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The current state of knowledge can be summarized thus:
In the beginning, there was nothing, which exploded.

— Sir Terry Pratchett, Lords and Ladies
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Abstract

This thesis presents an analysis of the particle-decay behavior of excited 12C states using
the LYCCA detector setup. The setup was upgraded to 24 mounted DSSSDs and 18
AIDA FEE data acquisition modules, allowing for the detection of over 3×1010 scattered
ions across two experiments performed in December 2019 and January 2020. Among
these, more than 6 × 106 particle-decay events, consisting of 4 alpha particles each, of
the Hoyle state decay were identified and analyzed, representing the largest dataset for
Hoyle state decay studies to date.
The thesis details a series of methodological improvements, including the development
of a new event-analysis pipeline, time-walk correction, and refined analysis logic, which
collectively improved the precision and efficiency of data processing. Additionally, new
gate conditions and detector position offset corrections were implemented to enhance data
selection and spatial resolution. The calibration and analysis tools developed during this
work also contributed to reducing the time required from data acquisition to center-of-
mass frame analysis of the detected particles.
These developments have improved the capabilities of the LYCCA setup, providing a
solid foundation for future studies of excited nuclear states and their decay pathways.
While the energy resolution in the center-of-mass frame of the particle decay of the excited
Carbon nuclei did not allow for establishing a new upper limit, the measured branching
ratios are consistent with previous studies, providing additional data points for investi-
gating the structure of higher-lying states in 12C. Additionally, ongoing improvements in
the data analysis pipeline have shown promising results for future studies, even on the
current dataset.
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Zusammenfassung

In dieser Arbeit wird das Teilchenzerfallsverhalten angeregter 12C-Zustände unter Ver-
wendung des LYCCA-Detektoraufbaus analysiert. Der Aufbau wurde auf 24 DSSSDs
und 18 AIDA FEE-Datenaufnahmemodule erweiter, was es ermöglichte, über zwei Ex-
perimente, die im Dezember 2019 und Januar 2020 durchgeführt wurden, mehr als 3×1010

gestreute Ionen zu detektieren. Darunter wurden mehr als 6 × 106 Zerfallsereignisse des
Hoyle-Zustands, jeweils bestehend aus 4 Alphateilchen, identifiziert und analysiert, was
den bisher größten Datensatz für Zerfallsstudien der Hoyle-Anregung darstellt.
In dieser Arbeit wird eine Reihe von methodischen Verbesserungen beschrieben, darunter
die Entwicklung einer neuen Analysearchitektur zur Verarbeitung gemessener Ereignisse,
Korrekturen für energieabhängige Verschiebungen der Detektionszeiten und eine ver-
feinerte Analyselogik, die insgesamt die Präzision und Effizienz der Datenverarbeitung
verbessert haben. Außerdem wurden neue Filterbedingungen und Korrekturen für die
Detektorposition eingeführt, um die Auswahl der Ereignisse und die räumliche Auflösung
zu verbessern. Die im Rahmen dieser Arbeit entwickelten Kalibrierungs- und Analysew-
erkzeuge trugen ebenfalls dazu bei, die Zeit von der Datenerfassung bis zur Analyse der
detektierten Teilchen im Schwerpunktsystem deutlich zu verkürzen.
Diese Entwicklungen haben die Möglichkeiten des LYCCA-Aufbaus erweitert und stellen
eine gute Grundlage für künftige Untersuchungen angeregter Kernzustände und ihrer Zer-
fallswege dar.
Limitiert durch die Energieauflösung der gemessenen Alphateilchen im Schwerpunktsys-
tem der zerfallenden angeregten Kohlenstoff-Kerne konnten keine neuen Obergrenzen
für die Verzweigungsverhältnis der direkten Teilchenzerfallskanäle bestimmt werden. Je-
doch stimmen die gemessenen Verzweigungsverhältnisse mit früheren Messungen überein
und liefern zusätzliche Datenpunkte für die Untersuchung der Struktur höherliegender
Zustände in 12C. Darüber hinaus haben die laufenden Verbesserungen in der Datenanal-
yse vielversprechende Ergebnisse für künftige Messungen gezeigt und auch der aktuelle
Datensatz ist durch neue Verbesserungen noch nicht vollständig ausgereizt.
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Chapter 1

Stellar Nucleosynthesis and the Hoyle
State

Since the dawn of time, humans have been fascinated by the inner workings of our Uni-
verse. Their desire to unravel the mysteries of the cosmos has led to scientific advance-
ments that have shaped our understanding of the world around us. One of the most
profound questions is what our everyday world is made of and how its constituents came
to be. This question about the origin of elements has been a central theme in the field of
nuclear astrophysics and even has philosophical implications considering that with just
minor changes in production processes of the building blocks of our everyday world, life
itself might not have been possible.

1.1 The Origin of Elements
Initially, after the Big Bang, the Universe was mostly composed of hydrogen, as well as
about 25 % helium by mass, and trace amounts of lithium. Almost all other elements
were created in the cores of stars during their burning and in supernova explosions [1].

The mechanisms behind this elemental synthesis were first thoroughly described in
the famous “alphabet“ paper by Alpher, Bethe, and Gamow, commonly referred to by
the initials of its authors and published in 1948 [2]. This pioneering work explored the
implications of nucleosynthesis in the early universe but lacked knowledge of the different
production mechanisms of heavier elements.
This work was substantially expanded upon in one of the most foundational papers in
the field of nuclear astrophysics, the B2FH paper, published in 1957 [3]. Named after its
famous authors, Margaret Burbidge, Geoffrey Burbidge, William Fowler, and Fred Hoyle,
it describes the nucleosynthetic pathways, reaching from hydrogen burning and helium
burning to the s-, r-, and p-processes, and how these contribute to the observed abundance
patterns in the universe (Figure 1.1). A more recent refinement of these theories on the
origin of elements is presented in the periodic table of elements in Figure 1.2, in which
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CHAPTER 1. STELLAR NUCLEOSYNTHESIS AND THE HOYLE STATE

the production process for each element is shown as a colored graph over time. The plot
highlights that the production of heavier elements from primordial nuclei is a multi-step
process, which started with the first light of the first stars and is ongoing ever since.
Elements up to the iron-peak (around mass number 56-62) can be produced through
fusion and capture-reactions within stars during their burning cycles or later during core-
collapse supernovae [4], which are the final stage of a massive star’s life [5]. Thus, the
study of stellar nucleosynthesis processes is of great importance to understand the origin
of the elements. Of these, carbon is of particular interest, as it is not only the fourth
most abundant element in the Universe and an important intermediary in the production
of heavier elements [6], but also an essential building block of life as we know it. To

Figure 1.1: Abundances of the elements as a function of atomic number. The presented
data is based on galactic and solar abundance data. The figure is taken from
the paper by Burbidge, Burbidge, Fowler, and Hoyle [3].

understand the production of carbon and the elements leading up to it, it is essential to
consider the evolution of and nucleosynthesis within stars. Most stars in the Milky Way
Galaxy are main sequence stars, a category defined by their prolonged stable phase of
hydrogen fusion in their cores which forms 4He. These alpha particles, the nuclei of 4He,
are particularly stable due to their doubly magic nature, corresponding to a high binding
energy per nucleon which can even affect the nuclear structure of heavier elements. This
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CHAPTER 1. STELLAR NUCLEOSYNTHESIS AND THE HOYLE STATE

also contributes to the high abundance of helium in the Universe [7].
After the long period of hydrogen burning, the relative abundance of hydrogen in a
star’s core depletes too far to sustain nuclear fusion rates sufficient to counteract the
gravitational force compressing the star. This imbalance causes the core to contract
and its temperature and pressure increase. During this phase, as density spikes and the
temperature increases to around 100 million Kelvin, conditions become favorable for the
fusion of helium nuclei into heavier elements and the star’s next burning phase begins.
For lighter stars below 2M⊙ (solar masses), this coincides with a brief runaway phase,
where the still collapsing helium core fuels the core burning, while the radiation pressure
cannot counteract the inertia of the outer layers, which is known as the helium flash [4].
After this, the core settles into a stable helium burning phase [8]. During this phase,
which lasts for less than 10 % of the star’s lifetime, temperatures of the core are now
sufficient for positively charged helium nuclei to reach kinetic energies high enough to
overcome the Coulomb barrier between them to form heavier elements [9, 10]. To reach
12C from 4He, two distinct reaction paths are possible: Either a step-by-step build-up,
forming 8Be as an intermediary, or the direct fusion of three 4He nuclei into 12C. There
are, however, hindrances to both of these processes, challenging the explanation of the
high mass-fraction of carbon in the Universe: The direct 4He + 4He + 4He fusion of
helium nuclei into carbon is highly unlikely due to the low probability of three helium
nuclei coming together at the same time with sufficient energy. A gradual process also
faces difficulties, as the intermediate steps formed in 4He + 4He or 4He + 1H would result
in products which are inside the mass A = 5 and A = 8 gaps. These refer to the fact that
no stable isotopes exist for these mass numbers, with half-lives of the reaction products in
the order of 3 ·10−22 seconds for the unbound 5Li which undergoes prompt decay into 4He
and a proton [11] and 9 · 10−17 seconds for 8Be [4]. This severely lowers the probability
to use these as intermediate steps in the production of carbon and heavier elements. A
relevant factor for the fusion reactions is that the high mass and density of stellar cores
result in a low equilibrium population of 8Be which can then capture another 4He nucleus.
This process is unlikely due to the higher Coulomb barrier for the 8Be + 4He interaction.
This issue is often referred to as the “carbon problem“ - the fact that despite its evident
abundance the production of carbon in stars is not as straightforward as it might seem
[7, 12].
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CHAPTER 1. STELLAR NUCLEOSYNTHESIS AND THE HOYLE STATE

Figure 1.2: The origin of elements in the periodic table. Each element shows the produc-
tion process as a colored graph, where the x-axes represent the time since the
Big Bang and the y-axis represents the relative abundance. The three pri-
mordial elements hydrogen, helium, and lithium are initially completely filled
black, as the majority of them is produced in the Big Bang nucleosynthesis.
Due to stellar mass loss and 4He synthesis, small amounts of hydrogen and he-
lium are returned to the interstellar medium. All other elements are initially
empty, as they are only produced subsequently. Reprinted from Ref. [13],
Copyright (2020), with permission from IOP Publishing.

1.2 Stellar nucleosynthesis and reaction probabilities
Stellar nucleosynthesis, as briefly touched upon in the previous section, is the process
by which elements are formed in the cores of stars through nuclear fusion reactions.
The energy generated by these reactions is what powers the star and allows it to shine.
The fusion of lighter elements into heavier ones up to the iron-peak elements (e.g., 56Fe,
62Ni, and 59Co) is exothermic, meaning that it releases energy, which counteracts the
gravitational force trying to collapse the star. This balance between gravity and outward
pressure gradient determines the stability and evolution of the star. As they govern the
energy generation and conditions for the nuclear processes, the temperature and density
profiles within the star are significant factors in determining the reaction rates and the
elements produced. In the following section, the overall dependence of the reaction rates
on the temperature and density of the stellar core will be discussed.

1.2.1 Stellar equation of state and hydrostatic equilibrium

During their burning phase, on a macroscopic scale, stars are in a state of hydrostatic
equilibrium. This equilibrium is maintained by a balance between the inward gravita-
tional pull and the outward pressure forces inside the star. Stellar matter can be approx-
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CHAPTER 1. STELLAR NUCLEOSYNTHESIS AND THE HOYLE STATE

imated as an ideal gas, where the pressure is determined by the temperature, density,
and composition of the gas, following the ideal gas law

Pgas = ρkBT

µmu
, (1.1)

where Pgas is the gas pressure, ρ is the mass-density, kB is Boltzmann’s constant, T is the
temperature, µ is the mean molecular weight, and mu is the atomic mass unit.

In addition to the gas pressure, radiation pressure can contribute significantly in stellar
interiors at high temperatures (e.g., in massive stars). The nuclear energy generated in
the core is transported outward by a combination of radiative diffusion and convection,
and the associated photon energy density gives rise to a radiation pressure Prad,

Prad = 1
3aT

4, (1.2)

where a is the radiation constant (a = 4σ
c

, with σ being the Stefan-Boltzmann constant
and c the speed of light).

The total pressure within a star can then be written as the sum of the gas and radiation
contributions

P = ρkBT

µmu
+ 1

3aT
4, (1.3)

which serves as a common approximation for the equation of state in the stellar interior
[9].

In the context of hydrostatic equilibrium, the pressure gradient has to compensate
the gravitational force per unit volume at every point within the star. This balance is
described by the hydrostatic equilibrium equation

dP

dr
= −GM(r)ρ

r2 , (1.4)

where dP
dr

is the pressure gradient, G is the gravitational constant, M(r) is the mass
enclosed within radius r, and ρ is the density. Combining the stellar equation of state
with the hydrostatic equilibrium condition, one gets:

d

dr

(
ρkBT

µmu
+ 1

3aT
4
)

= −GM(r)ρ
r2 , (1.5)

which is one of the differential equations that describe the structure of a star during its
burning phases. Due to its dependence on the temperature and density, the equation is
tightly coupled to the nuclear reactions in the stellar core, which determine the energy
generation rate and the temperature profile of the star. These, in turn, are dependent
on the reaction rates, which are determined by the temperature and density of the stel-
lar core. Large modern state-of-the-art stellar models attempt to simulate this strongly
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CHAPTER 1. STELLAR NUCLEOSYNTHESIS AND THE HOYLE STATE

coupled, nonlinear feedback dynamic, but for accurate modeling, a profound understand-
ing of the underlying nuclear reaction conditions is foundational - especially the precise
energy dependence of the reaction rates [14].

1.2.2 Nuclear reaction rates and the Gamow window

To further understand nuclear reaction rates in stars, it is essential to consider the prob-
abilities of the reaction steps as well as the amount of available reactants at sufficient
energy. This window of opportunity for nuclear reactions is known as the Gamow window.
The Gamow window defines the range of energies at which nuclear reactions in stars are
most likely to occur. It arises from the interaction between the Maxwell-Boltzmann dis-
tribution of particle energies and the quantum-mechanical tunneling probability through
the Coulomb barrier [15–17].
The probability for a nuclear reaction to occur is quantified by its cross-section, defined
as

σ = NR

NT NP

, (1.6)

where NR is the number of reactions (yield), NT is the target areal density (number of
target nuclei per unit area), and NP is the number of incident projectiles. This definition
assumes a thin target with full beam-target overlap; for a beam with particle rate Φ(t)
and irradiation time t, NP =

∫ t
0 Φ(t′) dt′. The reaction cross-section as a function of

energy, σ(E), is commonly factorized (for non-resonant charged-particle reactions) as

σ(E) = S(E)
E

e−2πη, (1.7)

using the Gamow factor e−2πη, where η is the Sommerfeld parameter

η = Z1Z2e
2

4πϵ0 ℏv
= Z1Z2 α

c

v
= Z1Z2 α

√
µc2

2E . (1.8)

with v being the relative velocity of the interacting particles, Z1 and Z2 the atomic
numbers of the reactants, and the astrophysical S-factor S(E). This factor encapsulates
the nuclear physics of the reaction by removing the exponential dependence on energy
due to the Coulomb barrier, yielding a smoother and more manageable function for
analysis. The cross-section, σ(E), decreases exponentially with decreasing energy due to
the Coulomb barrier’s tunneling probability factor e−2πη. This exponential dependence
can obscure the underlying nuclear reaction mechanisms. By factoring out the Coulomb
barrier effect, the S-factor S(E) isolates the intrinsic nuclear reaction probabilities, which
typically vary less dramatically with energy. This makes it easier to study and compare
different nuclear reactions. Furthermore, it allows for more accurate extrapolations to
the low-energy regime relevant in stellar environments, where direct measurements are

15



CHAPTER 1. STELLAR NUCLEOSYNTHESIS AND THE HOYLE STATE

often challenging.
Despite factoring out the Coulomb barrier in the S-factor to simplify analysis, the overall
reaction rate still depends on the probability of particles having sufficient energy to
overcome this barrier. The Maxwell-Boltzmann energy probability density describes this
probability:

P (E) = 2√
π

E1/2

(kBT )3/2 e
−E/kBT . (1.9)

Additionally, the particles must overcome the Coulomb barrier to react, which can be
approximated by the tunneling probability

T (E) = e−
√

EG/E. (1.10)

Here, EG is the characteristic Gamow energy (also sometimes written as b2 in the litera-
ture) defined as

EG = 2µc2(παZ1Z2)2, (1.11)

with µ being the reduced mass of the interacting particles, and the fine-structure constant
α. The Gamow window is defined by the product P (E) T (E) of the Maxwell-Boltzmann
distribution and the tunneling probability [18]:

G(E) = 2√
π

E1/2

(kBT )3/2 e
−E/kBT e−

√
EG/E. (1.12)

The reaction rate can be computed by integrating over all possible energies while consid-
ering the reaction cross-section σ(E):

⟨σv⟩ =
(

8
πµ

)1/2 1
(kBT )3/2

∫ ∞

0
S(E) e−E/kBT −

√
EG/E dE. (1.13)

The width of the Gamow window, ∆E, can be estimated by

∆E =
(

16E0kBT

3

)1/2

, (1.14)

where E0 is the peak energy of the Gamow window. To find its value, the derivative of
G(E) with respect to E is set to zero:

d

dE

(
2√
π

E1/2

(kBT )3/2 e
−E/kBT e−

√
EG/E

)
= 0. (1.15)

By solving this equation, the approximate peak energy of the Gamow window can be
found to be

E0 =
(√

EGkBT

2

)2/3

, (1.16)
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which places it at around 3 keV to 30 keV for typical stellar core temperatures during
hydrogen burning and at 200 keV to 300 keV during early stages of helium burning [19].
Figure 1.3 illustrates the Maxwell-Boltzmann distribution, the tunneling probability, and
the resulting Gamow window.

Figure 1.3: Illustration of the Gamow window, showing the Maxwell-Boltzmann distri-
bution (black line), the tunneling probability (red line), and the resulting
function showing where nuclear reactions are most likely to occur (shaded
area). From [17].

1.2.3 Resonant reactions

Apart from the general approach to calculating reaction rates, resonant reactions play
an essential role in stellar nucleosynthesis. Resonances are excited states of the com-
pound nuclei formed during the fusion reactions. They are characterized by their angular
momentum, parity, energy and mean lifetime. The mean lifetime is directly related to
the width of the resonance by the Heisenberg uncertainty principle: Γτ = ℏ. Their exis-
tence can significantly enhance the reaction rates, which is described by the Breit-Wigner
formula, which gives the cross-section of a resonance as a function of energy

σ(E) = πλ̄2 2J + 1
(2sp + 1)(2sT + 1)

ΓiΓf

(E − ER)2 + Γ2/4 . (1.17)

Here, λ̄ is the reduced de Broglie wavelength of the incident particle, J is the spin of
the resonance, sp and sT are the spins of the projectile and target particles, ER is the
resonance energy, and Γ is the total width of the resonance. The total width of the
resonance is the sum of the partial widths for all possible decay channels [4].
For a single, narrow resonance where the total width Γ is much smaller than the thermal
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energy kBT , the reaction rate is then given by

⟨σv⟩res =
(

2π
µ kBT

)3/2

ℏ2 (ωγ) e−ER/(kBT ). (1.18)

with the resonance strength (ωγ), given by

ωγ = 2J + 1
(2sp + 1)(2sT + 1)

ΓiΓf

Γ . (1.19)

The Breit-Wigner formula is a cornerstone in the study of nuclear reactions and is used to
describe the behavior of resonances in a wide range of nuclear physics experiments [18].
Since it depends on the partial widths of the resonances’ decay channels, the knowledge
of these is necessary to accurately determine the reaction rate [20].

1.3 The Hoyle State
The predominant process for the production of carbon in stars is called the triple-alpha
process. It is a two-step reaction during which three 4He nuclei are converted into a 12C
nucleus. The first step,

4He + 4He ⇌ 8Be, (1.20)

involves the fusion of two 4He nuclei to form an unstable 8Be nucleus. The second step
then involves the fusion of a third 4He nucleus with the 8Be,

8Be + 4He ⇌ 12C, (1.21)

to form a 12C nucleus.
Given the short half-life of 8Be, it usually decays back into two 4He nuclei almost instan-
taneously. Its production, however, is enabled by the binding energy of the 8Be nucleus,
which is unbound by just 92 keV above its 4He + 4He separation threshold [21]. This
energy is within available energy range for temperatures of red giant stars [22], which are
the primary site for the triple-alpha process [23]. Still, despite the continuous production,
its short half-life only allows a low population of 8Be.
This problem was first discussed by E. J. Öpik in 1951 and E. E. Salpeter in 1952 [24,
25], who both independently concluded that the triple-alpha process should not be able
to produce significant amounts of carbon in stars. Without anything increasing the cap-
ture probability, even in the dense stellar core environment, the concentration of helium
nuclei is not high enough that a third 4He will react with the 8Be in time, inhibiting the
formation of 12C. This issue was first addressed by Sir Fred Hoyle in 1954, who proposed
the existence of a resonance above the particle-separation energy of 12C nucleus with a Q-
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value inside the Gamow window for the helium-burning temperature in stars that would
enhance the probability of the triple-alpha process [12]. In his honor, this resonance is
now commonly referred to as the Hoyle state.
The Hoyle state is an excited state of the 12C nucleus with an energy of 7.654 MeV above
the ground state. Initially proposed to be either a Jπ = 0+ or a 2+ state, since the
capture probability for s-wave and p-wave is higher than for higher angular momenta, it
was later determined to be a 0+ state [26, 27]. The confirmation of this was achieved
by studying the decay modes of the Hoyle state using detectors sensitive to γ-radiation.
These measurements did not find any direct gamma-ray transitions to the ground state
which were predicted if the Hoyle state was a 2+ state. For a 0+ configuration, the only
direct photonic decay channel of the Hoyle state is the two-photon decay. Alternatively,
a e+e− pair production process is available. These are both much less likely, as they are
of higher order, as shown in recent measurements [28]. The existence of this resonance,
right above the alpha separation energy of 12C, increases the reaction rate significantly
compared to non-resonant fusion processes, making it a pivotal factor in the synthesis of
carbon. The existence of the Hoyle state explains how carbon can be produced efficiently
in stellar environments [29]. Based on the fundamental properties of the Hoyle state, the
existence of a rotational band of its configuration has been suggested, as its proposed
high degree of deformation [30] would allow for relatively low excitation energies of the
first excited states above it.
Additionally, form factor measurements have shown that the Hoyle state has a substan-
tial spatial extension compared to the ground state of 12C [31, 32], with a radius 1.5 to 2
times larger. This suggests a more dilute, gas-like configuration of the Hoyle state. The
level scheme of 12C is shown in Figure 1.4.

Further studies indicate that at low-temperatures (below 0.1 GK), the triple-alpha
fusion rate is significantly enhanced by the inclusion of direct particle-decay channels.
Nguyen et al. (2012) demonstrated using the Continuum Discretized Coupled Channel
(CDCC) method, detailed in [33], that non-resonant contributions significantly increase
the reaction rate at low temperatures compared to the NACRE compilation, a compre-
hensive collection of reaction rates for astrophysical processes [34, 35]. In 2013, Nguyen et
al. refined this approach using the Hyperspherical Harmonics Expansion (HHR) method,
identifying a transition between resonant and non-resonant processes around 0.06 GK.
It was found that off-diagonal Coulomb couplings enhance the reaction rate by several
orders of magnitude at low temperatures [36].

Additional work by Garrido et al. (2011) supported these findings through a detailed
investigation using a three-body model that compares direct and sequential capture mech-
anisms. Their study revealed that at temperatures below 0.1 GK, direct capture dom-
inates, leading to significantly higher reaction rates than those predicted by sequential
models. At higher temperatures, the particle-decay of the Hoyle state in 12C proceeds
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Figure 1.4: Level scheme of 12C showing the ground state and known excited states below
13 MeV including the second 0+ state, the Hoyle state at 7.654 MeV. The
plot also shows the 3-alpha separation energy at 7.274 MeV in red.

almost fully sequentially. However, at lower temperatures, direct decay becomes more
significant, substantially increasing the reaction rate [37].

The Hoyle state is not only interesting from a stellar nucleosynthesis perspective but
also from a nuclear structure point of view, as it provides significant insights into nuclear
clustering phenomena and internal nuclear configurations. In nuclear physics, clustering
refers to the formation of substructures, such as alpha particles, within a nucleus. The
structure of these clusters can be dependent on the excited state. The Hoyle state, in
particular, is of interest due to its unique configuration and the possibility of different
cluster configurations.

1.4 Modeling the Hoyle State in 12C

To further the understanding of the internal structure and dynamics of 12C, a variety
of modeling approaches have been undertaken. Throughout the years many different
modeling approaches for the structure of nuclei have been developed. One of the most
important models is the nuclear shell model, developed by Maria Goeppert Mayer and
J. Hans D. Jensen in 1949. It posits that nucleons occupy discrete energy levels within
an effective potential, often modeled as a harmonic oscillator potential with a strong
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spin-orbit coupling term. It predicts certain “magic numbers“ of protons and neutrons in
a nucleus that correspond to particularly stable nuclei, including the doubly-magic 4He.
Valence nucleons, outside closed shells, influence nuclear properties and participate in ex-
citations by moving to higher orbitals. The shell model has been successful in describing
the structure of many nuclei, but it has limitations when describing collective phenomena
and clustering effects.
Underpinning the shell model is the mean-field approach, which simplifies the complex
interactions among nucleons by approximating them with an average potential created
by all nucleons. This allows for the calculation of nucleon behavior within this collective
potential field formed by all nucleons. In 12C, the mean-field approach successfully repro-
duces the binding energy of the ground state and the excitation energies of the 2+ and
3− states. The Hoyle state, however, could not be described accurately, incorrectly pre-
dicting its energy and decay properties, indicating that a pure mean-field (shell-model)
approach is insufficient to describe the Hoyle state [38].
Given these limitations, alternative modeling approaches have been explored to account
for phenomena that the shell model and mean-field approach struggle to describe [21,
39]. Cluster models, in particular, offer a promising solution. These describe nuclei as
aggregates of tightly bound clusters of nucleons rather than individual particles, which is
particularly effective for light nuclei. Its low-lying alpha decay channels and high lying
first excited states indicate that the dynamics in 12C are dominated by these clustering
effects.
Complementary to these, other techniques, such as models describing alpha-particle con-
densation or the ab initio method, which uses first-principles calculations to predict nu-
clear properties without empirical data, have been used to describe carbon and, in partic-
ular, the Hoyle state. Some of the most prominent models are lattice effective field theory
(EFT), Quantum Monte Carlo (QMC), and the No-Core Shell Model (NCSM), as well
as the broadly related Antisymmetrized Molecular Dynamics (AMD) model. Another
technique treats the Hoyle state as a Bose-Einstein Condensate (BEC) of alpha particles
to describe its collective behavior and spatial configuration [31, 40].

1.4.1 Cluster Models

The influential alpha clustering framework describes 12C as a system of three alpha par-
ticles. The model, initially based on groundwork by Eugene Wigner and later expanded
by Margenau [41], was significantly advanced by David M. Brink and Wilhelm Boeker
[42].
In it, the clusters (alpha particles) are treated as point-like entities without internal
degrees of freedom, and their dynamics are governed solely by an effective alpha-alpha
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interaction. Each alpha particle is described by a wave packet, and the total wave func-
tion of the system is constructed by antisymmetrizing the product of these wave packets.
This antisymmetrization is necessary because, although alpha particles behave as com-
posite bosons, the nucleons (protons and neutrons) that constitute them are fermions
and must obey the Pauli exclusion principle. Therefore, the overall wave function must
be antisymmetric with respect to the exchange of any two nucleons to ensure that no
two fermions occupy the same quantum state simultaneously. This antisymmetrization
is typically achieved using a Slater determinant. For nucleon states ϕi(rj), where i labels
the nucleon state and j labels the position of the nucleon, the Slater determinant for N
nucleons is given by:

Ψ(r1, r2, . . . , rN) = 1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣

ϕ1(r1) ϕ1(r2) · · · ϕ1(rN)
ϕ2(r1) ϕ2(r2) · · · ϕ2(rN)

... ... . . . ...
ϕN(r1) ϕN(r2) · · · ϕN(rN)

∣∣∣∣∣∣∣∣∣∣∣∣
The determinant ensures that the wave function changes sign upon the exchange of any
two nucleons, thus enforcing antisymmetry. This approach maintains the correct quantum
statistics of the nucleons while simplifying the complex many-body problem into a more
manageable bosonic interaction framework. Based on this, a minimization approach is
used to determine the optimal geometric configuration of the alpha particles, resulting
in two primary triangular configurations - equilateral and bent-arm (obtuse) - and, as an
extreme case, the linear chain (collinear mode).
Further insights into the structure of cluster states in nuclei can be obtained from the
group theoretical approach discussed by Bijker and Iachello. In their work, they describe
cluster states in nuclei as representations of a U(ν + 1) group, providing a framework
that unifies various clustering phenomena within a common mathematical structure [43].
This model is referred to as the algebraic cluster model (ACM). Its predictions on the
geometry of the cluster configurations can also be used to infer moments of inertia and
thus the rotational band structure of the nucleus as well as vibrational rigidity. It suggests
that the Hoyle state can be understood as a “breathing mode“, increasing the distance
between the alpha particles. As this configuration increases the separation of the alpha
clusters from the center of the mean Coulomb potential, this suggests that their position
can fall outside of the potential threshold of the alpha separation energy facilitating its
decay. Its properties would be directly linked to the direct decay properties of the state.
This energy comparison cannot be directly obtained from the ACM, as it does not provide
full energy spectra, but only relative energies of states, requiring a scaling factor to be
applied to the ACM predictions.
Using these scaled data points, the algebraic cluster model’s predictions for the spectrum
of low-lying states in 12C are in good agreement with experimental data, as can be seen
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in Figure 1.5.
Later experimental work by Marín-Lámbarri et al. showed consistency with predictions

Figure 1.5: Comparison of the experimental spectrum of 12C with the predictions of the
algebraic cluster model. Modified from [43].

of the algebraic cluster model, lending support to a clustered description of 12C [44].
Another key feature of cluster models is their description of breakup phenomena near
the α-breakup thresholds. This is illustrated by the Ikeda diagram (Figure 1.6), which
predicts that states close to the α-breakup thresholds exhibit a pronounced α-cluster
structure. The configuration of the Hoyle state, located only ∼379.2 keV [45] above the
three-alpha threshold, is therefore an ideal probe for this hypothesis.

1.4.2 Alpha particle condensation (Bose-Einstein Condensate-like
States)

In addition to the ACM framework, recent studies by Tohsaki, Horiuchi, Schuck, and
Röpke (THSR) introduced a novel α-cluster wave function that suggests a different nature
of cluster states in nuclei like 12C [40]. Their work proposes that certain excited states
in these nuclei can be understood as α-particle condensates, analogous to Bose-Einstein
condensates (BEC) observed in atomic gases when cooled to temperatures near absolute
zero. This concept extends to nuclear physics, where α-clustered nuclei exhibit similar
behavior due to the bosonic nature of α particles. These states are characterized by
weakly interacting α particles forming a gas-like structure, with α-particle condensation
predicted to occur in low-density, near-threshold states.

The THSR approach uses a variational method to explore the energy landscapes of
these configurations, suggesting that the Hoyle state exhibits characteristics of a dilute
α-particle gas [40]. This state is significant in stellar nucleosynthesis, facilitating the
fusion of three α particles into carbon. Theoretical models predict that the α particles in
this state interact predominantly in relative S-waves, supporting the idea of a condensate-
like behavior. The calculated root-mean-square (rms) radii for these states are larger
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Figure 1.6: Ikeda diagram showing the clustering configurations near the alpha-decay
thresholds for light nuclei up to Si. Adapted from Ref.[46, 47], Copyright
(2006), with permission from Elsevier.

than those of the ground states, indicating a more extended structure, aligning with
experimental observations of the Hoyle state’s decay properties and its relatively low
density [48].

The ground state of bosonic systems can be described using the Gross-Pitaevskii equa-
tion, based on the Hartree-Fock approximation (which reduces to the Hartree mean field
for bosons):

iℏ
∂

∂t
Ψ =

(
− ℏ2

2m∇2 + V (r) + g|Ψ|2
)

Ψ, (1.22)

where V (r) is the external potential, g is the interaction strength (for dilute, weakly
interacting gases g = 4πℏ2as/m with s-wave scattering length as), and Ψ is the condensate
order parameter [49]. For dilute atomic gases, this equation yields condensate density
profiles and collective excitation modes. Analogously, the Hoyle state has been described
as a condensate-like state of α particles within the THSR framework.[40]

The Uegaki et al. (1977) model proposes a microscopic α-cluster approach using the
generator coordinate method (GCM) to study 12C, which also predicts cluster structures
but with a different methodological focus. Their model successfully reproduces various
energy levels, including the Hoyle state, by treating the α-clusters’ center-of-mass mo-
tions. This model suggests that the structure of the excited positive-parity states in 12C
should be considered as configurations of α-clusters rather than traditional shell model

24



CHAPTER 1. STELLAR NUCLEOSYNTHESIS AND THE HOYLE STATE

structures [50].
The 2003 paper by Funaki et al. demonstrates that the wave function of the Hoyle

state is almost completely equivalent to the wave function of a 3 α-particle condensate,
supporting the interpretation of the Hoyle state as an α-particle condensate [31]. Their
subsequent publication in 2006 provides further analysis of the inelastic form factors,
which also supports the interpretation of the Hoyle state as a condensate by demonstrat-
ing sensitivity to the spatial extension of the Hoyle state and reinforcing the proposed
gas-like structure [32].

