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Abstract
Synthetic colloidal microswimmers have received increasing scientific interest over
the past years due to their potential applications in micro-fluidics and medicine.
The dynamics of such swimmers depend on many factors such as confinement, hy-
drodynamics, surface interactions, or external fields. The driving mechanism of
phoretic colloidal swimmers is based on an asymmetric structure. One part of
the swimmer will steadily produce a local gradient (temperature, concentration, or
charge) in the surrounding fluid. A different part of the swimmer will be exposed
to that gradient, decaying along its surface, and thereby experiences a phoretic
driving force. Since many effects are simultaneously present in real-world appli-
cations, computer simulations offer a versatile tool to understand the dynamics of
microswimmers, especially through the possibility of turning specific interactions
or effects off and hence understanding how they affect the behavior.
In this thesis, thermal microswimmers, especially those with a dimeric type of

construction, are studied using a mesoscopic computer simulation method, multi-
particle collision dynamics, which correctly describes the major features required
for thermophoresis, i.e. heat transport and hydrodynamics. After a general intro-
duction to the subject matter and methods, the general microscopic, hydrodynamic
framework of phoretic effects is extended to model colloidal thermophoresis as the
combined effect of a temperature and corresponding density gradient, with appli-
cation to single colloid thermophoresis. The obtained results match simulation
measurements well and make it possible to easily predict the response of colloids
modeled with arbitrary interactions to a temperature gradient. Single swimmer dy-
namics are studied for two reference models, the Janus particle and the dimer type
of construction. Their construction parameters determine their behavior, both
in terms of propulsion velocity as well as hydrodynamic flow fields. The latter
may qualitatively change, especially in case of the dimer which shows a prominent
change between lateral hydrodynamic repulsion and attraction as a function of its
geometric construction. Pairs of dimers are studied as well, showing a variety of
depletion-induced bound states. Comparison between chemically and thermally
driven swimmers shows their qualitative behavior to not depend on the phoretic
mechanism employed for propulsion, neither for single swimmers nor pairs. An
examination of depletion interactions is undertaken, which arise as a simulation ar-
tifact in the simulation method. On this basis, parameters are chosen to physically
correct employ the simulation method in the context of many-particle systems,
without spurious depletion interactions. Ensembles of thermophoretic dimers are
studied in large-scale simulations. Phoretic attraction is shown to lead to crystal-
lization dynamics, with microswimmers forming large and long-time stable, ordered
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aggregates. In case of phoretic repulsion, when combined with hydrodynamic lat-
eral attraction stemming from the choice of appropriate construction parameters,
a unique kind of dynamic, front-like swarming behavior emerges at intermediate
swimmer densities. This phenomenology may offer more versatility and new possi-
bilities in the design of applications based on active matter systems.



Kurzzusammenfassung
Aufgrund ihrer vielfältigen möglichen Anwendungspotentiale in Bereichen wie Mi-
krofluidik und Medizin haben synthetische, kolloidale Mikroschwimmer in den letz-
ten Jahren an wissenschaftlicher Bedeutung gewonnen. Das Verhalten dieser Schwim-
mer hängt von vielen Faktoren ab, unter anderem von ihren spezifischen Oberflä-
chenwechselwirkungen, ihrem hydrodynamischem Verhalten, räumlicher Beschrän-
kung und eventuellen externen Feldern. Der Antriebsmechanismus phoretischer kol-
loidaler Schwimmer basiert auf ihrer asymmetrischen Struktur. Ein Teil des Kollo-
ids produziert stetig einen lokalen (Temperatur-, Konzentrations- oder elektrischen)
Gradienten in der umgebenden Flüssigkeit. Ein anderer Teil des Kolloids ist die-
sem Gradienten ausgesetzt und erfährt hierdurch eine phoretische Kraft, die den
Schwimmer antreibt. Aufgrund der Komplexität dieser Systeme bieten sich Compu-
tersimulationen als geeignete Methode an, um die Dynamik von Mikroschwimmern
zu untersuchen und zu verstehen, insbesondere da einzelne physikalische Wechsel-
wirkungen kontrolliert zu- und abgeschaltet werden können, was eine Abschätzung
ihres spezifischen Einflusses auf das System ermöglicht.
Die vorliegende Arbeit beschäftigt sich mit thermischen Mikroschwimmern, ins-

besondere einer Dimer-artigen Konstruktion. Zur Untersuchung wird die meso-
skopische Simulationsmethode multi-particle collision dynamics benutzt, die die
für Thermophorese notwendigen physikalischen Prozesse, vornehmlich Hydrodyna-
mik und Wärmetransport, korrekt beschreibt. Nach einer allgemeinen Einführung
in Thema und Methoden wird eine Erweiterung der grundlegenden Beschreibung
phoretischer Effekte auf Thermophorese vorgestellt, in deren Rahmen der thermo-
phoretische Effekt als Kombination der Einflüsse eines Temperaturgradienten und
des daraus resultierenden Dichtegradienten interpretiert wird. Diese Beschreibung
wird im Rahmen der Thermophorese einzelner Kolloide getestet und zeigt gute
Übereinstimmung mit Simulationsergebnissen. Sie ermöglicht eine leichte Vorher-
sage der Reaktion durch beliebige Wechselwirkungspotentiale modellierter Kolloide
auf einen Temperaturgradienten. Die Dynamik einzelner Mikroschwimmer wird für
die Referenzmodelle der Janus- und der Dimer-Konstruktion untersucht. Neben
der Antriebsgeschwindigkeit zeigt deren geometrische Konstruktion entscheiden-
den Einfluss auf ihre hydrodynamischen Strömungsfelder. Letztere können sich als
Funktion der geometrischen Konstruktion des Schwimmers qualitativ ändern, ins-
besondere im Sinne eines ausgeprägten Wechsels von lateraler Anziehung zu Ab-
stoßung im Falle des Dimers. Die Untersuchung von Paaren von Dimeren zeigt die
Bildung einiger gebundener Zustände auf, die durch depletion-Wechselwirkungen in-
duziert werden. Der Vergleich zu chemisch angetriebenen Mikroschwimmern zeigt,
dass das qualitative Verhalten phoretischer Mikroschwimmer nicht von der Art
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des phoretischen Antriebs abhängt. Die depletion-Wechselwirkung tritt artifiziell
in mesoskopischen Simulationen auf. Eine genauere Untersuchung ermöglicht es,
durch Auswahl geeigneter Parameter Mikroschwimmer ohne depletion zu modellie-
ren. Darauf aufbauend wird der Fall großer Systeme von Dimeren untersucht. Im
Falle phoretischer Anziehung stellt ebendiese den wesentlichsten Einfluss auf die
Dynamik der Schwimmer dar und führt zur Bildung stabiler, kristalliner Struktu-
ren. Der entgegengesetzte Fall phoretischer Abstoßung resultiert, im Zusammen-
spiel mit lateraler hydrodynamischer Anziehung und bei mittleren Dichten, in der
Bildung einzigartiger Schwärme von Dimeren mit ausgeprägter Tendenz zur geord-
neten Bewegung in planaren Schichten. Dieses Schicht-artige Schwarmverhalten von
Kolloiden hat Anwendungspotential in Bereichen der weichen Materie und könnte
dort neue Konstruktionsmöglichkeiten eröffnen.



Contents
List of Figures v

List of Tables vii

Acronyms ix

Symbols xi

1 Introduction 1
1.1 Hydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Colloidal Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1 Active Colloids . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Thermophoresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.1 Theoretical Description . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.2 Experimental and Simulation Results . . . . . . . . . . . . . . 12

2 Simulation Methods 15
2.1 Molecular Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Interaction Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Mesoscale Simulation Techniques . . . . . . . . . . . . . . . . . . . . . 18
2.4 Multi-Particle Collision Dynamics . . . . . . . . . . . . . . . . . . . . . 19

2.4.1 Introduction of Temperature Gradients . . . . . . . . . . . . . 21
2.4.2 Coupling to Colloidal Dynamics . . . . . . . . . . . . . . . . . 21
2.4.3 MPC Fluid Properties . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Implementation of MPC-MD in LAMMPS . . . . . . . . . . . . . . . 24

3 Theoretical Approach to Thermophoresis 27
3.1 Phoretic slip velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Diffusiophoresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.1 Slip Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.2 Phoretic Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Thermophoresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.1 Force on a Colloid . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.1.1 Comparison to Simulation . . . . . . . . . . . . . . . 34
3.3.1.2 Correction for Finite Size Effects . . . . . . . . . . . 34

3.3.2 Slip Velocity due to Thermophoresis . . . . . . . . . . . . . . . 37
3.4 Analysis of Thermophoresis . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4.1 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . 39

i



Contents

3.4.2 Size Dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4.3 Temperature Dependence . . . . . . . . . . . . . . . . . . . . . 41
3.4.4 Hard Spheres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5 Summary and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Single Swimmer Dynamics 47
4.1 Dimeric Swimmers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.1.2 Theoretical Approaches . . . . . . . . . . . . . . . . . . . . . . 48
4.1.3 Theoretical Description of Thermophoretic Dimers . . . . . . 52
4.1.4 Single Dimer Dynamics . . . . . . . . . . . . . . . . . . . . . . . 53

4.1.4.1 Swimming Velocity . . . . . . . . . . . . . . . . . . . 53
4.1.4.1.1 Fixed Size of Hot Bead . . . . . . . . . . . . 57

4.1.4.2 Hydrodynamics . . . . . . . . . . . . . . . . . . . . . . 59
4.2 Janus Particle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2.3 Single Particle Dynamics . . . . . . . . . . . . . . . . . . . . . . 65

4.2.3.1 Swimming Velocity . . . . . . . . . . . . . . . . . . . 65
4.2.3.2 Hydrodynamics . . . . . . . . . . . . . . . . . . . . . . 66

4.3 Mapping to Real Units . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.4 Conclusion and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5 Dynamics of Pairs of Dimers 71
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2.1 Quantification of Bound States . . . . . . . . . . . . . . . . . . 72
5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3.1 Bound States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.3.2 Phase Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 78

6 Depletion Interactions 81
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.2 Theory for Penetrable Hard Spheres . . . . . . . . . . . . . . . . . . . 81
6.3 Application to MPC-MD . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.3.1 Comparison to Simulations . . . . . . . . . . . . . . . . . . . . 84
6.4 Colloid-Colloid Interaction Tuning to Avoid Depletion . . . . . . . . 86

6.4.1 Combination with Bounce-Back . . . . . . . . . . . . . . . . . 90
6.5 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7 Collective Swimmer Dynamics 91
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

ii



Contents

7.2 Collective Behavior of Dimers . . . . . . . . . . . . . . . . . . . . . . . 93
7.2.1 Simulation Model . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.2.2 Properties of Reference Dimers . . . . . . . . . . . . . . . . . . 95
7.2.3 Analysis of Clusters . . . . . . . . . . . . . . . . . . . . . . . . . 97
7.2.4 Langevin Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.2.5 Collectives of Thermophilic Dimers . . . . . . . . . . . . . . . 99
7.2.6 Collectives of Thermophobic Dimers . . . . . . . . . . . . . . . 104

7.2.6.1 Swarming Behavior . . . . . . . . . . . . . . . . . . . 104
7.2.6.2 Structural Characteristics . . . . . . . . . . . . . . . 108
7.2.6.3 Finite Size Effects . . . . . . . . . . . . . . . . . . . . 111
7.2.6.4 Effect of Volume Fraction . . . . . . . . . . . . . . . . 112
7.2.6.5 Inclusion of Depletion Effects . . . . . . . . . . . . . 115

7.3 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 118

8 Concluding Summary and Outlook 121

Bibliography 125

Acknowledgements 135

Eigenhändigkeitserklärung 137

Curriculum Vitae 139

iii





List of Figures
1.1 Microscope images of several biological microswimmers. . . . . . . . 1
1.2 Several examples of collective motion of micro- and macroorganisms. 2
1.3 Examples of artificial microswimmers. . . . . . . . . . . . . . . . . . . 4
1.4 Examples of dimeric microswimmers. . . . . . . . . . . . . . . . . . . . 5
1.5 Experimental results on the Soret coefficient. . . . . . . . . . . . . . . 13

2.1 Schematics showing the MPC algorithm. . . . . . . . . . . . . . . . . . 19
2.2 Scaling results of the MPC-MD implementation. . . . . . . . . . . . . 25

3.1 Local coordinate system attached to the colloidal surface. . . . . . . 28
3.2 Fluid temperature and density distribution in the scenario of thermal

gradients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Flow field and backflow of a fixed colloid in a temperature gradient. 36
3.4 Temperature dependence of the Soret coefficient. . . . . . . . . . . . . 43
3.5 Analysis of conributions to the slip velocity. . . . . . . . . . . . . . . . 43
3.6 Size dependence of the Soret coefficient for hard spheres with radius

B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1 Snapshots of synthesized dimers. . . . . . . . . . . . . . . . . . . . . . 47
4.2 Schematic of a dimer and corresponding bispherical coordinate system. 49
4.3 Finite size effect on the propulsion velocity of a dimer swimmer. . . 54
4.4 Dimer swimming velocities as a function of geometric construction. 56
4.5 Dimer propulsion velocity as a function of γ when the size of the hot

bead is fixed and size dependence of the symmetric dimer’s velocity. 58
4.6 Flow fields of thermally driven dimers. . . . . . . . . . . . . . . . . . . 60
4.7 Flow field characterization for thermophobic dimers. . . . . . . . . . 62
4.8 Propulsion velocities and flow fields of a thermally driven Janus col-

loid and their dependence on the coating angle. . . . . . . . . . . . . 67

5.1 Schematic of quantitative descriptors for bound states of two dimers. 72
5.2 Bound states of thermophilic dimers. . . . . . . . . . . . . . . . . . . . 73
5.3 Bound states of thermophobic dimers. . . . . . . . . . . . . . . . . . . 73
5.4 Structural features of the Brownian Pair bound states. . . . . . . . . 74
5.5 Structural features of the Moving Pair and Swimming-Together Pair

bound states. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.6 Structural features of the Rotating Pair and Reverse Brownian Pair

bound states. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.7 Phase diagrams for bound state formation of pairs of dimers. . . . . 76

v



List of Figures

6.1 Depletion-induced clustering of polystyrene spheres. . . . . . . . . . . 81
6.2 Sketch of depletion mechanism. . . . . . . . . . . . . . . . . . . . . . . 82
6.3 Depletion forces for different simulation parameters. . . . . . . . . . . 85
6.4 Examples of depletion potentials. . . . . . . . . . . . . . . . . . . . . . 88
6.5 Depletion forces when displacements are used. . . . . . . . . . . . . . 89

7.1 Structures of ensembles of self-propelled rods. . . . . . . . . . . . . . . 92
7.2 Influence of displacements on dimer properties. . . . . . . . . . . . . . 94
7.3 Flow fields of thermally driven dimers used in simulations of bigger

ensembles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
7.4 Snapshots of ensembles of thermophilic dimers. . . . . . . . . . . . . . 100
7.5 Properties of ensembles of thermophilic dimers. . . . . . . . . . . . . 102
7.6 Bigger ensemble of thermophilic dimers. . . . . . . . . . . . . . . . . . 104
7.7 Snapshots of ensembles of thermophobic dimers. . . . . . . . . . . . . 105
7.8 Cluster properties of ensembles of thermophobic dimers. . . . . . . . 106
7.9 Snapshots of swarms of asymmetric thermophobic dimers. . . . . . . 108
7.10 Structural features of collectives of thermophobic dimers. . . . . . . . 109
7.11 Percolated formation of asymmetric dimers. . . . . . . . . . . . . . . . 111
7.12 Cluster properties of ensembles of asymmetric thermophobic dimers

at different volume fractions. . . . . . . . . . . . . . . . . . . . . . . . . 113
7.13 Phase diagram of thermophobic dimers. . . . . . . . . . . . . . . . . . 114
7.14 Snapshots of ensembles of depleted thermophobic dimers. . . . . . . 116
7.15 Cluster properties of ensembles of asymmetric, depleted, thermopho-

bic dimers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

vi



List of Tables
2.1 Analytic predicitions for MPC fluid properties. . . . . . . . . . . . . . 22

3.1 Theoretical and simulation results on the thermal diffusion factor. . 35
3.2 Theoretical and simulation results on the size dependence of the

thermal diffusion factor. . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

7.1 Single dimer properties for the two reference constructions of ther-
mophobic and thermophilic dimers. . . . . . . . . . . . . . . . . . . . . 97

vii





Acronyms
AO Asakura-Oosawa. 82

BD Brownian Dynamics. 18

BP Brownian Pair. 72–74, 77, 78

IP Independent Pair. 72, 73, 77

LD Langevin Dynamics. 18, 98, 99, 102, 103, 106, 107, 109, 110, 113, 115, 119

LJ Lennard-Jones. 17

MD Molecular Dynamics. 15, 16, 18, 22, 24, 25

MIPS Motility-Induced Phase Separation. 2, 64, 91, 93, 118

MP Moving Pair. 72–75, 77, 78

MPC Multi-Particle Collision Dynamics. 15, 19–25, 30–32, 36, 39, 64, 65, 71,
83–86, 98, 119

MPC-MD Multi-Particle Collision Dynamics coupled to Molecular Dynamics. 22,
24, 25, 30, 31, 34, 45, 46, 48, 68, 71, 78, 79, 81, 83–85, 90, 93, 98, 99, 102,
103, 106, 107, 109, 110, 112, 114–116, 119–122

MSD Mean Squared Displacement. 7, 95

RBP Reverse Brownian Pair. 73–75, 77

RP Rotating Pair. 73–75, 77

SPTA Single-Particle Thermal Diffusion Algorithm. 34–36, 44

ST Swimming-Together Pair. 73–75, 77, 78, 122

WCA Weeks-Chandler-Andersen. 17, 18, 87, 89

ix





Symbols

ω Angular velocity
kB Boltzmann constant
B Boundary layer width
c Concentration
ρ Density
D Diffusion coefficient
d Dimensionality
γ Dimer bead size ratio
δb Dimer bond length parameter
r Distance
µd Dynamic viscosity
Ξ Eigenvalue of gyration tensor
W External potential
δ Extra separation distance
G Fluctuation strength
Df Fluid diffusion coefficient
ζ Fluid friction coefficient
J Flux
f,f , F,F Force
q Heat flux
I Identity matrix
U Interaction potential
rc Interaction potential cutoff
∆ Interaction potential displacement
s Interaction potential effective range
n Interaction potential exponent
σ Interaction potential range parameter
C Interaction potential shift parameter
ε Interaction potential strength parameter
θc Janus coating angle
ν Kinematic viscosity
Ma Mach number
m,M Mass
µ Mobility
p Momentum exchange
Ψ MPC Bin

xi



Symbols

a MPC cell side length
h MPC collision time
α MPC rotation angle
R MPC rotation matrix
nρ Number density
N Number of swimmers
e Orientation
Pe Peclet number
r,R Position vector
E Potential energy
Pr Prandtl number
p Pressure
P Probability density
R Radius
ξ Random force
τ Relaxation time
r/a repulsive/attractive
Re Reynolds number
Dr Rotational diffusion coefficient
Sc Schmidt number
Lx,y,z Simulation box dimensions
ST Soret coefficient
T Temperature
kT Thermal conductivity
DT Thermal diffusion coefficient
αT Thermal diffusion factor
βT Thermal expansion coefficient
t Time
v, v Velocity
V Volume
φ Volume fraction

xii



1 Introduction
The motion of biological organisms at the microscale, such as bacteria, viruses or
sperm cells, shows unique features. These organisms move in a fluid environment,
and in a region where the Reynolds number Re, a hydrodynamic number character-
izing the ratio of inertial to viscous forces, is low. Therefore their motion is nearly
inertia-free, and swimming strategies different from what one is intuitively used to
from the macroscopic world are employed to achieve directed motion in these en-
vironments. Most biological swimmers feature some form of flagella, short or long
filaments that stick out from the cell body, whose motion can be controlled by a
cellular motor. To achieve self-propulsion, sperm cells employ a wiggling motion of
one long flagellum. E.coli bacteria and Salmonella on the other hand use a helical
rotation of a bundle of elongated flagella. Other types of cells, such as paramecium,
are covered with many short filaments, called cilia, that perform coordinated strokes
to induce motion of the whole cell body. Figure 1.1 shows microscope images of
these microorganisms.

(a)

(b)

(c) (d)

Figure 1.1: Microscope images of several biological microswimmers. a) Parame-
cium bacterium as a whole. b) Metachronal wave of cilia on the paramecium’s
surface; their wave-like motion induces propulsion of the whole bacterium. Both
taken from [1]. c) Wiggling motion of a sea urchin sperm cell. From [2]. d) E. coli
cell with several flagellar filaments, one undergoing a polymorphic transformation.
This leads to their typical run-and-tumble trajectories. From [3].

Common to all these organisms is that the motion is active. Active in this
context refers to the fact that these organisms convert some form of energy, either
stored internally or taken up from the environment, into directed motion [4, 5].
This stands in contrast to passive particles, which only move through Brownian
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1 Introduction

random motion [6]. Due to the motion being active, there is a constant uptake and
conversion of energy such that these systems are inherently far from equilibrium.
The research field of active matter has received great interest, increasingly so in
the past years [7].
Though the propulsion mechanisms may be vastly different on the micro- to

nanoscale from those used by animals on the macroscale, similarities especially
concerning their collective motion emerge. The non-equilibrium collective phenom-
ena that occur in groups of actively moving organisms or particles, both on the
micro- as well as on the macroscale, include the emergence of swarming behavior,
Motility-Induced Phase Separation (MIPS), lane formation, or schooling among
others. The observed patterns are similar for both bacterial organisms and macro-
scopic animals such as birds, fish or sheep. Figure 1.2 illustrates examples of the
diverse kinds of collective motion in both microscopic and macroscopic as well as
biological and synthetic systems.

(a) Electron microscope
image of a vortex formed
by the bacterium P. vor-
tex.1

(b) Vortex formation in a
simulation of active col-
loids. From [8].

(c) Motility-Induced Phase
Separation (MIPS) in sim-
ulations of active colloids.
From [9].

(d) Vortex formation in a
swarm of fish. From [5].

(e) Swarming behavior of
fish. From [5].

(f) MIPS of Janus colloids.
From [10].

Figure 1.2: Several examples of collective motion of micro- and macroorganisms.
1This picture is taken from https://en.wikipedia.org/wiki/Paenibacillus_vortex#

/media/File:Vortex_fig_2.tif.

The study of the motion of bacteria belongs to the field of soft matter. This term
also encompasses systems such as gels, polymers, colloidal suspensions, foams, cell
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networks etc., often as a suspension of larger particles or organisms in a solvent.
Typically, the relevant length scale of these systems lies in the mesoscopic range, i.e.
nm to µm, and the relevant energy scales are of order kBT , such that these systems
are to a high degree influenced by thermal fluctuations. For suspended particles,
solvent-mediated hydrodynamic effects often play a crucial role in determining their
dynamics.
In more recent years, there have been efforts to develop artificial synthetic con-

structs that also show self-propelled behavior on the microscale. The construc-
tion of microscale objects with active and controllable motion would offer valuable
possibilities in a variety of applications. Targeted cargo transport in microchan-
nels could offer the possibility to precisely distribute drugs to designated areas.
Microswimmers could analogously remove harmful substances from fluid environ-
ments. Systems with active components may be used to construct materials with
controllable properties.
The first microswimmer constructed to mimic a biological mechanism was the

one of Dreyfus et al. [11]. They constructed an artificial sperm by attaching a
linear chain of magnetic colloidal particles to a red blood cell. With an oscillating
magnetic field, they were able to induce a wiggling motion of the artificial filament,
making it swim as illustrated in fig. 1.3a. One of the first microswimmers that does
not mimic a biological propulsion mechanism was constructed by Paxton et al. [12].
These authors used a bimetallic nano-rod, consisting half of platinum, half of gold,
which upon immersion in a solution of hydrogen peroxide showed self-propulsion.
The decomposition of hydrogen peroxide is catalyzed by platinum and the resulting
interaction of reactants with the gold half is responsible for the propulsion, though
the precise details of how this takes place do still have open questions [7].
For spherical particles, a similar type of construction is called a Janus particle,

and it is being widely investigated. This term describes colloidal, spherical particles
whose one half is covered with or consists of a different material than the other.
Catalytic Janus particles employing also the platinum-catalyzed decomposition of
hydrogen peroxide have been realized by Howse et al. [13], based on theoretical
considerations by Golestanian et al. [14]. Examples for the discussed types of
artificial microswimmers are shown in fig. 1.3.
Propulsion based, among others, on the decomposition of hydrogen peroxide takes

advantage of what is called a phoretic effect. Phoresis ("migration") refers to the
fact that colloidal particles react to a gradient of a field of some sort by migrating
on average either up (in the philic case) or down (in the phobic case) this gradient.
The gradient can for example be an electric, concentration, thermal or magnetic
field gradient. In the case of catalytic Janus particles, the gradient may just be a
concentration gradient, which by itself is sufficient to produce self-propulsion [16].
Phoresis based solely on a concentration gradient is termed diffusiophoresis. How-
ever, other effects due to electrostatics, bulk chemical reactions etc. will also influ-
ence the behavior of these particles [17]. A dimeric type of construction, in spirit
similar to the Janus particle, was suggested in simulation studies by Rückner and
Kapral [18]. This swimmer consists of two closely connected spherical particles,
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1 Introduction

(a)

(b) (c)

Figure 1.3: Examples of artificial microswimmers. a) An artificial microswimmer
constructed by attaching a flexible magnetic filament to a red blood cell, mimicking
the propulsion of sperm. From [11]. b) A colloidal Janus swimmer made of latex,
coated half with platinum. From [15]. c) Top: Schematic of the bimetallic nano-
rod. Bottom: Typical trajectory, showing enhanced diffusion due to self-propulsion.
From [12].

one of which is phoretically active. An experimental realization of this construc-
tion was performed later on by Valadares et al. [19]. Typical velocities reached by
phoretically driven microswimmers are in the µm/s range [20].
The focus of this thesis lies on artificial colloidal microswimmers driven by the

thermophoretic mechanism. Utilizing thermal gradients, i.e. by heating suitable
colloids through laser illumination to propel microswimmers, can be advantageous
in real-world applications. Laser sources allow for a very precise control of the
applied heating both in space and in time. Furthermore, the mechanism does
not require a specific solvent chemistry, i.e. no toxic chemicals are necessary for
it to work. Thermophoresis, or the Soret effect, is commonly characterized by
the so-called Soret coefficient ST, describing how a colloid reacts to a surrounding
temperature gradient. It may have a positive value, in case of the colloid being
thermophobic, i.e. it moves to the cold region, or a negative value when the colloid
reacts thermophilic and moves to the warm. More commonly, colloidal particles
react thermophobic to temperature gradients. The magnitude, as well as the sign,
of the Soret coefficient depend on a multitude of factors, among them the particle’s
mass, size, charge, moment of inertia as well as the particular interaction details
of the particle with the solvent [21]. Furthermore, it is influenced by factors like
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the salt concentration in the solvent and the precise details of the particle-particle
interactions on the molecular level. The combination of all these factors makes a
theoretical description of thermophoresis very complex, and a detailed microscopic
description of thermophoresis is still a matter of ongoing research. On the other
hand, the multitude of influences also implies that a system making use of the
thermophoretic mechanism is highly tunable [22]. For example, the Soret coefficient
might change sign when the average temperature is changed, which allows reverting
the migration of colloids by heating or cooling the complete sample.
The first application of thermophoresis to microswimmers was done by Jiang et

al. [23], who build a Janus particle by depositing gold on polystyrene as well as silica
particles. Illumination with a laser lead to a local heating of the gold-coated cap,
which in turn induces self-thermophoresis. Simulation studies on thermophoretic
microswimmers were performed by Yang and Ripoll on a dimer type of construc-
tion [24] as well as on Janus particles by Yang et al. [25].
The dimer type of construction is of considerable interest, as it has an increased

inherent complexity in comparison to the Janus particle due to the additional de-
grees of freedom in construction. Its collective dynamics will be determined by a
complex interplay of phoretic effects, steric interactions, hydrodynamics and ther-
mal fluctuations. The temperature field around a hot particle obeys the Fourier
law, decaying with distance like 1/r. For the phoretic effect, that is proportional to
the gradient of the field, implying a decay proportional to 1/r2. It has been shown
in simulation studies that the hydrodynamic flow field of Janus particles decays like
1/r3, such that for these particles hydrodynamic effects are likely less important
than phoretic effects [25]. In case of the dimer however, hydrodynamic interactions
decay with 1/r2, i.e. the same as the phoretic effect, such that interesting combined
effects may result in the dynamics of swimmer ensembles. The experimental real-
ization of chemical dimers and the simulated flow fields of a thermophoretic dimer
and a thermophilic Janus swimmer are shown in fig. 1.4.

