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Abstract
In the vast field of microbiology and antimicrobial research the rather general term
fitness is often condensed into growth rate at some specific antibiotic concentra-
tion. In a constant environment, this measure allows to construct meaningful
fitness landscapes for distinguishable genotypes and predicts the evolution of re-
sistance. Such studies usually disregard the clinically relevant regime of microbial
death and the typically time dependent antibiotic concentration.
In this work, we present a model for the evolution of antibiotic tolerance, de-
fined as the ability of bacteria to reduce their death rate under high antibiotic
concentrations without developing resistance. Under the assumption of periodic
antibiotic treatment, we introduce two novel performance measures for tolerant
mutants and demonstrate how tolerance can become established within a wild type
bacterial population. We introduce the concept of e!ective fitness, quantifying
bacterial net growth over a full cycle of periodic antibiotic exposure. This metric
reveals that tolerant mutants can establish in the population despite lacking a
direct growth advantage. By deriving a closed-form expression for e!ective fit-
ness, we identify key parameters of antibiotic tolerance and apply trade-o!–based
fitness landscape theory to predict tolerance evolution.
Furthermore, we propose survival probability as an alternative metric of repro-
ductive success. Using analytical and numerical analyses based on a simple ho-
mogeneous birth-death model, we show that tolerant mutants have an increased
chance of surviving antibiotic treatment.
Ultimately, these results imply that tolerant mutants can rescue populations from
extinction.
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1 INTRODUCTION

1 Introduction

With the discovery of the first antibiotics by Fleming [1], a new era of pharmaco-
logic treatment began to arise. Rampant infectious diseases such as tuberculosis,
typhus, syphilis, etc. rapidly became less lethal [2] and the average life expectancy
significantly increased [3] as those antibiotics became readily available after World
War II [2, 4]. Ever since, the world wide consumption has been increasing [5].
However, already as early as 1940, observations indicated that bacteria are able
to inactivate the antibiotic [6] and withstand high doses of the drug. This phe-
nomenon is commonly known as antibiotic resistance [7].
The degree of resistance depends on the expression of certain genes, controlling
fundamental cell mechanisms, such as matrix influx and e#ux or the synthesis
of antimicrobial agents. Such mechanisms can be up or dow regulated through
mutations, ultimately enhancing the cell’s ability to withstand high antibiotic
concentrations [8, 9].
It has been shown that the development of antibiotic-resistant bacteria strongly
correlates with the rate of antibiotic consumption in a society [10]. Unsurpris-
ingly, drug-resistant infections have become a serious health concern [4, 5, 10, 11]
and recent studies estimate, that globally there could be about 10 million deaths
associated to antimicrobial resistance in 2050 [12].
Moreover, also a second kind of antimicrobial adaptation has already been dis-
covered in 1944 [13]. It was observed, that a transient exposure to antibiotics did
not kill bacteria even at very high dosage. Such a response, whether inherited or
not, has been termed as ’tolerance’ [14, 15, 7].
The clinical implications of tolerance evolution on treatment e"cacy are often
overlooked [16], even though it increases the mortality rate [17] as well as the
probability of developing resistant mutations [16]. Furthermore, meaningful fit-
ness measures of tolerant strains remain widely undefined and our understanding
of tolerance evolution is far less advanced than that of resistance [18].
In this thesis, we will therefor focus exclusively on the e!ect of antibiotic toler-
ance and neglect all other forms of adaptation, such as resistance, resilience or
persistence [7, 19].
We examine the advantage of evolving antibiotic tolerance within a clinically rele-
vant pharmacokinetic-pharmacodynamic (PKPD) framework, in which antibiotic
concentrations alternate periodically between growth and killing regimes. Build-
ing on the well-established theory of Hill-shaped dose-response curves [20, 21,
22, 23, 24], we introduce two fundamentally di!erent performance measures to
compare the success of tolerant mutants to the wild type.
These quantities are capable to predict how the empirically observed trade-o! be-
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1 INTRODUCTION

tween enhanced survival at high concentration and decreased growth rate in the
absence of antibiotic [25, 26, 27, 28] is beneficial and we show that such tolerant
mutants can establish in a bacterial population.

In the first part, we present a fully deterministic framework, to describe the
population size as a function of time. Using a simple, exponentially decreasing
concentration profile, we derive the time integral of the dose response curve over
one drug cycle in section 2.3. The exponential of this integral describes the e!ec-
tive change in the amount of viable cells after one treatment period. Under the
assumption, that non of the PKPD functions change during the treatment, the
solution of the integral is a constant for all subsequent periods and we readily
find a solution for the cell count after arbitrarily many drug applications.
For the purpose of this work, we propose to normalize the integral by the time
period and interpret the result as an e!ective growth or death rate, which we
call the e!ective fitness. This quantity has units of a replication rate and yields
an approximate solution for the cell count at any real time t > 0 and defines a
meaningful fitness measure for any phenotype with a Hill-shaped dose-response
curve.
In the following (section 2.4), we demonstrate how tuning two key dose-response
curve parameters captures the previously described tolerance trade-o!. For any
phenotype that is tolerant compared to the wild type in this sense, we compute
the e!ective fitness and obtain a two dimensional topography. This structure
illustrates, which tolerance mutations increase the e!ective fitness and highlights
how bacteria may escape extinction through adaptive tolerance evolution.
A more detailed analysis of the emerging fitness landscape and the accumulation
of beneficial mutations is conducted within a genotypic model of trade-o! induced
fitness landscapes. Similar models were previously introduced in the context on
antibiotic resistance evolution [29].
Developing intuition on a toy model, we discuss the key properties, the rugged-
ness and accessibility property, of tolerance trade-o! landscapes in section 3.3.
Finally, we simulate evolution as random adaptive walks on the fitness landscape
(section 3.4) and uncover a biphasic pattern of tolerance evolution, characterized
by initial cost acquisition followed by compensatory adaptation.
Concluding on the first part of this thesis, we show that a simple measure on the
average replication rate predicts that tolerant mutants can have a selective advan-
tage over the wild type. For large populations, that are far from extinction over
multiple periods, this is a meaningful result. However, because e!ective fitness
is defined as the period-averaged replication rate, it fails to capture short-term
dynamics occurring within a single or few periods. Moreover, the deterministic
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1 INTRODUCTION

description becomes inaccurate when population sizes are small and extinction
risk becomes significant, which is of particular clinical importance.

Accordingly, the second part of this study presents a refined, stochastic de-
scription of the periodic treatment, explicitly modeling growth and death as dis-
tinct processes and capturing extinction events that are not described by the
deterministic approach. Furthermore we distinguish the analysis of biocidal and
biostatic antibiotics.
Based on previous results on the fundamental birth and death process [30, 31], we
derive an analytically exact result on the probability that any phenotype survives
a single dose of the respective antibiotic (section 5.4). Additionally to the deter-
ministic e!ective fitness, the survival probability introduces a second, stochastic
measure of success.
We demonstrate for both modes of action, that tolerance evolution can increase
the survival probability relative to the wild type and potentially threatens the
e"cacy of clinical treatment.

In section 6 we introduce a numerical Gillespie algorithm [32] of periodic treat-
ment, modeling the stochastic process in computer simulations. This algorithm is
exact and tracks the cell number of any phenotype in the population as a function
of time [32, 33].
We compare these simulations to the analytic predictions of the survival probabil-
ity (section 6.3) and the e!ective fitness (section 6.4) on the respective timescale,
highlighting the relevance of both quantities.
Finally, we discuss two scenarios of evolutionary rescue, which is a key concern in
the field of evolutionary biology [34, 35]. We show in section 7, that the presence
of a small tolerant subpopulation or also de novo evolution of antibiotic tolerance
result in characteristic U-shaped rescue curves [35]. The rescue probability is
further quantified in Gillespie simulations of the two distinct scenarios (section
7.1 and 7.2).
Importantly, the rescue probability is a long-term probabilistic measure defined
in the limit of many successive drug applications. It is high when the initially
small tolerant subpopulation has a high chance of survival and rapidly grows
to a supercritical size. Accordingly, the rescue probability correlates with both
analytical metrics and ultimately quantifies the chance that prolonged periodic
treatment fails due to the presence or evolution of antibiotic tolerance.

In section 8, we summarize the results on periodic antibiotic treatment and
explore potential extensions of our study.
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2 CHARACTERIZING THE BACTERIAL RESPONSE TO ANTIBIOTIC
TREATMENT

2 Characterizing the Bacterial Response to An-
tibiotic Treatment

2.1 Resistance and Tolerance - How to Distinguish Dif-
ferent Behaviors?

The failure of antibiotic treatment has long been associated to resistance mu-
tations [16]. Such a mutation is characterized by an increase of the minimum
inhibitory concentration (MIC), allowing for growth at high concentrations of
the antibiotic [7]. Quantifying the MIC experimentally is relatively easy, since
it is only necessary to test for "growth" or "no growth" in di!erent environments
[36].
Despite being so convenient in terms of selecting for resistance, the MIC is not
capable to distinguish tolerant bacterial strains. By definition, tolerance is the
ability to survive a transient exposure to high concentrations of an antibiotic
without changing the MIC [7, 14]. It becomes therefore necessary to introduce a
second parameter. Brauner et al. proposed the mean duration of killing (MDK),
in combination with the MIC for a standardized characterization of the antibi-
otic sensitivity [7]. The MDK is defined as the typical duration to kill a certain
amount of the bacterial population [37].
Unlike the MIC, determining the MDK can be experimentally costly [38, 39], as
it requires measuring cell death instead of growth.
Growth rate assays are commonly performed by optical density (OD) measure-
ments [7, 40, 39], where an increase of absorption is related to a positive change
in biomass. However, such measurements cannot reliably detect cell death [39].
A common method to capture cell death is to inoculate bacteria in the antibiotics
for a desired time and spread a dilution on agar plates. Counting the fraction
of regrowing sub-colonies, so called colony forming units (CFU), then yields the
fraction of survivors [38, 7]. This has to be repeated for di!erent times and an-
tibiotic concentrations to obtain full time-kill assay.
Figure 1 summarizes the discussed parameters of a bacterial response to antibiotic
treatment.

Recently, novel approaches to avoid the time consuming plating and colony
counting have been tested. Bren et al. proposed a regrowth approach, which
relates the time to reach a certain OD threshold to the fraction of survivors [39].
Another method was used by King et al., who examined a fluorescence based time-
kill essay [41].Both approaches seem to reproduce results from the cell counting
approach to a large extent, but problems such as varying lag-times and antibi-
otic overtake (regrowth) or experimental bias and fitness interference of the flu-
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2 CHARACTERIZING THE BACTERIAL RESPONSE TO ANTIBIOTIC
TREATMENT

Figure 1: a: Wild type (green) and resistant strain (red) in similar antibiotic environments.
The resistant strain also grows at high concentrations of the antibiotic because of an increased
MIC.
b: Wild type (green) and tolerant strain (blue) in similar antibiotic environments. Similar to
the wild type, the tolerant strain does not grow at high antibiotic concentrations (equal MIC).
The MDK99 from time-kill experiments can distinguish the bacterial strains. The figure was
published in [7].

orophore have to be tested.

2.2 Dose-Response Curves

Distinguishing between tolerance and resistance can be crucial for clinical appli-
cations. Wrong treatment might be ine!ective or even harmful for the antibiotic
e"cacy [14, 16].
Still, measurement of bacterial killing at "high"- or "well above MIC" concen-
trations [7, 14] remains vague to some extent. Moreover, maintaining constant
antibiotic concentrations over extended periods can be challenging due to phar-
macokinetic factors like drug absorption, distribution and metabolism [42, 43, 44,
23, 21, 45]. It is therefore practical, to define a concentration dependent rate,
that describes the e!ective change of the population size.
Assuming exponential growth and death, such a rate can be extracted from log-
linear fits to the discussed time-kill curves [39, 20].
In 1971 Jusko proposed a first mathematical model to describe the fraction of
viable cells over time [46]. The model describes the amount of viable cells (N )

5



2 CHARACTERIZING THE BACTERIAL RESPONSE TO ANTIBIOTIC
TREATMENT

as a function of the natural growth/death (g/d) rate of the bacteria, an e!ective
concentration (c) in the body compartment of the bacterial infection and a reac-
tion rate (k) of the antibiotic with bacteria. Assuming, that all target cells are
similarly susceptible, one finds a simple expression for the rate of change in cell
count:

dN

dt
= (g ↗ d) N ↗ k c N (1)

The pharmacodynamic model defined in (1) was revisited and modified by Zhi et
al. [47, 48] and became prominent as ’Emax’ or ’Zhi’ model [20, 49, 45].
First, the Zhi model defines the apparent growth rate at zero concentration:

ϖmax = g ↗ d.

The model of Jusko further simplifies as one considers that bacteria are directly
a!ected by the concentration in the central compartment, i.e. there are no trans-
port losses of the antibiotic concentration. Hence, the e!ective concentration (c)
is a readily tunable (in general time-dependent) concentration (c(t)). Moreover
the model assumes that no resistance occurs, or, if it does, it can be described by
an additional growth rate constant [47].
For such a model, two cases can be distinguished [47, 48, 45]. (1) A linear
non-saturable model describing a concentration independent reaction rate of the
antibiotic (as in (1)). And (2) a non-linear saturable model, where the reaction
rate ϖ is multiplied with a Michaelis-Menten type factor (Km + c)→1 [48], which
yields

dN

dt
= ϖmax N ↗ k

c(t)
Km + c(t) N (2)

= ϖ(c(t)) N . (3)

In this context, ϖ denotes the e!ective replication rate of bacteria under treatment
and the function ϖ(c) is known as the dose-response curve (DRC) for this model.
The DRC essentially depends on three parameters, which are unique to each pair
of drug and bacterial strain. ϖmax and k were already introduced above and Km

is a Michaelis-Menten type saturation constant [48]. For the given model Km

represents the concentration, where the e!ective reaction rate reached half of its
maximum.
In vitro studies were able to show, that such a saturable model appears to be
appropriate to predict the fraction of CFU after treatment [48, 45].
An additional generalization of this model incorporates a Hill coe"cient (ϑ) as
a fourth parameter [21, 22, 20, 23, 24], which adjusts the steepness of the dose-

6



2 CHARACTERIZING THE BACTERIAL RESPONSE TO ANTIBIOTIC
TREATMENT

Figure 2: Visualization of the dose-response curve (5) and the influence of the four parameters.
The black graph represents a reference strain with ωmin = ωmax = 1 time→1, MIC = 1 a.u. and
ε = 4.
Relative to the reference, the blue graph represents a di!erent strain with doubled: (a) MIC,
(b)ωmax, (c) ωmin and (d) ε.

response curve:
ϖ(c(t)) = ϖmax ↗ k

c(t)ω

Km
ω + c(t)ω

. (4)

However, for meaningful comparison with experiments and accurate modeling, it
is preferable to define the dose-response curve using the previously established
MIC and the maximum rate of cell death under treatment (ωmin)[20, 50] (see
Appendix A.1 for derivation):

ϖHill(c(t)) = ϖmax ↗ (ϖmax + ϖmin)

(
c(t)

MIC

)ω

(
c(t)

MIC

)ω
+ εmin

εmax

. (5)

This ’Hill-Type’ dose-response curve and the e!ect of the four parameters is
further explored in figure 2.

Equation (5) provides a convenient parametrization of the DRC, allowing for
independent adjustment of the null fitness, i.e. the growth rate in the absence of
antibiotic stress, and maximum death rate (ϖmax, ϖmin) and the MIC appearing
as a variable in the equation.
Furthermore, the DRC converges to the apparent null fitness ϖmax of the bacteria
for c → 0 and the maximum killing rate ↗ϖmin for c → ↑.
It is important to note, that ϖmin in equation (5) is positive by convention. This
makes ϖmax and ϖmin both positive rates and negative signs are model intrinsic.
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2 CHARACTERIZING THE BACTERIAL RESPONSE TO ANTIBIOTIC
TREATMENT

2.3 Quantifying the Treatment E"cacy - E!ective Fitness

The dose-response curve (5) quantifies the concentration dependent reaction of a
bacterial genotype to a particular antibiotic (pharmacodynamics). With this, we
can now solve the di!erential equation (3) and discuss how the amount of viable
cells changes over time. The general solution is given by

N(t) = N0 exp
(∫ t

t0

ϖ(c(t↑))dt↑
)

(6)

with ϖ(c) defined in (5).
Typically, clinical drug administration is considered to be periodic in time [44, 45,
21] and the e!ective change of the population size after one dosing period should
be determined. It is therefore meaningful, to introduce the ’e!ective fitness’

! (ε) = 1
ε

∫ t0+ϑ

t0

ϖ(c(t↑))dt↑ (7)

as a functional of the dose-response curve and the concentration profile, as well
as the period length ε .
Using this definition, the e!ective change in viable cells after one drug dosing is
given by:

N(ε) = N0 exp (! ε) .

In this sense, !(ε) describes an e!ective growth/death rate of the bacterial pop-
ulation after one drug cycle.
This reveals a first theoretical insight on the problem: The treatment e"cacy of
a certain drug on a given bacterial strain can be quantified by the e!ective fitness
(7) which generally depends on the time between two drug administrations ε , the
concentration profile c(t) and the shape of the DRC.
Essentially, the bacterial population grows, if !(ε) > 0 and it dies, if !(ε) < 0.
Otherwise, the size of the population remains constant over time.
In this sense, the e!ective fitness provides a good measure of the treatment e"-
cacy. Nevertheless, it can be important to compute the time resolved population
size, as N(t) is generally non monotonic (see Figure 3) and the population might
be extinct before the end of the treatment period. However, this is a stochastic
e!ect, and for now, we will focus on finding a deterministic measure of the cell
count after one period.
In the following analysis it is therefore considered, that 0 < t ↘ ε . Using the
definition of the e!ective fitness (7), the general solution (6) can be expressed as

N(t) = N0 exp (! (t) t) . (8)
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Thus, the main goal remains to solve the integral of the dose-response curve
for a given time profile of the antibiotic concentration.
A whole field of research in clinical pharmacology is dedicated to the analysis
of meaningful PKPD functions and dosing optimization [51, 52], which is not
explored in detail here. For the purpose of this discussion, it is su"cient to note,
that multiple studies [44, 45, 21] propose a double exponential function with a
decay rate ω and take up rate ↼ of the form

c(t) = cmax

(
e→ϖ (t→t0)

↗ e→ϱ (t→t0)
)

. (9)

Unfortunately, the integral in (8) can not be solved analytically for the DRC (5),
given the general concentration profile (9). We present some numerical results for
such general profiles in Appendix C.1, but let us examine a simpler profile here.
We consider very large ↼ now, which corresponds to an immediate availability of
the drug at the infection site. For such a scenario, the pharmacokinetic function
for one dose of the drug reduces to

c(t) = cmax e→ϖ (t→t0) (10)

and the time integral of (5) can be solved analytically. Such a profile is commonly
assumed in models of time dependent treatment [53, 54]
For ω, ϑ ↓= 0 and 0 < t ↘ ε one obtains:

!̃Hill(t) =
∫ t0+t

t0

ϖHill(c(t↑))dt↑ (11)

!̃Hill(t) = ϖmax t + ϖmax (1 + φ)
ω ϑ

ln
(

Cωe→ϖ ω t + φ

Cω + φ

)

(12)

where C = cmax

MIC and φ = εmin

εmax

(detailed derivation in the Appendix A.2).
Finally, the exponential of (12) represents the relative change in viable cells over
one period of drug dosing:

N(t)
N0

= e!̃Hill(t). (13)

The setup is visualized in figure 3, where the antibiotic concentration and
the relative change of viable cells of two bacterial strains are shown for 3 drug
administrations.
The two bacterial strains analyzed can be viewed as a susceptible wild type and
a tolerant strain, as the MIC remains the same, but the mutant exhibits better
survival under transient drug exposure.

It is important to note, that unlike the previously defined e!ective fitness !,
!̃ is not an e!ective growth or death rate. It is just the solution of the integral.

9
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Figure 3: Solution of equation (13) for three periodic drug administrations with period length
ϑ = 2 t.u.. For a simple exponential concentration profile (cmax = 4, ϖ = 1.2 time→1), the
relative change of viable cells of two bacterial strains is visualized over time (left). Both strains
share the same MIC = 1 a.u., ε = 4 and ϱ = 1, but the tolerant mutant (dashed lines) has
only half the growth rate of the susceptible strain (solid lines): ω(sus)

max = 2 ω(tol)

max .
The respective dose-response curves of both bacterial strains are shown on the right.