However, while the condensate models suggest a gas-like structure of α particles, other
models, such as the ACM, propose different, more discrete geometries [43]. Another
weakness of the BEC-like approach is the difficulty of directly observing the condensate
nature of the α particles due to their short-lived states and the complexity in measuring
the low-density configurations experimentally, as low densities can also be caused by a
widely separated configuration of clusters. The THSR model’s reliance on the variational
method requires careful selection of parameters, which can introduce uncertainties.

1.4.3 Molecular Dynamics Models

The Antisymmetrized Molecular Dynamics (AMD) method has also been employed to
model the Hoyle state [51]. Without assuming preformed clusters as other mentioned
techniques, it implicitly captures cluster dynamics. The intrinsic wave function is con-
structed as a Slater determinant of Gaussian wave packets, using a comparable optimiza-
tion approach as the condensate models. The calculation of the Hoyle state in the AMD
framework employs the Variational After Projection (VAP) method, projecting the wave
function onto eigenstates of angular momentum and parity before variation. This allows
an accurate description of excited states. A key feature of the 0+

2 state is its pronounced
3α clustering. The AMD framework naturally reveals this structure, forming a loosely
bound, spatially extended configuration. AMD calculations yield accurate binding ener-
gies and excitation spectra, closely matching empirical observations.
The AMD technique combines classical molecular dynamics with quantum mechanical
antisymmetrization. Each nucleon is represented by a Gaussian wave packet:

ϕi(r) = exp
(

− ν |r − Zi|2
)
χi ξi,

where Zi is the centroid of the wave packet, ν is the width parameter, χi is the spin com-
ponent, and ξi is the isospin component. A Slater determinant, Ψ = A{ϕ1, ϕ2, . . . , ϕA},
ensures antisymmetry. The total energy E is minimized:

E = ⟨Ψ|H|Ψ⟩,
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where H denotes the Hamiltonian. AMD predicts an α-cluster structure for the Hoyle
state, with three α-particles in a loosely bound arrangement, accurately predicting its
larger radius and lower density relative to the ground state [52]; this aligns with the early
3α-cluster hypothesis [30]. An example of AMD predictions for different mass densities
in excited states of 12C is shown in Figure 1.7.

Figure 1.7: Simulation results showing different mass densities for excited states in 12C
using the AMD model. Reprinted from Ref. [53], Copyright (2007), with
permission from the Physical Society of Japan.

Fermionic Molecular Dynamics (FMD) uses a generalized wave function, including
Gaussian and non-Gaussian components, to describe various nuclear states. Unlike AMD,
the width parameter ν in the Gaussian wave packet is not fixed. FMD does not accurately
predict the Hoyle state’s binding energy but successfully predicts the form factor and thus
the spatial extension of the Hoyle state [48, 51].

1.4.4 Ab Initio Approaches

While cluster models can provide insights into the spatial configuration of nucleons, ab
initio methods offer a complementary approach, using first-principles calculations that
start from realistic nucleon-nucleon and three-nucleon interactions constrained by few-
body data and avoid phenomenological adjustments to reproduce observables in 12C.
Among the prominent ab initio approaches relevant to the Hoyle state are Lattice Effective
Field Theory (EFT), Quantum Monte Carlo (QMC), and No-Core Shell Model (NCSM):

Lattice Effective Field Theory (EFT): The Lattice Effective Field Theory (EFT) tech-
nique discretizes space-time onto a periodic cubic lattice, modeling nucleons as point-like
particles at the lattice sites. These nucleons interact through pions and multi-nucleon
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operators generated by auxiliary fields, such as meson exchange fields. As some of the
other introduced approaches, this method employs quantum mechanical operators and
wave functions to describe the system’s evolution and interactions.
The projection of low-energy states is achieved by Euclidean time propagation, where the
amplitude is obtained by ⟨ψ|e−Ht|ψ⟩. Here ψ is the wave function, H is the Hamiltonian
operator, and t is the Euclidean time. As t increases, e−Ht enhances low-energy state
signals by suppressing wave function contributions with higher energy eigenvalues. This
method allows determination of energy levels by analyzing the decay of these projected
states.
In the recent study by Epelbaum et al., [54], the lattice has a spatial spacing of 1.97 fm
and a length of 12 fm. The temporal step size is 1.32 fm. While using distance units for
time may seem unconventional, this choice is common in lattice simulations that adopt
natural units with the speed of light set to unity (c = 1), where time and length share the
same unit (e.g., 1 fm/c ≈ 3.34 × 10−24 s). To investigate different states of 12C, various
initial and final state configurations are used. For example, in the case of 4He, the initial
state consists of four nucleons at zero momentum. For 8Be, the process involves the initial
4He configuration, followed by the injection of four additional nucleons at zero momen-
tum. For 12C, the method measures four-nucleon correlations to reveal the formation of
alpha clusters, which are crucial for understanding its structure.
The lattice calculations indicate that the ground state and first excited spin-2 state of
12C show best agreement with a compact triangular configuration of alpha clusters. In
contrast, the Hoyle state and the second excited spin-2 state align best with a bent-arm
triangular configuration. The calculated electromagnetic transition rates among these
low-lying states generally agree with experimental data, lending support to the config-
urations proposed by the lattice calculations. These configurations are illustrated in
Figure 1.8.
However, there are some limitations to the technique. The use of a fixed lattice spacing
may not capture all fine details of the nuclear interactions, and the results may be sensi-
tive to the chosen lattice parameters. Additionally, higher-order corrections and smaller
lattice spacings could improve accuracy but at the cost of increased computational re-
sources. Lattice Effective Field Theory (Lattice EFT) calculations are typically run on
supercomputers due to their high computational demands. The mentioned study by Epel-
baum et al., for example, used resources provided by the Jülich Supercomputing Centre.
Despite these limitations, the application of chiral EFT up to next-to-next-to-leading
order (NNLO) [54] provides a robust model of the structure and rotational excitations of
the Hoyle state.

Quantum Monte Carlo (QMC) Quantum Monte Carlo (QMC) methods are stochas-
tic techniques used to solve the Schrödinger equation for many-body quantum systems
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(a) Ground state of 12C, predicted
by Lattice EFT.

(b) Hoyle state of 12C, predicted by Lattice
EFT.

Figure 1.8: Predictions of the ground state and Hoyle state configurations of 12C using
Lattice EFT. Reprinted from Ref. [54], Copyright (2012), with permission
from the American Physical Society.

through random sampling, making it possible to study computationally intractable sys-
tems. Key methods include Variational Monte Carlo (VMC), which optimizes a trial
wave function to approximate the ground state energy, and Green’s Function Monte
Carlo (GFMC), which refines this wave function by projecting out the ground state via
stochastic diffusion. In Quantum Monte Carlo (QMC) calculations [55, 56], VMC was
used to construct a trial wave function ΨV with optimized variational parameters to min-
imize the Hamiltonian’s expectation value, employing the Argonne v18 (AV18) two-body
and Illinois-7 (IL7) three-body potentials. GFMC further refined ΨV by projecting out
the lowest energy eigenstate using exp[−(H − E0)τ ].

QMC methods accurately describe ground- and excited-state energies for light nuclei
up to A ≤ 12 and show good agreement with experimental data for energy levels and
electromagnetic moments. However, these methods are computationally intensive, limit-
ing their application to heavier nuclei. Statistical errors increase with larger systems, and
the mixed estimator approach introduces potential systematic errors. Significant compu-
tational resources and time are required for convergence. Despite these challenges, QMC
methods are renowned for their precision in modeling strong many-body correlations and
quantum fluctuations. The application to the Hoyle state successfully models this crucial
state for stellar nucleosynthesis, though it faces challenges in fully capturing all transition
rates and electromagnetic properties [57].

No-Core Shell Model (NCSM) Complementary to other ab initio techniques, the no-
core shell model (NCSM), here specifically its symmetry-guided realizations, the symmetry-
adapted NCSM (SA-NCSM) and the no-core symplectic model (NCSpM), overcomes tra-
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ditional limitations by utilizing a symmetry-guided approach and a single many-nucleon
interaction parameter. For 12C, this realization effectively captures the ground-state ro-
tational band and α-clustering phenomena in low-lying states, especially the Hoyle state
and its first 2+ and 4+ excitations. By focusing on the long-range components of the in-
teraction together with a spin-orbit term, this realization simplifies complex interactions
yet retains fundamental physical characteristics. Results, such as those by Dreyfuss et
al. [58], show that this approach captures key features of the Hoyle state, with calculated
energy levels, matter radii, and nuclear deformation parameters closely matching experi-
mental data. The root-mean-square (rms) matter radius of the Hoyle state predicted by
this approach is 2.93(5) fm [58], aligning with recent experimental extractions that yield
2.89(4) fm [48]. This agreement reinforces the α-cluster structure hypothesis, as the work
by Dreyfuss et al. demonstrates that this framework, even with simplified many-body
interactions, accurately describes large-deformation and cluster phenomena, indicating
that precise symmetry-guided no-core descriptions are feasible within this framework.
However, the NCSM also has its shortcomings and disadvantages. One significant chal-
lenge is the computational complexity associated with solving the many-body Schrödinger
equation without assuming an inert core, which requires substantial computational re-
sources. Additionally, the truncation of the model space can introduce uncertainties in
the results, as not all possible configurations of nucleons are included. Another limitation
is the dependence on effective interactions that are derived from realistic nucleon-nucleon
potentials, which might not fully capture all many-body correlations. Finally, while the
NCSM provides valuable information for light nuclei, extending this approach to medium
and heavy nuclei remains a formidable challenge due to the exponential growth of the
model space.

1.4.5 Summary

Many different approaches have been employed throughout the years to model the Hoyle
state in 12C. The cluster models, in particular, have been successful in describing the
Hoyle state as a 3α cluster (and, in some approaches, as an α-particle condensate), with
the ACM and BEC-like models providing valuable insights into the spatial configuration
and dynamics of it. The AMD model, on the other hand, implicitly captures the cluster
dynamics without assuming preformed clusters, which reaffirms the cluster models’ base
assumption. The ab initio methods, such as Lattice EFT, QMC, and NCSM, provide a
complementary approach by using first-principles calculations to predict nuclear proper-
ties without empirical data, offering insights into the many-body dynamics of the Hoyle
state. Whereas each model has its strengths and limitations, their differences indicate
the need for further experimental data to improve the observational constraints on the
models to refine the understanding of the Hoyle state in 12C.
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1.5 Decay modes of the Hoyle state
Since the three-particle fusion process is inaccessible in the laboratory, the inverse reac-
tion, the decay of the Hoyle state, can be used to study the properties of the state and its
branching ratios. The Hoyle state can decay via two different pathways: The sequential
(SD) and the direct decay (DD) modes. During the sequential decay, the 12C nucleus in
the Hoyle state breaks up into an alpha particle and the unbound 8Be resonance, which
then decays into two alpha particles. A schematic overview of this decay mode is shown
in Figure 1.9. This mode is dominant with a branching ratio shown to be greater than
99.9 % [59]. The competing direct decay is a rare process with a branching ratio of less
than 0.1 %. During this process, the Hoyle state decays directly into three alpha particles.

Figure 1.9: Sequential decay mode of the Hoyle state. (a) The Hoyle state decays into
the 8Be and an alpha particle, (b) The 8Be resonance then decays into two
alpha particles. The only degree of freedom in this decay mode is the angle
difference between the two reaction axes ω.

The branching ratios will be discussed in more detail in Section 1.7. Having more de-
grees of freedom, the direct decay process has multiple possible configurations, which are
shown in Figure 1.10. The direct decay is of particular interest, as it provides information

Figure 1.10: Direct decay mode of the Hoyle state, showing (a) the DDE configuration,
(b) the DDL configuration, and (c) the DDΦ configuration.

about the structure of the Hoyle state and the nature of the three-alpha interaction. The
primary direct decay modes are thought to correlate to structural configurations of the
Hoyle state, as the short time scale of the decay process may not allow for a significant
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rearrangement of the pre-formed alpha particles. The two extreme cases are the linear
chain (DDL) and the equilateral triangular configuration (DDE), which correspond to an
internal triangular configuration with equal decay energies for the three alpha particles.
Other possible modes are linear combinations of these two configurations. This mixture
also corresponds to the broadest phase space for the decay, as it can be either described
by a triangular configuration with variable opening angles or as a product of the dilute
gas-like configuration which, on the other hand, is linked to a more extended and less
clustered state, was later discussed in Section 1.4. This decay mode is referred to as the
DDΦ decay.
Another possible decay mode of the Hoyle state is the radiative decay

12C∗(7.654 MeV) → 12C + γγ, or (1.23)

12C∗ → 12C + e+ + e−. (1.24)

Due to its high photon energy compared to available photon energies in stellar environ-
ments, the radiative decay is a one-way process, producing 12C in its ground state. Since
the ground state of 12C is stable in regard to the 8Be + 4He or the direct three-alpha
decay channel (see 1.21), this process enables the creation of 12C in a stellar environment.
The leakage through the radiative decay channels is very small though, as recent mea-
surements place the Γrad/Γ branching ratio at Γrad/Γ = 4.0(0.3stat)(0.16sys) · 10−4 [28].
In summary, the two step reaction process forming 12C from three alpha particles can
be understood as a sequence of the initial 3-alpha capture, enhanced by the Hoyle state
resonance, with a subsequent decay of the Hoyle state into the ground state of 12C via
radiative decay.

The radiative decay out of the 12C∗ state further branches into the two-photon decay
and an electron-positron pair production decay

Γrad. = Γγγ + Γe+e− , (1.25)

while the competing particle-decay channel consists of the sequential and direct three-
alpha decay channels

Γ3α = Γseq. + Γdir. (1.26)

where Γγγ and Γe+e− are the partial decay widths for the radiative decay channels and
Γseq. and Γdir. are the partial decay widths for the sequential and direct three-alpha decay
channels, respectively. As discussed in Section 1.2.3, the resonance strength of the entire
formation process is given by

ωγ = Γ3αΓrad.

Γ = (Γseq. + Γdir.)Γrad.

Γseq. + Γdir. + Γrad.
. (1.27)
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1.6 The Dalitz plot
The Dalitz plot is a tool often used in the analysis of three-body decays. First developed
to study the decay of K mesons by Richard Dalitz [60] in 1953, it was soon widely
used in the particle physics community. The general idea is to find a two-dimensional
representation of a three-dimensional problem by using constraints such as momentum
and energy conservation. The plot can be constructed using the reduced energies of the
decay products ϵi = Ei/Q where Ei is the energy of the decay product and Q is the decay
energy of the parent nucleus. This equation by definition results in

3∑
i=1

ϵi = 1. (1.28)

Using this constraint, the problem reduces to a two-dimensional plane. This can be seen
in Figure 1.11. The coordinates of the Dalitz plot are derived by projecting the 3D plane

Figure 1.11: The construction of a Dalitz plot: (a) Due to the constraint in equation
1.28, the projection plane is formed. It also indicates the position of each
data-point on this plane, as further detailed in Figure 1.12. (b) Shows the
constraints of the plot: The triangle constraints in the Energy domain, and
the orange ellipse restricts valid events based on momentum conservation.
Dalitz plot construction based on Ref.[60].

into a 2D plane using the following equations:

x = ϵ2 − ϵ1√
3

(1.29)

y = 2ϵ3 − ϵ2 − ϵ1

3 (1.30)

This creates the triangular shape of the Dalitz plot, as shown in Figure 1.12. The overall
Dalitz plot contains two distinct shapes: A large triangular region, which follows from
the conservation of energy and the circular shape which is a result of the conservation of
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momentum. A derivation of this is provided in the appendix A.4.

Figure 1.12: The Dalitz plot showing the dependencies of its coordinates to the reduced
energies ϵi of the decay products.

In its 2D-representation, the Dalitz plot can be used to identify different decay modes
of the Hoyle state, as shown in Figure 1.13: While the sequential decay, with its single
degree of freedom, is represented by a triangle (due to symmetry), the direct decay modes
are represented different shapes: The DDE mode, where all three decay products have
equal energy, has zero degrees of freedom and is represented by a single point in the
center of the Dalitz plot. The DDL modes also do not have a degree of freedom in their
relative energy distribution in the center-of-mass system and are represented by three
points towards the corners of the sequential triangle. This is intuitive, as the sequential
decay where all particles decay in-line has a very similar momentum composition as the
DDL mode. The DDΦ mode, however, has two degrees of freedom and is thus able to fill
the entire momentum-constrained region of the Dalitz plot. This is due to the fact that
the decay products can have different energies, as long as the total energy is conserved.
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Figure 1.13: The Dalitz plot showing the different decay modes of the Hoyle state: (a)
Sequential decay, (b) the DDΦ configuration, (c) the DDE mode, and (d)
the DDL mode.

1.7 Prior experimental studies of the Hoyle state
The particle-decay branching ratio of the Hoyle state has been studied in several exper-
iments: Initial studies in the 1940s and 1950s focused on the existence of excited states
in 12C. The first experiment claiming to observe a resonance in the 7 MeV range was
conducted by Holloway and Moore in 1940 [61], who used a 14N+2D → 12C+4He reaction
and measured an excitation energy at around 7.6 MeV. Due to their limited understand-
ing of the underlying mechanisms, no further conclusions could be drawn at the time.
More than a decade later, in 1957, at the nuclear physics department of the California
Institute of Technology (Caltech), the existence of the excitation now known as the Hoyle
state was definitively confirmed [27]. (An excited level near Ex ≈ 7.65 MeV in 12C had
already been reported at Caltech in 1953 by Dunbar, Pixley, Wenzel, and Whaling [26].)
This confirmation was achieved three years after Sir Fred Hoyle’s postulation of the res-
onance, as discussed in Section 1.3. During Hoyle’s visit from Cambridge, he suggested
further measurements above 7.6 MeV in 12C; subsequent experiments revealed a reso-
nance at the predicted energy. Thus, the 1957 Caltech work by Cook, Fowler, and C. C.
and T. Lauritsen established the state’s properties and astrophysical significance [27].
The first attempt to directly measure the direct particle-decay branching ratio of the
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Hoyle state was undertaken by Freer et al. in 1994 [62] using a 12C(12C, 34He)12C reaction
to populate the Hoyle state and measured the decay products using a ∆E −E telescope
and a Double-Sided Silicon Strip Detector (DSSSD). Their measurement yielded an up-
per limit for the direct decay branching ratio of the Hoyle state of 4 %. In the following
years, advances in experimental techniques and the development of new detector systems
allowed for more precise measurements of the Hoyle state decay properties. Multiple later
studies have subsequently lowered the upper limits for the direct decay branching ratio of
the Hoyle state, with two publications also providing lower limits [63, 64]. Although the
results by Raduta and Rana have since been superseded by more advanced measurements
due to progress in the employed methodology, such as the study by Kirsebom et al. in
2012 [65], which placed the upper limit for the direct decay branching ratio of the Hoyle
state at 6.8 × 10−3, their findings contributed to the growing interest in the measurement
of the direct decay branching ratio.
Recent direct measurements have been published by Dell’Aquila et al. in 2017 [66], Smith
et al. in 2017 and 2020 [59, 67], Rana et al. in 2019 [68], and Bishop et al. in 2020,
as listed in Table 1.1. Most measurements place the upper limit for the direct 3α decay
branching ratio of the Hoyle state at around 10−4. The study by Bishop et al. in 2020
[69] placed a first lower limit on the direct 3α decay branching ratio of the Hoyle state at
5.8 × 10−5, close to the sensitivity limit of the work of this thesis. To better understand
the different approaches to the branching ratio measurements, the experimental setups
and techniques used in some of the latest and most notable studies will be discussed
briefly in the following sections.

Dell’Aquila et al. (2017) Dell’Aquila et al. used a 14N(d,4He)12C reaction at a beam
energy of 10.5 MeV at the INFN-LNS facility in Catania, Italy, to populate the Hoyle
state. The decay products were measured using a ∆E−E telescope and a high-granularity
hodoscope detector to measure the trajectory of the resulting alpha particles. This en-
abled reconstruction of the complete kinematics of the reaction and an effective back-
ground suppression. In total, about 28 000 decay events were recorded and analyzed. A
Monte-Carlo simulation was used to evaluate the results and determine the branching
ratio of the direct decay of the Hoyle state to be below 4.3 × 10−4 [66].

Smith et al. (2017) The initial study performed by Smith et al. in 2017 used a com-
bination of five DSSSD detectors in a geometrical configuration where one detector was
specifically set up to detect the ejectile and the other four to detect the coincident alpha
particles from the breakup of the excited carbon nuclei. Their employed methodology
is comparable to the one used in this thesis, although the limited number of detectors
increased the Combinatorial uncertainty inherent in multi-particle detections of compa-
rable energy using DSSSDs. A 40 MeV α-particle beam at the MC40 cyclotron at the
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University of Birmingham was used to populate excitations in 12C. During the measure-
ment a total of about 93 000 events were registered, of which approx. 24 000 remained
after suppressing the ambiguous detector combinations. The branching ratio of the direct
decay of the Hoyle state was determined to be below 4.7 × 10−4 [59].

Rana et al. (2019) Rana et al. (2019) also studied the decay width of the Hoyle state
in 12C, using inelastic alpha scattering to populate the Hoyle state and measure its decay
products [68]. The experiment was performed at the Variable Energy Cyclotron Centre
in Kolkata, using a 60 MeV alpha beam on a 12C target. The emitted alpha particles
were detected using two double-sided silicon strip detectors. Similar to the measurement
performed by Smith et al. in 2017, the use of inelastic scattering allowed for a complete
kinematic reconstruction of the Hoyle state decay, increasing the separation efficiency
between particles originating from sequential and direct decays. During the experimental
campaign, about 1.95 × 105 events were recorded of which 1.6 × 105 remained after
background suppression, a large increase over previous measurements. This enabled the
determination of an upper limit on the direct 3α decay branching ratio of the Hoyle state
of 1.9 × 10−4 at the 95 % confidence level, more than a factor of two lower than the
previously determined upper limits

Smith et al. (2020) In a follow-up study using a different approach, Smith et al. used
a 12C(γ, 3α) reaction to place a new upper limit on the direct 3α decay branching ratio
of the Hoyle state [67]. The experiment was conducted at the High Intensity Gamma-ray
Source (HIγS) facility, utilizing an Optical Time Projection Chamber (O-TPC) for the
detection of the decay events. The O-TPC allowed for three-dimensional visualization of
the decay process, capturing the trajectories of the emitted alpha particles. By analyzing
the events where all three alpha particles were detected, they identified two distinct
classes: events where two alpha particles emerged close together, indicative of a sequential
decay through the ground state of 8Be, and events with large opening angles between
the alpha particles, suggestive of direct decay. This indirect technique, however, relies
heavily on the accurate modeling of the decay process and the interpretation of the
detected events. The authors utilized the three-body WKB approach [70] to calculate
the penetrability ratio between the Hoyle state and its 2+ excitation, from which they
inferred the direct decay width of the Hoyle state. Despite the indirect nature of the
technique, the experiment achieved a substantially lower upper limit on the direct 3α
decay branching ratio of 5.7 × 10−6, which is over an order of magnitude lower than
previous experimental limits.

Bishop et al. (2020) Bishop et al. (2020) employed the Texas Active Target Time
Projection Chamber (TexAT TPC) to measure the direct 3α decay component of the
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Hoyle state with high sensitivity [69]. Their method utilized beta-delayed charged-particle
spectroscopy of 12N to populate the Hoyle state, followed by the detection of the resulting
3α decay events. The TexAT TPC setup allowed for a nearly medium-free environment,
reducing background contributions and avoiding pile-up events that have limited previous
measurements. By tracking the three-dimensional trajectories of the alpha particles, the
experiment distinguished between sequential decay via 8Be and the direct 3α decay by
analyzing the energy partition and angular correlations of the alpha particles. Bishop
et al. reported an upper limit on the direct 3α decay branching ratio of 4.3 × 10−4

and a lower limit of 5.8 × 10−5 at the 95 % confidence level. This result contrasts with
the significantly lower upper limit of 5.7 × 10−6 reported by Smith et al. (2020) [67],
highlighting discrepancies that may arise from the different experimental techniques. The
higher limit obtained by Bishop et al. suggests that further investigation and refinement of
both experimental and theoretical approaches are necessary to reconcile these differences
and achieve a more accurate determination of the direct 3α decay branching ratio of the
Hoyle state.

Table 1.1: Previously obtained upper and lower limits on the direct 3α decay branching
ratio of the Hoyle state

Author Lower Limit Upper Limit
Kirsebom et al. (2012) [65] - < 6.8 × 10−3

Dell’Aquila et al. (2017) [66] - < 4.3 × 10−4

R. Smith et al. (2017) [59] - < 4.7 × 10−4

R. Smith et al. (2020) [67] - < 5.7 × 10−6†

T.K. Rana et al. (2019) [68] - < 1.9 × 10−4

J. Bishop et al. (2020) [69] > 5.8 × 10−5 < 4.3 × 10−4

† This upper limit is indirectly calculated from measurements of the 2+ state in 12C.
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Chapter 2

The experiment

To study the particle-decay modes of the Hoyle state in 12C, a series of experiments using
the Lund-York-Cologne-CAlorimeter (LYCCA) array were conducted at the Institute for
Nuclear Physics at the University of Cologne using its 10 MV FN-Tandem accelerator.
The two primary experiments were conducted in December 2019 and January of 2020.
The measurement setup used in these, the employed experimental procedure, and the
utilized data acquisition system are described in the following sections.
To obtain data on the Hoyle state decay, a 12C(α,α′)12C reaction was used to populate
excited states in 12C. The reaction was chosen because the direct population of the Hoyle
state allows efficient selection of the resulting decay products. The reaction was performed
using a 27 MeV 4He beam, ensuring that each emitted alpha particle has sufficient energy
to leave the target and be detected by the LYCCA setup. This enables the detection of
all fragments, which allows to study the reaction using complete kinematics. The beam
current was kept between 0.8 and 2 nA intensity.

2.1 Cologne FN-Tandem accelerator
The Cologne FN-Tandem accelerator is a 10 MV Tandem van de Graaff particle accel-
erator and is used to supply ions for a multitude of experiments in the field of nuclear
structure physics, accelerator mass spectrometry, and nuclear astrophysics. It can pro-
vide a wide range of ions, from protons to heavy ions, with beam currents up to 800 nA.
It is supplied by a sputter ion source and a Duoplasmatron ion source [71].
Due to the requirement of negatively charged ions for the accelerator and the challenge
to create negative ions from the noble gas helium, a Duoplasmatron ion source is used
for the ion-beam experiments described in this thesis. The source creates the ions in a
dense plasma: The generation occurs in two stages: initially, a primary plasma is formed
in a cathode-anode discharge chamber where electrons emitted from a heated filament
ionize helium gas. These α2+ ions capture low-energy electrons, forming α− ions. An
extraction voltage is then applied to draw the α− ions through an aperture, resulting in a
well-defined ion beam. This beam is then accelerated towards the positive terminal of the
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Tandem accelerator, which was charged to 9 MV for the experiment. Here a stripper foil
is used to remove electrons from the ions, resulting in an ion beam consisting of positively
charged alpha particles. These are subsequently accelerated again by the terminal. After
this terminal, the ions are accelerated again using the same terminal voltage, reaching
the final beam energy of 27 MeV. A 90◦ bending magnet is used to verify the energy,
select the correct charge state for transmission and suppress background ions. The beam
is then focused by multiple quadrupole magnets and steered towards the LYCCA setup,
which is set up in the Osiris hall, one of the laboratory halls in Cologne.

2.2 The Lund-York-Cologne-Calorimeter (LYCCA)
The LYCCA setup consists of an array of segmented double-sided silicon strip detectors
(DSSSDs) with supplementary CsI(Tl) scintillators in a subset of its detector telescopes.
It is currently installed at the 10 MV FN-Tandem accelerator facility at the institute for
nuclear physics in Cologne.
The array was previously employed for a GSI-PreSPEC campaign, in preparation for
future work as part of the HISPEC-DESPEC collaboration at FAIR, the Facility for
Antiproton and Ion Research in Darmstadt, Germany. Although in an initial, limited
configuration, the array was successfully employed in a relativistic Coulomb excitation
experiment to study the transition strengths of excited states in the neutron-deficient
sd shell nucleus 33Ar [72].
The LYCCA array, now consisting of 18 telescope modules, was at the time comprised of
12 modules. At the time, each telescope paired a DSSSDs with a grid of 9 CsI-crystals to
be used in a ∆E−E configuration (see Figure 2.4 for a schematic drawing). During later
experiments not all telescopes were outfitted with CsI-crystals, as the primary capability
of the LYCCA setup is based on its highly segmented DSSSDs with 1024 pixels per
detector.
The LYCCA modules were used in conjunction with a position-sensitive time projection
chamber (TPC) and a subset of the RISING germanium detector array consisting of 15
high-purity germanium (HPGe) detectors and the HECTOR BaF2 detector array. The
experiment used a 450 MeV

u
36Ar beam impinging on a 9Be target. The FRS fragment

separator was used to select the 33Ar ions and focus them on the secondary 197Au target
at 145 MeV

u . A group of two plastic scintillators was used for time-of-flight measurements
in conjunction with the DSSSDs to identify the incoming ions by their mass and charge.
The LYCCA setup was used to detect the outgoing particles and measure their energy
loss and total kinetic energy as can be seen in the ∆E − E plot in Figure 2.1, where its
resolving power of fragments is demonstrated. The primary physics case for this setup was
the investigation of isospin symmetry in sd shell nuclei by measuring the mirror-energy
differences (MED) and reduced transition strengths in 33Ar.
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Figure 2.1: A ∆E-E plot obtained during the GSI-PreSPEC campaign, showing the sepa-
ration of different isotopes. Reprinted from Ref. [72], Copyright (2014), with
permission from the American Physical Society.

2.2.1 LYCCA detector configuration

The array can be mounted in multiple geometric configurations, dependent on the physics
case of interest. For FAIR a planar configuration in a 5x6 grid was chosen, since the
beam energies in excess of 3 GeV result in a narrow scattering angle range compared
to beam energies available at the FN-Tandem accelerator in Cologne (up to 30 MeV for
4He, for example). To accommodate this wider scattering angle range, a different detector
configuration with larger angle coverage was required. In the experiment presented in this
thesis, this new configuration was utilized. The new geometry covers scattering angles
from 11◦ up to 83◦ in the laboratory frame, spanning almost the entire kinematic range
of 12C(α,α′)12C reactions. The used configuration consist of three detector groups: One
plane (the “wall“), and two barrels (the “rings“), containing 8 detectors each. For the
experiment presented in this thesis only the DSSSDs were employed, as lower energies
compared to the FAIR configuration result in most particles of interest being completely
stopped in the silicon detectors. The configuration employed in Cologne can be further
customized, as one of the rings can be mounted in backwards direction (θ > 90◦), with
respect to the beam axis and there are two potential ring positions under forward angle,
as can be seen in Figure 2.2. The average detector positions and angular coverage of
the current detector configuration in Cologne are given in Table 2.1. The total angular
coverage of the current configuration is 3.25 sr, which equates to 51.7 % of the forward
hemisphere.

In the performed experiment though, kinematic considerations governed that both rings
were mounted in forward configuration. The barrel configuration of one of the detector
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Figure 2.2: A cut-through CAD-drawing of the target chamber containing the LYCCA
telescopes. The render demonstrates a mixed configuration of the LYCCA
setup where one ring is mounted under backward angles. During the exper-
iment, both rings were mounted in forward direction. In the plot, the beam
enters from the left. Between the two rings shown, a cutout of the target
ladder assembly is visible. Half of the wall detectors are visible on the right
side.

rings can be seen in Figure 2.3a, while the wall configuration is shown in Figure 2.3b. The
setup in Cologne also contains further upgrades, such as the new fully digital integrated
data acquisition system using the AIDA modules, which will be discussed in Section 2.4
[73].
The setup also consists of a target ladder assembly with four positions, containing a 3 mm
diameter tantalum aperture for focusing the beam on the target and three target posi-
tions. These were filled with the primary 0.114 mg

cm2
natC target, used for the experiment,

a backup 0.133 mg
cm2

natC target, only used for testing, and a 0.35 mg
cm2

197Au target for
kinematic calibration purposes.
Additional equipment includes a set of collimators, which prevents initial scattering into
the target chamber and which can be read out to measure the beam rate impinging on
the apertures. Additionally, during the second beam time in January 2020, the four inner
detectors in the wall-mounting were equipped with a set of protective tantalum covers to
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Module Avg. θ (deg) Avg. ϕ (deg) Solid Angle coverage (sr)
1 65.8 203.6 0.149
3 64.7 247.4 0.146
7 64.3 291.9 0.151
16 63.9 21.3 0.159
21 63.9 66.5 0.157
23 63.9 112.9 0.160
4 39.1 203.6 0.139
6 39.8 247.2 0.134
10 38.6 291.7 0.143
13 39.1 333.9 0.139
17 38.5 21.3 0.142
18 38.2 66.6 0.144
19 38.1 112.8 0.144
20 38.7 159.9 0.141
14 20.8 269.8 0.299
15 20.3 0.4 0.301
24 20.5 181.8 0.293
25 20.8 90.1 0.293

Total 43.3 3.235 (1.03π)

Table 2.1: Average θ, ϕ and angular coverage per detector module grouped by their as-
sembly.

stop beam-like alpha particles scattered under low angle, which can damage the detectors
and create high background rates. The setup is also equipped with a set of standard beam
diagnostics equipment, including a Faraday cup, which was used for the initial focusing
of the beam. Despite the shielding measures, a certain extent of radiation damage is
unavoidable for the given geometry, as even the wanted reaction products have energies
greatly exceeding the lattice binding energies of the silicon detectors’ crystals. Addi-
tionally charge trapping in the detectors’ passivation layers can occur. This results in a
degradation of the detectors’ performance over time, which was continuously monitored
through the leakage current of the detectors. This effect will be further discussed in Sec-
tion 3.5 and exemplary leakage current plots are presented in the appendix in Section A.3.
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(a) Photo of one LYCCA ring , with eight
barrel detectors facing the beam axis.
The target (in the aperture position) is
visible as is the added aperture at the
chamber entrance in the background.
The view is upstream towards the ac-
celerator.