(a)
(b) (c)

Figure 1.4: Examples of dimeric microswimmers. a) Experimental realization of
a chemically driven dimeric colloidal swimmer. From [19]. b) Simulated flow field
of a thermophilic dimer swimmer. c) Simulated flow field of a thermophobic Janus
swimmer. Both simulated flow fields are taken from [25].

After this general introduction to the subject matter, the following sections will
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1 Introduction

discuss prerequisites of specific importance to this work in more detail.

1.1 Hydrodynamics

The motion of an incompressible Newtonian fluid is governed by the Navier-Stokes
equation

ρ(
∂v

∂t
+ (v ⋅ ∇)v) = −∇p + µd∇

2v + f (1.1)

with the incompressibility condition

∇ ⋅ v = 0 . (1.2)

The velocity field v, the pressure field p and the external forces f all depend on
position r and time t. The fluid’s dynamic viscosity is denoted µd and its density
ρ. An adimensionalization of the Navier-Stokes equation is possible by choosing
a characteristic length scale lc, and a characteristic velocity vc. For flow past a
sphere for example, lc might correspond to the spheres radius or diameter, while
vc could correspond to the fluid velocity at infinity [26]. This choice then leads to
a characteristic timescale tc = lc/vc. The variables in the Navier-Stokes equation
can then be rescaled. Choosing v′ = v/vc, t′ = t/tc, p′ = tcp/µd, f ′ = l2c/(µdvc)f and
∇′ = lc∇, one obtains

ρvclc
µd

(
∂v′

∂t′
+ (v′ ⋅ ∇′)v′) = −∇′p′ +∇′2v′ + f ′ (1.3)

for the Navier-Stokes equation. The incompressibility condition reads the same in
non-dimensional form, i.e. ∇′ ⋅ v′ = 0. The prefactor in eq. (1.3) is the Reynolds
number

Re = ρvclc
µd

. (1.4)

For low Reynolds numbers Re ≪ 1, which is characteristic for many soft matter
systems, especially microswimmers, this allows neglecting the l.h.s. of eq. (1.3).
Then, the fluid dynamics are described by the Stokes equation

∇p − µd∇
2v = f (1.5)

with the same incompressibility condition ∇ ⋅ v = 0. Interestingly, in the Stokes
equation, the variables are no longer dependent on time. Solutions of the Stokes
equation depend on the chosen boundary conditions. A discussion for phoretic
processes at colloidal surfaces will be given in chapter 3.
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1.2 Colloidal Dynamics

1.2 Colloidal Dynamics

The term colloid is commonly used to describe particles with dimensions in the
range of roughly 1 nm up to 10 µm, though these limits are not sharp [27]. The
lower limit is set by the requirement that the particle should be larger than the
surrounding solvent molecules, whereas the upper limit stems from the idea that
colloids should be measurably influenced by Brownian motion. Even for the small-
est colloid, the difference in length scales with respect to the solvent (ca. one order
of magnitude) is large enough that it should be possible to capture the solvent’s
influence on the colloid by a continuum description. For this to be feasible, the
typical time scales of solvent and colloid should also be well separated. Experi-
mentally measured solvent relaxation times are of the order 10−14 s, whereas the
relevant time scales for colloidal motion start at ca. 10−9 s [27], ensuring a large
enough separation to account for solvent effects in an averaged way. A (spherical)
colloidal particle of mass M immersed in a fluid will then, due to the separation
in time and length scales, experience the averaged interaction with the fluid in two
ways. For one, it will feel a random force ξ(t), accounting for the random "kicks"
it gets through thermal fluctuations of the fluid. Then, it will experience a friction
force opposite to its direction of movement and proportional to its velocity v, with
friction coefficient ζ. Together, the resulting equation of motion for the colloid’s
position r reads as

r̈ = −ζv + ξ +
F

M
(1.6)

This is the so-called Langevin equation. F describes an external force, but in
the following discussion it is assumed that none is present. Since the random
force should model thermal noise of the solvent, which has no preferred direction,
its average should be zero. Due to the large separation in length and time scales
between solvent and colloid, the noise is assumed to be Gaussian white noise, which
is delta correlated in time, such that

⟨ξ(t)⟩ = 0 (1.7)
⟨ξ(t)ξ(t′)⟩ =Gδ(t − t′) (1.8)

whereG describes the fluctuation strength, which can be shown, using the equipar-
tition theorem, to be given by

G = 2kBTζI (1.9)

with I being the identity matrix. Equation (1.6) and eq. (1.8) then determine the
motion of a colloidal particle in random solvent and several characteristic properties
may be derived from these equations. The Mean Squared Displacement (MSD) is
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given for small times by

⟨∣r(t) − r(0)∣2⟩ = v(0)v(0)t2 (1.10)

and for longer times by

⟨∣r(t) − r(0)∣2⟩ = I 2kBT

ζ
t = I2Dt (1.11)

where D is the diffusion coefficient. Such a relation between a diffusion and friction
coefficient, D = kBT /ζ, is called the Einstein relation.
In the overdamped limit, it is assumed that inertial effects do not play a role,

therefore the acceleration term drops out of eq. (1.6). The resulting equation of
motion is then given by

v =
ξ

ζ
. (1.12)

This implies that the vanishing of the average velocity is fully determined by the
system temperature and realization of the noise. Since most of the systems inves-
tigated in this thesis happen to be in the low Reynolds number regime, this is also
a reasonable approximation in the description of these.

1.2.1 Active Colloids

For a Brownian colloid at low Reynolds number, the average velocity is zero accord-
ing to eq. (1.12). However, a driving force F may act on it, leading to its persistent
propulsion. If such driving force is locally produced by the colloid itself, as op-
posed to an external field like gravity, the colloid is referred to as self-propelled.
For self-propelled colloids, the propulsion will typically have an inherent direction-
ality. Therefore, also the orientation of the colloid, along which the self-propulsion
force acts, has to be considered in its description. For the reference case of an active
Brownian sphere with fixed propulsion velocity v0 along its orientation vector e,
the Langevin equations describing position and orientation are given by [9]

v = v0e +
√

2Dξ (1.13)
ė =

√
2Drξr × e (1.14)

with Dr the rotational diffusion coefficient and ξr the orientational noise, which is
also taken to be Gaussian white noise. The orientational autocorrelation of such a
particle decays with

⟨e(t) ⋅ e(0)⟩ = exp[−t
τr

] (1.15)
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1.3 Thermophoresis

where τr describes a characteristic persistence time. For active Brownian spheres,
the MSD also takes on a modified form due to the self-propulsion, given by

⟨∣r(t) − r(0)∣2⟩ = 2dDt − 2v2
oτ

2
r t − 2v2

0τ
2
r (1 − e−t/τr) (1.16)

with d the dimensionality. For small times t≪ τr this takes the form

⟨∣r(t) − r(0)∣2⟩ = v2
0t

2 + 2dDt . (1.17)

The rotational diffusion coefficient Dr can be obtained through the rotational
mean squared displacement, which is given by [27]

⟨∣e(t) − e(0)∣2⟩ = 2(1 − exp[−2Drt]) (1.18)

which for small times 2Drt≪ 1 can be approximated by

⟨∣e(t) − e(0)∣2⟩ = 4Drt . (1.19)

1.3 Thermophoresis
Thermophoresis in general describes the effect of an applied temperature gradient
on the particle motion of a suspension [28]. Its analogue at the molecular level
is thermal diffusion, also called the Ludwig-Soret effect, that refers to the partial
segregation of the compounds of a liquid mixture upon application of a temperature
gradient. It is a non-equilibrium effect, involving a constant flux of mass in response
to the temperature gradient. A colloid immersed in a fluid with a temperature
gradient will experience a force due the non-uniform distribution of temperature
in the surrounding medium, which leads to a non-vanishing average drift velocity.
Non-uniform distributions of temperature may also induce further non-uniformities,
for example in the fluid density distribution, which may also affect force the colloid
experiences.

1.3.1 Theoretical Description

Van Kampen obtained a general description for the diffusion of a Brownian particle
in an inhomogeneous environment [29], which can be connected to thermophoresis
of dilute colloidal suspensions [30] leading to an expression for the colloidal drift
velocity vd. The diffusion equation for the probability density P (r, t) of a particle
in a homogeneous medium, including an external potential W (r) that acts on it,
is given by

∂P

∂t
= ∇ ⋅ [(µ∇W )P +D∇P ] (1.20)
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where µ is the mobility and the diffusion coefficient D is given by the Einstein
relation D = µT . In the scenario of an inhomogeneous medium considered by van
Kampen, µ,D and T can depend on the spatial coordinate r. Then, a possible
generalization reads as

∂P

∂t
= ∇ ⋅ [(µ∇W )P +∇DP ] (1.21)

which is the same as

∂P

∂t
= ∇ ⋅ [(µ∇W +∇D)P +D∇P ]. (1.22)

Here, the inhomogeneities lead to an additional term ∇DP , referred to as "extra
drift". Van Kampen did propose a generalized framework based on consideration
of three cases for which the diffusion equation is derived specifically. One of these
cases is the diffusion of a Brownian particle in an inhomogeneous surrounding.
This can be applied as a model for a colloid situated in a temperature gradient.
The Kramers’ equation for a Brownian particle describes its dynamics through the
evolution of the joint probability of position and velocity g(x, v, t) by

∂g

∂t
= −v

∂g

∂x
+W ′(x)

∂g

∂v
+ ζ (

∂

∂v
vg + T

∂2g

∂v2) (1.23)

where W ′ = −f denotes the derivative of the potential, i.e. the force f . For high
values of ζ, the last term is dominant. Then, one may expand the equation in
powers of ζ−1 in the spirit of the Chapman-Enskog procedure [31]. To lowest non-
vanishing order, with µ(x) = 1/ζ(x) and D(x) = T (x)/ζ(x), the resulting equation
is given by

∂P

∂t
=
∂

∂x
[µW ′P + µ

∂

∂x
TP ] . (1.24)

This can be reformulated in terms of a continuity equation with flux J as in [29]

∂P (r, t)

∂t
= −∇J(r, t). (1.25)

The flux would then be given by [30]

J(r) = nρµ(r)f − µ(r)∇[nρ(r)kBT (r)] (1.26)

wherein the notation has been switched from P to particle number density nρ
and potential V to force f = −V ′. Assuming validity of local equilibrium and the
Einstein relation to hold, one may add and subtract kBT (r)∇µ(r) to arrive at [30]

J(r) = nρ(r)vd −∇[n(r)D(r)] (1.27)
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where the drift velocity of the particle is given by

vd = µf + kBT∇µ. (1.28)

For a more detailed discussion on interpretation of the involved terms and assump-
tions see [29] and [30]. Equation (1.27) relates the drift velocity of a particle to its
inhomogeneous surrounding given by a spatially inhomogeneous density and value
of the diffusion coefficient and/or mobility.

It is interesting to make the connection to the phenomenological expression of
thermophoresis. To do so, the phenomenological expression for the mass flux is
required. In the framework of non-equilibrium thermodynamics, the entropy pro-
duction ς in a binary system showing a diffusive mass flux Jk and heat flux Jq can
be written as [32, 33]

ς = −
1
T 2Jq ⋅ ∇T −

1
T

2
∑
k=1
Jk ⋅ ∇Tµk . (1.29)

Here, ∇T is the thermal gradient, ∇Tµk is the chemical potential gradient of com-
ponent k at constant temperature and Jk the mass flux for component k. The
phenomenological equations describing thermophoresis in a binary mixture follow
from this as [32]

Jq = −Lqq
∇T

T 2 −Lq1∇T (µ1 − µ2) (1.30)

J1 = −L1q
∇T

T 2 −L11
∇T (µ1 − µ2)

T
(1.31)

where Lαβ are phenomenological coefficients fulfilling Onsager reciprocal relations.
A complete derivation can be found in [33]. Taking the solute as species 1, express-
ing the mass flux in terms of the solute mole fraction x = nρ,1/ñρ and the number
densities of the two species as nρ,1 and nρ,2 with ñρ = nρ,1+nρ,2, the mass flux reads
as [28, 30]

J1 = −ñρDm∇x − ñρx(1 − x)DT∇T . (1.32)

Here DT is the thermal diffusion coefficient and Dm the mutual diffusion coefficient.
These are related to the phenomenological coefficients by [33, 34]

Dm = L11
∇T (µ1 − µ2)

ñρT∇x
=

L11

ñρ(1 − x)T
∂µ1

∂x
(1.33)

DT =
1

ñρT 2x(1 − x)L1q . (1.34)
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In the steady state, the mass flux will vanish: J1 = 0. From this, one obtains

ST =
DT

Dm

= −
1

nρ,1nρ,2

∇nρ,1
∇T

= −
1

x(1 − x)
∇x

∇T
(1.35)

as the ratio of thermal diffusion and mutual diffusion coefficient, which is called
the Soret coefficient ST. The Soret coefficient may take on both positive and
negative signs, where a positive value of ST refers to the more commonly observed
thermophobic behavior, while a negative sign indicates thermophilic behavior.
In the case when the solute density nρ,1 is low compared to the solvent density

nρ,2, the mutual diffusion coefficient Dm is equal to the solute diffusion coefficient
D and the mass flux of eq. (1.32) may be compared to eq. (1.27), obtaining [30]

vd = ∇D −DβT∇T −DT∇T (1.36)

with the thermal expansion coefficient βT = −(1/nρ,2)∂nρ,2/∂T .
More commonly used is the expression

vT = −DT∇T (1.37)

to express the thermophoretic velocity. This is only equal to the derived drift
velocity if the thermal diffusion coefficient is the dominant term in eq. (1.36), such
that ∣DT ∣ >> ∣dD /dT −DβT ∣. The validity of this approximation for colloids in
complex fluids has been confirmed in simulation studies on thermal diffusion [35].
Instead of the colloid’s velocity, the force acting on it through the temperature

gradient may also be used to describe thermophoresis. This thermophoretic force
is also linearly related to the temperature gradient through [24]

fT = −αT∇kBT , (1.38)

where αT is the thermal diffusion factor.
The characteristic values used to describe colloidal thermophoresis are the Soret

coefficient ST or the related thermal diffusion factor, which is related to the Soret
coefficient by [24]

αT = TST . (1.39)

The Soret coefficient or thermal diffusion factor provides the linear proportionality
constant relating the gradients to the response of the colloid.

1.3.2 Experimental and Simulation Results
The thermal diffusion factor αT is a quantity conveniently used in the description of
simulation results, as the forces and temperature gradients are known and directly
accessible. More commonly used in experiments to characterize the behavior of
colloids is the Soret coefficient ST of eq. (1.35). As pointed out in the introduction,
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1.3 Thermophoresis

ST depends on a multitude of factors. Notably, it has a complex dependence on
temperature and particle size. Experimental results on both temperature and size
dependence are shown in fig. 1.5.

(a) (b)

Figure 1.5: Experimental results on the Soret coefficient. a) Temperature de-
pendence of the Soret coefficient for polystyrene particles in a dilute aqueous so-
lution. Taken from [36]. b) Experimental results on the particle size dependence
of the Soret coefficient. Taken from [28]. Experimental data for polystyrene beads
from [37] (filled squares), [36] (filled circles), [38] (open circles). Data for water-in-
oil microemulsions from [39] (open squares).

Braibanti et al. measured the temperature dependence of the Soret coefficient
experimentally [36], obtaining good agreement with the following empirical relation

ST(T ) = S∞T (1 − exp[T
∗ − T

T0
]) . (1.40)

This expression relies on three material-dependent, adjustable parameters T ∗, T0,
and S∞T . Its functional form describes a particular type of behavior. In the typical
case, for low temperatures, ST is predicted to have a negative sign. Then, the value
of ST will increase with rising temperature as a function of the ratio T /T0, eventually
becoming positive after T ∗. T0 is a kind of material constant, describing how strong
this temperature dependence is. Finally, the Soret coefficient is expected to reach a
saturation value of S∞T for high temperatures. The coefficient S∞T may take on both
signs. In most cases, it is positive, as in all examples shown in fig. 1.5a, which also
corresponds to an always positive slope. But there are systems in which it takes
on negative values, which implies that the switching at T ∗ is from thermophobic
to thermophilic behavior instead and the slope is negative throughout [40].
The Soret coefficient of a specific colloid also depends on the particle radius.

Two types of dependence have been found, a quadratic and a linear one. It is so
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far unclear where this deviation stems from [41].
It is worthwhile to mention here that many colloids carry charges, and that

electrostatics have shown to significantly influence colloidal thermophoresis [42].
Still, this thesis will deal with electrically neutral colloids and solvents as a simpler
model system of reduced complexity.
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2 Simulation Methods

To describe systems of colloidal microswimmers driven by thermophoresis in com-
puter simulations, the complex interplay of swimmer geometry, hydrodynamics,
phoresis, molecular-level interactions, and thermal fluctuations has to be accounted
for. The dynamics of colloidal systems take place on mesoscopic time and length
scales. Atomistic Molecular Dynamics (MD) is suitable mostly for processes on the
nanoscale, both in time and space. A full atomistic description of colloidal systems
is computationally therefore very expensive and outside the reach of this method.
To circumvent these limitations, coarse-grained methods have been developed, aim-
ing at averaging out fast degrees of freedom while maintaining a description of phys-
ical interactions precise enough to study mesoscale problems. For colloidal systems,
both hydrodynamics and thermal fluctuations are of considerable relevance and a
suitable simulation method needs to account for both of these. Simulation studies
in this thesis will use Multi-Particle Collision Dynamics (MPC) [43], a mesoscopic
simulation method naturally including both hydrodynamic and thermal effects. In
MPC, the fluid is described as a collection of point-like particles that only interact
through coarse-grained collisions, which due to its efficiency enables simulation on
the necessary time and length scales while still describing correct hydrodynamic
interactions [44]. MPC includes thermal fluctuations and heat transport by con-
struction, such that in order to study phoretic effects for colloids in a fluid described
by MPC, only a suitable way of thermostatting is necessary. The resulting temper-
ature fields, hydrodynamic flow fields and thereby phoretic effects are not imposed
but develop naturally, such that one expects to obtain a precise and complete de-
scription of phoretically driven swimmers and their mutual interactions, especially
as compared to methods in which driving forces are imposed. This chapter will
introduce the prerequisites necessary to perform such computer simulation studies
on thermophoretic microswimmers.

2.1 Molecular Dynamics

MD simulations are intended to provide a description of the time-resolved properties
of many-particle systems. In MD, it is assumed that the many-particle system under
consideration obeys the laws of classical mechanics and the corresponding equations
of motion are solved numerically to obtain the system dynamics. Each particle i
with mass mi in the system is defined by its position ri and velocity vi. Then,

15



2 Simulation Methods

Newton’s equation of motion reads as

mir̈i = fi (2.1)

with the force given as the derivative of the potential energy E

fi = −∇ri
E . (2.2)

The potential energy E is given by the sum of position-dependent individual con-
tributions of the particles in the system as [45]

E =∑
i

u1(ri) +∑
i

∑
j>i

u2(ri,rj) +∑
i

∑
j>i

∑
k>j>i

u3(ri,rj,rk) + ... (2.3)

where u1 accounts for the effect of an external field and the other terms for two-
body- (u2), three-body- (u3), and eventually also higher order interactions. The
most important contributions stem from the external fields and the pair-wise in-
teractions u2, and in many situations it is sufficient to only consider those. When
the pair-wise interaction is modeled by some empiric potential adapted to repro-
duce reference values, it may be regarded as an effective potential that implicitly
accounts for higher-order interactions. The choice of a suitable pair-wise interac-
tion potential is a crucial step in performing MD simulations. With one at hand,
the equations of motion are then solved numerically. In principle, any numeri-
cal method to solve differential equations can be used to this aim. The so-called
"velocity-Verlet" algorithm has shown to be an efficient method, suitable both in
performance and precision for MD, and it is the one also used in this work. With
this algorithm, positions and velocities are updated according to

ri(t + δt) = ri(t) + δtvi(t) +
1

2mi

δt2fi(t) (2.4)

vi(t + δt) = vi(t) +
1

2mi

δt[fi(t) + fi(t + δt)] . (2.5)

Besides accuracy and performance, a relevant criterion for the choice of integration
algorithm is energy conservation. Though many higher-order algorithms show much
better short-time energy conservation, their long-term drifts are in fact higher than
those of the simpler Verlet-type algorithms, which feature only moderate short-time
energy conservation but not much long-term drift [46].

2.2 Interaction Potentials
Suspended colloids interact both with each other as well as with the solvent parti-
cles [27]. Experimentally, colloid and solvent interact through interaction potentials
on the molecular level. These may be, depending on the precise type of atoms or
molecules, repulsive (poor solvent) or attractive (good solvent). Always present in
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colloid-colloid interactions is a repulsive hard core type of interaction, which de-
scribes that the centers of two colloids can not overlap. For deformable colloids,
this repulsion might be softer. Another type of repulsion in between colloids oc-
curs when they carry surface charges, these are though frequently screened by the
solvent, such that this colloid-colloid interaction is short-ranged repulsive as well.
There can also be attractive interactions in between colloids, for example due to
coating with polymer brushes in a poor solvent, which makes their overlap favor-
able and induces a short-ranged attraction. Another way to induce short-range
attraction in between colloids is through addition of smaller particles, like short
polymers. This will induce a so-called depletion interaction.
Atomistic simulations aim at a very precise and complete reproduction of the

physical properties of particular substances at specific conditions, and their predic-
tive capability hinges on the quality of the interaction potentials. In contrast, in a
mesoscopic simulation scenario, the precise choice of colloid-colloid and colloid-fluid
interaction does not aim to have a unique mapping to physical quantities. It merely
has to capture the essential physics of a colloidal system, such that there is a certain
degree of freedom in its choice. The main requirement it has to fulfill always is that
it needs to capture a repulsive core, while the details of surface interactions will
depend on the system of interest.
In this work, colloid-colloid interactions are modeled as steeply repulsive inter-

actions. One might use hard-sphere interactions to achieve this, however, it is in a
molecular dynamics context more desirable to use a steeply repulsive hard-sphere
like potential that can still be numerically integrated. The main requirement of
colloid-solvent interactions is to have a repulsive core as well. They are chosen
likewise, though not only as purely repulsive but also including short-ranged at-
traction. In every case, a Lennard-Jones (LJ) type of potential is used. The most
commonly used LJ potential reads

ULJ,standard(r) = 4ε((σ
r
)

12
− (

σ

r
)

6
) +C, r < rc (2.6)

where r is the pairwise distance, ε describes the strength of the interaction, σ the
range, rc is a cutoff beyond which the interaction is zero and C is a shift. The cutoff
rc could in principle be∞, but is chosen such that the relevant part of the interaction
is maintained while saving computational effort by not calculating the potential in
between far-away particles, where their mutual interaction is vanishing. A typical
value for the cutoff eq. (2.6) is rc = 2.5σ. Choosing rc = 21/6σ, the attractive part of
eq. (2.6) is cut off and one obtains a purely repulsive interaction potential, referred
to as the Weeks-Chandler-Andersen (WCA) potential. C is usually chosen such
that the potential is zero at rc to avoid discontinuities in the calculated energies
when two particles approach each other from beyond rc. This is done for every
potential interaction used in this work and will from here on not be mentioned
explicitly.
To obtain more flexibility in the interactions, one can also tune the exponents in
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eq. (2.6) and introduce displacements ∆, arriving at

U(r) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∞, r ≤∆

4ε [( σ
r−∆

)
2n
− ( σ

r−∆
)
n
] +C ∆ < r < rc

0, rc ≤ r

(2.7)

where the exponent n now allows to tune softness and steepness, while ∆ allows to
enlarge the pairwise distance without modifying the form of the potential. Purely
repulsive interactions (WCA) are now obtained with rc = 21/nσ +∆. When using
displacements ∆ > 0, the effective diameter of a particle is s = σ+∆ and a parameter
set is given as (s,∆, ε, n, r/a) where in the last entry "r" indicates a cutoff leading
to a purely repulsive interaction while "a" indicates a choice of cutoff giving the
full potential including the attractive part. In the latter case it is cut at the value
where the energy equals that of eq. (2.6) with ε = 1 at r = 2.5σ. The precise value
of rc in this case is given by

rc =∆ + (
1
2ε (ε −

√
ε (ε +ULJ,ε=1(2.5σ))))

−
1
n

σ , (2.8)

which is used in this work for every interaction including the attractive part and
will not be explicitly mentioned from this point on. The subsets "cf" will be used to
denote colloid-fluid interactions, while "cc" will denote colloid-colloid interactions.

2.3 Mesoscale Simulation Techniques
There are several approaches to describe colloidal mesoscale dynamics in computer
simulations. Langevin Dynamics (LD) solve the Langevin equation numerically. A
distinction is made to Brownian Dynamics (BD), which also solve the Langevin
equation, but in the inertia-free limit [47]. LD and BD are in a sense very similar
to classic MD simulations, but including a noise and a friction force. For that
reason, LD is also used as a thermostat in MD simulations [48]. Since the solvent
is treated implicitly, hydrodynamics do not emerge naturally, but may be included
through additional forces based on, for example, the Oseen or Rotne-Prager tensor.
When hydrodynamic interactions are included, the method is termed Stokesian
Dynamics [49].
Instead of the continuum description of the fluid used in these methods, another

approach to treat the problem of the large separation in length and time scales be-
tween solvent and solute is to consider the solvent not as atomistically resolved, but
to treat larger groups or clusters of fluids as units which move on comparable scales
as the solute. These coarsened chunks of fluid are then called "dissipative" parti-
cles, and their motion is resolved with the method of dissipative particle dynamics
(DPD) [50].
Another approach to resolve mesoscale dynamics of polymers or colloidal suspen-

sions is to employ lattice-based methods. Among these, Lattice Boltzmann (LB)
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methods are prominently used. These work by solving the Boltzmann equation on
a lattice, employing specific models to treat the collision terms [50].
Multi-Particle Collision Dynamics (MPC) [43], which has also been called stochas-

tic rotation dynamics (SRD) [51] and real-coded lattice gas [52], employs an off-
lattice description of coarsened fluid particles which interact through effective colli-
sion rules. It has the advantage of including thermal fluctuations by construction in
its simplest formulation already, which are crucial in the description of colloidal sys-
tems. Due to the method conserving energy locally, thermophoretic effects emerge
naturally from it. These features make it a suitable method to describe the fluid
in the systems treated in this work.

