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the last years. I also thank PD Dr. Dietmar Lindenberger for co-referring my thesis. Fur-

thermore, my gratitude goes to Prof. Dr. Johannes Münster for chairing the examination

committee.

Financial support of the ’Deutsche Forschungsgesellschaft’ (German Research Founda-

tion) through research grant HO 5108/2-1 is gratefully acknowledged.

I thank my co-authors Raimund Malischek and Johannes Trüby for their endurance in
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Introduction

Overview

Today’s energy markets face great challenges. The liberalisation of the European elec-

tricity markets started at the end of the 1990s. At about the same time the use of

intermittent renewable energies, i. e., wind and solar power, started to increase signif-

icantly. This led to serious doubts concerning the security of supply for two reasons:

First, concerns regarding the ability of the electricity system to cope with the variable

feed-in of renewable energies. And second, doubts that the liberalised (energy only)

market will send sufficient investment incentives for dispatchable capacity – especially

since full load hours of conventional power plants have decreased driven by renewables.

Until today, the debate concerning the appropriate design of electricity markets is con-

troversial.

Although great efforts are undertaken to increase the share of renewable energies in all

sectors, large parts of the global economy still depend on natural resources. The markets

for these resources, e. g., coal, oil and gas, are characterised by a high concentration on

the supply side. This poses the threat of an abuse of market power. Regulatory bodies

try to address this thread by competition law but face various challenges: First of all,

it is difficult to evaluate market behaviour and detect violations against competition

law. Furthermore, the effects of market regulations are difficult to anticipate due to

the frequently complex market structures involving demand and supply sides across the

world.

This thesis deals with both areas – market design in electricity markets and strategic

behaviour in natural ressource markets – and consists of the following four essays:

• Flexibility in Europe’s power sector – A necessary good or an inevitable comple-

ment? (based on Bertsch et al., 2016)1

• On the interaction effects of market failure and capacity payments in intercon-

nected electricity markets

1Available here: https://doi.org/10.1016/j.eneco.2014.10.022.
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• Assessing market structures in resource markets – An empirical analysis of the

market for metallurgical coal using various equilibrium models (based on Lorenczik

and Panke, 2016)2

• Modeling strategic investment decisions in spatial markets (based on Lorenczik

et al., 2017)3

The four essays are divided into two parts. In the first part, consisting of the first

two essays, market design issues in electricity markets are discussed. Part two deals

with strategic behaviour in spatial natural resource markets. In all papers that where

developed with co-authors the researchers contributed in equal parts.

Part 1: Market design in electricity markets

The first part of this dissertation addresses market design issues in electricity markets.

More precisely, it deals with the two earlier sketched concerns regarding security of

supply: First, the concerns regarding the availability of sufficiently flexible power plants.

And second, the consequences of insufficient investments signals in energy only markets

in interconnected electricity markets.

The first essay (chapter 1) focuses on the flexibility requirements. The central finding

is that the flexibility requirements of an electricity system with an increasing share of

variable renewable energies – more specifically the ramping capabilities and balancing

power provision – can be dealt with by the changing mix of conventional capacity that

evolves from the changing residual load pattern. Additional targeted mechanisms do not

appear to be required – provided that either an energy only market exists which pro-

vides sufficient investments signals or alternatively some kind of complementary capacity

remuneration mechanism (CRM) is in place.

The second essay (chapter 2) is complementary to the first one – this time the absolute

level of installed capacity is addressed. More precisely, the effects of insufficient price

signals on welfare in single markets, but also in particular in interconnected markets are

analysed. The main finding is that insufficient price signals in one market have only

a very limited effect on neighbouring markets if those do not have price restrictions

themselves. The negative domestic effects of distorted prices is amplified by trade. This

renders capacity mechanisms to counter market failure the more necessary.

In the following both essays are outlined in greater detail.

2Available here: https://doi.org/10.1016/j.eneco.2016.07.007.
3Available here: https://doi.org/10.1016/j.ejor.2016.06.047.
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Chapter 1: Flexibility in Europe’s power sector – A necessary good or an inevitable

complement?

The European Union has ambitious targets concerning the reduction of greenhouse gases.

To achieve these targets the share of renewable energies is supposed to increase signifi-

cantly in the next decades. Given a large deployment of wind and solar capacities, there

are two major impacts on electricity systems: First, the electricity system has to be

flexible enough to cope with the volatile renewables generation, i. e., ramp up or down

demand or supply on short notice. Second, sufficient back-up capacities are needed for

times of low intermittent renewables generation.

This paper analyses the question if the expected future increase of intermittent renewable

energy capacities imposes special requirements on the market design. More specifically,

is there a need for additional investment incentives for flexible system components? For

this purpose, the development of the European electricity markets up to the year 2050 is

simulated by deploying a linear investment and dispatch optimisation model. Flexibility

requirements are implemented in the model via ramping constraints and requirements

for the provision of balancing power.

The existing literature on the necessity for taking into account flexibility in the design of

capacity mechanisms is rather scarce – the predominant focus in the debate concerning

capacity mechanisms is on the totally installed capacity. Nonetheless, some papers

identify the need for a market with products for flexibility. The analysis in this essay

extends the previous literature by considering a broader range of flexibility options in

the electricity system including demand side response. Additionally, the ambitious long-

term renewable targets of the EU are taken into account which pose further challenges

concerning flexibility on the electricity system.

The analyses show that the increase in intermittent renewables has a significant impact

on the volatility of the residual load. Consequently, the demand for flexibility increases.

However, least cost generation capacity investments result in a sufficiently flexible power

plant fleet. Additional incentives for flexibility are not needed. The main trigger for

investing in flexible resources are the achievable full load hours and the need for backup

capacity. Due to a steeper residual load curve more power plants with low investment but

high variable costs are included in the cost-efficient technology mix. Those technologies,

e. g., gas-fired power plants, provide flexibility as a by-product. Thus, flexibility never

poses a challenge in a cost-minimal capacity mix.

3
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Chapter 2: On the interaction effects of market failure and capacity payments in inter-

connected electricity markets

The second essay of this dissertation adds to the ongoing discussion concerning capacity

remuneration mechanisms (CRMs) in electricity markets. It builds on the prevailing

view that energy only markets do not provide sufficient investments incentives as whole-

sale electricity markets are characterised by certain market failures (and regulatory

inefficiencies) that render some form of external investment incentive necessary.

This paper focuses on the interaction effects of market failures in adjacent markets.

For reference, we start by analysing the equilibrium market outcome assuming that no

market failure and no capacity mechanism is in place. Subsequently, at first a price cap

representing market failure and then an adjacent market is introduced. The analyses are

complemented by the introduction of capacity payments. The comparison of the effects

in isolated as well as in connected markets enables the assessment of cross-border effects

as well as incentives for free-riding.

The discussion in the literature mainly focuses on the necessity of CRMs and discusses

the properties of market design options on a national basis. Cross-border effects are

frequently neglected. The essay adds to the literature by paying special attention to

the influence of trade on the effects of market failure. In particular, it deals with the

following questions: What effect does an insufficient level of capacity in one market have

on neighbouring markets? Do markets with insufficient domestic capacity incentives

benefit from CRMs in neighbouring markets? And what effects do exaggerated efforts

to increase domestic capacity have on interconnected markets?

The results show that the negative implications of price caps in energy only markets

worsen in interconnected markets: Installed capacity and ultimately welfare decrease

to a larger extent. In addition, capacity payments are less efficient in countering these

effects than in isolated markets. Price caps do not appear to have a (significantly)

harmful effect on adjacent markets. But as domestic market failures have only little

effect on neighbouring markets, so do capacity mechanisms: Capacity payments in one

market do not appear to significantly support neighbouring markets and thus provide

no incentive for free-riding.

Part 2: Strategic behaviour in spacial natural resource markets

Strategic behaviour and the exertion of market power have always been a matter of

concern in energy markets, especially in natural resource markets. The exertion of

market power can result in deadweight losses – regulatory bodies try to address this by

market regulations aiming for a welfare maximising market outcome. The first problem is

to detect collusive behaviour as available data is frequently limited. The second question

4
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is how regulatory decisions may influence the market outcome. This is especially relevant

in resource markets as demand and supply regions are usually located in different parts

of the world and therefore subject to conflicting interests.

The third essay deals with the question how collusive behaviour and underlying market

structures can be detected. The most accessible data in most cases is historic market

data – which also this essay relies on in the analysis. Various mathematical models

are developed and applied to the metallurgical coal market. Thereby, two new market

structures are identified which appear at least as likely as the cases that were previously

considered in the literature.

The fourth essay complements and expands the previous analysis in two aspects: First,

the focus shifts from the analysis of different varieties of oligopolies to the analysis of

alternative market designs. More specifically, the effects of a switch from trade based on

short-term contracts to long-term contracts is analysed. Second, investment decisions in

production capacity are included in the market models. Again, the models are applied

to the metallurgical coal market.

In the following both essays of part 2 are outlined in greater detail.

Chapter 3: Assessing market structures in resource markets –

An empirical analysis of the market for metallurgical coal using various equilibrium

models

Resource markets are frequently characterised by a high concentration on the supply

side and a low demand elasticity. This raises concerns that market results may be

the product of explicit collusion between producers. But the actual market structure

is usually unknown. Common models used to investigate the market structure try to

replicate the market outcomes by applying economic models representing competitive

markets, strategic Cournot competition and Stackelberg structures (usually limited to

one leader).

For this essay three mathematical models including the mentioned Cournot and Stackel-

berg market representations were developed. Additionally, a multi-leader multi-follower

market model was included in the analysis. The models are used to simulate four spatial

market set-ups with varying market conduct of the individual players. The models are

applied to the international market for metallurgical coal using input data for the years

2008 until 2010. Using several statistical measures the most likely market structures are

identified.

The essay contributes to the literature on applied industrial organisation and, more

specifically, the analysis of the international market for metallurgical coal. Previous

5
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studies are expanded by applying an Equilibrium Problem with Equilibrium Constraints

(EPEC), a mathematical programme used to model multi-leader-follower settings, to a

spatial market, i. e., a market with multiple, geographically disperse supply and demand

nodes. This way, the essay adds to the literature by extending the scope of possible

market structures under scrutiny.

The essay demonstrates the multiplicity of underlying market structures that result in

the observed outcomes concerning trade flows and market prices. By analysing addi-

tional data, more distinctive conclusions were drawn. This demonstrated the need for

comprehensive market analyses in order to achieve reliable conclusions. Especially omit-

ting specific market configurations – unknowingly due to a lack of market insights or

knowingly due to analytical restrictions – might result in premature and false assess-

ments.

Chapter 4: Modeling strategic investment decisions in spatial markets

In oligopolistic markets production capacities are often a key factor for the strategic

interaction between oligopolists. This essay expands the scope ot the previous essay by

adding an investment phase to the models. Additionally, the focus shifts from various

oligopoly set-ups to the analysis of different market designs. It thereby takes into account

the recent steps taken towards a spot market based trade instead of long-term contracts.

Different market structures and designs influence oligopolistic capacity investments and

thereby affect supply, prices and rents. The models used in the analysis comprise an

investment stage and a supply stage in which players compete in quantities. Three

models are compared: A perfect competition and two Cournot models. In the Cournot

models, the product is either traded through long-term contracts or on spot markets.

The models are applied to the international metallurgical coal market.

The essay adds to the literature by explicitly taking into account the separation between

long-term investment and short-term production decisions. This multi-stage market

representation is new to the analysis of spatial resource markets. It takes into account a

market design with spot market based trade and enables the comparison of spot market

based trade and long-term contract. In contrast to the prevalent literature, the implicit

assumption of simultaneous investment and production decisions is lifted. Applied to

the metallurgical coal market, possible consequences of the ongoing regime switch from

long-term contracts to a more spot market based trade are analysed.

The essay demonstrates the importance of an appropriate market representation: The

frequently used one-stage approach has more convenient mathematical properties com-

pared to a bi-level approach and can therefore be solved more easily. But, depending on

the actual market structure, the results might be misleading. In the application at hand

6
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– although the total welfare is only slightly affected – the distribution between producer

and consumer surplus differs substantially. The current shift from long-term contracts to

spot market trade benefits consumers, to the disadvantage of the production companies.

Numerical modeling: Limitations and further research

Although addressing different research questions and dealing with separate markets, in

all essays numerical approaches are used to solve the economic models. This illustrates

the wide range of topics and the flexibility of today’s energy market models. None of the

analyses would have been possible twenty years ago, either due to limited computational

power (in case of the linear optimisation problems), a lack of readily available solvers

(in case of MPECs) or any general solution strategies for reasonable sized problems at

all (in case of EPECs).

The advancements in solving economic models by using numerical methods – rather

than solving them analytically – have made them increasingly interesting to economists.

But even given these improvements, different areas for improvements remain. They

can broadly be categorised into three groups: First, the dependency on accurate input

data. Second, the ability to represent real world systems. And third, the space for

misinterpretations. Some limitations will be outlined in the following – more certainly

exist.

In contrast to closed-form solutions, numerical model results provide less general insights.

But real world models can hardly be solved analytically given the complex nature of

many economic problems. Thus, numerical approaches have to be applied. As these

approaches rely on specific data, the quality of the model results hinges on the accuracy

(and availability) of the input data. This is especially true for data that cannot be

observed directly but has to be estimated. In this dissertation, this was in particular

relevant for the analysis of market conduct in the metallurgical coal market (chapter

3). As the aim of the analysis was to replicate historic market outcomes, accurate input

data was crucial. Although having an extensive dataset that has proven itself to provide

reasonable model results in previous analyses, key parameters remained uncertain. This

was first of all the case for the elasticity of demand – especially as the literature provides

arguments for a wide range of realisations. We addressed this uncertainty by using a

variety of different values. As this did not lead to conflicting conclusions, additional

confidence in the findings was built. The results did not allow for a definite conclusion

concerning the market structure. Additional analysis is needed, but hampered by a lack

of available data. Given that economic research provides valuable insights, a stronger

engagement for more transparency by regulatory authorities is desirable.

7
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Even more difficult than a retrospective analysis is the task to model a scenario for a

future development. Although economists (usually) do not claim to make predictions

of the future, scenarios are meant to provide guidance by quantifying possible devel-

opments given alternative circumstances. It is vitally important to design consistent

scenarios in order to get meaningful results. This frequently confronts economists trying

to model real world scenarios with two contradicting objectives: First, paying attention

to a detailed model representation of particular aspects. And second, taking into ac-

count interaction effects with adjacent markets. The first objective usually requires a

partial equilibrium model in which certain variables are treated as being exogenous and

therefore fix. The second objective demands for general equilibrium models which usu-

ally lack a detailed representation of individual aspects. More work is needed in the area

of combining both approaches in order to identify consistent scenarios, interactions of

parameters and to gain a better understanding of model results. A connection of Gen-

eral Equilibrium Models (CGE) with detailed partial energy market models promises

additional insight in future research.

Despite the recent progress in computational power, today’s economic models have some

(common) limitations which have to be kept in mind in order to draw meaningful con-

clusions. The causes for most limitations and simplifications can be categorised into two

groups. They are either chosen to limit the computational burden in terms of calcula-

tion speed or simplified models due to the absence of ready to use solution techniques.

This is not only true for the more sophisticated MPEC and EPEC models used in this

dissertation (chapters 2, 3 and 4) but also for relatively – in terms of available and ready

to use solvers – simple linear models (chapter 1). Two of the most prominent limitations

even in linear models are the assumptions of perfect foresight and perfect information

(which also applies to all models in this dissertation). The issue of perfect foresight has

frequently been addressed – especially in linear models – by using stochastic modelling.

But still a trade-off has to be made between modelling accuracy, e. g., concerning the

technical properties of power plants, and relieving the perfect foresight assumption. Per-

fect information has very rarely been bypassed in numerical models but is – depending

on the specific set-up – certainly a strong assumption.

When it comes to more sophisticated models with respect to the market behaviour of

individual players, the sacrifices that have to be made become bigger. Simple Cournot

competition models for a medium sized number of players, time steps and markets that

are formulated as mixed linear complementarity problems (MLCPs) can reliably be

solved with standard tools. If the question at hand requires a bi-level representation

of market interaction (e. g., in Stackelberg games as in chapter 3 or with separate in-

vestment and dispatch decisions as in chapter 4), even solving medium sized problems

can be challenging. If only one optimisation problem has to be solved at the first level

8
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the model constitutes a so called Mathematical Programs with Equilibrium Constraints

(MPECs). As the feasible region is not necessarily convex, usually non-linear solvers

have to be applied. In most cases, only local optima can be guaranteed. Alternatively,

mixed-integer approaches are common in the literature which approximate the optimal

solution (as has been done in this dissertation). The most challenging models to solve

are multi-level models with each stage requiring an equilibrium outcome. Although oc-

casionally examples exist in the literature, reasonable sized models are usually restricted

to two stages. For equilibrium problems with equilibrium constraints (EPECs) no easily

accessible solution approach yet exists. In addition, there may not exist an equilibrium

solution or there might as well be multiple solutions. In general, it cannot be determined

how many solutions exist. Early approaches try to systematically search for different

equilibria, but further research is needed to increase their reliability.

Even if the challenging tasks of obtaining reliable data as well as formulating and solving

the appropriate model have been completed, the interpretation of model results may not

be straightforward. At first, economic models that are solved numerically are frequently

very complex and take into account a large number of influencing factors. Due to

this complexity, the disentangling of cause and effect and the deduction of universal

conclusions is challenging. In addition, and especially in complex and more realistic

multi-stage models, multiple solutions might exist that differ significantly from each

other. Additional research is needed concerning equilibrium selection mechanisms in

the context of numerical models.

Numerical models tend to seduce their users into possibly misleading conclusions – espe-

cially if the results appear to match expectations or historical data. In the dissertation

at hand this can be observed in the analysis of the metallurgical coal market (see chap-

ter 3): The market structure allows several assumptions concerning the market conduct

of producers. Previous analyses concluded that – based on the numerical models that

represented some of the alternatives – some set-up are (more) likely (than others). By

adding further (and more complex) set-ups to the potpourri of economic models, addi-

tional likely cases were identified – probably more exist. This highlights the necessity to

explore and expand the range of economic models that can reliably be solved in order

not to miss reasonable conclusions. Additionally, this illustrates the bias towards models

(and therefore also conclusions) that are more easy accessible. This is especially true for

investment models as simplifying single-level models are still predominant in real world

applications – which can significantly influence results and conclusions (see chapter 4).

In summary, the improvements in the field of numeric models do not come without

stumbling blocks. Economists need to keep an open mind and should constantly seek to

improve and question their models and model results.
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Part I

Market design in electricity

markets



Flexibility in Europe’s power sector –

A necessary good or an inevitable com-

plement?

By 2050, the European Union aims to reduce greenhouse gases by more than 80 %. The

EU member states have therefore declared to strongly increase the share of renewable

energy sources (RES-E) in the next decades. Given a large deployment of wind and

solar capacities, there are two major impacts on electricity systems: First, the electricity

system must be flexible enough to cope with the volatile RES-E generation, i. e., ramp

up supply or ramp down demand on short notice. Second, sufficient back-up capacities

are needed during times with low feed-in from wind and solar capacities.

This paper analyzes whether there is a need for additional incentive mechanisms for

flexibility in electricity markets with a high share of renewables. For this purpose,

we simulate the development of the European electricity markets up to the year 2050

using a linear investment and dispatch optimization model. Flexibility requirements are

implemented in the model via ramping constraints and provision of balancing power.

We find that an increase in fluctuating renewables has a tremendous impact on the

volatility of the residual load and consequently on the flexibility requirements. However,

any market design that incentivizes investments in least (total system) cost generation

investment does not need additional incentives for flexibility. The main trigger for

investing in flexible resources are the achievable full load hours and the need for backup

capacity. In a competitive market, the cost-efficient technologies that are most likely to

be installed, i. e., gas-fired power plants or flexible CCS plants, provide flexibility as a

by-product. Under the condition of system adequacy, flexibility never poses a challenge

in a cost-minimal capacity mix. Therefore, any market design incentivizing investments

in efficient generation thus provides flexibility as an inevitable complement.
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1.1 Introduction

1.1 Introduction

By 2050, the European Union aims to reduce greenhouse gases by more than 80 %. The

EU member states have therefore declared to strongly increase the share of renewable

energy sources (RES-E) in the next decades. The vast majority of renewable energy is

expected to come from wind and photovoltaics (PV). These sources, however, depend

on local weather conditions, leading to an increase in stochastic electricity generation.

Given a large deployment of wind and PV capacities, weather uncertainty results in two

major impacts on electricity systems: First, the capacity mix must be flexible enough to

cope with the volatile RES-E generation, i. e., ramp up supply or ramp down demand on

short notice. Second, sufficient back-up capacities are needed to provide secure supply

during times with low feed-in from wind and solar capacities. Otherwise, sharp decreases

or increases in renewable production may lead to price spikes on the wholesale market

and, if supply and demand do not meet, to potential black-outs. The provision of back-

up capacity has been intensely discussed in the literature in recent years (for instance

Cramton and Stoft, 2008, Joskow, 2008). Concerning flexibility, the discussion is rather

new and previous literature is scarce. Lamadrid et al. (2011), an exception, argue that

as volatility increases, additional incentives to invest in flexible resources should be

implemented in market design. Meanwhile, the Californian system operator (CAISO)

has already started to implement ramping products in market design to ensure flexibility

(Xu and Threteway, 2012).

This paper analyzes whether there is a need for additional incentive mechanisms for flex-

ibility in electricity markets with a high share of renewables.4 One challenge of analyzing

the role of flexibility in electricity markets is accounting for the possible contributions

of all parts of an electricity system. First, the supply side is able to complement volatile

RES-E generation with highly flexible gas-fired power plants or upcoming technologies

such as power plants with a detachable carbon capture and storage unit. Second, the

demand side can contribute flexibility by improving demand side management. Third,

storages can restrain the volatility of the residual load for both the demand and supply

side. Therefore, an integrated analysis of all flexibility possibilities is needed to answer

the question of how an electricity system can adapt to an increasing share of renewables.

From that, one can deduce whether flexibility requirements necessitate a special market

design.

For this purpose, we simulate the development of the European electricity markets up

to the year 2050 using a linear investment and dispatch optimization model account-

ing for all mentioned flexibility options. We assume investments in renewable energies

4The discussion concerning the necessity of capacity mechanisms is beyond the scope of this paper.
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1.1 Introduction

lead to an 80 % renewable share of total electricity generation in Europe in 2050. The

model determines the cost-efficient capacity mix, ensuring adequate capacity and fulfill-

ment of flexibility requirements.5 These requirements result from load variation and the

provision of balancing power, which are necessary due to the stochastic in-feed from re-

newable generation. Flexibility of power plants, however, is restricted by minimum load

and start-up constraints. Due to the importance of flexibility provision on short notice,

the calculations are supplemented by using a dispatch model for 8760 hours for selected

years (2020, 2030, 2040 and 2050). CO2 emission costs may have effects on installed

capacity (or generation) of base or peak load and storage capacities. Thus, impacts on

the optimal capacity mix, flexible resources and flexibility provision are further analyzed

by calculating an alternative scenario differing in CO2 emission costs serving as a sensi-

tivity analysis. The model results can be interpreted whether additional incentives for

flexibility will be required or if flexibility will come as a complement given a competitive

system.

Previous literature on integrated analyses of flexibility in electricity systems can be

divided into static (dispatch only) and dynamic (dispatch and investment) analyses. In a

static analysis, Denholm and Hand (2011) use a reduced-form dispatch model to analyze

the effects of higher flexibility requirements on the capacity mix. They state that in an

isolated system, flexible resources, i. e., elimination of must-run technologies, are crucial

for the utilization of fluctuating renewable generation. A unit-commitment approach,

focusing on the operational integration, is chosen in Ummels et al. (2006). These authors

find that flexibility (in terms of ramp rates) does not pose a problem for the Netherlands

in 2012. However, they identify the need for wind curtailment due to minimum load

restrictions. Lamadrid et al. (2011) conclude from their analysis of an optimal dispatch

with varying capacities and ramping cost configurations that there is a need for a market

for ramping products. In a dynamic analysis, Möst and Fichtner (2010), Nicolosi (2010)

and De Jonghe et al. (2011) analyze investment decisions under operational constraints

to determine an optimal capacity mix. They find that operational constraints tend to

change the optimal capacity mix compared to when only considering achievable full load

hours from base-load to mid- or peak-load capacities. By comparing model runs with

and without operational constraints, Nicolosi (2012) states that utilization rather than

operational constraints determines the investments of peak load capacities. However,

previous research neglects the ambitious renewable targets of the EU, especially in the

long term when flexibility becomes a greater issue for the electricity system. Moreover,

demand side reactions to high wholesale prices in case of low renewable production or to

5The objective of the model is to minimize total system costs of the electricity supply for the ex-
ogenously defined electricity demand. Total system costs include investment costs, fixed operation and
maintenance costs, variable production costs (which comprise fuel and CO2 costs) as well as costs due
to the start ups of thermal power plants.
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1.2 Flexibility in electricity systems

volatile wholesale prices in general have not yet been analyzed. We therefore contribute

to this literature by considering the long-term developments in transitioning to a mostly

renewable electricity system in Europe, especially with regard to a renewable-dependent

provision of balancing power. Furthermore, previously not considered flexibility options

on the supply (flexible CCS plants) and demand side (demand side management) are

considered.

We find that an increase in fluctuating renewables has a tremendous impact on the

volatility of the residual load and therefore on flexibility requirements. However, any

market design that incentivizes investments in least (total system) cost generation does

not need additional incentives for flexibility. Under the assumption of perfect com-

petition the challenges of volatility and therefore flexibility are met by an increase in

peak-load and a reduction in mid- and base-load capacities. Neither hourly load changes

nor the provision of balancing power poses a challenge. Moreover, at every point in time

of the simulation, the provision of balancing power is never a binding constraint, indi-

cating excess flexibility provision. Therefore, the main trigger for investing in flexible

resources are the achievable full load hours and the need for backup capacity. In a com-

petitive market, the cost-efficient technologies most likely to be installed, i. e., gas-fired

power plants or flexible CCS plants, provide flexibility as a by-product. Under the con-

dition of system adequacy, flexibility never poses a challenge in a cost-minimal capacity

mix.

As renewable support is currently discussed and partly reduced in various EU countries,

the future development of renewable deployment is rather uncertain. Assuming a re-

alization of the EU 2050 goals, however, can be seen as an upper bound of flexibility

demand in a very high RES-E share energy system. Our results show that even in such

an optimistic RES-E scenario, flexibility does not become an issue of system adequacy.

The remainder of this paper is organized as follows: Section 1.2 defines the used concept

of flexibility and flexibility options in electricity systems, Section 1.3 presents the applied

methodology and underlying assumptions. In Section 1.4, results with regard to the

change in flexibility requirements and the adaption of the electricity system are analyzed.

Section 1.5 concludes and discusses policy implications.

1.2 Flexibility in electricity systems

In electricity systems demand and supply have to be balanced at any time. Flexibility on

the supply side was in previous decades mainly necessary, because inelastic demand was

subject to fluctuations, following daily, weekly and seasonal patterns. Recently and with
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1.3 Methodology and assumptions

increasing importance the source-dependent volatile electricity generation by renewable

energies becomes relevant for the evaluation of needed flexibility.

One can – depending on the considered time period – distinguish two kinds of flexibility.6

On the one hand, variability relates to longer time frames (larger than 1 h) and especially

to the need of thermal power plants to adapt to changing residual load (i. e., demand

minus generation by renewable energies such as wind and solar).7 Renewables do not

cause variable generation costs and are thus usually dispatched prior to thermal plants

(and depending on market regulations even required to do so). With the increasing share

of fluctuating electricity generation from renewables, the demand served by thermal

plants is thus subject to a higher variation.

On the other hand, in the shorter time span up to about 1 h, the need for flexibility

options mainly arises from the deviation between forecast renewable generation and

actual outcome (forecast errors of demand are of minor magnitude). As this deviation

occurs on short notice, the electricity system has limited options to adapt, as for instance

older power plants need more time to adapt their electricity output, especially if they

have to start up first.

1.3 Methodology and assumptions

Due to the expected structural changes in electricity systems, historical data cannot be

used to analyze the effects of a high share of renewables on the optimal capacity mix and

on the future role of flexible resources. This renders an econometric analysis impossible.

Nevertheless, an integrated analysis is necessary due to the possible contribution from

all parts of the electricity system to flexibility. For this analysis, we apply the electricity

market model (DIMENSION) of the Institute of Energy Economics at the University of

Cologne, as presented in Richter (2011).8

The model optimizes investments and dispatch of conventional, nuclear, storage and

renewable technologies up to 2050 via cost minimization. Demand is assumed to be

fixed (excepted for the option to shift demand of DSM-processes). Moreover, competitive

markets are assumed. Investment and generation decisions are based on perfect foresight.

The model balances demand and supply in every considered market for every hour of

the year. Imports and exports can contribute fully to the balancing but only partly

6A more detailed elaboration on the definition of flexibility in electricity systems can be found in,
e. g., IEA (2011a).

7The electricity grid also provides some kind of flexibility as it spreads demand and renewable power
generation over a broader geographical area. Grid extensions are not part of the optimization model but
exogenous, however their contribution is incorporated through the trade between markets.

8See also Fürsch et al. (2011), Nagl et al. (2011), Fürsch et al. (2012) or Jägemann et al. (2012).
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1.3 Methodology and assumptions

to the peak demand constraint. In addition to the need to cover demand at all times,

a peak-load constraint has to be fulfilled. This constraint requires sufficient (secured)

capacity to be available to cover a historic peak-demand (including a security margin),

with interconnector capacities being partially credited.

Further equations include constraints on electricity generation and technologies (such

as general availability due to revisions or existing nuclear construction restrictions),

storage level restrictions and net transfer capacities. All technologies are subject to an

hourly availability, which allows us to model a fluctuating feed-in structure of renewable

wind and solar technologies. For every hour and region, there is maximum feed-in

derived from solar irradiation and wind speeds. The model therefore can decide not

to use the full amount of RES-E generation available, i. e., curtail RES-E generation.