(b) The wall detector assembly containing seven
out of eight detectors. Clearly visible are
three of the four tantalum shields used to
reduce the scattering of high-energy alphas
into the delicate detectors and the gap in the
center to allow the beam to pass through.

Figure 2.3: The two sub-assemblies of the LYCCA setup: Wall and ring detector groups.

2.2.2 LYCCA telescope

Each LYCCA telescope comprises of a DSSSD detector and a CsI-crystal scintillator
with photo-diode (PD) readout, which enables the application of the ∆E-E measurement
technique for particles which have sufficient energy to pass through the DSSSDs. While in
the experiment discussed in this thesis only the DSSSD was used, the detector assembly
will still be referred to as a telescope. The telescopes also provide structural support
for the detectors as well as a robust electrical connection for readout and biasing. The
telescopes are interchangeable and are mounted on a custom-built aluminum frame, which
enables the aforementioned reconfiguration of the angular detector coverage.
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Figure 2.4: Schematic of a LYCCA telescope, showing the DSSSD and the CSI scintillator,
as well as the mechanical assembly. Reprinted from Ref. [74], Copyright
(2013), with permission from Elsevier.

2.2.3 DSSSD

The primary detection device of the LYCCA telescope is its double-sided silicon strip
detector (DSSSD). The employed silicon detectors were produced by RADCON and are
bonded to a custom printed circuit board (PCB) at the Lund University. The final as-
sembly of the LYCCA telescope and integration testing was also performed there.
DSSSDs are position-sensitive semiconductor detectors that serve as a versatile tool for
charged particle detection. A key advantage of DSSSDs is their ability to operate at room
temperature while still providing good energy resolution.
The function of a semiconductor detector is governed by its electronic band structure,
which determines the behavior of charge carriers (electrons and holes) in the material.
The band model describes the energy levels available to electrons in a semiconductor. In
this model, the band structure consists of a valence band, where electrons are bound to
atoms, and a conduction band, where electrons are free to move and conduct electricity.
The energy difference between these bands, known as the band gap, is 1.12 eV for silicon
with 3.6 eV required to produce an electron-hole pair in the material at room tempera-
ture [75]. Due to its larger band gap, silicon has a low population of thermally excited
electrons in the conduction band at room temperature. This results in a lower intrinsic
carrier concentration and reduced leakage current compared to the often-used germanium
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detectors. In comparison, Germanium detectors, with their smaller band gap of 0.67 eV,
have higher intrinsic carrier concentrations and leakage currents at room temperature,
necessitating cryogenic cooling to reduce thermal noise and maintain performance [76].
This cooling adds complexity and typically involves packaging that impedes charged par-
ticles, the primary detection focus of the LYCCA setup.
To enhance detection efficiency, semiconductor detectors typically employ p- or n-doping,
introducing specific intentional impurities into the silicon to create regions with excess
positive (p-type) or negative (n-type) charge carriers, forming a p-n junction. This cre-
ates an in-built electric field which allows charge carriers to migrate along the junction
along the field. This diffusion leads to the establishment of an opposing adverse electric
field which builds up until an equilibrium is reached. This equilibrium zone is known as
the depletion zone, where mobile charge carriers are absent due to the diffusion of elec-
trons and holes across the junction, which renders it highly sensitive to ionizing radiation.
Applying a reverse bias-voltage to the p-n junction increases the electric field and widens
the depletion zone. This increases the volume in which charge carriers can be generated
by incoming radiation [75]. This layout is shown in Figure 2.5a. When charged ions

(a) Schematic of a DSSSD like the ones used in the
LYCCA setup. The detector is operated in re-
verse bias, which creates a depletion zone in the
silicon crystal. In the DSSSDs used in the LY-
CCA setup, the p-side faces the beam axis and
will be referred to as the front side. Reprinted
from Ref. [77], Copyright (2015), with permis-
sion from John Wiley and Sons.

(b) Illustration of a p-n junction with the
depletion in the center. The depicted
energy levels are EV for the valence
band, EL for the conduction band, and
EF for the Fermi level, where the prob-
ability of finding an electron is 50 %.
Reprinted from Ref. [76], Copyright
(2016), with permission from Springer
Nature.

Figure 2.5: Schematic of a DSSSD and a p-n junction.

interact with the semiconductor material in the depletion zone, they lose energy through
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ionization and excitation, resulting in the creation of electron-hole pairs. The electric
field in the depletion zone promptly separates these pairs, with electrons moving towards
the n-type region and holes towards the p-type region on the opposite side, generating a
measurable electric current.
Due to the segmented structure of the DSSSDs, the charge carriers drift towards the near-
est electrode, creating a measurable current pulse at the strips that overlay the particle’s
path inside the detector. Conversely this introduces the inter-strip effect, when a parti-
cle’s energy deposition is either between two strips or the trajectory is not orthogonal to
the detector surface.
The LYCCA-DSSSD consists of 32 conductive strips on each side, which then form 1024
virtual pixels, the intersect between each distinct strip pair on front- and back-side. The
details of the LYCCA-DSSSDs are given in Table 2.2.

Table 2.2: Technical details of the LYCCA-DSSSDs. Data taken from [78].
Parameter Value
Wafer dimensions (60 ± 0.2) × (60 ± 0.2) mm2

Active area 58.5 × 58.5 mm2

Thickness (303 ± 3) µm
Number of strips 32 × 32
Strip width (p-side) 1.8 mm
Strip width (n-side) 1.63 mm
Interstrip gap (p-side) 30 µm
Interstrip gap (n-side) 200 µm
Dead layers (p-side) 0.48 µm
Dead layers (n-side) 0.55 µm
Full depletion voltage typically 40 V
Operating voltage 50 − 70 V
Leakage current 10 − 15 nA per strip
Capacity 33 pF per strip
Resistivity 6.3 kΩ cm

2.3 Inter-Strip Effects and Detector Dead Layer
Inter-strip effects in DSSSDs arise from the region between conductive strips, known as
the inter-strip gap. These effects include partial energy deposition per strip and mixed
charge collection, occurring when a charged particle passes close to or between adjacent
strips, leading to multiple smaller current pulses instead of a single larger pulse. This ef-
fect is also known as inter-strip charge division and affects energy resolution and position
determination [75]. While higher segmentation typically improves position resolution,
it can also lead to energy being deposited in multiple strips, especially at slope angles.
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Transverse diffusion and induced signals distribute charge across strips in a Gaussian
manner, with a standard deviation related to the strip pitch [79]. Inter-strip capacitance
introduces noise, and inter-strip gaps can create dead zones. In the LYCCA setup, these
effects are minimized by ensuring the ion entrance angle is below 60◦ and using a high
bias voltage to reduce capacitance [76].
Each detector surface is passivated with silicon dioxide (SiO2), and the sensitive area is
surrounded by guard rings. This forms a dead layer, 0.48 µm on the p-side and 1.55 µm
on the n-side, with only the p-side dead layer contributing to the energy loss of incident
particles. This layer can absorb incident particle energy, reducing effective detection en-
ergy. This is accounted for in the energy calibration, which maps the deposited energy in
the DSSSDs and uses correction terms to ensure linearity, which will be further discussed
in the following sections.
For this analysis, inter-strip effects are negligible due to their low event fraction given
the relatively low area compared to the active area of a strip, as shown in Table 2.2 and
can be excluded from the dataset using the analysis techniques described in the following
sections.

2.3.1 Energy loss in matter

Since the LYCCA setup is only sensitive to the ions’ energies deposited in the active area
of the detector, the energy loss in matter of these ions as they pass through the detector
needs to be considered. The differential energy loss of ions in matter, −dE

dx
per unit path

length dx, commonly referred to as stopping power, can be described by the Bethe-Bloch
formula

dE

dx
= 4πe4z2NZ

meβ2c2

[
ln
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2meβ
2c2

I

)
+ ln

(
1

1 − β2

)
− β2

]
, (2.1)

where e is the elementary charge, z is the charge of the ion, β is the velocity of the ion in
units of the speed of light c, N is the target electron density, Z is the atomic number of
the target material, me is the electron mass, and I is the mean excitation energy of the
target material [80]. As the energies in the LYCCA setup are in the range of a few MeV,
β ≪ 1, resulting in simplification [73], which can be written as
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[
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2

I

)]
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This formula is a good approximation for heavy ions [81]. For lighter ions empirical data
is used, which is tabulated in the SRIM database [82]. The energy loss of ions in matter
is described by the stopping power, which is the negative derivative of the energy loss
with respect to the distance traveled by the ion. The stopping power is given in units of
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MeV
cm .

Two instances of energy loss are of particular interest in the LYCCA setup: The energy
loss in the target material, and the energy loss in the silicon detectors before entering the
sensitive depletion zone, commonly referred to as the dead layer. Both depend on the
ion’s energy before entering the medium and the effective path length given by

deff = d0

cos(ω) , (2.3)

where d0 is the thickness of the material, ω is the angle of the ion with respect to the
normal vector of the material, and deff is the distance the ion travels in the material.
The incidence angle in the target is very close to the scattering angle θ, which is the
angle between the beam axis and the scattered ion. The target is only rotated by 1.0(5)◦

with respect to the beam axis, which was indirectly determined during the calibration
process, explained in Section 3.4.2, which is corrected for during the analysis by rotating
the incident angle by 1◦ in the opposite direction.
As the angular dependency in equation 2.3 also holds for the silicon detectors’ dead layers,
the entrance-angle of the ions into the detectors must be obtained to calculate the effective
path lengths. This angle is dependent on the relative position of the individual pixel to
the reaction position and is referred to as β in this work. It is defined as the deviation
of the projectile’s trajectory vector from the normal vector of the detector surface. It is
computed using

β = arctan
(

n⃗ · r⃗
|n⃗× r⃗|

)
, (2.4)

where n⃗ is the normal vector of the detector surface, and r⃗ is the vector connecting the
reaction point and the pixel center, which is the trajectory vector of an ion entering the
detector. The θ-dependency of β is shown in Figure 2.6. As can be seen, the relationship
between θ and β is linear in the wall detectors, because the wall plane is orthogonal
to the beam axis. Since the barrel detectors are mounted to face the beam axis, the
β-angles range from about 20◦ up to 60◦, at which point the path length of the ions
through the dead layer reaches double the path length of an ion entering a detector
vertically. Due to its non-linear nature, energy losses cannot be fully compensated by the
employed second-order polynomial calibration, as is evident in the deviation graphs for
these calibrations, exemplified in Figure 3.13. Thus, the calibration maps the deposited
energy in the DSSSDs, and not the actual energy of the scattered ions after the reaction.
The latter is subsequently calculated by the energy loss in the target material and the
dead layer.
The energy loss in the target material is dependent on the reaction position within the
target, as the energy losses comprise of the initial loss of the beam particles before the
reaction and the losses of the four reaction products after the reaction. As can be seen in
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Figure 2.6: Dependency of the entrance-angle β for ions originating from the reaction
position on the target on the scattering angle θ for all detectors in the LYCCA
setup. As can be seen, the surface angle β reaches its maximum at about θ
= 31◦, the end of angle range of the barrel detectors and the beginning of the
wall detectors.

Figure 2.7, the energy loss at the beam energy (27 MeV) before the reaction is significantly
lower compared to the losses for post-reaction energies. Additionally, the trajectory before
the reaction is orthogonal to the target surface, minimizing the path length, while after
the reaction the path length is substantially increased based on the scattering angle. This
can be seen in Figure 2.8, where the energy losses for a reaction at the beginning of the
target are compared to a reaction at the end of the target. The highest detectable angles,
for example, at 83◦, result in a path length increase by a factor of 8.2. Lastly, as ejectile,
fragments and beam all consist of alpha particles, the increased number of four particles
after the reaction also contributes to increased energy losses. To mitigate this, a depth
factor is computed based on the measured energy of the ejectile, as its reference energy
and angle are directly related. This factor is then used to scale the energy losses of the
other particles, further increasing the energy resolution of the setup.
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Figure 2.7: Energy loss of alpha particles in 12C dependent on their energy. Data from
the SRIM database [81]. As can be seen, the influence of the nuclear stopping
power is negligible at and below the beam energy of 27 MeV.

Figure 2.8: Energy loss in the target material dependent on the reaction position within
the target. (a) depicts the energy losses for a reaction directly at the beginning
of the target, (b) for a reaction at the end of the target. The comparison shows
the increased path length through the target material for reactions occurring
at the beginning of the target.

CsI-crystals

In the FAIR configuration only a part of the kinetic energy of the incoming ions is
deposited in the DSSSDs. To enable readout of the entire energy of the ions, each
DSSSD is paired with a set of CsI-crystals, enabling ∆E-E readout to allow for particle
discrimination. The CsI-crystals, supplied from a manufacturer in Kharkiv, Ukraine [78],
are wrapped in reflective foil to prevent light leakage. Each scintillator is read out by
a PIN (positive-intrinsic-negative) type photo-diode. The mounting of the CsI-crystals
inside a LYCCA telescope is shown in Figure 2.9.
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Figure 2.9: A LYCCA telescope without the DSSSD, showing the 3x3 grid of wrapped
CsI-crystals. The photo-diodes are mounted on the backside of the crystals.
From [73]

2.4 Data acquisition
As the complete LYCCA array, containing 26 DSSSDs in its final configuration, requires
the readout of 1664 signal channels, a powerful data acquisition system is required. For
this reason, integrated digital Front End Electronics (FEE) modules, which were origi-
nally developed for the Advanced Implantation Detector Array (AIDA) [83], were used,
as their high integration density allows to read out one LYCCA DSSSD with only one
FEE module. Each module comprises of four Application Specific Integrated Circuits
(ASICs), which are installed on a separate Printed Circuit Board (PCB), the mezzanine
board. This board is connected to the main FEE board using four connectors, shown
on the left side of Figure 2.10. The ASICs contain signal processing electronics, such as
preamplifiers, shapers, as well as threshold-comparators, peak-hold circuits, and control
logic, allowing the output of triggered timestamp signals and shaped signal pulses for
further processing. As each ASIC can process 16 channels, this enables the readout of
all 64 channels of a DSSSD using one FEE module [84]. The entire system can operate
in two energy ranges: low-energy (up to about 25 MeV) and high-energy (up to 1 GeV).
Only the former was used during the experiment, to fully utilize the dynamic range of
the system, as during the experiment only particles with energies up to 25 MeV were of
interest.
After initial signal processing the ASICs output pulses are fed to one of eight eight-
channel 16-bit ADC Analog-to-Digital Converters (ADCs) where the pulses are digitized.
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The resulting signals from ASICs and ADCs are then processed by a Field Programmable
Gate Array (FPGA) which can send control signals to the previously mentioned compo-
nents and collects the readout of the previously mentioned components. It also contains a
MicroBlaze processor running Linux, which is used to interface the FPGA with the data
acquisition software. The acquired data is then passed to a central data server for storage
using a Gigabit Ethernet connection [73]. The output is sent as data blocks, containing
events sorted by their readout time. Each AIDA module also contains support electronics,
such as power distribution circuitry, temperature sensors, and a timing synchronization
link, which is used to synchronize the time stamps of the individual modules. To ensure
low operating temperatures, each FEE module contains a water cooling loop which can
be hooked up to the common cooling water supply of the LYCCA setup. One AIDA FEE
board is shown in Figure 2.10. Each module provides a 10 ns discriminator timing signal,
as well as 16-bit ADC signals with a readout frequency of 5 MHz (200 ns per sample)
[73].

Figure 2.10: An AIDA FEE board, which is used to read out the LYCCA detectors. The
three outlined sections (from left to right) are the transmission circuits, onto
which the mezzanine boards containing the ASICs are mounted (not shown
in the image), the eight ADCs, and the FPGA, which controls the FEE
module.

The FEE modules are mounted in a ring shape, as can be seen in Figure 2.11, to mini-
mize the cable length between the detectors and the FEE modules. The modules’ common
grounding was provided using a wide low-ohmic copper band, which was connected to the
LYCCA setup’s ground. The modules are supplied with water from a central chiller unit
and power from a rack-mounted power supply unit. The data connection is established
using a standard Ethernet connection through a Gigabit Ethernet switch, which enables
the separate control of each FEE module and the data readout.
Since the only electrical connection to the DSSSDs is the signal cable, the detectors have

to be supplied with the necessary bias voltage through the FEE modules. The applied
bias voltage is 50 V, but was slightly reduced to 40 V during the second beam time to
limit the increase of the leakage current of the detectors. The bias voltage is delivered
by four four-channel Mesytec MHV-4 high-voltage power supplies [85] mounted in a NIM
crate.
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Figure 2.11: The LYCCA setup in the OSIRIS hall at the Institute for Nuclear Physics in
Cologne. The beam line enters from the left. The AIDA front-end electronics
(FEE) modules are arranged radially around the chamber, accompanied by
their red and blue cooling water supply tubes.

As during the beam time, 20 detectors were connected, of which 18 were used for the
experiment, a few channels had to be shared between detectors. The 16 available bias
channels allowed 12 detectors to be supplied separately and the remaining eight active
during the experiment to be supplied in pairs. No problems were observed for the detec-
tors sharing a bias channel.
The time synchronization of the modules was achieved by using the MACB modules.
These NIM mounted components form a hierarchical high resolution time synchroniza-
tion network [86]. The MACB modules send and distribute 50 MHz clock signals, which
are distributed to all modules, to synchronize the timing. The cables used were common
HDMI cables due to their good high-frequency characteristics and availability. In the
MACB topology, one AIDA FEE module is selected as the reference module (in this case
the first module, nnlycca1, was used) and its timing signal is broadcast to the other FEE
modules [87].
The primary control and data acquisition are run on a separate computer, which was
connected to the FEE modules via Ethernet. The computer, which runs the control and
data acquisition server (historically named the tape server), uses the Multi-Instance Data
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Acquisition System (MIDAS) software, developed and maintained by the STFC labora-
tory in Daresbury, UK [88], for electronics control and data acquisition [73]. The data is
split into runs and subruns, where each run corresponds to a single data acquisition cycle,
comprising of several subruns, which are automatically incremented once about 2 GB of
data is collected. During the beam time electronic instabilities mandated multiple sys-
tem reboots, the data taking was also briefly interrupted twice due to source current
instabilities. This, including the system being shut down and restarted between the two
beam times, incremented the run number each time. The primary analysis consisted of
2436 subruns in 20 runs, with 865 subruns in 8 runs taken during the first beam time
in December 2019, and 1571 subruns in 12 runs taken during the second measurement
campaign in January 2020.

2.4.1 Energy thresholds

Each electronic discriminator system must be able to differentiate between noise and
actual signals. Different approaches are used to achieve this, the most direct one being
a direct threshold comparison. Each experiment must strike a balance between captur-
ing noise events and potentially discarding valid experimental data. In the described
measurement, the threshold can be set lower to rarely accept noise contributions, since
the later analysis stages combine four separate signals (front side: ADC + discrimina-
tor, back side: ADC + discriminator) to form a valid detector hit event, which reduces
random background (further detailed in Section 3.3.3). Still, erroneous triggering of the
discriminators increases dead times and can lead to data loss. During tests the very high
erroneous trigger rates saturated the DAQ, inducing high dead times up to 90 %. This
causes the data acquisition system to become overloaded by high trigger rates, leading
to instability or even crashes as experienced multiple times during the preparatory test
measurements leading up to the experiment.
During these initial tests, idle detector rates were taken without calibration sources or
pulser input. These rates are detailed in Figure 2.12, which shows the trigger rates of
the detectors dependent on their energy threshold. It must be noted that this shows
an ideal scenario without beam and with reduced equipment active. The shown energy
dependency is only roughly calibrated, as more precise calibrations were only performed
at a later stage. The rates increase exponentially with decreasing threshold, which is
expected as the detectors are more likely to trigger on noise events. The high noise band
is clearly visible and also varies greatly from module to module. This was a known lim-
itation of the AIDA modules at the time [89]. The problem was remedied by imposing
high veto-thresholds of up to 1.35 MeV on the detectors, which reduced the trigger rates
to a manageable level. The thresholds, set per-detector, are listed in Table 2.3. The
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Figure 2.12: Plot of the trigger rate of the detectors in the LYCCA setup dependent
on their energy threshold. As can be seen the rates increase exponentially
with decreasing threshold. The energies are only roughly calibrated and use
a proportional scaling to map them to equivalent energies. Each detector
is a single line in the plot. The pink line shows the rate of detector 26,
which showed very noisy energy and time spectra and was not used for the
subsequent experiment. The scale is cut off at 40 kHz to show the lower
rates, but the highest values reached up to 170 kHz.

values were obtained from the analysis codes during event combination.
Vetoing all event below a certain energy also discards valid detectors, which reduces the
efficiency of the setup, especially for the decay products of the Hoyle state. The effects
of this were modeled using the Monte Carlo simulation, discussed in chapter 5.

Table 2.3: Energy thresholds of the LYCCA detectors during the Hoyle state campaign.
Detector Threshold [keV] Detector Threshold [keV]
Mod 1 600 Mod 16 800
Mod 3 450 Mod 17 1250
Mod 4 1350 Mod 18 1350
Mod 6 1050 Mod 19 1150
Mod 7 800 Mod 20 1350
Mod 10 1050 Mod 21 800
Mod 13 1450 Mod 23 800
Mod 14 800 Mod 24 850
Mod 15 950 Mod 25 900

2.5 Targets
Multiple natC targets were produced for the experiment, out of which two with different
thicknesses were selected to be used during the measurement campaign. The primary
target was a 0.114 mg

cm2
natC target, which was used during both beam times. It is depicted

in Figure 2.13a. The secondary fallback target was a 0.133 mg
cm2

natC target, which was
not used for the primary experiment. Additionally, gold targets were produced using

55



CHAPTER 2. THE EXPERIMENT

rolling, which were used to test the overall performance of the setup, as the high mass of
the gold nuclei results in a different kinematic behavior compared to the carbon targets
due to the low momentum transfer. The carbon targets were produced using vacuum

(a) The 0.114 mg
cm2

natC target which was
used in both beam times, glued onto
an aluminum support frame before being
mounted onto the target ladder assembly.

(b) The target ladder with (top to bot-
tom) a 3 mm diameter aperture, the
two natC, and the 197Au target.
The used target shows the darkened
beam spot.

Figure 2.13: Close-up of the used target and a view of the target ladder assembly showing
the targets mounted during the beam time.

evaporation of graphite onto a glucose covered glass substrate. The target material on
the substrate was then cut and lowered into a water bath, to dissolve the glucose. This
leaves a thin floating layer of carbon on the water surface, which can then be placed onto
an aluminum support frame and weighed to determine the mass per area. As the used
targets are sufficiently thick, they are considered self-supporting and do not require a
backing foil.
During a brief test measurement in 2019 to commission the new setup geometry using
a natC(α, α′)12C reaction, kinematic background from scattering of the beam’s alpha
particles on 16O and 1H in the target material was observed. This was unsurprising, as
the target production process involves floating the target material on water and contact to
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the glucose substrate as well as the atmosphere, which can lead to surface-incorporation
of trace amounts of oxygen and hydrogen. To test the suppression of this background, a
backup target was produced in the same way, but was heated to 100 ◦C to allow surface
contaminants to evaporate. While this was successful in reducing the background as
demonstrated in a brief test measurement, the target surface was impacted by the heating
process, as can be seen by the wrinkling on the target surface in Figure 2.13b. This
downgraded the target to a backup target, as the surface structure increased the energy-
loss uncertainty and made the target more susceptible to beam-induced damage. The
primary target was subsequently not heated, as the background was deemed acceptable
for the experiment. Another reason to use the primary target was to use the inverse
kinematics of the 1H(4He,4He)1H reaction to enable tracking of the beam spot position
during the beam time, which will be further discussed in Section 3.7.
The use of an enriched 12C target was considered, but since the natural abundance of
12C is 98.93 % and the abundance of the heavier isotope 13C is only 1.1 % [90] this was
deemed unnecessary as the reaction kinematics between 12C and 13C differ sufficiently
due to the mass difference of 8.4 %. However, the minimal improvement in the signal-to-
background ratio did not justify the additional cost and extended lead time necessary to
procure the enriched target externally.
As discussed, the thicknesses of the used natC target and the backup target were obtained
by weighing the target foils and calculating the area density by dividing by the area of
the target. Since the target thickness directly impacts the energy losses of the reaction
products in the target material, it is an important parameter for the analysis. For this
reason, a follow-up validation of the target properties was performed at the RUBION
facility in Bochum using Rutherford backscattering [91]. The result, 0.1155(58) mg

cm2 , is
consistent with the weight-based measurement. Given the errors of the measurements,
the results can be considered consistent. The RUBION study is further detailed in the
appendix (Section A.1). The measured values are slightly below the optimum value for
the calibration, which varies between 1.05 and 1.25 times the nominal value, which can
be attributed to other parameters such as target roughness and variations between the
dead layers of the detectors, which also impact the optimization process.
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Data processing

In this chapter, the general data preparation and preprocessing steps required for the
analysis of the LYCCA data are described. The data analysis pipeline is outlined in Sec-
tion 3.1, and the calibration of the detectors is explained in detail (Section 3.4). Lastly,
correction approaches to mitigate effects such as energy losses in the target material and
the dead layer of the detectors, detailled in Section 3.6 or the variation of the beam spot
position during the beam time, described in Section 3.7, are discussed.
The raw initial data obtained from the data acquisition system consists of a binary stream
which contains multiple types of entries. These are either related to the status of the
setup, like sync signals, additional timestamp information, or are linked to a detection in
a certain detector strip. The different entry types are detailed in Table 3.1.
These data need to be combined and prepared to reconstruct detector hits of particles.

Table 3.1: Raw data entry types obtained from the data acquisition system.
ADC signal Discriminator signal SYNC signal

Location Position (detector + strip) -

Time ADC clock FEE clock FEE clock
2 µs (500 kHz) 10 ns (100 MHz) (lower 32 bits) 10 ns (upper 32 bits)

Energy 16-bit - -

First, the input data needs to be converted into a more accessible format. Next, the
energy and timing signals are combined to form events. The front- and back-side signals
of the detectors are then combined to form a single event, creating a complete detector
hit entry, which contains energy and timing information and the pixel coordinate of the
hit. This pixel coordinate is then converted into spherical coordinates to determine the
scattering angle of the detected particle.
This chapter closely follows the path one single detection event takes from the raw data to
the final reconstructed event, which contains the entire information required to perform
the physics analysis.
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3.1 Data analysis pipeline
The processing of the data is performed using a sequence of programs, which were written
for this purpose. The whole analysis software forms a pipeline, taking in raw data from
the data acquisition system and outputs the complete detector hit information.
This data analysis pipeline consists of several programs which were developed through-
out this thesis to process the raw data from the data acquisition system into processed
background-suppressed events in the center-of-mass frame of our reaction of interest.
The codes combine, calibrate and filter the data using gates, logical conditions that select
which events are kept for further analysis. The pipeline is illustrated in Figure 3.1.
During the two weeks of beam time, about 5 TB of event data were recorded. To pro-

Figure 3.1: The LYCCA data analysis pipeline, showing the different steps from converted
raw data to the final recombined events. After the initial events are obtained
from the Converter, strip events are built for front and back side signals.
These are subsequently combined to form a single detector hit. The line below
each shown entry shows the available information in that respective event.

cess this data quickly, the analysis pipeline was designed to run as efficiently as possible
and utilize the available computing resources of the institute. The high number of 1152
detection channels also required a substantial degree of automation to ensure the analysis
is reproducible and reliable. A list of the most important programs developed for this
analysis can be found in the appendix (Section A.7). The analysis broadly consists of
two phases: Data preparation, up to the combination of front- and back-side signals, and
the analysis of the combined events.
The whole pipeline comprises the following sequential steps, not including smaller helper
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scripts and gate-finding code:

1. Converter: The raw data from the data acquisition system is converted into the
ROOT tree format.

2. EventBuilder: The ADC and discriminator entries are merged into one entry
containing time and energy information for one detector strip.

3. CombineStrips: The front- and back-side signals of the detectors are combined
into a single detector hit (pixel event) with position, energy, and timing information.

4. AnalysisKinematics: Sets of conditions are used to filter the data for the reaction
of interest (not shown in the Figure, as this step is performed after the data is
prepared) and transform the data into the center-of-mass frame.

3.2 The ROOT framework
The following analysis makes extensive use of utilities and classes provided by the ROOT
analysis software framework [92]. The ROOT framework is a software package developed
by CERN for data processing, statistical analysis, and data visualization which was ini-
tially released in 1994 [93] and has since become a standard tool in the field of high-energy
physics. It is also widely used in nuclear physics and other fields. The ROOT framework
is written in C++ and is provided as open-source software.
Over the years, the ROOT framework has grown to include a large number of classes
and utilities and is still in active development. The analysis software in this work re-
lies on several ROOT features: General data processing classes (such as ROOT trees),
histogramming, fitting, and visualization classes provided by the ROOT framework.

3.3 Preprocessing
After data acquisition by the MIDAS system, different types of events are written to
the output files: Signals from the analog-to-digital converters (ADCs) with 16-bit energy
channel data and a 2 µs time resolution, and two different signals from the discriminator
on the FEE modules: One general clock-synchronization signal, containing the upper 32
bits of the 64-bit timestamp, and the individual discriminator signals, which contain the
lower 32 bits of the timestamp with a timing precision of 10 ns, but no energy information.
Each signal also carries information about the module ID and the channel ID, which allows
merging of ADC and discriminator data to create events with both energy and precise
timing information.
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3.3.1 Converter

The MIDAS system collects and writes its data in a binary data format, which is not
directly usable for analysis. To prepare the data for further processing, the data is
converted into the ROOT tree format. The pre-existing conversion code was heavily
modified and extended. It now supports multithreading, and the merging of the two
timestamps in the original format (one containing the upper 32 bit and the other the
lower 32 bit of the 64-bit timestamp) into a single 64-bit timestamp. This is necessary
to ensure that the timestamps are correctly ordered, as the timestamps are used to
determine the time difference between events, which is crucial for the later coincidence
gate, described in Section 4.1.1. Additionally, the converter has been extended to also
detect copied discriminator events: In some cases, the discriminator circuits in the AIDA-
FEE modules create multiple events per detected signal. The source of this seems to be
related to an unreliable discriminator reset and the data readout. In the converter these
erroneous entries can then either be tagged or removed from the data, depending on the
configuration of the converter. In the following analysis the copied events are removed
from the data.

3.3.2 Event building

As the recorded data consists of separate ADC and discriminator entries, a custom built
tool called EventBuilder is used to merge the two data types into a single event.

Since each module has slightly different timing characteristics, which varies between
power cycles (between runs), the gate widths for the EventBuilder are automatically
deduced using the tool timetest, developed for this purpose. Figure 3.2 illustrates the
time difference distribution for a single detector and run. A few features of the timing
signals are shown here: Periodic spikes coinciding with clock frequencies of parts of the
FEE modules, indicating unwanted signal pickup which caused false triggers. Since our
follow-up analysis uses only the discriminator signals for timing information and the
timing gates between ADC and discriminator are set wide (typically 7 µs), these artifacts
do not impact the analysis. timetest is also used to determine the time offset between
the ADC and discriminator signals, which typically is at about 8 µs.

At this stage each data event contains a timestamp, the ADC channel, the triggered
strip and its containing module index, as well as some additional tracking information
(such as if copies of the discriminator signal were detected). Using this information the
EventBuilder is then used to obtain an initial energy calibration for each detector
strip, as further described in Section 3.4.1. This calibration is then used to also store the
energy information in the event data.
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Figure 3.2: Time difference distribution between ADC and discriminator for module 21.
The dashed line shows the filtered time curve after background subtraction.

3.3.3 Pixel event recombination

The data generated by the EventBuilder is still separated into front- and backside
strip-detection events. These need to be combined to form a single detector hit. A good
visualization of the prerequisites for this combination is shown in Figure 3.3 - this figure
plots the energy of the p-side against the energy of the n-side of the same detector using
a wide time-gate of 220 ns. The energies are obtained using the initial linear per-strip
energy calibration created using the triple-alpha source. While the diagonal line shows
events where the full energy of a detected particle is read out on both sides and demon-
strates good linear behavior, the horizontal and vertical lines as well as the low-energy
background indicate that narrow energy and time conditions are required to ensure that
only full-energy events are combined. The horizontal and vertical lines are caused by
particles which deposit parts of their energy in the inter-strip region between two active
strips. These events should be excluded from the analysis, as the missing energy cor-
relation information reduces the ability to distinguish between random coincidences. A
reconstruction of events with partial energy deposition is computationally more complex
and will be studied in future work. As seen in the figure, however, the majority of events
are full-energy events and can be combined.

