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1. Introduction

Energy markets play a central role in the global economy, with commodities such
as oil and natural gas serving as essential inputs across industrial sectors and
influencing macroeconomic indicators like inflation, trade balances, and economic
growth (Acaravci et al., 2012; Cunado & De Gracia, 2005; He et al., 2010) Fluctu-
ations in energy prices directly affect production costs and consumer spending,
making them a critical factor for policymakers, businesses, and consumers. Beyond
their standalone importance, energy markets are increasingly interconnected with
other commodity markets, such as agricultural and metal markets. Specifically,
energy markets are linked to agriculture, particularly corn, due to the rise of
biofuel production, which creates connections between agricultural commodities
and energy (Tyner, 2010). Energy and metal markets are also closely linked,
as energy is essential for metal extraction and processing, making metal prices
sensitive to energy cost fluctuations. Additionally, rising energy prices often drive
investors toward metals like gold, which serve as safe-haven assets during periods
of market volatility (Ji et al., 2020; Rehman & Vo, 2021).

Starting in the late 1970s, energy markets in developed countries began a gradual
shift from heavy regulation and state control toward deregulation and, in some
cases, privatization. Previously, sectors such as natural gas and electricity were
tightly regulated, while coal and crude oil prices were often controlled by a small
group of powerful producers (Farag & Zaki, 2021b). Deregulation created new
incentives for market-driven energy procurement and pricing, reducing reliance
on regulatory oversight and cost recovery through ratepayers (Kaminski, 2012).
Natural gas markets, in particular, experienced significant deregulation efforts,
with notable reforms in both Europe and the United States. In Europe, the First
Gas Directive of 1998 marked the beginning of a series of regulatory reforms
aimed at enhancing competition, increasing cross-border trade, and improving
transparency within the natural gas market. This was followed by the Second
and Third Energy Packages, which further dismantled monopolistic structures
and integrated the European market (Bianco et al., 2015; Demir & Demir, 2020).
Similarly, the United States pursued a phased deregulation process, beginning with
the Natural Gas Policy Act of 1978 and culminating in the Natural Gas Wellhead
Decontrol Act of 1989, which fully deregulated wellhead prices and allowed market
forces to dictate prices (Hou & Nguyen, 2018; Makholm, 2010). These parallel
efforts in Europe and the U.S. transformed regional natural gas markets, fostering
competitive pricing, enhancing cross-border trade, and contributing to a more
dynamic and integrated energy market.
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As energy markets became increasingly market-oriented, futures contracts
emerged as critical tools for managing price volatility and enhancing market
transparency. The introduction of energy futures—beginning with heating oil
futures on the New York Mercantile Exchange (NYMEX) in 1978 —brought greater
efficiency and liquidity to energy markets, enabling faster price discovery and
providing mechanisms for hedging against price risks (Kim et al., 2024). Since
then, energy futures markets have expanded to include contracts on crude oil,
natural gas, and gasoline, among others, allowing a broader range of market
participants, from producers to institutional investors, to manage exposure to
price fluctuations (Hanly, 2017).

This thesis is organized into four main chapters, each addressing a distinct
aspect of energy markets, with a particular focus on the predictive power of
futures prices and the dynamics of natural gas markets. Chapter 2 investigates
the predictive power of futures prices for 17 primary commodities, including
five key energy commodities. Chapter 3 focuses on the U.S. natural gas market,
exploring how supply and demand shocks affect price fluctuations and market
dynamics. Chapter 4 examines the integration of natural gas markets across
Europe, North America, and Japan. Finally, Chapter 5 concentrates on the
interconnectedness of price returns and volatility within the Northwest European
natural gas markets, analyzing how price movements and volatility are transmitted
across this regional market. Each chapter is based on a paper to which all authors
contributed equally.

1. Can Futures Prices Predict the Real Price of Primary Commodi-
ties?. Joint work with Stephen Snudden and Gregory Upton. USAEE
Working Paper No. 24-629.

2. Revisiting the Dynamics and Elasticities of the U.S. Natural Gas
Market.

3. Global Natural Gas Market Integration: The Role of LNG Trade
and Infrastructure Constraints. Joint work with Samir Jeddi and Jan
Hendrik Kopp. Published in The World Economy, 2025.

4. Decomposing Return and Volatility Connectedness in Northwest
European Gas Markets: Evidence from the R2 connectedness
approach. Joint work with Oliver Ruhnau. EWI Working Paper No.
2024/6.

The remainder of the introduction is divided into two sections: Section 1.1
provides an outline of the content of the four essays. Section 1.2 discusses the
methodological approaches of the essays, as well as limitations and potential areas
of further research.



1.1. Outline

1.1. Outline

1.1.1. Can Futures Prices Predict the Real Price of Primary
Commodities?

Primary commodities play an indispensable role in the production of a wide array
of goods and services, shaping global trade, influencing aggregate price levels,
and affecting broader economic outcomes. These commodities are also central to
global decarbonization efforts. One approach to forecasting primary commodity
prices is to use futures contract prices. This method offers practical advantages, as
data from futures markets are widely available and based on real-time decisions of
market participants. However, prior studies have produced mixed results regarding
their predictive performance. This chapter investigates whether using end-of-
month futures prices, rather than monthly averages, enhances forecast accuracy.
The analysis uses both non-parametric and parametric forecasting approaches,
comparing them against a random walk benchmark across multiple forecast
horizons. Results indicate that non-parametric forecasts, which rely on the latest
available market data rather than averaging prices over the month, consistently
reduce forecast errors for most commodities, especially at shorter horizons. The
findings suggest that futures-based forecasts are a valuable tool for predicting
commodity prices, particularly when recent trading data is prioritized over time-
averaged prices, providing practical insights for researchers, policymakers, and
market participants interested in more accurate commodity price forecasts.

1.1.2. Revisiting the Dynamics and Elasticities of the U.S.
Natural Gas Market

The third chapter focuses on the dynamics of the U.S. natural gas market,
exploring the distinct roles of supply, demand, and trade shocks in influencing
price fluctuations. As a critical component of the U.S. energy landscape, natural
gas affects a wide range of sectors, from manufacturing to residential heating,
and has recently gained importance in global markets due to rising liquefied
natural gas (LNG) exports. Traditional structural analyses of the U.S. natural
gas market, often adapted from oil market models, have generally emphasized
the role of domestic demand while largely overlooking the impact of external
trade flows, such as imports and exports. These omissions may lead to an
incomplete representation of the market’s dynamics, particularly in capturing
the role of export demand within observed demand-side shocks. To address this
gap, this chapter develops a Structural Vector Autoregression (SVAR) model
that explicitly incorporates external trade flows, allowing for a clearer distinction
between domestic and export-driven demand shocks and providing new insights
into the relative importance of different structural shocks.

The model, estimated using monthly data through 2023, captures short-term
market dynamics more precisely than models estimated with quarterly data.
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Extending the dataset through 2023 also captures recent market shifts, partic-
ularly those related to the increase in natural gas exports to Europe following
the Russian invasion of Ukraine. Key findings reveal that short-run supply and
demand elasticities in the U.S. natural gas market are low, indicating limited
responsiveness to price changes. The analysis shows that domestic consumption
and inventory demand shocks are the primary drivers of short-term price fluctua-
tions, while the effects of supply, economic activity, and export demand shocks
become more pronounced over longer horizons. Additionally, a decomposition
of gas price movements during the period 2022-2023 highlights how domestic
factors—particularly consumption and inventory demand—drove significant price
variations, with export demand shocks also playing a role due to increased LNG
exports to Europe and operational disruptions at LNG facilities. These findings
underscore the need to adapt global oil market frameworks for use in regional
natural gas markets, as well as the importance of accounting for the unique
dynamics of external trade in the U.S. market.

1.1.3. Global Natural Gas Market Integration: The Role of LNG
Trade and Infrastructure Constraints

The integration of global gas markets has been driven by the rise of LNG trade and
a shift from oil-indexed to hub-based pricing, which has increased market liquidity
and created new opportunities for spatial arbitrage. This chapter examines
the integration of global natural gas markets, focusing on the North American,
European, and East Asian regions from 2016 to 2022. Using daily futures prices for
Henry Hub (North America), Title Transfer Facility (Europe), and East Asia Index
(East Asia), this chapter explores whether these markets exhibit cointegration
over this period. To capture the potential impact of recent geopolitical and
market disruptions—especially Russia’s reduction of gas supplies to Europe and
the resulting surge in LNG demand—the analysis divides the data into two
subsamples: pre-October 2021 and post-October 2021. In the first subsample,
we find evidence of linear and nonlinear cointegration among all three markets.
However, in the second subsample, as LNG infrastructure reached capacity limits,
we observe a breakdown in integration between the American and European
markets and a nonlinear cointegration between European and Asian prices.

1.1.4. Decomposing Return and Volatility Connectedness in
Northwest European Gas Markets: Evidence from the R2
connectedness approach.

The integration of Kuropean gas markets has accelerated over recent decades,
driven by regulatory reforms and the expansion of liquefied natural gas (LNG)
infrastructure, which has increased interdependence among regional gas hubs.
Previous studies by Chen et al. (2022) and Szafranek et al. (2023) have shown that
these shocks have also led to reduced market connectedness in terms of price returns
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between gas hubs. Building on this prior analysis, this chapter extends the study
of connectedness by addressing the following research questions: Do Furopean
gas markets influence each other’s price returns and wvolatility contemporaneously,
or are there delays in this transmission? How does the timing of connectedness
vary between tight and stable market conditions? How quickly does connectedness
recover following magjor disruptions?

The findings reveal that contemporaneous spillovers tend to dominate over
lagged effects, even during periods of significant external disruption. This suggests
that regional gas markets exhibit rapid adjustments to new information, with price
connections reestablishing quickly after shocks subside. Market connectedness
dipped notably during peak disruptions but rebounded to pre-crisis levels once
conditions stabilized. These patterns indicate that, despite external stressors,
the underlying structure of Northwest European gas markets remains capable of
reverting to high levels of integration once immediate pressures are alleviated.

1.2. Methodology

The methodology in this thesis employs a range of econometric techniques to
analyze various aspects of energy markets, focusing on forecasting, structural
modeling, market integration, and interconnectedness.

In Chapter 2, the methodology focuses on constructing and evaluating com-
modity price forecasts using futures market data to predict the monthly average
real spot price. To create period-average spot price forecasts from futures data,
the study explores three main approaches: (1) averaging futures prices over the
last few trading days of each month to capture recent market expectations; (2)
using the monthly average of daily futures prices, which accounts for any mid-
month contract rollovers; and (3) focusing on the futures price at the close of the
last trading day of each month for its up-to-date information. Each approach is
empirically tested across multiple commodities to assess its predictive power. The
chapter also addresses practical challenges associated with using futures prices
for forecasting, including irregular delivery schedules and the unique settlement
procedures tied to front-month contracts for each commodity. To overcome these
issues, a continuous monthly futures curve is generated, aligning each observation
with its respective forecast month. This approach better reflects real-time com-
modity trading practices, thereby enhancing the relevance and applicability of the
findings. The study constructs monthly, recursive, real-time, and out-of-sample
forecasts following Baumeister and Kilian (2012). To generate real-time forecasts
of real prices, the vintages of the seasonally adjusted U.S. Consumer Price Index
(CPI) are obtained from the real-time database maintained by the Philadelphia
Federal Reserve. The data begins in January 1973, and the historical average of
the CPI is used to estimate expected inflation for constructing real prices. The
analysis employs both non-parametric and parametric techniques and compares
their predictive performance. Forecasting performance is evaluated against a
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baseline random walk model using the Mean Squared Forecast Error (MSFE)
ratio and directional accuracy metrics.

In Chapter 3, the methodology involves developing a Structural Vector Au-
toregression (SVAR) model to analyze the U.S. natural gas market. This model
builds on and extends the SVAR framework originally developed by Baumeister
and Hamilton (2019) for the global oil market. This extension ensures that
the total available supply is accurately allocated among domestic consumption,
exports, and inventory changes. Additionally, unlike Baumeister and Hamilton
(2019)’s model, this chapter does not include measurement error in inventory
data, given the high accuracy of U.S. underground natural gas storage reports.
The SVAR model includes five equations that describe the behavior of natural
gas supply, economic activity, domestic consumption demand, and inventory and
export demand. Accordingly, the model allows for specific structural shocks, such
as supply shocks due to geopolitical events, economic activity shocks linked to
broader economic cycles, and speculative demand shocks affecting inventory levels.

The SVAR model is estimated using the Bayesian approach introduced by
Baumeister and Hamilton (2015), which allows for the incorporation of prior
information about the structural parameters. Priors are set based on empirical
estimates from the literature, reflecting the generally low elasticity of natural
gas supply and demand in the short run. For example, the short-run supply
elasticity is assumed to be low, consistent with infrastructure and production
constraints, while demand elasticities are informed by studies showing limited
responsiveness to price changes. To account for potential uncertainty in these
estimates, the model applies truncated Student-t distributions for most priors,
allowing for flexibility in the presence of extreme values.

In Chapter 4, the methodology assesses the integration of regional natural
gas markets—specifically North America, Furope, and Asia—using cointegra-
tion techniques. First, we evaluate the stationarity of each price series with
the Augmented Dickey-Fuller (ADF), Phillips-Perron (PP), and Kwiatkowski-
Phillips-Schmidt-Shin (KPSS) tests to confirm that they exhibit unit roots, a
prerequisite for cointegration analysis. Next, we employ both the traditional two-
step cointegration model by Engle and Granger (1987) and an extension by Enders
and Siklos (2001), which accounts for potential asymmetry in the adjustment
process through the Momentum Threshold Autoregressive (M-TAR) model. In
the Engle-Granger framework, we estimate the long-run equilibrium relationship
between pairs of gas prices (e.g., TTF and EAX) and then test for symmetric
adjustment. In the M-TAR model, we incorporate asymmetric adjustments by
allowing for differing speeds of reversion depending on whether deviations are
above or below a threshold. The threshold is estimated endogenously following
Chan (1993).

In Chapter 5, the methodology utilizes the R? decomposed connectedness
approach to assess spillover effects and interdependencies among European gas
markets. This method is based on the framework developed by Balli et al. (2023).



1.2. Methodology

It captures both immediate and lagged interactions among variables, allowing
for a comprehensive breakdown of spillovers into contemporaneous and lagged
components. The analysis also estimates four connectedness metrics: the Total
Connectedness Index (T'CI), which measures the overall degree of interconnect-
edness across all markets; the “TO” connectedness, which quantifies how much
a specific market contributes to the variability in other markets; the “FROM”
connectedness, which measures the extent to which each market’s variability is
explained by shocks from other markets; and the “NET” connectedness, defined
as the difference between TO and FROM values, indicating whether a market is
a net transmitter or receiver of shocks. These measures provide insights into the
dynamic relationships and influence patterns within the European gas market,
especially under varying market conditions.

Beyond this discussion, the respective chapters provide comprehensive descrip-
tions of the methodological approaches.






2. Can Futures Prices Predict the Real Price
of Primary Commodities?

2.1. Introduction

Primary commodities play an indispensable role in the production of a wide array
of goods and services, shaping global trade, influencing aggregate price levels, and
affecting broader economic outcomes (Duarte et al., 2021; Gelos & Ustyugova,
2017). These commodities are also central to global decarbonization efforts. For
example, the anticipated rise in demand for metals—crucial for electrification
and battery production—underscores their significance in transitioning to a low-
carbon energy system (Bazilian et al., 2023). Similarly, bio-based feedstocks offer
a promising pathway to decarbonize liquid fuel markets, potentially competing
with fossil-based alternatives (Zabed et al., 2017). Economic decisions today are
heavily influenced by expectations of future commodity prices, particularly real
average price levels, which reflect broader macroeconomic conditions and long-
term flows of costs and revenues. Given their importance in economic planning
and forecasting, there is an increasing demand for reliable methods to predict
these averages.

One approach to forecasting primary commodity prices is to use futures contract
prices' as forecasts of future spot prices. This method offers practical advan-
tages, as data from futures markets are widely available and based on real-time
decisions of market participants. These strengths have led to its adoption by
leading international organizations and central banks, including the International
Monetary Fund (IMF) and the European Central Bank (ECB) for forecasting
purposes (ECB, 2024; IMF, 2024). However, despite the convenience of using
futures forecasts, empirical evidence on their effectiveness in predicting commodity
price levels remains mixed (see, for example, Alquist & Kilian, 2010; Chernenko
et al., 2004; Chinn & Coibion, 2014; Ellwanger & Snudden, 2023b; Kumar, 1992).
Thus, the motivating question for this research is: Are futures markets useful
real-time predictors of the real average spot price of primary commodities?

To reconcile the mixed evidence, this study reviews the methods used in prior
studies, as detailed in Section 2.2. We identify three key areas where improvements
can be made to the methods used for forecasting average commodity prices over
a given period.

LA futures contract is a standardized agreement between two parties to buy or sell a specific
quantity of a commodity at a specified future date for a predetermined price (Hull & Basu,
2016).
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First, prior analyses of period-average forecasts often constructed them by
averaging futures prices over a certain period (typically daily values over a month).
This method is expected to reduce forecast accuracy, especially at shorter horizons,
due to the loss of information from temporal aggregation (Amemiya & Wu, 1972;
Ogbonna et al., 2024; Tiao, 1972; Zellner & Montmarquette, 1971). This loss in
accuracy is also intuitive because averaging older futures market expectations
tends to dilute the value of futures prices by incorporating outdated information.
An example of this issue is evident in the behavior of West Texas Intermediate
(WTI) crude oil front-month futures prices in April 2020, at the onset of the
COVID-19 pandemic. Prices fell sharply from $28.34 on April 3rd to -$37.63 on
April 20th, before recovering to $15.06 by the last trading day of the month. Using
the monthly average price for April in a forecast would incorporate outdated
market expectations.

It remains an open empirical question whether using the most recent trading
information, instead of averages, improves forecast accuracy across commodity
markets (Conlon et al., 2022). This study evaluates the impact of three approaches
to using futures prices: averaging over the month, averaging the last week of
the month, and using end-of-month prices to assess how each method affects the
accuracy and precision of futures-based forecasts.

Secondly, the review shows that prior studies examining futures-based period-
average forecasts of primary commodities have evaluated forecast gains against the
period-average no-change forecast, which assumes that the period-average level of
commodity prices in each future period will equal the current period-average level.
However, such gains are theoretically expected by construction, as models for
forecasting period-average levels are expected to outperform the period-average
no-change benchmark if daily commodity prices follow a random walk (Marcellino,
1999; Weiss, 1984). In contrast, this study follows recent advances by aiming to
forecast the period average while comparing against the end-of-period no-change
forecast (Ellwanger & Snudden, 2023a). This approach is equivalent to the random
walk forecast commonly used in studies of point-sampled futures-based forecasts
(e.g., Chinn & Coibion, 2014; Kumar, 1992; Kwas & Rubaszek, 2021). This allows
us to quantify differences in forecast accuracy between the two naive benchmarks
for all commodities and, for the first time, to test futures-based forecasts of period
averages against the traditional random walk.

Lastly, prior studies examining real-time forecasts of period-average commodity
prices in levels have been limited to crude oil and retail gasoline. This study
broadens that scope by evaluating the usefulness of real-time predictions of the
monthly average real primary commodity prices for 17 commodities across the
energy, metals, and agriculture markets, including a novel analysis of ethanol using
recently available futures data. This diverse selection introduces distinct trading
characteristics and challenges, such as variable delivery schedules and varied front-
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month contract settlement procedures across these commodities.? To address
these complexities, we propose techniques that ensure our forecasts account for the
varying structures and trading practices of each market. Furthermore, our real-
time forecasts of period averages build on prior studies of nominal point-sampled
forecasts (Chinn & Coibion, 2014; Reeve & Vigfusson, 2011; Reichsfeld & Roache,
2011), providing an updated assessment of the performance of futures-based
forecasts over the last decade.

The results can be summarized as follows. First, we find that futures-based
forecasts often outperform the traditional random walk no-change forecast for
most primary commodities. The most effective approaches leverage the latest
expectations from futures markets rather than averaging prices from multiple
trading days. For example, short-horizon mean-squared forecast errors are reduced
for most commodities when using end-of-month closing values, compared to the
common practice of averaging futures prices. Similarly, simple non-parametric
forecasts consistently outperform more complex parametric approaches. Using the
proposed techniques, several commodities show predictability at short horizons
and most show predictability at horizons of six months and beyond.

Second, the analysis reveals that futures markets exhibit different forecast
accuracies across commodities. Energy commodities’ futures-based forecasts
consistently outperform no-change forecasts across most horizons. Performance
for base metal commodities is more varied, particularly at shorter horizons, with
only copper, lead, and zinc showing some consistency in accuracy. Beyond the
short-term, the largest gains are observed for copper and nickel. Moreover, little
evidence of predictability was found for real gold prices, though the nominal price
of gold shows predictability starting around the one-year-ahead horizon, especially
in terms of directional accuracy. Finally, agricultural commodities, particularly
corn and soybeans, demonstrate predictive improvements across most horizons.

Lastly, the findings reveal two key trends in the performance of futures-based
forecasts over time. First, forecast accuracy improved around 2010 and has gener-
ally remained stable for most commodities since then. This improvement coincides
with the financialization of commodity markets, which enhanced market liquidity
and price discovery. Second, during the past two years of our evaluation period
have we observed reduced performance for wheat and natural gas, particularly at
longer horizons.

The main conclusion is that futures-based forecasts can effectively predict
period-average commodity spot prices across various commodities and forecast
horizons by using the latest available futures market data. This simple, non-
parametric approach is also practical, as it is cost-effective and quick to implement
in real time. The findings provide valuable guidance for researchers, policymakers,

2For further details on delivery schedules, settlement dates, and contract alignment, see the
Data Sources section (Section 2.4.1) for a discussion of specific futures contract characteristics
and their alignment with forecast horizons.
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and companies on how to best utilize futures market information to construct
accurate forecasts.

The remainder of the paper is structured as follows. Section 2.2 reviews
the relevant literature on using futures prices to predict commodity spot prices.
Section 2.3 explores the real-time forecast methodology and the choice of no-change
benchmark. Section 2.4 discusses the data used and describes the idiosyncrasies
in trading rules for each commodity. Section 2.5 presents our results, and Section
2.6 concludes.

2.2. Literature Review

Relevant literature is categorized into two broad groups: forecasts of period-
average spot prices and point-sampled spot prices. Assumptions related to
temporal aggregation are discussed, as they are particularly relevant to this
analysis. Additionally, the primary commodities studied, forecast horizons, and
whether the analyses consider real or nominal spot prices are summarized. Finally,
the discussion highlights whether the forecasts were conducted out-of-sample and
utilized real-time methods. Real-time out-of-sample forecasts require that both
the data and model estimation rely only on information available at the time of
the forecast.

2.2.1. Period-Average Forecasts

Table 2.1 summarizes studies that forecast period-average commodity prices, often
from a macroeconomic perspective, as these prices are closely linked to inflation
and terms of trade. For example, central banks construct period-average real
commodity price forecasts for their economic projections (e.g., Bank of Japan,
2024; European Central Bank, 2024).

Most studies in Table 2.1 examine monthly average forecasts, with all analyzing
forecasts in levels, and all except four focusing on real forecasts. Earlier studies
typically concentrated on one-year horizons, but two-year horizons have become
more common since Baumeister and Kilian (2015). Recent works, such as Chu
et al. (2022) and Ellwanger and Snudden (2023b), have extended these horizons
to five years. Out-of-sample and real-time forecasts are common across all these
studies. The literature primarily focuses on crude oil, with exceptions such
as Baumeister et al. (2017), which examines gasoline prices, and Bowman and
Husain (2006), which analyzes metal and agricultural commodities from 1993 to
2003. The current study aims to expand this field by evaluating the usefulness of
futures-based forecasts for 17 primary commodities.

Table 2.1 further indicates that most studies use average futures prices to
construct futures-based forecasts. However, this method may reduce forecast
accuracy due to information loss from temporal aggregation (Amemiya & Wu,

12



2.2. Literature Review

1972; Tiao, 1972).2 In this context, studies in Table 2.1 that rely on averaging
futures prices generally conclude that futures-based forecasts are not useful (e.g.,
Alquist & Kilian, 2010; Baumeister & Kilian, 2012). In contrast, research that
avoids averaging over the month, such as Pagano and Pisani (2009), Funk (2018),
and Ellwanger and Snudden (2023b), finds that futures exhibit some degree of
predictive power. This study empirically evaluates the impact of three approaches
to using futures prices: averaging over the month, averaging the last week of the
month, and using end-of-month prices.

Table 2.1.: Summary of Studies Forecasting Period Average Commodity Prices using

Futures
Author(s) Commodities Frequency Horizons Futures Sampling No-Change Real or Level or Out-of- Real-
Benchmark  Nominal Returns  Sample time
Bowman and Husain (2006)  Agricultural, Metals Quarterly 1-8 Quarterly average  Average Nominal ~ Level Yes No
Pagano and Pisani (2009) Crude Oil Monthly 2-12 3rd weck average Average Nominal  Level Yes Yes
Baumeister and Kilian (2012) Crude Oil Monthly 1-12 Monthly average Average Real Level Yes Yes
Alquist et al. (2013) Crude Oil Monthly 1-12  Monthly average  Average Real Level Yes Yes
Baumeister and Kilian (2014) Crude Oil Quarterly 1-4 Quarterly average  Average Real Level Yes Yes
Manescu and Van Robays (2016)  Crude Oil Quarterly 1-11 Monthly average Average Real Level Yes Yes
Baumeister et al. (2015) Crude Oil Monthly, Quarterly 1 - 24 Monthly average Average Real Level Yes Yes
Baumeister and Kilian (2015) Crude Oil Monthly 1-24 Monthly average Average Real Level Yes Yes
Crude Oil Quarterly 1-8 Quarterly average  Average Real Level Yes Yes
Drachal (2016) Crude Oil Monthly 1 Monthly average ~ Average Nominal ~ Level Yes Yes
Wang et al. (2017) Crude Oil Monthly 1-24  Monthly average  Average Real Level Yes Yes
Baumeister et al. (2017) Gasoline Monthly 1-24 Monthly average Average Real Level Yes Yes
Gasoline Quarterly 1-8 Quarterly average  Average Real Level Yes Yes
Funk (2018) Crude Oil Monthly 1-24 Last 5 days average Real Level Yes Yes
Chu et al. (2022) Crude Oil Monthly 1- 60 Monthly average Average Nominal — Level Yes Yes
Ellwanger and Snudden (2023b) ~ Crude Oil Monthly 1-60 EoM, Average Average Real Level Yes Yes

Notes: “Commodities” specifies the commodities examined in the respective study. “Frequency”
refers to the frequency at which the forecasts were evaluated. “Horizon” corresponds to the
unit of time specified by the “Frequency”. “Futures Sampling” describes how the futures prices
were sampled for the predictions, with “EoM” referring to End-of-Month. The “Level or returns”
column specifies whether the forecast target is the level of the spot price or the return on the
spot price. The “Out-of-Sample” and “Real-time” columns indicate whether the study employs
such forecast methods.

In addition to the forecast itself, the benchmark used for comparison is also
important. Notably, all prior studies in Table 2.1 compare futures forecasts against
the period-average no-change benchmark. However, improvements relative to
this benchmark are theoretically expected, even if the underlying commodity
price follows a random walk (Conlon et al., 2022; Ellwanger & Snudden, 2023a;
Weiss, 1984; Working, 1960). For the first time, this study maintains its focus on
forecasting the period average, while testing this forecast against the traditional
random walk hypothesis, which is commonly used in finance and in the point-
sampled literature discussed in the next subsection.

3For a comprehensive discussion on temporal aggregation methods and their applications in
time series analysis, see Silvestrini and Veredas (2008).
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2.2.2. Point-Sampled Forecasts

This subsection reviews the studies that have examined futures-based forecasts
of point-sampled commodity spot prices (see Table 2.2). Point-sampled prices
are commonly used in financial applications because profits accrue between asset
purchase and settlement. Additionally, point-sampling is standard practice for
calculating returns to avoid spurious predictability (see, e.g., Bork et al., 2022;
Conlon et al., 2022; Working, 1960).

Table 2.2.: Summary of Studies Forecasting Point-Sampled Commodity Prices using

Futures
Author(s) Commodities Frequency Horizons Futures Sampling ~ No-Change Real or Level or Out-of-  Real-
Benchmark  Nominal Returns  Sample time
Fama and French (1987) Agricultural, Livestock, Metals, Wood ~ Monthly —~ 2-10 EoM EoM Nominal Returns No No
Kumar (1992) Crude Oil Monthly 1-9 EoM, Ave. EoM Nominal  Level Yes Yes
Abosedra and Baghestani (2004) Energy Monthly 1-12 EoM EoM Nominal Returns No No
Chernenko et al. (2004) Energy Monthly ~ 3-12 15th day of Month ~ EoM Nominal ~Returns  No No
Chinn et al. (2005) Energy Monthly ~ 3-12 EoM EoM Nominal ~ Level Yes No
Alquist and Kilian (2010) Crude Oil Monthly 1-12 Last 5 days average EoM Nominal  Level Yes Yes
Reeve and Vigfusson (2011)  Agricultural, Livestock, Energy, Metals ~ Monthly — 3-12 EoM EoM Nominal ~Returns  Yes Yes
Reichsfeld and Roache (2011) Agricultural, Energy, Metals ‘Weekly 12-104 EoW EoW Nominal Returns = Yes No
Alquist et al. (2013) Crude Oil Monthly — 1-12 Last 5 days average EoM Nominal ~ Level Yes Yes
Chinn and Coibion (2014) Agricultural, Energy, Metals Monthly 3-12 EoM EoM Nominal Returns Yes Yes
Jin (2017) Crude Oil ‘Weekly 1-24 EoW EoW Real Level Yes No
Miao et al. (2017) Crude Oil ‘Weekly 1-8 EoW EoW Nominal Level Yes Yes
Conlon et al. (2022) Crude Oil Monthly 1 EoM EoM Real Return Yes No
Kwas and Rubaszek (2021) Agricultural, Energy, Metals Monthly — 1-12 EoM EoM Nominal  Level Yes Yes

Notes: See the notes below Table 2.1. “EoW” refers to End-of-Week.

Table 2.2 shows that studies of point-sampled forecasts cover a range of com-
modities, including non-oil energy commodities, agricultural products, and metals.
Most of these studies focus on returns, with all except two examining nominal
forecasts. The majority of studies use real-time methods, with out-of-sample
forecasts becoming standard in the literature following Chinn et al. (2005).

These studies consistently compare forecasts against the point-sampled no-
change benchmark, thereby appropriately testing the null hypothesis of no pre-
dictability. Moreover, most of these studies utilize point-sampled futures to
construct forecasts. The exceptions are Alquist and Kilian (2010) and Alquist
et al. (2013), which use an average of the last five business days of the month.
However, Kumar (1992) examines both end-of-period and alternative forms of
averaging for crude oil and finds that any averaging reduces the accuracy of
out-of-sample point forecasts.

The literature on point forecasts suggests that futures prices frequently out-
perform no-change forecasts. Predictive ability varies across commodities and
forecasting horizons. For example, Chinn et al. (2005), Reeve and Vigfusson
(2011), and Chinn and Coibion (2014) show that futures markets are predictive for
energy and agricultural commodities across all horizons. However, these studies
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observe limited predictive power for precious and base metals. Similar findings are
reported by Reichsfeld and Roache (2011) and Abosedra and Baghestani (2004),
who also note that the performance of futures prices depends on market condi-
tions and varies over time. Furthermore, Reeve and Vigfusson (2011) note that
although futures prices may contain a risk premium, adjusting for this premium
in real-time forecasting does not materially improve the performance of futures
price predictions.

2.3. Methods

Consistent with the existing literature and standard reporting, the monthly
average spot price is calculated as the simple average of daily closing prices
observed over the calendar month: S; = n% Z?;l Sti, where S; is the average spot
price in month ¢, Sy ; denotes the daily closing spot price on day 7 of month ¢, and
n is the total number of trading days in month ¢. The nominal monthly average
is deflated by the consumer price index (CPI) to derive the monthly average real
price: Ry = S;/p;, where p; is the CPI in month ¢. We utilize all information
available in real time at the end of month ¢ to construct A-month-ahead forecasts
of the future level of the monthly average real spot price, F; ,, (Ry1p), where Ej ,,
denotes the expectation based on information up to last day n; of month t¢.

2.3.1. Expectations from Futures

How can a forecaster use futures market information to construct forecasts of
future monthly average spot prices? Consider a scenario where markets are
complete, there is no risk premium, and all market participants have homogeneous
and rational expectations, meaning they all have the same unbiased view of the
future spot price. Additionally, assume that settlement and delivery occur on the
same day. Under these conditions, the price of a futures contract, Ft]?i’d, reflects
the consensus of individual market participants’ expectations of the future spot
price:

Ft}fz"d = Eti(St+n.d), (2.1)

Here, Ft}fi’d is the futures price observed at the close of trading on day ¢ of month
t, for delivery on day d in month ¢ 4 h, E}; denotes the expectation operator
based on information available up to trading day 4 in month ¢, and Si;j, 4 is the
spot price on day d in month ¢ + h. Thus, the futures price reflects the market
participants’ expected price for delivery on day d in month ¢ + h.

Consider now three approaches used to sample futures prices for predicting
period-average spot prices.

The first approach, used by Alquist and Kilian (2010) and Funk (2018), focuses
on averaging futures prices over the final 3-5 trading days of the month. Alquist
and Kilian (2010) applies this method to predict end-of-month spot prices, while
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Funk (2018) uses it to forecast monthly average real spot prices. The averaging is
performed as follows:

3 1 .
Fth,d:% Z th % Z Eri(Siina) (2.2)

i=ns—k+1 i=nis—k+1

where FZ“d is the average futures price over the final k trading days of month ¢.
The summation from ¢ = ny — k4 1 to n; selects the last k& days of the month. By
averaging over these days, the aim is to capture recent market expectations, but
including even a few older observations may dilute the most current information.

The second approach, common in forecasting applications of monthly average
prices (see, e.g., Alquist et al., 2013; Baumeister & Kilian, 2012), uses the monthly
average of the futures price:

Z By (2.3)

where F is the average futures price over all trading days in month ¢, Fth;’di is

the futures price observed on trading day 4 of month ¢, for delivery on day d; in
month ¢ + h;, and h; and d; may vary during the month due to contract rollovers.
Suppose that during month ¢, the futures contract rolls over from delivery in
month ¢ 4+ h to delivery in month ¢ + h + 1 on trading day k. Then, for trading
days ¢ = 1 to k: Fflfd = FE1i(St+h,d), whereas for trading days ¢ = k + 1 to

ng: Ft]}j Ld' Ei(Stynt1,4). Accordingly, the monthly average futures price

becomes:
F = <Z Eri(Sitna) + Y Et,i(St+h+1,d’)) (2.4)

i=1 i=k+1

This means that the average includes expectations for delivery in both month
t+h and month ¢t + h+ 1. As a result, F; mixes expectations for different delivery
periods, which may not align with the forecast target of the monthly average spot
price in month ¢ + h.

The third approach uses only the most recent futures market expectations, specif-
ically the closing price on the last trading day of the month, Ft’?ﬁcf = Etn, (St4h,d)-
This method is appealing because the end-of-month futures price reflects the
most up-to-date market expectations for future spot prices. However, whether
this approach yields more accurate forecasts is an empirical question. This study
conducts an empirical evaluation of all three approaches across seventeen primary
commodities.

Additionally, recall that the objective of this analysis is to forecast the monthly
average price of the commodity, Ey,,(Si+s). In contrast, the futures contract
may refer to an alternative average period or a specific day d, Ey ,(S¢45,q). If this
is the case, there may be forecast gains from reconciling the market’s forecast
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with the monthly average forecast. That is, the futures market may not directly
provide an expectation of the monthly average forecast. For this reason, this
study carefully reviews the differences in the delivery and settlement dates for
the different commodities. Alternative approaches to reconciling potential dis-
crepancies between market expectations and the forecaster’s objective are also
quantified.

2.3.2. Futures-Based Forecasts

A common method for constructing a futures-based forecast of a real spot price is
to deflate the futures curve as follows:

Riynae = Ft},l;zdt/Et,nt (Pegnp)s Y h (2.5)

where Rt+h,d|t is the forecast of the real spot price on day d in month ¢t + h, based

on information up to the last trading day n; of month ¢, Ft}j;ff is the futures price
observed on the last trading day n; of month ¢, for delivery on day d in month ¢+ h,
and Ey , (py4-n)¢) represents the expected U.S. consumer price deflator h periods
ahead. It is common practice to express this relationship using the log-percentage
spread between the futures price and the spot price, as follows (e.g. Alquist &
Kilian, 2010):

Risnap = Rin, (1 + I F 0 Sy, — Brp, (Wf)) Y h (2.6)

where Ej ,,, (ﬂf) is the expected U.S. inflation rate over the next h periods. This
is still an A-month-ahead forecast for the delivery period d.

The non-parametric method proposed by Ellwanger and Snudden (2023b)
assumes proportionality and uses the futures-market forecast of the spot price
during the delivery period, Rt+h,d|t, as the forecast for the monthly average, Rt+h|t.
This is particularly appealing for commodities where the delivery period is any day
within the month, for example for natural gas, crude oil, and precious metals (see
section 2.4.1). Alternatively, the delivery date may refer to a specific day within
a month, for example for base metals. In the case of using a daily point forecast
as a period average forecast, Ellwanger et al. (2023) theoretically demonstrate
that a point forecast within a month converges to the monthly average as data
persistence increases and at longer forecast horizons.

In contrast to these non-parametric approaches, parametric methods allow us to
relax the assumptions of proportionality and unbiasedness. Specifically, to account
for the possibility that the spread may be a biased predictor of future average
prices, we relax the assumption of a zero intercept in Equation 2.6 and estimate
« accordingly. Similarly, we relax the proportionality restriction to estimate (5.
Finally, we explore the simultaneous relaxation of both the unbiasedness and
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proportionality restrictions.
Rinje = Ring (1 ta+p (1n Fl —1n Sy, — Bip, (m ))) Vho o (27)

The parameters & and (8 are obtained in real time through recursive least-squares
regression estimates. Empirical evidence on the differences in forecast performance
across these approaches is then explored.

2.3.3. Forecast Evaluation

If commodity prices follow a random walk, the change in spot prices cannot be
predicted. Suppose the daily price of a certain commodity follows such a pattern,
where R;;, the real price on trading day 7 of month ¢, is given by the following
equation:

Rm’ = Rt,i—l + €4, fori=1,2,...,n;. (2.8)

where n; is the total number of trading days in month ¢, ¢ ; is a mean-zero
independent and identically distributed (iid) error term with variance o2. The
last observed price in month ¢ is R; ,,, the real price on the last trading day of
the month. The iid assumption leads to constant forecast error variance, with
no patterns or trends to exploit. Over longer horizons, however, the forecast
error variance increases linearly with time, as the uncertainty compounds. This
means that, while the random walk remains a challenging benchmark in the short
run, the inherent unpredictability of prices results in growing forecast uncertainty
over time, making it less reliable for longer-term forecasts. Consequently, any
potential gains from alternative forecasting models may be more evident in long-
run horizons where the random walk’s forecast performance deteriorates due to
increased uncertainty.

In this analysis, we aim to predict a commodity’s monthly average real price h
periods ahead. We can express the monthly average of nominal prices deflated by
CPI equivalently as the monthly average of daily real prices:

Stz

RtEnti:fZStl :iiRt’i'
=1

That is, the monthly average real price is the temporal aggregate of daily real
prices. The conditional expectation, E;(Ri4), of the average price h periods
ahead, given time ¢ information, is:

Et,nt (Rt+h) — Rt,nt V h

If daily prices follow a random walk, only the last daily observation reflects the
traditional random walk forecasts for all future values, whether averaged or not.
Moreover, Ellwanger and Snudden (2023a) show that when daily prices follow
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a random walk, the monthly average no-change forecast, R;, produces strictly
larger forecast errors than Ry, in theory.

Moreover, forecast improvements relative to the monthly average no-change
forecast are expected for all autoregressive integrated moving average representa-
tions of the daily data (Marcellino, 1999; Weiss, 1984), including the special case
where the daily real price follows a random walk. Thus, comparisons with the
monthly average no-change forecast do not reflect the traditional random walk
used in finance and could result in spurious predictability.

We empirically compare the forecasting accuracy of the end-of-month no-
change benchmark with the period average no-change for monthly average real
prices across seventeen primary commodities. The results, detailed in Table A.2,
suggest that the end-of-month no-change serves as a more stringent benchmark,
particularly at shorter horizons. It improves upon the period average no-change
by up to 48% in the MSPE ratio and by 52% in directional accuracy. Both the
magnitude and convergence of forecasts at longer horizons, in terms of directional
accuracy and mean-squared precision, reflect patterns expected if the daily data
closely follow a random walk.

Thus, all forecasts in this study are tested against the end-of-month no-change
benchmark. This provides the first instance of futures-based forecasts of period
average commodity prices are evaluated against the traditional random walk
hypothesis. We use two forecast evaluation criteria: the Mean Squared Forecast
Error (MSFE) ratio and mean directional accuracy, also known as success ratios.
The MSFE ratio for the h-step-ahead forecast, M SF E}”ﬂ”o , is calculated as the
quotient of the MSFE of the model-based forecast divided by the MSFE of the
no-change benchmark. The formula is as follows:

E(?:l (Rquh - Rq+h\q)2

MSFE° = — .
Zqul (Rq+h - Rq,nq)

(2.9)

Here, Rq+h|q represents the model forecast for the h-step-ahead average price
Ryin, and Ry, is the end-of-month no-change forecast for the evaluation sample
qg=1,2,...,Q. The null hypothesis, which states that the model-based forecast
has equal MSFE to the no-change forecast, is tested following Diebold and Mariano
(1995) and constructed using Newey and West (1987) standard errors, with results
compared against standard normal critical values. Values of the MSPE ratio
below one indicate improvements over the end-of-period no-change forecast.

Directional accuracy is evaluated using mean directional accuracy. This metric
measures the fraction of times the end-of-month no-change forecast correctly
predicts the direction of change in the monthly average real price of a commodity.
When the underlying level follows a random walk (which, by nature, is unpre-
dictable), the expected SR for any forecast model is 0.5. In simple terms, this
means that no forecast model can outperform a random guess, or a coin flip. Such
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2. Can Futures Prices Predict the Real Price of Primary Commodities?

models are considered to exhibit 'no directional accuracy. The calculation is as
follows:

Q
SR =5 -1 {sn (Rysn — Ran,) = sen (Bysnig = Fam)} (210
q=1

where sgn is a sign function and 1 is an indicator function. The test statistic
is calculated following Pesaran and Timmermann (2009). The null hypothesis
states that the futures-based forecast has a 50 percent success rate in predicting
the direction of change in the real price of the respective commodity. Therefore,
a success ratio above 0.5 indicates an improvement over a random change in
direction.

2.4. Data

This study examines 17 commodity spot prices across four major categories:
energy (West Texas Intermediate (WTI) crude oil, Henry Hub natural gas, heating
oil, RBOB gasoline, and ethanol), precious metals (gold, silver, and platinum),
base metals (copper, aluminum, nickel, tin, lead, and zinc), and agricultural
commodities (wheat, corn, and soybeans).

To construct real-time forecasts of these commodities’ real prices, we use
vintages of the seasonally adjusted U.S. Consumer Price Index (CPI) from the
real-time database maintained by the Philadelphia Federal Reserve. The data
begin in January 1973, and the historical average of the CPI is used to generate
the expected rate of inflation, which is then applied to calculate the real prices.

2.4.1. Data Sources

The daily closing prices for commodity futures and spot data, which reflect real-
time prices, are sourced from Bloomberg, except for the spot prices of crude oil and
heating oil, which are obtained from the U.S. Energy Information Administration
(EIA). Table 2.3 provides details on the futures data, including Bloomberg tickers,
commodity grades, and the initial data availability dates for futures contracts
over three specified horizons: 1-month, 12-month, and 24-month. The table also
outlines the settlement dates, delivery periods, and active trading months for
these contracts, in accordance with the specifications for each commodity’s futures
contracts.

Table A.1 in the Appendix provides details on the spot price series, including
the respective region, Bloomberg ticker, and start date for each series. These spot
price series are carefully selected to ensure alignment with the futures contracts in
two key aspects. First, the spot data match the futures data in terms of trading
exchange and delivery location. For example, Cushing, Oklahoma, serves as the
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2. Can Futures Prices Predict the Real Price of Primary Commodities?

designated delivery location for crude oil, while Chicago is the delivery region for
agricultural commodities, consistent with futures contracts that specify no price
differentials at these locations. Second, this consistency extends to the grade of
the commodity traded, which is particularly relevant for agricultural commodities.
For instance, both the spot and futures prices for wheat are for No. 2 Soft Red
Winter. However, for soybeans, where futures are for No. 2 yellow soybeans with
a 6-cent premium for No. 1, the spot price is adjusted by subtracting 6 cents, as
the spot price is only available for No. 1 yellow soybeans.

2.4.2. Alignment of Futures Contracts with Forecast Horizons

Table 2.3 shows that futures contracts are listed for delivery every month for
energy and base metals (see the column “Listed Contracts”). In contrast, for
precious metals and agricultural commodities, contracts are only listed for specific
delivery months. For example, wheat futures contracts are available for delivery
in March, May, July, September, and December. To ensure a forecast can be
constructed for every month of the forecast evaluation sample, we follow Chinn
and Coibion (2014) and interpolate missing monthly values in the futures curve
using the observed contracts. Specifically, the delivery dates of each contract are
aligned with the closest corresponding monthly horizon. A linear interpolation is
then applied to the missing data along the futures curve. We find that alternative
interpolation methods have almost no effect on forecast performance beyond the
one-month-ahead forecasts.

Aligning the contracts with the forecast horizons is more crucial than inter-
polating missing contracts along the futures curve. The “Settlement Date” and
“Delivery Period” columns in Table 2.3 show that, for base and precious metals,
trading of a futures contract observed on the last day of the month concludes in
the third week of the contract month, with delivery occurring just two business
days after settlement.? Thus, the delivery period of the front-month contract
reflects the market’s expectations for one month ahead. A similar situation occurs
with precious metals, where the settlement and delivery dates overlap within the
same month. However, aligning the contracts with the forecast horizon requires
more careful consideration for other commodities.