2.4 Multi-Particle Collision Dynamics
MPC was developed in 1999 by Malevanets and Kapral [43]. The method describes
a fluid as a collection of point particles i defined by their positions ri, velocities vi
and mass mi that do not interact with each other through direct potentials. Fluid
particle interactions are instead accounted for in a statistical fashion by coarsening
them into multi-particle collisions. At its core, the algorithm consists of two steps,
which are illustrated in fig. 2.1. In the streaming step, all particles propagate

(a) (b)

Figure 2.1: Schematics showing the MPC algorithm. In the streaming step a),
all particles propagate ballistically. Then, in the collision step b), they are sorted
into bins in which multi-particle collisions are performed.

according to their instantaneous velocity for a time h, called the collision time,
according to

ri(t + h) = ri(t) + hvi(t) . (2.9)

Then, collisions takes place. To perform these, the particles are sorted into bins Ψ
of a regular grid of side length a. For each bin, the bin-wise center-of-mass velocity
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vcm(Ψi) is calculated and the velocities of particles inside this bin are rotated around
a random axis by an angle α, as [53]

vi(t + h) = vi(t) +R[Ψi(ri(t + h)), α]{vi − vcm[Ψ(ri(t + h))]} (2.10)

where R is a rotation matrix and the center of mass vcm of a bin, or collision cell,
is calculated as

vcm[Ψ(ri(t + h))] =
∑k∈Ψ vk
NΨ,t

. (2.11)

with NΨ,t being the number of particles in bin Ψ at time t. This collision rule
conserves linear momentum, mass, and energy and has been shown to be a compu-
tationally very efficient way to obtain correct hydrodynamics [44, 54]. However, in
its basic formulation, it does not conserve angular momentum. There exist methods
to include angular momentum conservation into MPC, at the cost of longer com-
putation times. In many cases, it is not necessary to include angular momentum
conservation [55], though specific scenarios where its importance has been shown
were discussed [44].
Several formulations for the rotation matrixR exist. In two-dimensional systems,

one rotates by either +α or −α, choosing the sign randomly. Transferring this
to three dimensions, one may choose a rotation by ±α around one of the three
main axes, arriving at six possible rotation matrices out of which one is chosen
randomly for each collision cell. As the axes are fixed, this collision rule may lead
to some isotropy due to the underlying lattice. A modified version constructing a
completely random axis for each bin around which the rotation is performed was
also developed [56] and is used in this work to minimize up to a negligible degree
any spurious isotropy of the imposed grid.
The applied grid however does limit the achievable resolution, and may also

introduce unphysical behavior when the mean-free path of MPC particles is lower
than the side length of collision cells a. Then, particles may interact with the same
partners in multiple successive steps and Galilean invariance is broken. A method
to restore Galilean invariance and enable smaller collision times h is to introduce
a grid-shifting procedure [57]. With this, the grid is displaced before each collision
step by a random shift [−a/2, a/2] or likewise [0, a], on average randomizing the
collision partners of each particle and restoring Galilean invariance for arbitrary
low mean-free paths.
Simulation units in MPC are defined by the length a, the mass m and the energy

kBT , which are typically set to one and constitute the basis for all other units. This
choice implies that time is scaled with a

√
m/(kBT ), so velocities are for example

given in units of
√

kBT /m, diffusivity and kinematic viscosity in a
√

kBT /m and
density referring to a unit area or volume of ad with d the dimensionality. These
are the units employed in this thesis and will not be explicitly specified from here
on.
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Independent quantities that determine the MPC fluid behavior are the chosen
collision time h, the average number of particles per cell nMPC = ⟨NΨ/ad⟩ and the
rotation angle α as well as the system size. Simulation boxes are typically quadratic
or cubic with edge length L.
Besides the basic formulation presented so far, several variants of the MPC algo-

rithm have been developed. Anderson-MPC [58] and Langevin-MPC [59] provide
thermostats directly incorporated into the collision operator R, for example to
account for changes in the system’s energy induced by applying external forces.
Anderson-MPC can be modified to also conserve angular momentum.

2.4.1 Introduction of Temperature Gradients
Studies on the inclusion of temperature gradients into the MPC method have been
performed by Lüsebrink and Ripoll [60]. For confined systems, these authors con-
sidered two approaches. One is to rescale the temperature of fluid particles in short
layers close to the confining walls to different temperatures, a lower one Tc and a
higher one Th. The second one considers virtual particles. When a random shift
procedure is employed, the treatment of confining walls requires additional atten-
tion, as collision cells may overlap the walls and are then only partly filled. As the
average particle density in collision cells determines the physical properties of the
MPC fluid, this leads to deviations at the boundaries. To overcome this problem,
it was proposed to include virtual particles in these cells overlapping boundaries,
as many as necessary to restore the average density for the cell [61]. Their veloci-
ties are drawn randomly from a Maxwell-Boltzmann distribution corresponding to
the average temperature of the system. These virtual particles can therefore also
easily be used for thermostatting purposes. If one wishes to obtain a temperature
gradient in between two confining walls it is possible to draw the virtual particles
velocities from two Maxwell-Boltzmann distributions at reduced and elevated tem-
perature. Both described methods lead to stable linear temperature gradients at
some distance from the wall.
For periodic systems, a different approach has to be taken. For MPC, it is

also possible to use the algorithm of Müller-Plathe for non-equilibrium molecular
dynamics [62]. In it, two slabs inside the periodic box are defined. Then, the
velocities of the hottest particle or particles in one layer, considered cold, and
the coldest particle in the other layer, considered hot, are exchanged. The method
conserves total energy and momentum, and is suitable as well for MPC simulations,
leading to stable linear temperature gradients as shown in [60].

2.4.2 Coupling to Colloidal Dynamics
There exist multiple ways of coupling the MPC fluid to the dynamics of immersed
large particles. One straightforward method is to treat larger particles as "heavy"
fluid particles, i.e. having a larger mass than the fluid particles, and letting them
take part in the collision step. This variant is called MPC-coupling and has shown
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to be a very efficient model for example when applied to linear polymers, rods, or
star polymers in shear flow [63], among others. Another possibility is to describe
the colloid-solvent interaction through introduction of direct pair-wise interaction
potentials as done in MD [64], which, though being computationally far more ex-
pensive, has the advantage of allowing a more precise and tunable description of
interaction properties. This combination of MPC with MD is called Multi-Particle
Collision Dynamics coupled to Molecular Dynamics (MPC-MD). It is the approach
adapted in this work, as the molecular interactions determine the response of col-
loids to temperature gradients.

2.4.3 MPC Fluid Properties
The MPC fluid has the equation of state of an ideal gas,

pV = nρkBT . (2.12)

The MPC particles’ velocities follow a Maxwell-Boltzmann distribution. Their
mean-free path is given by h

√
kBT /m. Analytic predictions for the transport prop-

erties of an MPC fluid have been calculated based on kinetic theory for the stochas-
tic rotation rule of eq. (2.10) [44, 65, 66] and have been shown to lead to very good
agreement to what is obtained in simulation measurements [44, 67]. The trans-
port coefficients of the MPC fluid have a kinetic contribution, referring to particles
carrying momentum along with them as they move through space. The other con-
tribution is a collisional one, referring to momentum being transported through the
fluid by interactions of particles rather than their motion. Table 2.1 summarizes
the analytic expressions used to characterize fluid properties in this work.

Table 2.1: Analytic predictions, up to O(1/nMPC) for kinetic and O(1/n2
MPC) for

collisional contributions, for the kinematic viscosity ν, the thermal diffusivity DT

and the self-diffusion coefficient Df of an MPC fluid. n stands for nMPC in this
table. Taken from [44].

d kinetic (×kBTh/(2m)) collisional (×a2/h)

ν
2 n

(n−1+exp[−n]) sin2
(α)

− 1 n−1+exp[−n]
6dn (1 − cos(α))

3 5n
(n−1+exp[−n])[2−cos(α)−cos(2α)] − 1

DT
2 d

1−cos(α) − 1 + 2d
n
[7−d

5 − 1
4 csc2(α/2)] 1−1/n

3(d+2)n[1 − cos(α)]3

Df
2 dn

[1−cos(α)](n−1+exp[−n]) − 1 –3

Knowledge of the transport coefficients allows characterization of the fluid in
terms of hydrodynamic numbers. The MPC parameters used in this work are, be-
sides the choice of simulation units determining a = 1, m = 1, and kBT = 1, typically
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chosen as α = 120°, nMPC = 10 and h = 0.1. These values are used for the theoretical
predictions in the following. This choice determines the fluid properties as the dif-
fusion coefficient Df = 0.06, the kinematic viscosity ν = 0.79 (or dynamic viscosity
µd = ρν = 7.9) and the thermal diffusivity DT = 0.154 (or thermal conductivity
kT = ρcpDT = 3.85) [57, 60].
In order to compare simulation units with real units used in experiments, dimen-

sionless numbers are of great importance. The five dimensionless numbers most
relevant to the systems treated in this thesis are therefore discussed in the follow-
ing.
The Schmidt number Sc = ν/Df characterizes the rate of diffusive momentum

transfer to that of diffusive mass transfer [54]. Gases typically have Schmidt num-
bers around 1, such that momentum transfer is dominated by the diffusion of mass.
Liquids mostly have high Schmidt number in the range of hundreds, such that
momentum transfer is dominated by inter-particle interaction processes, i.e. col-
lisions. In order to obtain hydrodynamic behavior corresponding to a liquid-like
state, a high Schmidt number is called for. MPC is able to reach these high Schmidt
numbers, but at the cost of rather long simulation times. On the other hand, as
pointed out by Padding and Louis [54], Df does not enter directly the Navier-Stokes
equations for colloids interacting with the fluid through a potential or stochastic
boundary conditions. In that case, a proper separation of time-scales is given when
Dcolloid ≪ Df and liquid-like hydrodynamics should be obtained. In this work,
Sc ≈ 13 is used, which is smaller than that of most liquids, but still ensuring this
separation of time scales, which has been shown to be a suitable and efficient choice
to model hydrodynamic interactions [68, 69].
The Reynolds number Re = vclc/ν measures the relative importance of inertial to

viscous forces. vc is a typical velocity, in the context of microswimmers for example
the flow velocity of the MPC fluid or a colloid’s velocity. lc is a typical length scale,
it could be for example the collision box size a or a colloid’s diameter. To describe
colloidal dynamics taking place at low Reynolds numbers, in the so-called Stokes
regime, it should be accordingly chosen low. MPC will resolve hydrodynamics
for any Reynolds number chosen, such that its choice is not a question of the
method but rather one depending on the system under consideration. For choices
of Re < 1, the assumption of Stokes behavior leads to good agreement of predicted
and measured flow fields of thermophoretic swimmers [25].
Compressibility effects are measured by the Mach number Ma = vc/cf , where the

speed of sound cf is given by cf =
√

(5/3)(kBT /m). Typically, the Mach numbers of
fluids are very low. Coarse-grained particle-based simulation methods most often
lead to higher Mach numbers, as the coarsened particles describing chunks of fluid
usually have a higher mass than that of the underlying molecules and collide much
less frequently, making the methods prone to compressibility artifacts. For the
colloidal swimmers under consideration in this work, typical velocities are of order
10−2, leading to Mach numbers around Ma ≈ 10−2 which should be small enough to
avoid compressibility artifacts, especially since these typically scale with Ma2 [54].
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The Peclet number Pe = vclc/Dcolloid characterizes the importance of convec-
tive over diffusive transport for immersed particles [54]. Alternatively, for a self-
propelled colloidal particle, it may also characterize the importance of propulsion
over noise, taking the definition

Pe = vc/(Dcolloidlc) (2.13)

where Dcolloid is the colloid’s diffusion coefficient and lc its characteristic length
scale [70]. Typical values of the Peclet number of experimentally synthesized
phoretic Janus particles are in the range 5–200, which is also aimed for in this
work.
In situations where thermal processes play a role, the Prandtl number Pr = ν/DT

characterizes the importance of viscous over thermal diffusion. A typical value for
water at 15○C is Pr = 7.82 [71]. The MPC fluid’s Prandtl number is ca. 6 for
the simulation parameters chosen in this work, which closely corresponds to the
liquid-like regime aimed for.

2.5 Implementation of MPC-MD in LAMMPS
lammps is a versatile, open-source framework for molecular simulation, in its core
aimed at classic molecular dynamics simulation, but suitable as well for coarse-
grained, mesoscopic, or continuum scenarios [72]. A parallel implementation of the
MPC algorithm in its basic formulation is available in lammps, with implemen-
tation details discussed in [53]. It features an MPI-based domain-decomposition
parallelization scheme that has shown good scaling properties on a Cray XT3 high-
performance system.
In this work, it is aimed for to perform large-scale simulation on active colloidal

systems based on the MPC-MD algorithm. lammps offers MPI-parallelized MD
and basic MPC, but not an efficient coupling between the two to enable MPC-MD
simulations. This, along with a variety of other features such as specific ther-
mostats and flow field measurements, was implemented in the scope of this work
into lammps and all simulations are performed with it.
The most prominent differences and additional features of the code used for

this work are summarized in the following. In the original implementation, the
collision step is done with a fixed angle of α = 90° and using a collision operator
R picking one out of six rotations around fixed axes. Within this work, it was
adapted to feature a variable angle α and using a random axis to perform rotations
with. The existing framework of lammps provided in principle the possibility
to run MPC-MD simulations, albeit at the cost of high computation times as no
distinction could be made between MPC particles that interact explicitly with
the colloids and those that do not, requiring then to use the same time step for
propagation of both the interacting and the, typically many more, non-interacting
MPC particles. Within this work, an efficient routine to distinguish these two types
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was implemented, allowing separate treatment and regaining the original efficiency
of the MPC simulation method also in the context of MPC-MD. Furthermore, many
functionalities of standard MD hinder performance when not accounting for the
ideal-gas nature of non-interacting MPC particles, which in many cases means not
including them inside the computational routine. For example, just checking with
an if-statement whether a non-interacting MPC particle needs to be considered
in the MD neighbor list creation can severely decrease performance due to the
sheer number of non-interacting MPC particles. All relevant MD functionalities of
lammps were then, if necessary, modified to avoid considering the non-interacting
particles.
Strong scaling results of this implementation of MPC-MD on the supercomputer

jureca [73] are shown in fig. 2.2. Parallel efficiency is around 90 % for a variety
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Figure 2.2: Strong scaling behavior of the implementation of MPC-MD in lammps
on the supercomputer jureca [73] in terms of speedup (a)) and parallel efficiency
(b)). This test was performed for a system with fixed size of 500 dimer swimmers,
and 9.0×107 MPC particles (this corresponds to L = 211 collision boxes per spatial
direction). Data is normalized to 1 node (= 24 cores without hyper-threading).

of reasonable node numbers, then drops off at some point where the domains each
processor works on get too small and communication costs start to become domi-
nant. The system shown here is very big and demanding in terms of the MD part.
Petersen et al. reported super-linear scaling for their implementation of pure MPC
in lammps [53], which was attributed to memory effects on the CPU architecture,
such as the list of particles fitting into cache. This has also been observed on ju-
reca for pure fluid simulations as well as for those with a smaller MD part, such
as single colloids in temperature gradients.
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3 Theoretical Approach to
Thermophoresis

In this chapter, two approaches to phoresis are discussed, with the aim to obtain
expressions for the thermal diffusion factor αT and Soret coefficient ST in the con-
text of thermophoresis. One route is to obtain the force on a colloid in a gradient
through direct evaluation of the force, the other is to find an expression for the
phoretic slip velocity. Based on the notion of thermophoresis stemming from the
combination of a temperature gradient and the corresponding density gradient, an-
alytic expressions are established for both approaches and tested against simulation
results. These are then used to explain the size and temperature dependence of the
Soret coefficient observed in simulation studies.

3.1 Phoretic slip velocity
The motion of liquids on the microscale, in the low Reynolds-number regime of an
incompressible fluid, is governed by the Stokes equation eq. (1.5), µd∇2v = ∇p − f ,
where µd is the viscosity, v the fluid velocity field, p the pressure and f any force
density exerted on the fluid [42, 74]. Consider the case of a large spherical particle
with radius R suspended in the fluid. The force that particle exerts on the fluid
has a range of interaction B, supposed to be short, i.e. B ≪ R. Then, the Stokes
equation can be solved taking advantage of the boundary layer approximation. The
particle surface is taken to be flat in the range where f is significantly large and
one can solve the Stokes equation in a local coordinate system (xl, zl) attached to
the surface, as sketched in fig. 3.1. The Stokes equation in this coordinate system
is now dependent only on xl and zl. The perpendicular component of the fluid
velocity vzl

should vanish close to the particle and the parallel velocity vxl
should

not depend on xl, but only on zl. This parallel velocity will vary according to
the particle-fluid interaction inside the boundary layer and take a constant value
outside vxl

(zl ≥ B) = vB = constant. The two components of the Stokes equation
can therefore be simplified to

0 = dp
dzl

− fzl
(3.1)

µd
d2vxl

dz2
l

=
dp
dxl

− fxl
. (3.2)
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Figure 3.1: Local coordinate system attached to the colloidal surface. Taken from
[42].

The integral of eq. (3.1) gives the hydrodynamic excess pressure p. From eq. (3.2),
one can obtain an expression for the slip velocity at the colloidal surface. If the
slip velocity is known, the velocity of the particle can be calculated, as well as the
flow field in the surrounding fluid. Equation (3.2) is integrated twice to obtain an
expression for the slip velocity. The first integral disappears at the upper boundary
since there are no pressure gradients in bulk fluid, so dvxl

/dzl ∣zl=B = 0, and the
second integral results, using that vxl

∣zl=0 = 0 (since there is no slip at the solid
surface), in

vxl
= −

1
µd

zl

∫
0

dz′l
∞

∫

z′
l

dz′′l (
dp
dxl

− fxl
) , (3.3)

which can be rearranged using integration by parts and evaluated at zl = B to
give [42, 75]

vB =
1
µd

B

∫
0

dzl zl (fxl
−

dp
dxl

) . (3.4)

This equation provides a general description of slip velocity at the boundary layer
of a colloidal surface, originating in an external force and a surface gradient of
pressure. The pressure is linked to the colloid-fluid interaction potentials in order
to obtain expressions for a specific realization of diffusio- and thermophoretic effects.

3.2 Diffusiophoresis
Diffusiophoresis describes the phoretic effect resulting from a gradient in density or
concentration around a colloid. This may be a gradient in a single fluid species, or
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a gradient in a mixture of more than one fluid species. The latter case is used for
example in simulation models of chemical swimmers, where one catalytic site con-
verts a fluid species A to another fluid species B, thereby producing a concentration
gradient in both [16].

3.2.1 Slip Velocity
The excess pressure p in the boundary layer of a particle interacting with the solvent
through a central potential U is given by [42]

p = ρkBT (exp[− U

kBT
] − 1) . (3.5)

Since this kind of interaction potential has no parallel component, U = U(zl),
fxl

in eq. (3.2) is zero, and accordingly also in eq. (3.4). The slip velocity for
the diffusiophoretic case, where there is a non-constant density ρ (or concentra-
tion c) of neutral solvent species around a colloid, follows when the density ρ of
solvent particles depends on xl. Then, eq. (3.4) is given for diffusiophoresis, with
dp
dxl

=
dρ
dxl

kBT exp[− U
kBT

]−
dρ
dxl

kBT−
dU(zl)

dxl
ρ exp[− U

kBT
/(kBT )] =

dρ
dxl

kBT (exp[− U
kBT

]−1),
by [74]

vB = −
kBT

µd

dρ
dxl

B

∫
0

dzl zl (exp[− U

kBT
] − 1) . (3.6)

For a specific application, this equation needs to be written in the appropriate
coordinate system for the system under investigation. For example, for a sphere
with outer edge R̄, a density gradient in z-direction and spherical polar coordinates,
in which the polar angle 0 < θ < π is measured from the z-axis, one obtains

vB(R̄, θ) = −
kBT

µd
∇θρ

B

∫
0

dzl zl (exp[− U

kBT
] − 1) . (3.7)

This can be written in a more concise notation, since all terms but ∇θρ are constant.
Introducing κρ = (kBT /µd)Λρ with

Λρ =

B

∫
0

dzl zl (exp[− U

kBT
] − 1) , (3.8)

eq. (3.7) read as

vB(R̄, θ) = −κρ∇θρ(R̄, θ) . (3.9)

This was for example used in the continuum model description of dimeric colloidal
swimmers driven by diffusiophoresis [76].
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3.2.2 Phoretic Force
An alternative way to calculate the propulsion velocity of a colloid in a density
gradient is possible by directly evaluating the interaction potential, obtaining the
force in direction of the gradient (taken to be in z) by solving

fz = ẑ ⋅ f = ∫ dr ρ∂U(r)

∂r
(ẑ ⋅ r̂) . (3.10)

Here, ẑ is the unit vector in direction of the gradient and f the force on the colloid.
The density ρ must depend on z, and for pairwise colloid-fluid interactions also
on the pairwise distance r, which is r = ∣r∣ when the colloid is taken to be at the
origin. For an ideal gas, the solvent density distribution will follow the interaction
potential according to

ρ(r) = ρ exp[−U(r)

kBT
] (3.11)

when there is no gradient, where the unperturbed equilibrium density is denoted
ρ. For an existing gradient, one may write

ρ(r, z) = ρ(z) exp[−U(r)

kBT
] , (3.12)

where ρ(z) describes the density considering only the effect of the gradient. With
this density profile ρ(r, z), eq. (3.10) can be solved (numerically) to obtain the
propulsion force fz of the colloid. The friction coefficient ζ relates this force to the
colloid’s velocity by vz = ζfz. Such an approach was for example used in [77].

3.3 Thermophoresis

3.3.1 Force on a Colloid
In this section, an approach to an analytic microscopic theory for thermophoretic
interactions is presented, that can be used to predict the thermophoretic properties
of colloids in MPC-MD simulations. Conceptually, it aims at obtaining expressions
for both the fluid temperature distribution and the fluid density distribution to
apply the idea of eq. (3.10) to the scenario of thermophoresis. The fluid density
distribution needs to account for both its dependence on temperature as well as on
the colloid-fluid interaction potential.
The starting point for this calculation is knowing that MPC has an ideal gas

equation of state, pV = nρkBT . In the work of Lüsebrink and Ripoll, the effect
of temperature gradients on the MPC fluid has been extensively studied [60]. Of
specific interest for this work is that for a system with dimensions Lx, Ly, Lz, and
a temperature gradient ∇zT in z-direction, the temperature gradient in between
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a cold layer at temperature Tc and a hot layer at temperature Th is linear and
constant everywhere. The temperature distribution can thus be written as

T (z) = Tc +
Th − Tc

Lz
z = Tc +∇zTz . (3.13)

Due to the ideal gas nature of the MPC fluid, the particle number density ρ is
position-dependent and follows the temperature gradient, so ρ = ρT (z) = n(z)a3/V
with a the MPC length scale, n(z) the number of particles at z and V the box
volume. With the ideal gas law, it can then be written as

ρT (z) =
p

kBT (z)
. (3.14)

Using that the total number of fluid particles N is constant, as expressed by
∫V d3r ρ(z) = N , one obtains

p = ρ
kB(Th − Tc)

ln(Th/Tc)
, (3.15)

where ρ = N/V is the average number density in the system. With these, explicit
analytic expressions for both the temperature and the density profile are known.
Additionally, the expression for the density profile may also be linearized to [60]

ρT (z) = ρ [1 −
∇zT

T
(z −

Lz

2 )] . (3.16)

This form has the advantage that no volume has to be specified for the calcula-
tion, but it will only give a good approximation for small temperature gradients.
Additionally, taking the derivative with respect to z, one may write the linearized
density gradient as

∇zρ = −
ρ

T
∇zT . (3.17)

An example for the temperature and density profiles obtained in this setup is
illustrated in fig. 3.2a, highlighting also the feasibility of the linear approximation
in the typical scenario of small gradients.
As a next step, consider a measurement aimed at obtaining the dimensionless

thermal diffusion factor αT , which is the proportionality factor that linearly relates
the force experienced by a colloid located in a temperature gradient to the strength
of this gradient through [35]

fT = −αTkB∇T . (3.18)

In the context of MPC-MD simulations, a colloid is placed in between a cold and
a hot reservoir, at temperatures Tc and Th [35]. The resulting temperature distri-
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Figure 3.2: a) Fluid temperature distribution according to eq. (3.14) (red) for a
temperature gradient of ∇zT = 0.01 in a cubic box with side length L = 18.0. The
corresponding fluid density distribution according to the full expression of eq. (3.14)
is shown in dark blue and the linearized version of eq. (3.16) in light blue. The
position of the colloid is sketched with a gray circle. b) shows the fluid density
distribution according to eq. (3.20) for the same setup, but measured radially from
the center of a colloid with radius s = 3, described by a purely repulsive potential,
in direction perpendicular, along and against the temperature gradient.

bution may show a temperature jump in between the temperature of the boundary
and the fluid directly at the boundary, but becomes steady and linear farer away
from the reservoirs. αT can then, for a fixed colloid, straightforwardly be obtained
by measuring both the resulting resulting temperature gradient and the resulting
phoretic force. Alternatively, αT might also be extracted from the motion of a col-
loid freely moving in the temperature gradient. In the analytical approach outlined
here, one chooses instead an average temperature T and a temperature gradient
∇T , without explicit specification of boundaries.
The scenario of a colloid located in a temperature and density gradient, as

sketched in fig. 3.2a, includes several aspects:
1. There is a specific colloid-fluid interaction.

2. There is a temperature gradient.

3. There is a density gradient in response to the temperature gradient.

4. The density distribution will also be influenced by the colloid-fluid interaction.

5. The colloid will induce a flow field.
The temperature and density fields due to the temperature gradient are known. The
density distribution ρcolloid(r) at distance r around a spherical colloid interacting
with the MPC fluid through a pairwise potential U is given by

ρcolloid(r) = ρ exp[−U(r)

kBT
] . (3.19)
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The full expression for the density distribution that includes both the effect of a
temperature gradient as well as that of the colloid then results as

ρcomplete(r, z) = ρT (z) exp[− U(r)

kBT (z)
] . (3.20)

The temperature gradient induces an asymmetry in the fluid densities within the
interaction volume of the colloid, which is illustrated in fig. 3.2b. Equation (3.20)
involves two main approximations, namely that the density and temperature gradi-
ents are small, such that the non-equilibrium density and temperature distributions
can be expressed as the respective equilibrium distributions plus some additional
perturbation terms. This can be seen more clearly when the inhomogeneities in
temperature and density are expressed in terms of small perturbations ∆ρ and ∆T
to the equilibrium values T and ρ, such that eq. (3.20) reads

ρ(r, z) = (ρ +∆ρ) exp[− U(r)

kB(T +∆T )
] (3.21)

This can be linearized by Taylor expanding, using that for small x, 1/(1+x) ≈ 1−x
and exp[x] ≈ 1 + x, obtaining

ρ =ρ exp[− U

kBT
] +∆ρ exp[− U

kBT
]

+
∆T

T
2
Uρ

kB
exp[− U

kBT
] +

∆ρ∆T

T
2

U

kB
exp[− U

kBT
] , (3.22)

which recovers the equilibrium distribution in the limit of no perturbations, i.e.
∆T = 0 and ∆ρ = 0. This linearized version is only shown here to clarify the
approximations, in the numeric calculations the full expression of eq. (3.20) is used.
For a given temperature and density distributions, an expression for the force on

the colloid can now be obtained. For symmetry reasons, only the z component, i.e.
the component along the temperature gradient, is of interest. The resulting expres-
sion in the context of thermophoresis is equivalent to eq. (3.10) with temperature
dependent terms and reads

ẑ ⋅ f = ∫ dr ρcomplete(r, z)
∂U(r, T (z))

∂r
(ẑ ⋅ r̂) . (3.23)

This expression is integrated numerically, leading to a value for the thermophoretic
force fT = ẑ ⋅ f . Since the temperature gradient ∇T is for this calculation chosen
at the beginning, one directly obtains αT = −fT /∇T . For a single colloid in a
temperature gradient, the system is cylindrically symmetric, which can be made
use of in the numeric evaluation of eq. (3.23).
Conceptually, the underlying interpretation of thermophoresis is illustrated in

the sketch in fig. 3.2a. The phenomenon is interpreted as the combined effect of
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a density and temperature gradient. The temperature gradient along with the
colloid-fluid interaction potentials determines the density distribution, leading to a
diffusiophoretic contribution evident in the position-dependent density. The ther-
mophoretic contribution is included in the position-dependent temperature, that in
the force calculation weighs the interaction potential spatially dependent through
the Boltzmann factor 1/(kBT (z)). A similar approach to obtain αT was taken by
Lüsebrink, but led to systematic deviations [41].