However, both quantities are related:

!(t) = 1
t

!̃(t)

which yields the same expression as (7), if t = ε .
Given the result in (12), the e!ective fitness of this setup is given by

!Hill(ε) = ϖmax + 1
ε

ϖmax (1 + φ)
ω ϑ

ln
(

Cωe→ϖ ω ϑ + φ

Cω + φ

)

(14)

and has the dimension
[

1

time

]
, as desired.1

This quantity is further explored in the following section.

2.4 A First Interpretation of the E!ective Fitness

The e!ective fitness in (14) represents a key result of the analysis for the pre-
sented scenario. Nevertheless, some crucial questions are yet undiscussed. How
is a resistance or tolerance mutation represented in this formula? How can a
population switch from negative to positive !? How does the pharmacokinetic
function influence the result?
It is therefore desirable, to develop some understanding and intuition for this
quantity and gain some insight on the e!ective fitness.
We start by recalling the previous result in a slightly di!erent form:

!Hill(ε) = ϖmax

[

1 + (1 + φ)
ϑ ω ε

ln
(

Cωe→ω ϖ ϑ + φ

Cω + φ

)]

. (15)

1At the time of completing this work, I became aware that Helen Alexander had indepen-
dently derived a similar result in Chapter 3 of her PhD thesis [54]. This work is yet unpublished
and I arrived at this result prior to knowledge of her contribution.
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Provided that the ration of ϖmin and ϖmax (φ) remains constant, the ’null fitness’
(ϖmax) does not shape the qualitative behavior of the e!ective fitness. It rather
determines the scale of the response, i.e. for large/small ϖmax, the population
grows (and dies) more rapidly/slowly. But importantly, the sign of the e!ective
fitness does not change, since ϖmax > 0 by definition.
The sign of !Hill is essentially determined by the second term in (15), that de-
pends on the dimensionless quantities: ω ε , ϑ, φ = εmin

εmax

and C = cmax

MIC .

2.4.1 The Pharmacokinetic Parameter ω ε

We will begin by focusing on the pharmacokinetic parameter ω̃ = ωε , as the
model’s response is very illustrative in this case. Every other parameter is treated
as a finite constant for now.
In the picture of a periodic antibiotic treatment the parameter ω̃ relates the rate
of drug degradation to the timescale of the treatment period. More explicitly, if
ω̃ ≃ 1 then the decay rate ω is large compared to the time between two drug
administrations. Hence, the drug concentration reaches sub MIC conditions well
before the next dosing and it is expected, that the e!ective fitness converges to
the null fitness for ω̃ → ↑.
We can readily prove the expected result analytically:

lim
ϖ̃↓↔

(15) = ϖmax




1 + lim

ϖ̃↓↔

(1 + φ)
ϑ ω̃

ln
(

Cωe→ω ϖ̃ + φ

Cω + φ

)

︸  
=0




(16)

Vice versa, the limit of ω̃ → 0 models the case of very slow drug degradation. The
pharmacokinetic function is almost all the time close or equal to the maximum
concentration cmax.
If this concentration is significantly higher than the MIC, it is expected, that the
e!ective fitness is close to the maximum death rate (↗ ϖmin). Otherwise, if the
drug concentration is initially already below the MIC, the e!ective fitness should
be positive and converge to ϖmax in the limit of cmax ⇐ MIC.
We can also check our expectations here and compute:

lim
ϖ̃↓0

(15) = ϖmax

[

1 + lim
ϖ̃↓0

(1 + φ)
ϑ ω̃

ln
(

Cωe→ω ϖ̃ + φ

Cω + φ

)]

(17)

= ↗ϖmin

Cω
↗ 1

Cω + φ
(18)

= ϖHill(cmax). (19)
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The computation of (18) is not trivial and a detailed derivation can be found in
the appendix A.3.1.
Recalling, that C = cmax

MIC and φ = εmin

εmax

, three interesting cases can be found:

lim
ϖ̃↓0

!Hill






→ ϖmax if cmax ⇐ MIC

= 0 if cmax = MIC

→ ↗ϖmin if cmax ≃ MIC

(20)

which reflects our expected results.
Clinically, the case of high initial concentrations is particularly interesting, since
the bacteria are not killed otherwise.
In this scenario, the e!ective fitness is negative for some small ω̃ and positive, i.e.
equal to ϖmax, for ω̃ → ↑. Since the e!ective fitness is continuous for ω̃ ↔ (0, ↑),
there is a point where the e!ective fitness as a function of the pharmacokinetic
parameter ω̃ switches its sign.
It is hard to analytically prove the uniqueness and the exact point of such a tran-
sition, but it is enough to notice the existence here.
From a pharmacological perspective it is desirable to further analyze the influ-
ence of the pharmacokinetic function and to optimize clinical dosing for e!ective
treatment. However, the focus of this study is the bacterial response, particu-
larly antibiotic tolerance, to a specific dosing protocol. Therefore, the following
sections examine the survival strategies of a homogeneous population, i.e. how
the shape of the dose-response curve influences the e!ective fitness.

2.4.2 The Hill Parameter ϑ - a Short Intermezzo on the Step DRC

For the analysis of very large Hill exponents it is illustrative, to examine the
influence of ϑ on the dose-response curve (5) first. It is readily observed, that

lim
ω↓↔

(5) = ϖstep =






ϖmax for c(t) < MIC

↗ϖmin for c(t) > MIC
(21)

which is a step function (see figure 4).
Given this step profile, an e!ective fitness can be computed in full analogy to the
discussion above, which is shown in the Appendix A.4. The result is a function
of the three untouched parameters:

!step =






ϖmax

(
1 ↗

1+ς
ϖ̃ ln (C)

)
for ω̃ ⇒ ln(C)

↗ϖmin for ω̃ < ln(C)
(22)

12



2 CHARACTERIZING THE BACTERIAL RESPONSE TO ANTIBIOTIC
TREATMENT

where the condition "ω̃ ⇒ ln(C)" indicates that the initial antibiotic concentration
falls to the MIC level within the timescale of a single period. Note, that C > 1
is always assumed here, since trivial results are obtained in the opposite case.
For consistency, one can prove (see appendix A.3.2) that

lim
ω↓↔

(15) = !step. (23)

The discussed dose-response curve (21) has already been used for community
studies [55, 56] and can be highly useful to test results of the Hill model.

Figure 4: Analytic solution of the Hill-Type dose-response curve (solid blue) together with the
Step Function (dashed blue) for a given concentration profile (black) around the MIC (grey).
The Hill type DRC resembles the susceptible strain from figure 3 and the step function is the
respective limit for ε → ↑.

2.4.3 The Resistance Parameter C

The Resistance parameter was introduced as a dimensionless quantity C = cmax

MIC

that relates the maximum antibiotic dosage to the MIC of the microbe. It is
expected, that the e!ective fitness of a highly susceptible phenotype, i.e. MIC ⇐

cmax or C ≃ 1, is lower than a resistant species with C → 1. This can be seen if
we recall our fitness function (15) and compute the respective limit:

lim
C↓↔

(15) = ϖmax

[

1 + lim
C↓↔

(1 + φ)
ϑ ω̃

ln
(

Cωe→ω ϖ̃ + φ

Cω + φ

)]

(24)

= ↗ϖmin. (25)

Appendix A.1 visualizes the convergent behavior for di!erent choices of parame-
ters and verifies our analytic computation. Furthermore, we note, that the e!ec-
tive fitness is monotonically decreasing in the resistance parameter, as expected.
For the case where C → 1, it is enough to note that the dose-response curve
will only be integrated over its positive (growth) region. Therefore, the e!ective
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fitness can be nothing but positive. Because (15) is a continuous function of C,
the intermediate value theorem implies that there must exist a point Ccrit where
the e!ective fitness becomes zero.

2.4.4 On the Ratio of ϖmin and ϖmax

In the derivation of (15) the ratio φ = εmin

εmax

was introduced as a dimensionless pa-
rameter. This expression is analytically correct and provides a useful parametriza-
tion of the e!ective fitness from a theoretical point of view. However, it suggests
that the maximum death rate ϖmin is not an independent parameter and cannot
be changed without changing the null fitness ϖmax. This is not generally true
and it is important to keep the parametrization with both rates ϖmin and ϖmax in
mind.
Therefore, we start by computing the e!ective fitness (15) for various tuples
(ϖmin, ϖmax). The result is a two dimensional fitness landscape presented in figure
5.

Figure 5: The E!ective Fitness in a two dimensional landscape of null fitness (ωmax) and
maximum death rate (ωmin). !Hill is computed for an exponential concentration protocol with
ϖ̃ = 2.4 and cmax = 4 MIC and with a Hill parameter ε = 4.
As expected, the e!ective fitness decreases for increasing ωmin or decreasing ωmax and increases
in the opposite case. The transition from negative (red area) to positive (green area) fitness is
visualized in light yellow.

The topography of this landscape is characterized by the choice of the previ-
ously discussed parameters (C, ω̃ and ϑ) and a general ϖmin-ϖmax phenotype can

14



2 CHARACTERIZING THE BACTERIAL RESPONSE TO ANTIBIOTIC
TREATMENT

be anywhere in this landscape.
However, Tuomanen et al. [57] observed a strict proportional relationship between
growth and death rates in Escherichia coli under !-lactam treatment. This rela-
tionship was also reported by Lee et al. [40] and is repeatedly assumed in studies
on bacterial death [58, 56, 39, 59]. It is therefore meaningful to consider ϖmin to
be an a"ne function of ϖmax:

ϖmin = ςϖmax + a. (26)

Note, that
φ = ϖmin

ϖmax

= ς + a

ϖmax

and therefore φ ↓= ς in general.
The functional dependency can be visualized in the previously introduced land-
scape (see Figure 6) and we can study the e!ective fitness as a function of ς and
a now. Note that ς and a are restricted to a regime, where εmin

εmax

is positive. For
simplicity, we first consider the a special case where, a = 0.

Figure 6: Visualization of some exemplary a"ne functions ωmin(ωmax) in the Fitness Land-
scape from figure 5.
The left plot visualizes a setup where a = 0, corresponding to a linear dependency. Essentially,
the barrier of ! = 0 is not crossed by any line of constant ϱ. Thus, phenotypes that do not
change the relation of ωmin and ωmax cannot switch from negative to positive fitness in this
case.
The right plot visualizes a scenario, where a ↓= 0 and thus the fraction ϱ is not a constant
anymore. In such a scenario, a phenotype with constant ς and c can switch from positive to
negative fitness by tuning its maximum death rate ωmin.

If a = 0 , ϖmin(ϖmax) is a linear function and thus φ = ς. In this case, the
e!ective fitness (15) can be written in the form

!Hill

ϖmax

(ς) = 1 + (1 + ς)
ϑ ω̃

ln
(

Cωe→ω ϖ̃ + ς

Cω + ς

)

(27)
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where everything else than ς is kept constant. Accordingly, !Hill

εmax

- which is termed
as normalized e!ective fitness in the following - is invariant along the lines of con-
stant ς.
Moreover, if a point where !Hill = 0 exists for a certain choice of C, ϑ, ϖmin, ϖmax

and ω̃ = ω ε , then there also exist infinitely many other points. Such a line is
associated to a family of dose-response curves, which essentially yield the same
normalized e!ective fitness !Hill

εmax

(see figure 7).

Figure 7: Left: Two dimensional (ωmax, ωmin)-Landscape of the normalized e!ective fitness.
The other parameters are taken from figure 5 (cmax = 4 MIC, ϖ̃ = 2.4, ε = 4). Linear functions
ωmin(ωmax) = ς ωmax are surfaces of constant normalized fitness and are associated to a family
of Dose-Response curves (right plot). The grey line exemplarily shows this for ς = 1, where
three dots represent three di!erent dose-response curves.
Right: The three exemplary dose-response curves for the "ς = 1 - family". All dose-response
curves have the same normalized e!ective fitness !Hill

ωmax

.

This motivates to visualize (27) as a function of ς (see figure 8) and to find
the root of this function (if it exists).
First, recall that ϖmax and ϖmin are positive and therefore ς ⇒ 0. For such ς

and ω̃, ϑ, C ↓= 0 the normalized e!ective fitness is everywhere continuous and
di!erentiable.
Starting the analysis for small ς, i.e. ϖmax ≃ ϖmin, one readily notes that ς = 0
is a trivial solution for (27) = 0. One concludes, that if the first derivative of the
normalized fitness at ς = 0 satisfies

↽

↽ς

!Hill

ϖmax

(ς)

φ=0

= eϖ̃ ω
↗ 1

ω̃ ϑ Cω
↗ 1 > 0 (28)

it follows, that
!Hill

ϖmax

(ς) > 0 for some ς > 0. (29)

If this does not hold for a certain set of parameters, then the e!ective fitness
would be negative everywhere (irrespective of ς) and the antibiotic would kill the
bacteria in any scenario. It is therefore reasonable to assume (28) for the purpose
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of this work.
Now, if ς is large, i.e. ϖmax ⇐ ϖmin, the normalized e!ective fitness becomes

lim
φ↓↔

(27) = 1 + Cω

ω̃ ϑ

(
e→ϖ̃ ω

↗ 1
)

(see Appendix A.5.1 for derivation).
Notably, if this limit is larger than zero, then the e!ective fitness is everywhere
positive and there is no scenario, where the antibiotic kills the bacteria.
It is therefore reasonable, to assume

lim
φ↓↔

(27) = 1 + Cω

ω̃ ϑ

(
e→ϖ̃ ω

↗ 1
)

< 0 (30)

here.
Equations (29) and (30), together with the Intermediate Value Theorem imply,
that if condition (28) holds, then there exists a second point at which !Hill

εmax

(ς) = 0.
Rolle’s theorem also implies the existence of a maximum point, where ↼

↼φ
!Hill

εmax

(ς) =
0.
The appendix A.5.2 provides more profound calculations and it is argued, that
the maximum is unique.
We can furthermore find, that for the discussed parameter range, defined by (82)
and (28), we find the maximum point φmax in the interval (0, 1]. However, com-
puting the exact point φmax where the e!ective fitness becomes maximal remains
a task for numerical calculations.
At this point it is important to emphasize, that the appearance of the unique max-
imum is exclusive to the Hill shaped dose-response curves. Our parametrization
(5) implies, that limεmin↓0 ϖ(c) = 0 for all concentrations if the other parameters
ore finite. Thus, we find that

lim
ς↓0

!Hill = 0.

However, this does not hold for other dose-response curves, especially not for the
step function (see appendix C.1 for details).

This rather technical analysis of the fitness landscape is treated in figure 8.
For three di!erent choices of the system parameters C, ω̃, ϑ the normalized e!ec-
tive fitness is visualized as a function of ς. One can see, that the fitness function
is only positive, if (28) is fulfilled. And if it is positive, there exists a unique
maximum and a second zero point.

In summary we have now shown, that the normalized e!ective fitness only
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Figure 8: E!ective fitness !Hill divided by the null fitness ωmax as a function of ς in the color
code of figure 7.
The solid line represents the scenario from above (cmax = 4 MIC, ϖ̃ = 2.4, ε = 4) which essen-
tially fulfills (28). Both of the other scenarios do not satisfy (28) and therefore ⇑ς : !Hill

ωmax

(ς) < 0.

depends on the ratio of null fitness and max. death rate. Furthermore for a given
set of parameters (ω̃, ϑ, C), a unique maximum at some ςmax was found to exist
under certain constraints. However, all the analysis only holds for the normalized
e!ective fitness, while the quantity of interest remains the e!ective fitness.
It is therefore important to also consider the ϖmax factor for physical interpreta-
tions. It is readily observed that the extra factor will only a!ect the magnitude of
the fitness function and introduces a linear gradient to the contours of constant ς.
Accordingly, if !Hill(ς) is negative for some (unchanged) ς, it will be beneficial to
minimize ϖmax (dormant bacteria). Otherwise, phenotypes with positive e!ective
fitness tend to maximize their ϖmax.
Most importantly we note, that mutations which do not alter the ratio εmin

εmax

can-
not change the sign of the e!ective fitness. This observation does not hold, if the
constraint a = 0 is relaxed.

If a ↓= 0 , the analysis from above has to be revisited. The most striking dif-
ference was already mentioned in figure 6, where it was noted that the e!ective
fitness can switch its sign also for constant ς and c.
One notes that an o!set a ↓= 0 influences the maximum death rate independent
of the null fitness. Accordingly the shape of the dose-response curve changes to
some extent and the normalized e!ective fitness becomes:

!Hill

ϖmax

(ς) = 1 +

(
1 + ς + a

εmax

)

ϑ ω̃
ln

(
Cωe→ω ϖ̃ + ς + a

εmax

Cω + ς + a
εmax

)

. (31)

18



2 CHARACTERIZING THE BACTERIAL RESPONSE TO ANTIBIOTIC
TREATMENT

Repeating the analysis for families of dose-response curves (see figure 7 for a = 0),
one finds that the normalized e!ective fitness is not a constant for a given ς - a -
family. Figure 9 visualizes this for three exemplary DRC’s.

Figure 9: Left: Two dimensional (ωmax, ωmin)-Landscape of the normalized e!ective fitness.
The other parameters are taken from figure 5 (cmax = 4 MIC, ϖ̃ = 2.4, ε = 4). Linear functions
ωmin(ωmax) = ς ωmax + a are surfaces of constant normalized fitness and are associated to a
family of Dose-Response curves (right plot). The grey line exemplarily shows this for ς = 1
and c = ↗0.3, where three dots represent three di!erent dose-response curves.
Right: Three exemplary dose-response curves for the "ς = 1, a = ↗0.3 - family". All Dose
response curves have now a di!erent normalized e!ective fitness.

The biological context of a ϖmin-ϖmax relation has been reviewed in previous
studies [39, 56, 57] and we will address this in the next section. These studies
suggest that ϖmin and ϖmax are correlated (ς > 0) also for a ↓= 0 [39, 56], which
implies a trade-o! behavior, i.e. decreasing the growth rate also decreases the
death rate. Typically such a trade-o! is associated with antibiotic tolerance
[39, 60, 61, 62], which was found to emerge under periodic antibiotic stress [63,
37]. With the e!ective fitness !Hill we have now introduced a framework to
understand, how such a trade-o! can be beneficial and that there exists an optimal
ratio εmin

εmax

for a given set of parameters.
In the following, we stick to the finding that a reduction in the death rate comes
with a cost in the null fitness, but return to the e!ective fitness as a function of a
two dimensional phenotype (ϖmin and ϖmax). Hence, we consider mutations which
can in principle change both ϖmin and ϖmax independently under the constraint
of a trade-o!.
This will be further reviewed in a genotypic model (section 3), which has been
used for similar applications before [29].

2.5 Biological Context of the ϖmin-ϖmax Relation

The previous section outlined all relevant parameters of the e!ective fitness, high-
lighting that any measure of antibiotic tolerance is crucially determined by the
relation of ϖmin and ϖmax [39, 60, 61, 62]. Here, we want to briefly discuss the
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biological context of ϖmin and ϖmax and why it is meaningful to consider a relation
between both parameters.
In accordance with the definition of Brauner et al. [7], antibiotic tolerance is

the ability [...] of microorganisms to survive transient exposure to high
concentrations of an antibiotic without a change in the MIC.