The available feed-in of RES-E is calculated for every market via underlying subregions

(47 for onshore, 42 for offshore and 28 for photovoltaics) to account for geographical

patterns.9 The regional focus of the model in Europe is due to the expected integrated

European market. Given the expected integration, changes concerning the electricity

system in one country have high influence on neighboring countries. This is especially

relevant for the deployment of a large amount of RES-E since this produces significant

changes in the supply structure.

Within the investment model a typical day approach is used, capturing seasonal, weekly

and daily patterns for demand and RES-E generation. In the detailed dispatch calcu-

lation, a 8760 h time series is used. The investment model and the dispatch calculation

are linked via capacities. The capacities of the investment model are fed into the high

resolution dispatch model, wherein time series effects and more possible dispatch situa-

tions can be modeled. The equations used for the dispatch are the same in both models,

only the parameters of the time series differ.

Stochastic influences (short-term) are accounted for by the procurement of balancing

power for the adjustment of forecast errors of renewables generation. The development

of installed renewable energy capacities is exogenous as it is mainly driven by political

will rather than a result of market dynamics. To account for long-term uncertainty we

analyze two scenarios as described in Section 3.6. As we focus on flexibility options we

restrict the display of more detailed modeling aspects in the following to renewables,

start-up restrictions of thermal power plants, storages (including DSM) and detachable

CCS units.10 These options are relevant for short-term balancing of supply and demand

and comprise the major model improvements.

9Cf. Fürsch et al. (2011) for more detail.
10Flexible CCS power plants may not contribute much to the needed flexibility in absolute terms,

however, observing when this ability is used, can be highly relevant for the interpretation of flexibility
within the modeling approach.
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1.3 Methodology and assumptions

1.3.1 Model description

The following table provides an overview of the most important model sets, parameters

and variables:11

Table 1.1: Model abbreviations including sets, parameters and variables

Abbreviation Dimension Description

Model sets
a ∈ A Technologies
k ∈ A Subset of a Technologies starting-up within 1 h
l ∈ A Subset of a Technologies starting-up in more than 1 h
s ∈ A Subset of a Storage technologies
r ∈ A Subset of a RES-E technologies
f ∈ A Subset of a CCS technologies with attached CCS unit
g ∈ A Subset of a CCS technologies with detached CCS unit
w ∈ A Subset of a Wind technologies
m ∈ M DSM processes
c ∈ C Countries
e ∈ C Subset of c Subregions
d ∈ D Days
h ∈ H Hours
y ∈ Y Years
Model parameters
aca e 2010/MWh Attrition costs for ramp-up operation
ana e 2010/MW Annuity for technology specific investment costs
avd,h

c,a % Availability
ded,hy,c MW Demand
dry % Discount rate
efa t CO2/MWhth CO2 emissions per fuel consumption
fca e 2010/MW Fixed operation and maintenance costs
fuy,a e 2010/MWhth Fuel price
cpy e 2010/t CO2 Costs for CO2 emissions
pdd,h

y,c MW Peak demand (increased by a security factor)
ηa % Net efficiency
τd,hy,c,a % Capacity factor
dud,h

y,c MW Acquired positive balancing power
ddd,h

y,c MW Acquired negative balancing power
dv % Maximum deviation between RES feed-in and forecast
lld,hy,m MW Lower limit of demand of DSM process
uld,hy,m MW Upper limit of demand of DSM process
mla % Minimal load
sua hours Inverse of start-up time
pra hours Precision of start-up representation
Model variables
ADy,c,a MW Commissioning of new power plants
CUd,h

y,c,a MW Online capacity
CUPd,h

y,c,a MW Capacity switched-on
CDOd,h

y,c,a MW Capacity switched-off
GEd,h

y,c,a MW Electricity generation

IMd,h
y,c,c′ MW Net imports

INy,c,a MW Installed capacity
LVLd,h

y,c,a MWh Storage level
STd,h

y,c,s MW Consumption in storage operation
TCOST e 2010 Total system costs (objective value)

11If not stated otherwise, MW are MWel.
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1.3 Methodology and assumptions

The objective of the model (Eq. 1.1) is to minimize discounted total system costs while

meeting demand at all times:

min TCOST =
∑
y∈Y

∑
c∈C

∑
a∈A

[
dry ·

(
ADy,c,a · ana + INy,c,a · fca

(1.1)

+
∑
d∈D

∑
h∈H

(
GEd,hy,c,a ·

(
fpy,a + cpy · efa

ηa

)
+ CUd,hy,c,a ·

(
fpy,a + cpy · efa

ηa
+ aca

)))]

Total system costs include investment, fixed operation and maintenance, variable pro-

duction and thermal power plant start up costs. Investment costs are annualized with

a 5 % interest rate for the technology-specific depreciation time. Fixed costs occur for

staff, insurance and maintenance. Variable production costs consist of costs for fuel and

CO2, and depend on the emission factor and net efficiency of the several technologies.

Start up costs include costs of attrition and co-firing. Combined heat and power plants

(CHP) are able to generate revenues from heat production and therefore reduce total

costs.

1.3.2 Renewable-dependent provision of balancing power

Due to a high share of fluctuating RES-E, balancing power (i. e., essentially tertiary

reserve) must be available to quickly balance electricity supply and demand if necessary.

In contrast to the current common practice to contract a fixed amount of balancing power

for whole days, weeks or even months, we assume the required balancing power to be

dependent on the hourly changing requirements and thus adjust the demand according

to wind and solar generation. That way, we can deduce the actual scarcity of flexibility

options rather than a shortage due to an (arbitrarily) high magnitude of balancing power

acquisition. We assume that the system has to be able to balance potential forecast

errors of at least 10 % of expected wind and solar generation at all times. The quality

of short-term prediction of wind and solar feed-in has improved in recent years due to

improved forecast models. As stated in Giebel et al. (2011), relative forecast errors were

reduced on average from about 10 % in 2000 to 6 % in 2006. However, in order to be

able also to balance large forecast errors, high flexibility is nevertheless still needed (cf.

Holttinen, 2005, Holttinen and Hirvonen, 2005).

Constraint (Eq. 1.2) was added to the model to ensure sufficient short term flexibility

in order to increase production at all times. The parameter du represents the potential

need for positive balancing power, which is set to 10 % of available wind and photovoltaic
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1.3 Methodology and assumptions

feed-in for each hour in every country.

dud,hy,c ≤
∑
l∈A

(
CUd,hy,c,l −GE

d,h
y,c,l

)
+
∑
k∈A

(
avd,hc,k · INy,c,k −GEd,hy,c,k

)
+
∑
s∈A

ST d,hy,c,s

+
∑
w∈A

(
(1− dv) ·

(
avd,hc,w · INy,c,w −GEd,hy,c,w

))
(1.2)

+
∑
f∈A

(
GEd,hy,c,f ·

(
ηg
ηf
− 1

))
+
∑
m∈M

(
lld,hy,c,m −GEd,hy,c,m + ST d,hy,c,m

)

Table 1.2 gives an overview of available options to provide positive as well as negative

balancing power in the electricity system.

Table 1.2: Overview of flexibility options

Positive flexibility Negative flexibility

• Ramping of thermal power plants
in part load operation

• Open cycle gas turbines able to
start operation within 15-20 min-
utes

• Switching off CCS unit to increase
power output

• Utilization of stored energy or stop
of storage

• Shifting through demand side man-
agement (reduction)

• Utilization of previously curtailed
wind power

• Thermal power plants in operation
(ramping down)

• Storage technologies

• Curtailment of wind power

• Shifting through demand side man-
agement (increase)

Positive balancing power can be provided by thermal power plants in several ways: Tech-

nologies that need more than 1 h to start-up (l) are limited to increase their production

by the amount of capacity currently in part load, i. e., online capacity minus current

production. Highly flexible technologies, especially open cycle gas turbines, can start

within 1 h (k) and thus can potentially provide balancing power even if currently not in

operation. They can increase production until reaching installed and available capacity.

Advanced CCS plants can, by switching off their CCS unit and thus accepting higher

emissions, increase generation quickly. The maximum additional production can be cal-

culated by multiplying the fraction of both efficiencies (with and without CCS) minus

one with the current power generation of plants with applied CCS (cf. Section 3.3; see

Davison, 2009; Martens et al., 2011).

Storage units (e. g., pump storage, compressed air storage or batteries) are in general very

flexible and can by either increasing generation or reducing storage operation provide
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1.3 Methodology and assumptions

positive balancing power. Demand side management acts very similar from a system

perspective as a reduction in electricity demand is comparable to generation and in-

creased demand to consumption. Compared to classic storage, DSM processes usually

have a limited time span in which shifts in demand have to be compensated and are

restricted by the minimum power demand (GE indicates decreasing and ST increasing

regular demand).

The last option for balancing electricity generation is withdrawing curtailment of wind

production.12 The available capacity is restricted to 90 % of the expected and therefore

curtailed power (to account for forecast errors). As this is not associated with any costs

(neglecting transaction costs) this should be usually the first option taken.

The following constraint represents the need for negative flexibility where dd is equal to

10 % of expected feed-in by photovoltaics:13

ddd,hy,c ≤
∑
l∈A

(
GEd,hy,c,l −mll · CU

d,h
y,c,l

)
+
∑
k∈A

GEd,hy,c,k

+
∑
s∈A

(
avd,hc,s · IN s

y,c,a −GEd,hy,c,a
)

+
∑
w∈A

GEd,hy,c,w (1.3)

+
∑
g∈A

GEd,hy,c,g ·
(
ηf
ηg

)
+
∑
m∈A

(
uld,hy,c,m − ST d,hy,c,m +GEd,hy,c,m

)

The options for providing negative balancing power, i. e., in the case of excess electricity

generation, are ramping down thermal power plants, increasing storage or decreasing

turbine operation of storage (including DSM) and curtailing wind generation. Run-

ning power plants that cannot shut-down operation on short notice are only able to

reduce production to minimum load. Highly flexible plants (e. g., gas turbines), on the

contrary, can stop production completely. Storage can, in addition to reducing produc-

tion, increase power consumption. Measures taken by thermal plants as well as storage

usually reduce system costs (by fuel cost savings and the option to use (free of cost)

stored electricity at other times respectively) and are thus chosen previously to wind

curtailment. Flexible CCS power plants that are not using their CCS units can switch-

on CO2 segregation and thus reduce efficiency and production. DSM processes can

increase consumption until their maximum demand is reached.

12By assumption other renewable energy sources – for instance photovoltaic panels – are not consid-
ered for withdrawing of curtailment as the installations are usually small in size, no technical steering
possibilities are installed and thus the effort to activate sufficient capacity comparably high. But as wind
generation is generally sufficiently available in case any curtailment took place, this does not change any
results.

13An underestimation of wind feed-in can be balanced by wind curtailment, thus there is no additional
need for negative flexibility.
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1.3.3 Power plants with a detachable CCS unit

CCS technologies may become an important technology in the capacity mix in the future.

Technologies with (captured) high emissions, i. e., lignite- and coal-fired power plants,

might therefore still be supplying electricity in a low-carbon electricity system. Lignite-

and coal-fired are considered base and mid-load and lack the flexibility of, e. g., open

cycle gas turbines. Hence, an additional flexibility option for these power plants, might

give insights into the deployment of base-load technologies which are simultaneously

able to provide flexibility.

Flexible CCS plants have the option to switch off their capture unit and thereby increase

power output, while simultaneously emitting more CO2 into the atmosphere. This can

be done on short notice and is thus suitable for the provision of short-term flexibility.

CSS plants are thus able to provide both, short-term flexibility and required backup

capacity to serve peak-demand. Depending on their dispatch they therefore allow some

insights concerning the tightness of both requirements.

These units were modeled with the same constraints as conventional power plants, but

with the possibility to switch between operation modes within 1 h. This was implemented

by adding a new technology g for every power plant f with a CCS unit, where g represents

the share of capacity f whose CCS unit is switched off.14

The following constraint ensures that the total online capacity of technology f (CCS

switched on) and its counterpart g (same technology with CCS switched off) does not

exceed the total available capacity. By multiplying the ramped-up capacity of g with

the fraction of the efficiencies of f and g, the increased net efficiency of power plants

with switched-off CCS can be taken into account by:

CUd,hy,c,f + CUd,hy,c,g ·
ηf
ηg
≤ avd,hc,f · INy,c,f (1.4)

Additional modifications for power plants with a detachable CCS unit have to be made

when modeling start-up behavior. These will be pointed out in the following subsection.

1.3.4 Start-up of thermal power plants

The maximum and minimum operational capacities in one point in time are dependent

on the plants’ statuses of the previous hours. Time periods are freely selectable and by

considering more points in a given time period more realistic start-ups of power plants

14The technical details of this process were taken from Davison (2009) and Finkenrath (2011).
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can be modeled. Starting up capacity (variable CUP ) is considered in the objective by

a cost parameter which approximates co-firing costs, attrition costs etc.15

Equation 1.5 makes use of the variables CUP and CDO, which symbolize capacity that

was started and shut-down from the previous hour to the current one:

CUd,hy,c,a = CUd,h−1
y,c,a + CUP d,h−1

y,c,a − CDOd,h−1
y,c,a (1.5)

The restriction on the maximum online capacity of technologies with a flexible CCS

unit (represented by f if CCS switched on, and g if CCS switched off) is similar to an

ordinary power plant:

CUd,hy,c,f + CUd,hy,c,g = CUd,h−1
y,c,f + CUd,h−1

y,c,g + CUP d,h−1
y,c,f − CDO

d,h−1
y,c,f (1.6)

As the online capacities of f and g belong to the same technology and since switching

the CCS unit on and off can be done within 1 h, the two can be combined.

The maximum start-up of capacities from 1 h to the next depends on the overall available

capacity, the capacity already in operation and the technology’s start-up time (inverse

of sua). The model is taking into account the capacity that was started-up in previous

hours:

CUP d,hy,c,a ≤

avd,hc,a ∗ INy,c,a − CUd,hy,c,a +
i<h∑

i=h−pra

CUP d,ty,c,a

 · sua (1.7)

If power plants of one technology were starting-up in the previous hour, e. g., after all

plants had been shut-down completely, then, under the assumption of a linear start-up

trajectory, all plants are able to start-up with the same magnitude in all hours until

reaching their maximum online capacity. On the contrary, if there was not any ramping

activity in the previous hours, only the capacity currently not in operation is able to

start-up. Parameter pr represents the precision of the modeling of start-up behavior

(0 ≤ pra ≤ 1
sua

).

The constraint has to be altered slightly for technologies with a detachable CCS unit by

linking technology f with its counterpart g:

CUP d,hy,c,f ≤

avd,hc,f ∗ INy,c,f − CUd,hy,c,f − CU
d,h
y,c,g +

i<h∑
i=h−prf

CUP d,ty,c,f

 · suf (1.8)

15Depending on the different technologies, these costs are set to about 1/5 of the variable cost.
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The restriction for shutting-down technologies can be enhanced analogously by replacing

the original constraint with the following:

CDOd,hy,c,a ≤

CUd,hy,c,a +
i<h∑

i=h−pra

CDOd,ty,c,a

 · sua (1.9)

And equivalently for technologies with detachable CCS unit:

CDOd,hy,c,f ≤

CUd,hy,c,f + CUd,hy,c,g +
i<h∑

i=h−prf

CDOd,ty,c,f

 · suf (1.10)

1.3.5 Storages and DSM

Storages (e. g., pumped-storage plants, reservoirs and CAES) and demand side manage-

ment (DSM) processes can be modeled similarly with the latter possessing additional

restrictions to account for the maximal time span demand can be shifted.

The basic equation for storages keeps track of the current storage level which is computed

from the electricity consumption (taking into account efficiency loss), production and, if

applicable, natural inflow (respectively outflow) with generation and consumption being

restricted to the available capacity:

LV Ld,hy,c,a = LV Ld,h−1
y,c,a + ST d,hy,c,s · ηa −GEd,hy,c,a + infd,hy,c,a (1.11)

In the case of DSM, these limits are not solely depending on the installed capacity but

also depend on the specific hour. Therefore, we account for variations in the utilization

of the processes. In the considered period total consumption and production have to be

balanced. For DSM processes this constraint can be be more restrictive (depending on

the kind of process):

d=d′,h=h′,y=y′∑
y,d,h

ST d,hy,c,s · ηa −GEd,hy,c,a + infd,hy,c,a = 0 (1.12)

d′, h′, y′ indicate the relevant time span in which consumption and production have to

be balanced. This way, e. g., cooling systems can be forced to catch up on electricity

consumption within 4 h to avoid any damage to cooled goods (see Table 1.9).

We take into account 28 different DSM processes for each region, grouped by sectors

(see Table 1.8 in the Appendix). Technical specifications include the balancing interval,
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i. e., the time a deviation from original electricity consumption has to be recovered,

efficiency, which represents losses due to rescheduling, and maximum reduction and

increase of demand (see Table 1.9 in the Appendix). The latter figures represent limits

for demand adjustments due to the time dependent consumption of the processes. Table

1.10 (Appendix) displays assumed DSM capacities for each considered year.

1.3.6 Assumptions and scenario setting

Assumptions for the simulation include the regional electricity demand development,

net transfer capacities between regions, capacities of existing power plants, technical

and economic parameters for power plant investments as well as fuel and CO2 prices.

Installed capacities of renewable energies are exogenous. The development and allocation

between different technologies reflect current national and European policies as well as

regional investment costs and potentials. Where available, national targets have been

considered (e. g., national renewable energy action plans (NREAP) for EU member

states). As official long-term plans are not available, assumptions based on available

studies have been made for the subsequent time span (see Table 1.7 in the Appendix

for installed capacities in 2050). Electricity generation from renewables reaches 75 %

over all countries in 2050 (see also section 1.4.1). RES-curtailment does not impose any

costs.

The setting chosen for this analysis is only one possible development and should not

be interpreted as a forecast. The assumptions are based on several sources such as

Capros et al. (2010), Prognos/EWI/GWS (2010), IEA (2011), ENTSO-E (2011) and

Fürsch et al. (2011) and represent a trade-off between their projections. The underlying

assumptions used in the scenario analysis can be found in the Appendix A.

The analyzed scenarios A and B only differ regarding assumed CO2 prices. Thus they

reflect and aggregate divergent expectations for influencing factors like the ambitiousness

of CO2 reduction, economic growth and emissions in other sectors. Since CO2 emission

costs may have effects on installed capacity (or generation) of base or peak load and

storage capacities, a sensitivity analysis with a higher CO2 price is performed. The

underlying assumption is that in Scenario A CO2 prices increase up to 50 EUR2010/t

CO2 in 2050 and in Scenario B up to 100 EUR2010/t CO2 in 2050. In addition to

CO2 emission costs no additional restrictions (i. e. CO2 targets) are imposed. Table 1.3

depicts the assumed CO2 emission prices from 2020 to 2050.
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Table 1.3: Assumed CO2 emission prices [EUR2010/t CO2]

2020 2030 2040 2050

CO2 price in Scenario A 22.6 31.8 40.9 50.0
CO2 price in Scenario B 35.1 56.8 78.4 100.0

1.4 Results

In this section, the results from the analysis are presented. First, the impacts of an

increasing share of RES-E on the residual load are discussed with examples of selected

European electricity systems up to 2050. Note, that these examples rather reflect a

possible development of electricity systems with certain characteristics (e. g., integration

into the European electricity grid or renewables mix) than a projection of future devel-

opments for the shown countries. Second, the adaption of the system to the increasing

share of renewables with regard to capacity and generation mix focusing on flexible re-

sources is discussed. Third, aspects of the different flexibility requirements in terms of

modeling constraints are analyzed in detail. Finally, an overview of the implications for

market design is given.16

1.4.1 Impacts of an increasing share of RES-E

Due to the negligible variable costs of RES-E, they can be integrated on the left-hand

side of the merit order. This means they are usually dispatched before other supply tech-

nologies. The impact of an increasing share of renewables can thereby best be discussed

by analyzing the residual load to be covered by other technologies. The impact is two-

fold, on the one hand the (residual) load duration curve is affected and the achievable

full load hours for other technologies reduced. On the other hand, the hourly changes

of residual load possibly impose additional flexibility of the other supply technologies.

Furthermore the provision of balancing power becomes more relevant due to possibly

increasing absolute forecast errors.

Based on simulation assumptions, the RES-E share on gross electricity demand in Europe

increases from 34 % in 2020 to 54 % in 2030, and to 75 % in 2050. In the short term

(until 2020), hydro-power (39 % of RES-E generation) and onshore wind (26 % of RES-E

generation) are the most deployed renewable energy sources. Due to the assumed large

deployment of on- and offshore wind turbines, more than 50 % of the renewable energy

is provided by wind power in 2050. Solar technologies – mainly deployed in southern

16Detailed numerical data can be found in the Appendix. This section highlights the developments
relevant to the topic of the paper.
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Europe – generate about 22 % of the renewable energy. We illustrate the effects of such

a high share of renewables with the examples of Germany and the UK. Both countries

are chosen due to their geographical position within Europe and the assumptions on

renewable deployment. The examples should be thought of as illustrative case studies

rather than forecasts for the development of the two countries. While Germany is well-

connected to its neighboring countries, the UK only has few interconnections and is

closer to an insular system. For Germany, the renewable technologies, i. e., wind and

photovoltaics, are by assumption diversified, whereas the renewable capacities in the UK

consist mostly of on- and offshore wind capacities, which lead to greater challenges due

to the fluctuating nature of wind. In 2050, Germany has a renewable generation share

of 61 % of gross electricity consumption, of which about 64 % is wind and 20 % PV. The

UK has a renewable share of about 76 % with over 90 % wind.

1.4.1.1 Residual load

The high share of renewables has significant effects on the residual load as shown for

Germany and the UK in Figure 1.1.17
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Figure 1.1: Residual load duration curve for Germany(left) and UK (right)

From the historical 2011 data to the assumed feed-in in 2020, the residual load duration

curve for Germany changes slightly due to the assumed increase in electricity consump-

tion and in deployed renewables. The residual load duration curves for Germany and

the UK are steeper in 2050. The number of hours with negative residual load increases

and occurs for nearly half the hours in the UK, where renewable electricity generation

exceeds actual demand by up to 40 GW. Despite these developments, hours with high

17Data source for 2011 load in Germany is ENTSO-E. Wind and photovoltaic generation data for
2011 is from the European Energy Exchange (EEX). For the UK, no data for the renewable feed-in was
available.
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load levels remain. This means that achievable full load hours for conventional gener-

ation are reduced, but backup capacities for hours with high levels of residual load are

still needed. The effects on the residual load depend on the installed renewable tech-

nology. In Italy and the Iberian Peninsula, for example, the shape of the residual load

curve in 2050 is similar to the curves in 2020 due to the high shares of CSP plants with

integrated thermal storages. CSP smoothes residual load by using its thermal storage

unit and reduces the effects of fluctuating generation.

1.4.1.2 Volatility of residual load

The volatility of residual load is analyzed on an hourly basis. Figure 1.2 depicts the

boxplots for Germany in 2011, 2020 and 2050 and for the UK in 2020 and 2050.

[M
W

]

Figure 1.2: Box plot of hourly changes for Germany and the UK 2020 and 2050

Two main developments can be identified. First, the extreme values grow larger with a

higher share of fluctuating renewables. Still, in 2020, only a few hours with an absolute

change of more than 10,000 MW occur in any country. In 2050, all countries with a

residual load of more than 40 GW face hourly changes (positive and negative) greater

than 10,000 MW. In countries with high demand and high penetration of renewables,

hourly fluctuations up to 40,000 MW (UK) in residual load occur more often. The power

systems in Germany, France, Scandinavia and the Iberian Peninsula still face hourly load

changes of around 20,000 MW. Smaller countries, like Denmark, may have to deal with

smaller changes in absolute amounts but experience extreme hourly changes relative to

the residual load level. For the electricity system, large changes in times of low or nega-

tive residual load are especially challenging. Due to a high share of renewable generation

in these hours, no conventional capacity is running and must therefore be started up.

This requires sufficient flexible resources that are able to start up quickly. The second
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development is that there is a more widespread distribution of hourly changes. While in

Germany the quartiles increase by about 50 %, in the UK these values double. Absolute

hourly changes therefore increase tremendously, indicating an increased need for flexi-

ble resources able to adapt generation rapidly. These developments are also confirmed

by analyzing means and standard deviation of positive and negative hourly changes as

shown in Table 1.4. The means change in the same manner as the analyzed quartiles.

The standard deviation changes significantly, indicating more widely distributed hourly

changes.

Table 1.4: Mean, maximum and standard deviation of hourly load changes for Ger-
many and the UK [MW]

Germany UK
2011 2020 2050 2020 2050

Mean positive 2,242 3,083 4,105 2,345 4,619
Standard deviation positive 2,148 2,572 3,373 2,229 4,739
Max positive 11,396 14,106 22,775 12,545 40,286
Mean negative -1,853 -2,604 -3,656 -1,977 -4,661
Standard deviation negative 1,420 1,922 2,727 1,724 4,891
Max negative -8,016 -12,069 -18,984 -10,186 -38,631

1.4.1.3 Provision of balancing power

Together with the higher feed-in of fluctuating renewables, forecast errors and therefore

balancing power increase in absolute amounts as long as prediction is not improved.

Figure 1.3 shows the duration curve of balancing power for renewables when 10 % of

renewable generation must be provided as balancing power.18
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Figure 1.3: Required positive balancing power in Germany and the UK in 2050

18It seems reasonable to assume a variable balancing power provision, because the requirements for
the conventional utilization of balancing power is assumeably not going to change. Therefore, only
the renewables forecast errors have to be balanced, for which it seems reasonable to implement a bal-
ancing power market with a renewable-dependent quantity relatively close to physical dispatch. The
introduction of quarter-hourly intra-day markets fulfills more or less this functionality.
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For Germany and the UK, up to 10,000 MW is needed as provision of balancing power

only for renewables. Compared to current values this is significantly higher (e. g. for

Germany with around 2,000 MW for the minute reserve). Therefore, the requirement

for flexible resources to provide balancing power to backup forecast errors or failures of

RES-E increases.

1.4.2 Adaptation of the electricity system

The changing residual load leads to changes in the electricity system. This section

describes the development of capacity and generation mix with special focus on flexible

resources.

1.4.2.1 Development of the capacity mix

The capacity mix changes significantly in both scenarios up to 2050 due to the large

deployment of renewables. By assumption, RES-E capacities are primarily increased by

onshore wind until 2020/2030, offshore wind from 2030 onwards and solar plants after

2030. Due to the low secured capacity of intermittent renewable technologies and an

assumed increase in electricity demand, total gross capacity more than doubles by 2050.

Renewables capacity amounts to 1.5 TW in 2050.19

Figure 1.4 depicts the gross electricity conventional capacities in Scenario A for the years

2020, 2030, 2040 and 2050 on the left side and for Scenario B on the right side. As can

be seen, the difference of the two scenarios is rather small.
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Figure 1.4: European gross conventional capacity mix up to 2050

The overall conventional capacity in both scenarios remains relatively constant, but the

share of base- and mid-load capacities decreases from 64 % in 2008 to 36 % in 2050. At

the same time the share of gas-fired capacities (open and combined cycle) increased from

19For detailed figures on different technologies please consult the Appendix.
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36 % to 64 %. Higher CO2 prices in Scenario B lead to a small increase of nuclear and

CCS capacities. However, this has little effect on the general mix between base/mid

(33 %) and peak load (67 %) capacities. Storage is mainly deployed in countries with

high amounts of negative residual load. An additional 22 GW of storage capacities are

installed in Scenario A. In Scenario B, wind and solar curtailment is associated with

higher costs due to higher costs of fossil fuel generation, making additional storage

(4 GW) cost-efficient.

Hence, we observe that flexible resources, namely gas-fired power plants (and to a certain

extent storage), contribute largely to a cost-efficient capacity mix with a high share of

renewables.

1.4.2.2 Development of the electricity generation

The electricity generation from all conventional power plants decreases with the addi-

tional RES-E generation in both scenarios. The RES-E generation for whole Europe

amounts to about 3,000 TWh.20 Figure 1.5 depicts the gross conventional electricity

generation in Scenario A for the years 2020, 2030, 2040 and 2050 on the left side and

for Scenario B on the right side.
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Figure 1.5: European gross conventional electricity generation up to 2050

Higher CO2 prices in Scenario B lead to a coal-to-gas switch. In Scenario B, about

200 TWh of electricity are generated in combined and open-cycle gas turbines instead of

hard coal and lignite power plants. This includes 60 TWh of electricity generation from

gas-fired CHP plants. More than 470 TWh of electricity is generated in coal and gas-

fired power plants equipped with CCS units in 2050. Due to CO2 prices of 100 EUR/t

CO2 in Scenario B in 2050, almost all conventional generation takes place in nuclear

or fossil power plants equipped with CCS in the long term. CO2 emissions in 2050

account to about 400 million tons in Scenario A and 152 million tons in Scenario B. For

20See the Appendix for detailed figures on the different technologies.
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the emissions of the electricity system this means a reduction of 68 % (88 %) compared

to 1990. More than 140 TWh of possible wind and solar generation, which represents

about 7 % of total wind and solar generation, is curtailed in both scenarios in 2050. The

main reason is the excessive feed-in due to the increased generation capacities. Load is

already covered and it is not cost-efficient to build more storage capacities. This can

also be seen by comparing the two scenarios: Storage capacities are slightly higher in

Scenario B because of the additional opportunity costs of curtailment. Conventional

generation is more expensive and therefore more RES-E generation is stored. However,

the utilization rates of neither storage nor DSM technologies are significantly different

in the scenarios. This indicates that smoothing of residual load due to storage rather

depends on the costs of conventional generation rather than the capacity and generation

mix.

By looking at the utilization rates of the conventional technologies in Table 1.5 , it can be

seen that conventional generation decreases more than capacity, which can be explained

by the sunk costs of capacities.