3.3.1.1 Comparison to Simulation

In simulations, the thermal diffusion coefficient αT can be measured using two
schemes [35]. In both of them, the colloid is put into the center of a fluid with a
temperature gradient. Employing the so-called Single-Particle Thermal Diffusion
Algorithm (SPTA), the colloid is held near its initial position using a spring, and its
averaged displacement is related to the thermophoretic force. For pairwise analytic
potentials, it is also possible to directly measure the force on a fixed colloid. The
second method, which will be referred to as the vT scheme, does not fix the colloid,
but measures its drift velocity and relates it to αT based on eq. (1.37), through αT ≈

−vTT /(D∇gT ) where ∇g is the derivative in direction of the temperature gradient.
This approach requires additional knowledge of the colloid diffusion coefficient D.
The two approaches have been shown to lead to nearly identical results [35].
The analytical predictions of eq. (3.23) are compared to simulation results of

Lüsebrink et al. [35], who measured αT using both described methods. The cal-
culated values are given in table 3.1 and are higher than the measured ones, ex-
cept for the simulation value using a repulsive LJ potential with a colloidal radius
s = 1. Comparisons are made to the SPTA method in simulations, as more simu-
lation values are available for it and it is closer to the discussed theory in terms of
methodology. The average deviation in between predicted and simulated values is
ca. 33± 12 %, always overestimating the simulation values. All qualitative features
are captured however, i.e. the sign depending on the employed potential interaction
as well as the trends in obtained values of αT upon variation of s. The case of small
colloids with s = 1 is left out in this and the following discussion, as using s < 2
in MPC-MD simulations has been shown to lead to deviations from the expected
hydrodynamic behavior [54], such that these simulation results are included for
completeness, but care has to be taken in drawing conclusions from them.

3.3.1.2 Correction for Finite Size Effects

As discussed by the authors of [35], the measurements of αT in simulations are
significantly influenced by finite size effects. These finite size effects manifest them-
selves in the presence of a constant backflow of fluid from the boundaries, which
compensates the flow induced by the colloid, ensuring that no total net flux is
present. The phoretic force will make the colloid drift into one direction, accom-
panied by a fluid flow in the opposite way. For a fixed particle, which is the case
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Table 3.1: Comparison of the evaluation of eq. (3.23), or equivalently eq. (3.34),
(αa

T ) to simulation measurements of Lüsebrink et al. [35] using the SPTA scheme
(αSPTA

T ) and the vT scheme (αvT

T ). αc
T refers to predicted values including a correc-

tion for backflow in simulations. Deviations are given for αc
T with respect to αSPTA

T .
Results obtained using eq. (3.34) match those of eq. (3.23) in every case. The em-
ployed colloid-fluid interaction potentials correspond to eq. (2.7) with (s,0,1,6, r)
(rep) and (s,0,1,48,a) (att).

Potential s αa
T αc

T αSPTA
T αvT

T deviation / %
rep 1 -4.64 -3.61 -5.7 -5.0 -36.7
rep 2 -37.12 -28.86 -29 -24 -0.5
rep 3 -125.10 -97.30 -104 -120 -6.4
rep 4 -295.97 -230.20 -243 -258 -5.3
att 1 10.54 8.20 7.0 17.1
att 2 84.36 65.61 65 0.9
att 3 284.57 221.3 197 12.4
att 4 674.05 524.26 440 19.1

considered in the analytic predictions, the colloid works as a pump. The accompa-
nying flow field for the flow field around a fixed colloid in a temperature gradient
is given, when no boundaries are present, by [68]

vfluid(r) = −
1

8πµdr
(r̂r̂ + I) ⋅ fT +

R2

8πµdr3 (3r̂r̂ + I) ⋅ fT , (3.24)

where R is the particle radius, µd the dynamic viscosity of the solvent, r = r/∣r∣,
r̂ = r/r and I the unit tensor. The backflow from the boundaries is necessarily
opposed to the main flow direction. It has been shown in the studies of Yang and
Ripoll that the effect of this backflow is well captured by assuming it as constant,
such that the flow field can be calculated assuming no boundaries and its magnitude
then shifted downwards by the value at the boundary [68]. Figure 3.3 shows their
measurements and analytic calculations of the flow field. The feasibility of just
using a downwards shift is highlighted there by the red arrow, which is the shift
necessary to match the open boundary case (red dashed line) to the bounded one
(simulation values and green dotted line).

Since a fixed colloidal particle does by definition not move, all phoretic force (or
the complete slip velocity) induces motion of the fluid and not the colloid. The
constant backflow effectively hinders this fluid motion, and reduces thereby the
force (or displacement) measured in simulations. To account for it in the analytic
calculation of the force here, the flow velocity at a distance corresponding to the
system boundary of the simulation system is taken. This velocity is related to a
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(a)

(b)

(c)

Figure 3.3: a) The flow field of a fixed colloidal particle in a bounded system.
b,c) Velocity of the flow as a function of distance from the colloidal center along
the axes ac,h in direction of the temperature gradient (b)) and the axes bu,d perpen-
dicular to the temperature gradient (c)); as shown in a). Symbols correspond to
simulation results, dashed lines to the theoretical calculation in eq. (3.24), dotted
lines to the constant backflow approximation, and solid lines to another theoretical
calculation based on the reflection method. Arrows indicate the position of the
system boundaries.

force fζ through the friction coefficient ζ = Cζπµdrcolloid as

fζ = Cζπµdrcolloidvcolloid . (3.25)

The prefactor Cζ = 3 is used, based on the result of Yang et al. [55] for a MPC fluid
that does not conserve angular momentum. The resulting friction force is opposed
to the thermophoretic force and an effective thermophoretic force is calculated as
the sum of the unbounded solution and this effective friction force, such that a
corrected value for the thermal diffusion factor results as αc

T = (fζ + fT )/∇gT .
These corrected predictions are compared to simulated thermal diffusion factors

again in table 3.1. Leaving out the values for σ = 1, the average deviation to results
obtained with the SPTA method is ca. 7 ± 7 %. The error bars are not given for
the simulation values, but can be estimated from other measurements performed
in [35] to be of order ± 10% and larger, such that the made predictions agree quite
well with the simulated values. Notable deviations larger than 10 % occur only for
attractive potentials with larger s, deviations for repulsive potentials and attractive
with s = 2 are around ±3 %

36



3.3 Thermophoresis

3.3.2 Slip Velocity due to Thermophoresis

The interpretation of colloidal thermophoresis as a combination of thermophoretic
and diffusiophoretic contributions can also be included in the general description of
phoretic effects provided by eq. (3.4). This equation is the starting point to obtain
an expression for the slip velocity. In it, the excess pressure p will now not only have
a position-dependent density term (diffusiophoresis), but also a position-dependent
temperature term is introduced according to

p(xl, zl) = ρ(xl)kBT (xl)(exp[− U(zl)

kBT (xl)
] − 1) . (3.26)

Again, the interaction potential has no perpendicular component, such that fxl
in

eq. (3.4) is zero. The derivative dp
dxl

is now given by

dp
dxl

=
dρ
dxl

kBT (exp[− U

kBT
] − 1)

+
dT
dxl

(kBρ exp[− U

kBT
] − kBρ +

Uρ

T
exp[− U

kBT
]) . (3.27)

Plugging it into eq. (3.4) gives

vB = −
kBT

µd

dρ
dxl

B

∫
0

dzl zl (exp[− U

kBT
] − 1)

−
1
µd

dT
dxl

B

∫
0

dzl zl (kBρ exp[− U

kBT
] − kBρ +

Uρ

T
exp[− U

kBT
]) (3.28)

where the density gradient dependent term is exactly equivalent to eq. (3.6). Note
that the density gradient here is not an independent function of the temperature
field. Rather, it follows directly as a consequence of the non-uniform distribution
of temperature through the equation of state of the fluid.
This equation again has to be formulated in appropriate coordinates for the

problem of interest. Treating the same setup of a colloid in a temperature gradient
as was done in the calculation of the force fT , the resulting expression reads

vB(R̄, θ) = −
kBT (R̄, θ)

µd
∇θρ(R̄, θ)

B

∫
0

dzl zl (exp[− U(zl)

kBT (R̄, θ)
] − 1)

−
1
µd
∇θT (R̄, θ)

B

∫
0

dzl zl (kBρ(R̄, θ) exp[− U(zl)

kBT (R̄, θ)
]

−kBρ(R̄, θ) +
U(zl)ρ(R̄, θ)

T (R̄, θ)
exp[− U(zl)

kBT (R̄, θ)
]) (3.29)
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which can also be shortened introducing

κρ(R̄, θ) =
kBT (R̄, θ)

µd
Λρ(R̄, θ) (3.30)

κT (R̄, θ) =
1
µd
ΛT (R̄, θ) (3.31)

with

Λρ(R̄, θ) =

B

∫
0

dzl zl (exp[− U(zl)

kBT (R̄, θ)
] − 1) (3.32)

ΛT (R̄, θ) =

B

∫
0

dzl zl (kBρ(R̄, θ) exp[− U(zl)

kBT (R̄, θ)
]

−kBρ(R̄, θ) +
U(zl)ρ(R̄, θ)

T (R̄, θ)
exp[− U(zl)

kBT (R̄, θ)
]) (3.33)

such that eq. (3.28) reads as

vB(R̄, θ) = −κρ(R̄, θ)∇θρ(R̄, θ) − κT (R̄, θ)∇θT (R̄, θ) . (3.34)

This shows how the effect is split into two additive contributions of a density gradi-
ent and a temperature gradient, as already hinted to in the qualitative interpreta-
tion based on fig. 3.2a. Comparing to the expression for diffusiophoresis, eq. (3.9),
the density gradient contribution takes a more complex form, as the prefactor κρ
is now position-dependent. This position-dependence stems from the temperature
dependence of the Boltzmann factor, such that this contribution is not solely due
to the density distribution. However, a clear distinction between the effects of the
temperature and density gradients themselves is possible.

Formulating the phoretic effect in terms of the slip velocity, the velocity of the
colloid is now obtained by the orientational surface average of the slip velocity
according to

vcolloid = − ⟨vB ⋅ ẑ⟩S (3.35)

where

⟨. . .⟩ =
1

4πR2 ∫
S0

dS . . . (3.36)

is the average over the spherical surface considered [78]. For a single spherical
colloid in a temperature gradient, the integration can be avoided since the slip
velocity can be obtained from its maximum value vB = vB(θ = 90°) occurring at
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midplane as vB = vB sin(θ) [42]. Then, the colloid velocity results as

vcolloid = −
2
3vB . (3.37)

With the colloid’s velocity known, to obtain the thermal diffusion factor αT through
eq. (3.18), the force corresponding to the colloid’s velocity is calculated with eq. (3.25).
Calculations using the route of slip velocity have been performed for all cases

considered in table 3.1, arriving at the same result in every case. The agreement in
between the two routes of direct force calculation with and using the slip velocity
with eq. (3.34) is always within numeric error of the integrations performed, typ-
ically ≪ 1 %. It is concluded that the two approaches, using either the force or
the velocity to obtain the thermal diffusion factor, present completely equivalent
formulations of thermophoresis.

3.4 Analysis of Thermophoresis

The framework developed so far can be used to study the trends observed for the
size and temperature dependence of the Soret coefficient ST = αT /T in colloidal
thermophoresis.

3.4.1 Simulation Results

Lüsebrink performed MPC simulations to characterize the temperature and size de-
pendence of the Soret coefficient and also provided analytical predictions for it, the
latter capturing all qualitative trends albeit with some systematic deviations [41].
He studied the size as well as the temperature dependence of the Soret coefficient
for different types of colloid-fluid interaction potentials. For all repulsive poten-
tials, the Soret coefficient was found to be negative for all considered temperatures.
For the attractive interactions investigated, it was positive at low temperatures,
but turned negative at higher temperatures, showing a minimum before converging
to zero. This behavior, exhibiting a minimum in the course of the Soret coeffi-
cient’s dependence on temperature, cannot be captured by the empirical relation
of eq. (1.40). The size dependence of the Soret coefficient was found to scale cubic
with particle size, which was attributed to the interaction volume scaling the same
when non-displaced interaction potentials of the Lennard-Jones type were used. For
displaced potentials, which allow keeping the interaction radius σcf constant while
enlarging the particle size, an increase in particle size showed a quadratic scaling
of the Soret coefficient, again consistent with that of the interaction volume. An
exception from this was found for attractive interactions with higher strengths, that
showed a quadratic size dependence even when not displaced.
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Table 3.2: Comparisons of exponents b describing the size dependence αT (s) ac-
cording to eq. (3.38) obtained with eq. (3.23) to simulation results of Lüsebrink [41].
Results are given for colloids modeled with different potentials according to eq. (2.7)
in terms of parameter sets (s,∆, ε, n, r/a).

Potential b - theory b - simulation
repulsive

(s,0,1,6, r) 3.0 3.0
(s,0,4,6, r) 3.0 3.1
(s,0,1,12, r) 3.0 3.1
(s,0,4,12, r) 3.0 2.8

attractive
(s,0,0.1,12,a) 3.0 3.2
(s,0,1,48,a) 3.0 2.9
(s,0,1,12,a) 3.0 2.2
(s,0,4,12,a) 3.0 1.8

displaced
(s, s − 1,1,6, r) 2.0 1.9
(s, s − 1,0.25,6,a) 1.76; 1.95 1.8 (theory)

3.4.2 Size Dependence

The trends in scaling observed by Lüsebrink are mainly confirmed by the approach
here developed. In the following, the correction for backflow is not taken into
account, as it is mainly of concern to the specific simulations that measure αT or
the Soret coefficient and the focus lies on the scaling behavior. Table 3.2 presents
comparisons of the exponents b obtained in simulations of Lüsebrink [41] with those
obtained using the outlined theory. The functional form used for fitting is given by

αT = α0
T (

s

a
)
b

(3.38)

where α0
T and b are free parameters. For all repulsive and attractive potentials, as

long as no displacements are used, the theoretical predictions agree exactly with
the scaling of the interaction volume. For all repulsive potentials, this also agrees to
simulation results, with minor differences likely attributable to statistical errors and
backflow in the simulations. However, for the two non-displaced attractive poten-
tials with higher interaction strength ε, simulations predict a value around b = 2.0.
The developed theory does, still in accordance with the scaling of the interaction
volume, predict b = 3.0 instead. In fact, also for even higher values ε = {5,10} no
deviations in prediction from b = 3.0 could be observed here. Considering backflow-
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corrected predictions does also not alter that scaling. An explanation that would
account for these deviations is that the flow induced by colloidal thermophoresis in
the simulations with strong attractive potentials is very fast, such that the behavior
becomes non-linear and therefore deviates from the predictions based on consid-
ering only small disturbances to the equilibrium distributions of temperature and
density.
The introduction of displacements into the colloid-fluid interaction has been ob-

served to lead to an exponent b = 2, which is also confirmed by the theory developed
here for all repulsive potentials. For attractive displaced potentials, only one theo-
retical result of Lüsebrink is available, giving b = 1.8. Using the same data points at
s = 1,2,3,4,5,6, here also b = 1.8 is obtained. However, considering a larger range,
s = 1 to s = 30 in steps of 1 for the fit, b = 1.95 results. This indicates that some-
thing different is happening here as compared to repulsive potentials. Lüsebrink
noted that the chosen cutoff might be an issue, in that a short one will reduce the
exponent. Here however, using the standard cutoff ccutσcf +∆ with ccut = 2.5 as well
as ccut = 2.0 and 10.0 did lead to the same scaling with b = 1.95 when considering
the larger data set. Only for ccut = 1.5, a smaller value of b = 1.91 was obtained,
this however is an unphysical choice of cutoff. When considering the same dataset
as Lüsebrink, a choice of larger cutoff ccut = 10 leads to b = 1.76, in fact reducing
the exponent, in contrast to what is noted in his work.

3.4.3 Temperature Dependence

As a starting point, consider eq. (3.28) in rewritten form as

vB = −
kBT

µd

dρ
dxl

B

∫
0

dzl zl (exp[− U

kBT
] − 1)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=I1

−
kBρ

µd

dT
dxl

B

∫
0

dzl zl (exp[− U

kBT
] − 1)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=I1

−
ρ

Tµd

dT
dxl

B

∫
0

dzl zlU exp[− U

kBT
]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=I2

=
kB

µd
(−T∇xl

ρ − ρ∇xl
T ) I1 −

ρ

Tµd
∇xl

TI2 , (3.39)

where the integral terms have been abbreviated with I1,2 for ease of notation. There
are three additive contributions. The first and second involve the density and tem-
perature gradient and the same integral I1. The third term involves the temperature
gradient and the integral I2, where the colloid-fluid potential U goes in directly. For
small temperature gradients, a linear relation in between temperature and density
gradient may reasonably be considered, such that eq. (3.17), which linearizes the

41



3 Theoretical Approach to Thermophoresis

density gradient through ∇xl
ρ = − ρ

T
∇xl

T , can be used to simplify eq. (3.39) into

vB =
kB∇xl

T

µd
(
T

T
ρ − ρ) I1 −

ρ

Tµd
∇xl

TI2 . (3.40)

In the scenario of small temperature gradients, the prefactor Tρ/T − ρ of I1 will be
close to zero, as the local temperature T will be close to the average temperature T ,
as will be the local density ρ to the average density ρ. The precise values the expres-
sions take on depend of course on the chosen setup. For a colloid interacting with
the fluid through a potential according to eq. (2.7) with parameters (3,0,0.1,12,a),
typical numeric values for the integrals are I1 ≈ −1.8 and I2 ≈ −3.5, so these are of
comparable magnitude. The prefactor to I1 evaluates to exactly 0.0 at midplane
when the colloid is placed in the exact middle of the box. At the sides, it is of order
10−19. The prefactor to I2 on the other hand is about 10−3. This clearly shows that
the first term in eq. (3.40) gives a negligible contribution. The slip velocity is then
mainly determined by

vB = −
ρ

Tµd
∇xl

TI2 . (3.41)

The colloid velocity results from the surface average of the slip velocity vB, which
is its value at midplane vcolloid = −

2
3vB (eq. (3.37)). Since for the value at midplane,

it does not matter if the gradient is taken in Cartesian or polar coordinates, ∇xl
T

will have the sign it also has in Cartesian coordinates. For a freely moving particle
in a solvent with a temperature gradient in z-direction, the friction force fζ and the
thermal driving force fT balance. One may therefore write fT = fζ = CζπµdRv and
plug in the colloid velocity to obtain, with fT = −αTkB∇xl

T , the Soret coefficient
as

ST =
αT

T
= −

CζπµdRvcolloid

kBT∇zT
. (3.42)

Note that this is only an approximation, though a good one, as discussed in more
detail in [35].

Based on eq. (3.41), the behavior of the Soret coefficient as a function of average
temperature T can be understood. Consider first a purely repulsive, i.e. always
positive, potential. I2 will then always be positive as well, such that vB is always
opposite to the temperature gradient. As the colloid velocity results from the slip
velocity at midplane as vcolloid = −2

3vB, the colloid will always move in the direc-
tion of the temperature gradient, i.e. show thermophilic behavior. Equation (3.41)
does not depend on the average temperature anymore and no sign change is to be
expected from its functional form. It is however still proportional to ∇xl

T /T . As
with increasing average temperature, also the local temperature T will rise, this
term will lead to the colloid’s velocity going to zero for high temperatures. The
described behavior is consistent with simulation results on colloidal thermophore-
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sis with purely repulsive potentials [24, 25, 35, 41]. The typical behavior of the
Soret coefficient as a function of average temperature is shown in fig. 3.4a for a
representative case.
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Figure 3.4: Temperature dependence of the Soret coefficient ST(T ) for a re-
pulsive interaction potential with (3,0,1,6, r) (a)) and an attractive one with
(3,0,0.1,12,a) (b)). Purple diamonds denote the theoretical prediction for ST,
green symbols same but including the correction for backflow.

When the colloid-fluid interaction includes an attractive part, it may take on
both positive and negative values, which will in turn determine the sign of I2 and
thereby the Soret coefficient. For a representative attractive interaction potential,
fig. 3.5a shows how the integrand of I2 behaves at different temperatures. There
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Figure 3.5: Analysis of I2 in eq. (3.39) for an attractive potential with
(3,0,0.1,12,a). a) Blue line shows the interaction potential U , black line exp[− U

kBT
]

at T = 1. Bright lines show the whole integrand of I2 = rU exp[− U
kBT

] at tempera-
tures T = 1 (yellow), T = 2 (orange), T = 4 (purple) and T = 10 (red). b) The value
of I2 as a function of temperature T .

is a crossover at r/s = 1, and the integrals to the left and right of r/s = 1 have

43



3 Theoretical Approach to Thermophoresis

opposite signs and will give different relative contributions as a function of temper-
ature. Figure 3.5b then shows I2 as a function of temperature. The expected sign
change is seen at at ca. T = 10, and the value changes from negative to positive,
which means for the Soret coefficient a change from positive to negative values, i.e.
thermophobic to thermophilic behavior. This is consistent with the crossover in
the evaluation of the complete expression for the slip velocity, shown for the same
interaction potential in fig. 3.4b, which indicates that indeed I2 gives the dominant
contribution to the Soret coefficient. In the limiting case of high temperatures, the
Soret coefficient will vanish due to the same considerations already discussed for
repulsive potentials.

3.4.4 Hard Spheres
It is of interest to also study the limiting case in which the colloid interacts with the
fluid through a hard-sphere potential. Then, the interaction potential U is given
by

UHS(r) =

⎧⎪⎪
⎨
⎪⎪⎩

∞, r < B

0, r ≥ B ,
(3.43)

and eq. (3.39) can be solved analytically. For UHS, the terms exp[−UHS/(kBT )] act
like Heaviside functions H(B). Therefore I1 gives −B2/2. The other integral, I2,
is zero for zl < B, as the exponential dominates. For zl ≥ B, the potential gives
UHS(zl ≥ B) = 0, such that I2 vanishes completely for hard spheres. This leads to,
assuming again a linearized density gradient, an expression similar to eq. (3.40) for
the hard sphere potential:

vB =
kBB2

2µd
(ρ −

T

T
ρ)∇xl

T . (3.44)

As discussed in the derivation of eq. (3.41), the term ρ−ρT /T will be close to zero,
such that only a marginal phoretic response is expected for hard spheres. The Soret
coefficient follows from eq. (3.42) as

ST =
αT

T
=
Cζπ

T

1
3B

3 (ρ −
T

T
ρ) , (3.45)

from which a cubic scaling with colloid size B is expected. To check these conclu-
sions, SPTA simulations of hard spheres were performed, whose results are shown in
fig. 3.6. Clearly, the only conclusion that can be justified is that hard spheres show
a very low phoretic response. Even though averages are taken over 48 runs, fitting
to any functional form is not meaningful due to the large statistical errors, and no
conclusion can be drawn on describing the size dependence. The Soret coefficient
of hard spheres tends on average more towards positive values, i.e. thermophobic
behavior, in these simulations. From the analytic description offered by eq. (3.45),
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Figure 3.6: Size dependence of the Soret coefficient ST for hard spheres with radius
B.

the sign should depend solely on the small term ρ−ρT /T , whose sign depends on the
local temperature and density and may change depending on where the colloid is
located. In the simulations performed here, it was in the mid of the simulation box,
where the local values are close to the average values of temperature and density.

3.5 Summary and Outlook
The developed theory provides two consistent formulations to calculate the ther-
mal diffusion factor αT or Soret coefficient ST for any colloid-solvent interaction
in an ideal-gas like solvent. One way is through a direct evaluation of the po-
tential interactions, making use of the knowledge of the temperature and density
distribution according to eq. (3.23). The other way is by taking the surface av-
erage of the slip velocity, evaluating eq. (3.28). Agreement to simulation results
obtained with MPC-MD shows the feasibility of the approach. The numerical ef-
fort to perform such calculations is minimal, especially as compared to performing
simulations. Based on the analytic formulation obtained, it can be shown that the
dominant contribution to the Soret coefficient in typical setups stems from a term
directly involving the interaction potential (I2 in eq. (3.39)), which also explains
the different temperature dependencies seen for purely repusive and as attractive
colloid-fluid interaction potentials. Furthermore, it is shown why hard spheres only
show very low phoretic responses. A hard-sphere description of colloid-fluid inter-
actions is therefore not well suitable to study thermophoresis in simulations, though
it may be possible to use additional modifications to the hard-sphere interaction
that enhance the effect, as was done for diffusiophoretically driven Janus particles
in [78]. The simulation results of Lüsebrink [41] concerning the size dependence of
the Soret coefficient, scaling mostly cubic for undisplaced and, with only minor de-
viations, quadratic for displaced potentials, are mostly confirmed by the theoretical
approach.
The developed formulation and theory necessarily requires an ideal gas equa-
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tion of state of the fluid. This works perfectly to predict MPC-MD simulation
results, in which this is the case, but will not as well model a real fluid. Therefore,
it might be of interest to consider extensions to different equations of states and
their influence on the behavior of the Soret coefficient. Another interesting point
is the colloid-fluid interaction potential employed. The description will work for
any functional form of the interaction, such that arbitrary potentials can be in-
vestigated. Especially potentials adapted to experimental measurements will be of
interest. Furthermore, the observed temperature dependencies do not match the
empirical relation of eq. (1.40), which may be related to the functional form of
the colloid-fluid interaction, the fluid equation of state or both. To find out which
kinds of potential reproduce the behavior of eq. (1.40), and if it is at all possible to
do so by adapting solely the interaction potential, will give further insight into the
phenomenology.

46



4 Single Swimmer Dynamics

4.1 Dimeric Swimmers
A dimeric colloidal swimmer, for brevity called dimer, is a type of swimmer con-
structed out of two connected beads featuring different properties. The necessary
symmetry breaking for phoretic self-propulsion to work is based on one bead sup-
plying the gradient and the other reacting to it. A thermophoretic dimer therefore
has one bead consisting of a material that will absorb energy and produce thereby
a steady local temperature gradient, which will be called the hot bead. The other
bead consists of a material that does not absorb energy, but experiences a phoretic
force due to the local gradient supplied by the hot bead, and will be called the
phoretic bead. The first model of dimeric swimmers was created by Rückner and

Figure 4.1: SEM images of experimentally synthesized dimer swimmers. Taken
from [19]. Another view of these dimers is shown in fig. 1.4a.