This is a rather general definition and can be caused by several mechanisms such
as cell aggregation [64, 65], increased lag time [7] or slow growth [7, 56]. However,
since our model assumes that the population is always in an exponential phase
(growth or death), we do not account for any lag e!ects. Furthermore, we do
not resolve any spatial e!ects and we will therefore stick to ’tolerance by slow
growth’[7] here.
In the example of !-lactam treatment, targeting the process of bacterial cell wall
synthesis during cell division [66], the treatment e"cacy crucially depends on the
growth rate. Hence, the rate of killing is proportional to the rate of cell division
[57]. Hence, growth inhibiting conditions are known to increase tolerance to an-
tibiotics [57, 25].
In general, such growth inhibition can be an inherited genotypic change, reducing
the natural growth rate, or a phenotypic response to some environmental changes.
Bren et al. [39] explained a phenotypic response with a resource allocation model,
in which the growth rate ϖmax can be manipulated by varying the amount of sup-
plied nutrients. For di!erent growth media, they where able to show that the
death rate ϖmin can be described as a linear function of the growth rate (as in
(26)), where the parameters ς and a depend on the choice of carbon source.
In this sense, the decrease in death rate, and thus the adaptation to antibiotic
stress, can be fully understood as a rapidly (depending on the lag time) changing
phenotypic response.
In another study Mizrahi et al. [56] evolved a susceptible isolate and observed
antibiotic tolerance in the evolved strains. Sequencing the whole genome of these
strains revealed, that many of them accumulated similar mutations. These muta-
tion where found to (1) be linked to !-lactam resistance and (2) impact cell growth
[56]. Many of the observed mutations had simultaneous decreases in death and
growth rates [56] and it is therefore biologically meaningful to consider a geno-
typic trade-o! model. We refer to the trade-o! in ϖmin and ϖmax as tolerance
trade-o!.
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LANDSCAPE

3 Tolerance Evolution in Trade-O! Induced Fit-
ness Landscape

In the previous section the e!ective fitness !Hill (14) was introduced as a fitness
measure for bacterial populations under periodic antibiotic stress. We have seen
that this is a function of some environmental parameters, essentially the maxi-
mum drug concentration and the period length, and the phenotype, which is the
MIC, ϖmin, ϖmax and ϑ.
For the purpose of this analysis, we will focus on antibiotic tolerance, which is
related to an enhanced survival at high antibiotic concentrations and a fitness
cost at low concentrations [39, 60, 61, 62]. Whether inherited or not, such a
trade-o! adaptation is commonly observed in tolerant isolates (see section 2.5).
Hence, the two phenotypes ϖmin and ϖmax will be of particular interest and we
will build upon the results of section 2.4.4.
The growth-death trade-o! introduces an additional constraint on the optimiza-
tion of ϖmin and ϖmax. Hence, the two phenotypes cannot be optimized indepen-
dently and we will see that high fitness phenotypes usually have an optimal ratio
φ.
The phenomenon of trade-o!s is certainly not universal to any drug response, but
it has been observed in previous studies. Lazar et al. [38] noted that some strains
are highly susceptible to single drugs but less if drugs are combined. Sti#er et
al. [67] reported, that cefotaxime resistance emerged from ampicilin suscepti-
ble strains, but not from ampicilin resistant ones. This indicates that in a high
ampicilin environment certain mutations are deleterious at low cefotaxime but
beneficial at high cefotaxime. And Das et al. [29] observed, that enhanced resis-
tance often reduces the null fitness of a bacterial strain.
For a theoretical description of such trade-o!s, a new type of fitness landscapes
have been proposed: Trade-o! Induced Fitness Landscapes (TIL). Conceptually,
we will use a similar model as in [29] and construct fitness landscapes for ϖmin-
ϖmax phenotypes. We show, how biallelic genotypes map to phenotypes and how
these relate to the complete two dimensional fitness landscape (figure 5).
Moreover, we will discuss topological properties of the constructed trade-o! land-
scape and see how such landscapes can model tolerance evolution.

3.1 Mapping Genotypes to Fitness

In analogy to previously published models [68, 29], we will use a biallelic genotype
ε of length L, i.e. a genotype of L loci. Thus, each site ⇀i can be either mutated
(⇀i = 1) or unmutated (⇀i = 0), which yields 2L possible genotypes. In this
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framework, we will refer to the all zeros genotype ε = 0 as the wild type and the
full mutant as ε = 1.
Here, mutations only a!ect the null fitness ϖmin and the death rate ϖmax, while
leaving the MIC and also the Hill exponent unchanged. These mutations are
assumed to be non epistatic, such that they combine multiplicatively [68]:

ϖε
min

= exp
[



i

⇀i ln(ϖi
min

)
]

(32)

ϖε
max

= exp
[



i

⇀i ln(ϖi
max

)
]

. (33)

Furthermore, each mutation comes with a trade-o!, decreasing the death rate
at high concentrations while also inhibiting growth at low concentrations, i.e.
ϖi

min
< 1 and ϖi

max
< 1. In general, all the ϖi

min
and ϖi

max
are drawn from a

probability distribution, which remains to be specified. This establishes a definite
mapping from any genotype to the respective (ϖmin-ϖmax) phenotype.
The fitness of each phenotype is determined by a second mapping, i.e. a fitness
curve, which in general is a function of some environmental parameters and the
phenotype-specific parameters. In the context of periodic antibiotic treatment, it
is convenient to use the previously established e!ective fitness, which is a function
of C and ω̃ (environmental), as well as the two phenotype specific parameters ϖε

min

and ϖε
max

, as a fitness proxy:

!ε
Hill

= ϖε
max

+
ϖε

max

(
1 + εω

max

εω
min

)

ω̃ ϑ
ln




Cωe→ϖ̃ ω + εω

max

εω
min

Cω + εω
max

εω
min



 . (34)

Eventually, (32) and (33) together with this function make a useful model to
describe the growth-death trade-o! in a genotypic framework.

3.2 Fitness Graphs and Fitness Landscapes

Given the definite mapping from genotype to fitness proxy, fitness graphs are
helpful to understand the topology of the resulting landscape. A general fitness
graph F of a alleles and L loci is a directed Hamming graph H

L
a , where neighbor-

ing genotypes (nodes) are connected through edges directed towards increasing
fitness [69]. For the purpose of this work we chose a biallelic model (a = 2), which
has been extensively used in previous studies [70, 71, 68, 29]. Our fitness graph
therefore consists of N = 2L Nodes and E = L

2
2L Edges. Figure 10 displays some

exemplary fitness graphs for L = 2 and L = 3.
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These visualizations of the fitness function appear to be quite di!erent from
the previously discussed landscapes (figure 5), but they are, in fact, closely re-
lated.
Given the complete two dimensional fitness map of all possible (ϖmin-ϖmax) pheno-
types, every genotype can be found as one point in this landscape (figure 11). In
this sense, the genotype-phenotype map induces a discrete sub-landscape, where
only certain phenotypes are realized by the model.
The structure of such a sub-landscape crucially depends on the mapping, i.e. the
choice of ϖi

min
and ϖi

max
, and the number of loci L. The e!ect of both will be

addressed in the next section (figure 3.3). At this stage, it is enough to observe
that for a "good" mapping the full landscape represents the L → ↑ limit of the
trade-o!-induced sub-landscape.

Figure 10: Fitness graphs for L = 2 (left) and L = 3 (right) loci. Each node is connected to
its nearest neighbors by an edge that points in the direction of increasing e!ective fitness. The
environmental parameters were chosen in accordance with the previous section: cmax = 4 MIC,
ϖ̃ = 2.4, ε = 4.

Figure 11: Fitness Graph with L = 3 loci (left) and their corresponding location in the
complete phenotypic landscape (right). The colored ellipses illustrate where genotypes of inter-
mediate layers in the fitness graph are found in the complete landscape. For this visualization
we sampled ωi

min
and ωi

max
from uniform intervals with ωi

min
↔ [0.3, 0.6) and ωi

max
↔ [0.5, 0.8).
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3.3 The Topography of Trade-O! Induced Landscapes

Previous studies on general fitness landscapes identified and discussed topological
properties to a large extent [69, 71, 70]. In the context of antimicrobial resistance,
this has been done also for trade-o! induced landscapes, similar to our model
[68, 29]. Therefore, we will focus on the key features, i.e. ruggedness and peak
accessibility, here.
In the following, it will be convenient to use a set notation of the genotypes, which
represents each genotype by a set of mutated sites [69]. Thus, any genotype can
be found as a subset of the full mutant L = {1, ..., L}.
Accordingly, the wild type will be the empty set (ε = ⇓) and ε = {1, 3, 7} has
mutations on the first, third and seventh position.
Given this notation, it is convenient to define subsets and supersets of a genotype
and an accessibility property.
For a general genotype ε, its subsets are elements of the power set P(ε), while
the superset genotypes are found in {X ⇔ ε|X ↔ P(ε̄)}, where ε̄ = L \ ε is the
complement of ε. Figure 12 visualizes both sets for two exemplary genotypes
(nodes in grey circles).
In accordance with Das et al. [29] a fitness landscape has the subset-superset
accessibility property, if

any peak genotype is accessible from all its subsets and supersets via
all direct paths.

In the framework of fitness graphs, a peak genotype, i.e. a local fitness peak of
the landscape, is a node with only incoming edges. If a landscape has multiple
of such peak genotypes, it is called "rugged".
It has been observed [69] that trade-o! induced fitness landscapes can be rugged
but still highly accessible. Therefore, we will investigate both properties in the
following.

3.3.1 Gain Intuition on a Toy Model

A crucial finding of the analysis in chapter 2.4.4 was, that the normalized e!ective
fitness has a maximum at 0 < εmin

εmax

< 1 for a certain choice of the parameters.
Hence, we can readily argue, that genotypes with φε = εω

min

εω
max

< 1 will always have
higher fitness than the wild type (φwt = 1) and we expect that peak genotypes
will have φ ↖ φmax.
However φmax only maximizes the normalized e!ective fitness and we will have
not yet argued about the true e!ective fitness. This introduces another constraint
on the optimization and global fitness peaks will additionally have relatively high
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Figure 12: Visualization of the subset-superset accessibility property for a landscape of L = 5
loci. The landscape has two fitness peaks (grey circles) and their respective complete sub- and
superset is highlighted in red/blue. Purple genotypes are in the sub- or superset of both fitness
peaks. The figure was published by Krug and Oros [69].

null fitness. Hence, genotypes with φε
↖ φmax are good candidates to be found

as peaks, but do not necessarily have to be peaks.
We can check our expectation in a first toy model, where every mutation con-
tributes equally with ϖi

min
↙ ↼ and ϖi

max
↙ ⇁. We will label the fraction of both

parameters as ϱ
↽ ↙ φ. Thus, the phenotype will just depend on the number of

mutations nε in the respective genotype:

nε =


i

⇀i.

In this toy model, all genotypes with the same nε, i.e. genotypes in the same
layer, will also have the same fitness. Therefore, we will always find a whole layer
of peaks and the number of peaks will depend on the number of genotypes in the
respective layer [72].
The simplest, non-trivial case is ↼ ↔ (0, 1) and ⇁ = 1, which is a reduction of
death rate without a null fitness cost. With this, we have

φε = ↼nω and ϖmax = 1 (35)

and we can immediately find the peak layer as

npeak = arg max
nω

[
!Hill

ϖmax

]

(36)
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that is the number of mutations maximizing the normalized e!ective fitness. Im-
portantly, we note that the landscape of our toy model can have multiple peaks
if 0 < npeak < L.
Since all genotypes with the same number of mutations have the same φ in the
toy model, it will be convenient to introduce φ(nω

) here. Thus, φ(0) is the fraction
for the wild type, φ(npeak) the one of the peak layer and φ(L) for the full mutant
respectively. If we exclude neutral mutations, this quantity is well defined in the
toy model, since (35) defines a bijective map between φε and nε. However, we
will also use this quantity in the TIL model later (section 3.3.2), indicating the
number of mutations that led to a certain φ.
We note, that the construction of our toy model imposes a general order on φ.
Since ↼ ↔ (0, 1) and ⇁ = 1, every mutation reduces the fraction of null fitness
and maximum death rate and we have

φ(L) < · · · < φ(0). (37)

Furthermore, we have argued in section 2.4.4 that the e!ective fitness as a function
of φ has a unique global maximum. Hence, we can find a certain fitness rank
order [70] of the genotypes in the toy model. This property was termed ordering
condition in previous studies and is derived in [29]. Importantly, if the ordering
condition holds for any two-face of the fitness graph, i.e. a subgraph consisting
of a reference genotype and two single mutants and a double mutant of that
reference strain, the subset-superset accessibility property holds [29]. In appendix
B.1 we furthermore show, that the opposite argument, i.e. accessibility implies
the ordering condition, also holds and therefore both properties are equivalent.
Accordingly, the peak accessibility is guaranteed in the toy model, and we can
conclude this for any fitness landscape that has the general ordering (37) in the
following.
If we now also let ⇁ ↔ (0, 1), one has to distinguish three cases. If we have (1)
↼ > ⇁, the fraction φ would increase with every mutation and the e!ective fitness
of any genotype will be smaller than the one of the wild type . Thus, there
would not be any beneficial mutations. Therefore, the wild type will always be
the unique peak in such a landscape. Otherwise, if (2) ⇁ = ↼, every genotype
has φ = 1. In this case, it was already observed, that the e!ective fitness is
essentially determined by the sign of the normalized e!ective fitness and the null
fitness. Thus, if the normalized e!ective fitness is smaller than zero for φ = 1,
the genotype minimizing the null fitness, i.e. the full mutant, will have maximal
fitness. Else, if the e!ective fitness is positive, the wild type will be the only peak
genotype.
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In the third case (3), where ↼ < ⇁, each mutation decreases φ and therefore
we expect a single layer of peak genotypes as before. This layer will be called
the peak layer or high fitness layer in the following and can in general have any
number of mutations nε. The fitness of that layer is determined by the choice of
↼ and ⇁ (see figure 13).

Clinically, it is most relevant to consider bacteria that adapt to a certain an-
tibiotic treatment and eventually become tolerant. In terms of fitness landscapes,
the initial wild type is not yet adapted to the treatment and has negative e!ec-
tive fitness. But every mutation increases the fitness as the bacteria adapt to the
drug, hence ↼ ↘ ⇁. Otherwise, non of the mutations would fixate due to selection
and there is no evolution from the wild type.
Assuming now that ↼ ↘ ⇁, we have

φε =
(

↼

⇁

)nω

< 1

for every genotype ε. This preserves the previously discussed order in φ (equa-
tion (37)) and thus the accessibility property of the normalized e!ective fitness
landscape also holds for ⇁ ↓= 1.

Figure 14 also illustrates, that the number of mutations in the peak genotypes
crucially depends on the phenotypes, i.e. ↼ and ⇁. For small φi, every mutation
changes the phenotype significantly and the fitness maximum is found within few
evolutionary steps. In extreme cases (φi

→ 0) the model becomes unreasonable,
since the DRC is zero everywhere, if either ϖmin → 0 or ϖmax → ↑. This problem
is kept in mind also for large nε, which can be particularly relevant if L becomes
large.
Furthermore, it is observed again that ⇁ has a trivial multiplicative e!ect on the
e!ective fitness, if φi is kept constant and does not change the e!ective fitness
qualitatively (figure 14 right plot).
Summarizing the toy model, we find that such a landscape can have multiple
peaks and thus can be rugged. Moreover, also the accessibility property holds, if
the parameters are restricted to ϱ

↽ < 1. In the following we will randomly sample
the phenotypes ϖmin and ϖmax and examine how the result deviates from the toy
model.

3.3.2 Ruggedness and Accessibility for Stochastic Landscapes

Building on the deterministic toy model, we now aim to examine the structure of
a landscape in which phenotypes are drawn from a probability distribution. For
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Figure 13: Four di!erent realizations of Toy Model fitness landscapes. The respective fitness
graph is shown on the left, while the location in the fitness landscape is shown on the right.
(1): We have φ = 1 and ↼ = 0.7, hence φ > ↼. Therefore the wild type is the only fitness peak.
(2): We have φ = 0.7 and ↼ = 0.7, hence φ = ↼. Therefore the full mutant is the only fitness
peak.
(3/4) We have φ = 0.5/0.3 and ↼ = 0.7, hence φ < ↼. We find that this yields intermediate
peak layers in the fitness graph.

simplicity, we sample ϖi
min

and ϖi
max

from uniform intervals

ϖi
min

↔ [a, b)

ϖi
max

↔ [c, d)
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Figure 14: E!ective fitness !Hill as a function of the number of mutations nω. It is seen, that
the e!ective fitness has exactly one maximum and therefore the accessibility property holds
[69].
Left: The maximum of the fitness function is found already at few mutations, if ϱ is small and
shifts to higher numbers, as ϱ becomes larger.
Right: The height of the peak increases with increasing ↼.

with a < b ↘ 1 and c < d ↘ 1.
This will map every genotype to a unique phenotype and the fitness is no longer
degenerate as in the toy model. Hence, we will find a unique global and, po-
tentially, multiple local fitness peaks. However, they do not necessarily have to
occur in the same layer.
In accordance with our previous findings, we first note, that any choice of prob-
ability distributions that on average increase φε, i.e. a > c and/or b > d, will
have many phenotypes with lower fitness than the wild type. In the context of
evolution, this is again not very interesting and will not be considered in the
following. Hence, we will stick to either equal or fitness increasing probability
distributions, meaning that for every mutation i we have ↗εi

min
↘

↗εi
max↘ ↘ 1.

We start with ϖi
max

= 1 and ϖi
min

↔ [a, b), which is a semi random non-trade-o!
model and makes the phenotypes one dimensional. Thus, the fraction φi is fully
determined by the death rate ϖi

min
. Similar to the toy model we expect, that

peak phenotypes will have φε
↖ φmax, but such phenotypes are not necessarily

unique anymore. Figure 15 illustrates a four locus case for ϖmin ↔ [0.3, 0.7) where
multiple fitness peaks are found in the landscape.
In such a semi-random non trade-o! model, the graph topology only depends on
the probability distribution of ϖmin and we find that ⇑i, j ↔ [0, L] : ϖi

min
ϖj

min <

ϖi
min

∝ φi φj < φi. Since this must hold for any two mutations on any background
genotype, we conclude directly that the accessibility property must hold for such
landscapes (see section 3.3.1).
Unfortunately, the argument is restricted to the semi-random non trade-o! model
and does not hold once we consider two dimensional phenotypes, i.e. random ϖmin

and ϖmax, again.
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Figure 15: Fitness Graph (left) and full two dimensional Landscape (right) for L = 4 with
randomly sampled death phenotypes (ωi

min
↔ [0.3, 0.7)) and no trade-o! (ωi

max
= 1). Fitness

peaks are colored in red.

For the further characterization of such landscapes, we will numerically an-
alyze multiple setups. A setup always refers to a certain choice of probability
distributions, since we keep the general PKPD setting unchanged. We chose
L = 4 to ensure a decent landscape size with still manageable complexity. For
every setup we will identify the number and location of the fitness peaks and
check for the subset-superset accessibility property.
Since ϖmin and ϖmax are drawn from two i.g. di!erent uniform distributions, every
setup can be described by four parameters:

′ϖi
min

∞ = µ̂min Var(ϖi
min

) = ⇀̂min

′ϖi
max

∞ = µ̂max Var(ϖi
max

) = ⇀̂max

which is the mean and variance of the two probability distributions. For con-
venience, we will also introduce φ̄ = ↗εi

min
↘

↗εi
max↘ , representing the behavior of an as-

sociated toy model with µ̂min = ↼ and µ̂max = ⇁. Furthermore, if not stated
otherwise, we will set ⇀̂min = ⇀̂max and thus

ϖi
min

↔ [a, a + x)

ϖi
max

↔ [c, c + x) .

It is important to note, that x is not an entirely independent parameter, since
the boundary condition 0 < ϖmin/max ↘ 1 has to be satisfied.
Furthermore, we readily observe, that in the limit of x → 0 our model will con-
verge to the previously discussed toy model.

