the two band disordered Chern insulator where we draw a com-
plete phase diagram in terms of energy, disorder strength and a microscopic
parameter from the clean Hamiltonian. We also determine the position in en-
ergy of the delocalized state in the bulk. This state is the responsible for the
quantized Hall response of this system. We do this by deriving a non-linear o
model from a microscopic lattice Hamiltonian where the coupling constants
of the theory depend on the microscopic parameters. The derivation of this
effective model does not rely on any Dirac approximation.

In chapter 4 we turn our attention to disordered higher order topological
insulators and the effect of disorder on them. This is an interesting problem
since higher order topological phases usually rely on crystalline symmetries and
disorder breaks them. We focus on symmetries preserved on the average. In this
way we identify the conditions under which higher order boundary modes are
protected and look at their topological invariants. We do this by studying two
examples, a three dimensional inversion symmetry second order topological
insulator and a two dimensional chiral and mirror symmetric second order
topological insulator.



INTRODUCTION

In chapter 5 we turn our attention to surface states of 3 dimensional chiral
topological insulators. In previous works it was established that this type of
systems showed spectrum wide criticality, where for example, topological in-
sulators in class AIIl showed class A integer quantum Hall effect criticality at
energies different from zero when disorder was added. We show that these
states are fragile that they are not topologically protected and that they can
Anderson localize. The only state that does not Anderson localize is the topo-
logically protected state at zero energy. This is accomplished by identifying a
mechanism for detaching the surface and bulk states. In the bulk this mecha-
nism is related to the possibility of Wannier localizing all the states without
changing the topological properties of the whole system. In this chapter we
determine the processes behind these phenomena by studying a minimal model
of a class AllI topological insulator with topological number v = 1.






LOCALIZATION AND DISORDER

In condensed matter physics, it is often customary to work with perfectly
translationally invariant systems. Band theory, along with Bloch’s theorem, has
proven successful in describing the motion of electrons in crystalline solids and
predicting observable quantities. It allows to describe the physics of crystalline
materials in the Brillouin zone. However, in real materials, disorder is ubiqui-
tous, manifesting as impurities, defects, dislocations, and other imperfections.
The presence of disorder leads to new and interesting phenomena that cannot
be explained within the scope of Bloch’s theorem.

In this chapter, we explore how disorder can affect the electrons and how
through the presence of random disorder electrons can localize and drive,
for example, a conductor into an insulator through the process of Anderson
localization, we explore the phenomenon of Anderson localization by presenting
several theoretical developments such as the one parameter scaling as well as
a field theory of the free electron gas in a disordered environment, from
this point of view we elucidate some of the physical processes involved in
Anderson localization. In the second part of the chapter, we study the physics
of the integer quantum Hall effect and how the underlying topology of these
systems help some states to avoid Anderson localization in the presence of
disorder. Moreover, we will see how disorder is essential for understanding the
experimental observations in 2D electron gases subjected to a magnetic field.

2.1 EFFECT OF IMPURITIES ON ELECTRONIC SYSTEMS

Let us first consider the simple example of a free electron in a solid. According
to Bloch’s theorem this systems develops energy bands, and the states satisfy
the Schrodinger equation, H(p)o(x) = E(p)yo(x), with H(p) = %.

Now, we consider the limit in which disorder is quenched or static, meaning
the electron dynamics are much faster than the dynamics of the impurities. To
model disorder, we introduce a potential V(x) and examine its effect on the
states. We obtain a new equation,

(H(p) + V(%)) $u(x) = Extpa (). (2.1)

We can focus on the case of a single impurity with potential V(x) =
—Ze?/x|x|, where Ze is the charge and « the dialectric constant. In this case,
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the energies of the system are E, = —Eqa~2, where Ey = mZ2e*/2k*1*. We
note that the ground state wavefunction is localized and decays exponentially
into the bulk,

fo(lx|) = (a®) "2 exp (~|x|/a), (22)
where a = «2h? /mZ2e? is the effective Bohr radius for the impurity state. The
fact that this state is localized means that the system should be an insulator
at sufficiently low temperatures. Let us consider now a finite concentration of
impurities, Nimp, in this case there might be an overlap of wavefunctions which
in principle can delocalize the wavefunctions and render the system metallic.
For a small impurity concentration Njyp, we can write the total wavefunction
as a linear combination of states localized around the impurity centers x,, with
effective radius a,

Y(x) = ZAM/’(X - Xa), (2.3)

where there might be small but finite overlap among states. To quantify the
amount of overlap let us consider the following: We approximate the con-
centration of impurities as a superlattice with spacing b = Ni:nlp/ 4, and to-
gether with radius of impurities we can define the dimensionless parameter,
Nimpad = (a/b)%, where Nimpad > 1 indicates a high degree of overlap be-
tween states. In the case taken here (small overlap) it is enough to consider
nearest neighbour overlap and the effective Hamiltonian can be constructed as

a tight-binding model written in second quantization in the following way,

Hesf=Eo Y _clci+1 ZC}LCJ-, (2.9)
i (ij)

where I « ¢7/7 is the overlap integral. Upon the calculation of the spectrum
of this Hamiltonian we find E(p) = Eg + 21 Zle cos(bp;). That means that the
width of the impurity band is proportional to I, which decreases exponentially
with Nimpad. On the other hand the effective mass is calculated as iy = 1/2b%1
and it increases as the dimensionless parameter decreases. For one electron per
impurity, the resulting band is half filled and metallic. However, this metallic
phase can be fragile for several reasons. One reason could be that, due to the
exponentially narrow size of the band, the tunneling time between impurity
centers becomes exponentially long, causing the electron motion to quickly
dephase. Another reason could be that a strong Coulomb interaction could give
rise to a Mott-Hubbard metal insulator transition. The last reason can be due to
random disorder in the sample [12], which is the case us interest to us.

Let us consider a variant of the previous tight binding model where we
consider the on-site energy depending on the position i,

H = ZW,‘ C?Ci + Z Iij C;rC]', (2.5)
i (ij)



2.2 SCALING THEORY OF LOCALIZATION

UE)
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FIGURE 2.1: A schematic density of states where we see a separation between local-
ized and extended states. The two regions are seprated by the mobility
edge

where W; and [;; are both random. Anderson [6] proposed as a first ap-
proach a model where W; is random and drawn from a box distribution
W; € [-W/2,W/2] and [;; = I is constant. The energy scales W and I in
the Anderson model can be combined into a dimensionless parameter W/1I.
Anderson proposal is that for values of the parameter bigger than a critical
value (W/I) > (W/I). all states are localized. Below this value there is a
mobility edge and the states are extended.

A remarkable aspect of this model is that the density of states shows no
critical behavior at the edge of the band. Instead, the density of states develops
tails, called Lifshitz tails [13], and the conductivity quickly falls to zero near
the mobility edge. The mobility edge separates the localized states from the
delocalized states in the band (see figure 2.1). Therefore, for a given chemical
potential, we find that the system is either metallic or insulating. In order to
study the fate of physical observables, in particular of the conductivity of the
sample as disorder is present, we present in the next section the idea behind
the scaling theory of localization.

2.2 SCALING THEORY OF LOCALIZATION

Following ideas by Thouless and Edwards [14, 15] regarding the conductivity
on long thin wires "the gang of four’ Abrahams, Anderson, Licciardello and Ra-
makrishnan [16] proposed a scaling theory for the conductance in d-dimensions.
Let us consider a small block of linear size L. In this block, Edwards and
Thouless defined a dimensionless parameter g as the ratio of two energies, the
Thouless energy and the mean level spacing. The Thouless energy is defined as
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In (g)

FIGURE 2.2: $(g) function of the one parameter scaling hypothesis. In 1-d systems
always localize, while in 2-d it depends on the Hamiltonian. In 3-d we
find a metal insulator transition

the inverse of the time it takes an electron to reach the boundary of the block
and it gives the broadening of the energy levels in the block. When g < 1 the
states are localized and when g > 1 the states are extended. The parameter g is
also dependent on the linear size of the block L. If we assume that a state has a
localization length I, then | > L implies ¢ > 1 on the other hand if I < L then
g < 1. It was also shown that the parameter g(L) is proportional to the conduc-
tance of the block G(L) . Abrahams et al. hypothesized that the conductance
of a system of size bL is a function of g(L) only, that is, g(bL) = f5(g(L)). The
previous statement is captured in the scaling function B defined as,

_dlng

(2.6)

The form of the scaling function is obtained by analyzing two limiting cases.
When g > 1, the system behaves as an Ohmic conductor, therefore, g ~ L4-2
and B(g) = d —2. When ¢ < 1, the system is in the insulating regime and
we have localized states, therefore, g ~ goe~L/¢ and B(g) = In(g/go). The
form of the scaling function is obtained by smoothly interpolating between
the limiting cases. As we can see in figure (2.2), in 1D there is no metallic
behaviour, the system always flows towards smaller values of g. In 2D the
scaling function approaches zero for very large values of g. There it becomes



2.3 FIELD THEORY APPROACH TO THE DISORDERED ELECTRON GAS

important to consider quantum corrections to the scaling function. The quantum
corrections depend on the symmetry class of the Hamiltonian (see section 4.1).
In the Al symmetry class the corrections push the scaling function down in a
process called weak localization, meaning that all states are localized. In the
Al symmetry class (systems with spin-orbit coupling) the corrections push the
scaling function up in a complementary process called weak anti-localization,
where we encounter a metal-insulator transition. The transition due to weak
anti-localization is also realized in class D and DIII. In the chiral classes BDI, AIIl
and CII, metal-insulator transitions are also found. Unlike class All, the metal-
insulator transition is driven by non-perturbative contributions, i.e, vortex-like
excitations [17].

In 3D, there is a critical conductance g* in which $(g*) = 0, representing
an unstable fixed point, marking the metal-insulator transition. Close to the
transition and on the conducting side the conductivity takes the form,

* _ o*\V
oS (B8 27)

where / is the mean free path and gy the conductance in the scale of the mean
free path. The conductivity vanishes with critical exponent v. In the insulating
side of the transition, and at sufficient long length scales the states are insulating
and g adopts the form,

gll)=gee M, Cmtl(0-8)/8" 7, (28)

where ¢ is the localization length which diverges as we approach the fixed
point.

2.3 FIELD THEORY APPROACH TO THE DISORDERED ELECTRON GAS

In this section we give a quick overview of the field theory approach to the
disordered electron gas using the replica trick [7]. We first consider perturbation
theory approach to the problem where we are able to compute corrections to
observables like the conductivity. By considering these corrections we make
contact to the previous section and see that for d < 2 the free electron gas
localizes due to disorder and we identify the underlying physical mechanism
for Anderson localization. The (not yet replicated) action we are going to
consider is the following ,

Sl ) = [ dx§(x) (E+ 10" — Ho — V(x)) $(x), (29)

where (x) = ¢°(x) is a space dependent fermionic field with structure in the
retarded /advanced space s = £, H is the free particle Hamiltonian, V(x) is the
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FIGURE 2.3: a) Pictorial representation of the full Green’s function without disorder
average. b) Pictorial representation of the averaged over disorder Green’s
function. The bold solid lines represent the full Green’s function, the
thin solid lines represent the free Green’s functions and in a) the cross
represent the insertion of the disorder potential V(x).

disorder potential and 73 is the 3rd Pauli matrix acting in the retarded /advanced
space. The propagator for this problem is written as the sum of the following
scattering processes of the free propagator Gy with the disorder potential V,

G(x,X;E) = Go(x,x;E) + / dx" Go(x,x"; E)V(X")G(X",X; E). (2.10)

Pictorically the full Green’s function can be represented as in figure (2.3a).
Where the bold line indicates the full Green’s function G, the thin line the
free one Gy and the cross the potential V(x). The full Green’s functions is
therefore depicted as free propagation of the electron followed by scattering
events due to the disorder potential. The disorder potential can be chosen
to be drawn from an statistical ensemble, we chose such ensemble to be a
Gaussian one and additionally we ask for a mean value of (V(x))4;s = 0 over
the ensemble. The second moments of the disorder potentials are described by
(V(x)V(x'))gis = ¥*K(x — x), where 2 is the disorder strength and K(x — x')
dictates the spatial correlation of the disorder potential. Now and for the rest
of this thesis we are going to consider spatially uncorrelated disorder (white
noise), K(x — x') = 6(x — x').

From the point of view of the disorder potential V as a random variable, we
can calculate average of observables with respect to the ensemble of disordered
potentials. To date, there are 3 ways of accomplishing this, i) The replica
trick [18], ii) The supersymmetry method [19], iii) Keldysh formalism [20]. In
this thesis we are going to use the replica trick to calculate of the observables
and in general to compute the low energy theories of the systems studied here.
A review of the replica trick is presented in appendix A.

Let us compute the averaged-over-disorder Green’s function, (G(x, x')) ;5. In-
tuitively we can think of this as joining the interaction lines in pairs, as depicted
in figure (2.3b). In practice upon averaging the (replicated) partition function,



2.3 FIELD THEORY APPROACH TO THE DISORDERED ELECTRON GAS

Z = [ D(y,¥)exp(—S[y, P]) over disorder, we obtain a quartic interaction
term, where the replicated fields interact with each other,

2 .
Sl ) = =T [ dx @ (09 (05 (9" (), (2.11)

where 4, b are replica indices. According to the replica trick, to compute the
averaged over disorder Green’s function we do the following,

1 & _
(Gppr)ais = lim & 21<¢;;1p;;>¢5p,p,, (2.12)
a=

where we have gone to the momentum space and the average over ¢ in the right
hand side means average over the action with the interacting term. We notice
that the averaged Green’s function is diagonal in momentum space, this is due
to the fact that the spatial dependence of the second moments has translational
symmetry. We evaluate the Green’s function by considering an expansion in the
interacting term (eq. 2.11). To compute the full Green’s function we calculate
the self-energy operator X,. The starting point is the free Green’s function

) §ab

5[1 = —-—h—h—_——-——-—— .
Gop E+i0t1 —e(p)’ (213)
where the indices 4, b belong to replica space and e(p) = p?/2m. To first order
we need to consider the diagrams shown in figures (2.4a), (2.4b), we notice
however that fermion loops vanish in the replica limit as their replica structure
is such that,

R R R
Z Z Z 5ﬂb5ba5CC — R? (2.14)
a=1b=1c=1

where the Kronecker deltas come from the Green’s function (2.13) . Higher
order fermion loops vanish under the same argument. The only first order
contribution is then the one shown in figure (2.4a), which reads as,

1) _ 2/d |~ 2/ v(e)
Zp T d°p Gop T dEE+i0+T3—e
v(e) (2.15)
R 'sz/deE e iy,
We only consider Im Z](E,l) = —iny?vTs, since the real part can be absorbed in

the definition of E. The imaginary part of the self energy operator quantifies
the attenuation of the Green’s function due to impurity scattering.

Upon going to higher order corrections to the self-energy we encounter
crossing diagrams, let us argue why these contributions will be negligible

11
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FIGURE 2.4: Self energy diagrams. a) First order correction to the self energy. b) First
order correction to the self energy with a fermion loop. c)Second order
correction to the self energy, non crossing diagram. d) Second order
correction to the self energy, crossing diagram

with respect to the non-crossing ones. The non-crossing contribution to the
self-energy (figure 2.4c) has roughly the structure, Z§,25) ~ Lpyps(Gpy )Gy,

()

while the contribution from the crossing diagrams (figure 2.4d) reads, ;" ~
Yp1,p> Gp1 Gp, Gp,—py+p- The Green'’s functions are peaked around |p| = v2mE
and due to this fact the crossing diagram has only one free sum, let us say p1,
while the sum over p» is highly constrained due to the condition p, — p1 + p in
the third Green’s function. The relative weight of the non-crossing diagram to
the crossing one is calculated as, pz(d’w /(pt~1)%=1, where  is the elastic mean
free path. In the limit of weak disorder p¢ > 1 and d > 1, the contribution from
crossing diagrams is negligible. This fact allows us to evaluate the self-energy
under the self-consistent Born approximation (SCBA),

Yp = 7° / d’p' (E—p?/2m—£,) " (2.16)
P

To solve this self-consistent equation we make the following Ansatz, Im%, =
72171'3, such that,

1
— TRt Im/deE v(e) ~ = T, (2.17)

2T —€+ %Ty,

where the elastic scattering rate is given by, 7! = vpf = 29%7v. The averaged
over disorder Green'’s function is momentum space reads,

1
<Gp>dis = 2 T (2.18)
T om T 223
where in real space, after a Fourier transform, it looks like,
(G(%,¥; E))ais = Go(x,y; E)e” ™Y1/, (2.19)

Here we see that the Green’s function decays on the scale of the mean free path.
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Using this formalism we can also calculate the effect of disorder in quanti-
ties like the conductivity, where we can elucidate the interference effects due
to scattering off impurities. According to the Kubo-Greenwood formula the
conductivity tensor is given by,

2 d
Oap = 27er7w / (gT’;d /dE [np(E) — np(E + w)) (vaGA(p;E)vlgGR(p;E+w)>d,-s,
(2.20)
where vy = pro/m, pr, is the Fermi momentum in the direction « and ng(E) is
the Fermi-Dirac distribution. Diagramatically it can be described as the bubble
diagram shown in figure 2.5a. As a first approximation we take the average in
(2.20) to be the product of two averaged Green'’s functions (2.18), which after
integration yields,
e’Dv

U’aﬁ = m wp (2.21)

the classical Drude formula. We can consider corrections to the Drude formula
if we consider the vertex corrections to the bubble diagram. Before doing that
we first consider a related quantity to the one appearing in the conductivity
(2.20), the density correlator R(q, w),

R(qw) = (GH(p;E)GR(p + q; E + w)) 4is- (2.22)

The diagrammatic expression for R(q, w) is again a bubble. Considering the
diagrammatic expansion we ignore all kind of crossings and we solve for the
vertex I' shown in figure 2.5d. The equation for the vertex is,

1 1 d
Ipiprg = vt + vt / dp Gp1qGplppaq - (2.23)
which is solved to give,
1 1
I'q (2.24)

T 2muT —iw + Dq?’
adding the external Green'’s functions, the density correlator is,

2v

“iw+ D (225)

R(qw) =
With these results we could calculate the correction to the conductivity from
the ladder diagrams, for this we would need to integrate over energies (times
the difference of the Fermi-Dirac distributions), over momenta, add the v,, v
and set q = 0. This results in a contribution of zero [12]. We conclude that the
quantum contributions do not come from the ladder diagrams.

13
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(d)

FIGURE 2.5: a) Diagram corresponding to the computation of the conductivity. The
solid lines represent the Green'’s functions while the wavy lines represent
Uap- b) One of the ladder diagrams contributing to the computation
of the density correlator. ¢) One of the maximally crossed diagrams
contributing to the quantum corrections to the conductivity. d) Equation
for the diffuson vertex, leading to the ladder diagrams.

There are another class of diagrams which can render corrections to the
conductivity and those are the maximally crossed diagrams (see figure 2.5¢).
The reason to consider to consider the maximally crossed diagram despite of
the crossings (which amount to a small contribution) is that so many small
contributions from the crossing can make up something that is not negligible
and serves as a correction to the classical conductivity.

The maximally crossed diagrams can be obtained from the ladder diagrams
previously considered if we reverse the momenta of one of the Green’s function
p — —p, now instead of considering the difference of momenta q, (which is set
to zero in the conductivity formula), we consider the sum of the two momenta
Q. Using diagrams we look at maximally crossed diagrams with the vertex I'c
given by,

1 1
I'c= .26
€7 2T —iw + DQ2 (2.26)
and the quantum correction to the conductivity is [12],
S0 = —Dve2rz/ d‘Q r (2.27)
(2m) '

Integration over the vertex correction taking into account the sample size L,
leads to the results,

2 (L—-0), d=1

5o ~{ —En (%) d=2 (2.28)
2
zih@*%)f d=3
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FIGURE 2.6: Exchange, Cooper and direct low momentum decoupling channels.

where in 2-d the quantum correction to the scaling function is,

1
n2g

B(g) = — (2:29)

with g the parameter defined in section 2.2. This equation implies the local-
ization of all states. One can arrive at the same conclusion without using
perturbation theory but using a Hubbard Stratonovich decoupling to eventually
develop a field theory in terms of the low energy modes of the system [21-
24]. From the previous discussions we can easily see that the ladder and the
maximally crossed vertex corrections satisfy a diffusion equation and that they
can in principle propagate in the system without decaying (unlike the Green’s
function). We call this contribution the diffuson and the Cooperon respectively
and they are identified as the (massless) excitations of the low energy theory.