Table 1.5: Full load hours of conventional technologies [h]

2020 2030 2040 2050

Scenario A Nuclear 7271 6987 6373 5307
Lignite 6252 4926 4688 4337
Coal 5277 6365 5873 4837
Gas 2908 1889 1037 678

Scenario B Nuclear 45 -7 -77 131
(compared to A) Lignite 5 -87 894 1083

Coal -1021 -643 -671 -549
Gas 685 171 87 29

The utilization rate of gas-fired power plants decreases more than the rates of base and

mid-load power plants. This is remarkable, especially given that the installed capacities

are increasing. The reason for this could be that gas-fired peak load plants are used as

backup capacity. However, the observation of low utilization rates alone does not allow

a final conclusion that gas-fired capacities as flexible resources are installed mainly as

backup capacities. Even with low utilization rates, the increased amount of gas-fired

and storage capacities might be part of the cost-efficient capacity mix due to their high

flexibility. To analyze this issue further, the modeling and the fulfillment of flexibility

requirements in the model have to be considered.
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1.4.3 Fulfilling flexibility requirements

In the analysis of the system adaption, the most remarkable result regarding flexibility

options in the electricity system, was the increase of gas-fired capacities (especially

open-cycle turbines) with a simultaneous, disproportionately high decrease of utilization

rates. From the development of storage and DSM utilization, no conclusion about the

importance of flexibility in the system could be drawn. However, the development of

the gas-fired capacities deserves a closer look.

To analyze this effect further, some modeling aspects have to be considered. First, recall

that flexibility requirements in the model stem from the flexible resources needed for

load-following, i. e., mainly start-up constraints, and from the provision of balancing

power. As Nicolosi (2012) already showed, ramping constraints alter the capacity mix

to a certain extent towards more flexible resources. However, if we compare the two

scenarios, we see that the conventional capacity mix changes towards CCS-technologies

due to the high CO2 prices. Wind curtailment becomes more costly, so additional

storage is built to prevent wind curtailment from excessive generation and to smooth

load following. The amount of additional storage however is small compared to the

effects of the switch to CCS-technologies. We even see an increase of utilization rates of

base-load (lignite) and a decrease in mid-load (coal) while the peak load (gas) utilization

rates remain relatively constant. So even with a strong increase in the opportunity costs

of curtailing wind and load following, the conventional capacity mix does not become

more flexible due to ramping constraints, since the amount of gas-fired capacities does

not change significantly.

Another possibility for the expansion of gas-fired capacities could be the provision of

balancing power. From conventional generation, only online capacity or quickly started

up capacity (open cycle gas turbines) can contribute to the provision. However, the

constraint for providing balancing power never becomes relevant. Even in the peak

load hours where there is nearly no renewables feed-in and all available conventional

capacity is running (under consideration of the security margin). The marginal costs of

providing an additional megawatt of balancing power are zero and hence there are always

flexible resources available. So, why is this balancing power provision not important in

terms of flexibility? For illustration purposes Fig. 1.6 shows the availability of negative

balancing power for a summer week in Germany in 2020. The black line symbolizes the

renewable-dependent provision, i. e., 10 % of the feed-in from wind and photovoltaics.

As can be seen, the provision requirement corresponds to the RES-E feed-in. Hence, if

RES-E generation can be curtailed, the provision of negative flexibility resulting from

the RES-E feed-in is easily fulfilled. In times with low available capacities to provide
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Figure 1.6: Availability of negative balancing power in June 2020 in Germany

negative flexibility, the demand for provision is also low due to the low renewables feed-

in. In times with low feed-in, the availability is low, but barely any negative flexibility

is needed since strong negative deviations cannot occur. With the rising share of wind

capacities and the possible curtailment, sufficient negative balancing power is always

available.

Figure 1.7 shows the availability of positive balancing power in the same week as demon-

strated before in Germany 2020.
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Figure 1.7: Availability of positive balancing power in June 2020 in Germany

Again, the available capacity corresponds to the provision requirement. During hours

with high requirements, sufficient capacity for providing additional generation on short

notice is sufficiently available. This is due to the fact that conventional generation is

replaced by renewable generation, therefore capacities are idle and contribute to the

availability of balancing power. Up to 2050, the availability of positive balancing power
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changes according to the source, i. e., there are more gas-fired power plants (OCGT) and

less capacities in part-load.

Since positive and negative balancing power requirements never pose any challenge in

any country considered, we conclude that the backup effect of the gas-fired capacities

is significantly more relevant. Apparently, the gas-fired capacities are built because

they are needed as a backup capacity rather than for providing flexibility during other

hours. This finding is backed up by a closer look at the behavior of flexible CCS power

plants. These power plants have the ability to shortly increase output by detaching their

CCS unit. However, the only use of this ability is found in hours with scarce capacity,

not in hours with high balancing power provision requirements or in hours with steep

changes in residual load. This means that in a cost-efficient capacity mix the realizable

full load hours matter more than flexibility issues. The main reason is surely the fact,

that conventional capacity which is cost-efficient with low realizable full load hours, i. e.,

open cycle gas turbines with low capital costs and high variable costs, is highly flexible.

Therefore, flexibility comes as a complement of a cost-efficient capacity mix in electricity

systems with a high share of RES-E.

1.4.4 Implications for market design

For a proper discussion of the implications for market design on base of the performed

analysis, three major points deserve closer consideration.

First, we assumed an exogenous deployment of RES-E, which may or may not reflect

future European policies. However, this assumption is more in favor of our argumenta-

tion since it imposes stronger distortion for the electricity system, especially regarding

the requirements for flexibility. The purpose of this paper was to take a closer look on

flexibility in systems with a high share of renewables. Of course, all results are subject

to the current information, e. g. the cost structure of renewables. However, as long as

the renewables, which are deployed in the electricity system are not dispatchable, the

full-load hour argument still holds.

Second, the scenario assumption about CO2 prices is rather high compared to current

trends. We do not know how the CO2 prices develop and hence, we cannot finally con-

clude whether current price levels are a good estimation for future price levels. However,

we can estimate the impacts of lower CO2 prices for the model results. The differences

of the scenarios with prices of 50e/t emitted CO2 (2050 in Scenario A) and 100e/t in

2050 in Scenario B led to a fuel-switch from coal to gas and to more deployment of CCS

capacities. If we assume lower prices for CO2, there would be no significant changes in

the capacity mix, since the merit order of the generation technologies does not change

34



1.5 Conclusions

compared to Scenario A.21 The general conclusions from the results will not be altered.

What will change, however, is the relative value of renewables curtailment. Conventional

generation will be cheaper and hence, less storage will be built. But since the difference

of storage investments between the two scenarios is low, it will presumably have little

impact if the CO2 price is lower than in Scenario A.

Third, the result of the model due to the chosen approach is always an adequate, cost-

efficient electricity system, implicitly assuming perfect competition and neglecting other

distortions. The capacities built in the model are per definition profitable, and hence

the discussion about Energy-Only-Market and capacity markets is irrelevant. For our

approach, the only relevant issue is whether the market design produces a cost-efficient

capacity mix. It does not matter, how this capacity mix is achieved. Hence, we can

neglect the discussion of suitability of Energy-Only-Markets.

At the same time, the dependency of our results on a cost-efficient capacity mix means

that any policies distorting this capacity mix could alter our results. For example,

guaranteed payment for nuclear in the UK could increase the base load capacities and

therefore change the capacity mix. As a consequence this could influence the availability

of flexible resources. The other way round this implies that distorting the cost-efficient

capacity mix by forcing certain technologies into the market, might create negative

externalities with respect to available flexibility.

What we can draw as a conclusion for market design – with the stated limitations

– is therefore, that assuring system adequacy is more important than introducing any

additional incentives for flexibility. If even balancing power does not pose any challenges

with a high share of renewables, additional instruments for incentivizing investments

into flexible resources despite the existing spot and balancing market are certainly not

necessary.

1.5 Conclusions

Electricity systems with a high share of renewables are confronted with an increasing

requirement for flexibility. If the market does not provide sufficient flexibility and re-

quires additional incentives, market design may be affected. In this paper, we analyzed

this issue for the European electricity system. In an integrated system analysis, a lin-

ear investment and dispatch model is used to simulate the development of electricity

markets in Europe up to 2050. The model was extended by including constraints for

the provision of balancing power provision depending on renewable feed-in, demand-side

21We counter-checked this result by analyzing the fuel-switch induced by lower CO2 prices than 50e/t.
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reactions, start-up processes of conventional power plants and flexible CCS power plants

with a detachable CCS unit.

The results of the integrated analysis show that achievable full load hours of conventional

capacities are reduced as renewable generation increases. Depending on the fluctuating

renewable share, the volatility of the residual load increases and significantly impacts

the electricity system. In 2050, when, e. g., for Germany and the UK with 50 % and

70 % of fluctuating renewables respectively, the spread of hourly changes increase by

50 % in Germany and doubles in the UK. Extreme values of hourly changes occur more

often and reach up to 40,000 MW in the UK due to the high wind penetration. In

other countries with a more balanced renewable portfolio, values around 20,000 MW

still occur. Provision of balancing power for forecast errors increases and, given a 10 %

provision of renewable feed-in, reaches over 10,000 MW in some hours.

The system adapts to the reduced achievable full load hours by adding more peak-

load capacities, i. e., gas-fired power plants. Due to the relatively low investment costs,

they serve as cost-efficient backup technologies. With higher CO2 prices, the general

case does not change: only more conventional capacity is equipped with CCS. Due to

different storage investments in Scenario A and B, storages seem mainly to be built

to prevent renewable curtailment, rather than to provide flexibility. This conjecture is

confirmed by the fact that the provision of balancing power is never a binding constraint

throughout the whole simulation. Therefore, at every point in time, excess capacity is

able to ramp up within 15 minutes, allowing the electricity system to deal with any

flexibility requirement. This finding is supported by the analysis of the utilization of

flexible CCS power plants. The ability of these plants to provide generation in short

time is only beneficial if renewable feed-in is low during peak-times – but not for the

purpose of providing flexibility in hours with high volatility. Therefore, we conclude that

the main trigger for investments in flexible resources such as gas-fired power plants or

flexible CCS plants is system adequacy. Flexibility is a by-product of the cost-efficient

adaptation to the reduced achievable full load hours under system adequacy.

Under the condition of system adequacy, flexibility never poses a challenge in a cost-

minimal capacity mix. Therefore, any market design incentivizing investment in efficient

generation thus provides flexibility as an inevitable complement.

Our results, however, depend on our assumption on current costs and technological

progress. Disruptive innovations and changes in national energy policies might alter the

future demand of flexibility. It seems, however, rather unlikely that such changes will

increase the demand for flexibility beyond the level assumed in our analysis.
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1.6 Appendix

1.6.1 Appendix A: Model assumptions

Table 1.6: Net electricity demand [TWhel] and potential heat generation in CHP
plants [TWhth]

2020 2030 2040 2050

Austria (AT) 65.3 41.2 70.0 41.5 74.3 41.8 78.5 42.0
BeNeLux (LU) 221.6 129.9 237.6 130.8 252.2 131.5 266.5 132.3
Czech Republic (CZ) 69.9 55.1 78.8 55.7 88.3 56.4 98.5 57.0
Denmark (DK) 40.5 54.7 43.4 55.1 46.0 55.4 48.6 55.7
Eastern Europe (EE) 151.9 132.6 171.1 134.2 191.8 135.7 214.0 137.2
France (FR) 480.0 31.6 514.6 31.8 546.4 32.0 577.2 32.2
Germany (DE) 567.0 192.4 584.2 192.9 584.2 192.9 584.2 192.9
Iberian Peninsula (IB) 354.5 72.9 409.4 73.9 470.5 75.0 538.0 76.0
Italy (IT) 362.9 169.2 419.1 171.7 481.6 174.1 550.7 176.5
Poland (PL) 140.0 93.3 157.8 94.4 176.9 95.5 197.3 96.6
United Kingdom (UK) 415.5 68.1 445.6 68.6 473.0 69.0 499.7 69.3
Scandinavia (SK) 365.4 98.1 391.8 98.8 415.9 99.4 439.4 99.9
Switzerland (CH) 65.4 3.0 70.1 3.0 74.5 3.0 78.7 3.0

Table 1.7: Gross installed capacities of renewable energies in 2050 [GW]

Biomass Biomass-CHP Wind onshore Wind offshore PV CSP Geothermal

Austria 1.7 0.7 4.4 0.0 9.0 0.0 0.4
BeNeLux 5.8 3.1 14.0 35.7 2.2 0.0 1.3
Czech Republic 3.4 1.5 16.7 0.0 10.1 0.0 0.6
Denmark 3.7 1.6 4.4 10.5 0.0 0.0 0.3
Eastern Europe 9.8 4.3 31.2 0.0 31.1 0.0 0.4
France 6.7 2.9 71.5 62.0 62.4 27.3 0.6
Germany 11.4 5.0 63.4 48.9 91.8 0.0 2.2
Iberian Peninsula 4.7 2.1 74.1 5.4 28.0 49.9 1.4
Italy 6.4 2.8 53.2 19.3 52.1 49.9 4.1
Poland 5.7 2.5 42.1 26.9 11.9 0.0 0.4
United Kingdom 9.8 4.3 53.4 93.8 2.7 0.0 1.3
Scandinavia 6.5 2.8 19.4 36.6 0.0 0.0 1.8
Switerland 3.5 1.5 1.2 0.0 3.8 0.0 0.3
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Table 1.8: Considered demand side management processes

Sector Processes

Industry
aluminum-electrolysis, cement mills, paper machine, pulp refining,
paper coating / calendaring, recycled paper treatment, electric arc furnace,
chlorine-alkali-electrolysis (membrane), ventilation, compressed air

Service
medium and large water heaters (>30 l), air conditioning, ventilation,
cold storage houses, walk-ins / chillers / freezers

Domestic
refrigerator, freezer, washing machine, dryer, dish washer,
medium and large water heaters (>30 l), air conditioning,
night storage heating, circulation pumps

Transport e-mobility
Municipal pumping, aeration
Others heat pumps

Table 1.9: Technical specifications for demand side management processes

Technologies
Balancing Efficiency Max. Max.
interval [h] [%] demand demand

reduction [%] increase [%]

ventilation, compressed air,
2 95 24-90 75-90circulation pumps, heat pumps,

air conditioning
medium and large water heaters (>30 l),

4 95 90 50-90
cold storage houses, freezer, pumping
dish washer 12 100 90 90
washing machine, dryer, night storage

24 100 25-90 25-90
heating, e-mobility, aeration
aluminium-electrolysis, cement mills,

8760 100 15-90 50
paper machine, paper coating /
calendaring, pulp refining, recycled
paper treatment, electric arc furnace,
chlorine-alkali-electrolysis (membrane)

Table 1.10: Development of DSM-capacities in Europe until 2050 [MW]

2020 2030 2040 2050

Developed Existing Developed Existing Developed Existing Developed Existing
Industry 11,268 15,565 13,226 16,111 14,531 16,657 15,996 17,254
Service 681 13,619 2,151 14,338 4,269 14,229 7,167 14,334
Domestic 1,891 63,020 6,177 61,772 11,455 57,273 18,648 53,281
Transport 589 589 1,342 1,342 3,019 3,019 5,717 5,717
Municipal 106 1,056 310 1,035 558 1,014 745 994
Other 173 3,466 494 3,292 941 3,137 1,499 2,998
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Table 1.11: Overnight investment costs [EUR2010/kW]

2020 2030 2040 2050

Nuclear 3,157 3,157 3,157 3,157
Lignite 1,850 1,850 1,850 1,850
Lignite CHP 2,350 2,350 2,350 2,350
Lignite CCS - 2,896 2,721 2,652
Lignite CCS (flexible) - 3,041 2,842 2,764
Lignite - innovative 1,950 1,950 1,950 1,950
Lignite - innovative CCS - 2,996 2,821 2,752
Lignite - innovative CCS (flexible) - 3,145 2,945 2,867
Lignite - innovative CHP and CCS - 3,396 3,221 3,152
Hard coal 1,500 1,500 1,500 1,500
Hard coal CHP 2,650 2,342 2,135 2,030
Hard coal CCS - 2,349 2,207 2,152
Hard coal CCS (flexible) - 2,459 2,298 2,236
Hard coal - innovative 2,250 1,904 1,736 1,650
Hard coal - innovative CCS - 2,753 2,443 2,302
Hard coal - innovative CCS (flexible) - 2,894 2,560 2,410
Hard coal - innovative CHP and CCS - 3,191 2,842 2,682
CCGT 700 700 700 700
CCGT - CHP 1,000 1,000 1,000 1,000
CCGT - CCS - 1,127 1,057 1, 030
CCGT - CCS (flexible) - 1,189 1,109 1,078
CCGT - CHP and CCS - 1,409 1,341 1,314
OCGT 400 400 400 400
Compressed air storage 850 850 850 850
Biomass gas 2,398 2,395 2,393 2,390
Biomass gas CHP 2,597 2,595 2,592 2,590
Biomass liquid 1,700 1,700 1,700 1,700
Biomass solid 3,297 3,293 3,290 3,287
Biomass solid CHP 3,497 3,493 3,490 3,486
Concentrated solar power 3,989 3,429 3,102 2,805
Geothermal (hot dry rock) 10,504 9,500 9,035 9,026
Geothermal (high enthalpy) 1,050 950 904 903
PV ground 1,796 1,394 1,261 1,199
PV roof 2,096 1,627 1,471 1,399
Wind onshore 1,221 1,161 1,104 1,103
Wind offshore 2,615 2,365 2,249 2,247
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Table 1.12: Techno-economic figures for generation technologies [as indicated]

Net efficiency Availability FOM costs Lifetime Minimum Ramp-up
[%] [%] [EUR2010/kWa] load[a] [%] times [h]

Nuclear 33 84.5 96.6 60 45 48
Lignite 43 86.3 43.1 45 30 3 - 12

CHP 22.5 86.3 62.1 45 30 3 - 12
CCS 33.5 86.3 70.3 45 30 3 - 12
CCS (flexible) 32.9 86.3 71.6 45 30 3 - 12
innovative 46.5 86.3 43.1 45 30 3 - 12
innovative CCS 37 86.3 70.3 45 30 3 - 12
innovative CCS (flexible) 36.4 86.3 71.6 45 30 3 - 12
innovative CHP and CCS 20 86.3 89.3 45 30 3 - 12

Hard coal 46 83.8 36.1 45 30 1 - 6
CHP 22.5 83.8 55.1 45 30 1 - 6
CCS 36.5 83.8 59 45 30 1 - 6
CCS (flexible) 35.9 83.8 60.2 45 30 1 - 6
innovative 50 83.8 36.1 45 30 1 - 6
innovative CCS 40.5 83.8 59 45 30 1 - 6
innovative CCS (flexible) 39.9 83.8 60.2 45 30 1 - 6
innovative CHP and CCS 20 83.8 78 45 30 1 - 6

CCGT 60 84.5 28.2 30 40 0.75 - 3
CHP 36 84.5 40 30 40 0.75 - 3
CCS 52 84.5 46 30 40 0.75 - 3
CCS (flexible) 51.6 84.5 50.5 30 40 0.75 - 3
CHP and CCS 33 84.5 57.9 30 40 0.75 - 3

OCGT 40 84.5 17.2 25 20 0.25
Biomass gas 40 85 120 30 30
Biomass gas CHP 30 85 130 30 30
Biomass liquid 30 85 85 30 30
Biomass solid 30 85 165 30 30
Biomass solid CHP 22.5 85 175 30 30
Concentrated solar power - - 120 25
Geothermal (HDR) 22.5 85 300 30
Geothermal 22.5 85 30 30
PV ground - - 30 25
PV roof - - 35 25
Run-off-river hydropower - - 11.5 100
Wind onshore - - 41 25
Wind offshore - - 128 25
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Table 1.13: Fuel costs [EUR2010/MWhth]

2008 2020 2030 2040 2050

Uranium 3.6 3.3 3.3 3.3 3.3
Lignite 1.4 1.4 1.4 1.4 1.4
Hard coal 17.3 13.4 13.8 14.3 14.7
Oil 44.6 99 110 114 116
Natural gas 25.2 28.1 31.3 33.2 35.2
Hydrogen - 46.7 47.4 48.2 48.9
Bioliquid 53.2 - 94.3 57.1 - 101.1 61.8 - 109.4 61.8 - 109.4 61.8 - 109.4
Biogas 0.1 - 70.0 0.1 - 67.2 0.1 - 72.9 0.1 - 78.8 0.1 - 85.1
Biosolid 15.0 - 27.7 15.7 - 34.9 16.7 - 35.1 17.7 - 35.5 18.8 - 37.5

1.6.2 Appendix B: Detailed scenario results

Please note that the numbers for storage contain pump storage as well as Compressed

Air Energy Storage (CAES).

Table 1.14: Gross installed capacities in Europe in [GW] (%)

Scenario A Scenario B

2008 2020 2030 2040 2050 2020 2030 2040 2050
Nuclear 135 (17) 109 (10) 95 (7) 69 (4) 60 (3) 109 (10) 100 (7) 88 (5) 75 (4)
Lignite 51 (7) 45 (4) 29 (2) 15 (1) 9 (0) 36 (3) 20 (1) 5 (0) 0 (0)

Lignite-CHP 0 (0) 6 (1) 3 (0) 1 (0) 0 (0) 6 (1) 3 (0) 1 (0) 0 (0)
Lignite-CCS 0 (0) 0 (0) 32 (2) 48 (3) 48 (2) 0 (0) 42 (3) 46 (3) 46 (2)

Lignite-CHP-CCS 0 (0) 0 (0) 3 (0) 4 (0) 4 (0) 0 (0) 4 (0) 4 (0) 4 (0)
Coal 128 (16) 83 (8) 19 (1) 3 (0) 0 (0) 82 (7) 19 (1) 3 (0) 0 (0)

Coal-CHP 0 (0) 50 (5) 39 (3) 38 (2) 32 (2) 40 (4) 23 (2) 14 (1) 7 (0)
Coal-CCS 0 (0) 2 (0) 17 (1) 27 (2) 27 (1) 2 (0) 26 (2) 32 (2) 32 (2)

Coal-CHP-CCS 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
Gas 158 (20) 177 (16) 239 (17) 296 (17) 328 (16) 189 (17) 232 (17) 285 (16) 324 (15)

Gas-CHP 0 (0) 37 (3) 13 (1) 0 (0) 0 (0) 38 (3) 13 (1) 0 (0) 0 (0)
Gas-CCS 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Gas-CHP-CCS 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 9 (1) 12 (1) 12 (1)
Oil 72 (9) 19 (2) 5 (0) 0 (0) 0 (0) 19 (2) 5 (0) 0 (0) 0 (0)

Oil-CHP 0 (0) 5 (0) 0 (0) 0 (0) 0 (0) 5 (0) 0 (0) 0 (0) 0 (0)
Storage 50 (6) 47 (4) 52 (4) 57 (3) 64 (3) 47 (4) 50 (4) 64 (4) 68 (3)
Hydro 92 (12) 172 (16) 172 (12) 172 (10) 172 (8) 172 (16) 172 (12) 172 (10) 172 (8)

Biomass 9 (1) 29 (3) 39 (3) 55 (3) 79 (4) 29 (3) 39 (3) 55 (3) 79 (4)
Biomass-CHP 0 (0) 12 (1) 17 (1) 24 (1) 35 (2) 12 (1) 17 (1) 24 (1) 35 (2)
Wind onshore 49 (6) 160 (14) 284 (21) 368 (21) 449 (21) 160 (15) 284 (21) 368 (21) 449 (21)
Wind offshore 1 (0) 51 (5) 123 (9) 218 (13) 339 (16) 51 (5) 123 (9) 218 (13) 339 (16)

PV 5 (1) 82 (7) 138 (10) 222 (13) 305 (14) 82 (7) 138 (10) 222 (13) 305 (15)
CSP 0 (0) 7 (1) 38 (3) 91 (5) 127 (6) 7 (1) 38 (3) 91 (5) 127 (6)

Geothermal 1 (0) 2 (0) 11 (1) 13 (1) 15 (1) 2 (0) 11 (1) 13 (1) 15 (1)
Others 26 (3) 11 (1) 11 (1) 11 (1) 11 (1) 11 (1) 11 (1) 11 (1) 11 (1)
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Table 1.15: Gross electricity generation in Europe [TWh] (%)

Scenario A Scenario B

2008 2020 2030 2040 2050 2020 2030 2040 2050
Nuclear 955 (28) 794 (21) 665 (16) 442 (10) 321 (7) 799 (21) 695 (17) 552 (12) 409 (9)
Lignite 315 (9) 310 (8) 130 (3) 64 (1) 37 (1) 251 (7) 16 (0) 4 (0) 0 (0)

Lignite-CHP 0 (0) 7 (0) 5 (0) 1 (0) 0 (0) 9 (0) 0 (0) 0 (0) 0 (0)
Lignite-CCS 0 (0) 2 (0) 180 (4) 231 (5) 208 (4) 2 (0) 291 (7) 284 (6) 246 (5)

Lignite-CHP-CCS 0 (0) 0 (0) 19 (0) 24 (1) 25 (1) 0 (0) 25 (1) 25 (1) 25 (1)
Coal 543 (16) 407 (11) 104 (3) 12 (0) 1 (0) 308 (8) 57 (1) 5 (0) 0 (0)

Coal-CHP 0 (0) 290 (8) 252 (6) 232 (5) 167 (4) 207 (6) 145 (4) 47 (1) 16 (0)
Coal-CCS 0 (0) 15 (0) 120 (3) 157 (4) 120 (3) 15 (0) 186 (5) 200 (4) 154 (3)

Coal-CHP-CCS 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
Gas 747 (22) 512 (14) 444 (11) 308 (7) 223 (5) 643 (17) 401 (10) 275 (6) 194 (4)

Gas-CHP 0 (0) 111 (3) 35 (1) 0 (0) 0 (0) 174 (5) 66 (2) 0 (0) 0 (0)
Gas-CCS 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Gas-CHP-CCS 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 60 (1) 61 (1) 44 (1)
Oil 91 (3) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Oil-CHP 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
Storage 67 (2) 17 (0) 36 (1) 55 (1) 75 (2) 15 (0) 36 (1) 62 (1) 77 (2)
Hydro 466 (13) 497 (13) 491 (12) 487 (11) 464 (10) 497 (13) 492 (12) 487 (11) 462 (10)

Biomass 88 (3) 26 (1) 66 (2) 92 (2) 99 (2) 44 (1) 89 (2) 110 (2) 116 (2)
Biomass-CHP 0 (0) 67 (2) 94 (2) 117 (3) 134 (3) 78 (2) 101 (2) 125 (3) 138 (3)
Wind onshore 117 (3) 335 (9) 599 (15) 728 (16) 821 (17) 335 (9) 599 (15) 732 (16) 823 (17)
Wind offhore 0 (0) 180 (5) 444 (11) 751 (17) 1107 (23) 180 (5) 444 (11) 753 (17) 1110 (23)

PV 7 (0) 86 (2) 152 (4) 247 (6) 335 (7) 86 (2) 152 (4) 248 (6) 334 (7)
CSP 0 (0) 26 (1) 138 (3) 319 (7) 427 (9) 26 (1) 138 (3) 319 (7) 427 (9)

Geothermal 6 (0) 10 (0) 58 (1) 68 (2) 75 (2) 10 (0) 58 (1) 68 (2) 74 (2)
Others 67 (2) 57 (2) 57 (1) 57 (1) 57 (1) 57 (2) 57 (1) 57 (1) 57 (1)

DSM (0) 14 (0) 22 (1) 32 (1) 49 (1) 14 (0) 22 (1) 33 (1) 50 (1)

Table 1.16: Renewable curtailment [TWh] (%)

2020 2030 2040 2050

Scenario A
Wind onshore 0.7 (0.2) 5.0 (0.8) 44.3 (6.1) 103.0 (12.6)
Wind offshore 0.0 (0.0) 1.7 (0.4) 15.3 (2.0) 46.7 (4.2)

Solar power 0.1 (0.1) 0.2 (0.1) 2.6 (1.1) 10.0 (3.0)

Scenario B
Wind onshore 0.7 (0.2) 5.4 (0.9) 40.1 (5.5) 101.1 (12.3)
Wind offshore 0.0 (0.0) 1.4 (0.3) 13.3 (1.8) 43.9 (4.0)

Solar power 0.1 (0.1) 0.3 (0.2) 2.4 (1.0) 10.2 (3.0)
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On the interaction effects of market fail-

ure and capacity payments in intercon-

nected electricity markets

The ongoing debate on the necessity of capacity remuneration mechanisms (CRMs) to

ensure sufficiency of generation capacity primarily focuses on a national perspective. The

research concerning possible spill-over effects, positive or negative, in adjacent markets

is lagging behind. This is the case for the effects of CRMs as well as for the effects of

market failures. We address both topics in this paper.

Specifically, we analyse the effects of price caps in two interconnected markets. Addi-

tionally, we analyse the effects of capacity payments meant to counter the deadweight

losses triggered by the price restrictions.

Although we find no indication that price caps or capacity payments in one market have

(serious) negative effects on neighbouring markets, being connected to other markets can

worsen the deadweight losses induced by market inefficiencies. Also capacity mechanisms

might be less effective than in isolated markets. Finally, in the analysed set-up we find

no indication that capacity efforts in one market support neighbouring markets with

insufficient generation capacity.
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2.1 Introduction

The question about whether or not capacity remuneration mechanisms (CRMs) are nec-

essary to ensure security of supply and maximise welfare as well as their concrete design

has been widely discussed for many years.22 The prevailing view is that energy only

markets do not provide sufficient investment incentives as wholesale electricity markets

are characterised by certain market failures (and regulatory inefficiencies) that render

some form of external investment incentive necessary. The most dominant arguments

in favour of market interventions are the insufficient elasticity of demand in times of

scarcity of supply, regulatory interventions preventing sufficient price signals and risk-

averse investment behaviour.

Although many countries in Europe have already implemented some form of capacity

support scheme (or several, as a recent sector inquiry on capacity mechanisms by the

European Commission (EC) points out)23 the debate concerning the appropriate mar-

ket design continues. The German government for example only recently renewed its

commitment to free price formation in the electricity market – assuming that this would

trigger sufficient investments. Nonetheless, a capacity reserve for unexpected events is

planned.24

Whereas the prevalent literature on capacity remuneration mechanisms mainly focuses

on single markets, against the sketched background of numerous and various regulations

and market designs the question arises if and how markets with different capacity levels,

market interventions and CRMs interact. Correspondingly, concerns have been raised,

e. g., by the EC, that CRMs may distort price signals in domestic as well as foreign

markets which could have a negative impact on investment decisions (see European

Commission, 2016a) and potentially endanger the functioning of the European internal

market (see ACER, 2013, European Commission, 2013).