Figure 16 is a first illustration of how the parameters shape the fitness land-
scape. Each plot visualizes the location of all genotypes and the behavior of the

30



3 TOLERANCE EVOLUTION IN TRADE-OFF INDUCED FITNESS
LANDSCAPE

(a) εi
max ≃ [0.4, 0.6); εi

min
≃ [0.4, 0.6) (b) εi

max ≃ [0.6, 0.8); εi
min

≃ [0.2, 0.4)

(c) εi
max ≃ [0.3, 0.7); εi

min
≃ [0.3, 0.7) (d) εi

max ≃ [0.5, 0.9); εi
min

≃ [0.1, 0.5)

Figure 16: Location of the phenotypes in the full two dimensional landscape. The behavior
of the distribution mean is shown with black markers (dotted line) and peak genotypes are
highlighted in red. Especially (d) illustrates, that high fitness genotypes are good candidates
to be fitness peaks, but are not necessarily peaks.

associated toy model in the full two dimensional landscape for di!erent map-
pings. We find, that all the sampled phenotypes ε can be described as random
deviations from the corresponding toy model φ̄ε = φ̄nω , where the distribution
depends on x.
For small x, phenotypes are found close to the toy model and our previous results
are highly useful here (see 16a and 16b). Again, peak genotypes (red markers)
are likely to be found in one layer. Otherwise, as x increases, the distribution of
phenotypes is rather broad and the toy model results do not readily apply here.
However, the topology of trade-o!-induced landscapes is found to strongly de-
pend on the choice of uniform intervals. To further investigate this, we perform
numerical simulations for various setups. In each simulation, we quantify the
number of fitness peaks in the landscape and test their accessibility.
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We will start by sampling phenotypes from equal probability distributions

ϖi
max

, ϖi
max

↔ [0.5, 0.8)

and successively reduce µ̂min with everything else, especially the interval width x,
constant. Each of these scenarios is associated with its respective toy model φ̄.
Figure 17 illustrates the mean number of peaks and the subset-superset accessi-
bility property as a function of φ̄. Both observables are averages over multiple
realizations on every setup.

Figure 17: Mean number of peaks (left) and percent of AP-fulfilling landscapes (right) as
functions of the associated trade-o!. The black dotted line indicates the fraction at which both
intervals start to overlap and it is observed that this overlap reduces the accessibility of the
landscapes.
Every point represents an average over 1000 realizations on every setup. Each setup has ωi

max
↔

[0.5, 0.8) and therefore ϱ̄ = ↑ωi
min

↓
0.65

.

In analogy to our observations on the toy model, we find that the number of
fitness peaks increases as φ̄ decreases. In this scenario, peaks tend to occur in
intermediate layers (see figure 18), rather than in the full mutant. Since interme-
diate layers contain more genotypes than periphery layers (full mutant and wild
type), more genotypes are found as peaks.

Crucially, we note that some setups violate the subset-superset accessibility
property. One can show, that the ordering of φ (37), which implies the ordering
condition on the fitness values [29], is a necessary condition for the AP to hold
(see appendix B.1 for the proof). In the context of the TIL model, (37) can be
written as ⇑i, j ↔ [0, L] : φi φj < φi.
We note, that this property can be violated if

∈j ↔ [0, L] : φj > 1 ∋ ∈j ↔ [0, L] : ϖj
min > ϖj

max
.

Hence, setups with overlapping probability distributions, i.e. distributions that
allow for such mutations, are expected to break the AP.
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The right plot in figure 17 proves this observation empirically. It indicates the re-
spective fraction φ̄, where both intervals do not overlap anymore and we observe,
that non-overlapping setups have the AP, while the accessibility of the landscape
reduces with an increasing overlap.
Similar results can be found in the Appendix B.2 for di!erent µ̂max.

Figure 18: Violin Plot of the peak genotype layer for five exemplary setups with ωi
max

↔

[0.5, 0.8) and x = 0.3. For decreasing ϱ̄ the peak genotypes tend to occur for fewer mutations
("lower" layers) and cumulated in one layer. Note, that widths of di!erent violins are not
normalized to the number of peaks and therefore cannot be compared.

As a final step, we will now increase the width of our probability distribu-
tions. According to our previous findings (figure 16) it is expected that high
fitness genotypes, especially fitness peaks, now distribute over multiple layers.
Hence, the probability of whole peak-layers decreases and we expect less peak
genotypes in the landscape (see figure 19 left plot). Furthermore, the violin plot
figure 20 supports our assumption and indicates, that fitness peaks are not ex-
clusively found in single layers.

Moreover, increasing the interval width will also increase deviations from the
associated toy model φ̄. For large enough x, both probability distributions always
overlap and therefore the general rank order of the toy model, i.e. ⇑i, j ↔ [0, L] :
φi φj < φi, is ultimately lost. Thus, edges of the fitness graph are less prone
to have a general direction and the accessibility significantly decreases (figure 19
right plot).
In summary, we find that our trade-o! landscape does not have universal negative
epistasis and does not generally fulfill the subset-superset accessibility property.
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Figure 19: Mean number of peaks (left) and percent of AP-fulfilling landscapes (right) as
functions of the associated trade-o!. Every point represents an average over 1000 realizations
on every setup. Each setup has ωmax ↔ [0.3, 1.0) and therefore ϱ̄ = ↑ωi

min
↓

0.65
.

Figure 20: Violin Plot of the peak genotype layer for five exemplary setups with ωi
max

↔ [0.3, 1)
and x = 0.7. The peak genotypes are not exclusively found in one layer anymore, but tend to
distribute in the fitness graph. Note, that widths of di!erent violins are not normalized to the
number of peaks and therefore cannot be compared.

3.3.3 On the Number of Loci

For now, we have restricted our analysis to four loci landscapes. This restriction
was arbitrary to some extent and chosen such that fitness landscapes maintain
manageable complexity. However, previous studies have shown, that the choice
of L crucially a!ects the topology of trade-o! induced landscapes, especially the
number of fitness peaks [29, 68, 69].
Furthermore, studies on inherited tolerance mechanisms have shown, that several
hundreds of genes can be related to single drug tolerance [73] and interestingly,
the number of genes associated with increased tolerance is significantly higher
than for resistance [7]. We will therefore investigate how the landscape topology
changes under increasing system size.
Recalling the definition of a fitness graph from 3.2 one notes, that the number of
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nodes (N) and edges (E) directly follow from the number of loci:

N = 2L

E = L

2 2L.

Furthermore, we find L + 1 layers, where each layer groups
(

L
n

)
genotypes that

have a total of n mutations. This is a binomial distribution and is visualized for
L = 4 and L = 7 in figure 21.
In the previous sections it was discussed to large extent that, at least for the mean
field (toy model), there exists an optimal number of mutations nopt, maximizing
the e!ective fitness. This number is fully determined by the PKPD parameters
and the mean of respective probability distributions. Notably, it does not depend
on the number of loci in the landscape and can be found as the number of muta-
tions in the peak layer of the associated toy model. We highlight the respective
optimum layer in figure 21.

Since the optimum number of mutations does not depend on the number of

Figure 21: Binomial distribution of the number of genotypes per layer of the fitness graph for
L = 4 and L = 7. The red line indicates the optimal number of mutations for an exemplary
setup with nopt = 2.
One can see that many additional genotypes in the L = 7 landscape appear far away from the
optimum layer and are thus very unlikely to become fitness peaks. However, also the number
of genotypes in the high fitness region around the optimum increases and thus we also expect
the number of peaks to increase. However, this increase is not proportional to the amount of
additional peaks.

loci, may of the additional genotypes appear in a region far away from the fitness
optimum and are thus unlikely to become peaks (see figure 21). Accordingly,
such genotypes will not contribute to the observed number of peaks npeaks in the
landscape.
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Nevertheless, also the number of nodes in the optimum layer increases, such that
more genotypes are mapped to high fitness phenotypes. The left plot in figure 22
indicates that this will also increase the absolute number of peaks found for large
systems. This increase is however not proportional to the number of additional
genotypes.

Figure 22: Left: Total number of fitness peaks as a function of L.
Right: Percent of AP-fulfilling landscapes as functions of the number of loci L.
In both plots every data point represents an average over 2000 realizations on the respective
number of loci with ωmax ↔ [0.5, 0.8) and ωmin ↔ [0.3, 0.6).

In order to compare the ruggedness of landscapes with di!erent L, we pro-
pose to normalize the number of fitness peaks by the amount of relevant genotypes
nrel(L). In the context of the ruggedness analysis, we consider those genotypes
that have a non negligible probability to become a fitness peak (see B.3 for de-
tails).
For every empirically observed number of fitness peaks (left plot of figure 22), we
compute the fraction

npeaks

nrel(L)
and visualize the result in figure 23. Interestingly, this fraction is not a constant
for di!erent L and we observe, that the relative number of peaks decreases for
larger landscapes. Accordingly, these landscapes are less rugged.

Similar to a decrease in the relative number of fitness peaks, we observe that
the accessibility decreases for larger systems.
One can show analytically, that the probability of a direct accessible path between
two general genotypes decreases with increasing topological distance if the fitness
graph is fully isotropic and the edges do not have a general direction [69].
For a binary, fully random and entropy maximizing Hamming Graph the average
distance between two random genotypes is given by:

′D∞ = L

2 .
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Figure 23: Visualization of the relative count of fitness peaks for landscapes of di!erent L.
We observe the percentage of relevant genotypes that are peaks decreases for landscapes with
a higher number of loci. Thus, even though the absolute number of peaks increases, the large
landscapes are relatively less rugged.

Hence, the accessibility from all sub-/superset genotypes becomes less likely for
large L.
This does not hold for the toy model, where edges have a general direction
with probability p = 1 and the distance between ε↑ and ε↑↑ is thus given by
D = |nε→ ↗ nε→→|.
Here, growth-death trade-o! induced fitness graphs are deviations from the toy
model ground state and the direction of any graph edges follows a Bernoulli dis-
tribution with p ↓= 0.5 in general. Hence, the average distance ′D∞ is expected
somewhere between the two extreme cases and we expect that the accessibility
of large systems decreases. This is observed in simulations and indicated in the
right plot of figure 22.
Summarizing on the structure of large fitness landscape, we have found, that
for an increased number of loci, most additional genotypes are negligible for the
analysis of the number of peaks. We have found furthermore, that the relative
number of peaks decreases and that also less realizations of the larger systems
empirically have the accessibility property.
Ultimately, we can now use our knowledge about the landscape topology to under-
stand how bacterial populations evolve under antibiotic stress and how tolerance
emerges in clonal populations.
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3.4 Tolerance Evolution in E!ective Fitness Landscapes

We discussed some basic properties of the constructed trade-o! induced fitness
landscapes in the previous sections. However, the analysis was rather technical
and we also want to address the biological picture to some extent here.
Fitness graphs are highly useful to understand evolutionary dynamics of bacteria
[69] since graph edges indicate which mutation will be beneficial and eventually
fixates. Thus, they reflect that selection would always drive a species towards
increasing fitness until a peak genotype is reached.
We model evolutionary paths with a random adaptive walk [74], selecting a ran-
dom mutation of the active genotype, which is accepted if it is beneficial and
rejected otherwise (see B.4 for the detailed algorithm).
From graph theoretical perspective, evolution from wild type (ε0) to fitness peak
(ε↑) is a non-cyclic, direct or indirect path on the fitness graph (Hamming graph).
The average length ′l∞ of such a path depends non-trivially on the system size L

and the probability distributions.
Analytical computation of such average path lengths is thus highly non trivial
for general landscapes, but we can gain some intuition again on the toy model.
Here, all evolutionary paths are direct paths of length l = nε→ , which is simply
the number of mutations in the peak layer. This increases for ↼ ↖ ⇁ (or φ̄ → 1)
and we find a step like function for the path length (figure 24 left).
Again, we can interpret the random landscape as some deviation from the toy

Figure 24: Length of evolutionary paths for the Toy Model (left) and some small perturbation
(right) as a function of ϱ̄ for L = 4. In the toy model all paths from wild type to peak genotype
are direct paths and have length nω→ , i.e. the number of mutations in the peak layer. Hence,
the average path length is a step function. For this visualization we chose ωmax = 0.7 or
ωmax ↔ [0.7, 0.8) respectively.

model and increasing the interval width x will be some perturbation on the step
like function of the average path length. In figure 24 (right) that variance is small
and the step like behavior is well preserved. However, we find that the function
overshoots the toy model result at transition regions. Since peak genotypes of the
random model can generally occur in di!erent layers, we do not necessarily have a
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whole layer of peaks as in the toy model. Hence, the probability of indirect paths
contributing to the average increases, which becomes particularly relevant at the
transition points. This result compares to the findings in [72], where evolution
to a fitness peak is generally indirect in a semi random and fully random TIL
model.
As x increases, the peak region expands to multiple layers (see figure 20), and
the contribution of indirect paths gradually becomes the dominant factor in the
average path length (see figure 25).
Interestingly, the average path length has a maximum for φ̄ < 1 and decreases
again as φ̄ → 1. In the first place, this seems rather counter intuitive, since we
expect to find fitness peaks to be the full mutant or at least some highly mutated
genotype. However, the probability of sampling non favorable mutations, i.e.
mutations with φi > 1, increases as φ̄ → 1. For the extreme case (φ̄ = 1) half of
the possible mutations have a lower fitness than the wild type and are therefore
never realized in the evolution. Hence, the fitness graph reduces to a sub graph,
where only few indirect paths contribute to the average path length.
Furthermore, the violin plots in section 3.3.2 suggest that even as φ̄ approaches
1, peaks do not necessarily appear in higher layers with increasing interval width
x. Therefore, the average path length becomes considerably shorter than the
expectation predicted by our toy model.

Figure 25: Length of evolutionary paths for ωmax ↔ [0.7, 0.9) (left) and ωmax ↔ [0.7, 1.0)
(right) as a function of ϱ̄ for L = 4. The average path length decreases with decreasing ϱ̄,
which simply follows the decreasing distance between wild type and fitness peak. Due to the
contribution of indirect paths to the average, the average path length is non monotonic and the
maximum of ′l∞ occurs for ϱ̄ < 1.

In the following, we choose φ̄ ↖ 0.7, generating well accessible landscapes (fig-
ure 17 right) and relatively long paths, which eventually reveals some insightful
dynamics. Figure 26 visualizes an exemplary path (purple) from wild type to
peak genotype in the fitness graph (left) as well as in the full two dimensional
landscape (right).
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Interestingly such paths exhibit a reproducible biphasic behavior, which has been
observed on trade-o! induced fitness landscapes before [72]. At first, simply ac-
cumulating mutations and approaching the high fitness layer drives the evolution.
Whereas in a second phase, the evolution approaches a highly rugged region in
the fitness topography. Here, reversing and adding mutations can be similarly
beneficial and thus certain non-optimal mutations revert while more beneficial
ones are added. This does not significantly change the average number of mu-
tations and we observe this as a fluctuation in the "band of maxima" [72]. This
proceeds until, eventually, a fitness peak is found.
The length of the second phase correlates with the number of realizable indirect
paths, which becomes large if many mutations are beneficial (small φ̄), peak geno-
types occur in di!erent layers (large x) and also the system size becomes large.
All these findings are combined in a last simulation (figure 27).
In order to avoid a large number of topological negligible peaks, we chose ϖmin ↔

[0.5, 0.7) and ϖmax ↔ [0.8, 1.0). Thus, single mutations do not significantly change
the phenotype and we have a large region that can be realized in the evolution.

40



3 TOLERANCE EVOLUTION IN TRADE-OFF INDUCED FITNESS
LANDSCAPE

Figure 26: Exemplary evolution from the wild type to a fitness peak (red). The genetic path
(purple) is shown on the fitness graph (left), as well as in the full two dimensional landscape
(right). The trade-o! landscape was constructed with ωmax ↔ [0.5, 0.8) and ωmin ↔ [0.3, 0.6).
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Figure 27: Evolution from the wild type to a fitness peak (red) in a landscape that favors
long paths. The genetic path (purple) is shown on the fitness graph (left), as well as in the full
two dimensional landscape (right). The trade-o! landscape with L = 7 loci was constructed
with ωmin ↔ [0.5, 0.7) and ωmax ↔ [0.8, 1.0).
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4 Stochastic Birth and Death Processes

With the first part of this work we have now introduced a fitness measure, com-
paring the performance of di!erent phenotypes under periodic antibiotic stress.
In the context of such dosing protocols, featuring a death and some regrowth
regime, we were able to show that certain tolerance mechanisms are beneficial.
Using Regoes idea of Hill Type dose-response curves (5) together with an ex-
ponential dosing profile, we derived a fitness function of a time inhomogeneous
treatment, that remains reasonably well interpretable.
However, it is important to emphasize that the e!ective fitness is a determinis-
tic mean field description of the time dependent population size N(t) after one
period. It is therefore expected to be an exact measure in the limit of large pop-
ulations, but it is not capable to capture the dynamics within a treatment period
(see figure 28), any random deviations from the mean and, most importantly,
extinction events.
Our e!ective fitness framework stands in contrast to the intrinsic stochasticity of
biological mechanisms, particularly those related to growth and death. We are
therefore interested in finding a more realistic description of the population size
under periodic treatment, which accounts for growth and death as two separated
stochastic processes.
Building up on Kendall’s birth and death model [30], we motivate the description
of the stochastic replication process in terms of the time evolution of the prob-
ability mass function Pn(t). Assuming, that the populations have the Markov
property, we show that this is given by the master equation and furthermore mo-
tivate a convenient description of the appearing transition rates.
Within this stochastic framework we compute the time dependent survival prob-
ability for one period of antibiotic treatment and compare analytic predictions to
numerical Gillespie simulations.
We demonstrate that the stochastic model converges to the previously discussed
mean-field description, i.e. the e!ective fitness, in the limit of large populations.
In contrast, extinction events in small populations are not captured by the de-
terministic model (figure 28). As a result, the survival probability becomes a
distinct feature of the stochastic framework, providing a second, complementary
measure of success under antibiotic treatment.
In the context of clinical treatment, eradication of pathogenic bacteria remains
the ultimate goal. Using our stochastic model, we ultimately investigate whether
a tolerant mutant can rescue a whole population from extinction and potentially
threaten the treatment success.
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Figure 28: The e!ective fitness captures change of the population size after one period of
antibiotic treatment. The death and regrowth character (dotted line), emerging from a time
dependent dosing protocol, is not captured by solution that is predicted from the e!ective fit-
ness (solid line).
Furthermore, the deterministic model describes the population size as a continuous variable,
where N = 0 (extinction) is never reached. In principle, we can demand that a population is
extinct, whenever N < 1, which, however, seems suboptimal since regrowth from extinction
cannot be excluded (see period 6 & 7 of the dotted line).
Furthermore, stochastic deviations from the mean can significantly influence the time of extinc-
tion, which makes a stochastic description inevitable.

4.1 The General Birth and Death Process

In his pioneer work on a stochastic description of population growth, Kendall [30]
introduced a formulation for the general birth and death process. Given a value-
discrete time dependent random variable nt, which we interpret as population
size, the birth and death process allows for three possible transitions within a
time increment dt:

Birth: nt+dt = nt + 1

Death: nt+dt = nt ↗ 1

None: nt+dt = nt
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Together with the respective transition probabilities:

pBirth = g(t) nt dt + O(dt)

pDeath = d(t) nt dt + O(dt)

pNone = 1 ↗ (g(t) + d(t)) nt dt + O(dt)

this defines the general stochastic birth and death process [30, 31]. We interpret
g and d as growth and death rates respectively.
This is a Markov process and we can write the Master equation for the probability
distribution [30]:

dPn

dt
= g (n ↗ 1) Pn→1 + d (n + 1) Pn+1 ↗ (g + d) n Pn. (38)

The random variable nt is non-negative and the state nt = 0 is an absorbing state
of the system. Accordingly, the equation above describes the system for nt ⇒ 1
and we have

dP0

dt
= d P1 (39)

as a second equation for the time evolution of the absorbing state.
For the general birth and death process, both rates g and d can generally be any
function of time and environment, where typical environmental factors are the
presence of antibiotics or other individuals in a population. Species interactions
are found to have a significant impact on the competition [75, 76, 77, 78] and
it is typically assumed that either the birth- or death rate are functions of the
population size (birth- or death competition) [33].
The phenomenon of stress due to competition in a living population appears
naturally and can be found in all kinds of interacting communities [76]. However,
in the context of bacteria, we can also apply additional external stress with the
supply of antibiotics at a certain concentration. Again we can distinguish two
modes of action: biostatic- and biocidal treatment. A biostatic drugs is a growth
inhibiting antimicrobial, reducing the birth rate g, whereas biocidal drugs increase
the death rate d [33].
In this work, we aim to analyze the stochastic birth and death process of bacteria
that are exposed to a time dependent periodic antibiotic stress. In combination
with the general size and time dependency of the g and d, solving (38) and (39)
is a hard problem.
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A general solution was presented by Kendall [30] and is known as:

P0(t) = ξt (40)

Pn(t) = {1 ↗ P0(t)} (1 ↗ εt) εn→1

t for n ⇒ 1 (41)

where

ξt = 1 ↗
e→⇀

W (t) (42)

εt = 1 ↗
1

W (t) (43)

with

▷(t) =
∫ t

0

{d(t↑) ↗ g(t↑)} dt↑ (44)

W = e→⇀


1 +
∫ t

0

e⇀(ϑ)d(ε) dε


. (45)

The latter becomes intractable for an exponential concentration profile together
with hill shaped replication rates.