In the following we obtain an effective low-energy field theory for this
massless degrees of freedom starting from the averaged-over-disorder partition
function. We consider the quartic term induced by the disorder averaging
process (2.11), in momentum space there are three channels in which we can
decouple the quartic term. Those are, the exchange, Cooper and direct channel
(see figure 2.6). In here, following the previous discussion, we decouple in the
exchange and Cooper channels. To avoid having two Hubbard-Stratonovich
fields, we perform the following trick. First we consider the action prior to
disorder average written in the retarded/advanced sectors s = =,

Syl =~ I [ a6y, "Z/dd FC e (G )]
- *s;i%/ddx (36 1ps — I 69T = - Z /ddx‘fsc ¥,

where we have made the following definitions,

Y, = (3_]];) LY = (IPSr _¢Z)/

15
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as new fermionic fields acting in the newly introduced time-reversal space, in
advanced /retarded space and in replica space. We call it time reversal space
since the system belongs to the symmetry class Al where the Hamiltonian (and
therefore the Green’s function) posseses a time reversal symmetry according
to H = HT (see section 4.1). Under this redefinition, the fields ¥s and ¥
are not independent from each other and they are related by the following
transformation,

¥s = —¥! (ioy), (2.30)

where ¢!" are the Pauli matrices acting on the time reversal space. We can
further combine the advanced and retarded fields into one field,

Y= (\FJF) , Y= (Y, 7).
Y_

One may now proceed and take the average over the disorder to obtain the
effective action,

2
S[¥,¥] = —l/ddx? E+w+i0+r3+v— ¥

2 2m (2.31)
1

16tvT

/ dx(TY)(FY).

where we have introduced a source field w from which we can obtain corre-
lations via derivatives of the partition function and the fields ¥ = {¥**"}
have structure in replica 4, advanced /retarded s and time reversal space ¢. Let
us take a closer look at the contributions from the Cooper and the exchange
channels,

Sais &

/ddx (?(1)‘1,(2)?(1)11,(2) +?(1>‘F(2)?(2>‘f(1)), (2.32)
lémvt

where fields with the same upper index form a slowly varying bilinear (see
figure 2.6). Exploiting the symmetry condition (2.30) we find,

vy — (?“)w@)T = ¥ @TFT — O (i0) (i V" = TPy,
(2.33)
and therefore both channels give the same contribution. Effectively, we have
only one channel. Rewriting this contribution using components « = (a,s, ),
where a is the replica index, s = =+ is the advanced /retarded index and o = 1,2
is the index in the time reversal space

o1 4 g(1)p gD (2)a w2)B
Syis = SMT/d x ¥ B F g F2P (2.34)
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We decouple the interaction by introducing a matrix field Q = {Q*f(r)} slowly
varying in space. The new introduced matrix Q has the same structure as the
product ¥¥ and therefore the following symmetry condition holds,

Q = (ie§")Q" (ieh) 7, (2.35)

where in this notation we have omitted the tensor product of ¢} with the
identities in the other spaces. Inspired by the similarity in structure between
YY¥ and Q, we define the following bar operation on any matrix A as, A=
(04" ) AT (iok")~1. From the definition, it is clear that Q = Q. We multiply

the action by the unity, [ DQ exp (— (rrv/87) [ d¥xtr Q2> and we perform the

following shift Q — Q + i¥( / rtv. This procedure changes the disorder
contribution of the action as,

~Suis[EF] _ v d 2 L d.w
e ~d /DQexp[ e /d x trQ 4’r/d x‘I’Q‘Y} , (2.36)

where we have used tr(Q¥Y) = —¥QY and we have dropped the superscripts.

Adding this result to the whole partition function and integrating over ¥, we
obtain,

< y /DQ exp [f— /ddx tr Q% + tr InG™ [Q]} , (2.37)
18
where G[Q] = (E + w3 + V?/2m +iQ/27) 1. The effective action reads,

S[Q] = % /ddxtr Q> — %trln GQ). (2.38)

Varying the action with respect to Q, we obtain the mean field equation,

Q= —uGlQl. (2:39)

A solution of the mean field equation is given by the diagonal Ansatz Q =
A = {4 ®1¥ @ Ig. It turns out that this solution is not unique, if T is a
transformation such that it is a symmetry of the problem then,

Q=TAT, (2.40)

is also a solution of the mean field equation (2.38). To find what kind of
symmetry is found in this problem, we use the fact that Q = Q, and that
01Q2 = Q2Q; for any matrices Q1 and Q; to obtain,

TIAT = TAT L.

17
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The previous relation implies, T = (ic") T (igZ")~! = T~1, which is the defin-
ing relation for the unitary symplectic group Sp(4R). As advertised before, the
transformations ¥ — TY and ¥ — TY leave the action (2.31) invariant. Never-
theless, the diagonal Ansatz breaks the symmetry. There are however certain set
of transformations T from the group Sp(4R) which commute with A leaving
the diagonal Ansatz invariant. It is easy to see that the set of transformations
that leave A invariant belong to the group Sp(2R) x Sp(2R). Based on these
observations the theory describing the low energy degrees of freedom takes
its values on the coset space Sp(4R)/(Sp(2R) x Sp(2R)), also known as the
Goldstone manifold.

A straightforward expansion in gradients of the action (2.38) around the
mean field solution yields the non-linear o model,

S[Q] = % / d?x tr(D 9;Q9;Q — 2wQA) (2.41)

which is the low-energy model of diffusive dynamics in a disordered environ-
ment. This model can be used to derive the same conclusions obtained from the
diagramatic perturbation expansion. In particular, a straightforward renormal-
ization group analysis of this action in dimensions 2 + € leads to the g-function
(2.29) [21]. This model and modifications of it will be the main theoretical tool
to analyze different types of disordered topological insulators throughout this
thesis.

2.4 QUANTUM HALL EFFECT

From the previous discussion on localization, it is clear that an electron gas in
2d localizes in the presence of arbitrary disorder. However, for certain special
systems, we can sidestep the localization argument and find at least one delocal-
ized state in the system. This is achieved by introducing an additional element:
a perpendicular magnetic field. This field breaks time-reversal symmetry other-
wise attained by a 24 electron gas. This scenario corresponds to the physics of
the Hall effect. In such a system, we not only find a delocalized state but also
discover conducting egde states at the boundaries of the sample. The presence
of this delocalized state depends solely on the topological properties of the
system and accurately describes the physics of the integer quantum Hall effect
(IQHE). To understand this phenomenon better, we first review the physics of
the IQHE. We explore the main topological concepts underlying the quantum
Hall effect and, finally, examine the interplay between topology and Anderson
localization.

The setup of a QHE experiment is shown in figure (2.7). A voltage difference
in the x-direction induces a current in the same direction while the Lorentz
force induces a difference of voltage in the y-direction. This voltage is called
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FIGURE 2.7: A 2d electron gas subject to a perpendicular magnetic field B and a
voltage difference V, in the longitudinal direction. Under this conditions
there is a voltage difference Vj in the transversal direction due to the
Lorentz force.

the Hall voltage. Due to the appearance of a new voltage on the y-direction, the
conductance ¢ is best written as a tensor,

(% (o
o= ( xx xy) , (2.42)
—Oxy Oxx

and the resistivity is just defined as the inverse of the conductivity tensor, p =
o~ 1. An interesting feature of 2-dimensional samples is that the conductance g
and the conductivity ¢ coincide, i.e, the conductance does not depend on the
geometry of the sample.

In 1980, von Klitzing, Dorda and Pepper found experimentally [1, 25] that
when the sample is subject to low temperatures and strong magnetic fields
the transverse resistance p,, displays plateaus with values //ve? while the
longitudinal resistance vanishes everywhere except at the transition between
two plateaus (see figure 2.8). To a very high precision, v is found to be an integer.
This interesting effect goes by the name of integer quantum Hall effect. We shall
see shortly that the origin of the quantum Hall phenomenon is topological and
and its observation depends highly on the presence of disorder on the sample.
But first, let us review the physics in the clean case.

We consider a non-interacting electron subject to a magnetic field. The Hamil-
tonian of the electron reads !,

1
=5-(pP—A)? (2.43)

where the vector potential is chosen to be in the symmetric gauge, A =
(B/2)e;jx!. We define the following quantity 7z = p — A such that the Hamil-

1 Wehaveseth =1ande=1.



20

LOCALIZATION AND DISORDER

2 W
MAGNETIC FIELD (T)

FIGURE 2.8: Experimental curves for the transverse resistance p,, (upper part of the
figure) and the longitudinal resistance pyy (lower part of the figure) for
varying magnetic field and fixed density. The transverse resistance is
quantized in plateaus, while the longitudinal resistance is zero every-
where except at the transition between plateaus. Taken from [25]

tonian takes a simpler form, H = 5. 7t2. The new momentum 7 satisfy the
following commutation relation,

[7ty, 7Ty] = iB. (2.44)

Inspired by the harmonic oscillator, we introduce the following ladder operators,

a= 1 (rty —imy)
== \Tly — 7y ),
V2B
1 (2'45)
v .
=——(my +imy),

V2B

satisfying [a,4"] = 1. In terms of the ladder operators the Hamiltonian takes
the form,

H = wg(ata+ %), (2.46)

where wp = B/m is the cyclotron frequency. The Hilbert space is constructed
in the same way as in the harmonic oscillator. We define our ground state |0)
as a|0) = 0. The rest of the states are obtained by acting with the operator a*.
The state |n) has energy E, = wp(n + 1/2), where n is a positive integer. All

energy levels are equally spaced and the separation between levels increases
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linearly with the magnitude of the magnetic field applied. These energy levels
are called Landau levels and each level hosts not one but many states, in fact
the degeneracy of each level is quite large. To study the large degeneracy of the
Landau levels, we introduce a new type of momentum, 7t = p + A. It fulfills the
commutation relation,

[7tx, 7ty] = —iB (2.47)
And in the symmetric gauge it satisfies,

[7t2, 7ty] = 0. (2.48)

By analogy with the previous construction we introduce a new set of ladder
operators,

b= (7, + i)

V2B T

b =—= (7, —ifty),

\/TB( ¥~ iftx)
where they, too, satisfy [b, b*] = 1. We define the ground state as the state
annihilated by both b and a: a]0,0) = b]0,0) = 0. The rest of the states are
constructed by acting with a" and b' on the ground state. It is worth noting that
the energy of a general state |1, m), does not depend on the quantum number
m. This quantum number m is the one accounting for the huge degeneracy. We
can find the wavefunctions in the lowest Landau level (LLL), i.e, we want to
find the wavefunction corresponding to the state |0, m) by converting both sets
of ladder operators into their differential form. Using complex coordinates z, Z

we obtain,
t_
a=— f(ﬁga—kMB ) , a \f(ﬁga 105 )

. 1 (2.50)
b \f(ﬁBaJrMB) bt = f(ﬁga—@z)

(2.49)

where /g =1/ \/B is the magnetic length. We first find the LLL when m = 0,

and using b we construct the rest of the states in the LLL. The LLL has the
following form,

PLLLm ~ (7) e ¥ (2.51)
B
To see the degeneracy of the LLL, we notice that the previous equation is peaked
around the radius r = v/2m/{p. In a disk shaped region with area A = 7R?, the
number N of possible states is,
R> AB

==,
205 27
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F1GURE 2.9: Hall bar continuously deformed to an annulus. The voltage difference
Vy is replaced by an e.m.f generated by a time dependent flux threading
the annulus.

I
Iy,

which indicates the large degeneracy of the Landau levels. We can also define
the flux quantum as, &y = 27 2, and the degeneracy is also interpreted as the
total flux ® = AB in units of the flux quantum, N = %.

To study the topological aspects underlying the integer quantum Hall effect,
we begin with a Hall bar and continuously deform it into an annulus, as
illustrated in figure (2.9). The external voltage is replaced by the electromotive
force generated by a weakly time-dependent flux threading the annulus [2].
According to the results of Byers and Yang [26], and Bloch [27], the observables
of this system depend on the flux through the annulus, exhibiting periodicity
with a period of @, the flux quantum. This implies that, when an integer
number of flux quanta ¢ = n®P is inserted, the system’s Hamiltonian is gauge
equivalent to the Hamiltonian without flux.

As the flux gradually increases from ¢ = 0 to ¢ = Py, both the system’s
spectrum and the eigenstates evolve. However, at ¢ = P, the spectrum appears
identical to that at ¢ = 0, although the states themselves differ. For instance, if
the system starts in the state |n), after the insertion of a flux quantum, it ends
up in the state |n + 1). This phenomenon is known as spectral flow.

Let us consider, without loss of generality, a situation where the Fermi level
Er is positioned between the first and second Landau levels. The edges of the
annulus create a confining potential, resulting in chiral edge states propagating
along both the inner and outer rings. Upon the slow insertion of a full flux
quantum, these states shift from their initial positions: the edge state at the
inner ring rises above the Fermi level, while the one at the outer ring drops
below it, causing all the intermediate states to adjust accordingly. To regain
equilibrium, the system needs to transfer one electron from the inner ring to
the outer ring.

In the presence of disorder3 in the bulk, the states are expected to be localized,
making it seemingly impossible to transfer an electron from one edge to the
other. To address this issue, Halperin [28] proposed that, despite the disorder,

Recovering the constant /i and e the flux quantum is &y = 27

The strength of the disorder should be smaller than the separation between levels, i.e., wpT > 1,
where T is the scattering time.
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there must be at least one delocalized state in the bulk. This delocalized state
establishes a connection between the edges and facilitates the transfer of elec-
trons from the inner edge to the outer edge. The edge modes, which propagate
along the inner and outer rings, remain unaffected by the disorder due to their
chiral nature; since there is no mechanism for back-scattering, hence they do
not localize. Similarly, the delocalized state in the bulk is also chiral, making it
resilient to disorder.

The presence of disorder in the sample is actually necessary to observe the
plateaus in the experimental data of the quantum Hall effect and it is indeed
curious that such universal effect is obtained because of random disorder in the
sample. Let us imagine for a moment that the sample is clean, i.e, the system is
translationally invariant and therefore no preferred frame of reference exists.
We can go for example to a frame which moves with velocity —v (in the x —y
plane) relative to the lab frame. In this frame the electrons appear to be moving

with velocity +v and carrying current density j = —nev, where 7 is the surface
density. The E and B fields in the lab frame are,
E=0, B =Bz (2.52)

while in the moving frame they take the form,
E= —%VXB, B =Bz (2.53)

and using the expression for the current j, the electric field can be written

as E = ;L1j x B. Noticing that B points in the z direction we can write it in

components as,

B .
E, = aerxﬁ]ﬁ/ (2.54)
where we define the resistivity tensor as,
_ B, _B (01 -
P=Tec® = fec 1 o/’ 22

this matrix is easily inverted and from the off-diagonal elements we read the
Hall conductivity oy, = nec/B. We note that py, is a linear function of the
magnetic field where the slope only tells us about the density. We cannot
account for the plateaus observed in the experimental data. Once we add
disorder translation invariance is broken and a frame of reference is chosen,
thus the argument presented before fails and we observe the quantum Hall
plateaus.

If the the Fermi level Er is placed between the v and v + 1 Landau levels,
when we insert a flux quantum, v electrons are transported from the inner edge
to the outer edge. Let us suppose that this process takes time ¢, the current is
I = v/t and the voltage ¢ = 2m/t, the Hall conductance is then, Oxy = V/27T 4.

4 or oy, = ve?/h in physical units.
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Later, it was realized by Thouless, Kohmoto, Nightingale, and den Nijs [3] that
the Hall conductance is a topological invariant, the first Chern class of the U(1)
principal bundle over the torus T2. In practice it is better to consider the Chern
number cj, the integral over T2 of the Chern class,

1
Clz—EAZF, (256)

where the 2-form F is the Berry curvature. We will describe in more detail the
Berry curvature and its relation to topological invariants in the next chapter.
From this simple but powerful example we have seen that topology helps 24
systems to avoid Anderson localization at the center of the Landau band at
arbitrary disorder, while at the same time we discover that it is disorder and
Anderson localization of states not in the center of the Landau band combined
with the phenomenon of spectral flow the responsible for the observation of
the integer quantum Hall effect.

2.4.1  Field theory of the quantum Hall effect

In section (2.2), we discussed how the scaling theory of localization predicts
localization for a 2D electron gas. In this section, we explore how the scaling
theory of localization is modified when a magnetic field is introduced. Instead
of focusing solely on the scaling of the longitudinal conductance oy, = g, we
also consider the scaling of the transverse conductivity oy,. By examining the
scaling behavior of this new parameter, we uncover the unique properties of
the quantum Hall effect.

The field theory for this theory can be constructed using the replica formalism,
there are a couple of differences with respect to the previous construction. First
of all, due to the presence of a magnetic field time reversal invariance is lost.
The (replicated) action with impurity potential V(x) is,

S[B, y] = / d2x % (E+i0" 7 — 72 = V(x)) 9 (2.57)

where 7 = p — A and ¢*® is a fermionic field with indices in replica space (a)
and in retarded/advanced space s. The action is invariant under the group of
unitary transformations U(2R) acting on the fields i and . When averaged
over (white noise) disorder, the action acquires a quartic interacting term as
in the previous section. To decouple the quartic term a Hubbard-Stratonovich
field P should be added. This field is likewise invariant under the action of
U(2R). The resulting action in terms of only the fields P looks like,

S[A] = /dzxter—trlog (E+i0+T3*7T2*iP) : (2.58)
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A saddle point analysis of the previous action, reveals that the mean-field
configuration P breaks the symmetry of the action down to U(2R)/(U(R) x
U(R)). This is the manifold in which the massless excitations around the saddle
point P live, we therefore expect that the low-energy theory has the shape of
a non-linear ¢ model. Interestingly due to the topological properties of the
manifold M = U(2R)/(U(R) x U(R)), in particular due to the non-triviality
of its second homotopy group>,

m(M) =2 (2:59)

an extra topological term, which counts the windings of M around the sphere
2, could be present in the low-energy theory. An expansion in gradients of
the mean field action results in the following low energy action first derived by
Pruisken [8, 9],

5[0 / &x tr (8,09,Q) + ¥ / d2x e tr (Q9,00;Q) (2.60)

where the first term is the usual diffusive term and the second term is the
topological term counting the windings around S2. The coefficients of the action
are 0yy and oyy and they are the longitudinal and transverse conductivities in
the scale of the mean free path /. In particular oy, = Oyl + Oxy,11 18 found as
the sum of two terms called the Streda-Smrcka coefficients [30]. The second
coefficient is interesting in the sense that is the non-classical contribution to the
transverse conductivity,

E d
un(B) = [ dESu(E), (2.61)

since it considers the contribution from all states below the Fermi energy, and
moreover it probes the sensitivity of the density of states v(E) to changes in the
magnetic field.

Armed with a field theory for the quantum Hall effect we would like to
explore its fate upon going to larger and larger system sizes. The scaling
theory of localization in 24 predicts the coefficient oy to vanish upon going to

larger system sizes, but the scaling theory of localization cannot answer for oy,,.

Pruisken, Khmelnitskii and collaborators [8, 31] conceptualized and derived the
diagram 2.10 for the two coefficients of the theory. Whenever the bare value of

Oxy is not a half-integer, the theory flows to the fixed points (o7, 0%,) = (0,1),

where 1 is the closest integer to the bare value ny When 0y is a half—integer
the theory flows to the unstable fixed point (03, 03,) = (g%, 7 +1/2), where
n is again an integer. The former fixed point correspond to the plateaus and

Recall that the second homotopy group 71,(M) of a manifold M is the group of equivalence
classes that classify all the maps f : S — M [29].
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the latter to the plateau transition where the longitudinal conductance attains a
finite values of the order of 1.

The non-linear ¢ model describes accurately the physics of the quantum Hall
effect, in particular, it captures the quantization of the transversal conductance
and the vanishing of the longitudinal conductance in the plateaus. The non-
linear o model description breaks down at the plateau transition and another
theory is needed to describe accurately the critical behavior of the theory. To
date there are proposals of the theory having the shape of a conformal field
theory [32, 33] but there is no full agreement among the scientific community.

2.5 MULTIFRACTALITY

At a critical point, due to the divergence of the localization length ¢, we observe
strong fluctuations at all length scales. One way to analyze and characterize
the critical point is through multifractal analysis. Multifractal structures, where
they exist, are characterized by an infinite set of critical exponents that describe
the scaling of the moments of some distribution [34—36]. In this context, we
examine the square of the wavefunction |¢(x)|? and its moments,

P, = / dx |p(x) [, (2.62)

known as the inverse participation ratios (IPRs). At criticality, the IPRs exhibit
anomalous scaling with the system size N as follows,

(Py) ~ N7, (2.63)

where T; represents a continuous set of exponents. These exponents are defined
as Ty = Dy(q — 1), where D; = 0 in an insulator and D; = d in a metal [34].
At criticality, however, the exponent is a non-trivial function of 4, which can
be expressed as the sum of a normal part plus an anomalous part, 7, =
d(q—1) + Ag.