To combine the data from the detector’s front and back side, a custom tool called
CombineStrips was developed. Similar to the EventBuilder, two entries need to be
matched to form a single registered hit. Since multiple events can be registered by each
detector during a single tick (the time resolution of the discriminator), narrow gates are
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Figure 3.3: Energy correlation between front- and backside strips for module 14, showing
data of one single run. The diagonal line shows events that can be combined.
The horizontal and vertical lines are caused by partial energy depositions on
one of the detector sides.

set to ensure that only events within a certain time window are combined. These gate
widths are automatically determined using a tool called windowtest. This tool scans
the entire entry list obtained from the DAQ and determines the time and energy differ-
ence distributions between events in the same detector. In contrast to Figure 3.3, the
distributions just show the time and energy difference between the front- and back-side
signals of the same detector against the energy of the front-side signal. The time distri-
bution can be generated directly from the incoming data, while the energy distribution
only includes energy entries within a 60 ns window around a time difference of zero. Ex-
amples for a ∆E and ∆T spectrum for a single detector are shown in Figure 3.4. These
distributions are not constant with respect to energy over the entire sensitive range of
the detectors, though. To take into account this dependence, the CombineStrips tool
uses energy-dependent gates for the time and energy signals. This is done by fitting pro-
jections for every 400 keV energy bin, which yields the mean and standard deviation for
each energy bin. These values are then used as the boundary of the gated region. Values
between these fits are interpolated to ensure a continuous gate width function and be
more robust against event-count differences per energy bin. The Figures 3.5 and 3.6 con-
tain example plots demonstrating the energy and time difference distributions between
strips on the front- and back-side of the same detector, used for determining appropri-
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(a) Time difference distribution for the front-
and back-side signals for module 24.

(b) Energy difference distribution for the front-
and back-side signals.

Figure 3.4: Example distributions for the determination of the width of the employed
conditional gates for the pixel combination for module 24.

ate gate widths for accurate pixel combination. This is done on a per-detector basis,
since each strip and ADC / discriminator channel has slightly different energy resolution
and timing characteristics. Typical gate parameters obtained by this approach for the
performed experiments are detailed in Table 3.2.

Table 3.2: Gate parameters for the CombineStrips data processing software.
Parameter Width Typical width (Det. 18, Run 5, 10 MeV)

Energy gate width 3.0 σ ±128 keV
Time gate width 2.5 σ ±20 ns (2 discriminator ticks)

Another option of the CombineStrips tool is the possibility to export partial events:
Since each event consists of a front and back side signal, each of which contains an ADC
and a discriminator entry, events can also be built when only three of these four entries
are present. While these events will be further explored in the future, for the current
analysis they are not used, as the loss of one of the gate conditions when combining the
front- and back-side signals does lead to a worse signal-to-noise ratio for the events, as
the missing conditions reduce the background suppression.
The overall combination efficiency averages 55 % for the runs from December 2019 and
about 47 % for the runs from January 2020, reflecting the slightly degraded performance
of the detectors due to radiation damage from the prior beam time. The effect of radiation
damage on the detector setup will be further discussed in Section 3.6.1.
One challenge in the combination of front- and back-side data are instances where multiple
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Figure 3.5: Example distribution of the energy difference between the front- and back-side
signals on module 24 used to determine the energy-dependent gate condition
width.

Figure 3.6: Example distribution of the time difference distribution for the front- and
back-side signals on module 24 used to determine the energy-dependent gate
condition widths.

alpha particles are detected in a single detector at the same time. Since our reaction
products consist of up to four alpha particles, this has a non-negligible probability. The
only way to distinguish between these events is the energy and time information of the
signals. The impact difference of particles from one event is less than the time resolution
of the data acquisition system, as further elucidated in Section 4.1, leaving just the
energy information to distinguish between the events. If these alpha particle energies are
closer than the typical energy difference between front- and back-side signals of about
130 keV, the pairing of the signals becomes ambiguous. This problem is demonstrated in
Figure 3.7. The potentially mismatched pairings are still combined and their impact on
the analysis will be resolved in later processing steps (see Section 4.1.6).

Lastly, the obtained events are sorted by their timestamp to ensure that the events are
ordered correctly for the later analysis steps. The resulting output is then written to a
ROOT tree, which allows easy access to the data and efficient processing.
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Figure 3.7: Combinatorial problem in the pairing of front- and back-side signals on a
simplified proxy for the used DSSSDs. In this case strips 1,5,10, and 14 were
activated by two alpha particles landing in both A locations. Based on the
activated strips, the A and B combinations mark the two possible pairings.

3.4 Calibration
To analyze the data, the ADC channel information provided by the DAQ needs to be
converted into energies. For this, two different types of calibrations are used:

• A calibration of the detector strips using a Triple-alpha-source.

• A pixel calibration using the kinematic lines of the scattered alpha particles (and
the Triple-alpha-source, if sufficient statistics are available).

Statistics is a general problem for the calibration, as a sufficiently high number of events
per pixel is needed to obtain a reliable calibration. Since each strip comprises 32 pixels,
this limitation is especially relevant for the pixel calibration.

3.4.1 Strip calibration

To obtain an initial calibration of the LYCCA setup, a Triple-alpha-source was used.
The used source consists of 239Pu, 241Am, and 244Cm. These can decay into an alpha
particle and a daughter nucleus, which is either in its ground state or in an excited state.
The emitted alpha particles are observed and their known decay energies are used for
the calibration. As each of the isotopes can decay into multiple states which are close in
energy, first, the corresponding centroid energy of each isotopic decay must be determined.
This is done by using a simulation of the decays, summing up the individual decay energies
weighted by the branching ratio of the decay. The result of this simulation is shown in
Figure 3.8. Since the energy resolution of the LYCCA setup does not allow to fully
resolve the individual peaks per isotope, the effective peak position was then determined
by fitting Gaussian functions to the sum of the simulated events using the known decay
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Figure 3.8: Spectra of the simulated triple-alpha source used for the calibration of the
LYCCA setup. The peaks are fitted with Gaussian functions.

energies, weighted with their respective decay probability. The simulation also utilizes an
average detector energy resolution of 45 keV, which is in agreement with the measured
resolution of the detectors 3.5. The considered decays are listed in Table 3.3.

To obtain a calibration based on this reference data, a spectrum for each strip in
each detector is created. A Gaussian fit is then performed to each of the three primary
peaks of the triple-alpha spectrum. Using the expected mean positions obtained by the
simulation, this can then be used to determine a linear calibration function for each strip.
An example of a fit for detector 25 is shown in Figure 3.9. This mapping is later used for
the recombination of front- and back strip-signals (see Section 3.3.3).
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Table 3.3: Decay energies used for the calibration of the LYCCA setup [94–96].
Isotope Energy [keV] Branching ratio [%]

239Pu 5156.59(14) 70.77(14)
5144.3(8) 17.11(14)
5105.5(8) 11.94(7)
5076(8) 0.08(7)

241Am 5485.56(12) 84.8(5)
5442.8(13) 13.1(3)

5388 1.66(20)
5544.5(16) 0.37(3)

244Cm 5804.77(5) 76.9(10)
5762.64(3) 23.1(10)

Figure 3.9: Triple alpha spectrum for detector 25, strip 1 including the fits to the peaks.
The fit is performed on the sum of the simulated peaks. The peak widths
(sigma) are 42.3 keV, 43.3 keV, and 44.0 keV respectively.
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3.4.2 Pixel calibration

All emission energies of the three-alpha-source are below 5.9 MeV, yet the expected
energies from the studied reactions reach up to 25 MeV (for low scattering angles). To
not only rely on extrapolation, additionally measured kinematic lines of the scattered
alpha particles which excited states in 12C were utilized to improve the calibration and
provide reliable reference points at higher energies. The energy of the scattered alpha is
always directly correlated to the scattering angle off the beam axis, which allows us to use
each pixel’s position to compute the reference energies for each alpha particle, as can be
seen in Figure 3.10. For each pixel this provides a set of reference peaks at low scattering

Figure 3.10: Kinematic lines for a selection of excited 12C states below 11 MeV. The states
indicated by solid lines were used for the kinematic calculation in conjunction
with the triple-alpha source. The dashed lines indicate the elastic scattering
of the alpha particles, and the 1− state, not used for the calibration due
to angular coverage, and statistics. The gray areas indicate the angular
coverage of the detector array. Note the sharp decline in energy for higher
scattering angles, caused by energy loss of the scattered alpha particle inside
the target material.

angles in the wall detectors (10◦ - 29.5◦) up to high angles in the second ring (48◦ - 84◦),
as demonstrated in Figures 3.11a and 3.11b. The calibration is then performed by fitting
a second-order polynomial to the reference energies of the alpha particles in the DSSSDs.
This is done on a per-pixel basis, since each pixel has slightly different incident angles for
the alpha particles, which changes the expected energy as well as the energy loss in the
target material and the dead layer.
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Analogous to the triple-alpha source calibration, the particles used for the calibration
are alpha particles. This is important, as alpha particles are the particle of interest in the
primary study, and energy losses and deposition in the detector need to be consistent.
An additional reaction used for validating the assumed dead layer and calibration was
the 12C(α,d)14N reaction.

(a) Front-side energy spectrum of pixel (22,19),
DSSSD 15 (wall)

(b) Front-side energy spectrum of pixel (0,28),
DSSSD 1 (ring)

Figure 3.11: Energy spectra of one pixel in DSSSD 15 (wall detector, θ ≈ 20◦) and one
in DSSSD 1 (outer ring, θ ≈ 65◦) using the front-side energy signal. The
indicated peaks are from higher to lower energy: Elastic scattering (orange,
only seen in detector 1), the 2+ state (red), the Hoyle state (green), and the
3− state (black) in 12C, as well as the deuterium transfer reaction forming
14N (purple).

After fitting the peaks for each pixel and mapping the fit positions to the expected
reference values, a quadratic calibration function is obtained for each pixel, as seen in
Figure 3.12. The shown data points corresponding to ejectiles of the deuterium transfer
reaction was unused since the detected deuterium nuclei show different energy loss char-
acteristics in the detector and energy losses in target and detector dead-layer. The ground
state line was also not used for the calibration, as its ejectile energies are very close to
the energy range of the used electronics, where linearity begins to degrade. Additionally,
ejectiles of the elastic scattering reaction showed punch-through behavior, as can be seen
by the back-bending of the kinematic line towards lower energies, visible in Figure 4.1.
The scattering on the gold target showed a larger deviation and was therefore also not
used for the calibration.
The obtained fit function is then used to convert the ADC channel information into en-
ergies for the further analysis. A quadratic function is sufficient, since the AIDA FEE
modules provide a very low non-linearity in the energy signal [97]. Non-linearity contri-
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butions by energy losses in the dead layer are compensated by the energy loss functions.
The deviations of the calibration show slight deviations, introduced by differential non-

Figure 3.12: Quadratic calibration function for a single pixel in DSSSD 6 (index: 16,16)
showing strong linearity in the calibration function. The orange data points
denote the values used in the calibration: Triple-alpha source peaks, 2+

excitation, 3−, and 1− excitation in 12C. The blue points show the deu-
terium transfer reaction and the ground state. Error bars are plotted, but
are smaller than the marker size (typical measurement uncertainty: 60 keV,
typical reference uncertainty: 100 keV due to the angular uncertainty). The
highest energy point is below the calibration line due to its partial energy
deposition in the detector (“punch-through“).

linearities [98] in the detector response and energy losses in target and dead layer. These
deviations are shown in Figure 3.13 for the Hoyle state kinematic line in 12C. Many cali-

Figure 3.13: Deviation of the calibration function for the Hoyle state kinematic line in
12C for the calibration peak positions from a quadratic calibration.

brations improvements, such as the determination of the ideal dead layer-target thickness
combination, were performed by Alessandro Salice [99, 100]. Further details on this will
be provided in his master thesis.
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3.5 Energy resolution
The energy resolution of the detectors is an important metric for the analysis, as it
directly impacts the distribution widths in later analysis stages. The resolution is de-
termined per-pixel, as the energy loss in the dead layer, the ADC gain value / noise
contribution, and the available kinematic scattering lines differ for each detector group.
The obtained energy resolutions are shown in Figure 3.14. The obtained resolutions are

Figure 3.14: Comparison of the energy resolution for the kinematic line of different excited
states in 12C. The resolution is averaged over all detectors at the given angle.
The orange line corresponds to the 2+ state, the green line to the Hoyle
state, and the red line to the 3− state. The overall trend towards lower
energy resolution for higher scattering angles is caused by the increased
energy loss in the target material given by 1

cos(θ) . The larger width increase
towards higher energies for the Hoyle state is caused by low statistics in
the fits compared to the other states. The gaps in the data are caused by
the setup’s gaps between the detector rings and wall assembly and the rings
themselves. The inital gap below 24◦ for the 2+ state and Hoyle state are
caused by overlapping peaks of other reactions.

in the range of 40 keV to 45 keV for the triple-alpha calibration (see Figure 3.9) and
between 40 keV and 120 keV for the kinematic lines of the scattered alpha particles.
While the in-beam energy distributions are wider than the triple-alpha source calibra-
tion, the higher energies of the incident particles still result in a better relative resolution
compared to the source measurement. This has multiple reasons: The source activity
is very limited compared to the on average 25.7 kHz alpha detection rate (after Com-
bineStrips) during the beam time. Also, the values during the beam time are per-pixel
and the triple-alpha source calibration provides data per-strip. This has a small impact
on the resolution, as the differential energy loss dependent on the effective dead layer
thickness cannot be accounted for in the strip calibration.
The resolution during in-beam measurements is mainly impacted by energy straggling in
the target, as can be seen in the systematic increase of relative peak width towards higher
scattering angles θ. Additional contributions are minor uncertainties in the beam energy
as well as lattice defects introduced during the beam time. Additionally, charge carriers
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generated by the impinging alpha particles can become trapped in the detector’s dead
layer, which can lead to a worsened energy resolution and increased leakage current [101].
The resolution results are detailed in Table 3.4. The table shows the energy resolution for
the entire setup, not separate detectors. This is done, as opposed to providing a per-pixel
energy-resolution, to also factor in variations between pixels and systematic effects such
as minor position deviations which also increase the measured line thicknesses and impact
the energies of all particles detected by the LYCCA setup. An additional observation on

Table 3.4: Absolute and relative energy resolution compared to the incident energy for
the triple-alpha source and the in-beam measurements. This energy resolution
is based on the Energy-θ plot, which sums up all pixels for a given scattering
angle θ.

Energy [MeV] Resolution (sigma) [keV] Rel. resolution Measurement
5.17 49.08 0.95% 3α: 239Pu, det. 7
5.50 49.11 0.89% 3α: 241Am, det. 7
5.81 48.47 0.83% 3α: 244Cm, det. 7
5.16 42.30 0.82% 3α: 239Pu, det. 25
5.49 43.32 0.79% 3α: 241Am, det. 25
5.81 44.04 0.76% 3α: 244Cm, det. 25

21.06 46.38 0.22% 2+, θ = 24◦

17.06 75.29 0.44% 2+, θ = 50◦

12.50 87.11 0.70% 2+, θ = 75◦

17.78 42.96 0.24% 0+
2 (Hoyle), θ = 24◦

14.01 71.28 0.51% 0+
2 (Hoyle), θ = 50◦

9.85 117.36 1.19% 0+
2 (Hoyle), θ = 75◦

15.67 54.78 0.35% 3−, θ = 24◦

12.10 79.13 0.65% 3−, θ = 50◦

8.20 102.31 1.25% 3−, θ = 75◦

the energy-stability of the setup can be performed by evaluating the energy sum of the
detected particles of one event, discussed in the following chapters, throughout the en-
tire measurement campaign. This sum is expected to be constant for each event where
all particles are detected and only alpha exit channels are available, since for them all
energy should be accounted for. This energy should thus be equal to the energy of the
incident alpha particle with the beam energy. The test is performed by monitoring the
time evolution of this energy sum in the laboratory frame throughout the beam times.
This is shown in Figure 3.15. The energy sum in the center-of-mass frame exceeds the
beam energy, which is likely caused by a slight axis misalignment of the setup. This will
be further discussed in Section 4.1.4. Additionally, a slight oscillation in the energy sum
is observed which exceeds the expected energy resolution of the detectors and variance
of the beam energy of approximately 30 keV. If the angular offset hypothesis is correct,
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the oscillation could be caused by interplay of the reaction position reconstruction, dis-
cussed in Section 3.7, and the slight misalignment of the setup. Despite the visible effect
in Figure 3.15, the variation of the energy resolution in the center-of-mass resolution in
the laboratory and center-of-mass frame is below 9 % during the December measure-
ment (22.19 keV vs 20.36 keV) and below 13 % during the January 2020 measurement
(29.92 keV vs 26.65 keV), not counting the decrease in resolution between the December
2019 and January 2020 runs.

Figure 3.15: Time dependence of the energy-loss corrected energy sum of four particles
detected in coincidence.

3.6 Energy loss
The energy of the alpha particles E is reduced by energy losses ∆E in the target material
and the dead layer of the detectors. These losses depend on the energy of the alpha
particle and the thickness of the material, and the angle of incidence. The energy loss
functions are calculated using the SRIM software [81]. Since the detectors measure E −
∆E, a two-dimensional function ∆E(E − ∆E, d), where d is the path length through
the material, is used to correct the energy of the alpha particles. For this, energy-loss
functions are fitted to the SRIM-data for a range of thicknesses. In the analysis code
the four neighboring thicknesses are then cubicly interpolated to obtain the energy loss
for the given thickness of the target material.
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3.6.1 Dead layer thickness

The dead layer thicknesses were provided by the DSSSD manufacturer in the specifica-
tions of the detectors (see Section 2.2.3). During the analysis, the dead layer thickness
can be tested for consistency by systematically varying the thickness used in the energy
loss function. The linearity of the DSSSD and DAC response, as well as of the front-end
electronics, was demonstrated before. Using this premise, the optimum thickness value
corresponds to the best energy resolution for a low-order polynomial calibration function.
Using this approach a dead layer thicknesses between 2.45(25) µm and 3.10(31) µm of
silicon oxide, SiO2, was obtained. This corresponds to Si-equivalent thicknesses at the rel-
evant energies of the experiment of below 10 MeV between 1.99(47) µm and 2.51(54) µm.
Despite the simple core assumption of best linearity, the result is consistent with recent
measurements performed at the Lund University [98], where two test detectors of the
same type used in the LYCCA setup exhibited a dead layer thickness of 1.826(25) µm
and 1.96(9) µm Silicon-equivalent respectively. Their measurements demonstrated that
the dead layer variation over a detector surface can be even larger, as exemplified by a
surface scan of a detector in Lund, which is shown in Figure 3.16b, indicating a variation
of up to 0.3 µm in the dead layer thickness. The measurement in Lund was performed
using three different isotopes: 244Cm, 148Gd, and 133Ba, of which the 133Ba source was
used for the calibration, as it is an electron source, which has a neighboring energy loss in
the dead layer compared to the alpha particles of the other sources. The source positions
were then varied to obtain a surface scan of the detector and the dead layer thickness
was obtained by comparing the energies of the calibration and the measured peaks. The
obtained variation is due to the DSSSD manufacturing technology at production time.
Throughout the analysis the dead layer was assumed to be equal for all employed de-
tectors and constant over the detector surface, as a more detailed approach introduces
too many degrees of freedom. This, however, leaves room for future improvements in the
calibration, while ensuring a stable and consistent calibration for the current analysis.
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(a) Detector profile of a DSSSD at the Lund
University. The thickness variation is ap-
proximately 0.1 µm over the detector sur-
face.

(b) Detector profile of a second DSSSD at the
Lund University. The thickness variation is
approximately 0.34 µm.

Figure 3.16: Dead layer thickness profile of two DSSSDs measured at the Lund University
[102].

Detector window effects

A subset of ten of the utilized 18 detectors have small rectangular windows in the dead
layer, which covers the region of the backside strips 5 and 6. This can be seen in Fig-
ure 3.17a. These windows have a reduced dead layer thickness, but they do not cover
the full area of the strip, which causes double peaks in the energy spectra, since the ions
hitting the strip can either pass through the window or through the full dead layer. As
the pixel resolution does not allow to distinguish between the two cases, the doubling of
the peaks cannot be resolved for these strips. To prevent calibration issues and unclear
energy assignment, any signal coinciding with data from these strips is excluded from
further analysis.

3.6.2 Time walk

The most precise event timing signals captured by the AIDA FEE-modules are generated
by the leading-edge triggers of their discriminators. This type of discriminator trigger
is susceptible to the time-walk effect [75], which causes a systematic shift of the trigger
signal depending on the amplitude of the signal. Considering two signals which originate
at the same time, but have different energies, the signal with the higher energy will reach
the trigger threshold earlier than the signal with the lower energy, causing a systematic
deviation for the lower pulse. A visual representation of this effect can be seen in the
figure inset 3.18 (b). This not only shifts the time of the trigger signal, but also degrades
the time resolution as the shallower rising edge of the lower energy signal is more suscep-
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(a) Frontal view of one of the LYCCA-
DSSSDs with dead layer windows, visi-
ble as a vertical pattern of the dark rect-
angles. Also, on the left, the bonding
wires contacting the strips on the front
side are clearly visible. Adapted from
[103].

(b) Energy spectrum of a triple-alpha source of
strip 5 on a detector (module 24) exhibiting
a dead layer window. The spectrum shows a
second, higher-energy peak for each of the Pu,
Am, and Cm lines, where the incident alpha
particle passed through the window.

Figure 3.17: An example triple-alpha source spectrum used for calibration for a strip with
a dead layer window. Clearly visible are the doubled peaks caused by the
different dead layer thicknesses.

tible to noise and statistical fluctuations.

The shift caused by the time-walk effect is observed in multiple places during the
analysis: Initially it is visible in the time difference distributions between discriminator
and ADC signals. Here it only impacts a small fraction of the events, as a broad time
gate is used to combine the signals. During the later data anlysis stages, the results are
more sensitive to the shift, as the gates are typically narrower than 100 ns. To mitigate
this, a simple function,

f(x, a, b, c, d, e) = a+ b · exp
(

−c+ x

d

)
+ e · x,

is fitted to a ∆t-E histogram, which is filled during a prior analysis step. The energy is
the absolute energy of the measured alpha particle, and the time is the time difference to
the scattered alpha, if the energy of the scattered alpha is above 10 MeV. This function is
then used to shift the timestamps depending on their energy. Correcting this systematic
shift narrows the time distribution of the coincident alpha particles. This is especially
relevant for the Hoyle state decay, as the energy of the decay products is much lower
than the energy of the scattered alpha particle used for the initial kinematic gate. In
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addition, the broader time distribution for lower energies needs to be taken into account
in the coincidence gate. To integrate this, another, similar, function is used to also fit
the distribution widths. An example for this can be seen in Figure 3.18 (a), where the
time-walk correction curve for one of the detectors is shown.

Figure 3.18: (a) Time-Walk correction curve for module 24 for the data of the second
beam time. The data points are the fitted centroid of each slice (projection)
of the measured 2D energy-∆TS distributions. The fit function and its
confidence interval, plotted in orange, are detailed in equation 3.6.2. The
asymptote, shown in blue, is assumed to be constant and passes through
the energy of the reference detection from which ∆TS is computed. (b)
illustrates the cause of the shift: Two example signal pulses (black and
red) with different energies are shown. The indicated discriminator trigger
threshold is reached earlier by the higher pulse, causing a systematic shift
in the time difference between incidence and trigger.

3.7 Beam spot position
Since the employed reconstruction approach is highly sensitive to the reaction angles,
the beam spot movement during the beam time becomes a contributing factor to the
systematic uncertainties. After an initial promising demonstration as part of the work
of Mădălina Răvar [104], an updated approach was developed to determine the beam
spot position. To reconstruct the beam spot position on the target, a reaction with an
otherwise unwanted contaminant in the target can be used: Hydrogen. The reaction of
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the alpha particles with the hydrogen in the target material causes scattering under low
angles, producing a crescent-shaped distribution on the energy-theta plots. This shape
can be seen in Figure 3.19. Since the kinematics limit the scattering angle of the alpha
particles to below 14.6◦, this maximum can be utilized to validate the relative offsets from
the pixel to the reaction position, where the beam intersects the target. The pixels which

Figure 3.19: The alpha scattering kinematics on hydrogen embedded in the target. The
solid line shows the expected kinematic line for the scattered alpha particles.
As can be seen, these can only be detected inside the wall detectors. The
dashed lines show the corresponding hydrogen scattering line.

registered the alpha particles at the scattering angle corresponding to the scattering on
hydrogen are then selected and used to fit a circle to the pixel positions. The center of
this circle is the beam spot position. Additional information can also be obtained by
fitting the circle separately per wall detector. This can be used to refine the positions
of the wall detectors and ensure alignment. The resulting position is obtained for each
batch of ten subruns (to ensure the statistics are sufficient for fitting). This can be
plotted over the course of the two beam times for each wall detector. As can be seen in
Figures 3.21 and 3.22, the detector movements are parallel which indicates a global shift
corresponding with movement of the beam spot. The discontinuity between the first and
second beam time is caused by hardware changes: The mounting of the tantalum covers
caused minor shifts in the wall detectors, which were corrected for in the analysis based
on the discussed beam spot determination. Additionally, since the beam times were not
continuous, the beam had to be focused onto the target again for the second beam time,
resulting in a slightly different initial reaction position.
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Figure 3.20: The pixels containing the kinematic line of the α on 1H scattering process.
The fits are shown for each detector. The blue (dashed) lines are the left
and right wall detectors (module 14 and 25), the red (dotted) lines are the
top and bottom wall detectors (module 15 and 24).

The effect of the beam spot position correction can be seen in Figure 3.23 when com-
pared to the plots in Section 4.1.3, such as Figure 4.10. The angular deviations are
reduced to a shape that is closer to the expected ellipse, which is caused by initial beam
diameter and angular straggling of the beam particles. The remaining deviations are
caused by the detector positions, which are further discussed in the next section.

3.8 Detector positions
When the setup was originally designed, the precision of the DSSSDs’ positioning was
specified to be within 0.1 mm. This precision is limited by the mechanical support of
the DSSSD wafer and PCB, which is realized through connectors on the backside of
the wafer. These allow for slight movement of the DSSSDs, and tilting, which reduces
the precision of the setup. Since the measured reaction is overspecified, the geometry
of the reaction and the physical constraints on the pixel positions can be used (the
detectors are planar), to optimize the positions. This can be done using the inelastic
scattering reactions in which the 2+ state of 12C is populated, since the alpha energies
are low enough to be fully deposited in the DSSSDs, but the excited Carbon nucleus
does not undergo a further decay. This eliminates the energy sensitivity which exists in
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Figure 3.21: Determined horizontal beam spot position during the first and second beam
time. Runs 1-80 are from the first, the later ones from the second beam
time. The color scheme is the same as in Figure 3.20.

Figure 3.22: Determined vertical beam spot position during the first and second beam
time. Runs 1-80 are from the first, the later ones from the second beam
time. The color scheme is the same as in Figure 3.20.

our reconstruction approaches (e.g. for the Hoyle state decay), because the two-body
kinematics only depend on the measured angles of the 12C nucleus and the scattered
alpha in the laboratory system. This allows to use the reaction plane (∆ϕ = 180 deg)
and θαscatter vs θ12C dependency to compute the deviation between current and expected
detector positions per pixel. Using these deviations, a chi-squared minimization can
be performed to optimize the detector positions in a multi-step process. Initially only
the angular positions are optimized, because the setup is not directly sensitive to radial
components of measured vectors. The next step computes the rotations of the detector
planes and can also approximate radial shifts, since these change the apparent opening
angle of the detectors.
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Figure 3.23: Angular deviations between the expected and measured reaction plane nor-
mal / scattering offset for one run file. The plot uses a reaction position offset
of 1 mm off the chamber center, below the maximum beam spot movement
during the analysis. The construction of this plot is further detailed in Sec-
tion 4.1.3.

3.8.1 Position de-aliasing

Since each detector pixel only provides location information based on its own position
within the detector, the position of the detected alpha particles is fixed to discrete posi-
tions. This can lead to alias effects, where the sharp distribution of the alpha particles’
positions causes distortions in the angular distributions and center-of-mass frame ener-
gies.
These aliasing effects not only cause visual artifacts, but also interfere with the auto-
matic gate finding algorithms. To mitigate this, each hit is assigned a random position
within the pixel area, which is then used for further analysis. This effectively smooths
the angular distributions and reduces the aliasing effects.
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Chapter 4

Analysis of excitations above the α

decay energy

With the data now in a suitable format, the primary physics analysis can be performed.
To avoid confusion in the following sections, an event refers to a single reaction in the
target of which at least one alpha particle was detected, while a single detection in a
detector is referred to as a hit. The terms condition and gate are used interchangeably
and refer to a selection criterion that is applied to the data.
After initial processing, 3.2 · 109 particle detections (hits) were recorded during a cumu-
lative measurement time of 13.5 days. This data contains the reactions of interest, but
also a plethora of background events, which need to be suppressed. These range from
beam reactions on target contaminants or on residual gas to narrow angle scattering on
installed slits and apertures, and even include rare events from natural background radia-
tion. Additionally other excited states in 12C are populated, which need to be suppressed
using conditions, commonly referred to as gates.
A useful visualization of the obtained data is to plot the energy E of the detected parti-
cles against their detection angle θ. The angle is defined as the angle between the beam
axis and the detector pixel, so it corresponds to the scattering angle of the particle. The
E-θ plot of the obtained data during the beam times can be seen in Figure 4.1. The
most prominent features in the plot are the distinct lines spanning from lower to higher
scattering angles which are decreasing in energy towards the higher angles. These are
the so called kinematic lines which contain the ejectiles of each reaction, the scattered
projectile-like alpha particles, and are essential for the selection of events from a reaction
of interest, as each line corresponds to a specific reaction. Parallel lines typically originate
from reactions with the same target nucleus, but at different excitation energies, since
energy conservation dictates that less energy is available for the ejectile if higher lying
states are populated.
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Figure 4.1: Energy of the scattered particles registered in the DSSSDs against the detec-
tion angle of the respective pixel to the beam axis. Highlighted by dashed
lines are the kinematic lines corresponding to elastic and inelastic scattering
in 12C, involving the four lowest energy states in it. The states corresponding
to each line are (top to bottom): The ground state, first 2+ state, the Hoyle
state, and the 3− state.

4.1 Reaction selection
As a lot of different reactions occur in the target, the initial test condition should suppress
as many unwanted reaction events as possible. One effective technique is the use of
kinematic conditions, where the energy and angle dependency of one or more of the
reaction products are used to select the reaction of interest.
This is based on the fact that each reaction populating an excitation in 12C follows either

12C(α, α′)12C(∗) (4.1)

for inelastic scattering and excitation of states below the particle separation threshold of
7.275 MeV, or

12C(α, α′)3α (4.2)

for higher lying states, such as the Hoyle state. The alternative radiative decay of the
Hoyle state is in comparison highly unlikely (see 1.5).

It is thus expected to observe one scattered alpha particle on the kinematic scattering
line corresponding to the state of interest (see Figure 3.10). The condition checks for
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Figure 4.2: The two different reaction types in 12C: (a) - scattering below the particle
separation threshold and (b) - the decay of the Hoyle state and higher lying
states. The beam enters from the left.

the energy difference for each detected alpha particle relative to the kinematic line of the
Hoyle state for the scattering angle of the particle. The resulting energy distribution is
shown in Figure 4.3. The typical energy difference for event selection is set to ±250 keV,
which is a compromise to reduce the background while still allowing for a sufficient number
of events to pass the condition. It is selected based on the energy straggling in the target
and energy resolution of the setup, which were discussed in Section 3.5. For each ejectile,
either three alpha particles, or a carbon nucleus will be emitted and can be registered in
the detector array in coincidence with it. The time span between these events is called
the coincidence window.

Figure 4.3: Energy difference between the scattered particles registered in the DSSSDs
and the kinematic line of the Hoyle state evaluated at the scattering angle
of the detected particle. To show this dependency, it is plotted against the
scattering angle.

It is chosen based on the time resolution of the detectors and electronics at the particles’
energies and other contributing factors, such as the time of flight of the particles. These
only have a minor impact, compared to the leading-edge effects at low energies, though,
as all flight times are sufficiently short: The longest flight distance in the setup is the
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distance between the target and the wall detectors. The detection threshold in the wall
detectors (mod. 14, 15, 24, and 25) is set to 800 keV and above. As this is the detected
energy, the minimum particle energy before energy losses in the detector’s dead layer
is approximately 1.1 MeV, as can be seen in Figure 4.1. The resulting minimum alpha
particle velocity is vα,min = 7.3 mm

ns . Since the maximum distance between the target and
a detector pixel is dmax = 208 mm, this would result in a maximum time of flight of

tToF,min = dmax

vα,min
= 28.4 ns. (4.3)

The minimum time of flight for an ejectile corresponding to an excitation energy above
7.654 MeV in 12C at an energy of 15 MeV and a velocity of 26.8 mm

ns , is achieved for the
minimum detector distance in the barrel detectors, at a distance of dmin = 83.5 mm,
resulting in a minimum time of flight of

tToF,max = dmin

vα,max
= 3.11 ns. (4.4)

Given the time resolution of the data acquisition system of 10 ns, this results in a maxi-
mum deviation of 3 ticks. Although this value is small, the following coincidence window
is set slightly asymmetrically to compensate for this, as shown in Section 4.1.1.
To set a gating condition on events on a line in the E-θ plot, the relationship of energy
and scattering angle is required. The computation of the required curves was performed
using the LISE++ software [105] and the catkin calculation tool [106]. The derivation
of the used relativistic scattering formula is given in [107].
Using the kinematic lines of the levels of interest, the analysis codes iterate over all de-
tector hits and search for events that lie on the kinematic lines. If an event is found, the
next analysis step is triggered, which is the coincidence condition. Since this requirement
limits the possible energy-angle coordinates to a thin kinematic line, only a small frac-
tion of the recorded events will pass this condition. This is an effective way to suppress
contaminating background events.