Consider the crude oil futures market. According to the contract specifications,
the front contract observed at the end of each month is settled in the following
month, three business days before the 25th, and corresponds to delivery two months
ahead. Figure 2.1ii illustrates this visually: the front contract on December 31 is
settled on January 22 (indicated by the blue arrow) and corresponds to delivery
in February (indicated by the gray arrow). Following Ellwanger and Snudden
(2023b), we align the front contract with the two-month-ahead horizon and impute

4For example, if one is trading the front-month futures contract for aluminum on December
31st, the settlement date is scheduled for the Tuesday preceding the third Wednesday of
January, with the delivery period encompassing the two business days following settlement.
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2.4. Data

the one-step-ahead forecast using the curvature of the futures curve for up to 12
contracts.

The contract specification for natural gas is similar to that of crude oil, in that
trading of the front-month contract terminates on the third-to-last business day of
the month before the contract month, with delivery occurring during the following
month. In this case, we also consider constructing one-month-ahead forecasts
by averaging the spot price and the front-month contract (two-month forecast).
As reported in Appendix Table A.3, this method performs similarly to using
the average curvature, and both methods substantially outperform alternative
assumptions for the one-month-ahead forecast.

2nd Contr. Settlment
1st Contr. Settlment .
— 2nd Conr. Delivery
@) @3 @3 @s)
December January February March April May

(i) Trading schedules for the first two futures contracts of wheat

2Ind Contr. Settlment
1st Contr. Settlment 1st Contr. Delivery 2nd Contr. Delvery

@y (2 @3 @3is) @3

December January February March
(ii) Trading schedules for the first two futures contracts of crude oil

Figure 2.1.: Settlement and Delivery for Wheat and Crude oil on December 31
Note: Settlement and delivery procedures for the two contracts of wheat and crude oil for a
trade conducted on December 31, 2024. “Contr.” refers to “Contract”. Settlement dates indicate
the official end of the trading contract, while the delivery period specifies when the physical
commodity is scheduled to be delivered. Circled numbers represent specific settlement and delivery
dates (formatted as dd/mm).

The front-month contract for other energy commodities, such as heating oil,
settles at the end of the month, with delivery occurring at the beginning of the
next month. This means that such contracts may experience reduced liquidity
as they approach expiration and move toward physical delivery. Moreover, the
beginning-of-month delivery suggests that an accurate prediction of the monthly
average can be constructed using a weighted average of the forecasts from the first
and second contracts (see, for example, Ellwanger et al., 2023). To investigate
this, we construct a one-month-ahead forecast using the average of the first and
second contracts and compare this to the alternative approach of averaging the
current spot price with the second contract. We find that such assumptions reduce
the one-month-ahead mean-squared error by as much as 46 percent. For these
commodities, the average of the spot and the second-month contract is used as
the forecast for the month ahead.

23



2. Can Futures Prices Predict the Real Price of Primary Commodities?

For agricultural commodities, delivery also takes place at the beginning of the
month. For example, the front contracts for wheat observed on December 31
are scheduled for delivery between the 1st and 18th of March (see Figure 2.1i).
Therefore, we consider that averaging the current month’s and the preceding
month’s futures prices provides a better representation of the current monthly
average spot price. We find that this calculation yields consistent, albeit small,
improvements in forecast performance one month ahead, and we use this method
as the baseline for forecasting agricultural commodities.

Note that these time alignment assumptions only affect the results of the one-
month-ahead forecast. For a detailed comparison of all proposed one-month-ahead
assumptions for the affected commodities, including outcomes using the front
contract without time alignment considerations, see Appendix Table A.3.

2.5. Results

This section is organized as follows: It begins with non-parametric forecasts that
use end-of-month futures prices (subsection 2.5.1), followed by an evaluation of
the effect of averaging futures prices (subsection 2.5.2). Next, parametric forecasts
are introduced, exploring different parameter estimation scenarios (subsection
2.5.3). In subsection 2.5.4, forecasts of nominal average prices are investigated,
abstracting from inflation adjustments. Direct forecasts are then explored, using
futures contract values directly for forecasting rather than calculating a spread
over the spot price (subsection 2.5.5). Finally, robustness checks are conducted in
subsection 2.5.6 to assess forecast stability over time and across different sample
start dates.

Our baseline forecast evaluation sample begins in 2010, when futures prices for
longer horizons became consistently available and regularly observed across all
commodities starting in the mid-2000s, as indicated in Table 2.3.

2.5.1. Non-Parametric Forecasts

Results for the non-parametric futures-based forecasts of the monthly average
real spot price, following Equation 2.6, are reported in Table 2.4. These baseline
results utilize end-of-month futures prices and are compared against the end-of-
month no-change forecast. Results are shown for different forecast horizons (1
month, 3 months, 6 months, etc.). The top panel presents the mean squared
forecast error (MSFE) ratio. An MSFE ratio of less than 1 indicates that the
futures-based forecast outperformed the traditional random walk. P-values, shown
in parentheses, test the null hypothesis of equal MSFEs. The bottom panel reports
the success ratio, which shows the proportion of times the futures-based forecasts
correctly predicted the directional change in the real commodity price level. A
success ratio above 0.5 suggests improvement over random chance, with the

24



2.5. Results

p-value for testing the null hypothesis of no directional accuracy provided in
brackets.

Table 2.4.: Futures-based Forecasts of Monthly Real Prices, Non-Parametric

1 3 6 9 12 15 18 21 24

Commodity MSFE Ratio
Crude Oil ~ 0.99 (0.313)  0.94(0.021) 0.88 (0.037) 0.86 (0.066) 0.82(0.054) 0.77(0.022) 0.71 (0.012) 0.66 (0.007) 0.61 (0.003)
Natural Gas  1.02 (0.663)  1.01(0.532) 0.97(0.387) 1.07(0.665) 1.07 (0.672) 0.97(0.395) 0.97 (0.396) 0.97(0.394) 0.97 (0.419)
Heating Oil ~ 1.04 (0.767)  0.98 (0.340)  0.96 (0.251)  0.91 (0.038)  0.87 (0.005) 0.85(0.001) 0.82(0.000) 0.78 (0.000) 0.74 (0.000)
Gasoline 0.81(0.004) 0.75(0.002) 0.69 (0.004) 0.81(0.041) 0.88(0.078) 0.81(0.023) 0.74 (0.009) 0.73 (0.008)  0.69 (0.002)
Ethanol 0.72(0.125)  0.74 (0.120)  0.84 (0.233)  0.83(0.174) 0.77(0.118)  0.71 (0.048)  0.68 (0.042)  0.63 (0.041)  0.59 (0.027)
Gold 1.01 (0.607)  1.00 (0.426) 1.00 (0.510) 0.99 (0.404) 0.98 (0.344) 0.97 (0.286)  0.96 (0.225)  0.95(0.159)  0.93 (0.118)
Silver 1.04 (0.885)  1.00(0.495) 0.99(0.288) 0.98 (0.157) 0.97 (0.124)  0.96 (0.076)  0.93 (0.029) 0.89 (0.018) 0.87 (0.016)
Platinum 1.02 (0.860)  0.98 (0.067)  0.93 (0.008) 0.91(0.010) 0.89 (0.009) 0.88 (0.001) 0.86 (0.000) 0.85(0.000) 0.85 (0.000)
Aluminum  1.00 (0.527) 1.01 (0.647) 0.98 (0.250) 0.95(0.118) 0.96 (0.077)  0.96 (0.105)  0.97 (0.157)  0.97 (0.191)  0.96 (0.172)
Copper 0.98 (0.042)  0.98(0.170) 0.97 (0.118)  0.94 (0.086) 0.93 (0.072) 0.92(0.061) 0.90 (0.040) 0.88 (0.037) 0.88 (0.057)
Lead 0.97 (0.036)  0.97 (0.008) 0.93 (0.008) 0.87(0.010) 0.86(0.010) 0.85(0.022) 0.84 (0.030) 0.83(0.013) 0.81(0.010)
Zinc 0.97 (0.097)  0.95(0.083) 0.93 (0.081) 0.89(0.028) 0.90(0.049) 0.91(0.089) 0.92(0.121) 0.92(0.162) 0.93 (0.233)
Nickel 1.00 (0.633)  1.00(0.529) 0.97 (0.143)  0.95(0.106) 0.94 (0.097) 0.89 (0.046) 0.85(0.022) 0.82(0.011) 0.80 (0.007)
Tin 1.00 (0.508)  1.03(0.697) 1.02(0.623) 1.01(0.526) 0.98 (0.424) 0.95(0.226) 0.95(0.189) 0.98(0.338)  0.99 (0.442)
Corn 1.03 (0.580)  0.75(0.054) 0.67 (0.031)  0.70 (0.046) 0.71 (0.051) 0.67 (0.036) 0.63 (0.033) 0.61(0.028) 0.57 (0.012)
Soybeans  0.86 (0.125)  0.77 (0.039) 0.73 (0.032) 0.78 (0.052) 0.84(0.148) 0.77(0.121) 0.72(0.080) 0.72 (0.070) 0.67 (0.032)
Wheat 1.10(0.911)  1.06 (0.761) 1.02 (0.565) 0.98 (0.456) 0.96 (0.414) 0.96 (0.386) 0.94 (0.292) 0.93 (0.222)  0.89 (0.166)

Success Ratio
Crude Oil ~ 0.55(0.091)  0.52(0.208) 0.58 (0.093) 0.62(0.031) 0.68 (0.002) 0.69 (0.000) 0.66 (0.002) 0.64 (0.005) 0.75 (0.000)
Natural Gas  0.52 (0.321)  0.54 (0.169)  0.61 (0.000)  0.63 (0.004) 0.64 (0.006) 0.66 (0.003) 0.63 (0.017) 0.64 (0.006) 0.62 (0.021)
Heating Oil 052 (0.300)  0.56 (0.072)  0.61(0.019)  0.69 (0.000) 0.77 (0.000) ~ 0.82 (0.000) 0.81(0.000) 0.83 (0.000) 0.81 (0.000)
Gasoline 0.62 (0.001)  0.62(0.004) 0.71 (0.000) 0.65(0.001) 0.62(0.001) 0.62(0.001) 0.65(0.002) 0.69 (0.000) 0.70 (0.000)
Ethanol 0.55(0.086)  0.59(0.015) 0.66 (0.000) 0.64 (0.001) 0.64 (0.024) 0.69 (0.000) 0.64 (0.001) 0.68 (0.000) 0.73 (0.000)
Gold 0.47 (0.444)  0.55(0.114) 0.48 (0.170)  0.54 (0.140) 0.52(0.616) 0.57 (0.000)  0.55(0.000) 0.56 (0.000)  0.50 (0.000)
Silver 0.47 (0.753)  0.50(0.779)  0.59 (0.353)  0.66 (0.069) 0.67 (0.037) 0.66 (0.004) 0.67 (0.000) 0.67 (0.000) 0.63 (0.009)
Platinum 0.49 (0.370)  0.56 (0.238)  0.66 (0.016)  0.64 (0.114) 0.72(0.011)  0.76 (0.002)  0.79 (0.000)  0.82 (0.000)  0.84 (0.000)
Aluminum  0.47 (0.702)  0.45(0.862)  0.46 (0.682) 0.47 (0.598) 0.50 (0.466) 0.49 (0.504) 0.53(0.235) 0.56 (0.061)  0.56 (0.064)
Copper 0.53(0.024)  0.53 (0.000) 0.60 (1.000)  0.61 (1.000) 0.63 (1.000) 0.63 (1.000) 0.60 (1.000) 0.59 (1.000) 0.59 (1.000)
Lead 0.56 (0.060)  0.61 (0.005) 0.60 (0.057) 0.62(0.020) 0.58 (0.011) 0.65(0.009) 0.66 (0.144) 0.65(0.080) 0.67 (0.061)
Zinc 0.53(0.519)  0.50(0.548) 0.52(0.346) 0.51(0.344) 0.57(0.086) 0.61(0.021) 0.60(0.020) 0.59(0.012) 0.58 (0.120)
Nickel 0.50 (1.000)  0.49 (0.790)  0.50 (0.569) 0.50 (1.000) 0.50 (1.000) 0.50 (1.000) 0.49 (1.000) 0.56 (0.000) 0.55 (0.000)
Tin 0.53(1.000)  0.50 (1.000) 0.48 (1.000) 0.52(1.000) 0.52(1.000) 0.54 (1.000) 0.58 (1.000) 0.57 (1.000) 0.54 (1.000)
Comn 0.56 (0.028) 0.63(0.001) 0.64 (0.004) 0.57(0.110) 0.51 (0.444) 0.52(0.355) 0.55(0.177) 0.56 (0.093)  0.59 (0.024)
Soybeans  0.56 (0.051)  0.53 (0.260) 0.60 (0.021) 0.63 (0.012) 0.58 (0.074) 0.58 (0.150)  0.55(0.144) 0.58 (0.087) 0.62 (0.004)
Wheat 0.55(0.088)  0.56 (0.075)  0.58 (0.034) 0.49 (0.840) 0.48 (0.881) 0.49 (0.733) 0.53 (0.441) 0.54 (0.485) 0.55(0.371)

Notes: This table presents the performance of futures-based forecasts for monthly average spot
prices using end-of-month futures prices. The forecasting horizons (in months) are listed in
the column headers (e.g., 1, 3, 6, etc.). The “MSFE Ratio” compares the forecast accuracy of
futures-based models to a random walk (no-change) forecast, where values below 1 indicate that
the futures-based forecast is more accurate. Values in parentheses are p-values from the Diebold
and Mariano (1995) test for equal MSFE, which assesses whether the difference in forecast
accuracy is statistically significant. The “Success Ratio” represents the percentage of correct
directional forecasts, with values above 0.5 indicating that the futures-based forecast correctly
predicts the direction of price movement more than half the time. Values in parentheses are
p-values for the null hypothesis of no directional accuracy relative to the random walk, based
on Pesaran and Timmermann (2009).

For energy commodities, the analysis reveals significant predictive capacity
for futures-based forecasts, particularly in terms of directional accuracy. Across
all forecast horizons examined, directional accuracy exceeds 0.5, highlighting
the effectiveness of futures-based forecasts in predicting market trends. The
null hypothesis of no directional gains is rejected at the 5 percent significance
level by the nine-month forecasting horizon. For the one-month-ahead forecast,
directional accuracy is statistically significant at the 1 percent level for gasoline
and at the 10 percent level for ethanol and crude oil. Notably, at the two-year
horizon, directional accuracy for heating oil reaches 81 percent, while crude oil,
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ethanol, and gasoline show substantial forecasting accuracy, at approximately
70 percent. Additionally, improvements in forecasting are observed in terms of
MSFE precision for gasoline and crude oil at shorter-term horizons. All energy
commodities, except for natural gas, exhibit significant forecast accuracy at longer
horizons, with MSFE reductions approaching 40 percent at the 24-month horizon
for crude oil and ethanol.

When compared to previous studies, such as Baumeister and Kilian (2012), our
analysis using end-of-month futures prices demonstrates stronger predictive perfor-
mance across most forecast horizons. For example, the MSFE ratios in Baumeister
and Kilian (2012) range from 0.997 at the one-month horizon to 0.912 at twelve
months, and these values are not statistically significant. In our extended sample,
which runs through 2022, we observe consistently lower MSFE ratios, starting at
0.99 at the one-month horizon, improving to 0.82 at twelve months, and further
to 0.61 at twenty-four months, all of which are statistically significant beyond the
one-month horizon. Additionally, our success ratios surpass those in Baumeister
and Kilian (2012), where their highest reported value is 0.569 at the twelve-month
horizon, while our corresponding success ratio is 0.68, reaching 0.75 at twenty-four
months. When comparing our results to those obtained using forecast combination
methods, we observe stronger performance at longer horizons. While Baumeister
and Kilian (2015) find that combining forecasts provides statistically significant
gains at shorter horizons, our analysis shows more pronounced improvements,
particularly over longer periods. Specifically, at the twenty-four-month horizon,
Baumeister and Kilian (2015) report an MSFE ratio of 1.029 and a success ratio of
0.561, both of which are outperformed by our corresponding values. Furthermore,
when comparing our results to those of Ellwanger and Snudden (2023b), who also
use end-of-month futures prices to generate futures-based forecasts but compare
forecast gains to a monthly-average no-change benchmark, we observe differences
that underscore the importance of the benchmark used for comparison. Ellwanger
and Snudden (2023b) report an MSFE ratio of 0.59 at the one-month horizon and
a success ratio of 0.72, reflecting significant forecast gains over the average-month
benchmark. However, we find that these forecast gains diminish when the com-
parison is made against the end-of-month no-change benchmark. This highlights
how the choice of benchmark can significantly influence forecast performance
evaluations. Finally, our findings align with those of Kwas and Rubaszek (2021)
in the point forecast literature on crude oil. For other energy commodities, such
as gasoline and heating oil—primarily examined within the point forecast litera-
ture, as discussed in Subsection 2.2.2—our results are consistent with those of
Chinn et al. (2005) and Chinn and Coibion (2014), where futures-based forecasts
consistently outperform the no-change alternative.

Precious metals demonstrate limited predictability at short horizons, with
no forecast gains observed at the one-month horizon. However, futures-based
forecasts for silver and platinum show significant improvements in directional
accuracy at longer horizons, starting at six months for silver and three months for
platinum. The medium- to long-term forecast accuracy, particularly in terms of
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MSFE precision, is statistically significant at the five percent level, beginning at
three months for platinum and fifteen months for silver. Gold presents the greatest
challenge for prediction, as futures-based forecasts were only marginally—and
generally insignificantly—better than the no-change forecast in terms of the MSFE
ratio.

For base metals, the results indicate varied forecast performance. In terms of
both directional accuracy and mean-squared precision, copper and lead exhibit
significant improvements starting at the one-month horizon. At longer horizons,
most metals demonstrate gains in directional accuracy. Furthermore, all analyzed
metals, except tin, show significant reductions in MSFE by the one-year forecast
horizon. Although these improvements are not as pronounced as those observed
for energy commodities, a notable mean-squared reduction of up to twenty percent
is seen at the two-year horizon. This result is the first in the literature to
demonstrate the utility of futures in forecasting the average price of metals. Our
results for zinc are consistent with Reeve and Vigfusson (2011), who found that
futures prices have predictive power. However, our findings differ from Reeve and
Vigfusson (2011) and Chinn and Coibion (2014) for other base metals. While
these studies report limited predictive ability for futures prices, our extended
sample suggests that futures prices do, in fact, demonstrate predictive power for
these metals, especially at medium- and long-term horizons.

For agricultural commodities, enhanced forecast performance is notable in
terms of directional accuracy across almost all horizons, with improvements in
mean-squared precision becoming evident from the three-month horizon onward.
However, wheat shows forecast gains primarily in directional accuracy at shorter
horizons and exhibits an eleven percent improvement in mean-squared precision at
the two-year mark, though this is not statistically significant. The reductions in
the MSFE ratio are particularly substantial at the two-year horizon for soybeans
and corn, with ratios of 0.67 and 0.57, respectively. These outcomes suggest that
futures-based forecasts are reliable predictors for most agricultural commodities,
with the exception of wheat.

Overall, the results indicate that the non-parametric approach to constructing
futures forecasts consistently provides predictive power for monthly average spot
prices across a diverse array of commodities and time horizons. In particular,
futures-based forecasts of monthly average prices generally outperform the tra-
ditional random walk forecast for most primary commodities, especially over
medium- and long-term horizons.

To better understand these results, two common views on the relationship
between futures and spot prices can be considered.

Risk premium and market liquidity The first view posits that the futures
price typically reflects the sum of the expected spot price and a risk premium
(Fama & French, 1987; Pindyck, 2001). Hamilton and Wu (2014) document that
the oil futures risk premium has, on average, diminished since 2005, attributing
this decline to the growing influence of index-fund investing. This shift transferred
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the role of risk-bearing from commercial hedgers to financial investors, thereby
reducing the compensation required for holding long positions. Ellwanger and
Snudden (2023b) observe significant improvements in crude oil forecasting perfor-
mance starting in 2007, coinciding with increases in the volume of futures contracts
traded, particularly for longer maturities. These improvements in forecasting
performance may be linked to increased market liquidity. Our results suggest
that such improvements in forecasting accuracy extend to other commodities as
well. For example, Figure A.1 shows the trading volume for first-month futures
contracts for the 17 commodities considered in this analysis, alongside the MSFE
ratio for the one-month-ahead forecast®. The figure illustrates that forecast ac-
curacy improvements, particularly evident from 2010 onwards, correlate with
increased trading volumes. This suggests a potential link between market liquidity
and predictive accuracy.

Theory of storage The theory of storage explains the relationship between
spot and futures prices of commodities through the “cost-of-carry model,” which
balances the costs and benefits of holding inventories. According to this theory,
the difference between the futures price and the spot price, known as the basis,
is determined by the cost of carrying the commodity until the delivery date.
This cost includes the interest forgone on funds used to purchase the commodity,
the marginal storage cost, and is offset by the marginal convenience yield—the
benefit of holding the inventory. The convenience yield reflects the value of
having inventories on hand, particularly when supply is scarce, as it allows holders
to respond to unexpected demand or price increases. Importantly, the theory
predicts a negative relationship between inventories and the convenience yield:
as inventories decline, the convenience yield rises because the benefits of holding
inventories are greater during periods of scarcity (Brennan, 1976; Fama & French,
1987; Telser, 1958; Working, 1949). High storage costs or low convenience yields
can lead to futures prices exceeding spot prices (a situation known as contango),
reflecting the market’s anticipation of higher future costs or lower storage benefits.
Conversely, high convenience yields, which signal significant benefits from holding
inventories, can result in futures prices being lower than spot prices (a condition
known as backwardation), indicating the market’s expectation of tight supply
or high future demand. This dynamic illustrates how futures prices encapsulate
market participants’ collective assessments of future storage conditions, making
them effective predictors of future spot prices by reflecting the costs and benefits
associated with commodity storage (Pindyck, 2001). This perspective may also
explain the heterogeneity observed in our analysis regarding the forecasting
power of futures prices across different commodity categories. In line with this,
Symeonidis et al. (2012) identify a strong correlation between storage-related
factors and the adjusted basis for energy and agricultural commodities, attributing
this relationship to factors like high storage and transportation costs. In contrast,
metals, particularly precious metals, exhibit a lower correlation with storage-

®See Subsection 2.5.6 for more details on these time-varying MSFE ratios.
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related factors, likely due to their low storage costs relative to their value and
high inventory levels compared to demand.

2.5.2. Effects of Averaging Futures

We next investigate whether averaging futures prices over the month affects forecast
performance, a technique utilized in several prior studies (see, e.g., Alquist et al.,
2013; Baumeister & Kilian, 2012; Chu et al., 2022; Drachal, 2016). The results
are shown in Table 2.5, with bolded values indicating whether the MSFE ratio
and success ratio improve upon the baseline results in Table 2.4.

Table 2.5.: Futures-based Forecasts of Monthly Real Prices, Non-Parametric, Monthly
Average Futures

1 3 6 9 12 15 18 21 24

Commodity MSFE Ratio
Crude Oil ~ 1.82(1.000) 1.00(0.514) 0.89 (0.040) 0.87(0.102) 0.83 (0.074) 0.77 (0.028) 0.71(0.013)  0.66 (0.007)  0.61 (0.003)
Natural Gas  1.56 (0.999)  1.03 (0.653)  1.06 (0.708) 1.13 (0.763) 1.11(0.742) 1.01 (0.541) 1.01(0.539) 0.99 (0.467) 0.9 (0.463)
Heating Oil  1.74 (0.999)  1.08 (0.860)  1.00 (0.477) 0.94(0.133) 0.88 (0.015) 0.86 (0.005) 0.83 (0.001) 0.79 (0.001)  0.74 (0.000)
Gasoline 1.33(0.967) 0.81(0.012) 0.70 (0.004) 0.82(0.053) 0.89(0.101) 0.82(0.033) 0.75(0.012) 0.73 (0.008)  0.69 (0.002)
Ethanol 1.32(0.772)  0.75(0.123)  0.83 (0.227)  0.81 (0.154)  0.75(0.109)  0.69 (0.049)  0.66 (0.042) 0.61 (0.037)  0.57 (0.025)
Gold 1.24(0.992) 1.05(0.884) 1.06(0.893) 1.01(0.552) 1.01(0.553) 0.99(0.432) 0.98(0.378) 0.97 (0.270)  0.93 (0.134)
Silver 0.96 (0.445)  1.03(0.649) 1.00(0.507) 0.98 (0.371)  0.96 (0.258)  0.93 (0.116)  0.92 (0.066) 0.89 (0.041)  0.88 (0.049)
Platinum  1.42(0.998) 1.04(0.799) 0.95(0.160) 0.92(0.043) 0.90 (0.027) 0.87 (0.002) 0.88 (0.001) 0.8 (0.000) 0.88 (0.000)
Aluminum  1.72(0.995) 1.08 (0.897) 1.01(0.534) 0.95(0.215) 0.96 (0.127)  0.93 (0.048)  0.94 (0.079) 0.95(0.119) 0.93 (0.114)
Copper 1.56 (1.000) 1.08 (0.865) 1.01(0.566) 0.97(0.316) 0.95(0.202) 0.91 (0.068) 0.89 (0.048) 0.88 (0.048) 0.87 (0.056)
Lead 1.42(0.995)  0.98(0.378) 0.96 (0.238)  0.88 (0.040) 0.85(0.024) 0.82 (0.015) 0.81 (0.018) 0.82 (0.016) 0.79 (0.007)

Zinc 1.74(0.999)  1.05(0.795)  0.96 (0.294) 0.89 (0.069) 0.90 (0.105) 0.91(0.129) 0.93 (0.182) 0.94 (0.251)  0.94 (0.255)
Nickel 1.51(0.998) 1.09(0.913) 1.00(0.448) 0.97(0.338) 0.96(0.299) 0.88 (0.068) 0.84 (0.040) 0.81 (0.019)  0.79 (0.011)
Tin 1.82(0.999) 120 (0.989) 1.06(0.764) 1.02(0.559) 1.00 (0.483) 0.94 (0.227) 0.93 (0.170) 0.96 (0.227)  0.97 (0.223)

Corn 1.16 (0.763)  0.86(0.111)  0.73(0.035)  0.73 (0.052) 0.75(0.063) 0.68 (0.036) 0.64 (0.033) 0.62(0.028) 0.58 (0.014)
Soybeans 1.48 (0.997) 0.84(0.081) 0.76 (0.043)  0.79 (0.055) 0.83 (0.144) 0.77 (0.119)  0.73 (0.088) 0.73 (0.078)  0.68 (0.035)
Wheat 1.71(0.980) 1.14(0.842) 1.08 (0.710) 0.98 (0.457) 0.94 (0.361) 0.92 (0.297) 0.93 (0.258) 0.93 (0.229)  0.88 (0.174)
Success Ratio
Crude Oil ~ 0.46 (0.821)  0.50 (0.408)  0.58 (0.029)  0.60 (0.021)  0.63 (0.002) 0.68 (0.000) 0.62 (0.009) 0.62 (0.008) 0.72 (0.000)
Natural Gas ~ 0.52 (0.308)  0.50(0.500)  0.58 (0.017) 0.61(0.010)  0.64 (0.005) 0.64 (0.005) 0.63 (0.011) 0.63 (0.010)  0.62 (0.017)
Heating Oil ~ 0.50 (0.518)  0.55(0.184) 0.60 (0.015)  0.65(0.004) 0.75(0.000) 0.79 (0.000) 0.80 (0.000) 0.79 (0.000) 0.77 (0.000)
Gasoline 0.59 (0.008)  0.65 (0.000) 0.68 (0.000) 0.62(0.011) 0.64 (0.000) 0.62(0.002) 0.61(0.012) 0.68 (0.000) 0.67 (0.000)
Ethanol 0.52(0.328)  0.59(0.021)  0.64 (0.000) 0.62 (0.007) 0.64 (0.020)  0.70 (0.000) 0.65 (0.000) 0.68 (0.000) 0.72 (0.000)
Gold 0.53(0.233) 0.53(0.242) 0.46 (0.765)  0.55(0.149) 0.55(0.205) 0.54(0.294) 0.54(0.129) 0.56 (0.053)  0.49 (0.134)
Silver 0.54 (0.158)  0.58 (0.032) 0.56(0.093) 0.56(0.142) 0.51(0.680) 0.55(0.342) 0.57(0.184) 0.57(0.148) 0.58 (0.111)
Platinum  0.49 (0.616) 0.56 (0.061) 0.58 (0.081) 0.60 (0.031)  0.63 (0.024) 0.66 (0.001)  0.61 (0.086) 0.63 (0.070)  0.59 (0.479)
Aluminum  0.53 (0.280) 0.52 (0.290) 0.50 (0.479)  0.56 (0.100)  0.55(0.138) 0.51(0.343) 0.53 (0.194) 0.57 (0.056) 0.56 (0.050)
Copper 0.62 (0.001) 0.53(0.240) 0.58 (0.191)  0.57(0.402) 0.56 (0.801) 0.60 (0.443) 0.59(0.356) 0.58 (0.383)  0.60 (0.095)
Lead 0.59 (0.010) 0.53(0.272) 0.58(0.021) 0.62 (0.002) 0.57 (0.046) 0.62(0.012) 0.65(0.026) 0.68 (0.002) 0.66 (0.031)

Zinc 0.52(0.480)  0.53 (0.268)  0.58 (0.029) 0.60 (0.007)  0.64 (0.000) 0.68 (0.000) 0.68 (0.000) 0.60 (0.004) 0.58 (0.108)
Nickel 0.53(0.219)  0.46 (0.841) 0.48 (0.659) 0.55(0.117)  0.55(0.094) 0.57 (0.037) 0.60 (0.007) 0.59 (0.063) 0.62 (0.005)
Tin 0.47(0.785)  0.45(0.905) 0.52 (0.240) 0.52(0.398)  0.61 (0.000) 0.61 (0.000) 0.61 (0.042) 0.60 (0.040)  0.59 (0.029)

Corn 0.58 (0.008) 0.62(0.001) 0.66 (0.001) 0.61(0.017) 0.54 (0.285) 0.54 (0.264) 0.58 (0.076)  0.59 (0.023) 0.58 (0.029)
Soybeans  0.53(0.234)  0.55(0.137)  0.63 (0.002) 0.64 (0.005) 0.61 (0.010) 0.57 (0.166)  0.58 (0.037) 0.61 (0.022) 0.63 (0.003)
Wheat 0.58 (0.023)  0.61 (0.007)  0.59 (0.019)  0.55 (0.248)  0.52 (0.527)  0.50 (0.562)  0.53 (0.426)  0.55(0.334)  0.56 (0.274)

Notes: See the notes below Table 2.4. This table presents the performance of futures-based
forecasts for monthly average spot prices using monthly average futures prices. Bold values
indicate improvements over the baseline results in Table 2.4.

The results show lower forecast precision, particularly for short-term horizons
when averaging futures prices, most notably at the one-month horizon. For
example, the MSFE ratio is over 50 percent higher for energy commodities. Only
for silver are there MSFE gains at the one-month horizon from averaging, although
these gains are statistically insignificant. Consistent with theory, the effects of

29



2. Can Futures Prices Predict the Real Price of Primary Commodities?

averaging on forecast accuracy are less pronounced at longer horizons. At the
one-year horizon and beyond, both methods yield similar predictive effectiveness,
although end-of-month futures generally provide slight advantages. This suggests
that while averaging futures prices may still offer long-term predictive value,
end-of-month futures data is preferable for short-term forecast accuracy.

Differences in directional accuracy, measured by the Success Ratio (SR), do
not mirror the magnitude of the decline seen in MSFE across all commodities at
short horizons. In fact, averaging slightly improves the SR for a few commodities,
notably lead, copper, and wheat. This highlights the differences between the two
forecast evaluation criteria, as the success ratio is invariant to the magnitude of
the forecast error. That said, end-of-month futures data, rather than averaging,
continues to enhance forecast directional accuracy for most commodities and
horizons.

To further examine the influence of averaging, we construct the futures curve
using the average of the last five trading days of the month, similar to using
the last trading week. The results are provided in Appendix Table A.4. The
findings again suggest a general decline in forecast accuracy when averaging,
compared to forecasts constructed using end-of-month futures prices. This decline
is most pronounced for MSFEs at shorter horizons. However, the decrease in
forecast accuracy is typically smaller than when averaging the entire month’s
prices, consistent with the informational loss from temporal aggregation. In
cases where directional accuracy improves relative to using end-of-month prices,
the differences in forecast accuracy are generally small and inconsistent across
commodities or horizons. We again find small gains in directional accuracy for
wheat at very short horizons and for gold at the one-month horizon, but these
gains come with a decline in MSFE precision.

2.5.3. Parametric Forecasts

The results of the prior two subsections have used non-parametric methods to
construct forecasts. Next, we utilize real-time parametric estimates using Equation
2.7 and compare them with the simpler non-parametric results. These forecasts
estimate 3 , thereby relaxing the proportionality assumption, while setting & to
zero. The results are presented in Table 2.6. Additionally, we explore two other
scenarios: one where B is set to zero and & is estimated, and another where both
& and B are estimated simultaneously. Neither of the latter two cases produces
improvements in forecast precision relative to simply estimating B . For brevity,
detailed results for these two forecasts are provided in Appendix Tables A.5 and
A.6.

The results indicate that parametric forecasts are both more complex to estimate
and generally result in worse performance compared to the non-parametric ap-
proach. While there are isolated instances where parametric estimates marginally
outperform, these differences are small and inconsistent across forecast horizons. A
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notable exception is the directional accuracy for gold, which improves at the 15- to
21-month horizons, although this improvement does not extend to other horizons
or to MSFE precision. Forecasts that relax the proportionality assumption for
nickel show consistent improvements in MSFE at 18 months and beyond; however,
these gains do not persist across other horizons or in terms of directional accuracy.
We recommend that forecasters utilize the simpler non-parametric approach, as
these results do not suggest that the parametric approach provides consistent
gains in forecast accuracy.

Table 2.6.: Futures-based Forecasts of Monthly Real Prices, Parametric

1 3 6 9 12 15 18 21 24

Commodity MSFE Ratio
Crude Oil ~ 1.00 (0.147)  1.00 (0.009)  0.98 (0.014)  0.97 (0.029)  0.95(0.027) 0.91 (0.010) ~ 0.88 (0.007)  0.85 (0.004)  0.82 (0.002)
Natural Gas  1.00 (0.166)  0.97 (0.036)  0.95 (0.190) 1.00 (0.515) 1.06 (0.684) 1.03 (0.582) 1.07 (0.662) 1.10(0.710) 1.12(0.738)
Heating Oil ~ 1.00 (0.184)  0.99 (0.096)  0.99 (0.037)  0.98 (0.009)  0.96 (0.003) 0.94 (0.001) 0.92 (0.000) 0.90 (0.000) 0.86 (0.000)
Gasoline 0.98 (0.004)  0.82(0.001) 0.75(0.014) 0.82(0.047) 0.90(0.104) 0.87(0.137) 0.81(0.140) 0.80(0.134) 0.71 (0.040)
Ethanol 0.87 (0.036)  0.69 (0.021) 0.98 (0.481) 1.29(0.754) 0.90 (0.369) 0.69 (0.087) 0.65 (0.055) 0.63 (0.045) 0.81(0.115)
Gold 1.00 (0.644)  1.00(0.333) 1.00(0.124)  1.00 (0.049) 1.00(0.010) 1.00 (0.001) 1.00(0.001) 1.00 (0.002) 0.99 (0.007)
Silver 1.00 (0.375)  1.00(0.178)  1.00 (0.048) 1.00 (0.017)  1.00(0.022) 1.00 (0.017)  0.99 (0.007)  0.98 (0.006)  0.98 (0.007)
Platinum 1.00 (0.718)  1.00(0.011)  1.00(0.001)  1.00 (0.000) 1.00 (0.000) 0.99 (0.000) 0.99 (0.000) 0.99 (0.000) 0.98 (0.000)
Aluminum  1.00 (0.751)  1.00 (0.700)  1.00 (0.238)  1.00 (0.092) 1.00(0.073) 1.00 (0.166) 1.00(0.273) 1.00(0.354) 1.00 (0.361)
Copper 1.00 (0.950)  1.00(0.048) 1.00(0.042)  0.99(0.029) 0.98 (0.019) 0.97(0.019) 0.96 (0.015) 0.95(0.019) 0.93 (0.033)
Lead 1.00 (0.995)  1.00 (0.001)  0.99 (0.006) 0.97 (0.008) 0.96 (0.007) 0.94 (0.017) 0.92(0.024) 0.89 (0.010) 0.86 (0.007)

Zine 1.00 (0.971)  1.00(0.043)  0.99 (0.043) 0.98 (0.016) 0.97(0.029) 0.96 (0.052) 0.95(0.069) 0.93 (0.099) 0.93 (0.161)
Nickel 1.00 (0.283)  1.00 (0.304) 0.9 (0.094) 0.97 (0.079)  0.93 (0.067) 0.84 (0.037) 0.76 (0.020) 0.71 (0.010)  0.69 (0.007)
Tin 1.00(0.228)  1.00(0.577) 1.00(0.512) 1.00 (0.413) 0.99 (0.302) 0.98 (0.154) 0.97 (0.131)  0.98 (0.208)  0.99 (0.284)

Corn 1.00 (0.090)  0.98 (0.014)  0.95(0.015) 0.95(0.027) 0.94(0.030) 0.90(0.017) 0.85(0.011) 0.81 (0.011) 0.77 (0.008)
Soybeans  1.00 (0.022)  0.98 (0.016) 0.95(0.017) 0.93(0.011) 0.91(0.018) 0.87(0.017) 0.84(0.012) 0.82(0.013) 0.78 (0.011)
Wheat 1.00 (0.086)  1.00 (0.210)  0.99 (0.234)  0.99 (0.203)  0.97 (0.138)  0.95(0.086) 0.94 (0.030) 0.93 (0.018) 0.91 (0.037)
Success Ratio

Crude Oil  0.55(0.091) 0.52(0.208) 0.58(0.093) 0.62 (0.031) 0.68(0.002) 0.69 (0.000) 0.6 (0.002) 0.64 (0.005) 0.75 (0.000)
Natural Gas ~ 0.52 (0.321)  0.54(0.169)  0.61 (0.000) 0.63 (0.004) 0.64 (0.006) 0.66 (0.003) 0.63(0.017) 0.64 (0.006) 0.62 (0.021)
Heating Oil ~ 0.52 (0.300)  0.56 (0.072)  0.61 (0.019)  0.69 (0.000) 0.77 (0.000)  0.82 (0.000) 0.81 (0.000) 0.83 (0.000) 0.81 (0.000)
Gasoline 0.62(0.001)  0.62(0.004) 0.71(0.000) 0.65(0.001) 0.62(0.001) 0.62(0.001) 0.65(0.002) 0.69 (0.000) 0.70 (0.000)
Ethanol 0.54(0.207)  0.60 (0.024)  0.68 (0.000) 0.65 (0.008) 0.63 (0.129)  0.67 (0.000) 0.62 (0.024)  0.67 (0.002)  0.73 (0.000)
Gold 0.53(0.556) 0.47 (0.630)  0.52(0.422) 0.49 (0.570)  0.58 (0.155)  0.70 (0.000) 0.67 (0.000) 0.65 (0.000) 0.50 (0.000)
Silver 0.49 (0.535)  0.50(0.779)  0.59 (0.353)  0.66 (0.069)  0.67 (0.037)  0.66 (0.004)  0.67 (0.000) 0.67 (0.000) 0.63 (0.009)
Platinum  0.49(0.370) 0.56 (0.238)  0.66 (0.016)  0.64 (0.114)  0.72(0.011) 0.76 (0.002)  0.79 (0.000)  0.82 (0.000)  0.84 (0.000)
Aluminum  0.53 (0.351)  0.55(0.138) 0.46 (0.682) 0.47 (0.598) 0.50 (0.466) 0.49 (0.504) 0.53(0.235) 0.56 (0.061) 0.56 (0.064)
Copper 0.47(0.976)  0.53 (0.000)  0.60 (1.000) 0.61 (1.000) 0.63 (1.000) 0.63 (1.000) 0.60 (1.000) 0.59 (1.000) 0.59 (1.000)
Lead 0.44 (0.940)  0.61(0.005)  0.60 (0.057) 0.62 (0.020) 0.58 (0.011)  0.65(0.009)  0.66 (0.144)  0.65 (0.080) 0.67 (0.061)

Zine 0.46 (0.547)  0.51 (0.506) 0.52(0.346) 0.51(0.344) 0.57(0.086) 0.61 (0.021) 0.60 (0.020) 0.59 (0.012)  0.58 (0.120)
Nickel  0.50(1.000) 0.49 (0.290) 0.50 (0.569) 0.50 (0.500) 0.50 (1.000) 0.50 (1.000) 0.49 (1.000) ~ 0.56 (0.000) 0.55 (0.000)
Tin 0.53(1.000)  0.50 (1.000) 0.48 (1.000) 0.52(1.000) 0.52(1.000) 0.54 (1.000) 0.58 (1.000) 0.57 (1.000) 0.54 (1.000)

Corn 0.55(0.127)  0.64 (0.000)  0.65 (0.001) 0.58 (0.066) 0.52 (0.404) 0.50 (0.486) 0.55(0.177) 0.56 (0.093)  0.58 (0.035)
Soybeans  0.55(0.147) 0.53(0.251) 0.60(0.023) 0.63 (0.012) 0.57 (0.091) 0.58 (0.150) 0.56 (0.117) 0.58 (0.087)  0.61 (0.034)
Wheat  0.55(0.069) 0.57 (0.057) 0.58 (0.033) 0.51 (0.622) 0.50 (0.774) 049 (0.659) 0.53 (0.441) 0.53(0.536) _0.56 (0.269)

Notes: See the notes below Table 2.4. This table presents the performance of futures-based
forecasts using the futures-spot spread model, where f is estimated in Equation 2.7 and the
constant is set to zero. Bold values indicate improvements over the baseline results in Table
2.4.

2.5.4. Nominal Forecasts

This subsection considers forecasts of nominal monthly average spot prices, as
shown in Table 2.7. This exercise isolates the importance of the observed measure
of inflation, incorporating both the real-time nowcast and forecast. Monthly
average h-step-ahead nominal futures-based spread forecasts are constructed as
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follows: )
Seenap = St (1+(FL5t/Senr)) (2.11)

This is similar to the baseline spread model for real forecasts, Equation 2.6, but
uses the nominal spot price, S p,, and abstracts from inflation.

Table 2.7.: Futures-based Forecasts of Monthly Average Nominal Prices, Non-Parametric

1 3 6 9 12 15 18 21 24

Commodity MSFE Ratio
Crude Oil ~ 0.98 (0.232)  0.95(0.038) 0.91(0.051) 0.90(0.092) 0.88 (0.068) 0.84 (0.019) 0.79 (0.006) 0.75(0.002) 0.71 (0.001)
Natural Gas  1.03 (0.690)  1.04 (0.723) 0.98 (0.437)  1.10(0.716) 1.09 (0.717)  0.99 (0.447) 0.97 (0.394) 0.97 (0.402) 0.98 (0.431)
Heating Oil ~ 1.04 (0.739)  0.97 (0.302) 0.98 (0.336) 0.93 (0.076) 0.89(0.014) 0.88 (0.007) 0.86(0.004) 0.85(0.003) 0.81 (0.002)
Gasoline  0.82(0.003)  0.76(0.003)  0.72(0.005) 0.85(0.041) 0.91 (0.084) 0.86 (0.013)  0.79 (0.003)  0.79 (0.002)  0.77 (0.000)
Ethanol 0.78 (0.194)  0.76 (0.121)  0.87 (0.265)  0.84 (0.149)  0.78 (0.100)  0.72(0.033)  0.71 (0.026)  0.67 (0.022)  0.65 (0.015)
Gold 0.99 (0.240)  0.98 (0.137)  0.98 (0.193)  0.96 (0.060) 0.95(0.037)  0.94 (0.035) 0.93 (0.031) 0.92 (0.030) 0.91 (0.037)
Silver 1.05(0.889) 1.01(0.635) 1.00(0.577) 1.00(0.367) 1.00(0.356) 1.00(0.370) 0.99 (0.269) 0.99 (0.190)  0.98 (0.124)
Platinum 1.02(0.922)  1.00(0.376) 0.99 (0.342)  1.00 (0.552) 1.03 (0.866) 1.09(0.991) 1.15(0.999) 1.21(1.000) 1.26 (1.000)
Aluminum  1.02 (0.854) 1.02 (0.859) 1.01(0.577) 0.99 (0.360) 0.99 (0.388) 0.99 (0.457) 1.00(0.511) 1.01(0.532) 1.01(0.532)
Copper 0.99(0.100)  1.00(0.387)  0.99 (0.132)  0.97 (0.018)  0.97 (0.008)  0.97 (0.012)  0.96 (0.006)  0.96 (0.013)  0.96 (0.027)
Lead 0.98 (0.147)  0.99(0.273)  0.97 (0.075)  0.92(0.011)  0.92(0.009) 0.94 (0.053) 0.96 (0.172)  0.98 (0.295)  0.97 (0.269)
Zinc 0.99 (0.281)  0.96 (0.084)  0.95(0.051)  0.90 (0.002) 0.90 (0.003) 0.91(0.005) 0.91(0.006) 0.92(0.016) 0.92 (0.052)
Nickel 1.01 (0.851) 1.01(0.808) 1.00(0.375) 0.99 (0.101) 0.98 (0.082)  0.96 (0.020) 0.94 (0.008) 0.93 (0.004) 0.92 (0.003)
Tin 1.02 (0.855)  1.05(0.833) 1.05(0.772) 1.03 (0.668) 1.01 (0.547) 0.97(0.253) 0.97 (0.169) 1.00 (0.485) 1.01 (0.661)
Corn 1.01 (0.513)  0.77(0.046) 0.70 (0.024)  0.74 (0.050)  0.77 (0.068)  0.74 (0.043)  0.71 (0.032)  0.69 (0.020)  0.64 (0.005)
Soybeans  0.84 (0.127)  0.76 (0.025) 0.74 (0.016)  0.80 (0.038) 0.87 (0.169)  0.83 (0.153) 0.78 (0.083)  0.76 (0.043) ~ 0.71 (0.005)
Wheat 1.09 (0.862)  1.07 (0.783)  1.04 (0.601)  0.99 (0.469) 0.99 (0.461) 0.99 (0.482) 1.00(0.483) 0.99 (0.446) 0.96 (0.338)

Success Ratio
Crude Oil ~ 0.56 (0.066) 0.56 (0.203) 0.59 (0.104) 0.62 (0.037) 0.70 (0.002) 0.70 (0.001) 0.73 (0.000) 0.71 (0.000) 0.76 (0.000)
Natural Gas  0.53 (0.265)  0.55(0.184)  0.59 (0.003)  0.60 (0.036)  0.66 (0.007) 0.62 (0.013) 0.62 (0.009) 0.60 (0.020) 0.60 (0.031)
Heating Oil ~ 0.49 (0.770)  0.58 (0.050)  0.62 (0.002) 0.64 (0.006) 0.66 (0.001) 0.66 (0.001) 0.70 (0.000) 0.68 (0.000) 0.67 (0.003)
Gasoline  0.60 (0.005)  0.60 (0.013)  0.74 (0.000)  0.64 (0.001)  0.70 (0.000)  0.67 (0.000)  0.66 (0.002) 0.71 (0.000) 0.76 (0.000)
Ethanol 0.53(0.236)  0.63 (0.001) 0.66 (0.000)  0.65 (0.000) 0.61 (0.028) 0.66 (0.001) 0.68 (0.000) 0.67 (0.000) 0.71 (0.000)
Gold 0.49 (0.525)  0.58 (0.028)  0.60 (0.209) 0.57 (0.118)  0.55(0.092) 0.61 (0.001) 0.64 (0.000) 0.61 (0.000) 0.62 (1.000)
Silver 0.51 (0.395) 0.47(0.763) 0.48 (0.371) 0.43 (0.570) 0.42 (0.866) 0.46 (1.000) 0.48 (1.000) 0.52(0.000) 0.56 (0.000)
Platinum 0.49 (0.636)  0.52(0.109) 0.48 (0.518) 0.44 (0.552) 0.36(0.989) 0.35(1.000) 0.32(1.000) 0.33 (1.000) 0.28 (1.000)
Aluminum  0.48 (0.446)  0.49 (0.693)  0.50 (0.268)  0.53 (0.080) 0.53 (0.019) 0.51(0.003) 0.50 (0.100) 0.45(1.000) 0.41 (1.000)
Copper 0.58 (0.001)  0.55(0.093) 0.55(0.118) 0.56 (0.076) 0.57 (0.062)  0.56 (0.116)  0.57 (0.115)  0.60 (0.065)  0.56 (0.193)
Lead 0.57 (0.026)  0.55(0.105)  0.60 (0.000)  0.63 (0.000) 0.60 (0.000) 0.54 (0.001) 0.54 (0.000) 0.55(0.000) 0.56 (0.000)
Zinc 0.49 (0.443)  0.60 (0.025)  0.66 (0.001)  0.72 (0.000) 0.68 (0.001) 0.61 (0.050) 0.63 (0.054) 0.60 (0.094) 0.55(0.269)
Nickel 0.49 (0.874)  0.51(0.739) 0.55(0.202) 0.55(0.170) 0.58 (0.146)  0.64 (0.003) 0.70 (0.000)  0.65 (0.000) 0.63 (0.000)
Tin 0.48 (0.591)  0.44 (0.853) 0.46(0.727) 0.49 (0.576) 0.52(0.342) 0.50(0.517) 0.50 (0.534) 0.54(0.209) 0.59 (0.021)
Corn 0.58 (0.025)  0.62(0.002) 0.62(0.009) 0.57(0.137) 0.52(0.523) 0.57 (0.144)  0.63 (0.019)  0.63 (0.022) 0.62 (0.018)
Soybeans  0.60 (0.003)  0.58 (0.059)  0.68 (0.000) 0.68 (0.000) 0.66 (0.004) 0.59 (0.081) 0.66 (0.005) 0.66 (0.007) 0.71 (0.001)
Wheat 0.53(0.248)  0.57 (0.088)  0.53 (0.539) 0.51 (0.968) 0.58 (0.446) 0.53 (0.828) 0.57 (0.683) 0.57 (0.491) 0.58 (0.290)

Notes: See the notes below Table 2.4. This table presents the performance of futures-based
forecasts of nominal monthly prices using the end-of-month futures curve. Bold values indicate
improvements over the baseline results in Table 2.4.