Let us consider the case of weak multifractality, which means the critical
point is close to a metal. This is particularly applicable for the Anderson model
in dimension 2 + €, with € < 1. For weak multifractality, the anomalous part of
the exponent is approximately parabolic,

Ag=q9(q—1), (2.64)

where v < 1. In the case of the quantum Hall effect, it has been observed that
the multifractal spectrum is parabolic with v = 0.25 [37].

Multifractal analysis is thus a powerful tool to probe the metallicity or insu-
lating character of states in a sample via the analysis of the IPRs. Moreover, it is
a robust method to analyze systems at criticality. Depending on the form of the
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n n+"2 n+1 ox;

FIGURE 2.10: Two parameter phase diagram for the quantum Hall effect. This dia-
gram predicts that for values of Oy ¢ 7+ % the theory flows towards
an insulating phase 0yy = 0 with oy, € Z quantized. On the other
hand for half integer values of oy, the theory flows towards a fixed
point with non-vanishing longitudinal conductance o7, describing the
plateau transition.
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anomalous part of the multifractal spectrum, multifractal analysis can distin-
guish between different critical systems and categorize them into universality
classes.

2.6 SUMMARY

In this chapter, we have discussed various phenomena associated with the
presence of disorder in electron systems. We have seen that disorder can
localize electrons through a process known as Anderson localization. In one-
dimensional (1d) systems, electrons always localize regardless of the strength
of the disorder. In two-dimensional (2d) systems, localization depends on the
symmetry class of their Hamiltonian, while in three-dimensional (3d) systems,
some states will localize while others remain metallic. Within a band, states
near the band edge localize more easily. The point in the band that separates
localized from delocalized states is called the mobility edge, where we observe
a metal-insulator transition.

In a 2d electron gas subject to a perpendicular magnetic field, a transverse
conductivity appears when a voltage difference is applied across the sample, a
phenomenon known as the Hall effect. At low temperatures, this conductance
is quantized in integer steps, known as the integer quantum Hall effect. Interest-
ingly, the presence of disorder is crucial for observing the quantization plateaus.
This might seem paradoxical because, according to the one-parameter scaling
hypothesis, all states should localize in 2D. The resolution lies in hypothesizing
that at least one state remains delocalized in the center of the Landau bands and
that the scaling is described by the scaling of (¢, 0xy). From a field-theoretical
perspective, averaging over disorder potentials and using the replica trick re-
veals that the quantum Hall effect is described by a non-linear o-model with an
additional topological 0 term.

In the rest of this thesis, we will study the effect of disorder on specific types of
topological insulators and their boundary states. We utilize our understanding
of localization (and delocalization) and the tools of field theory for disordered
systems to investigate their properties.
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The quantum Hall insulator discussed in the previous chapter is a quintessential
example of a topological insulator in two dimensions. We observed that its
defining feature is the induction of a transversal current, the Hall current, by
an external magnetic field, resulting in quantized Hall conductance. In contrast,
models of quantum Hall insulators that do not require an external magnetic
field are known as anomalous quantum Hall insulators (AQH) [4]. These systems
lack certain symmetries and are classified as class A in the Altland-Zirnbauer
scheme. A key aspect of the integer quantum Hall effect IQHE), as discussed
earlier, is the crucial role of disorder in the quantization of Hall conductance.
Unlike the IQHE, where Landau levels are present, the AQH insulator features
electronic bands defined in the Brillouin zone, allowing for the definition
of topological invariants. Introducing disorder in this system transforms the
topological band insulator into a topological Anderson insulator [38, 39], where
a mobility gap replaces the spectral gap. According to Laughlin’s argument,
even in the presence of disorder, some states remain delocalized, similar to
the delocalized states at the center of the Landau bands in the quantum Hall
insulator.

We investigate the physics of AQH insulators by examining the Chern insula-
tor, a fundamental example. Initially, we provide a detailed description of its
properties in the clean case. Subsequently, we investigate the disordered Chern
insulator, focusing on how the position of the delocalized state varies with
the disorder strength, denoted as W, and the parameter r, which governs the
topological phase in its clean form. Our analysis involves deriving a non-linear
o model to serve as a low-energy field theory based on a microscopic theory of
the Chern insulator.

3.1 BERRY PHASE

The concept of Berry phase [40] is a key ingredient in the study of topological
insulators. For us, it helps us classify the different topological phases in the
Chern insulator and also makes contact with physical observables (the quan-
tized quantum Hall conductance oy;). To obtain the Berry phase we consider
a system described by the Hamiltonian H that depends on some parameters
A = (a1,ay,...,a,) that will be changing adiabatically. We consider the evo-
lution of the system along the path C in parameter space and introduce an
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instantaneous orthonormal basis of the instantaneous eigenstates |[n(A)) of
H(A), which is obtained by solving the equation, H(A) |n(A)) = E, [n(A))
along each point of the path A. The idea is to see what happens to an initial state
|n(A(0)) as we vary the external parameters. As we are varying the parameters,
in an adiabatic fashion, after a time t we end up in the instantaneous state of
H(A) times a phase «,

9(£)) = exp(—ia(t)) [n(A(t)) - (1)

We consider the Schrodinger equation projected in the instantaneous eigenstate
[n(A)), (n(A)|ios |¢(t)) = (n(A)| H(A) |¢(t)) and using the orthonormality of
the instantaneous basis (n(A)|n(A)) = 1 we arrive at a first order differential
equation for a(t) which has the solution,

=& [ B —i [ naw)] g InAE) . G2

The first term of «(t) is the so-called dynamical phase and is related to the time
evolution of the state. The second part is the Berry phase that accounts for the
difference of the instantaneous basis between two points ¢t and t + dt along the
path C. This is the phase that would be of interest to us,

=i [ (n(4)]d]n(4)). 63)

The fact that the integrand measures the change of the instantaneous basis
should be reminiscent of the concept of connections in differential geometry, and
for that reason we define the quantity A, =i (n(A)|d|n(A)) as the Berry con-
nection which is the connection of the principal U(1)-bundle P(U(1), M) [29],
where M is the parameter space, with local coordinates A = (ay,4ay,...,a5).

We can perform a gauge transformation on the state [1(A)) — exp(i(A)) [n(A)),

which is translated into a gauge transformation in the Berry connection A,, —
— d¢. Upon computing the phase we find that it gets shifted by a factor
of ¢(A(0)) — ¢(A(T)), where T is the final time. One could argue that with a
clever choice of gauge the Berry phase could be cancelled. This is in general not
true. Let us take the case, for example, of closed loops in parameter space. This
implies that A(T) = A(0) and the factor coming from the gauge transformation
gets cancelled, leaving a general non-zero Berrry phase 7.
For closed loops we can use Stoke’s theorem in 3.3,

=i n(A)dn(a) =i [ @n(a)dna) = [B. G

where B, is the Berry curvature and S is chosen such that its boundary is C.
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In the case of the integer quantum Hall effect there is a particular link between
the Berry phase and the value of the Hall conductivity oy,. This link reveals a
deep connection between topology and the observables on a physical system.

Let us take the IQHE system and the annular geometry that we consider
before in section (2.4). We are going to thread two fluxes, one in the x—direction
¢x and another one in the y—direction ¢,. The gauge potentials (in the Landau
gauge) get changed to,

¢x Py
Ay =1, Ay=-—+Bx .
«=p, A= TB (3:5)
Accordingly the Hamiltonian gets the extra term,
_ g e W
AH = —], L, Jy L
Let us take the ground state of the unperturbed quantum Hall Hamiltonian |tp).

At first order in perturbation theory we obtain the correction for the ground

state as,
(n| AH [po)

[90) = Io) + 1 ), (3-6)
n# o En = Eo
and upon an adiabatic change of the flux we obtain that the new ground state
changes as,
3¢6> 1 (n] Ji [tpo)
=—— " |n). .
5= 2B 67

With this expression it is possible to rewrite the Kubo formula for oy in terms
of the change of the ground state to external parameters, and then average over

all possible values of the flux, to obtain,
_ Iy |99y Iy |99y
o =i f st (53500 )~ (G ey ) 69

On the other hand, since we have an adiabatic change of external parameters,

the Berry curvature in terms of the angular coordinates 6; = 27‘[% (with ¢

equal to the flux quantum) is,
AT o
00, 00 |00, /)’ ’

_i({ %%
Byy =i (< %,
0= [,d0:d0, By, (3.10)

and therefore the Berry phase is,
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where T? = S! x S! is the 2-torus defined by the external parameters. It is well
known that this integral is equal to g = 271 Ch, where Ch is the first Chern
number and takes only integer values. Upon averaging over all fluxes we find
that the Hall conductance is equal to,

2

e
ny - ﬁCh, (3'11)

a quantity that (as we have seen before) has a topological origin and is quan-
tized.

3.2 CHERN INSULATORS

We can extend naturally all the concepts from the previous section to 24
translational invariant systems. In these systems we have a Brillouin zone
corresponding to T? and energy bands, on each of the bands we have states
labeled by the momentum |uy). Let us suppose there are gaps between the
bands, and that our Fermi energy is located in one of gaps (insulator). We can
define a Berry connection for such states on each band,

A =i (ug|duy) . (3.12)

From here we can compute the curvature associated with this connection
By = dAy. Additionally, we can compute the Berry phase v around a closed
loop as the integral of the connection around the Brillouin zone,

v= /TZ By = 2rtCh, (3-13)

where in the last equation we have used the definition of the first Chern number
Ch € Z. This kind of topological invariants are known by the name of TKNN
invariants [3]. We see clearly that we can associate an integer number to each
band. Let us suppose we have # filled bands labeled by I, the Hall conductivity

of the system is then,
2

Oxy = ﬁ 121 Chl/ (314)

where Chy is the Chern number of the /-th band. We have managed to define
an intrinsic Hall conductivity for a translational invariant 2d system without
the necessity of any external magnetic field (or any external parameter). This
effect is dubbed the anomalous quantum Hall effect. Let us consider the example
of two band insulators, the easiest example where we see a non-vanishing Hall
conductance. In momentum space the Hamiltonian takes the form,

Hy(k) = hy(k)oy + ha(k)op + ha(k)os (3-15)
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FIGURE 3.1: a) Vector field 7 (k) corresponding to model 3.19 in the topological phase.
Upon going around the Brillouin zone the vector winds one time around
the sphere S%. b) Vector field 7i(k) corresponding to model 3.19 in the
trivial phase. There are no windings around S2.

where the energy of the two bands is E+ (k) = &/h% 4+ h3 + h3 = +E(k). We
have an insulator as long as E(k) # 0 for all k. We can compute then the Chern
number of the lower band. We represent the lower (valence) band by |—), and
therefore,

H()|-) = —E(K)[-),
ak)-o|-)=—|-),

where (k) = %11:)) is an unit vector living in the sphere S2. This unit vector
represents a mapping from the Brillouin zone T? to the sphere S? and therefore

the Berry curvature in terms of this vector is given by [41],

(3.16)

€
B= 7’ i~ (0;f1 x ;1) dkydk, (3-17)
The Hall conductivity is therefore,
2 e
Oy = /TZ iy - (37t x ) dxdley = - Chy . (3.18)

This equation has a nice geometric interpretation as it counts the number of
times that T? wraps around the sphere S2. This number is precisely the Chern
number.

The first model of a Chern insulator with a Hall conductivity was proposed
by Haldane [4], where he considered electrons moving on a honeycomb lattice
with nearest neighbor and next to neareast neighbor hoppings. However, Qi,Wu
and Zhang [42] introduced a simpler model of a Chern insulator in a square
lattice with only nearest neighbor hoppings and periodic boundary conditions
in the x and y—directions. In momentum space it takes the form,

Hy(k) = sinkyoq + sinkyop + (r — cosky — cosky)o3, (3.19)
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FIGURE 3.2: a) Band of the Chern insulator model 3.19 at 7 = 0.5 with a gap between
the valence and conduction band. b) Band of the Chern insulator model
3.19 at ¥ = 0 showing the band closure. This is a critical point between
the two topological phases.

with r a parameter controlling the topological phase. The model consists of
an upper (conduction) band and a lower (valence) band (see figure 3.2). The
dependence of the Chern number of the valence band with r is as follows (see

figure 3.3),
1 —2<r<Q,
Chy=q-1 0<r<2, (3-20)
0 r>|2|

This model has 2 topological phases and one trivial phase. The points r =
—2,0,2 are points where a topological phase transition takes place, this corre-
sponds to band closures and openings.

Near these band openings and closures it is possible to approximate the
Hamiltonian to,

Hp(k) = kxo1 + kyoa + meo3 (3-21)
where m, = r — ¢ with ¢ = —2,0,2 depending on which point we expand
around. The last expression is a Dirac Hamiltonian in 2 dimensions. If we
compute the Chern number of the Hamiltonian (5.7) we would obtain +1/2,
which is not an integer value. The reason is that in the Dirac approximation
there is a not a well defined bandwidth. In fact the band extends over the whole
UV. In systems on a lattice the bandwidth is finite and in the UV we have some
curvature in the bands where the Chern number gets the additional 1/2 to
yield an integer. However the difference in Chern numbers between phases is
well defined and is an integer. For that reason these kind of Hamiltonians are
useful in describing some phenomena around the topological phase transitions,
but they fail to describe the general physics of the Chern insulators and one
often has to resort to regularization schemes to extract meaningful observables.
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FIGURE 3.3: Dependence of the Chern number Ch, on the parameter r.

This model, as the integer quantum Hall model, supports edge modes. The
number of edge modes and the Chern number are related via the bulk-boundary
correspondence. The absolute value of the Chern number | Ch, | determines
the number of modes propagating at the boundary of the system (given that
we have a Chern insulator-vacuum interface). To see this we consider a Chern
insulator with boundaries in the y—-direction and periodic boundary conditions
in the x—direction. In this setup k, is no longer a good quantum number and
we only have k. It is possible to plot the spectrum of the system as a function
of ky only, see figure 3.4. In there we can see (in blue) clearly gapped states that
are confined to the bulk. In contrast, we also observe gapless modes (in red)
that are localized entirely at the boundaries of our system. At ky = 0 we see
that the dispersion of the edge modes is linear for small k, it is around these
values where we can approximate our Hamiltonian to a Dirac Hamiltonian as
discussed previously.

Using the Dirac approximation it is also easy to see the emergence of gapless
modes at the boundary. Let us model the boundary by a y—dependent mass
parameter m;(y). The mass has value my(y) = —1 inside the bulk y > 0
(topological phase) and changes suddenly to m(y) = 1 outside the bulk y < 0
(trivial phase). The following equation has a zero mode solution when k, =0,

(idyoz + ma(y)os) [¢) =0,

) =wexp( [ armaw) -, 6:22)

where N is a normalization factor and |—) is a eigenstate of 7 with eigenvalue
+1. This mode is localized at the interface between the topological and the

trivial phase along the y—boundary, precisely the edge modes of the system.

35



36

CHERN INSULATORS AND DISORDER

FIGURE 3.4: Spectrum of the Chern insulator with respect to ky. In blue we have the
gapped bulk states, while in red we see the gapless edge modes.

This highly localized solutions also known as solitons where already described
by Jackiw and Rebbi [43] in the context of high energy physics.

3.3 DISORDER

In the clean case, we have seen that Chern insulators show really interesting
physics. There is a topological number associated to them, they display edge
modes and they also display the anomalous quantum Hall effect. As it happened
with the integer quantum Hall effect, the quantization of the Hall conductivity
and the existence of plateaus relies on the presence of disorder in the system.
Nevertheless, we know that in 2-d in the presence of disorder states must
localize via the mechanism of Anderson localization. In the instance of the
(anomalous) quantum Hall effect, given that 0yy is non-vanishing, we apply
Laughlin argument and postulate that there must be at least one state that
does not localize. This state is responsible for the quantization of oy, and the
appearance of plateaus. It is also the state connecting the boundaries giving
rise to chiral edge modes propagating along them. When we add disorder we
find a tension forming between Anderson localization and topology. At the end
if the disorder is strong enough all the states will localize.

As we add disorder we ought to ask the following questions for the Chern
insulator: Is the Chern insulator resilient against disorder? If it is, how much
disorder is needed to drive the Chern insulator into a trivial insulator? At which
energies do we find the delocalized state? How do we define a topological
invariant in this case? Does the delocalized state belong to the same class of
the integer quantum Hall effect?. For the rest of the chapter we plan to answer
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all these questions using the tools of replica field theory and numerical results
available in the literature. The discussion here is based in Moreno-Gonzalez,
Dieplinger and Altland [44].

The first thing to notice is that disorder breaks translational symmetry. Hence,
Bloch states are to be replaced by states that usually Anderson localize, more-
over, impurities can create states inside the spectral gap. This implies that for
scattering rates off impurities 7! bigger than the band gap, the spectral gap
gets filled by impurity states, therefore rendering the global spectral density
gapless. All these new states inside the band gap are Anderson localized. In-
stead of the spectral gap (that is compromised due impurities), we considered
the mobility gap, i.e, the gap between localized states in different bands. The
analytical approach to tackle the problem of the disordered Chern insulator is
an effective topological field theory in real space. The topological field theory
describing its physics turns out to be the non-linear ¢ model with topological 6
term,

5101 = [ (su(@i000) + 16 w(QA0NQ) ), G2

where the two coupling constants ¢ = 0xy/8 and 0 = 2710y, are determined
by the system’s longitudinal and transverse Hall conductance, respectively
(in units of the conductance quantum). It is no surprise that the same action
describing the integer quantum Hall effect it is now describing the disordered
Chern insulator since the physical phenomena are similar. Nevertheless, the
difference lies in the dependence of ¢ and 6 with respect to the parameters of
the model. In the next sections we derive this action from a microscopic model
(3.19) and we give concrete expressions for the coupling constants g and 6 in
terms of the energy E, the topological parameter r and the disorder strength W.

3.3.1 Effective field theory of the disordered Chern insulator

In this section we present the derivation of the effective field theory of the
disordered Chern insulator. The starting point is a disordered potential V(x)oy
taken from a Gaussian ensemble with zero mean and uncorrelated in space,

(V(x))ais =0,
2 (3-24)
VOOV () s = >

7(5 (X - X/) P
where W? is the variance. The full Hamiltonian of the model is then H =
Hy + Voy, where Hj is the two band Hamiltonian eq. (3.15) from the previous
section . The action corresponding to the microscopic model is,

S[ ) =i [ @x(x) (E+i0% — H) p(x), (325)
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where 73 acts on the retarded advanced space and ¥ (x) = {¢(x)*?} is a
fermionic field with indices in retarded /advanced space s and internal space ¢.
The next step is to average over all possible realization of disordered potentials
V(x). In order to access the averaged observables we use the replica trick, in
which we consider R-copies of our system ZR in order to compute the averaged
observables (see section 2.3 and appendix A for a discussion),

S[p ] = i [ P §(x) (E+i0" 5 — H) b ¢ (x).
From here we treat the action using the replica field theory:
* We average the partition function over all realizations of disorder V.

¢ We obtain a new quartic term in the action of the form

w2 - -
S =y [ PHE 9P ()9 (), (326)
coupling different replica sectors.

* We decouple the quartic term by a Hubbard-Stratonovich transformation,
yielding an action of the form [19, 45, 46],

SIA, §, ] = % /c12xA(x)2 -‘r—i/l[_J(E — Hy +ixA)p (3.27)

¢ We integrate the fermions fields in the path integral to obtain the following
effective action,

S[A] = % /dzx A(x)? —trIn (E — Hy + ixA). (3.28)

This action is suitable to a saddle point analysis. A variation of the action with
respect to A leads to the stationary phase equation

A(x) = WTZ tr(E+i0%13— H— A) _1(X/X>/ (3-29)

i.e. a self consistent Born equation with ‘impurity self energy’, A. We parame-
terize a matrix-diagonal solution compatible with the symmetry of the causal
increment i0" 13 as A — AE + ixT3. Plugging this Ansatz into the self-consistent
equation we obtain expression for both AE and «x,

W2 d%k

AE + ixt3 = — tr !
7 2 Jpz (2m)2 " \E—H(k) —AE—ix13 )

The real part of the previous equation, AE, represents an overall shift in the
energy E of the system. The imaginary part is the self energy due to impurity
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scattering, which is proportional to the scattering rate off impurities and conse-
quently defines another quantities of interest such as the elastic scattering time
T and the mean free path /, (see appendix A.1).

This equation admits a continuous manifold of solutions, A = AE + ixQ,
where Q = T13T~! with unitary T € U(2R) parameterizing the coset space
U(2R)/(U(R) x U(R)). Substituting these configurations into the action, and
upgrading the constant T to a slowly varying Goldstone mode T(x), we are left
with the effective action

S[T] = —trln (E — ha(k)om + iKT(x)Tngl(x)) , (3-30)

where we absorbed the energy shift AE into E, neglected the infinitesimal 0"
in comparison to x, and used a summation convention for repeated indices a.
In the following we expand this action in slow T-fluctuations, first leaving the
detailed form of the momentum-dependent coefficients h, = h, (k) unspecified.
This expansion will yield an effective action for the Goldstone modes.