4.2 The Simple and Homogeneous Birth and Death Pro-
cess

The underlying complexity of the general birth–death process arises from the
rates g and d, which are, in general, functions of time and the environment.
However, this complexity can be significantly reduced if we treat both rates as
constant and homogeneous in the population. This is known as the simple birth
and death process [30].
In this specific case, an exact solution of the master equation is known. Here,
we will only sketch the derivation, but more detailed explanations, also on other
birth-death processes, can be found in Chapter 8 of Baileys book[31].
Using the probability generating function

G(z, t) =
↔

n=0

Pn(t)zn

we can write the master equation (38) and (39) as a partial di!erential equation
of G:

↽G

↽t
= [g z (z ↗ 1) + d (z ↗ 1)] ↽G

↽z
. (46)
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We can solve this equation by the method of characteristics and obtain

G(z, t) =
(

d f(z, t) ↗ 1
g f(z, t) ↗ 1

)n0

(47)

where n0 is the population size at time t = 0 and

f(z, t) = (z ↗ 1)e(g→d) t

g z ↗ d
.

Ultimately, we obtain the desired probability distribution Pn(t) from the series
expansion of (47) in powers of z [31]:

Pn(t) =
min(n0,n)

j=0

(
n0

j

)(
n0 + n ↗ j ↗ 1

n0 ↗ 1

)

⇀(t)n0→j ▷(t)n→j (1 ↗ ⇀(t) ↗ ▷(t))j (48)

P0(t) = ⇀n0 (49)

with the two functions

⇀(t) =
d

(
e(g→d) t

↗ 1
)

g e(g→d) t ↗ d
(50)

▷(t) =
g

(
e(g→d) t

↗ 1
)

g e(g→d) t ↗ d
. (51)

Notably, we obtained a manageable expression for the extinction probability
P0(t), which we proceed to discuss briefly.
One can readily verify that ⇀(t) < 1 for all t, g, d > 0, implying that the extinc-
tion probability decays exponentially with the initial population size n0. This
result is consistent with expectations for a simple homogeneous birth–death pro-
cess, where interactions between individuals are absent. In such a scenario, the
whole population can be described as n0 independent and identical birth–death
processes, which makes the individual extinction events multiplicative.
Furthermore, we observe that the extinction probability converges for long times
[31], as

lim
t↓↔

⇀(t) =






1 for g ↘ d

d
g for g > d

. (52)

Figure 29 illustrates how the extinction probability varies with time and the ini-
tial population size. This result will be further reviewed in numerical simulations
later (see section 6). Additionally, the time evolution of the full probability dis-
tribution is briefly discussed in the Appendix D.
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Figure 29: Visualization of the extinction probability for three fundamental scenarios.
Left: Extinction probability as a function of initial population size at t = 2. One observes that
the extinction probability decreases exponentially in n0, where the slope corresponds to the
logarithm of ↽.
Right: Extinction probability as a function of time for n0 = 5. In both cases where g ↘ d, the
system ultimately converges to P (n = 0) = 1, indicating certain extinction. In contrast, when
g > d, the extinction probability remains small but, notably, greater than zero.

At this stage, it is important to emphasize once again that the results pre-
sented in this section are valid only under the assumption of constant birth and
death rates. Consequently, additional work is required to adapt these results to
our case, where the rates g and d vary over time due to the periodic antibiotic
concentration profile.
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5 The Stochastic Model of Periodic Treatment

We start our stochastic analysis, rewriting the very first equation (1) of this work:

dN

dt
= (g ↗ d) N ↗ ϱ(c) N. (53)

Here, we describe the e!ect of the antibiotic with the function ϱ(c), which corre-
sponds to the previously defined dose–response curve [33, 79]. In contrast to the
previous approach, growth, death and antibiotic e!ect are now treated as three
distinct parameters, rather than considering only the net replication rate.
However, except for the summation over the distinct rates, the model described
by (53) is equivalent to Regoes di!erential equation (3). The new parameter ϱ is
closely related to Regoes dose-response curve ϖ(c) (shift by a constant g ↗ d) and
now contains all the concentration dependence of the model. Note that ϱ also
has units of time→1 and can be interpreted as a third, additive stochastic rate
additionally to g and d.

5.1 Biostatic and Biocidal Interpretation of ϱ

We consider here, that the antibiotic e!ect is additive (as in [33]), but multi-
plicative e!ects are also considered in other studies [79]. From the equation (53)
we note, that the e!ect of the antibiotic can be interpreted as either growth
inhibiting:

g → g ↗ ϱ

d → d (54)

or death promoting:

g → g

d → d + ϱ. (55)

In the deterministic description of population size, both modes of action are
equivalent, as only the sum of all rates determines the overall replication rate.
Thus, the e!ective fitness is universal to biostatic and biocidal drugs.
In contrast, the stochastic model explicitly distinguishes between growth and
death processes. This distinction changes the dynamics within one period of
treatment and thus also the chance of surviving one dose of the respective drug
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action. We will further explore this in section 5.4 and 6.
Experimentally, the di!erence between the two modes of action is well moti-
vated by the existence of biostatic (growth inhibiting) drugs like tetracycline or
erythromycin, and biocidal (death promoting) drugs like ciprofloxacin or strep-
tomycin [33]. The nowadays most prescribed drugs, the !-lactam antibiotics [80]
are associated to the biocidal category [81].

5.2 Pharmacokinetics and Pharmacodynamics in the Stochas-
tic Model

We have now motivated, that a stochastic model considers all rates g, d and ϱ

instead of just the sum of all rates. Since the natural growth and death rate
are assumed to be constant for a given phenotype, the only dose dependence is
depicted by the stress response ϱ(c). In accordance with our previous discussion,
this is given by the shifted Hill-Type dose-response curve

ϱHill(c(t)) = ϱmax

(
c(t)

MIC

)ω

(
c(t)

MIC

)ω
↗

⇁max

g→d + 1
. (56)

which is readily obtained from (5), by subtracting ϖmax, inverting the sign (be-
cause ϱ is a positive rate) and identifying

ϖmax = g ↗ d (57)

ϖmin = g ↗ d ↗ ϱmax. (58)

In this representation ϱmax is the e!ect of the antibiotic at infinite concentration.
The value of ϱ has an upper bound for biostatic drugs, since full growth inhibition
(g ↗ ϱmax = 0) is the best possible treatment. We thus have 0 ↘ ϱmax ↘ g here,
whereas biocidal drugs can in principle have any value ϱmax ⇒ 0.
Given the exponentially decaying pharamacokinetics (PK) (10) and the explicit
pharmacodynamic (PD) function (56), the equations (44) and (45) are fully deter-
mined. Ultimately, this yields the full probability distribution (41), and thereby
also the extinction probability P0 of a general phenotype at time t.
Unfortunately, the resulting integral in (45) is analytically intractable for our
PKPD model.
In a related study, Alexander [54] examines the extinction probability of a single
individual in the limit of long treatment durations (t → ↑) for the same PKPD
protocol. However, the resulting expression, which involves hypergeometric func-
tions, does not accurately describe the survival probability for finite, potentially
very small (t < ε) timescales. Here, we want to focus on finding an expression for
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Figure 30: The new pharmacodynamic function ⇀(c) in the Hill model (blue) and in the step
function limit (black). For the step function, the complex concentration dependency reduces
to two regimes, where ⇀(c) is constant.

the probability of extinction or establishment on timescales of one treatment pe-
riod. The result on the long time establishment is briefly revisited in section 8.2.3.

In order to obtain some analytical insight on the probability distribution Pn(t),
we will consider the limit of infinitely steep dose-response curves (ϑ → ↑). Such
an approximation is well motivated by empirical observations on dose-response
curves of !-lactam antibiotics [82].
In this limit, ϱ(c) becomes a step function:

ϱ(c) =






0 for c ↘ MIC

ϱmax for c > MIC
(59)

and the previously complex time dependency is now captured in ε and tmic, i.e.
the period length and the time at which the concentration drops to the MIC. Fig-
ure 30 illustrates ϱ(c(t)) and we will refer to this PKPD model in the following,
if not stated otherwise.

Similar to the Hill model equivalence before, the step function ϱ relates to
the step function dose-response curve ϖstep by a shift of ↗ϖmax and respecting the
opposite sign.
The results on ϖstep were previously discussed in section 2.4.2 and appendix C.1
and we will compare our stochastic analysis to the deterministic limit later (see
6.4). Therefore, we now aim to derive the probability that a phenotype with a
step function ϱ(c) survives one period of biostatic or biocidal antibiotic treat-
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ment. Additionally to the e!ective fitness, this will introduce a second measure
to compare the performance of a phenotype exposed to antibiotic stress.

5.3 The Interpretation of Tolerance in the Stochastic Model

Similar to the e!ective fitness, the survival probability provides a single scalar
measure that quantifies the performance of a bacterial strain, allowing for direct
comparison between phenotypes. For the purpose of this work, we are particu-
larly interested to investigate, how the survival probability of a tolerant mutant
compares to the wild type.
Following the definition of [7] we interpret Tolerance as a transient reduction in
the death rate at high antibiotic concentrations. Furthermore, we discussed in
section 2.5 that such a tolerance response typically comes with a cost in the null
fitness [39, 56]. Previously the tolerance trade-o! was modeled as simultaneous,
random reduction of ϖmin and ϖmax in the genotypic TIL-Model. Both of these
parameters do not occur in our stochastic formulation. However, we can find a
similar interpretation of the trade-o! here.

Tolerant strains are, by definition, less susceptible to an antimicrobial agent
at high concentration [7]. Since the antibiotic response is essentially reflected
by a single scalar parameter within our step function DRC, we can understand
tolerance as a reduction of the maximum drug e!ect ϱmax.
Furthermore we assume, that the natural death rate d is a constant for all phe-
notypes and that only the natural growth rate g alternates. Thus, we can model
the tolerance trade-o! as a simultaneous reduction of the antibiotic susceptibility
ϱmax and the growth rate g, which is empirically meaningful [25, 26, 27, 28].
We will see later, that tolerance increases the survival probability (section 5.5)
and, moreover, that a tolerant mutant can rescue a wild type population from
extinction (section 7).

Using a survival probability topography, one could in principle repeat a TIL-
model analysis for the two phenotypes ϱmax and g now. However, this would not
be very insightful and we want restrict our focus to two phenotypes: the wild type
and a tolerant mutant. These two strains are further defined in the following.

5.4 The Survival Probability Within a Single Treatment
Period

With the simple but justified assumption of a step like antibiotic e!ect, we have
now heavily reduced the time induced complexity of our stochastic model. How-
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ever, the assumption of population homogeneity in section 4.2 is not yet motivated
here.
In fact, if we are only interested in the survival probability and independence of
all birth-death processes is guaranteed, we do not have to assume any homogene-
ity in the population. Considering a population of size n with M ↘ n distinct
phenotypes of subpopulation sizes nm (m ↔ {1, M}), the survival probability of
the whole population is give as:

Psurv(t) = 1 ↗


m

P0(t|nM). (60)

Since the simple and homogeneous birth-death process is known from section 6,
equation (60) can be readily evaluated. However, it is crucial to justify the fun-
damental premise of independence, which was also required in the derivation of
the results (48) and (49).

Interactions between microbes are frequently observed and exhibit interesting
phenomena [64, 75, 83]. Particularly for !-lactam antibiotics, collective dynamics
fundamentally influence the antibiotic treatment [84], which cannot be covered in
this work. However, any form of interaction depends upon the presence of other
individuals to interact with and collective dynamics will be less expressed, if the
population density is small.
Mathematically, we already have a fitness measure for the deterministic (large
population) limit and furthermore find that that the survival probability increases
geometrically in the population size. Clinically interesting phenomena, such as
extinction or rescue events, thus emerge for small colonies. We therefore focus
on this limit in the following analysis, justifying the assumption of independent
stochastic replication of the bacteria.
We have seen that a general solution (60) of the population survival probability
readily follows from the results of homogeneous subpopulations. We will therefore
focus on the analysis of independent, homogeneous populations of size n0 with
rates g, d and step like ϱ(c), i.e. we omit the index m.
We have now motivated to apply our known results from the simple birth and
death process (equation (48) and (49)), to estimate the survival probability for
one period of antibiotic treatment.
The full time dependency of the system is described by the step function ϱ(c(t))
(59), which has a single discontinuity at the MIC and is constant otherwise.
Hence, the time

tMIC = ln (C)
ω
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at which the antibiotic concentration drops to the MIC together with the period
length ε are the two important timescales of the stochastic model.

First, we consider a scenario where ε ↘ tMIC, which is that the concen-
tration never falls below the MIC. This describes a stochastic birth-death process
with time independent rates g, d and ϱ. Thus, (48) and (49) are the analytically
exact results for the size distribution and the survival probability. Distinguishing
the modes of action, we have

P (>)

surv
(ε) = 1 ↗




d

(
e(g→d→⇁max) ϑ

↗ 1
)

(g ↗ ϱmax) e(g→d→⇁max) ϑ ↗ d




n0

(61)

for biostatic treatment and

P (>)

surv
(ε) = 1 ↗




(d + ϱmax)

(
e(g→d→⇁max) ϑ

↗ 1
)

g e(g→d→⇁max) ϑ ↗ d ↗ ϱmax




n0

(62)

in the biocidal case. Here, the (>) superscript indicates that the solution describes
"greater than MIC" conditions. Vice versa, (<) superscripts will describe "lower
than MIC" concentrations in the following.
One can prove, that for ϱ > 0, the expression (62) is always smaller than (61)
(see appendix E.1) which is a first insight on the e!ect of the mode of action.
In order to illustrate the result, we will now choose some default parameters now,
which we refer to as the reference or wild type strain in the following. For this
strain we choose the natural rates g = 1 and d = 0.3 and the maximum e!ect of
the antibiotic as ϱmax = 0.9. Furthermore, if not stated otherwise, we will always
set our initial population to n0 = 10. Figure 31 illustrates this result for both
drug modes for the introduced reference strain.
It is already very insightful to note that the treatment e"cacy depends on the
type of antibiotic, since this was not predicted by the e!ective fitness. However,
we can also find a far more general result. If we consider some agent that has the
exact opposite e!ect of the antibiotic (negative ϱ) and demand that g > d, we
find that

P cidal
surv

> P static
surv

which is exactly the opposite as before. This relation is proven in appendix
E.2. We can thus argue, that for any homogeneous bacterial population, that
is described by the simple birth and death process with g > d, a change in the
death rate will always have a greater impact than an equivalent change in the
growth rate.
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5 THE STOCHASTIC MODEL OF PERIODIC TREATMENT

Figure 31: Survival Probability as a function of time for the "greater than MIC" regime, a
positive ⇀ (antibiotic agent) and n0 = 10. It is observed, that P cidal

surv
< P static

surv
for ϑ > 0,

but both curves eventually converge to zero for our reference strain with g = 1, d = 0.3 and
⇀max = 0.9. This convergence was already found in the discussion of the simple birth-death
process (equation (52).

This argument already hints at the antibiotic tolerance discussion, which we
proceed in section 7.

Considering ε ⇒ tMIC now, we cannot directly apply the birth death result,
since the stochastic rate ϱ changes during the treatment. However, the step
function separates the period into two separated regimes where the assumptions
of the simple birth-death process hold. Accordingly, the total survival probability
has the structure:

Psurv(ε) = 1↗P [ext. in first phase]↗P [surv. in first phase] P [Ext. in second phase]

where the first phase corresponds to the regime above the MIC, and the second
to the regime below it.
Again the first term is obtained directly from the simple birth-death process and
we are left with finding an expression for the extinction probability in the second
phase.
After time t = tMIC, the size distribution P (>)

n (tMIC, n0) is given by (48) and thus
the extinction probability in the second phase writes as:

P (<)

ext (ε ↗ tMIC) =


nMIC

P (<)

0 (ε ↗ tMIC, nMIC) P (>)

nMIC
(tMIC, n0) (63)

=


nMIC




d

(
e(g→d) (ϑ→tMIC)

↗ 1
)

g e(g→d) (ϑ→tMIC) ↗ d




nMIC

P (>)

n (tMIC, n0) (64)

55



5 THE STOCHASTIC MODEL OF PERIODIC TREATMENT

which is the probability that nMIC individuals have survived the first phase and
go extinct until the end of treatment.
Combining (61)/(62) and (64), we obtain a closed form for the survival probability
if ε > tMIC:

Psurv(ε) = 1 ↗ Pext(ε) (65)

Psurv(ε) = 1 ↗

[
P (>)

ext (tMIC) + P (<)

ext (ε ↗ tMIC)
]

. (66)

With this, we have found an exact expression for the survival probability as
a function of the period length ε .
However, the evaluation of (66) requires to determine the full probability distri-
bution at time t = tMIC, i.e. infinitely many computations of the sum in (48).
Here, we will only consider the first k values of the probability mass function
Pn(tMIC) such that:

k

n

Pn(tMIC) ⇒ ε

where ε ↘ 1 is some threshold value. If not stated otherwise, we will set ε = 0.95.
Apart from the repetitive sum evaluation, even the computation of a single value
Pn(tMIC) becomes computationally unfeasible if n or n0 become large. But since
we are interested in small populations, that e!ectively die when t < tMIC, our
setup inherently avoids this problem. Hence, evaluating (48) k times is feasible
here.
The result for the wild type is shown in figure 32, again for both modes of action.
Additionally to the pharmacodynamic parameters (g, d, ϱ), we have to assume a
specific pharmacokinetic profile for this visualization. Here, we chose C = cmax

MIC =
15, ω = 0.7 time→1 and therefore

tmic = ln(C)
ω

= 3.87 a.u.

which is approximately at two thirds of the whole treatment period ε = 6 a.u..

5.5 The Survival Probability of Tolerant Mutants

The deterministic part of this work revealed, that distinct tolerance mutations
increase the e!ective fitness. However, a crucial result of the biologically relevant
trade-o! model was, that tolerance is beneficial, only if the fraction φ = εmin

εmax

decreases. Here, we find a comparable result for the survival probability.
It has proven to be useful, to visualize the quantity of interest in a two dimensional
topography of the tolerance phenotypes. In the stochastic model, these are the
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5 THE STOCHASTIC MODEL OF PERIODIC TREATMENT

Figure 32: Survival Probability of n0 = 10 wild type bacteria as a function of time for the
full period. The time where the MIC is reached by the concentration profile is indicated by
the grey dots. It is again observed, that P cidal

surv
< P static

surv
for ϑ > 0. However, since we have

g > d in the second phase, the ϑ → ↑ limit of the survival probability in the second phase is
1 ↗

(
d
g

)nmic

(by equation (52)). Essentially this limit is greater than zero.

growth rate g and the antibiotic susceptibility ϱmax.
For every possible pair of phenotypes we compute the survival probability at the
end of one complete treatment period (ε = 6 t.u.) and visualize the result in a
heat-map (figure 33).

Figure 33: Heat maps of the survival probability for the tolerance trade-o! phenotypes in the
stochastic model (g and ⇀max). The survival probability is computed for initial population sizes
of N0 = 10 for the previously introduced PKPD model.
Left: Biostatic treatment. The upper triangular, where ⇀max > g, is neglected, since full growth
inhibition is the best possible treatment.
Right: Biocidal treatment.
A comparison of key structural features in the landscape (such as the diagonal) indicates both
quantitative and also qualitative di!erences between the two modes of action.

Unlike for the (normalized) e!ective fitness (figure 5), it is observed, that
the survival probability of phenotypes with equal fraction ⇁max

g does not linearly
relate. This observation becomes even more expressed, if we look at prolonged
period times, here ε = 20 t.u., in figure 34.
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5 THE STOCHASTIC MODEL OF PERIODIC TREATMENT

Figure 34: Heat maps of the survival probability for the tolerance trade-o! phenotypes in
the stochastic model (g and ⇀max). The survival probability is computed for initial population
sizes of N0 = 10 for a prolonged period time (ϑ = 20 t.u.). Other PKPD parameters remain
unchanged.
Left: Biostatic treatment. The upper triangular, where ⇀max > g, is again neglected, since full
growth inhibition is the best possible treatment.
Right: Biocidal treatment.
It is clearly observed, that the survival probability is not a constant for εmax

g = const. here.