4.1.1 Coincidence condition

For each detected ejectile α′ on the kinematic line, the analysis code selects all other
hits in a defined time span, the coincidence window. In the case of the Hoyle state, the
coincidence window is set to −9 to +12 ticks, which corresponds to −90 ns to 120 ns.
This range was chosen during the analysis, as it optimized the acceptance of the Hoyle
state decay events while minimizing the background. This initial phase of the kinematic
condition generates a list of all hits that occur within the coincidence window of the
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detected ejectile. Plotting the time difference between the ejectile and all other registered
hits shows a clear peak at zero, as expected. This can be seen in Figure 4.4.

The second phase of the coincidence condition additionally compensates for the time-

Figure 4.4: Time difference between the scattered alpha and all other registered hits for
each event after applying the broad coincidence condition: Each event con-
tributes as many points to the plot as its multiplicity contains.

walk effect caused by the used leading-edge discriminators. This is the energy-dependent
coincidence condition. This topic was discussed in more detail in the prior Section 3.6.2,
where individual event building was discussed. Since the energy of the ejectile is typically
much higher (at least 5 MeV for the Hoyle state) than the alpha particles originating from
the 12C decay, the delay of its signal is much shorter. The applied correction function
compensates for this systematic shift, but another effect needs to be considered: The
time resolution of the detector and electronics degrades towards lower energies due to
the time-walk, which results in a broadening of the time distribution of the detected
events due to signal ripple, noise and statistical fluctuations of the detection process.
Using this distribution, shown in Figure 4.5a, for each energy-bin, a projection of the
time difference distribution is created, to which a normal distribution is then fitted.
The energy-dependent gate condition-window function is then set to 3σ of the normal
distribution corresponding to the energy range of the detected particle. The impact of
the second phase is demonstrated in Figure 4.5.

A brief remark needs to be made on the implementation of the coincidence condition:
Since large parts of the following processing have to be performed for every single reg-
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(a) Time differences of hits before the energy-
dependent coincidence condition.

(b) Time differences of hits after the energy-
dependent coincidence condition.

Figure 4.5: Time difference between the detected ejectile and all other registered detec-
tions within the initial coincidence window plotted dependent on the energy
of the respective coincident particle. Note the broadening towards lower en-
ergies, which is similar to the time - energy plot in Figure 3.6, since the cause
of the reduced time resolution in both cases is the time-walk effect.

istered detector hit, performance is a critical factor. As ROOT trees are optimized for
sequential access, the coincidence condition uses two techniques to speed up the search.
First, a ring-buffer constantly stores the last 32 events, which allows for a fast backwards
search for coincident events at negative timestamp differences. The ring buffer size was
optimized to allow for a wide search range while still fitting into the fastest cache of the
available CPUs. This buffer is accessed every time a hit on the kinematic line is found
and populates a buffer storing the coincident event up to the currently processed entry.
The second technique is to store a list of open coincidence windows while iterating, which
are then checked for each event. This allows one to fill the buffer with the coincident
events that occurred after the entry containing the hit on the kinematic line. After each
read event, the list of open windows is updated, and the code checks if the current event
is outside of the updated window. If this is the case, the window is closed, and the buffer,
now containing all hits that have timestamps within the defined coincidence window,
is processed. Another optimization was the use of SIMD (Single Instruction, Multiple
Data) instructions to speed up the test for the kinematic line, which allow for a parallel
evaluation of the terms of the polynomial function used to define the kinematic line.
All parameters of the search, the conditions’ gate functions, energy-width, and the co-
incidence window are fully configurable, enabling the analysis of higher lying states in
12C, which is discussed in later parts of this thesis. Further details on the location of the
source code and the implementation can be found in the appendix A.7.
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4.1.2 Multiplicity of detected alpha particles

Since the reaction of interest is a three-body decay, the detection of four alpha particles
(including the ejectile) is expected, as shown in Figure 4.2. After applying the coincidence
condition, the multiplicity of the detected alpha particles is determined by counting
the number of particles within the selection. The majority of events measured have a
multiplicity of less than four. Compared to the expected multiplicity of four, which
was observed 1.238 × 106 times, higher multiplicities were observed less often, as listed
in Table 4.1, showing that the multiplicity of three was observed almost an order of
magnitude more often. There are multiple reasons and combinations of reasons for the
high fraction of low multiplicity events:

Multiplicity Count
1 5.426 × 107

2 3.297 × 107

3 1.080 × 107

4 1.238 × 106

Table 4.1: Multiplicity of detected alpha particles after applying the coincidence condi-
tion.

• A substantial fraction of these events are elastic scattering reactions, only resulting
in a multiplicity of two, where ejectile and recoil nucleus are detected.

• Excitations below particle separation energies can also only register as multiplicity
two events: ejectile and recoil nucleus.

• Since the detectors have a limited solid angle coverage, some of the decay products’
trajectories will not intersect a detector’s active area, reducing the multiplicity.

• Comparable to the previous point, the energy losses in the dead layer of the detectors
reduce the energy of the particles below the detection threshold of ≈ 700 keV.

• Dead time can also cause detector hits to not register.

• A high fraction of low-angle scattering events transfers very little energy and mo-
mentum to the recoil nucleus, causing the recoiling particle to be fully stopped in
the target.

• Although most alpha particles deposit their entire energy in the detector, for some
outer strips the efficiency is reduced by alpha particles scattered out of the sensitive
depletion zone.

89



CHAPTER 4. ANALYSIS OF EXCITATIONS ABOVE THE α DECAY ENERGY

Apart from low-multiplicity events, there is also a low chance for multiple events to over-
lap, since the incident alphas are independent events, although this probability is very
low, as seen in Figure 4.6, in which only few events have a multiplicity above four. De-
spite the fact that overall most detected events are elastic, the majority of the events
that reach the multiplicity condition correspond to excitations of the Hoyle state.
A direct comparison of the multiplicity of the detected events with the expected mul-

Figure 4.6: Multiplicity of the detected alpha particles in the DSSSDs. The gray region
highlights multiplicity-4 events, which are expected for the Hoyle state decay.

tiplicity of the Hoyle state decay is non-trivial, as different angular configurations have
vastly different detection probabilities. To estimate the number and distribution of un-
detected alpha particles, a Monte Carlo simulation was performed, which is discussed in
Section 5. The condition’s gate width is chosen based on the time distribution of the
registered events. If a constant background is assumed, the ratio of the selected events
to the total number of events can be directly controlled by the selection window width
of the used conditions during the analysis.
As can be seen in the selected fraction of the data in the E-θ plot (Figure 4.12a) and
the multiplicity plot (Figure 4.6), the coincidence condition in combination with the mul-
tiplicity criterion is a highly effective filter if applied to the obtained data: The plots
visualize that only sparse events remain outside the expected kinematic line and the area
containing the decay alphas. Note that in all E-θ plots, the area of the decay alphas
is not continuous but interrupted by the gaps between the detector rings and the wall
assembly and the rings themselves. The overall shape of it is determined by the kinematic
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line of the recoiling 12C, but is broadened by the momentum distribution of the decay
alphas. This becomes more evident when comparing the distribution of the Hoyle state
decay alphas with those of the 3− state, which has a higher excitation energy and is thus
further broadened.

To better visualize the obtained data and get an impression of the effects of detector
coverage, the detected alpha particles can be plotted on a 2D mapping of the detector
coverage. This mapping shows the position of each detected alpha particle in the DSSSDs
in a θ-ϕ polar plot. This is shown in Figure 4.7.

Figure 4.7: Detected alpha particles in the DSSSDs after applying the kinematics, coinci-
dence and multiplicity gate conditions. Clearly visible are the barrel structure
of the DSSSDs and the detector wall assembly. The perspective originates
from the position of the target downstream along the beam trajectory to-
wards the detectors.

4.1.3 Angular condition (∆θ and ∆ϕ)

The kinematic relationship between the ejectile and the recoiling carbon nucleus is well
understood. This allows for the use of selection conditions on the angular distributions
of the detected particles to further suppress background events. Since the excited carbon
nucleus above the particle separation threshold decays into its three alpha constituents, its
trajectory is not directly observable, and needs to be reconstructed from the measured
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alpha particles. Since none of the three alpha particles’ energies exceed 6 MeV, their
velocities are below 5.7 % of the speed of light, resulting in γ < 1.002. This allows for the
use of non-relativistic kinematics, which reduces the reconstruction of the trajectory of
the recoiling nucleus to a direct vector sum of the momentum vectors of the three alpha
particles.

Computing the direction vector of the carbon nucleus immediately yields its scattering
angle θ12C and azimuthal angle ϕ12C relative to the beam axis. Furthermore, as the scat-
tering angle of the scattered alpha particle is also known, the expected scattering angle of
the carbon nucleus, θ12C,calc, can be calculated from the kinematics. Although we expect
both angles to be equal and angular straggling in the target material should only cause
slight broadening, the main intent of this condition is to suppress background events,
where the ejectile’s trajectory does not match the trajectory of the recoiling nucleus. The
majority of the events at this point originate from the decay of the Hoyle state, as the
previous conditions have already suppressed most other events.
The θα-θ12C relationship was extracted using the LISE++ software [105] and is shown
in Figure 4.8. Based on this, two conditions can be derived: One in the θ and one in

Figure 4.8: Scattering angle θ12C of the carbon nucleus relative to the beam axis as a
function of the scattering angle θα of the scattered alpha particle for a 27 MeV
alpha beam exciting the Hoyle state (7.654 MeV). The shaded areas mark the
angular coverage of the detectors.

the ϕ direction. These initial two conditions are demonstrated in Figure 4.9, which show
the angular difference between the reconstructed 12C nucleus and the computed θ and ϕ

based on the scattered alpha particle.
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Momentum conservation dictates that the initial scattering axis must form a reaction
plane which passes through the beam axis. This results in an angle difference of 180◦

between the scattered alpha and the carbon nucleus in the laboratory frame, as can be
seen in Figure 4.9b. Secondly, the difference in the scattering angle of the scattered alpha
and the calculated scattering angle of the carbon nucleus should be small, as shown in
Figure 4.9a.

(a) Distribution of the scattering angle dif-
ferences between 12C and ejectile (θ12C −
θ12C,calc).

(b) Distribution of the azimuthal angle differ-
ences between 12C and ejectile (ϕ12C −
ϕ4He,scatter).

Figure 4.9: The angular distribution of the difference between the scattering angle of the
reconstructed 12C nucleus and the computed θ based on the scattered alpha
and the relationship of the azimuthal angles of ejectile and recoiling nucleus.

There is an additional improvement that can be made: The angular deviations, given
by detector pixel size, angular straggling, beam width and energy loss in the target ma-
terial before the reaction (changing the reaction energy), are not separated in θ and ϕ.
Their scattering process results in a cone-shaped angular distribution, which is centered
around the expected point. Projected onto the detector planes, this results in an elliptical
distribution of events.
Gating on this shape can be used to improve the gate condition’s efficiency, the measure of
how well the condition separates the events of interest from the background. This is done
by using a two-dimensional elliptical condition, which is demonstrated in Figure 4.10.
As can be seen the data follows the expected elliptical shape and the filter condition’s
selection, indicated by a line, matches the data well.

These conditions are also automatically deduced by fitting the distributions shown in
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(a) Angular difference distribution before ap-
plying the angular condition.

(b) Angular difference distribution after apply-
ing the angular condition.

Figure 4.10: The angular distribution of the difference between the reconstructed 12C
nucleus and the computed θ and ϕ based on the scattered alpha

Figure 4.9 with Gaussian functions and using the mean in θ and ϕ as the center of the
filter condition’s ellipse. While the width can also be determined from the fit, it is set to
the fixed values referenced in Table 4.2 to allow setting widths corresponding to expected
straggling and detector resolution values during testing. The condition thresholds are set
between 1.9 and 2σ for ∆θ and between 2.3 and 2.6σ for ∆ϕ of the fits of the measured
∆θ and the ∆ϕ distribution for the decay analysis. The exact values set to be more
robust in fit-deviations between individual runs.
The reason to use the mean values determined via fit is to make the system more robust
against deviations in the detector alignment and the beam energy at the time of reaction,
which is directly dependent on the energy loss of the initial beam particle before the
reaction. These offsets can be seen in Table 4.2, which shows a deviation towards lower
angles for the ∆θ condition and a minor offset in the ∆ϕ condition.
The condition for the angular gate is defined as an elliptical region in the (θ, ϕ) plane.
The area of this ellipse relative to the total area of the forwards facing semi-spherical sur-
face is a measure of the gate condition’s efficiency, if uniformly distributed background
events are assumed, and can be used as an initial test for the suppression efficiency for
random events. Although many background events follow kinematic dynamics, each of
these events has its own reaction plane, resulting in a spread along the ϕ axis. Addition-
ally, reactions where the scattered alpha particle does not match the reconstructed 12C
nucleus will also be suppressed by this gate condition as their relationship between θα′

and θ12C will in most cases not follow the scattering dependency shown in Figure 4.8.
This is visualized for a single event in Figure 4.11, where the opening angle of the cone
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Figure 4.11: Schematic of a scattering reaction in the laboratory frame. The beam en-
ters from the left. The grey outlines indicate the detector positions. The
exaggerated opening angle of the 12C cone shows the orientation of the angle
differences in the ∆θ and ∆ϕ directions.

corresponding to the reconstructed 12C nucleus shows the width of the angular gate con-
dition.
Using these assumptions, the ratios between the angular deviation of an individual event,
∆θ and ∆ϕ, and the width of the gate condition, wθ and wϕ, which is based on the fit of
the distribution of the angular deviations of the accumulated events, can be used to to
test if an event passes the gate condition. An event satisfies the gate condition if:

(
∆θ
wθ

)2

+
(

∆ϕ
wϕ

)2

< 1.

This inequality defines an elliptical region in the (θ, ϕ) plane. The area Aellipse of this
ellipse is:

Aellipse = πwθwϕ.

To estimate the gate efficiency, an elliptical cone with half-axes θ and ϕ is assumed. The
isotropic background suppression efficiency is then given by the ratio of the area of the
elliptical cone to the solid angle coverage of the detector array, ΩLYCCA, which is given in
Table 2.1.
For small angles, an elliptical cone with half-angles θ and ϕ can be used to approximate
the area. Thus, the solid angle Ωelliptical cone is given by

Ωelliptical cone ≈ 2π (1 − cos θ cosϕ) . (4.5)
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To find the open angle coverage relative to the detector coverage

Coverage = Ωelliptical cone

ΩLYCCA
, (4.6)

substituting the respective solid angles, the following expression is obtained:

Coverage = 2π (1 − cos θ cosϕ)
ΩLYCCA

. (4.7)

The measured positions and used thresholds widths are listed in Table 4.2. For the given
elliptical condition, the relative coverage is 1.88 % for the Hoyle state and 1.97 % of the
solid angle of the setup for the 3− state, corresponding to an isotropic background sup-
pression of 98.12 % and 98.03 %, respectively.
As can be seen, the positions are in very good agreement, and only 0.114◦ off for the ∆ϕ

Table 4.2: Measured positions and widths of the angular condition.
State Condition Mean [◦] Width [◦] Threshold [◦] (Half gate width)

Hoyle state ∆θ −0.009 0.46 1.2
∆ϕ 180.114 1.68 3.8

3− state ∆θ 0.012 0.75 1.5
∆ϕ 180.020 1.98 3.75

gate and 0.009◦ off for the ∆θ gate for events matching the Hoyle state kinematics. For
the next higher-lying excited state, the 3− state, the deviations are 0.012◦ and 0.020◦,
respectively. These deviations demonstrate the robustness of the gate conditions and the
quality of the detector position calibration discussed in Section 3.8. It is of note that
the alignment procedure can only shift entire detectors, and not individual pixels, which
makes the obtained result less prone to overfitting and systematic errors. One systematic
dependency, however cannot be mitigated by this technique: If the beam vector is not
perfectly parallel to the central symmetry axis, this cannot be corrected by the alignment
procedure or registered in the angle-offset calibration. The reason for this is, that the
angular theta-dependency between ejectile and recoil has a negative slope, as can be seen
in Figure 4.8: As the recoil is emitted 180◦ opposite to the ejectile. A slight rotation
of the beam axis would increase either the ejectiles’ or the recoils’ scattering angle and
decrease the scattering angle of the other, shifting the event on the θ-θ curve.
Despite this shortcoming, the angular condition is still a helpful requirement to discrimi-
nate kinematic events not originating from the initial beam momentum: The Energy - θ
plot after applying the angular gate demonstrates that the gate is effective in suppressing
background events, as the remnants of background lines are reduced and the resulting
distribution gets narrower, as seen in Figure 4.12.
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(a) Energy of the scattered particles against
the detection angle of the respective pixel
to the beam axis before applying the angu-
lar gate.

(b) Energy of the scattered particles against
the detection angle of the respective pixel
to the beam axis after applying the angular
gate.

Figure 4.12: Energy of the scattered particles detected in the DSSSDs against the detec-
tion angle of the respective pixel to the beam axis.

4.1.4 Energy sum conditions

Another conserved quantity that can be used to suppress background events is the con-
servation of energy in all reference frames. This is used twice in the analysis: Once in
the laboratory frame, the following relationship can be utilized:

4∑
i=1

Eαi
+ Eα′ + ∆m = Ebeam, (4.8)

where Eαi
is the energy of the decay alpha particles, Eα′ is the energy of the scattered

alpha particle, ∆m is the energy equivalent to the mass difference between 12C and the
three alpha particles, and Ebeam is the initial beam energy. This can be seen in the
energy sum plot in Figure 4.13. The mean value of the distribution is at 27.4 MeV,
which is 1.5 % above the beam energy. This is caused by the energy loss correction term
slightly overestimating the energy loss in the target material as well as minor coordinate
deviations caused by the beam spot size. This distribution shifts the reference lines used
for the energy calibration towards lower scattering angles, where they are erroneously
shifted to higher energies. This effect is reduced by the reaction position correction,
but not fully compensated. As all decay-related processes are easier to describe in the
center-of-mass frame of the decaying 12C nucleus, a transformation to this reference
frame is performed for each event. To do this, the already computed velocity vector of the
reconstructed 12C nucleus is used to transform the energy and momentum of the detected

97



CHAPTER 4. ANALYSIS OF EXCITATIONS ABOVE THE α DECAY ENERGY

Figure 4.13: Energy sum of the four detected alpha particles in the laboratory reference
frame with applied energy loss correction. The mean value of the distribution
is at 27.4 MeV.

alpha particles into relative movement to the 12C nucleus. Since the three alpha particles
originate from the decay of this nucleus, all vector quantities are thus transformed into
the center-of-mass frame. As discussed earlier (Section 4.1.3), these transformations are
only valid due to the low velocities of the measured alpha particles. Using the velocity
vectors, the kinetic energies of the alpha particles in the center-of-mass frame can also
be calculated.
Based on this transformation, the second energy gate is applied in the center-of-mass
frame, where the energy sum of the decay products must equal the excitation energy of
the populated state in 12C plus the Q-value of the break-up reaction:

3∑
i=1

Eαi
= Eexc +Qbreak-up. (4.9)

The Q-value for the Hoyle state is 379.6 keV [45]. These equations are only valid if the
energy losses in the target material and the dead layer of the detectors are taken into
account. Any deviation from the expected energy sum will still produce a peak in the
energy spectrum that can be used for gating, but the peak position will be shifted and
the peak broadened, reducing the gate efficiency. The energy gates are demonstrated
in Figure 4.15. The used fit functions are Voigt functions, which are a convolution of a
Gaussian and a Lorentzian distribution. The Voigt function is used to account for the
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energy resolution of the detectors and the intrinsic width of the peaks.
For the energy gates, we use the energy sum of the four alpha particles in the laboratory
reference frame plus the reaction Q-value and the three alpha energy sum of the decay
products of the Hoyle state in the center-of-mass frame of the decay. As evident by the
elliptical distribution in the energy sum- energy histogram (Figure 4.14a), the energy
sums are generally independent, but a slight trend can be observed. This is caused by
the energy loss in the target material and its impact on the reconstruction of the center-
of-mass frame.

(a) Energy sum of the four detected alpha
particles before applying the laboratory-
frame and center-of-mass-frame energy
conditions.

(b) Energy sum of the four detected alpha par-
ticles after applying the laboratory-frame
and center-of-mass-frame energy condi-
tions.

Figure 4.14: Comparison of the energy sums of the four detected alpha particles in the
laboratory and in the center-of-mass frame before and after the energy-sum
condition.

The obtained gate widths are displayed in Table 4.3.

Table 4.3: Measured positions and widths of the energy-sum selection conditions in the
laboratory and center-of-mass frame for both experiments.
Condition 2019 2020
Condition Mean [keV] Width [keV] Mean [keV] Width [keV]
Σ4,lab.Eα 27313.8 275.9 27349.5 304.1
Σ3,CoM.Eα 389.0 21.2 389.1 28.3

As can be seen in the energy-theta histogram in Figure 4.15, the gates suppresses all
events outside the primary distribution.
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Figure 4.15: Energy of the scattered particles registered in the DSSSDs against the de-
tection angle of the respective pixel to the beam axis after applying the
coincidence gate after all utilized gate conditions (kinematics, coincidence,
multiplicity, angular distribution, energy sum in laboratory and center-of-
mass frame).

4.1.5 Event selection efficiency

Each gate applied to the data has an associated efficiency, which is governed by its
sensitivity, the probability that a true decay event is accepted by the condition, as well
as its specificity, which is the probability that a background event is rejected by the gate
condition. The efficiency of the gates is crucial for the analysis, as it directly influences
the statistics of the data. Both metrics are directly dependent on the width of the gate,
which is always a trade-off between efficiency and specificity.
The most selective condition is the kinematic filter, followed by the multiplicity gate.
The energy condition passes almost 85 % of the events. The efficiencies for the applied
conditions are summarized in Table 4.4 for the combined December 2019 and January
2020 datasets.
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Table 4.4: Gate efficiencies and detection counts for the applied gates for the combined
dataset (December 2019 and January 2020). Four detected hits make up a
final event.
Gate Remaining registered hits Efficiency [%]
Raw data 3.19 × 1010 -
Kinematic 1.56 × 108 0.490
Multiplicity 4.45 × 106 2.844
Angular 4.12 × 106 92.646
Energy sum 3.46 × 106 84.030
Energy sum (COM) 2.61 × 106 75.374
Combinatorial veto 2.34 × 105 16.878

Since the values in the table count detector hits, the amount of Hoyle state decay events
was only a quarter of the registered particle count. This results in 2.61×106/4 = 6.52×105

remaining Hoyle state decay events after all gates have been applied. The resulting event
counts for each beam time are summarized in Table 4.5.

Table 4.5: Total Hoyle state decay events (4 alpha particles each) after the final condition
for complete events where all 4 particles were detected with a gate width of
1.5σ with and without the combinatorial veto, discussed in Section 4.1.6.

Dataset Remaining decay events Remaining events after veto
December 2019 3.31 × 105 2.95 × 105

January 2020 3.21 × 105 2.89 × 105

Total 6.52 × 105 5.84 × 105

4.1.6 Combinatorial mismatch

While the previously described gate conditions are effective in suppressing background
events, some of the accepted events can still exhibit systematic deviations. As mentioned
in Section 3.3.3, one source for position errors is the recombination-process of front- and
back-side strip events. During this process two particles close energies enter one detector
at the same time. The up to four activated strips can then no longer be unambiguously
assigned to the two particles, introducing a potential mismatch. Since the acceptance-
window for energy differences between the two strip-events forming one detector hit is
relatively wide (typically between 109 keV and 152 keV), these mismatches can occur for
the decay products of the Hoyle state.
To avoid this problem, multiple techniques can be employed: The easiest is to only accept
events, where all four alpha particles are registered in different detectors. This removes
the ambiguity of the event position, but also drastically reduces the statistics, as can be
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seen in the comparison between Figures 4.23 and 4.16, with the four-detector distribution
containing about 50.2 % less events. The statistics for three and four-detector events are

Figure 4.16: Y-component of the folded Dalitz plot of the three detected alpha particles
of the Hoyle state break-up in the center-of-mass frame after all described
conditions, projected onto the (2ϵα3 − ϵα2 − ϵα1) plane. The plot shows the
distribution for events where all four alpha particles are detected in different
detectors.

summarized in Table 4.6. This shows a significant reduction in statistics, as almost half
of the events are rejected by this condition. A more effective mitigation strategy is to

Table 4.6: Total Hoyle state decay events after the final gate condition for different event
detector-counts and the combinatorial mismatch veto, here shown for an energy
of 5 MeV and a ring detector.

Condition Remaining decay events
Any detector combination 6.52 × 105

3 detectors 3.16 × 105

4 detectors 3.28 × 105

3 & 4 detectors with veto 5.84 × 105

pass all four-detector events, but to also include an additional check for events where the
four particles hit only three detectors: As detailed in Section 3.3.3, the energy difference
between front- and back-side strip entries is used as a condition when combining these to
complete detector hits. Events are only accepted if the energies of both registered entries
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differs by more than the front-back combination gate threshold plus a safety margin. In
this case, a width of 250 keV was used as veto threshold. Given the maximum permissive
veto of 152 keV, which corresponds to 3.0 σ of the Gaussian-shape approximated front-
back energy difference distribution, this is a separation between the distributions of about
4 σ. Thus, the probability of a random event passing this condition can be estimated
by the square of the integral of the Gaussian distribution below 2 σ, which is about
5.95 × 10−4. This results in a reduction of the conflicting events while only rejecting
8.04 % of the measured events. As can be seen in Figure 4.17, applying this condition
reduces the distribution width while maintaining the overall statistics. This especially

Figure 4.17: Comparison of the Y-component of the folded Dalitz plot of the three de-
tected alpha particles of the Hoyle state break-up in the center-of-mass frame
after all described gates, projected onto the Eα1 −Eα2 plane. The plot shows
the superimposed distributions with the combinatorial mismatch veto (or-
ange) and without (blue).

improves the background suppression in the outer regions of the Gaussian peak that
corresponds to the sequential decay mode. This region is of particular interest, as events
corresponding to the direct decay modes are expected to be located in there. Thus,
background suppression in this region is crucial for the analysis of the branching ratios
of the Hoyle state decay. The veto gate demonstrates efficient background suppression,
and its width of 250 keV is substantially wider than the typical 135 keV energy width in
which front- and back-side strip events can be combined.
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4.2 Hoyle state decay analysis
The initial data analysis has been completed, and at this point, the data from the exper-
iment and the Monte Carlo simulation are ready to be analyzed. The data obtained from
the previous gates shows no remaining significant background events. After the center-
of-mass transformation into the decay frame of reference, the data can now be analyzed
to study the decay properties of the Hoyle state. The following sections will discuss the
analysis techniques, a selection of observables, and the results of the analysis.

4.2.1 Reduced energies

After the transformation to the center-of-mass reference frame, the absolute energies of
the three decay alphas in the center-of-mass frame are of limited usefulness, as their sum
is fixed by the decay energy of the 12C nucleus. This was also used as a gate in the primary
data analysis (see Section 4.1.4). Instead, the reduced energies ϵi were used, which are
defined as the energy of the alpha particle divided by the measured decay energy of the
12C nucleus. This approach offers multiple advantages:

• The reduced energies are dimensionless and scaled to their reaction Q-value, which
makes it easier to compare between decays from different excited states.

• The reduced energies are invariant with respect to the exact decay energy of the
12C nucleus, which reduces the systematic uncertainty of the energy calibration and
the energy loss corrections. It also ensures that the only remaining dependency of
the reduced energy is the decay process itself.

This ensures that the reduced energies only depend on the decay process of their respective
excited state. As introduced in Section 1.5, the sequential decay of the 12C nucleus is
the dominant decay channel compared to the three different direct decay modes. The
resulting distribution for the reduced energies of the three detected alpha particles is
shown in Figure 4.18.

The distribution shows a distinct peak at ϵ = 1/2 which corresponds to the initially
emitted alpha particle in the sequential decay mode. The continuum at lower ϵ val-
ues primarily originates from the subsequent beryllium decay. The continuum exhibits
an upward sloping shape, which can be explained by the low energy thresholds, as was
demonstrated using the supporting Monte Carlo simulation, later discussed in Section 5.6.
Since the angles in the center-of-mass frame are known, the angle difference ω between
the velocity vector of the alpha with the highest energy in the center-of-mass frame and
the vector between the two lower energy alphas can be calculated. For the prominent
sequential decay mode, this corresponds to the angle difference between the alpha parti-
cle’s velocity vector in the center-of-mass frame and the subsequent beryllium decay axis,
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Figure 4.18: Comparison of the reduced energies of the three detected alpha particles in
the center-of-mass frame for the Hoyle state decay. The dashed line indicates
the sum of the distributions. The three alphas are ordered by their energy
in the center-of-mass frame.

the connecting vector between the two lower energy alpha particles in the center-of-mass
frame. As can be seen in Figure 4.19, this creates a clear dependence of the reduced
energies on the angle difference, which can be seen in Figure 1.9. The plot in Figure 4.19
visualizes this degree of freedom of the sequential decay: The energy of the initial alpha
is fixed by the 12C→8Be + α decay, as energy and momentum conservation only provide
one solution for the energy partition of the initial reaction products. This can be seen in
the vertical line at ϵ = 0.505 in the plot (derivation provided in appendix Section A.6).
During the secondary decay step the alpha particles of the beryllium decay have to be
emitted antiparallel in the center-of-mass frame of the beryllium nucleus to conserve mo-
mentum.
When the opening angle between the initial alpha’s emission trajectory and the subse-
quent beryllium decay axis is 90◦, both beryllium alpha particles have the same energy
in the center-of-mass frame of the decaying 12C nucleus.
This can be easily understood from a geometrical perspective, as their perpendicular mo-
mentum relative to the initial decay axis must cancel out. As the angle ω between the
initial alpha emission and the subsequent beryllium decay decreases, the emission vector
of one of the beryllium alphas aligns more closely with the initially emitted alpha, as
illustrated before in Figure 1.9. This alignment reduces the energy of the second alpha
particle in the center-of-mass frame due to the counteracting momentum contribution

105



CHAPTER 4. ANALYSIS OF EXCITATIONS ABOVE THE α DECAY ENERGY

from the beryllium nucleus following the initial decay. Conversely, the second alpha par-
ticle from the beryllium decay is emitted in the opposite direction relative to the motion
of the beryllium nucleus, thereby increasing its energy by a similar magnitude. This split-
ting towards lower axis angle differences of the energies between the two beryllium-alpha
particles can be seen in Figure 4.19: At 90◦ the energy of the two alpha particles is equal
at approximately ϵ = 0.247, which separates into two distinct lines with a sinusoidal
shape as the angle difference ω decreases. The energy of the third alpha particle is fixed
by the energy conservation of the initial decay process and is constant at ϵ = 0.505.

Figure 4.19: Reduced energies of the three detected alpha particles in the center-of-mass
frame plotted against the angle difference between the alpha particle with
the highest energy and the vector between the other two alpha particles.

Dalitz plots

The most prominent feature of the obtained Dalitz plot is the large triangle shape which
contains most detected events. As discussed in Section 1.6 these originate from sequential
decays of the Hoyle state. As at this stage no inherent distinction between the different
alpha particles is made, the Dalitz plot is symmetric with respect to the exchange of the
alpha particles. This symmetry allows one to fold the Dalitz plot along its symmetry
axes, which results in a more compact representation of the data with higher statistics
per bin. The folded Dalitz plot is shown in Figure 4.22.
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Figure 4.20: Dalitz plot of the three detected alpha particles from the Hoyle state break-
up in the center-of-mass frame. The plotted events were selected by the
using the Hoyle state’s kinematic line to find a reaction’s ejectile and the
decay alphas were identified using the coincidence window and multiplicity
condition. No other conditions, such as angular or energy gates, were ap-
plied.
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Figure 4.21: Dalitz plot of the three detected alpha particles from the Hoyle state break-
up in the center-of-mass frame after all described conditions: Kinematic
selection, coincidence filtering, multiplicity condition, angular gate, and en-
ergy sum gate. The employed thresholds are listed in the respective sections.

Figure 4.22: Folded Dalitz plot of the three detected alpha particles from the Hoyle state
break-up in the center-of-mass frame after all described conditions.
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As the key interest of the presented study is the distinction of the branching channels
of the Hoyle state, the separation between the aforementioned triangle and the rest of
the data should be maximized. To facilitate this, the projection of the Y-axis of the
folded Dalitz plot can be used: It clearly shows a main peak, a cross section of one
of the triangle’s sides. The direct decay events are expected to be located around it,
forming a wide enhancement of the underlying continuum. This was demonstrated by
the supporting Monte Carlo simulation, which will be discussed in Section 5.6.

(a) Y-projection of the folded Dalitz plot after
the application of all described conditions.

(b) Logarithmic plot of the Y-projection of the
folded Dalitz plot after all conditions.