We begin our analysis of the fluctuation action with a unitary rotation of the
tr In, leading to

S[T] = —trln (E — hao, + i3 — [T_l,haaa]T)) , (3.31)

where the argument-dependence h; = h,(k) and T = T(x) is left implicit.
Previous work performed this analysis for an effective Dirac Hamiltonian,
ha = (kq,k, m), for which the transformation of the logarithm is not innocent:
It generates the chiral anomaly, and the need for UV regularization. Here, we
need not worry, as we are working with a manifestly UV regular theory. In
fact, working with the full lattice theory allows us to find the critical energies
since in the Dirac approximation the UV details (and the details of criticality)
are blurred by the UV divergences and subsequently by the UV regularization
methods that cannot be justified from a condensed matter perspective.

Assuming variation of the fields T over scales much larger than the lattice
spacing, we approximate the commutator up to second order in derivatives
using the Moyal expansion as

[Tﬁl, I’lgU'a]T ~ F®; — %]ijq)i@j/
with F; = i0;h,0q, Jij = 0;0jha0,, ®; = (9;T~1)T, and the abbreviated notation

0;v = 0y, v and 9;T = dy; T. Our task now is to evaluate the formal second order
expansion

. 1
S[Q] = —trln (E — hgo, + ikt — E®; + E]ijcbicpj) (3-32)
1 1 >
= tr GFiq)i — EG]Z]q),q)] + E TI'(GF,qDl) ,

—_——
s 5@
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with the Green function
G = (E +ixt3 — ha0,) "' = D(E 4 ik13 + ha0y),
D = [(ixt3 + E)? — hahy) 7L (333)

In the following, we discuss how the two terms above yield the sum of a
gradient term and a topological term for the effective action of the system. Both
contributions are of second order in derivatives, the difference being is that one
contains 0;0; derivative combinations, the other €;;0;9;.

3.3.2  Topological action

In the construction of the topological action, we go fishing for antisymmetric
derivative combinations €;;0;0;. As detailed in the appendix B.1, these combina-

tions arise from both terms S(!) and $(). Building upon this point, we derive
the topological action.

0 —I—G
Siop = Stap + Stap = e [ Preytr(Q0Q0Q),  (334)
with coupling constants

6, = 8k / (d%)D*D"F,

02 = 4rii [ (&) [ dw (DS? ~ DR (3.35)
/

where (d%k) = d(];ld)}? and

F = Gubchaalhbazhc = (alh X azh) -h. (336)

Following standard conventions [8, 30], we associate the one/two derivative
action $(1/2) with the two/one contribution to the topological action, 8,,1.
Our final task thus is to compute the coefficients ;. These integrals are
straightforward for weak disorder, under a presumed hierarchy of energy scales

Kk <E<T1. (3:37)

We first represent the propagators D° as

1
DP= o, =2«E, €’ =) Kl
E? — €2 +isyms oA ; e
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Under the stated conditions, this leads to the approximation

K

DD = ——————
K (EZ_2)2 1 2

s
>~ @5(15 —€), (3:38)

where here and throughout, € > 0 is the positive root of €2. Thus,

272

o~ /(dk)szS(E —e),

which is an on-shell integral probing the density of states at E. Turning to 65,
we note D52 ~ 9, D5, and

D} - D, ~ —%(5(60—6)

Entering these relations into the integral defining 6; and integrating by parts, it
is straightforward to verify that

0, ~ 2n2/(d2k)Fk (®(€ —E) _de- E>) .

€3 €?

We note that the second, on-shell term cancels against 6;. To understand the
meaning of the first, recall that € = |h|. We may thus define the unit sphere
area element S = F/e® = n - (911 x dn) with unit vector n = h/e. Tidying up,
we obtain the topological angle as,

1
0= d*kn - (g, n X O,n)). :
2 oo (0, 1 X 9, 1)) (3:39)
From this derivation we find that the topological angle is defined by the fraction
of the full Berry flux 27t/ carried by all states in the band above the reference
energy E since only 6 mod 27t matters, we may equally compute the flux of
states below E. Criticality occurs for states for which 0(E) = 7.

3.3.3 Gradient action
The gradient term of the action is obtained by similar inspection of S(1?), this

time focusing on derivative combinations of the form ~ F;F;. As detailed in
appendix B.2, this leads to

Sgrad = g/dzx tr (alQalQ) ’
8= I+ + I + I+*/ (340)
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with coupling constants given by
I = % Y / (d%k) (E? + x* — €2 4 2h2) DT D™ 9;h,9;ha,
=
I = i Y / (d%k)((E 4+ i+ «)% — € 4 2h%)D*2 0;h,9;h,. (3.41)
a

We are left with the task to do the momentum integrals. For weak disorder,
these integrals are analytically doable, if somewhat tedious. As a result, detailed
in appendix B.2, we obtain

EZ — m?

g§= WQ(EZ —m?), (3-42)

where m = (r — ¢) and ¢ = 2,0, —2 depending on the Dirac cone around which
we approximate. This result states that for weak disorder, diffusive quasiparticle
propagation is limited to energies above the clean insulator band gap, m. For
energies E > m, the coupling constant asymptotes to ~ E/x which is the
characteristic scale for the conductivity of a weakly disordered two-dimensional
conductor.

3.3.4 Beyond the weak disorder limit

Far from the weak disorder the fractional Berry flux becomes statistically
distributed, and its mean value features as the topological angle 6. This value
can be represented as the sum of two momentum space integrals over SCBA
broadened Green functions, the Smrcka-St¥eda coefficients , 6; = Znaglcy and
6, = 27‘((73%. Odd integer values 6 = 61 4+ 6, = (2n + 1) 7 serve as markers for
topological quantum criticality, as in the IQH context.

From equation (3.35) we may calculate angle 0 for arbitrary two-band Hamil-
tonians H and for values (r, E, W) such that the self consistent Born approx-
imation underlying our theory remains valid, Ex 2 1. However, outside the
weak disorder regime Ex >> 1 considered in the previous section the analytical
computation of the integrals becomes cumbersome, or even impossible.

Progress can nevertheless be made, starting from the following representation
of the coupling constants in terms of energy/momentum integrals:

it _ _
0 = 5 (de) €ij tr (TzGEaiGE 1T1(;EajGE 1) ,
TTE E
0= 2 [ dw [(&) (3.43)

X tr (Tgcwaac‘;lGwaﬁcglcwaycgl) )
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where G = Gg is the SCBA Green function Eq.(3.33). Latin indices take the
values 7,j = 1,2 and the Greek indices the values «, §,y = w, 1, 2. Referring to
appendix B.3 for the derivation of these representations from Eq.(3.35), we note
that in the IQH context these integral representations are known as the Smrcka-

Streda Hall coefficients, U)I(y = 0,/2m, and ch/ = 0/27. These parameters

describe the Fermi surface ((T,I(y) and thermodynamic ((TJI(Iy, note the integral

over all energies below the Fermi surface) contribution to the Hall response
Oxy = UJIW + U,I‘Iy.

We have derived a non-linear ¢ model for the disordered Chern insulator
from which we have obtained the coupling constants (g, ) which were to be
identified with (0xy, 0xy) (modulo proportionality factors). Their value corre-
sponds to the conductivities of the system at scales compared to the mean
free path £. As we consider larger and larger length scales, the coupling con-
stants (g, 8) will flow to either (0,2n7) (the insulating state) or to (g*, (n + 3)7)
(the quantum Hall critical point) for n € Z and g* = O(1) as described by
Pruisken and Khmelnitskii (figure 2.10). This implies that if we have 6§ = 7
for some values of (E,W,r), the theory will flow to criticality irrespective
of the bare value of g. For the model (3.19) we have three stable fixed points
(0,—2m),(0,0), (0,27) corresponding to the insulating phases and two unstable
fixed points (g*, —7), (¢, 7r) corresponding to the critical value that separates
the insulating phases. This allows us to construct a phase diagram for the disor-
dered Chern insulator in the space (E, W, r), where we have a critical surface
separating different topological phases. As we can see in figure 3.5 inside the
"lobes” we have the topological phases, with Chern number 1 and -1 for the left
and right lobes respectively. They are separated from the trivial phase by the
critical surface.

For length scales longer than the localization length ¢, whenever 6 # 7 our
action consists only of the topological term,

0
Stop = 7o~ / d2x tr (Q9,09,Q), (3-44)

which can be written as a boundary term using Stoke’s theorem and the
parametrization Q = T13T !,

o _
Siop = 7= j‘{ dztr (T '10s:T), (3-45)

where £ is a one-dimensional boundary coordinate. This action describes the
propagation of dissipationless chiral modes at the 1-d boundaries of the system.
They propagate along the boundary and remain protected against disorder as
long as the disorder is not too strong. It also can be noted that this action lacks
gauge invariance. In order to cancel the term arising from this transformation
we need to get the counter term from the bulk action in a mechanism known
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FIGURE 3.5: Schematic illustration of the critical surface of a Chern insulator. The
clean system is defined in terms of different topological sectors realized
as a function of a control parameter r, for example, Ch; =0 = 1 —
—1 — 0. For a given value of r and disorder strength, W, delocalized
states exist at a critical energies E;(r, W), one for each band. The merging
of these bands at the center of the spectrum marks the stability boundary
of the TT; for larger disorder the system has become a trivial Anderson
insulator. (For systems with high Chern indices, max|Ch;| > 1, the
destruction of topological order for increasing W occurs in the successive
merging of multiple surfaces E;(r, W).). Figure taken from [44].

as anomaly inflow. In the language of quantum Hall physics this is also the
mechanism behind spectral flow.

3.4 NUMERICAL MULTIFRACTAL ANALYSIS

In this section we summarize the multifractal analysis for the disordered Chern
insulator. Multifractal analysis can helps us uncover the nature of the critical
surface of the Chern insulator by studying the properties of the scaling of
the IPRs [34, 47, 48] . The reason to study the multifractal analysis is that
it will give us a second tool to find the critical surface and the chance to
compare to the analytical approach. Additionally, it will uncover the nature of
the transition, i.e, it will help us to put the criticality of the Chern insulator
in the integer quantum Hall criticality class. We take the Hamiltonian (3.19)
in the real space representation in a lattice with boundary conditions, and we
consider its wavefunctions at energy E and consequently the IPRs,

E E
pq = Z'lpij,a

ij,a

29, (3-46)
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with 1/)5 . the wavefunction at energy E, at the lattice site (i, j) and with internal
degree of freedom «. The IPRs 3.46 should scale with the system size N in the
following way,

Py o< N, (3.47)

As mentioned already in section 2.5, 7, = d(q — 1) for a metal in d-dimensions
and 7; = 0 for an insulator. The fluctuations of a critical wavefunction are
captured by anomalous part of 7;/, Af = 7} +d(q — 1). For the quantum Hall
transition it has been found that, A; = 0.25q(7 — 1).

In practical terms we have finite system sizes and we compute the following

quantity,

- log (P, 7N ))disE
F(N)y = ! log N , (3.48)

where N is the system size, and it needs to be averaged over disorder configura-
tions with disorder strength W and a window of energy around E. In the limit
limy ;0 Ty = 75 the scaling exponent is recovered. In [44] the scaling exponent
7, and the critical exponent v are found to be 7; = 0.931 £0.004, v = 2.73 £0.16,
which is consistent with the values found in Chalker-Coddington networks and
tight binding models [37, 49-51].

3.5 COMPARISON BETWEEN DIFFERENT APPROACHES

In figure 3.6 we compare the results obtained from numerical simulations
done in [44] with the analytical predictions for the position of the extended
state in the band of eigenstates. Numerically, these states are identified by
calculating of the exponent 7; = 2(1 — g) + A, at quantum Hall criticality,
Ay =025 x q(q — 1), for the extremal value g = 0.5, i.e. Apin = Ag—o5 ~ —0.06,
and 1p5 ~ 0.94. The leftmost panel shows the system size dependent Té‘g for
r = 1.2, W = 1.45 as a function of E. At the above value T(% ~ Tp5 ~ 0.94
(green arrow) the data becomes system size independent, signifying criticality
with an exponent matching the quantum Hall expectation.

To compare to the field theory predictions, we compute 0y, by numerical
evaluation of Egs. (3.43) for the same values of r and W (blue curve). The
crossing of the critical conductance oy, = % is indicated by a blue arrow.
The analytical and numerical predictions are not in perfect, but in reasonable
agreement, given that there are no adjustable fitting parameters.

The center panel shows the energy of the extended state at r = 1.7 (left) and
r = 1.2 (right) as a function of the disorder strength W. The green curves show
the analytically computed longitudinal conductance, where 0y, 2 1 is necessary
for quantiative reliability of the field theory. As long as this condition is met,
the analytical and numerical predictions for the value of the critical energy are
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FIGURE 3.6: Analytical and numerical prediction for the position of the extended state.
Left: the blue solid line shows the Hall conductivity calculated from Eq.
(3-39), for different energies, at (r, W) = (1.2,1.45), while the blue dashed
line shows the Hall conductivity for the clean Chern insulator at r = 1.2.
Criticality is associated with the value oy, (E) = 1/2mod 1, cf. blue arrow.
On the right axis the numerical results for the effective dimensions 7;(E)
for different system sizes N = 64 (green) up to N = 512 (red) are shown
(black arrow). The dotted horizontal line is the dimension 7y 5 = 0.94 of
the quantum Hall critical state. This condition is approximately met at the
green arrow, which is reasonably, but not perfectly well aligned with the
blue analytical marker. Center: prediction for the delocalized states taken
from multifractal analysis and field theory at7 = 1.7 and r = 1.2 as a
function of disorder strength W. Additionally the analytically calculated
oxx is shown (green). The inset shows the behavior of the delocalized
state calculated with both analytical and numerical approaches for the
full topological phase at r = 1.7. Right: phase diagram of the disordered
Chern insulator in the »-W-plane at E = 0, calculated analytically and
numerically. Figures taken from [44].

in good agreement. At larger values of the disorder, oy is at its critical value,
and 0xx = O(1), so we are in proximity to the quantum critical point where the
present theory is no longer applicable. In this regime, the numerical prediction
for the critical energy shows a transient increase (cf. inset) for which we do
not have a good explanation. Eventually, the numerical and analytical value
for the critical energy approach zero — that they do so at roughly the same
disorder concentration may be coincidental — thus signalling the breakdown
of the topological phase due to disorder.

The right panel shows a cut through the critical surface at E = 0. Inside the
lobe we have the Chern number Ch, = —1, outside it is vanishing. Broadly
speaking, we again observe semi-quantitative parameter free agreement be-
tween field theory and numerics. However, there are some qualitative features
which the former does not capture: Close to the clean critical value, r = 2,
disorder stabilizes the topological phase in that the critical value gets pushed
upwards (the bulge visible in the numerical data.) This feature does not show
in the field theoretical calculation. We suspect that this is due to the fact that we
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are in parametric proximity to a Dirac band closing at weak disorder and zero
energy. For such configurations, the SCBA approximation produces incorrect
estimates for self energies. However, a more detailed analysis of the latter
beyond the SCBA approximation is beyond the scope of this work.

3.6 SUMMARY

In this chapter we described the physics of the anomalous quantum Hall
insulator. We explored the physics of the clean AQHI where instead of Landau
levels we have energy bands separated by (spectral) gaps described in the
Brillouin zone. Using the geometric concepts of Berry curvature we see that
it is possible to define a topological invariant, the Chern number, for each
of the bands of the AQHI. This topological invariance manifests itself when
computing the Hall conductance that is equal to the sum of the Chern numbers
of the bands below the Fermi energy times e?/h.

As a simple model we took the two-band insulator (3.19) defined on a square
lattice and we characterized its topological properties, band structure and we
saw the emergence of gapless edge states in systems with boundaries. The
topological phases are characterized by Chern numbers Ch, = —1,1 while
the trivial insulating phase has a Chern number of zero, Ch, = 0. We can go
between different phases by tuning the parameter r in the model.

In the disordered Chern insulator, the spectral gap of the clean insulator is
replaced by a mobility gap: generic states inside the spectrum are Anderson
localized, thus preventing bulk hybridization between the extended surface
states of the system. However, this feature cannot extend to all states: there
must exist bulk delocalized states establishing contact between the surface
bands somewhere up in the spectrum. However, these consistency arguments
do not tell us where the delocalized states lie in energy, nor what their critical
properties are. Those questions where the purpose of this chapter.

Describing the Chern insulator in terms of the three parameters band energy,
E, effective disorder strength, W, and a parameter, , controlling its topological
index Ch(r), we applied a combination of analytical and numerical methods
to study the ‘critical surface” of delocalized states in the Chern insulator. For
generic parameter values, the critical states are buried deep in the band, mean-
ing that these analyses had to operate outside the regime where ‘Dirac’ band
linearlizations are an option. Perhaps unexpectedly, this generalization turned
out to be a blessing, from various perspectives: The analytical derivation of
an effective field theory building on the full microscopic band structure was
no more difficult than the one starting from a lineraized spectrum. However,
unlike that one, it was not plagued by spurious ultraviolet divergences, and it
produced intuitive predictions for the identification of the critical states. Specifi-
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cally, we found that, at least for weak disorder, criticality was tied to the integral
Eq.(3.39): the energy of critical states in the weakly disordered system is such
that the integrated Berry curvature of a all states above (or below) it equals 7.
The effective action describing the localization properties of these and of generic
states was that of the quantum Hall insultator, confirming the expectation of
bulk quantum Hall crtiticality in the system. However, for generic points in
the parameter space (r,W, E) the weak disorder condition required for this
description to be quantitatively reliable was violated, and quantitative errors
ahead to be expected.

Comparing the analytical results with the numerical computation of the
scaling dimensions of the anomalous exponent 7; we were able to predict the
position of the delocalized state in the parameter space and moreover we were
able to study the critical properties of these delocalized states. This analysis
confirmed the expectation of quantum Hall criticality, and for sufficiently weak
disorder the results obtaind by the field theoretical computation. Outside that
regime, the quality of the analytical predictions deteriorated, with errors up to
O(1), but no parametric disagreement.



SURFACE STATES OF HIGHER ORDER TOPOLOGICAL
INSULATORS

In this short chapter we go further into the exploration of non-interacting
topological phases by considering more possibilities, that is, we take into
account symmetries that might be present on the system. By only considering
time-reversal, particle-hole and chiral symmetry the space of non-interacting
single particle Hamiltonians can be classified into 10-classes, called the 10-
fold way. From it, it is possible to further classify all the possible Hamiltonians
displaying boundary states protected by topology and to define their topological
invariants. Moreover, if we go further and consider crystalline symmetries the
classification goes beyond the previous classification and even higher-order
boundary states can appear. Below we take a quick look at the ten-fold way
and how to go beyond it to get higher order boundary states. At the end we
look at the effect of disorder in these phases. This is an interesting problem
since disorder usually breaks the crystalline symmetries. Nevertheless, we look
at the case where the crystalline symmetries are preserved on the average and
see how the boundary states are affected by it.

4.1 THE TENFOLD WAY

In the previous chapter we considered the Chern insulator as an example of
a topological insulator. The Chern insulator Hamiltonian is an example of
a Hamiltonian with no symmetries. There are many more example of non-
interacting Hamiltonian which display a topological character. Famous exam-
ples include, the quantum spin Hall insulator in 2d and 3d [42, 52-54], the SSH
chain [55], the Kitaev chain [56], the chiral p, + ipy, superconductor [57] (in the
BdG formalism), etc. The Hamiltonians supporting these topological phases
cannot be deformed into each other and therefore they all describe different
phases of matter. In order to classify the Hamiltonians and their topological
phases we ought to look at their symmetries. Following the classification by
Altland and Zirnbauer [5] of random Hamiltonians we see that there are 10
classes of Hamiltonians and they are labelled by the presence or absence of
time reversal symmetry, particle-hole symmetry and chiral symmetry. There is
a one-to-one correspondence between this classes of Hamiltonians and the set
of symmetric spaces. We can therefore use the labelling introduced by Cartan
to recognize them [58, 59]. For example, the Chern insulator belongs to the
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class A type of Hamiltonians, the Hamiltonians with no symmetries. Let us
present the three symmetries that give rise to the 10-fold way classification of
Hamiltonians.

The first symmetry that we are going to consider is time reversal symmetry.
The form of the operator acting on the Hilbert space is, T = UrK, where U7 is
an unitary transformation and K is the complex conjugation operator. On the
level of the (first quantized) Hamiltonian H time reversal symmetry 7 acts in
the following way,

ToH=T 'HT = ULH*Ur. (4.1)

The square of the time reversal operator gives, 72 = +1. A Hamiltonian H is
said to be time-reversal invariant if, 7 o H = U}H *Ur = +H.