However, this modified setup reveals, that the survival probability is a con-
stant for some concave function ϱmax(g) with d

dg ϱmax > 1. Thus, in terms of
the survival probability, a beneficial tolerant mutant has to increase its selective
advantage (smaller ϱmax) faster than linear in the cost (smaller g).
Here we choose g(tol) = 0.7 time→1 and ϱ(tol)

max
= 0.4 time→1 while keeping the other

PKPD parameters, especially also the death rate d(tol) similar to the wild type .
Repeating the survival probability analysis for the tolerant strain indicates, that
tolerance is beneficial irrespective of the antibiotic mode of action (figure 35).

Figure 35: Survival Probability as a function of the period time ϑ for the wild type and
the tolerant mutant. For both modes of antibiotic action, tolerance increases the survival
probability significantly. The grey dots indicate the transition from the super- to the sub-MIC
regime.
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6 NUMERICAL SIMULATION OF PERIODIC TREATMENT

6 Numerical Simulation of Periodic Treatment

In the previous section, we introduced the survival probability as an additional
measure on some phenotype, to define its performance for one period of antibiotic
stress. Assuming a mathematically modest step function dose-response curve, we
were able to derive some insightful analytic results and showed that the type
of antibiotic, as well as the bacterial phenotype, heavily influence the chance of
survival.
In the following, we compare our previous findings to stochastic simulations. Us-
ing the well established Gillespie Algorithm [32] to implement time dependent
population updates, we first verify our analytic results on the survival probabil-
ity.
Later, we compare the stochastic model also to the e!ective fitness. Using large
scale simulations, we show, that the deterministic description of a bacterial pop-
ulation becomes meaningful, when stochastic fluctuations are negligible.
Ultimately, by implementing a multi-genotype model, where we allow for mu-
tations between the bacterial strains, we analyze how antibiotic tolerance can
rescue a bacterial population from extinction.

6.1 Remarks on Competition

In section 5.4 we motivated, that any form of interaction between individuals is
negligible, if population sizes are small. And we further derived an expression for
the survival probability, if complete independence is guaranteed.
Therefore, we are interested to find an algorithm that is capable of describing
extinction events for e!ectively independently replicating bacteria. However, we
are eventually also interested to model rescue through tolerance evolution (sec-
tion 7).
If we were to assume complete independence among individuals, the rescuing
strain, having a positive e!ective fitness, would grow unbounded over time. This
not only poses computational challenges but also deviates significantly from bi-
ological reality, since competition for resources, for example space or nutrients,
leads to logistic growth dynamics [33].
Therefore, we introduce an additional quantity K, the carrying capacity, in our
numerical simulations. If not stated otherwise, we will assume that the competi-
tion a!ects the growth rate only (birth competition) and set K = 10000. Hence,
the growth rate reads as:

gcomp = g
(

1 ↗
N

K

)
.
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For populations of size N0 = 10, that we analyzed in section 5.4, the deviation
in the growth rate is ↖ 0.1 % and the assumption of e!ective independence still
holds.
In the following, we will immediately drop the subscript ’comp’ again and always
talk about g as the birth competition growth rate.

6.2 The Gillespie Algorithm

We use the Gillespie Algorithm [32] to model the stochastic population turnover
of our periodic antibiotic treatment. This algorithm is exact for a continuous
time process and capable of describing for example the number of bacteria Ni(t)
of species i at time t. The birth and death process application has already been
explored in previous studies [33] and we will modify the algorithm to simulate
the periodic antibiotic dosing.
The most general system that is considered here includes two strains, a wild type
(wt) and a tolerant mutant (tol), where mutations are assumed to occur only at
birth events of the wt, where one of its o!spring becomes a tol with probability
qmut.
Accordingly, we define ktot as the sum of all possible transition rates at time t:

ktot(t) = (gwt(t) (1 ↗ qmut) + dwt(t))Nwt︸  
wt turnover

+ (gtol(t) + dtol(t))Ntol︸  
tol turnover

+ (gwt(t) qmut))Nwt︸  
wt mutation

.

Furthermore, we define tend the end of treatment, which is in general di!erent
from the period length ε .
Starting with some initial population size N0 = (N (wt)

0 , N (tol)
0 ) at t = 0, we can

iteratively update the size and time.
In each of these steps, we compute the growth and death rates of both subpop-
ulations, according to equations (54), (55) and (59) for the respective mode of
antibiotic action. Dividing these rates by the sum ktot defines probabilities of the
respective events. Note, that the birth of the wild type is separated into simple
replication and mutation.
In one Gillespie-Step the next event is drawn from a uniform distribution with
the according probabilities and the time increases by ”t △ exp( 1

ktot

). The birth,
death or mutation event only executes if the environment is stable, i.e. when

mod (t, ε) < tMIC and mod (t + ”t, ε) ↘ tMIC

or

mod (t, ε) ⇒ tMIC and mod (t + ”t, ε) ↘ ε.
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6 NUMERICAL SIMULATION OF PERIODIC TREATMENT

Figure 36: Survival Probability as a function of the period time ϑ for the wild type and the
tolerant mutant. Numerical results are visualized as dots around the theoretical expectation
(solid lines). The grey dots indicate the transition from the super- to the sub-MIC regime.
In all cases, the numerical and analytical results are in good agreement.

With the new time and population size, the update steps are repeated until the
time has reached the end of treatment tend.

6.3 Comparison of Simulations and the Survival Proba-
bility

In a first experiment, we want to quantify the survival probability in Gillespie
simulations and compare to previous results. Accordingly, we choose tend = ε for
now. Moreover, since we are only interested in comparing homogeneous wt and
tol populations here, we set the mutation probability to zero.
Running 2000 replicates of the respective wt and tol Gillespie simulation, we
can check if any bacteria have survived after time ε and compute the numerical
survival probability as the arithmetic mean. Figure 36 summarizes the results for
our previously introduces PKPD model and compares the empirical mean to the
previous theoretical results from figure 35. We observe, that our numerical data
is well described by the analytic predictions, validating our calculations and the
Gillespie simulation.

6.4 Comparison of Simulations and the E!ective Fitness

Until now, our stochastic model has focused on analyzing a single treatment
period. We have shown, that results from the stochastic simulations are well
described by the analytic results and found the survival probability as a useful
quantity to describe how tolerance is beneficial. However, stochastic simulations
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over multiple periods are not yet discussed and will be the focus of this section.
Moving away from the single period timescale, we are left with the e!ective fitness
as our performance measure and we have to compare Gillespie simulations to the
deterministic prediction.
We expect that stochastic deviations from the mean-field e!ective fitness descrip-
tion are important for small population sizes, particularly in the description of
extinction events. However, these fluctuations are negligible in the limit N → ↑.
Thus, the Gillespie simulations are well predicted by the e!ective fitness, if the
population size is large.
For the previously introduces reference strain, we can compute the e!ective fit-
ness in the step function limit from equation (22), where we have ϖmax and ϖmin

by (57) & (58). For initial population sizes N0 = 10000 and N0 = 100, figure
37 visualizes the e!ective decrease in the wild type population for multiple treat-
ment cycles. Note, that for this visualization we increased the carrying capacity
to K = 107 to neglect deviations from competition.

Figure 37: Time evolution of a wild type population of initial size N0 = 100 (left) and
N0 = 10000 (right). A single replicate of a Gillespie simulation (blue dots) is shown together
with the mean field expectation from the e!ective fitness (solid blue).
For large populations this mean field approximation is meaningful to describe the stochastic
turnover of a bacterial population. However, for small populations stochastic fluctuations are
relevant and the e!ective fitness fails to reliably describe the time evolution of the population
size.

We observe, that Gillespie simulations follow the mean-field predictions for
large populations, but significant deviations occur as the population size becomes
smaller. Without further investigation, we have claimed, that our deterministic
model does not describe small populations phenomena, such as extinction events,
in a meaningful way. This is now ultimately proven here and justifies our discus-
sion of a stochastic performance measure.
However, the mean field description becomes useful again, once we are interested
in averages. For 500 replicates of a wild type simulation, we compute the average
population size as a function of time for N0 = 100 and N0 = 10000. Figure 38
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illustrates, that the average and the e!ective fitness prediction align nicely.

Figure 38: Mean time evolution of 500 wild type populations of initial size N0 = 100 (left)
and N0 = 10000 (right). The average of all Gillespie simulations (blue dots) is shown together
with the mean field expectation from the e!ective fitness (solid blue).
Comparing the results to figure 37, it is readily observed, that the deterministic prediction of
the e!ective fitness well describes the average population size, particularly also for smaller N0.
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7 Population Rescue Through Antibiotic Toler-
ance

For the last part of this work we will move away from the analysis of clonal
homogeneous bacterial populations and briefly discuss a more realistic scenario.
We assume now, that our population consists of two phenotypes, a wild type and
a tolerant mutant, which will be the same as in the previous section.
Assuming, that cell-cell interactions are still negligible, we can readily conclude
form the multiplicative structure of the survival probability, that

P (wt)
surv

< P (mixed)

surv
< P (tol)

surv

holds. The presence of tolerant mutants is thus always beneficial for a wild type
population.
However, the clinically relevant question, if tolerance can save a bacterial popu-
lation from extinction and eventually evade the antibiotic treatment is yet unan-
swered. This question defines a typical rescue scenario, which is a central concern
in evolutionary biology [34, 35].
We can readily check for the previously introduced tolerant mutant, that

!(wt)
Step

< 0 < !(tol)
Step

.

holds for the e!ective fitness. Thus, a homogeneous wild type population will
eventually go extinct for t → ↑, while a tolerant population grows to the carry-
ing capacity, once it has established.
Using Gillespie simulations, we quantify this establishment probability of a tol-
erant mutant numerically in two distinct scenarios: (1) Rescue through standing
genetic variation without mutation and (2) rescue through de novo mutation.

7.1 Standing Genetic Variation

It has been shown in various studies, that standing genetic variation increases
the probability of resistance establishment in suddenly changing environments
[85, 86, 87]. Here, we analyze a similar scenario for antibiotic tolerance. We show
that initial heterogeneity in the population can prevent extinction, even if the
initial frequency of tolerant mutants is small.
For population sizes of N0 = 100 with di!erent initial frequencies, we ask if the
whole population has survived after 50 periods of antibiotic treatment. If so, the
population counts as rescued. Otherwise it has gone extinct.
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Figure 39: Time evolution of the population size for a heterogeneous population with
N (wt)

0
= 95 and N (wt)

0
= 5. The pharmacokinetic parameters remain unchanged, such that

ϑ = 6 and tMIC ↖ 3.87 a.u.
Left: The tolerant subpopulation survives at initially small size and establishes in the popula-
tion.
Right: Both subpopulation eventually go extinct.
Both figures present a single Gillespie simulation of a 5% tolerant population under biostatic
treatment. Note the di!erent scales in the two panels.

The two scenarios are visualized in figure 39.

We repeat these Gillespie simulations for di!erent frequencies of the tolerant
mutant in a mixed population of N0 = 100 and evaluate the establishment prob-
ability numerically from 500 equivalent repetitions. A population is considered
to be established, if it survived until t = 50 ε , otherwise it has gone extinct at
previous time t < 50 ε . In the following, the probability of establishment is also
called ’rescue probability’.
This quantity is now capable to measure the probability that clinical treatment
fails after multiple drug applications, due to the presence of a tolerant mutant.
Since the wild type eventually goes extinct by construction of the problem, the
rescue probability crucially depends on the dynamics of the tolerant subpopula-
tion (see figure 39). If the subpopulation goes extinct in the beginning of the
treatment, the rescue probability is zero in the absence of de novo mutations.
Hence, the rescue probability crucially depends on the survival probability in the
first treatment period, where the subpopulation size is small.
However, the extinction probability remains nonzero afterwards and thus several
subsequent treatment periods contribute to the chance of long term rescue. The
probability of these further extinction events crucially depends on the time for
which the tolerant subpopulation remains small, which was termed the time at
high risk by Gomulkiewicz and Holt [35]. The right plot in Figure 39 illustrates
a case where the tolerant subpopulation becomes extinct during the second drug
application.
Accordingly, the probability of rescue increases when the tolerant mutant reaches
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Figure 40: Comparison of the rescue probability (crossed markers) to the survival probability
of the respective tolerant strain for biostatic (left) and biocidal (right) treatment. Additionally
to our tolerant mutant (⇀max = 0.4)), we illustrate a further rescue scenario with an enhanced
tolerant mutant (⇀max = 0.2).
We observe that for the mutant with ⇀max = 0.4, the rescue probability deviates significantly
from the survival probability, indicating that late-stage extinction events play a non-negligible
role. However, as the e!ective fitness of the tolerant strain increases, the single-period survival
probability provides an increasingly accurate approximation of the rescue probability.

a critical size quickly, i.e. if the e!ective fitness is large.In this sense, the rescue
probability has contributions from both our discussed performance measures, the
survival probability, and the e!ective fitness.

Figure 40 illustrates the numerically observed rescue probability for di!erent
initial frequencies of the tolerant mutant. The result is compared to the survival
probability of a homogeneous tolerant population with the same initial size as
the subpopulation in the heterogeneous case. Note, that rescue and survival
probability have di!erent timescales.

7.2 De Novo Mutation

In the first part of this work, we discussed the genotypic TIL-model, explaining
the evolution of antibiotic tolerance via mutation. In this model, we considered a
bi-allelic genotype of L loci and evolutionary paths involved multiple sequential
mutations, eventually also reverse mutations.
Here, we only consider two genotypes where mutation can happen from the wild
type to the tolerant mutant in a single step. Mutations from the tolerant mutant
to the wild type are not considered.
We model this dynamic in Gillespie simulations again, but we choose the mutation
probability during the wild type replication as qmut = 10→2 now. The initial
tolerance frequency is set to zero, i.e. we start with a homogeneous wild type
population.
Similar to the standing genetic variation, we can numerically evaluate the rescue
probability from repeated simulations, where a single simulation is either extinct
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or rescued (see figure 41).

Figure 41: Time evolution of the population size for a heterogeneous population with
N (wt)

0
= 100, N (tol)

0
= 0 and mutation probability qmut = 10→2.

Left: A tolerant mutant appears, survives at initially small size and establishes in the popula-
tion.
Right: A tolerant mutant appears, but goes extinct again.
Both figures present a single Gillespie simulation under biostatic treatment. Note the di!erent
scales in the two panels.

In analogy to the discussion above, we evaluate the establishment after 50 drug
applications and identify the rescue probability with 500 Gillespie replicates.
Since the probability of de novo tolerant mutants is nonzero, as long as the wild
type population has not gone extinct, we cannot compare the rescue probability
to the survival probability of a homogeneous subpopulation here.
Figure 42 visualizes the final result on the rescue probability for di!erent mutation
probabilities qmut in the numerical Gillespie simulations.

Figure 42: Rescue probability of a heterogeneous (initially homogeneous) population of
N0 = 100 as a function of the mutation probability qmut. Note that the x-axis is shown
on a logarithmic scale.
Left: Biostatic treatment.
Right: Biocidal treatment.
Again, we note that both modes of antibiotic action seem qualitatively equivalent, however, the
rescue probability is quantitatively higher for the biostatic treatment.
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8 Discussion

8.1 Conclusion

In the present work, we have explored how the size of a bacterial population
evolves under periodic antibiotic treatment. Building up on the theory of Hill-
shaped Dose Response Curves [20], we were interested to quantify the perfor-
mance of di!erent phenotypes in a time dependent concentration profile. Partic-
ularly, we introduced a simple exponential decay as a pharmacokinetic function,
that alternates around the MIC.
For the purpose of this study, we devoted ourselves to the analysis of antibiotic
tolerance. Following Brauner et al. [7], we defined tolerance as the ability to
reduce the killing rate at high antibiotic concentrations.
Throughout this thesis, we assumed that any such tolerance mutation comes with
a cost in the null fitness, while leaving the MIC unchanged. This was termed tol-
erance trade-o!.
Within this work we introduced the e!ective fitness and the survival probability
as two crucial measures of performance under periodic stress and demonstrated,
that such tolerant mutants can have a selective advantage over the wild type. We
concluded, that the presence or the development of tolerant mutants can poten-
tially rescue a population from extinction and ultimately lead to treatment failure.

The e!ective fitness was discussed as the main result of the deterministic anal-
ysis. Integrating the dose-response curve over the exponential pharmacokinetic
function, we were able to derive a closed form of the average replication rate over
one period. For the two most discussed dose-response curves, the Hill- and the
step-profile, it was discussed that the sign of the e!ective fitness essentially de-
pends on the fraction between the maximum killing rate ϖmin and the null fitness
ϖmax, assuming all the other parameters remain unchanged. Thus, a beneficial
tolerance trade-o! was found for phenotypes that decrease the fraction φ com-
pared to the wild type.
Based on this result, we used the model of trade-o! induced fitness landscapes to
assign genotypes with an e!ective fitness. Focusing on setups, where mutations
with a beneficial trade-o! can occur, we systematically analyzed the structure of
the emerging fitness landscape. A crucial finding was, that the fitness rank order
of the genotypes is conserved, if detrimental mutations, i.e. mutations that have
φ̄i > 1, cannot occur by construction. This guaranteed the peak accessibility
for TIL models where ϖi

min
and ϖi

max
are chosen from non-overlapping uniform

intervals.
Furthermore, running a naive random adaptive walk on the fitness graph revealed
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the previously observed biphasic evolution, where non-optimal trade-o!s are com-
pensated by reverting certain mutations. Crucially, mutations along such paths
were successively increasing the e!ective fitness, ultimately shifting it from neg-
ative to positive.
The e!ective fitness analysis revealed results for the average growth or death be-
havior of a large population for long treatment times. However, because the clin-
ical goal is to eradicate pathogenic populations, we aimed to develop a stochastic
framework in the second part of this thesis. Such a model captures simultaneous
growth and death events on the timescale of a single treatment period and we
were able to quantify extinction probabilities for small populations.
Instead of using the instantaneous net replication rates ϖmin and ϖmax, this model
describes population dynamics more precisely through a growth rate g, a death
rate d, and an antibiotic-induced killing rate ϱ. We distinguished between bioci-
dal and biostatic interpretations of ϱ.
Using previous results on the simple birth-death process and a step like dose-
response curve, we derived an analytically exact solution of the extinction prob-
ability for one period of treatment. This result revealed that tolerance, which is
understood as a simultaneous reduction of g and ϱ here, can increase the prob-
ability of survival. This remained true irrespective of the mode of antibiotic
action. The analytical predictions were validated through numerical Gillespie
simulations, demonstrating excellent agreement.
Moreover, the Gillespie algorithm provides a measure on the rescue probability
of a small heterogeneous populations. Since this is a stochastic process over mul-
tiple treatment periods, neither the e!ective fitness, nor the presented survival
probability is capable of describing rescue scenarios. However, it was discussed,
that high survival probabilities and a large e!ective fitness correlate with high
rescue probabilities.
Thus, the analysis on the rescue probability combines both central quantities of
this work, describing clinically relevant scenarios of evolutionary rescue. This
measure was numerically analyzed in two fundamentally di!erent setups and we
could determine some rescue enhancing parameters. However, a rigorous ana-
lytic derivation on the rescue probability remains for future work and is briefly
discussed in section 8.2.3.
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8.2 Outlook

8.2.1 Modified Gillespie Algorithm

Our stochastic birth and death model considers that waiting times until the next
event are exponentially distributed. In a system where the death rate is zero
and no antibiotic is present, the division probability of any cell is the highest
immediately after the previous birth event. Because of this assumption, our con-
sidered model is markovian. However, this is far from biological reality, since the
cell cycle is generally history dependent, i.e. the cell has to synthesize DNA and
grow in size upon division. Thus, the empirically observed distribution of cell
cycle times significantly deviates from a simple exponential distribution [88].
Nevertheless, it is desirable to restrict ourselves to markovian systems of mod-
erate mathematical complexity. Therefore, previous studies proposed to model
multi stage division processes, where any cell cycle consists of multiple subsequent
exponentially distributed waiting times [88]. In the simplest case of two stages,
we interpret this as a first phase of maturation and a second phase of division.
Accordingly, young cells have to spend some time growing upon replication.
This feature could be implemented in our Gillespie algorithm if we expand the
number states and consider two distinct types, a mature and an immature, of
every phenotype. An immature cell would then grow to a mature cell of the same
phenotype, while mature cells divide or mutate into the immature state. Every
such type would then again have the Markov property and performs the next
event after exponentially distributed waiting times.
Other studies have proposed novel Gillespie algorithms for non-markovian stochas-
tic processes [89, 90], where general hyperexponential waiting time distributions
[88] can be implemented directly.