Kapral [18], for one driven by chemical gradients. The construction was shown to
work also for a thermal driving mechanism by Yang and Ripoll [24]. The flow field
of a thermophoretic symmetric dimer, in which both beads have the same size, was
calculated and measured by Yang et al. [25]. More recently, for the case of chemical
dimers, an analytical continuum theory was developed by Reigh and Kapral [76].
A proof-of-concept experimental realization of chemically driven dimers was per-
formed by Valadares et al. and is shown in fig. 4.1 [19]. The interaction of two
of these swimmers with phoretically attractive interactions has been studied by
Thakur and Kapral [77]. The same authors later on also studied small ensem-
bles of up to 10 dimers in quasi-two-dimensional confinement, also for the case of
phoretically attractive interactions [79].
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4 Single Swimmer Dynamics

The comparison of thermally and chemically driven dimers is of interest since the
general framework describing phoretic effects is independent of the microscopic de-
tails of the driving mechanism [74], which leads to the assumption that their swim-
ming behavior should be similar. This has however not been explicitly confirmed
for the simulation models of interest here. Similar results obtained for chemical and
thermal dimers therefore also present a mutual validation of the proposed models.

4.1.1 Model

The dimer swimmer is modeled in simulations by two beads, of specified radii sh
for the hot bead and sp for the phoretic one. To connect them, a strong harmonic
bond is used. How the phoretic effect depends on the colloid-fluid interaction of
the phoretic bead in MPC-MD simulations was investigated by Lüsebrink et al. [35]
and Yang and Ripoll [24], who found that the dimer behaves thermophilic for soft
repulsive potentials, as expected by the framework developed in chapter 3, and
thermophobic for steep attractive potentials in the cases considered. In this work
an optimal potential is chosen based on that study, i.e. the one that leads to the
highest propulsion speed. This will reduce computational effort and also lead to
more prominent hydrodynamic flow fields. The colloid-fluid interaction of the hot
bead does not determine the reaction of the swimmer to the temperature gradient,
such that here a steep repulsive potential is chosen, also to minimize computational
effort. For every dimer studied in this work, the repulsive form of eq. (2.7) with
n = 24 and ε = 1 is used to model the hot bead. To obtain thermophilic behavior,
eq. (2.7) with n = 3 and ε = 1 in the repulsive form is used to model the phoretic
bead. Thermophobic behavior corresponds to using eq. (2.7) with n = 24 in the
attractive form, also with ε = 1. Heating is modeled by rescaling the temperature
of fluid particles in a spherical shell around the center of the hot bead in the range
sh < r < 1.08sh to a desired value Th, which is, if not explicitly stated otherwise,
chosen to be Th = 1.5. It is as well be possible to choose a fixed width dT for the
thermostatting layer, and the influence of these two choices on swimming behavior
will be studied. There are two degrees of freedom in the geometric construction of
dimer swimmers. One is the size ratio of the two beads γ = sp/sh and the other
is the bond length, which is defined here in terms of an extra separation δb, such
that the whole bond length is sh+sp+δb. In this formulation, δb = 0 corresponds to
the two beads at contact. An illustration of the dimer’s construction parameters is
shown in fig. 4.2a.

4.1.2 Theoretical Approaches

There are two analytic descriptions available for dimeric swimmers. The approach
of Yang et al. [25] uses a superposition of the independent solutions of the Stokes
equation for each of the beads to describe the hydrodynamic flow field of the dimer,
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(a)

δbsp sh

a-axis
l-axis

(b)

Figure 4.2: a) Schematic drawing of a dimer. The axis along which the flow field
will be measured, namely the an axial (a-axis) and a lateral (l-axis) are pointed
out. b) Bispherical coordinate system (θ, η, φ) with the base unit vectors, (θ,η,φ),
for the sphere-dimer motor. The labels S1 (η = η1) and S2 (η = η2) represent the
surfaces of the hot (or catalytic) and phoretic spheres with radii r1 (red) and r2
(blue), respectively. The spheres with centers z1 and z2 are separated by a bond
distance d. Taken from [76].

obtaining

v(r) =vh(r) + vp(r) (4.1)

vh(r) =
sh

2∣r − rh∣
(
(r − rh)(r − rh)

∣r − rh∣
2 + I) ⋅ vs (4.2)

vp(r) = −
sp

2∣r − rP∣
(
(r − rp)(r − rp)

∣r − rp∣
2 + I) ⋅ vs

+
s3

p

∣r − rp∣
3 (

3(r − rp)(r − rp)

∣r − rp∣
2 + I) ⋅ vs (4.3)

as an expression for the fluid velocity field v(r), where I is the unit tensor. The
subscripts h and p correspond to the hot and phoretic beads, rh,p to their positions
and vs denotes the dimer’s swimming velocity. This approach offers a comparably
simple way to obtain an analytical expression for the flow field. Yang et al. con-
sidered symmetrically built thermophoretic dimers, i.e. γ = 1, with bead sizes of
s = 2.5, and a separation between the beads of δb = 0.5. They found very good
agreement between predicted and simulated flow fields, both in the thermophilic
and thermophobic case [25]. This approach is restricted to a prediction of the flow
fields and requires knowledge of the swimming velocity vs, which was measured in
simulations.
A more extensive and accurate description is given by Reigh and Kapral [76],

that describes dimer swimmers working on chemical gradients. In the following, an
overview over their approach is given. A chemical/catalytic dimer swimmer works

49



4 Single Swimmer Dynamics

by producing a gradient of some chemical species instead of a temperature gradient
at one bead, the catalytic bead, while the other phoretic bead reacts to the steady
local concentration gradient. This is the case of the diffusiophoretic effect. The
simulation model considers the solvent to be composed of two species A and B.
When in contact to the catalytic sphere S1, A can undergo conversion to a species
B in terms of the chemical reaction A+S1 → B +S1 with intrinsic rate constant k0.
The interactions are chosen such that species A and B have the same interaction
with S1, but the interactions of A and B with the phoretic sphere S2 differ. Far
away from the swimmer, a conversion of B back to A takes place to steadily supply
reactive species and maintain a stable concentration gradient.

The dimer type of construction can, for some positive value of δb, be described in
a bispherical coordinate system. Bispherical coordinates are given as (θ, η, φ) with

0 ≤ θ ≤ π; −∞ ≤ η ≤∞; 0 ≤ φ ≤ 2π . (4.4)

They relate to Cartesian coordinates (x, y, z) through

x = ξ
sin(θ) cos(φ)

cosh(η) − cos(θ) ; y = ξ
sin(θ) sin(φ)

cosh(η) − cos(θ) ; z = ξ
sinh(η)

cosh(η) − cos(θ) (4.5)

where ξ is a scale factor. Two spheres are described by choosing radii r1 and r2
and a separation d = r1 + r2 + δb. They are then represented by η = η1(> 0) and
η = η2(< 0), with the bispherical coordinate parameters given by

ξ =
1
2d

√
(d2 − r2

1 − r
2
2)

2 − 4r2
1r

2
2 (4.6)

η1 = ln(ξ/r1 +
√

1 + (ξ/r1)2) (4.7)

η2 = − ln(ξ/r2 +
√

1 + (ξ/r2)2) . (4.8)

A visualization of the coordinate system is shown in fig. 4.2b. For a more extensive
discussion of bispherical coordinates and solutions of the Laplace equation in this
system see [80]. Roughly speaking, varying θ for a fixed value of η = η0 allows walk-
ing along a circle of radius ξ∣csch(η0)∣ lying in the xz-plane. This circle is located
at negative z for η0 < 0 and at positive z for η0 > 0. This allows integration over this
circle as ∫

π

0 dθ for fixed η0. Additionally considering φ then allows integration over
the whole sphere. Bispherical coordinates also allow a convenient specification of
different boundary conditions for the two spheres, since η is always pointing normal
to the surface of the sphere.

The A-concentration field cA around these dimers follows the Laplace equation

∇2cA = 0 (4.9)

50



4.1 Dimeric Swimmers

with the boundary conditions

(J ⋅ η̃)η=η1 = k0cA(η = η1) (4.10)
(J ⋅ η̃)η=η2 = 0 (4.11)

where J = −D∇cA is the flux of the A-concentration field, k0 = k0/(4πr2
1) is the

reaction rate constant, D the (identical) diffusion constant of the A and B species
and η̃ is the surface normal vector of the spheres. The Laplace equation with these
boundary conditions can be solved analytically in bispherical coordinates, leading
to an expression for the cA concentration field. The cB concentration field is then
obtained from the conservation condition cA + cB = c0. With those known, it is
possible to use the relations derived for the diffusiophoretic slip velocity, introduced
in section 3.2, namely

vB = −κ∇θcB (4.12)

with

κ =
kBT

µd
Λ; (4.13)

Λ =

∞

∫
0

r (exp[−U2,B(r)

kBT
] − exp[−U2,A(r)

kBT
])dr (4.14)

to determine the slip velocity vB of the fluid at the outer edge of the boundary
layer B. In this equation, µd is the shear viscosity. Equation (4.14) contains
the microscopic model, as discussed in more detail in [74], that relates a chemical
gradient to a slip velocity of a colloidal particle. Now, with an analytic expression
for the slip velocity describing the hydrodynamic boundary condition at the outer
edge of the phoretic bead, one can proceed to solve the Stokes equation without
external force

∇p = µd∇
2v (4.15)

with the incompressibility condition ∇ ⋅ v = 0. The fluid velocity field v can be
expressed in terms of Stokes’ stream function ψ from v = φ̃/ρ×∇ψ. The boundary
conditions in the laboratory frame, where the dimer moves with velocity vs, are

ψ +
1
2ρ

2vs∣
η=η1,η2

= 0 (4.16)

∂

∂η
(ψ +

1
2ρ

2vs)∣
η=η1

= 0 (4.17)

∂

∂η
(ψ +

1
2ρ

2vs)∣
η=η2

= κρ
∂cB
∂θ

∣
η=η2

. (4.18)

51



4 Single Swimmer Dynamics

This again can be solved analytically. For a phoretic swimmer on which no external
forces act, the surface integral of the stress tensor Π vanishes, so

Fz = ∫
S1

ΠZ ⋅ ñdS + ∫
S2

ΠZ ⋅ ñdS = 0 (4.19)

where ΠZ = z̃ ⋅Π. Since the dimer is symmetric around φ, only the z-direction needs
to be considered and one arrives at a full analytic expression for the velocity vs.
For more details and the complete expressions, see [76].

4.1.3 Theoretical Description of Thermophoretic Dimers
The description of Yang et al. can be straightforwardly applied to any dimer con-
struction, independent of the driving mechanism. The outlined framework provided
by the approach of Reigh and Kapral [76] may be adapted to thermophoresis, using
the expressions for the slip velocity obtained in chapter 3. Instead of the concentra-
tion field c, one is then interested in the temperature field T , described by similar
boundary conditions. The general thermophoretic framework derived in chapter 3
is more complicated than the diffusiophoretic, as its expression for the slip velocity,
eq. (3.34), depends on both the temperature and density field. Furthermore, the
prefactors κT and κρ are no longer constant but depend on the angular position.
However, in section 3.4.3, it was shown that in a linearized version of the theory,

it is no longer necessary to describe the density (or concentration) field separately
from the temperature field, and only one main contribution results. This expression
for the slip velocity, eq. (3.41), is in full form given by

vB = −
ρ

Tµd
∇xl

T

B

∫
0

dzl zlU(zl) exp[−U(zl)

kBT
] . (4.20)

For small temperature gradients, one might approximate ρ and T as constant in
the prefactors, such that an expression according to

vB = −κT∇xl
T (4.21)

results, where κT now is assumed constant and given by

κT =
ρ

µdT
Λ; (4.22)

Λ =

B

∫
0

dr rU exp[−U(r)

kBT
] . (4.23)

This expression allows application of the framework of Reigh and Kapral to ther-
mophoresis, given suitable boundary conditions for the heat flux q at the hot sphere.
Specifically, the boundary condition eq. (4.10), (∇cA ⋅ η̃)η=η1 = −k0cA(η = η1)/D, is
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substituted by a heat flux according to

(∇T ⋅ η̃)η=η1 =
q

kT
(4.24)

where kT denotes the thermal conductivity. To solve the equation, an approxima-
tion of the heat flux q is needed. One can be obtained by considering a constant,
uniform temperature field around a single sphere with radius s due to a constant
heat flux q at the boundary and constant temperature T at infinity. The tem-
perature field also obeys the Laplace equation ∇2T = 0; whose solution is given
for this symmetric problem by T (r) = C1/r + C2, where r is the radial distance
to the sphere center and C1 and C2 are determined by the boundary conditions.
The boundary condition T (∞) = T leads to C2 = T and the heat flux boundary
∂T (r)/∂r∣r=s = −q/kT leads to C1 = qs2/kT . Then, the temperature field is given by

T (r) =
qs2

kT

1
r
+ T , (4.25)

from which the corresponding heat flux as a function of r can be obtained as

q(r) =
T (r) − T

s2 kT r . (4.26)

For a unit sphere (s = 1) and temperature Th at its boundary r = s it follows that

q(s) = (Th − T )kT . (4.27)

This is used as an approximation for the flux boundary condition corresponding
to a surface temperature Th. This approximate description is consistent with the
simulations performed here, where the constant surface temperature Th is imposed.

4.1.4 Single Dimer Dynamics
4.1.4.1 Swimming Velocity

The construction parameters γ = sp/sh and δb will influence the swimming behavior
of the dimer. Before discussing these, a consideration of finite size effects is in order.
The size of the simulation box will influence the propulsion velocity through its
effect on the surrounding fluid. Figure 4.3 shows simulation results for a symmetric
dimer with γ = 1 at two bead sizes. The box size dependence is given in terms of
the functional form

vs = v∞ (λL
ls
L
+ 1) (4.28)

where vs is the propulsion velocity measured along the main axis of the dimer,
ls = 2sp+2sh+δb the length of the swimmer, L the side length of the cubic simulation
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box. v∞ and λL are free parameters, the former of which giving a theoretical value
for the propulsion velocity in an infinitely large simulation box. The swimmer with
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v∞=0.009±1%
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s=4

Figure 4.3: Propulsion velocity vs of a symmetric thermophilic dimer with γ = 1
and either sp = 2 or sh = 4. v∞ and λL correspond to the free parameters of
eq. (4.28).

larger beads propels faster, which in turn leads to a stronger finite size effect, i.e.
a higher value of λL. In both cases however, with the exception of very small box
sizes (ls/L = 0.5), a linear behavior is obtained. A precise quantification of finite size
effects is in principle necessary for each different construction of dimers to determine
v∞. However, as simulations at large box sizes are very expensive and the influence
of the box size can be captured with a linear description, such a quantification is not
performed for all the cases to be discussed in the following. Instead, for all single
swimmer simulations discussed in the following, typically ls/L = 0.2 is chosen as box
size, keeping in mind that this will overestimate the theoretical unbounded value
around 10 − 20 %. Since this overestimation is systematic and linear, conclusions
may still be drawn when comparing different realizations.
In terms of varying size ratio γ, there are two effects determining the velocity.

For a fixed size of the phoretic bead, a larger hot bead will lead to a stronger
temperature gradient, which will increase the propulsion velocity. At the same
time, it will also increase its friction, such that a maximum at intermediate values
is expected. For the limiting cases of an infinitely small or large hot bead, the
swimming velocity should be zero.
Concerning the bond length, similar considerations hold. A short bond length

will put the beads in closer contact, which will increase the gradient at the phoretic
bead and with it the swimming velocity. But as soon as the beads start overlapping,
the phoretically active area is reduced. These effects are expected to balance out,
such that again a maximum is expected. In the limiting case of complete overlap
there is no phoretically active area left, while for infinite separation no temperature
gradient is felt anymore. Both cases lead to vanishing swimming velocity.
This physical behavior was mostly confirmed for chemical swimmers [76], with

the exception that no maximum in the dependency on bond length was found
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there, most likely because no overlapping constructions were considered. These
are however likely to occur in experiments. Many of the synthesized dimers of
Valadares et al. [19] (c.f fig. 1.4a) give the impression that their catalytic bead is
partly "molten" onto the phoretic bead, which would in simulations correspond to
a certain overlap.
Figure 4.4 shows simulation results on how varying size ratio and bond length

influences the swimming velocity, where the qualitative behavior described above
is clearly observed. The thermophilic case considers a construction which closely
matches that of the chemical swimmer of Reigh and Kapral [76] in order to enable
an approximate comparison of results to it. The thermophobic dimer considered in
fig. 4.4a is constructed with different parameters for sp and δb = 0, such that their
influence on the obtained behavior can be seen.
For a quantitative comparison, consider first the values obtained in simulations,

shown with solid symbols in fig. 4.4. Overall, the expected maximum for interme-
diate values of both γ and δb is obtained. Notably, for δb it lies about where the
beads halfway overlap. In terms of the normalized behavior, no difference is seen
for the different parameters employed modeling the thermophilic and thermopho-
bic dimer. To estimate the influence of the thermostatting procedure, it was also
checked whether it makes a difference to use sh < r < 1.08sh or a constant width
sh < r < sh + 0.2 to apply the thermostat to. The absolute velocities differ then
(yellow markers in fig. 4.4b), but in terms of the normalized velocities shown in
fig. 4.4a the physical behavior is identical. The chemical swimmers, though lead-
ing to identical behavior to that of thermal swimmers in terms of varying δb when
normalized velocities are considered (fig. 4.4c), show a different course in their nor-
malized velocity’s dependence on γ. For the thermal dimers, the maximum lies
at around γ = 1.7 and is very flat, showing a variation of only around 20 % for
0.8 < γ < 3, indicating that their propulsion velocity is not very sensitive to this
construction parameter. The chemical dimer shows more pronounced variations
around 60 % and a very broad maximum with a peak value at ca. 2.0.
Based on these results, δb = 0 was chosen for most of the dimers studied in this

work, as it leads to faster swimming which reduces simulation time. Furthermore,
the experimental realization of Valadares et al. [19] suggests that in an experimen-
tally realizable system, the beads will be close together or even overlapping.
The theoretical predictions for chemical swimmers follow the course of the simu-

lated measurements quite well in terms of both normalized and absolute velocities,
especially concerning variations in δb. For thermal dimers, this is not the case in
terms of the absolute velocities, as visible in fig. 4.4b. Especially in case of the
thermophobic dimer, the predictions differ by a factor of ca. 3 from the measured
velocities. These differences are attributed to the quite strong approximations in-
volved in deriving eq. (4.23), which amount to ignoring any spatial variations in
temperature and density, except for the temperature gradient, as well as assuming
uniform and constant pressure. Better agreement is expected when these factors
are accounted for, like in the case of single colloids in temperature gradients dis-
cussed in chapter 3, whose predicted drift velocities overall matched quite well those
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Figure 4.4: Swimming velocities vs of dimer swimmers as a function of construction
parameters γ (a),b)) and δb (c),d)). Data for thermophobic (blue), thermophilic
(gold) and chemically attractive (green) dimers is shown. Dashed lines are theoret-
ical predictions based on the framework developed in section 4.1.3. a,b) For the
thermophilic dimer, sp = 4, δb = 0.8 and Th = 1.3 are chosen. sp = 3 and δb = 0.5
have been used for the chemical one1. The thermophobic dimer has sp = 6 and
δb = 0. The purple dashed-dotted line uses a thermophilic dimer with a heat flux
boundary condition eq. (4.24) matched to the numeric value of that of the chemical
one (∇cA ⋅ η̃)η=η1 = −k0c0/D ≈ 77.82, as well as the same construction parameters.
c,d) The dimers considered have sh = sp = 2. Th = 1.5 is used for the thermal ones.
All theoretical predictions use the same parameters as simulations, except for the
thermophobic case where δb = 0.5 is used. The corresponding heat flux is ap-
proximated using the employed Th in eq. (4.27). Simulation results on chemical
swimmers are taken from [76].

1In the publication [76], δb is not explicitly given for this dataset. δb = 0.5 reproduces fig. 3a of
that paper and is therefore taken here.

obtained in simulations.
Theory and simulations agree in terms of normalized behavior quite well for

thermal dimers, comparable to or even better than observed for chemical dimers.
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This indicates that the essential physical mechanism is captured in the theoretical
description, and it is merely the quantitative values that are deviating due to the
simplifications involved in eq. (4.23).
The course of the normalized velocities as a function of γ is to a high degree de-

pendent on the boundary conditions. These constitute the main difference for the
thermophobic and thermophilic dimer shown in fig. 4.4a. Though the simulation
results collapse upon normalization, the theoretical descriptions do not. This is due
to the different heating temperatures employed, namely Th = 1.5 for the thermo-
phobic and Th = 1.3 for the thermophilic dimer. These lead to the heat fluxes being
different, and thereby to different courses. Employing the same values for Th leads
to identical predictions. The property mainly determining the course of vs(γ) in
fig. 4.4a is then the ratio of source strength to diffusion, which is given by k0c0/D
in case of the chemical swimmer and in terms of q/kT for thermal swimmers and
constitutes the main difference between thermophoretic and chemical swimmers.
To illustrate this, one can plug in numerically identical values for the boundary
conditions of thermal and chemical swimmers. The absolute velocities then differ
due to the different expressions for slip velocity, but a good match in terms of the
normalized behavior of vs(γ) is obtained (c.f. green and purple lines in fig. 4.4a).
As the shape of the normalized behavior is to such a large degree dependent on the

boundary conditions, approximating them needs careful consideration. Instead of
using approximations to obtain them, it is also possible to fit them to the simulation
measurements, whereupon near-to perfect agreement can be obtained in terms of
normalized behavior (not shown).
From these observations, it is concluded that the differences in the course of

vs(γ) are not a question of which phoretic mechanism is employed. Rather, it is
the distribution of the phoretic field that determines their behavior. If the numer-
ical values of thermal diffusion and species diffusion were identical, a very similar
behavior would be observed. As they are not, the diffusion of the temperature field
(DT ≈ 0.154) is about a factor three faster than the diffusion of the concentration
field (D = 0.0514). This leads to less pronounced variations along the phoretic
particle’s surface when the hot bead’s size is changed, such that a flatter course of
vs(γ) is obtained.

4.1.4.1.1 Fixed Size of Hot Bead It is as well of interest to consider what
happens when instead of the phoretic bead’s size, the size of the hot bead is fixed
and the phoretic bead’s radius is varied. As shown in figs. 4.4a and 4.4b, a fixed
size of the phoretic bead leads to a maximum in velocity for intermediate size ratios
γ. Reigh and Kapral report an approximately logarithmic increase of velocity with
increasing the phoretic bead’s size when instead the hot bead’s size is fixed [76].
Such behavior is consistent with simulations of thermophoretic dimers, as shown by
the red circles in fig. 4.5a. The question this poses is whether there is an inherent
difference in between the two, or if there exist a possible normalization capturing
both of these behaviors. The main considerations that determined the behavior
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Figure 4.5: a) Propulsion velocity vs of a symmetric thermophilic dimer as a
function of γ when the hot bead’s size is fixed. Data from simulations with fixed hot
bead’s size of sh = 2 (red circles) and with fixed phoretic bead’s size of sp = 4 (orange
rectangles), the latter remapped to the case of fixed hot bead’s size. b) Dependence
of the propulsion velocity vs on the bead size s of a symmetric (γ = 1) thermophilic
dimer. Solid line is a fit to a linear function vs/vs(s = 4) = Cslopes + Cintercept with
free parameters Cslope,Cintercept given in the plot.

for the fixed phoretic bead size were that, enlarging the hot bead, the temperature
gradient is felt more strongly at the phoretic bead while at the same time the friction
increases with the bead size as well. These should be the same for every value of γ,
independent on whether the hot or phoretic bead is viewed as fixed. The additional
effect accounting for the different course when the phoretic bead’s size is varied is
that the colloid-fluid interaction of this bead determines also the strength of the
phoretic effect, such that one measures a curve where the thermal diffusion factor
is different at each point. The effect this has on the propulsion velocity should be
visible when the overall swimmer size is varied. Simulation results on the overall
swimmer size dependence, using a box size of ls/L = 0.25, and a linear fit to it are
shown in fig. 4.5b. The size dependence of the swimming velocity is in fact well
captured by a linear relation for the (intermediate) sizes considered here, which
emerges as a balance between the friction and the thermal diffusion factor, which
both rise with the overall size, the latter though only dependent on the phoretic
bead.
To compare now the two behaviors of fixed phoretic and hot bead, a common

reference point is needed. Such reference is provided by the propulsion velocity
of the same-sized dimer with γ = 1, which is a common point whether the hot or
the phoretic bead is regarded as fixed. Two simulation data sets are considered to
make the comparison. One is the red data shown in fig. 4.5a, which uses a fixed
size of the hot bead of sh = 2 and a box size of ls/L = 0.25. The other uses a fixed
size of the phoretic bead sp = 4 when varying γ and a box size of ls/L = 1/3. To
map the latter to the behavior of the data set with fixed size of the hot bead, the
velocity of each fixed-phoretic data point is divided by the velocity of a same-sized
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reference dimer which features a phoretic bead of the same size as the hot bead
this data point considers. This velocity is not measured in a different simulation,
but obtained from a fit to the same-sized dimer’s velocity’s dependence on the bead
size s of fig. 4.5b. With the fit parameters at hand, the velocity of a same-sized
dimer with arbitrary s can be calculated and used to normalize the fixed-phoretic
data points. The resulting curve has to be normalized again, accounting for the
different velocities that result from the different box sizes used in obtaining the fit
parameters from fig. 4.5a and the actual data points. This normalization is given
by the ratio of the swimmers’ velocities at γ = 1 and sp = 4.
As a result of this procedure, the (orange) curve, obtained with fixed phoretic

bead size, can be converted quite well to that obtained with fixed hot bead size (red)
in fig. 4.5a. The same procedure may also be performed in reverse, i.e. converting
a data set obtained for fixed hot bead size to the behavior of fixed phoretic bead
size. The good agreement obtained in fig. 4.5a, although different values for sh,p and
different box sizes indicates the robustness of the simulation results against changes
in both bead and box size, as these are well accounted for by normalization. It also
confirms the assumption that the seemingly different behaviors obtained for the
propulsion velocity as a function of size ratio when the hot or the phoretic bead
are fixed can be explained considering that a change in the phoretic bead’s also
changes the strength of the thermophoretic response.