The next symmetry particle-hole symmetry. The form of the operator acting
in the Hilbert space is C = UK, where U¢ is an unitary operator and K is the
complex conjugation operator. At the level of the Hamiltonian we have that,

CoH=C'HC =ULH"U, (4.2)

and we also have that C> = +1. A Hamiltonian is said to be particle-hole
symmetric if, C o H = ULH*Uc = —H.

Finally the last symmetry, chiral (or sublattice) symmetry, is defined as the
product of time reversal and particle-hole symmetry, S = 7C. A Hamiltonian
is said to be chiral symmetric if,

SoH= USHUS =—-H (43)

where Us is an unitary operator. The chiral symmetry squares to one, S? = 1.

Taking into account the possibilities of these operators we can count the
number of possible combinations of the three symmetries. For time reversal
symmetry we have 3 options, absence of symmetry, squaring to one or to
minus one. By similar considerations we have three possibilities for particle-
hole symmetry. The combination of time reversal symmetry and particle-hole
symmetry defines the absence or presence of chiral symmetry. There is one
more possibility, namely, no time-reversal symmetry, no particle hole symmetry
but chiral symmetry. Taking into account this we have then 3 x 3 +1 = 10
possible combinations of the symmetries, which give rise to the 10 different
classes of Hamiltonians. We summarize all the possibilites and give their Cartan
label in table (4.1).

So far we have seen how the Hamiltonians can be classified into ten classes,
we would like to ask now, given a Hamiltonian in certain symmetry class and
in certain dimension d how do we know if it is topological? How many topo-
logical insulators per dimension d do we find? And what topological invariant
classifies them? Here we mention a way to classify these non-interacting Hamil-
tonians but readers who want a full in-depth discussion and different methods



4.1 THE TENFOLD WAY

’ClassHT‘C‘S‘ G/H ‘
A o|lo]o U((2n)/(U(n) x U(n))
Al 1| o | o | Sp(4n)/(Sp(2n) x Sp(2n))
All ||-1]| 0| o O(2n)/(0(n) x O(n))

Al || o | o |1 U(n)

BDI 1| 1|1 U(2n)/ Sp(2n)
C o|-1|o0 Sp(2n)/ U(n)
CI 1| -1 1 Sp(2n)
C 1| 1| 1 U(n)/ O(n)
D o|1]o0 O(2n)/ U(n)

DII || -1 | 1 |1 O(n)

TABLE 4.1: Cartan labelling of the ten symmetry classes. o represent the absence of
the symmetry while +1 or -1 represent the presence and the value to
which they square. In the last column the (fermionic) Goldstone manifold
G/ H for each class is indicated, where 7 is the number of replicas.

of classification should consult the references [10, 60, 61]. We use the fact that a
topological insulator has states at the boundary which under arbitrary perturba-
tions and weak disorder respecting the symmetries of the Hamiltonian do not
localize. We have seen in the previous section that the disordered problem has
an effective low energy theory in terms of a non-linear ¢ models. Depending
on the symmetry class each of these non-linear o models is defined over the
Goldstone manifold G/ H (see table 4.1). In the replicated fermionic theory this
Goldstone manifold is compact. The non-triviality of the homotopy group in d
or d — 1 dimensions 7r; (G/H), my_1 (G/H), decides whether the effective low
energy action admits a topological term. The options for a non-linear ¢ model
to have a topological term are: a 6-term, (which appeared in the Chern insulator
and the quantum Hall effect), a Z, term and a Wess-Zumino-Witten (WZW)
term [10]. For the f-term, as we saw in the last chapter, delocalization is only
assured whenever § = 71 mod 27 and for the rest of the values it indicates
localization. This term alone would not be of help to classify the delocalized
states at the surface of the topological insulators. For example, in the Chern
insulator (or the quantum Hall effect) the topological term that classifies the
different phases is equation (3.45), where 0 there is properly quantized.

The d = d — 1 boundary of a topological insulator term allows for a Z,
term whenever 77;(G/H) = Z; and a WZW term whenever 777, ,(G/H) = Z.
Looking at the ten symmetry classes and all possible dimensions we see that
on each dimension there are always 5 possible topological insulators 2 Z,
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insulators and 3 Z insulators and moreover it is periodic in dimension d
mod 8 [61]. With all this information it is possible to construct a periodic table
for topological insulators.

It should be noted that the disordered problem of topological insulators is not
only useful to classify the possible topological phases but it is also an interesting
problem on its own. As we saw in the last chapter disorder can also cause
topological phases transitions and even at sufficiently strong disorder drive the
whole system to a trivial phase. This kind of processes are not captured just by
looking at the geometrical aspects of the manifolds G/ H but also by looking at
the microscopic parameters of each model.

4.2 HIGHER ORDER TOPOLOGICAL INSULATORS

The possibilities for non-interacting phases can be extended if one considers
further symmetries, in this case crystalline symmetries [62, 63]. Not only crys-
talline symmetries can extend the classification of topological phases but also
give rise to new forms of bulk-boundary correspondence, in the sense that we
can have delocalized states at higher-order boundaries which are crystalline
symmetric [64-67]. The extra-crystalline symmetries consider are usually mirror
symmetry, inversion and rotation by a fixed angle.

The k-th order boundary is defined as the boundary of co-dimension k
of a system. For example, typical topological insulators have a boundary of
co-dimension 1. For 3-d systems we can have second-order boundary states
propagating at the hinges or third order boundary states living in the corner.

Next we present two particular cases of higher order topological insulators
with mirror symmetry and inversion symmetry respectively. In the first case
we consider a 2-d HOTI with chiral symmetry and with corner modes. Here we
do not rely on specific models and rather we study the topological invariants
in the clean case and how they are affected when disorder is introduced in
the system. It is worth mentioning that, in 2-d systems second-order boundary
states live in the corners. These states are anomalous in the same sense that
the boundary states of usual topological insulators are anomalous. In these
crystalline phases there are also some other possibilities for which do not have
anomalous boundary states but they may have a filling anomaly [68]. The filling
anomaly is just a deviation of charge neutrality which manifests itself by the
appearance of fractional corner charges. These phases are called obstructed
atomic limits [69]. Nevertheless, there is also a possibility of obstructed atomic
limits not to have a filling anomaly making the classification of topological
crystalline phases a very involved endeavour [70, 71]. The second case is a 3-d
model which realizes chiral hinge modes on opposite sides of the geometry
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under consideration. After looking at the main properties of the clean case we
introduce disorder on the surface and analyze the fate of the hinge modes.

4.2.1  Mirror symmetric AIIIl HOTI

For this class of systems we consider Hamiltonians with chiral symmetry,
o3H (kx, ky)os = —H(kx, ky), (4-4)

where 03 plays the role of the chiral symmetry operator. On the other hand we
consider Hamiltonians with mirror symmetry in the following way,

T3H(kXI ky)TS = H(kJC/ *ky)/ (45)

where 13 acts on different degrees of freedom other than the chiral symmetry
operator. The eigenvalues of 3 and 13 are called chirality and mirror parity
respectively. On the high mirror symmetric lines ky = 0,7, due to mirror
symmetry (4.5) the Hamiltonian is decomposed in blocks with definite mirror
parity T = 1. We can define the winding numbers of these blocks, W (0/ )
defining the topological invariants of the bulk, with the constraint, W, (0) +
W_(0) = W4 (7t) + W_ (7). In here we focus in the case where W (0) = 0 and
the bulk topological invariant is defined as,

Qbuk = W- (7). (4.6)

On the other hand, if we consider a geometry with mirror symmetric corners,
we expect corner modes localized on these corners [67, 70]. These corner
modes have a defined chirality and mirror parity. We denote the number
of corner modes with chirality ¢ and mirror parity 7 as ny¢. The number
Neorner,r = N4, — N_ ¢ is robust to local perturbations that respect both mirror
symmetry and chiral symmetry. Nevertheless, it is not robust to addition of one
dimensional AIII chains with edge modes along the boundaries. Therefore, the
only well defined topological invariant is,

Qcorner = Neorner,+ — Neorner,— (4.7)

The bulk boundary correspondence asserts that Qi = Qcorner [71]-

Upon addition of disorder that respects chiral symmetry and mirror symme-
try on the average but not locally the mirror parity for the corner modes stops
being a well defined quantity and therefore only the sum,

Ncorner = Ncorner,+ + Ncorner,f (4~8)

remains well defined. The fact that we can still add one dimensional AIII chains
along the boundaries implies that the total number of corner modes can only
be changed by two and,

Qcorner = (Ncorner,+ + Ncorner,f) mod 2 (4.9)
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is the boundary invariant. Thanks to the bulk-boundary correspondence we
know that two Hamiltonians having the same invariant Qcorner can be deformed
into each other without closing the gap.

Given that the Qcormer is defined only modulo 2, the configurations with
two corner states and zero corner states are equivalent. Therefore, it means
that disorder can cause the mobility gap in the boundaries to close (while the
bulk gap remains open) without changing the overall topology of the system.
Disorder blurs the distinction between corner states of opposite mirror parity
and hence, trivializes certain configurations that were topologically non-trivial
in the absense of it. The classification of disordered AIIl Hamiltonians with
mirror symmetry is dictated by a Z, invariant.

4.2.2  Inversion-symmetric insulator with chiral hinge modes

We take as a concrete model the clean version of an inversion symmetric
Hamiltonian with no other symmetries (class A) supporting chiral hinge modes,

H(k) = <M — iCOSki> 7100

= (4.10)

3 3

+0Y sinkizso;+m ) o;,
i=1 i=1

where 7; and 0, (2 = 0,1,2,3) are two sets of Pauli matrices plus the identity, M

is the bulk mass, m < 1 is small parameter gapping out the surface states along

the coordinate planes and v is the velocity. Inversion symmetry is implemented

as Z = 1y, and acts on the Hamiltonian as,

H(ky, ky, kz) =TH (ks ky, k)T
=1 H(—ky, —ky, k)71 (4.11)

The topological phase occurs when 1 < |M| < 3 and is characterized by two
chiral hinge modes. These are located at inversion related hinges and propagate
in opposite directions, see figure 4.1.

Plotting the spectrum of the Hamiltonian in the topological phase we find
that this phase supports hinge modes (figure 4.2a), moreover if we plot the the
magnitude of the wavefunctions of these hinge modes in a cross section (in the
x — y plane) of a infnitely long paralleliped, we find that they propagate along
the hinges of the parallelipiped (figure 4.2b).

Given that this topological insulator has only inversion symmetry we can
construct the topological invariant associated to it. It is the magnetoelectric
polarization P; [72—74], which is quantized to Z,, and is defined as,

1 3 i
Py = 62 /d kejj tr {(f,] — g[ai,uj])ak , (4.12)
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z

FIGURE 4.1: The model (4.10) in a parallelepiped geometry. In this geometry the
model can host chiral modes propagating in two of the hinges.

where g4; is the non-abelian Berry connection and f;; the non-abelian field-
strength tensor. It is easy to see that this quantity is quantized. We define the
sewing matrix as,

lui(—k)) = BijZ |uj(k)), (4-13)
the matrix relating the states in the occupied band with the inversion symmetric
partners in the same occupied band. The non-abelian Berry curvature a and the
field strength-tensor f at the inversion momentum —k are related to the ones at
momentum k by the following transformations,

a(~k) = ~Ba(k)B" + i BoB'] "
414

And the magnetoelectric polarization can be expressed in terms of the sewing
matrix as,

1
4872

P = =y [ Phegete [(B)2B" (k) (BB (1) (B3B! ()] (4.15)
which in units of 27t can only take the values: 0 corresponding to the trivial
phase and 1 corresponding to the topological phase. In a field theory, including
the presence of electric and magnetic fields, P; couples to the term propor-
tional to E - B in the action. In this type of actions P3 takes the role of the
axion field [72]. This coupling leads to interesting responses in the system, for
example, a half-integer quantum Hall effect at the surface. Let us take as an
example the surface whose normal vector points in the x—direction (see figure
4.1) and P; changing values between 1/2 and 0 at an interface between the
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higher order topological insulator and the vacuum. This renders a x—dependent
magnetoelectric polarization P3(x). The 4-vector current-density is given by [75],

j# = 0xPsetPo, Ay, (4.16)

where p are space-time indices and A, is the 4-vector potential. In the case of a
uniform electric field in the z direction E,, the current-density in the y-direction
is expressed as,

Jy = 0xP5 Ez, (4.17)
and the Hall conductivity at the surface of the HOTI in the y — z plane is given
by, 0z = | dP; = AP;, the change in P at an interface topological insulator—
vacuum which is equal to 1/2. This means that at the surface of the HOTI we
have a half-integer quantum Hall effect.

From the boundary perspective it means that only the parity of the number
of hinge modes Qpinge propagating in the +z-direction N plus the number of
hinge modes propagating in the —z-direction N_ divided by 2, is a topological
invariant,

1

thnge = 2 (N+ + N*) mod 2 (4.18)

We can see that by adding perturbations respecting inversion symmetry at
the surface. For example we can add a Chern insulator in half of the surface
and its inversion symmetric counterpart on the other half. The addition of the
Chern insulators at the surface will change the overall number of hinge modes
by a multiple of four (by a multiple of 2 on each hinge), thus preserving parity
and leaving Qpinge unchanged.

We construct an effective surface Hamiltonian for a system that is infinitely
long in the z-direction but finite in the x and y-directions. We take (4.10) in
the topological phase and project onto zero-energy surface states. This yields
an effective low energy Hamiltonian for each of the 4 surfaces. These can be
combined into a single surface theory describing a plane is infinite in the z-
direction but periodic in a second coordinate x” (topologically a cylinder). The
resulting 2d effective surface Hamiltonian [64, 66] takes the form,

Hy = vkyoy + k.03 + m(x')o, (4.19)

where the parameter m acquires a spatial dependence. On half of the surface
m > 0 while the other half m < 0. Therefore, at the two hinges where this
parameter changes sign we have chiral hinge modes propagating in the y-
direction as seen in figure 4.3. The modulus |m| is the surface spectral gap. The
use of the effective Hamiltonian (4.19) requires that the surface gap |m| is much
smaller than the bulk gap of the full three-dimensional lattice Hamiltonian

(4.10).
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FIGURE 4.2:

FIGURE 4.3:

k. 0 10 20 30 40 50
(@) (b)

a) Spectrum of the inversion symmetric HOTI with periodic boundary
conditions in the z-direction. In red we see the appearence of gapless
modes. b) Cross section in the plane x — y of the geometry in figure 4.1
showing the modulus of the wavefunction of the gapless modes. They
are highly localized around two hinges.

m>0

m<0

+

Inversion symmetry higher order topological insulator in a cylindrical
geometry. At the level of the surface theory we have the parameter m
changing sign at two hinges where we find gapless modes propagating.

57



58

SURFACE STATES OF HIGHER ORDER TOPOLOGICAL INSULATORS

4.2.2.1 Disordered case

We next evaluate the effect of surface disorder, in particular, we would like to
see the stability of the hinges modes under the influence of random disorder.
We take the effective surface Hamiltonian (4.19) and model the disorder by a
scalar Gaussian distributed potential V(x),

(V(x))gis = 0,
2 (4.20)
(VOO (x0) s = 28(x = X0).

with x = (x’,y). The Hamiltonian for the surface of the higher-order topological
insulator with the disorder is

Hs = Hy + V(x)0p. (4.21)

where Hy = Hy = vk oy + vkyo +m(x")o3 is the same Hamiltonian as (4.19) af-
ter a 7r-rotation in the y — z plane. This Hamiltonian breaks inversion symmetry
since the disordered potential V(x) is not necessarily inversion symmetric. One
could argue that since the symmetry is broken there are no hinge modes, but
since we are considering the conditions (4.20) inversion symmetry is preserved
on the average. The Hamiltonian (4.19) can be treated by the same methods
discussed in the previous chapter, it is however important to add a regulator
because the Hamiltonian alone suffers from UV divergences, the effective action
in terms of Q and an external gauge field a is given by,

S[Q/ a] = SU[Q/ a] - SUM[Q/ a]
= —trin(e—v(k o) +v(a- o) —moz+ixQ) (4.22)
+trin(—v(k-o)+v(a- o) — Moz +inQ),

where we have used a Pauli-Villars regularization [76] in order to avoid the UV
divergences mentioned before, with M — oo and n — 0, k is the scattering rate
off impurities, which is found self-consistently as,

4’k 1
_ A2
K =75 Im {/ (Zﬂ)ZTr(E—iK—H())}' (4-23)

We expand the action (4.22) in gradients of T (appendix C.2) to construct a low
energy action that takes the form of a nonlinear ¢ model [77, 78],

1
SI1Q] =5 (o / L tr(VQ)
+ 0y [ dxeP 6(QViQV;Q) (4.24)

1 .
— E/dzxs’]3 tr(QaiQan))'
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FIGURE 4.4: Longitudinal and transverse conductivities oyy and oy for weak (red,
x/m = 0.2) and strong (blue, x/m = 2.6) disorder. The value of the
surface gap is set to m = 0.5. Without disorder, the surface spectrum is
gapped for |¢| < |m|. For m < 0, oy, changes sign, while oy, remains the
same.

where Q = T 1T, V; = 9; — i[a;, is the covariant derivative,
1 1 1

Oxx =

1 €2+ 12 — m?
o <1 t— f(e,m)>

and

Ty = 5 (fle,m) + f(m,€))

flry) =1 (arctan (g) '+ arctan (%y»

and we have set v = 1. The 6 angle of the nonlinear sigma model is therefore
given by 6 = 27 (0y, — (1/2)) mod 27. In the large system size limit, this
parameter renormalizes to an integer multiple of 27 [8, 31], 0 — 27T \_(Txy - %],
where |.] is the nearest integer function (|2.6] = 3, |1.2] = 1, etc). This implies
that oy, asymptotically assumes a half integer quantized value — the half
integer quantum Hall effect occurring at topological insulator surfaces.

Our model has a space dependent mass-like parameter m(x'), with m(x") > 0
in one half of the space, m(x’) < 0 the other, and a smooth interpolation
in-between. The scaling behavior outlined above then implies that oy, =
(1/2) sgn(m) in the two half regions, asymptotically. The quasi-one dimen-
sional interface region supports one propagating quantum Hall edge channel,
corresponding to the hinge mode in the three-dimensional crystal described by
Eq. (4.10).

How does this scenario respond to increases in the disorder strength, from
values x < |m| to x > [m|? In Fig. 4.4, the two ‘bare’ transport coefficients o;;

with

59



60

SURFACE STATES OF HIGHER ORDER TOPOLOGICAL INSULATORS

corresponding to these regimes are shown as functions of the energy ¢, in red
and blue respectively. These coefficients define the short-distance starting values
for the renormalization described above. For weak disorder, the longitudinal
conductance oy at increasing distance scales stays low inside the gap |e| < |m]|
but grows quickly if |e| exceeds |m| due to the spectral weight present outside
the gap. At the same time, 0y, diminishes with le|, so that the bare value of
0 is close to —31. For strong disorder and intra-gap energies, oy exceeds its
weak-disorder limit due to impurity states smearing the gap. Outside the gap,
we observe qualitatively similar behavior as in the weak-disorder case, be it
that the reaching of a high conductance regime is much slower than in the
clean case. Despite the very different bare values for the weak and strong
disorder regimes, in both cases, the surfaces will approach an insulating state
in the thermodynamic limit upon taking into account the renormalization
described by the nonlinear sigma model (4.24). This means that, asymptotically,
the existence of hinge states is granted for all energies inside the bulk gap
(including energies larger than the surface spectral gap |m| in the absence of
disorder). However, surface states may have a large localization length for large
energies or for weak disorder, so that for finite system size hinge states may be
compromised because of backscattering via surface-state intermediaries if the
surface localization length exceeds the system size.

The model (4.10) corresponds to an intrinsic second-order topological insula-
tor: The presence of chiral hinge states is required by the nontrivial topology of
the bulk. Formally, the addition of a Pauli-Villars regulator in the surface theory
breaks inversion symmetry and it could be argued that the regularized model
corresponds to an extrinsic second-order topological insulator. In both cases,
the boundary phenomenology is the same, since the breaking of crystalline
symmetry by the Pauli-Villars regulator does not close the bulk or the surface
gaps. For the same reason, the (quantized) response to external sources and the
fate of the hinge states upon the addition of disorder is the same in the intrinsic
and extrinsic scenarios.

This construction, that was aimed at the case of the inversion symmetric
HOTI, can be also done for any other type of 3-d higher order topological
insulators with hinge modes, topological invariant Z;, and effective low energy
surface Hamiltonian of the form (4.19) with a effective surface mass m changing
sign at two or more hinges.