Figure 4.23: Y-projection of the folded Dalitz plot of the three detected alpha particles
from the Hoyle state break-up in the center-of-mass frame after all described
conditions, projected onto the Eα1 − Eα2 plane.

4.2.2 Systematic deviations

Studying this projection, the standard deviation of each run can be used to test the energy
resolution in the center-of-mass reference frame. The result of this test is presented in
Figure 4.24 showing a clear difference between the resolution during the December and
January campaign. Multiple reasons, such as slightly different detector alignment or
wider beam dispersion can be the cause of this degradation. Radiation damage of the
detectors is less likely, as the expected behavior would be a continuous regression towards
higher run indices or even a slight improvement after the beam interruption due to passive
annealing and migration of trapped charge carriers.

Since the simulated peak-shape only corresponds to a singular setup resolution, the
data were split into the December and January section to be analyzed separately in the
subsequent steps. The core reason for this is that the wider distribution of sequential
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Figure 4.24: Standard deviation of the Y-component of the folded Dalitz plot of the three
detected alpha particles from the Hoyle state break-up in the center-of-mass
frame after all described conditions plotted against the run number.

decay events from the January campaign further overlap the distribution formed by the
direct decay events compared to the December campaign creating a systematic deviation
in the data. This will be further discussed in the Chapter 6.

4.2.3 Reconstructed Events

Based on the number of registered particles per event, which was determined when ap-
plying the multiplicity condition (see Section 4.1.2), events with a multiplicity of three
were recorded 9.04 times more frequently than those with a multiplicity of four. A list
of potential causes for this is stated in Section 3.3.3. Since a large fraction of the events
with a multiplicity of three are expected to be Hoyle state decay events, an attempt was
made to salvage as many of these events as possible. The system of four detected alpha
particles, the ideal analysis case, is overspecified. Events with a multiplicity of three,
however, in which one alpha particle was not detected, contain just sufficient information
to reconstruct the missing alpha particle. To facilitate this, momentum conservation in
the laboratory frame is used:

p⃗beam + p⃗target = p⃗beam = p⃗α′ + p⃗12C = p⃗α′ +
3∑

i=1
p⃗αi

(4.10)
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Since the beam energy, and thus the beam momentum, is known and the initial momen-
tum of the target nucleus is zero (on the scale of the beam momentum), the momentum-
sum of the four alpha particles after the reaction is known. Since one of the alpha particles
is not detected, the momentum of the missing alpha particle can be reconstructed by sub-
tracting the sum of the momenta of the three detected alpha particles from the beam
momentum. This is done for each event with multiplicity three during the analysis, and
the reconstructed alpha particle is added to the event, which is then stored separately.
The reconstructed alpha particle is then treated as a detected alpha particle in the subse-
quent analysis, as described in the previous sections. The reconstructed events are then
transformed to the center-of-mass frame and the reduced energies are calculated. Using
the reconstructed vector in the laboratory frame, a polar mapping of its position in the
detector array positions can be created, as shown in Figure 4.25 (for comparison, a polar
detector map of multiplicity four events is shown in Figure 4.7). While this approach

Figure 4.25: Detector map of the reconstructed alpha particle. The detector positions
are visible as depletion zones, since the probability for an event to be recon-
structed is lower if a detector was at the position where the alpha particle
was not detected.

allows for the reconstruction of the missing alpha particle, it also introduces additional
uncertainties. A disadvantage of this approach is the increased error of the reconstructed
alpha particle compared to a directly detected alpha particle, as its momentum vector’s
error depends on the three detected alpha particles’ momenta and uncertainties in re-
action position and beam energy. Another problem is that after the loss of one alpha
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particle, some quantities that were previously used to gate are now constraints (such as
the energy sum in the laboratory frame). Since all prior conditions were used to achieve
the high level of background suppression observed in the data (see Section 4.1.5), the
reconstructed events are expected to have a higher background level, as some conditions
are implicitly satisfied by the reconstruction: The energy sum in the laboratory frame, for
example, is a reconstruction constraint and thus cannot be used to discriminate between
valid detections and background events. These assumptions are confirmed by the Dalitz
plot of the reconstructed events, which shows a less well-defined distribution and higher
background level, which is further detailed in the appendix Section A.2.

4.3 3− state decay analysis
Similarly to the previously discussed techniques, the decay of the 3− state in 12C can be
analyzed. The higher energy in the center-of-mass frame of the decay compared to the
Hoyle state decay results in a different distribution of the reduced energies, reducing the
relative uncertainties. The resulting Energy-Theta plots before and after application of
the same gate conditions as for the Hoyle state decay are shown in Figures 4.26a and
4.26b. The resulting Dalitz plot is shown in Figure 4.28. As can be seen in Table 4.7, the

(a) Energy - θ plot after the initial kinematics
gate.

(b) Energy - θ plot after kinematics, coinci-
dence, angular, and energy gates.

Figure 4.26: Energy of the scattered particles registered in the DSSSDs against the detec-
tion angle of the respective pixel to the beam axis, gated on the kinematics
line of the 3− state in 12C.

total number of decay events for the 3− state is substantially higher than for the Hoyle
state. In combination with the visible direct decay component, seen in the Dalitz plot
in Figure 4.28, this significantly reduces the uncertainties of the analysis of the particle-
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decay branching ratio of the 3− state decay. As the analysis of the 3− state is analogous

Table 4.7: Particle decay event statistics of the 3− state for multiplicity = 4 events after
the final gate, shown with and without the combinatorial veto condition.

Dataset Remaining decay events Remaining events after veto
December 2019 1.47 × 106 1.35 × 106

January 2020 1.42 × 105 1.30 × 105

Total 2.90 × 106 2.65 × 106

to the Hoyle state decay analysis, the same analysis conditions are applied. While most
of the gates perform exactly as during the Hoyle state decay analysis, the energy sum
conditions show a larger shift from their expected values than the Hoyle state decay
events. This can be seen in Figures 4.27a and 4.27b, which even exhibit a diagonal trend
towards higher energies. This is caused by the improved dead layer thickness, which
optimizes the resolution for the Hoyle state analysis. The obtained energy gate widths
are displayed in Table 4.8.

Table 4.8: Measured positions and widths of the energy-sum selection conditions in the
laboratory and center-of-mass frame for both experiments.
Condition 2019 2020
Condition Mean [keV] Width [keV] Mean [keV] Width [keV]
Σ4,lab.Eα 27430.1 304.3 27519.0 335.4
Σ3,CoM.Eα 2432.8 93.3 2439.4 112.3
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(a) Energy sum distributions before applying
the corresponding condition for the 3−

state decay.

(b) Energy sum distributions before applying
the corresponding condition for the 3−

state decay.

Figure 4.27: Energy sum gate for the 3− state decay in 12C.

The resulting Dalitz plot is shown in Figure 4.28, and the Y-projection of the Dalitz
plot is shown in Figure 4.29. The Y-projection shows a sharp peak near the expected
position at ϵ = 0.64, as derived in Section A.6. This peak corresponds to the sequential
decay mode of the 3− state, which is expected to be the dominant decay mode.

Given the focus of this thesis on the analysis of the Hoyle state decay, the analysis of
the 3− state decay is only briefly discussed and the resulting distributions are provided
in the appendix.
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Figure 4.28: Experimental Dalitz plot of the 3− state decay in 12C. The higher Q-value
of the decay compared to the Q-value of the 8Be decay moves the triangle
legs corresponding to the sequential decay events outward, causing them to
not connect anymore.

Figure 4.29: Y-projection of the Dalitz plot of the 3− state’s particle decay.
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4.4 Future improvements
Based on the foundation laid by the current analysis, multiple improvements can be made
to further enhance the analysis of the Hoyle state decay and the 3− state decay. The
following sections will discuss potential improvements and their expected impact on the
analysis.

4.4.1 Kinematic fitting

Since the decay measurement is overspecified, as shown in the reconstruction of the
missing alpha particle, the kinematic fitting can be used to improve the energy resolution
of the detected alpha particles. The idea behind this is that each measured variable
has a given error, but that certain combinations of variables are more or less likely than
others for given sets of constraints. Using this, the input variables can be adjusted to
minimize the error of the output variables within their respective errors. In comparable
experiments, such as the study by Smith et al. [59], this technique improved the resolution
by more than 10 %. One fundamental prerequisite of many kinematic fitting techniques
is that the constraint distributions, in the case of the given experiment, the energy sum
in the laboratory frame, the energy sum in the center-of-mass frame, and the momentum
conservation, are centered around their expectation value. This prerequisite is not fulfilled
in the current data. Still, the implementation of the algorithm has been integrated into
the analysis software and can be used once the data satisfies the requirements.

4.4.2 Machine learning

A recent development in the field of nuclear physics is the use of machine learning al-
gorithms to support and enabled data analysis of complex high-dimensional data. The
direct branching ratio of the Hoyle state decay is a prime candidate for such an analysis,
as we have a finite number of decay modes and multiple input dimensions per event,
such as the reduced energies and the angular distributions for each particle. Machine
learning techniques generally separate into two categories: supervised and unsupervised
learning algorithms. Supervised learning algorithms are used to classify data into prede-
fined classes, while unsupervised learning algorithms are used to find patterns in the data
without predefined classes. Since in our case the decay modes are known, a supervised
learning algorithm is the most suitable choice.

Machine learning model

The machine learning model employed in this test is the XGBoost algorithm, which is
based on Gradient-Boosted decision trees [108]. The algorithm is widely used in the
field of machine learning and is known for its high performance and robustness. The
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model was trained using 2 · 109 simulated events, which is lower than the total number
of simulated events, but sufficient to obtain a good classification accuracy. The training
data were split into a training and a test set, with a ratio of 80:20. A challenge in the
training of the model is the very low branching ratio of the direct decay modes, which
caused a class imbalance in the training data. Especially the direct decay mode of the
Hoyle state is underrepresented in the training data. To mitigate this, multiple techniques
were used, such as oversampling of the direct-decay minority class using the Synthetic
Minority Over-sampling Technique (SMOTE) and weighting of the classes in the training
algorithm. The model was initially tested on the 3− state direct decay modes, as the
separation between the sequential decay and the direct decay modes is more pronounced
there.
To further improve the classification accuracy, the model was trained using a grid search
to optimize the hyperparameters of the model. The hyperparameters were optimized
using a 3-fold cross-validation, which is a common technique to prevent overfitting of
the model. Additionally, synthetic features were generated to improve the classification
performance: The energy sum of the three decay alpha particles was used as a feature,
as well as the sinuses and cosines of the angles between the decay alpha particles. The
training performance is shown in the confusion matrix in Figure 4.31. A confusion matrix
is a tool used to visualize the performance of a classification algorithm, as it shows the
true class of the data points against the predicted class and thus the misclassification
rate. The learning curve of the model is shown in Figure 4.30.

The performance of the classification model was evaluated using three key metrics:
Precision, Recall, and Accuracy. These metrics are widely used in machine learning
to assess the effectiveness of classification algorithms [109]:

• Precision is defined as the ratio of correctly predicted positive observations to the
total predicted positives. High precision indicates a low false positive rate.

• Recall, also known as sensitivity, is the ratio of correctly predicted positive obser-
vations to all observations in the actual class. High recall is corresponds to a higher
amount of true positives.

• Accuracy measures the overall correctness of the model, calculated as the ratio
of correctly predicted observations to the total observations. While accuracy pro-
vides a broad measure of model performance, it is less informative in cases of class
imbalance such as the one in this analysis.

The provided classes are DDE for the equal energy direct decay mode, DDF, commonly
referred to as DDϕ for the free direct decay mode, and SD for the sequential decay
mode. The NoDecay class is used for events that do not belong to any of the decay
modes. The performance metrics for each class are shown in Table 4.9. These results
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Figure 4.30: Learning curve of the XGBoost classifier for the classification of the decay
modes of the Hoyle state.

Metric NoDecay SD DDE DDF
Precision 0.1351 0.9993 0.9506 0.9711
Recall 0.0735 0.9996 0.9872 0.9507
Accuracy 0.9988

Table 4.9: Performance metrics for each class.

show that the model achieves high precision and recall for the SD, DDE, and DDF
classes, with values exceeding 0.95. However, the NoDecay class has significantly lower
precision (0.1351) and recall (0.0735), indicating difficulties in accurately predicting this
class, possibly due to class imbalance. This suggests that the model approach cannot yet
be used to discriminate between background events and decay events, but can be used to
classify the decay modes of the Hoyle state. Despite this challenge, the overall accuracy
of 0.9988 suggests that the model performs well, but may need further refinements, and
more training data to better classify the decay events. Given the low branching ratio of
the direct decay modes of below 10−4, the model’s performance is not yet sufficient to
determine the branching ratios of the Hoyle state decay.
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Figure 4.31: Confusion matrix of the XGBoost classifier for the classification of the decay
modes of the Hoyle state.
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Chapter 5

Monte Carlo simulation

The determination of the probabilities for the detection of events with a combination of
reaction-specific and isotropic angular distributions is a non-trivial problem. A primary
cause is the multitude of detector combinations that satisfy the kinematic constraints
of the reaction, but also effects such as angular straggling and energy losses contribute
to the challenge. Additionally, the exact gate characteristics for particles originating
from different decay modes and their detection efficiencies, as well as the effects of the
energy loss in the target material on the events in the center-of-mass frame reveal complex
behavior.
An elegant solution to this is the use of Monte Carlo simulations, which can be used to
generate distributions of measured quantities for a given set of input parameters, which
can then be compared to the measured data. Thus, in conjunction to the previously
detailed work, a Monte Carlo simulation was developed to investigate the decay of the
Hoyle state and of the higher lying states in 12C in conjunction to this thesis. The
simulation was primarily implemented by Timo Biesenbach but received contributions
and support from the author of this thesis. Due to its integral role in the analysis of the
data, the simulation is presented in this chapter.

5.1 The Geant4 framework
The presented simulation code was developed using the Geant4 framework, which is a
toolkit for the simulation of the passage of particles through matter [110]. It is used
in a large number of analyses in nuclear and particle physics, as well as in medical
physics, aeronautics and space science. Geant4 is developed and supported by the Geant4
Collaboration, which consists of numerous institutes and universities from around the
world. The Geant4 toolkit is open-source software.
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5.2 Simulation setup
The simulation uses the same overall detector geometry as the experimental setup. The
target is modeled as a thin layer of 12C with a thickness of 0.114 mg

cm2 . The detectors are
modeled as silicon pixel volumes, as the strip-like geometry of the DSSSDs is not relevant
for the simulation and would introduce unnecessary uncertainties.
Each detector is modeled with a flat dead layer of 19.68 µm. The simulation also arti-
ficially introduces (tagged) mismatched events (see Section 4.1.6) to study the effect of
the combinatorial mismatch on the angular distributions. Furthermore, all strips that
were inactive during the experiment are also masked in the simulation to analyze the
consequences of the reduced solid angle coverage on the angular distributions.

5.3 Decay simulation
The simulation of decay processes for a carbon nucleus in a state with available particle-
decay modes generates decay events probabilistically for each mode. The momentum dis-
tribution of the decay particles is initially determined in the center-of-mass (CM) frame
of the 12C nucleus. The decay plane is randomly oriented, and the resulting vectors are
then transformed into the laboratory frame to reflect realistic experimental conditions.
This approach ensures accurate modeling of the decay dynamics and facilitates compar-
ison with experimental data.
For an excited 12C nucleus (7.2747 MeV), several decay channels are considered, includ-
ing Sequential Decay (SD) and Direct Decays (DDE, DDL, DDΦ, DDP). Each decay
mode results in the emission of alpha particles, with their kinematic properties derived
from initial conditions and energy distributions. Considering these modes provides a
comprehensive understanding of the decay mechanisms and their implications for nuclear
physics.

5.3.1 Sequential Decay

In the sequential decay process, the excited 12C nucleus decays into an 8Be nucleus and
an alpha particle (4He). The 8Be nucleus subsequently decays into two additional alpha
particles. The excitation energy Eexc of the 12C nucleus is distributed among the decay
products as follows

Eexc = E12C − E8Be − E4He = ECM + Ekin,

121



CHAPTER 5. MONTE CARLO SIMULATION

where ECM is the center-of-mass energy and Ekin is the kinetic energy of the decay prod-
ucts. The velocity vector of the first alpha particle in the lab frame, v⃗α1 , is given by

v⃗α1 = v⃗parent + v⃗CMS,α1 .

Here, v⃗parent represents the velocity of the parent 12C nucleus, and v⃗CMS,α1 is the velocity
in the center-of-mass system. To ensure an isotropic distribution, the angles θ and ϕ are
computed using:

θ = cos−1(1 − 2R1), ϕ = 2πR2,

where R1 and R2 are uniformly distributed random numbers between 0 and 1 to achieve
the isotropic emission pattern, which is essential to not introduce unintentional biases.

5.3.2 Direct Decay Modes

The Direct decay modes of 12C involve the direct emission of three alpha particles from
the parent nucleus without forming intermediate states. The kinetic energy of each alpha
particle, Eα,i, is determined by the fractional energy distribution specific to each mode

Eα,i = ϵiECM,

where ϵi is the fractional energy for each particle.

DDE Mode

In the direct decay mode with equal-energy distribution (DDE), which corresponds to an
equilateral triangle configuration, each alpha particle receives one-third of the excitation
energy

ϵi = 1
3 ,

resulting in a symmetric energy distribution among the decay products, which is centered
in the Dalitz plot. Like the DDL mode, this decay has no inherent degree of freedom,
making it a useful reference when fitting to the experimental data.

DDL Mode

The linear mode, where one alpha particle is at rest in the center-of-mass frame and the
other alpha particles are emitted antiparallel, is known as the DDL mode. In this decay
mode, the excitation energy is equally shared between the two moving alpha particles
due to momentum conservation, resulting in the following energy distribution

ϵ1 = 0, ϵ2 = 1
2 , ϵ3 = 1

2 .
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DDΦ Mode The decay mode least restrictive in terms of energy distribution is the DDΦ
mode, which allows for a more general energy distribution among the decay products. It
generally assumes that all combinations of energies and momenta generally allowed by the
conservation laws are possible. This mode is implemented using an initial configuration
derived from the circular area of allowed momenta in the Dalitz plot, to ensure complete
phase space coverage and momentum conservation.
Using energy conservation, the initial configuration is limited to the triangular area of
allowed energies in the Dalitz plot. While this guarantees energy conservation is, mo-
mentum conservation dictates that the decay products lie within a circular area in the
Dalitz plot [111]. This circular area can be parametrized using the maximum allowed
radius 1

3 , which follows from the maximum energy range of an alpha particle in the decay
process, ranging from 0, where both other particles are emitted antiparallel, to 2

3 , where
one particle is emitted in one direction and the other two in the opposite direction. This
is derived in appendix Section A.4. This gives the diameter 1

3 of the allowed circle in the
Dalitz plot.
In order to uniformly distribute points within a circle, two independent random variables,
U1 and U2, each uniformly distributed on the interval [0, 1], are generated. These vari-
ables are used to compute the polar coordinates (r, θ) and subsequently the Cartesian
coordinates (x, y). The radius r is derived from U1 as:

r =
√
U1 × 1

3

This ensures that the points are uniformly distributed within the circle, as the square root
transformation compensates for the non-linear area growth of the circle with increasing
radius.
The angle θ is determined by the second random variable U2 using

θ = 2πU2

Given r and θ, the Cartesian coordinates (x, y) of the point are then computed as

X = r cos(θ)
Y = r sin(θ).
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These are then used to compute the energy fractions ϵi of the decay products using the
inverse Dalitz transformation:

ϵ1 = 1
3 − 1

3X − 1√
3
Y, (5.1)

ϵ2 = 1
3 − 1

3X + 1√
3
Y, (5.2)

ϵ3 = 1 − ϵ1 − ϵ2. (5.3)

DDP Mode The DDP mode, also known as Coulomb-corrected “free“ direct decay,
allows for a more general energy distribution among the decay products while applying a
Coulomb correction to account for the interactions between the decaying particles. While
it generally assumes that all combinations of energies and momenta generally allowed by
the conservation laws are possible, the Coulomb interaction between the decay products
is considered, as the decay products are charged particles and subject to Coulomb in-
teractions. The Coulomb interactions impacts the initial arrangement of the constituent
alpha particles up until the break-up and even influences their kinematics briefly after-
wards. To account for this, the simulation incorporates more advanced scattering theory
to model the Coulomb interaction between the decay products, which will be discussed
in more detail in the following Section 5.3.3. The approach was introduced by Smith et
al. [59]. As discussed there, it does not completely fill the available phase space, as the
so called “DDΦ“ mode would, but it is a more realistic approach to the decay process.
To generate events adhering to the DDP mode, the simulation uses a two step process:
The initial energy distribution is selected analogously to the DDΦ mode, but the en-
ergy fractions must then be transformed to accurately reflect the simulated probability
density function. To implement this distributions, obtained by the decay simulation
code, rejection sampling is used. An alternative approach of using the inverse cumulative
distribution function (CDF) for direct sampling was tested, but was found to be more
computationally expensive, so the aforementioned, faster sampling approach was chosen:

Generate random point (x, y) within the probability threshold:
x = r cos(θ), y = r sin(θ)

r =
√
R1 · 0.5, θ = 2πR2

accepting the point if R < threshold. Here R is a uniformly distributed random number
and the threshold is based on a predefined probability density function. This approach
ensures that the sampled points strictly adhere to the physical constraints imposed by the
Coulomb interaction. The lab frame velocity vectors of the alpha particles are calculated
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as

v⃗α,i =
√

2Eα,i

mα


sin θi cosϕi

sin θi sinϕi

cos θi

+ v⃗parent,

where mα is the mass of the alpha particle, and θi and ϕi ensure isotropic emission.
This representation captures the rotation and transformation to the laboratory frame,
providing a clear and elegant mathematical description.

5.3.3 Energy Distribution of direct three-body decays

Instead of assuming an equal distribution of energy across the available phase space,
the hyperspherical harmonics method is used to account for the interactions between
particles, particularly the Coulomb interactions, which significantly influence the decay
process. This method is chosen because it effectively describes the dynamics of three-
body systems by transforming the problem into a single-coordinate problem [112]. It has
also been successfully demonstrated by Smith et al. [59] to accurately model the free
decay of the Hoyle state in 12C.

The system’s overall size is defined by the hyperradius ρ, which is a measure of the
system and is given by

ρ2 = 1
mM

∑
i<k

mimkr
2
ik,

where m is a normalization mass, M is the total mass of the system, and rik are the
pairwise distances between particles. This transformation simplifies the analysis of the
three-body problem by reducing the complexity associated with multiple interacting par-
ticles.

The effective potential Ueff(ρ) includes contributions from the Coulomb potential VC(ρ)
and the centrifugal barrier VL(ρ):

VC(ρ) =
∑
i<k

ZiZke
2

rik

,

VL(ρ) = ℏ2(K + 3/2)(K + 5/2)
2mρ2 ,

where Zi and Zk are the charges of the particles, and K is the hypermomentum quantum
number. The hypermomentum, analogous to angular momentum in classical mechan-
ics, is a quantum number that arises in the description of the motion of particles in a
hyperspherical coordinate system. Combining these, the total effective potential is

Ueff(ρ) = VC(ρ) + VL(ρ).

To estimate the probability density of different energy distributions, the decay width
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Γ is calculated using the WKB (Wentzel-Kramers-Brillouin) approximation. The action
S is computed along the classically forbidden region between the classical turning points
ρ0 and ρt:

S = 1
ℏ

∫ ρt

ρ0

√
2m (Ueff(ρ) − E) dρ,

where E is the total energy of the system. The transmission coefficient T , representing
the probability of tunneling through the potential barrier, is given by:

T = exp(−2S).

The decay width is then:
Γ ≈ T · f,

where f is a pre-factor that includes the knocking rate, which is the frequency of attempts
to penetrate the barrier, and the density of final states available for the decay products.
By applying the hyperspherical harmonics method and the WKB approximation, the en-
ergy distributions of the emitted α particles are effectively predicted. While this method
still has limitations, such as a systematic overestimation of the decay width [112]. One
additional limitation is that while the approach integrates over multiple different decay
distribution, it is initialized to an equal-energy distribution, which can lead to a bias in
the results. Despite this, the overall probability density is far more accurate than the
equal-probability phase space distribution, as demonstrated in prior studies [59].
These relative decay probabilities for given input energy distributions can be used to
generate the probability density function for the decay process, ensuring that the sim-
ulation reflects the physical constraints of the system. To generate a random point on
the probability density distribution, an energy fraction for each particle of a decay is
generated using the approach discussed in 5.3.2. The velocities v⃗i and momenta p⃗i of the
α particles with masses mi = mα are calculated based on the energy fractions and masses
of the particles using

pi =
√

2miEi, vi = pi

mi

.

To link these values to the probability density, the pairwise distances and hyperradius
for the generated particle velocities are determined as follows.
First, the pairwise distances squared, r2

12, r2
13, and r2

23 are calculated using the velocities
v⃗i of the particles:

r2
ij = (v⃗i − v⃗j)2.

Next, the hyperradius ρ can be calculated using:

ρ2 = 1
msM

(
m1m2r

2
12 +m1m3r

2
13 +m2m3r

2
23

)
,
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where M = m1 +m2 +m3.
Finally, the normalized pairwise distances s are determined

s1 = r12

ρ
, s2 = r13

ρ
, s3 = r23

ρ
.

Using these, the combined Coulomb and centrifugal potential at a given hyperradius ρ
can be obtained. This contributes to the effective potential of the system by

VCoul = Z1Z2e
2

s1
+ Z1Z3e

2

s2
+ Z2Z3e

2

s3
, Vcent = ℏ2(K + 1.5)(K + 2.5)

2msρ2 .

Finally, the WKB approximation (see equation 5.3.3) is used to integrate the action over
the classically forbidden region, calculating the transmission coefficient. This provides
the decay width, which estimates the probability density of different energy distributions.
By iterating over many decay events, the simulation models the statistical energy distri-
bution of the emitted α particles, providing insights into the underlying physical decay
process. This approach, leveraging the hyperspherical harmonics method and WKB ap-
proximation, assures that the predicted energy distributions accurately reflect the physi-
cal constraints and interactions within the system. The resulting probability distributions
are shown in Figure 5.1 in their Dalitz plot coordinates.

(a) Dalitz plot of the Hoyle state direct decay
density distribution simulation.

(b) Dalitz plots of the direct decay density sim-
ulation of the 3− state.

Figure 5.1: Probability density distributions of the direct decay channels of the Hoyle
state and the 3− state in 12C. The red circles indicate the available phase
space. The displayed values are scaled probability densities where the maxi-
mum value is set to 1.
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5.3.4 Branching Ratios for Decay Modes

To obtain a realistic representation of the experimental data, the simulation incorporates
branching ratios for each decay mode. These ratios are based on theoretical predic-
tions and experimental data, but are increased to ensure that even rare decay events are
adequately represented in the simulation. Lower ratios can always be computed from sim-
ulated higher ratios using undersampling or scaling, but the reverse is not possible. The
simulated branching ratios for each decay mode for the states of interest are summarized
in Table 5.1. During the simulation, the selection of the decay mode is performed using
weighted sampling based on these branching ratios. A random number R is generated
and compared against the cumulative probabilities of each decay mode. For example,
if R is less than the cumulative probability for SD, then the sequential decay mode is
selected. Otherwise, the selection process continues with the next mode.

Decay Mode 0+ 3− 2+
2 1− . . .

SD 0.9769 0.920 0.920 0.920 . . .
DDE 0.0078 0.001 0.001 0.001 . . .
DDL 0.0012 0.000 0.000 0.000 . . .
DDΦ 0.0141 0.079 0.079 0.079 . . .

Table 5.1: Simulated branching ratios for each particle-decay mode and a set of excited
states of 12C. During the simulation, events for higher lying states are gen-
erated too, to ensure a robust background estimation in the particle-decay
energy ranges.

5.4 Simulation of combinatorial mismatch
To account for the potential mis-identification of particles in the experimental data,
introduced in Section 4.1.6, the simulation is extended to generate mismatched events.
This is achieved by testing if two particles are detected in the same detector within a
certain energy range. To account for the intrinsic resolution and gate width, the following
condition is used

|EDetector 2 − EDetector 1| < 250 keV + N (0, σE,Detector 1),

where N (0, σE,Detector 1) is a normally distributed random number with a standard devi-
ation of σE,Detector 1 for the energy of the first particle. If this condition is satisfied, in
50 % of the cases, the particle’s interaction strips are swapped to simulate the combina-
torial mismatch event, which is then processed in the same way as the correctly identified
events.
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5.5 Simulated statistics
The simulation is run for a total of 1.01 · 1011 events, of which 3.003 · 109 particles are
detected in the simulated detectors. The simulated amount of events was chosen as large
as possible to improve the statistical accuracy of the simulation, but had to be limited due
to computational constraints. To compensate for the overall lower statistics than in the
experimental data, the reaction probabilities for inelastic scattering are biased towards
higher interaction rates, as most of the simulated alpha particles in the experiment pass
through the target without interacting. Additionally, the direct decay branching ratios
are increased by a factor of 30× compared to the prior deduced upper limits, which is
sufficient to obtain a good statistical accuracy. The choice against further increasing
the statistics was made to not impact the analysis process, as the used level of direct
events of about 1.3 % cannot impact the automatic gate-condition finding process which
uses fitting of normal distributions to the data. Larger event fractions, however, could
lead to a bias in the analysis process which would skew the results and make them less
comparable to the experimental data.
To ensure that the simulated data is as close to the experimental data as possible, the
simulated data is processed using the same primary data analysis code as the experimental
data (see 4). This ensures that all corrections and gates which might be dependent on the
observed decay branch are also applied to the simulated data as well. To not compromise
this, the simulated data can not be too different from the experimental data, and since
upper limits for the direct decay branch exist, these limits must not be exceeded by an
amount that could impact analysis processes such as automatic gate finding.
The resulting plots of the analysis of the simulation are be presented and discussed in
the following Section 5.6, to highlight differences and similarities and explain features of
the experimental data. The obtained statistics and gate efficiencies are summarized in
Table 5.2. The simulation efficiencies deviate from the experimental values: The initial
and secondary conditions are much more efficient in the simulation, as the simulation
not contains all potential background decay modes due to computational constraints.
Additionally, the reaction probability of the simulation was biased towards the state of
interest to ensure a sufficient number of events for the decay mode study. The three latter
conditions, where checks on angular distribution, on the energy sum in the laboratory
frame, and on the energy in the center-of-mass frame are applied, have a combined
efficiency of 60.73 % for the simulation and 58.68 % for the experimental data seen in
Table 4.4, which shows very good agreement. Due to the angular dependency of the
calibration, the energy resolution and angular resolution are closely linked, providing a
plausible explanation for the efficiency shifts between the three gate conditions.
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Table 5.2: Gate efficiencies and detection counts for the applied gates on the Hoyle state
for the simulation dataset. Four detected hits make up a final event.
Gate Remaining registered hits Efficiency [%]
Raw data 3.00 × 109 -
Kinematic 8.75 × 107 2.912
Multiplicity 7.16 × 106 8.185
Angular 5.29 × 106 73.902
Energy sum 4.89 × 105 92.349
Energy sum (COM) 4.35 × 105 88.978

5.6 Simulation results
The simulated Energy-θ distribution, shown in Figure 5.2, demonstrates the expected
behavior of the scattered particles. The events were analyzed using the same analysis
code as the experimental data to obtain histograms that can be directly compared to the
experimental data. To allow testing of even rare decay modes and to adjust for statistical
fluctuations, the simulation is initially run with a substantially higher branching ratio,
30× higher than the upper limit deduced by J. Bishop et al. [69]. This is required, since
fitting of the model to the experimental data is not possible without a sufficient number
of events per decay mode. To facilitate later analysis and comparison steps, all generated
events are tagged with the decay mode they originate from.

As previously discussed (Section 4.2), the distribution of the reduced energies of the
three detected alpha particles in the center-of-mass shows a relative enhancement of
events towards ϵ = 0 and ϵ = 1/2. The reason for this is the reduced detection efficiency
of particles in the ϵ = 0.2 region due to the detector energy thresholds. This effect can
be seen when comparing Figures 5.3a and 5.3b.

The Dalitz plots obtained from the simulation show the same features as the experi-
mental data as can be seen in Figures 5.4 and 5.5. The employed decay simulation code
is based on the work of Garrido eg al. [112] which was also employed by Smith et al.
[59]. Its implementation into the Monte Carlo simulation uses a two-step approach: first,
the probability-density function (PDF) is generated in the center-of-mass frame of the
decaying nucleus. This PDF is then sampled during the decay simulation to generate the
resulting alpha particles.
Moreover, the same code, including the Coulomb interaction theory, was used to simulate
the DDP decay mode of the 3− state in 12C in addition to the DDϕ mode with equal phase
space distribution. While the separation between sequential and direct decay modes is
much more pronounced in the 3− state, and the branching ratio is higher, the 3− state is
significantly more complex to simulate, as its non-zero angular momentum impacts the
decay process. This was demonstrated in the B.1 section, where it is shown that the
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Figure 5.2: Energy of the simulated scattered particles registered in the DSSSDs against
the detection angle of the respective pixel to the beam axis. From [113].

existing DDP simulation code does not produce a realistic energy distribution for the 3−

state.
The DDF decay mode of the 3− state shows better agreement with the experimental data,
which can be seen in Figure 5.6, as it reproduces the overall structure of the experimental
data, shown in Figure 4.28.
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(a) Reduced energies of the three decay alpha
particles in the center-of-mass frame with-
out low-energy thresholds.