4.1.4.2 Hydrodynamics

As shown in the last section, the thermal dimer’s propulsion velocity is not very
sensitive to changes in the size ratio γ = sp/sh in the most reasonable range of
1 ≤ γ ≤ 3. However, the size ratio will not only influence the swimming velocity, but
also the hydrodynamic behavior. Representative flow fields for several size ratios
of both thermophobic as well as thermophilic dimers are shown in fig. 4.6.
Consider first only the simulation measurements in figs. 4.6a to 4.6c and 4.6g to

4.6i. The obtained flow fields show qualitative differences in hydrodynamic behav-
ior upon variation of γ. Visible is first that the flow field adapts to γ by changing
mainly its lateral part. Lateral means the flow velocity in direction of the axis
crossing the center of the phoretic particle and perpendicular to the propulsion
direction, i.e. the l-axis shown in fig. 4.2a. This lateral flow pattern changes from
mainly hydrodynamic repulsion for a symmetric construction (fluid flowing away
from the bead, see fig. 4.6a) to lateral hydrodynamic attraction for an asymmetric
construction with smaller hot bead (c.f. fig. 4.6c). The laterally attractive lobe
that develops around the phoretic bead upon shrinking the hot bead’s size enlarges
with rising γ. The behavior is vice versa for the thermophilic swimmer, though
a bit less pronounced as the two lobes around the beads can not be made out as
clearly as in the case of thermophobic dimers. The flow changes from being later-
ally attractive for a symmetric construction to lateral repulsion for the asymmetric
build. Additionally, for symmetric thermophobic and, though less visible, asym-
metric thermophilic swimmers, a short-range hydrodynamically attractive part is
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Figure 4.6: Simulated (blue lines) and theoretical (black lines) flow fields of ther-
mophobic (a),b),c)) and thermophilic (g),h),i)) dimers. The corresponding veloc-
ity field is shown with gray arrows, background depicts the temperature field. Black
arrows indicate the propulsion direction. The size of the phoretic bead is fixed at
sp = 4, while γ = sp/sh = 1; 1.5; 2 (left, middle, right). The rows below the simulation
measurements show theoretical predictions based on the thermophoretic variant of
the approach of Reigh and Kapral [76], where d),e),f) correspond to a),b),c).
j),k),l) correspond to g),h),i).
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present as evident from the short lobe at the respective front bead.
The flow fields of thermophoretic dimers are of the force-dipole type [76]. Force-

dipole type flow fields are characterized in terms of their axial hydrodynamic flow
as either pushers, when fluid is pushed outwards in axial direction, or pullers,
when it is pulled in inwards [9]. Pusher behavior of a force-dipole means also
that the lateral part is hydrodynamically attractive, with fluid streaming towards
the swimmer, while the flow of a puller will be laterally repulsive. In terms of
their lateral characteristics, the symmetric thermophobic dimer of fig. 4.6a is then
mainly a puller-type of swimmer, while the symmetric thermophilic dimer shows
behavior more reminiscent of a pusher. Upon shrinking the hot beads size, the
main characteristics of lateral hydrodynamics change direction in both cases, such
that a thermophobic dimer is converted from puller to pusher while a thermophilic
one is converted from pusher to puller.
A quantification of these hydrodynamic behaviors in terms of lateral attraction

and repulsion can be obtained by measuring the flow velocity along the l-axis. For
further comparison to the theoretical predictions, the flow in axial direction with
origin in the dimer center is characterized as well (a-axis in fig. 4.2a). These quan-
tifications are shown in fig. 4.7. In terms of theoretical predictions, consider first
the approach of Yang et al. [25], using additive, independent flow fields for the two
beads based on eq. (4.1). Its results are shown with dashed lines in fig. 4.7 for dif-
ferent constructions of thermophobic dimers. Thermophilic swimmers show nearly
identical behavior, though vice versa in terms of flow direction, and are omitted in
the discussion for now. The cases of interest here, as opposed to what has been
used by Yang et al., feature no separation in between beads as well as asymmetric
types of construction. Figure 4.7a shows the flow field of a thermophobic symmetric
swimmer with comparable parameters to those of Yang et al. [25], except for the
beads touching and that bigger beads are considered. The quantitative agreement
to theory, especially in the lateral part, is worse than previously observed [25].
This is attributed to the assumption of independent flow fields of the two beads
breaking down upon close contact of the constituent beads. Agreement also is a bit
worse for faster swimming dimers, when the heating temperature around the hot
bead is increased to Th = 1.5, as visible in fig. 4.7b for the flow velocity to the rear
(light blue). The flow fields of symmetric thermophobic dimers show short-ranged
hydrodynamic attrac*tion (negative vl) close to the phoretic bead, whose range is
strongly underestimated by the theoretical prediction (red dashed lines in figs. 4.7a
and 4.7b stay positive while simulation data reaches negative values). Overall how-
ever, the already pointed out hydrodynamic behavior in terms of lateral repulsion
(i.e. mainly positive lateral flow velocities vl) is predicted correctly with more or
less quantitative deviations for symmetric constructions. This changes when asym-
metric constructions are considered. As already evident from the visual depictions
of the flow fields in fig. 4.6, the hydrodynamic behavior changes from lateral re-
pulsion to long-ranged attraction in the case of thermophobic dimers. This is not
captured by this theoretical approach, which predicts lateral repulsion instead of
attraction as shown in fig. 4.7c. Even when the two beads are far apart, such that
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Figure 4.7: Flow velocity around dimers with fixed size of the phoretic bead sp = 4
measured along the a-axis and l-axis as shown in fig. 4.2a. The axial flow velocity va
is measured in moving direction to the front (dark blue) and rear (light blue) of the
dimer. The lateral flow velocity is denoted vl (red). Flow velocities are normalized
by the swimmer velocity vs and the distance r is normalized by the phoretic bead
radius sp. Theoretical predictions use the approach of Yang et al. (dashed lines)
and the thermophoretic variant of the framework of Reigh and Kapral (solid lines).
For the latter, δb = 0.5 is used. All other parameters used are identical to those
employed in simulations. a) Symmetric thermophobic dimer with γ = 1, δb = 0 and
heating temperature Th = 1.2. b) Symmetric thermophobic dimer with γ = 1, δb = 0
and Th = 1.5. c) Asymmetric thermophobic dimer with γ = 2, δb = 0 and Th = 1.5.
d) Asymmetric thermophobic dimer with γ = 2, δb = 4 and Th = 1.5. e) Symmetric
thermophilic dimer with γ = 1, δb = 0 and Th = 1.5. f) Asymmetric thermophilic
dimer with γ = 2, δb = 0 and Th = 1.5.
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the assumption of independent flow fields is more likely to hold, the change in hy-
drodynamic behavior is not captured. This is the case considered in fig. 4.7d. The
hydrodynamic behavior of asymmetric constructions therefore cannot be predicted
with this approach of Yang et al..
The thermophoretic variant of the approach of Reigh and Kapral offers a qualita-

tively better description of the flow fields. Graphical depictions of the flow patterns
are shown in figs. 4.6d to 4.6f and 4.6j to 4.6l, and a quantitative characterization
is shown in fig. 4.7 with solid lines. Though the quantitative and even qualita-
tive agreement of this approach to simulation measurements is, in the axial part,
in many cases worse than that of Yang and Ripoll, it does capture the change in
lateral hydrodynamics qualitatively correct, as already visually evident in fig. 4.6.
The quantitative deviations are likely attributable to the strong approximations
used in deriving eq. (4.23) as well as in obtaining the boundary conditions, as also
discussed in the context of the construction parameters’ influence on swimming ve-
locity in section 4.1.4.1. Furthermore, using zero separation in between the beads
is not possible in the theoretical approach, such that a short inter-separation has
to be chosen for comparison.
In simulations of Yang et al. [25], it was observed that the flow fields of ther-

mophilic and thermophobic dimers are in principle reverse versions of each other,
i.e. the streamlines are the same but have inverted directions when the propulsion
direction changes. This behavior is also obtained in the analytical calculations, by
both theoretical approaches, and visually evident in figs. 4.6d to 4.6f when com-
pared to figs. 4.6j to 4.6l. However, this symmetry is only approximately captured
in the simulation measurements, as visible in the comparison of figs. 4.6a to 4.6c to
figs. 4.6g to 4.6i. There, the streamlines of thermophobic and thermophilic dimers
are not reverse versions of each other, though the general form is similar. Since this
symmetry was captured in the simulations of Yang et al., its disappearance stems
most likely from the close contact of the beads considered in simulations here.
Another feature of the flow fields that is different in theory and simulations

is the existence of a third lobe near the center of the dimer, which is observed
in the theoretical predictions for the most asymmetric construction considered. In
simulations, the flow lines enclose the whole dimer and no such lobe emerges. Likely,
this is also attributable to the close contact of the two beads in simulation.
As already pointed out, the theoretical predictions for the flow fields of thermo-

phobic and thermophilic are just reverse versions of each other. Since this symmetry
only approximately obtained in simulations, a quantitative comparison between
theory and simulation is also of interest for the thermophilic case and shown in
figs. 4.7e and 4.7f. As compared to the thermophobic case, the opposite behavior
in terms of lateral hydrodynamics is quite evident. The symmetric thermophilic
dimer features mainly lateral repulsion, while the asymmetric features attraction.
The main observations made in terms of the agreement of theory and simulations
made in the discussion on thermophobic dimers also hold here. While the approach
of Yang et al. describes the behavior of symmetric dimers, and in this thermophilic
case clearly better than that based on the Reigh and Kapral framework, it fails
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to capture the qualitative change in lateral hydrodynamics when asymmetric con-
structions are considered. Within the Reigh and Kapral framework, this change is
seen for thermophilic dimers as well.

4.2 Janus Particle

4.2.1 Introduction
Several models exist to perform simulation studies on Janus particles. A first
simple approach is a model of an active particle, introducing an orientation vector
with rotational dynamics to a spherical particle and applying either a driving force
or defining a constant velocity along that direction to account for self-propulsion,
similar to what has been described in section 1.2.1. These systems already show
MIPS and can correspond to what is also experimentally observed, for example
the catalytic Janus swimmers in [10]. Solvent effects are however not taken into
account in such approaches. Hydrodynamics have shown to be a relevant factor in
many systems. In particular, the difference between pullers and pushers has shown
to result in very different collective dynamics. With this motivation, the squirmer
model, originally aimed at a description of bacterial microswimmers, was used to
describe Janus particles. In the squirmer model, the hydrodynamic flow field is
subscribed to the particle surface by a certain collision rule with fluid particles.
This approach was taken for example in [81, 82] for MPC.
Other models more inspired in synthetic colloids include constructing the Janus

particle out of many beads and treat both their dynamics as well as the fluid with
molecular dynamics [83], DPD [84]. Similar constructions were also consideren in
MPC [85]. Delfau et al. employ a "smooth-profile" method based on the Navier-
Stokes equation to describe squirmers [86].

4.2.2 Model
In this work, the model of Yang et al. is used to describe Janus swimmers [25]. It
combines a spherical particle with an orientation vector updated through bounce-
back collisions of point-like fluid particles. This is combined with a simultaneous
explicit description of colloid-fluid interaction through pairwise potentials. To en-
able both, bounce-back collisions are performed at a pairwise distance sbb, while
the interaction potential’s range is chosen a bit longer, in such a way that a sig-
nificant amount of fluid particles still reaches the bounce-back range. As discussed
in section 3.4.4, a pure bounce-back rule corresponding to a hard sphere model is
insufficient to produce the desired thermophoretic effect. The introduction of soft
potential interactions is necessary to be able to include tunable thermophoretic
effects.
The bounce-back collisions are derived from elastic collisions of point-like parti-

cles with a rotating large particle’s surface. The Janus particle therefore features,
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besides position R, velocity V and mass M , also an orientation e and an angular
velocity ω. A fluid particle has position r, velocity v and massm. The two particles
collide when their separation distance ∣S∣ = ∣r −R∣ falls below a threshold value,
which is taken to be the range of the molecular interaction potential s = σcf +∆cf .
The Janus colloid then has a moment of inertia I = ξIMs2 with ξ = 2/5. The
relative velocity of Janus and fluid particle is given by

ṽ = v −V −ω ×S (4.29)

which is the relevant quantity for the collision process. To conserve linear and
angular momentum, the post-collision velocities read as

v′ = v − p/m (4.30)
V ′ = V + p/M (4.31)
ω′ = ω + (S × p)/I. (4.32)

The momentum exchange p is expressed in terms of the normal and tangential
components of the contact velocity ṽ given by ṽn = Ŝ(Ŝ ⋅ ṽ) and ṽt = ṽ − ṽn, where
Ŝ = S/∣S∣. It is determined by the conservation of energy and stick boundary
conditions, i.e. ṽ′n = −ṽn and ṽ′t = −ṽt, leading to

p = pn + pt = 2µṽn +
2mrξIM

ξIM +mr
(4.33)

with the reduced mass mr =mM/(m +M).
To facilitate both faster production runs for parameter screening as well as of-

fering the possibility to perform simulations of ensembles of many Janus particles
within a reasonable amount of time, a parallelized version of this model was imple-
mented in lammps in the scope of this work.
To model thermophobic Janus particles, the soft potential was chosen according

to eq. (2.7) with parameters (2.5,0,1,24,a), while to obtain thermophilic behavior,
(2.5,0,1,3, r) was used. These are the values also used in [25]. The heating pro-
cedure also follows what is described there, i.e. rescaling around the hot side in a
layer of 0.08s to a fluid temperature of Th = 1.25. The MPC fluid parameters are
chosen identical to those for single dimers, as described in section 4.1.1.

4.2.3 Single Particle Dynamics
4.2.3.1 Swimming Velocity

The construction of a Janus particle offers one degree of freedom, which is the
coating angle θc describing how much of the surface is covered with material react-
ing to (laser) illumination, i.e. is heated in the context of simulations. Also, the
type of material used for the phoretically active side of a thermophoretic Janus
will determine the reaction to a temperature gradient, which can again be either
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thermophilic or -phobic. Simulations are performed to study the dependency of the
single swimmer dynamics and flow fields on the coating angle. Figure 4.8a shows the
self-propelled velocity of the Janus as a function of the coating angle θc, normalized
by the maximum velocity vs,max reached. The maximum velocities are dependent
on the colloid-fluid potential, leading to vs,max = 0.00065 for the thermophilic and
vs,max = 0.00369 for the thermophobic Janus. There are two limiting cases in the
dependence of self-propulsion on coating angle. For no coating (θc = 0°), there is no
temperature field produced and the particle is just a colloid performing Brownian
motion. For complete coverage (θc = 180°), there is no phoretically active surface
and the particle is a hot Brownian particle. Somewhere in between, there should be
a maximum in propulsion velocity, whose location depends on the precise interplay
between the temperature distribution in terms of the gradient and the phoretic ef-
fect, which is determined by the interaction potential. High velocities are obtained
for both thermophilic and -phobic Janus particles over a rather broad maximum
around θc = 60 − 100°. The distribution is not symmetric around 90°, but tilted
towards smaller coating angles. This implies that for efficient propulsion, it is of
greater importance to have more phoretically active surface. The broad maximum
in propulsion velocity is similar to what was also observed for thermally driven
dimers (c.f. fig. 4.4).

4.2.3.2 Hydrodynamics

Similar to the thermophoretic dimer, the hydrodynamic flow field around a Janus
particle also depends on its geometric construction, which is here determined by
the coating angle θc. For θc = 90°, the Janus colloid is encompassed by a single
lobe, representing the symmetric flow field of a neutral swimmer. This is identical
to that of a phoretic colloid in an external temperature gradient [25], although
the self-propulsion and the phoretic drift velocity will be different. Upon changing
θc, the position of the lobe adapts, since the hydrodynamic boundary conditions
are different for the coated and phoretic part of the surface. A characterization of
the flow velocities for thermophobic Janus particles is shown in fig. 4.8b and three
representative flow fields, both for the thermophobic as well as -philic case, are
shown in fig. 4.8d to i. The effects on the flow field seen for thermophobic Janus
are more evident than for the thermophilic one. This is due to the lower absolute
swimming velocity of the thermophilic one, which in turn also leads to a weaker
flow field. The qualitative effects however are comparable. For lower coating angles,
the lobe points in the direction of the phoretic side, which is into the propulsion
direction for thermophobic Janus and backwards for thermophilic. Then, enlarging
the coating angle, the stage of neutral swimmer is passed and for coating angles
above 90°, the lobe is positioned at the hot side of the Janus, i.e. pointing backwards
for thermophobic and forwards for thermophilic. In [25], a solution of the Stokes
equation based on a phoretic particle in an external temperature gradient, originally
derived in [68], is used to predict the flow field of a Janus particle with θc = 90° and
shows very good agreement to the measured flow fields. The fluid velocity field is
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Figure 4.8: a) Normalized thermophoretic velocity of thermophilic (red) and ther-
mophobic (blue) Janus swimmer for different surface coverages θc.
b,c) Normalized flow velocity along an axis a in propulsion direction (b)) and per-
pendicular to the propulsion direction l (c)), both originating in the center of the
Janus particle. Data for thermophobic Janus featuring different coverages. Blue
dashed lines are theoretical prediction based on eq. (4.34). b) Points denote flow
in axial direction to the front, crosses to the rear.
d-i) Flow fields of thermophobic (d),e),f); upper row) and thermophilic (g),h),i);
lower row) Janus swimmers for surface coverage angles θc = 60,90,120○ (left to
right) shown in the swimmer reference frame. Streamlines are shown in blue, the
velocity field is depicted with gray arrows. The black arrow indicates the propulsion
direction. Background depicts the temperature field.

there given by

v(r) =
σ3

2r3 (3rr
r2 − I)vs , (4.34)
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where r = ∣r∣ is the length of r, the distance from the particle center, and I denotes
the unit tensor. However, that approach could not include any variation of the
coating angle and the resulting effect on hydrodynamics, and therefore does not
predict the changes observable in the simulations here. It is well visible in fig. 4.8b,
that, in agreement to [25], the flow field of the thermophobic Janus with θc = 90
is well described by this approach (blue dashed lines match green data). Focusing
on the lateral part, the thermophobic Janus changes from lateral hydrodynamic
repulsion (puller-like) at low coverages to lateral attraction (pusher-like) at high
coverages, with flow velocities at short distances to the particle of about 10 % its
propulsion velocity. The magnitude of the change in lateral hydrodynamic behavior
suggest that it may have significant influence on the collective behavior of ensembles
of Janus swimmers that are not symmetrically coated.
It may be of future interest to obtain better analytic predictions for the flow

behavior of Janus particles, and detailed analytic predictions exist already for the
flow fields of thermophoretic Janus particles. Bickel and Würger calculated the
temperature field around a Janus particle in a continuum model based on solutions
of the Laplace equation in two limiting cases [87]. One case considers the hot
cap to be so thin as to not have an influence on the resulting field, such that a
constant heat flux boundary condition is imposed on that side and no-flux on the
phoretic side. The other case considers the thick-cap limit. There, it is assumed
that the cap has a thermal conductivity so large it is at constant temperature.
The simulation model of Janus particles employed in this work corresponds to the
thick-cap limit. Unfortunately, a solution for that is only available when there
is heat conduction through the particle, which is not the case in the simulations
performed here. Therefore, no comparisons is made in the scope of this work.
However, in order to facilitate such comparisons to this theoretical approach, one
might change the way in which the Janus particle is modeled. That there is no
thermal conduction through the particle is an inherent property of employing pair-
wise molecular interaction potentials in MPC-MD, such that it is hardly possible
to use the thick-cap limit. However, instead of fixing the surface temperature, one
could add a defined amount of thermal energy into the fluid in the boundary layer,
thereby obtaining a situation that might be well described by the thin-cap limit,
in which it is possible to ignore heat transport through the particle just by setting
the inner thermal conductivity to zero. This adaption of the computational model
is likely much easier than an adapted reworking of the theoretical approach.
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4.3 Mapping to Real Units
One of the most important properties of a microswimmer is its self-propelled ve-
locity. Experimentally, these typically lie in the range of µm s−1 [20]. Synthesized
Janus particles have, depending on the propulsion mechanism, reached velocities in
the range of 3 to 110 µm s−1. The thermophoretic Janus particle of Jiang et al. has
reached around 10 µm s−1 [20, 23]. The chemically driven dimer reaches velocities
in the range of ca. 2 to 6 µm s−1 [19].
In simulation units, the thermophoretic dimers here typically reach velocities

around 0.01−0.02. The chemical dimers feature velocities in a very similar range of
0.01−0.03 [76]. Due to the inherent coarse-graining and generality of the simulation
approach, all quantities have to be regarded as "typical" for colloidal systems. Still,
it is relevant to discuss a possible mapping to real units. Such a mapping provides
an estimate of what kind of real-world system can be, or is, modeled with the
simulation approach and also validates the simulation approach to some degree.
However, there is a certain arbitrariness in choosing reference values and even
methods to perform the mapping, as discussed in more detail in [54, 88], and one
choice of mapping procedure cannot map all physical quantities to reasonable values
in real units at the same time.
To obtain reference values in real units, the one experimental realization of

dimeric swimmers of Valadares et al. provides some orientation [19]. The diam-
eter of the phoretically active bead there is roughly 1 µm, which is assumed as
a reference size for the simulations as well. Then, a possible approach is to map
the mass of the fluid and the temperature to experimental values, enabling the
velocity to be expressed in real units. Assuming water as the solvent and taking
the corresponding density ρ = 1000 kg/m−3, the mass of the fluid is calculated as
mfluid = Vcolloidρ = 4/3πr3

colloidρ. From this, assuming an ambient temperature of
300 K, the velocity unit of the simulations is accessible through v = (kBT /mfluid)1/2.
rcolloid = sa depends on the reference size assigned to it, determining the simulation
length scale a. Using rcolloid = 1 µm leads to velocities around 10 to 20 µm s−1

for both symmetric and asymmetric dimers. This is slightly faster than the typ-
ical velocities reached by the motors of Valadares et al., which are in the range
2.5 − 6.0 µm s−1, though still within the typical range of velocities for microswim-
mers. The experimental thermophoretic Janus particles feature radii around 1 µm
as well, which leads here to mapped velocities in the range of ca. 0.6 to 4 µm s−1

which also agrees well with the experimental range. This mapping to experimental
velocities leads to a good agreement, which provides a certain validation to the
feasibility of the simulation approach.

4.4 Conclusion and Outlook
The behavior of thermally driven dimer and Janus swimmers is discussed in terms
of propulsion velocities and hydrodynamic flow patterns. Both change as a function
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of the geometric construction of these swimmers, which is the coating angle in case
of the Janus or the bead size ratio and inter-bead separation in case of the dimer.
The most intriguing feature the variation of these construction shows is their in-
fluence on the hydrodynamic behavior, allowing to tune the lateral hydrodynamic
in terms of changing between repulsion (puller-like) and attraction (pusher-like).
Comparison to theoretical predictions for dimers, as well as to results on chemically
driven dimers, show that their behavior is not dependent on the phoretic mecha-
nism used for propulsion, but on the diffusion of the phoretic field, accounting for
the different courses observed for thermal and chemical dimers in the dependence of
their swimming velocity on the size ratio. It is found that the theoretical approach
of Yang et al. [25] does not capture the qualitative change in between lateral hydro-
dynamic attraction and repulsion, while the thermophoretic variant of the approach
of Reigh and Kapral [76] developed here does.
The dimer is chosen for further investigation in the remainder of this work, as its

hydrodynamic interactions are stronger and more complex than those of the Janus,
featuring for example a cross-over from lateral attraction to repulsion in the flow
field of symmetric dimers. The existence of tunable hydrodynamic interactions,
especially lateral hydrodynamic attraction, suggest that ensembles of these swim-
mers may exhibit interesting collective behavior, especially in the thermophobic
case, which combines it with axial phoretic repulsion.

70



5 Dynamics of Pairs of Dimers

5.1 Introduction
Besides a detailed study of single-swimmer properties, the interplay of two swim-
mers may give valuable hints on what kind of behavior is to be expected for larger
systems. Such studies have been done with chemoattractive dimers by Thakur and
Kapral [77], characterizing bound states originating from depletion forces. These
depletion forces emerge as a simulation artifact of the MPC-MD method, due to the
high compressibility of the fluid. They studied what kind of agglomerates chemoat-
tractive (philic) dimers could form when depletion is present, and also inferred a
parameter range which can be used to avoid the depletion effects. Since inducing
attractive interactions in between colloids by means of depletants is experimen-
tally feasible and a common strategy in colloidal science, the resulting depleted
structuresare still of interest. In the following, results on bound state formation of
pairs of thermophoretic dimers are presented. These serve to make another connec-
tion between the two models as well as to see possible differences emerging. Both
thermophilic and thermophobic dimers are studied.

5.2 Simulation Setup
The construction parameters determining the dimers’ geometry were chosen to be
as close as possible to [77]: Colloid-fluid interactions of both beads are modeled
using eq. (2.7), with (dh/2,0,1,24, r) for the hot bead while the phoretic bead has
parameters (4,0,1,3, r). The dimer bond length is sh + sp + δb with δb = 0.8. The
heating temperature was chosen as Th = 1.3 and the heating radius as sh +0.2. The
MPC parameter α was set to 130° in these simulations and the timestep to integrate
the potential to 0.002. Colloid-colloid interactions between two beads i and j are
described using eq. (2.7) with (si + sj + 0.2,0, εD,6, r). Then, two dimers are placed
inside a cubic simulation box with edge length L = 6.25sp, facing each other with
the front beads and a separation distance of ca. 2.5sp in between them. The typical
simulation runtime is 15,000. Since the available data for chemical swimmers is
restricted to attractive phoretic interactions, the parameters for studying thermo-
phobic swimmers are not chosen to closely match these. Different from the setup
for thermophilic dimers no extra separation in between the two beads of one dimer
is used and the heating temperature is set to Th = 1.5. The colloid-fluid interaction
potential of the phoretic bead is eq. (2.7), with (dh/2,0,1,24,a).
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5.2.1 Quantification of Bound States
Several types of persistent structures may form in these two-dimer simulations,
depending on the precise choice of parameters. These structures may be more or
less stable, depending on the precise choice of parameters. In order to provide
quantitative descriptors to identify them, the time evolution of the internuclear
separation of the phoretic beads p1 of one and p2 of the other dimer rp1p2 = ∣rp1 − rp2 ∣

is considered. Therein, plateaus indicate formation of a bound state. Further
structural information may be extracted from the angle θ1 between the unit vectors
along the connection line p1p2 and the bond h1p1, where h1 refers to the center of
the hot bead of dimer 1. θ2 is considered accordingly for dimer 2. These definitions
are illustrated in fig. 5.1.

rh1p1 rp2h2rp1p2

θ1 θ2

Figure 5.1: Schematic of quantitative descriptors for bound states of two dimers.

5.3 Results

5.3.1 Bound States
For any pair of dimers, when they repel each other strongly enough, no stable bound
states are formed. The two swimmers then move around and collide from time to
time, a situation referred to as the Independent Pair (IP) shown in fig. 5.2a for
thermophilic dimers, but existing the same for thermophobic. Then, neither rp1p2

nor θ1, θ2 show any plateau values.
The Brownian Pair (BP) configuration is found for both thermophilic and ther-

mophobic swimmers, it represents a state in which the dimers stick together at the
rear bead, which is the hot bead for the thermophobic dimer (c.f. fig. 5.3a) and the
phoretic one for the thermophilic dimer (c.f. fig. 5.2c). This leads to a configuration
that shows no self-propelled motion but only performs Brownian motion as a whole.
An example of the corresponding structural features is shown in fig. 5.4. In the
depicted realization of the dynamics, the thermophilic dimer does not directly form
the BP state, but first the Moving Pair (MP) state for some time, then switching
over to BP and staying in this. The different connectivities of BP states are quan-
tified in the angles fluctuating around θ1,2 ≈ 160° for the thermophilic dimer, which
indicates that the hot beads lie, nearly linearly, on opposite sides of the formation.
The thermophobic dimers instead show values of θ1,2 around 0°, consistent with a
linear structure connected at the hot beads. This change in connectivity is due to
the different directions of the phoretic effect, in the case of thermophobic dimers the
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(a) (b)

(c) (d)

(e) (f)

Figure 5.2: Types of bound states observed in simulations of thermophilic dimers.
One dimer with red (hot) and yellow (phoretic) bead, the other with pink (hot)
and green (phoretic) bead. a) Independent Pair (IP). b) Rotating Pair (RP). c)
Brownian Pair (BP). d) Reverse Brownian Pair (RBP). e) Moving Pair (MP),
pyramidal configuration. f) Moving Pair (MP), square configuration.