The MSFE performance of nominal forecasts is broadly consistent with the
baseline findings, with only minor improvements in accuracy compared to fore-
casting real prices. Small gains in forecast directional accuracy relative to real
forecasts are observed in some cases, particularly at horizons of three months
and beyond. By the two-year horizon, the differences in directional accuracy
become more noticeable, especially for gasoline, nickel, and soybeans. However,
these forecast gains are not reflected in the MSFE ratio. A notable exception
is that nominal gold prices now exhibit predictability, in stark contrast to real
gold prices. Specifically, forecasts for the nominal monthly average price of gold
show gains in both directional accuracy and mean-squared precision around the
one-year horizon. This is likely due to the unique role that gold plays as a hedge
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against inflation, providing an interesting example of the distinct characteristics
that differentiate commodity markets.

2.5.5. Direct Forecasts

This subsection examines the effect of using the values of futures contracts directly
for forecasting, as in Equation 2.5, rather than calculating a spread over the spot
price, as in Equation 2.6. These forecasts eliminate the log approximations used
in the baseline spread model, Equation 2.6. The results are shown in Table 2.8.
The results do not reveal any improvements over the baseline results, presented
in Table 2.4, showing only marginal differences in forecast performance between
the direct and spread models. Only for ethanol do we find consistent, small
improvements in forecast precision, particularly at horizons of less than one year.
Additionally, we do not find any improvements over the baseline results in terms
of directional accuracy.

Table 2.8.: Direct Futures-based Forecasts of Monthly Average Real Prices, Non-
Parametric, End-of-Month Futures

1 3 6 9 12 15 18 21 24

Commodity MSFE Ratio
Crude Oil  0.99 (0.305)  0.94 (0.020) 0.88(0.034) 0.86(0.060) 0.82(0.048) 0.77 (0.018) 0.72 (0.010) 0.68 (0.005)  0.63 (0.002)
Natural Gas  1.02 (0.653)  1.00 (0.527)  0.96 (0.360) 1.05(0.626) 1.05(0.631) 0.97 (0.411) 0.98 (0.436) 0.98 (0.443)  0.98 (0.460)
Heating Oil ~ 1.04 (0.779)  0.98 (0.353)  0.96 (0.217)  0.91 (0.040)  0.86 (0.005) 0.85(0.001) 0.81 (0.000) 0.78 (0.000)  0.73 (0.000)
Gasoline 0.81(0.004) 0.74 (0.001)  0.69 (0.003) 0.81(0.031) 0.87 (0.055) 0.80 (0.015) 0.74 (0.005) 0.73 (0.004) 0.69 (0.001)
Ethanol 0.71 (0.106)  0.67 (0.057)  0.73 (0.103)  0.75 (0.086) 0.71 (0.067) 0.67 (0.033) 0.65 (0.031) 0.61 (0.031) 0.57 (0.021)
Gold 1.01 (0.604) 1.00 (0.424) 1.00(0.509) 0.99 (0.403) 0.98 (0.343) 0.97 (0.285) 0.96 (0.224)  0.95 (0.158)  0.93 (0.117)
Silver 1.04 (0.884)  1.00(0.492) 0.99 (0.287)  0.98 (0.156)  0.97 (0.123)  0.96 (0.076)  0.93 (0.029)  0.90 (0.018)  0.87 (0.016)
Platinum 1.02 (0.859)  0.98 (0.066) 0.93 (0.008) 0.91(0.010) 0.89 (0.008) 0.88(0.001) 0.86 (0.000) 0.85(0.000) 0.86 (0.000)
Aluminum  1.00 (0.526)  1.01 (0.648)  0.98 (0.252) 0.95(0.119)  0.96 (0.078)  0.96 (0.109)  0.97 (0.163)  0.97 (0.199)  0.96 (0.181)
Copper 0.98 (0.042)  0.98(0.169) 097 (0.118)  0.94 (0.087) 0.94(0.073) 0.92(0.061) 0.90 (0.040) 0.88(0.037) 0.88 (0.056)
Lead 0.97 (0.035)  0.97 (0.008) 0.93 (0.008) 0.87(0.010) 0.86 (0.009) 0.86(0.022) 0.84(0.029) 0.83(0.013) 0.81(0.010)

Zinc 0.97(0.096)  0.95(0.083) 0.93 (0.080) 0.90(0.029) 0.90 (0.049) 0.92 (0.090) 0.92(0.121) 0.92(0.159)  0.93 (0.227)
Nickel 1.00 (0.632)  1.00 (0.526) 0.98(0.143) 0.96 (0.106) 0.94 (0.097) 0.90 (0.046) 0.85(0.022) 0.82(0.011)  0.80 (0.007)
Tin 1.00 (0.503)  1.02/(0.689) 1.02(0.607) 1.00(0.507) 0.98 (0.408) 0.95(0.226) 0.95(0.192) 0.98 (0.337)  0.99 (0.439)

Corn 1.05(0.622)  0.76 (0.054)  0.68 (0.028)  0.70 (0.040)  0.71 (0.046)  0.68 (0.032) 0.64 (0.026) 0.62 (0.022) 0.58 (0.009)
Soybeans  0.86 (0.130)  0.77 (0.037) 0.74 (0.029) 0.78 (0.044)  0.83 (0.122) 0.77(0.100)  0.72 (0.064)  0.71 (0.053)  0.68 (0.026)
Wheat 1.11(0.922) 1.07(0.779) 1.03(0.588) 0.99 (0.481) 0.97 (0.436) 0.96 (0.407) 0.96 (0.340) 0.95(0.280) 0.90 (0.203)
Success Ratio
Crude Oil  0.55(0.091) 0.52(0.208) 0.58 (0.093) 0.62 (0.031) 0.68 (0.002) 0.69 (0.000) 0.66 (0.002) 0.64 (0.005) 0.75 (0.000)
Natural Gas  0.52(0.321)  0.54 (0.169)  0.61 (0.000) 0.63 (0.004) 0.64 (0.006) 0.66 (0.003) 0.63 (0.017) 0.64 (0.006) 0.62 (0.021)
Heating Oil ~ 0.52(0.300)  0.56 (0.072)  0.61 (0.019)  0.69 (0.000)  0.77 (0.000) 0.82 (0.000) 0.81 (0.000) 0.83 (0.000) 0.81 (0.000)
Gasoline 0.62 (0.001)  0.62(0.004) 0.71 (0.000) 0.65(0.001) 0.62(0.001) 0.62(0.001) 0.65(0.002) 0.69 (0.000) 0.70 (0.000)
Ethanol 0.55(0.086)  0.59(0.015)  0.66 (0.000) 0.64 (0.001) 0.64 (0.024) 0.69 (0.000) 0.64 (0.001) 0.68 (0.000) 0.73 (0.000)
Gold 0.47 (0.444)  0.55(0.114) 0.48 (0.170) 0.54(0.140)  0.52(0.616) 0.57 (0.000)  0.55(0.000) 0.56 (0.000) 0.50 (0.000)
Silver 0.47(0.753)  0.50(0.779)  0.59 (0.353)  0.66 (0.069) 0.67 (0.037) 0.66 (0.004) 0.67 (0.000) 0.67 (0.000) 0.63 (0.009)
Platinum 0.49 (0.370)  0.56(0.238) 0.66 (0.016) 0.64 (0.114) 0.72(0.011)  0.76 (0.002)  0.79 (0.000)  0.82 (0.000) 0.84 (0.000)
Aluminum  0.47(0.702)  0.45(0.862) 0.46 (0.682) 0.47 (0.598) 0.50 (0.466) 0.49 (0.504) 0.53(0.235) 0.56 (0.061) 0.56 (0.064)
Copper 0.53(0.024)  0.53(0.000) 0.60 (1.000) 0.61 (1.000) 0.63 (1.000) 0.63 (1.000) 0.60 (1.000) 0.59 (1.000) 0.59 (1.000)
Lead 0.56 (0.060)  0.61 (0.005) 0.60 (0.057) 0.62(0.020) 0.58 (0.011) 0.65(0.009) 0.66 (0.144) 0.65(0.080) 0.67 (0.061)

Zinc 0.53(0.519)  0.50 (0.548) 0.52(0.346) 0.51 (0.344) 0.57 (0.086) 0.61 (0.021) 0.60 (0.020) 0.59 (0.012) ~ 0.58 (0.120)
Nickel 050 (1.000) 0.49 (0.290) 0.50 (0.069) 0.50 (0.500) 0.50 (0.000) 0.50 (0.000) 0.49 (0.000) ~ 0.56 (0.000) ~ 0.55 (0.000)
Tin 0.53(1.000)  0.50 (1.000) 0.48 (1.000) 0.52(1.000) 0.52(1.000) 0.54 (1.000) 0.58 (1.000) 0.57 (1.000) 0.54 (1.000)

Corn 0.56(0.028)  0.63 (0.001)  0.64(0.004) 0.57(0.110) 0.51 (0.444) 0.52(0.355) 0.55(0.177) 0.56 (0.093)  0.59 (0.024)
Soybeans  0.56 (0.051) 0.53(0.260) 0.60 (0.021) 0.63 (0.012) 0.58 (0.074) 0.58 (0.150) 0.5 (0.144) 0.58 (0.087)  0.62 (0.004)
Wheat  0.55(0.088) 0.56 (0.075) 0.58 (0.034) 0.49(0.840) 0.48 (0.881) 0.49(0.733) 0.53 (0.441) 0.54 (0.485) 0.55(0.371)

Notes: See the notes below Table 2.4. This table presents the forecast performance of regressions
using the futures-spot spread without relying on log approximations. Bold values indicate
improvements over the baseline results in Table 2.4.

33



2. Can Futures Prices Predict the Real Price of Primary Commodities?

2.5.6. Robustness over time

This subsection assesses the robustness of forecast performance over time and with
respect to alternative sample start dates. Previous results suggest that futures-
based forecast performance may exhibit time variation. Specifically, Hamilton and
Wu (2014) suggest that the oil futures risk premium has become both smaller and
more volatile since 2005. Similarly, Bohl et al. (2023) observe that financialization
has improved the informational efficiency of futures markets across 34 commodities,
covering energy, agriculture, and metals, allowing prices to better reflect new
information.

We consider an earlier starting point for the forecast evaluation sample, January
2000 instead of 2010, and report two methods to assess the temporal stability
of our baseline futures-based forecasts. First, we present the evolution of the
one-month-ahead MSFE ratios over time (see Figure 2.2). The evolution of
the evaluation criteria for one- and two-year horizons is provided in Figures
A.2 and A.3 in the Appendix. Additionally, a table of end-of-period ratios and
corresponding tests for the alternative forecast evaluation periods is provided in
Table A.7.

The results reveal that starting around 2010, futures-based forecasts consistently
began to outperform random walk predictions for the majority of commodities
studied. These improvements in forecast accuracy correlate with increased trading
volumes (see Appendix Figure A.1), suggesting a link between market depth and
predictive performance. This finding also aligns with Funk (2018) and Ellwanger
and Snudden (2023b), who find that futures-based models for oil forecasting expe-
rienced significant improvements in accuracy post-2010, demonstrating superior
performance over medium- and long-term horizons.

However, the results reveal a decrease in forecasting accuracy for natural gas
over the past two years. This decline is particularly pronounced at horizons
of up to one year and explains the poor forecast performance observed in the
baseline sample. Before this recent episode, natural gas had shown some of the
best forecast performance across commodity markets.

2.6. Conclusion

This study examines the effectiveness of futures prices in predicting the real average
spot prices of 17 primary commodities, addressing the practical challenges of using
futures prices for forecasting. These challenges include irregular delivery schedules
and the unique settlement procedures associated with front-month contracts for
each commodity. To overcome these issues, we generate a continuous monthly
futures curve, aligning each observation with its respective forecast month. This
approach better reflects real-time commodity trading practices, thereby enhancing
the relevance and applicability of our findings.
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2. Can Futures Prices Predict the Real Price of Primary Commodities?

Our results suggest that the average price of many primary commodities is
predictable in real-time, particularly at horizons of six months and beyond.
Notably, energy commodities, base metals, and certain agricultural products
exhibit substantial improvements in forecast accuracy. This finding contributes
to the broader understanding of futures markets’ predictive capabilities and
highlights the heterogeneity across different commodity sectors. The observed
predictability provides valuable insights for market participants and policymakers,
aiding in more informed decision-making related to resource allocation, investment,
and policy formulation.

We conclude with three practical recommendations for constructing futures-
based forecasts. First, we find empirical support for using the latest market
expectations embedded in end-of-month futures prices, as these generally outper-
form forecasts based on averaged futures prices. This approach is also convenient
for constructing real-time forecasts, given that futures prices are publicly available
and continuously updated. Second, our analysis does not suggest significant
gains from adopting parametric approaches; thus, we recommend utilizing sim-
ple non-parametric approaches. Third, forecasters should carefully consider the
expectations embedded in futures contracts in relation to the specific forecast
horizons they are targeting. By following these guidelines, we believe forecasters
can more effectively utilize futures prices for real-time forecasts of period-average
commodity prices.

Ultimately, the potential gains from ongoing refinements in futures-based
forecasts highlight the importance of further research. This study underscores
both the current capabilities and limitations of using futures markets for price
forecasting. Further improvements in the precision, robustness, and applicability
of these forecasts, particularly for under-explored commodities, are warranted.
Future research could also quantify the impact of storage characteristics on the
predictive power of futures prices by incorporating measurable indices that capture
the physical and economic characteristics that vary across commodities.
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3. Revisiting the Dynamics and Elasticities of
the U.S. Natural Gas Market

3.1. Introduction

The U.S. natural gas market plays a pivotal role in the nation’s energy landscape,
influencing sectors ranging from manufacturing to residential services (Gautam
& Paudel, 2018). In addition to meeting domestic needs, the market provides
significant economic opportunities through natural gas exports (P. Bernstein et
al., 2016). According to the Energy Information Administration’s (EIA) Annual
Energy Outlook 2023, natural gas production is projected to grow steadily through
2050. This growth is expected to be driven by increased domestic consumption,
particularly in the industrial sector, as well as by the expansion of natural gas
exports due to rising global demand for liquefied natural gas (LNG) (EIA, 2023b).
These trends underscore the enduring economic importance of the U.S. natural
gas market, both domestically and internationally. Therefore, understanding the
joint dynamics of supply, domestic demand, export demand, and prices is essential
for informed policy decisions.

The literature on U.S. natural gas market dynamics predominantly relies on
structural vector autoregression (SVAR) models, originally developed for the
global oil market to analyze the distinct roles of supply and demand shocks in
driving oil price fluctuations. One strand of this literature follows the recursive
structural VAR specification used in the trivariate oil market model by Kilian
(2009) (e.g., Hailemariam and Smyth (2019)). This approach examines the joint
dynamics of the percentage change in U.S. natural gas production, the log of
real natural gas prices, and an index of cyclical variation in U.S. real economic
activity, using monthly data.® Variations in these variables are explained by
three shocks: a natural gas supply shock, an aggregate demand shock, and a
gas-market-specific demand shock. The other strand of this literature utilizes
quarterly data and follows the four-variable specification used in oil market
models proposed by Kilian and Murphy (2014) and Baumeister and Hamilton
(2019) (e.g., Wiggins and Etienne (2017)). This approach extends the trivariate
specification by incorporating natural gas inventories and adopting alternative

SRecursive identification orders variables so that shocks to earlier variables in the VAR do not
contemporaneously affect later ones. In natural gas market models, this typically means that
gas production is ordered first, economic activity second, and gas prices last, allowing prices
to react instantly to production and activity changes but not vice versa.
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3. Revisiting the Dynamics of the U.S. Natural Gas Market

identification strategies, such as sign restrictions’, that explicitly account for
inventory demand shocks. Despite differences in identification approaches, the
overarching conclusion from both strands is that natural gas price fluctuations
are primarily demand-driven. A detailed review of this literature is provided in
Section 5.2.

While these two strands of literature have enhanced our understanding of U.S.
natural gas market dynamics, key features such as imports and exports, which
are integral to the market’s supply and demand structure, have not been fully
considered. As a result, these omissions may lead to an incomplete representation
of the market’s dynamics, particularly in capturing the role of export demand in
the observed demand-side shocks.

This study extends the literature by proposing an SVAR model that incorporates
external gas flows into its structural framework. This extension ensures proper
allocation of the total available supply among domestic consumption, export
demand, and inventory changes, preventing any misrepresentation of the supply-
demand balance that could occur if external flows were excluded.® Within this
framework, the model explicitly accounts for shocks to export demand for natural
gas, thereby enhancing the understanding of demand-driven dynamics previously
established in the literature. Furthermore, the analysis employs the Bayesian
approach introduced by Baumeister and Hamilton (2015, 2019), which incorporates
uncertainty in identifying assumptions and provides a framework for summarizing
beliefs about key structural parameters, such as supply and demand elasticities.
In doing so, this study revisits the dynamics and elasticities of natural gas supply
and demand, providing new evidence on the relative importance of structural
shocks in this market and contributing to the literature on the short-run response
of energy commodities’ supply and demand to price changes.

The model is estimated using a monthly dataset extending through 2023, which
is particularly relevant for three reasons. First, using monthly data reduces the
information loss typically associated with temporal aggregation in models that use
quarterly data. Temporal aggregation can affect the structural interpretation and
identification of VAR models, as it may obscure within-period relationships that
are critical for accurately capturing structural shocks. In particular, exclusion
restrictions and elasticity bounds, which are essential for identifying structural
shocks, are more credible at a monthly frequency than at a quarterly one (Beetsma
et al., 2009; Kilian & Liitkepohl, 2017). Second, extending the dataset through
2023 captures recent market shifts, particularly those related to the increase in

"The sign restriction approach is an identification method in which certain effects or responses
are restricted in direction (positive or negative), rather than fixed at exactly zero. However,
this method alone is insufficient because it can result in multiple equally plausible but
conflicting models, necessitating additional economically motivated constraints to achieve
reliable identification (see Kilian and Murphy (2012) and Baumeister and Hamilton (2019)
for more details).

8See Section 3.3.2 for a detailed explanation of how this specification, which incorporates
external gas flows, corrects potential misrepresentations in the supply-demand balance and
improves the estimation of domestic consumption elasticity.
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natural gas exports to Europe in the aftermath of the Russian invasion of Ukraine.
This is relevant to ongoing policy discussions about the role of export demand
shocks in natural gas price variation during this period (see, for example, EIA
(2023a) and EVA (2023)). Finally, the analysis accounts for extreme observations
during the COVID-19 pandemic, demonstrating that failing to control for these
outliers can result in counterintuitive economic responses.

The results can be summarized as follows: First, the estimated short-run price
elasticity of gas supply is 0.019, indicating that the supply curve remains price
inelastic within the month. This minimal responsiveness aligns with the findings
of Ponce and Neumann (2014) and Mason and Roberts (2018), highlighting the
dominance of physical and technical constraints over economic incentives in the
short term. On the demand side, the short-run price elasticity of domestic gas
demand is -0.177, suggesting a modest decrease in demand in response to price
increases. This estimate is consistent with the findings of Labandeira et al. (2017),
who report an average short-run price elasticity of -0.180.

Second, the results show that a negative supply shock leads to an initial sharp
decline in gas supply, which partially reverses within the first three months. The
supply disruption raises natural gas prices, prompting an immediate drawdown
of inventories to mitigate the shortfall, though they recover within four months.
A shock to domestic consumption gradually increases supply and raises prices,
leading to a small, temporary decline in economic activity. As a result of this
shock, inventories drop immediately, reach their lowest point in the fourth month,
and recover to their original level within a year. Both supply and domestic
consumption shocks reduce exports, with the impact being more significant for
supply shocks. Inventory demand shocks trigger an immediate but short-lived
spike in prices, while export demand shocks cause both short- and medium-term
price increases and a gradual rise in natural gas supply.

The analysis reveals that these effects are distorted if extreme values from the
COVID-19 pandemic are not accounted for. For example, without adjusting for
these outliers, the findings incorrectly suggest that a reduction in gas supply, which
typically raises gas prices, increases U.S. economic activity. This underscores the
importance of accounting for extreme events, such as the COVID-19 pandemic,
in structural analyses to avoid misleading inferences about the true economic
impacts of shocks.

Third, the analysis of the overall importance of each shock in determining
gas price fluctuations reveals that domestic consumption demand shocks and
inventory demand shocks are the primary drivers of short-term price variations,
accounting for over 85% of the fluctuations at the one-month horizon. However,
as the analysis extends to longer periods, up to 16 months, the influence of these
shocks, though still dominant, diminishes slightly. Meanwhile, contributions from
supply, economic activity, and export demand shocks become more pronounced,
indicating a gradual shift in the dynamics affecting gas prices over time. Moreover,
the analysis shows that consumption demand shocks and export demand shocks
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are the primary drivers of natural gas inventories and exports, respectively, with
their effects persisting but decreasing over the 16-month horizon. Compared
to Arora and Lieskovsky (2014), who identified a minimal short-run impact of
supply shocks and a dominant role for speculative demand shocks, this study finds
a more substantial short-run effect from supply shocks and a weaker influence
from speculative demand. Furthermore, unlike Wiggins and Etienne (2017), who
reported that supply and aggregate income shocks had roughly equal influence,
this study concludes that these factors initially play a lesser role, with their
significance increasing over time. This study’s findings are consistent with those
of Rubaszek et al. (2021) in emphasizing the role of consumption demand and
inventory demand shocks, but they differ in the relative strength of these effects.
These differences across studies may stem from variations in data frequency and
model specifications.

Lastly, the decomposition of natural gas price movements from January 2022 to
October 2023 reveals that domestic factors, particularly consumption demand and
inventory demand shocks, were the primary drivers of price fluctuations, especially
during periods of extreme weather and low storage levels. Export demand shocks
also played a significant role, especially following the Russian invasion of Ukraine
in early 2022, which led to increased U.S. LNG exports to Europe. Additionally,
the shutdown and subsequent reactivation of the Freeport LNG terminal in 2022
and 2023 had notable impacts on gas prices, underscoring the influence of export
dynamics on the U.S. market. For example, maintenance and operational incidents
at the terminal contributed to price reductions in mid-2022 and price increases
after its reactivation in early 2023. A decomposition analysis of price fluctuations
during the 2005 hurricanes shows that supply shocks led to significant price
increases immediately following Hurricanes Katrina and Rita in August, but
their effects diminished quickly, with demand factors regaining dominance in
the subsequent months. This demonstrates that, while supply shocks can cause
significant initial price increases, their effects are short-lived, with demand factors
eventually regaining dominance.

The rest of the paper is organized as follows: Section 5.2 reviews the relevant
literature. Section 5.4 describes the methodology, detailing the SVAR model
adapted and extended for this analysis. Section 5.3 explains the data utilized and
outlines the adjustments made to account for extreme observations stemming from
the COVID-19 pandemic. Section 5.5 presents the estimation results. Section 3.6
discusses robustness checks to validate the reliability of the findings, and Section
5.7 concludes.

3.2. Literature review

The deregulation of the U.S. natural gas market was a gradual process shaped by
policy changes, economic forces, and technological advancements. Initially, the
natural gas wellhead price was regulated by the Federal Power Commission (FPC),
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which was later reconstituted as the Federal Energy Regulatory Commission
(FERC). This regulation resulted in significant supply shortages. In response, the
Natural Gas Policy Act of 1978 facilitated incremental price adjustments toward
market levels to address these shortages. Subsequent reforms included the intro-
duction of Special Marketing Programs (SMPs) and FERC mandates requiring
the separation of sales and transportation services, enabling direct transactions
between customers and suppliers. This evolution towards a competitive market
was further reinforced by the Natural Gas Wellhead Decontrol Act of 1989, which
fully deregulated wellhead prices (Hou & Nguyen, 2018; Makholm, 2010). From
the mid-1990s onward, market forces exclusively determined U.S. natural gas
prices (Ebinger et al., 2012; Joskow, 2013).

These significant market changes have prompted a corresponding shift in
academic research. Initially, the literature primarily focused on the dynamics
between natural gas and crude oil prices. Earlier studies, such as those by Serletis
and Herbert (1999), Bachmeier and Griffin (2006), Villar and Joutz (2006),
and Brown and Yttcel (2008), established a long-run relationship driven by the
substitutability between refined petroleum products and natural gas across various
consumption sectors. In contrast, more recent studies by Erdés and Ormos (2012),
Geng et al. (2016b), and Zhang and Ji (2018) have observed a decoupling of oil and
gas prices in the North American market. They attribute this trend to the switch
to gas-on-gas competition pricing, the increased natural gas availability in the U.S.,
and a diminishing substitution effect with petroleum products. Consequently,
contemporary research has shifted toward examining the relative importance
of fundamental factors in the natural gas market through structural models.
Table 3.1 summarizes studies employing the Structural VAR model, detailing
their variables, specifications, identification strategies, data frequencies, and key
findings.

The studies summarized in Table 3.1 cover a diverse range of variables, frequen-
cies, and periods, with a common focus on fundamental factors influencing the
dynamics of the U.S. natural gas market. Most of these studies exclude oil prices
from their analysis, except for Hou and Nguyen (2018) and Nguyen and Okimoto
(2019). Monthly data are used by Arora (2014), Hailemariam et al. (2019), and
Rubaszek and Uddin (2020), who construct a three-variable model comprising
the quantity of natural gas produced, industrial production as a measure of real
economic activity, and the real price of natural gas. In contrast, quarterly data are
used by Wiggins and Etienne (2017) and Rubaszek et al. (2021), who expand their
variable sets to include natural gas inventories and use real GDP as a measure of
economic activity.
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Table 3.1.: Summary of studies analyzing the dynamics of the U.S. natural gas market
using SVAR models

Authors Variables Model Identification Data Study Key findings
(year) specifica- strategy freq. period
tion

Arora and Production, SVAR Recursive M 1993M11-  Prices are mainly driven by
Lieskovsky consump- specific demand shocks related to
(2014) tion, price 2012M12 inventory.
Wiggins Production, TVP-VAR Sign- Q 1976Q1- The effects of supply and demand
and GDP, restrictions 2015Q2 shocks vary significantly over time,
Etienne price, with minimal impact from
(2017) inventory inventory demand shocks.
Hou and Production, MS-VAR Recursive M 1980M2- Prices are mainly driven by
Nguyen IP, oil 2016M11 specific demand shocks related to
(2018) price, inventory.

price
Nguyen Oil price, TSVAR Recursive M 1980M2— Price response is asymmetric,
and produc- 2016M11 varying according to the business
Okimoto tion, IP, cycle.
(2019) price
Hailemariam Production, SHVAR Recursive M 1978M1- Prices are largely explained by
and Smyth IP, price 2018M7 demand-specific shocks related to
(2019) inventory.
Rubaszek Production, TSVAR Recursive M 1995M 1~ Price response is asymmetric,
and Uddin ADS, 2018M8 varying according to the inventory
(2020) price, level.

inventory
Rubaszek Production, BSVAR Prior distri- Q 1993Q1- Prices are primarily driven by
et al. GDP, butions 2020Q3 consumption demand shocks,
(2021) price, gas and sign followed by inventory demand

inventory restrictions shocks.

Note: In the “Variables” column, variables are listed according to the sequence adopted by
each study for identifying causal relationships within their respective SVAR models. The terms

“production”; “consumption”, “price”, and “inventory” refer to natural gas production, natural gas

consumption, real natural gas price, and natural gas inventory, respectively. Additionally, “IP”
and “ADS” refer to industrial production and the Aruoba-Diebold-Scotti business conditions
index, respectively. In the “Model specification” column, abbreviations are defined as follows:
VAR: Vector Autoregression, TVP-VAR: Time-Varying Parameter VAR, MS-VAR: Markov-
Switching VAR, TSVAR: Threshold SVAR, SHVAR: Structural Heterogeneous VAR, BSVAR:
Bayesian SVAR. The “Data freq.” column provides the data frequency in which the analysis is
conducted, with “M” and “Q” referring to monthly and quarterly data frequencies, respectively.

Model specifications across these studies show significant variation. Arora and
Lieskovsky (2014) employ a standard SVAR model, attributing price fluctuations
primarily to gas-specific demand shocks related to speculative or precautionary
purposes. Wiggins and Etienne (2017) apply a Time-Varying Parameter Vector
Autoregression (TVP-VAR) model with smoothly and continuously evolving
parameters, enabling them to assess the dynamic effects of various structural
shocks on natural gas prices. Their results show that supply and demand shocks
are the primary drivers of U.S. natural gas price fluctuations since deregulation,
with speculative activities having only a minor impact during certain periods.
However, Hailemariam and Smyth (2019) argue that the continuous changes
in parameters may not reflect the actual changes in the underlying dynamics,
especially in regimes characterized by constant coefficients. Therefore, they
implement a Structural Heterogeneous Autoregressive VAR (SHVAR) model,
allowing coefficients and volatilities to change at specific dates and to differ across
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equations. They find that most variations in natural gas prices are attributable to
gas-specific demand shocks related to storage, aligning with Arora and Lieskovsky
(2014)’s conclusions. Further exploring nonlinearity, Rubaszek and Uddin (2020)
employ a threshold SVAR model and find that the dominant role of these gas-
specific demand shocks persists across both high and low inventory regimes.
Lastly, Rubaszek et al. (2021) adopt a Bayesian SVAR framework, introduced
by Baumeister and Hamilton (2019), which incorporates Bayesian inference to
account for uncertainty in both parameter estimates and the structural features
of the model. Their analysis shows that consumption demand shocks explain a
dominant fraction of natural gas price variation.

Regarding the identification strategy, most studies, such as Arora and Lieskovsky
(2014), Hou and Nguyen (2018), Nguyen and Okimoto (2019), and Hailemariam
et al. (2019), predominantly adopt the recursive identification approach used by
Kilian (2009) in the oil market. This approach is applied to analyze the joint
dynamics of the percentage change in U.S. natural gas production, the logarithm of
real natural gas prices, and an index representing cyclical fluctuations in U.S. real
economic activity, based on monthly data. However, this identification strategy
imposes exclusion restrictions that assume zero short-run supply elasticity, which
may oversimplify real market dynamics, particularly given the non-zero elasticity
of supply.? To address these limitations, Wiggins and Etienne (2017) follow a
sign-restriction-based identification approach, building on the works of Kilian and
Murphy (2012), Baumeister and Peersman (2013), and Kilian and Murphy (2014).
Unlike the recursive method, which produces unique parameter estimates, sign-
identified models generate a range of possible solutions as long as the responses
of endogenous variables adhere to a predetermined sign pattern. Wiggins and
Etienne (2017) extend the three-variable model of natural gas by incorporating
natural gas inventories as a fourth variable, allowing them to capture the effects
of speculative behavior and storage dynamics on price fluctuations. Furthermore,
Rubaszek et al. (2021) adopt the identification approach of Baumeister and
Hamilton (2019), originally developed for the oil market, which involves a fully
Bayesian setup that relaxes the dogmatic priors of the recursive identification
and combines sign restrictions with weakly informative prior distributions on
structural parameters to disentangle supply and demand shocks.

In summary, the variations in findings across studies analyzing factors affecting
U.S. gas price fluctuations can largely be attributed to differences in model
specification, identification assumptions, and variable selection. This divergence
reflects the evolving understanding of interactions within the U.S. natural gas
market. While earlier studies primarily relied on recursive identification and often
overlooked the impact of inventories, recent research has adopted alternative
approaches that enable them to account for inventories and has utilized quarterly

9The traditional Cholesky identification can be interpreted as a special case of Bayesian
inference where exact prior knowledge is assumed about some elements of the structure,
leading to identical inferences between the Cholesky and Bayesian posterior medians for
those parameters (see Baumeister and Hamilton (2019) for more details).
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data. However, the roles of natural gas imports and exports have not been fully
considered, which can lead to misrepresentations in the supply-demand balance.
Therefore, this study extends the literature by proposing an SVAR model that
incorporates imports into the supply flow and explicitly allows for shocks to export
demand, as well as those shocks examined in Rubaszek et al. (2021)’s analysis.
This enables a clear distinction between domestic and export-driven demand
shocks and contributes to the ongoing discussion about the role of export demand
shocks in natural gas price variation. Additionally, this study uses monthly data
to minimize the information loss typically associated with temporal aggregation.
Finally, the analysis accounts for extreme values from the COVID-19 pandemic
to avoid misleading inferences about the true economic impacts of shocks.

3.3. Methodology

This section outlines the approach for specifying and estimating an SVAR model
of the U.S. natural gas market. Subsection 3.3.1 describes the specification of
the SVAR model and the estimation procedures employed. Building on this
foundation, Subsection 3.3.2 develops a specific model for the U.S. natural gas
market. Finally, Subsection 3.3.3 details the prior assumptions applied to the
model’s contemporaneous structural parameters.

3.3.1. Structural VAR specification and estimation

Consider the following SVAR specification for a n-dimensional time series vector

Yt
Ay, =By 1 + uy (3.1)

where y; is an n x 1 vector of endogenous variables, A is an (n x n) matrix sum-
marizing their contemporaneous structural relations, z;_1 is a (k x 1) vector (with
k = mn+1) containing a constant and m lags of y (zi—1 = (Y}_1,Y)_9s- -+ Yi—ms 1)),
and u; is an (n x 1) vector of structural disturbances assumed to be independent
and identically distributed (i.i.d.) N(0,D) and mutually uncorrelated (D is
diagonal).

This study follows the identification and estimation strategy introduced by
Baumeister and Hamilton (2015) and further developed by Baumeister and
Hamilton (2019) to construct a specific four-variable oil market model, which
was later applied to the U.S. natural gas market by Rubaszek et al. (2021). This
strategy yields a set-identified SVAR model through two primary steps. The first
step involves specifying informative prior beliefs about the values of the structural
parameters represented by a density p(A, D, B). The second step generates draws
from the posterior distribution of the structural coefficients to assess how the data
influences the prior beliefs. Further details regarding the two steps are provided
in the Appendix.
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3.3.2. A structural VAR model of the U.S. natural gas market

To investigate the dynamics of the U.S. natural gas market, this study follows
the model specification of Baumeister and Hamilton (2019). The original model
comprises four structural equations that articulate the behavior of buyers and
sellers in the global oil market, along with the determinants of global economic
growth. However, due to the distinct characteristics of the U.S. gas market,
particularly regarding natural gas imports and exports, modifications are necessary.
This study adapts Baumeister and Hamilton (2019)’s framework by incorporating
natural gas imports and exports into the specification. This extension is essential
for precisely estimating the price elasticity of domestic natural gas demand, as
it ensures the total available supply is accurately allocated among domestic
consumption, exports, and inventory changes. Furthermore, unlike Baumeister
and Hamilton (2019), which assumes the presence of additive measurement error
in inventory levels, this study assumes no such measurement error. This is because
the data for underground natural gas storage in the U.S. are highly accurate.!?

To explain how the elasticity of domestic consumption can be approximated
using the proposed SVAR model, let Q; denote the total available natural gas
supply in the U.S. market for period t. This supply includes dry natural gas
production, net imports of pipeline natural gas from Canada, and imports of
LNG.! Additionally, let EX; represent the U.S. natural gas exports, which include
pipeline natural gas exports to Mexico and LNG exports.'? Let I; denote the U.S.
natural gas inventories in month ¢, representing the working gas in underground
storage. Lastly, let Cy be the domestic consumption in month ¢. These variables
are linked through the following accounting identity:

Cr=Qr— EXy — it (3.2)

%Data on underground natural gas storage in the U.S. are collected through the EIA-191 survey,
which achieves nearly 100% final monthly and annual response rates from operators of
underground facilities in the U.S. The data are based on metered quantities, and respondents
are required to report whether the data are actual or estimated, with revisions incorporated
as needed. This ensures high accuracy in the reported storage volumes. See EIA (2024) for
more details.

1 Aggregating domestic production and imports into a single total supply measure is done
for two reasons: first, the interest in this analysis lies in the total available supply shocks
and in estimating U.S. total gas supply elasticity, which reflects both domestic and import
responses and allows for a clearer focus on analyzing the effect of export demand shocks.
Second, as Figure B.10 shows, imports have minimal impact on total supply variability,
justifying their combined treatment in the SVAR model. Another specification could isolate
gas production in the supply equation, while the final equation would account for net exports.
This specification was tested, and the main conclusions regarding market dynamics and
estimated elasticities remained unchanged. Detailed results are available upon request

12This approach to constructing the total supply and export variables closely follows the
industry-standard methods employed by the Energy Information Administration (EIA), as
detailed in their ‘Weekly Natural Gas Storage Report’ and ‘Natural Gas Annual’ reports,
which describe the dynamics of supply and demand in the U.S. natural gas market.
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where ¢f = I; — I;_; represents the inventory change from period ¢ — 1 to ¢.
This equation posits that the natural gas supply, which is neither exported nor
allocated to inventory changes, is consumed domestically. By dividing both sides
by Q¢_1, the previous period’s natural gas supply ¢t — 1, the following equation is

obtained: ”
Ct Qt EXt Zt

Q-1 Qi1 Qi1 Qi
To further analyze changes from one period to the next, both sides of the equation

are adjusted by adding (EX; 1/Q¢—1) — (Q¢—1/Q¢—1) to reflect these changes
and standardize the comparison by setting the baseline at the previous period’s

supply:

Ci— Qi1 —EXi1) Qi—Qia  (EXi —EXi ) i (3.4)
Qi1 Qi1 Qi1 Qi-1 '

Here, the left-hand side approximates the growth rate of domestic consumption,

(3.3)

denoted by ¢;. Similarly, ¢ = %7%‘1) represents the growth rate of natural gas
supply. Therefore, the relationship can be approximately expressed as:
AEX, i}
Ct = qt — — . 3.5
01 Qi (35)

Considering the domestic demand for natural gas, this study hypothesizes a
demand equation of the form:

G = BCYYt + Bcppt + bISUtfl + de (3.6)

where y; denotes economic activity that may influence demand within the same
month, p; is the price of natural gas, b is a vector of coefficients associated
with lagged variables z;_1, and ufd represents unanticipated shocks to domestic
demand. The coefficient 8.y is the elasticity of domestic consumption demand
with respect to economic activity, indicating how consumption changes in response
to income variations, and 3, is the elasticity of domestic demand with respect to
price, reflecting consumption sensitivity to price changes. Combining Equation
3.5 with 3.6, the relationship can be expressed as:

AEX, i

Or1 - Or1 ~ Beyyt + Beppt + bz 1 + ugd (3.7)
t— t—

qt —

Rearranging for ¢; and defining ex; = %fit and i; = Qii_lz

qt = quyt + qupt + Z.t + €Tt + b/.',Ut_l + Ugd (38)
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Accordingly, the structural model for the U.S. natural gas market is represented
by the following simultaneous equations:

Total supply: gt = agppt + biTi—1 + uf (3.9)
Economic activity:  y; = ayppr + boyxi—1 + uf® (3.10)
Domestic consumption demand: g = Bgyyt + Bgppr + it + exy + bhzi_1 + ufd
(3.11)
Inventory demand: it = Y1q¢ + Yoy + Y3pr + bﬁlxt,l + uid
(3.12)
Exports demand: ex; = A\1q: + Aoyt + Aspr + Aaiy + byzi_1 + ufmd
(3.13)

i /
where u; = [uf, uf®, uf?, ui?, u§™@| ~ N(0,D) are uncorrelated structural shocks.

Equation 3.9 states that U.S. natural gas supply is influenced by natural gas
prices through the contemporaneous structural coefficient ay,. Assuming that
both gas supply and real gas prices are expressed in log deviations, the coefficient
agp can be interpreted as the short-run price elasticity of natural gas supply. The
structural shock v is identified as a ‘U.S. natural gas supply shock,” which can
be triggered by geopolitical events, strikes, natural disasters (such as hurricanes),
or production decisions.

Equation 3.10 characterizes real economic activity, which is instantaneously af-
fected by natural gas prices via a;,. The second structural shock, u¢®, corresponds
to an ‘economic activity shock’ that reflects unexpected changes in the demand
for natural gas driven by overall economic conditions, such as recessions or booms
in the U.S. Equation 3.11 models domestic consumption demand. The coefficient
Bgp represents the short-run price elasticity of natural gas demand, indicating
how demand varies in response to price changes. Similarly, 3,y characterizes the
response of demand to increased economic activity, reflecting how consumption
adjusts to changes in the economic environment. The third structural shock, u§?,
is interpreted as a ‘U.S. natural gas domestic consumption demand shock’.

Lastly, Equations 3.12 and 3.13 capture the demand for gas inventories and
exports, respectively. Inventory demand is allowed to respond contemporaneously
to natural gas supply, real economic activity, and real gas prices through coefficients
1, Y2, and 3, respectively. The term uid represents a separate shock to natural
gas inventory demand, often described in the literature as a ‘speculative demand
shock.” Similarly, Equation 3.13 allows exports to be affected contemporaneously
by those variables as well as by inventories via coefficients A1, Ao, A3, and A\y. The
term u{”® represents a shock to natural gas export demand, driven by unanticipated
fluctuations in global demand for U.S. natural gas exports, international market

dynamics, shifts in international gas prices, or changes in trade policies.
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3.3.3. Prior information for contemporaneous parameters

This study specifies a set of prior beliefs regarding the elements of the contempora-
neous matrix A, based on economic theory and empirical evidence from previous
studies. These priors represent initial assumptions about the parameters before
observing the data. The detailed specifications of these priors, along with the sign
restrictions for each contemporaneous coefficient, are summarized in Table 3.2.

Table 3.2.: Summary of prior distributions affecting contemporaneous coeflicients A

Student-t distribution

Parameter Meaning Location Scale dof Restriction
Olgp Natural gas supply elasticity 0.1 02 3  ogp >0
Otyp Effect of p on activity -0.05 0.05 3 ayp <0
Bay Income elasticity of natural gas demand 0.7 0.2 3 Bqy > 0
Bap Natural gas demand elasticity -0.3 02 3 Bp<0
Py Effect of ¢ on inventories 0 0.5 3 none
g Effect of y on inventories 0 0.5 3 none
Y3 Effect of p on inventories 0 0.5 3 none
A1 Effect of ¢ on exports 0 05 3 none
Ao Effect of y on exports 0 0.5 3 none
A3 Effect of p on exports 0 0.5 3 none
A4 Effect of inventories on exports 0 0.5 3 none

Note: “Location” refers to the mode of the t-distribution, “Scale” represents its standard
deviation, and “dof” denotes the degrees of freedom. “Restriction” indicates whether a
sign restriction has been enforced. In the second column, p refers to the real natural gas
price, ¢ denotes total natural gas supply, and y represents real U.S. GDP.