(b) Reduced energies of the three decay alpha
particles in the center-of-mass frame using
per-detector energy thresholds.

Figure 5.3: Reduced energies of the three detected alpha particles in the center-of-mass
frame after introducing a per-detector detection cutoff between 0.45 MeV
(module 3) and 1.45 MeV (module 13). Figures from [113].

Figure 5.4: Dalitz plot of the simulated Hoyle state decay data with a 30× increased
direct branching ratio compared to literature values.
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Figure 5.5: Dalitz plot of the simulated 3− state decay data.

Figure 5.6: Dalitz plot of the simulated Hoyle state decay data showing the free direct
decay mode (DDF). Clearly visible is the Coulomb induced triangular shape,
described by the hyperspherical harmonics approach.
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5.6.1 Simulated Hoyle state direct decay components

The Y-projection of the folded Dalitz plot for the simulated sequential decay mode is
shown in Figure 5.7. The direct decay modes, discussed in Section 1.5, are shown in
Figure 5.8. The shown projections are used to reproduce the experimental data using
fitting, which will be discussed in the following Section 6.

Figure 5.7: Y-projection of the folded Dalitz plot for simulated sequential Hoyle state
decay mode data.
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(a) Simulated Hoyle state DDP decay mode. (b) Simulated Hoyle state DDF decay mode.

(c) Simulated Hoyle state DDE decay mode. (d) Simulated Hoyle state DDL decay mode.

Figure 5.8: Y-projections of the folded Dalitz plot for the simulated direct Hoyle state
decay modes.
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5.6.2 Simulated 3− state direct decay components

For the 3− state, the Y-projection of the folded Dalitz plot of the simulated events for
the sequential decay (SD) mode, the DDE mode, the DDP mode, and the DDϕ mode are
shown in Figure 5.9.
The narrow SD peak is well resolved, as is the sharp distribution created by the DDE
decay. The DDP and DDϕ modes, conceptually only differing in their treatment of the
Coulomb barrier, show a broader distribution, with different centroids.

(a) Simulated 3− state sequential decay mode. (b) Simulated 3− state decay mode DDE.

(c) Simulated 3− state decay mode DDP. (d) Simulated 3− state decay mode DDF.

Figure 5.9: Simulated 3− state decay mode projections.
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Direct particle-decay branching ratios

To determine the branching ratio of the three-alpha decay modes from simulation and
experimental data, an approach based on the frequentist analysis technique [114] is used.
The premise of the applied method is to compare the observed data to the simulated
data with respect to one or multiple free parameters, in this case, the branching ratios of
the three decay modes. The likelihood function, defined as the probability of obtaining
the observed data given the model represented by the simulation, is used to quantify the
agreement between the two datasets [114]. The likelihood function is maximized to find
the best fit parameters.
The application of this approach will be introduced in the following sections and the
results of the analysis will be presented.
While the underlying method is a well-established technique [115], it must be used with
caution, as its results can be sensitive to systematic deviations between the observations
and the model such as skewed distributions or different resolutions. To account for these
systematic deviations, additional consistency checks were performed, which will be dis-
cussed in the later parts of this chapter in Section 4.2.2.

6.1 Methodology
The branching-ratio analysis uses the Y-projection of the folded Dalitz plots for simu-
lation and experimental data, which is introduced in Section 4.2.1, after both datasets
were processed using the same analysis codes as discussed in the prior chapters. The
simulation data is split by its tagging information, which contains the branching channel
it is generated from.
Histograms are built for the simulated data, multiplied by amplitude parameters to rep-
resent the probability distribution of the observed values. The scaling approach is chosen
over approaches such as random undersampling of the individual events, as it allows for
a more accurate representation of the experimental data and utilizes all data points. The
likelihood evaluation involves combining the obtained histogram for each decay mode
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linearly, scaled by the branching ratio under investigation to fit the experimental data.
A likelihood function that maps the agreement between the observed data and fit of the
simulated data is then used to determine the optimal parameters. In this analysis, the
negative log-likelihood function is used, which will be discussed in more detail in Sec-
tion 6.1.1.
A parameter optimization is performed to minimize this negative log-likelihood, iden-
tifying the best-fit branching ratios: For an ideal fit, the individual components of the
simulated data should match the experimental data. This can be described by

fi · Ai,sim = Ai,exp, (6.1)

where fi is the scaling fit parameter of the individual simulated component Ai,sim, and
Ai,exp is the experimental component associated with the decay mode i. As the simulated
components’ volumes are given by

Ai,sim = Nsim · bi,sim, (6.2)

where Nsim is the total number of simulated events and bi,sim is the branching ratio of the
decay mode i in the simulation, and

Ai,exp = Nexp · bi,exp, (6.3)

with the total number of experimental events Nexp, the condition that

Nsim ·
∑

fibi,sim = Nexp ·
∑

i

bi,exp (6.4)

must be fulfilled. This results in

1∑
fibi,sim

= Nsim

Nexp
. (6.5)

Using this, the branching ratio can be obtained from the fit parameter fi by

bi,exp = fi · bi,sim · Nsim

Nexp
= fi · bi,sim∑

fjbj,sim
, (6.6)

which only depends on known quantities.
The expected peak position of the sequential decay component after the Y-projection,
previously introduced in Figure 4.23a, is shown in Table 6.1, as its high statistics allow for
direct measurement of the peak position. The direct decay modes have more degrees of
freedom, forming a wider non-Gaussian distribution of events instead. The derivation of
these values is discussed in the appendix (Section A.6). To fit the model to the observed

138



CHAPTER 6. DIRECT PARTICLE-DECAY BRANCHING RATIOS

Table 6.1: Expected relative energy ϵ3 of the alpha particle with the highest center-of-
mass energy for the the sequential decay component of different states in 12C.

Decay mode Expected relative energy (ϵ3)
Hoyle state 0.17193

3− 0.30746

data, the likelihood function under the Poisson distribution has to be maximized, which
is a common technique in statistical inference [115]. Apart from the statistical uncer-
tainties (see Section 6.1.2), systematic uncertainties are only implicitly introduced by the
constant energy resolution and angular precision of the detector setup. This aspect of the
simulation only accounts for a part of the systematic uncertainties, as the experimental
resolution slightly varies per detector and with time, creating a large amount of possible
free parameters. This was further discussed in Section 4.2.2.
Additionally, all direct decay modes were analyzed separately, as fitting multiple direct
decay modes simultaneously increases the number of free parameters and broadens the
likelihood function, making the fit less robust. In addition, multiple direct decay modes
are contradictory: The DDP mode, for example, covers only a subset of the DDϕ mode’s
phase space by factoring in the Coulomb barrier penetration in the decay process, while
the DDϕ mode does not. This is a clear conceptual contradiction, which is why the direct
decay modes were analyzed separately.

6.1.1 Likelihood Functions

As the underlying data consists of count data, where events occur independently and the
data represent the number of occurrences within fixed intervals, the Poisson distribution
is an appropriate statistical model [114]. Applying its properties, the probability of an
observation is given by

P (yi;λi) = λyi
i e

−λi

yi!
, (6.7)

where λi is the expected number of occurrences and yi is the observed number of occur-
rences. The likelihood function for the entire dataset is then the product of the individual
Poisson probabilities:

L(Y; λ) =
N∏

i=1

λyi
i e

−λi

yi!
, (6.8)

where N is the total number of data points, Y represents the observed data, and λ

represents the model prediction. This function quantifies the probability of reproducing
the data given the model predictions, serving as a measure of how well the model explains
the observed counts.
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To simplify computation, especially with large datasets, the log-likelihood function is
used instead of the product of Poisson distributions, since the logarithm is a monotonic
transformation and does not affect the maximum likelihood estimate of the parameters,
transforming the product into a sum:

log L(Y; λ) =
N∑

i=1
[yi log(λi) − λi − log(yi!)] . (6.9)

To avoid the logarithm of zero when λi is very small, a small constant ϵ > 0 is added,
which is orders of magnitude smaller than the smallest expected count:

log L(Y; λ) =
N∑

i=1
[yi log(λi + ϵ) − λi − log(yi!)] . (6.10)

Finally, the deviance of the negative log-likelihood is defined as

−2 log L(Y; λ), (6.11)

which is the function minimized during parameter optimization. The factor of 2 is in-
cluded by convention to ensure that ∆(−2 ln L) is asymptotically χ2-distributed, as will
be discussed in the following Section 6.1.2.
As discussed previously in Section 4.2.2, the data from the December and January runs
were found to deviate in resolution and had to be analyzed separately, as the fit is highly
sensitive to the resolution to discriminate between the decay modes.

6.1.2 Uncertainty Computation

To obtain robust error ranges for the measured branching ratios, the properties of the
used negative log-likelihood function were utilized to derive confidence intervals for the
estimated parameters.
The negative log-likelihood function, defined as −2 log L, where L is the likelihood of the
observed data given the model parameters (amplitudes of the sequential and direct decay
components), forms the basis for this approach. This method is applicable because the
likelihood function and its parameters satisfy the following regularity conditions [116]:

• Identifiability: The true parameter value must be uniquely identifiable within the
parameter space, ensuring that different parameter values yield distinct likelihoods.
This is shown by the clear optimum visible in the likelihood curve, as for example
shown in Figure 6.4b.

• Smoothness: The log-likelihood function should be twice continuously differen-
tiable with respect to the parameters, providing a smooth surface for analysis, which
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follows from the differentiability of the used likelihood function 6.10.

• Positive Definiteness of the Fisher Information: The Fisher information
matrix, defined as the expected value of the second derivative (Hessian) of the
log-likelihood, must be positive definite. This condition ensures that the likelihood
surface is convex around the maximum likelihood estimates (MLEs). This is verified
using the Hessian matrix of the log-likelihood function, which is positive definite at
the MLEs.

• Asymptotic Normality of MLEs: The general assumption of the given statisti-
cal test and overall analysis is that the measured values follow the Poisson statistics,
which converges to a normal distribution for large sample sizes.

The confirmation of these criteria enables the application of Wilks’ theorem which states,
that the distribution of −2 log L approaches a χ2-distribution asymptotically as the sam-
ple size increases [117]. However, when a parameter is constrained by a physical boundary
(e.g., a nonnegative amplitude with the MLE at zero), the likelihood–ratio statistic fol-
lows a mixture of χ2 distributions rather than a pure χ2; in such cases the standard χ2

thresholds yield conservative one-sided limits [PDGStatistics2024]. This allows to use
the properties of the χ2 distribution to determine confidence intervals for the parameters.
Specifically, for a model with k degrees of freedom, the likelihood-ratio test statistic will
asymptotically follow a χ2 distribution with k degrees of freedom. In practical terms,
this means that the increase in the negative log-likelihood function from its minimum
value, ∆(−2 logL), can be compared directly to critical values from the χ2 distribution
to determine confidence intervals. The intercept of the likelihood curve with the critical
χ2 values is tested in both directions to determine the confidence intervals and account
for skewness in the likelihood curve and the logarithmic sampling of the branching ratio.
When the value falls between two branching ratio values, an interpolation is performed
to determine the intersection point of the likelihood curve with the critical χ2 value, as
shown in Figure 6.3.
For the employed two-parameter model, where the amplitudes of the sequential and direct
component are the free parameters, the relationship between the difference of a likelihood
value to the minimum of the likelihood distribution in the negative log-likelihood, ∆χ2,
and the corresponding confidence levels is summarized in Table 6.2. These values can be
directly obtained by evaluating the percent point function, the inverse of the cumulative
distribution function, of the χ2-distribution [114]. These critical values are derived from
the cumulative distribution function (CDF) of the χ2 distribution, which for k degrees of
freedom is given by

P (χ2 ≤ x) = 1
2k/2Γ(k/2)

∫ x

0
tk/2−1e−t/2dt, (6.12)
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Table 6.2: Critical values of ∆χ2 for confidence intervals in a two-parameter fit.
Standard Deviations Confidence Level ∆χ2

1σ 68.3% 2.3
2σ 95.4% 6.18
3σ 99.7% 11.8

where Γ(·) denotes the Gamma function, k is the number of degrees of freedom, and x is
the critical value.
For a two-parameter model (k = 2), the ∆χ2 values listed in Table 6.2 correspond to the
commonly used 1σ, 2σ, and 3σ confidence intervals.
The theoretical foundation of this approach, grounded in likelihood-based inference and
the properties of the χ2 distribution, ensures that the derived confidence intervals are
both statistically rigorous and interpretable within the frequentist framework. It is a
standard method for uncertainty estimation in likelihood-based analyses [114].
The obtained uncertainty intervals, however, only account for the statistical uncertainties
of the model parameters and do not include systematic uncertainties. While parts of the
systematic uncertainties are accounted for in the Monte Carlo simulation, effects like the
energy sum deviations, discussed in Section 4.1.4, are not fully accounted for. As these
general model improvements require simulating a larger parameter space, they could not
be included in the current analysis, but will be addressed in future studies.
Another important aspect of the method employed is that only one direct decay distri-
bution is fitted at a time. Since all bin counts are zero or positive, as are the fitted
amplitudes, the introduction of other direct decay modes can only decrease the relative
event fraction of a given decay mode. This is a clear limitation of the method, which
restricts it to providing upper limits for the branching ratios of the direct decay modes.

6.2 Hoyle state branching ratio results
The application of the general method, as described in the previous section, can exemplary
be seen in Figure 6.1, where the Y-projection of the Dalitz plot with the experimental data
from the December 2019 campaign is drawn superimposed with the simulated sequential
decay and DDP direct decay data. The plot shows an exaggerated direct decay branching
ratio of bHoyle,DDP = 1.125 × 10−3 to more clearly show the direct decay component.
For each configuration the run files with average laboratory and center-of-mass energy
sums and distribution width within 2σ of the run average were selected. This was done
because a small subset of outlier runs exhibited a significantly different resolution. Adding
these files would compromise the fit quality, as the assumption of the simulated model is
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a uniform resolution.

Figure 6.1: Example of the simulated sequential and DDP decay events of the Hoyle state
and the experimental data using an exaggerated direct decay branching ratio
of bDDP, Hoyle = 1.125×10−3 for demonstration using the December 2019 data.

To demonstrate the scale-relation between sequential and direct decay components, the
same data, now with the branching ratio obtained from the likelihood analysis, is shown on
a linear scale, as well as amplified by a factor of 103 in Figures 6.2a and 6.2b, respectively.
This visualization demonstrates the high influence of the sequential decay branch, as,
even when amplified by a factor of 103, the direct decay component is the minority
component. The overall simulated distribution of the sequential decay component shows
very good agreement with the experimental data, as does the contribution of the direct
decay component. The latter component has very low statistics, caused by the low
branching ratio of the direct decay modes. The figures also clearly show the overlap of
the expected sequential and direct decay components, which is a known limitation of
relative-energy-based analysis methods. This overlap is caused by the energies of the
direct decay alpha particles, which can distribute their energy over a wide range between
the three alpha particles. This can also create configurations that are indistinguishable
from the sequential decay mode. As all decay components have the same Q-value, and
the components only vary in their relative energies, the highest sensitivity of the analysis
can be achieved on the non-overlapping regions of the decay components.
Using the likelihood function obtained by scanning the fit parameter space, the optimum

branching ratios and their confidence intervals can be obtained. The likelihood function is
evaluated over a logarithmic range of the branching ratio to cover the full range of possible
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(a) Fit of the simulated Hoyle state decay mode
data for the DDP decay mode to the exper-
imental data on a linear scale, showing the
full data range.

(b) Fit of the simulated DDP decay mode
data to the experimental data on a lin-
ear scale, scaling to 103 of the sequential
peak amplitude.

Figure 6.2: Fits of the Hoyle-state DDP and SD decay modes to the experimental data
plotted on a linear scale, showing the full data range and a zoomed-in view
to demonstrate the low amplitude of the direct decay component.

values. The obtained curve shows a minimum at the obtained value of bHoyle,DDP =
2.8 × 10−4 for the DDP decay mode. The likelihood function is shown in Figure 6.3.
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Figure 6.3: Likelihood curve for the DDP decay mode of the Hoyle state. The horizontal
lines indicate the confidence levels of 1σ, 2σ, and 3 σ.

6.2.1 DDP branching ratio

The DDP decay mode of the Hoyle state is the augmented free decay mode, where the
available phase space is limited by the Coulomb repulsion of the alpha particles previously
shown in Figure 5.1a.
For this decay mode, a branching ratio of bHoyle,DDP = 2.800+1.653

−1.352 · 10−4 is obtained in
the December 2019 data. In the January measurement the obtained optimum branching
ratio is bHoyle,DDP = 2.625+1.694

−1.296 · 10−4 with uncertainty ranges at the 95.4 % confidence
level. The detailed results with best fit, lower, and upper limits for the Hoyle state decay
mode are shown in Table 6.3. The best obtained fit for the December 2019 data is shown
in Figure 6.4a and the corresponding likelihood curve is presented in Figure 6.4b. The
shaded areas in the likelihood-curve plots show, from dark to light orange, the confidence
levels of 1σ, 2σ, and 3σ, respectively. The optimal fit for the January 2020 data is shown
in Figure 6.5a and the corresponding likelihood curve is given in Figure 6.5b.
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(a) Histogram showing the fit of the simulated
sequential and DDP decay events to the ex-
perimental data for the December 2019 data.

(b) Likelihood curve with confidence intervals
for the DDP decay mode of the Hoyle state
for the December 2019 data.

Figure 6.4: Fit of the simulated sequential and DDP decay events to the experimental
data for the December 2019 data.

(a) Histogram showing the fit of the simulated
sequential and DDP decay events to the ex-
perimental data for the January 2020 data.

(b) Likelihood curve with confidence intervals
for the DDP decay mode of the Hoyle state
for the January 2020 data.

Figure 6.5: Fit of the simulated sequential and DDP decay events to the experimental
data for the January 2020 data.
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Table 6.3: Upper and lower limits of the branching ratio of the DDP three-alpha decay
mode of the Hoyle state for different confidence levels for 92 % (2019) and
95 % of the data of the December and January measurements. These are the
files within the 2σ range of the energy sum and distribution width of the run
average, as described in the beginning of this section.

HS DDP Branching ratio
Experiment Lower limit Upper Limit Confidence level

2.800 × 10−4 Best fit
December 1.924 × 10−4 3.757 × 10−4 1 σ (68.3 %)

2019 1.449 × 10−4 4.454 × 10−4 2 σ (95.4 %)
1.035 × 10−4 5.192 × 10−4 3 σ (99.7 %)

2.625 × 10−4 Best fit
January 1.780 × 10−4 3.603 × 10−4 1 σ (68.3 %)

2020 1.329 × 10−4 4.320 × 10−4 2 σ (95.4 %)
9.492 × 10−5 5.086 × 10−4 3 σ (99.7 %)
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6.2.2 DDϕ branching ratio

The DDϕ decay mode of the Hoyle state is the direct decay mode where the alpha particles
are allowed to distribute their energy freely and cover the full phase space. This enables
any possible energy combination, only restricted by energy and momentum conservation.
Without considering the Coulomb repulsion of the alpha particles, as discussed in the
previous DDP decay mode section, the branching ratio of the DDϕ direct decay mode
of the Hoyle state is found to be bHoyle,DDϕ = 5.234+2.627

−2.228 · 10−4 for the December 2019
experiment and bHoyle,DDϕ = 5.593+2.783

−2.434 · 10−4 for the January 2020 experiment. This
result is substantially higher than the branching ratio of the DDP decay mode. The
overall fit quality is lower, especially in the relative energy range above 0.28 ·Q, where Q
is the Q-value of the Hoyle state. As the general curve shape in the sensitive area below
0.10 ·Q is similar to the DDP decay mode, the increase in the branching ratio is primarily
caused by the wider distribution of the direct decay component. The results are shown in
Table 6.4. The best fit for the data taken in December 2019 is shown in Figure 6.6a and
in Figure 6.7a for the January 2020 data. The likelihood curve for the DDϕ decay mode
is shown in Figure 6.6b for the December 2019 data and in Figure 6.7b for the January
2020 data.

(a) Fit of the simulated sequential and DDϕ de-
cay mode data to the experimental data of
the 2019 experiment.

(b) Likelihood curve with confidence intervals
for the DDϕ decay mode of the Hoyle state
for the December 2019 data.

Figure 6.6: Fit of the DDϕ mode of the Hoyle state for the December 2019 data.
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(a) Fit of the simulated sequential and DDϕ de-
cay mode data to the experimental data of
the 2020 experiment.

(b) Likelihood curve with confidence intervals
for the DDϕ decay mode of the Hoyle state
for the January 2020 data.

Figure 6.7: Fit of the DDϕ mode of the Hoyle state for the January 2020 data.

Table 6.4: Upper and lower limits of the branching ratio of the DDϕ three-alpha decay
mode of the Hoyle state for different confidence levels for 92 % and 95 % of
the data of the December 2019 and January 2020 measurements, respectively.

HS DDϕ Branching ratio
Experiment Lower limit Upper Limit Confidence level

5.234 × 10−4 Best fit
December 3.815 × 10−4 6.775 × 10−4 1 σ (68.3 %)

2019 3.006 × 10−4 7.861 × 10−4 2 σ (95.4 %)
2.282 × 10−4 8.990 × 10−4 3 σ (99.7 %)

5.593 × 10−4 Best fit
January 4.016 × 10−4 7.196 × 10−4 1 σ (68.3 %)

2020 3.159 × 10−4 8.376 × 10−4 2 σ (95.4 %)
2.395 × 10−4 9.605 × 10−4 3 σ (99.7 %)
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6.2.3 DDE branching ratio

The DDE decay mode assumes equal energy distribution of the three alpha particles,
which results in the direct decay events being distributed in the center of the Dalitz plot.
This results in an event population at low relative energies in the Y-projection plot, as
shown in the best fit for the December 2019 data in Figure 6.8a. The branching ratio of
the DDE decay mode is found to be bHoyle = 2.857+4.579

−2.234 ·10−5 for the December 2019 data
and bHoyle = 4.011+5.517

−3.299 · 10−5 for the January 2020 data. The likelihood curve for the
DDE decay mode is shown in Figure 6.8b. The best fit of the DDE decay mode for the
data from 2020 is shown in Figure 6.9a and the corresponding likelihood curve is shown
in Figure 6.9b.
The fits show good agreement for the sensitive area but are not able to produce a con-
tinuous fit for the full range of the data, as the model underestimates the experimental
data at relative energies around 0.05. This feature could be an indicator that multiple
direct decay components are present, which are not accounted for in the model. This
aspect could be mitigated by employing a multi-component model, which fits multiple
direct decay components simultaneously. This approach has been tested, but does not
provide a smooth likelihood curve, which is a requirement for the employed confidence
analysis technique. The results of the two performed experiments where sequential and
DDE component were taken into account are shown in Table 6.5.

(a) Fit of the simulated sequential and DDE de-
cay mode data to the experimental data of
the 2019 experiment.

(b) Likelihood curve with confidence intervals
for the DDE decay mode of the Hoyle state
for the December 2019 data.

Figure 6.8: Fit of the DDE mode of the Hoyle state for the December 2019 data.
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(a) Fit of the simulated sequential and DDE de-
cay mode data to the experimental data of
the 2020 experiment.

(b) Likelihood curve with confidence intervals
for the DDE decay mode of the Hoyle state
for the January 2020 data.

Figure 6.9: Fit of the DDE mode of the Hoyle state for the January 2020 data.

Table 6.5: Upper and lower limits of the branching ratio of the DDE three-alpha decay
mode of the Hoyle state for different confidence levels for 92 % (2019) and
95 % of the data of the December and January measurements.

HS DDE Branching ratio
Experiment Lower limit Upper Limit Confidence level

2.857 × 10−5 Best fit
December 1.263 × 10−5 5.355 × 10−5 1 σ (68.3 %)

2019 6.225 × 10−6 7.437 × 10−5 2 σ (95.4 %)
2.500 × 10−6 9.881 × 10−5 3 σ (99.7 %)

4.011 × 10−5 Best fit
January 1.696 × 10−5 7.048 × 10−5 1 σ (68.3 %)

2020 7.117 × 10−6 9.528 × 10−5 2 σ (95.4 %)
1.394 × 10−6 1.235 × 10−4 3 σ (99.7 %)
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6.2.4 DDL branching ratio

The DDL decay mode of the Hoyle state is the direct decay mode where one alpha particle
after the decay is at rest in the center-of-mass frame of the decaying 12C nucleus and
the other two alpha particles are emitted antiparallel to each other with equal energy.
Contrasting a more broad definition of the DDL event decay, which was for example
chosen by Smith et al. [59], where all decays close enough to a linear configuration
are considered as DDL decay events, here, only antiparallel decay configurations were
considered.
A test fit of this decay path was performed, but the results showed a very high sensitivity
to the model uncertainties: The Monte-Carlo simulation (see Figure 6.10) and general
constraints of the Dalitz plots show that the DDL events overlap with the corners of
the sequential decay triangle in the Dalitz plot, where the statistics of the sequential
decay mode is highest. The large sequential component at the overlap range made the fit
very sensitive to the exact energy resolution, as the outer edges of the sequential decay
component are implicitly scaled up or down by introduction of the DDL decay mode as
the fitting algorithm is most sensitive to the data close to the peak.
For this reason, the DDL decay mode was not included in the likelihood analysis, as
the model uncertainties changed the resulting branching ratio by more than two orders of
magnitude. An example fit is shown in Figure 6.11. The corresponding branching ratio is
bHoyle, DDL = 2.619+0.483

−0.453×10−2 for the typical energy resolution of the December 2019 data.
Reducing the data selection threshold has a strong impact on the obtained branching
ratio, as the lowest threshold yields a branching ratio of bHoyle, DDL = 4.533+0.655

−0.774 × 10−2.
This indicates that at the current sensitivity of the experiment, the DDL decay mode
cannot be resolved.

Given the dependency of the branching ratio on the systematic errors and since the
study of the systematic uncertainties of the model is beyond the scope of this work, the
DDL decay mode was not included in the final analysis, but was included in the likelihood
analysis for completeness.
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Figure 6.10: Fit of the simulated sequential and DDL decay mode data to the experimen-
tal data of the 2019 experiment.

Figure 6.11: Fit of the simulated sequential and DDL decay mode data to the experimen-
tal data of the 2019 experiment.
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6.2.5 Summary

In total, the branching ratios of the DDP, DDϕ, and DDE decay modes of the Hoyle states
were measured. The resulting values are summarized in Table 6.6. The shown values only
include statistical uncertainties and only partially account for systematic uncertainties
that were implicitly included in the Monte Carlo simulation.

Table 6.6: Upper and lower limits of the branching ratio of the direct three-alpha decay
modes of the Hoyle state at a 2σ confidence level for 92 % of the data of the
December and 95 % of the data of the January measurements. The given
uncertainties are statistical only.

Hoyle State Branching ratio
Decay mode 2019 2020

DDE 2.857+4.579
−2.234 · 10−5 4.011+5.517

−3.299 · 10−5

DDϕ 5.234+2.627
−2.228 · 10−4 5.593+2.783

−2.434 · 10−4

DDP 2.800+1.653
−1.352 · 10−4 2.625+1.694

−1.296 · 10−4

The relative uncertainties of the branching ratios of particle decay of the Hoyle state
are summarized in Table 6.7.

Table 6.7: Relative uncertainties of the branching ratios of the 3− state decay modes for
the 2σ confidence interval.

Relative uncertainty 2019 Relative uncertainty 2020
Decay mode - + - +

DDϕ −42.6 % 50.2 % −43.5 % 49.8 %
DDP −48.3 % 59.0 % −49.4 % 64.5 %
DDE −78.2 % 160.3 % −82.3 % 137.6 %

6.3 Systematic Deviations
Since the overlap of the sequential and direct decay components is directly related to
the resolution of the sequential decay component, a test for a systematic relationship
between the resolution and the branching ratio is performed. To test the sensitivity of
the approach to the resolution, the fit is performed on subsets of the December and
January datasets: As each dataset consists of multiple runs, which were combined to
form the analyzed datasets.
As the sequential component extends over parts of the direct decay components, the
subsets were selected by the resolution of the prominent relative-energy peak of the
sequential decay component. As the resolution slightly varies between the subruns due
to beam-spot fluctuations, the measurement provided a wide range of resolutions, as
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previously shown in Figure 4.24. The results of this analysis for the DDP decay mode
are shown in Figure 6.12.

(a) Branching ratios of the DDP direct Hoyle
state decay mode as a function of the res-
olution threshold for the December 2019
data.

(b) Branching ratios of the DDP decay mode
for the January 2020 data. The gaps are
created when the same file-count is ob-
tained for multiple resolution thresholds.

Figure 6.12: Branching ratio of the Hoyle state decay mode as a function of the resolution
threshold for the December 2019 and January 2020 data.

It should be noted that the resolution selection is performed using a Gaussian fit on the
inner part of the sequential decay component to ensure that the selection is not influenced
by the direct decay component. Since for the measured branching ratios of bHoyle ≈ 3·10−4,
the DDP decay component is almost two orders of magnitude smaller than the sequential
decay component in the fringe of the fit and almost five orders of magnitude smaller in
the center of the sequential peak, as can be seen in the fit in Figure 6.5a. The dependency
of the selected subruns on the resolution is shown in Figure 6.13.
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Figure 6.13: Number of run files used as a function of the resolution threshold for the
December 2019 data.

The graph shows a gradual increase of the branching ratio for higher resolution thresholds,
which is consistent with the expected behavior, as including runs with poorer resolution
can artificially broaden the tail of the sequential decay peak, which the fit may attribute
to the direct decay component. For the data taken in December 2019, the branching
ratio increases from bHoyle = 1.794+0.990

−0.799 · 10−4 to bHoyle = 2.774+0.982
−0.850 · 10−4. The effect

is, however, especially pronounced for the data taken in January 2020, where the best-fit
branching ratio increases from bHoyle = 4.469+1.146

−4.469 · 10−5 to bHoyle = 3.258+1.061
−0.913 · 10−4.
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Conclusion and Outlook

This thesis presents an analysis of the particle-decay behavior of excited 12C states. To
enable this, the LYCCA setup was upgraded to 24 mounted detectors with 18 AIDA
FEE data-acquisition modules. Two experiments were planned, conducted, and more
than 3 · 1010 particle events were recorded. The data were analyzed and the results
were compared to state-of-the-art Monte-Carlo simulations. The main objectives of this
work were to provide analysis tools and methods for the LYCCA setup, demonstrate the
capabilities of the upgraded array and apply them to study the case of the particle-decay
behavior of excited 12C states.
During this work, two measurement campaigns to determine the branching ratios of the
direct decay modes of the Hoyle state and the 3− state in 12C were performed. Given
the high angular coverage and resolution of the LYCCA setup, of the 3 · 1010 detected
particles, more than 6 · 106 particle-decay events of the Hoyle state, comprising 2.4 · 107

alpha particles, were detected in the two experiments, yielding one of the largest single-
sample Hoyle triple-α datasets reported in the literature. The results of the analysis are
summarized in Table 6.8. Although the optimization process provides best-fit values with
confidence intervals, only the upper limits can be stated as robust constraints. This is
because potential, unmodeled decay modes that overlap in phase space could contribute
to the observed signal, meaning the true branching ratio for a specific direct decay mode
could be lower than the best-fit value, as explained in Section 6.1.2. In addition to the
presented values, a test of the DDL decay mode of the Hoyle state was performed, but
the results were inconclusive due to the phase-space location of the DDL event which is
entirely contained within the sequential-decay domain.

While the energy resolution in the center-of-mass frame did not allow for establishing
a new conclusive upper limit, the resulting branching ratios still lie within the range of
previous measurements, providing new data points for structure studies on the elusive
nature of the configuration of higher-lying states in 12C. Additionally, the source of a
detected detrimental influence on the energy resolution was narrowed down to positional
deviations, which will be corrected in future analyses, as this was beyond the scope of
this thesis.
Significant advancements were achieved through a series of technical and methodological
improvements: The test measurements and enhanced electrical grounding of the detectors
contributed to the reduction of electronic noise before the beam time. Key developments
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Table 6.8: Summary of the measured branching ratios for the direct decay modes of the
Hoyle state in 12C.