On the other hand, national regulators pursue market interventions to support capacity

investments with diverse mechanisms and varying intensity. That is why suspicions

aroused that some markets may free-ride on the efforts of others.

Given the outlined background and concerns we address the following research questions:

First, do market failures in isolated markets have different effects than in interconnected

markets? Additionally, what effect does an insufficient level of capacity in one market,

22See, e. g., Borenstein and Holland (2005), Cramton and Ockenfels (2012), Cramton and Stoft (2005,
2006), Hogan (2005), Joskow and Tirole (2007), Joskow (2006, 2008). A recent overview is provided by
Cramton et al. (2013).

23See European Commission (2016a)
24As stated in the electricity market law ‘Gesetz zur Weiterentwicklung des Strommarktes (Strom-

marktgesetz)‘, 26th of July 2016, BGBl. 2016 I, nr. 37, p. 1786, 1796-1797.
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caused by a malfunctioning energy only market, have on adjacent markets? Second, do

CRMs, in our case capacity payments (CP ), behave differently in interconnected than in

isolated markets? And third, do markets with insufficient domestic capacity incentives

benefit from CRMs in neighbouring markets, i. e., do incentives to free-ride exist?

The existing literature about CRMs is mostly focusing on a national perspective. This

is the case for the negative welfare effects of market failures rendering CRMs necessary

in the first place as well as the efficiency and effectiveness of mechanisms designed to

counter those effects.

Rare examples analysing the interaction of capacity mechanisms in adjacent countries

are Cepeda and Finon (2011), Elberg (2014) and Meyer and Gore (2014). Cepeda and

Finon (2011) deploy a system dynamics model to simulate varying market designs in two

markets. They conclude that a CRM in one market can result in negative externalities by

impeding the performance of adjacent energy only markets. They state that harmonised

approaches (whether energy only markets or CRMs) are mutually beneficial. Elberg

(2014) as well as Meyer and Gore (2014) consider the presence of market failure as given

and therefore focus on the comparison of mechanisms. The former concludes, using

an analytical model, that capacity payments, although equally efficient as a strategic

reserve in isolated markets, are a dominant strategy in interconnected markets. Meyer

and Gore (2014), using a simulation model, conclude that unilateral capacity mechanisms

can have negative cross-border effects worsening the problem of insufficient investments

in neighbouring markets. However, if both regions introduce a mechanism, welfare is

increased in the given example.

In this paper we contribute to the previous research by analysing the effects of market

failure and CRMs in interconnected markets using a equilibrium model. Thus, we can

identify market equilibria rather than relying on simulation results as in Cepeda and

Finon (2011). Additionally, we model the complex interaction of adjacent electricity

market using real world data (in contrast to Elberg (2014) and Meyer and Gore (2014)

who assume equal demand at all times). This way, a more realistic estimation of the

magnitude of effects can be made. Our results contradict the previous literature as our

findings do not indicate any serious negative cross-border effects of CRMs.

For the analysis of cross-border effects in electricity markets the joint distribution of

demand as well as the generation of renewable energies are critical. This complex and

market-specific dependency renders a theoretical analysis difficult. We thus develop a

mathematical model, more specifically a Mixed Complementarity Problem (MCP), to

calculate equilibrium market outcomes. We use 2015 data for the demand and renewable

generation patterns for Germany and France. As generators we take into account one

base and one peak load technology. Market failure is represented by a cap on electricity
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prices. Such a cap does not necessarily require an explicit (regulatory) cap but may also

be inflicted on the market by undue market interventions meant to secure security of

supply. To analyse the effects of CRMs, we focus on capacity payments as one possible

alternative.25 We assume that those payments are made for all (conventional) capacity

in the market and paid as a lump sum.

The main findings are as follows: First, and in line with the existing literature, our

results show that – in an isolated market – the disadvantages of insufficient price signals

induced by a cap can be cured by capacity payments (leaving problems concerning the

determination of their appropriate level aside).

Second, the negative implications of price caps worsen in interconnected markets: In-

stalled capacity and ultimately welfare decrease to a larger extent. The artificially low

prices result in additional exports during peak demand and thus do not (fully) bene-

fit domestic consumers. In addition, more capacity recedes as imports partly replace

the missing domestic generation which hinders prices to reach the equilibrium level. A

higher interconnector capacity worsens the negative effects of price caps.

The third finding is that a price cap in one market does not appear to have a negative

impact on welfare in neighbouring markets. On the contrary, the price cap results in

imports from the market having the cap which benefits the market without (or a higher)

cap. These benefits exceed the disadvantages of decreasing generation capacity due to

the additional imports that are dampening market prices.

Forth, capacity payments are less efficient in interconnected than in isolated markets.

This is due to price distortions that are not targeted by CP : Inefficient price signals

persist and result in inefficient trade. But although some welfare losses persist, our

results indicate that most of the losses can be recuperated.

Finally, capacity payments in one market do not appear to greatly support neighbouring

markets that have a price cap: Losses might be slightly reduced given less restrictive

caps. For more restrictive caps CP might even be harmful for adjacent markets. The

additional capacity triggered by the support scheme in one market pushes back capacity

in the other market which outweighs the benefits of imports. If neighbouring markets

both have a price cap, the optimal welfare level can almost be restored if both markets

introduce capacity payments. Remaining deadweight losses are due to inefficient price

signals caused by the price caps which result in an inefficient allocation of capacity and

supply.

25Assuming an omniscient regulator, capacity payments and capacity auctions are equivalent with
respect to the resulting market outcome.
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A few things have to be mentioned concerning our findings: We assume that the markets

and therefore also trade are not limited or regulated other than by – depending on the

scenario – price caps. This means that exports are not restricted when the price cap is

reached. If caps are explicitly intended in market regulations exports might be limited

in order to strengthen domestic consumption. But as this would interfere with the free

trade in the European internal market we refrain from considering this option in the

analysis at hand.

The second assumption underlying the analyses is that demand is flexible: A power

outage is not a problem caused by (foreseeable) imbalances of demand and supply. In

fact, over the last five years no reliability problems occurred in continental Europe

in the ten EU member countries mentioned in the EU Commission’s sector inquiry –

although some expect problems in the future.26 Assuming that demand is actually (at

least partially) inflexible could result in an inability of the market to match demand and

supply. In this case the European transmission system operators (TSOs) are required

to execute countermeasures to restore system stability – including (involuntary) load

shedding as a last resort. This emergency measures might cause additional welfare

losses which are not taken into account in this paper. Concerning our findings the

general trend remains unchanged but may have a greater order of magnitude. Also the

effects on neighbouring countries would only slightly change as they are driven by a

change in trade flows rather than the influence on capacity.

The remainder of this paper is structured as follows: In section 2.2 the mathematical

programme for the subsequent analyses is presented. Section 2.3 first outlines the sample

data followed by the quantitative analyses of the effects of market failure and capacity

payments. Section 2.4 concludes.

2.2 Market model

2.2.1 Model formulation

The model represents interconnected electricity markets m.27 Markets are regulatory in-

dependent regions connected by limited transmission capacity. We analyse investments

ym,n in production technology n with variable costs vn and annual investment (plus other

fixed) costs kn. In the context of this paper, technologies always refer to conventional

power plants; renewable energies are treated separately. A single investment period

is followed by several production periods t with production xtm,n in each time period.

26See European Commission (2016a).
27The terms market, region and country are used interchangeably throughout this paper.
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Production of renewable energies (wind and photovoltaics) rtm is curtailed if produc-

tion exceeds demand. We model each year individually, i. e., we do not account for

investments over time. Investment and production decisions are made simultaneously.

Perfect competition of generators is assumed, i. e., generation capacity is utilised until

market prices equal variable costs or capacity is exhausted. Investment in generation

capacity takes place until profits are zero. Countries are connected by a transmission

line with limited capacity l̄m,−m. Actual trade is denoted by lm,−m and indicates the

electricity trade from region m to another region −m. Transmission capacity is utilised

to maximise total welfare, i. e., until prices in both markets are equal or the capacity is

exhausted.

Market interventions in terms of capacity mechanisms take place prior to investment

and generation decisions. They influence investment costs via capacity payments cm

which are subtracted from the investment costs.

The basic notations are listed in Table 2.1, additional symbols are explained where

applicable.

Table 2.1: Model sets, parameters and variables

Abbreviation Description

Model sets
m Markets
n ∈ N Technologies
t ∈ T Time index
Model parameters
kn R+ Marginal investment costs
vn R+

0 Variable production costs
atm R+

0 y-intercept of the demand curve
b R+ Linear slope of the demand curve
Kr R+

0 Total investment costs of wind and photovoltaics
rtm R+

0 Wind and photovoltaics production
l̄m,−m R+

0 Transmission capacity
Model variables
ym,n R+

0 Capacity investments
xtm,n R+

0 Production
ptm R+

0 Market price
cm R+

0 Capacity payments per unit of capacity
ltm,−m R[−l̄,l̄] Trade

In the following we present the mathematical programme that is used to solve the model

sketched above. We start with the equilibrium model representing the competitive mar-

ket. Afterwards, we present the calculation of welfare based on the results of this model.

We start by formulating the market outcome as an optimisation problem which is sep-

arated into investment and production decisions of a generation company and trade

conducted by a transmission system operator (TSO).
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The objective function of the generation company represents a profit maximising investor

who maximises revenues minus variable and investment costs. The optimisation problem

is as follows:

max
xtm,n,ym,n

∑
t,m,n

(ptm − vm,n)xtm,n −
∑
m,n

ym,n(kn − cm) (2.1)

subject to

ym,n − xtm,n ≥ 0 (λtm,n) (2.2)

ptm = atm − b

(∑
n

xtm,n −
∑
−m

(ltm,−m − lt−m,m) + rtm

)
(2.3)

ym,n ≥ 0, xtm,n ≥ 0. (2.4)

The first constraint limits the hourly electricity generation to the installed capacity.

Equation (2.3) represents the assumed linear demand function. Finally, non-negativity

constraints are listed. Related dual variables are listed in brackets next to each equation.

The influence of capacity mechanisms is represented by capacity payments cm. This

optimisation problem for competitive generators is equivalent to the following Karush-

Kuhn-Tucker (KKT) conditions:28

vm,n + λtm,n − ptm ≥ 0 (2.5)

kn − cm −
∑
t

λtm,n = 0 (2.6)

0 ≤ ym,n − xtm,n ⊥ λtm,n ≥ 0 (2.7)

(2.3)− (2.4) (2.8)

with the perp operator (⊥) meaning that the product of the expressions to the left and

to the right has to equal zero. The first equation reflects the first order condition for

the optimal choice of production and links the market price, variable production costs

and the marginal value of capacity.

The second equation states the first order condition for investments: Annual investment

costs for generation companies, i. e., nominal investment costs k minus capacity payments

c, have to equal the sum of the marginal values of capacity λ. Equation (2.7) limits

production to installed capacity and links the associated dual variable.

28As we assume competitive generators the conjectural variation parameter is set to zero (see, e. g.,
Murphy and Smeers, 2005).
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We assume a profit maximising, competitive TSO. The objective function of the TSO

consists of the profits from trade calculated as the price difference between both regions

times the trade volume:

max
ltm,−m

∑
t,m,−m

ltm,−m(pt−m − ptm) (2.9)

subject to:

l̄m,−m − ltm,−m ≥ 0 (πtm,−m) (2.10)

l̄m,−m + ltm,−m ≥ 0 (µtm,−m) (2.11)

(2.3) (2.12)

The first and second constraint represent the upper and lower bound of transmission

between regions. The linear demand function is equal to the one for the generation

company.

This optimisation problem is equivalent to the following KKT conditions:

ptm − pt−m + πtm,−m − µtm,−m = 0 (2.13)

0 ≤ l̄m,−m − ltm,−m ⊥ πtm,−m ≥ 0 (2.14)

0 ≤ l̄m,−m + ltm,−m ⊥ µtm,−m ≥ 0 (2.15)

(2.3) (2.16)

The first order condition (2.13) postulates that the price difference between two regions

equals the marginal value of the transmission capacity. The following two complemen-

tarity conditions (2.14) and (2.15) enforce the transmission limits and link the associated

dual variables.

Simultaneously solving equations (2.5) - (2.8) and (2.13) - (2.15) provides the competitive

market outcome. Due to the quasi-concave objective function and the convexity of

restrictions, the KKT conditions are necessary and sufficient for an optimal solution.

A cap on electricity prices is implemented as an additional generation technology cap ∈
N with zero investment costs (kcap = 0) and variable costs vcap equal to the desired cap.

2.2.2 Welfare calculation

Total welfare W in each region consists of the sum of producer surplus for conventional

power plants PS, consumer surplus CS and congestion rent CoR minus the costs for the

capacity mechanism CM plus the net revenues of renewable energies RES (see equation
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2.17). As the markets are assumed to be competitive, producers invest until profits are

zero.

Wm = PSm + CSm + CoRm − CMm +RESm (2.17)

The calculation of consumer surplus is presented in equation 2.18: The first part rep-

resents the surplus if all generation was provided by regular capacity. The second part

corrects this value by deducing the generation by capacity representing the price cap

(xcap).
29

CSm =
∑
t

(
(atm − ptm)2

2 b
−
b (xtm,cap)

2

2

)
(2.18)

The congestion rent is assumed to be split evenly between trading countries (see equation

2.19). The costs of the capacity mechanism, the capacity payments, simply consist of the

fixed capacity payments per unit of capacity c times the installed capacity (see equation

2.20).

Net revenues of renewable energies are calculated as revenues minus investment costs Kr

(see equation 2.21). The investments in renewable energies are exogenous and constant

for all scenarios. Thus, they cancel out in the delta analyses.30

CoRm =
1

2

∑
t,−m

(
ltm,−m(pt−m − ptm) + lt−m,m(ptm − pt−m)

)
(2.19)

CMm = ym,n cm (2.20)

RESm =
∑
t

rtm ptm −Kr (2.21)

2.3 Quantitative analysis

2.3.1 Data

We apply our model to the case of Germany and France. We use projections concerning

demand and the installed capacity of renewable energies for the year 2020 based on the

EU Reference Scenario 2016 by the European Commission.31 According to the EC’s

29If neighbouring markets have the same price cap the hourly market result may be ambiguous. If
both market prices actually reach the cap we assume that capacity is used to serve domestic demand
first – this way the outcome is unique.

30Given today’s investment costs the net revenues of renewables are rather negative than positive and
thus affect the welfare negatively. However, using the net revenues is more convenient in the context of
this paper as additional revenues result in an increase of welfare.

31See European Commission (2016b) and the data provided in Appendix A.
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sector inquiry on capacity mechanisms from 2016, European TSOs expect reliability

issues in the upcoming five years.

Annual demand is set to 530 TWh and 452 TWh for Germany and France respectively

according to the 2020 value of the EU Reference Scenario. The demand structure is based

on hourly values and corresponding prices for 2015 based on ENTSO-E (2016) and the

European Energy Exchange (EEX)32 respectively. The demand and other hourly input

values are scaled with a constant factor for each region to meet the scenario assumptions

concerning the yearly values.

A variety of estimates for the elasticity (denoted as η) of demand exists in the literature

(see, for example, Lijesen (2007), Knaut and Paulus (2016) and the literature overview

provided therein). Time-of-use elasticity, i. e., real-time or wholesale price elasticity, is

mostly estimated to have very low values ranging between -0.002 and -0.16, depending

on the date and time. In the base case we assume an elasticity of -0.01, which is rather

at the lower end of estimated values.33 We do this as the effects of price caps are mostly

relevant during high prices which in turn are more likely if demand elasticity is low.

The electricity generation structure of wind and photovoltaics is based on data provided

by the French and German TSOs for 2015.34

Modelled residual load, i. e., demand minus electricity generation by renewable energies,

is illustrated in figure 2.1. The average residual load is about 40 and 44 GW for Germany

and France respectively; the correlation coefficient between residual load levels is 0.62

with an average absolute difference of about 10.3 GW.

To limit the computational burden, we only include the first out of every four weeks of

the whole year. Investment costs are scaled accordingly.

As conventional generation technologies we take into account one base and one peak load

technology. Overnight investment costs are assumed to be 1,500e/kW and 500e/kW

for the base and the peak load technology respectively with variable production costs of

25e/MWh and 50e/MWh.

To analyse the influence of the interconnector we vary the capacity using 3,000 MW or

6,000 MW.35

32See www.eex.com.
33As we use linear demand functions we are referring to point elasticities. The slope of the demand

curve b is assumed to be constant and calculated as 1
η
p∗

d∗ with reference price p∗= 100e/MWh and
reference demand d∗= 50 GW (thus b= 0.2). We use hourly y-intercepts a that result in demand curves
which meet historic demand and prices combinations.

34For France, see RTE (2016), for Germany, see Amprion (2016), 50Hertz (2016), TenneT (2016) and
TransnetBW (2016).

35The Ten-Year Network Development Plan 2016 (version November 2015) assumes 3,000 MW for the
cross-border capacity between DE and FR in 2020.
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Figure 2.1: Modelled residual load in Germany and France [GW]

We take into account three levels of price caps: unrestricted prices, a cap at 500e/MWh

and a cap at 250e/MWh.

2.3.2 Price caps and capacity payments in isolated markets

2.3.2.1 The effects of price caps

We start by analysing the effects of insufficient price signals and capacity payments in

an isolated market. This forms the basis for the analysis of interconnected markets that

follows afterwards. Here, we present the results for Germany. Similar effects can be

observed for France (see Appendix B).

Figure 2.2 illustrates the effects of price caps on installed capacity and the price duration

curve.
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Figure 2.2: Effects of capacity payments in DE

Compared to the reference case, a price cap reduces the revenues of power plants in

times of scarcity of supply. All technologies are affected to the same extent as the full

capacity is utilised. Assuming capacity would be identical with and without a (binding)

cap, this results in losses for the generators. Thus, capacity has to recede to restore

an equilibrium state. As can be observed in Figure 2.2a, although a price cap affects
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the revenues of all capacities, exclusively the capacity of peak load plants decreases.

The decrease of peak capacity results in additional revenues for all types of technology

whereas a decrease in base capacity would benefit technologies unevenly. Thus, in order

to restore an equilibrium state, only peak capacity recedes.

Compared to the reference case in which prices are not restricted, the peak capacity

at a price cap of 500e/MWh decreases by about 1.1 GW. In the case of a price cap of

250e/MWh the capacity decrease amounts to about 2.8 GW.

The resulting effect on prices is illustrated by the excerpt from the price duration curve

shown in Figure 2.2b. It shows the 3 % highest prices in descending order for varying

price caps and the reference case. The price caps and the resulting capacity decrease

result in an increasing number of hours with prices above variable costs of the peak load

technology. The revenues in these hours balance the losses resulting from the missing

peak prices. In total, the power plants’ revenues per unit of capacity as well as the

average market price p̃ remain constant. This follows directly from the generators’ KKT

conditions. From equation 2.5 follows:

p̃ =

∑
t p
t

T
= vn +

∑
t λ

t
n

T
(2.22)

Adding equation 2.6 results in:

p̃ = vn +
kn − c
T

(2.23)

Thus, the average market price solely depends on the annual fixed and marginal gen-

eration costs as well as capacity payments. A price cap – and in the later scenarios

trade with other markets – does not influence the average price. In the current sce-

nario, base load plants have to recover their annual fixed costs which amount to about

86.2e/kW.36 With variable costs of 25e/MWh this translates into an average market

price of 34.8e/MWh.

The effects on welfare and supply are illustrated in Figure 2.3. As seen before, the lower

the price cap the more capacity recedes and the more often prices exceed the variable

costs of peak plants. This benefits the revenues of renewable energies: Without a price

cap, high prices only occur during a few hours of scarcity of supply. These hours do not

coincide with renewable generation. With a cap and due to the receding conventional

capacity, renewables also benefit from peak prices.

The gain in revenues is overcompensated by losses in consumer surplus: With decreasing

generation capacity also the served demand decreases which in sum results in deadweight

36We assume an interest rate of 5 % and a technical lifetime of 25 and 40 years for the peak and base
load technology respectively.
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losses. Due to the exponential effect of an increasingly binding price cap on consumer

surplus (see equation 2.18), welfare is decreasing more severely with a decreasing cap.
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Figure 2.3: Effects of price caps in DE

A price cap of 500e/MWh has a comparably small effect on welfare – the effect of a

cap of 250e/MWh is about nine times higher.

2.3.2.2 The effects of capacity payments

Capacity payments are an option to support generation capacity and counter the neg-

ative effects of a price cap. Figure 2.4a illustrates the increase of capacity for the case

of a price cap at 250e/MWh. The capacity payments are indicated as the share of

investment costs of the peak load technology.
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Figure 2.4: Effects of capacity payments in DE

At about 60 % of investment costs the installed capacity reaches the same level as it does

without price restrictions (indicated by the lines). Not only the total level of installed

capacity is restored but also the capacity mix: Although all capacities receive the same

subsidies per unit of capacity, only the peak load capacity increases. The economic

intuition is similar to the previous argument explaining why only peak capacity recedes

while all capacity is affected by a price cap: With CP short-run profits have to decrease

in order to restore the zero profit condition of investment. In equilibrium the sum of
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reduced profits equals the capacity payments. If base load capacity increases, profits of

base and peak capacities would be affected unevenly in times in which base capacity is

setting the price. Whereas if peak capacity increases, all capacities are affected evenly

by a decreasing price. Therefore, in order to compensate for the capacity payments to

the same extent and thus reach an equilibrium state, only peak capacity increases.

At higher levels of CP the capacity exceeds those of the reference case. CP can fully

compensate for the foregone revenues induced by a price cap and restore the optimal

welfare (see Figure 2.4b). If the capacity support exceeds the optimal level, i. e., more

than compensates for foregone revenues, the welfare drops again as this results in excess

capacity.

Capacity payments also influence the market prices by increasing generation capacity:

Prices are still limited by the price cap but due to the additional capacity, prices reach

the cap less frequently (see Figure 2.5).
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Figure 2.5: Price duration curves (excerpt) for varying CP (p̄ = 250e/MWh)

As discussed earlier, average prices remain unchanged with price caps. The same is not

true for capacity payments. As CP directly influence investment costs they also alter

the equilibrium condition for investments: Less short run profits have to be earned in

order to cover long run costs. This results in decreasing average market prices with

increasing CP .

In summary, our results show that the negative effects of price caps can be countered

by capacity payments in isolated markets. The optimal level of generation capacity as

well as welfare are fully restored with an appropriate level of support.
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2.3.3 Market failure and capacity payments in interconnected markets

2.3.3.1 Reference case

We start by presenting the market outcome of a base case with no price restrictions. This

serves as a reference for the subsequent analyses. The main outcomes of the simulations

are summarised in the following table:

Table 2.2: Results of the base case

l̄= 3,000 MW l̄= 6,000 MW
DE FR DE FR

Installed capacity [GW]
Base: 52.6 Base: 50.4 Base: 51.6 Base: 50.6
Peak: 18.5 Peak: 22.9 Peak: 19.9 Peak: 22.0

Trade volume [TWh] 5.9 10.0
Average interconnector utilisation [%] 22.5 19.0
Average market price [e/MWh] 34.84 34.84 34.84 34.84
Maximum price [e/MWh] 1372 1372 1403 1403

The total installed capacity in both markets decreases only slightly by about 300 MW

with the higher trade capacity. Although the total base load capacity is reduced by

about 800 MW, the peak capacity compensates some of the reduction by increasing by

about 500 MW: Base load plants can be used more efficiently indicated by an increasing

utilisation factor whereas peak capacity is needed to cover peak demand.

The average electricity price in both markets is identical – and independent from the

interconnector capacity – at 34.8e/MWh. This results directly from the equilibrium

conditions of investment as discussed earlier: Average prices solely depend on investment

and variable costs as well as capacity payment, but are independent from trade.

Figure 2.6 illustrates the generation capacity mix and price duration curve for peak load

hours for a transmission capacity of 3,000 MW. The higher total but lower base load

capacity in France compared to Germany indicates a steeper residual demand curve in

France. The price duration curves for Germany and France for the 1 % highest prices

(see Figure 2.6b) display a similar pattern for both markets, with a slightly steeper

trajectory for France.

2.3.3.2 The effects of price caps

Market failures are often regarded as being harmful not only to domestic welfare but

also as negatively affecting neighbouring markets. We investigate this hypothesis by

simulating price caps in the model. We start by applying price caps to Germany whereas
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Figure 2.6: Installed capacity and price duration curve (l̄= 3,000 MW)

market prices in France are not restricted. Later on, we analyse the case of a cap only

in France.

We start by looking at the effect of a price cap on capacity. The capacity of the peak

technology in Germany recedes similar to the earlier case when Germany was assumed

to be isolated. This time the decrease of capacity is stronger: Whereas a price cap of

250e/MWh previously resulted in a decrease of about 2.8 GW this more than doubles

with an interconnector capacity of 6,000 MW (see Figure 2.7a). This is driven by the

price dampening effect of imports: In order to counter the profit loss induced by the

price cap, capacity recedes to restore the previous price level. But unlike the single

market case, imports partly replace the receding domestic capacity. In total, to restore

the previous average prices, capacity has to decrease to a higher extent. Here, the same

principle applies as in the isolated case: The average market price remains unchanged

as long run investment costs have to be covered by short run prices.

But although capacity is mainly affected in Germany, also capacity in France decreases

(see Figure 2.7b): The price cap in Germany results in additional exports from Germany

to France during peak demand. This decreases profits of power generators in France.

Accordingly, also French capacity recedes in order to balance short run profits and

investment costs.

The effect of a German price cap on prices in France is illustrated in Figure 2.8a. The

German price cap also hinders price peaks in France. This ultimately forces French

capacity to recede as it would otherwise be unprofitable. Although trade volumes remain

fairly stable, the congestion rent increases (see Figure 2.8b). This is due to an increasing

price difference triggered by the price cap.

Consumers in Germany are effected to a higher extend by a price cap if the German

market interacts with its neighbour France (see Figure 2.9a). Similar to the isolated case,

less demand is served in Germany. But this time, due to the on average higher prices in

France, even less demand is served as electricity is exported during high demand. Thus,
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Figure 2.7: Installed capacity with a price cap in Germany
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Figure 2.8: Price duration curves and congestion rent with a price cap in Germany

the benefits of lower prices during peak demand due to the cap are partly cancelled

out by exports instead of domestic consumption. Given a price cap of 500e/MWh this

results in about five and eleven times higher losses in consumer surplus compared to

Germany being isolated with an interconnector capacity of 3,000 MW and 6,000 MW

respectively.

For France the effect on consumer surplus is positive, but less distinct (see Figure 2.9b).

There are two opposing effects: On the one hand France benefits from imports attracted

by higher domestic prices. On the other hand these imports force French capacity to

recede due to their price decreasing effect (as discussed earlier). The sum of served

demand does not change but the structure of supply does: During peak demand more

demand is served whereas supply decreases during low demand (this is also reflected in

the changing price price pattern as depicted in Figure 2.8a). In total, this increases the

consumer surplus.

The higher the interconnector capacity the stronger the benefit for consumers in the

country without (or a lower) price cap: Less restrictive interconnector capacity results

in higher imports during peak demand which dampens peak prices.
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Figure 2.9: Consumer surplus with a price cap in Germany

Although some of the losses in consumer surplus are compensated by (small) gains

in congestion rent and revenues of renewables, for Germany a price cap results in all

analysed cases in higher welfare losses compared to the case of an isolated market (see

Figure 2.10a). The losses are so significant that having no connection may be better

altogether.

The total welfare effect in France is positive in the analysed cases, but on a rather

low level (see Figure 2.10b). Although domestic capacity recedes due to additional

imports, gains in consumer surplus and congestion rent exceed slight losses in revenues

of renewable energies.
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Figure 2.10: Welfare effects with a price cap in Germany

The effect if only France has a price cap is illustrated in Figure 2.11. The shapes look

similar to the previous case: The French price cap causes welfare losses in France that

increase with increasing interconnector capacity and decreasing cap. For the neighbour-

ing country that has no cap – in this case Germany – the effect is the other way around:

The domestic welfare is increasing driven by increasing imports during peak demand as

prices – in contrast to the capped market – signal scarcity.

Negative effects of price caps increase in asymmetric (interconnected) markets – mainly

affecting the market with the cap – but what is the effect in case of symmetric caps?

Figure 2.12 illustrates the effect on welfare in Germany and France for both levels of
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Figure 2.11: Welfare effects with a price cap in France

interconnector capacity if both markets have the same price cap. The overall shape

is similar for both regions: A price cap of 500e/MWh has only a limited effect on

welfare compared to a cap of 250e/MWh. Again we can observe that a higher trade

capacity is increasing the negative effects of price caps, even if they are synchronous.

This is driven by the price dampening effect of trade which forces more capacity to

recede: The price cap forces a decrease of generation capacity which otherwise could

not recuperate investment costs. The higher the interconnector capacity the more of

the missing capacity is replaced by imports (if capacity is available in the neighbouring

market) which forces a stronger capacity cutback. Ultimately, less demand can be served

which results in the higher deadweight losses.
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Figure 2.12: Welfare in Germany and France with synchronous price caps

In summary our results suggest that in interconnected markets the negative effects of

price caps are more severe (at least for the market having the cap) than in isolated

markets. This is due to the supply flowing to neighbouring markets during scarcity

of supply as the neighbours allow for higher prices. Additionally, imports hinder the

recovering of prices with receding capacity which results in a sharper drop of generation

capacity and ultimately welfare.
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For the neighbouring markets the effects are much less pronounced. They even benefit

from the additional imports during peak demand. But generation capacity is negatively

affected in neighbouring markets, too.

2.3.3.3 The effects of capacity payments with unilateral price cap

In the following we analyse the ability of capacity payments to compensate for losses

triggered by price caps. For the case of isolated markets our results show that appropriate

CP restore the optimal level of capacity and welfare. Now we analyse if the same

holds true for connected markets. At first, like in the previous section, we start by

assuming that only Germany has a price cap while prices in France are not restricted.

Capacity payments to support domestic generation capacity are also assumed to be paid

in Germany exclusively (the case of a price cap and capacity payments in France yields

similar results, see Appendix C). Afterwards we introduce price caps in both markets to

analyse if markets can rely on the efforts of their neighbours.