Priors for parameters of the gas supply equation. Barret (1992) provided an
early estimate of natural gas supply elasticity at 0.014, based on an analysis of
annual data from 1960 to 1990, highlighting the historically perceived inelastic
nature of natural gas supply. Using monthly data from August 1987 to October
2012, Ponce and Neumann (2014) also noted a lack of short-run responsiveness
from producers to price changes, a phenomenon attributed to the significant
infrastructure investments required to scale production. However, they report
a substantial long-run price elasticity of supply at 0.76, suggesting a delayed
but significant supply response to price adjustments. Furthermore, Arora (2014)
explored monthly data spanning from 1993 to May 2013 and estimated short-run
and long-run elasticity at 0.07 and 0.42, respectively. Lastly, Mason and Roberts
(2018) examined natural gas production in Wyoming from 1994 to 2012 and found
that the price elasticity of intra-well production from previously drilled wells is
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highly inelastic at 0.03, while the elasticity of initial or peak-production rates is
negative at -0.12.13

Based on these findings, this study assumes a truncated Student-t prior for
Qgp, denoted as agy ~ t0(0.1,0.2,3), centered at 0.1, with a scale of 0.2 and
3 degrees of freedom. The mode of the distribution is set at 0.1, indicating a
prior belief that the most probable value of the short-run supply elasticity is
around 0.1, suggesting inelastic but positive responsiveness of supply to price
changes. The scale parameter of 0.2 represents moderate uncertainty around this
mode, acknowledging variability in empirical estimates and the possibility that
the true elasticity may differ due to factors such as infrastructure constraints
or market conditions. The degrees of freedom, set at 3, impart heavier tails to
the distribution compared to a normal distribution. This accommodates the
possibility of more extreme elasticity values observed in the literature. The heavy
tails ensure that while the prior centers on 0.1, there remains a non-negligible
probability for higher elasticity values, reflecting long-run adjustments and the
dynamic nature of natural gas markets.

Priors for parameters of the real economic activity equation. The structural
parameter oy, measures the effect of natural gas price fluctuations on real economic
activity. As noted by Kilian (2008), energy price shocks can impact the economy by
reducing discretionary income, increasing price uncertainty, promoting heightened
precautionary savings, and shifting consumption patterns, particularly for energy-
intensive goods. These dynamics suggest that the elasticity of economic activity
with respect to natural gas prices is expected to be negative. Consistent with
Baumeister and Hamilton (2019), this study adopts a truncated Student-¢ prior
for ayp, denoted as ay,;, ~ t_ 0(—0.05,0.05,3), centered at -0.05 with a scale of
0.05 and 3 degrees of freedom.

Priors for parameters of the consumption demand equation. The consumption
demand equation includes two structural parameters: the short-run price elasticity
of natural gas demand () and the effect of real economic activity on U.S. natural
gas consumption demand (f,,). The literature on natural gas demand elasticity
offers a range of estimates. For example, Al-Sahlawi (1989) consolidated research
from 1966 to 1984, noting short-term price elasticity of demand ranging from -0.05
to -0.95, predominantly around -0.30, and a wider long-run elasticity between
-0.12 and -4.60. Joutz et al. (2009) analyzed data from 1980 to 2001, revealing
short- and long-run elasticities of -0.09 and -0.18, respectively. Furthermore,
R. Bernstein and Madlener (2011) found that the long-run U.S. price elasticity of
residential natural gas demand is -0.16, and the short-run equivalent is -0.04. More
recently, Joshi (2021) extended this timeline to 2015, observing a broader range
of elasticities between -0.062 and -0.547, reflecting evolving market dynamics,
particularly the effect of liberalization. Arora (2014) reported short-run elasticities
between -0.10 and -0.16 and long-run values from -0.24 to -0.29. Therefore, this

13The authors explain this negative coefficient by the endogenous selection of wells: higher
prices make less productive wells viable, thereby lowering average productivity.
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study assumes a truncated Student-t prior fg, ~ t_s0(—0.30,0.2,3) centered
at -0.30, with a scale of 0.20 and 3 degrees of freedom. Regarding the 34y, the
research conducted by Al-Sahlawi (1989) reviewed studies from the mid-1960s
to 1984, indicating that the short-term income elasticity of natural gas demand
ranges between 0.0 and 1.5, with minimal divergence observed between short-
and long-term elasticities. This range was further contextualized by Burke and
Yang (2016), who analyzed 44 countries over 1978-2011, predominantly OECD,
finding an average income elasticity of 0.70 in a fixed-effects model. Accordingly,
this study assumes a truncated Student-t prior for the parameter representing
the relationship between income and natural gas demand (f4y). This prior is
defined as B4y ~ t0,00(0.7,0.2,3), centered at 0.7 with a scale of 0.2 and 3 degrees
of freedom.

Priors for parameters of the inventory and exports equations. Due to the absence
of reliable empirical information to construct precise priors for the parameters
in these equations, this study follows the approach proposed by Baumeister and
Hamilton (2018). Specifically, it adopts non-informative priors, assuming these
coefficients follow unrestricted Student-¢ distributions centered at zero, with a
scale parameter of 0.5 and 3 degrees of freedom. This choice of a prior centered at
zero reflects a neutral starting point, avoiding any inherent bias toward positive
or negative effects. The chosen scale parameter and degrees of freedom allow for
a modest degree of uncertainty, thereby giving the data a more significant role in
shaping the posterior distributions.

3.4. Data

The dataset comprises monthly data spanning from January 1992 to October
2023. This period captures the influence of market forces on the dynamics of the
natural gas market, as elaborated in Section 5.2. The selected variables include
total natural gas supply (Q:), real monthly Gross Domestic Product (GDP) (Y+),
real natural gas prices (P;), natural gas inventories (I;), and natural gas exports
(EXy). Accordingly, the vector of endogenous variables used in the analysis is
presented as follows:

Yt = [Qtv Y, Dt ita €$t} (314)

where ¢; = 100 x In (Q¢/Q¢—1), y: = 100 x In (Y¢/Y¢_1), pr = 100 x In (P;/P;_1),
ir =100 x [I; — I;—1/Q¢—1], and exy = 100 X [EX; — EX;y_1/Q:—1]. Data on real
monthly U.S. GDP are obtained from IHS Markit, part of S&P Global, following
Neukirchen et al. (2023).14 U.S. natural gas prices are sourced from the World

Y This choice is necessitated by the fact that official U.S. GDP data are released only on a
quarterly basis. According to IHS Markit, their index “is an indicator of real aggregate
output that is conceptually consistent with real GDP in the National Income and Product
Accounts (NIPA),” employing “calculation and aggregation methods comparable to those of
the official GDP from the U.S. Bureau of Economic Analysis” to produce “a monthly index
whose variation at the quarterly frequency mirrors that of official GDP, offering a meaningful
and comprehensive measure of monthly changes in output” (IHS Markit, 2022).
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Bank Commodity Price Database and converted into a real price index using
the U.S. Consumer Price Index (CPI) from the U.S. Bureau of Labor Statistics.
Data on natural gas market fundamentals, such as supply, working natural gas
underground storage, imports, and exports, are sourced from the EIA Monthly
Energy Review database. Following Hou and Nguyen (2018), Rubaszek and Uddin
(2020) and Rubaszek et al. (2021), all variables are seasonally adjusted using the
X-13ARIMA-SEATS method.

Data during the COVID-19 pandemic The disruptive impact of the 2020
pandemic significantly affected U.S. natural gas supply and demand, as well as
a broad range of economic indicators. For detailed descriptions and analyses
of these disruptions, see Nyga-f.ukaszewska and Aruga (2020) and Baumeister
(2023). This divergence suggests that structural and reduced-form parameters
during the most acute phase of the pandemic, particularly in 2020 and early
2021, should be estimated separately due to the distinct nature of shocks and
relationships. However, the limited number of observations available during this
period makes estimating a full set of parameters impractical.

Several approaches have been proposed for handling extreme observations in
such contexts. Ng (2021) argues that the principal components of economic data
now capture both typical economic fluctuations and pandemic-related variations.
To address this, Ng proposes adjusting each economic variable by incorporating
COVID-19 indicators—such as positivity rates, hospitalizations, and deaths—to
create a “de-covid” dataset, which allows for a more accurate estimation of
underlying economic factors. Lenza and Primiceri (2022) propose explicitly
modeling the increase in shock volatility. Specifically, they introduce a scaling
factor in a VAR model, which adjusts the residual covariance matrix during the
pandemic period, allowing for different levels of volatility in March, April, and
May 2020, with a decay parameter for subsequent months. This approach aims
to provide more accurate parameter estimates and predictions by accounting
for the elevated uncertainty during the pandemic. Similarly, Carriero et al.
(2022) introduce a BVAR model with outlier-augmented stochastic volatility,
which combines transitory and persistent changes in volatility to handle extreme
observations during COVID-19. This approach models large, infrequent volatility
outliers as a separate state, allowing the model to account for sudden spikes
in volatility without treating them as permanent. In contrast to these more
complex methodologies, Schorfheide and Song (2024) opt for a simpler solution
by recommending the exclusion of data points associated with the COVID-
19 pandemic in the estimation of their Mixed-Frequency VAR model. This
straightforward approach avoids the intricacies and potential complications of
modifying the underlying model structure, focusing instead on maintaining the
model’s performance by selectively omitting extreme observations. Baumeister and
Hamilton (2024) also follow this straightforward approach by excluding extreme
values.

Following Schorfheide and Song (2024) and Baumeister and Hamilton (2024),
this paper excludes data from March 2020 through February 2021—the period
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most affected by the pandemic—from the analysis. This decision is based on
the premise that including this data could introduce significant volatility and
anomalies into the model, potentially distorting the relationships under study.

3.5. Results

This section presents the findings from the estimated SVAR model for the U.S.
natural gas market. Subsection 3.5.1 examines the posterior distributions of the
structural parameters, highlighting the impact of the observed data on these
estimates. Subsection 3.5.2 discusses the Impulse Response Functions (IRFs),
which illustrate the dynamic effects of structural shocks on the model’s variables.
Subsection 3.5.3 quantifies the contributions of different shocks to the forecast
error variance of each variable in the model. Finally, Subsection 3.5.4 provides a
historical decomposition, tracing the cumulative impact of various shocks on U.S.
natural gas prices during key periods.

3.5.1. Posterior distributions for structural parameters

Figure 3.1 compares the prior and posterior distributions for the structural
parameters in the A matrix, with red lines representing the priors and grey
histograms representing the posteriors. This comparison evaluates the impact of
the observed data on updating the initial beliefs discussed in Subsection 3.3.3 and
assesses the extent to which these priors influence the outcomes of the subsequent
analysis.

The results reveal that the posterior distribution for the short-run price elasticity
of natural gas supply is tightly concentrated around a value close to zero, suggesting
the data are quite informative and lead to a substantial revision of the prior
belief. The posterior median of this parameter is 0.019, indicating that a 1%
increase in price is associated with only a 0.019% increase in the total supply of
natural gas in the U.S., reflecting minimal supply adjustments to price changes
within the month. This minimal responsiveness is consistent with the findings of
Ponce and Neumann (2014), Hou and Nguyen (2018), and Rubaszek et al. (2021),
who report that natural gas supply in the U.S. is inelastic. Such inelasticity can
be attributed to infrastructure costs, regulatory constraints, and the technical
and logistical complexities of rapidly adjusting production levels in response to
market fluctuations (Egging & Holz, 2016; Mason & Roberts, 2018). These factors
underscore the dominance of physical and technical considerations over economic
incentives in short-term supply responsiveness.

For the effect of natural gas prices on U.S. real economic activity, the posterior
distribution of oy, is centered near zero, with a median value of -0.004. This
implies that increases in the real price of natural gas are associated with only
a negligible reduction in real economic activity within a monthly period. This
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Figure 3.1.: Prior and posterior distributions of the contemporaneous coefficients in the
matrix A.

Note: The solid red curves represent the prior knowledge, and the gray histograms represent

the posterior densities.

result aligns with the findings of Cavalcanti and Jalles (2013) and Alexeev and
Chih (2021), who observe that gas and oil price shocks have minor effects on U.S.
economic growth.

Regarding the domestic consumption equation, the first structural parameter,
Bqy, represents the impact of economic activity on domestic natural gas demand.
While the median value of this coefficient, 0.788, is similar to its prior, the posterior
distribution shows a notable shift toward higher values, indicating that the data
provide moderate support for the prior belief. This value is consistent with the
findings of Burke and Yang (2016), who report that natural gas demand elasticity
with respect to GDP ranges between 0.40 and 1.12. The second structural
parameter, 3,,, measures the price elasticity of natural gas demand. The posterior
median of this parameter is -0.177, which is lower than its prior value, indicating
that the data provided significant insights into this relationship. This result
implies that a 1% increase in natural gas prices leads to a 0.177% decrease in
demand, highlighting short-run inelasticity. This estimate aligns with the findings
of Labandeira et al. (2017), who report an average short-run price elasticity of
-0.180, and is less inelastic than the -0.130 estimated by Arora (2014).

Summary statistics for the posterior estimates of these parameters, along with
other relevant magnitudes, are reported in column 1 of Table B.1 in the Appendix.
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3.5.2. Impulse response functions

Figure 3.2 presents the posterior medians (pointwise) along with 68% and 90%
credible intervals for the impulse response functions (IRFs) up to 16 months, each
standardized to reflect a 1% increase in natural gas prices on impact. Specifically,
uj represents an unanticipated disruption in the natural gas supply. The IRFs
illustrate the dynamic responses of the five endogenous variables to structural
innovations.
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Figure 3.2.: Structural impulse responses

Note: The rows represent the responses to different shocks, denoted as ui (supply shock), ug®
(economic activity shock), u§¢ (consumption demand shock), u{¢ (inventory demand shock),

and uf®? (export demand shock). The columns represent the variables: ¢; (total U.S. natural

gas supply), y+ (real U.S. GDP), p; (real gas price), i; (U.S. gas inventories), and ex; (U.S.
gas exports). The red solid lines represent the Bayesian posterior median, while the dark- and
light-shaded grey areas denote the 68% and 90% posterior credible regions, respectively.

First, consider the effect of a negative flow supply shock, as shown in the first
row. This shock causes a sharp initial decline in gas supply, which partially
reverses within the first three months. This pattern aligns with the principle that
supply constraints in one U.S. location, or in imports from a single source, often
prompt compensatory increases in production or enhanced import flows from
other locations. The results further indicate that a natural gas supply shock lowers
real economic activity after a significant lag; however, this effect is insignificant
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when considering the 90% credible sets. At the same time, this supply disruption
leads to an immediate increase in the real price of natural gas, peaking after
three months and then reverting to its initial value after one year. Natural gas
inventories are immediately drawn down to mitigate the supply shortfall, though
this effect dissipates within four months, as the credible sets return to include zero.
Additionally, there is a reduction in natural gas exports, reflecting the decreased
availability for foreign markets. These dynamics are consistent with findings from
analyses of the U.S. natural gas and oil markets by Hailemariam and Smyth
(2019) and Valenti et al. (2023), respectively, and with findings from analyses of
the global crude oil market by Kilian and Murphy (2014) and Baumeister and
Hamilton (2019).

The second row shows that an unexpected increase in economic activity does
not influence natural gas supply. However, this economic shock leads to an
increase in the real price of gas, peaking after almost one year. Changes in natural
gas inventories are negligible in the short run; however, a drawdown occurs as
time progresses. Natural gas exports remain unaffected. These responses to
the economic activity shock are generally consistent with the results observed in
Rubaszek and Uddin (2020) and Valenti et al. (2023).

The third row shows that a domestic consumption demand shock leads to a
slight increase in supply on impact to meet rising demand. This increase continues
gradually, peaking at twelve months before stabilizing, suggesting a lagged supply
adjustment process in response to the shock. Real gas prices respond positively
on impact but start to decrease after the second month, reaching a minimum after
one year before stabilizing, likely reflecting market adjustments in response to the
increased supply. Economic activity responds to the increase in gas prices with
a small, temporary decrease. This finding aligns with Hailemariam and Smyth
(2019), who also observed similar economic impacts from gas demand shocks.
Inventory levels show a negative response on impact, reaching their lowest level in
the fourth month before gradually recovering to their original level after one year.
Meanwhile, natural gas exports exhibit a relatively small negative response to the
positive demand shock, highlighting a shift in gas flows to meet domestic demand.

The fourth row examines responses to a positive shock to inventory demand,
often characterized in the literature as a speculative demand shock. Such a
shock could arise from increased precautionary demand for natural gas, driven
by heightened uncertainty about future demand or supply conditions (see Kilian
and Murphy (2014)). The results reveal that this shock is associated with an
immediate jump in the real price of natural gas, which quickly diminishes and
becomes statistically insignificant by the fourth month, indicating a short-lived
market reaction. This shock also leads to a persistent increase in gas inventories.
These findings are consistent with those of Kilian and Murphy (2014), who observe
that oil prices initially overshoot in response to such shocks before gradually
declining, with minimal effects on supply and global economic activity.
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The last row presents the IRFs to an export demand shock. Natural gas
supply shows no immediate reaction to this shock but begins to increase gradually
thereafter. On impact, the real price of natural gas responds positively and
continues to exhibit a substantial and statistically significant response in the
following months, though this significance diminishes after one year. These trends
suggest that market adjustments, primarily driven by changes in supply-demand
dynamics from export activities, take several months to fully stabilize. In contrast,
gas inventories initially decrease to meet the heightened export demands, but this
decrease becomes statistically insignificant by the fourth month, as indicated by
the 90% credible sets.

3.5.3. Forecast error variance decomposition

This section quantifies the impact of each shock on the variables in the estimated
SVAR model by calculating the variance of the model’s forecast error and de-
termining the share of that variance attributable to each shock at different time
horizons. The results, presented in Table 3.3, show the average contributions of
each shock to the overall variation in natural gas supply, real economic activ-
ity, real price of natural gas, natural gas inventories, and natural gas exports,
expressed in percentage terms.

Table 3.3.: Percent contribution of shocks to the overall variability of each variable

Natural gas supply Economic activity Real natural gas price
Horizon — uf ufs  uf T ugtd R uf uft  wf ul u§™d
1 94.29 124 1.77 176 0.34 0.45 95.97 1.62 1.30 0.16 848 3.61 54.06 31.54 0.73
2 92.33 1.52 2.04 2.13 1.18 0.75 94.21 2.03 1.65 0.80 8.82 4.67 5245 31.09 1.65
3 90.96 1.86 2.33 2.40 1.67 2.06 91.53 2,55 199 1.12 8.86 5.23 51.19 31.41 2.00
6 85.88 3.04 3.12 396 3.28 3.69 87.17 326 2.88 2.14 10.04 6.87 48.27 29.92 3.75
12 76.30 499 580 6.70 5.37 6.88 77.74 499 4.80 4.70 10.54 7.63 46.16 28.56 6.15
16 7457 554 6.13 711 581 7.38 76.01 540 5.10 5.16 10.71 795 45.60 27.92 6.81
Natural gas inventories Natural gas exports
Horizon — u] u§®  uf? ui@ u§™ uj ug® wf wid uf
1 316 1.22 7690 16.62 1.36 1.01 067 216 047 94.94
2 347 251 7520 1647 1.70 1.59 1.18 299 0.78 92.67
3 427 329 7327 1598 238 2.54 147 3.75 1.83 89.59
6 6.07 544 68.79 15.60 3.16 462 3.62 459 283 83.50
12 7.44 7.22 63.57 1571 5.04 7.19 5.96 574 512 7514
16 7.82 748 62.34 1591 5.43 792 644 6.11 589 73.73

Note: This table provides posterior median estimates of the contribution of each shock

to the forecast error variance of each variable. Credibility sets are available in Table B.2

in the Appendix. Horizons are expressed in months. The terms u$, u§®, u$¢, ui?, and

u$®? refer to supply, economic activity, consumption demand, inventory demand, and
exports demand shocks, respectively.

For the real gas price at the 1-month horizon, consumption demand shocks
account for 53.85% of the variation, followed by inventory demand shocks, which
contribute an additional 32.07%. By the 16-month horizon, these contributions
adjust slightly to 45.35% for consumption demand and 28.17% for inventory
demand, reflecting a sustained but diminishing influence on gas price movements.
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Moreover, the impact of supply shocks, economic activity shocks, and export
demand shocks on price variations is minimal initially but increases gradually,
suggesting a prolonged adjustment process. Specifically, their combined impact
accounts for less than 13% of the price variation initially but becomes more
significant by the 16-month horizon, with economic activity shocks increasing
from 3.57% to 7.96% and export demand shocks from 0.70% to 6.84%.

These results can be compared with those discussed in Section 5.2. According to
Arora and Lieskovsky (2014), supply shocks initially have a minimal impact (3.2%)
that increases significantly in the long run (16%), and the ‘other’ shock, which
includes the demand and supply of natural gas for speculative or precautionary
purposes, dominate the short term (76%). In contrast, this study finds a relatively
higher effect from supply shocks in the short run and a much lower effect from
speculative demand shocks. The findings from Rubaszek et al. (2021) align more
closely with this study regarding the significant role of consumption demand
shocks and inventory demand shocks. However, Rubaszek et al. (2021) reports a
stronger effect in both the short run (79%) and the long run (65%) for consumption
demand shocks, with lesser impacts from inventory demand shocks (12% in the
short run and 19% in the long run). Compared to Wiggins and Etienne (2017),
who report a balanced contribution from supply and aggregate income shocks
(20%-30%), this study initially finds these factors to play a lesser role, with their
significance increasing over time. The discrepancies between this study’s results
and those reported by Rubaszek et al. (2021) and Wiggins and Etienne (2017)
may be attributed to differences in data frequency or model specifications.

Regarding the other endogenous variables, Table 3.3 indicates that the variation
in natural gas supply is predominantly driven by supply shocks (uf), accounting
for 94% on impact and 75% in the long run. This underscores the significant role
of supply conditions in the short term, which marginally decreases as other factors
come into play over time. In the case of natural gas inventories, consumption
demand shocks (ufd) are initially the most influential, explaining 76.34% of the
variation, but this influence diminishes to 61.87% by the 16th month, indicating
a sustained and significant impact over time. Finally, natural gas exports are
primarily influenced by export demand shocks (u$*?), which account for 95.09%
of the variation initially, decreasing to 73.18% by the 16th month, underscoring
the critical role of external market demands in shaping U.S. natural gas export
volumes.

3.5.4. Historical decomposition

The estimates obtained from structural IRFs and structural FEVDs describe the
average movements in the U.S. gas market over the analyzed period, representing
unconditional expectations. The main objective of this section is to decompose
the movements in real gas prices and trace the cumulative effects of each shock
from January 2022 to October 2023. This period was marked by escalating
geopolitical tensions triggered by the Russian invasion of Ukraine in early 2022,
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which significantly increased U.S. natural gas exports to Europe and sparked policy
discussions concerning the impact of these exports on U.S. gas price fluctuations
in 2022 (see EIA (2023a) and EVA (2023)). Figure 3.3 presents the historical
decomposition of natural gas price movements from January 2022 to October
2023.
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Figure 3.3.: Historical decomposition of U.S. real natural gas price movements from
January 2022 to October 2023
Note: Each bar in the graph represents the median estimate of historical contribution of separate

shocks—supply (u{), aggregate demand (ug?), consumption demand (u§?), inventory demand

(ui®), and export demand (u{*®)—for each month during the specified period. The colors

correspond to these specific shocks, as labeled directly on the figure. The solid black line
represents the logarithmic changes in the real prices of U.S. natural gas.

The results reveal that natural gas dynamics during this period were predomi-
nantly influenced by consumption demand shocks (dark gray bars) and inventory
demand shocks (light gray bars). For example, early 2022 experienced notably
positive cumulative effects from consumption demand shocks due to weather-
induced spikes in natural gas usage in the Northeast and Midwest. Speculative
demand shocks also contributed positively, particularly in March and April 2022,
likely due to low storage levels at the onset of the injection season. Similarly,
throughout the first half of 2023, fluctuations in gas prices were primarily driven
by domestic consumption shocks and inventory dynamics. The marked decline
in gas prices, especially in January and February—typically peak months for
heating—was largely due to milder-than-average temperatures, which reduced
consumption in the residential and commercial sectors (Fleury, 2024).

The findings also show that accumulated export demand shocks (yellow bars)
consistently influenced gas price dynamics throughout the period, with impacts

o8



3.5. Results

alternating between positive and negative across different months. For example,
these shocks contributed to price spikes in April, May, and August 2022, which
were associated with increased LNG exports to Europe during these months.!?
Conversely, they also contributed to the price declines in June, July, and other
months of 2022, which can be attributed to the explosion and subsequent shutdown
of the Freeport LNG export terminal.'® This incident led to a significant reduction
in U.S. LNG exports, contributing to a domestic surplus of natural gas. In contrast,
the results indicate that accumulated export demand shocks have driven much
of the gas price increases since March 2023. This rise could be attributed to the
reactivation of the Freeport terminal in early 2023, alongside increased pipeline
exports to Mexico during the summer, marking a return to positive contributions
from exports to natural gas price fluctuations. However, the decline in export
demand shocks in June 2023 can be explained by extensive maintenance activities
at key LNG export facilities. For example, the Sabine Pass LNG terminal
underwent major maintenance, reducing its feed gas deliveries from an average
of 4.6 Bef/d in May to nearly 3 Bef/d in June. Additionally, the Freeport LNG
plant in Texas faced operational issues in mid-June, further lowering overall feed
gas deliveries (S&P Global Commodity Insights, 2023). This underscores how
maintenance events at export infrastructure can affect price fluctuations.

Overall, the historical decomposition of U.S. natural gas prices from 2022 to
2023 highlights the consistent and substantial impact of accumulated demand-
side shocks as the primary drivers of gas price dynamics. The analysis further
shows that within these demand-side shocks, domestic consumption demand
and inventory demand shocks were the dominant influences. Additionally, while
less dominant, export demand shocks also played a crucial role in shaping price
dynamics. Significant export shocks often correlated with movements in gas prices,
with increases in export shocks generally aligning with upward price movements.

In addition to the 2022—-2023 analysis, further investigations are conducted
into the historical decomposition of natural gas price fluctuations during two
other significant periods. The first examination focuses on 2005, specifically
analyzing the impact of Hurricanes Katrina and Rita in August of that year on
U.S. natural gas price dynamics. The results, presented in Figure B.1, show that
the price increases in August, September, and October 2005 were primarily driven
by natural gas supply shocks. This can be attributed to the loss of offshore gas
production following the hurricanes, which caused a more than 20 percent drop
in domestic U.S. gas production. In the remaining months of 2005, consumption
demand and speculative demand shocks were the primary drivers of gas price

15For example, according to the EIA monthly statistics, U.S. LNG exports to the Netherlands
in August 2022 (50,020 MMcf) surged to the highest level of the year, marking a 53%
increase compared to July (32,637 MMcf) and 62% higher than September (30,924 MMcf),
illustrating a significant spike in U.S. LNG exports to Europe during this month.

B Ereeport LNG is a U.S. liquefaction and export facility for Liquefied Natural Gas (LNG)
located in Freeport, Texas. It ranks as the seventh-largest LNG export facility globally
and the second-largest in the United States. Additional details about this terminal and the
incident that occurred in June 2022 can be found on its official website.
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dynamics. These findings demonstrate that supply shocks, such as those caused
by hurricanes, lead to significant price increases in the immediate aftermath, but
their effects diminish quickly, with demand factors regaining dominance in the
subsequent months.

The second analysis, covering January 2015 to December 2017, evaluates the
relative importance of various shocks, with a particular focus on export demand
shocks. This period is significant due to the rapid expansion in export capacity,
which led to the U.S. becoming a major gas exporter by 2017. The findings,
presented in Figure B.2, underscore the evolving impact of export dynamics on
gas price fluctuations. Overall, the results indicate that during this period, price
dynamics were primarily driven by shocks from consumption demand, speculative
demand, and natural gas supply. In terms of export demand shocks, the results
reveal that in 2015, accumulated export shocks had a minimal impact on gas
price dynamics. However, from the second half of 2016 onwards, there is a notable
increase in the influence of export shocks on gas prices. Additionally, the analysis
identifies a negative export demand shock in August 2017, likely due to the impact
of Hurricane Harvey. The hurricane caused widespread disruptions, including the
closure of several regional ports by the U.S. Coast Guard on August 28, which
halted LNG exports, particularly from Cheniere Energy’s Sabine Pass facility,
where no LNG tankers departed for several days. Moreover, pipeline flows from
Texas to Mexico decreased due to the shutdown of compressor stations (NGI,
2017). These findings suggest that the influence of export demand shocks has
grown over time, corresponding with the expansion of U.S. natural gas export
infrastructure.

3.6. Sensitivity Analysis

This section presents a series of sensitivity analyses to evaluate the robustness
of the SVAR model’s findings for the U.S. natural gas market. Subsection 3.6.1
assesses the impact of excluding observations from the COVID-19 pandemic
period on the model’s results. Subsection 3.6.2 investigates how the findings
are influenced by the shale gas revolution, focusing on data from 2009 onwards.
Finally, Subsection 3.6.3 examines the effects of using weaker priors for short-run
supply and demand elasticities, evaluating how these adjustments influence the
posterior distributions and impulse response functions.

3.6.1. Sensitivity to the effects of excluding pandemic-related
observations

This subsection evaluates the impact of excluding observations from March 2020

to February 2021, a period significantly affected by the COVID-19 pandemic. To
investigate whether this exclusion alters the results, two exercises are conducted:
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The first exercise involves a pre-pandemic analysis, where the model is esti-
mated using data only up to December 2019. The posterior medians for the
contemporaneous coefficients in A are reported in the column labeled “S1” in
Table B.1. Posterior IRFs are presented in Figure B.3 in the Appendix. The
results reveal that the magnitudes of the structural parameters and the IRFs are
very similar to those obtained in the baseline analysis, except for the IRFs related
to export shocks, which show significance only in the short run. This difference
in the response of prices to export shocks may suggest an increased sensitivity of
U.S. gas prices to export shocks in recent years, particularly in 2022 and 2023.

The second exercise estimates the model using the entire sample period from
January 1992 to October 2023, without excluding any observations. The posterior
medians for the contemporaneous coefficients in A are reported in the column
labeled “S2” in B.1, and the posterior IRFs are plotted in Figure B.4 in the Ap-
pendix. The results show that while the structural parameters are largely similar
to those in the baseline model, the IRFs reveal some counterintuitive outcomes,
particularly in the response of economic activity to various shocks. For instance,
the findings suggest that a reduction in gas supply, which typically increases gas
prices, appears to boost U.S. economic activity (as shown in the (1,2) panel of
Figure B.4). Given these results, caution is advised when interpreting the findings
from this full-sample analysis. These anomalies imply that external disruptions,
such as pandemics, can significantly alter traditional economic responses, high-
lighting the need for adjustments in economic modeling and policy considerations
during such periods.

Overall, these results underscore the importance of adapting models to account
for the unique effects of such disruptions in order to avoid counterintuitive economic
responses. For subsequent sensitivity analyses, the model will continue to exclude
observations from March 2020 to February 2021, following the approach used in
the baseline analysis, to ensure consistency in evaluating the model’s robustness.

3.6.2. Sensitivity to the effects of the shale gas revolution

The baseline analysis of this study spans the period from 1992 to 2023, a time-
frame selected to comprehensively examine the factors influencing U.S. gas prices
following the deregulation of the U.S. natural gas market. To assess the sensitivity
of the baseline results, this exercise uses data from January 2009 onward. This
approach aligns with literature focusing on this period to examine the effects of
the shale gas revolution, as seen in studies by Arora and Lieskovsky (2014), Geng
et al. (2016a), Hailemariam and Smyth (2019), and Hu et al. (2020).

Corresponding summary statistics of the coefficients from the contemporaneous
matrix are labeled as “S3” in Table B.1. Under this shorter sample, the posterior
median of demand elasticity is relatively smaller at -0.130. This finding aligns
with Arora (2014), who observe that demand elasticity becomes slightly more
inelastic after the shale revolution, which could be explained by less adjustment
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in consumption behavior when prices are low compared to when they are high.
This result could also be attributed to the reduced impact of both the income
and substitution effects. When prices are low, the expenditure on natural gas
constitutes a smaller portion of consumers’ budgets, leading to a lesser impact on
their overall purchasing power, thus minimizing the income effect. Additionally,
the incentive to switch to substitutes is reduced because alternatives like coal have
become less competitive, leading to a greater reliance on natural gas and thereby
weakening the substitution effect (Mason et al., 2015). The results also show that
the posterior median of supply elasticity remains low at 0.024. This low supply
elasticity is consistent with survey evidence for oil shale producers, as summarized
by Golding (2019), who explains that U.S. shale producers are unlikely to respond
quickly to price increases due to a sector-wide focus on achieving returns and
positive cash flow, along with extensive hedging to secure revenue targets. Golding
also notes that large public companies face investor pressure to maintain spending
discipline, while smaller firms, though more likely to increase production, have
limited impact due to capital constraints and less prolific acreage. The IRFs,
presented in Figure B.5 in the Appendix, show the same qualitative pattern as the
baseline. However, the response of real gas prices to supply and demand shocks
becomes less persistent. This change could reflect a more adaptable U.S. gas
market, primarily influenced by technological and infrastructural advances during
the shale gas revolution. These advances have facilitated quicker adjustments to
supply shocks and demand changes.

3.6.3. Sensitivity to alternative prior assumptions and model
identification

This subsection evaluates the robustness of the baseline model to alternative
assumptions regarding prior distributions and model identification strategies.
Specifically, it investigates whether the key findings are sensitive to changes in
these assumptions. Two exercises are conducted: first, by employing significantly
weaker priors for the short-run supply and demand elasticities; and second, by
incorporating non-Gaussianity as an additional source of identification.

The first exercise assesses the influence of prior assumptions on the posterior
distributions of key structural parameters, specifically the short-run supply elas-
ticity aygp and the demand elasticity B4,. In contrast to the baseline analysis,
which employs scale parameters c®» = 0.2 and ¢”» = 0.2 for the supply and
demand price elasticity coefficients, respectively, this analysis tests the effect of
significantly weaker priors by setting both 0@ and o to 1.0. This adjustment
increases the variance of the priors for these two coeflicients by a factor of 25
compared to the baseline specification, thereby reducing the influence of prior
information on the estimation outcomes. The posterior medians of the supply and
demand elasticities are presented in column “S4” of Table B.1, and the IRFs are
shown in Figure B.10 in the Appendix. Overall, both the structural parameters
and the IRFs remain relatively unchanged compared to the results obtained from
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the baseline specification. This observation aligns with the findings of Baumeister
and Hamilton (2019), who note that many key conclusions of their Bayesian model
change very little when substantially less weight is placed on different components
of the prior information.

The second exercise incorporates non-Gaussianity as an additional source of
identification, following the identification strategy proposed by Braun (2023).
This approach leverages the statistical properties of the error terms by assuming
that the structural shocks are mutually independent and display some degree
of non-Gaussianity. It integrates economically motivated prior distributions,
as introduced by Baumeister and Hamilton (2019), with identification by non-
Gaussianity. Accordingly, this approach ensures that economic interpretations
remain relevant throughout the analysis. The structural shocks are modeled using
Dirichlet Process Mixture Models, where each shock’s marginal distribution is
estimated nonparametrically. This allows the analysis to reduce the reliance on
strong economic priors, making the model more data-driven. Summary statistics
for this exercise are presented in column “S5” of Table B.1, and the corresponding
IRFs are shown in Figure B.9 in the Appendix. The results closely align with
those from the baseline analysis, indicating that the key findings are robust even
when non-Gaussianity in the error terms is utilized as an additional source of
identification.

The outcomes of these exercises demonstrate that the baseline results are
not highly sensitive to the specific identifying assumptions employed. Whether
the priors on the short-run elasticities are weak or strong, or whether non-
Gaussianity is incorporated as an additional identification strategy, the key
structural parameters and the dynamic responses of the system remain largely
consistent.

3.7. Conclusion

This paper proposes a Structural Vector Autoregression (SVAR) model that
incorporates natural gas imports and exports to provide a more comprehensive
understanding of U.S. natural gas market dynamics. The model extends previous
studies by allowing for a clearer distinction between domestic and export-driven
demand shocks. The findings contribute to the ongoing discourse by providing new
insights into the relative importance of various structural shocks and revisiting
the estimates of natural gas supply and demand elasticities.

The findings of this study reveal the significant inelasticity of natural gas supply
in the short run, as reflected by a near-zero elasticity estimate—a pattern consistent
with previous research (e.g., Labandeira et al., 2017; Ponce & Neumann, 2014).
This limited responsiveness to price changes reveals the infrastructural, regulatory,
and technical constraints that impede short-run adjustments in supply. Similarly,
the small price elasticity of demand indicates limited consumer responsiveness
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to price fluctuations within the month. These results suggest that short-term
economic and policy interventions may have limited effectiveness in altering
natural gas supply and demand. The impulse response analysis reveals that
a negative supply shock leads to an immediate but short-lived spike in prices,
with inventories being drawn down and exports temporarily reduced, while an
unexpected rise in economic activity gradually increases prices without affecting
supply. In response to a domestic consumption demand shock, prices initially rise
but decline after two months, reaching a low point around one year as supply
adjusts. Speculative inventory demand shocks cause a temporary increase in
prices, followed by stabilization. Export demand shocks result in a price increase
in the short and medium term.

The FEVD analysis indicates that short-term fluctuations in natural gas prices
are predominantly driven by consumption and inventory demand shocks, which
together account for over 85% of the price variation at the one-month horizon.
Over time, the influence of export demand shocks, supply, and economic activity
becomes more pronounced, reflecting a gradual adjustment process in the market.
Historical decomposition results for the period from 2022 to 2023 suggest that
natural gas price dynamics were largely shaped by demand-side factors, particularly
domestic consumption and inventory demand shocks. Additionally, export demand
shocks, though less dominant, consistently influenced natural gas prices throughout
this period. These shocks alternated between positive effects, driven by increased
exports, and negative effects, resulting from maintenance disruptions at key LNG
facilities that caused temporary declines in exports. The analysis of past events,
such as the hurricanes in 2005, highlights how supply shocks from natural disasters
or other large-scale disruptions can lead to significant immediate price increases,
though their impact tends to diminish quickly as demand factors regain influence
in the following months. This underscores the dominant role of demand-side
factors in shaping natural gas price dynamics.

An important consideration in this analysis is the exclusion of COVID-period
observations from the sample, along with the pooling of pre- and post-COVID
data. Sensitivity analyses show that this approach prevents counterintuitive
economic responses that would occur if these observations were included. For
example, retaining the COVID-period data results in findings that suggest that
a reduction in gas supply—which typically increases gas prices—would instead
stimulate U.S. economic activity. Similarly, it suggests that an export demand
shock would lead to a sharp decline in economic activity. Dropping extreme
observations has proven effective in avoiding these counterintuitive outcomes.

The main implication of this study is that adapting structural models developed
for the global oil market to regional energy markets, such as the U.S. and European
natural gas markets, requires specific adjustments to model specifications. These
adjustments are necessary to ensure that the unique domestic and external
dynamics of regional markets are accurately captured, leading to more informed
economic and policy decisions.
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One limitation of this paper’s model is that it does not incorporate wellhead
production rates and the utilization of pipeline and LNG export infrastructure.
Future research could extend this model by including these rates. A potential
avenue for future research could examine whether the nonlinear dynamics of the
U.S. natural gas market are driven by these utilization rates. In this case, these
rates could be used as a threshold variable, with the analysis divided into two
regimes based on whether the rates are below or above a certain threshold.
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4. Global Natural Gas Market Integration:

The Role of LNG Trade and Infrastructure
Constraints

4.1. Introduction

International trade in natural gas has traditionally been divided into three main
regional markets: Asia, Europe, and North America (Economides & Wood, 2009;
Geng et al., 2014; Melamid, 1994). Historically, this segmentation has been
driven by limited Liquefied Natural Gas (LNG) transport capacity between.
However, the literature suggests that these markets are gradually becoming more
integrated (Li et al., 2014; Neumann, 2009). Market integration refers to the
extent to which regional markets share information and align prices (Fackler &
Goodwin, 2001; McNew & Fackler, 1997). Investigating this phenomenon has
significant implications for supply security, as market participants in one region
must increasingly consider conditions in other regions to ensure their own supply.

The integration process among the three regional gas markets has been driven
by several key factors. First, some regions have experienced surplus natural gas
production, while others have seen increasing consumption.!” This imbalance
has necessitated expanding the international gas trade, with LNG emerging as a
critical solution. Increasing export capacities and the growth of the LNG fleet have
significantly improved the technical and economic feasibility of inter-regional trade
(Barnes & Bosworth, 2015; Li et al., 2014). Second, many commercial agreements
have shifted from traditional oil-indexed pricing in long-term contracts to greater
reliance on hub-based pricing. For example, the share of Gas-on-Gas (G-0-G)
competition!® in global gas consumption rose from 31% in 2005 to 49% in 2021,
while oil indexation declined from 24% to 19% over the same period (IGU, 2021).
The literature also suggests that the relationship between oil and natural gas
prices has become more volatile, indicating a decoupling of the two commodities
(Chiappini et al., 2019; Neumann, 2009). At the same time, the G-0-G competition
has seen a rise in spot and short-term transactions, where shifts in regional supply
and demand prompt LNG exporters to redirect spot volumes (IGU, 2021). These

Figure C.1 in the Appendix compares the development of gas production and consumption
between 2012 and 2022. It shows that production has significantly increased in export
regions that do not have pipeline connections to the main gas import regions. This has been
facilitated by the export of LNG.

18Gas-on-Gas (G-0-G) competition refers to a pricing mechanism in which natural gas prices
are determined by supply and demand dynamics in competitive markets (GIIGNL, 2022;
IGU, 2021).
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developments have increased market liquidity, enhanced opportunities for spatial
arbitrage, and boosted the presence of physical traders. Third, advancements in
shale gas exploration technology have fueled a rapid increase in production in
North America, commonly referred to as the shale gas revolution. As a result,
the United States began exporting LNG in 2016 and has quickly become a major
player in the global market, with export capacities expanding year over year
(Farag, 2024; Melikoglu, 2014; Wiggins & Etienne, 2017).!? Finally, European
and Asian countries have adopted supply diversification strategies that combine
pipelines and LNG imports to mitigate supply risks (Farag & Zaki, 2021a; Hinchey,
2018; Ritz, 2019).

Several studies have focused on global gas market integration, primarily relying
on price data to measure the degree of integration. The hypothesis is that the
greater convergence between gas prices signifies stronger spatial arbitrage and
higher levels of market integration.?"

Siliverstovs et al. (2005) investigated the integration of the North American,
European, and Asian gas markets using monthly prices from November 1993
to March 2004. Their cointegration analysis provided evidence of integration
between the Asian and European markets, while the North American market
remained decoupled. The authors explain that the European and Asian natural
gas markets are integrated due to similar long-term contracts and oil-indexed
pricing mechanisms, which align price movements in these regions. In contrast,
the North American market operates under a different, more competitive pricing
system that decouples it from the oil-linked European and Asian markets, resulting
in a lack of integration across the Atlantic. A similar conclusion was reached by Li
et al. (2014), who examined the integration of international natural gas markets
across North America, Europe, and Asia from 1997 to 2011, using a convergence
test and Kalman filter analysis.?! In contrast, Neumann (2009) found evidence of
increasing integration between North American and European gas markets. Using
the Kalman filter to analyze data from 1999 to 2008, Neumann observed rising
price convergence, particularly after 2003. This trend was attributed to the role
of LNG in linking previously segmented markets across the Atlantic during this
period.

However, Nick and Tischler (2014) pointed out that linear cointegration models,
which assume symmetric adjustments, may be misspecified for natural gas markets
where adjustments to price deviations can be asymmetric. Factors such as trans-
action costs and different responses to widening or narrowing spreads contribute

9For example, the U.S. significantly expanded its LNG liquefaction capacity, from 16 bem
in 2016 to 131 bem in 2022, accounting for 62% of the global increase during this period
(Rystad Energy, 2023).

29For a detailed review of the empirical methods used to examine the degree of spatial integration
in natural gas markets, see Dukhanina and Massol (2018) and Farag and Ruhnau (2024).

2! The convergence test used in Li et al. (2014) is the Phillips and Sul (2007) test, which examines
whether natural gas prices across regions are moving toward a common long-term trend. The
Kalman filter is applied to estimate time-varying relationships between price pairs, allowing
the authors to track the gradual evolution of these relationships.
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to this asymmetry, making nonlinear cointegration a more appropriate approach.
To address this, they examined the degree of integration between North American
and European gas prices using a nonlinear cointegration approach that accounts
for transaction costs. Their results provided strong evidence of nonlinearity in
the sub-samples analyzed (2000-2008 and 2009-2012). More recently, Chiappini
et al. (2019) applied the momentum-threshold autoregression (M-TAR) model of
Enders and Siklos (2001) with daily price data from 2004 to 2018, confirming the
presence of nonlinearities and asymmetries in price adjustments in the global gas
market. Their analysis also shows that the degree of interdependence between
the North American and European markets has increased, whereas this has not
occurred between the North American and Asian markets.

The reviewed literature shows that conclusions on regional gas market inte-
gration depend on the methods used and the key market mechanisms at play
during the analyzed period. In terms of methods, accurately modeling this
convergence requires accounting for transaction costs and asymmetric dynamics
in the adjustment process. Regarding market mechanisms, LNG trade offers
more opportunities for spatial arbitrage, contributing to increased price conver-
gence among the North American, European, and Asian markets. However, it
remains unclear how recent developments in the global gas market—especially the
U.S.’s emergence as a major LNG exporter since 2016 and the supply disruptions
caused by geopolitical tensions between Europe and Russia, amid a tight LNG
market—have impacted the market integration.

This paper contributes to the literature by analyzing global gas market integra-
tion from 2016 to 202222, using daily futures prices across the three main regional
gas markets. The North American market is represented by the Henry Hub
(HH) benchmark, the Northwest European market by the Title Transfer Facility
(TTF) benchmark, and the East Asian market by the East Asian Index (EAX).
This analysis is particularly relevant for two main reasons. First, this period
coincides with the U.S.’s entry into the global LNG trade, a development that
may have reshaped relationships within the global gas market. Therefore, this
study provides new insights into cointegration under different market conditions.
Second, various factors during this period have supported arbitrage in the global
gas market, particularly between the U.S. and the other two regions, driven by
the expansion of U.S. LNG export infrastructure and the rise in spot LNG trade
(Rystad Energy, 2023). However, this period has also been marked by factors that
hinder arbitrage, such as the U.S. LNG export infrastructure and European import
infrastructure operating at maximum capacity. To capture the potential effects
of these dynamics, we conduct the cointegration analysis over two subsamples,
splitting the data on October 1, 2021. This timing aligns with significant market
disruptions, including Russia’s reduction of gas flows to Europe and the tightening
global LNG market due to supply outages and capacity constraints (Fulwood et
al., 2022; McWilliams et al., 2023).