4.3 CONCLUSION

In this chapter we explored the role of symmetries of the Hamiltonians. We
see that considering time-reversal symmetry, particle-hole symmetry and chiral
symmetry we can classify the Hamiltonians into 10 different classes. Depending
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on the spatial dimension and the class of the Hamiltonians we can determine
whether they are topological or not. Classifications of topological insulators
tell us that for each dimension we have 5 types of topological insulators, 3 Z
insulators and 2 Z, insulators.

The inclusion of further symmetries, in the form of crystalline symmetries
augments the possibility for different types of topological insulators and their
classification. One notable aspect of the addition of crystalline symmetries
is that they enhance the possibilities of boundary modes. With crystalline
symmetries it is possible to define higher-order boundary states.

The addition of disorder to the system usually breaks the crystalline sym-
metries. However, one may still ask for the fate of the boundary modes when
the symmetry is preserved on the average. For 2-d higher order topological
insulators with mirror symmetry disorder simplifies the classification where
just a Z; is needed to describe the distinct topological phases. In the topological
phase the corner modes are resilient against Anderson localization.

In the case of 3-d higher order topological insulator with inversion symmetry
we developed an effective low energy field theory for the surface. The theory
turns out to be a non-linear ¢ model with a 6-term. The observable coefficients
oxy and oyy are given in terms of the microscopic parameters of the system
and are defined in the scale of the mean free path. In this surface theory oy,
is not quantized to integer values but rather to half-integer values yielding a
manifestation of the half-integer quantum Hall effect. For half of the surface oy
renormalizes to 1/2 while the other half renormalizes to —1/2, in the hinges
where the two halfs of the surfaces meet we find one dimensional channels
where the hinge modes propagate without Anderson localizing.

In summary, we find that although disorder breaks the crystalline symmetries
locally when preserved on average it can remain topological with boundary
modes resilient against Anderson localization and on the other hand they can
ease the classification of topological crystalline phases.
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FRAGILITY OF SPECTRAL FLOW IN CLASS AIII
TOPOLOGICAL INSULATORS

In chapter 3, we thoroughly characterized the disordered Chern insulator.
Through field theory methods, we determined the positions of delocalized
states for given disorder strengths (W) and parameters (r). The existence of
these delocalized states hinged on the principle of spectral flow. When subjected
to an external magnetic field in the longitudinal direction, the Chern insulator
exhibits a current in the transverse direction. These delocalized states within the
bulk are responsible for this phenomenon, with bridges in the bulk connecting
the surfaces to facilitate anomalous transport of spin and heat, among other
phenomena. Moreover, they offer topological protection against Anderson
localization.

While the principle of spectral flow was believed to be universal among all
topological insulators, at least in the Wigner-Dyson classes (class A, Al, All),
we will see in this chapter that this principle is not general. For instance, 3d
topological insulators in the non-Wigner-Dyson classes (Alll, CII, DIII) may
exhibit an absence of spectral flow due to its fragility. In these classes, surface
states could detach from the bulk. Consequently, the transport characteristics
of these topological insulators in the presence of disorder differ from those in
the usual insulators of the Wigner-Dyson classes.

The absence of spectral flow from the bulk perspective occurs when the
bulk admits a complete basis of exponentially localized Wannier states. From
the surface perspective, it means that almost all surface states can undergo
Anderson localization in the presence of disorder, except for the chiral sym-
metric state at E = 0, which enjoys topological protection as long as the bulk
remains topological [79, 80]. Wannier localizable phases which are topological
are not as rare as one might initially think. As a matter of fact, one dimensional
topological phases are Wannier localizable; examples include the SSH chain [55]
and the Kitaev chain [56]. On the other hand 2-d topological phases are not
Wannier localizable. As we saw in the chapter 3, Chern insulators have a delo-
calized state above and below the Fermi energy which connects the boundaries,
rendering these phases Wannier non-localizable. In the case of the quantum
spin Hall insulator and the 3-d topological insulator similar arguments can be
made [81].

Analyzing the situation of Wannier localizability at the boundaries can be
tricky, especially since there may be a temptation to use Dirac approximations at
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the surface states. The detachment (in energy) from the bulk takes place at "high’
energies (close to the band), where Dirac approximations lose effectiveness
since they primarily focus on energies very close to the gap closing energy.
Therefore it is neccesary for the time being to abandon the Dirac approximations
since they can oversimplify and miss the essential mechanisms behind these
phenomena.

Furthermore, we will discuss how this absence of spectral flow may not
always occur. In fact, previous numerical studies in classes AIIl, CII, and
DIII [82-85] have found a continuum of critical states at the surface for energies
E # 0 in the presence of disorder, a phenomenon termed spectrum-wide
criticality.

In the upcoming sections, we examine the conditions under which surface
states localize or remain delocalized in the presence of disorder. We accomplish
this by studying a minimal model of a class AIII topological insulator with
winding number v = 1. Utilizing field theory, we demonstrate that whether a
surface state localizes or not is tied to the presence of (surface) Berry curvature
(equation (3.39)). Specifically, when the Berry curvature is non-zero, states
at energies E # 0 localize. However, it is crucial to note that the definition
of the Berry curvature requires detachment between the bulk and surface;
otherwise, the Berry curvature remains ill-defined. This chapter is based on the
reference [86].

5.1 FRAGILITY OF THE SPECTRAL FLOW

We now see two perspectives for the absence of the spectral flow, from the
bulk and from the boundary. From the bulk the absence of it comes from the
Wannier localizability of the bulk states, since these localized states cannot form
a "bridge" connecting the two surfaces. While from the boundary the absence
of spectral flow comes from the possibility of detaching bulk and boundary
states at all momenta.

5.1.1  Bulk

A free fermion insulator is considered Wannier localizable if the subspaces
defined by valence and conduction bands can be described by bases of states
[¥r«), which are exponentially localized around specific centers R, with «
representing an additional index. These Wannier localized states are unaffected
by flux insertions, hence preventing any spectral flow within the system. It is
important to note that Wannier localizability does not imply the atomic limit,
where the insulator becomes topologically trivial. Thus Wannier localizability is
a weaker condition than retractability to the atomic limit [87-94]. The presence
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FIGURE 5.1: Schematic picture of the spectrum of the Hamiltonian H' = Hy ® Hpy-
In red the surface spectrum and in black the bulk spectrum. a) and b)
show the before and after the rescaling of the surface spectrum by a
factor of A. Taken from [86].

of small but finite overlaps between neighboring unit cells remains crucial for
maintaining the topological non-triviality [95]. The Wannier states are generally
not eigenstates of the original Hamiltonian. Nevertheless, we can perform
the following deformation to obtain a topologically equivalent one: the first

step is to deform the Hamiltonian such that the bands are individually flat.

Secondly we apply unitary transformations (commuting with the Hamiltonian)
to the Wannier basis on each band subspace, and lastly we can deform back
to a Hamiltonian where the bands are not necessarily flat. The deformed
Hamiltonian is then,

H = ZGR,rx |TR,uc> <TR,a
R,x

, (5.1)

where € , assume the role of state energies. Using this protocol, let us consider
a system with boundaries which is Wannier localizable in directions transverse
to them. We can decompose the Hamiltonian as [96],

H' = Hy ® Hpui, (5.2)

where Hj is the contribution of Wannier states within a Wannier localization
radius of the surface, and Hpyx its complement. With this separation we can
re-scale Hy — AHj to shrink the surface band until it can be dettached from
the bulk bands at all momenta.

As an example we can take a look at the AIII insulator in 3 dimensions. This
is one of the simplest examples of a topological insulator which is Wannier

localizable. Hamiltonians H obey the chiral symmetric condition {H,T'} = 0.

Where I is the chiral operator. In a basis where I' = 73 we have,

0 A
H= , :
<A+ 0) (5:3)
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where A is a complex matrix. We assume H (and therefore A) is a local Hamil-
tonian. The matrix elements of A, in the Wannier basis, between orbitals « and
' and sites R, R is given by (Ra|A|R’a’) and it decays exponentially with the
distance |R — R’|.

In a system with periodic boundary conditions the spectrum is gapped. In
this case we can deform the Hamiltonian (without closing the gap) in a way
that we send all positive eigenvalues to +1 and the negative ones to —1. The
fact that this deformation does not close the gap, and consequently preserves
the bulk topology, implies that the locality condition remains unchanged. The
new Hamiltonian H b is written as,

0 u
H= + ’ (5-4)
u o
where U is a local unitary matrix. It is straightforward to construct the eigen-
states of Hy [95],
R, a)
v =( : (5:5)
¥is) (iu’f |R,o¢)>

which is localized around R, given that |R,a) is a Wannier function and U*
a local unitary matrix. The ground state of H and Hy are the same, showing
that this phase albeit localized is still topological. The Wannier functions are
not unique. With a choice of a local unitary matrix V we could obtain as well
‘I’fr> =(1eV) “I’f“> This implies
that the bulk-boundary decomposition is also not unique. In the next sections
we are going to see that we can define a surface Chern number and that its
parity should match the parity of the topological invariant of the bulk. At the
level of the eigenstates of the Hamiltonian this means that for different Wannier

basis, “I’f‘» , “I’If;/ > the surface Chern number could be different but with

the same parity [97],

another set of eigenstates of Hy, namely,

6Ch =2v[V], (5.6)

where v is the winding number of V expressed as an integral in momentum
space.

The ability of topological phases to be Wannier localizable without altering
their intrinsic topological properties implies that the 10-fold classification of
topological insulators remains unchanged. However, it allows for further classi-
fication of topological phases into those that are Wannier localizable and those
that are non-localizable.

For classes A, Al, and AIl (Wigner-Dyson classes) in a topological phase,
they are always Wannier non-localizable. The reason is that one always has
the freedom to choose a reference energy inside the bulk gap. The existence
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of a topologically protected state at some energy implies its existence at all
energies inside the gap. On the other hand, for the rest of the symmetry classes,
particle-hole or chiral symmetry forces the spectrum to be mirror symmetric
around E = 0. The condition of equivalence of all energies no longer holds, and
the presence of a band of delocalized states inside the gap cannot be assured. To
establish if a phase in these classes is Wannier localizable, we ultimately need
to consider if the chiral and particle-hole symmetries are spectator symmetries.
Symmetries are referred to as spectator symmetries if the topological properties
of the system, such as boundary states, remain unaltered even after the (chiral
or particle-hole) symmetries are removed. Examples include 2-d topological
insulators in classes C and D, as well as 3-d class DIII topological insulators
with an odd topological invariant.

In summary, we have established that Wannier localizability indicates the
potential for a gap to form between bulk and surface states through the in-
troduction of a localized surface perturbation. Similarly, the introduction of
disorder results in the Anderson localization of all states at energies other than
zero. We refer to the occurrence of both these scenarios as the fragility of surface
states. It is essential to emphasize that these scenarios represent mere possi-
bilities and there are cases where they do not occur. In the following sections,
we will explore the mechanism behind the fragility of surface states within a
minimal model of a class AIIl topological insulator with a winding number
v=1

5.1.2 Boundary

The 2-d gapless surface states of 3-d topological insulators are effectively de-
scribed by Dirac Hamiltonians of the form,

Hp = kT + kyry; (5-7)

where k; and k, represent momenta near the closing point, and the Gamma
matrices satisfy {I';, I';} = 2¢;;. One notable observation is that the Hamiltonian
(5.7) exhibits ultraviolet divergence. Furthermore, it cannot be represented
as a low-energy limit of a lattice model; in other words, under the Dirac
approximation, it is not feasible to describe the surface of a topological insulator
as a standalone entity.

From this perspective, the spectral flow can be understood as governed by an
anomaly. To illustrate this, we introduce an external vector potential A into the
Hamiltonian (5.7). However, in adopting a regularization scheme, we inevitably
sacrifice gauge invariance. The consequence of this loss is the breakdown of
particle number conservation. This is exemplified by the adiabatic insertion of a
flux quantum through the bulk, resulting in the upward displacement of states
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in energy. States above the cutoff energy (defined by the regularization) simply
vanish. However, by reality, these high-energy states undergo transformation
into bulk states, while bulk states are simultaneously transformed into states
occupying the lowest energy levels. This mechanism enables the observation of
states being transported along the bulk from one boundary to the other, thereby
giving rise to the quantized transverse transport of charge, spin, or heat.

However, what about the case of a topological insulator where spectral
flow might be absent? From our previous discussion, we inferred that in such
cases, the bulk behaves as a sink for states pushed upward in energy. In a
topological insulator lacking spectral flow, where the bulk and boundary are
disconnected, the states pushed above must remain confined within the surface.
In the subsequent discussion, we explore this scenario in more detail for a class
AIII topological insulator.

The Dirac description of the surface of a class Alll topological insulator is
given by the following two band Hamiltonian,

Hy =kxte + kyTy/ (5-8)

where T;, are Pauli matrices. The chiral symmetry operator is given by I' = 1,
such that, TH;I' = —H;. No deformation of the Hamiltonian can open a
gap without violating chiral symmetry, since the only term opening a gap is
proportional to T,.

We introduce a band of localized states, and in order to maintain chiral
symmetry, we position them at energies +-¢.. The Hamiltonian describing this
situation is given by,

o €cTx

where T4+ = Ty i1, and 7y represents the interband coupling, causing avoided
crossings between the newly introduced localized bands and the linearly dis-
persive bands. The introduction of these bands induces a global gap in the
spectrum. Nevertheless, despite the presence of this gap, the Hamiltonian (5.9)
still exhibits ultraviolet divergence.

When we introduce an external vector field while respecting chiral symmetry,
we observe the following mechanism: states are pushed up in energy upon the
insertion of flux quanta. However, due to the global gap in the energy bands,
states cannot reach the upper energy cutoff. As a result, there is no conversion
of surface states to bulk states, and consequently, no transversal transport of
charge occurs. All the observed phenomena are confined to the surface. Figure
5.2 shows pictorially the situation that we described.

From the boundary perspective, we also observe a detachment between the
bulk and the boundary. This detachment allows us to define a surface Chern
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FIGURE 5.2: a) The Dirac spectrum at the surface of a 3-d AIll topological insulator
along some axis k. Upon insertion of a flux, states are pushed up and
down in energy. b) Inserting bands at energies +e, effectively cuts the
flow of states towards higher energies when a flux is inserted. Taken
from [86]

number [97, 98]. The states used to define the Berry curvature are |ay), with
k belonging to the surface Brillouin zone, which represent the positive energy
states of the finite band. The Berry curvature and Chern number are given by:

Qk =1 <dak|dak> ,

2 (5.10)
h= — Q.
¢ 27 ./BZ k

The factor of 2 accounts for the identical contributions of the positive and
negative-energy surface bands, which are related by chiral symmetry. As men-
tioned earlier, the value of the Chern number can vary, but its parity must
match the parity of the bulk winding number.

5.2 AIII TOPOLOGICAL INSULATOR MODEL

In this section, we apply the concepts discussed previously to explore a spe-
cific model of a three-dimensional AIII topological insulator. We consider a
prototypical and minimal model in k-space, described by the Hamiltonian [10],

H(k) = (M Yy cosku> oo+ Y, Taoasinkg, (5.11)

a=x,y,z a=x,y,z

where M is a parameter that controls the topological phase, and we have
assumed unit hopping strength. The model involves two sets of Pauli matrices:
T; acting on the chiral subspace and ¢; on another set of degrees of freedom. The

69



70

FRAGILITY OF SPECTRAL FLOW IN CLASS AIII TOPOLOGICAL INSULATORS

topological invariant v for translationally invariant AIII topological insulators
is calculated as follows,

1

V= g /d3ke“bc Tr (H’lTgaaHH’l’rg,abHH’lQacH) , (5.12)

yielding the values,

v=1 1<|M| <3
v=-2 for IM| <1
v=20 else

In the literature, this model has been classified within class AIll, character-
ized solely by chiral symmetry. However, by introducing particle-hole sym-
metry, represented by Uc = 7,0y, and defining the time-reversal operator as
Ur = iTy0y, we can reclassify it into class DIII, since UcHT (k)Uc = —H(—k),
UrHT (k)Ur = H(—k) and time reversal symmetry squares to -1.

To ensure that we have a model belonging to class Alll, particle-hole sym-
metry must be broken while preserving chiral symmetry. This is achieved by
introducing disorder potentials that respect only chiral symmetry. For practical
implementation, we employ the real space representation of the Hamiltonian in
a tight-binding model on a cubic lattice,

1 .
H=M)_|R) 700 (R|+ > ) (t’f{ IR +eq) (Ty00 — iT203) (R| + h.c.), (5.13)
R R

where R are the lattice vectors, ¢, are the unit vectors along the lattice directions,
and t are now modified to include static random phase variables,

th — te R, (5.14)

where a € {x,y,z} specifies the direction of the nearest-neighbor bond, and the
{¢2} are static random phase variables with variance

(ki) = W2ORR: Sar- (5.15)

In subsequent sections, we will investigate the effects of disorder on the
properties of this topological insulator model, especially focusing on the topo-
logically non-trivial phase v = 1. We will begin with a discussion on the
properties of the clean version of this insulator.
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5.2.1 Surface Dirac approximation

According to the bulk-boundary correspondence, a topological invariant v (or
winding number) in bulk corresponds to |v| species of gapless Dirac fermions
at the boundary. Let us consider a realization of the previous model with a
termination in the x-direction at x = 0 and let us choose 1 < M < 3 such that
our model’s topological invariant is tuned to v = 1. In going from the bulk
of the topological insulator (x < 0) to the vacuum at (x > 0) we neccesarily
close the bands at x = 0. Such closure is found at (k,, k;) = (0,0) in the
surface Brillouin zone. In the vecinity of the point (k,, k,) we can approximate

2
sin(k,) ~ k,; and cos(k,) ~ 1 — %ﬂ and we can do the substitution ky — —idy.
The resulting Hamiltonian is,

kg + k2

1 .
H=~ <—§8x — y) Ty00 + Tx0x (—i0x) + ( ) 7,00 + ky Tx0y + k; Tx0z,

(5.16)
where y = 3 — M. Given that the closure of the gap occurs at (kz,ky) =0 we
set them to these values and to find the zero mode,

H ky2=0 |0,m) =0 (5.17)

where, |0,m) = |m;)_ |my), [p) with m € {1, ]} the polarization of the surface
state, |m,), and |my), eigenspinors of T, and oy respectively and |¢) an enve-
lope function highly localized at x = 0 and decaying exponentially into the
bulk. To find an effective Hamiltonian for the surface, we project into the space
of zero modes,

Hsurf = kZ‘TJIC + ky%// (5.18)
where 0}, is a set of Pauli matrices acting on the space of zero modes. This
particular Hamiltonian was already described in the previous section where
we found that it has a fragile obstruction to localization, which is lifted adding
extra degrees of freedom to the surface Hamiltonian (5.18).

5.2.2  Detaching and characterizing surface bands

In the model outlined by equation (5.13), the surface band is intrinsically
connected to the bulk bands. To explore the effects of localized perturbations,
a potential is introduced specifically on the surface layers of the system. This
potential, while maintaining chiral symmetry, deliberately breaks both particle-
hole and time-reversal symmetries. The potential is expressed as,

U= ), ) ualR)7y00(R|, (5.19)

Resurface 4=XY,2
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FIGURE 5.3: a) Spectrum of the AIIl insulator with M=2 and open boundary condi-
tions in the x—directions. The bulk (surface) spectrum is shown in black
(red). There is a single Dirac cone at the I' point and surface and bulk
states merge at high energies. b) Same plot as a) but with the introduc-
tion of a fragmenting potential Uy with n = 3. Surface and bulk bands
dettach. ¢) Minimal value u¢ of the fragmenting potential required for
the dettachment of bulk and surface bands for only one layer n = 1
(solid line) and for 3 layers n = 3 (dashed line). Taken from [86].

where R runs over the outermost n surface layers.

The introduction of the fragmenting surface potential has an impact when
the magnitude of uf, exceeds a certain threshold, u;. Beyond this threshold
value, an indirect gap emerges between the surface band along the x-direction
and the adjacent bulk bands. This gap effectively separates the surface from
the bulk, disrupting the spectral flow. The critical magnitude u; that induces
this separation is dependent on the number of surface layers included in the
definition of Uy (see figure 5.3).