8.2.2 Biphasic Evolution in the Stochastic Model

In section 3, we applied a previously established model on trade-o! induced fitness
landscapes [29] to the e!ective fitness and thoroughly discussed the evolution of
antibiotic tolerance. We have seen, that evolutionary paths on the emerging
fitness landscapes exhibit a characteristic biphasic behavior. We interpret such
paths as cost-compensating, where non-optimal trade-o!s are reversed in the late
stage of evolution. Furthermore, we showed, that the number of mutational steps
is in general large.
However, our stochastic model operates on a much simpler landscape, where
only two genotypes, the wild type and a single tolerant mutant, are considered.
Essentially, this describes the limit of a single peak landscape, where genotypes
that are not a fitness peak have very large mutation probabilities. Thus, the
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fitness peak is readily found by the evolution.
A more sophisticated stochastic model would consider a third strain, the tolerant-
compensated mutant, that has compensated some of the cost in the growth rate g.
This accounts for the cost-compensating characteristic in the evolution on trade-
o! induced landscapes and would have an influence on the rescue probability of
a general heterogeneous population.
In the context of resistance evolution, a stochastic model of cost compensation
has been analyzed in previous studies [91].

8.2.3 Analytic Results on the Rescue Probability

In section 5 we introduced the survival probability as a novel quantity to measure
the performance of some phenotype. Throughout this section, we considered a
single dose of antibiotic and presented the survival probability as a function of the
period time ε . However, we cannot readily extent the result to multiple successive
treatment periods, since the survival probability in the k-th period depends on
the population size nk→1 at the end of the previous period. This would require
to know the propagator of the probability vector pn = (p0, p1, . . . , pN), which, to
my knowledge, has not been derived.
Nevertheless, we discussed the rescue probability, which is nothing but the sur-
vival probability after multiple drug cycles, in numerical Gillespie simulations
(see section 6). However, we did not obtain a closed-form analytical expression
for the survival probability in this work.
We already mentioned, that Alexander [54] computed the survival probability in
the long time limit for the Hill function PKPD model. Using standard results on
the general, particularly time independent birth-death process [30, 92], we can
find the extinction probability of a single individual at time t as:

Pext(t) = G(t)
1 + G(t) (67)

where
G(t) =

∫ t

0

d(t↑) exp
[∫ t→

0

(g(t↑↑) ↗ d(t↑↑) ↗ ϱ(t↑↑)) dt↑↑
]

dt↑. (68)

We note, that the term in the exponential is nothing but the time integral of
the dose-response curve and closely relates to the well discussed e!ective fitness.
However, evaluating this integral remains challenging.
In the limit of infinitely many completed cycles of antibiotic dosing, Alexander
evaluated (68) for the Hill function PKPD model [86].
Since the e!ective fitness is also known for the step function, evaluating (68)
should be feasible. This allows for an analytical derivation of the rescue prob-

72



8 DISCUSSION

ability in a heterogeneous population without mutation, as discussed in Section
7.1, which can then be compared to results obtained from Gillespie simulations.
Unfortunately, a suitable analytical measure for processes involving mutation re-
mains largely unavailable.

8.2.4 First Passage Times

In section 7.2 we have discussed the model of rescue through de novo mutation. It
is generally hard to obtain analytical results on the probability distribution here,
since the mutation probability couples the previously independent di!erential
equations of both subpopulations. However, if the mutation probability is small,
i.e. there is at most one mutation before the wild type population goes extinct,
the establishment of a tolerant population will depend only on the probability
that a single tolerant mutant rescues the whole population, given that this mutant
appears before the wild type population goes extinct.
It is therefore desirable to quantify the mean first passage time of the n = 0 state
for a wild type population. Previous studies investigated this for a special case
with certain constraints on the sum ϖ = b↗d [93], or for constant population size
[91]. However, for the general time inhomogeneous birth-death process, deriving
the first passage time of extinction remains for future research.
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A Remarks on the Dose-Response Curve and
the E!ective Fitness

A.1 Reformulation of the Dose-Response Curve

We have the dose-response curve

ϖ(c(t)) = ϖmax ↗ k
cω

Km
ω + cω

(69)

with apparent growth rate ϖmax, drug-cell reaction rate k, antibiotic concentration
c (in general time dependent) and Michaelis-Menten saturation constant Km. We
note, that for high concentrations (c ≃ Km) the DRC saturates to the maximal
possible death rate (↗ϖmin) (where the "-" sign is convention). Hence,

ϖ(c ≃ Km) = ↗ ϖmin = ϖmax ↗ k .

Furthermore, the saturation constant Km can be described as a function of the
MIC:

Km
ω = a MICω

and we determine a, such that ϖ(MIC) != 0 [20]:

0 = ϖmax ↗ (ϖmax + ϖmin) MICω

a MICω+MICω

▽∝
εmax+εmin

εmax
= a + 1

▽∝ a = εmin
εmax

Given this result, equation (69) becomes:

ϖ(c(t)) = ϖmax ↗ (ϖmax + ϖmin) cω

εmin
εmax

MICω + cω
(70)

ϖ(c(t)) = ϖmax ↗ (ϖmax + ϖmin)

(
c

MIC

)ω

(
c

MIC

)ω
+ εmin

εmax

. (71)
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A.2 Analytic Solution of the DRC Integral

The Integral of the dose-response curve is introduced as !̃. For the Hill type
DRC

ϖHill(c(t)) = ϖmax ↗ (ϖmax + ϖmin)

(
c(t)

MIC

)ω

(
c(t)

MIC

)ω
+ εmin

εmax

together with a simple exponential concentration profile

c(t) = cmax e→ϖ (t→t0)

and 0 < t ↘ ε the integral becomes

!̃(t) =
∫ t0+t

t0

ϖ(c(t↑))dt↑

= ϖmax t ↗ (ϖmax + ϖmin) Cω
∫ t0+t

t0

dt↑ e→ϖ ω (t0→t→
)

Cω e→ϖ ω (t0→t→) + εmin

εmax

with C = cmax

MIC .
We now substitute:

u = Cω e→ϖ ω (t0→t→
) + ϖmin

ϖmax

which leaves us with

!̃(t) = ϖmax t ↗
(ϖmax + ϖmin)

↗ω ϑ

∫ u(t0+t)

u(t0)

du
1
u

.

This is a standard integral to solve and yields

!̃(t) = ϖmax t + ϖmax (1 + φ)
ω ϑ

ln
(

Cωe→ϖ ω t + φ

Cω + φ

)

where φ = εmin

εmax

was introduced. Notably, the result is independent of t0, since
the treatment e"cacy should (naively) not depend on the starting point of the
treatment.
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A.3 Limits of the E!ective Fitness

In this part, di!erent limits of the presented e!ective fitness

!Hill(ε) = ϖmax

[

1 + (1 + φ)
ϑ ω ε

ln
(

Cωe→ω ϖ ϑ + φ

Cω + φ

)]

(72)

are discussed in more detail. However, this section focuses on the analytic per-
spective of the problem, while more illustrative interpretations are provided in
the main text.

A.3.1 On the Pharmacokinetic Parameter ω̃

The limit of ω̃ → ↑:

lim
ϖ̃↓↔

!Hill = ϖmax




1 + lim

ϖ̃↓↔

(1 + φ)
ϑ ω̃

ln
(

Cωe→ω ϖ̃ + φ

Cω + φ

)

︸  
=0





= ϖmax

The limit of ω̃ → 0:

lim
ϖ̃↓0

!Hill = ϖmax

[

1 + lim
ϖ̃↓0

(1 + φ)
ϑ ω̃

ln
(

Cωe→ω ϖ̃ + φ

Cω + φ

)]

L’ Hospital= ϖmax

[

1 + (1 + φ)
ϑ

lim
ϖ̃↓0

↗ϑ Cω e→ϖ̃ ω

Cω e→ϖ̃ ω + φ

]

= ϖmax

[

1 + Cω(1 + φ)
Cω + φ

]

A.3.2 On the Hill Exponent ϑ

Here, the limit of ϑ → 0 is not very meaningful, since the dose-response curve (71)
will be zero everywhere in this case. Hence, only the case ϑ → ↑ is discussed:

lim
ω↓↔

!Hill = ϖmax



1 + lim
ω↓↔

(1 + φ)
ϑ ω̃

(
ln

(
Cωe→ω ϖ̃ + φ

)
↗ ln (Cω + φ)

)

︸  
(,)



 (73)

The limit will depend on the value of C e→ϖ̃ and we have to distinguish C e→ϖ̃
↘ 1

(A) and C e→ϖ̃ > 1 (B). Furthermore it is considered, that C > 1, i.e. the initial
concentration is bigger than the MIC.
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For Case A the first term of (◁) vanishes and we are left with:

lim
ω↓↔

!Hill = ϖmax

[

1 ↗ lim
ω↓↔

(1 + φ)
ϑ ω̃

ln (Cω + φ)
]

= ϖmax




1 ↗ lim

ω↓↔

(1 + φ)
ϑ ω̃




ϑ ln(C) + ln

(

1 + φ

Cω

)

︸  
↓0









= ϖmax

[

1 ↗
1 + φ

ω̃
ln (C)

]

For Case B, we will also factorize the terms inside the logarithm and write them
as a sum:

(◁) = lim
ω↓↔

(1 + φ)
ϑ ω̃




ϑ ln

(
C e→ϖ̃

)
+ ln

(

1 + φ

Cω e→ω ϖ̃

)

︸  
↓0

↗ϑ ln(C) ↗ ln
(

1 + φ

Cω

)

︸  
↓0





= (1 + φ)
ω̃

(ln(C) ↗ ω̃ ↗ ln(C))

= 1 + φ

If we now plug this result back into (73), we obtain:

lim
ω↓↔

!Hill = ↗ϖmin (74)

Hence:

lim
ω↓↔

!Hill =






ϖmax

(
1 ↗

1+ς
ϖ̃ ln (C)

)
for ω̃ ⇒ ln(C)

↗ϖmin for ω̃ < ln(C)
(75)
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A.4 Derivation of E!ective Fitness for the Step DRC

We start with the presented step profile:

ϖstep =






ϖmax for c(t) < MIC

↗ϖmin for c(t) > MIC
(76)

and integrate this function over one period of length ε :

!̃Step(ε) =
∫ t0+ϑ

t0

ϖstep(c(t↑))dt↑ (77)

We assume the familiar simple exponential profile for the pharmacokinetics:

c(t) = cmax e→ϖ t.

If it is again assumed, that the initial concentration is bigger than the MIC
(C > 1), we only distinguish two scenarios:

Scenario A: The concentration is higher than the MIC over the whole period
length ε . This is the case, if

ε < tMIC = 1
ω

ln
(

cmax

MIC

)
(78)

∋ ω̃ < ln(C) (79)

where tMIC is the time at which the concentration dropped to the MIC and ω̃ = ω ε

as before.
For this case, the solution of the integral is trivial and we compute:

!̃Step(ε) = ↗ϖmin ε

Scenario B: The concentration drops below the MIC at time tMIC < ε . Hence,
the integral (77) can be written as:

!̃Step(ε) = ↗

∫ t0+tMIC

t0

ϖmindt↑ +
∫ t0+ϑ

t0+tMIC

ϖmaxdt↑

= ϖmax (ε ↗ tMIC) ↗ ϖmin tMIC

= ϖmax ε ↗ (ϖmax + ϖmin) 1
ω

ln
(

cmax

MIC

)

= ϖmax

(

ε ↗
1 + φ

ω
ln(C)

)
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Summarizing the two discussed scenarios, one obtains:

!step = 1
ε

!̃Step(ε) =






ϖmax

(
1 ↗

1+ς
ϖ ϑ ln (C)

)
for ω̃ ⇒ ln(C)

↗ϖmin for ω̃ < ln(C)
(80)

which is the same as (75).

A.5 Analysis on the Normalized E!ective Fitness as a
Function of ς

In this section, some of the main results of the ς dependency of the e!ective
fitness are proven.

A.5.1 The Limit of Large Death Rates (ς → ↑)

We start with (27):

!Hill

ϖmax

(ς) = 1 + (1 + ς)
ϑ ω̃

ln
(

Cωe→ω ϖ̃ + ς

Cω + ς

)

We take ς → ↑ now and obtain:

lim
φ↓↔

!Hill

ϖmax

(ς) = 1 + 1
ϑ ω̃

lim
φ↓↔

ln
(

Cωe↑ω ε̃
+φ

Cω+φ

)

1

(1+φ)

L’ Hospital= 1 ↗
Cω (1 ↗ e→ω ϖ̃)

ϑ ω̃
lim

φ↓↔

(1 + ς)2

(Cωe→ω ϖ̃ + ς) (Cω + ς)
︸  

↓ 1

= 1 + Cω

ω̃ ϑ

(
e→ϖ̃ ω

↗ 1
)

A.5.2 What Happens for Finite ς

In the main part 2.4.4 it was argued, that the e!ective fitness (27) has a maximum
point and we want to show now, that this maximum is unique, if

eϖ̃ ω
↗ 1

ω̃ ϑ Cω
↗ 1 > 0 (81)

and
1 + Cω

ω̃ ϑ

(
e→ϖ̃ ω

↗ 1
)

< 0 (82)

holds. So lets assume (81) and (82). In this case, the e!ective fitness is positive
(negative) for some small (large) ς and thus has a second zero point ς0 ↔ [0, ↑)
and there exists at least one extrema (maximum).
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We furthermore compute, that the second derivative

↽2

↽ς2

!Hill

ϖmax

(ς) = (eϖ̃ω
↗ 1) Cω (↗2ςeϖ̃ω + 2C2ω + (ς ↗ 1) (eϖ̃ω + 1) Cω)

ω̃ϑ (Cω + ς)2 (ςeϖ̃ω + Cω)2

becomes zero for
ςcrit = Cω (eϖ̃ω

↗ 2Cω + 1)
(eϖ̃ω + 1) Cω ↗ 2eϖ̃ω

(83)

which means, that the e!ective fitness is concave for ς ↔ (0, ςcrit) and convex
otherwise. Since this is the only solution to ↼2

↼φ2

!Hill

εmax

(ς) = 0, one concludes, that
the e!ective fitness has a maximum at some ς ↔ (0, ςcrit) and the e!ective fitness
converges to the limit from above:

lim
φ↓↔

!Hill

ϖmax

(ς) = 1 + Cω

ω̃ ϑ

(
e→ϖ̃ ω

↗ 1
)

A.6 The E!ective Fitness Under Changes of the MIC

Figure A.1: Visualization of the e!ective fitness !Hill as a function of the resistance parameter
C in di!erent environments. If not varied, the system parameters are set to: ωmin = ωmax = 1,
ϖ̃ = 2.4 and ε = 4. Note, that the variation in ϱ (upper left plot) is induced be a variation in
ωmin while ωmax = 1 is kept constant. Hence, ϱ = ωmin here.
For every choice of parameters we observe, that the e!ective fitness is a monotonically decreasing
function in C and converges to the maximum death rate ↗ωmin (or ϱ in the upper left plot).
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B Remarks on the TIL Model

B.1 Proof of the Ordering-Accessibility Equivalence

In the accessibility analysis of the general TIL landscapes in the main text (sec-
tion 3.3.2), we argued that these landscapes are not accessible, because they do
not fulfill the ordering condition. For this argument to hold, we need to prove at
least, that the ordering condition from [29] is necessary for the subset-superset
accessibility property. However, since we already know that the ordering condi-
tion is su"cient [29], we can directly prove the equivalence.
Therefore let us consider a general fitness graph F ↙ H

L
2

of genotypes ε. Let us
denote any additional mutation in the i-th locus by ”i. Thus, in the example of
L = 4, we have ”3 ε = {1, 3} for ε = {1} and ε ̸ ”i ε ⇑i. The symbol ”ij

indicates a mutation in the i-th and in the j-th locus.
In order to prove, that F has the ordering condition, if it has the subset-superset
accessibility property, we show the opposite. So lets assume, that F does not
have the ordering condition. Considering a general two face of F , our assump-
tion implies, that at least one of the following statements is fulfilled:

1. We can find a two-face, where the double mutant is the fittest genotype and
the background genotype is not the least fit.

2. We can find a two-face, where the background genotype is the fittest and
the double mutant is not the least fit.

Note, that the ordering condition does not make a statement about two-faces
where one of the single mutants has the highest fitness.
In both of the above cases, at least one of the single mutant has to be less fit
than the background (1.) or the double mutant (2.). This immediately breaks
the accessibility of the fittest genotype through all direct paths from its subset
(1.) or superset (2.) respectively.
If the fittest genotype of the two-face is also a fitness peak of F , our statement
already follows. If the fittest genotype of the two-face is not a fitness peak of F ,
it must be in the sub-or superset of at least one fitness peak of F [69]. However,
since the previously analyzed two-face also has to be in the sub- or superset of
these fitness peaks, the subset-superset accessibility property is also violated.
Accordingly, we have shown, that any fitness graph F that does not have the
ordering condition also does not have the subset-superset accessibility property.
Thus, the ordering condition is a necessary condition for the accessibility to hold
and together with the argument from [29] the equivalence follows.
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B.2 Results for Trade-O! Landscapes with 4 Loci and
Constant Variance

In the main text (figure 3.3.2) the average number of peaks and the accessibility
property has been analyzed as a function of the average trade-o! ′φi

∞ for µ̂min.
Here, we show the results for di!erent choices of the ϖmax interval.

Figure B.1: Mean number of peaks (left) and percent of AP-fulfilling landscapes (right) as
functions of the associated trade-o!. Every point represents an average over 500 realizations
on every setup. Each setup has ωmax ↔ [0.7, 1.0) and therefore ′ϱi

∞ = ↑ωmin↓
0.85

.

Figure B.2: Violin Plot of the peak genotype layer for five exemplary setups. Each setup has
ωmax ↔ [0.7, 1.0) and therefore ′ϱi

∞ = ↑ωmin↓
0.85

.

B.3 Normalization of the Fitness Peak Count

We already discussed in the main text, that large systems will have many geno-
types with large topological distance to the high fitness layer. The number of such
peaks increases non-linearly with the system size, since every layer of n mutations
consists of

(
L
n

)
genotypes. Therefore, we would severely overestimate the number

of fitness peaks, if we assume that the number of peaks grows proportional to the
system size.
Therefore, we include a probability mass function (pmf), estimating the number
of genotypes relevant for fitness peaks nrel. This pmf is obtained numerically from
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Figure B.3: Mean number of peaks (left) and percent of AP-fulfilling landscapes (right) as
functions of the associated trade-o!. Every point represents an average over 500 realizations
on every setup. Each setup has ωmax ↔ [0.3, 0.6) and therefore ′ϱi

∞ = ↑ωmin↓
0.45

.

Figure B.4: Violin Plot of the peak genotype layer for five exemplary setups. Each setup has
ωmax ↔ [0.3, 0.6) and therefore ′ϱi

∞ = ↑ωmin↓
0.45

.

a layer histogram for the respective number of loci L (similar to the violin plots)
and we thus obtain:

nrel =
L

n=0

(
L

n

)

P(n) (84)

where P(n) is the probability of finding a peak in layer n. In general, this proba-
bility depends on the number of loci L, but in order to compare di!erent system
sizes, we assume, that the probability mass function does not change with L.
For the purpose of this work, we used L = 4 to determine P(n) and used this
distribution in order to determine the number of relevant genotypes as a function
of the number of loci.

B.4 Evolution Algorithm

For the purpose of this work, we run a simple random adaptive walk, where every
fitter genotype is equally likely [74]. Starting from a given genotype (usually the
wild type), we:

1. Generate a list of candidates/neighbors.
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2. Randomly select one genotype from the list of candidates.