22The sample period ends in 2022 due to data availability constraints.
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Our results show that during the first subsample (January 2016 — September
2021) the Asian and European gas prices are cointegrated. This finding is
consistent with previous studies, such as Chiappini et al. (2019), which also
identified cointegration between European and Asian gas markets in earlier periods.
The persistence of this integration during our sample period can be attributed to
the growth of LNG trade, which has facilitated arbitrage opportunities between
Europe and Asia. Both regions are subject to global supply-demand dynamics and
spot market pricing mechanisms, reinforcing their integration. While Chiappini
et al. (2019) found no cointegration between American and Asian prices but did
find cointegration between American and European prices, our analysis reveals
that American prices were cointegrated with both Furopean and Asian prices
during this period. These differences likely reflect changes in the global gas
market, particularly the U.S.’s transition to a net exporter, which has reshaped
its relationship with the European and Asian markets. However, our findings are
consistent with those of Nick and Tischler (2014) and Chiappini et al. (2019),
supporting the conclusion that regional gas prices are nonlinearly cointegrated.
This implies that adjustments toward equilibrium happen at different speeds
based on the direction of deviation from the equilibrium.

In the second subsample (October 2021 — November 2022), we find no evidence
of linear cointegration for any price pairs based on the Engle-Granger approach.
However, when we apply the Enders-Siklos threshold cointegration method, we
find evidence of threshold cointegration only for the EAX-TTF price pair. This
suggests the presence of a non-linear, asymmetric relationship between these two
markets during the second subsample period, while the other pairs (HH-TTF and
HH-EAX) do not exhibit such a relationship. The lack of cointegration between
the American and European markets may be attributed to LNG infrastructure
congestion during this period, which acts as a physical barrier to arbitrage.?? To
further investigate the decoupling of the American and European gas markets
observed in the second subsample, we examine the relationship between the
HH-TTF price spread and LNG infrastructure congestion. Using the Toda and
Yamamoto (1995) approach, we analyze the predictive relationship between LNG
infrastructure congestion and the HH-TTF price spread. In the second subsample,
we find significant Granger causality from congestion to the HH-TTF spread,
suggesting that infrastructure constraints are influencing price differentials. These
findings underscore the critical role of infrastructure capacity in facilitating or
impeding market integration between regional gas markets.

The remainder of the paper is organized as follows: Section 4.2 outlines the
conceptual background. Following this, Section 4.3 discusses structural changes in
the regional gas market, focusing on regional price patterns, LNG infrastructure
utilization, and LNG trade dynamics in Northwest Europe (NWE) and East Asia.

23For detailed data on LNG terminal utilization rates during this period, see Figure 4.2 in
Section 4.3, which illustrates the increase in European LNG import terminal utilization and
U.S. export terminal capacity constraints.

70



4.2. Conceptual background

Section 5.4 details the methodology. Section 4.5 presents the empirical results of
our analysis. Finally, Section 4.7 concludes.

4.2. Conceptual background

The concept of market integration can be traced back to Cournot, who stated
that it is “an entire territory, of which the parts are so united by the relations of
unrestricted commerce, that prices take the same level throughout with ease and
rapidity” (Cournot, 1838). Empirical studies have examined market integration
along vertical (prices at different stages of the supply chain), horizontal (prices
across locations), and inter-temporal (spot and futures market prices) dimen-
sions, often employing cointegration methods (Thle & von Cramon-Taubadel,
2008; Roman & Zakova Kroupova, 2022). This study focuses on the horizontal
dimension of market integration, which is theoretically motivated by the Enke-
Samuelson-Takayama-Judge spatial equilibrium model (Enke, 1951; Samuelson,
1952; Takayama & Judge, 1971).

In the presence of transaction costs, the condition for arbitrage can be repre-
sented as follows:
pA > pP 4 rBA (4.1)

where p# and p? denote prices in markets A and B, respectively, 754 represents
the transaction cost of exporting natural gas from market B to market A. There-
fore, arbitrage activity may only be triggered if the implied gross profit of the
trade covers transaction costs.

However, this spatial equilibrium model does not account for the infrastructure
constraints on arbitrage between markets. If the import infrastructure in market
A and the export infrastructure in market B are fully utilized, the price difference
cannot be mitigated through arbitrage. The impact of infrastructure constraints
on price relationships fundamentally differs from that of transaction costs. While
transaction costs represent tangible expenses incurred during trade—such as trans-
portation and handling fees—infrastructure constraints act as physical barriers that
limit arbitrage, regardless of the price differential or the associated transaction
costs (Kuper & Mulder, 2016). This distinction is crucial, as it highlights a
boundary to market integration: even if the price difference (pA —pB ) exceeds
transaction costs (774), no arbitrage mechanism can equilibrate the markets if
the infrastructure is fully utilized.

The above equation is appropriate for understanding price arbitrage between
the U.S. and Europe or the U.S. and Asia, where direct LNG trade occurs. The
U.S., being a net exporter, directly supplies LNG to both regions. However,
between Asia and Europe, no significant direct LNG trade can be observed during
the study period. Instead, arbitrage occurs through indirect trade via third-party
LNG traders who reroute shipments based on market conditions. To represent
this, let p* and p¥ be the prices in Asia and Europe, respectively, 794 and 75
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be the transaction costs (including transportation) from swing supplier S to Asia
and Europe, respectively, and ¢4 and ¢ be the volumes exported from swing
supplier S to Asia and Europe, respectively. Assuming that there are no binding
infrastructure constraints at both the swing supplier and the importing regions,
we have the following condition p?A — 754 > p¥ — 79F This means that swing
supplier S will export LNG to Asia if the netback price in Asia (p?4 — 754) is
greater than the netback price in Europe (p¥ — 79F ). If the netback is higher in
Europe, the supplier will prefer to export there.

4.3. Structural changes in the international natural gas
market

This section provides a descriptive overview of key trends in the global gas market,
focusing on regional price fluctuations, LNG terminal utilization, and shifting trade
dynamics. These elements are crucial for understanding the factors influencing
market integration. By examining price patterns across North America, FEurope,
and East Asia, along with the impact of infrastructure constraints, this section
lays the groundwork for the subsequent empirical analysis.

Figure 4.1 shows the logarithmic prices for Henry Hub (HH) in the North
American market, Title Transfer Facility (TTF) in the European market, and the
East Asian Index (EAX) in the East Asian region.?* The figure demonstrates
that there was a substantial decline in prices in March 2020, likely due to the
outbreak of COVID-19 and its impact on natural gas demand. This was further
exacerbated by historically mild temperatures.?> Figure 4.1 also shows that the
European and Asian gas prices began to rise in the second half of 2021. This can
be attributed to the resurgence of demand from the industrial and heating sectors
as economic activity rebounded and extreme weather events occurred. From this
period onward, it is also evident that the HH series was not significantly affected
by these increases.?6

Figure 4.2 highlights the major shifts in the natural gas market starting in
October 2021 (indicated by the grey-shaded area). Figure 4.2(a) shows a sharp
year-on-year (YoY) decline in Russian gas exports to Europe, reflecting a de-
liberate reduction in daily flows to the level of nominations from long-term

24These prices are derived from the bid-offer ranges observed at the respective hubs for delivery
in the subsequent month (front-month gas futures). In cases where price data were missing
for certain days, the observations were forward-filled using the price from the most recent
preceding day.

25For example, the decreased demand for heating in the residential and commercial sectors due
to milder temperatures led to a drop of more than 3% year-over-year during the first quarter
of 2020. This resulted from a decrease of over 5% in heating degree days across the main
consumption regions (IEA, 2020a).

26Note that an outage at the Freeport LNG export terminal—the second-largest LNG export
facility in the U.S.—in June 2022 temporarily relieved pressure on the U.S. gas market (IGU,
2022).
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Figure 4.1.: Natural gas prices in log level

contracts, with no additional volumes supplied to the European spot market
(Fulwood et al., 2022). This reduction forced Europe to increase its reliance on
LNG imports, as seen in Figure 4.2(b), which depicts a notable increase in the
utilization rate of the Gate terminal in the Netherlands, the largest LNG import
terminal in Northwest Europe. The heightened demand for LNG also caused
congestion at other European import terminals (GIE, 2024). Simultaneously, as
shown in Figure 4.2(c), the utilization rate of U.S. gas export terminals increased,
nearing full capacity and reflecting a high level of exports. However, capacity
constraints at both European import and U.S. export terminals limited the ability
to significantly increase LNG trade between the two regions.
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Figure 4.2.: A YoY (%) in Russian gas exports, Gate terminal and U.S. export terminals
utilization rates
Notes: Own construction based on data obtained from EIA (2023a); ENTSOG (2023); GIE
(2024)
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4. Global natural gas market integration

Figure 4.3(a) shows that LNG imports to Europe increased in the last quarter
of 2021, driven by reduced Russian gas supplies. This reduction led to energy
security concerns and spurred efforts to diversify away from traditional pipeline
sources (Aitken & Ersoy, 2023). In contrast, Figure 4.3(b) indicates that the
growth rate of LNG imports in China began to slow, reflecting the country’s
slow economic growth during this period (Rystad Energy, 2023). Meanwhile,
Figure 4.3(c) shows that LNG imports in Japan and Korea remained relatively
stable, reflecting steady demand in these mature markets (Rystad Energy, 2023).
These varying import patterns underscore differing regional demand dynamics and
suggest that Europe, Japan, Korea, and China are experiencing unique drivers
and pressures in their LNG markets, likely influenced by geopolitical, economic,
and policy-related factors. As a result, these dynamics are expected to affect the
relationship between Asian and European gas prices as of the last quarter of 2021,
given the relatively lower LNG import levels in East Asia, largely due to China’s
import patterns, and the increasing LNG imports in Northwest European (NWE)
markets.
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Figure 4.3.: A YoY (%)in LNG imports for major regions
Notes: Own construction based on data obtained from JODI (2024)

4.4. Methodology

Our analysis examines the integration of the three regional gas markets using the
cointegration approach. Before conducting this analysis, we apply the Augmented
Dickey-Fuller (ADF) test, the Phillips-Perron (PP) test, and the Kwiatkowski-
Phillips-Schmidt-Shin (KPSS) test to the three gas price series to evaluate their
stationarity properties. The ADF and PP tests test the null hypothesis of non-
stationarity (i.e., the presence of a unit root), while the KPSS test tests the null
hypothesis of stationarity. If the results indicate that the price series exhibit a unit
root, we proceed with cointegration analysis to examine equilibrium relationships.

Previous studies have often utilized the traditional symmetric cointegration
framework to analyze the integration of gas prices at both regional and intrare-
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4.4. Methodology

gional levels (e.g., Siliverstovs et al. (2005); Asche et al. (2002)). However,
conventional cointegration tests may be misspecified when the adjustment process
is asymmetric. The methodology proposed by Enders and Siklos (2001) extends
the widely used Engle and Granger (1987) two-step cointegration procedure by
incorporating asymmetric adjustments in the long-run relationships between gas
prices. This extension, known as the Momentum Threshold Autoregressive (M-
TAR) model, has been shown to perform better in the presence of asymmetry,
providing more reliable results than methods that assume symmetric price ad-
justments. This approach has been extensively applied to analyze asymmetric
adjustment in cointegration relationships between various energy prices (e.g.,
Chang et al., 2012; Chiappini et al., 2019; Hammoudeh et al., 2008).

In both the symmetric Engle and Granger (1987) framework and the asymmetric
Enders and Siklos (2001) extension, the first step is to estimate the following
model, which represents the equilibrium relationship between two regional gas
price series, using ordinary least squares (OLS):

P! = o+ BiP} + e (4.2)

where P! and P? represent the logarithmic forms of two gas price series. We
estimate three sets of gas price pairs: (TTF, EAX); (HH, TTF); and (HH, EAX).
The residuals, €, obtained from Equation 4.2, are subsequently used in the second
step of the Engle and Granger (1987) linear cointegration analysis (Equation
4.3) and in the second step of the M-TAR model for nonlinear cointegration as
proposed by Enders and Siklos (2001) (Equation 4.4):

P
Aéy=pofi1+ Y 00 j+uy (4.3)
j=1
K
Nér = prIiéi1 + pa(1 — I)érq + Z Vi AE i + uy (4.4)
i=1

The adjustment speed coefficients, pg, p1, and po, correspond to the symmetric
(po) and asymmetric (p; and p2) cointegration models. Additionally, the inclusion
of lagged values of Aé; helps to ensure that the residuals are serially uncorrelated.
The Heaviside indicator function, I;, is defined as 1 if Aé_1 > 7 and 0 if
Aé;_1 < 7, where 7 is the threshold value, estimated using the consistent search
method of Chan (1993).

We test for evidence of asymmetric adjustments using two hypotheses. First,
we test the joint null hypothesis of no-cointegration (Hy : p1 = p2 = 0), with the
critical values obtained from Enders and Siklos (2001). If the null hypothesis of no-
cointegration is rejected, we test for the null hypothesis of symmetry (Hy : p1 = p2)
using a standard F-test.
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4. Global natural gas market integration

4.5. Main results

This section presents the empirical analysis of the integration of the three regional
gas markets. The analysis is structured as follows: First, we test for a potential
structural break on October 1, 2021, by applying the Chow test to the log price
differentials between each pair of prices, motivated by significant developments in
the global gas market. Next, we examine the linear cointegration relationships
between each pair of gas prices using the Engle-Granger two-step approach. We
then conduct a nonlinear cointegration analysis, employing the MTAR model
to investigate potential asymmetries in price adjustments. Finally, we estimate
both symmetric and asymmetric error correction models to assess the short-term
dynamics and adjustments toward the equilibrium for each price pair.

4.5.1. Structural break

We hypothesize that the relationships among our variables of interest may be
affected by a potential structural break on October 1, 2021. This break date is mo-
tivated by major developments in the natural gas markets, as discussed in section
4.3. For instance, in the latter half of 2021, geopolitical tensions—particularly
Russia’s deliberate reduction of gas exports to Europe—significantly disrupted
supply. This led to a major shock in the global gas market, leading to tighter
market conditions.

To formally test for this break, we follow Biiyiik sahin et al. (2013) and Luong
et al. (2019), conducting a Chow (1960) test on the log price differentials for each
price pair. We perform the test using the following specification:

St =0+ NT'Ry + ¢Si—1+ ¢St 2 + ¢Si 3 + e, (4.5)

Here, T'R; represents a linear trend, 6 is a constant term, and ¢.S;_1, ¢S;_2, and
¢S;_3 represent the lagged values of the dependent variable, where ¢1, ¢, and
¢3 are the coefficients on the lagged terms.

The resulting F-statistics are 17.413 (significant at the 1% level), 4.328 (sig-
nificant at the 1% level), and 2.867 (significant at the 5% level) for the spreads
EAX-TTF, HH-TTF, and HH-EAX, respectively, with 5 and 1764 degrees of
freedom. Given these significant statistics, we conclude that a structural break
occurred around October 1, 2021. Consequently, the analysis is conducted over the
period from January 1, 2016, to November 1, 2022, divided into two subsamples,
with October 1, 2021, as the split date.

Summary statistics for the three price series over the two subsamples are
provided in Table C.1 in the Appendix, which shows a shift towards higher prices
and greater variability in the gas markets after September 2021. The results
of the unit root tests for the log levels and their differences are also presented
in Table C.2. The results show that all the time series in log levels are I(1)
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variables, meaning they are non-stationary in levels but become stationary after
first differencing. Therefore, cointegration analysis is an appropriate tool to
investigate their joint properties.

4.5.2. Examining the linear cointegration

In the context of testing for linear cointegration, we apply the two-step approach
proposed by Engle and Granger (1987). This approach involves first estimating
the equilibrium relationship for each price pair according to the specification in
Equation 4.2. In the second step, we obtain the residuals from this regression
and apply the Engle-Granger residual-based cointegration test to determine if the
residuals are stationary.

Table 4.1 presents the results of the two-step analysis, with the last column
providing the test statistics for the stationarity of the residuals, which indicate
whether the variables are cointegrated. For the EAX-TTF pair, the estimated (1
is 0.973 in the first subsample, indicating that a 1% increase in the TTF price is
associated with a 0.973% increase in the EAX price. However, 31 drops to 0.663
in the second subsample. The estimated (31 coefficients from the cointegration
regressions of HH against EAX and TTF are relatively lower. In the first subsample,
the estimated Sy is 0.397 for HH-TTF and 0.376 for HH-EAX. In the second
subsample, the estimated 1 for HH-TTF remains stable at 0.385, while HH-EAX
declines sharply from 0.376 to 0.214, indicating a weakening price linkage.

The Engle-Granger test statistics in the last column of Table 4.1 indicate that
the three price pairs are cointegrated in the first subsample. However, in the
second subsample, the test statistics are not statistically significant, providing no
evidence of linear cointegration.

Table 4.1.: Linear cointegration analysis

Price pair Subsample Bo B1 R? EG(1987)
EAX-TTF  First 0.244%  [0.015]  0.973%  [0.009]  0.895 -5.087a
Second 1.122%  [0.098] 0.663®  [0.027]  0.687 -2.841
HH-TTF First 0.323%  [0.012] 0.397%  [0.007]  0.682 -4.478%
Second 0.404®  [0.160]  0.382%  [0.044]  0.215 -1.908
HH-EAX First 0.284%  [0.014]  0.376%  [0.007]  0.645 -4.718%
Second 1.036%  [0.214] 0.212®  [0.060]  0.043 -1.628

Note: The first subsample includes data from January 1, 2016, to September 30, 2021, while the
second subsample includes data from October 1, 2021, to November 1, 2022. Standard errors
of the estimated coefficients are given in the squared brackets. The column titled “R?” gives
the goodness of fit for the regressions. The last column displays the Engle and Granger (1987)
test statistic (EG(1987)) for cointegration, with a significant test statistic suggesting that the
residuals are stationary, thus confirming cointegration between the variables. The number of
lags was selected using the AIC. The critical values of this test are obtained from MacKinnon
(2010). The symbols * and ® denote significance at the 1% and 5% levels, respectively.
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4. Global natural gas market integration

4.5.3. Examining the nonlinear cointegration

In the preceding subsection, the Engle-Granger test, which assumes a linear
and symmetric adjustment process, indicates that there is no evidence of coin-
tegration for any of the price pairs during the second period. This subsection
examines estimates from the MTAR model proposed by Enders and Siklos (2001),
which explicitly accounts for potential asymmetries in the adjustment process
toward equilibrium. This analysis aims to determine whether there is evidence
of asymmetries in the first subsample, which would suggest that the adjustment
process occurs at different speeds depending on the direction of deviations from
equilibrium (positive vs. negative), rather than symmetrically. Additionally, we
seek to establish whether the MTAR model provides evidence of cointegration for
any of the price pairs in the second subsample period.

Table 4.2 presents the results of the MTAR cointegration test. Column (1) shows
the estimated threshold values, which indicate the point at which adjustments
switch between regimes for positive and negative deviations from equilibrium.
Although the estimated thresholds are close to zero, our analysis shows that models
with an estimated threshold value perform better, according to the information
criteria, than models assuming a fixed threshold of zero. Columns (2) and (3)
show the estimated parameters of p; and ps, as specified in Equation 4.4. Here,
p1 represents the speed of adjustment in response to positive deviations from
equilibrium, whereas po represents the speed of adjustment for negative deviations.
If the absolute value of p; is greater than that of ps, this indicates that the
adjustment process is faster in response to positive deviations from equilibrium.
Conversely, if |pa| is greater, the adjustment is faster in response to negative
deviations from equilibrium. For example, in the relationship between EAX and
TTF in the first subsample, the estimated threshold is -0.023, with adjustment
coefficients of -0.026 for positive deviations and -0.120 for negative deviations. This
result indicates that positive deviations from equilibrium (where Ae;_; > —0.023)
are eliminated at a relatively slower rate of 2.6% per day. In contrast, negative
deviations from equilibrium are adjusted at a much faster rate of 12% per day.
Consequently, there is substantially slower convergence toward equilibrium for
positive deviations (above the threshold) than for negative deviations (below the
threshold). These findings suggest that arbitrageurs are more active in exploiting
larger profitable opportunities depending on the direction the spread is moving
from its equilibrium position. This also implies that during the first subsample
period, the market adjusts more rapidly when EAX prices are decreasing relative
to TTF prices.This conclusion is consistent with Chiappini et al. (2019), although
the estimated speeds of adjustment in both regimes during our sample period are
higher than their estimates. In the second subsample, the estimated threshold
is 0.015, with adjustment coefficients of -0.208 for positive deviations and -0.070
for negative deviations. This outcome indicates that positive deviations from
equilibrium are eliminated rapidly, at a rate of 20.8% per day. The results for
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negative deviations do not show significant adjustment, as the coefficient for
negative shocks is statistically insignificant.

Column (4) in the table presents the test of the joint null hypothesis of no
cointegration with MTAR adjustment (Hp : p; = p2 = 0). The results indicate
that this null hypothesis is rejected for each price pair in the first subsample, as the
test statistic exceeds the critical values provided by (Enders & Siklos, 2001). Given
this result, we proceed to test the null hypothesis of Hy : p1 = p2. The results,
shown in Column (5), indicate that this null hypothesis is rejected, supporting the
presence of asymmetric adjustment. However, in the second subsample, Column
(4) shows that the null hypothesis of no cointegration is rejected only for the
EAX-TTF price pair. The lack of nonlinear cointegration for the HH-TTF and
HH-EAX pairs suggests a decoupling of the U.S. gas market from the European
and Asian markets during this period.

Table 4.2.: Non-linear cointegration analysis

(1) (2) (3) (4) (5)

Price pair ~ Subsample Threshold p1 P2 ®(Hp:p1=p2=0) F(Hp:p1=p2)
EAX-TTF First -0.023 -0.026%  -0.120° 27.555b 25.492°
(-2.390)  (-7.276) [0.000]
Second 0.050 -0.208"  -0.070 5.909¢ 3.665¢
(-3.230) (-1.622) [0.057]
HH-TTF  First 0.012 -0.008  -0.044% 12.849° 5.586°
(-0.671)  (-5.035) [0.018]
Second -0.068 -0.020  -0.090® 2.915 2.218
(-1.308)  (-2.029) [0.138]
HH-EAX  First 0.033 -0.083%  -0.025° 15.521° 8.665°
(-4.480)  (-3.427) [0.003]
Second 0.010 -0.002 -0.031¢ 2.029 1.393
(-0.119)  (-2.011) [0.239]

Note: The first subsample includes data from January 1, 2016, to September 30, 2021, while
the second subsample includes data from October 1, 2021, to November 1, 2022. Column (1)
provides the estimated threshold values. Columns (2) and (3) provide the estimated coefficients
p1 and p2 in Equ. (4.3). t-statistics for the estimated coeflicients are given in the brackets. The
threshold is estimated using Chan (1993)’s approach with a ten percent trimming level. Column
(4) shows the null hypothesis ®(Hp : p1 = p2 = 0) tests for the threshold cointegration with the
critical values from Enders and Siklos (2001) as follows: C.V(1%) is 8.310; C.V(5%) is 6.050;
C.V(10%) is 5.060. Column (5) gives the second null hypothesis F'(Hp : p1 = p2 = 0). The
symbols ¢, and ¢ denote significance at the 1%, 5%, and 10% levels, respectively.

4.5.4. Results of the (a)symmetric error correction model

In this step, we estimate both symmetric and asymmetric error correction models
(ECMs) to examine the adjustment processes of individual prices toward the
equilibrium. We estimate the symmetric or asymmetric ECM for each price pair
based on the cointegration results from the previous subsection.
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Table 4.3 presents the estimation results for the two subsamples.?” The magni-
tude of the Error Correction Term (ECT) indicates the speed at which deviations
from equilibrium are corrected. For instance, if the ECT is -0.250, it suggests
that approximately 25% of the deviation is corrected each day, implying that
full correction to equilibrium would take about four days. The results indicate
that, for the EAX-TTF pair in the first subsample, the ECT for EAX in the
high regime is -0.003 and statistically insignificant, suggesting no adjustment for
positive deviations. In the low regime, the ECT for EAX is -0.090 and statistically
significant, indicating a correction toward equilibrium for negative deviations.
For TTF, the ECT is -0.020 and statistically significant in the high regime and
-0.020 and statistically significant in the low regime, indicating adjustments in
both cases. In the second subsample, the ECT for EAX is -0.116 and statistically
significant in the high regime and -0.105 and statistically significant in the low
regime, indicating strong adjustments for both positive and negative deviations.
For TTF, the ECT is 0.105 and statistically insignificant in the high regime
and -0.035 and statistically insignificant in the low regime, suggesting a lack of
significant adjustments. Comparing the two subsamples, the first shows active
adjustments for both EAX and TTF, with significant responses to arbitrage
opportunities. In contrast, the second subsample reveals a pronounced response
in the EAX market, particularly for positive deviations, while the TTF market’s
responsiveness diminishes, indicating a shift in price correction dynamics between
the Asian and European markets over time.

Table 4.3.: Results of symmetric and asymmetric ECM

Subsample Model Regime EAX TTF HH TTF HH EAX
First Symmetric -0.034% 0.017% -0.028¢ 0.015° -0.023%  0.025%
(-5.426)  (2.699) (-4.220)  (1.981) (-3.612)  (3.302)
Asymmetric  High -0.003 0.020° -0.007 0.007 -0.042% 0.079%
(-0.476)  (2.643) (-0.622)  (0.551) (-2.316)  (3.684)
Low -0.090% 0.020°¢ -0.038¢  0.019° -0.023% 0.010
(-7.861)  (1.686) (-4.763)  (2.029) (-3.348)  (1.198)
Second Asymmetric High -0.116¢ 0.105
(-2.088)  (1.415)
Low -0.105° -0.035
(-2.951)  (-0.724)

Note: The first subsample includes data from January 1, 2016, to September 30, 2021, while
the second subsample includes data from October 1, 2021, to November 1, 2022. “Symmetric”
and “Asymmetric” refer to the Symmetric and Asymmetric ECM. The ECTs in the asymmetric
models are estimated separately for two regimes—“High” and “low”—based on the Momentum
Threshold Autoregressive (M-TAR) approach outlined in Section 5.4. Specifically, the Heav-
iside indicator function identifies whether the system is in a high or low regime depending
on the threshold value. Additionally, the first difference terms are also estimated separately
for the two regimes. For brevity, these results are not presented here but are available upon
request. The asterisks a, b, and ¢ attached to the coefficients represent the significance levels
at the 1%, 5%, and 10%, respectively.

2"The results of diagnostic checks for each estimated ECM (including tests for serial correlation
and normality) indicate that the estimated models perform reasonably well. For brevity, we
do not report the diagnostic checks here. However, they are available upon request.
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4.6. Further results

In the baseline results, we observe that the American gas market price is no longer
cointegrated with the European and Asian prices during the second subsample
period. This section examines the potential driver of the log spread between
HH and TTF prices. Following Luong et al. (2019) and Luong (2023), we apply
Toda and Yamamoto (1995), a modified Granger (1969) non-causality test.2®
Specifically, we investigate infrastructure congestion as a potential driver, focusing
specifically on congestion at LNG import terminals in Northwestern Europe
(NWE) and LNG export terminals in the U.S. Our hypothesis is that Granger
causality between regional price differentials and LNG infrastructure utilization
is bidirectional. Wider regional price differentials can drive higher utilization of
connecting infrastructure as traders exploit arbitrage opportunities. Conversely,
congestion at LNG terminals, whether at import terminals in NWE or export
terminals in the U.S., can widen regional price differentials by restricting LNG
flow. We focus on the average utilization rate of U.S. export terminals and the
Gate terminal in the Netherlands, which has one of the largest import capacities
in NWE. The rationale for using the average utilization rate is that it serves as a
comprehensive measure of the infrastructure’s capacity to respond to regional price
signals. High average utilization rates signal supply chain bottlenecks, leading
to wider price spreads as the market struggles to balance regional supply and
demand. Additionally, we investigate the specific impact of congestion at the
Gate terminal. We obtain data on the utilization levels of U.S. LNG export
terminals from the Energy Information Administration (EIA) (EIA, 2023a). This
data is available on a monthly basis, and we assume that each monthly figure
represents the average daily utilization rate for all days within that month. For
utilization data on the Gate terminal, we use daily data from Gas Infrastructure
Europe (GIE) (GIE, 2024). However, no data is available for the utilization rates
of corresponding LNG infrastructure in East Asian countries.

Table 4.4 reports the results of the Toda and Yamamoto (1995) Granger causality
tests between the HH-TTF spread and two measures of infrastructure congestion:
average congestion across the U.S. and NWE, and specific congestion in NWE.
In the first subsample, none of the test statistics are statistically significant,
indicating no evidence of Granger causality in either direction between infrastruc-
ture congestion and the HH-TTF spread. In contrast, in the second subsample,
the test statistics for the congestion measures indicate a different pattern. The
results show that average congestion across the U.S. and NWE Granger-causes
the HH-TTF spread at conventional significance levels, suggesting that increased

28This approach is motivated by the findings of Clarke and Mirza (2006), which show that
pretesting for cointegration can result in severe over-rejections of the null hypothesis of non-
causality. In contrast, the augmented lag method proposed by Toda and Yamamoto offers
better control for Type I error rates, while generally retaining adequate power. Simulation
results indicate that this method performs consistently well across various data-generating
processes, with robust performance regardless of the stationarity or cointegration properties
of the variables.
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Table 4.4.: Causality Tests for HH-TTF Spread

First subsample Second subsample
to spread from spread to spread from spread
Average Congestion (U.S. & NWE)  10.300 6.100 12.300° 6.200
(0.110) (0.420) (0.030) (0.280)
Congestion (NWE) 9.200 8.300 11.400° 6.900
(0.170) (0.220) (0.044) (0.230)

Note: This table reports Toda and Yamamoto (1995) tests for Granger causality between the log
HH-TTF spread and the listed factors. “Average Congestion (U.S. & NWE)” refers to the daily
average of LNG export terminal congestion in the U.S. and LNG import terminal congestion
in Northwest Europe (NWE). “Congestion (NWE)” represents the congestion level of LNG
import infrastructure in NWE only. “to spread” indicates the test for whether a variable does
not Granger-cause the spread, and “from spread” is the test for whether the spread does not
Granger-cause the infrastructure congestion. The first subsample includes data from January 1,
2016, to September 30, 2021, while the second subsample includes data from October 1, 2021,
to November 1, 2022. The x? statistic is reported on the first line, with the asymptotic p-value
presented in parentheses on the next line. ® denotes statistical significance at the 5% level.

congestion is associated with variations in the HH-TTF spread. Similarly, con-
gestion specifically in NWE also shows a statistically significant Granger causal
effect on the spread, reinforcing the influence of regional infrastructure constraints
on market price differentials. We do not find statistically significant evidence
of a bidirectional relationship (i.e., from the HH-TTF spread to congestion),
suggesting that infrastructure congestion is more directly determined by physical
and logistical constraints than by market price signals. These findings imply that
infrastructure congestion, particularly in the second subsample, plays a significant
role in driving the price spread between the U.S. and European gas markets,
underscoring the importance of infrastructure capacity for market integration.

4.7. Conclusion

This study examines the market integration hypothesis across gas price benchmarks
in Europe, the U.S., and Asia over the period from January 2016 to October 2022.
We hypothesize that a structural break occurred on October 1, 2021, dividing
the sample period into two distinct subsamples. This break coincides with a
period of heightened market tightness and supply constraints in the natural gas
market, particularly within Europe. During this period, Russia reduced its spot
market supply to Europe, fulfilling only long-term contract obligations, which
led to increased LNG imports and consequent congestion in European LNG
infrastructure. This situation also coincided with congestion in U.S. LNG export
infrastructure and relatively lower LNG imports in East Asia, largely due to the
economic slowdown in China.
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In the first subsample, our findings indicate the presence of both linear and
nonlinear cointegration relationships between the regional gas price benchmarks.
The presence of nonlinear cointegration suggests that the adjustment process back
to equilibrium between these benchmarks may vary depending on the direction or
size of shocks, reflecting asymmetric trader responses to positive versus negative
deviations in the price spread. This finding is consistent with Chiappini et al.
(2019), who documented asymmetric adjustments between the American and
European gas markets but found no such relationship between the American
and Asian markets over the period 2004-2018. A key development during our
sample period is the transition of the U.S. to a net exporter of natural gas,
accompanied by a significant expansion in its LNG export capacity. In the second
subsample, however, we find evidence of threshold cointegration only between the
Asian and European gas prices, with no evidence of cointegration between the
American price and the other two prices. The absence of cointegration between
the European and American prices is likely attributed to LNG infrastructure
congestion during this period. Infrastructure operating at full capacity—including
pipelines, transportation fleets, and terminals—limited the ability of arbitrage to
restore equilibrium. This supports our hypothesis discussed in Section 4.2 that
the efficiency of the arbitrage mechanism and the extent of market integration are
critically dependent on the capacity of the infrastructure facilitating commodity
trade.

Our analysis yields two main implications. First, the integration between
the Asian and European gas markets, despite external shocks, indicates that
changes in one market can significantly impact the other. This underscores the
importance of considering broader market dynamics when assessing each market’s
supply security. Effective management of demand and supply shocks may be
achieved through bilateral policies, such as sharing information on LNG trade flows,
production levels, and demand forecasts, thereby enhancing coordination and
ensuring supply security. Second, our findings suggest that physical infrastructure
plays a crucial role in energy market integration, particularly during tight market
conditions, which differentiates it from financial markets (see Yang et al. (2003) for
a related example). In financial markets, contagion effects often drive integration
under stress, while energy markets are constrained by infrastructure bottlenecks,
making infrastructure a critical factor to consider in any analysis of energy market
integration. Therefore, market participants need to be aware of changing dynamics
and the potential breakdown of equilibrium relationships during periods of high
physical infrastructure utilization.
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5. Decomposing Return and Volatility
Connectedness in Northwest European Gas

Markets: Evidence from the R?
connectedness approach

5.1. Introduction

The European Commission has prioritized the creation of an integrated gas mar-
ket to ensure affordable and stable gas supplies for customers across Europe
(Broms et al., 2019). To achieve this, several regulatory reforms, such as Directive
2009/73/EC, have been implemented to remove market barriers, enhance regula-
tory oversight, and improve market integration and transparency. These measures
have facilitated the transition to hub trading and gas-on-gas pricing within the
European gas market (Bianco et al., 2015; Garaffa et al., 2019). The observed
interdependence in price changes (return connectedness) and the associated risks
(volatility connectedness) across these gas hubs underscores the extent of market
connectedness (Broadstock et al., 2020). Such interdependence enhances overall
welfare by fostering competition, reducing price disparities, and promoting efficient
resource allocation (Anderson & Ginsburgh, 1999; Gugler et al., 2018).2

However, recent years have seen extreme external factors, such as the COVID-19
pandemic and the Russian invasion of Ukraine, significantly impacting whole-
sale prices and trading environments (see Heather (2022, 2024) for a detailed
analysis). Previous studies by Chen et al. (2022) and Szafranek et al. (2023)
have demonstrated that these shocks also led to reduced market connectedness
in terms of price returns between gas hubs. Building on this prior analysis, this
paper extends the study of connectedness by addressing the following research
questions: Do FEuropean gas markets influence each other’s price returns and
volatility contemporaneously, or are there delays in this transmission?; How does
the timing of connectedness vary between tight and stable market conditions?; How
quickly does connectedness recover following major disruptions?

This paper employs the R? decomposition connectedness method, recently
introduced by Balli et al. (2023), to analyze return and volatility connectedness

29Note that the costs of increasing market connectedness (e.g., the costs of extending pipeline
infrastructure) should be considered when evaluating (net) welfare gains. Furthermore,
increasing market connectedness may involve distributional effects. Specifically, price con-
vergence can reduce consumer surplus in regions that initially had lower prices, whereas
consumers in previously high-price regions benefit (Finon & Romano, 2009).
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among European natural gas benchmarks. Specifically, it focuses on the connect-
edness of spot prices from four Northwest European (NWE) natural gas hubs: the
Title Transfer Facility (TTF) in the Netherlands, the National Balancing Point
(NBP) in the United Kingdom, Trading Hub Europe (THE) in Germany, and
the Zeebrugge Trading Point (ZTP) in Belgium, over the period from 2020 to
2024.3° In doing so, this study aims to contribute to the literature on European
gas market integration, as reviewed in detail in Section 5.2, in three ways:

First, we apply the R? connectedness framework to decompose spillover effects
among gas benchmarks into contemporaneous and lagged components. While
previous studies, such as those by Broadstock et al. (2020) and Chen et al. (2022),
have explored transmission mechanisms within European gas markets, they did
not differentiate between immediate and delayed spillovers. This distinction in
our work provides novel insights, helping market participants determine whether
to respond swiftly to shocks or prepare for more gradual impacts, thereby en-
hancing risk management and optimizing hedging strategies. Additionally, the R?
decomposition approach enhances interpretability compared to the connectedness
methodologies proposed by Diebold and Yilmaz (2012) and Diebold and Yilmaz
(2014), as it avoids the associated normalization problem.3!

Second, by examining the period from 2020 to 2024, we extend existing analyses
of market connectedness during the COVID-19 pandemic and the 2021-22 energy
crisis by also investigating post-crisis recovery. Therefore, our examination period
captures not only the immediate disruptions caused by the COVID-19 pandemic
and the Russian invasion of Ukraine but, more importantly, the speed and
effectiveness of the subsequent recovery of European gas markets and the re-
establishment of market connectedness following these events. This provides a
comprehensive understanding of the market’s resilience and the pace at which
connectedness is restored after major disruptions. Furthermore, we differentiate
between spot and futures prices to examine how their connectedness levels vary
across periods of market tightness and stability, providing insights into the differing
roles of short-term dynamics versus market expectations.

Lastly, we conduct a regression analysis to identify the factors associated with
the level of connectedness in the NWE gas markets. Specifically, we assess the
relationship between market connectedness and various factors, including physical
constraints such as infrastructure congestion between the UK and other NWE
countries, market expectations, geopolitical factors, and the 2022 storage mandate
implemented during the energy crisis. This analysis helps us understand how
these diverse drivers shape the dynamics of gas market connectedness.

The findings of this study can be summarized as follows. In terms of total return
connectedness, we observe a slight reduction during the COVID-19 pandemic and

30These four benchmarks are the focus of the analysis as they represent the NWE gas market,
which is expected to exhibit closer market fundamentals and shorter transportation distances
due to regional proximity.

31For further details on how this approach addresses the normalization problem, see Section 5.4.
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a sharp decline from the second quarter of 2022, following the Russian invasion
of Ukraine, which is consistent with previous studies (Chen et al., 2022; Papiez
et al., 2022). Our analysis of the extended sample through 2024 reveals that
recovery began in mid-2023, with market connectedness reaching pre-crisis levels
by year-end. Total volatility connectedness followed a similar, though slightly
less pronounced, trajectory. Our comparative connectedness analysis of spot and
futures prices reveals that futures markets exhibited higher connectedness than
spot markets during periods of stress, indicating that they were less impacted by
physical constraints and more aligned with broader market expectations.

Decomposing the total connectedness index reveals that contemporaneous effects
consistently dominate lagged effects for both return and volatility connectedness.
This suggests that market participants respond quickly to new information,
and price adjustments among gas hubs occur immediately. The persistence of
contemporaneous effects during both tight and stable market conditions indicates
that the speed of information transmission and market response remains unaffected
by shifts in market conditions. This consistent response can be attributed to
advanced trading mechanisms and financial instruments, such as virtual trades,
locational swaps, and derivatives, which facilitate rapid information flow and
immediate price adjustments across varying market conditions (ACER, 2023b).

Our directional analysis shows that the connectedness of NBP and ZTP with
TTF and THE dropped significantly during disruptions, with NBP even decoupling
completely in late 2022. TTF typically acted as a net transmitter of shocks but
became a net receiver from late 2022 to late 2023, while THE transitioned to
being a net transmitter during this period, potentially due to increased spot
trading linked to Germany’s need to replace Russian gas and the expansion of
LNG infrastructure. NBP consistently remained a net receiver. The results
also indicate that TTF exhibits a close alignment between contemporaneous and
overall net spillover effects, reflecting its immediate influence on other hubs, as
its shocks are transmitted to them without delay, often on the same day, likely
due to its high liquidity and active trading. This finding is consistent with Liu et
al. (2024), suggesting that markets with substantial liquidity tend to be highly
influenced by contemporaneous factors.

Finally, our regression analysis reveals significant associations between reduced
connectedness and congestion in the pipelines connecting the UK with Belgium and
the Netherlands. When combined with futures spreads, the negative association
between congestion and connectedness intensifies, suggesting that higher futures
spreads exacerbate market decoupling amid congestion. We also find that the EU
storage mandate to fill gas storage to 80% capacity is associated with a reduction
in market connectedness, indicating that varying storage obligations may have
contributed to decreased interdependence among NWE markets. Lastly, higher
geopolitical risk is correlated with increased connectedness, likely due to shared
market responses to geopolitical events.
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The implications of these results are as follows: the dominance of contem-
poraneous spillovers indicates that these markets adjust almost immediately to
shocks. This rapid adjustment requires constant monitoring and quick decision-
making by market participants to effectively manage increased volatility risks.
The observed decrease in connectedness during crises, along with its association
with pipeline congestion, suggests that physical infrastructure constraints can
significantly disrupt market integration. However, this effect appears temporary,
as connectedness tends to recover once these constraints are alleviated. This
implies that, while infrastructure enhancements could increase market efficiency,
caution is needed to avoid overinvesting in potentially redundant capacity after
markets have recovered.

The rest of the paper is structured as follows: Section 5.2 reviews the literature
on European gas market integration. Section 5.3 describes the data used, including
their sources, and outlines the dynamics in the NWE gas markets. Section 5.4
discusses the methodology employed in the analysis, while Section 5.5 presents the
results of the connectedness analyses. Section 5.6 examines the factors associated
with this connectedness. Finally, Section 5.7 concludes the study.

5.2. Literature review

The integration of natural gas markets has been central to European gas market
liberalization. The liberalization process began with the First Gas Directive in 1998
(Directive 98/30/EC), which introduced competition and established common
rules, including non-discriminatory rights for building new gas infrastructure.
This was followed by the Second Gas Directive in 2003 (Directive 2003/55/EC),
which mandated the unbundling of gas operators to separate transport networks
from production and supply, thereby broadening consumer choice. Despite these
reforms, the market continued to face significant hurdles such as concentration,
vertical integration, and cross-border trade barriers. This prompted the European
Commission to conduct the ‘DG Competition Report on Energy Sector Inquiry’
in 2007, which identified key areas lacking effective competition. In response,
the Third Energy Package was enacted in 2009, including Directive 2009/73/EC,
which focused on establishing common rules for the internal market in natural
gas and repealed Directive 2003/55/EC. This package aimed to further dismantle
market barriers, improve regulatory oversight, and enhance market integration
and transparency (Bianco et al., 2015; Demir & Demir, 2020). These legislative
efforts have gradually reshaped the European natural gas market, promoting a
more integrated and competitive environment, which is crucial for the convergence
of gas prices across Europe. Such significant changes naturally raise questions
about the effectiveness of these liberalization efforts in achieving a truly integrated
and competitive market, prompting empirical and academic studies to rigorously
examine these issues.

88



5.2. Literature review

Research on the integration of the European gas market can be categorized
into two strands of literature, both primarily utilizing prices from hub-based
continental European markets. The first strand focuses on identifying cointegration
or convergence among natural gas prices to assess the effectiveness of market
integration. The second strand adopts the spillover methodology, also referred
to as connectedness, initially developed by Diebold and Yilmaz (2009), which
calculates the ‘spillover index’ to quantify how much of the forecast error variance
in one market can be explained by shocks in another. This methodology was
further extended by Diebold and Yilmaz (2012) to include both a generalized
Vector Autoregression (VAR) structure (i.e., invariant to variable ordering) and
directional spillovers (i.e., the ‘FROM’ and ‘TO’ analyses).

The connectedness and cointegration approaches differ in both their focus
and methodological frameworks for analyzing the integration of European gas
markets. The connectedness approach, often based on Vector Autoregression
(VAR) models, captures the transmission of shocks between markets by employing
forecast error variance decompositions (FEVD). This method measures both total
and directional spillovers, quantifying how much of the forecast error variance
in one variable is attributed to shocks originating in other variables, in terms of
returns or volatility, across different time horizons, depending on the decomposition
method used (Barunik & Kiehlik, 2018; Diebold & Yilmaz, 2009, 2012; Naeem,
Chatziantoniou, et al., 2024). In contrast, the cointegration approach focuses
on equilibrium relationships between markets. It examines whether gas prices
that do not follow a constant pattern over time tend to have an equilibrium
relationship, with deviations from this equilibrium being temporary and corrected
over time, typically through price adjustments in response to supply-demand
imbalances (Alexander & Wyeth, 1994). In this context, while the connectedness
approach provides insights into interdependencies and the flow of volatility or
return shocks between European gas markets, the cointegration approach assesses
the equilibrium relationship and common trends.

Regarding the first strand of literature, extensive empirical work demonstrates
the use of cointegration tests to reveal the degree of market integration. Asche
et al. (2002) investigate market integration in the German natural gas market
and the impact of long-term take-or-pay contracts. Analyzing 1990-1998 time
series data on gas export prices from Norway, the Netherlands, and Russia, the
Johansen cointegration test shows proportional price movements, confirming mar-
ket integration. However, they found that Russian gas prices were systematically
lower than Dutch and Norwegian prices, primarily due to differences in volume
flexibility, transport costs, and political risk. Growitsch et al. (2015) estimated
a time-varying coefficient model to study the convergence path of spot prices in
German and Dutch trading hubs. They found improvements in market efficiency
and significant price convergence since the introduction of the entry-exit system.
Similarly, Neumann and Cullmann (2012) examined price convergence across
eight European gas hubs by applying the Kalman filter to estimate time-varying
coeflicients, which represent the evolution of market integration over time. Their
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analysis revealed that only twelve out of twenty-eight possible price pairs exhib-
ited significant integration, with varying degrees of convergence over time. The
results also highlighted that market integration fluctuates seasonally, with lower
levels of convergence during the winter months, when natural gas prices tend
to rise due to higher demand. Accounting for non-linear adjustments between
regional European markets, Garaffa et al. (2019) examined price transmission
dynamics between the German, Belgian, and Dutch spot markets from April
2013 to December 2014. Their analysis confirmed cointegration and identified
significant price asymmetries, particularly in the German market, where trans-
action costs were evident. Further studies have applied convergence methods to
analyze the integration of the European gas market. Robinson (2007) employed
convergence tests to analyze annual retail natural gas prices for six EU Member
States—Finland, France, Ireland, the Netherlands, Spain, and the UK—from 1978
to 2003. The results indicate some evidence of price convergence according to the
B-convergence 32 and Bernard-Durlauf tests. Moreover, Bastianin et al. (2019)
extended the analysis to fourteen European countries from 1991 to 2017 using
natural gas prices for industrial consumers. Their analysis provides evidence of
33 and relative price convergence, which is closely linked
to the presence of trading hubs and market interconnections.

pairwise, o-convergence

Moving to the second strand, the focus shifts to the dynamics of price spillovers,
exploring how connectedness influences market behavior. Broadstock et al. (2020)
employ the spillover methodology, particularly the framework developed by
Diebold and Yilmaz (2009), to assess the integration of European natural gas
markets by examining the connectedness of price returns and volatilities from
key trading hubs (NBP, ZEE**, and TTF). The main findings indicate that while
European gas markets show a significant level of integration, with spillover index
values between 38% and 69%, complete integration has not yet been achieved.
They also find that there has been a notable increase in spillovers since the
implementation of the Third Gas Directive in 2009, with TTF emerging as a
more dominant hub in terms of both return and volatility spillovers, reflecting
its rising importance in the market. Complementing this, Papiez et al. (2022)
employ the Diebold and Yilmaz (2009) framework combined with a time-varying

32The beta-convergence approach tests whether countries with initially lower gas prices experience
faster price growth than those with higher initial prices. The estimate of the rate of
convergence, represented by 3, indicates how close prices are to converging toward a common
level, with a 8 value close to 1 suggesting absolute convergence.
o-convergence refers to tracking whether the cross-sectional standard deviation of natural
gas prices decreases. In this context, o represents the cross-sectional standard deviation of
log-prices, capturing the degree of dispersion in prices between countries. A decrease in the
cross-sectional standard deviation over time indicates o-convergence, implying that price
differences between countries are diminishing.
347EE refers to the Zeebrugge Beach gas market, a Belgian gas market that operated alongside
the ZTP (Zeebrugge Trading Point). Since 2022, ZEE has experienced a significant decline
in trading volumes due to expiring capacity contracts and reduced liquidity, whereas ZTP
has attracted more national gas trade (Heather, 2021). To streamline operations, the Belgian
regulator approved the merger of the ZEE and ZTP hubs, which took effect on October 1,
2023 (EEX, 2023).