First we look at the effect of capacity payments on capacity. Like for the isolated case,

capacity payments seem fit to increase the installed capacity and thereby restore the

optimal level (see Figure 2.13a). Depending on the interconnector capacity the effect

of CP is of varying magnitude: The higher the interconnector capacity the stronger is

the effect on capacity. This is in line with the previous observation of a stronger de-

crease of generation capacity with higher trade capacities: The higher capacity decrease

originated from the price dampening effect of imports which prevented prices to recover

with decreasing generation capacity. As capacity payments directly support domestic

investments this reinforcing negative influence of imports can be circumvented.

The impact of CP in Germany on capacity in France is small but increasing with higher

transmission capacity (see Figure 2.13b). Capacity is decreasing as the additional capac-

ity in Germany decreases prices in France. This indicates that in interconnected markets

CP are not able to restore the welfare optimum like they did in isolated markets: Ca-

pacity in France already decreased due to the price cap and the resulting additional

imports from Germany. As CP further decrease the capacity in France the equilibrium

outcome of markets with no cap and no CP cannot be restored.

Increasing capacity in Germany as a result of capacity payments increases consumer

surplus. At the same time capacity payments arise which have to be paid for. The

net effect of increasing consumer surplus minus CP is illustrated in Figure 2.14a: With

existing price caps the increase in consumer surplus exceeds the costs of capacity pay-

ments at first. For higher CP the net effect becomes negative. In contrast to the case

of an isolated market, Germany cannot achieve the same welfare level as without a cap.

62



2.3 Quantitative analysis

60

65

70

75

80

0% 30% 60% 90%

In
st

al
le

d 
ca

pa
ci

ty
 [G

W
]

Capacity payments DE

l0 l3000 l6000

(a) Germany

60

65

70

75

80

0% 30% 60% 90%

In
st

al
le

d 
ca

pa
ci

ty
 [G

W
]

Capacity payments DE

l0 l3000 l6000

(b) France

Figure 2.13: Effects of capacity payments in Germany on capacity (p̄= 250e/MWh)

Although capacity payments increase domestic welfare up to a certain point the cost

for the support scheme exceeds the benefits for the customers before the original level

is reached. This is due to the distorted price signals still caused by the price cap which

result in exports during scarce domestic supply.

For France the effects of CP in Germany are – compared to the effect on Germany –

small (see Figure 2.14b). For lower levels of CP welfare slightly decreases driven by

the receding generation capacity which is crowded out by the additional imports from

Germany: Imports are less reliable than domestic capacity due to import restrictions. As

a result, peak prices increase whereas medium prices decrease (the average price remains

unchanged). As supply during high demand is more valuable than during medium

demand, consumer surplus decreases. For higher levels of CP this negative impact on

consumer surplus is overcompensated by an increase of congestion rent: The higher

the CP are the more average prices diverge as CP lower the average market price in

Germany. This increases the congestion rent.

In total, capacity payments cannot fully restore the optimal welfare level in Germany

as well as overall (see Figure 2.14c): As the distortion of price signals persists, some

inefficiencies in the allocation of capacity and supply remain.
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Figure 2.14: Welfare effect of capacity payments in Germany (l̄= 3,000 MW)

Given an interconnector capacity of 6,000 MW the patterns for the welfare effect of

capacity payments look similar for Germany and also the total effect. For France, the

benefits of additional congestion rent exceed losses in consumer surplus at all times –
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France is never worse off compared to the reference case with no price cap (see Figure

2.15).
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Figure 2.15: Welfare effect of capacity payments in Germany (l̄= 6,000 MW)

In summary, capacity payments are less effective in interconnected than in isolated mar-

kets. They can restore some of the welfare losses triggered by price caps, but cannot

solve the inefficient price signals resulting in suboptimal allocation of capacity and sup-

ply. Thus some of the welfare losses remain.

The overall effects of CP on neighbouring markets are comparably small. They do not

indicate a reason for concerns regarding the influence on price signals and the resulting

effects on imports and exports.

2.3.3.4 Spill-over effects of capacity payments with bilateral price caps

The previous analysis did not show large effects of price caps on neighbouring markets,

they might even benefited from increasing congestion rent. Those analyses focused on

neighbouring markets that do not have a price cap themselves. Now we look at the

case where both markets have price restrictions. Building on the previous analysis we

address the following questions: If both markets have a cap, do capacity payments in

one market also help to overcome the negative effects in the other market? And if this

is the case, does it reward free-riding behaviour?

We start our analysis by assuming that both markets face the same price cap and

Germany introduces capacity payments. As seen earlier, capacity payments can have

a positive effect on domestic welfare with unilateral caps. We can observe the same

in this scenario for an interconnector capacity of 3,000 MW (see Figure 2.16 comparing

welfare with the base case of no cap and no CP ).37 Welfare in Germany may even

exceeds the level without caps and CP : Net benefits from increasing consumer surplus

minus capacity payments recover most of the consumer surplus lost due to the price cap.

Additional congestion rent results in extra welfare gains.

37The effects for an interconnector capacity of 6,000 MW are similar (see Appendix D).
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For France the effect is negligible for a common cap of 500e/MWh – with a cap of

250e/MWh capacity payments in Germany result in additional welfare losses for France

(up to the optimal level of CP in Germany).
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Figure 2.16: Effects of capacity payments in DE on welfare (l̄= 3,000 MW)

This is because the additional capacity in Germany crowds out generation capacity in

France to an even lower level than was already reached due to the price cap (see Figure

2.17). Assuming a price cap of 250e/MWh in both markets, Germany reaches about the

same level of capacity at CP of almost 60 % of investment costs of the peak technology

– France looses about 1.5 GW of capacity additionally.
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Figure 2.17: Effects of capacity payments in DE on installed capacity (l̄=3,000 MW)

Our results indicate that capacity payments are beneficial for the introducing country

given that both markets have a price cap. For the neighbouring market the effects are

rather small and, depending on the actual set up, may even be harmful. We complement

our analysis by introducing capacity payments also in France. Thus, in the following,

both markets feature the same price cap as well as the same level of CP .

Figure 2.18 illustrates the welfare effects for a trade capacity of 3,000 MW.38 France

can clearly benefit from having its own capacity payments instead of relying on its

neighbour. Given an optimal choice of capacity payments, total welfare is only slightly

below the optimal value achieved with no cap and no CP . The remaining losses are due

to insufficient price signals – capacity and supply are not perfectly allocated.

38See Appendix D for the case of 6,000 MW.
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Figure 2.18: Effects of capacity payments in both markets on welfare (l̄= 3,000 MW)

In summary, our results concerning possible spill-over effects do not support concerns

regarding incentives for free-riding. First of all, adjacent markets with no own CRM do

not appear to hinder the effectiveness of capacity payments. Furthermore, relying on

capacity support in neighbouring markets does not help to overcome domestic deficits. If

neighbouring markets both support capacity investments, most of the deadweight losses

resulting from price caps can be prevented.

2.4 Conclusions

Existing literature on market imperfections and capacity mechanisms mainly focuses on

a national perspective. Recent concerns that national CRMs might harm neighbouring

markets by distorting market prices, for example raised by the EU Commission, are only

rarely discussed.

We extend the literature on cross-border effects by using an equilibrium model with real

world data. Thereby, we are able to cover the complex interaction of supply and demand

in interconnected markets. We apply our model to the case of Germany and France to

analyse the cross-border and interaction effects of price caps and capacity payments.

Our results indicate that the interaction with neighbouring markets not only influences

the effect of market failure on domestic welfare but also the efficiency of capacity re-

muneration mechanisms. In our case, price caps result in more severe welfare losses

and capacity payments are less efficient in countering the resulting market distortions.

Given the frequently expected capacity shortages in the future and the numerous CRMs

currently already implemented in the European electricity market, this raises further

questions concerning the efficiency of the existing uncoordinated national mechanisms.

At least our results do not indicate serious negative effects of price caps on neighbouring

markets. Similarly, this should be the case for a strategic reserve (which is already

implemented or discussed in some markets) or excess capacity that may be triggered
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by overly high capacity payments or oversized capacity auctions as they have similar

properties.

Likewise, our results do not indicate (relevant) positive effects of capacity payments on

neighbouring markets that face insufficient price signals themselves. Thus, we do not

identify incentives for free-riding on the capacity efforts of neighbours.
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2.5 Appendix

2.5.1 Appendix A: Model assumptions

Table 2.3: Assumptions concerning annual wind and photovoltaics generation

Wind generation [TWh] Photovoltaics generation [TWh]

DE 109 48
FR 55 32
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2.5.2 Appendix B: Isolated France

Figure 2.19 illustrates the effects of price caps and capacity payments in France (with

no connection to Germany). The general shape of the effects of price caps is similar

to those for Germany – but the installed capacity, welfare and supply are affected to

a larger extent. This is the result of a steeper residual demand curve in the relevant

segment around the installed capacity: A decrease in installed capacity results in a

smaller increase in average market prices. Therefore, capacity in France has to decrease

to a larger extent – compared to Germany – in order to meet the equilibrium conditions

of investment.
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Figure 2.19: Effects of price caps on capacity, supply and welfare in an isolated France

The stronger decrease of capacity results in less demand being served which again results

in a higher deadweight loss. The negative effects of price caps can – equal to the German

case – be countered by capacity payments that fully restore the optimal welfare level

given an appropriate level of payments (see Figure 2.20).
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Figure 2.20: Effects of price caps and capacity payments in an isolated France
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2.5.3 Appendix C: Interconnected France

The effects of price caps and capacity payments in France are similar to the case for

Germany (see Figure 2.21), the conclusions drawn earlier also apply here (see section

2.3.3.3). The effect in France is more pronounced than in the case for Germany which

is due to the steeper residual supply curve as discussed in section 2.5.2.
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Figure 2.21: Welfare effect of price caps and CP in France (l̄= 3,000 MW)

Similar but amplified effects can be observed for a higher interconnector capacity (see

Figure 2.22). This is in line with previous results.
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Figure 2.22: Welfare effect of price caps and CP in France (l̄= 6,000 MW)
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2.5.4 Appendix D: Bilateral price caps – Additional results

Here we complement the analysis from section 2.3.3.4. We start with the case of capacity

payments in Germany and a interconnector capacity of 6,000 MW. The effects are similar

to the case with less transmission capacity (see Figure 2.23). This time, the optimal

level of CP is slightly lower than in the earlier example.
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Figure 2.23: Effects of capacity payments in DE on welfare (l̄= 6,000 MW)

The following Figure 2.24 illustrates the effects of capacity payments in France on welfare

if prices in both markets are limited by a cap.
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Figure 2.24: Effects of capacity payments in FR on welfare (l̄= 3,000 MW)

Figure 2.25 illustrates the same case but this time both markets are connected by a

higher transmission capacity.
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Figure 2.25: Effects of capacity payments in both markets on welfare (l̄= 6,000 MW)

The welfare effects of equal price caps and capacity payments in both countries and

interconnector capacity l̄= 6,000 MW are illustrated in Figure 2.26.

For all three cases presented here the results in the main body of this text are also

applicable.
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Figure 2.26: Effects of capacity payments in both markets on welfare (l̄= 6,000 MW)
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Part II

Strategic behaviour in spacial

natural resource markets



Assessing market structures in resource

markets –

An empirical analysis of the market for

metallurgical coal using various equilibri-

um models

The prevalent market structures found in many resource markets consist of high con-

centration on the supply side and low demand elasticity. Market results are therefore

frequently assumed to be an outcome of strategic interaction between producers. Com-

mon models to investigate the market outcomes and underlying market structures are

games representing competitive markets, strategic Cournot competition and Stackelberg

structures that take into account a dominant player acting first followed by one or more

players. We add to the literature by expanding the application of mathematical mod-

els and applying an Equilibrium Problem with Equilibrium Constraints (EPEC), which

is used to model multi-leader-follower games, to a spatial market. Using our model,

we investigate the prevalent market setting in the international market for metallurgi-

cal coal between 2008 and 2010, whose market characteristics provide arguments for a

wide variety of market structures. Using different statistical measures to compare model

results with actual market outcomes, we find that two previously neglected settings per-

form best: First, a setting in which the four largest metallurgical coal exporting firms

compete against each other as Stackelberg leaders, while the remainders act as Cournot

followers. Second, a setting with BHPB acting as sole Stackelberg leader.
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3.1 Introduction

Many resource markets suffer from high concentration on the supply side and low demand

elasticity. Market results are therefore frequently assumed to be an outcome of strategic

interaction between producers. The use of mathematical models to analyse market

outcomes to gain insights into underlying market structures has a long tradition in

the economic literature. Common models are one-stage games representing competitive

markets or Cournot competition. More advanced two-stage models of the Stackelberg

kind take into account a single leader followed by one or more players. We add to

the literature by expanding the application of mathematical models and applying an

Equilibrium Problem with Equilibrium Constraints (EPEC) to a spatial market, i. e.,

a setup with multiple, geographically disperse demand and supply nodes. This model

class is used to simulate multi-leader-follower games. This enables us to investigate more

complex market structures that have been neglected in previous studies on resource

markets. Omitting these market structures may result in false conclusions about the

prevalent state of competition.

The paper at hand investigates which market structure was prevalent in the international

market for metallurgical coal during the time period 2008 to 2010.39 The international

metallurgical coal market is particularly suited for this kind of analysis since, first, the

supply side is dominated by four large mining firms (hereafter referred to as the Big-

Four), namely BHP Billiton (BHPB), Rio Tinto, Anglo American and Xstrata. Second,

metallurgical coal is an essential input factor in producing pig iron and difficult to

substitute, causing demand to be rather price inelastic. Third, in the period under

scrutiny in this paper, yearly benchmark prices were negotiated between representatives

of the Big-Four and representatives of the large Asian steel makers (Bowden, 2012).

Fourth, one of the firms of the Big-Four, BHP Billiton, is by far the largest firm in the

international market for metallurgical coal. Nonetheless, the other firms played a central

role in the negotiations as well. Consequently, a wide variety of market structures may

be a plausible approximation of the actual market setting.

Our research adds to that of Graham et al. (1999) and Trüby (2013) who were the first

to analyse the market for metallurgical coal. The former investigates various market

settings for the year 1996, in which firms or consumers simultaneously choose quantities.

In contrast, the latter focusses on the time period from 2008 to 2010. Regarding the

market structures, the author arrives at the conclusion that assuming the Big-Four

39The terms metallurgical and coking coal are often used interchangeably in the related literature as
well as throughout this paper. Yet, this is not entirely correct since metallurgical coal includes coals
(as it is the case in our data set) that technically are thermal coals but can be used for metallurgical
purposes as well, such as pulverised coal injection (PCI).
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jointly act as a Stackelberg leader provides the best fit to the actual market outcome.

However, Trüby finds that it cannot be ruled out that firms in the market simply engaged

in an oligopolistic Cournot competition. We add to the literature by extending the scope

of possible market structures.40

More specifically, we simulate one scenario in which the Big-Four compete against each

other at a first stage, i. e., choose output to maximise individual profits, while the re-

maining firms form a Cournot fringe and act as followers. This constitutes a multi-

leader-follower game. In another scenario, BHP Billiton takes on the role as the sole

Stackelberg leader, with the rest of the Big-Four choosing quantities simultaneously with

the remaining players as followers. Thereby, we broaden the range of market structures

analysed in the field of spatial resource markets as multi-leader games have thus far

been omitted from existing studies. As investigating collusive behaviour in markets us-

ing simulation models crucially depends on an appropriate and comprehensive market

representation, multi-leader games may help to expose previously overlooked market

structures. Since it is a priori not clear which is the correct demand elasticity, we run

the market simulations for a wide range of values. To assess whether one of the market

structures is superior to the others, we compare simulated prices, trade flows and pro-

duction volumes of the Big-Four to realised market outcomes. In order to compare trade

flows, different statistical measures/tests are applied as suggested by, e. g., Bushnell et al.

(2008), Paulus et al. (2011), and Hecking and Panke (2014).

This paper contributes to the literature on applied industrial organisation and, more

specifically, the analysis of the international market for metallurgical coal. We expand

previous studies by applying an Equilibrium Problem with Equilibrium Constraints

(EPEC), a mathematical programme used to model multi-leader-follower settings, to

a spatial market, i. e., a market with multiple, geographically disperse supply and de-

mand nodes. In doing so, we find that the two additional market settings proposed in

this paper provide a good fit with realised market outcomes for the time period 2008

to 2010. In addition, by analysing production volumes and profits of the Big-Four, we

enhance the market structure analysis by providing an additional plausibility check. We

are able to show that even if simulated prices and trade flows fit well with market out-

comes, a scenario in which the Big-Four form a Cartel that acts as a Stackelberg leader is

less likely since production volumes deviate from actual production. More importantly,

additional revenues of the Big-Four from forming and coordinating a cartel are rather

small compared to a scenario in which all four compete against each other at a first

stage. Accounting for the transaction costs caused by the coordination of the cartel

40Graham et al. (1999) indicate that there could be market power on the demand side as well. However,
given that two out of the three years under consideration in our paper are characterised by high prices,
we focus on setups with market power on the supply side. An analysis of market power on the demand
side could be a subject of further research.

76



3.2 Literature review

would further decrease possible benefits. Concerning the demand elasticity, we detect

that simulated prices for elasticities from -0.3 to -0.5 seem to be within a reasonable

range for most of the market structures.

Summing up our findings, one of the main advantages of simulation models is that they

allow us to assess different market structures. Yet, as shown in our paper, it may be

difficult to decide on one setting that provides the best fit. Consequently, such analyses

need to be accompanied by additional analyses similar to our comparison of production

volumes of the Big-Four. To be able to further narrow down the number of potential

market structures, additional data such as firm-by-firm export volumes, which were not

available for all relevant firms in our example, would be helpful.

The remainder of this paper is structured as follows: Section 3.2 offers an overview of

the relevant literature, while the methodology is described in Section 3.3. Section 3.4

briefly describes the numerical data used in this study. Section 3.5 is devoted to the

analyses of the empirical results. Section 3.6 concludes.

3.2 Literature review

Commodity markets have often been subject to concerns of high concentration on the

supply side, with several prominent examples being the markets for energy resources

such as oil, natural gas or metallurgical coal. Consequently, there has been substantial

academic research in an attempt to assess whether companies or countries exercised

market power. In order to do so, one of two different methodological approaches –

econometric methods or simulation models – is applied. While both approaches have

their respective advantages and disadvantages41, one of the most persuasive arguments

in favour of using simulation models to assess the exercise of market power is that they

are highly flexible with respect to the specific market structure. This, in principle, not

only enables researchers to answer the question whether or not market power in a specific

market has been exercised, but also provides hints as to which kind of market structure

is prevalent, e. g., whether firms form a cartel or show no signs of explicit cooperation.

The use of mathematical programming models to analyse spatial markets has a long

tradition in economics. Enke (1951) first described the problem of spatial markets,

proposing a solution method using a simple electric circuit to determine equilibrium

prices and quantities in competitive markets. Samuelson (1952) showed how the problem

can be cast into a (welfare) maximisation problem and thereafter be solved using linear

programming. Together with Takayama and Judge (1964, 1971) who extend the spatial

41For a brief overview of the various econometric approaches used in the literature and their respective
advantages and drawbacks, see Germeshausen et al. (2014).
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market representation (e. g., by including monopolistic competition), Samuelson’s work

is generally considered to have laid the groundwork for spatial market analysis using

mathematical programming.

Advances in the representation of markets were made during the 1980s by modelling

imperfect competition (e. g., by Harker, 1984, 1986, Nelson and McCarl, 1984). This

has frequently been done since then, e. g., for steam coal markets (Haftendorn and Holz,

2010, Kolstad and Abbey, 1984, Trüby and Paulus, 2012), natural gas markets (Boots

et al., 2004, Egging et al., 2010, Gabriel et al., 2005a, Growitsch et al., 2013, Holz et al.,

2008, Zhuang and Gabriel, 2008), wheat markets (Kolstad and Burris, 1986), oil markets

(Huppmann and Holz, 2012) or for the coking coal and iron ore markets (Hecking and

Panke, 2014). A multi-fuel market model is presented in Huppmann and Egging (2014)

We focus our analysis on the metallurgical coal market. A recent analysis of short-term

market outcomes by Trüby (2013) indicates that the market from 2008 to 2010 may has

been characterised by firms exercising market power. This rejects the previous findings

by Graham et al. (1999), although this study focuses on 1996.

Most of the aforementioned studies use models that assume players make decisions si-

multaneously. This model type can be extended to represent bi-level games, the clas-

sical example being Stackelberg games (Stackelberg, 1952). There are several applica-

tions for this type of problem, which can be modelled as a Mathematical Problem with

Equilibrium Constraints (MPEC). MPECs are constrained optimisation problems, with

constraints including equilibrium constraints (see Luo et al., 1996, for an overview of

MPECs). MPECs have for instance been used to model power markets, e. g, by Gabriel

and Leuthold (2010), Wogrin et al. (2011) and natural gas markets, e. g., by Siddiqui

and Gabriel (2013). Bi-level games are, due to non-linearities, computationally more

challenging to solve in comparison to one-level games.

The single-leader Stackelberg game can be extended to a multi-leader-follower game

in which several players make decisions prior to one or more subsequent players. Any

solution to this game must maximise leaders’ profits while simultaneously taking into

account the equilibrium outcome of the second stage. This results in an Equilibrium

Problem with Equilibrium Constraints (EPEC). Due to the concatenation of several

MPEC problems to one EPEC and the resulting high non-linearity, EPECs are even more

difficult to solve than MPECs. Previous EPEC models have mostly been used to analyse

electricity markets, e. g., by Barroso et al. (2006), Sauma and Oren (2007), Shanbhag

et al. (2011), Yao et al. (2008) and Wogrin et al. (2013a). In addition, Lorenczik et al.

(2017) analyse investment decisions in the metallurgical coal market.
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3.3 Methodology

3.3.1 Market Structures

Due to its market structure (with few large producers and relatively low demand elastic-

ity), the metallurgical coal market is often presumed to lack competition. This suspicion

is confirmed by a recent study showing that market outcomes can be reproduced by as-

suming strategic rather than competitive behaviour. Trüby (2013) finds that over the

years 2008 to 2010, assuming perfect competition, neither trade flows nor prices match

well with actual market results. In contrast, the non-competitive market structures con-

sidered in the paper perform reasonably well with the exception of the Cournot Cartel

case.42 The paper’s conclusion regarding the market structures is that assuming the

Big-Four jointly act as a Stackelberg leader provides the best fit to the actual market

outcome. However, it cannot be ruled out that firms in the market simply engaged in

an oligopolistic Cournot competition. Therefore, two of the scenarios analysed in Trüby

(2013), namely the case of Cournot competition (hereafter, referred to as MCP, which is

the programming approach used to simulate the market setting) and a setting in which

the Big-Four form a cartel that acts as the Stackelberg leader (MPEC Cartel) are taken

into consideration in this paper as well to ease the comparison of results.

We expand the range of investigated market structures by analysing a multi-leader-

follower game as well as one additional market setting involving one Stackelberg leader.

In the multi-leader-follower game, the Big-Four compete against each other at the first

stage and take into account the reaction of the other firms engaging in Cournot compe-

tition at the second stage (EPEC Big 4). We reason that this setting is relevant since,

first, benefits in terms of additional revenues from forming a cartel are rather small

when compared to the EPEC Big 4 scenario, even without accounting for the transac-

tion costs that go along with coordinating a cartel. Thus, while still acting as leaders,

it is reasonable to assume that the Big-Four compete against each other. Second, the

simulated production volumes by the Big-Four fit historical production data better in

the two additional settings proposed in this paper than in the MPEC Cartel case. Thus,

they are worth a closer investigation. Both reasons will be discussed in depth in Section

3.5.3.

Finally, we simulate an additional single Stackelberg leader setting in which BHP Billiton

sets quantities in a first stage with the remaining firms being followers (MPEC BHBP).

42In the Cournot Cartel case, the Big-Four are assumed to engage in a cartel and, thus, jointly optimise
their total supply. Trüby (2013) finds that under this market setting, prices could only be reproduced
when assuming very high elasticities. Concerning trade flows, the linear hypothesis tests suggest that
simulated trade flows do not resemble actual market outcomes in 2009 for all elasticities, while in the
other years the H0-hypothesis could be rejected for elasticities up to -0.2 (2008) and -0.3 (2010).
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The main reason that modelling such a market structure is intuitive is the fact that

BHBP is by far the world’s most important coking coal miner. Figure 3.1 provides an

overview of the market structures investigated in this paper.

EPEC Big 4

MPEC BHPB

MPEC Cartel

MCP

first stage second stage

BHP, Rio, Anglo, Xstrata others +

Big 4* others +

BHP Rio, Anglo, Xstrata, others +

BHP, Rio, Anglo, Xstrata, others +

* corresponding exporters form a cartel; + players not belonging to the “Big4“, but individually maximize profits

Figure 3.1: Overview of modelled market structures

To simulate the different aforementioned coking coal market settings, three different

types of simulation models are used. The first calculates the expected market outcome

in a Cournot oligopoly in which all players decide simultaneously about produced and

shipped quantities. The two other models constitute bi-level games in which players

act in consecutive order. In the Stackelberg game, one player (or a group of players

forming a cartel) acts first followed by the remaining players. The last model type

represents a market with multiple (Stackelberg) leaders and one or more followers. From

a modelling perspective, the first model constitutes a Mixed Complementary Problem

(MCP). The second and third models are implemented as a Mathematical Problem

with Equilibrium Constraints (MPEC) and an Equilibrium Problem with Equilibrium

Constraints (EPEC), respectively.

3.3.2 Model descriptions

Although we focus our analysis on the coking coal market, the model is suitable for

a multitude of similar commodity markets such as the iron ore, copper ore, oil or gas

market, which are characterised by a high concentration on the supply side and therefore

may not be competitive. Thus, we use general terms for the model description as well

as generic notation to emphasise the applicability of our approach to markets other

than the coking coal market. Table 3.1 summarises the most relevant nomenclature

used throughout this section, i. e., displays the abbreviations used for the various model

sets, parameters and variables and provides a short description. Additional symbols are

explained throughout the text where necessary.
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Table 3.1: Model sets, parameters and variables

Abbreviation Description

Model sets
i ∈ I Players
j ∈ J Markets
m ∈M Production facilities
Model parameters
aj Reservation price [per unit]
bj Linear slope of demand function
cm Variable production costs [per unit]
capm Production capacity [units per year]
tci,j Transportation costs [per unit]
Model variables
Pj Market price [per unit]
si,j Supply [units]
xm Production [units]

3.3.2.1 The MCP model

The first model assumes a market in which all producers decide simultaneously about

the use of production facilities and the delivery of goods. Each player i ∈ I maximises

profits according to:

max
xm,si,j :m∈Mi

∑
j

Pj · si,j −
∑
j∈J

tci,j · si,j −
∑
m∈Mi

cm · xm

subject to

capm − xm ≥ 0, ∀m ∈Mi (λm)∑
m∈Mi

xm −
∑
j

si,j ≥ 0 (µi)

Pj = aj − bj · (si,j + S−i,j), ∀j

si,j ≥ 0, ∀j

xm ≥ 0, ∀m ∈Mi .

Total supplied quantities S−i,j (=
∑
−i 6=i s−i,j) to market j by other producers (−i)

are taken as given. Hence, each producer maximises revenues minus costs (production

plus transportation) taking into account capacity restrictions (with λm being the dual

variable for the capacity limit) and the restriction that total production has to be greater

than total supply (with µi as the respective dual variable). As all production facilities

of each player are located in the same area, transportation costs between production

and specific demand nodes are assumed to be identical. Since different years are not

interlinked, they can be optimised separately.
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Maximising each players’ profits is equivalent to finding a solution that satisfies the

following Karush-Kuhn-Tucker (KKT) conditions simultaneously for all players:

0 ≤ tci,j − Pj + bj · si,j + µi ⊥ si,j ≥ 0, ∀ i, j

0 ≤ cm + λm − µi ⊥ xm ≥ 0, ∀ m ∈Mi

0 ≤ capm − xm ⊥ λm ≥ 0, ∀ m

0 ≤
∑
m∈Mi

xm −
∑
j

si,j ⊥ µi ≥ 0, ∀ i

Pj = aj − bj · (si,j + S−i,j), ∀ j

si,j ≥ 0, ∀ i, j

xm ≥ 0, ∀ m ,

with the perp operator (⊥) meaning that the product of the expressions to the left and

to the right has to equal zero. The first inequality reflects the first order condition for

the optimal supply of player i to region j: Marginal revenues of additional supply (i. e.,

market price P minus transportation costs tc and the marginal costs of supply µ) have

to equal supply times the slope of the linear demand function b, i. e., the reduction of

revenue due to the negative price effect of additional supply. The second inequality,

which represents the first order condition for production, reflects the marginal costs of

supply µ as the sum of variable production costs c and the scarcity value of capacity λ.

The third and fourth conditions represent the complementarity conditions forcing pro-

duction to be within the capacity limit (with λ being the scarcity value of capacity) and

production to meet supply (with marginal production costs µ). The equality condition

constitutes the linear demand function followed by non-negativity constraints for supply

and production.

Due to the strict quasi-concave objective function and the convexity of restrictions, the

KKT conditions are necessary and sufficient for an optimal solution.

3.3.2.2 The MPEC model

In the MPEC model, we seek to represent a Stackelberg market structure with one leader

(l) taking into account the equilibrium decisions of the follower(s). The model equations

are as follows:

max
xm,sl,j ,λm,µi

∑
j

Pj · sl,j −
∑
j∈J

tcl,j · sl,j −
∑
m∈Ml

cm · xm
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subject to

0 ≤ tci,j − Pj + bj · si,j + µi ⊥ si,j ≥ 0, ∀ i 6= l, j

0 ≤ cm + λm − µi ⊥ xm ≥ 0, ∀ m ∈Mi 6=l

0 ≤ capm − xm ⊥ λm ≥ 0, ∀ m ∈Mi 6=l

0 ≤
∑
m∈Mi

xm −
∑
j

si,j ⊥ µi ≥ 0, ∀ i 6= l

Pj = aj − bj · (S−i,j + sl,j), ∀ j

si,j ≥ 0, ∀ i, j

xm ≥ 0, ∀ m .