(a) (b)

Figure 5.3: Types of bound states observed in simulations of thermophobic dimers.
One dimer with red (hot) and blue (phoretic) bead, the other with pink (hot) and
brown (phoretic) bead. a) Brownian Pair (BP). b) Swimming-Together Pair (ST).

phoretic beads prefer to be as far away from the heat sources as possible, while it is
vice versa in the thermophilic case. The BP state is furthermore characterized by a
constant distance rp1p2 , which is determined by the colloid-colloid and colloid-fluid
interactions, the latter indirectly through the corresponding depletion potential.
As the employed colloid-fluid potentials are different for the touching hot beads in
the thermophobic case and the touching phoretic beads in the thermophilic case,
so is their equilibrium separation rp1p2 .
With the parameters employed here, the Moving Pair (MP) is formed as an inter-

twined structure of thermophilic dimers and moves as a whole. Depending on the
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Figure 5.4: Quantification of structural features of the Brownian Pair (BP). a)
Phoretic-phoretic bead distance normalized by the phoretic bead size sp. b) Angles
θ1 (red,blue) and θ2 (purple, black). Data is shown for thermophilic (red,purple)
dimers with sh = sp/2, εD = 3.5 and thermophobic dimers (blue,black) with sh = sp,
εD = 1. Simulation time t is normalized by the overall runtime trun.

size ratio of the beads, square (c.f. fig. 5.2f) formations result for symmetric con-
structions and more pyramidal-like formations for asymmetric constructions (c.f.
fig. 5.2e). These states are characterized by a constant distance rp1p2 and angles
fluctuating around an average value of θ1,2 ≈ 90° for the pyramidal example shown
in fig. 5.5. The MP formed and dissolved twice in the example shown. The config-
uration of thermophobic dimers that moves as a whole is the Swimming-Together
Pair (ST) shown in fig. 5.3b, which in contrast to the MP of thermophilic dimers
is not intertwined. The example in fig. 5.5 shows a simulation in which this state
formed quickly and remained stable for the whole simulation time. The ST state
is characterized, besides a distance rp1p2 slightly below 2sp, by angles θ1,2 ≈ 40° for
sh =

3
4sp as shown in the example, indicating a pyramidal structure. For sh =

1
2sp,

whose configuration is shown in fig. 5.3b, the distance is the same but the angle is
≈ 90°, indicating parallel alignment of the two dimers in the formation.
Thermophilic dimers form two additional states, the Rotating Pair (RP) (c.f

fig. 5.2b) and, for very low inter-dimer repulsion strength, the completely inter-
twined Reverse Brownian Pair (RBP) (c.f. fig. 5.2d). Their characteristics are
shown in fig. 5.6. The RP forms, for the construction shown, with constant dis-
tance rp1p2 ≈ 2, indicating touching phoretic beads, and constant angles θ1,2 ≈ 45°.
It shows no net propulsion, but rotates constantly. The rotational motion can be
observed in the depiction of the components of the vector rp1 − rcm between one
phoretic bead and the center of mass of the whole formation, following a sinusoidal-
like course. The RBP shows neither net propulsion nor rotation, it represents a
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Figure 5.5: Quantification of structural features of the Moving Pair (MP) and the
Swimming-Together Pair (ST) bound states. a) Phoretic-phoretic bead distance
normalized by the phoretic bead size sp. b) Angles θ1 (red,blue) and θ2 (purple,
black). Data is shown for a thermophilic (red,purple) dimer with sh = 3/4sp, εD = 0.1
and a thermophobic dimer (blue,black) with sh = 3/4sp, εD = 2.5. Simulation time
t is normalized by the overall runtime trun.
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Figure 5.6: Quantification of structural features of the Rotating Pair (RP) and the
Reverse Brownian Pair (RBP) bound states of thermophilic dimers. a) Phoretic-
phoretic bead distance normalized by the phoretic bead size sp(red,gray). For the
RP, the x- (yellow), y- (orange) and z- (green) components of the distance vector
rp1 − rcm are also shown. b) Angles θ1 (red,blue) and θ2 (purple, black). Data is
shown for a RP (red,purple,green, yellow, orange) state with sh = sp/2, εD = 0.1 and
a RBP state (gray, brown) with sh = sp, εD = 0.01. Simulation time t is normalized
by the overall runtime trun.
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formation in which, due to the low repulsion in between dimers, the hot bead of
one dimer comes in between the two beads of the other. The resulting agglomerate
stays stable in a linear configuration, as indicated by θ1,2 ≈ 0.

5.3.2 Phase Diagram
A phase diagram of bound states may be constructed taking into consideration
variation of the relative size of the constituent beads, here for a fixed phoretic bead
in terms of the hot bead’s size sh = dh/2, and the inter-dimer repulsion strength
εD. Phase diagrams for thermophilic, chemoattractive and thermophobic dimers
are shown in fig. 5.7. The assignation to one specific bound state in the depicted
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(a) Thermophilic Dimers. (b) Chemoattractive dimers, from [77].
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(c) Thermophobic dimers.

Figure 5.7: Phase diagrams for bound state formation obtained from simulations
of pairs of dimers. Abbreviations of bound states are those of fig. 5.3 and fig. 5.2.
Notation is chosen to facilitate comparison to chemoattractive swimmers with cat-
alytic bead c and dh/c = 2sh/c. dh/c = 8 corresponds to symmetric dimers, lower
values feature smaller hot beads.

phase diagrams is not unique, in fact in different realizations of the same system
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different states might form and also convert into each other. Therefore, it is based
on a majority decision, i.e. it represents what happens in most of the realizations.
Consider first the diagrams fig. 5.7a and fig. 5.7b for thermophilic and chemoat-
tractive dimers. These are in fact quite similar, the same bound states are observed
for the thermal dimers and the qualitative form is also kept with slight shifts of
the boundary lines. The only notable exception is that an additional bound state
is observed for very low inter-dimer repulsion and size ratios dh/dp = 1 and 3/4.
This is the RBP (c.f. fig. 5.2d), which represents a highly intertwined configura-
tion, with the bonds of each dimer passing directly through a bead of the other. It
is to be expected that a similar state would also be observed for chemical dimers
upon further lowering of εD, such that the phase boundary would exist but is just
not found in the parameter range depicted. Though an exact match of parameters
is not possible, the resulting behavior of pairs of thermophilic and chemoattractive
dimers is determined by the same effects, the combination of propulsion, phoretic
attraction and purely attractive depletion interactions. The observed similarities
are to be expected, and emerge even though the depletion forces will not be the
same for chemical and thermal dimers due to the different potentials employed.
This most of all indicates that the dynamics of two dimers do not greatly depend
on the phoretic mechanism they are driven by.
While there is not much difference observed in between pairs of chemoattractive

and thermophilic dimers, the dynamics do strongly depend on the direction of the
phoretic effect. Figure 5.7c shows the resulting phase diagram for thermophobic
dimers, which, except for the independent pairs occurring at high inter-dimer re-
pulsion, bares no resemblance to that of thermophilic or chemoattractive dimers.
No MP and RP states are observed here, nor any RBP. Instead, the BP takes up
a large area at high dh and low to intermediate repulsions εD, while it was in the
region of lower dh and higher εD for thermophilic swimmers. Additionally, a new
bound state occurs, the ST state, in which the dimers propel together in an aligned
fashion, connected at the phoretic bead, as shown in fig. 5.3b. It bares some resem-
blance to the MP (see figs. 5.2e and 5.2f), which also propels as one entity. But due
to the opposite sign of the phoretic effect, the phoretic beads keep as far away as
possible from the hot beads of the other dimer, whereas they are attracted to them
in the thermophilic case, which also presents an intertwined configuration. The
depletion forces are stronger for thermophobic dimers than for thermophilic, due to
the steep attractive colloid-fluid interaction employed to model the phoretic bead
(c.f. figs. 6.4 and 6.5), such that even for high repulsions εD the ST state can still
be observed for very short times. To indicate that for higher εD the probability of
formation, as well as the persistence, of ST states is significantly reduced, a phase
boundary is drawn in lighter color and both IP and ST are shown in the right side
of fig. 5.7c.
There are two main differences in between the ST and BP of thermophobic

dimers. For one, it is the angle between the beads hot-phoretic-phoretic, being
around 90° for the ST with sh = sp/2 and around 180° for the BP. Then, it is which
beads of the two dimers are connected, i.e. persistently at close contact through
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the depletion interaction. For the BP, it is the two hot beads that are touching,
while for the ST it is the phoretic beads. Considering only the phoretic repulsion,
the BP state will be optimal, what makes understandable that for the dimer with
the largest considered hot bead (dh = 8), and thereby strongest phoretic effect, no
persistent ST states are observed. There will be a balance of two effects when
the phoretic beads are connected in the ST that are responsible for it keeping its
structure. For one, the two phoretic beads are repelled by the temperature field
around the hot beads, which will favor the hot beads being outwards. That the
structure moves in a fluid however favors the hot beads being behind the phoretic
beads at front, in order to minimize friction. Balancing these two effects, the ST
structure forms with the hot beads sticking out as little as possible to the sides,
while being away as far as possible from the phoretic beads.

5.4 Summary and Conclusions
By means of MPC-MD simulations, it is shown that phoretic dimers driven by
thermophoresis may form stable structures through (artificial) depletion forces.
The similarities in structures formed by pairs of thermophilic and chemoattractive
dimers suggest that the type of phoretic driving mechanism does not influence
the kind of bound state formation to a relevant degree, consistent with what was
observed in chapter 4 for the single swimmer dynamics. For the single swimmer
case, as shown in fig. 4.4a, a different phoretic effect leads to mostly quantitative
differences in swimming behavior, while the overall qualitative behavior is the same
for the thermal and chemical driving mechanism.
Concerning thermophobic dimers, reversion of the phoretic effect with respect to

thermophilic or chemoattractive dimers leads to very different structures, among
them the ST state showing stable, aligned propulsion. This bound state is of specific
interest, presenting the only observed formation that propels without having the
dimers intertwined, as in the case of the MP. Though its geometry is consistent
with what one would expect from the lateral attraction observed in the single
swimmer flow fields of asymmetric dimers (specifically, fig. 4.5e), the attraction
keeping the dimers together does not originate in hydrodynamics but in depletion.
As depletion may be induced as well by adding depletants in experimental systems,
the construction of such a state is likely possible.
The phase diagrams obtained can be used to choose parameters for simulations

of more swimmers [79]. In this case, one is interested in choosing a region in which
no bound states form due to depletion, such that any build-up of structures in
larger ensembles can be attributed to collective effects and not artificial depletion.
Doing so amounts to counteracting the depletion interaction by a stronger repulsion
potential. Thermophobic dimers however feature very strong depletion forces in
the parameter range considered, and therefore do not show any region in the phase
diagram in which pair formation stops. To enable simulations of larger ensembles
of thermophobic dimers, additional care will therefore need to be taken to avoid
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spurious depletion forces. The next chapter will examine depletion in MPC-MD in
detail, in order to enable a suitable choice of interaction parameters when studying
collective systems, especially of thermophobic dimers.
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6 Depletion Interactions

6.1 Introduction
Depletion is an effective force that emerges in colloidal systems of at least two
constituents of different, but still comparable, size [89, 90]. Adding depletants,
like short polymers for example, to a solution is a common procedure to induce
attractive depletion interactions between larger suspended particles [91, 92]. An
illustrating example is shown in fig. 6.1, depicting an experimentally observed tran-
sition from a fluid to a solid clustered state of polystyrene beads upon addition of
smaller particles. Depletion forces also arise in MPC-MD simulations, but are there

Figure 6.1: Micrographs of polystyrene spheres (radius 0.8 µm, volume fraction
φ = 0.02) at a glass wall with (a)) no small spheres, and added small spheres (radius
70 nm) with φsmall = 0.08 (b)) and φsmall = 0.16 (c)). Taken from [89], therein from
[93].

considered a simulation artifact, since one is with this method aiming at describing
an atomic/molecular fluid. There, no such forces should arise for large colloids in
the absence of explicit depletants.

6.2 Theory for Penetrable Hard Spheres
In order to present the main concepts of depletion interaction, a general discussion
following [89] is given in the following. Consider two large spherical colloids of radius
R immersed somewhere in a bath of smaller, also spherical, colloids of diameter σ.
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All colloids are viewed as hard spheres that repel each other upon collision, i.e. the
interaction potential ULS between large (L) and small (S) spheres is given by

ULS(r) =

⎧⎪⎪
⎨
⎪⎪⎩

∞, r < R + σ/2
0, r ≥ R + σ/2

(6.1)

with r being the pairwise center-to-center distance. In equilibrium, on average no
force will act on any large colloid due to the symmetry of the LS-interactions. This
however changes when the two large colloids approach each other and their so-
called depletion layers start to overlap. The depletion layer for a large hard sphere
is given by the radius σ/2 of the small hard spheres. As long as the centers of
two big spheres are separated by more than 2R + σ, there is always room for small
spheres in between them. Once below that distance, small spheres cannot enter the
region in between the two large spheres, called the depletion zone. This induces
an attractive force between the two large spheres. From the viewpoint of the large
colloids, the osmotic pressure is no longer balanced, because there are more small
spheres on one side than on the other. From the viewpoint of the small spheres,
the accessible free volume increases due to the overlap of the two large spheres.
The seminal theoretical model for depletion forces is the Asakura-Oosawa (AO)

model [94], which is a model for penetrable hard spheres. Therein, hard sphere
interactions are only considered in between the large and the small spheres while
the small spheres can freely overlap. A sketch of this setup is shown in fig. 6.2.
The scenario leads to an effective interaction potential in between the large spheres

Figure 6.2: Sketch of two large spheres with radius R immersed in a bath of
penetrable small spheres with diameter σ. The depletion layer of length σ/2 is
shown by dashed lines. The width of overlap is given by h, and the overlap volume
marked as hatched. P denotes here the unbalanced osmotic pressure that leads to
depletion forces. Taken from [89].

82



6.3 Application to MPC-MD

given by

U
(AO)

LL (d) = −nSkBTVov(d), (6.2)

where nS refers to the number density of small spheres and the overlap volume
Vov(d) is given by the difference in volume available to the small spheres for the
two large spheres at infinite separation d = ∞ and for some separation distance d
at which the depletion layers overlap, so

Vov(d) = Vexcl(∞) − Vexcl(d). (6.3)

For hard spheres, this model can be solved analytically, leading to

Vov(d) =
4π
3 (R + σ/2)3

⎡
⎢
⎢
⎢
⎢
⎣

1 − 3
4

d

(R + σ/2) +
1
16 (

d

(R + σ/2))
3⎤
⎥
⎥
⎥
⎥
⎦

. (6.4)

For a derivation of these results see [89].

6.3 Application to MPC-MD
In MPC-MD, the fluid consists of point-like particles that do not interact with
each other except for coarse-grained, elastic collisions. The MPC fluid itself has an
ideal-gas equation of state and colloids interact with the fluid particles through soft
potentials. For a hard-sphere bounce-back interaction model in between colloids
and fluid, no depletion could occur as long as the colloids do not overlap, since the
MPC particles would then have only point-like properties. But the soft interactions,
along with the high compressibility of the fluid, lead to the method being prone
to artificial depletion effects, as pointed out by Padding and Louis [54]. The soft
pairwise interactions effectively assign a size comparable to that of colloids to the
fluid particles.
The combination of a MPC fluid and colloids that interact through soft potentials

with it refers, in terms of depletion models, to a model of penetrable soft spheres.
The density distribution ρ of MPC particles i around a central potential uij of a
particle j is

ρi(r) = ρ exp(−βuij(r)) (6.5)

where r denotes the radial distance in between i and j and ρ is the equilibrium
density. For penetrable soft spheres the potential of mean force for the depletion
interaction can be written as [54]

ULL(d) = ρkBT [Vexcl(d) − Vexcl(∞)] , (6.6)

with the excluded volume now given by, considering one large sphere at r1 and the
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other at r2,

Vexcl(d) = ∫ d3r fLS(r − r1)fLS(r − r2) , (6.7)

where fij the Mayer function associated with the colloid-fluid interaction [95]

fij = 1 − exp(−βuij) . (6.8)

Multiplying out the full expressions for fLS, one arrives at contributions for the
volume of sphere 1, sphere 2, and the overlap volume. Since the single sphere
volumes are independent of the separation d, it is sufficient to integrate over

Vexcl(d) = ∫ d3r {1 − exp[−βuLS(r − r1) − βuLS(r − r2)]} (6.9)

as the single sphere volumes cancel out in eq. (6.6) anyways. This formula is more
suitable for numeric integration and was also used in this form in [54].
This theory should in principle exactly predict simulation measurements of de-

pletion with no need for any adjustable parameters due to the ideal gas equation
of state of the MPC fluid. This was already (implicitly) assumed in [54].

6.3.1 Comparison to Simulations
The validity of eq. (6.6) for a colloidal suspension simulated with MPC-MD can be
checked by the usual way of setting up depletion simulations, see for example [90],
such that the MPC fluid is treated as a depletant. In this procedure, two large
spheres are placed at fixed separation d in a bath of smaller spheres, or, in this
case, MPC particles. Then, for varying separations d, the forces on the two spheres
are measured. Integration of the so-obtained forces as a function of d yields the
interaction potential.
The setup described above was used to measure depletion forces for a variety

of parameters in order to verify agreement of simulation results with the outlined
theory for penetrable soft spheres. For this discussion, consider the generalized
Lennard-Jones (LJ) potential as given by eq. (2.7).
A first important consideration is to see whether the character of the MPC solvent

plays any relevant role. All properties that distinguish MPC from a pure ideal gas
are due to the performed multi-particle collisions. The strength of their influence is
given by the rotation angle α, where α = 0 means that no collisions are performed
and the fluid is a pure ideal gas with no correlations in between constituent particles.
Simulations are performed for different rotation angles α and compared to the case
where a pure ideal gas is simulated. Results for utilizing repulsive colloid-fluid
interactions are shown in fig. 6.3a. They show that there is no effect on the obtained
depletion forces, independent of whether the MPC algorithm is used or the fluid is
just described as a pure ideal gas. Agreement to the theoretical predictions is close
to perfect, except for some minor fluctuations due to the statistical accuracy of the
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simulations. Such agreement was to be expected from the equation of state, but to
the best of my knowledge not yet explicitly confirmed [54, 77, 96]. For completeness,
and to also see in how far the numeric integration of eq. (6.6) is stable, other
parameters were also checked, especially those concerning the potential interaction.
Depletion forces for varying σ, ε and ρ are presented in figs. 6.3b to 6.3d. Depictions
here are mostly restricted to showing the depletion forces, since one is for MPC-MD
mostly interested in avoiding depletion and obtaining a full depletion interaction
potential is computationally costly. In all cases, the agreement with theory is near
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Figure 6.3: Depletion induced forces on two fixed spheres of radius s as a function
of their separation d and their dependencies on the MPC fluid parameters α (a))
and ρ (b)) as well as on the interaction parameters σ (c)) and ε (d)). The colloid-
fluid interaction potential employed corresponds to eq. (2.7) with (s,∆, ε, n, r) =
(4,0,1,6, r) such that σ = s−∆. Dashed lines correspond to theoretical predictions
based on eq. (6.6). Curves in figs. 6.3b and 6.3c can also be normalized by the
varied parameter.

to perfect. Note that it is also possible to normalize the depicted curves for σ and ρ
such that they fall together, though this is not done here to give a better impression
on how the parameter of interest changes the depletion forces.
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6 Depletion Interactions

6.4 Colloid-Colloid Interaction Tuning to Avoid
Depletion

The characterization of depletion forces is of great help to design strategies to avoid
artificial depletion. Depletion interactions solely depend on the form of the colloid-
fluid interaction potential and are, according to the considerations above, exactly as
long ranged as this potential. The depletion layer for any colloid-fluid interaction is
thereby given by the cutoff of the colloid-fluid interaction. Therefore, introduction
of an extra separation δ into the colloid-colloid interaction will reduce depletion.
The interaction range for two colloids i, j is then given by scc = scf,1 + scf,2 + δ.
Using a short extra-separation δ, as also discussed in [54], is beneficial anyhow to
resolve lubrication forces with the MPC algorithm. For scc > 2rcut,cf , the depletion
layers can in principle no longer overlap. However, due to the soft nature of the
interactions, colloids may overlap farther than scc and then again suffer depletion
forces. Padding and Louis used undisplaced repulsive colloid-colloid interaction
potentials with ranges larger than two times the colloid-fluid interaction range,
scc > 2scf [54]. Although their parameter choice was close to scc > 2rcut,cf they
still saw some remaining depletion artifacts, which is most likely due to the soft
nature of colloid-colloid interactions. Even though they in principle advised against
it, they then decided to use an additional counter-potential Ucounter = −Udepletion
based on eq. (6.6) to counteract depletion, which worked well for the equilibrium
properties they were interested in. There are several problems inherent in using a
counter-potential [54]. For one, it is a pair-wise interaction and therefore will not
account for higher-order contributions. Then, it will be instantaneously applied
while depletion requires some time to build up, thereby overcompensating. Lastly,
it will also not account for possible anisotropies in the density distribution induced
by some external field.
Whitmer and Luijten followed in their work the discussion of Padding and Louis,

choosing scc larger than 2scf to avoid artificial depletion [96]. Thakur and Kapral
discussed depletion forces as well in their studies on colloidal swimmers [77, 79].
They also chose a certain inter-separation distance δ and proceeded then to tune
the colloid-colloid repulsion strength ε. For low values of ε depletion-induced bound
states of the swimmers formed. When the repulsion strength ε reached high enough
values, no such states could be observed anymore, from which it was concluded that
artificial depletion is avoided and the corresponding parameters were then used for
further simulations [79, 97].
Summarizing, the ingredients to avoid artificial depletion forces that have been

used so far are:

• Introduce a colloid-colloid extra separation δ, such that scc = 2scf+δ. δ should
be large enough to avoid overlap of the depletion layers.

• Tune the parameters ε and/or n of the chosen colloid-colloid interaction po-
tential to avoid colloids overlapping into each others depletion layer due to
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thermal fluctuations.

• Counteract depletion that is still present for distances smaller than the chosen
scc with a compensating potential.

Except for using counter-potentials, which is inherently problematic, these ap-
proaches all require that depletion is short-ranged. Otherwise, the effective colloid-
colloid interaction range might become too large as compared to other relevant
length scales. This requirement is fulfilled for the colloid-fluid interaction potentials
that are discussed in the literature, which are mostly undisplaced WCA potentials
with exponent n = 6. For this choice, depletion is only relevant up to colloid-colloid
separations of roughly 2.2s, which can be inferred from the measurements shown
in fig. 6.3. However, using colloid-fluid interaction potentials with short-ranged
depletion layers presents a restriction on the possible form of these potentials, and
thereby also on the physical effects that can be reproduced by them. When po-
tentials with longer ranges are needed, like attractive colloid-fluid interactions of
the Lennard-Jones type necessary in this work to reproduce thermophobic colloidal
behavior, this will inherently also lead to longer depletion ranges. Furthermore, the
depletion forces induced by using steep attractive potentials are stronger than those
induced by soft repulsive interactions. Additionally, they have a more complex form
and are typically attractive for longer separations, then start to be repulsive close
to r = 2s and get attractive again for high overlaps. Purely repulsive colloid-fluid
interactions induce purely attractive depletion forces. Two representative cases are
shown in fig. 6.4 to give an impression on the functional form of depletion po-
tentials and forces stemming from of attractive and purely repulsive colloid-fluid
interactions.
Stronger depletion forces can be counteracted by accordingly tuning the colloid-

colloid repulsion to avoid even small overlaps. A longer range might be more
problematic, as it may interfere with the aforementioned relevant length scales. A
relevant example in the context of this work is the interaction between thermophobic
dimeric swimmers. For a symmetric construction, this swimmer shows short-ranged
hydrodynamic attraction, which is considerably reduced when using a colloid-colloid
extra separation appropriate to avoid depletion, as is the phoretic effect that is
strongest at close contact. This will be shown for a relevant construction in the
next chapter, by the gray lines in fig. 7.3.
Through introduction of displacements ∆cf in the potential interactions given by

eq. (2.7), the issue of long depletion layers can be reduced. Since depletion is only
dependent on the colloid-fluid potential, displacing it while keeping the colloid-fluid
interaction range σcf fixed will make it possible for colloids to approach each other
more closely with respect to their so-enlarged diameters. This would in principle
solve the problem, but enlarging colloids is computationally very costly. Therefore,
one can try to introduce the shift ∆cf while keeping the colloid radius s = σcf +∆cf
constant. This will not change the functional form of the interaction, but may
reduce any effects related to the range of the colloid-fluid interaction. In the context
of this work, the most relevant property scaling with the range and strength of the
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Figure 6.4: Measured (solid) and predicted (dashed) depletion potential U (a))
and forces f (b)) in between two colloids for a soft repulsive (blue) colloid-fluid
interaction potential according to eq. (2.7) with (4,0,1,3, r) and a steep attractive
(red) one with (4,0,1,24,a).

colloid-fluid interaction is the phoretic effect, and it has to be taken care that this
will not be diminished, but only reduced by an acceptable amount. This effect will
be discussed for a reference construction in the next chapter.
The effect the introduction of displacements has on depletion forces is shown in

fig. 6.5. It can there be seen that, for the chosen attractive potential in fig. 6.5a,
a value of ∆ = 0.5s reduces the depletion range from around to 0.5s to a more
suitable value of 0.2s. Since the phoretic driving force is not significantly reduced
by this displacement, its choice presents a good compromise between the need to
avoid depletion and being computationally efficient. For the repulsive interaction
shown in fig. 6.5b, depletion is shorter-ranged and also much weaker as compared
to the attractive interaction. Still, to be sure that no residual depletion may effect
the simulations, the choice of a displacement ∆cf = 0.5s can also be considered here.
Due to the soft nature of the interactions, there may always be residual effects

of depletion, even though displaced potentials are used. In consequence, a test
should be performed to make sure that the properties of interest are not afflicted
by depletion. The precise choice of test case depends on the problem one wishes
to study. For example, Thakur and Kapral [77] checked the formation of bound
states of colloidal swimmers to choose a parameter range that did not show their
formation anymore. Padding and Louis [54] measured the equilibrium radial dis-
tribution function and compared it to results of Brownian Dynamics simulations.
In the collective systems under investigation in this work, there is strong clustering
observed when depletion forces are involved. As any clustering in thermophoretic
systems should be due to the effect of thermal gradients and the resulting propul-
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Figure 6.5: Depletion forces obtained by employing displacements in the colloid-
fluid interaction potentials of eq. (2.7). a) Steep attractive interaction with
(6,∆,1,24,a). b) Standard WCA repulsive interaction with (6,∆,1,6, r). Dis-
placements used are ∆ = {0 (black), 0.25s (blue), 0.5s (red), 0.75s (green)} in both
a) and b).

sion induced by them, these clusters should dissolve upon switching off the heat
sources. When depletion forces are responsible for clustering, cluster dissolution
barely happens. This phenomenology was used as a check here, showing that upon
choosing suitable parameters, cluster dissolution due to Brownian motion readily
takes place when the heat sources are switched off. It also confirms the assumption
that one can use the simple depletion measurements of two spheres without any
temperature gradients involved to choose reasonable parameters for more complex
situations.
Avoiding Depletion The necessary steps to obtain a parameter region where
artificial depletion is negligible are here summarized.