Decay mode Experiment Optimum branching ratio (±2σ) Upper limit (±2σ)

DDP 2019 (2.800+1.653
−1.352) · 10−4 4.454 · 10−4

2020 (2.625+1.694
−1.296) · 10−4 4.320 · 10−4

DDϕ 2019 (5.234+2.627
−2.228) · 10−4 7.861 · 10−4

2020 (5.593+2.783
−2.434) · 10−4 8.376 · 10−4

DDE 2019 (2.857+4.579
−2.235) · 10−5 7.437 · 10−5

2020 (4.011+5.517
−3.299) · 10−5 8.827 · 10−5

included an event-analysis pipeline built from the ground up, leading to improved, much
faster, and more efficient event building with higher combination efficiency. This pipeline
now offers a robust foundation for handling larger-scale datasets, significant for future
experiments.
A time-walk correction was implemented (Section 3.6.2) to mitigate the amplitude-
dependent variations in signal propagation, which improved timing accuracy across the
detectors and enhanced the background suppression capabilities of the detector array.
Additionally, the fit logic was refined in collaboration with Joe Roob, resulting in a more
robust and reliable fitting procedure, which was necessary due to the high number of
measured quantities. New gate conditions were implemented (sections 4.1.3, 4.1.4) to al-
low for more efficient data selection, enabling an almost background-free analysis. A new
detector-position offset correction technique was implemented and demonstrated (Sec-
tion 4.1.3), further optimizing the spatial resolution of the experiment.
To obtain a more robust understanding of the target properties, an RBS measurement
was performed at the RUBION facility, which, alongside consistency measurements of
the used alpha source, confirmed the target parameters and increased the reliability of the
detectors’ energy calibrations, which are based on the alpha source and target properties.
New tools were developed to accelerate the analysis process, with the time from acqui-
sition to center-of-mass frame analysis for future experiments reduced from multiple full
days to less than three hours. A new pixel calibration code was built, which was further
improved upon by Alessandro Salice. The decay simulation code was also enhanced, to
support the work of Timo Biesenbach, and ensure a highly accurate modeling of the
particle-decay process.
The branching ratio calculation code, used in the analysis, as discussed in chapter 6,
was also newly developed, providing a systematic method to determine the probabilities
of various particle-decay channels. Finally, new consistency checks were established to
ensure data quality, thereby increasing the reliability of the experimental outcomes.
The new analysis codes and hardware improvements provide a solid foundation for the
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next experiments performed with the LYCCA setup. The high angular resolution and
good solid angle coverage of approximately π sr in the current configuration offer unique
opportunities for particle-decay studies. These developments not only enhance the ex-
perimental capabilities of the LYCCA array but also open new avenues for the study of
excited nuclear states and their decay pathways.
The obtained results agree with the contemporary picture that the Hoyle state decays
overwhelmingly via the sequential 8Beg.s. + α path: recent dedicated searches report no
positive signal for a direct 3α branch and set experimental upper limits at the O(10−4)
level [59, 69]. Semiclassical considerations linked to the 2+ excitation suggest that any
direct component is likely below present sensitivity (i.e. ≲ 10−5) [67]. For the competing
radiative de-excitation channel, recent measurements place the branching ratio around a
few times 10−4 [28]. The upper limits established in this work for direct particle-decay
modes are of a similar order of magnitude.

Ongoing and future improvements
The shown analyses of the decay behavior of the Hoyle state and the excited 3− state
in 12C (the latter provided in the Appendix B.1) states was a first step in the analysis
of the structure and decay behavior of 12C using the LYCCA setup. The results of the
analysis show that the setup is capable of measuring the decay behavior of excited states
in 12C with good precision. During the analysis, several possible improvements and op-
timizations were identified that are currently being implemented. The following sections
will discuss these improvements and provide an outlook on future analyses.

Completed detector setup

The current measurement was performed using 18 DSSSD modules. While all 24 detec-
tors of the full LYCCA setup are installed, six DAQ FEE modules are currently in the
process of being repaired. Once the full setup is operational, the angular coverage will
be increased, which will significantly improve the detection efficiency of high-multiplicity
events. As a high-multiplicity event consists of multiple individual detections with a
given detection probability, increasing this probability has an amplified effect on the
total detection probability. Simulation studies suggest that improving the detector cov-
erage by 30 % and lowering the detection thresholds is expected to increase the detection
probability of high-multiplicity events by a factor of up to 3.
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Positional improvements

While the LYCCA setup was originally planned for use at FAIR, the requirements for
angular precision and resolution for a complete-kinematics measurement such as the one
presented in this thesis are substantially higher, especially for the detector position along
the beam axis. A more sophisticated analysis approach to compensate for position de-
viations is currently under development and shows promising results. The approach is
energy-invariant as it uses the intersection points of different kinematic lines of alpha
particles in the energy-θ plane. This approach then provides a fixed θ-position for each
intersection, which can be used to develop the 2D beam-tracking employed in the analysis
to a full 3D tracking approach. This would allow for a more precise determination of the
decay vertex and the beam momentum vector. This can be seen in Figure 6.14, where a
systematic sinusoidal deviation of the intersection points is visible, hinting at a beam-axis
deflection of 0.5◦ in the laboratory frame.

The automatic fitting of the intersection points has already been implemented and

Figure 6.14: Detection position deflection on detectors in ring 2. Figure provided by
Alessandro Salice [100].

tested by Alessandro Salice, and the integration into the analysis is currently in progress.
The most likely cause for energy deviations lies in the rotation of the beam axis, which
shifts the kinematic lines required for the energy calibration. This introduces a depen-
dency of the energies on the beam axis. This could also explain the deviations of the
gold calibration, mentioned in Section 3.4.2. Correcting the energy shifts is also expected
to compensate the energy offset of the energy sum in the laboratory and center-of-mass
frames, which in turn would allow for the application of kinematic fitting. Kinematic
fitting is a powerful tool to improve the precision of the analysis by taking into account
the kinematic constraints of the decay process and varying the individual parameters
within their uncertainties. During this thesis a kinematic fitting approach was developed
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and tested, but due to the energy offset, the results could not be integrated into the final
analysis, as was discussed in Section 4.4.1.

Improved branching ratio calculation

The technique used to obtain branching ratios from the measured and simulated spectra
itself offers several possibilities for improvement: A better approximation of the system-
atic errors can be obtained and incorporated into the Monte-Carlo simulation. Since the
branching ratio calculation technique was found to be sensitive to the energy resolution,
a mapping of the simulation energy resolution to the experimental data resolution for
each run could be performed.
Additionally, the use of a more refined, unified confidence belt metric as proposed by [118]
could be employed to obtain more robust confidence intervals for the branching ratios
where upper limits are concerned. Additionally, a Bayesian approach could be used to
further refine the confidence intervals.

Machine learning for event classification

The current analysis approach uses a two-component fit onto a 1D projection to identify
the fraction of direct decay events in relation to the amount of sequential decays. As
some direct decay modes have more degrees of freedom, this approach does not utilize
the full information contained in the data. A machine learning approach could be used
to classify the events into different decay modes, which would allow for a more detailed
analysis of the decay process. This was previously introduced in the Section 4.4.2. A test
of machine learning algorithms for event classification of the particle decays of the 3− state
was conducted using the XGBoost algorithm. While the overall accuracy on simulated
test data were found to be 99.88 %, the key challenge lies in correctly identifying the rare
direct-decay events. This approach demonstrated promising results in classifying the
minority decay modes, establishing its general feasibility. The performance, particularly
for the rare direct decays, is expected to improve further as more simulated training data
becomes available to better train the model on this imbalanced dataset. The technique
consists of a two-step approach: first, the model is trained on simulated data, and then
the model is applied to the experimental data. The training code has been implemented
and tested for the 3− state and will next be applied to the Hoyle state data, and the
integration of the classifier that tags the experimental data using the trained model into
the data processing pipeline is currently in progress.
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A.1 Target analysis using Rutherford backscattering
The Rutherford Backscattering Spectrometry (RBS) technique is an ion beam based anal-
ysis approach used to determine elemental composition and depth profiles of materials.
The method involves directing an ion beam, typically composed of alpha particles, onto
a target material. The backscattering of these ions, which occurs due to elastic collisions
with the nuclei of the target atoms, results in backscattered ions whose energy is indica-
tive of the mass and depth of the scattering atoms due to the kinematics of the collision
and the energy loss of the ions as they penetrate the target material [119]. A schematic
overview and an example spectrum are shown in Figure A.1.

Figure A.1: (a) Schematic of the Rutherford backscattering method, showing the incident
ion beam and the backscattered ions registered in the detector. (b) Example
energy spectrum of backscattered ions, showing the energy of the ions as they
scatter on the target material. Taken from [17].

In the performed RBS analysis, energy spectra were taken at RUBION [91] using 2 MeV
alpha particles measured with a silicon detector at a scattering angle of 159.3◦ with re-
spect to the incident beam direction. The obtained spectra were compared to simulated
spectra using the SIMNRA software package [120]. Generally, RBS provides high resolu-
tion for surface and near-surface analysis, making it suitable for studying thin films, such
as the target foil employed during the experiments discussed in this thesis. The experi-
mental spectrum, as well as the simulated spectrum, are shown in Figure A.2 displaying
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the energies of the alpha particles scattered on the ions in the target and the substrate
below it. The data were calibrated using backscattering on four different reference foils,
consisting of 27Al, 12C, 180Ta, and 120Sn, respectively The shown data corresponds to

Figure A.2: Rutherford backscattering spectrum of the target. The target is a carbon foil
of 0.1155(58) mg

cm2 thickness. The blue line shows the obtained experimental
spectrum, while the orange dashed linie denotes the simulated spectrum.
The violet line corresponds to the silicon substrate the target is mounted on,
the green line below to the simulated contribution of oxygen in the silicon
substrate. The contribution of the carbon in the target is shown in red.

a target thickness of 5.8 × 1018 carbon atoms per square centimeter, corresponding to
a mass area density of 0.1155(58) mg

cm2 , which is within 1.4 % of the value obtained by
weighing the target foil. Still, the simulated RBS spectrum shows a deviation from the
measured spectrum towards lower energies, due to surface impurities in the target and
a silicon-substrate onto which the target is placed during the measurement to stop the
beam at the RUBION facility. Since this only impacts the surface layer of the target, it
falls estimated 5 % uncertainty of RBS measurements like these[17]. Main contributions
to deviations between the measured and simulated spectra are caused by the presence of
the silicon and silicon oxide of the substrate below the target. Since the exact deposition
depth of the oxygen in the silicon substrate is unknown, the simulated spectrum peaks
are slightly shifted and excess counts are observed at lower energies. Since the target
thickness only depends on the positions of the edges of the peaks, this effect can be ne-
glected for the determination of the target thickness within the given uncertainty.
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A.2 Reconstruction of incomplete events
Using the reconstructed alpha particle from the Hoyle state decay, the Dalitz plot of the
four detected alpha particles can be reconstructed. This is shown in Figure A.3.

Figure A.3: Dalitz plot for events with three detected alpha particles and one recon-
structed alpha particle. One of the reconstructed alpha particles is a frag-
ment of the 12C nucleus Despite the broader distribution the triangle shape
is still visible.

The obtained statistics for the reconstructed events are summarized in Table A.1. They
show a significant increase in the number of events compared to events with a multiplicity
of four, containing 8.2 times more events. This suggests that the current gaps between
the rings and the efficiency of the event combination stage offer potential for future
improvements.

Table A.1: Total Hoyle state decay events after the final gate for multiplicity-3 events
using reconstruction of the missing decay alpha.

Dataset Remaining decay events
December 2019 3.63 × 106

January 2020 3.86 × 106

Total 7.49 × 106
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A.3 Detector leakage current measurement
During the data acquisition, the leakage current of the detectors was monitored per MHV
distribution unit with data taken every hour. Most detectors are read out individually,
but since fewer MHV units are available than detectors, some detectors are supplied in
groups of two. The following Figure, A.4, shows the examplary leakage current of four
MHV units over the course of the first experiment in December 2019. Detector group
A is at a lower scattering angle, causing a significantly stronger increase in the leakage
current.

Figure A.4: Leakage current of four detector groups for the first experiment in December
2019. The detectors are grouped in pairs, with the detectors in group A being
at the lowest scattering angle.

A.4 Dalitz Derivation
Consider three particles with normalized energies ϵi = ei

Q
, where ∑3

i=1 ϵi = 1 with Q being
the total energy. The Dalitz plot coordinates are:

X = 1√
3

(ϵ2 − ϵ1), (A.1)

Y = 1
3(2ϵ3 − ϵ2 − ϵ1). (A.2)
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Energy Conservation (Triangle)

Energy conservation implies:
ϵ1 + ϵ2 + ϵ3 = 1, (A.3)

which can be rewritten as:
ϵ3 = 1 − ϵ1 − ϵ2. (A.4)

Each ϵi fulfills the following constraints:

0 ≤ ϵi ≤ 1. (A.5)

To express a limiting range on X for a given Y , the formula

Y = 1
3(2ϵ3 − ϵ2 − ϵ1), (A.6)

can be changed to only depend on ϵ3 by adding (0 = ϵ1 + ϵ2 + ϵ3 − 1):

Y = ϵ3 − 1
3 , (A.7)

ϵ3 = Y + 1
3 . (A.8)

Putting in the constraints for ϵ3 sets a range on Y :

−1
3 ≤ Y ≤ 2

3 . (A.9)

For a fixed Y (and thus ϵ3), ϵ1 is also limited:

ϵ1 + ϵ2 = 1 − ϵ3, (A.10)
ϵ2 = 1 − ϵ3 − ϵ1. (A.11)

Using these relationships, X can be expressed in terms of ϵ1 and Y :

X = 1√
3

(ϵ2 − ϵ1) (A.12)

= 1√
3

(1 − ϵ3 − 2ϵ1) (A.13)

= 1√
3

(
1 − Y − 1

3 − 2ϵ1

)
(A.14)

= 1√
3

(2
3 − Y − 2ϵ1

)
. (A.15)
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Since ϵ1 ranges from 0 to 1 − ϵ3 = 2
3 − Y , X is limited by:

1√
3

(2
3 − Y − 2 · (2

3 − Y )
)

≤ X ≤ 1√
3

(2
3 − Y − 2 · (0)

)
, (A.16)

− 1√
3

(2
3 − Y

)
≤ X ≤ 1√

3

(2
3 − Y

)
. (A.17)

This forms a triangular plane constrained by X ∈
(
− 1√

3 ,
1√
3

)
, and Y ∈

(
−1

3 ,
2
3

)
with

linear boundaries. The vertices of the resulting triangle are:

A = (0, 2
3), (A.18)

B = (− 1√
3
,−1

3), (A.19)

C = ( 1√
3
,−1

3). (A.20)

Another useful approach to show this property is the use of Viviani’s theorem, named after
the Italian mathematician Vincenzo Viviani. It states that the sum of the perpendicular
distances from any interior point to the sides of an equilateral triangle is constant and the
same as the height of the triangle. For the given triangle, this sum is always 1, matching
the height of the triangle with side length 1, confirming the triangular constraint.

A.5 Energy range of direct decay alpha particles
In the center-of-mass frame, the total momentum sum of the three particles must be zero:

p1 + p2 + p3 = 0. (A.21)

Consider the scenario where one particle, has maximum possible energy. In this case,
the other two particles (particles 2 and 3) must have momenta that exactly cancel the
momentum of particle 1. Their momenta are each comprised of a component parallel
to particle 1’s momentum and a component perpendicular to it. As the perpendicular
components do not contribute to the compensation of particle 1’s momentum and the
momentum is given by the square sum of the components

p =
√
p2

∥ + p2
⊥, (A.22)

the maximum parallel momentum is achieved when the perpendicular components are
zero. This reduces the problem to one dimension, where the parallel components of
particles 2 and 3 must sum to the negative of the parallel component of particle 1. For
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a fixed energy of particle 1, on gets the following constraints

ϵ23 = ϵ2 + ϵ3, (A.23)
p23 = p2 + p3 = n(√ϵ2 + √

ϵ3), (A.24)

with n being a constant containing mass and the 1
2 term.

The equation (A.24) can be expressed dependent on the energy of particle 3

p23 = n(
√
ϵ23 − ϵ3). (A.25)

This equation can be solved for its maximum value by taking the derivative with respect
to ϵ3 and setting it to zero

d

dϵ3
p23 = n

(1
2

)
(ϵ23 − ϵ3)− 1

2 = 0, (A.26)

(ϵ23 − ϵ3)− 1
2 = 0, (A.27)

ϵ23 − ϵ3 = 0, (A.28)
ϵ23 = ϵ3. (A.29)

Validating that this is a maximum, the second derivative is calculated

d2

dϵ2
3
p23 = −n

(1
2

)
(ϵ23 − ϵ3)− 3

2 < 0. (A.30)

This shows that the maximum momentum of particles 2 and 3 is achieved when their
relative energies - and subsequently their absolute energies are equal.

This result provides two limiting cases on ϵ1: If ϵ1 is zero, then ϵ2 = ϵ3, resulting in the
DDL decay configuration. The maximum for ϵ1 is achieved by computing the momenta

p1 = p2 + p3, (A.31)
p1 = 2p2. (A.32)

(A.33)

which can be expressed in terms of velocities (using p = mv):

v1 = 2v2. (A.34)

The energies

ϵ1 = 1 − ϵ2 − ϵ3, (A.35)
ϵ1 = 1 − 2ϵ2. (A.36)
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can be expressed in terms of velocities using

ϵi = Ei

Q
= mv2

i

2Q , (A.37)

which, using (A.36), results in

mv2
1

2Q = 1 − 2mv
2
2

2Q , (A.38)

v2
1 = 2Q

m
− 2v2

2. (A.39)

Combining this with (A.34) yields

v2
1 = 2Q

m
− 2

(1
2v1

)2
, (A.40)

v2
1 = 2Q

m
− 1

2v
2
1, (A.41)

v2
1 = 4Q

3m. (A.42)

(A.43)

This gives the upper limit for the energy of particle 1 as

ϵ1 = mv2
1

2Q , (A.44)

ϵ1 = m

2Q
4Q
3m, (A.45)

ϵ1 = 2
3 . (A.46)

A.6 Dalitz Plot Sequential Component Position
Derivation

To compute the expected peak position of the sequential decay component in the Y-
projection of the folded Dalitz plot, the energies of the decay particles must be computed,
as it is formed by the energies of the initially emitted alpha particles in the

12C∗ → α+8 Be (A.47)

process. As both decay steps of the sequential decay are 2-body processes, the kinetic
energy partitioning is fixed by energy and momentum conservation.
The Q-value for the first decay channel (12C∗ → 8Be + α) and the total decay Q-value
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(12C∗ → 3α) can be computed using

Qfirst = m12C∗ − (mα +m8Be),
Qtotal = m12C∗ − 3 ×mα.

(A.48)

The kinetic energy of the alpha particle in the first decay, E3, is calculated using the
mass ratio of the products

E3 = Qfirst ×

 1
1 + mα

m8Be

 . (A.49)

The relative energies are obtained by

ϵ3 = E3

Qtotal
, (A.50)

with the resulting values in the folded Dalitz plot given by

Y = ϵ3 − 1
3 . (A.51)

The results for the Q-values and the relative kinetic energy of the alpha particle with
respect to the total Q-value are given in Table A.2.

Table A.2: Values for the sequential decay component calculation.
State Q-value first step Q-value total E3 ϵ3 Y value
Hoyle state 287.5 keV 379.3 keV 191.7 keV 0.50526 0.17193
3- state 2274.4 keV 2366.3 keV 1516.3 keV 0.64080 0.30746

A.7 Software developed for the analysis of the
experiment

During the course of the analysis, several software tools were developed to facilitate the
analysis of the data as described in chapter 3. The source code for these tools is available
on the Institute’s GitLab server split into two repositories, one for the analysis and one
for the simulation.
The analysis repository, lycca-analysis, is available at the following URL:
https://gitlab.ikp.uni-koeln.de/lycca/lycca-analysis. It contains the following
analysis programs:

• Converter: Convert the raw data from the binary format from the DAQ to a more
accessible ROOT format.
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• timetest: Obtain reliable gate widths for the EventBuilder.

• EventBuilder: Combine the ADC and discriminator data into strip events.

• CalibrationStrips: Generate an initial strip calibration using the triple-alpha
source data.

• CalibrationPixels: Generate the per-pixel calibration using a combination of the
triple-alpha source and kinematic line data.

• CombineStrips: Combine the strip data into pixel data.

• AnalysisGateKinematics2: Apply the final gate conditions to the combined pixel
data and calculate the kinematics of the events in the laboratory and center-of-mass
frame and generate Dalitz plots.

• AnalysisGateClassifier: Classify the events into different categories using the
XGBoost machine learning algorithm.

• DetPos: Calculate the position of the detectors in the laboratory frame.

• HistoAdd: More efficiently add up histograms.

It also contains a library of header files containing utility functions required by the LY-
CCA analysis programs.
In addition, the repository contains a selection of tools:

• AnalysisDiagnostics: Generate diagnostic plots to compare different analysis
runs.

• CompareCalibration: Compare different generated calibrations.

• CurveFitETht: Obtain an energy-θ curve for a scattering reaction of interest, using
data obtained from LISE++.

• Prettify: Automatically extract plots from ROOT files and rebuild them more
consistently.

The simulation repository, lycca-simulation2, is available at the following URL:
https://gitlab.ikp.uni-koeln.de/lycca/lycca-simulation2 and contains different
revisions of the simulation code used to generate the Monte Carlo data used in the
analysis.
All provided programs and scripts are written in C++, python, bash and a few newer
programs in Julia. The programs are designed to be run on the Linux operating system
and can be accessed by members of the Institute for Nuclear Physics at the University of
Cologne.
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B.1 3− state branching ratio results
To analyze the next higher lying state in 12C, namely the 3− state at 9.64 MeV, the same
technique as for the Hoyle state was applied. The results are summarized in the following
sections. As previously discussed in Section 4.3, a large amount of data were collected for
the decay of the 3− state and analyzed in the same way as the Hoyle state decay data.
The obtained statistics for the 3− state decay are significantly higher than for the Hoyle
state decay (2.65 · 106 events for the 3− state compared to 5.84 · 105 events for the Hoyle
state, after all cuts and using the veto-energy for same-detector events). Also, the higher
energy in the center-of-mass system of the 3− state of 2.37 MeV compared to the Hoyle
state’s 0.38 MeV results in a better relative energy resolution. As seen during analysis
chapter 4.3, the 3− state was found to have a substantially higher direct decay probability
than the Hoyle state, which can be seen in the comparison of the Dalitz plots in Figures
4.28 and 4.29. Another prominent feature is the existence of depletion regions in the
Dalitz plot, which are suppressed by angular momentum effects [121]. The Y-projection
of the Dalitz plots of the 3− state decay clearly shows the low-energy continuum, which
is a result of the direct decay of the 3− state.
The obtained branching ratios are summarized in tables B.1, B.2, and B.3. Since no
events for the DLL mode were simulated, as it is expected to be suppressed by the
angular momentum depletion, no branching ratio could be determined for this mode.
The resulting branching ratios for the December and January measurements are not in
agreement within 3σ confidence intervals. This is likely due to an underlying systematic
component that was not fully accounted for in the analysis, as the current confidence
intervals are only based on the statistical uncertainties of the fit. Further information on
the systematic uncertainties are provided in Section 6.3.
The study of the 3− state and the study of the direct particle decay of higher lying states
in 12C, such as the 1− state, will be further expanded upon in the master’s thesis of Joe
Roob.
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B.1.1 DDϕ branching ratio

The DDϕ decay mode of the 3− state, where the only limitation on the energy distri-
bution of the alpha particles are energy and momentum conservation, was analyzed in
the same way as the DDϕ decay mode of the Hoyle state. The results of the fits are
shown in Figures B.1a and B.2a. The likelihood curves with confidence intervals are
shown in Figures B.1b and B.2b. The results of the branching ratios are summarized in
Table B.1. The results of the December and January measurements are not in agreement
within 3σ confidence intervals, which is likely due to an underlying systematic component
that was not accounted for in the analysis. The results deviate by 11.6 % between the
two measurements, but the statistical confidence intervals (relative uncertainties between
1.33 % and 1.64 %) are very narrow compared to the deviation. The planned inclusion
of systematic uncertainties will increase the confidence interval width, which will likely
lead to an agreement between the two measurements.
Another very important aspect is, that during the data preparation, the analysis of the
Hoyle state was the priority, and the detector configuration was optimized to ensure
that the resolution of the Hoyle-state decay events was as high as possible. Given the
energy offsets, discussed in Section 4.1.4, the optimum configuration providing the best
resolution at the Hoyle-state energy did not necessarily provide the best resolution for
the 3− state decay events. For consistency reasons, the same detector configuration and
dead-layer thicknesses were used for the 3− state analysis as for the Hoyle state analysis.
A more detailed analysis of the systematic uncertainties will be performed in the future
to investigate the discrepancy between the two measurements.

(a) Fit of the simulated sequential and DDϕ
decay mode data to the experimental data
of the 2019 experiment.

(b) Likelihood curve with confidence intervals
for the DDϕ decay mode of the 3− state for
the December 2019 data.

Figure B.1: Fit of the DDϕ mode of the 3− state for the December 2019 data.
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(a) Fit of the simulated sequential and DDϕ
decay mode data to the experimental data
of the 2020 experiment.

(b) Likelihood curve with confidence intervals
for the DDϕ decay mode of the 3− state for
the January 2020 data.

Figure B.2: Fit of the DDϕ mode of the 3− state for the January 2020 data.

Table B.1: Upper and lower limits of the branching ratio of the DDϕ three-alpha decay
mode of the 3− state for different confidence levels for 92 % (2019) and 95 %
of the data of the December and January measurements.

DDϕ Branching ratio
Experiment Lower limit Upper Limit Confidence level

2.577 × 10−2 Best fit
December 2.566 × 10−2 2.608 × 10−2 1 σ (68.3 %)

2019 2.550 × 10−2 2.625 × 10−2 2 σ (95.4 %)
2.534 × 10−2 2.640 × 10−2 3 σ (99.7 %)

2.876 × 10−2 Best fit
January 2.817 × 10−2 2.925 × 10−2 1 σ (68.3 %)

2020 2.781 × 10−2 2.960 × 10−2 2 σ (95.4 %)
2.748 × 10−2 2.996 × 10−2 3 σ (99.7 %)
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B.1.2 DDP decay mode

The DDP mode of the 3− state was analyzed in the same way as the DDP mode of
the Hoyle state: A WKB-approximation based density matrix was used to obtain a
distribution of relative energies for the DDP decay mode. As can be seen in the fits in
Figures B.3a and B.4a, the model is unable to reproduce the amount of higher relative
energy events of the direct decay component visible in the experimental data. Due to
the shifted centroid of the distribution compared to the DDϕ distribution, the results
are still close to the values obtained for the DDϕ decay mode in the corresponding
measurement and in agreement within 2σ confidence intervals with them. Like the DDϕ
branching ratio results, they are not in agreement with each other and exhibit a similar
shift towards larger branching ratios in the January dataset, which is likely due to the
same systematic reason as for the DDϕ decay mode.

(a) Fit of the simulated sequential and DDP de-
cay mode data to the experimental data of
the 2019 experiment.

(b) Likelihood curve with confidence intervals
for the DDP decay mode of the 3− state
for the December 2019 data.

Figure B.3: Fit of the DDP mode of the 3− state for the December 2019 data.
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(a) Fit of the simulated sequential and DDP
decay mode data to the experimental data
of the 2020 experiment.

(b) Likelihood curve with confidence intervals
for the DDP decay mode of the 3− state for
the January 2020 data.

Figure B.4: Fit of the DDP mode of the 3− state for the January 2020 data.

Table B.2: Upper and lower limits of the branching ratio of the DDP three-alpha decay
mode of the 3− state for different confidence levels for 92 % (2019) and 95 %
of the data of the December and January measurements.

DDP Branching ratio
Experiment Lower limit Upper Limit Confidence level

2.521 × 10−2 Best fit
December 2.497 × 10−2 2.544 × 10−2 1 σ (68.3 %)

2019 2.482 × 10−2 2.559 × 10−2 2 σ (95.4 %)
2.468 × 10−2 2.574 × 10−2 3 σ (99.7 %)

2.970 × 10−2 Best fit
January 2.945 × 10−2 2.994 × 10−2 1 σ (68.3 %)

2020 2.929 × 10−2 3.011 × 10−2 2 σ (95.4 %)
2.913 × 10−2 3.027 × 10−2 3 σ (99.7 %)
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B.1.3 DDE branching ratio

Analogous to the DDE decay model of the Hoyle state a separation between the sequential
and DDE decay components can be seen, which does not match the continuous exper-
imental energy distribution, as can be seen in the fits in Figures B.5a and B.6a. The
resulting likelihood curves are shown in Figures B.5b and B.6b. The separation between
the two distributions is much more pronounced in the 3− state data, as the direct decay
component is much more prominent and the higher absolute decay energy of the state
provides a much better resolution of the relative energies resulting in a narrow sequential
decay peak in the Y-projection of the Dalitz plot. This suggests that, if the DDE decay
mode is present, it must be accompanied by another direct decay mode, as the DDE
decay mode alone cannot explain the observed data. The method employed, however,
does only support the determination of one direct decay mode at a time, as introduced
in Section 6.1. The approach of fitting the direct decay modes separately has also been
employed in comparable analyses, such as the work of Smith et al. [59].
The resulting branching ratios obtained in the DDE decay mode study are summarized in
Table B.3. As each contribution of other direct decay modes would reduce the branching
ratio of the DDE decay mode, the obtained branching ratios can be considered as upper
limits for the DDE decay mode. The results obtained in the December and January
measurements are not in agreement within 3σ confidence intervals, which is likely due to
other direct decay modes superimposed on the experimental spectrum.

(a) Fit of the simulated sequential and DDE
decay mode data to the experimental data
of the 2019 experiment.

(b) Likelihood curve with confidence intervals
for the DDE decay mode of the 3− state for
the December 2019 data.

Figure B.5: Fit of the DDE mode of the 3− state for the December 2019 data.

The relative uncertainties of the branching ratios of the 3− state decay modes are
summarized in Table B.4. In comparison to the relative uncertainties of the Hoyle state
branching ratios, as shown in Table 6.7, the statistical uncertainties are significantly lower
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(a) Fit of the simulated sequential and DDE
decay mode data to the experimental data
of the 2020 experiment.

(b) Likelihood curve with confidence intervals
for the DDE decay mode of the 3− state for
the January 2020 data.

Figure B.6: Fit of the DDE mode of the 3− state for the January 2020 data.

for the 3− state decay modes. This is due to the higher statistics and better resolution,
which allows to resolve the difference between the December and January measurements.
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Table B.3: Upper and lower limits of the branching ratio of the DDE three-alpha decay
mode of the 3− state for different confidence levels for 92 % (2019) and 95 %
of the data of the December and January measurements.

DDE Branching ratio
Experiment Lower limit Upper Limit Confidence level

6.736 × 10−4 Best fit
December 6.3352 × 10−4 7.1543 × 10−4 1 σ (68.3 %)

2019 6.0850 × 10−4 7.4322 × 10−4 2 σ (95.4 %)
5.8472 × 10−4 7.7115 × 10−4 3 σ (99.7 %)

1.059 × 10−3 Best fit
January 1.0043 × 10−3 1.109 × 10−3 1 σ (68.3 %)

2020 9.7209 × 10−4 1.144 × 10−3 2 σ (95.4 %)
9.4131 × 10−4 1.179 × 10−3 3 σ (99.7 %)

Table B.4: Relative uncertainties of the branching ratios of the 3− state decay modes for
the 2σ confidence interval.

Relative uncertainty 2019 Relative uncertainty 2020
Decay mode - + - +

DDϕ −1.33 % 1.64 % −1.33 % 1.40 %
DDP −1.52 % 1.52 % −1.39 % 1.37 %
DDE −9.66 % 10.3 % −8.23 % 7.97 %

B.1.4 Summary

The branching ratios of the 3− state of 12C were determined for the DDϕ, DDP, and DDE
decay modes and are summarized in Tables B.1, B.2, and B.3, respectively. A summary
is provided in Table B.5. The results of the December and January measurements of the
DDϕ and DDP decay modes are not in agreement within 3σ confidence intervals of their
statistical errors. As systematic errors increase the width of the confidence intervals, this
disagreement does not necessarily imply that the results themselves are incompatible. A
minor underlying systematic shift that was not accounted for in the analysis, such as a
slight beam angle offset between the two measurement campaigns or a minor shift of the
wall detectors during the mounting of the protective tantalum apertures, could also be
the cause of the discrepancy. To further investigate this, a more detailed analysis of the
systematic uncertainties will be performed, but was out of the scope of this work.
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Table B.5: Summary of the measured branching ratios for the direct decay modes of the
3− state in 12C.

Decay mode Experiment Branching ratio (±2σ) Upper limit (±2σ)

DDP 2019 (2.521+0.038
−0.038) · 10−2 2.559 · 10−2

2020 (2.970+0.041
−0.041) · 10−2 3.019 · 10−2

DDϕ 2019 (2.583+0.042
−0.034) · 10−2 2.625 · 10−2

2020 (3.072+0.043
−0.041) · 10−2 3.115 · 10−2

DDE 2019 (6.736+0.697
−0.651) · 10−4 7.432 · 10−4

2020 (1.059+0.084
−0.087) · 10−3 1.176 · 10−3

As both decay modes, DDP and DDϕ, describe a relatively similar decay process, given
that both can populate the same energy configurations of the three alpha particles, only
with different likelihoods, the results could be affected by the same systematic component.
While the DDP component underestimates the amount of direct-decay alpha particles
with higher relative energies, the DDϕ component overestimates this population. A
core issue in the DDP description of the decay is the neglected angular momentum of
the 3− state, which could impact the distribution. The simple uniform distribution
of the DDϕ decay mode is, however, also an oversimplification of the Coulomb barrier
penetration process. Since the 2σ uncertainty band of the DDP mode is wider than
the DDϕ confidence interval, which can be attributed to the larger absolute deviation
of the DDP fit from the data, even encompassing the DDϕ uncertainty band, the free
direct decay branching ratio is likely to be in the range of the DDϕ decay modes between
2.482 × 10−2 and 3.011 × 10−2.
The DDE decay mode results are also not in agreement. The best fit of the DDE mode
without any other direct decay contribution also insufficiently describes the experimental
data. This again confirms the approach to use the direct decay mode results only be as
an upper limit. For the DDE decay mode this limit is thus 1.144 × 10−3.
All these results only contain statistical uncertainties and are, as shown before, affected
by systematic deviations, and thus preliminary.
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