Since we have isolated surface bands it makes sense to define surface Chern
numbers defined by its Berry curvature using the equation (5.10). The parity of
the Chern number must be the same as the parity of the winding number v.
One way to see this is to consider two Hamiltonians H and H’ with winding
numbers v and —v, and surface Chern numbers Ch and — Ch’ respectively. We
construct a new Hamiltonian 6H = H & H' with vanishing winding number
v = 0 and surface winding number Ch — Ch’. Since the Hamiltonian 6H is
trivial, we can deform the surface band and separate the band on positive and
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FIGURE 5.4: a) Integrated Berry curvature of the model 5.11 against energy for the
case of fragmenting potential u¢, = O(red line),us, = —0.3 (black solid
line) and uy,, = —0.3 (black dotted line). The fragmenting potential is
applied to n = 3 layers and the vertical red line marks the position of
the bulk gap. b) Integrated Berry curvature for the Dirac surface model
(red line) and for the extended Dirac model with localized bands at +e,
(black line). Taken from [86].

energy band contributions opening a gap at E = 0 without closing the gap
between the surface and the bulk. The full Chern number of the surface is
two times the Chern number of the positive energy band because of the chiral
symmetry.
For the particular fragmenting potential consider here, the Chern number
takes the values,
Ch = —sgn(uyy) (5.20)

where the different signs correspond to different choices of gauge, and as we

just discussed the difference between the Chern numbers is an even number.

From chapter 3 we know that the question of Anderson localization in the
presence of weak disorder can be answered by looking at the integrated Berry
curvature carried by the states with energy e; below a reference energy E. For
our particular surface band we define the 6 angle,

O(E) =+ O, (5.21)
J0<er<E
and the states are delocalized at an energy E, whenever §(E) = w mod 27. At
E =0, 6(0) = 7t which is consistent with the claim that at zero energy the state
is delocalized. Apart from zero energy the 6 angle takes values different from
7t which indicates that this states localize in the thermodynamic limit.

In figure 5.4(a) we see 0(E) as a function of the reference energy E for a
strength on the fragmenting potential us, = —0.3, —1 applied on the three
outermost layers. For energies close to E = 0, the fragmenting potential has no
effect. However as we increase the strength of the fragmenting potential more
and more energies get affected by it. As we approach the bulk gap the value
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of 6(E) differs from 7 significantly. From the discussion in chapter 3 we know
that those states will localize when weak disorder is added to the AIII insulator.

5.3 FIELD THEORY OF THE AIII TOPOLOGICAL INSULATOR

In this section, we explore the impact of disorder on the AIIIl topological
insulator model outlined previously. Specifically, we examine how disorder
influences the topological properties and interacts with Anderson localization.
To achieve this, we utilize field theory tools to develop theories for both the
bulk and the boundary of the system. Following the development of the field
theory, we will compare the information that we can extract from them with
the results discussed earlier, thereby contextualizing the effects of disorder in
AIII topological insulator. As we have seen before the case at E=0and E # 0
behave differently and we will discuss them separately.

5.3.1 Field theoryat E =0

To develop a theoretical framework at zero energy, E = 0, we begin by defining
the Hamiltonian Hy as shown in equation (5.11). Within the basis where the
chiral symmetry operator I’ is represented as 73, the Hamiltonian takes a fully
off-diagonal form,

0 h
Hy=| . / (5.22)
Kt 0
with i given by:
h = Z o,sink, —i | M — Z cosk, | o (5.23)
a=xyz a=Xx,y,2
We then introduce a disorder potential V, which anticommutes with T,
. 0o v
V= e (5.24)
Vo 0
where V_ = VI. This random potential V is assumed to originate from a
Gaussian ensemble and is spatially uncorrelated,
(Vi (x)) = 0
V_ =0
(V_(x)) . (5.25)
i
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To address the disordered system, we explore the problem using the replica
formalism by considering R copies of the zero-energy partition function Z’.
The partition function at zero energy is expressed as,

7= /Dl]JDl[_) exp{ (i/d3x ¢(—H)¢)} (5.26)

and the action for the replicated system is,

Sl ] =i [ @x (§ (V) 9t + 0T V). G2)

This action remains invariant under certain transformations, maintaining sym-
metry under the group U(2R) x U(2R),

P = 9T, P = P-Tr,

.28
P = Ty, v =Ty, 5:29)

Upon averaging the replicated partition function over the disorder, a quartic
interaction term in the fermionic fields emerges in the effective action,

[yl =i [ @ (Pt + gyt — iy ). Gao)

We decouple this quartic term by considering two new matrix fields A, A_
and we integrate over fermions, where we obtain the following effective action,

S[AL, A = ?/d xtr(ALAL) —trlog( o A) . (530)

As we did previously with the Chern insulator we perform a saddle point
analysis of this action where we obtain, mean field equations for A and A_.
We notice that this solutions break the U(2R) x U(2R) group down to U(2R).
The mean field solution A can be parametrized by a matrix ik73M belonging
to U(2R) and accordingly A_ = ixM~113. Details of this analysis can be found
in appendix D. We can write an effective action in terms of a spatially dependent
M,

(5-31)

- iKT3

: 1 —1
SIM] = —trlog (Zi h-M [h,M})

The term with the commutator can be expanded up to second order in deriva-
tives of space and momentum using the Moyal expansion,

M1 [hx, M] ~®;(x)dp, Tt + %@i(x)q>j(x) %yl (5:32)
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where ®; = 9, M~ M. We can expand this action up to third order in ® to
obtain,

1 1
S[®] = —tr (GoF) —tr (GoJ) + St (GoFGoF) — 3 tr (GoFGoFGoF), (5.33)

with,

-1

ixty —h -1 ixkt3 h
Go=["" =5l .|

—ht kT K24+ [h2 \ it ik

o 0 —@i(x)ap.h
F= .
<0 0 ) (5-34)
[— 0 —3®i(x)Pj(x) a%,i/pjh .
0 0

For example, taking as a particular model the Dirac version of the action 5.11
yields the following action (see appendix D.2), a non-linear ¢ model with a
topological term counting the windings of unitary matrices over S° [10, 99, 100]
is obtained,

9
2472

SIMJ = g [ xte (MM 1) + o 0y [ dvelter (M1,MM 1o MM ToM)

(535)
where g is the conductivity and ¢ a topological parameter. For energies away
from zero an additional term appears, Sg[M] = Ev [ d3xtr(M + M~1), which
is often called the mass term.

At E = 0, in the limit of increasingly large distances we expect the parameters
to renormalize to (g, ¥) = (0,27tn), where # is an integer. In this case we say
that we have a topological Anderson insulator. In this limit the topological term
can be transformed into a boundary term, which takes the well-know form of
I'[M]/127t a Wess-Zumino-Witten [101] term of the surface action. Close to the
boundary we might then obtain an action,

o r'm
5= g [ramao i + LM (536

where M are the same matrix fields but restricted to the surface and g; the
surface conductivity. At large scales it renormalizes to a conformally invariant
action with gs = 1/87 [101, 102] representing a two-dimensional Dirac point at
Zero energy.

At E # 0, the strongly relevant (in the renormalization group sense) mass
term Sg[M], only admits configurations M = Q = T3 T~ !, implying the vanish-
ing of the terms Sg[Q] and I'[Q]/127. This configuration breaks the symmetry
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from U(2R) down to U(2R)/(U(R) x U(R)), the Goldstone manifold of a class
A system. The action is reduced to a usual non-linear ¢ model describing a 3-d
metal below the Anderson transition point, meaning that in this limit the system
behaves as a Anderson insulator. There is another case that one might consider,
the limit of small energies, i.e, energies close to 0. We may use the surface action
(5.36) where the Wess-Zumino-Witten term is reduced to the 6 term of the
Pruisken action tuned into criticality, 8 = (2n + 1) 7, with n € Z [101]. Close to
zero energy the surface states close to E = 0 show a tendency to delocalization,
away from it we need to analyze the situation using what we have learned from
the previous sections.

5.3.2  Field theory of the AIll insulator at the surface

The theory of the surface of the disordered AIIl insulator can be obtained with
the theory we devised for 2 — d systems in the last chapter. In particular we
might start from equation (3.30), where Q(x) = T(x)13T~!(x) is the projection
onto the surface of the matrix fields defined in the previous section. To describe
the Hamiltonian on the surface we first must notice that i) a Dirac description of
the Hamiltonian might be incomplete, specially since the interesting phenomena
might happen close the the bulk bands and a Dirac approximation totally
washes away this information, 7i) there is no lattice representation of the surface
of the AIII insulator. With this in mind we consider a spectral decomposition of
the AIII surface Hamiltonian,

H(k) = ) |age) €n (|, (5:37)

o

where {|ay) } are the systems eigenstates at a given transverse momentum, how-
ever it must be noticed that the decomposition does not include all eigenstates
at a given k. Only states that have a finite spatial overlap with Q(x) contribute
to the trlog expansion described in section (3.3.1). The usual candidates are
the two chiral eigenstates on the surface band. Nevertheless, given the internal
structure of the spinor, 4 states per momentum k are needed and just 2 states
are insufficient. To avoid looking into the bulk to get the rest of the states, we
consider eq. (5.37) as a formal complete sum. Furthermore, we considered a
flattened version of the Hamiltonian (5.11) with a fragmenting surface potential.
The consequence would be that there is a finite spectral gap between the surface
and bulk bands. As mentioned before, applying a field theoretical analysis to
the surface we find once more an effective non-linear o model with a Pruisken
8- term. The coefficient accompanying the 6 term takes on the form (at small
disorder strengths),

6 — % /de 40(ex — E) (5.38)

77



78

FRAGILITY OF SPECTRAL FLOW IN CLASS AIII TOPOLOGICAL INSULATORS

which is the equation used in the last section to determine the topological
properties of the surface states. One big difference from the Chern insulator
described in the previous chapter is that the contribution from the upper and
lower surface bands does not need to add to zero, this is possible due to the
system being the surface of a 3d, i.e, at the surface we have effectively one
isolated band.

We have discovered that, away from zero energy and in a disordered AIII
insulator where the surface and bulk bands are detached, the phenomenol-
ogy resembles that of the integer quantum Hall effect (IQHE). Remarkably,
according to the renormalization flow diagram for the IQHE (see figure 2.10),
the coefficient 8 will flow to 27tn, and the corresponding conductivity g will
flow to zero in the limit of long scales, indicating localization. Consequently,
for energies E # 0, the states are localized. However, in the special case when
6 = 7tn, we observe spectrum-wide criticality, which occurs when the surface
and bulk bands are joined. It means that there is a delocalized state in the bulk
connecting the boundaries.

5.4 SURFACE HALL CONDUCTANCE

In the previous sections we provided an explicit term that detaches the surface
and the bulk. Moreover we found that once we do this, we can define a surface
Berry curvature and therefore there is a well defined Chern number on the
surface. Once we compute the integral of the Berry curvature up until some
reference energy E we can elucidate the Anderson localization properties of
the states at that given energy. The value of the Chern number depends on the
sign of the fragmenting potential 1 ,. We could now ask what happens when
we consider a situation when the fragmenting potential changes sign along
the surface. For definiteness let us consider the example of two domain walls
in the surface plane parallel to the y — z plane. We assume periodicity in the
y-direction which forces the surface to have two domain walls. Alternatively one
could deform the slab geometry into a cylinder, converting the x-direction into
a radial direction and the y—direction into the angular periodic direction (see
figure (5.5)). We expect to find two 1-d counterpropagating chiral propagating
modes along the z-direction at the points where the domain wall changes sign.
Interestingly these chiral modes connect the surface and bulk bands as can be
seen in figure (5.6).

In the clean model, these states are supported by only by states inside the
high-lying band gap, below it, they hybridize with the surface states. As we
discussed in the previous section, in the presence of disorder and at E # 0
surface states localize, however the chiral modes do not. In order for them to
survive they extend their support over the whole surface spectrum (see figure
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FIGURE 5.5: Description of domain walls placed at one of the surfaces of AIll insulator
parallel to the y-z plane. Equivalently with periodic boundary condition
in the y-axis we can deform the AIIl insulator to a cylinder where at its
surface we can place the domain walls.

5.6). They hybridize with the topologically delocalized states at E = 0 and with
delocalized states in the bulk. The domain walls and thus the chiral modes
propagating along them forbid a full localization of states at high energies.

At E # 0 the chiral symmetry is effectively broken so each surface might
be treated as an effective 2-d system in class A. In this way the chiral modes
propagating along the domain walls are to be identified with the edge states
appearing in the quantum Hall insulator and we can apply the Laughlin’s
argument applies. These chiral modes must hybridize with the topologically
protected delocalized state at E = 0 while at high energies it hybridizes with
the bulk modes or with high lying surface states. Either, they presence of a
domain wall modes prevents the full localization of states at high energies.

With these observations in mind we can consider a random surface frag-
menting potential varying in space, in the case where (uf,) = 0 we have
puddles of positive and negative surface Chern number occurring with the
same probability. At the boundary of these puddles we have propagating and
counterpropagating chiral modes. Since the puddles occur with equal proba-
bility we expect the chiral modes to create a network across the whole surface.
This network is remniscent of a Chalker-Coddington network of the integer
quantum Hall effect at criticality [103]. Is at this point where the model predicts
a percolation of states evading Anderson localization. This is the mechanism
behind spectrum wide criticality since all states inside the bulk at all energies
appear to be delocalized. In the case where the average of positive and negative
puddles is not the same, i.e, (uy,,) # 0 we do not have a network connecting
all the chiral modes and therefore we expect localization. From this argument
it is clear that spectrum-wide criticality corresponds to a very specific type of
disorder and that for general disorder all states at E # 0 localize. According to
our diagnostic tool in equation (5.38) the localized case must show an average
positive or negative surface integrated Berry curvature .
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FIGURE 5.6: a) Band structure for a slab geometry of the flattened version with
open boundary conditions in the x direction and two domain walls
and periodic boundary conditions in y (see figure 5.5). The fragmenting
potential is placed only in the outermost layer # = 1 and switches from
0.2 to -0.2 and back at the domain walls. The bulk, surface and domain
wall part of the spectrum are show in black, red and green respectively.
The solid green lines correspond to the case of a domain walls going
from positive to negative and back to positive whereas the dashed green
line correspond to the case of domain walls going from negative to
positive and back to negative. b) In the presence of disorder only the
state at E = 0 is delocalized. The chiral modes at the domain walls are
expected to extend from the bulk all the way down to the zero energy
state. Taken from [86].

5.5 CONCLUSION

In topological insulator in the Wigner-Dyson classes (class A, Al, All) the
boundary states are continously connnected to the states in the bulk which
are delocalized. This connection of bulk and boundary allows for states to be
transported from different boundaries through the bulk given rise to observables
(e.g, the quantized Hall conductance in 2-d class A topological insulators). In
this chapter we showed that topological insulators in the non-Wigner-Dyson
classes do not generally have states connecting bulk and boundaries.

In the literature, non-trivial topology is associated with the obstruction to the
construction of a localized basis of conduction and valence bands, reffered to as
Wannierizability. Nevertheless, we show that topological insulators in the non-
Wigner-Dyson classes enjoy this property, i.e, they are Wannier localizable and
topologically non-trivial. We showed this from the bulk perspective, arguing
that Wannier localizability implies the fragility of the connection between
surface and bulk bands. From the boundary perspective we showed that the
theory admits gap opening perturbations that respect the symmetries. At the
surface we saw that the addition of disorder makes all the states Anderson
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localize except the one at E = 0, a state that it is protected against Anderson
localization by topology.

The existence of gapless surface states has been a key signature of topological
insulators. However we see that this characteristic is only shared by systems in
the Wigner-Dyson classes while for genuine® non-Wigner-Dyson surface states
away from E = 0 can be, but not need to be, delocalized.

We showed that for a minimal model of a class AIII topological insulator with
v = 1 we were able to detach surface and bulk bands, Anderson localize all the
states with energies E # 0 and define a surface Chern number. Additionally at
the transition point between phases with different surface Chern numbers we
observe spectrum wide criticality. In the presence of disorder we use a powerful
tool to probe Anderson localization, namely, the integrated Berry curvature
(5.38) in which we integrate over all surface states below the energy E that
we want to analyze. For energies E in which the integrated Berry curvature
takes odd-integer values we see delocalization, for the other values we see
localization.

Similar to the conclusions from previous chapters we see once more that
for certain systems the Dirac approximation to surface states is incomplete.
In the present context, they do not account for the surface Berry curvature, a
phenomenon that we show to happen at high energies. From the perspective
of the Dirac theory at the surface to truly describe the phenomena described
in this chapter we need to add trivial bands to the minimal Dirac model. The
addition of the these bands and the way the change the surface physics of the
minimal model is important to determine the possibility of Wannier localizing
the bulk.

For winding numbers |v| = 1 the meaning of minimal model and the tools to
measure delocalization are not yet clear. It is well-established that a Wannier lo-
calizable bulk implies a gappable surface for genuine non-Wigner-Dyson classes.
However, the ways in which the minimal Dirac description is fragile, and the
relation between localizability and Berry curvature, need not straightforwardly
generalize beyond the v = 1 AIII context.

1 Genuine non-Wigner-Dyson topological insulators are those in which the presence of chiral
symmetry and/or particle-hole symmetry is essential for their topological protection.
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APPENDIX A

A.1 REPLICA TRICK

In this appendix we give a brief account of the replica trick and its uses in field
theory. In the treatment of quenched disorder systems we have to average the
observables we are interested in over different disorder configurations. Formally
the average of an observable O over a ensemble of disordered systems looks
like,

(O)gis = — Lo - Z) dis- (A1)

<Z o] 1120
The fact that the partition function is in the denominator makes the disorder av-
erage extremely complicated. To remedy this complication we take R copies [18]
of the system described by the R-th power of the partition function. The impor-
tance of taking R copies rests on the following formal relations regarding an
observable O,

)

0O=—-—— InZ
i
0

1
=5j|,_, Am g (op{(RIn2)} -1) (A2)

3 m 2
6] |j—gR=0 R~

Instead of calculating the logarithm of the partition function, we calculate its
R-power, making the problem of calculating the disorder average more tractable.
We have, nevertheless, to analytically continue R — 0, and there is, in principle,
no guarantee that this procedure yields a legitimate outcome. Due to the arising
issues, the method is dubbed as a mere trick. Despite the uncertainty, the trick
has proven useful and it should not cause any complications in the systems
considered in this thesis.

We represent the replicated partition function as a coherent state field integral

R _ 7 _ X T4 a
—/D(w,w)exp“ ES[IP P ,I]} } (A3)

P 0= , R, denote the Grassmann field of the a-th copy of the
(P y) = D(y*, ¢*), and S[p*, 9", J] = So[*, "] + Sint [$*, 9] +
83
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Ss[9%, 7, J]. Taking as an example the free electron gas, we disregard the
interacting part of the action S;;;. The non-interacting part is given by,

2

S, ') = [ @0 (E- V00 ), (A

and S; is the source-dependent part of the action. It is worth noting that up to
this point, the action is diagonal in the replica space.
We compute the disorder average of the replicated partition function as,

< /Dlplpexp ZSdlIJlP] stzsll? wb, 97, 9"
dis a,b=1

(A.5)
where S;; = S|y—o, and

Sald® P9 9] = L [ p R v, (A8

is obtained by a direct Gaussian integration. The consequence of the disorder
average is to add a quartic potential where the particles with different replica
index interact. The expectation value of an observable O over the disorder is
computed, using (A.2), as,

_/_9 ZR\ e (BN 1§
<0>d,-s—<5] ]Ollzlg})R>dis—}g}J§]‘]O R = EZ )y
(A7)

where we have used (a) the independence of the source | with respect to the
replica index a (each replica has the same source), (b) The disorder potential
does not "touch” the source term S; in the action, and (c) (O (¢, ¢7)),, is the
expectation value with respect to the action with the new quartic potential in
the coherent state representation of O.

In this way we circumvent the problem of averaging over

A.2 SELF CONSISTENT BORN APPROXIMATION

In this appendix we discuss the self consistent Born approximation and in
general the role of the parameters x and AE. The starting point is the self
consistent Born equation for the matrix A(x),

A(x) = W2tr (E+idts — H— A) "' (x,x).

We propose a spatially homogeneous and matrix diagonal Ansatz of the form
A = AE + ixT3. Plugging in the Ansatz into the previous expression, we obtain
a self-consistent equation for both AE and «.



A.2 SELF CONSISTENT BORN APPROXIMATION

AE + ixt3 = EZ d*k tr < ! )
2 Jpz (2m)? E—H(k) — AE —ixt3 )

The real part of the previous equation, AE, represents nothing more than an
overall shift in the energy E of the system. The imaginary part is the self energy
due to impurity scattering which is to be identified with (2 times) the scattering
rate off impurities and consequently defines another quantities of interest such
as the elastic scattering time T and the mean free path £.
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B.1 DERIVATION OF THE TOPOLOGICAL ACTION

We here derive Eq.(3.34) for the topological action by explicit computation of

the two contributing terms St(gpz ), i.e. the skew-derivative contributions to the
first and second order gradient term in Eq. (3.32).