33
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parameters VAR model with stochastic volatility (TVP-VAR-SV). They focus
on the connectedness of daily price changes and weekly realized volatility across
four key gas hubs: TTF, NBP, NCG, and PSV, analyzing data from November
2013 to January 2022. Their results show a steady rise in the total spillover
index, particularly from mid-2017, underscoring a robust co-movement across
these markets. However, their analysis shows that when the COVID-19 pandemic
hit, the connectedness index decreased substantially by about 15 percentage
points from the initial 60% level. This finding was corroborated by Chen et al.
(2022), who used a quantile spillover approach to analyze the integration of the
European natural gas futures market, particularly during extreme events. They
argue that the declining integration during the pandemic was due to increased
market instability, a severe imbalance between supply and demand, and significant
disruptions to usual market operations. Further, Szafranek et al. (2023) analyzed
price dynamics during the turbulent 2021-2022 period using the frequency de-
composition method introduced by Barunik and Krehlik (2018) to examine the
connectedness of four major European natural gas hubs. The main result reveals
that while the connectedness of European gas markets increased significantly
before the Russian invasion of Ukraine, it declined markedly afterward.

The findings from both strands of literature reveal a progressive alignment
in gas prices across European hubs, indicative of market integration facilitated
by regulatory frameworks such as the entry-exit system and successive EU Gas
Directives. However, instances of decreased integration often occur, typically
linked to significant disruptive events.

The current study contributes to the literature on connectedness analysis in
the European gas market by employing a methodological approach that dissects
both contemporaneous and lagged spillover effects across gas benchmarks. In
doing so, it extends prior research, which primarily focused on immediate spillover
effects, often overlooking the potential for lagged interactions to develop over time.
Furthermore, the study examines the period from 2020 to 2024 to investigate
how different shocks during this time impacted market connectedness and how
connectedness evolved during subsequent recovery and stabilization phases.

5.3. Dynamics of gas prices and volatility in NWE

The European natural gas market consists of multiple price hubs. This study
focuses on the connectedness of gas price hubs in NWE for three main reasons.
First, the NWE region accounts for over half of the EU’s gas consumption,
underscoring its central role in the European gas market (Eurostat, 2023). Second,
in 2022, the gas-on-gas pricing mechanism dominated the region, comprising
approximately 82% of pricing strategies, highlighting the increasing maturity and
liquidity of NWE’s gas hubs (IGU, 2022). Finally, gas hubs within the same
region are expected to share similar market fundamentals—such as supply sources,
demand patterns, and infrastructure—which contribute to price convergence
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(Farag & Zaki, 2024; Hulshof et al., 2016). Additionally, the relatively shorter
transportation distances between these markets result in lower transportation
costs, further supporting price alignment.

For the empirical analysis, this study utilizes settlement prices of day-ahead
contracts from four gas hubs: TTF, NBP, THE, and ZTP. Data for TTF, NBP,
and THE are sourced from Refinitiv Datastream, while data for ZTP are ob-
tained from the European Energy Exchange AG (EEX). The NBP gas price,
originally denominated in GBP /therm, is converted to EUR/MWh to enable
direct comparison with the other gas prices, which are measured in EUR/MWh.35
The data cover the period from June 2019 to April 2024. Descriptive statistics
for the natural gas price data are provided in Table D.1 in the Appendix. To
ensure stationarity, this study uses price returns instead of raw prices for empirical
estimations. Daily returns (r;) are calculated using the standard log-difference
formula: 7, = (Inp; —Inp,_1) x 100, where p; is the price at time ¢ and In denotes
the natural logarithm. Using price returns captures price fluctuations and growth.

Figure 5.1(a) plots TTF gas prices over the investigated period, while Figures
5.1(b), (c), and (d) show the price ratios between TTF and three other bench-
marks. In 2020, T'TF prices were relatively low, largely due to reduced economic
activity and lower demand resulting from the COVID-19 lockdowns, mild winter
temperatures in 2019-2020, and increased wind power generation in Europe (IEA,
2020b). The figure also illustrates an unprecedented rally in prices beginning in
March 2021, driven by several converging factors, including the post-pandemic
economic recovery, a cold winter in Asia in early 2021, and a sharp decline in
European domestic gas production, particularly from the Dutch Groningen field.
Consequently, traders withdrew natural gas from storage to meet late winter
demand, delaying reinjections (Heather, 2022; 7). From September 2021, Russia
reduced daily gas flows to Europe, fulfilling only long-term contracts while halting
additional supplies to the spot markets, and underground storage levels remained
low (Farag et al., 2023; Fulwood et al., 2022). In 2022, Russia further curtailed gas
supplies following its invasion of Ukraine, exacerbating market stress. At the same
time, the LNG market tightened due to both planned and unplanned outages,
such as the prolonged outage at the Freeport LNG terminal in Texas, U.S., as
well as unprecedented increases in charter rates, with global LNG infrastructure
operating at maximum capacity (IEA, 2023). In 2023 and 2024, European gas
price patterns stabilized after the extreme volatility of previous years, primarily
driven by the rapid diversification of supply sources away from Russia through
increased LNG imports and reductions in natural gas demand (ACER, 2023a;
Ruhnau et al., 2023).

Figure 5.1(b) shows the ratio between THE and TTF. This ratio remained
around 1, except during short periods in 2020 and the second half of 2022. Figures
5.1(c) and 5.1(d) depict the ratios of NBP to TTF and ZTP to TTF, respectively.

35To convert the NBP price to EUR/MWh, the spot exchange rate (GBP/EUR) and a conversion
factor of 29.3071, reflecting the relationship between therms and MWh, are used.
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Figure 5.1.: TTF price series and price ratios of THE, NBP, and ZTP to TTF
Note: The top left graph (a) shows the TTF price series (in Euro/MWh). The subsequent
graphs display the price ratios: (b) THE/TTF, (c) NBP/TTF, and (d) ZTP/TTF, illus-
trating the relative price movements of the European gas benchmarks compared to TTF.

These ratios also stayed close to 1, except in 2022 when they dropped to 0.5
or lower. The lower prices in Belgium and the UK during this period can be
attributed to larger regasification capacities and the near-full utilization of cross-
border pipeline infrastructure connecting these countries with the Netherlands
and Germany.

This study uses absolute returns as a proxy for volatility. Defined as the
absolute value of daily returns (|r¢|), they capture the magnitude of price fluctua-
tions regardless of direction, thereby directly reflecting the intensity of market
movements. Previous research has shown that absolute returns exhibit greater
persistence than squared return (Ding et al., 1993; Forsberg & Ghysels, 2007).
This proxy has also been employed in other studies on volatility connectedness
(e.g., Huszar et al., 2023; Jaeck & Lautier, 2016; Khalfaoui et al., 2023). For
robustness, we re-run our analysis using realized weekly volatility, estimated with
the range volatility approach proposed by Parkinson (1980), in Section D.2 of the
Appendix. The conclusions remain consistent with those obtained using absolute
returns as a proxy.

Figure 5.2 illustrates the volatility dynamics of Furopean gas markets from
May 2019 to May 2024. The TTF volatility series (panel a) shows sharp spikes in
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2022, particularly during the first few months and again in August and September.
These spikes coincide with heightened uncertainty about the future of Russian
gas supplies and the evolving geopolitical situation in Ukraine, which increased
market volatility during these periods. In 2023, TTF volatility began to stabilize,
and by 2024, the index exhibited fewer dramatic price swings, suggesting a
degree of market rebalancing. The volatility ratios of THE/TTF, NBP/TTF,
and ZTP/TTF (panels b, ¢, and d) demonstrate how the relative volatility of
these markets compared to TTF evolved over time. For most of the period, these
ratios remained moderate, indicating relatively aligned volatility between these
benchmarks and TTF. However, in 2022, the NBP/TTF and ZTP/TTF ratios
surged dramatically, signaling that these markets experienced disproportionately
higher volatility than TTF during the peak of the crisis.
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Figure 5.2.: TTF volatility series and volatility ratios of THE, NBP, and ZTP to TTF
Note: The top left graph (a) shows the TTF volatility series, while the subsequent graphs
display the volatility ratios: (b) THE/TTF, (¢) NBP/TTF, and (d) ZTP/TTF, illustrating
the relative volatility movements of the European gas benchmarks compared to TTF.
Extreme observations for relative volatility were removed on June 10th, June 16th, and
November 27th, 2022, to improve the visualization of graph (c).

Two factors likely explain the higher volatility of NBP and ZTP compared to
TTEF. The first one is the variation in market liquidity. TTF, Europe’s most liquid
gas hub, had a churn rate of 63 times in 2022, indicating high trading volumes
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and a large number of participants.3® This high liquidity stabilizes prices, as large
trades have less impact on the overall market. In contrast, NBP and ZTP had
much lower liquidity, with NBP’s churn rate dropping to 6.1 times, and ZTP
categorized as a ‘poor’ hub with even lower liquidity. These lower liquidity levels
made NBP and ZTP more vulnerable to price swings, as their markets were less
able to absorb supply and demand shocks (Heather, 2024). The second factor is
related to a substantial increase in LNG imports into both Belgium and the UK
during 2022, with volumes rising by 175% year-on-year in Belgium and 70% in
the UK. This surge in LNG supply inflated trading volumes relative to domestic
demand in both countries, contributing to greater volatility (Heather, 2023).

A key factor examined in relation to the varying levels of connectedness among
the NWE gas hubs is the utilization of the physical infrastructure connecting these
countries, particularly the interconnectors between the UK and the continent.
Both gas interconnectors between the UK and continental Europe—namely, the
UK-Netherlands (Figure 5.3(a)) and the UK-Belgium (Figure 5.3(b))—operated
near full capacity for much of 2022, as shown in the figures. After Section 5.5 quan-
tifies the level of connectedness, the subsequent section applies regression analysis
to examine the relationship between congestion and the estimated connectedness
levels.

(a) Utilization rate of BBL Gas Connector from UK to NL (b) Utilization rate of IZT Gas Connector from UK to BE

100 100
T M 'ﬂ

80+ 804
60+ 60+

40+ 40+

20+ 204

il | LTI

2020 2021 2022 2023 2024 2020 2021 2022 2023 2024

Figure 5.3.: Gas infrastructure utilization in NWE
Note: Data obtained from the ENTSOG Transparency Platform. Country abbreviations:
UK (United Kingdom), NL (Netherlands), BE (Belgium).

36The churn rate is a measure of market liquidity, calculated as the ratio of the total volume of
trades to the physical demand for gas within a market. A higher churn rate indicates more
active trading relative to the volume of gas consumed, with a rate of 10 or more generally
considered a benchmark of market maturity. Traders use the churn rate to assess a market’s
depth and liquidity, with financial participants often requiring a churn rate above 12 for
engagement (IEA, 2020).
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5.4. Methodology

This study applies a novel R? decomposed connectedness approach developed by
Balli et al. (2023) to examine the overall, contemporaneous, and lagged spillover
effects within European gas benchmarks. This approach extends the connectedness
frameworks established by Diebold and Yilmaz (2012) and Diebold and Yilmaz
(2014) by relying on the R? decomposition concept of Genizi (1993), allowing
for a more accurate and interpretable estimation of connectedness measures by
avoiding the associated normalization problem. Specifically, the R? value of a
multivariate regression model falls between 0 and 1, eliminating the need for scaling
to constrain row sums within this range.?” Consequently, this results in more
easily interpretable connectedness measures, with the row sums automatically
constrained to a functional range (Naeem, Chatziantoniou, et al., 2024).

Consider the following VAR(p) with contemporaneous effects:

P
Yt = ZAiytfi +ug,  up~ N(0,%) (5.1)
i=0

where s, y¢—;, and u; are N x 1 dimensional demeaned vectors in time ¢, A; and X
are N x N dimensional matrices. Here, diag(Ag) = 0, implying that the left-hand
side (LHS) variable is dropped from the right-hand side (RHS) variables. p is the
number of lags, with p = 0 meaning that the model collapses to the contempora-
neous R? decomposed connectedness approach of Naecem, Chatziantoniou, et al.
(2024). Alternatively, the model presented can be expressed as: ypn ¢ = an@t + Un
where z; = [y}, yj_1, - -- ,y{,p]/ is an N(p+ 1) x 1 dimensional vector and a,, is
an 1 x N(p+ 1) dimensional vector with zero on the nth position.

Only if all RHS variables are uncorrelated with each other does the sum of
the R? contributions, determined through bivariate linear regressions, equal the
R? goodness-of-fit measure of a multivariate linear regression (MLR). As this is
generally not the case, there is a need to find a transformation that converts the
correlated series xn7t38 into an orthogonal series. This can be achieved by using
principal component analysis (PCA), where the number of latent factors is equal
to the number of RHS variables. Hence, the R? decomposition for an MLR can

3"The normalization problem arises because the row sums of the GFEVD matrix are not
constrained to a fixed range (such as [0, 1]) and may exceed unity. The R? connectedness
approach naturally constrains values within this range, eliminating the need for such nor-
malization. See Naeem, Chatziantoniou, et al. (2024) for a more detailed description of this
issue and how the R? connectedness framework avoids it.

38xn,t is equivalent to x; but excludes the LHS.
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be calculated with:

Rew = VAV =CC' (5.2)
C=VA2YV
R?*? = C*(C7'R,,)? (5.4)

Where V, A = diag(A1, A2, .-, An(pt1)—1); and Ry, represent [N(p+1) —1] x
[N(p+ 1) — 1] eigenvector, eigenvalue, and Pearson correlation matrices, respec-
tively, while Ry, and R?< illustrate the [N (p+ 1) — 1] x 1 Pearson correlation and
R? contribution vectors, respectively. R,, denotes Pearson correlation coefficients
across RHS variables, while R, is the Pearson correlation coefficient between the
LHS and RHS variables. The first N — 1 values of R%>% denote the contemporane-
ous R? contributions, and the remaining represent the lagged R? contributions.
Hence, the vector sum of R>? is equal to the MLR R? goodness-of-fit measure.
Stacking the R?? contribution of all N MLRs gives the N x N(p+ 1) dimensional
R?% decomposition matrix, [R(Q)’d, ol R?’d, A R%’d]. Rg’d?’g can be interpreted
as the contemporaneous spillovers (Ri:d), whereas the sum of the lagged values

(R%d = R%d +...+ R?’d +...+ R}%’d) stand for the lagged spillovers.

Based on Diebold and Yilmaz (2012) and Diebold and Yilmaz (2014), R5" and

R%d replace the scaled GFEVD matrix. Accordingly, the total connectedness
index (TCI) is equal to the average R2 of the N MLRs:

N
1
TCI = — 2 )
C NnE—an (5.5)

Here, ‘TCI’ refers to the broader and more systematic relationships and interde-
pendencies among multiple markets. It encompasses the overall structure and
dynamics of how these entities are interconnected. Connectedness can be static
or dynamic, reflecting how these relationships change over time, especially in
response to economic or geopolitical events. As R2 is within zero and unity, TCI
is also within the same range, avoiding the connectedness normalization problem,
which arises from the need to standardize the GFEVD to ensure that the row
sums of the connectedness matrix are equal to one (Naeem, Chatziantoniou, et
al., 2024). The contemporaneous and lagged TCI is derived as follows:

N
1
TCI = > Rn (5.6)
n=1
1 N N 1 N N
2,d 2,d
= | 72 2By | + | 7 22 2 Riiny (5.7)
n=1j=1 n=1 j=1
=TCI® + TCI* (5.8)

3 Note that diag(Re™*) =0
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where TCI¢ and TCI" represent the contemporaneous and lagged TCI, respec-
tively.

Furthermore, the ‘TO’, ‘FROM’, and ‘NET’ spillovers are calculated as follows:

N N
2.d 2.d
TO;j =) Ren;+ 3 Rih, (5.9)
n=1 n=1
=T0f + TOj (5.10)
N N
2.d 2.d
FROM; =Y RS+ RpS. (5.11)
n=1 n=1

= FROM{ + FROM; (5.12)
NET{ =TO§ — FROM{ (5.13)
L _ L L
NET} = TOF — FROM, (5.14)
NET; = NET{ + NET} (5.15)

In this context, the TO; (TOgj / TOJL ) total directional connectedness quantifies the
proportion of the overall (contemporaneous/lagged) variance in all LHS variables
that is attributable to series j. On the other hand, the FROM; (FROMJ»C / FROM]L )
total directional connectedness measures the extent to which the combined RHS
variables explain the overall (contemporaneous/lagged) variance in series j. This is
analogous to the R? value in a multivariate linear regression involving n variables.
When NET; is positive (negative), series j acts as a net transmitter (receiver) of
shocks, meaning it explains more (less) of the variation in other series than the
others explain in it. This interpretation applies equally to both contemporaneous
and lagged connectedness measures.

5.5. The connectedness of NWE gas markets

This results section presents the findings of our connectedness analysis in three
parts. First, we analyze the connectedness of natural gas price returns, covering
both overall and directional dynamics.“® Second, we examine volatility connected-
ness, focusing on similar aspects. Finally, we extend our analysis to futures prices
to explore how expectations and forward-looking information are shared among
markets.

490ur baseline analysis uses a 200-day rolling-window VAR model with Pearson correlation
coefficients. Robustness checks using varying window sizes (150 and 250 days) and Spearman
correlations show consistent results, confirming the stability and validity of the findings. For
brevity, these results are provided in Figures D.1 and D.2 in the Appendix.
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5.5.1. Return connectedness results

Figure 5.4 plots the overall connectedness index from 2020 to 2024 for the four gas
benchmarks. This index measures the extent to which price movements in one hub
are transmitted to others. The figure also shows the decomposition of this index
into contemporaneous spillovers (blue line) and lagged spillovers (red line). The
results indicate that connectedness in natural gas price returns was around 70%
in 2020 and increased to approximately 80% in 2021. It dropped sharply in the
second half of 2022, coinciding with market disruptions and supply issues following
the Russia-Ukraine invasion and the consequent cuts in Russian gas supply. This
finding shows that the dynamic total connectedness index fluctuates over time
and is dependent on market events. This is also consistent with Broadstock et al.
(2020), Chen et al. (2022), and Papiez et al. (2022), who found that various market
reforms and external economic and political events influence market connectedness.
Our analysis of the extended sample up to 2024 reveals that connectedness began
to rise rapidly in the second half of 2023, reaching the highest level observed
by the end of the sample, a level previously seen in the second half of 2021. A
summary of the averaged connectedness measures among the four return series
throughout the sample period is provided in Table D.2 in the Appendix.

Furthermore, Figure 5.4 illustrates that contemporaneous interdependencies,
shown in blue, are more prominent than lagged interdependencies, depicted in
red. The stronger contemporaneous dependency underscores the dominance
of immediate market reactions over delayed responses, suggesting that market
participants react swiftly to new information, with price adjustments among the
gas hubs occurring almost instantly. This result aligns with the findings of Balli
et al. (2023), who also observed the dominance of contemporaneous effects in the
connectedness between energy futures prices. Our findings show that this pattern
holds for natural gas price hubs before, during, and after the crisis, reflecting the
rapid dissemination of the effects of shocks driven by news and events across hubs.

The dominance of contemporaneous effects in the overall connectedness of
the NWE gas market, even during periods of infrastructure congestion, can be
attributed to the advanced trading mechanisms and financial instruments used
in these markets. Specifically, market participants can employ virtual trades
and locational swaps,! as well as derivatives, to adjust their positions quickly in
response to new information. These tools enable the rapid dissemination of price
signals across hubs, ensuring that prices adjust promptly, even when physical gas
flows are restricted (ACER, 2023b).

Thus far, we have discussed the overall connectedness level, which is of interest
but disregards heterogeneity within the connectedness of the gas price hubs as well

41A locational swap refers to a virtual transaction where a trader exchanges gas between
two markets without physically moving the gas. The trader sells gas in one market and
simultaneously buys gas in another, profiting from the price difference between the two hubs.
This eliminates the need for a physical transportation contract and is considered ‘virtual
transport’ (see ACER (2023b) for more details).
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Figure 5.4.: Dynamic total connectedness of return series

Notes: R? decomposed measures are based on a 200-day rolling-window VAR model with a
lag length of order one (BIC).

as directional information. We now turn to hub-specific directional connectedness
measures. The results are depicted in Figure 5.5, which includes three rows: the
"FROM’ connectedness (first row), measuring how much a particular hub’s price
movements are explained by shocks from other hubs; the “TO’ connectedness
(second row), reflecting how much a hub contributes to price variations in other
hubs; and the ‘NET’ connectedness (third row), indicating whether a hub is a
net transmitter or net receiver of shocks within the system. Additionally, the
figure presents the respective overall R? measure of connectedness, along with
the contemporaneous and lagged decomposed measures.

The results indicate that the ‘FROM’ and ‘T'O’ connectedness indices for the
four gas benchmarks generally decreased in the second half of 2020, following the
initial impact of the COVID-19 pandemic, and again from the second quarter of
2022 to the first quarter of 2023. However, ZTP’s indices were lower during these
subperiods of decreased connectedness, and NBP’s indices dropped even more sig-
nificantly. This suggests that during times of severe market disruptions, ZTP and
NBP became less influential in transmitting and receiving price shocks from other
hubs. These findings suggest that local factors and individual market conditions
began to dominate price movements rather than shared regional dynamics during
tight market conditions. Furthermore, the decomposition of these ‘FROM’ and
‘TO’ connectedness indices reflects the dominance of the contemporaneous effects.
This implies that even when NBP and ZTP became less connected overall during
periods of market stress, the limited spillovers that persisted were transmitted
instantaneously.

The third row of Figure 5.5 shows the time-varying net total directional connect-
edness of the four gas benchmarks. The results reveal that TTF usually acted as
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Figure 5.5.: Dynamic directional connectedness of return series
Notes: R? decomposed measures are based on a 200-day rolling-window VAR model with a
lag length of order one. The black line visualizes the overall dynamic total connectedness,
while the dynamic contemporaneous and lagged connectedness are illustrated in blue and
red, respectively. The dashed horizontal line in Figure (c) represents the zero value reference
line

a net transmitter of shocks, except from late 2022 to late 2023, when it became a
net receiver, and THE became a net transmitter. A potential explanation for this
shift is Germany’s urgent need to replace lost Russian pipeline gas, which led to
increased spot trading at THE. Additionally, the construction of new LNG import
facilities and Floating Storage Regasification Units (FSRUSs) in Germany further
solidified THE’s role as a key hub for balancing the country’s gas needs and
managing supply risks during this period of heightened energy insecurity. This
argument is supported by Heather (2023), who reported a high market activity
score for THE in 2022, ranking it second only to the Dutch TTF.4? ZTP exhibited
a more varied pattern: initially, it was a net receiver until the first half of 2020,
then predominantly a net transmitter, before reverting to a net receiver during
the same period as TTF. Lastly, NBP remained a net receiver for most of the
analyzed period. The results also reveal that NBP’s directional connectedness is
primarily driven by contemporaneous effects, indicating that it quickly absorbs

42This score reflects the overall level of market activity at a hub, including the number of active
participants, traded products, total traded volumes, the tradability index, and the churn
rate. A higher score indicates greater liquidity, a wider diversity of traded products, and a
hub’s ability to facilitate risk management and portfolio balancing (see Heather (2023) for
more details).
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and reflects shocks originating from other hubs. For TTF, contemporaneous net
spillover effects closely align with the overall net spillover effects throughout the
entire sample period, reflecting that its influence on other hubs is immediate. This
could be attributed to the high liquidity and significant trading activity of TTF.43
This aligns with the findings of Liu et al. (2024), who reported that markets with
a substantial trader base experience a high degree of net connectedness influenced
primarily by contemporaneous effects. For THE and ZTP, this higher similarity
between contemporaneous net spillover effects and overall net spillover effects
only occurs during periods of positive net connectedness.

5.5.2. Volatility connectedness results

Next, we examine the dynamic total connectedness of the volatility series, as
shown in Figure 5.6. High volatility connectedness indicates that periods of
heightened uncertainty or volatility in one market can influence risk perceptions
and price fluctuations in other markets, often through the transmission of market
stress or shocks. The results show that the volatility connectedness of these
benchmarks ranges between 40% and 70%. The spillover effects reached a high
level from the second half of 2021 to the first quarter of 2022, suggesting that
interconnectedness among volatility series was high during this period. The peak
in the first quarter of 2022, particularly in February 2022, coincides with the
Russian invasion of Ukraine. This can be attributed to increased investor caution
caused by economic uncertainty and the market reconfiguration following this
major news shock (Naeem, Gul, et al., 2024). Following this, the dynamic TCI
values for the volatility series gradually declined, reaching the lowest level in
early October 2022 at 40%. This decline was potentially due to the aftermath of
subsequent shocks, such as the demolition of the Nord Stream 1 and 2 pipelines
and the disruption of Russian gas flow to Europe. The results also indicate that
throughout the observation period, contemporaneous effects dominated volatility
connectedness (approximately 95%), except in the first half of 2023, when lagged
effects increased slightly. These findings suggest that news affecting one market
can lead to an immediate reassessment of risks in other markets, resulting in
contemporaneous volatility spillovers. The slight increase in lagged effects in the
first half of 2023 suggests that as markets adjusted to the post-crisis environment,
the transmission of volatility may have become slightly more gradual.

Figure 5.7 presents the dynamic directional connectedness results of the volatility
series, including ‘FROM,” ‘TO,” and ‘NET’ connectedness. Similar to the results
obtained for return connectedness, the FROM’ and ‘T'O’ volatility connectedness
indices for the four gas benchmarks generally decreased in the latter half of 2020
after the initial impact of COVID-19, and again from Q2 2022 to Q1 2023. ZTP
and NBP experienced more pronounced declines in their indices during these

43Note that TTF is by far the most liquid hub in the European gas market and has been widely
used as the reference price for physical wholesale gas contracts. For a detailed analysis of
the liquidity of different European gas benchmarks, refer to Heather (2023).
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Figure 5.6.: Dynamic total connectedness of volatility series

Notes: R? decomposed measures are based on a 200-day rolling-window VAR model with a
lag length of order one (BIC). Volatility is measured by the absolute returns and included
in the model in log transformation.

periods of market stress, with ZTP showing lower values and NBP experiencing
even sharper drops, approaching zero. This indicates that ZTP and NBP were
less influenced by the other benchmarks during severe disruptions.

The third row of Figure 5.7 reveals distinct patterns among the gas benchmarks
over the observed periods. The TTF benchmark oscillates between being a net
transmitter and a net receiver of volatility, highlighting its pivotal role in the
NWE gas market, where its influence fluctuates in response to market conditions
and external factors. For example, TTF was a net transmitter during the first
half of 2020 and throughout 2022, aligning with periods of high market activity or
stress, such as the onset of the COVID-19 pandemic and the geopolitical tensions
impacting energy supplies. THE was predominantly a net receiver, except from
the second half of 2021 to the end of the first half of 2022. ZTP consistently acted
as a net receiver, except during the period from 2020 to the first half of 2021,
and again in the first half of 2023, when it became a net transmitter. The strong
influence of ZTP on other benchmarks may be surprising given its relatively low
liquidity, but this could be explained by its central geographic location between
the other investigated markets. Conversely, NBP was largely a net receiver,
highlighting its reactive nature, with brief periods as a net transmitter at the
end of 2021 and in the first half of 2023. These findings indicate that TTF and
Z'TP play significant roles in market integration and stability, while THE and
NBP are more susceptible to external shocks. Moreover, the decomposition of
TTE’s net connectedness into contemporaneous and lagged effects reveals that
contemporaneous effects dominated the directional connectedness for most of
the time in the investigated sample. In contrast, for the other three hubs, net
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directional connectedness was mainly driven by lagged effects. This reflects the
role of market liquidity; the other three hubs have lower liquidity compared to
TTF, causing their influence on other markets to take more time to materialize.
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Figure 5.7.: Dynamic directional connectedness of volatility series
Notes: R? decomposed measures are based on a 200-day rolling-window VAR model with a
lag length of order one. The black line visualizes the overall dynamic total connectedness,
while the dynamic contemporaneous and lagged connectedness are illustrated in blue and
red, respectively.

For robustness, we also use the range-based volatility measure of Parkinson
(1980) to reanalyze the connectedness in the European gas market. The detailed
results of this analysis are presented in Figures D.3 and D.4 in the Appendix.
The findings are consistent with those of the baseline analysis.

5.5.3. Connectedness analysis using futures prices

This section investigates gas market connectedness based on futures prices, specifi-
cally one-month-ahead prices, rather than the spot prices (day-ahead prices) used
in the previous subsections. The intuition behind this analysis is that futures
prices incorporate traders’ anticipations of upcoming supply and demand shifts,
geopolitical risks, and macroeconomic factors. A high level of connectedness
indicates that market participants across different hubs share similar expectations
about the future, leading to synchronized futures price movements. Therefore, we
hypothesize that futures prices may exhibit different connectedness patterns com-
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pared to spot prices, which are influenced by immediate physical constraints and
short-term market dynamics, such as local supply disruptions, weather conditions,
and pipeline capacities.

In the following, we focus on the total return connectedness, which is presented
in Figure 5.8. Additional results are provided in the Appendix, where Figure
D.5 displays the directional connectedness of return series, Figure D.6 presents
the total volatility connectedness, and Figure D.7 illustrates the directional
connectedness of volatility series. For all figures, spot and futures price results are
presented together for easy comparison. The dynamic decomposition of overall
connectedness with futures prices leads to similar conclusions as with spot prices,

with the contemporaneous effect being the dominant factor.*4

100

Spot prices Futures prices

80

(o]
o
1

N
o
1

Return Connectedness

204

O -
2020 2021 2022 2023 2024

Figure 5.8.: Comparison of return connectedness indices: spot prices vs. futures prices

Notes: R? decomposed measures are based on a 200-day rolling-window rolling-window
VAR model.

Figure 5.8 indicates that during the initial phase of the COVID-19 pandemic
(2020 to early 2021), futures prices exhibited higher connectedness than spot
prices. This suggests that market participants shared similar expectations about
future market conditions, leading to synchronized futures price movements. As
the pandemic’s impact eased in the second half of 2021, connectedness among
spot prices surpassed that of futures prices, reflecting a resurgence in physical
market interdependence and aligned supply-demand dynamics across hubs. From
February 2022 until mid-2023, geopolitical tensions stemming from the Russia-
Ukraine conflict and associated supply disruptions led to a less pronounced decline
in connectedness among futures prices. This suggests that market participants
collectively anticipated tighter future markets due to reduced Russian gas supplies
and infrastructure constraints, resulting in synchronized futures price movements.

These results are omitted from the figures for brevity but are available upon request from the
corresponding author.
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Concurrently, physical limitations and localized supply issues caused spot prices
to diverge, reducing their connectedness. In the latter half of 2023 and early 2024,
as markets stabilized and infrastructure constraints eased, spot prices became
more interconnected. The normalization of physical flows allowed spot prices
to move more cohesively across hubs, while futures price connectedness slightly
diminished as market expectations varied in a less uncertain environment.

Overall, these findings highlight the interplay between physical market condi-
tions and market expectations in shaping the interconnectedness of gas prices.
Periods of heightened uncertainty and shared future concerns tend to amplify
futures price connectedness, whereas improved physical integration and immediate
market alignment enhance spot price connectedness.

5.6. Factors associated with the connectedness of NWE

gas markets

The connectedness analysis from the previous section reveals notable fluctuations in
connectedness levels. The lowest level occurred at the end of 2022, coinciding with
a tight supply situation in Germany and the Netherlands, as these countries had
to replace Russian supplies with LNG and increased pipeline supplies from Norway
and the UK. Our directional connectedness analysis shows that the decrease in
connectedness was mainly due to the decoupling of the NBP benchmark, likely
caused by physical congestion at cross-border pipelines. This congestion may
have limited the ability to balance gas supply and demand across the regional
markets, thereby reducing interdependence and price coherence.

This section examines the relationship between congestion in the pipelines
connecting the UK with the other investigated markets and the connectedness
of the NWE gas markets. Figures 5.9(a) and 5.9(b) depict the utilization rates
of the BBL gas connector from the UK to the Netherlands and the IZT gas
connector from the UK to Belgium, respectively. These figures visually support
the hypothesis that periods of high utilization in either of the two pipelines
correlate with lower connectedness levels, while periods of low utilization are
associated with increased connectedness.

To further investigate the effect of pipeline congestion, along with other factors,
on connectedness levels, we conduct regression analysis to examine how congestion
in the BBL and IZT gas pipelines correlates with the connectedness of the NWE
natural gas benchmarks. The dependent variables are total return and volatility
connectedness, as obtained from the analysis in the previous section. The main
independent variable is ’congestion,” a dummy variable that takes the value of 1
if the BBL or IZT pipeline is congested, defined as having a utilization rate of
80% or higher.

We include a control variable to account for the impact of the EU’s 2022 storage
mandate, which required member states to fill their gas storage facilities to 80%
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Figure 5.9.: Return connectedness level and utilization rate of BBL and IZT gas pipelines
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Notes: Data on utilization rates are obtained from the ENTSOG Transparency Platform.

The solid line represents return connectedness between the NWE gas benchmarks, as ana-

lyzed in Subsection 5.5.1. Values on the vertical axis are expressed as percentages (%). BBL

refers to the Balgzand-Bacton Line pipeline, and IZT refers to the Interconnector Zeebrugge

Terminal pipeline. Country abbreviations: UK (United Kingdom), NL (Netherlands), and

BE (Belgium).

capacity by November 1, 2022. This mandate was issued by the EU Council on
June 27, 2022 (Council of the European Union, 2022). The hypothesis is that this
storage mandate created immediate and intense pressure to secure gas supplies
across the EU, particularly in Germany, during already tight market conditions,
leading to higher prices in the eastern part of the NWE region. To measure this
effect, we created a dummy variable that takes the value of 1 starting on June 27,
2022, when the mandate was issued, and ending on August 29, 2022, when the
storage target of 80% was reached (Gas Infrastructure Europe, 2022).

We also control for geopolitical risk by including the Geopolitical Risk Index
from Caldara and Iacoviello (2022) to isolate and better understand how external
political factors influence market integration.*> Additionally, we include the
futures spreads of TTF and NBP as well as interaction terms between the futures

45The index measures adverse geopolitical events based on articles from 10 U.S. newspa-
pers. More details about the index and data can be found on this website: https://
www.matteoiacoviello.com/gpr.htm.
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spreads and the IZT congestion dummy variable.?6 When the futures spread is
positive, it indicates that futures prices are higher than spot prices, suggesting that
traders expect gas prices to rise. This can lead to increased gas storage, as market
participants prefer to hold onto their inventory in anticipation of higher future
prices, impacting overall market dynamics. Therefore, interacting the futures
spread with congestion captures the combined effect of infrastructure constraints
and market expectations on gas market connectedness, helping us understand
how pipeline congestion is influenced by traders’ expectations of future gas prices.
Lastly, we control for year- and month-fixed effects in all regressions to account
for time-specific factors and seasonal variations that could influence gas market
connectedness.

The results are presented in Table 5.1, which displays the regression analysis
for return connectedness (columns 1-2) and volatility connectedness (columns
3-4). In each set of regressions, the first specification includes only the BBL and
IZ'T variables to capture the effect of pipeline utilization on the connectedness
indices. The second specification introduces additional independent variables.

The results indicate that the coefficient for the IZT variable is negative and
statistically significant across all specifications, indicating a strong association
between IZT pipeline congestion and decreased return connectedness in the NWE
gas markets. For example, column (1) shows that IZT congestion is associated
with a decrease of 12.817 units in the connectedness index. When control variables
are added in the second regression, the effect decreases (in absolute terms) to
-9.587 units but remains statistically significant at the 1% level. This suggests that
IZT congestion substantially correlates with market connectedness, even after
accounting for geopolitical risk, the EU storage mandate, and futures spreads. The
BBL variable, however, is not statistically significant in any of the regressions for
return connectedness, indicating no significant association between BBL pipeline
congestion and return connectedness beyond the extent to which BBL and IZT
congestion correlated.*” This may be due to the IZT pipeline’s more critical role
in connecting the NWE gas markets or possible differences in the capacity or
usage patterns of the two pipelines.*®

The results also show that geopolitical risk has a positive coefficient statistically
significant at 1%, suggesting that higher geopolitical risk is correlated with
increased market connectedness. This implies that geopolitical events may cause

4%We focus on the TTF and NBP benchmarks because they are the most liquid in the region
and focus on IZT congestion because this was found to be more significant (see Table 5.1).

“TIn fact, the Variance Inflation Factor (VIF) values for the BBL and IZT variables were below
5 in all regressions, indicating that multicollinearity is not a concern. The VIF results are
available upon request.

48The IZT pipeline has a significantly higher capacity for transporting natural gas compared
to the BBL pipeline. IZT provides an export capacity of 20 bem/year (UK to BE) and an
import capacity of 25.5 bem/year (BE to UK), translating to approximately 637 GWh/day
and 812 GWh/day, respectively. In contrast, BBL’s forward flow (NL to UK) capacity is
432 GWh/day, while its reverse flow (UK to NL) capacity is only 185 GWh/day (Sources:
https://www.fluxys.com/ and https://bblcompany.com/).
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Table 5.1.: Regression analysis of factors associated with NWE gas markets connectedness

(1) (2) (3) (4)
Return connectedness Volatility connectedness
BBL -3.016 -0.631 -1.764 -0.681
(2.598) (1.385) (1.660) (1.477)
1ZT -12.817¢ -9.587¢ -7.123¢ -4.711°
(3.385) (3.363) (2.152) (1.975)
Geopolitical Risk 0.049¢ 0.031¢
(0.017) (0.010)
EU Storage Mandate -7.471°¢ -5.647%
(4.447) (2.694)
Spreadyy s 0.160 0.089
(0.161) (0.118)
Spreadqppy -0.307° -0.113
(0.143) (0.084)
IZT x Spreadgs -0.454° -0.205
(0.179) (0.129)
IZT x Spread,pp 0.217° 0.052
(0.105) (0.075)
Intercept 65.909¢ 59.681¢ 39.169¢ 35.706¢
(4.408) (4.066) (4.302) (3.919)
No. of observations 1103 1103 1103 1103
Adj. R? 0.514 0.625 0.518 0.578
Year FE v v v Ve
Month FE v v v Ve

Notes: The dependent variable for columns 1-2 is the return connectedness index, while the
dependent variable for columns 3—4 is the volatility connectedness index. The variables “BBL”
and “IZT” relate to the “Congestion” of the respective pipeline, which is measured by a dummy
set to 1 if the respective pipeline’s utilization rate exceeds 80%. “EU Storage Mandate” is a
dummy variable that takes the value of 1 from June 27, 2022, to August 29, 2022. “Spread” is
the futures spread (futures - spot) for the TTF and NBP gas benchmarks. Standard errors
are reported in parentheses and are computed using the Newey-West heteroskedasticity and
autocorrelation consistent estimator. All regressions control for year and month-fixed effects,
and their results are available upon request from the corresponding author. , °, and ¢ represent
the 1%, 5%, and 10% significance levels, respectively.

markets to move more in parallel due to shared concerns, thereby increasing
connectedness. Regarding the EU storage mandate, the results indicate that this
policy may have had a negative effect on connectedness. Column 2 also indicates
that the interaction between IZT and the TTF futures spread is negative (-0.454)
and statistically significant at the 5% level, suggesting that during congestion,
expectations of higher future prices (a positive TTF spread) further reduce current
connectedness. This may be due to anticipated supply shortages exacerbating
market segmentation. Conversely, the interaction between IZT and the NBP
futures spread is positive (0.217) and also significant at the 5% level, indicating
that the negative impact of the NBP spread on connectedness is moderated during
congestion. However, we do not find a statistically significant effect for these two
interaction terms on volatility connectedness.
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5.7. Conclusion

This study examines the time-varying connectedness among natural gas prices in
the NWE market using the R? decomposed connectedness approach, as introduced
by Balli et al. (2023). This method decomposes connectedness measures into con-
temporaneous and lagged components, providing a more nuanced understanding
of market dynamics. The analysis is applied to both price returns and volatility.

Our analysis reveals that connectedness within natural gas markets is highly
dynamic and varies significantly depending on market conditions, such as exter-
nal shocks and infrastructure congestion. The findings consistently show that
contemporaneous effects dominate lagged effects in both return and volatility
connectedness, indicating that immediate market responses are more influential
than delayed reactions. This trend is particularly evident during periods of height-
ened uncertainty, such as the Russia-Ukraine crisis. Furthermore, futures and
spot prices exhibit distinct connectedness patterns shaped by different underlying
factors. Futures price connectedness tends to increase during periods of uncer-
tainty, driven by shared market expectations of future conditions, whereas spot
price connectedness is enhanced by improved physical integration and immediate
market alignment. We also find that pipeline congestion is significantly associated
with reduced market connectedness, underscoring the impact of infrastructure
constraints on the integration of NWE gas markets. The interaction between
congestion and market expectations further exacerbates the decline in connected-
ness, suggesting that infrastructure limitations, combined with expectations of
future price increases, can intensify market segmentation. Conversely, heightened
geopolitical risk is correlated with increased connectedness, indicating that shared
regional responses to geopolitical events can enhance the alignment of market
behaviors across hubs.

Our findings have three main implications. First, the dominance of contem-
poraneous spillovers in both return and volatility connectedness indicates that
European gas markets respond quickly to shocks, even during tight market con-
ditions. This suggests that, despite supply constraints or pipeline congestion,
information flows and price adjustments are not hindered, driven by trading
mechanisms that allow participants to bypass physical bottlenecks through fi-
nancial instruments and virtual trades. As a result, relying on past shocks to
predict future movements is less effective, and market participants need to focus
on real-time information and be prepared to act swiftly. However, this also implies
that participants have limited time to respond to shocks, potentially increasing
their exposure to sudden market volatility. Consequently, constant monitoring
and rapid decision-making become critical to mitigate heightened risks.

Second, the decrease in connectedness between European gas markets during
crises and tight market conditions underscores the significant impact of physi-
cal infrastructure constraints. Unlike financial markets, where crises typically
heighten return and volatility spillovers through contagion effects (see, for ex-
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ample, Longstaff, 2010; Mensi et al., 2018), our results indicate that congestion
in gas pipelines during crisis periods can disrupt market integration, leading to
reduced connectedness. This phenomenon is consistent with similar findings in
other energy markets, such as the European electricity market (e.g., Gugler et
al., 2018). However, once these tight conditions subside, connectedness swiftly
returns to normal levels, suggesting that these disruptions are temporary and
that the market can restore integration once physical constraints ease.

Lastly, the relationship between pipeline utilization and market connectedness
has direct welfare implications. During periods of pipeline congestion, reduced
connectedness limits arbitrage opportunities, leading to higher price dispersion
across regions and potentially lowering welfare due to inefficient gas allocation.
While this generally supports infrastructure enhancements, further expansion of
the European natural gas infrastructure should be carefully considered. As we
show, connectedness levels had already returned to pre-crisis levels toward the
end of our observation period. Further infrastructure investments may, hence,
risk becoming stranded assets.
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A. Supplementary Material for Chapter 2

A.1. Additional data details

Consumer price index: The real-time, monthly, seasonally adjusted U.S. Con-
sumer Price Index (CPI) for all urban consumers is sourced from the Economic
Indicators published by the Council of Economic Advisers and from the macroeco-
nomic real-time database of the Federal Reserve Bank of Philadelphia. The CPI
vintages, subject to revision, typically experience a one-month publication delay.
Missing CPI observations are nowcasted using that vintage’s average historical
growth rate from January 1973 (1973M1).

Spot price data: Daily closing prices for all spot prices are used to calculate
the monthly average and end-of-month prices. The end-of-month price is the
closing price on the last trading day of the month. Following standard practices,
monthly average prices are calculated as the simple average of daily closing prices.
Spot prices are not subject to revisions and are observed in real time. All spot
prices are obtained from Bloomberg, except for crude oil and heating oil, which
are sourced from the United States Energy Information Administration (EIA).
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Table A.1.: Bloomberg Tickers / Sources for Commodity Spot Prices and
Sample Periods

Commodity Market Ticker Source  Sample Start
Energy
Crude oil Cushing, OK EIA 1986.01
Natural Gas Henry Hub NGUSHHUB Bloomberg 1999.01
Heating Oil New York EIA 1986.06
Gasoline New York RBOB&7PM Bloomberg 2003.11
Ethanol Chicago ETHNCHIC Bloomberg 2007.02
Precious Metals
Gold XAUUSD Bloomberg 1975.01
Silver XAGUSD Bloomberg 1973.01
Platinum XPTUSD Bloomberg 1987.01
Base Merals
Aluminum LME LMAHDY Bloomberg 1987.08
Copper LME LMCADY Bloomberg 1986.04
Lead LME LMPBDY Bloomberg 1987.01
Nickel LME LMNIDY Bloomberg 1987.01
Tin LME LMSNDY Bloomberg 1989.06
Zinc LME LMZSDY Bloomberg 1989.01
Agricultural
Corn Chicago  CORNCH2Y Bloomberg 1996.01
Soybeans Chicago SOYBCHI1Y Bloomberg 1996.01
Wheat Chicago = WEATCHEL Bloomberg 1992.01

A.2. Additional results

Comparison of the no-change benchmarks

We empirically validate the appropriateness of the end-of-month versus average
price no-change for monthly average real prices for all primary commodities.
We employ two forecast evaluation criteria: the Mean Squared Forecast Error
(MSFE) ratio and a measure of directional accuracy, termed success ratios. The
MSFE ratio for the h-step-ahead forecast, MSF E,’;atio, is computed as the ratio
of the MSFE of the end-of-month no-change forecast to the MSFE of the monthly
average no-change forecast:

Zqul (Rq+h - qunq)Q

Zqul (Rq+h - Rq)2

MSFE° = : (A1)

where Rq is the monthly average real price in month ¢, R, is the real price on
the last trading day n, of month ¢, R4 is the actual monthly average real price
h months ahead, i.e., in month ¢+ h, @ is the total number of forecast evaluation
periods, and ¢ = 1,2,...,Q indexes the evaluation sample. The null hypothesis,

suggesting an equal MSFE of the model-based forecast relative to the no-change
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forecast, is tested following the methodology of Diebold and Mariano (1995) and
compared against standard normal critical values.