Thus, the leader decides on supply taking the equilibrium outcome of the second stage

(which influences the market price) into account. The followers (−i) take the other

followers’ as well as the leader’s supply as given. The objective function is non-convex

and thus solving the MPEC problem in the form previously described does usually not

guarantee a globally optimal solution. Thus, we transform the model into a Mixed

Integer Linear Problem (MILP) that can be solved to optimality with prevalent solvers.

There exist several approaches for linearising the existing non-linearities. Due to its

simple implementation, we follow the approach presented by Fortuny-Amat and McCarl

(1981) for the complementary constraints (for an alternative formulation see Siddiqui

and Gabriel, 2013). For instance, the non-linear constraint

0 ≤ cm − Pj + bj · si,j + λm ⊥ si,j ≥ 0

is replaced by the following linear constraints

0 ≤ cm − Pj + bj · si,j + λm ≤M · ui,j

0 ≤ si,j ≤M(1− ui,j)

with M being a large enough constant (for hints on how to determine M , see Gabriel

and Leuthold (2010)).

For the remaining non-linear term in the objective function (Pj · si,j), we follow the

approach presented by Pereira et al. (2005) using a binary expansion for the supply

variable si,j . The continuous variable is replaced by discrete variables

si,j = ∆s

∑
k

2kbsk,i,j
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where ∆s represents the step size, i. e., the precision of the linear approximation, and

k the number of steps. Variables bsk,i,j are binary. The term Pj · si,j in the objective

function is replaced by Pj ·∆s
∑

k 2kzsk,i,j . In addition, the following constraints have to

be included in the model

0 ≤ zsk,i,j ≤M sbsk,i,j

0 ≤ Pj − zsk,i,j ≤M s
(
1− bsk,i,j

)
.

The thereby formulated model constitutes a MILP that can be reliably solved to a

globally optimal solution.43

3.3.2.3 The EPEC model

The EPEC model extends the Stackelberg game by enabling the representation of sev-

eral leaders taking actions simultaneously under consideration of the reaction of one

or more followers. The solution of an EPEC constitutes the simultaneous solution of

several MPECs. Whereas MPECs are already difficult to solve due to their non-linear

nature, it is even more difficult to solve EPECs. KKT conditions generally cannot be

formulated for MPECs as regularity conditions are violated. Our model is solved using

a diagonalisation approach. In doing so, we reduce the solution of the EPEC to the

solution of a series of MPECs. The iterative solution steps are as follows:

1. Define starting values for the supply decisions s0
l,j of all leaders l ∈ L, a convergence

criterion ε, a maximum number of iterations N and a learning rate R

2. n = 1

3. For all leaders,

(a) Fix the supply decisions for all but the current leader

(b) Solve current leader’s MPEC problem to obtain optimal supplies snl,j , ∀j

(c) Set snl,j equal to (1−R) · sn−1
l,j +R · snl,j , ∀j

4. If |snl,j − s
n−1
l,j | < ε for all producers: equilibrium found, quit

5. If n = N : failed to converge, quit

6. n = n+ 1: return to step 3.

EPECs may or may not have one or multiple (pure strategy) equilibrium solutions, and

only one solution can be found per model run. In addition, if the iterations do not

43 Within the range of the discretisation of the production variable.
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converge to an equilibrium, this does not necessarily mean that no solution exists. This

problem can partially be solved using multiple initial values for the iteration process, but

it cannot be guaranteed that additional equilibria have not been missed. Despite these

drawbacks, diagonalisation has been used widely and successfully in the corresponding

literature (see Gabriel et al. (2012) and the literature cited therein).

For each EPEC setting, we run our model five times with varying start values and

iteration orders to check for multiple equilibria. Each run converged to similar results

with deviations of prices from the mean values of maximum 5%, single trade flows below

1.2 Mt and total production per mine below 0.6 Mt. Profits of the Big-Four and the

cartel groups differed to a maximum of 1%. Whether theses deviations are due to a

multiplicity of (similar) equilibra or to the (lack of) precision of the applied algorithm

is not quite clear. In consideration of the almost equal results, we refrain from further

analyses of the deviations.

3.4 Data

Modelling international commodity markets may be computationally challenging due

to their spatial nature, i. e., multiple supply and demand nodes. In most empirical

examples, each supply node is able to transport the commodity to each demand node

giving rise to a large set of potential trade routes. The possible routes rapidly increase

with additional demand or supply nodes. Whether a certain set of trade routes turns out

to be computationally challenging depends on which market structure one would like to

analyse. While solvers for Mixed Complementary Problems such as PATH (see Dirkse

and Ferris, 1995) can handle quite large systems of equations and variables, the same

setup may be intractable when formulated as a Mathematical Problem with Equilibrium

Constraints (MPEC) or other more complex problems such as an Equilibrium Problems

with Equilibrium Constraints (EPEC) due to their high non-linearity.

Since we are particularly interested in how well a multi-leader-follower game is able to

model the coking coal market, we had to reduce the number of mines per player to one

to keep the model feasible.44 To ensure comparability, the same data setup was used for

all market structures analysed in this paper irrespective of whether the respective solvers

may have been able to handle larger sets of equations and variables (see Appendix A for

production and shipping costs as well as capacities).

In total, the model used to conduct our empirical analysis consists of twelve supply

nodes and six demand nodes. The supply side consists of individual firms as well as

44We would like to thank Johannes Trüby for allowing us to use his extensive mine-by-mine dataset
on the international market for metallurgical coal.
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countries. In addition to each of the four firms belonging to the Big-Four, i. e., BHP

Billiton (BHPB), Rio Tinto, Anglo American and Xstrata, eight country supply nodes

are included in the model of the international coking coal market (Table 3.2 shows

which countries on the supply and demand side are represented in the model). When

aggregating the data, production capacities of each mine belonging to the same firm or

country are simply added up. Concerning production costs, we use the quantity-weighted

average of the individual mines of a firm or country.

Table 3.2: Overview of firms and countries used in the model

Supply nodes Demand nodes
Countries/regions

belonging to demand node

BHP Billiton JP KR Japan and Korea
Rio Tinto CN TW China and Taiwan
Anglo American IN India
Xstrata

LAM
Latin America (mainly

Australia Brazil and Chile)
Canada EUR MED Europe and Mediterranean
China Other Africa and Middle East
Indonesia
New Zealand
Russia
South Africa
United States

The demand side is represented by six nodes, most of which represent a demand clus-

ter, with India being the only exception. The demand clusters were chosen based on

geographical proximity and importance for international trade of metallurgical coal.

Geographical proximity is important because shipment costs, which represent a large

share in total import costs, largely depend on the shipping distance. Due to their minor

importance in terms of the share of total import volumes, we included Africa and the

Middle East in one demand node despite the large area this demand node covers. Inverse

demand functions are assumed to be linear (see Table 3.4 in Appendix A for the used

market data).45 Since it is a priori not clear which is the correct elasticity, we run the

market analyses for a range of values. More specifically, we consider elasticities from

-0.1 to -0.6. This is in line with Bard and Loncar (1991), who estimated the elasticity

of coking coal demand to lie in the range from -0.15 to -0.5, with Western European

(Asian) demand elasticity lying in the lower (upper) part of this range. Graham et al.

45Choosing a linear functional form is a simplification of the real, unobservable demand function. It
implies that the absolute price reaction to a specific absolute change in coking coal output is constant.
The price elasticity, however, is not constant and depends on the price/demand combination. The
stated elasticities refer to the elasticity at the reference price/demand combination. The choice of a
linear demand function simplifies solving the model, particularly the two-stage ones.
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(1999) finds that for 1996, a demand elasticity of -0.3 characterises best the actual mar-

ket outcomes, whereas Trüby (2013) concludes that for the years 2008 to 2010, demand

elasticity falls in the range from -0.3 to -0.5.

3.5 Results

In this section, the model results are presented and discussed. We start out by comparing

the prices under the different market settings to the actual market prices. This allows

us to narrow down the range of elasticities we need to focus on. In a second step, we

use three statistical measures, namely a linear regression test as suggested by Bushnell

et al. (2008), Spearman’s rank correlation coefficient, and Theil’s inequality coefficient,

to assess whether trade flows simulated under different market structures match actual

trade flows. Finally, revenues and production volumes of the Big-Four are analysed.

3.5.1 Prices

Figure 3.2 displays the actual FOB benchmark in 2008 (straight black line) as well as

the simulated FOB prices for a range of elasticities (-0.1 to -0.6) and for the four market

structure settings analysed in this paper. Four observations can be made: First, for

very low elasticities, i. e., between -0.1 and -0.2, none of the market settings is able to

reproduce actual market prices. Although only the results for 2008 are displayed in

Figure 3.2, taking a look at the other years (see Figure 3.6 in Appendix C) confirms this

conclusion.
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Figure 3.2: FOB Prices for a range of (abs.) elasticities – model results vs. actual
benchmark price

Second, prices in the multi-leader-follower setting, EPEC Big 4, as well as in the setting

in which BHP Billiton acts as a Stackelberg leader, MPEC BHPB, are more or less

equivalent. This result is caused by the interaction of three effects (our argumentation
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follows Daughety (1990)): First, each following firm that becomes a Stackelberg leader

has the incentive to increase its output since, now, it takes into account the optimal

reaction of the remaining followers to a change in the output of the Stackelberg leaders.

Second, increasing the number of leaders causes the output of each (incumbent) leader

to drop. This may be interpreted as the result of the intensifying Cournot competition

between the leaders. Third, the total output of the followers decreases with each firm

becoming a Stackelberg leader. In our simulations, these effects seem to counterbalance

each other, which is why the two market settings, EPEC Big 4 and MPEC BHPB, result

in similar market outputs and prices.

Third, another interesting aspect is that (for low demand elasticities) prices for the case

in which the Big-Four form a cartel that acts as a Stackelberg leader (labelled MPEC

Cartel) are below the prices in the Cournot oligopoly (MCP).46 In other words, the

output-increasing effect of becoming a leader is stronger than the output-decreasing

effect of collusion (forming the cartel). Building on Shaffer (1995), the intuition be-

hind this finding can be explained as follows: For the case of N identical firms, zero

marginal costs and a linear demand, the output of a cartel with k-members that acts as

a Stackelberg leader is higher than in a Cournot oligopoly for k lower than N+1
2 , but is

decreasing in k. In other words, the bigger the cartel becomes, the more dominant the

output-reducing collusion effect.47 This is also in line with the results for the case in

which BHPB acts as single leader (MPEC BHPB).

Finally, the higher the elasticity, the more the simulated prices converge. This can be

explained by two effects: First, with increasing elasticity, total production increases as

well (along with decreasing prices). As such, the capacity utilisation over all players

increases from a minimum of 79 % (MCP, eta -0.1) to around 97 % (all scenarios with

eta -0.6) for 2008. This narrows the ability to differentiate strategic behaviour as more

players produce at their capacity limit. Second, increased price elasticity of demand itself

narrows the potential for strategic choice of production as prices react more severely to

changes in output.

Consequently, we conclude that the range of elasticities may be narrowed down to the

range of -0.3 to -0.5, which is in line with previous analyses (see Section 3.4).

46For higher demand elasticities (i. e., larger than -0.3), prices of both cases are identical (given the
tolerance of the applied linearisation method).

47In the case of k = N , i. e., the cartel consists of all firms N in the market, the price in the market
would equal the monopoly price.
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3.5.2 Trade flows

In a first step, we investigate whether simulated trade flows under the different market

structures match the actual market outcomes by regressing the former on the latter. If

the two were a perfect match, then the estimated linear equation would have a slope

of one and an intercept of zero. Table 3.3 shows the p-values of the F-test that checks

whether the coefficient of the slope and the intercept jointly equal one and zero, respec-

tively, for six different elasticities and the four market structures.48

Taking a closer look at Table 3.3, we can conclude that all four market settings provide

a reasonable fit with actual trade flows in the relevant range of elasticities (-0.3 to -0.5).

This finding generally holds true for lower elasticities as well, with one exception. In

the case of the MCP scenario, trade flows in 2008 and 2010 for an elasticity of -0.1 and

in 2009 for an elasticity of -0.1 and -0.2 do not seem to provide a reasonable fit since

the H0-hypothesis is rejected. It should, however, be noted that 2009 was special in the

sense that it was characterised by a significant drop in utilisation rates of the mines since

steel demand and, thus, demand for coking coal plummeted compared to the previous

year because of the financial crisis.

Table 3.3: P-values of the F-tests (β0 = 0 and β1 = 1) for a range of elasticities

Elasticity
EPEC Big 4 MPEC BHPB

2008 2009 2010 2008 2009 2010

e = -0.1 0.86 0.86 0.64 0.86 0.85 0.68
e = -0.2 1.00 0.80 0.90 1.00 0.81 0.92
e = -0.3 0.92 0.57 0.98 0.92 0.57 0.99
e = -0.4 0.85 0.44 0.95 0.84 0.46 0.97
e = -0.5 0.74 0.48 0.91 0.73 0.50 0.92
e = -0.6 0.59 0.52 0.84 0.59 0.52 0.85

Elasticity
MPEC Cartel MCP

2008 2009 2010 2008 2009 2010

e = -0.1 0.79 0.76 0.70 0.08* 0.02** 0.06*
e = -0.2 1.00 0.66 0.12 0.22 0.09* 0.16
e = -0.3 0.43 0.45 0.37 0.43 0.25 0.34
e = -0.4 0.75 0.85 0.73 0.67 0.52 0.59
e = -0.5 0.78 0.49 0.92 0.77 0.73 0.81
e = -0.6 0.57 0.40 0.85 0.61 0.90 0.84

Significance levels: 1% ’***’ 5% ’**’ 10% ’*’

In order to cross-check the results from the linear hypothesis test, two additional in-

dicators are taken into consideration. Figure 3.3 depicts Spearman’s rank correlation

and Theil’s inequality coefficient for the different market settings and the whole range

48See Appendix B for more details on the methodology used in this subsection.
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of elasticities in 2008.49 Both coefficients confirm the analysis of the linear hypothesis

test since neither of the two indicators allows us to discard one of the market settings

when looking at the relevant range of elasticities.

Figure 3.3: Spearman’s correlation coefficients and Theil’s inequality coefficients for
a range of (abs.) elasticities

3.5.3 Production and revenues of the Big-Four

So far the conducted analyses have not provided significant evidence that one of the

market structures investigated in this paper performs better or worse than another.

Therefore, we take a closer look at two further components: revenues and production

volumes of the Big-Four.

When analysing the differences in profits of the Big-Four between the various market

structures simulated in this paper, we can observe that, as expected, the Big-Four make

the largest profits in the MPEC Cartel setting. However, relative differences between

the different market structures are negligible (< 1%), which becomes obvious when

comparing the bars in Figure 3.4.50

Thus, the conclusion that can be drawn from this comparison is that the gains of forming

and coordinating a cartel are small even when neglecting transaction costs that go along

with maintaining the cartel.

Turning now to production, we compare the absolute difference in simulated versus

actual production volumes of the Big-Four cumulated over the time period investigated

in this paper (2008 to 2010). This indicator was chosen because it captures differences

in the total production volumes of the Big-Four as well as deviations in each firm’s

production volumes. In addition, we compare the sum of squared differences between

actual and modelled production to assess the structure of deviations. The resulting

differences are depicted in Figure 3.5 for a demand elasticity of -0.4, which is the mean

value of the range of elasticities found to be relevant (see Subsection 3.5.1). As can

49Conclusions remain unchanged when focusing on the other two years, as can be seen in Figure 3.7
in Appendix C.

50The results for 2009 and 2010 are similar.
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Figure 3.4: 2008’s profits of the Big-Four in the three two-stage-games for the whole
range of elasticities

be seen in the left diagram, cumulated absolute differences to historical data lie in

the range of 8% to 17%, with the MPEC Cartel setting performing worst. On the

other hand, the market structures in which BHP Billiton is the sole Stackelberg leader

and the case of four non-colluding leaders perform best. Taking a closer look at the

individual differences of the two settings with the largest differences, it becomes obvious

that the MCP setting performs reasonably well in 2008 and 2010 but fails to reproduce

the decline in production of the Big-Four in 2009. This is also the reason for the

poor performance regarding squared deviations. In contrast, the MPEC Cartel setting

constantly overestimates the production of BHP Billiton and underestimates the one of

Rio Tinto, with the reason being that this minimizes the overall production costs of the

cartel. In the two cases that perform best (MPEC BHPB and EPEG Big 4), we observe

no significant patterns.
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Figure 3.5: Cumulated absolute and squared difference in production volumes of the
Big-Four to actual market outcomes at an elasticity of -0.4

In summary, three conclusions may be drawn from our analyses: i) We are able to

support previous findings that the setting in which a cartel of the Big-Four acts as the

Stackelberg leader, MPEC Cartel, as well as the Cournot oligopoly setting sufficiently

reproduce actual trade flows and prices. ii) However, we also show that additional

revenues from forming a cartel are rather small and individual production volumes of
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the Big-Four in the cartel setting do not match well with actual production numbers.

Thus, we argue that a market structure with a cartel of the Big-Four that moves first

is less likely than the other scenarios. iii) We find that the two settings with one or

more leading firms reproduce actual trade flows and prices as good as the cartel and

the Cournot settings. In addition, these two settings perform better than the former

two settings with respect to the production volumes of the Big-Four. In particular, the

methodology introduced in this paper to represent multi-leader-follower games scored

among the best results in all tests used in our analysis.

3.6 Conclusions

Previous analyses of the prevailing market structure in spatial resource markets mainly

focussed on the comparison of actual market outcomes to market results under perfect

competition, Cournot competition and with a single (Stackelberg) leader. We add to

these analyses by developing a model able to represent multi-leader market structures.

We apply our model to the metallurgical coal market, which is especially suited as its

market structure suggests a multitude of possible markets structures that have partly

been neglected in previous analyses. Thereby, we are able to demonstrate the practica-

bility and usefulness of our approach.

Trüby (2013) shows that market results of the metallurgical coal market indicate non-

competitive behaviour. Actual prices and trade flows could rather be explained by

Cournot competition or a game in which the Big-Four form a cartel that acts as a

single Stackelberg leader. Our results confirm that a Cournot oligopoly as well as a

cartel consisting of the Big-Four fit well with observed prices and trade flows of the

metallurgical coal market from 2008 to 2010. Based on our results, however, the same

is true for two additional settings: First, a market with BHPB acting as a Stackelberg

leader and the remaining players competing afterwards in a Cournot fashion (MPEC

BHBP). Second, a multi-leader market structure where the Big-Four independently act

first followed by the remaining players (EPEC Big 4). By additionally analysing profits

and comparing the actual production data with models results, we conclude that the two

latter scenarios are even more likely than the previously suggested market structures.

For 2009, in which overall demand has been low, model outcomes, in particularly con-

cerning prices, do not fit as well as for the other two years. Hence, taking into account

market power on the demand side – as suggested by Graham et al. (1999) – might be

more appropriate than the market settings analysed in this paper.
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To improve the accuracy of current market structure analyses and to further narrow

down the set of potential market structures, it could be useful to have more detailed

firm and market data, also for smaller market participants. In order to be able to

solve the computationally challenging non-linear bi-level games, we had to aggregate

our dataset. Improving available solution methods for these problems to obtain mine-

by-mine results may help to discriminate between the goodness of fit of different model

results with actual market data. However, this would require detailed data availability.

Unfortunately, neither mine-by-mine market results nor detailed profitability data on a

firm level were available.

Our results demonstrate the multiplicity of possible market structures able to explain

actual market outcomes concerning trade flows and market prices. By analysing the

production data, we were able to identify two promising candidates for the underlying

market structure. However, we are aware of the fact that the market structures analysed

in this paper may not cover the whole range of potentially interesting settings, e. g., as

indicated by Graham et al. (1999), the demand side could be exerting market power as

well.

From this findings, two conclusions can be drawn: First, omitting potential scenarios can

lead to false conclusions of the prevailing market structure. This is relevant especially

when it comes to judging if market outcomes reveal collusive behaviour. Second, a

market structure analysis solely based on market outcomes with respect to price and

trade flows may not be sufficient to determine the actual market structure but should

rather be completed using additional analyses.

These conclusions lead to the following subjects for future research: First, expanding

the range of market settings under consideration, in particular including market power

on the demand side, could give additional insights. This is especially relevant given

the varying observable levels of demand in different years. Second, including more

years could strengthen the explanatory power of the findings and eventually help to

identify changing market structures over time. Third, expanding the model to include

investment decisions could further strengthen the understanding of current markets and

their development as research on this topic is rather thin.51

51See Lorenczik et al. (2017) for an analysis for the coking coal market that includes investment
decisions.
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3.7 Appendix

3.7.1 Appendix A: Input data

Table 3.4: Reference demand [Mt] and price [US$/t]

2008 2009 2010

demand price demand price demand price
JP KR 80 300 71 129 87 227
CN TW 10 300 26 129 42 227
IN 26 300 26 129 35 227
LAM 16 300 15 129 17 227
EUR MED 63 300 43 129 58 227
Other 18 300 10 129 7 227

Table 3.5: Production costs [US$/t]

2008 2009 2010

Australia 67 71 73
Canada 100 101 104
China 91 114 117
Indonesia 110 112 113
New Zealand 72 73 75
Russia 162 163 156
South Africa 51 52 53
USA 117 108 113
Anglo American 67 69 70
BHP Billiton 76 77 80
Rio Tinto 78 79 82
Xstrata 63 65 67
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Table 3.6: Production capacities [Mtpa]

2008 2009 2010

Australia 37.4 34.4 42.6
Canada 25.6 28.0 28.0
China 4.0 2.1 2.1
Indonesia 2.1 2.1 2.5
New Zealand 2.6 2.6 2.6
Russia 15.2 15.5 15.5
South Africa 0.8 0.8 0.8
USA 52.2 57.2 60.2
Anglo American 15.1 15.1 16.3
BHP Billiton 63.6 63.6 71.4
Rio Tinto 15.0 15.0 16.2
Xstrata 13.2 14.5 15.0

Table 3.7: Shipping costs [US$/t]

CN TW EUR MED IN

2008 2009 2010 2008 2009 2010 2008 2009 2010
Australia 24.7 13.8 15.9 42.9 18.9 20.9 29.9 15.4 17.5
Canada 30.5 15.6 17.6 37.6 17.6 19.6 37.1 17.4 19.5
China 15.2 10.5 12.4 41.8 18.6 20.6 26.5 14.4 16.4
Indonesia 17.9 11.5 13.5 39.9 18.2 20.2 23.5 13.4 15.5
New Zealand 29.6 15.3 17.4 42.5 18.8 20.8 32.3 16.1 18.2
Russia 16.7 11.1 13.1 16.5 11.0 13.0 27.4 14.7 16.7
South Africa 31.6 15.9 18.0 32.7 16.2 18.3 25.1 14.0 16.0
USA 41.7 18.6 20.6 23.7 13.5 15.6 37.8 17.6 19.6

JP KR LAM Other

2008 2009 2010 2008 2009 2010 2008 2009 2010
Australia 24.8 13.9 15.9 36.2 17.2 19.2 33.7 16.5 18.5
Canada 26.4 14.4 16.4 36.4 17.2 19.3 41.2 18.5 20.5
China 15.1 10.4 12.4 42.5 18.8 20.8 32.1 16.0 18.1
Indonesia 22.2 13.0 15.0 37.7 17.6 19.6 26.9 14.5 16.6
New Zealand 29.2 15.2 17.3 32.3 16.1 18.1 36.2 17.2 19.2
Russia 12.4 9.3 11.2 33.0 16.3 18.4 27.2 14.6 16.7
South Africa 34.9 16.8 18.9 26.0 14.2 16.3 26.2 14.3 16.4
USA 39.2 18.0 20.0 27.9 14.8 16.9 36.5 17.3 19.3

95



3.7 Appendix

3.7.2 Appendix B: Statistical measures52

In order to assess the accuracy of our model, we compare market outcomes such as

production, prices and trade flows to our model results. In comparing trade flows, we

follow, for example, Kolstad and Abbey (1984), Bushnell et al. (2008) and more recently

Trüby (2013) as well as Hecking and Panke (2014) by applying three different statistical

measures: a linear hypothesis test, the Spearman rank correlation coefficient and Theil’s

inequality coefficient. In the following, we briefly discuss the setup as well as some of

the potential weakness of each of the three tests.

Starting with the linear hypothesis test, if the actual and model trade flows had a perfect

fit, the dots in a scatter plot of the two data sets would align along a line starting at zero

and have a slope equal to one. Therefore, we test model accuracy by regressing actual

trade flows At on the trade flows of our model Mt, with t representing the trade flow

between exporting country e ∈ E and importing region d ∈ D, as data on trade flows is

available only on a country level. Using ordinary least squares (OLS), we estimate the

following linear equation:

At = β0 + β1 ∗Mt + εt.

Modelled trade flows have a bad fit with actual data if the joint null hypothesis of β0 = 0

and β1 = 1 can be rejected at typical significance levels. One of the reasons why this test

is applied in various studies is that it allows hypothesis testing, while the other two tests

used in this paper are distribution-free and thus do not allow such testing. However,

there is a drawback to this test as well, since the results of the test are very sensitive to

how good the model is able to simulate outliers. To improve the evaluation of the model

accuracy regarding the trade flows, we apply two more tests.

The second test we employ is the Spearman’s rank correlation coefficient, which, as

already indicated by its name, can be used to compare the rank by volume of the

trade flow t in reality to the rank in modelled trade flows. Spearman’s rank correlation

coefficient, also referred to as Spearman’s rho, is defined as follows:

rho = 1−
T∑
t

d2
t /(n

3 − n)

with di,j being the difference in the ranks of the modelled and the actual trade flows

and T being the total number of trade flows. Since Spearman’s rho is not based on a

distribution, hypothesis testing is not applicable. Instead, one looks for a large value

52This section has already been published in Hecking and Panke (2014), which is co-authored by one
of the authors of this paper.
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of rho. However, Spearman’s rank correlation coefficient does not tell you anything

about how well the predicted trade flows compare volumewise to the actual trade flow

volumes. For example, rho could be equal to one despite total trade volume being ten

times higher in reality as long as the market shares of the trade flows match.

Finally, we apply the normed-version of Theil’s inequality coefficient U , which lies be-

tween 0 and 1, to analyse the differences between actual and modelled trade flows. A U

of 0 indicates that modelled trade flows perfectly match actual trade flow, while a large

U hints at a large difference between the two data sets. Theil’s inequality coefficient is

defined as:

U =

√∑T
t (Mt −At)√∑T

t M
2
t +

√∑T
t A

2
t

.
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3.7.3 Appendix C: Prices and statistical measures for trade flows
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Figure 3.6: FOB Prices for a range of (abs.) elasticities – model results vs. actual
benchmark price

Statistical measures for trade flows

Figure 3.7: Spearman’s correlation coefficients and Theil’s inequality coefficients for
a range of (abs.) elasticities
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Modeling strategic investment decisions

in spatial markets

Markets for natural resources and commodities are often oligopolistic. In these mar-

kets, production capacities are key for strategic interaction between the oligopolists.

We analyze how different market structures influence oligopolistic capacity investments

and thereby affect supply, prices and rents in spatial natural resource markets using

mathematical programing models. The models comprise an investment stage and a sup-

ply stage in which players compete in quantities. We compare three models, a perfect

competition and two Cournot models, in which the product is either traded through

long-term contracts or on spot markets in the supply stage. Tractability and practical-

ity of the approach are demonstrated in an application to the international metallurgical

coal market. Results may vary substantially between the different models. The metal-

lurgical coal market has recently made progress in moving away from long-term contracts

and more towards spot market-based trade. Based on our results, we conclude that this

regime switch is likely to raise consumer rents but lower producer rents, while the effect

on total welfare is negligible.

4.1 Introduction

Markets for natural resources and commodities such as iron ore, copper ore, coal, oil

or gas are often highly concentrated and do not appear to be competitively organized

at first glance. In such markets, large companies run mines, rigs or gas wells and trade

their product globally. In the short term, marginal production costs and capacities are

given and determine the companies’ competitive position in the oligopolistic market.

However, in the longer term, companies can choose their capacity and consequently

alter their competitive position.

Investing in production capacity is a key managerial challenge and determining the

right amount of capacity is rarely trivial in oligopolistic markets. Suppliers have to take
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competitors’ reactions into account not only when deciding on the best supply level but

also when choosing the best amount of capacity.

In this paper, we introduce three different models to address this capacity expansion

problem in oligopolistic natural resource markets under varying assumptions of market

structure and conduct. Moreover, we pursue the question as to how different market

structures influence capacity investments, supply, prices and rents. The models com-

prise two stages: an investment stage and a supply stage in which players compete in

quantities. We explicitly account for the spatial structure of natural resource markets,

i. e., demand and supply regions are geographically separated and market participants

incur distance-dependent transportation costs.

The first model assumes markets to be contestable; hence investment follows competi-

tive logic. Solving this model yields the same result as would be given by a perfectly

competitive market. The second model assumes the product to be sold through long-

term contracts under imperfect competition. Even though supply takes place in stage

two, the supply and investment decisions are made simultaneously in stage one. The

long-term contract that is fulfilled in stage two determines the level of capacity invest-

ment in stage one. Any production capacity that is different from the one needed to

produce the quantity of the best-supply equilibrium in stage two reduces the respec-

tive players profits and is not a Nash equilibrium. The outcome is termed ’open-loop

Cournot equilibrium’ and corresponds to the result of a static one-stage Cournot game

(accounting for investment costs). The third model assumes that investment and supply

decisions are made consecutively: In stage one, when investment takes place, none of

the oligopolists can commit to their future output decision in stage two (unlike in the

open-loop case). In stage two, when the market clears, the investment cost spent in the

first stage is sunk and the players base their output decision solely on production cost.

The resulting equilibrium is termed ’closed-loop Cournot equilibrium’ and may differ

from the open-loop outcome.

Intuitively, the lack of commitment in the closed-loop game and therefore the repeated

interaction of the oligopolists would suggest a higher degree of competition and thus

lower prices and higher market volumes than in the open-loop equilibrium. However, the

players anticipate this strategic effect and make their investment decisions accordingly.