3. Check e!ective fitness of selected candidate.

a Accept candidate as new genotype if fitness increased and repeat from 1.

b Delete genotype from candidates if fitness decreased.

4. Check if list is empty.

a Stop if list is empty (Peak).

b Repeat from 2 if list is not empty.
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C Robustness of the Deterministic Tolerance Evo-
lution Model

C.1 Robustness of the E!ective Fitness

We have introduced the e!ective fitness !Hill as an appropriate fitness proxy for
homogeneous bacterial colonies exposed to periodic stress. However, the deriva-
tion of the analytic result (15) required a simple exponential approximation of
the concentration profile and the explicit form of the Hill-Function.
Here, we discuss how our fitness proxy, i.e. the e!ective fitness behaves if any
of these two functions is changed. More explicitly, we show that for any general
concentration profile c(t) the normalized e!ective fitness remains a function of
the fraction φ. Furthermore, we will numerically compute the two dimensional
fitness topography for a double exponential concentration profile (equation (9)).
In this parametrization, we assume that the drug uptake rate ↼ is small compared
to the degradation rate ω and demonstrate that the previous findings largely re-
main valid. Finally, we will also comment on the robustness against changes in
the shape of the dose-response curve.

Given a general concentration profile c(t), we can write the integral of the
dose-response curve as

!̃Hill(t) =
∫ ϑ

0

ϖHill(c(t↑))dt↑ (85)

!̃Hill(t) = ϖmax



ε ↗ (1 + φ)
∫ ϑ

0

(
c(t→

)

MIC

)ω

(
c(t→)
MIC

)ω
+ φ

dt↑



 . (86)

Dividing by the null fitness ϖmax gives a general expression for the normalized
e!ective fitness. We immediately find, that this quantity depends only on the
fraction φ again, if anything but ϖmin and ϖmax are held constant.
Accordingly, even for a general concentration profile, bacteria can switch from
e!ective death to growth only if the fraction φ changes.
As an example, we solve the integral (8) numerically for the double exponential
profile (9) and find the e!ective fitness as:

!Hill(t) = ϖmax ↗
ϖmax (1 + φ)

ε

∫ ϑ

0

Cω
(
e→ϖ t→

↗ e→ϱ t→
)ω

Cω (e→ϖ t→
↗ e→ϱ t→)ω + φ

dt↑. (87)

Figure C.1 visualizes two numerical results of the two dimensional topography of
the double exponential e!ective fitness. We observe a qualitatively very similar
picture as figure 5 and find a fraction φcrit where the e!ective fitness is zero in
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Figure C.1: The E!ective Fitness in a two dimensional landscape of null fitness (ωmax) and
maximum death rate (ωmin). The left scenario corresponds to a rather fast drug uptake (φ ≃ ϖ),
while the right plot illustrates a rather slow drug drug availability (φ > ϖ).
!Hill is numerically computed for a double exponential concentration protocol with ϖ̃ = 2.4,
φ̃ ↙ φ ϑ = 100/10 (left/right), cmax = 4 MIC and with a Hill parameter ε = 4.
In accordance with previous observations, we find a fraction ϱcrit where the e!ective fitness is
zero in both scenarios.

both scenarios. However, this critical point changes with ↼̃ ↙ ↼ε and we observe
that !Hill increases as rate of drug absorption decreases.
Experimental studies on the pharmacokinetics usually find very large drug ab-

sorption rates [44, 94]. Hence, the left plot in figure C.1, which qualitatively
aligns with previous results, depicts the e!ective fitness for a realistic concentra-
tion profile.
Consequently, the simple exponential decay provides a useful approximation of
the more complicated, double exponential concentration profile.
We will therefore proceed with

c(t) = cmax e→ϖ (t→t0) (88)

and focus on the shape of the dose-response curve in the following.

In the framework that is presented, any computation of an e!ective fitness !
requires an integration of the respective dose-response curve ϖ(c(t)), such that

! = 1
ε

∫ ϑ

0

ϖ(c(t↑)) dt↑.

Studies on bacterial fitness commonly assume Hill-type dose-response curves [68,
95, 82], which is a monotonic decreasing function of the antibiotic concentration.
It is generally reasonable to consider any decreasing function, since higher doses
are expected to gradually inhibit bacterial growth. However, it has been shown
that some unusual non-monotonic behavior can occur under extreme conditions
[82], which is not further considered here.
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For simple exponential concentration profiles, the fitness function, i.e. the dose-
response curve, is a monotonic function in time and the e!ective fitness is readily
computed by the fundamental theorem of calculus:

! = 1
ε

(F (c(ε)) ↗ F (cmax)) (89)

if the antiderivative F (c) of ϖ(c) exists for the whole interval [0, ε ].
We can extend this to partially defined dose-response curves:

! = 1
ε



i

(
F (i)(c(ti+1)) ↗ F (i)(c(ti))

)
(90)

where the antiderivative of ϖ(c) exists on the interval [ti, ti+1].
We will therefore construct an alternative dose-response curve that has a region of
maximum growth/death and an intermediate region that is a decreasing function
of c (figure C.2). For simplicity, we will only consider linear intermediate functions
here, but generally this could be any suitable function.

Notably, this definition does not necessarily fix the mic, since we can find the

Figure C.2: Construction scheme for alternative DRC’s. The function is assumed to be
constant at low/high concentrations and the intermediate part of width ⇁ can be any decreasing
function of the concentration (here linear) that continuously connects the null fitness and the
max. death rate.

root of the dose-response curve anywhere in
(
▷ ↗

ω
2
, ▷ + ω

2

)
, where ▷ is the MIC

of a DRC with ϖmin = ϖmax. Thus, changing the ratio φ = εmin

εmax

will also change
the MIC to some extent.
For such dose-response curves, the normalized e!ective fitness will always be a
function of the fraction

!
ϖmax

= G

(
ϖmin

ϖmax

)

and thus remains constant if φ = εmin

εmax

is not changed.
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The previously discussed step dose-response curve is a simple non trivial example
of such a function width intermediate width 0 = 0. We have not yet illustrated
the full two dimensional fitness topography for the step profile, but we can readily
convince ourselves, that the sign of !step only depends on the fraction φ:

!step = ϖmax

ε
(φ (tmic) + (ε ↗ tmic)) .

The parameter tmic is the time at which the antibiotic concentration dropped to
the MIC. Accordingly, the fitness topography maintain their characteristic feature
that e!ective growth and death are separated by a boundary at constant φ (see
figure C.3).

(a) ω = 0 (b) ω = 1

(c) ω = 2 (d) Hill DRC

Figure C.3: Topography of the e!ective fitness for a dose-response curve with constant
growth/death for low/high concentrations of the antibiotics and a linear intermediate decrease
of width ⇁ (as in figure C.2). Furthermore, also the topography of the Hill model with the
usual system parameters (C, ε, ϖ̃) = (4, 4, 2.4) is provided.
With increasing width ⇁ the fraction ϱ where the e!ective fitness is zero decreases and compares
to the Hill equivalent.

Yet, it was already noted that such a partially defined dose-response curve
does not fix the MIC and is not everywhere di!erentiable. Therefore, we do not
observe the Hill-model intrinsic phenomena that the dose-response curve becomes
zero everywhere if ϖmin = 0 or ϖmax = 0. Hence, there is no global maximum in
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the e!ective fitness ! as a function of φ (see figure C.4).
However, in the relevant regime, i.e. regimes where the Hill-model phenomena
become irrelevant, the e!ective fitness of every presented dose-response curve is
qualitatively equal (approximately linear) and the Hill result converges to the
respective step result.
Empirical studies on !-lactam antibiotics usually observe dose-response curves
that are very steep around the MIC [82]. A binary step DRC can therefore be a
good approximation in some cases.
Notably, the width 0 of the intermediate region does not have a major e!ect on
the e!ective fitness as a function of the fraction φ (figure C.4).

Figure C.4: E!ective fitness ! as a function of the ratio ϱ for the constructed DRC with
⇁ = 0 (step function) and ⇁ = 2 (linear decrease) and for the Hill DRC with ε = 4 (as before)
and ε = 10 (steep profile). For all models we set cmax = 4 MIC and ϖ̃ = 2.4.
All the provided functions show a qualitatively similar (approximately linear) behavior in the
relevant regime and the Hill e!ective fitness converges to the Step result as ε becomes large.

C.2 Robustness of the TIL-Model Analysis

Finally, we repeat the analysis of the TIL-model for the step dose-response curve
(in black) and compare to our previous Hill analysis (in red). Again, the qualita-
tive behavior of all examined observables is very similar in both cases and many
of the arguments also hold for the step profile. However, the e!ective fitness of
the step dose-response curve (and also the linear intermediate decrease) does not
have a maximum. The only fitness peak of an associated toy model would there-
fore always be the full mutant (or the wild type if the phenotypes increase φ)
and the optimal number of mutations nopt = L. Intermediate layers with many
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genotypes are thus never highly likely to have a fitness peaks and especially inter-
mediate peak layers do not occur. Consequently, the number of fitness peaks in
the step model is substantially smaller than for the Hill equivalent. Figure C.5-
C.7 summarize the results on the Step DRC TIL model.

Figure C.5: Mean number of peaks (left) and percent of AP-fulfilling landscapes (right) as
functions of the associated trade-o! ϱ̄.Both observables are shown for the Hill model (red) and
the Step DRC model (black).
For small ϱ̄, i.e. highly favorable trade-o!s, the step dose-response curve has O(1) fewer fitness
peaks than the hill model equivalent. We again observe that the number of fitness peaks
significantly decreases, as the accessibility property is lost (vertical dotted line) and for ϱ̄ → 1
both landscapes are single peaked.
Every point represents an average over 1000 realizations on every setup with the usual system
parameters (C, ε, ϖ̃) = (4, 4, 2.4). Each setup has ωi

max
↔ [0.5, 0.8) and therefore ϱ̄ = ↑ωi

min
↓

0.65
.

Figure C.6: Left: Total number of peaks for the Hill model (red dots) and the Step DRC model
(black dots) together with a respective theoretical estimate (dotted lines). For this estimate,
we assumed that the number of peaks is proportional to the size of the relevant sub-landscape.
Right: Percent of AP-fulfilling landscapes as functions of the number of loci L.
In both plots every data point represents an average over 1000 realizations on the respective
number of loci with ωmax ↔ [0.5, 0.8) and ωmin ↔ [0.3, 0.6).

Ultimately, visualizing the evolutionary path in the full two dimensional to-
pography, we observe the same biphasic exchange compensation as in the Hill
model (see figure C.8).

92



C ROBUSTNESS OF THE DETERMINISTIC TOLERANCE EVOLUTION
MODEL

Figure C.7: Length of evolutionary paths for the Hill Model (red) and the step DRC model
(black) as a function of ϱ̄ for L = 4. The dotted line visualizes the transition from setups that
analytically must have the accessibility property to those that do not have it.
The path length of both models is qualitatively very similar and can be explained as deviation
from an associated toy model. Though, the Step DRC model realizes longer paths than the Hill
model if the landscape has the accessibility property, while shorter paths are realized if the AP
is lost. For this visualization we chose ωi

max
↔ [0.5, 0.8) and therefore ϱ̄ = ↑ωi

min
↓

0.65
.

Figure C.8: Exemplary evolution from the wild type to a fitness peak (red). The genetic path
(purple) is shown on the fitness graph (left), as well as in the full two dimensional topography
(right). Similar to the Hill model, we observe a biphasic trade-o! compensation behavior
here. The growth-death trade-o! landscape was constructed with ωmax ↔ [0.5, 0.8) and ωmin ↔

[0.3, 0.6).
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D Size Distributions in the Simple Birth–Death
Process

In the chapter on the simple and homogeneous birth-death process 4.2, we dis-
cussed the time evolution of the extinction probability, i.e. the probability Pn(t)
of the absorbing state n = 0. However, this quantity does not describe extinction
probabilities in changing environments, particularly also not for our periodic step
function PKPD profile. In order to compute the survival probability after a full
period with sub and super MIC concentration regimes, it was necessary to eval-
uate the size distribution Pn(t) (equation 48 and 49) at t = tMIC. This has been
done for every theoretical result in section 5. Here, we want to discuss the shape
and the time dynamics of the size distribution briefly for the wild type and the
tolerant mutant under biostatic or, respectively, biocidal treatment.
Throughout the main analysis, we demonstrated that the survival probability of
bacteria is lower under biocidal treatment relative to the corresponding biostatic
case. Thus, we expect to see di!erences in the shape of the full distribution as
well.
Figure D.1 presents the probability distributions for the reference strain (wild
type ) under both biostatic and biocidal treatment, shown together in a single
histogram at selected time points. Similarly, figure D.2 explains this for the tol-
erant strain. We show the time evolution of the histogram for t ↘ tMIC ↖ 4.28,
which is the interesting regime for the PKPD model in section 5.
For both strains, we observe, that the initially peaked probability distribution
broadens rapidly, where the variance of the biocidal distribution is always bigger
than for the respective biostatic case at any time t > 0. Furthermore, for both
modes of antibiotic action, the size distribution drifts towards smaller population
sizes. Accordingly, the biocidal distribution reaches the state n = 0 earlier, than
the biostatic one. This is an absorbing state, i.e. there is no out flux, and there-
fore P0(t) is an increasing function of time.
Notably, these visualizations illustrate the observed di!erence in extinction proba-
bilities between biocidal and biostatic treatments. In the next section [sec:proof_cidal_static],
we follow up on this finding and find a rigorous proof for the simple birth and
death process.
Furthermore, the analysis of figure D.1 and D.2 reveals, that the dispersion of
the distribution of the tolerant mutant is slightly faster, than for the wild type.
However, the drift velocity towards the absorbing state n = 0 appears smaller for
the tolerant mutant. Accordingly, also the full distribution explains, that our tol-
erant strain has an increased chance of surviving antibiotic treatment, compared
to the wild type.
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Figure D.1: Time evolution of the wild type size distribution from t = 0 to t ↖ tMIC. Every
histogram shows the distribution of the biostatic (green) and the biocidal (yellow) scenario
respectively. Olive colors are the overlap. Both distributions are computed for initial population
sizes N0 = 10.
We observe, that the width of the biocidal distribution increases faster that the biostatic one
and the extinction probability at the t = tMIC (P0(tMIC)) is significantly higher for biocidal
treatment.

Figure D.2: Time evolution of the tolerant strain size distribution from t = 0 to t ↖ tMIC.
Every histogram shows the distribution of the biostatic (dark-green) and the biocidal (light-
brown) scenario respectively. Brown colors are the overlap. Both distributions are computed
for initial population sizes N0 = 10.
We observe, that the width of the biocidal distribution increases faster that the biostatic one
and the extinction probability at the t = tMIC (P0(tMIC)) is significantly higher for biostatic
treatment.
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E Survival Probability for Biostatic and Bioci-
dal Treatment

E.1 Proof that P cidal
surv < P static

surv

We want to prove here, that the survival probability under biocidal treatment is
smaller than for the biostatic case. By looking at the expressions (61) and (62),
we note, that it is enough to show, that

d
(
e(g→d→⇁max) ϑ

↗ 1
)

(g ↗ ϱmax)ϖ ↗ d
<

d + ϱmax

(
e(g→d→⇁max) ϑ

↗ 1
)

gϖ ↗ d ↗ ϱmax

.

Case 1: We assume:

(g ↗ ϱmax) > d and thus ϖ := e(g→d→⇁max)ϑ > 1.

Furthermore, we define:

c := d

(g ↗ ϱmax)ϖ ↗ d
, s := (d + ϱmax)

gϖ ↗ d ↗ ϱmax

By definition, we know, that :

ϱmax ϖ (g ↗ d ↗ ϱmax) > 0.

Adding zeros and factoring, we obtain:

∋ dgϖ ↗ d2
↗ dϱmax + gϱmaxϖ ↗ ϱmaxdϖ ↗ ϱ2

max
ϖ

︸  
↗ dgϖ + d2 + ϱmaxd︸   > 0

∋ (d + ϱmax) ((g ↗ ϱmax)ϖ ↗ d) ↗d (gϖ ↗ d ↗ ϱmax) > 0

Since d (gϖ ↗ d ↗ ϱmax) and (g ↗ ϱmax)ϖ ↗ d are positive, we readily find:

∋ c (ϖ ↗ 1) > s (ϖ ↗ 1)

which proves our statement.

Case 2: Same setup, but now ϖ < 1, ie. we assume (g ↗ ϱmax) < d.
We therefore know, that

ϱmax ϖ (g ↗ d ↗ ϱmax) < 0.
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Repeating the steps from above, we obtain

∋ (d + ϱmax) ((g ↗ ϱmax)ϖ ↗ d) ↗ d (gϖ ↗ d ↗ ϱmax) < 0

∋ (d + ϱmax) ((g ↗ ϱmax)ϖ ↗ d) < d (gϖ ↗ d ↗ ϱmax) .

We note, that by definition, we have (gϖ ↗ d ↗ ϱmax) < 0 and also ((g ↗ ϱmax)ϖ ↗ d) <

0. Therefore:
∋ c < s

multiplying both sides with (ϖ ↗ 1) < 0 yields the desired expression:

∋ c (ϖ ↗ 1) > s (ϖ ↗ 1)

We have therefore proven that:

P cidal

surv
< P static

surv

for all parameter regimes where ϱmax > 0.

E.2 Proof that P cidal
surv > P static

surv for ϱmax < 0

We consider the survival probability

P (>)

surv
(g, d) = 1 ↗

[
d(e(g→d)ϑ

↗ 1)
ge(g→d)ϑ ↗ d

]n0

,

For this function we have shown above, that:

P (>)

surv
(g, d + ϱmax) < P (>)

surv
(g ↗ ϱmax, d) < P (>)

surv
(g, d)

where the last inequality follows, because decreasing the growth rate, or increasing
the death rate, will always decrease the survival probability.
Now we want to show, that the opposite order is true if we revert sign of ϱmax,
i.e.

P (>)

surv
(g, d ↗ ϱmax) > P (>)

surv
(g + ϱmax, d) > P (>)

surv
(g, d).

Let us again denote
ϖ := e(g→d+⇁max)ϑ

now with a plus in front of the ϱmax, and focus on the expressions inside the
survival function:

c (ϖ ↗ 1) = (d ↗ ϱmax)(ϖ ↗ 1)
gϖ ↗ (d ↗ ϱmax) , s (ϖ ↗ 1) = d(ϖ ↗ 1)

(g + ϱmax)ϖ ↗ d
.
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We aim to prove that
c (ϖ ↗ 1) < s (ϖ ↗ 1)

which implies, that

P (>)

surv
(g, d ↗ ϱmax) > P (>)

surv
(g + ϱmax, d).

Let us assume, that g > d, which is well justified, since bacteria would not
have established otherwise. Then ϖ ↗ 1 > 0 and we are left to show, that

c < s

∋
d ↗ ϱmax

gϖ ↗ d + ϱmax

<
d

gϖ + ϱmaxϖ ↗ d
ε>1
∋ (d ↗ ϱmax)(gϖ + ϱmaxϖ ↗ d) < d(gϖ ↗ d + ϱmax)

Subtracting the LHS from the RHS:

∋ 0 < [dgϖ ↗ d2 + dϱmax] ↗ [dgϖ + dϱmaxϖ ↗ d2
↗ ϱmaxgϖ ↗ ϱ2

max
ϖ + ϱmaxd]

∋ 0 < ↗dϱmaxϖ + ϱmaxgϖ + ϱ2

max
ϖ

∋ 0 < ϱmaxϖ(g ↗ d + ϱmax)

Since ϱmax > 0, ϖ > 1, and g↗d+ϱmax > 0, this expression is strictly positive,
which proves

c (ϖ ↗ 1) < s (ϖ ↗ 1) ∝ P (>)

surv
(g, d ↗ ϱmax) > P (>)

surv
(g + ϱmax, d).

It is easy to check that increasing either g or decreasing d increases the survival
probability. Thus the full chain holds:

P (>)

surv
(g, d ↗ ϱmax) > P (>)

surv
(g + ϱmax, d) > P (>)

surv
(g, d).
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Supplementary Material
All TIL-Model and Gillespie simulations ran on Python programming language.
The code will be available on GitHub:
https://github.com/PeriodicSandworm/ToleranceEvolutionModel.git
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