Directional accuracy is evaluated using the mean directional accuracy. This
metric describes the fraction of times the forecasting model is able to correctly
predict the change in the direction of the real price of a commodity. The calculation
is as follows:

Q
1 _ _ —
SRk = @ Z 1 {Sgﬂ (Rq+h — Rq) = sgn (Rq,nq - Rq)} ) (A2)
q=1

where sgn is a sign function and 1 is an indicator function. The test statistic is
calculated following Pesaran and Timmermann (2009). The null hypothesis is that
the futures-based forecast should be no more successful at predicting the direction
of change in the price of the respective commodity, with a success probability of
0.5. Therefore, a success ratio above 0.5 can be interpreted as an improvement
over the no-change forecast.

Table A.2.: Real-Time End-of-Month versus Monthly Average No-Change Forecast

1 3 6 9 12 15 18 21 24

Commodity MSFE Ratio
Crude Oil ~ 0.54 (0.000)  0.91 (0.008) 0.97 (0.303) 0.96 (0.058) 0.97 (0.010) 0.97 (0.194)  0.98 (0.205) 0.99 (0.084)  1.00 (0.249)
Natural Gas  0.52 (0.000)  0.88 (0.000) 0.93 (0.044) 0.96 (0.072) 0.92(0.075) 1.01(0.276) 1.00(0.085) 0.97 (0.369) 0.95 (0.534)
Heating Oil ~ 0.60 (0.000)  0.90 (0.009)  0.95(0.038) 0.96 (0.259) 0.99 (0.155) 0.98 (0.137)  0.99 (0.060)  0.99 (0.223)  1.00 (0.149)
Gasoline ~ 0.60 (0.000)  0.93 (0.002) 1.02(0.165) 1.03(0.117) 1.00(0.152) 0.99 (0.088) 1.00(0.259) 1.01(0.294) 1.02(0.216)
Ethanol 0.91(0.000) 1.31(0.225) 1.20(0.017) 1.13(0.910) 1.13(0.101) 1.12(0.723) 1.13(0.469) 1.14(0.213) 1.13(0.511)
Gold 0.70 (0.000)  0.94 (0.011)  0.94 (0.004) 0.99 (0.112) 0.98 (0.017)  0.99 (0.190) 0.98 (0.317)  0.98 (0.423)  0.99 (0.559)
Silver 0.82 (0.000)  0.95(0.070)  0.98 (0.060) 1.00 (0.175) 1.01(0.041) 1.03(0.362) 1.01(0.419) 1.00(0.277) 1.01(0.345)
Platinum  0.59 (0.000) 0.93 (0.003) 0.98 (0.004) 0.98 (0.190) 0.99 (0.001) 1.01(0.306) 0.97 (0.038) 0.97 (0.009) 0.97 (0.005)
Aluminum  0.59 (0.000)  0.94 (0.107)  0.97 (0.077)  1.00 (0.435) 1.00(0.196) 1.04(0.799) 1.03 (0.854) 1.02(0.548) 1.03 (0.510)
Copper 0.64 (0.000)  0.91(0.010) 0.96 (0.163) 0.98 (0.011) 0.99(0.054) 1.02(0.129) 1.02(0.135) 1.01(0.086) 1.02 (0.305)
Lead 0.70 (0.000)  0.99 (0.001) 0.97 (0.353) 1.00 (0.049) 1.03(0.329) 1.05(0.630) 1.05(0.399) 1.02(0.549) 1.03 (0.853)
Zinc 0.56 (0.000)  0.91 (0.000) 0.98 (0.258) 1.03(0.592) 1.02(0.596) 1.02(0.782) 1.01(0.775) 1.00(0.760) 1.01 (0.897)
Nickel ~ 0.67 (0.000) 0.92(0.000) 0.98 (0.037) 0.99(0.300) 0.98 (0.340) 1.02(0.436) 1.01(0.151) 1.02(0.290) 1.02 (0.308)
Tin 0.55(0.000)  0.86 (0.000) 0.97 (0.027)  1.00 (0.056)  0.99 (0.049) 1.02(0.259) 1.03(0.351) 1.03(0.678) 1.03 (0.667)
Corn 0.67 (0.000)  0.92 (0.002) 0.97 (0.537) 0.99 (0.185) 0.98 (0.108) 1.00 (0.020) 1.00 (0.014) 1.00 (0.050) 1.00 (0.203)
Soybeans  0.59 (0.000)  0.96 (0.000) 1.02(0.525) 1.04(0.090) 1.03(0.217) 1.02(0.029) 1.01(0.400) 1.01(0.270) 1.01 (0.155)
‘Wheat 0.54 (0.000)  0.90(0.014) 0.93(0.205) 0.96 (0.201)  1.02(0.266) 1.04(0.298) 1.02(0.208) 0.99(0.514) 1.01(0.772)

Success Ratio
Crude Oil ~ 0.74(0.000)  0.59 (0.008) 0.53(0.303) 0.57 (0.058) 0.59(0.010) 0.54(0.194) 0.54(0.205) 0.56 (0.084) 0.53 (0.249)
Natural Gas  0.76 (0.000)  0.66 (0.000)  0.56 (0.044) 0.57 (0.072) 0.57 (0.075)  0.53 (0.276)  0.56 (0.085) 0.52(0.369) 0.50 (0.534)
Heating Oil  0.73 (0.000)  0.58 (0.009)  0.57 (0.038) 0.53 (0.259) 0.54 (0.155) 0.54(0.137) 0.55(0.060) 0.52(0.223) 0.53 (0.149)
Gasoline ~ 0.69 (0.000)  0.60 (0.002) 0.56 (0.165) 0.56 (0.117)  0.55(0.152) 0.55(0.088) 0.53(0.259) 0.52(0.294) 0.53 (0.216)
Ethanol 0.76 (0.000)  0.53(0.225) 0.56(0.017) 0.45(0.910) 0.54(0.101) 0.47(0.723)  0.50 (0.469) 0.52(0.213) 0.49 (0.511)
Gold 0.73 (0.000)  0.58 (0.011)  0.60 (0.004) 0.55(0.112) 0.58 (0.017) 0.54(0.190) 0.52(0.317) 0.51(0.423) 0.49 (0.559)
Silver  0.73 (0.000)  0.56 (0.070)  0.58 (0.060) 0.56 (0.175)  0.59 (0.041) 0.54(0.362) 0.52(0.419) 0.54(0.277)  0.53 (0.345)
Platinum  0.75 (0.000)  0.60 (0.003) 0.61(0.004) 0.54(0.190) 0.61 (0.001) 0.53 (0.306) 0.58 (0.038) 0.58 (0.009) 0.59 (0.005)
Aluminum  0.70 (0.000)  0.54 (0.107)  0.54 (0.077)  0.50 (0.435)  0.52(0.196) 0.47 (0.799) 0.45(0.854) 0.49 (0.548) 0.49 (0.510)
Copper 0.65 (0.000) 0.58 (0.010) 0.53(0.163) 0.57(0.011) 0.55(0.054) 0.53(0.129) 0.53(0.135) 0.54 (0.086) 0.51 (0.305)
Lead 0.69 (0.000)  0.60 (0.001) 0.51(0.353) 0.55(0.049) 0.51(0.329) 0.48 (0.630) 0.50(0.399) 0.49 (0.549) 0.46 (0.853)
Zinc 0.72 (0.000)  0.63 (0.000) 0.52(0.258) 0.49 (0.592) 0.49 (0.596) 0.46 (0.782) 0.46(0.775) 0.46 (0.760)  0.44 (0.897)
Nickel ~ 0.72(0.000) 0.66 (0.000) 0.57 (0.037) 0.52(0.300) 0.52(0.340) 0.51(0.436) 0.54(0.151) 0.52(0.290) 0.52 (0.308)
Tin 0.72 (0.000)  0.64 (0.000) 0.58 (0.027)  0.56 (0.056)  0.56 (0.049) 0.52(0.259) 0.51(0.351) 0.48 (0.678) 0.48 (0.667)
Corn 0.73 (0.000)  0.60 (0.002) 0.50(0.537) 0.53(0.185) 0.55(0.108) 0.58 (0.020) 0.58 (0.014) 0.57 (0.050) 0.54 (0.203)
Soybeans  0.70 (0.000)  0.62 (0.000) 0.50 (0.525)  0.54 (0.090) 0.53(0.217) 0.58 (0.029) 0.51(0.400) 0.52(0.270) 0.54 (0.155)
Wheat 0.65(0.000)  0.57 (0.014) 0.53(0.205)  0.53 (0.201) 0.52(0.266) 0.52(0.298) 0.53(0.208)  0.50 (0.514)  0.47 (0.772)

Notes: See the notes below Table 2.4. This table presents real-time end-of-month forecasts
compared to monthly average no-change forecasts for the real price level. Forecasts for ethanol
and gasoline start in 2006 due to data limitations.
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The no-change forecasts are implemented in real-time; see section 2.4. Across all
commodities, the MSFE ratios remain under unity at short-run horizons, and the
success ratios exceed 0.5, see Table A.2. Both the magnitude and convergence of
forecast criteria closely reflect values for series closely approximated by a random
walk. Consistent with the findings for crude oil (Ellwanger & Snudden, 2023a),
the forecast gains are significant for both criteria for the majority of commodities
up to one year ahead.

These empirical findings reinforce the necessity to test relative to the end-of-
period no-change forecast when evaluating period average forecasts of primary
commodities. All forecasts in the paper are thus reported and tested against the
end-of-month no-change forecast.
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Comparison of contract and horizon alignment assumptions

Table A.3.: Adjustment Variations in First-Month Futures Forecasting,
Non-Parametric

Baseline  No Adjustment Adjustment (1) Adjustment (2) Adjustment (3) Adjustment (4)
Commodity MSFE Ratio
Crude Ol 0.99 (0.313) 0.99 (0.263)  1.00 (0.504) 0.9 (0.159)  1.00(0.552)  0.99 (0.313)
Natural Gas 1.02 (0.663) 1.18(0.923)  1.07(0.829)  1.02(0.663)  1.27(0.965)  1.23(0.922)
Heating Oil 1.04 (0.767) 1.29(0.954)  1.04 (0.767)  1.06(0.761)  1.23(0.961)  1.37(0.978)
Gasoline  0.81(0.004)  0.90 (0.058)  0.81(0.004)  0.92 (0.006)  0.81(0.022)  0.98 (0.386)
Ethanol ~ 0.72 (0.125) 1.18(0.663)  0.72 (0.125)  0.80(0.105) 127 (0.717)  1.22(0.705)
Corn 1.03 (0.580) 1.25(0.949) 0.93(0.321) 0.97(0.339)  1.03 (0.580) 1.49 (0.994)
Soybeans  0.86 (0.125) 0.95(0.266)  0.83 (0.075)  0.93 (0.036)  0.86(0.125)  1.12(0.957)
Wheat 110 (0.911) 1.21(0.985)  1.14(0.968)  1.01(0.648) 1.10(0.911)  1.20 (0.983)
Success Ratio
Crude Oil  0.55(0.091) 0.51(0.166)  0.51(0.344)  0.49(0.195)  0.51(0.353)  0.55(0.091)
Natural Gas 0.52 (0.321)  0.53 (0.284)  0.56 (0.081)  0.52(0.321)  0.51 (0.402)  0.53 (0.203)
Heating Oil 0.52(0.300) 0.51 (0.470)  0.52(0.300)  0.52(0.325)  0.50 (0.566)  0.49 (0.688)
Gasoline  0.62 (0.001)  0.56 (0.029)  0.62 (0.001)  0.60 (0.001)  0.62 (0.000)  0.53 (0.278)
Ethanol ~ 0.55 (0.086) 0.63 (0.001)  0.55 (0.086)  0.64(0.000)  0.56 (0.033)  0.64 (0.000)
Com  0.56(0.028) 0.55(0.145)  0.58(0.008)  0.55(0.088)  0.56(0.028)  0.55(0.076)
Soybeans  0.56 (0.051)  0.60 (0.006)  0.54 (0.183)  0.53(0.269)  0.56 (0.051)  0.56 (0.004)
Wheat  0.55(0.088) 0.53 (0.164)  0.57 (0.012)  0.56(0.031)  0.55(0.088)  0.56 (0.075)
Note: See the notes below Table 2.4. This table presents the performance
of futures-based forecasts of nominal monthly prices using the EoM Futures
Curve, for one month ahead. “Baseline” refers to the adjustment assumptions
detailed in section 2.4.2, used as the baseline in the main tables. “No
Adjustment” uses the front-month contract. “Adjustment (1)” omits the
front-month contract and averages the spot price with the second-month
contract. “Adjustment (2)” assigns the front contract to the two-month-ahead
forecast and averages the spot price with the front contract. “Adjustment (3)”
calculates the average of the first and second front contracts after aligning
them with their corresponding horizons. Lastly, “Adjustment (4)” applies the
average curvature from the first 12 contracts to the front contract. This table
includes only the commodities for which the front-month contracts do not
correspond with the one-month-ahead forecast, in line with the assumptions
explained in section 2.4.2.
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Figure A.1.: Traded Volume vs MSFE Ratio for the One-Month Ahead.
Note: The blue line represents the MSFE Ratio, which measures the performance of futures-based forecasts of real prices using End-of-Month (EoM)
futures. The MSFE Ratio compares the forecast accuracy of futures-based models to a random walk (no-change) forecast, where values below 1 indicate
that the futures-based forecast is more accurate. The red line represents the trading volume (in thousands) of the corresponding commodity for the front
contract.
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Table A.4.: Futures-based Forecasts of Monthly Average Real Prices, Non-Parametric,
Constructed using Five Day End-of-Month Futures Average

1 3 6 9 12 15 18 21 24

Commodity MSFE Ratio
Crude Oil 1.20(0.977)  0.95(0.057) 0.88(0.027) 0.87(0.089) 0.83(0.070) 0.77(0.026) 0.71 (0.013)  0.66 (0.007) 0.61 (0.003)
Natural Gas  1.19 (0.980)  1.03 (0.657) 0.98 (0.427) 1.07 (0.667) 1.07 (0.669)  0.96 (0.354)  0.96 (0.387)  0.96 (0.378) 0.97 (0.400)
Heating Oil ~ 1.47(0.997)  1.00 (0.481) 0.97(0.276)  0.93 (0.059) 0.87 (0.006)  0.86 (0.002) 0.82(0.000) ~0.79 (0.000) 0.74 (0.000)
Gasoline 0.97 (0.394)  0.77 (0.005)  0.70 (0.004) 0.82(0.048) 0.89 (0.093) 0.83(0.028) 0.75(0.010) 0.73 (0.009) 0.70 (0.003)
Ethanol 1.18 (0.646)  0.75(0.123)  0.84(0.239) 0.84 (0.181) 0.77 (0.123)  0.70 (0.051)  0.68 (0.046)  0.62 (0.039) 0.57 (0.025)
Gold 0.97 (0.261) 1.01 (0.600) 0.99 (0.450) 0.99 (0.413) 0.98 (0.377) 0.98 (0.336) 0.97 (0.275) 0.95(0.185) 0.93 (0.125)
Silver 0.99 (0.468) 1.04 (0.857) 1.00(0.501) 0.98(0.312) 0.97 (0.188) 0.95(0.107) 0.92 (0.040) 0.89 (0.022)  0.86 (0.023)
Platinum 1.07 (0.950)  1.02(0.745) 0.94 (0.088) 0.91(0.033) 0.88 (0.013) 0.86 (0.003) 0.85(0.000) 0.84 (0.000) 0.84 (0.000)
Aluminum  1.10 (0.891)  1.00 (0.516)  0.98 (0.297)  0.96 (0.129)  0.94 (0.031)  0.94 (0.049)  0.95(0.099) 0.95(0.131) 0.94 (0.121)
Copper 1.00 (0.514)  0.96 (0.166) 0.97 (0.198)  0.94 (0.109)  0.93 (0.079) 0.92 (0.058) 0.89 (0.040) 0.88 (0.040) 0.87 (0.054)
Lead 1.11(0.923)  0.99(0.422) 0.96(0.175) 0.88(0.043) 0.87(0.033) 0.87(0.061) 0.86 (0.066) 0.85(0.041) 0.82 (0.020)

Zinc 1.15(0.961)  0.95(0.119) 0.93(0.114) 0.89 (0.038)  0.90 (0.068) 0.92 (0.118) 0.93 (0.172) 0.94 (0.227)  0.94 (0.279)
Nickel 107 (0.891)  1.01(0.554) 0.96 (0.147)  0.93 (0.104) 0.92 (0.112) 0.87 (0.036)  0.83 (0.026) 0.80 (0.012)  0.78 (0.009)
Tin 1.08(0.920) 1.02(0.601) 1.01(0.532) 1.00(0.497) 0.99(0.429) 0.95(0.218) 0.94 (0.181) 0.98 (0.323) 0.99 (0.407)

Corn 0.96 (0.365) 0.77 (0.048)  0.69 (0.029)  0.72 (0.052) 0.74 (0.064) 0.68 (0.038)  0.64 (0.034) 0.62(0.029) 0.58 (0.013)
Soybeans  0.90 (0.120)  0.76 (0.013)  0.73 (0.025) 0.78 (0.047)  0.84 (0.156) 0.78 (0.125) 0.73 (0.085) 0.73 (0.076)  0.68 (0.034)
Wheat 1.12(0.880) 1.07 (0.734)  1.05(0.626) 0.99 (0.473)  0.95(0.380) 0.92 (0.301) 0.93 (0.250) 0.92 (0.197) 0.88 (0.163)
Success Ratio
Crude Oil ~ 0.47 (0.709)  0.57 (0.039) 0.57 (0.060) 0.58 (0.069) 0.68 (0.000) 0.71 (0.000) 0.66 (0.001)  0.65 (0.002) 0.76 (0.000)
Natural Gas  0.53 (0.249)  0.56 (0.064)  0.60 (0.002)  0.61 (0.011)  0.66 (0.002) 0.64 (0.005) 0.65 (0.007) 0.63 (0.009) 0.62(0.018)
Heating Oil ~ 0.53 (0.182)  0.57 (0.057)  0.66 (0.000) 0.66 (0.002) 0.75(0.000) 0.82 (0.000) 0.81 (0.000) 0.80 (0.000) 0.77 (0.000)
Gasoline 0.56 (0.051)  0.60(0.019)  0.72 (0.000) 0.64 (0.001) 0.62 (0.001) 0.63 (0.000) 0.63 (0.007) 0.71 (0.000) 0.70 (0.000)
Ethanol 0.58 (0.009) 0.60 (0.012) 0.63 (0.000) 0.61(0.012) 0.64 (0.018) 0.68 (0.000) 0.65 (0.001) 0.67 (0.000) 0.73 (0.000)
Gold 0.56 (0.033) 0.47(0.882) 0.53 (0.052) 0.57 (0.097) 0.55(0.262) 0.61 (0.000) 0.60 (0.000) 0.60 (0.000) 0.53 (0.000)
Silver 0.55(0.100)  0.53 (0.295) 0.58 (0.155)  0.62(0.140) 0.59 (0.395) 0.62(0.132) 0.68 (0.000) 0.67 (0.000) 0.64 (0.001)
Platinum 0.47(0.707)  0.47(0.851)  0.60 (0.096) 0.62(0.162) 0.68 (0.075) 0.73(0.023) 0.74 (0.006) 0.77 (0.001)  0.77 (0.008)
Aluminum  0.55 (0.079)  0.52 (0.292) 0.49 (0.539) 0.50 (0.452) 0.53 (0.252) 0.54 (0.219) 0.53(0.293) 0.58 (0.062) 0.56 (0.116)
Copper 0.55(0.118) 0.53(0.348) 0.60 (0.163)  0.59 (0.522) 0.64 (0.145) 0.63 (0.317) 0.61 (0.160) 0.59 (1.000)  0.59 (1.000)
Lead 0.51(0.430) 0.52(0.352) 0.52(0.466) 0.58(0.087) 0.57(0.064) 0.61(0.138) 0.63 (0.202) 0.63 (0.289) 0.65 (0.298)
Zinc 0.51 (0.581) 0.53(0.252) 0.58 (0.018) 0.57 (0.019)  0.61 (0.002) 0.62 (0.004) 0.60 (0.019) 0.57 (0.034)  0.58 (0.122)
Nickel 0.50 (0.500) 0.49 (0.541) 0.48 (0.635)  0.53 (0.159) 0.56 (0.009) 0.53 (0.130) 0.52 (0.152) 0.60 (0.014) 0.62 (0.000)
Tin 0.47 (0.843)  0.51(0.417) 0.52 (0.101)  0.55(0.007) 0.56 (0.000) 0.55 (0.000) 0.60 (0.000) 0.59 (0.000) 0.56 (0.000)
Corn 0.59 (0.009) 0.62(0.001) 0.66 (0.001) 0.58 (0.050) 0.51(0.443) 0.51(0.441) 0.57(0.117) 0.57 (0.063) 0.58 (0.035)
Soybeans  0.58 (0.015) 0.60 (0.012)  0.62 (0.011) 0.64 (0.007)  0.61 (0.023) 0.59 (0.110) 0.57 (0.083) 0.60 (0.041)  0.63 (0.002)
Wheat 0.61 (0.000)  0.64 (0.001)  0.59 (0.023)  0.52 (0.547) 0.48 (0.870) 0.48 (0.758) 0.53 (0.437) 0.54 (0.462) 0.56 (0.269)

Notes: See the notes below Table 2.4. This table presents the performance of futures-based
forecasts of monthly average spot prices using the five-day end-of-month average of futures
prices. Bold values represent improvements over the baseline results in Table 2.4.
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A. Supplementary Material for Chapter 2

Parametric models

Table A.5.: MSFE Precision

metric

of Futures-based Forecasts of Monthly Real Prices, Para-
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PP AP I IR I
-

2

B

27.89 (1.000)
1.00 (0.147)
1.00 (0.577)
4.41 (1.000)
1.00 (0.166)
1.11 (0.970)
24.26 (1.000)
1.00 (0.184)
1.01 (0.856)
3.84 (1.000)
0.98 (0.004)
1.06 (0.770)
2.11 (0.963)
0.87 (0.036)
0.85(0.122)

4.29 (1.000)
1.00 (0.009)
1.05 (0.939)
1.63 (0.969)
0.97 (0.036)
1.07 (0.717)
4.78 (1.000)
0.99 (0.096)
1.02 (0.926)
1.12(0.743)
0.82 (0.001)
1.25(0.898)
1.17 (0.709)
0.69 (0.021)
0.75 (0.079)

113.54 (1.000) 22.41 (1.000)

1.00 (0.644)
1.02 (0.777)
17.30 (1.000)
1.00 (0.375)
1.03 (0.890)
61.05 (1.000)
1.00 (0.718)
1.02 (0.807)
32.48 (1.000)
1.00 0.751)
1.01 (0.844)
28.93 (1.000)
1.00 (0.950)
1.03 (0.929)
21.28 (1.000)
1.00 (0.995)
1.03 (0.909)
22.68 (1.000)
1.00 (0.971)
1.00 (0.422)
9.79 (1.000)
1.00 (0.283)
1.01 (0.734)
17.68 (1.000)
1.00 (0.228)
1.05 (0.891)
17.98 (1.000)
1.00 (0.090)
1.01 (0.740)
32.66 (1.000)
1.00 (0.022)
1.00 (0.483)
29.41 (1.000)
1.00 (0.086)
1.02 (0.979)

1.00 (0.333)
1.20 (0.940)
4.50 (1.000)
1.00 (0.178)
1.17(0.931)
11.37 (1.000)
1.00 0.011)
1.23 (0.986)
5.84 (1.000)
1.00 (0.700)
1.06 (0.951)
4.96 (1.000)
1.00 (0.048)
1.23 (0.958)
4.55 (1.000)
1.00 (0.001)
1.25 (0.969)
4.86 (1.000)
1.00 (0.043)
1.08 (0.992)
2.25 (1.000)
1.00 (0.304)
1.07 (0.958)
2.85(0.999)
1.00 (0.577)
1.16 (0.919)
3.89 (1.000)
0.98 (0.014)
1.03 (0.821)
4.78 (1.000)
0.98 (0.016)
1.02 (0.730)
6.58 (1.000)
1.00 (0.210)
1.04 (0.994)

2.15(0.997)
0.98 (0.014)
1.06 (0.922)
1.38(0.891)
0.95 (0.190)
1.27 (0.879)
2.58 (1.000)
0.99 (0.037)
1.05 (0.940)
0.84(0.171)
0.75 (0.014)
1.18 (0.760)
1.12 (0.640)
0.98 (0.481)
1.19 (0.667)
10.77 (1.000)
1.00 (0.124)
1.54(0.969)
2.38 (1.000)
1.00 (0.048)
1.45 (0.954)
5.82 (1.000)
1.00 (0.001)
1.79 (0.998)
2.95 (1.000)
1.00 (0.238)
1.13(0.974)
2.18 (0.999)
1.00 (0.042)
1.62 (0.984)
2.16 (1.000)
0.99 (0.006)
1.71 (0.981)
2.49 (1.000)
0.99 (0.043)
1.19 (0.989)
1.39(0.935)
0.99 (0.094)
1.16 (0.944)
1.41 (0.858)
1.00 (0.512)
1.33(0.957)
2.21(0.998)
0.95 (0.015)
1.05 (0.783)
2.53 (1.000)
0.95 (0.017)
1.01 (0.564)
4.03 (1.000)
0.99 (0.234)
1.08 (0.997)

MSFE Ratio
1.31 (0.825)
0.95 (0.027)
1.17 (0.986)
1.31 (0.844)
1.06 (0.684)
1.60 (0.923)
1.29 (0.900)
0.96 (0.003)
1.09 (0.969)
1.04 (0.600)
0.90 (0.104)
1.49 (0.958)
0.81 (0.254)
0.90 (0.369)
0.96 (0.447)
5.41 (1.000)
1.00 (0.010)
2.45 (0.993)
1.42 (0.942)
1.00 (0.022)
2.03 (0.989)
2.36 (0.997)
1.00 (0.000)
1.77 (0.999)
1.93 (0.994)
1.00 (0.073)
1.20 (0.997)
1.21 (0.849)
0.98 (0.019)
2.47 (0.999)
1.07 (0.645)
0.96 (0.007)
2.81(0.997)
1.62 (0.985)
0.97 (0.029)
1.35 (0.998)
1.25 (0.991)
0.93 (0.067)
1.36 (0.993)
1.17 (0.785)
0.99 (0.302)
1.66 (0.990)
1.82 (0.985)
0.94 (0.030)
1.15 (0.997)
2.26 (1.000)
0.91 (0.018)
1.04 (0.756)
2.57 (1.000)
0.97 (0.138)
1.05 (0.778)

1.03 (0.540)
0.91 (0.010)
1.09 (0.951)
1.13(0.753)
1.03 (0.582)
1.29 (0.874)
1.06 (0.635)
0.94 (0.001)
1.06 (0.884)
0.96 (0.382)
0.87 (0.137)
1.80 (0.991)
0.74 (0.158)
0.69 (0.087)
0.78 (0.189)
4.30 (1.000)
1.00 (0.001)
3.00 (0.996)
1.25 (0.846)
1.00 (0.017)
2.42 (0.995)
1.70 (0.951)
0.99 (0.000)
2.13 (1.000)
1.69 (0.982)
1.00 (0.166)
1.21 (0.997)
1.14 (0.801)
0.97 (0.019)
2.84 (1.000)
1.00 (0.505)
0.94 (0.017)
3.21 (0.999)
1.43 (0.964)
0.96 (0.052)
1.36 (0.999)
1.40 (0.999)
0.84 (0.037)
1.45 (0.999)
1.11 (0.770)
0.98 (0.154)
1.85 (0.994)
1.62 (0.951)
0.90 (0.017)
1.14 (0.935)
2.01 (0.995)
0.87 (0.017)
1.08 (0.814)
235 (0.998)
0.95 (0.086)
1.14 (0.776)

0.83 (0.256)
0.88 (0.007)
1.09 (0.971)
1.12 (0.748)
1.07 (0.662)
1.22 (0.857)
0.91 (0.279)
0.92 (0.000)
1.02 (0.713)
0.85(0.102)
0.81 (0.140)
1.62 (0.959)
0.72 (0.132)
0.65 (0.055)
0.82(0.232)
3.61 (1.000)
1.00 (0.001)
3.66 (0.997)
1.14(0.714)
0.99 (0.007)
3.27 (0.997)
1.27(0.762)
0.99 (0.000)
2.36 (1.000)
1.56 (0.967)
1.00 (0.273)
1.20 (0.995)
1.15 (0.882)
0.96 (0.015)
3.24 (1.000)
1.02 (0.566)
0.92 (0.024)
4.11 (1.000)
1.28 (0.920)
0.95 (0.069)
1.30 (0.999)
1.58 (0.999)
0.76 (0.020)
1.56 (1.000)
1.10 (0.805)
0.97 (0.131)
2.23(0.997)
1.47 (0.881)
0.85(0.011)
1.15 (0.803)
1.69 (0.973)
0.84(0.012)
1.10 (0.865)
2.13(0.990)
0.94 (0.030)
1.28 (0.844)

0.64 (0.049)
0.82 (0.002)
1.17 (0.981)
1.10 (0.717)
1.12 (0.738)
1.19 (0.836)
0.73 (0.025)
0.86 (0.000)
1.03 (0.695)
0.83 (0.070)
0.71 (0.040)
1.77 (0.956)
0.67 (0.103)
0.81(0.115)
0.99 (0.483)
2.85 (1.000)
0.99 (0.007)
5.68 (0.999)
0.91 (0.363)
0.98 (0.007)
4.92 (0.998)
0.74 (0.197)
0.98 (0.000)
2.91 (1.000)
1.34 (0.898)
1.00 (0.361)
1.13 (0.893)
1.44 (1.000)
0.93 (0.033)
4.23 (1.000)
1.12 (0.846)
0.86 (0.007)
6.17 (1.000)
1.12 (0.788)
0.93 (0.161)
1.14 (0.965)
1.82 (0.999)
0.69 (0.007)
1.74 (1.000)
1.18 (0.979)
0.99 (0.284)
3.18 (0.999)
1.02 (0.520)
0.77 (0.008)
1.02 (0.530)
1.21 (0.776)
0.78 (0.011)
1.05 (0.661)
1.49 (0.885)
0.91 (0.037)
1.28 (0.790)

Notes: See the notes below Table 2.4. This table presents the performance of futures-
based forecasts using the futures-spot spread model, specified in Equation 2.7. Bold

values represent improvements over the baseline results in Table 2.4.
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A.2. Additional results

Table A.6.: Directional Accuracy of Futures-based Forecasts of Monthly Real Prices,
Parametric

1 3 6 12 15 18 24

Commodity Model Success Ratio
Crude Oil a 0.47 (1.000)  0.46 (1.000) 0.46 (0.100) 0.48 (0.100) 0.51(0.252) 0.49 (0.281) 0.59 (0.000)
0.55(0.091)  0.52(0.208) 0.58(0.093) 0.68 (0.002) 0.69 (0.000) 0.66 (0.002) 0.75 (0.000)
0.46 (0.934)  0.48 (0.673) 0.49(0.532) 0.46(0.732) 0.49 (0.535) 0.41(0.892) 0.41 (0.873)
0.50 (0.100)  0.54 (0.000)  0.64 (0.000) 0.61(0.025) 0.60 (0.102) 0.60 (0.103)  0.56 (0.269)
0.52(0.321)  0.54(0.169)  0.61(0.000) 0.64 (0.006) 0.66 (0.003) 0.63 (0.017) 0.62 (0.021)
0.50 (0.000)  0.54 (0.000) 0.62 (0.000) 0.64 (0.001) 0.63 (0.026) 0.60 (0.123)  0.60 (0.140)
0.49 (1.000)  0.47 (1.000)  0.50 (0.100)  0.50 (0.100) 0.55 (0.000) 0.61 (0.000) 0.60 (0.008)
0.52(0.300) 0.56 (0.072) 0.61(0.019) 0.77 (0.000) 0.82 (0.000) 0.81 (0.000) 0.81 (0.000)
0.48 (0.668) 0.42(0.924) 0.36(0.991) 0.40(0.916) 0.43 (0.827) 0.43(0.797) 0.43 (0.790)
0.51(0.000) 0.58 (0.003) 0.64 (0.000) 0.56 (0.014) 0.56 (0.014) 0.58 (0.033) 0.58 (0.000)
0.62 (0.001)  0.62(0.004) 0.71(0.000) 0.62(0.001) 0.62(0.001) 0.65(0.002) 0.70 (0.000)
0.51 (0.000)  0.58 (0.002) 0.59 (0.000) 0.55(0.050) 0.53(0.105) 0.55(0.098) 0.59 (0.000)
0.52 (1.000)  0.57 (0.062)  0.63 (0.000) 0.65 (0.043) 0.65(0.000) 0.57 (0.397) 0.67 (0.000)
0.54(0.207)  0.60 (0.024)  0.68 (0.000) 0.63 (0.129) 0.67 (0.000) 0.62 (0.024)  0.73 (0.000)
0.52 (1.000)  0.56 (0.116)  0.61(0.000) 0.63 (0.210) 0.65 (0.000) 0.57 (0.397) 0.67 (0.000)
0.46 (1.000)  0.52 (1.000) 0.46 (1.000)  0.53 (1.000) 0.53 (1.000) 0.50 (1.000) 0.45 (1.000)
0.53 (0.556) 0.47 (0.630)  0.52(0.422) 0.58 (0.155) 0.70 (0.000) 0.67 (0.000) 0.50 (0.100)
0.55 (1.000) 0.48 (1.000) 0.54 (1.000) 0.47 (1.000) 0.47 (1.000) 0.50 (1.000) 0.55 (1.000)
0.48 (1.000)  0.53 (1.000) 0.60 (1.000) 0.65 (1.000) 0.61 (1.000) 0.58 (1.000) 0.56 (1.000)
0.49 (0.535)  0.50(0.779)  0.59(0.353)  0.67 (0.037)  0.66 (0.004) 0.67 (0.000) 0.63 (0.009)
0.52 (1.000) 0.47 (1.000) 0.40(1.000) 0.35(1.000) 0.39 (1.000) 0.42(1.000) 0.44 (1.000)
0.47 (1.000)  0.55(1.000) 0.62(1.000) 0.69 (1.000) 0.73 (1.000) 0.73 (1.000) 0.79 (1.000)
0.49 (0.370)  0.56 (0.238)  0.66 (0.016) 0.72(0.011) 0.76 (0.002)  0.79 (0.000)  0.84 (0.000)
0.44 (1.000)  0.45(1.000) 0.38(1.000) 0.31(1.000) 0.27 (1.000) 0.27 (1.000) 0.21 (1.000)
0.56 (1.000)  0.53 (1.000) 0.54 (1.000) 0.54 (1.000) 0.56 (1.000) 0.58 (1.000) 0.62 (1.000)
0.53 (0.351) 0.55(0.138) 0.46 (0.682) 0.50 (0.466) 0.49 (0.504) 0.53(0.235) 0.56 (0.064)
0.53 (0.777)  0.49 (0.615) 0.45(0.819) 0.40(0.982) 0.38(0.999) 0.38 (1.000) 0.50 (0.987)
0.52 (1.000)  0.53 (1.000) 0.60 (1.000) 0.63 (1.000) 0.63 (0.579) 0.49 (0.901) 0.23 (1.000)
0.47 (0.976)  0.53 (0.000) 0.60 (1.000) 0.63 (1.000) 0.63 (1.000) 0.60 (1.000) 0.59 (1.000)
0.44 (0.954)  0.46 (1.000) 0.40 (1.000) 0.37(1.000) 0.37 (1.000) 0.40 (1.000) 0.41 (1.000)
0.49 (1.000)  0.52(1.000) 0.54 (1.000) 0.55(0.000) 0.63 (0.105) 0.63(0.212) 0.41 (0.974)
0.44 (0.940)  0.61(0.005) 0.60(0.057) 0.58 (0.011) 0.65(0.009) 0.66 (0.144) 0.67 (0.061)
0.42(0.971) 0.48(0.541) 0.46 (1.000) 0.48 (1.000) 0.39 (1.000) 0.35(1.000) 0.34 (1.000)
0.56 (1.000) 0.51 (1.000) 0.49 (1.000) 0.50 (1.000) 0.53 (1.000) 0.53 (1.000) 0.46 (0.818)
0.46 (0.547)  0.51 (0.506) 0.52(0.346) 0.57 (0.086) 0.61(0.021) 0.60 (0.020) 0.58 (0.120)
0.56 (0.830) 0.46 (0.763)  0.46 (1.000) 0.49 (1.000) 0.40 (0.995) 0.37 (0.986) 0.42 (0.881)
0.50 (1.000)  0.49 (1.000) 0.49 (1.000) 0.38 (0.980) 0.24 (1.000) 0.23 (1.000) 0.34 (1.000)
0.50 (1.000)  0.49 (0.290)  0.50 (0.569) 0.50 (1.000) 0.50 (1.000) 0.49 (1.000) 0.55 (0.000)
0.51(0.321) 0.45(0.814) 0.34(0.998) 0.35(0.990) 0.28 (1.000) 0.32(0.995) 0.16 (1.000)
0.53 (1.000)  0.50 (1.000) 0.48 (1.000) 0.52(1.000) 0.54 (1.000) 0.55(0.950) 0.47 (0.736)
0.53 (1.000)  0.50 (1.000) 0.48 (1.000) 0.52(1.000) 0.54 (1.000) 0.58 (1.000) 0.54 (1.000)
0.44 (0.937)  0.49 (1.000) 0.52(1.000) 0.48 (1.000) 0.47 (1.000) 0.42 (1.000) 0.46 (1.000)
0.48 (1.000)  0.48 (1.000) 0.48 (1.000) 0.50 (1.000) 0.51 (1.000) 0.53 (1.000) 0.58 (1.000)
0.55(0.127)  0.64 (0.000) 0.65 (0.001) 0.52 (0.404) 0.50 (0.486) 0.55(0.177) 0.58 (0.035)
0.42(0.999) 0.44(0.994) 0.47(0.851) 0.44(0.827) 0.49 (1.000) 0.52(1.000) 0.59 (0.000)
0.51 (1.000)  0.46 (1.000) 0.49 (1.000) 0.50 (1.000) 0.53 (1.000) 0.49 (1.000) 0.53 (1.000)
0.55(0.147)  0.53(0.251)  0.60 (0.023)  0.57 (0.091) 0.58 (0.150) 0.56 (0.117) 0.61 (0.034)
0.48 (0.991) 0.45(0.923) 0.48(0.751) 0.49(0.559) 0.53(0.453) 0.48 (0.585) 0.53 (0.000)
0.51 (1.000)  0.50 (1.000) 0.48 (1.000) 0.45 (1.000) 0.49 (1.000) 0.47 (1.000) 0.50 (1.000)

0.55(0.069) 0.57 (0.057) 0.58 (0.033) 0.50(0.774) 0.49 (0.659) 0.53 (0.441) 0.56 (0.269)
@B 045(0.937) 0.42(0.956) 0.34(1.000) 0.46 (1.000) 0.49 (0.100) 0.49 (1.000) 0.50 (1.000)

-
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-
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Notes: See the notes below Table 2.4. This table presents the performance of futures-
based forecasts using the futures-spot spread model, specified in Equation 2.7. Bold
values represent improvements over the baseline results in Table 2.4.
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Robustness over time

Table A.7.: Futures-based Forecasts of Monthly Average Real Prices,
Non-Parametric, Sample Starting 2000

1 3 6 9 12 15 18 21 24

Commodity MSPE
Crude Oil ~ 0.97 (0.102)  0.97 (0.046)  0.95 (0.100)  0.94 (0.139)  0.89 (0.053)  0.84 (0.024) 0.83 (0.031)  0.83 (0.052) 0.83 (0.069)
Natural Gas  0.81 (0.106)  0.90 (0.166) 0.82 (0.041)  0.76 (0.041)  0.75 (0.024)  0.81 (0.049) 0.84 (0.088) 0.86 (0.153) 0.86 (0.158)
Heating Oil ~ 1.05 (0.887) 1.02 (0.667) 1.03 (0.794)  0.99 (0.353) 0.91 (0.025) 0.88 (0.011) 0.87 (0.011)  0.84 (0.006) 0.80 (0.002)
Gasoline 0.82 (0.000)  0.75 (0.000) 0.72 (0.000) 0.83 (0.009) 0.91(0.079) 0.82 (0.005) 0.71 (0.000) 0.70 (0.000) 0.70 (0.000)
Ethanol  0.74 (0.121)  0.77 (0.097) 0.85 (0.176) 0.86 (0.158) 0.83 (0.157)  0.76 (0.079)  0.70 (0.039)  0.67 (0.035)  0.66 (0.021)
Gold 1.01 (0.808) 1.01 (0.603) 1.01(0.593) 1.00(0.509) 1.00(0.495) 0.99 (0.445) 0.99 (0.396) 0.98 (0.342) 0.98 (0.304)
Silver 1.04 (0.904) 1.00 (0.571) 0.99 (0.328) 0.98 (0.219)  0.98 (0.225) 0.98 (0.214)  0.97 (0.206) 0.97 (0.195)  0.96 (0.177)
Aluminum ~ 0.99 (0.264) 1.01 (0.643) 1.00 (0.541) 1.00 (0.448) 1.03(0.776) 1.08 (0.911) 1.07 (0.857) 1.03 (0.613) 0.98 (0.451)
Copper 0.99 (0.168)  0.99 (0.423) 1.00 (0.509) 1.03 (0.645) 1.08 (0.803) 1.09(0.818) 1.10(0.811) 1.14(0.863) 1.16(0.895)
Lead 0.99 (0.154)  0.99 (0.232) 1.01(0.572) 1.01(0.554) 1.00(0.485) 0.97(0.396) 0.97 (0.382) 0.98 (0.406) 1.00 (0.475)
Zinc 0.98 (0.032)  0.96 (0.019) 0.97 (0.193)  0.93 (0.088) 0.91 (0.114) 0.88 (0.090) 0.85 (0.071) 0.82 (0.067) 0.79 (0.069)
Nickel 0.97 (0.287) 1.01(0.532) 1.00(0.485) 0.99 (0.484) 0.95(0.322) 0.91(0.238) 0.87 (0.225) 0.84 (0.222) 0.83 (0.232)
Tin 1.00 (0.579) 1.02(0.710) 1.03 (0.676) 1.02(0.619) 1.02(0.615) 1.01(0.589) 1.02(0.649) 1.05(0.857) 1.05(0.913)
Corn 1.24 (0.936)  0.91 (0.254) 0.83 (0.114) 0.82 (0.110) 0.82 (0.111)  0.76 (0.044)  0.69 (0.015)  0.66 (0.006) 0.62 (0.001)
Soybeans  0.90 (0.090) 0.77 (0.004)  0.73 (0.007)  0.75 (0.010) 0.79 (0.030) 0.79 (0.035) 0.80 (0.058) 0.81 (0.060) 0.77 (0.022)
Wheat 1.86 (0.983) 1.29(0.927) 1.15(0.790) 1.02(0.567) 0.94 (0.331) 0.86 (0.144) 0.79 (0.052) 0.76 (0.019)  0.72 (0.004)

Success Ratio

Crude Oil  0.57 (0.005)  0.51 (0.150) 0.54 (0.126)  0.56 (0.052) 0.61 (0.004) 0.63 (0.000) 0.60 (0.000) 0.56 (0.010) 0.60 (0.001)
Natural Gas ~ 0.56 (0.027)  0.54 (0.066)  0.60 (0.002) 0.62 (0.002) 0.63 (0.005) 0.66 (0.001) 0.61 (0.014) 0.63 (0.006) 0.59 (0.032)
Heating Oil ~ 0.51 (0.393)  0.54 (0.291)  0.59 (0.090) 0.62 (0.018) 0.66 (0.000) 0.69 (0.000) 0.70 (0.000) 0.70 (0.000) 0.68 (0.000)
Gasoline  0.62 (0.000)  0.66 (0.000) 0.73 (0.000) 0.63 (0.001) 0.64 (0.000) 0.65 (0.000) 0.67 (0.000) 0.73 (0.000) 0.71 (0.000)
Ethanol 0.57 (0.017)  0.61 (0.001) 0.67 (0.000) 0.68 (0.000) 0.65 (0.000) 0.69 (0.000) 0.68 (0.000) 0.71 (0.000) 0.73 (0.000)
Gold 0.46 (0.815)  0.46 (0.525) 0.44(0.534) 0.46 (0.224) 0.4 (0.281) 0.47 (0.071) 0.48 (0.026) 0.48 (0.006) 0.47 (0.001)
Silver 0.45(0.954) 0.44(0.944) 0.48(0.724) 0.52(0.304) 0.52 (0.315) 0.49(0.370) 0.48 (0.305) 0.46(0.337) 0.44(0.416)
Palladium  0.46 (0.685) 0.50 (0.114) 0.47 (0.482) 0.47 (0.375) 0.46 (0.424) 0.42(0.690) 0.44 (0.672) 0.45(0.654) 0.45 (0.601)
Platinum  0.48 (0.314) 0.47(0.282)  0.49 (0.123) 0.48(0.237) 0.53(0.106) 0.54(0.221) 0.58 (0.023)  0.59(0.032)  0.59 (0.043)
Aluminum ~ 0.50 (0.429)  0.47 (0.756)  0.49 (0.583) 0.47 (0.728)  0.46 (0.769) 0.48 (0.637) 0.51 (0.406) 0.54 (0.274)  0.53 (0.300)
Copper 0.49 (0.757)  0.50(0.337)  0.51(0.212) 0.53 (0.023) 0.53 (0.193) 0.52(0.248) 0.52 (0.105) 0.51 (0.010)  0.51 (0.022)
Lead 0.49 (0.635)  0.56 (0.047) 0.55(0.079)  0.55(0.036) 0.51 (0.140) 0.55(0.037) 0.54 (0.102) 0.54 (0.117)  0.56 (0.042)
Zinc 0.50 (0.618)  0.52 (0.344)  0.56 (0.091) 0.54 (0.191) 0.57 (0.054) 0.58 (0.022) 0.60 (0.012) 0.61 (0.001) 0.62 (0.001)
Nickel 0.49 (1.000) 0.47 (0.834) 0.49 (1.024) 0.48 (0.822) 0.48 (0.500)  0.45(0.500) 0.46 (0.500) 0.47 (0.000) 0.47 (0.000)
Tin 0.50 (0.808)  0.46 (0.859) 0.45(0.663) 0.46 (0.669) 0.47 (0.222)  0.49 (0.000) 0.52 (0.000) 0.52 (0.000) 0.48 (0.000)
Corn 0.56 (0.025)  0.62 (0.000) 0.60 (0.002) 0.55(0.093) 0.56 (0.205) 0.57 (0.067) 0.62 (0.012) 0.66 (0.000) 0.70 (0.000)
Soybeans  0.53 (0.170)  0.58 (0.020)  0.60 (0.012) 0.61 (0.011) 0.60 (0.013) 0.63 (0.008) 0.59 (0.016) 0.60 (0.004) 0.66 (0.000)
Wheat 0.53 (0.048)  0.56 (0.042)  0.61 (0.001)  0.59 (0.097) 0.59 (0.239) 0.62 (0.046) 0.68 (0.001) 0.69 (0.001) 0.70 (0.000)

Note: See the notes below Table 2.4. This table presents the performance of futures-based
forecasts of monthly average spot prices using end-of-month (EOM) futures prices, with the
forecast evaluation sample covering January 2000-2023. The exception is gasoline and ethanol,
which begin in January 2008. Bold values represent improvements over the baseline results in
Table 2.4.
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Figure A.3.: Evolution of MSFEs Criteria For Futures-Based Forecasts, Two-Year Ahead.
Note: The blue line represents the performance of futures-based forecasts of real prices using End-of-Month (EoM) futures, while the red line illustrates
the performance of futures-based forecasts of nominal prices using EoM. A horizontal reference line is drawn at the value of 1 to serve as a benchmark
for evaluating MSFE values, which are reported relative to the average price of a no-change forecast.
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B.1. Detailed Bayesian identification and estimation of
the SVAR model

Consider the following SVAR specification for a n-dimensional time series vector

Yt:
Ayt = B{L'tfl + Uy (Bl)

where y; is an n x 1 vector of endogenous variables, A is an (n X n) matrix sum-
marizing their contemporaneous structural relations, z;_; is a (k x 1) vector (with
k = mn+1) containing a constant and m lags of y (zi—1 = (Yj_1,Y)_9s- - s Yi—ms 1))s
and u; is an (n x 1) vector of structural disturbances assumed to be independent
and identically distributed (i.i.d.) MN(0,D) and mutually uncorrelated (D is
diagonal).?® Following Baumeister and Hamilton (2019) and Braun (2023), the
model includes m = 12 lags.