How prices and volumes rank compared to the open-loop game is parameter-dependent

and requires a numerical analysis. As discussed for instance in Fudenberg and Tirole

(1991) in a more general context, each player in the closed-loop model has a strategic

incentive to deviate from his first stage open-loop action as he can thereby influence

the other players’ second stage action. Applying this general economic framework to
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the capacity expansion problem examined in this paper, indeed tends to lead to higher

investment and supply levels in the closed-loop model and hence to lower prices.

Computing open-loop games is relatively well understood, and existence and uniqueness

of the equilibrium can be guaranteed under certain conditions (see, e. g., Harker, 1984,

1986, Takayama and Judge, 1964, 1971). The open-loop Cournot model can be solved

via the Karush-Kuhn-Tucker conditions as a mixed complementarity problem (MCP).

Oligopolistic spatial equilibrium models have been widely deployed in analyzing resource

markets, without taking investments decisions into account, e. g., for steam coal markets

(Haftendorn and Holz, 2010, Kolstad and Abbey, 1984, Trüby and Paulus, 2012), met-

allurgical coal markets (Graham et al., 1999, Trüby, 2013), natural gas markets (Gabriel

et al., 2005b, Growitsch et al., 2013, Holz et al., 2008, Zhuang and Gabriel, 2008), wheat

markets (Kolstad and Burris, 1986), oil markets (Huppmann and Holz, 2012) or for iron

ore markets (Hecking and Panke, 2014). Investments in additional production capacity

have been analyzed for example in Huppmann (2013) with investment and production

decisions being made simultaneously and therefore implicitly assuming a market struc-

ture with long-term contracts.

Closed-loop models are computationally challenging due to their non-linear nature. De-

pending on the problem this can be resolved. Gabriel and Leuthold (2010) for instance

model an electricity market with a Stackelberg leader using linearization to guarantee a

globally optimal solution. Closed-loop models in energy market analysis have primarily

been used to study restructured electricity markets (e. g., Daxhelet and Smeers, 2007,

Shanbhag et al., 2011, Yao et al., 2008, 2007). Murphy and Smeers (2005) and Wogrin

et al. (2013a,b) have analyzed the implications of closed- and open-loop modeling on

market output and social welfare as well as characterized conditions under which closed-

and open-loop model results coincide.

Our two-stage model consists of multiple players on both, the first and second stage

(investment in stage one and supply in stage two), and therefore existence and unique-

ness of (pure strategy) equilibria cannot be guaranteed. The closed-loop model, which

is formulated as an Equilibrium Problem with Equilibrium Constraints (EPEC), is im-

plemented using a diagonalization approach (see, e. g., Gabriel et al., 2012). In doing

so, we reduce the solution of the EPEC to the solution of a series of Mathematical Pro-

grams with Equilibrium Constraints (MPEC). Concerning the solution of the MPECs

we implement two algorithms, grid search along the investment decisions of the individ-

ual players and a Mixed Integer Linear Program reformulation following Wogrin et al.

(2013a).

We demonstrate the tractability and practicality of our investment models in an appli-

cation to the international metallurgical (or coking) coal trade. Metallurgical coal is,
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due to its special chemical properties, a key input in the process of steel-making. The

market for this rare coal variety is characterized by a spatial oligopoly with producers

mainly located in Australia, the United States and Canada competing against each other

and providing the bulk of the traded coal (Bowden, 2012, Trüby, 2013). The players

hold existing mining capacity and can invest into new capacity. Investment and mining

costs differ regionally. Key uncertainties in this market are demand evolution and price

responsiveness of demand. We therefore compute sensitivities for these parameters to

demonstrate the robustness of our results.

Our findings are generally in line with previous results found in the literature on two-

stage games with players choosing capacity and output, i. e., we find that prices and

supply levels in the closed-loop game fall between those in the perfect competition and

the open-loop game (see, e. g., Murphy and Smeers, 2005). If investment costs are low

compared to variable costs of supply, the strategic effect of the two-stage optimiza-

tion in the closed-loop game diminishes. With investment costs approaching zero, the

closed-loop result converges to the open-loop result. Hence, the closed-loop model is

particularly useful for capital-intensive natural resource industries in which the product

is traded on spot markets.

The numerical results for supply levels, prices and rents in the metallurgical coal market

analysis differ markedly between the three models. Consistent with actual industry in-

vestment pipelines, our model suggests that the bulk of the future capacity investment

comes from companies operating in Australia followed by Canadian and US firms. Start-

ing in 2010, the metallurgical coal market has undergone a paradigm shift, moving away

from long-term contracts and more towards a spot market-based trade – with similar

tendencies being observed in other commodity markets such as the iron ore trade. In

light of our findings, this effect is detrimental to the companies’ profits but beneficial to

consumer rents. The effect on welfare is negligible: Gains in consumer rents and losses

in producers’ profits are of almost equal magnitude.

The contribution of this paper is threefold: First, by extending the multi-stage in-

vestment approach to the case of spatial markets, we introduce a novel feature to the

literature on Cournot capacity expansion games. Second, we outline how our modeling

approach can be implemented and solved to analyze capacity investments in natural

resource markets. We thereby extend previous research on natural resource markets,

which has typically assumed capacities to be given. Finally, we illustrate and discuss

the model properties on the basis of a real-world application to the international met-

allurgical coal trade and draw conclusions for this market. In doing so, we also take

into account existing capacities of the players and hence incorporate a feature which

to our knowledge has been ignored in previous work on multi-stage Cournot capacity

102



4.2 The Model

expansion games. By comparing open- and closed-loop model results, we illustrate pos-

sible consequences of the ongoing regime switch from long-term contracts to a more

spot market-based trade in the international metallurgical coal market. Our analysis in

particular allows for the first quantification of the magnitude of the divergence between

open- and closed-loop model results in a real-world application.

The remainder of the paper is structured as follows: Section 4.2 describes the models

developed in this paper and Section 4.3 provides details about their implementation.

The data is outlined in Section 4.4, results are presented in Section 4.5. Section 4.6

discusses computational issues and Section 4.7 concludes.

4.2 The Model

We introduce three different approaches to the capacity expansion problem – two open-

loop models and a closed-loop model. In the open-loop models, all players decide simul-

taneously on their investment and production levels, whereas in the closed-loop model

all players first decide on their investment levels simultaneously and then, based on ob-

served investment levels, they simultaneously decide on their production levels. The two

open-loop models vary in their underlying market structure: one model assumes perfect

competition, the other model assumes Cournot competition with a competitive fringe.

The closed-loop model also assumes Cournot competition with a competitive fringe.

While similar open-loop models have previously been studied, the introduced closed-loop

model varies from existing closed-loop models by taking into account also the spatial

structure of the market as well as considering existing capacities of the players.

4.2.1 General Setting and Notations

Table 4.1 summarizes the most relevant nomenclature used throughout this section.

Additional symbols are explained where necessary. We assume a spatial, homogeneous

good market consisting of producers i ∈ I, production facilities m ∈ M and demand

regions j ∈ J . Each producer i owns production facilities m ∈ Mi ⊂ M . Furthermore,

we assume that Mi ∩Mj = ∅ for i 6= j, i. e., production facilities are exclusively owned

by one producer. Producers decide on both their investment in production facilities as

well as on their supply levels.

As in equilibrium added capacities are fully utilized, no stock constraint for new capaci-

ties is modeled. Therefore we implicitly assume that mines will be exhausted after their

depreciation period (see Section 4.4).
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The supply from production facility m to market j is given by xm,j . Total production of

production facility m is hence given by
∑

j xm,j . It is limited by the facilities’ capacity

cap0
m + ym, where cap0

m is the initial production capacity and ym denotes the capacity

investment. Capacity investments ym are non-negative and limited by ymaxm . The upper

bound on capacity expansion is chosen sufficiently high not to impose restrictions on

economically favorable investments but is rather used to ease the solution algorithm

(the upper limit restricts the solution space of the non-linear MPEC and enables the

equidistant separation of investments in the case of the line search, see Section 4.3).

Capacity investments in an existing production facility (i. e., cap0
m 6= 0) can be inter-

preted as capacity expansions, and investments in the case of cap0
m = 0 as newly built

production facilities.

Investment expenditures for facility m are given by Cinvm . We assume that Cinvm is a

linear function in the investment level ym, with km denoting marginal investment costs,

i. e.,

Cinvm (ym) = km · ym.

Variable costs Cvarm are specific to the production facility m. They are composed of

transportation costs τm,j per unit delivered from m to market j as well as the variable

production costs vm. We assume that vm is a linear function in the total production of

the facility. Total variable costs of facility m therefore amount to

Cvarm (xm) =
∑
j

(xm,j · τm,j) + vm(
∑
j

xm,j),

with xm = (xm,j)j denoting the production vector of facility m.

Market prices Pj in market j are given by a linear inverse demand function, i. e.,

Pj = aj − bj ·
∑
m

xm,j .
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Table 4.1: Model sets, parameters and variables

Abbreviation Description

Model sets
m ∈M Production facilities
j ∈ J Markets
i ∈ I Players
Model parameters
km Marginal investment costs [US$ per unit per year]
vm Variable production costs [US$ per unit]
τm,j Transportation costs [US$ per unit]
aj Reservation price [US$ per unit]
bj Linear slope of demand function
cap0

m Initial production capacity [units per year]
ymax
m Maximum capacity expansion [units per year]

Model variables
Cvar

m Total variable production costs [US$]
Cinv

m Investment expenditures [US$]
xm,j Supply [units]
Pj Market price [US$ per unit]
ym Capacity investments [units per year]

4.2.2 Model 1: The Open-Loop Perfect Competition Model

In the open-loop perfect competition model (in the following simply termed ‘perfect

competition model’), each producer i ∈ I solves the optimization problem

max
xm,ym:m∈Mi

∑
m∈Mi

(∑
j∈J

Pj · xm,j − Cvarm (xm)
)
−
∑
m∈Mi

Cinvm (ym)

subject to

Pj = aj − bj · (Xi,j +X−i,j), ∀j

cap0
m + ym −

∑
j

xm,j ≥ 0, ∀m ∈Mi (λm)

ymaxm − ym ≥ 0, ∀m ∈Mi (θm)

xm,j ≥ 0, ∀m ∈Mi, j

ym ≥ 0, ∀m ∈Mi

while taking the supplies X−i,j of the other producers (−i) as given. Here and in the

following, we use the abbreviation XI1,j =
∑

i∈I1
∑

m∈Mi
xm,j for some I1 ⊂ I.

Hence, in the perfect competition model, each producer simultaneously makes his (“long-

term”) investment and (“short-term”) production decisions in order to maximize profits.

In doing so, each producer takes capacity restrictions into account. However, players do

not take into account their influence on price.
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Any solution to the above optimization problem has to satisfy the short-term Karush-

Kuhn-Tucker (KKT) conditions

0 ≤ ∂Cvarm (xm)

∂xm,j
− [aj − bj · (Xi,j +X−i,j)] + λm ⊥ xm,j ≥ 0, ∀i,m ∈Mi, j

0 ≤ cap0
m + ym −

∑
j

xm,j ⊥ λm ≥ 0, ∀i,m ∈Mi

as well as the long-term KKT conditions

0 ≤ km − λm + θm ⊥ ym ≥ 0, ∀i,m ∈Mi

0 ≤ ymaxm − ym ⊥ θm ≥ 0, ∀i,m ∈Mi.

In equilibrium, all KKT conditions have to hold simultaneously. Uniqueness of the

solution is guaranteed due to the quasi-concave objective function and the convexity

of the restrictions. The derived KKT conditions are thus necessary and sufficient for

obtaining the solution.

4.2.3 Model 2: The Open-Loop Cournot Model with Competitive

Fringe

In the open-loop Cournot model with competitive fringe (in the following simply termed

‘open-loop model’), each producer i ∈ I solves an optimization problem identical to

the one for the perfect competition model described above. However, each producer

may take additionally into account his influence on price which is represented by the

conjectural variation parameter ψi, where
∂Pj
∂xm,j

= ψi · bj for all m ∈ Mi. Cournot

behavior with a competitive fringe can then be represented as ψi = 1 for the Cournot

players and ψi = 0 for the competitive fringe.53

Any solution to the open-loop Cournot model with competitive fringe then satisfies the

short-term Karush-Kuhn-Tucker (KKT) conditions

0 ≤ ∂Cvarm (xm)

∂xm,j
− [aj − bj · (Xi,j +X−i,j)] + ψi · bj ·Xi,j + λm ⊥ xm,j ≥ 0, ∀i,m ∈Mi, j

0 ≤ cap0
m + ym −

∑
j

xm,j ⊥ λm ≥ 0, ∀i,m ∈Mi

as well as the long-term KKT conditions

0 ≤ km − λm + θm ⊥ ym ≥ 0, ∀i,m ∈Mi

0 ≤ ymaxm − ym ⊥ θm ≥ 0, ∀i,m ∈Mi.

53The perfect competition model also follows from this specification by setting ψi = 0 for all i.
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In equilibrium, the KKT conditions of both the Cournot players and the competitive

fringe have to hold simultaneously. As in the perfect competition case, uniqueness of the

solution is guaranteed due to the quasi-concave objective function and the convexity of

the restrictions. The derived KKT conditions are therefore again necessary and sufficient

for obtaining the solution.

4.2.4 Model 3: The Closed-Loop Model

In the closed-loop model, producers play a two-stage game: In the first stage, oligopolis-

tic producers l (l ∈ L ⊂ I) decide on their investment levels. In the second stage, they

choose, based on observed investment decisions of the other oligopolistic producers, their

production and supply levels. In addition, in the second stage, a further player, the com-

petitive fringe (F ), makes his supply decisions. The competitive fringe is not allowed

to invest in either stage.54 As opposed to the oligopolistic producers, the competitive

fringe is a price taker.

4.2.4.1 The Second Stage Problem

For a given investment vector (yl, y−l) of the oligopolistic producers, let the second stage

problem of producer i be given by

max
xm,j :m∈Mi

∑
m∈Mi

(∑
j∈J

Pj · xm,j − Cvarm (xm)
)

subject to

Pj = aj − bj · (Xi,j +X−i,j), ∀j

cap0
m + ym −

∑
j

xm,j ≥ 0, ∀m ∈Mi (λm)

xm,j ≥ 0, ∀m ∈Mi, j.

As in the open-loop model, producer i decides on his supplies while taking the supplies

of the other producers (−i) as given. A producer’s influence on price is again assumed

to be represented by a conjectural variation parameter ψi, which is equal to one for the

oligopolistic producers and zero for the competitive fringe. Note that the competitive

fringe may not invest and therefore ym = 0 for the fringe.

54In our application to the metallurgical coal market, this restriction also holds true for the player
in the perfect competition model corresponding to the competitive fringe in the closed-loop model as
well as for the competitive fringe in the Cournot open-loop model. For better readability, the model
descriptions in the preceding two subsections are slightly more general, i. e., allowing potentially all
players to invest.
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The corresponding KKT conditions to this problem are then given by

0 ≤ ∂Cvarm (xm)

∂xm,j
− [aj − bj · (Xi,j +X−i,j)] + ψi · bj ·Xi,j + λm ⊥ xm,j ≥ 0, ∀m ∈Mi, j

0 ≤ cap0
m + ym −

∑
j

xm,j ⊥ λm ≥ 0, ∀m ∈Mi.

In the second stage equilibrium, the KKT conditions of all producers have to hold

simultaneously. In the following, let x̃m,j(yl, y−l) denote the second stage production

equilibrium for a given investment vector (yl, y−l).

4.2.4.2 The First Stage Problem

The first stage problem for oligopolistic producer l ∈ L is given by

max
ym:m∈Ml

∑
m∈Ml

(∑
j∈J

P̃j · x̃m,j(yl, y−l)− Cvarm (x̃m(yl, y−l)
)
−
∑
m∈Ml

Cinvm (ym)

subject to

P̃j = aj − bj · (X̃l,j(yl, y−l) + X̃−l,j(yl, y−l) + X̃F,j(yl, y−l)), ∀j

ymaxm − ym ≥ 0, ∀m ∈Ml

ym ≥ 0, ∀m ∈Ml,

i. e., producer l chooses his investment levels in order to maximize profits for a given

investment strategy of the other oligopolistic producers (y−l) under consideration of the

resulting second stage equilibrium outcome.

Combining the second stage and the first stage problem, we obtain the following MPEC

for producer l, hereafter referred to as MPECl:

max
Ωl

∑
m∈Ml

(∑
j∈J

(aj − bj · (Xl,j +X−l,j +XF,j)) · xm,j − Cvarm (xm)
)
−
∑
m∈Ml

Cinvm (ym)

subject to

ymaxm − ym ≥ 0, ∀m ∈Ml

ym ≥ 0, ∀m ∈Ml

0 ≤ ∂Cvarm (xm)

∂xm,j
− [aj − bj · (Xi,j +X−i,j)] + ψi · bj ·Xi,j + λm ⊥ xm,j ≥ 0, ∀i,m ∈Mi, j

0 ≤ cap0
m + ym −

∑
j

xm,j ⊥ λm ≥ 0, ∀i,m ∈Mi
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given the investment vector (y−l) of the other oligopolistic producers. Here, Ωl is given

by:55

Ωl = {(ym)m∈Ml
; (xm,j , λm)m∈M,j∈J}.

An investment strategy (ỹl, ỹ−l) is a closed-loop equilibrium if for all l ∈ L, ỹl solves l’s

MPEC problem MPECl given ỹ−l. The problem of finding a closed-loop equilibrium is

hence of EPEC type (Gabriel et al., 2012), and therefore existence and uniqueness of

equilibria typically is non-trivial and parameter dependent.

4.2.5 Discussion of the Models and Equilibrium Concepts

Closed-loop strategies allow players to condition their actions on actions taken in pre-

vious stages; in open-loop strategies, this is not possible. Thus, equilibria in the closed-

loop model are by definition subgame perfect, whereas open-loop equilibria are typically

merely dynamically (time) consistent. The latter is a weaker equilibrium concept than

subgame perfection. It requires only that no player has an incentive at any time to devi-

ate from the strategy he announced at the beginning of the game, “given that no player

has deviated in the past and no agent expects a future deviation” (Karp and Newbery,

1992). Therefore, with subgame perfect equilibria requiring actions to be optimal in

every subgame of the game, i. e., requiring that no player has an incentive to deviate

from his strategy regardless of any deviation in the past, an equilibrium of the open-loop

model may fail to be an equilibrium in the closed-loop game.56

Fudenberg and Tirole (1991) and the literature cited therein generally address the issue of

diverging results of open-loop models in comparison to closed-loop models and provide

intuition for the divergence: In the closed-loop model, in contrast to the open-loop

model, a player’s influence via its own actions in the first stage on the other players’

actions in the second stage is taken into account. Applying this intuition to the special

case of the capacity expansion problem, Murphy and Smeers (2005) show that in the

closed-loop equilibrium, marginal investment costs may be higher than the sum of the

short-term marginal value implied by the KKT conditions. In particular, they note that

“the difference between the two characterizes the value for the player of being able to

manipulate the short-term market by its first stage investments.” This may lead to higher

investments and supplies and hence lower prices in the closed-loop model compared to

the open-loop model.

55Note that the first stage decision variable is separated from the second stage decision variables by a
semicolon. The latter are indirectly determined by the choice of the first stage decision variable.

56See Selten (1965) for the first formalization of the concept of subgame perfect equilibria and, e. g.,
Karp and Newbery (1989) for a general account on dynamic consistency.
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The existing literature on the subject, in particular the above mentioned Murphy and

Smeers (2005) as well as Wogrin et al. (2013b), provides general properties of closed-loop

and open-loop models and conditions for diverging and non-diverging results between

the two models, assuming simplified settings (e. g., ignoring existing capacities). We

conjecture that in a spatial application with non-generic data and existing capacities

available to the players, equilibria are likely to deviate between the two modeling ap-

proaches, which is confirmed by our application to the metallurgical coal market (see

Sections 4.4 and 4.5). Analytical analysis is no longer available in this setting due to

increased complexity and thus makes a numerical analysis necessary. The numerical

approach is also suitable to address an issue which to our knowledge has not yet been

comprehensively touched upon in previous literature: a quantification of the magnitude

of the divergence between closed-loop and open-loop model results.

4.3 Implementation

4.3.1 Model 1: The Open-Loop Model

Both open-loop models introduced in Section 2, i. e., the open-loop perfect competi-

tion model and the open-loop Cournot competition model with competitive fringe, are

implemented as mixed complementarity problems (MCP).

4.3.2 Model 2: The Closed-Loop Model

We solve the closed-loop model using diagonalization (see for instance Gabriel et al.,

2012):

1. Set starting values for the investment decisions y0
l of all oligopolistic producers

l ∈ L, a convergence criterion ε, a maximum number of iterations N and a learning

rate R

2. n = 1

3. Set ynl = yn−1
l

4. Do for all l ∈ L

(a) Fix the investment decisions yn−l of −l

(b) Solve player l’s MPEC problem MPECl to obtain an optimal investment level

yl

110



4.3 Implementation

(c) Set ynl equal to R · yl + (1−R) · ynl

5. If |ynl − y
n−1
l | < ε for all producers l ∈ L: quit

6. If n = N : quit

7. n = n+ 1 and go back to step 3

Diagonalization thus reduces the closed-loop problem to a series of MPEC problems.

Concerning the solution of the MPECs, we implement two procedures: grid search along

the investment decision yl and a reformulation of the MPEC as a Mixed Integer Linear

Program (MILP).

Both approaches differ with respect to the simplification of the decision variables: With

grid search we discretize the investment decision which is reasonable for many investment

choices in real life. Thus, solving the MPEC problem reduces to solving a series of MCP

problems with the choice of production volumes remaining continuous. On the contrary,

in the MILP approach we discretize the production decisions but retain a continuous

choice of investments in new capacity. The discretization may result in missing the global

optimal solution.57 As both approaches result in very similar outcomes (see Section 4.6)

we are confident that our obtained results are valid.

Implementing both the grid search and MILP reformulation allows for the comparison

of the computer run-times of the two models, with grid search typically being faster for

reasonable grid sizes (see Section 4.6 for details on this issue).

4.3.2.1 Grid Search

When applying grid search along the investment decision yl, MPECl simplifies to a

sequence of complementarity problems. In our implementation, the grid width in the

grid search is the same for all producers; the number of steps for a producer is thus

dependent on his capacity expansion limit.

4.3.2.2 MILP Reformulation

In addition to grid search, we implement a MILP reformulation of the MPEC. Non-

linearities arise in the MPEC due to the complementarity constraints and the non-linear

term in the objective function.

57A third way of approaching the non-linearities in the model might be using the strong duality
theorem to linearize the original MPEC as described in Ruiz and Conejo (2009).
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The former are replaced by their corresponding disjunctive constraints (see Fortuny-

Amat and McCarl, 1981), e. g., we replace

0 ≤ cap0
m + ym −

∑
j

xm,j ⊥ λm ≥ 0

by

Mλbλm ≥ λm

Mλ(1− bλm) ≥ cap0
m + ym −

∑
j

xm,j

for some suitably large constant Mλ and binary variables bλm.

For the discretization of the non-linear term in the objective function, we proceed fol-

lowing Pereira et al. (2005) using a binary expansion of the supply variable. The binary

expansion of xm,j is given by

xm,j = x+ ∆x

∑
k

2kbxk,m,j ,

where x is the lower bound, ∆x the stepsize, k the number of discretization intervals

and bxk,m,j binary variables. Substituting Pj · x + ∆x
∑

k 2kzxk,m,j for Pj · xm,j , we have

to impose the additional constraints

0 ≤ zxk,m,j ≤Mxbxk,m,j

0 ≤ Pj − zxk,m,j ≤Mx(1− bxk,m,j)

for some suitably large constant Mx.

4.4 Data Set

The models are parametrized with data for the international metallurgical coal market

(see Table 4.1 and Appendix A). Yet, as the structure of the international metallurgical

coal trade is (from a modeling perspective) similar to that of other commodities, the

model could easily be calibrated with data for other markets.

Metallurgical coal is used in steel-making to produce the coke needed for steel production

in blast furnaces and as a source of energy in the process of steel-making. Metallurgical

coal is distinct from thermal coal, which is typically used to generate electricity or heat.
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Currently around 70 % of the global steel production crucially relies on metallurgical

coal as an input.58

International trade of metallurgical coal amounted to 250 million tonnes (Mt) in 2012.59

International trade is predominantly seaborne, using dry bulk vessels. Up until 2010,

metallurgical coal was almost exclusively traded through long-term contracts. Since

then, the market has begun to move away from this system towards more spot market-

based trading. While the share of spot market activity has increased rapidly, a substan-

tial amount of metallurgical coal is still traded through long-term contracts.

Key players in this market are large mining companies such as BHP-Billiton, Anglo-

American, Glencore and Rio Tinto. These companies produce mainly in Australia and,

together with Peabody Energy’s Australian operations, control more than 50 % of the

global export capacity. In addition, adding to this the market share of the Canadian

Teck consortium and the two key metallurgical coal exporters from the United States,

Walter Energy and Xcoal, results in almost three quarters of the global export capacity,

marketed by an oligopoly of eight companies. For the sake of simplicity and computa-

tional tractability, we aggregate these players’ existing mines into one mining operation

per player. Smaller exporters from Australia, the United States, Russia, New Zealand,

Indonesia and South Africa are aggregated into three players: one Cournot player from

Australia (AUS6), one Cournot player from the United States (USA1) and one com-

petitive fringe player that comprises all other regions (Fringe). This results in eleven

asymmetric players who differ with respect to their existing production capacity and the

associated production and transport costs (see Table 4.2).60

Table 4.2: Existing Capacity, Variable and Investment Costs

Players Existing
Capacity
[Mtpa]

Variable
Costs
[US$/t]

Investment
Costs
[US$/tpa]

Max. Invest-
ment [Mtpa]

USA1 38 122.0 - -
USA2 9 122.1 98.2 50
USA3 11 141.0 98.0 50
AUS1 54 118.3 218.1 50
AUS2 11 118.4 218.0 50
AUS3 17 118.5 217.9 50
AUS4 10 118.6 217.8 50
AUS5 12 118.0 218.2 50
AUS6 18 118.1 - -
CAN 26 105.0 161.0 20
Fringe 26 78.0 - -

58See WCA (2011).
59See IEA (2013).
60Data on capacities and costs are taken from Trüby (2013).
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We assume that the three players representing the smaller exporters, i. e., USA1, AUS6

and Fringe, cannot invest in additional capacity. Hence, only the largest eight companies

can endogenously expand their supply capacity. The investment decision, made in stage

one, is based on the players’ capacities and costs in 2011. We consider one investment

cycle with capacities becoming available after six years serving one demand period.

Investment costs per tonne of annual production capacity (tons per annum) are broken

down into equal annual payments based on an annuity calculation using an interest

rate of 10 % and a depreciation time of 10 years. The profitability of investments is

evaluated based on the comparison of annuity and profits in the considered production

stage. We therefore assume that returns are constant over the years of production. Note

that production cost of new mines correspond to the production cost of the respective

player’s existing mine.

The two largest importers of metallurgical coal are Europe and Japan, followed by India,

China and Korea. These key importers account for more than 80 % of the trade. We

aggregate these and the remaining smaller countries into two demand regions: Europe-

Atlantic and Asia-Pacific.61 The former also includes the Mediterranean’s neighboring

countries and importers from the Atlantic shores of the Americas. The latter includes

importers with coastlines on the Pacific or the Indian Ocean. Exporters from the United

States have a transport cost advantage in the Europe-Atlantic region, while Canadian

and Australian exporters are located closer to the consumers in the Asia-Pacific region

(see Table 4.5 in the Appendix). We assume the inverse import demand function for

metallurgical coal to be linear. The function can be specified using a reference price and

a corresponding reference quantity in combination with a point-elasticity eta.
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Figure 4.1: Demand functions for Europe-Atlantic (left) and Asia-Pacific regions
(right) with varying elasticity

61Our approach covers 100 % of the global seaborne metallurgical coal imports and exports (based on
data from 2011).
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4.5 Results

In practice, investors in production capacity face demand evolution as a key uncertainty.

Accounting for this uncertainty, we run sensitivities in which we vary the point-elasticity

parameter eta across the range -0.2 to -0.5 (see Figure 4.1).62 This bandwidth is gen-

erally considered reasonable in the metallurgical coal market (see Trüby, 2013, and the

literature cited therein). Furthermore, we vary the reference demand quantity (see Ta-

ble 4.6 in Appendix A) from 60 % to 140 % to account for different demand evolution

trajectories. The presentation of the results is structured around the variation of these

demand parameters followed by a general discussion of the findings.

4.5.1 Variation of Demand Elasticity

Decreasing the point elasticity parameter eta results in a flatter gradient of the linear

demand function (see Figure 4.1). A decreasing eta (i. e., a more negative eta) expresses

an increasing price responsiveness of consumers which, ceteris paribus, limits the extent

to which the oligopolists can exploit their market power. Consequently, with decreasing

eta, average prices achieved in the imperfect competition cases (open-loop and closed-

loop) are decreasing while total production is increasing (Figure 4.2). Note that in the

perfect competition case, the aggregate supply and the aggregate demand curves inter-

sect below the reference point resulting in an increase in production with decreasing eta

and, correspondingly, with increasing marginal costs, an increase in production results

in an increase in price. In the two Cournot models with imperfect competition the

oligopolistic mark-up on marginal costs leads to market prices exceeding the reference

price.
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Figure 4.2: Total production (left) and average market price (right) for varying de-
mand elasticity

62For eta smaller than -0.4, closed-loop model runs did not converge. Therefore, the results presented
in this section only comprise the range -0.2 to -0.4. For a discussion on computational issues, see Section
4.6.
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A variation of eta impacts the investment trends differently in the three cases (Figure

4.3). However, the capacity expansion investments need to be interpreted in concert

with the corresponding utilization of the existing capacity. Intuitively, one would expect

investment into additional capacity to be highest in the perfect competition case. Yet,

in our setup, the investment level in the perfectly competitive case falls between the

two cases with imperfect competition. This effect stems from the significant amount of

existing capacities which – with the exception of some very high-cost capacities – are

utilized before additional production capacity is built. Murphy and Smeers (2005) show

that in their model which does not account for existing capacities, investment levels are

indeed highest under perfect competition.
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Figure 4.3: Capacity investments (left) and idle capacity (right) for varying demand
elasticity
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Figure 4.4: Capacity investments for the closed-loop (left) and open-loop model
(right) (eta = −0.3)

Of particular interest is the ranking of the closed-loop and open-loop case in terms of

capacity expansion and capacity withholding. Note that withholding (or idle capacity),

here and in the following, concerns only exiting capacities. Each player exhausts existing

capacities before investing in additional capacities. Newly built capacities are always

fully utilized in equilibrium as otherwise players could increase their profit by reducing

investments. Investments in the open-loop case are strictly lower than in the closed-loop

case independent of the elasticity while less capacity is withheld in the open-loop case.