St(g%: The expanded representation of the second order term reads

s@Q] = %/dzx(dzk) tr(D(ixt3 + v, 0" ) F;®;D(ixt3 + v,0") F;P;)
— f% / d?x(d%k) tr(D(ixt3 + vu0") (0a0;1aP;) D (i3 + 040" ) (0051, P5))
= —iK/dzx(dzk) tr(D13(020;1,D;) D (heo) (03,951, P5))
— 2xen / Px(dk) tr( D13 D, DD;);had:hphe
= —2xe; / d2x(d2K) tr(DTs®; DD, (B.1)

where (d?k) = dk;dk,/ (27r)?, the arrow indicates that we retain only derivative
combinations 9;0;, i = (i + 1)mod 2, and we used the definition Eq. (3.36). To
process the integral over k, we decompose the matrices D = D*P* + D~ P,
P = %(1 + s13) into advanced and retarded contributions and note that only
momentum integrals over denominators D™D~ of opposite causality are non-
vanishing. In this way we arrive at

0 ]
Sfﬁ%[Ql = —é / d®x ) sejitr(P° ®; P°®)), (B.2)
S

with the momentum integral 6, defined in Eq. (3.35). We finally use the first of
the auxiliary relations

7461‘]'2 tr(sPsq)iIﬁ@j) = ['top(Q)/
S
dejjtr(130;P;) = Liop(Q), (B.3)

to obtain St%})) as given in Eq. (3.34).
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St(OI)) Being first order in derivatives, the contribution from the term st naively
seems to vanish. To see that it does not, we play a trick first applied by Pruisken
in his analysis of the quantum Hall effect. Noting that the energy-dependent
Green function G = Gg can be written as Gg = f go dw GZ), we represent the

action as (in the same notation, D, = Dg—,)

s

o= - / e Tr(Go F;Ge)

e /d2 x(d2k) tr((9;Gu ) Fi(0j;) G — GuF;(9j®;)2;Gov)

E

2 m\g

. / /d2 (d2k) tr([(3jGu), G F:9,D;)

E

_ 7% dw/d2 (d2k) tr (D23 (1a0), hy0s) (iheor)2;2; )

Y / dw / d2x(dk)e;jtr (D20, ) . (B.4)
E

We now decompose the matrix D again, and note that only the contribution
proportional to T3 yields a non-vanishing trace, D> — }(D*2 — D~2)1;. As a
result, we obtain

[%
SplQl = = [ dxejtr(raid), (B.5)

with 6, given in (3.35). In a final step, we use the second of the auxiliary
relations (B.3) to arrive at the contribution S() to (3.34).

B.2 DERIVATION OF THE GRADIENT ACTION

We here derive Eq. (3.40) by inspection of the two terms $(1?) in the formal
gradient expansion Eq. (3.32).
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Sg)a 4° Hiltering symmetric derivative combinations from the explicit representa-

tion of the second order expansion we obtain

)
Sgrad

0] = % [ (@) (Dl + 0,01 E®DixTs + 0,0 F:®)
— —% / d?x (d%k) tr ( — K2D130,D; D130, D; + Duvy,0" 0, ®;Dv,of o) @;
+2iEx DT3(I,,®Z'D0A<I>I«> 30,90,
- /de(de) Y tr (= k2 s D®TDP; + (E2 — ¢ 4 202) DO, DP;
: :

+ 2iEx DT3¢‘Z‘D¢‘Z') 0;ih,0;h,,

where "—" indicates that we retain only derivatives with identical i-index, and
in the second equality traced over Pauli matrices. To compute the k-integrals,
we again decompose D = DT P* 4+ D~ P~. The product of two D’s then leads

to terms D’D¥ of equal and opposite causal index s,s’, which need to be
considered separately.
Using the auxiliary relations

Ztl‘ (CDI'T;IPS(I),"%MP75) = %tr (0;Q0;Q) x
s

-1 (n,m) =(0,0),
x9q 1 (n,m) = (1,1), ,
0 (n,m) = (0,1),(1,0)

and
) tr (O PPO;TY'P°) fs =
S
= — an+m tr (EBZQG,Q — PSCI)%) fs,
s
where f; is arbitrary, it is straightforward to obtain
SgnalQ) = (1 + 1+ 1) [ dxtr (9:09,Q) + S, (B.6)

with Sy =4Y I [ d2x tr(PSCI)Zz), and the coefficients defined in Eq. (3.41)
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Sé rl 4° The terms with equal indices, J;; in Eq. (3.32) yield a term
W _1
St = E Tr(GJa @),
=2 / (@) L tr (G P30, 92,
s

1
=5 /dzx(dzk) Zsltr (GsaivVUVGsaiv#prsdf) ,

= —Su

where we integrated by parts and used that 0;G* = —G®°9;h,0,G°. We conclude
that the anomalous terms, Sy cancel out and arrive at the full gradient action
Eq. (3.40).

B.3 DERIVATION OF EQ. (3.42)

In this appendix we take a closer look at the derivation of equation (3.42). The
first thing to notice is that I can be written as the following,

Zi Y /(dzk)((E +ix)D* + (E —ix)D™)? + (2 — €2)(D* + D™ )*(3;hadiha),
E2(E2 4+ #2 — €)% + (202 — €2)(E? — 12 — &2)2
;'/(dzk) E+ ((Eze_)K;__(ez)z _:4;5(2,(2)2 =

B : E?(E? +x% — €2)? + (2h2 — €?)(E? — x2 — €2)?
7;/(d2k) ((EZ—K2—62)2+4E2K2)(2\E\K)

(0;hq0;h,),

2|E|x
% ((E2 k) +4E2K2> (9ihadiha).

To make further progress we take the limit when Ex — 0 resulting in,

E% — €2 4 212
_ 2 a . . 22
I —ﬂ;/(d k) Z‘E‘K (azhaazha)é(E € )/

B Yo i3 (0iadita) o o
_n/(dk)Wé(E — ).

At this point we focus in the low energy regime, where we can take the Dirac
approximation, resulting in,

E2—m?> _ ., 5
| = ———O(E" -
2 O —m)
with m = r — c and ¢ = 2,0, —2 depending on the Dirac cone around which
we approximate.
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B.4 DERIVATION OF THE SMRCKA-STREDA COEFFICIENTS

In this appendix we show the relation between the equations 3.35 and the
equations (3.43). More precisely, we want to show that 6; = 271(7,@ and 0, =

270y,

i — _
Uiy = 162 /dzkeij tr (TzGEa,‘GElTlGEa]-GEl) ,
1 5 1 .
T 82 XS:/d kStr((GE31GE )s(GE01GE ),S),

_ 81? ) / &k s tr ((E + isk + hao) (911103) (E — isx + heor) (9ahgo4)) DD,
_
272
_ % /deD*D*Fk,
=01/(2m),

1 [E ) ) .
oll = m/ﬂ/dwdzkea,}7 tr (13GwuGir GudpGis Guds Gt ),

/ &k tr (06,0402 ) had1hydshe D D_,

E
= #Z/ dw/dzkstr (((Gwangl)s(GwazGal) - (Gwalcgl)s(cwazcj)cw)),
s —0Q
1 /E ) »
_ 1 dw/d kstr ([(91Gw)s, (Go)s]92(Go)s ) s
872 ; — ( 1 w )
E
- 81?2/ dw/dsztr([(w+iSK+haUa),81thb]82hC0'C) Dg,
s —0Q

1 E
= P Lw dw/d2k ’cr(Ug(TbcTC)h,,alhbazhc(DgL _ Dz_)’

Tl
- ;?/_wdw/dePk((Di — D)),

= 62/(27‘[).
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C.1 TOPOLOGICAL INVARIANCE OF THE MAGNETOELECTRIC POLARIZ-
ABILITY

Here we derive equation (4.15) using the definition of the transformation for
the gauge fields a with contain the sewing matrix (4.13). The sewing matrix B
is a U(N) matrix, where N is the number of occupied bands. We start from the
definition of P; and then we use the properties (4.14),

Py = 1617 /d3k€ijk tr :(fij(k) - %i“i(k)“j(k))”k(k)}

= gaz | ket (530~ SR (A ax(5

= 1617 /d3kel-]'k tr :B(k)fij(k)B*(k) — %(B(k)ai(k)aj(k)B*(k)

— iB(k)a;(k)d;B" (k) + i0;B(k)a;(k) B (k) + 9;B(k)9;B" (k))

% (—B(k)ay(k)B' (k) + iB(k)akB*<k>>]

— o | ketr | (<0900 + 50,010l +if; 1B (0B

+ [ai(k), a;(k) 0B (k) B (k) — 2ia; (k)94 B" (k)9;B (k)

= 3 (B0035* (1) (B(1)27B" (1)) (B0 )|

= - 24% [ et [ (BR)QB (1) (BK);BY (1)) (BR)3B' ()|

+ 2/d e tr ;09 BT (k) B(k) |, (C.1)
which imphes that,
2y = oy [ @hegte (BB (1)) (B(K);BY () (B)9,B" (k)
(C.2)

where the last term in (C.1) is a boundary terms that amounts to zero. From
here we see that P3 can only take the values 0 or 1/2, this given that P; is only

93



94

APPENDIX C

defined mod 1. We have therefore two different topological phases the trivial
one, with P; = 0 and a topological one with P; =1/2.

C.2 DERIVATION OF THE NON-LINEAR 0 MODEL ACTION FOR THE HOTI

In this section we derive the non-linear o model for the surface of the inversion
symmetric HOTI staring from the action 4.22. We define the SCBA Green’s
function,

Gy = (e—p-o—moz+ik3) 1, (C.3)
where we have set v = 1 for convenience. The SCBA Green'’s function describes
the propagation of excitations with momentum p in a disordered background

with a damping given by x. We rewrite the SCBA Green’s function in terms of
the advanced and retarded Green’s functions

€+iKT3+p 0+ mo3
P ixT2)2 — (p2 + 12 :ZG;PS'

(e +ixt)? —(p>+m?) =
G — e+isk+p-oc+moy € +p-o+mo3
P (e+isk)2— (p2+m2) €2 — (p?+m?)

(C4)

, (C5)

where Ps are the projectors into the advanced (+) and retarded (-) subspaces,
p = (e,p) and €; = € + isk. We proceed to expand the action Sp[A] up to
second order in A = T~1(d — ia)T. The terms up to second order read,

SolA] = SW[A] +SP[A] + ..., (C.6)

SW[A] = —itr(G(A - 0)), (C.7)
1 [ d?pd?

s@a) = -3 #tr(GHq(A-a)qcp(A-a),q). (C.8)

We begin to analyze the second order term (C.8) by neglecting the slow g
momenta with respect to the fast momenta p, i.e, Gp+q = Gy Within this
approximation we find,

1 [ d?pd?
s[4 = -3 (2’;)4‘7 tr(Gy(A - 0),Gp(A- o)), (C.9)
- T [ @xu(Para), (C.10)

ij,ss’

where we have defined fsz, to be the integral over the fast momenta p,

.. d2 ,
fl = / (2752 tr[(es +p- o +mos)oi(es +p- o +mos)o| NN, (C11)
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where N3, = (e — (p* +m?))~!
Let us consider in the first place the case where i = j, f

', = fo - Firstly, let
us examine the case where s = s’. The integral reads

. d2
fes = / ﬁ tr[(es+ p- o+ ma3)oi(es + p - o + mo3)oi] (N;)?

_ A2t 1 pE-n?)
-t er -k Ya e

EI
where we have used tr[(p- o)oi(p-0)o;)] = ¥ pjpitr[ojoiore;] = 0 and i
jk=12

takes the values 1,2. Now, let us consider the case where s’ = —s.

2
foi= [ (‘2’17";2&[<es+p-a+maa>m<e,s+p~a+mag>ai]<N;><N;S>,

B 2(ese—s — m?)

- G S ey
_ 1 /°°d 2p(e* + x> —m?)

27 Jo p((P2+m2+K2—€2)2+4€2K2),

1 e2+x2—m?
T ™

(C.13)

where we have defined f(x,y) = (arctan ( ) + arctan ( )) [77]. With

Q =TT ! and A; = T~1(9; —ia;)T, it is straightforward to compute the
traces involving the projectors and the A;’s.

s;i tr(PPAPSA;) = —i tr[ts, Aj]* = —% tr(V;Q)%, (C.14)
T (P AP A) = trlr, A2 +tr(A$) — Lyv,00 +tr(A$), (C.15)
= 1 1

where V;Q = 0,Q — i[ag, Q] is the covariant derivative with respect to Q.
The full contribution to the action 51(12 ) [A] from the case where i = j reads,

sP4] = 4 <% <1 + €2+’:(_’”Zf(e,m))) [@xu(ve?+ - [dre(a),
(C.16)
= 54[Q] + % /dzr tr(Az), (C.1y)
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We recognize the first term to be the diffusion term S;[Q] with longitudinal
conductance oy, = 2n (1 + €+’(77’"]‘(6 m))

Let us turn our attention to the case where i # j. As before, we consider
s’ = s, and then the case s’ = —s. The fast momenta integrals read,

Z7éff/(z 7 tr[(es +p - o+ mos)oi(es + p - o + mo)oy] (N;)?,

= 4 (N3,
/ pipi(N;)%, (C.18)
27 4p sin 6 cos 0
== d / 27/
/ P — (P2 +m2))?
fi#j = d’p tr[(es + p - o+ mo3)oi(e_s + p - ¢ + mo3)oj| N;N,°
s—s (27r)? sTP 3)0i{€-s TP et A
_ 4sePmi /°° dp p ) (C.19)
27 0 (pZ + m2 + K2 — 62)2 —|—4€2K2
— i3 (™
s (27T)f(e,m).

With the previous results, we compute the trace involving A,

y seil3 tr(PAP A = £i3 tr(1A;A)) = _igiﬁ tr(QViQV;Q),
= 1 ' (C.20)
(i3 tr(di4)) = Zeijs tr(QV;QV;Q) — égi]?’ tr(Qfij),

where fi; = dya; — 9ja, — ila;, ai| is the field strength tensor. We assume f;
proportional to the identity in the advanced/retarded space and the replica
space, f]-k o« I;; ® Ig. Under this assumption the last term in equation (C.20)
vanishes. Collecting the terms, we obtain for i # j,

SDA1= 2 (M pe,m)) T [ d*re® (QViQV,Q),
1 8 (27‘[f );/ ( I ) (C.21)

= S{op[Q]'

We recognize this term to be the first contribution to the Pruisken term with

(r,{y = J= f(e, m), the Fermi surface Hall response.
Let us consider the first order correction S(1)[A ] (C.7). We will use the trick
of doubling the power of the Green’s function G(e) = [ de’G(€’)? to obtain,

D1A] = i/_oo de’ tr(G(e')z(A : 0)). (C.22)
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This term is better computed using the Moyal expansion,
(G(A-0)G)(x,p) = G(p)(A - 7)(x)G(p)
— 39pG(p)2:(A - @) (X)G(p) (C23)
+ 16(p)a (A7) ()2, G(p),

to bring the action (C.7) into the form,

2
stay~ [ de’/ d L [ xtx(1G, 35,y (A - ),

. 72/\” [ Exte(@iA;P),

s,ij

(C.24)

where the coefficients AJ contain the integration over energy and momentum

W= 5
= ¢ Lwdel/ﬁllimm;’)z’ (C.25)

= B (e, m).

5 tr([p - o + mo3, 0]oj) (NL)?,

With this result, we find ¢/ tr (0iA;Ps) = sielld tr(130;4;) = sgell® tr(QViQV;Q),

and the action reads

s[4 = % (SZ L (e' ) ) / &xel® tr (QV;QV;Q),

==+

(C.26)
Stop [Q]

The previous result is found to be the second contribution to the Pruisken term,
(Tg = E sIS(GZ’m) = 7= f(m,e), the thermodynamic Hall response. The full Hall

conduct1v1ty is then oy = (Txy + U{,I/ = (f(e,m) 4 f(m,€)).

This is not the end of the story. We have to take into account contributions
stemming from the regulator (see equation 4.22) where the terms will be of the
same structure except that we take the limits € — 0 and M — oo.

1
Sff(ff\f Al = -1 / &rtr (AZ) (C.27)
51(72(3]1\)4 [A] =0 (C.28)
syMA] = % (_%) Z/dzrsiﬁ tr(QV;QV;Q) (C29)
ij
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To finish the discussion, there is a little catch in the Pruisken term. The
Pruisken term in the regulator can be written as,

2 / el tr(QV;QV,Q) = 28113 / d2r tr(Q9;09,Q)
4 / dr tr((9,Q)a;) (C:30)
+2/d2rtr(Q[ai,aj])).

Let us take a closer look at the second term in equation (C.30),

25”3/d2xtr ((0:Q)a)) 28’13/d2xtr (Qa)))
-3 Zeij3 /dzxtr(Q(aiaj —9ja;))
1

(C31)

The first term in equation (C.31) we recognize it to be a boundary term. Since
our space is closed, this integral vanishes. We can combine the second term
in equation (C.31) with the third term in equation (C.30) to form a term
proportional to the field strength tensor, namely, éZij ¢ [ drtr(Qf;;). This
term is zero as mentioned before. We are left with the first term only. We
have shown then, that the Pruisken term in the regulator can be written with
derivatives instead of covariant derivatives.



APPENDIX D

D.1 SADDLE POINT FOR THE AIII MODEL

We derive a saddle point equation for the disordered AIIl model. Taking the
variation with respect to fields A, and A_ results in the following coupled

equations,
_ L -1
Ay ="t A j Lo ,
—-ht A_ 0 0
_ -1
A_ = 72 tr A+ jh 0 0 . (D.1)
—ht A 01
We make the following ansatz, AL = A_ = ikT3, which solves the coupled
equations and gives a self-consistent equation for the parameter «,

d3k K
KZZ'YZ/ 2y tr<K2+h(k)h+(k)>, (D.2)

At this point to obtain a low energy action we introduce a spatially dependent
saddle point solution, such that A = ik73M(x) and A_ = ixM~!(x)73, which
are precisely the Goldstone modes of theory.

D.2 DERIVATION OF THE AIII NON-LINEAR 0 MODEL

In this section we show how we can derive an effective non-linear o model for
E = 0 in the case where we take the Hamiltonian of the system to be the low
energy version of (5.11),

3
Hp = )_ kitio; + mm0y (D.3)
i=1

where m is a parameter that depends around which point we take the low
energy approximation. In this approximation the off-diagonal component of
the Hamiltonian takes the form,

3
h= ZkiUi —im. (D4)
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The first order contributions vanish, and therefore the interesting contribu-
tions come from the second order and third order.
To obtain the gradient term we look at the second order contribution when
i=j,
d3k Tr(hto;nhton) 4
,Tr(GOFGoF 2/ IR /d ¥ Te(gipr)  (D.5)

We develop the trace in the momentum integrals,

Tr<h+aih h*Bih> ( Y kioy + im)o; 2 kO + im)o >

i=m

=Y kikw Tr(010;0007) — m 2 Tr(0j07)

I,m
2 2 2
= —3Ik[* —2n, (D.6)

where from the first to second line we have ignored the terms that are zero
under the trace. From the second to the third line we have used the fact that
only for I = m the integral would be non-zero, we aslo used that k12 = |k|*/3
under the integral. And finally we used that 2[3:1 Tr(oyo;0007) = —2.

The momentum integral takes the following form,

o d|k| [k|*/3+ m?|k|?

S er M D.
0 272 (k2 + [K[2+ m2)?’ (D7)

This integral is UV divergent. To fix this issue we do a Pauli-Villars regulariza-
tion, where we substract the same integral but we do the following changes
x — 1, m — y, where y — 0 and y — oo. In this limit the integral yields the
following value,

dk| [k*/3+m2k? Reg 1«

o 22 (P4 KP4+ m2)? T 8T /2 + K2 O
Therefore the second order contribution yields the gradient term,
1 3 1
T D.
SgraalM] = Snm/dxraM M) (D.g)

We consider now the third order term and we consider the case where
i # j # k which would yield the topological term,

d3k Tr(h'9;h h'o; hh*akh
5/

1
—=T FGoFGyF)
3 T(GoFGoFGo CEIEE

L [ &g
(D.10)



D.2 DERIVATION OF THE AIII NON-LINEAR 0 MODEL

From the previous expression we notice that the trace in the momentum
integral yields a lot of terms, nevertheless it is easily simplified once we notice
that odd powers of the components of k will yield 0. We consider therefore the
following terms,

3im Y _ ki Tr(010:0m00%) = im|k|* Y Tr (070i00070%)
]

I,m

—2im|k\26ijk, (D.11)
and
—im® Tr (0;00%) = 72im3ei]-k. (D.12)

The momentum integral that we need to solve is,

. oo 44 302 ; 3 2
i / m|k|* +m>|k|> Reg. i (4m -+ 3mx 4) (D.13)
0

32 Jo (12 + kZ+m2)3 T 6dm \ (m2+x2)3/2

With this consideration the third order term is therefore the topological action,

i [ 4m3 +3mx?
Stop =

3 -1 -1 -1
(D.14)
Within this derivation we have the following identification for the coupling

constants of the theory,

12
7 8n Vm? 2’
[ 4m® + 3mi?
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