The reduced-form VAR associated with this structural model is represented as
follows:
yr = P + &,

d=A"'B,
E¢ = A_lut,

E(gie;) = =A"DAY,

This study follows the identification and estimation strategy introduced by
Baumeister and Hamilton (2015) and further developed by Baumeister and
Hamilton (2019) to construct a specific four-variable oil market model, which
was later applied to the U.S. natural gas market by Rubaszek et al. (2021). This
strategy yields a set-identified SVAR model through two primary steps. The first
step involves specifying informative prior beliefs about the values of the structural
parameters represented by a density p(A, D, B). The second step generates draws
from the posterior distribution of the structural coefficients to assess how the
data influences the prior beliefs.

Prior information about A is expressed in the form of an arbitrary prior
distribution p(A). Higher values of p(A) correspond to more plausible values of

49This section follows the notation introduced by Baumeister and Hamilton (2019), retaining
the same symbols for variables and parameters to maintain consistency with the original
framework.
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A, while p(A) = 0 is associated with any values of A that are entirely excluded.
This prior can incorporate a mix of exclusion restrictions, sign restrictions, and
informative assumptions about the elements of A. To represent prior information
about the other parameters, this identification approach employs natural conjugate
distributions that facilitate the analytical characterization of results and allow for
straightforward analytical solutions.

The prior for the inverse of the structural variances is assumed to follow a
gamma distribution, I'(k;, 74):

p(D | A) =[] p(d | A), (B.6)
i=1
T:i _1 Ri—l 1 —1 >
p(d;l\A) — I'(ks) (d“ ) exp( dzz ) for dzz = 07 (B?)
0 otherwise,

where d;; denotes the row i, column i element of D. The ratio ;/7; represents the
expected value of d; ! before learning from the data, whereas k;/ TZ»2 is the variance
of this prior distribution. A stronger belief in these prior values is indicated by
large x; and 7;, leading to a more concentrated prior distribution around k;/7;.
Following Baumeister and Hamilton (2019), this study sets x; = 2, which gives the
priors a weight equivalent to four observations of data, and allows 7; to depend
on A.

Prior information about the lagged structural parameters B is represented with
a conditional normal distribution, b;|A, D ~ N (m;, d;M;):

=1

1 1 . N(d- M), )
(27T)k/2‘duMz‘1/2 eXP <_2(bz - mz) (dZZMz) (bl — m2)> s (B9)

where b/, denotes the ith row of B, m; represents the prior mean for b;, and
di;M; is the variance associated with this prior. Thus, the matrix M; reflects
the confidence level in this prior information, with greater variances signifying
higher uncertainty. Conversely, a scenario with minimal valuable prior knowledge
is akin to the scenario where M ! approaches zero. This study assumes that the
prior expected value for these coefficients, m;, is zero, implying that changes in
the underlying variables are difficult to forecast, and that the prior variance is
100 x I. The overall prior distribution is

p(bi|D, A) =

p(A,D,B) = ﬁ [p(dis| A)p(bs|D, A)] (B.10)
i=1
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The second step includes describing how the data Y7 = (1,45, ..., y})" affects
the prior beliefs about the unknown parameters B, A, and D. The posterior
distribution is decomposed as follows:

p(A,D,B|Yr) = p(AlYT)p(D|A, Yr)p(B|A,D, Yr) (B.11)

The posterior distribution for the covariance matrix is represented as:

n

p(D|A,Y7) = 117 (it k5,77 (A) (B.12)
i=1
where:
ki = ki +T1/2 (B.13)
7 (A) = i(A) + (1/2)¢ (A) (B.14)

The value of ((A) is the sum of squared residuals obtained from regressing
Yi(A) on X;:

GH(A) = (Y (A)Yi(A)) — (Y (A)X;)(X]X;) " (X]Yi(A)), (B.15)
Yi(A) = [aly; ... alyrm;(A)' P, (B.16)
X, =[z}...xp P (B.17)

with P; being the Chelosky factor of M 1 — PP/

The posterior distribution for the lagged structural coeflicients B can be written
as p(BIA, D, Yr) = [[;; ¢ (bism], dii M), where

m;(A) = (X;X;) " (X[Yi(A)), (B.18)
M; = (X[ X;)™". (B.19)
The posterior marginal distribution for A is given by

. T/2
krp(A) det(AQTA')} n
H?:l [(Q/T)Tz‘*(A)]K: i=1

p(AlYr) = Ti(A)™. (B.20)

where p(A) refers to the original prior density for A, and Qr is the sample
variance matrix that is calculated with the reduced-form VAR model.
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B.2. Additional results: posterior distributions and
historical decompositions

Posteriors for contemporaneous relations in matrix A

Table B.1.: Summary statistics for the contemporaneous coefficients in A

Parameter Baseline S1 S2 S3 S4 S5
Qgp 0.019 0.021 0.022 0.024 0.020 0.007
(0.009, 0.033)  (0.009, 0.037)  (0.010, 0.037)  (0.010, 0.042)  (0.009, 0.034)  (0.002, 0.015)
Qyp -0.005 -0.004 -0.008 -0.010 -0.005 -0.004
(-0.008, -0.002) (-0.008, -0.001) (-0.015, -0.003) (-0.016, -0.005) (-0.009, -0.002) (-0.009, -0.002)
Bay 0.741 0.788 0.807 0.786 0.730 0.908
(0.398, 1.187)  (0.461, 1.322)  (0.517, 1.262)  (0.430, 1.379)  (0.496, 1.183) (0.526, 1.80)
[3qp -0.177 -0.184 -0.145 -0.130 -0.166 -0.219
(-0.300, -0.088)  (-0.323, -0.088) (-0.256, -0.065) (-0.265, -0.046) (-0.299, -0.079) (-0.365, -0.126)
Py -0.482 -0.484 -0.575 -0.563 -0.510 -0.305
(-0.881, -0.209) (-0.914, -0.181) (-1.013, -0.269) (-1.017, -0.204) (-0.929, -0.220) (-0.537, -0.111)
o 1.550 1.465 0.646 1.599 1.581 1.487
(0.908, 2.344)  (0.781, 2.325)  (0.252, 1.146)  (0.545, 3.034)  (0.924, 2.404)  (0.866, 2.311)
3 -0.362 -0.393 -0.374 -0.348 -0.368 -0.343
(-0.422, -0.311) (-0.466, -0.333)  (-0.438, -0.320) (-0.410, -0.297) (-0.430, -0.312) (-0.398, -0.291)
A1 0.008 0.022 0.045 -0.001 0.008 0.018
(-0.006, 0.023)  (0.011, 0.022)  (0.032, 0.060)  (-0.039, 0.042)  (-0.006, 0.023)  (0.008, 0.028)
A2 0.010 -0.009 0.043 0.155 0.010 0.000
(-0.030, 0.049)  (-0.039, 0.022)  (0.020, 0.067)  (0.033, 0.278)  (0.030, 0.050)  (-0.027, 0.028)
A3 -0.002 -0.001 -0.003 -0.005 -0.002 -0.002
(-0.004, 0.000)  (-0.003, 0.000) (-0.005, -0.001) (-0.010, 0.003)  (-0.003, 0.000)  (-0.002, 0.001)
A4 0.006 0.004 0.010 0.002 0.005 0.004

(0.000, 0.012)

(0.000, 0.008)  (0.004, 0.016)  (-0.016, 0.020)  (-0.000, 0.011)  (0.001, 0.008)

Notes: This table presents the posterior medians (in bold) and 68 percent credibility
regions (in parentheses) for the structural parameters of matrix A, used in our SVAR
model. The “Baseline” column contains results from the baseline model estimation, while
columns “S1” to “S5” correspond to various sensitivity analyses described in Section
3.6. Specifically, “S1” re-estimates the baseline model using data until December 2019
(2019:M12). “S2” uses the full dataset from January 1992 to October 2023 (1992:M1
to 2023:M10), including pandemic data. “S3” estimates the model from January 2009,
assessing the effect of the shale gas revolution. “S4” evaluates the impact of employing
less informative priors on the short-run supply and demand elasticities. “S5” leverages
non-Gaussianity as an additional source of identifying information. For definitions of
each parameter, please refer to Table 3.2.
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Detailed forecast error variance decompositions with credibility intervals

Table B.2.: Percent contribution of shocks to the overall variability of each variable (with
credibility sets)

Natural gas supply

Economic activity

Horizon uy ug® ug? ul? g uy ug® ufd uid u§rd
1 94.29 1.24 1.77 1.76 0.34 0.45 95.97 1.62 1.30 0.16
(85.01,98.12)  (0.11,3.91)  (0.26, 5.40)  (0.18,7.20)  (0.01, 2.02) (0.04, 1.88)  (90.27, 98.68)  (0.29, 4.55)  (0.14, 4.56)  (0.01, 1.31)
2 92.33 1.52 2.04 2.13 1.18 0.75 94.21 2.03 1.65 0.80
(83.04,96.74)  (0.27, 4.41)  (0.42,5.70)  (0.39,7.42) (0.1, 4.31) (0.11,2.65)  (83.19,97.35)  (0.53,5.05) (031, 4.88)  (0.08, 2.81)
3 90.96 1.86 2.33 2.40 1.67 2.06 91.53 2.55 1.99 1.12
(81.67, 95.61)  (0.45, 4.96) (0.60, 6.05) (0.56, 7.67)  (0.29, 4.77) (0.50, 5.33)  (84.95, 95.52)  (0.76, 5.87) (0.5, 5.36)  (0.18, 3.55)
6 85.88 3.04 3.12 3.96 3.28 3.69 87.17 3.26 2.88 2.14
(76.85, 91.45)  (1.17, 6.39) (1.07, 6.95) (1.45,9.31)  (1.14, 7.01) (1.27,7.89)  (80.13,92.07)  (1.32,6.7) (0.99, 6.64)  (0.65, 5.10)
12 76.3 4.99 5.80 6.70 5.37 6.88 T7.74 4.99 4.80 4.70
(67.64, 82.96)  (2.47. 8.89) (2.84, 10.31) (3.35, 11.96) (2.59. 9.84) (3.31, 12.03)  (70.31, 84.05) (2.56. 8.93) (2.27,8.95)  (2.19, 8.82)
16 74.57 5.54 6.13 7.11 5.81 7.38 76.01 5.40 5.10 5.16
(65.87, 81.51)  (2.88,9.52)  (3.16, 10.63)  (3.67, 12.37)  (2.92, 10.39) (3.69, 12.73)  (68.30, 82.65)  (2.87,9.54)  (2.51,9.39) (250, 9.50)
Real natural gas price Natural gas inventories
Horizon uf ug® ufd ui? ug™d uf ug® ugt ujd ug™d
1 8.48 3.61 54.06 31.54 0.73 3.16 1.22 76.90 16.62 1.36
(5.00, 14.10)  (1.79, 6.45)  (41.05, 66.45) (23.33, 39.2)  (0.26, 1.79) (0.91,7.04)  (0.11, 4.02) (61.8,85.60) (5.6, 33.43)  (0.31, 3.94)
2 8.82 4.67 52.45 31.09 1.65 3.47 2.51 75.20 16.47 1.70
(549, 14.07)  (2.69, 7.43)  (39.88, 64.29) (22.88, 38.66) (0.71, 3.10) (1.13,7.21)  (0.71,5.60)  (60.43, 83.90) (5.85, 32.78) (0.43, 4.57)
3 8.86 5.23 51.19 31.41 2.00 4.27 3.29 73.27 15.98 2.38
(5.62,13.96)  (3.17,8.07)  (39.04, 62.88) (23.32,38.84) (0.98, 3.49) (1.59, 8.44)  (1.07,7.05)  (59.07, 81.88) (5.79, 31.65) (0.7, 5.67)
6 10.04 6.87 48.27 29.92 3.75 6.07 5.44 68.79 15.60 3.16
(6.67, 14.98) (4.59, 9.83)  (36.96, 59.26)  (22.37, 36.8) (2.24, 5.73) (2.81,10.61) (229, 10.41)  (55.45, 77.64) (6.12, 30.26) (1.19, 6.67)
12 10.54 7.63 46.16 28.56 6.15 7.44 7.22 63.57 15.71 5.04
(7.47,14.98)  (5.52, 10.40) (35.93,55.87)  (21.59,35)  (4.32, 8.40) (4.02,12.24)  (3.69, 12.26)  (51.29, 72.24) (7.18, 28.90) (2.55, 8.91)
16 10.71 7.95 45.60 27.92 6.81 7.82 7.48 62.34 15.91 5.43

(7.65, 15.02)

(5.83, 10.71)

(35.81, 55.01)

.22, 34.05
21.22, 34.05

(4.83,9.22)

(4.33, 12.60)

(3.96,12.56)  (50.35, 71.12)  (7.46, 28.87)

2.87,9.45
( )

Natural gas exports
Horizon uf uf® ufd ui? ugr?
1 1.01 0.67 2.16 0.47 94.94
(0.09,0.05)  (0.45,0.03) (90.83,3.34)  (2.76,5.38)  (2.08, 97.71)
2 1.59 1.18 2.99 0.78 92.67
(0.31,0.18)  (0.91,0.11)  (88.03,4.26)  (3.69, 6.50)  (2.60, 96.10)
3 2.54 1.47 3.75 1.83 89.59
(0.74,0.32)  (1.40,042) (8445 5.64)  (4.07, 7.52)  (4.65, 93.68)
6 4.62 3.62 4.59 2.83 83.50
(1.96, 1.38) (200, 1.01)  (77.64,849)  (7.19,856)  (6.07, 88.6)
12 7.19 5.96 5.74 5.12 75.14
(3.85, 3.04) (2.99, 2.62) (68.67,11.92)  (10.43, 9.78)  (8.85, 81.01)
16 7.92 6.44 6.11 5.89 72.73
(4.34,3.39)  (3.27,3.15) (6588, 12.96) (11.04,10.23) (9.91, 79.08)
Note: This table provides posterior median estimates of the contribution of

each shock to the

in months.

nomic activity,

forecast error variance of each variable.
ets indicate corresponding 68% posterior credibility sets.
The terms wujf,
consumption demand,

ea
Uy,

cd
Ug™,

id
uy®, and u§
inventory demand,

exd

Values in brack-
Horizons are expressed
refer to supply,
and exports demand

eco-

shocks, respectively. Estimates are based on the model specified in Section 3.3.2.
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Historical decomposition of U.S. natural gas prices during Hurricanes Katrina
and Rita
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Figure B.1.: Historical decomposition of U.S. real natural gas price movements from
January 2005 to December 2005

Note: Each bar in the graph represents the median estimate of historical contribution of separate

shocks—supply (uf), aggregate demand (u$?), consumption demand (u$%), inventory demand

(ui®), and export demand (u{*®)—for each month during the specified period. The colors

correspond to these specific shocks, as labeled directly on the figure. The solid black line

represents the logarithmic changes in the real prices of U.S. natural gas. Estimates are based on

the model specified in Section 3.3.2, using monthly data from 1992 to 2023.
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B.2. Additional results: posterior distributions and historical decompositions

Historical decomposition of U.S. natural gas prices from 2015 to 2017
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Figure B.2.: Historical decomposition of U.S. real natural gas price movements from
January 2015 to December 2017

Note: Each bar in the graph represents the median estimate of historical contribution of separate
shocks—supply (uf), aggregate demand (u$?), consumption demand (u§%), inventory demand
(ui?), and export demand (u{®®)—for each month during the specified period. The colors
correspond to these specific shocks, as labeled directly on the figure. The solid black line
represents the logarithmic changes in the real prices of U.S. natural gas. Estimates are based on
the model specified in Section 3.3.2, using monthly data from 1992 to 2023.
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B.3. Detailed results of the sensitivity analyses

Results of pre-pandemic analysis (through 2019)

This analysis investigates the stability and consistency of the baseline model’s
IRFs, using data exclusively from the period prior to the COVID-19 pandemic,
ending in December 2019. By isolating the pre-pandemic period, this exercise
aims to establish a baseline understanding of market dynamics unaffected by the
extraordinary economic disruptions caused by the pandemic.
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Figure B.3.: Impulse response functions for the model estimated from January 1992 to
December 2019

Note: The rows represent the responses to different shocks, denoted as uj (supply shock), ug®
(economic activity shock), u§¢ (consumption demand shock), ui¢ (inventory demand shock),
and u¢®? (export demand shock). The columns represent the variables: ¢;: (total U.S. natural
gas supply), y+ (real U.S. GDP), p; (real gas price), i; (U.S. gas inventories), and ex; (U.S.
gas exports). The red solid lines represent the Bayesian posterior median, while the dark- and
light-shaded grey areas denote the 68% and 90% posterior credible regions, respectively.
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B.3. Detailed results of the sensitivity analyses

Results of full sample analysis including the Covid-19 pandemic period

This section presents the results of an analysis incorporating the entire dataset
spanning January 1992 to October 2023. It examines the extent to which the
inclusion of COVID-19-related data affects the estimation of the IRFs.
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Figure B.4.: Impulse response functions for the model estimated using the entire sample
from January 1992 to October 2023, including observations during the
COVID-19 pandemic.

Note: The rows represent the responses to different shocks, denoted as ui (supply shock), ug®

(economic activity shock), u¢? (consumption demand shock), ui? (inventory demand shock),

and uf™® (export demand shock). The columns represent the variables: ¢; (total U.S. natural

gas supply), y+ (real U.S. GDP), p; (real gas price), i; (U.S. gas inventories), and ex; (U.S.

gas exports). The red solid lines represent the Bayesian posterior median, while the dark- and

light-shaded grey areas denote the 68% and 90% posterior credible regions, respectively.
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Results of sensitivity analysis from 2009 onward

This section presents the results of sensitivity analyses focusing on the impact of the
shale gas revolution from January 2009 to October 2023, while explicitly excluding
data from the COVID-19 pandemic period. The analysis explores how shifts in
market dynamics, driven by technological and infrastructural advancements, have
influenced the structural dynamics within the U.S. gas market.
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Figure B.5.: Impulse response functions for the model estimated from January 2009 to
October 2023, excluding the COVID-19 pandemic period from March 2020
to February 2021.
Note: The rows represent the responses to different shocks, denoted as uj (supply shock), ug®
(economic activity shock), u§? (consumption demand shock), u{® (inventory demand shock),
and uf®? (export demand shock). The columns represent the variables: ¢;: (total U.S. natural
gas supply), y+ (real U.S. GDP), p; (real gas price), i; (U.S. gas inventories), and ex; (U.S.
gas exports). The red solid lines represent the Bayesian posterior median, while the dark- and
light-shaded grey areas denote the 68% and 90% posterior credible regions, respectively.
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B.3. Detailed results of the sensitivity analyses

Results of sensitivity analysis with weaker priors on supply and
demand elasticities

This section presents impulse response functions from sensitivity analyses where
weaker priors were applied to supply and demand elasticities. The model covers
data from January 1992 to December 2023, excluding the pandemic-related period
from March 2020 to February 2021, and explores how weaker priors affect the
estimation of these elasticities.

0

08 0.02
06 0.01

0
-0.01
0.02

4 8 12 16
16 - 0 4 8 12 16 0 4 8 12 16 0 4 8 12 16

exd
t
o
o & e
|
|
|
I
S
v o
o
N
©
-
IS

Figure B.6.: Impulse response functions from the model estimated using the full dataset
from January 1992 to December 2023, excluding the period from March 2020
to February 2021, with weaker priors for supply and demand elasticities.

Note: The rows represent the responses to different shocks, denoted as ui (supply shock), ug®

(economic activity shock), uf¢ (consumption demand shock), u{¢ (inventory demand shock),

and u{®® (export demand shock). The columns represent the variables: g; (total U.S. natural

gas supply), y: (real U.S. GDP), p; (real gas price), ¢ (U.S. gas inventories), and ex; (U.S.

gas exports). The red solid lines represent the Bayesian posterior median, while the dark- and

light-shaded grey areas denote the 68% and 90% posterior credible regions, respectively.
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Results of incorporating non-Gaussianity for structural shock
identification

This exercise introduces non-Gaussianity as an additional source of identifying
information. The analysis employs a novel identification strategy proposed by
Braun (2023), which combines economically motivated prior distributions, as
introduced by Baumeister and Hamilton (2019), with identification by non-
Gaussianity. This approach ensures that economic interpretations remain relevant
throughout the analysis.

To model non-Gaussianity, the distribution of each structural error is approx-
imated using a nonparametric Dirichlet process mixture model (DPMM). This
nonparametric approach offers two key advantages. First, it allows for flexible
modeling of the unknown density functions of structural shocks, enhancing the
model’s robustness against error-term misspecification and potentially improving
estimation efficiency by adapting to the actual distribution of shocks. Second, the
DPMM framework enables a straightforward assessment of non-Gaussianity in
the data by comparing the posterior predictive density to the kernel of a standard
normal distribution, as detailed by Braun (2023). Such comparisons provide
insights into the identifying information derivable from the statistical properties
of each shock. A detailed description of the SVAR-DPMM model is available in
the source article.

Before presenting the results of the non-Gaussian SVAR model, it is essential
to assess the empirical validity of the assumptions regarding non-Gaussianity and
mutual independence in the U.S. natural gas market. This validation occurs in
two steps.

The first step involves examining the deviation of structural shocks from Gaus-
sianity. Figure B.7 presents the posterior median estimates of predictive densities
for standardized structural shocks, with 68% posterior confidence intervals (shaded
areas), compared against the density of a standard normal distribution (gray line).
This figure reveals significant degrees of non-Gaussianity in the structural shocks,
particularly in supply, economic activity, and export shocks. These distributional
characteristics underscore the potential for leveraging non-Gaussian distributions
to identify structural shocks in the U.S. gas market.
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Figure B.7.: Posterior predictive densities of standardized structural shocks

1
Note: Posterior predictive densities of standardized structural shocks @; 71 = o; * (i, 41— ps),
showcased with a 68% credible interval. The black line refers to the density of a standard
normal distribution.

The second step assesses the mutual independence of the structural shocks.
Figure B.8 presents the posterior of the test statistic from the test introduced
by Matteson and Tsay (2017). For comparison, the figure also overlays the
distribution of this test statistic with that of the same statistic computed for
randomly permuted shocks, denoted as Up(E). In accordance with the principle of
mutual independence, each shock 1;; is resampled independently from the other
shocks, rather than resampling all components in the vector w;; together. This
process is repeated at each iteration of the posterior inference algorithm. The
comparison, as illustrated in Figure B.8, demonstrates a close match between the
distributions of U(E) and Uy(E), indicating no significant evidence against the
mutual independence of the shocks.
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Figure B.8.: Posterior distributions of the mutual independence test statistics U(E), as
per Matteson and Tsay (2017).

Note: The distributions of test statistics based on actual data are compared with those obtained

from randomly repermuted shocks, denoted as Up(E), to assess the empirical plausibility of

the mutual independence assumption. A close resemblance between the distributions of U(E)

and UO(E) indicates no substantial evidence against the mutual independence of shocks in the

non-Gaussian model.

Given the large deviations from Gaussianity characterizing many natural gas
market shocks, and their established mutual independence, non-Gaussianity can
be exploited as an additional source of identifying information. The results of the
IRFs are presented in Figure B.9. These results show no significant difference
between the IRFs obtained by leveraging non-Gaussianity and those from the
baseline model.
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Figure B.9.: Impulse response functions with Non-Gaussianity as an additional source of
identification.

Note: The rows represent the responses to different shocks, denoted as ui (supply shock), ug®
(economic activity shock), uf? (consumption demand shock), u{¢ (inventory demand shock),
and u{®® (export demand shock). The columns represent the variables: g (total U.S. natural
gas supply), y+ (real U.S. GDP), p; (real gas price), i; (U.S. gas inventories), and ex; (U.S.
gas exports). The red solid lines represent the Bayesian posterior median, while the dark- and
light-shaded grey areas denote the 68% and 90% posterior credible regions, respectively.
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Figure B.10.: Monthly U.S. domestic natural gas production and total supply (in billion
cubic feet) from 1992 to 2023.

Note: The data are sourced from the U.S. Energy Information Administration (EIA) and are

seasonally adjusted. Total supply is calculated as the sum of domestic production and imports.
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a) Natural gas production b) Natural gas demand
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Figure C.1.: Worldwide and regional developments of natural gas a) production and b)
demand from 2012 to 2022 (Billion cubic meters).
Source: Own construction based on Rystad Energy (2023).

Table C.1 presents the summary statistics for the EAX, TTF, and HH gas
prices across two distinct subsamples, delineated by data before and after October
1, 2021. In the first subsample, the mean prices are 7.246 USD/MMBtu for EAX|
5.914 USD/MMBtu for TTF, and 2.748 USD/MMBtu for HH, with standard
deviations of 3.715, 3.147, and 0.618, respectively. These values indicate that
the HH market had the lowest price level and volatility during this period. In
the second subsample, there is a significant increase in mean prices, with EAX
rising to 34.920 USD/MMBtu, TTF to 39.209 USD/MMBtu, and HH to 6.177
USD/MMBtu, accompanied by higher standard deviations, particularly for TTF.
The minimum and maximum values also reflect increased price ranges in the
second period. The kurtosis values indicate more extreme price movements for
TTF and EAX in the first subsample, while skewness values show that all three
price series exhibit a right-skewed distribution, becoming more pronounced in
the second subsample for TTF and EAX. Overall, these statistics suggest a shift
toward higher prices and greater variability in the gas markets post-September
2021, reflecting possible market changes or external shocks affecting supply and
demand dynamics.

A necessary condition for conducting cointegration analysis is the presence of a
unit root, which indicates that the price series are integrated of order I (1). To en-
sure reliable outcomes, we conducted three unit root tests: the Augmented Dickey-
Fuller (ADF), Phillips—Perron (PP), and Kwiatkowski-Phillips—Schmidt—Shin
(KPSS). The null hypothesis for ADF and PP states that the data series has
a unit root, with the alternative being that it is stationary. Conversely, the
null hypothesis for KPSS indicates that the variable is stationary. Table C.2
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summarizes the results of the tests for the log level and first differences of the
three price series in each sub-period. The results indicate that the three price
series are not stationary in levels but are stationary in first differences at the 1%
significance level. Thus, it is concluded that the three gas prices are I(1).

Table C.1.: Summary statistics of gas price series across different periods

Variable Subsample Mean SD Minimum Maximum Kurtosis Skewness
p Level Log Level Log Level Log Level Log Level Log Level Log

EAX First 7.246 1.868 3.715 0.474 1.750 0.560 33.000 3.499 9.531 3.508 1.878 -0.156
Second 34.920 3.515 9.974 0.269 20.050 2.998 72.150 4.279 4.622 2.878 1.135 0.355

TTF First 5.914 1.666 3.147 0.461 1.147 0.137 30.529 3.418 14.305 4.48 2.593 -0.172
Second 39.209 3.608 14.785 0.336 21.599 3.073 93.917 4.542 4.259 2.525 1.303 0.726

HH First 2.748 0.986 0.618 0.221 1.482 0.393 5.880 1.771 4.917 3.383 0.748 -0.141
Second 6.177 1.782 1.695 0.277 3.561 1.270 9.680 2.270 1.928 1.859 0.333 -0.010

Note: SD stands for Standard Deviation, measuring data dispersion around the mean.
Prices are in $/MMBTU. The first subsample includes data from January 1, 2016, to
September 30, 2021, while the second subsample includes data from October 1, 2021, to
November 1, 2022.

Table C.2.: Time series properties of the data

Variable Subsample Log level First difference of log level
ADF PP KPSS ADF PP KPSS
EAX First -1.093 -0.552 1.413¢ -6.390¢ -29.664¢ 0.066
Second -2.400 -2.645 0.315¢ -11.425¢ -14.516¢ 0.043
TTF First -0.192 0.879 1.494¢ -4.860% -38.976¢ 0.129
Second -2.276 -2.140 0.239¢ -6.544% -15.663¢ 0.067
HH First -1.587 -1.551 1.355% -22.433¢ -40.623¢ 0.056
Second -2.222 -2.140 0.408¢ -17.781¢ -17.810¢ 0.119

Note: The lag selection for ADF and KPSS tests is based on Akaike Information Criteria (AIC).
The test equations are estimated, including an intercept and trend for the variables in levels,
whereas they include only an intercept for the first differences. ¢ represents the 1% significance
level. The three series are expressed in logarithms. The Critical values are obtained from
MacKinnon (2010). The dataset is split based on the date October 1, 2021: data before this
date is labeled “First,” and data from this date onwards is labeled “Second.” The full sample
period covers January 1, 2016, to November 1, 2022.
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D.1. Additional data details

Table D.1 presents descriptive statistics for the natural gas price data. The
mean prices of the gas benchmarks are relatively close, with THE having the
highest mean price and NBP the lowest. The standard deviations reveal significant
volatility across all series, with THE exhibiting the highest volatility and NBP
the lowest. Results of the Augmented Dickey-Fuller (ADF) unit root test indicate
that none of the series is stationary. The minimum and maximum values show
that TTF has the broadest price range, while ZTP has the narrowest.

Table D.1.: Descriptive statistics for NWE gas benchmarks

TTF THE NBP ZTP
Mean 47.590 47.948 39.063 43.285
SD 49.909 50.006 35.444 41.148
Minimum 3.100 3.670 3.251 2.904
Maximum 330 315.130 227.796 249.116
Skewness 2.013¢ 1.981¢ 1.828¢ 1.701¢
(0.000) (0.000) (0.000) (0.000)
kurtosis 7.612¢ 7.347¢ 6.981¢ 6.197¢
(0.000) (0.000) (0.000) (0.000)
JB 2031.977° 1874.907¢ 1583.369“ 1181.495%
(0.000) (0.000) (0.000) (0.000)
ADF -2.365 -2.380 -3.140 -2.605

Note: The Mean represents the average value of the four gas benchmarks in levels
(Euro/MWh). The other descriptive statistics are based on the return series of these
price series. Skewness and Kurtosis are based on the tests by D’Agostino (1970) and
Anscombe and Glynn (1983), respectively. JB refers to the Jarque-Bera normality test
(Jarque & Bera, 1980). ADF is the Augmented Dickey-Fuller unit root test. * denotes
significance at the one percent level, with values in parentheses representing p-values.
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D.2. Additional results

Averaged return connectedness measures

Table D.2 presents the averaged connectedness measures among the four return
series throughout the sample period. Specifically, the table provides the overall R?
decomposed measures, with the values in parentheses specifying contemporaneous
and lagged R? decomposed measures, respectively. The ‘FROM’ column represents
the total directional connectedness ‘from’ other variables in the system to the
specific variable, measuring the extent to which a variable is influenced by shocks
from all other variables. Similarly, the ‘TO’ row represents the total directional
connectedness to other variables from the specific variables, indicating the influence
of one benchmark on the rest of the variables in the system. The ‘NET’ row
represents net connectedness, calculated as the difference between ‘TO’ and
‘FROM’ for each variable. Therefore, positive NET values indicate that the
variable is a net transmitter of shocks (i.e., it influences other variables more than
it is influenced), whereas negative NET values indicate that the variable is a net
receiver of shocks (i.e., it is influenced more by other variables than it influences
them). Finally, the ‘TCI’ value at the bottom of the last column represents the
total connectedness in this network, with higher values suggesting a higher level
of interconnectedness among the variables.

Table D.2.: Averaged connectedness of return series

TTF THE ZTP NBP FROM

TTF 2.17 36.72 27.25 18.26 82.23
[ 0.00, 2.17] [35.63, 1.09] [26.24, 1.01] [17.44, 0.82] [79.32, 2.91]

THE 36.99 2.21 25.20 18.24 80.44
[34.83, 2.16] [ 0.00, 2.21] [23.91, 1.30] [17.02, 1.22] [75.75, 4.68]

ZTP 27.35 24.92 1.10 20.91 73.18
[26.35, 1.00] [24.13, 0.79] [ 0.00, 1.10] 20.21, 0.71] [70.69, 2.50]

NBP 18.38 17.95 21.68 1.76 58.00
[17.65, 0.72] [17.37, 0.58] [20.79, 0.89] [ 0.00, 1.76] [55.81, 2.19]

TO 8273 79.58 74.13 57.41 TCI
[78.84,3.80] [ 77.13, 2.45] [70.93, 3.20] [54.66, 2.75] [ TCI¢, TCT|

NET 0.50 -0.85 0.95 -0.59 73.46
[-0.48, 0.97] [1.38, -2.23| [0.25, 0.70] [-1.15, 0.56] [70.39, 3.07]

Notes: R? decomposed measures are based on a 200-day rolling-window VAR model with a
lag length of order one (BIC). Values in parentheses represent contemporaneous and lagged
effects, respectively.

The results reveal that the TCI is 73.46%, indicating that, on average, 73.90%
of the variance in each gas benchmark’s returns can be explained by changes in
the returns of other benchmarks within the network. A decomposition of contem-
poraneous and lagged components shows that contemporaneous interactions are
the dominant factor, contributing 70.39%, while lagged interactions account for
only 3.07%. This decomposition highlights that immediate temporal dynamics are
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the primary drivers of overall connectedness, while the impact of lagged effects is
minor. Similarly, all contemporaneous ‘FROM’ and ‘TO’ connectedness measures
are substantially higher than their lagged counterparts. Also, the ‘FROM’ column
reveals that NBP has the lowest value at 58.00%, implying it receives the least
amount of shocks from other benchmarks. Likewise, the ‘TO’ row indicates that
NBP also has the lowest spillover contribution to others at 57.41%, underscoring
its relatively isolated position within the network of benchmarks. Lastly, the
‘NET’ row shows that both THE and NBP are net receivers of return spillovers,
with net connectedness values of -0.85% and -0.59%, respectively. This contrasts
with TTF and ZTP, which exhibit positive net connectedness, indicating that
these benchmarks are net transmitters of shocks.

Averaged volatility connectedness measures

Similar to the previous subsection, Table D.3 presents averaged connectedness
measures for volatility. The TCI is 53.62%, implying that the explanatory power
of the TCI accounts for 53.62% of the variance in each gas benchmark’s volatility
within the network. By decomposing this metric into its contemporaneous and
lagged components, we observe that about 50.38% is caused by contemporaneous
dynamics while only 3.24% is related to lagged interdependencies. The results
also show that NBP exhibits the highest own volatility contribution at 2.38%,
indicating that a significant portion of its volatility is self-explained. In contrast,
the own volatility contributions for TTF and THE are much smaller (0.78%
and 0.87%, respectively), indicating that these benchmarks’ volatility is largely
influenced by spillovers from each other. Analyzing the ‘FROM’ column and ‘TO’
row shows that NBP has the lowest values at 41.19% and 40.13%, respectively,
highlighting its relatively isolated position within the network of benchmarks.
Lastly, the ‘NET’ row shows that NBP is a net receiver of volatility spillovers, with
a net connectedness value of -1.07%. This negative value contrasts with TTF, ZTP,
and THE, which either exhibit positive net connectedness or are closer to zero,
indicating that these benchmarks are net transmitters or more balanced in their
spillover dynamics. Overall, from a static perspective, the analysis underscores
NBP’s unique position as a relatively self-contained benchmark with minimal
influence on, and from, the other gas benchmarks.

This section presents robustness checks to validate the baseline analysis. Specif-
ically, three exercises are performed: first, using different rolling window sizes;
second, replacing Pearson correlation coefficients with Spearman correlation coef-
ficients; and finally, employing the range volatility measure of Parkinson (1980)
as a proxy for volatility, instead of using absolute returns.

Robustness of connectedness measures to rolling window sizes

This subsection assesses the sensitivity of the connectedness measures to varying
rolling window sizes. Specifically, we investigate the time-varying total return and
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Table D.3.: Averaged connectedness of volatility series

TTF THE ZTP NBP FROM

TTF 0.78 32.78 17.91 12.95 63.64
[0.00,0.78] [ 31.73, 1.05] [16.67, 1.25] [12.13, 0.82] [60.53, 3.11]

THE 32.88 0.87 15.71 13.82 62.41
[31.83,1.06] [ 0.00, 0.87] [ 14.33, 1.38] [13.10, 0.71] [59.26, 3.15]

— 18.19 15.67 2.25 13.36 47.22
[17.03, 1.16] [ 14.40, 1.27] [ 0.00, 2.25] [12.09, 1.27] [43.52, 3.70]

NBP 13.20 14.34 13.66 2.38 41.19
[12.36, 0.84]  [13.51, 0.82] [12.33, 1.33] [0.00, 2.38] [38.20, 2.99]

TO 64.27 62.79 4729 40.13 TCI
[61.22,3.05]  [59.64,3.15] [ 43.34, 3.95] [37.33,2.80] [ TCI¢, TCL]

NET 0.63 0.37 0.07 -1.07 53.62
[0.68,-0.06]  [0.37, 0.00] [-0.18, 0.25] [-0.87, -0.19] [50.38, 3.24]

Notes: R? decomposed measures are based on a 200-day rolling-window VAR model with a lag
length of order one (BIC). Values in parentheses represent contemporaneous and lagged effects,
respectively.

volatility spillover indices using the R? decomposed connectedness approach for
three different rolling window lengths (150, 200, and 250 days), with 200 days
being the window size used in the baseline analysis. Figures D.1(a) and D.1(b)
indicate that the estimates of the time-varying total spillover indices remain both
qualitatively and quantitatively stable across different window sizes, reinforcing
the validity of our initial empirical results.
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(a) Return Connectedness
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Figure D.1.: Connectedness with different rolling window sizes (150, 200, 250) for return
and volatility series
Notes: R? decomposed measures are based on a 150, 200, and 250-day rolling-window
VAR model with a lag length of order one (BIC).

Robustness of connectedness measures to correlation coefficients

This subsection replaces the Pearson correlation coeflicients with Spearman corre-
lation coefficients. The Spearman correlation is a non-parametric measure, less
sensitive to outliers. The results, presented in Figures D.2(a) for return series and
D.2(b) for volatility series, indicate that the findings are quantitatively similar
to the baseline results, demonstrating robustness to the choice of correlation
measure.

147



D. Supplementary Material for Chapter 5

(a) Return Connectedness
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Figure D.2.: Connectedness using Spearman correlation coefficient for return and volatil-
ity series
Notes: R? decomposed measures are based on a 200-day rolling-window VAR
model with a lag length of order one (BIC).

Robustness of volatility connectedness to a different volatility measure

This subsection analyzes volatility connectedness using the range volatility measure
as proposed by Parkinson (1980). Following Alizadeh et al. (2002) and Diebold
and Yilmaz (2012), weekly range volatility is calculated by:

Volatilitypange = 0.361 x [In (PP*) — In (P™)]? (D.1)

where P/"®* is the maximum price in week ¢, and P/™™ is the minimum price.

The intuition behind this approach is to examine the robustness of the conclusion
regarding the dominance of contemporaneous effects on volatility connectedness,
as found in the baseline analysis that uses absolute returns as a proxy for volatility.
Additionally, this approach allows us to assess the robustness of the overall patterns
of volatility connectedness during the examined shocks.

The results of the overall volatility index and its decomposition are presented
in Figure D.3, while the results of the directional connectedness are presented
in Figure D.4. Overall, the conclusions from this analysis, using this realized
volatility measure, are consistent with those obtained in the baseline analysis of
volatility connectedness.
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Figure D.3.: Dynamic total connectedness of realized weekly volatility series

Notes: R? decomposed measures are based on a 52-week (one year) rolling-window
rolling-window VAR model with a lag length of order one.
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Figure D.4.: Dynamic directional connectedness of realized weekly volatility series
Notes: R? decomposed measures are based on a 52-week (one year) rolling-window rolling-
window VAR model with a lag length of order one.

Connectedness analysis of NWE gas benchmarks using futures prices

The ‘From’ and ‘To’ directional connectedness for return and volatility series
for futures prices are presented in Figures D.5 and D.7 respectively. The results
indicate that spot and futures prices exhibit similar connectedness levels for these
indices, except for NBP, where the 'From’ and 'To’ connectedness values for
futures are relatively higher and more stable compared to those of spot prices
throughout the entire period. This seems plausible, as our previous analyses show
that the decoupling of NBP drives the low connectedness of spot prices across
NWE. The net total directional connectedness analysis (Figures D.5(c) for return
series) shows that for THE and TTF, spot and futures prices generally share the
same connectedness direction, except from the second half of 2022 to the first half
of 2023. During this period, TTF futures are positive (transmitting shocks), while
spot prices are negative (receiving shocks). Conversely, for THE, spot prices are
positive while futures are negative. This highlights the different roles and reactions
of futures and spot markets for these two benchmarks during stress periods. For
Z'TP, spot and futures net connectedness align except from the second half of 2021
to the second half of 2022. NBP also shows consistent net connectedness direction
for both spot and futures prices except during the second half of 2020 and the first
half of 2023. On the other hand, the net total directional connectedness analysis
(Figures D.7(c) for volatility series) shows that net connectedness estimated with
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spot and futures prices has the same sign throughout the entire investigated
period. This suggests that both spot and futures markets for these benchmarks
respond to and transmit volatility, driven by market uncertainty and risk, in the
same manner through both stable and volatile periods.
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Figure D.5.: Comparison of directional connectedness indices: spot prices vs. futures

prices

Notes: R? decomposed measures are based on a 200-day rolling-window rolling-window VAR
model with a lag length of order one. These lines represent the total connectedness index.
The contemporaneous and lagged connectedness are removed to facilitate comparison, but
they show the same pattern as observed in the baseline results.
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Figure D.6.: Dynamic total connectedness of volatility series using futures prices
Notes: R? decomposed measures are based on a 200-day rolling-window rolling-
window VAR model with a lag length of order one. These lines represent the
overall connectedness index. The contemporaneous and lagged connectedness are
removed to facilitate comparison, but they show the same pattern as observed in
the baseline results.

152



TTF
100

80

o W
40

20

0

(a) FROM-Connectedness

THE zTP
100 100
80 80
60 VW 60
40 40
20 20
0 0

D.2. Additional results

NBP

ZdZO 2621 2622 20‘23 2624

TTF

2620 2621 20‘22 20‘23 2624 2620 20‘21 20‘22 2d23 2624

(b) TO-Connectedness

THE 7P
100 100
80 80
60 ‘\W 60
40 40
20 20
0 0

20‘20 20‘21 2622 2623 20‘24

NBP

2620 2621 2622 20‘23 2624

TTF
10
6
2
-2
-6
-10

2620 2621 20‘22 20‘23 2624 2620 20‘21 20‘22 2d23 2624

(c) Net-Connectedness

THE ZTP
10 10
6 6
R
-2 -2
-6 -6
-10 -10

20‘20 20‘21 2622 2623 20‘24

NBP
10
6
2
-2
-6
-10

2020 2021 2022 2023 2024

2620 2621 20‘22 20‘23 20‘24 2620 20‘21 2622 20‘23 2624

Spot prices —— Futures prices

2020 2021 2022 2023 2024

Figure D.7.: Dynamic directional connectedness of volatility series using futures prices
Notes: R? decomposed measures are based on a 200-day rolling-window rolling-window VAR
model with a lag length of order one. These lines represent the total connectedness index.
The contemporaneous and lagged connectedness are removed to facilitate comparison, but
they show the same pattern as observed in the baseline results.
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The relationship between infrastructure congestion and gas market
volatility connectedness in NWE

(a) Utilization rate of BBL Gas Connector from UK to NL
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Figure D.8.: volatility connectedness level and utilization rate of BBL and IZT gas
pipelines
Notes: Data on the utilization rates are obtained from the ENTSOG Transparency
Platform. The solid line represents the volatility connectedness between the NWE gas
benchmarks, as analyzed in Subsection 5.5.2. Values on the vertical axis are expressed
as percentages (%). BBL refers to the Balgzand-Bacton Line pipeline, and IZT refers to
the Interconnector Zeebrugge Terminal pipeline. Country abbreviations: UK (United
Kingdom), NL (Netherlands), and BE (Belgium).
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