However, the investment behavior of individual players may differ from the aggregate

industry behavior; as can be seen in Figure 4.4 two players from the United States invest
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more in the open-loop model than in the closed-loop model contrary to what the rest of

the industry does.

The investment level is higher in the closed-loop case compared to the open-loop case as

the capacity expansion in the first stage can be used strategically to influence the supply

decisions of the other players in the second stage. In the closed-loop case, the two-stage

structure introduces, informally speaking, an additional element of competition that

does not exist in the open-loop case. The open-loop result is a stable Nash-equilibrium

of the one-stage game in which players decide simultaneously on capacity investments

and production. In the closed-loop case, the sequential form of the game leads to an

interaction between the capacity choice of the first stage and the production decision

of the second stage which may alter players’ decisions compared to the open-loop case.

However, asymmetries play a critical role for the divergence of open-loop and closed-loop

equilibria: Wogrin et al. (2013b) demonstrate that for symmetric players (under certain

mild conditions) open-loop and closed-loop equilibria are identical.

To get an intuition for the difference between the open-loop and the closed-loop game,

suppose for a moment that there are two players, an incumbent with infinite existing

capacity and an entrant without any capacity. Both players face the same production

costs while the entrant faces additional (non-zero) investment costs. It is important

to note that in both games the production decision of each player depends on his own

costs and the costs of the other player: higher own costs result in lower own production

and higher output of rivals – higher costs of rivals result in higher own output as the

production of the rivals is lower.

In the open-loop case, the incumbent decides on his output, knowing about the total costs

of the entrant (investment and production costs), which are featuring in his first-order

condition. In equilibrium the entrant produces and invests so that marginal revenue

equals the sum of marginal production and investment costs. Since the entrant’s total

costs are higher, he produces less than the incumbent in equilibrium. The incumbent’s

profits are higher than the entrant’s as he produces more and does not have to pay for

capacity.

Contrarily, in the closed-loop case, the choice of capacity and production is sequential.

Solving the problem by backward-induction, assume that the entrant has built more

capacity than in the open-loop case. With the production decision now being based on

the incumbent’s and the entrant’s production costs, the entrant will now produce more

and the incumbent less than in the open-loop case as in the latter both, investment

and production costs, appear in the entrant’s (and with reversed sign the incumbent’s)

first-order condition. But when would the entrant build more capacity in the closed-loop

case than in the open-loop case? Only if the potential gains in the second stage (the
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spot market) exceed the increased investment cost from building more capacity in the

first stage. The entrant anticipates in the first stage that by increasing his capacity he

can reduce the incumbent’s production in the second stage. Knowing this, the entrant

decides on his optimal capacity investment while anticipating his influence on the incum-

bent’s level of production. The interaction between the decisions taken in the different

stages is not present in the open-loop model. In the asymmetric entrant/incumbent

case considered in this intuition, it is indeed profitable for the entrant to deviate from

his open-loop outcome and to invest more. As a result, the incumbent’s profits are still

higher than the entrant’s (as he does not have to pay for capacity) but are lower than

in the open-loop case while the entrant can raise his profits compared to the open-loop

case.63

An analytical solution of this game becomes non-trivial when more than one player

makes subsequent investment and supply decisions as these decisions mutually influence

each other. Yet, this little example is useful to provide a better understanding of why

the closed-loop case features higher investment levels but also higher withholding of

existing capacities than the open-loop case.

In our application to the metallurgical coal market, capacity is exclusively withheld

by the two largest players (one producing in Australia and the other in the United

States), in both models of imperfect competition. Capacity expansion and withholding

are following opposing trends in our models of imperfect competition, i. e., the open-

loop model exhibits a lower level of investment but also a lower level of unused capacity

while the higher investment levels in the closed-loop model come with a higher level of

idle capacity. Thus, it is a-priori unclear how the two models would rank in terms of

total supply and market prices. A numerical solution of our models yields that supply is

higher in the closed-loop case than in the open-loop case. Consequently, market prices

are lower in the closed-loop case. This result is in line with the findings of Murphy and

Smeers (2005).

Industry profits, consumer rent and social welfare are depicted in Figure 4.5. Indus-

try profits decrease with decreasing eta and so does consumer rent (a higher price-

responsiveness of consumers limits market power exploitation but also potential con-

sumer rent). The existence of profits in the perfect competition model is due to capacity

restrictions of existing mines and limited expansion potential for new mines. Social wel-

fare is similar in all three models: in a perfectly competitive market welfare is slightly

higher than in the Cournot models. Welfare is lowest in the open-loop case (Figure 4.6).

Thus, the different underlying assumptions concerning the prevailing market structure

in the international metallurgical coal trade (long-term contracts versus spot market)

63See calculations in the Appendix for a more formal statement of this analysis.
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primarily influences the surplus distribution rather than its sum: in the open-loop case

in which the product is traded through long-term contracts, companies can earn higher

profits, while consumer surplus is higher in markets with spot market-based trade.
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Figure 4.5: Accumulated profits (left) and consumer rent (right) with varying demand
elasticity
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Figure 4.6: Overall welfare (left) and welfare differences (right)

4.5.2 Variation of Reference Demand

For the variation of reference demand, the point elasticity eta has been fixed to a value

of -0.3; thus the case of 100 % reference demand corresponds to the depicted results of

the previous subsection with the same demand elasticity. Variations of the reference

demand results in a shift of the demand curve to the right for values larger than 100 %

and a shift to the left for values lower than 100 %.

As in the previous subsection, supply is highest under perfect competition and lowest

in the open-loop case for any demand variation (Figure 4.7). Accordingly, prices are

highest in the open-loop case followed by the closed-loop and the perfect competition

cases. As one would expect, supply and average prices increase with increasing demand.

For low reference demand levels, the existing capacities of small players are almost

sufficiently high to produce the quantities needed for their best-supply response in stage

two. Therefore, the results in the open-loop and closed-loop cases almost coincide at 60 %

reference demand as investment activity is low. Investments in additional production

capacity are increasing monotonously with growing reference demand (Figure 4.8). As
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Figure 4.7: Total production (left) and average market price (right) for varying ref-
erence demand

with the variation of the demand elasticity, investments are consistently lower in the

open-loop case than in the closed-loop case. For low demand levels, investments in the

competitive model are below those in the models with imperfect competition as existing

capacities are sufficient to serve demand rendering investments unprofitable. In the

Cournot models, investment into additional production capacity is still profitable for

small players as they can count on players with large existing capacities to withhold

some output.
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Figure 4.8: Capacity investments (left) and idle capacity (right) for varying reference
demand

For high demand levels, investments under perfectly competitive conduct exceed those

even in the closed-loop model. The order of idle capacity is similar to the case of varying

demand elasticity: idle capacity is highest in the closed-loop model followed by the open-

loop case (both due to strategic considerations) and the perfect competition model (due

to market prices below the marginal costs of costlier capacities).

With increasing demand, profits as well as consumer rents increase (Figure 4.9). Again,

results for the open-loop and closed-loop cases almost coincide if reference demand is

very low as investments play a minor role. In the case of high reference demand, profits

in the open-loop model exceed those in the closed-loop model. Results for consumer

rents are vice versa. Total welfare turns out to be quite similar for all three models
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with the highest welfare occurring in the perfectly competitive model followed by the

closed-loop and open-loop models (Figure 4.10).

0

5

10

15

20

25

30

35

60% 80% 100% 120% 140%

Pr
of

it 
[b

n 
U

S$
]

Reference demand

Perfect competition

Closed-loop

Open-loop

0

20

40

60

80

100

120

140

160

60% 80% 100% 120% 140%

Co
ns

um
er

 re
nt

 [b
n 

U
S$

]

Reference demand

Perfect competition

Closed-loop

Open-loop

Figure 4.9: Accumulated profits (left) and consumer rent (right) with varying refer-
ence demand
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Figure 4.10: Overall welfare (left) and welfare difference (right, open-loop minus
closed-loop)

4.5.3 Summary

Asymmetric existing capacities are an important driver of our results. While welfare is

highest in the perfect competition case, investment levels in this case fall between the

two Cournot models as existing capacities are sufficient to absorb additional demand.

Profits are highest in the open-loop case followed by the closed-loop and perfect com-

petition models. Moving away from long-term contracts towards a spot market-based

trade reduces profits of all players, however, companies with large existing capacities

are affected to a larger degree: the two large firms (one from Australia and one from

the United States) who are responsible for the withholding of capacity in the Cournot

models together receive 23 % of the industry profits in the open-loop case but see their

share of profits diminished to 17 % in the closed-loop case.

In our modeling setup the competitive fringe has no strategic relevance. Fringe players

neither invest nor withhold, i. e., they always produce to capacity. In essence, the fringe

determines the residual demand that the oligopolists optimize against but it does not

introduce any sort of first-mover vs. follower relationship.
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The magnitude of result deviations between the different models, and thus the implica-

tions for market participants are quite significant. The models of imperfect competition

differ, for instance, in capacity expansions between 19 % and up to 33 % (low and high

demand elasticity, respectively).

Even though social welfare differs only slightly between the open-loop and closed-loop

models in our calculations for the metallurgical coal market, the difference may be higher

for other markets with different model parameters. In addition, the surplus distribution

between consumer rent and profits differs significantly and has policy implications since

– in natural resource markets – production and consumption take place in different

countries.

4.6 Computational Issues

Equilibria in a closed-loop model, if any exist, do not necessarily have to be unique.

Therefore, we perform a robustness check for our closed-loop results by using different

starting values for capacity investments. Starting values are randomly drawn from a

reasonable range of possible investments, with the maximum investment of each player

as given in Table 4.2. Limiting the range of possible investments drastically reduces

computer run-times and increases the probability of finding equilibria. In addition,

calculations are made with starting values set to zero and to the open-loop results. The

algorithm terminates if overall adjustments of investments δ are less than ε = 0.1 million

tons per annum compared to the previous iteration. We use a learning rate parameter

R for the adoption rate of new investments in order to avoid cycling behavior. The

learning rate parameter is randomly set between 0.6 and 1.0 (see Gabriel et al., 2012).

Calculations have been done on a 16 core server with 96 GB RAM and 2.67 GHz using

CPLEX 12.2.

Table 4.3 shows calculation statistics when using the MILP version of our model (see

Subsection 4.3.2.2). We perform six runs per parameter setting using random starting

values. Most runs converged to an equilibrium before the maximum number of itera-

tions was reached. With increasing demand elasticity, the algorithm had difficulties to

converge. In the case of eta = −0.4, only every third run converged to an equilibrium;

for eta < −0.4, no equilibrium could be found at all. Using either zero investments

or open-loop results as starting values, a closed-loop equilibrium was found, except for

eta < −0.4.
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Table 4.3: Computation time and convergence to equilibrium - MILP version (ran-
dom, zero, open-loop starting values)

Scenario Convergence
(max. 10 itera-
tions)

Iterations until
convergence (only con-
verged runs, max. 10)

Calculation time
(only converged runs) [h]

reference case
(eta -0.3, dem 1.0)

6/6, yes, yes 6-7 (avg. 6.8), 7, 6 10.7-13.7 (avg. 12.4), 7.1, 5.2

eta -0.2 6/6, yes, yes 7-8 (avg. 7.3), 6, 6 9.2-14.1 (avg. 11.0), 5.7, 4.1
eta -0.25 6/6, yes, yes 7-10 (avg. 8.2), 7, 6 11.4-14.9 (avg. 12.8), 6.9, 5.5
eta -0.35 6/6, yes, yes 6-8 (avg. 7.2), 6, 6 11.3-15.8 (avg. 12.7), 5.1, 5.6
eta -0.4 2/6, yes, yes 7-8 (avg. 7.5), 9, 7 12.2-12.7 (avg. 12.4), 5.6, 7.8
eta -0.45 0/6, no, no -, -, - -, -, -.
eta -0.5 0/6, no, no -, -, - -, -, -
dem 0.6 5/6, yes, yes 7-9 (avg. 7.4), 7, 7 1.9-3.5 (avg. 2.2), 0.1, 0.2
dem 0.8 6/6, yes, yes 7-8 (avg. 7.5), 6, 5 3.6-8.8 (avg. 7.1), 2.0, 2.3
dem 1.2 6/6, yes, yes 6-9 (avg. 7.8), 7, 6 9.8-13.9 (avg. 11.9), 8.3, 6.0
dem 1.4 6/6, yes, yes 6-10 (avg. 8.3), 7, 6 7.7-11.2 (avg. 8.7), 9.7, 5.7

Figure 4.11 illustrates the iterative solution process for a single model run for eta = −0.5

using random starting values. The model run did not converge to an equilibrium.64 After

initial adjustments of investments in the first iterations, investments start to cycle in a

rather small range. Total investments from iteration 5 to 10 vary between 89 million tons

per annum and 97 million tons per annum. This range is typical for all runs regardless

of the starting values. The maximum range for a single player’s investment deviations

is 3 Mtpa. Thus, even if no equilibrium is reached, analyzing the solution process may

hint to possible market developments.
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Figure 4.11: Course of investments of single players during solution process (eta =
−0.5)

Using zero investments or open-loop equilibrium results as starting values led to a sig-

nificant reduction of computer run-times compared to random starting values. This is

probably due to the rather large range of random starting values and the (comparably)

rather small equilibrium investments. Thus, starting from zero investments in most

cases is closer to the equilibrium values than starting with random values. In summary,

using reasonable starting values can support the solution process significantly.

64In our iterative approach, convergence depends on the choice of (an arbitrarily small) ε.
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If the algorithm converged, model results were identical for all runs with the same

parameters concerning demand level and demand elasticity. Thus, even if the existence

of multiple equilibria cannot be excluded, equilibria appear to be stable.

Calculations using the MILP version of our model usually took several hours to converge

to an equilibrium. Applying the grid search approach (see Section 4.3.2.1) reduced

computer run-times significantly. The conceptional difference between both approaches

lies in the simplification of the decision variables: With grid search we discretize the

investment decision. On the contrary, in the MILP approach we discretize the production

decisions but retain a continuous choice of investments in new capacity.

The same calculations as in the MILP version have been done using grid search with

investment steps of 0.1 million tons per annum and the same convergence criterion as

in the MILP version (ε = 0.1 million tons per annum). The model was implemented in

GAMS using GUSS (see Bussieck et al., 2012).

Table 4.4: Computation time and convergence to equilibrium - Grid Search (random,
zero, open-loop starting values)

Scenario Convergence
(max. 10
iterations)

Iterations until
convergence (only
converged runs,
max. 10)

Calculation time
(only converged runs) [min]

Accumulated ab-
solute difference
between investments
in MILP and grid
version [%]

reference case
(eta -0.3, dem
1.0)

6/6, yes, yes 6-7 (avg. 6.3), 7, 6 2.8-15.7 (avg. 9.3), 2.2, 2.4 0.7-0.9, 0.8, 0.8

eta -0.2 6/6, yes, yes 5-7 (avg. 6.3), 7, 5 3.5-16.7 (avg. 10.2), 2.3, 2.0 1.0, 1.0, 1.0
eta -0.25 6/6, yes, yes 6-7 (avg. 6.7), 7, 6 2.4-16.5 (avg. 9.4), 2.2, 2.4 0.8, 0.7, 0.8
eta -0.35 6/6, yes, yes 6-8 (avg. 7.0), 7, 6 2.8-17.5 (avg. 10.4), 2.2, 2.4 0.8-1.2, 1.2, 0.8
eta -0.4 6/6, yes, yes 6-7 (avg. 6.5), 7, 6 2.5-16.2 (avg. 9.3), 2.2, 2.4 1.2-1.5, 1.5, 1.5
eta -0.45 0/6, no, no -, -, - -, -, -. -, -, -
eta -0.5 0/6, no, no -, -, - -, -, - -, -, -
dem 0.6 6/6, yes, yes 6-8 (avg. 7.0), 5, 5 3.2-16.9 (avg. 9.7), 2.0, 2.0 2.5-3.7, 3.1, 3.3
dem 0.8 6/6, yes, yes 6-7 (avg. 6.7), 6, 6 2.8-16.2 (avg. 9.6), 2.6, 2.4 0.9, 1.0, 0.9
dem 1.2 6/6, yes, yes 5-7 (avg. 6.8), 7, 6 2.9-17.2 (avg. 10.1), 2.3, 2.5 0.3, 0.3, 0.3
dem 1.4 6/6, yes, yes 5-6 (avg. 6.3), 7, 6 2.9-16.1 (avg. 9.7), 2.3, 2.5 0.3-0.4, 0.4, 0.4

Applying grid search, the solution process took only several minutes to converge. Thus,

reducing the optimization process from a series of computationally challenging MPECs

to comparably easy-to-solve complementarity problems reduced overall computer run-

times significantly. As for the MILP version, all model runs converged to the same

equilibrium (for eta ≥ −0.4) or did not converge at all (for eta < −0.4). Aggregated

absolute deviations of investments between the MILP and the grid search version of

our model vary between 0.3 % and 3.7 %. Thus, in our parameter setting, only minor

differences in the results occurred.
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4.7 Conclusions

We presented three investment models for oligopolistic spatial markets. Our approach

accounts for different degrees of competition and as to whether the product is sold

through long-term contracts or on spot markets. The models are particularly suited for

the analysis of investments in markets for natural resources and minerals. We applied

the models to the international metallurgical coal trade, which features characteristics

similar to those of other commodity markets.

Results may differ substantially between the different models. The closed-loop model,

which is computationally challenging, is particularly well suited for when the product is

traded on a spot market and the investment expenditure is large compared to produc-

tion costs. The open-loop model is appropriate for markets with perfect competition

or imperfectly competitive markets on which the product is traded through long-term

contracts. Moreover, the open-loop model approximates the closed-loop outcome when

investment costs are minor.

Over the last several years, progress has been made in the metallurgical coal and iron

ore markets to move away from long-term contracts and introduce spot markets in

commodity trade. Similarly, efforts are being made to introduce spot market-based

pricing between European natural gas importers and the Russian gas exporting giant

Gazprom. Our results suggest that moving away from long-term contracts in oligopolistic

markets is likely to stimulate additional investment and consequently reduce profits and

increase consumer rents. The overall effect on welfare is negligible. However, in natural

resource markets, export revenues and consumer rents from imports are typically accrued

in different legislations. Hence, policy makers from exporting and importing countries

are likely to have differing views on how commodity trade should be organized.

Further research is needed to improve methods for solving complex two-stage problems.

In addition, further research could apply the models presented here to other oligopolistic

mining industries such as the copper or iron ore trade. Given that static pricing models

tend to give unsatisfactory results for the oil market, in which variable costs are low

but capital expenditure is very high, the closed-loop approach may provide interesting

insights into oligopolistic pricing when accounting for investments in capacity.
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4.8 Appendix

4.8.1 Appendix A: Input data

Table 4.5: Distance

from to distance [Nautical miles]

United States Europe-Atlantic 3,387
Asia-Pacific 10,978

Australia Europe-Atlantic 11,626
Asia-Pacific 3,731

Canada Europe-Atlantic 8,840
Asia-Pacific 4,227

Fringe Europe-Atlantic 5,018
Asia-Pacific 3,037

Table 4.6: Reference Demand and Reference Price

Market Reference Demand [Mt] Reference Price [US$/t]

Europe-Atlantic 96 180
Asia-Pacific 179 180
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4.8.2 Appendix B: Open- vs. closed-loop investments

We provide an intuition for the results presented in this paper by solving analytically a

simplified model consisting of one market and two players. Player I is the incumbent

in the market and has infinite existing capacity. Player E is the entrant to the market

owning no existing capacity. The entrant can invest at cost k per unit, whereas the

incumbent may not invest. Both players produce at variable production costs c and

there are no transportation costs to the market. There is only one time period and the

inverse residual demand curve for this period is given by P = a− (xI + xE).

We solve both the open-loop and the closed-loop model for this simplified setting and

show that there is an incentive for the players in the closed-loop model to deviate from

their open-loop equilibrium quantities.65

The open-loop model

In the open-loop model, the entrant’s optimization problem is given by

max
xE ,yE

P · xE − c · xE − k · yE

subject to

yE − xE ≥ 0 (λE),

xE ≥ 0,

yE ≥ 0.

From the corresponding KKT conditions, it is easy to see that in an open-loop equilib-

rium the capacity of the entrant is fully utilized, i. e., yE = xE . Therefore the optimiza-

tion problem may be simplified to

max
xE≥0

P · xE − (c+ k) · xE .

Taking the derivative with respect to xE , we obtain the first order condition

a− 2xE − xI − (c+ k) = 0

from which we obtain the entrant’s reaction curve

xE =
a− (c+ k)− xI

2
.

65We restrict our attention to parameter settings in which both players produce. This restriction is
adequate for the objective at hand, namely to provide intuition for the main results in the paper.
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The incumbent faces a different optimization problem, as he may not invest but has

infinite existing capacity. The incumbent’s optimization problem is hence given by

max
xI≥0

P · xI − c · xI

which yields, when taking the derivative with respect to xI , the first order condition

a− 2xI − xE − c = 0.

The first order condition can be solved for xI to obtain the incumbent’s reaction curve

xI =
a− c− xE

2
.

Solving the system of equations consisting of the two reaction curves for the players’

supply quantities, we obtain

xI =
a− c+ k

3

and

xE =
a− c− 2k

3
,

which is the solution to the open-loop model if the non-negativity conditions for xI and

xE are fulfilled.

The closed-loop model

In order to solve the closed-loop model we use backward induction. For this let yE

denote the first stage investment volume of the entrant. The entrant’s second stage

optimization problem is then given by

max
xE≥0

P · xE − c · xE

subject to

yE − xE ≥ 0 (λE).

The Lagrangian to this optimization problem is given by

L = P · xE − c · xE + λE · (yE − xE)

from which the KKT conditions follow:

xE =
a− (c+ λE)− xI

2
,

0 ≤ λE ⊥ yE − xE ≥ 0.
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The incumbent faces the optimization problem

max
xI≥0

P · xI − c · xI

which yields, as in the open-loop model, the reaction curve

xI =
a− c− xE

2
.

By inserting this in the above KKT condition we obtain the expression

xE =
a− c− 2λE

3
.

The first stage optimization problem of the entrant is then given by

max
yE≥0

P · xE − c · xE − k · yE

subject to

xE =
a− c− 2λE

3
0 ≤ λE ⊥ yE − xE ≥ 0,

xI =
a− c− xE

2
.

Consider the case in which the capacity of the entrant is fully utilized, i. e., xE = yE . In

this case the optimization problem may be simplified to

max
yE≥0

P · yE − (c+ k) · yE

subject to

a− c
3
− yE ≥ 0 (µE),

xI =
a− c− yE

2
.

The Lagrangian to this optimization problem is given by

L =

[
a−

(
yE +

a− c− yE
2

)]
· yE − (c+ k) · yE + µE ·

(
a− c

3
− yE

)
from which the KKT conditions follow:

yE =
a− c− 2k − 2µE

2
,

0 ≤ µE ⊥
a− c

3
− yE ≥ 0.
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In case of µE > 0, we obtain

yE = xE = xI =
a− c

3

and λE = 0.66

This is indeed a solution in case

µE =
a− c− 2k − 2yE

2
=
a− c

6
− k > 0.

In case of µE = 0, we obtain

yE = xE =
a− c− 2k

2

and

xI =
a− c+ 2k

4
.

which is a solution if

λE =
a− c− 3yE

2
≥ 0

and

yE ≤
a− c

3
.

Conclusion

The above calculations show that the investment in the closed-loop model is higher than

in the open-loop model for the entrant as

a− c− 2k

2
≥ a− c− 2k

3

and
a− c

3
≥ a− c− 2k

3
.

We conclude that there is an incentive for the players in the closed-loop game to deviate

from the open-loop equilibrium. Further investigation of the above considered cases also

shows that the total supply is higher and prices are lower in the closed-loop model than

in the open-loop model.

66This is also the limiting case for xE < yE .
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The role of grid extensions in a cost-efficient transformation of the European electricity

system until 2050. EWI working paper, no 12/04.

Fudenberg, D., Tirole, J., 1991. Game Theory. The MIT Press.

133



Bibliography

Gabriel, S., Zhuang, J., Kiet, S., 2005a. A large-scale linear complementarity model of

the North American natural gas market. Energy Economics 27 (4), 639–665.

Gabriel, S. A., Conejo, A. J., Fuller, J. D., Hobbs, B. F., Ruiz, C., 2012. Complemen-

tarity Modeling in Energy Markets. International Series in Operations Research &

Management Science. Springer New York.

Gabriel, S. A., Kiet, S., Zhuang, J., 2005b. A mixed complementarity-based equilibrium

model of natural gas markets. Operations Research 53 (5), 799–818.

Gabriel, S. A., Leuthold, F. U., 2010. Solving discretely-constrained MPEC problems

with applications in electric power markets. Energy Economics 32 (1), 3–14.

Germeshausen, R., Panke, T., Wetzel, H., 2014. Investigating the Influence of Firm Char-

acteristics on the Ability to Exercise Market Power – A Stochastic Frontier Analysis

Approach with an Application to the Iron Ore Market. ZEW Discussion Paper No.

14-105.

Giebel, G., Brownsword, R., Kariniotakis, G., Denhard, M., Draxl, C., 2011. The State-

Of-The-Art in Short-Term Prediction of Wind Power – A Literature Overview.

Graham, P., Thorpe, S., Hogan, L., 1999. Non-competitive market behaviour in the

international coking coal market. Energy Economics 21 (3), 195–212.

Growitsch, C., Hecking, H., Panke, T., 2013. Supply disruptions and regional price

effects in a spatial oligopoly – an application to the global gas market. EWI working

paper, no 13/08.

Haftendorn, C., Holz, F., 2010. Modeling and analysis of the international steam coal

trade. The Energy Journal 31 (4), 205–230.

Harker, P. T., 1984. A variational inequality approach for the determination of oligopolis-

tic market equilibrium. Mathematical Programming 30 (1), 105–111.

Harker, P. T., 1986. Alternative models of spatial competition. Operations Research

34 (3), 410–425.

Hecking, H., Panke, T., 2014. Quantity-setting Oligopolies in Complementary Input

Markets – the Case of Iron Ore and Coking Coal. EWI working paper, no 14/06.

Hogan, W. W., 2005. On an ’energy only’ electricity market design for resource ade-

quacy. Center for Business and Government, John F. Kennedy School of Government,

Harvard University.

Holttinen, H., 2005. Impact of hourly wind power variations on the system operation in

the nordic countries. Wind energy 8 (2), 197–218.

134



Bibliography

Holttinen, H., Hirvonen, R., 2005. Wind Power in Power Systems. John Wiley & Sons,

Ltd, Ch. 8: Power System Requirements for Wind Power, 143-167.

Holz, F., von Hirschhausen, C., Kemfert, C., 2008. A strategic model of European gas

supply (GASMOD). Energy Economics 30 (3), 766–788.

Huppmann, D., 2013. Endogenous production capacity investment in natural gas market

equilibrium models. European Journal of Operational Research 231 (2), 503–506.

Huppmann, D., Egging, R., 2014. Market power, fuel substitution and infrastructure –

A large-scale equilibrium model of global energy markets. Energy 75, 483–500.

Huppmann, D., Holz, F., 2012. Crude Oil Market Power – A Shift in Recent Years? The

Energy Journal 33 (4), 1–22.

IEA, 2011. World energy outlook 2011.

IEA, 2013. Coal Information 2013. IEA Publications Paris.
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Nagl, S., Fürsch, M., Jägemann, C., Bettzüge, M., 2011. The economic value of storage

in renewable power systems – The case of thermal energy storage in concentrating

solar plants. EWI working paper, no 11/08.

Nelson, C. H., McCarl, B. A., 1984. Including imperfect competition in spatial equilib-

rium models. Canadian Journal of Agricultural Economics 32 (1), 55–70.

Nicolosi, M., 2010. Wind power integration and power system flexibility - An empirical

analysis of extreme events in Germany under the new negative price regime. Energy

Policy 38, 7257–7268.

Nicolosi, M., 2012. The economics of electricity market integration – An empirical and

model-based analysis of regulatory frameworks and their impacts on the power market.

Ph.D. thesis, University of Cologne.
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frageträgheit. Zeitschrift für die gesamte Staatswissenschaft / Journal of Institutional

and Theoretical Economics 121, 301–324.

Shaffer, S., 1995. Stable cartels with a cournot fringe. Southern Economic Journal, 744–

754.

Shanbhag, U. V., Infanger, G., Glynn, P. W., 2011. A complementarity framework for

forward contracting under uncertainty. Operations Research 59 (4), 810–834.

Siddiqui, S., Gabriel, S. A., 2013. An SOS1-Based Approach for Solving MPECs with a

Natural Gas Market Application. Networks and Spatial Economics 13 (2), 205–227.

Stackelberg, H. V., 1952. The Theory of Market Economy. Oxford University Press,

Oxford.

Takayama, T., Judge, G. G., 1964. Equilibrium among spatially separated markets: A

reformulation. Econometrica: Journal of the Econometric Society 32 (4), 510–524.

Takayama, T., Judge, G. G., 1971. Spatial and Temporal Price and Allocation Models.

North-Holland Publishing Company, Amsterdam.

137

http://clients.rte-france.com/lang/an/visiteurs/vie/prod/prevision_production.jsp
http://clients.rte-france.com/lang/an/visiteurs/vie/prod/prevision_production.jsp


Bibliography

TenneT, 2016. Netzkennzahlen. Downloaded 02.04.2016. http://www.tennettso.de/

site/de/Transparenz/veroeffentlichungen/netzkennzahlen.

TransnetBW, 2016. Kennzahlen. Downloaded 02.04.2016. https://www.transnetbw.

de/de/kennzahlen.
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