• Calculate or measure the depletion forces for two spheres, interacting with
the fluid through the desired potential.

• If the range in which the depletion forces go to zero is too long for the physical
effects under consideration, introduce a displacement into the colloid-fluid
interaction and calculate/measure again.

• Tune the colloid-colloid interaction to avoid the depletion region by adjusting
the range scc and the strength ε accordingly.

• Identify and perform a suitable test to check whether it worked in the system
of interest.
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6.4.1 Combination with Bounce-Back
That one needs to adapt the colloid-colloid interaction to avoid depletion might
be disadvantageous, depending on the physical system under consideration. For
the colloids investigated in this work, a strongly repulsive interaction representing
pure excluded-volume interactions is used. In this case, the interaction is inherently
suitable to avoid depletion. However, there might be cases where it is desirable to
use a different interaction, for example to include electrostatic attraction. Then,
it can be more problematic to model the desired physical behavior and avoid de-
pletion artifacts at the same time. It might be possible to use a combination of
a hard-sphere bounce-back rule that hinders colloids from overlapping each others
depletion layer in combination with an arbitrary potential. One could then choose
the colloid-colloid interaction freely but for the minimum distance determined by
the depletion layers. A problem with this approach can be that a bounce-back rule
affects the positions of colloidal particles, introducing discontinuities in the forces
when soft potentials are also present. Whether this is a negligible disturbance of
the dynamics will depend on several factors, foremost the colloids’ velocities, as
these determine the amount of possible penetration when the bounce-back kicks in.
For any system, the applicability of such a method should always be checked with
a suitable test case.

6.5 Summary and Conclusion
The emergence of artificial depletion forces in MPC-MD simulations is reexamined
in the context of colloidal systems. These depletion forces can be obtained us-
ing standard methodology, by varying the distance in between two fixed colloids
and measuring the force the surrounding fluid exerts on them. The numeric cal-
culation of depletion forces agrees perfectly to these measurements. This is to be
expected from the equation of state of MPC-MD and confirmed by the simulations
performed. Since the precise choice of colloid-fluid interaction parameters matter,
as exemplified in the inclusion or diminishing of short-range hydrodynamic effects,
a careful consideration of depletion interactions is necessary and a framework to do
so provided. Specifically, introduction of displacements into the colloid-fluid inter-
actions is presented as a means to enable closer contact of colloids without suffering
artificial depletion forces. Although the occurrence of artificial depletion makes it
necessary to always use extra separations, a careful tuning of interaction param-
eters enables these to be small enough to take into account all relevant colloidal
interactions like hydrodynamics, phoresis, and others.
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7.1 Introduction
Active systems of both artificial and biological microswimmers show a variety of col-
lective behaviors. Vortices, Motility-Induced Phase Separation (MIPS), and swarm-
ing were already introduced in chapter 1. The following will provide an overview
over other known collective behaviors, before discussing the phenomenologies ob-
served in simulations of many dimer swimmers.

Clustering and Living Crystals of Self-Propelled Spheres Many active systems
show density-dependent clustering and living crystals. [20] Qualitatively speaking,
when two or more self-propelled spheres collide head-on, they block each other. It
takes some time for the spheres’ propulsion directions to reorient and thereby to
dissolve this transient structure. If during this reorientation time other particles
collide with the aggregates, larger clusters may form and the system may phase-
separate into a gas-like phase of propelling particles and a dynamic crystalline phase
of particles whose propulsion is hindered. This phenomenology can be described
with the concept of MIPS [98] and does not require any alignment mechanism [9].
It has been shown by several authors that hydrodynamics may influence this phase
behavior [82, 99]. MIPS can take place in both two- and three-dimensional systems.
In two dimensions, crystalline and gas-like phases form, while in three dimensions
liquid-like and gas-like phases coexist [8]. Simulation and experimental examples of
spherical microswimmers in two dimensions with a gas-solid phase separation were
shown in chapter 1 (figs. 1.2c and 1.2f), as well as a simulation example of gas-liquid
phase separation in three dimensions (fig. 1.2b). A simple experimental model sys-
tem of active spherical particles that shows MIPS is that of Buttinoni et al. [10]
based on light-activated Janus particles with negligible phoretic and electrostatic
interactions. When additional inter-particle interactions are present, the phase be-
havior may change further. Theurkauff et al. [100] report experimental observation
of a dynamic kind of clustering even at very low densities, where smaller clusters
form, dissolve and constantly exchange particles, referred to as living crystals. This
behavior has been attributed to chemotactic interactions among the spherical col-
loidal particles confined to a two-dimensional plane. Smaller agglomerates of these
Janus-type particles show a non-vanishing net propulsion, slower than the single-
particle velocities, likely since the propulsion velocities of the constituent particles
do not cancel completely within a single small cluster.
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Figure 7.1: The collective structures of self-propelled rods in two-dimensional
confinement feature isotropic states, small-scale clustering, giant clusters and lane
formation dependent on Peclet number and density. Taken from [101].

Collective Behavior of Active Rods Systems of active rods display a more com-
plex phase behavior than active spheres. In addition to clustering and jamming,
giant clusters and lane formation have been observed as a resulting collective be-
havior [101]. The combination of self-propulsion and activity leads to an enhanced
alignment of rods when they collide with acute angles. Figure 7.1 illustrates the
behaviors observed for elongated rods in [101].

Swarming Swarming behavior, a general term encompassing the directed and co-
ordinated motion of entities, is often observed in biological systems on the macroscale.
Figure 1.2e shows an example of a fish swarm. Birds and many quadrupeds show
swarm behavior as well, in these contexts often referred to as flocking and herding.
In the scope of this work, let swarming refer to a type of collective motion that
leads to a net displacement of the swarm, distinct from vortex formation. Vortex
formation, illustrated for elongated bacteria, fish and active colloids in figs. 1.2a,
1.2b and 1.2d describes a type of collective motion in which the constituents propel
circularly in a swirl type of structure.

Others Besides those here discussed, there are other types of different collective
behaviors observed. For example, sperm cells feature a variety of patters including
trains of many cells [102, 103], vortex arrays [104] and coordinated aligned swarm-
ing structures when the beating frequencies are synchronous [105]. Hydrodynamic
synchronization of beating cilia is another example, though then the constituents
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are spatially fixed and do not migrate collectively.
For a more complete overview on collective behavior in biological and synthetic

systems, see [4, 5, 7, 9, 20].

7.2 Collective Behavior of Dimers
In the following, results on the collective behavior of thermophoretic dimers are
presented. The pair formation discussed in chapter 5 indicated that dynamics of
colloidal swimmers modeled with MPC-MD may suffer from depletion. Using the
procedures explained in chapter 6, care is taken that no artificial depletion will
influence the dynamics of the collective systems discussed. The collective dynamics
of thermophilic and thermophobic dimers show vastly different behaviors, such
that they will be discussed separately. However, they share common features in
their single-swimmer behavior and the same physical considerations determine their
collective behavior, just to different extents.
When many dimers are immersed in a hydrodynamic solvent, their dynamics are

determined by an interplay of phoretic effects, hydrodynamics, excluded-volume
effects and thermal fluctuations. The phoretic effect will lead to the phoretic bead
of a dimer being attracted to the hot bead of another dimer in the thermophilic
or repelled by it in the thermophobic case. The hydrodynamic flow induced by
the dimers’ motion may induce a lateral repulsion or attraction, depending on the
geometric construction details discussed in chapter 4. Excluded-volume effects in
combination with self-propulsion can lead to MIPS. Jammed structures present the
dense phase in MIPS, their stability depends on the time it takes a particle to
reorient and leave the cluster again, and their process of formation will be called
’jamming’ in the following.
A second kind of effect emerging from the interplay of excluded-volume and self-

propulsion is specific to elongated swimmers. When two propelled rods collide
at acute angles, they will align for some time. This enhanced lateral alignment
effect [101, 106] will here be referred to as motility-induced attraction. The build-
up of clustered structures is destabilized by two kinds of fluctuations, namely those
stemming from the thermal nature of the solvent and those from other swimmers
randomly colliding with the structures.
To predict and characterize the collective dynamics for different types of dimer

construction requires knowledge of the relative importance of these effects, which
is provided in the following sections by analyzing different simulation realizations
of dimer ensembles.

7.2.1 Simulation Model
MPC-MD simulations of many dimers are computationally very costly. Therefore,
a choice has to be made based on the known results on single dimers as to which
parameters will be used. The dimer constructions of interest are chosen to feature
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7 Collective Swimmer Dynamics

the size ratios γ = sp/sh of 1 (symmetric) and 3 (asymmetric) as reference cases,
as these show a most pronounced qualitative difference in their hydrodynamic be-
havior. A choice of sh = 2 as the minimal size of the hot bead, for the γ = 3 dimer,
is necessary to correctly resolve hydrodynamic flow fields [54]. This makes sp = 6
necessary for γ = 3. As hydrodynamic interaction strength scales with the size of
the colloids, in order for this to be of similar strength for both size ratios, sp = 6 is
chosen for γ = 1 as well, determining sh = 6.
Artificial depletion is avoided by introducing displacements into the colloid-fluid

interactions and tuning the inter-dimer interactions accordingly. As discussed in
chapter 6, any chosen parameter set always presents a compromise between com-
putational cost and the need to avoid depletion interactions. The influence the
introduction of displacements ∆ into the colloid-fluid interaction has is shown in
terms of the propulsion velocity in fig. 7.2a and in terms of lateral hydrodynamic
attraction in fig. 7.2b for the example of the thermophobic dimer with γ = 3. The
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Figure 7.2: Properties of the reference thermophobic dimer with γ = 3 and fixed
sp = 6 when displacements ∆ are introduced into the colloid-fluid interaction of
the phoretic bead. a) Normalized propulsion velocity. b) Normalized fluid flow
velocity along the lateral axis l.

qualitative features of the flow field are not influenced by the introduction of dis-
placements. A certain reduction of thermophoretic propulsion velocity is to be
expected, since the thermal diffusion factor depends on the colloid-fluid interaction
range as discussed in section 3.4.2. In direct consequence, a slower swimmer will
also feature a weaker flow field. Employing a displacement of ∆ = s/2 only reduces
the propulsion velocity by ca. 20 %. Hydrodynamic lateral attraction is reduced as
well, but only to a degree such that a significant influence on collective behavior is
still to be expected. These observations lead to the choice of ∆ = 0.5s as a standard
value for choosing displacements.
Based on the choice of displacement, the other parameters of the reference

dimers can be chosen. All interactions are modeled based on eq. (2.7). The
colloid-fluid interaction of the phoretic bead of thermophilic swimmers has pa-
rameters (s,∆, ε, n, r/a) = (6,3,1,3, r) while that of thermophobic swimmers uses
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(6,3,1,24,a). The hot bead is modeled using parameters (2,0.5,1,24, r) for γ = 3
and with (6,3,1,24, r) for γ = 1. Modeling the hot bead with sh = 2 using
∆ = 0.5sh = 1 lead to integration errors in the simulations, such that here a smaller
displacement of ∆ = 0.5 is chosen, which still enables avoiding depletion artifacts.
Colloid-colloid interactions in between bead i and j are described with parameters

(1.2(sh + sp/2),0,2.5,24, r), i.e. with an additional separation δ = 0.2(sh + sp/2) to
resolve lubrication and to avoid artificial depletion forces.
Heating is modeled by rescaling the temperature of fluid particles around the

hot bead in a small layer of width 0.08sh around the hot bead to Th = 1.5 while
keeping the overall fluid temperature at T = 1. For collective systems, this choice
will neglect any shadowing effects [107]. Shadowing could occur due to the light
source not reaching certain hot beads as they are in the shadow of other colloids.
Ignoring it corresponds to imagining colloids to have the same light refraction index
as the solvent. Shadowing is expected to only have an important influence at high
packing fractions and for dense clusters.
Simulations are performed in cubic boxes with periodic boundaries. Dimer swim-

mers are initially put on a grid, but with random orientations. Due to the high
computational cost of the simulations, reference cases are chosen using a number
of dimers N = 100 and a volume fraction of φ = 0.05. Based on the results obtained
there, other parameters may be checked. Typical runtimes are of the order 70,000
– 100,000 in simulation units.

7.2.2 Properties of Reference Dimers
The choice of reference constructions requires a re-examination of single swimmer
properties. The single swimmer flow fields are shown, along with a characteri-
zation of lateral hydrodynamic interactions, in fig. 7.3 for both thermophilic and
thermophobic dimers. As already discussed in chapter 4, the hydrodynamic in-
teractions are reversed for thermophobic and thermophilic dimers. Thermophilic
asymmetric dimers show long-ranged lateral hydrodynamic repulsion (c.f. figs. 7.3b
and 7.3c), while thermophobic asymmetric dimers show long-ranged hydrodynamic
lateral attraction (c.f. figs. 7.3d and 7.3f). Symmetric swimmers switch their lateral
hydrodynamic behavior at short ranges, from repulsive to attractive in the case of
thermophilic dimers (c.f. figs. 7.3a and 7.3c), while thermophobic symmetric dimers
switch from short-range attractive to long-range repulsive (figs. 7.3d and 7.3e).
As evident from figs. 7.3c and 7.3d, the strength of hydrodynamic effects in the

phobic and philic swimmers are similar. The thermophilic swimmers propel a bit
slower than the thermophobic ones, with swimming velocities (measured along the
bond direction towards the hot bead) of 0.013 in the asymmetric and 0.014 in the
symmetric case, while the thermophobic ones reach −0.020 and −0.021 in the asym-
metric and symmetric case, respectively. An overview of single dimer properties
is given in table 7.1. Diffusion and rotational diffusion coefficients, obtained from
measurements of the MSD and rotational MSD, are in a comparable range for all
reference constructions with values in between 6 × 10−4 and 1.5 × 10−3 for the diffu-
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Figure 7.3: Flow fields and temperature fields for thermophilic (a),b),c)) and
thermophobic (d),e),f)) dimer swimmers. a,e) same-sized beads, γ = 1. b,f)
asymmetric beads, γ = 3. a,b,e,f) Black arrows indicate the propulsion direction.
Background depicts the temperature field, blue lines and gray arrows show the flow
field. c,d) Measurement of the flow velocity along the radial axis perpendicular
to the swimmer orientation with origin in the center of the front bead (l-axis).
Only values in the range accessible to other colloids are shown. Vertical solid and
dashed black lines indicate colloid-colloid extra-separation distances of δ = 0.2 and
δ = 0.5, the latter indicates the colloid-colloid extra-separation necessary to avoid
artificial depletion when no displacements are used in the colloid-fluid interactions.
Note that a) and e) only differ in the bead sizes from figs. 4.6g and 4.6a and are
included here for clarity.
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sion coefficient. Rotational diffusion coefficients lie in between 2 × 10−5 and 3 × 10−4.
The asymmetric swimmers feature higher values of both coefficients than the sym-
metric ones, which is consistent with their overall smaller size. The Peclet numbers
are in the range 7–70, where the Peclet number Pe has been calculated as the ratio
of propulsion to noise as Pe = vs/(Drlc), with lc a characteristic length [70]. Typical
values for the Peclet number of diffusiophoretic Janus particles, which are compa-
rable to the phoretic dimers, lie in the range 5 − 200 [20, 70], which is consistent
with the simulations.

Table 7.1: Single dimer properties for the two reference constructions of thermo-
phobic and thermophilic dimers. Peclet numbers are calculated using eq. (2.13).

property phobic γ = 1 phobic γ = 3 philic γ = 1 philic γ = 3
vs −0.021 −0.020 0.014 0.013
D 6.29 × 10−4 1.15 × 10−3 9.61 × 10−4 1.41 × 10−3

Dr 2.92 × 10−5 9.89 × 10−5 4.57 × 10−5 2.46 × 10−4

Pe 69 22 26 7

In addition to measuring the single swimmer properties of the reference con-
structions, simulations of pairs of these dimers were performed. The thermophobic
swimmers used here did not show any formation of bound pair structures. Asym-
metric thermophilic dimers did not show any formation of stable pairs either. Sym-
metric thermophilic dimers on the other hand, due to the larger phoretic attraction
through the bigger hot bead, cling together in pair simulations for small times. No
long-time stable configurations were observed though, the general behavior there
is more akin to a slow-down upon contact, i.e. when the swimmers come close,
their swimming velocity reduces and they slide along each other slowly, but always
disconnecting again. Note that for colloids with a larger thermophoretic response
these behaviors can be different.

7.2.3 Analysis of Clusters
In all collective simulations, some sort of clustering behavior is observed. To identify
clusters, a distance based criterion is used. Two beads are here considered to belong
to one cluster when their distance reaches a value lower than 1.32(si + sj), which is
1.1 times the minimum colloid-colloid interaction distance. This distance criterion
is complemented with a time criterion, only counting dimers as clustered when the
distance criterion is fulfilled for times longer than 300.
The main cluster orientation is obtained by averaging all single dimer axes ni.

The cluster velocity vc is the average of the dimer velocities projected on this cluster
orientation. Alignment is characterized by measuring the correlation of all dimer
orientations in a cluster ⟨ni ⋅nj⟩. The radial distribution function g(r) is measured
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according to [45]

g(r) =
V

N2
b
⟨
Nb

∑
a

Nb−1
∑
b≠a

δ(r − rab)⟩ , (7.1)

where V is the box volume, Nb the number of beads and rab = ra − rb the vector
connecting beads a and b. The g(r) provides insight into structural properties.
Angular alignment can be characterized by the spatial distribution of the mutual
dimer-dimer orientation angle θ(r) [79], which is measured as

θ(r) = ⟨
N

∑
j<i=1

arccos[n̂i(Ri) ⋅ n̂j(Rj)]δ(Rij − r)⟩ (7.2)

where Ri denotes the center of mass of dimer i. A value of 90° corresponds to
perpendicular orientations, while 0° and 180° indicate perfectly parallel and an-
tiparallel alignment. Random uncorrelated orientations also correspond to 90°.
Structural properties of clusters can also be obtained from the gyration tensor.

This is defined as

Smn =
1

2N2

Nb

∑
a=1

Nb

∑
b=1

(r
(m)

a − r
(m)

b )(r
(n)
a − r

(n)
b ) (7.3)

where r(m)

a is the a-th bead’s position vector component m. S is 3× 3 matrix, that
can be diagonalized to obtain the eigenvalues of the the gyration tensor Ξ2

k with
k = {1,2,3} which are chosen in a way such that Ξ2

1 ≥ Ξ2
2 ≥ Ξ2

3 . There are several
shape descriptors that can be derived from the principal moments. More important
for this work is that their respective ratios offer a measure for the cluster shape in
terms of planarity. For example, a structure in which the three eigenvalues are very
similar relates to a sphere, whereas one with the first two eigenvalues significantly
higher than the third will be flat.

7.2.4 Langevin Dynamics
In order to estimate the influence hydrodynamic and phoretic effects have on the
behavior of swimmers studied with MPC-MD, it is desirable to compare to a system
that is very similar, but does not include these contributions. Such a system is
provided when using Langevin Dynamics (LD), i.e. a numeric solution of eq. (1.6),
r̈ = −ζv + ξ + F

M . LD describes colloidal dynamics with an implicit background
solvent, whose effect on colloidal motion is encoded in the friction coefficient ζ, the
(thermal) noise ξ and the external force F . The idea is now to choose parameters
such that the system dynamics are as close as possible to those obtained with MPC-
MD.M is the mass of the colloid, which is just chosen the same as in MPC-MD. As
the viscosity µd = 7.92 is well known to hold for the MPC fluid with the specified
parameters, the friction of a colloidal particle can be estimated by using the Stokes-

98



7.2 Collective Behavior of Dimers

Einstein relation as ζ = 6πµds and a damping force Fdamp be calculated considering
the colloid’s velocity v. The thermal noise ξ is a Gaussian white noise defined by
its fluctuation strength in eq. (1.9), G = 2kBTζI, and is applied considering the
average temperature T of the MPC-MD simulations to contribute a random force
Frandom. From the swimmer velocities vs obtained in MPC-MD, the corresponding
driving force Fpropulsion = vsζ is calculated and applied to the phoretic particle along
the bond direction n.
The total force Ftotal on a colloid in LD is then given as the sum of all these

contributions as

Ftotal = Fpair +Fdamp +Frandom +Fpropulsion (7.4)

where Fpair includes all contributions from direct pair-wise interactions with other
colloids and

Fdamp = −
M

µd
v , (7.5)

Frandom =

√

2kBTµdξ . (7.6)

The propulsion force is only applied to the phoretic particle along the dimer orien-
tation n. To reach the desired propulsion velocity, the friction of both colloids of
the dimer has to be accounted for and Fpropulsion is therefore given by

Fpropulsion = (ζh + ζp)vsn (7.7)

where the subscripts refer to the hot (h) and phoretic bead (p). The directionality
accounting for the propulsion direction of thermophilic and thermophobic dimers
results from the sign of the swimming velocity vs.

7.2.5 Collectives of Thermophilic Dimers
Simulations of large ensembles of thermophilic dimers show clustering into unmov-
ing aggregates. After an initial phase in which the dimers freely propel, they start
to form large, unmoving and long-time stable clusters, which continuously grow by
new dimers colliding and getting attached. In the limit of long simulation times,
one giant cluster including nearly all dimers remains. Snapshots from simulations
illustrating the observed behavior are shown in fig. 7.4. The clustering dynamics
do not differ much between dimers with the two chosen size ratios. Figures 7.4a
and 7.4b show snapshots from a simulation of γ = 3 dimers. Two unmoving struc-
tures have formed there. The remaining free dimers will in the end also attach to
either one, and the two structures eventually combine to one giant cluster. This
process will take a long time, as the formed structures only move by Brownian
motion. Depending on the initial configuration and the randomness induced by the
noise, single giant clusters were observed in different realizations. Such an example
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(a)

(b)

(c)

(d)

Figure 7.4: Collective systems of thermophilic dimers. Hot beads are colored
red. Free dimers are depicted translucent, with yellow phoretic beads. Clustered
dimers are colored solid, with phoretic beads colored according to cluster identity.
Top picture shows initial state, bottom picture a representative configuration of
unmoving clusters at a later stage. a,b) Asymmetric dimers with γ = 3. c,d)
Symmetric dimers with γ = 1.
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is shown in figs. 7.4c and 7.4d, though for the symmetric γ = 1 dimer. Only a few
free dimers still remain there, which will soon attach to the large structure.
The most important physical features of these systems are already evident from

the snapshots. Thermophilic dimers move with the hot bead at front. However,
many dimers in the clustered structure have the hot bead pointing outwards, but
still remain attached to the cluster and do not just swim away. This shows that the
clustering is not induced by jamming or motility-induced attraction, as these steric
effects would not hinder a dimer pointing outwards from just swimming away. As
the structures are unmoving, no hydrodynamic flow fields can build up, such that
related effects can only play a very minor role. The only effect left that can explain
the freezing of dimers into unmoving clusters with hot beads pointing outwards is
then the phoretic attraction. Phoretic beads are drawn towards the hot beads of
other swimmers, and will aim at being surrounded by as many of them as possible.
This leads to the swimmers stopping to propel, due to two simultaneous effects. For
one, a phoretic bead between, for example, two opposite lying heat sources will not
move, as the driving forces cancel. Secondly, the temperature distribution around
the phoretic bead will become more uniform since the heat sources are close to the
phoretic bead, leading to its surface getting more or less uniformly hot. As the
phoretic driving force is induced by the gradients of temperature along the surface,
this will diminish it. The hot bead will not react to any exterior temperature
field, but the phoretic bead of the swimmer will be drawn towards the hot beads
of another dimer, be it free or already part of a cluster. If the temperature field
then is uniform enough, the driving force is diminished sufficiently and the dimer
stays part of the cluster, though its front bead is pointing outwards. Note that, in
contrast to the structures resulting from depletion presented in chapter 5, artificial
depletion does not play a role in the formation of the structures here, but their
stability solely stems from the phoretic effect.
Structural properties of the formed clusters are obtained by averaging over dif-

ferent realizations, typically 3 to 5, at a later stage of the simulation, where the
clusters are already formed and mostly stable. The dimer and cluster dynamics
can be characterized by considering the cluster velocity vc, i.e. the average dimer’s
velocity projected on the cluster orientation, as a function of cluster size, as shown
in fig. 7.5a. For both symmetric and asymmetric dimers, the cluster velocity decays
very steeply and reaches zero already for cluster sizes between five and ten. This
represents that unclustered dimers move freely and shows that even small agglom-
erates suffer a significant penalty in terms of propulsion speed due to the reduction
in phoretic driving force. The decay is a bit faster for symmetric dimers, most
likely because the relative importance of the phoretic effect is stronger here due to
the larger hot beads.
The crystal-like structure of formed clusters is seen in the radial distribution

function, shown in fig. 7.5b for phoretic-phoretic beads and in fig. 7.5c for hot-hot
beads. The sharp peaks, especially in fig. 7.5b, are typical for solid-like structures.
For symmetric swimmers, both the phoretic-phoretic and the hot-hot radial dis-
tribution functions show peaks at contact and at around 2(si + si), indicating a
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Figure 7.5: Properties of ensembles of Nc = 100 thermophilic dimers with γ = 1
(red) and γ = 3 (blue) at volume fraction φ = 0.05. Solid lines correspond to re-
sults obtained with MPC-MD, dashed lines to those obtained with LD. a) Cluster
velocities vc normalized by single dimer velocity vs. b,c) Radial distribution func-
tions considering phoretic-phoretic beads (b)) and hot-hot beads (c)). d) Spatial
distribution of dimer-dimer angle, according to eq. (7.2).

second coordination layer one bead farther away. The asymmetric dimers’ phoretic
beads show the same peak at 2(si+si), whereas it is missing in their hot-hot radial
distribution function. If a hot bead of an asymmetric dimer with γ = 3 is mostly
surrounded by phoretic beads, the next hot bead will be behind the phoretic bead
and appear as a peak at r/(sh + sh) in the hot-hot g(r), and such a peak is indeed
visible in fig. 7.5c. However, though the highest value is very close to 4(s=h + sh),
the peak is broad, going roughly from 2.8–4.3(s=h + sh), which indicates that the
hot beads are rather randomly distributed around the phoretic beads. Angular
alignment is characterized by the spatial distribution of the mutual dimer-dimer
orientation angle θ(r), which is shown in fig. 7.5d. The quick decay to 90° in both
cases indicates that there is not much alignment in any of the crystalline structures.
The opposite lying first peaks around 2.0 to 2.5r/sp indicate that there is a ten-
dency to have symmetric dimers rather parallel and asymmetric dimers anti-parallel
aligned at close distances.
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Studying the same system using LD leads to a completely different behavior
of dimers. This is in fact expected since no explicit attractive interactions are
present and the dimers only cluster through collisional processes. Characteristics
of the resulting dynamic and structural properties are shown by the dashed lines in
fig. 7.5. Figure 7.5a shows that smaller clusters with non-vanishing average velocity
form in LD, which confirms a very different behavior as compared to MPC-MD.
Nearly no structural properties but for the peak at contact are evident in the radial
distribution functions obtained with LD, as shown in figs. 7.5b and 7.5c. Opposed
to MPC-MD, this indicates that no crystalline states form. While LD lacks the
longer-ranged angular correlations in the angle distribution shown in fig. 7.5d, the
behavior at short ranges is comparable to MPC-MD, where symmetric dimers are
more likely to be aligned parallel, while asymmetric dimers are anti-parallel. Since
this effect is evident in both MPC-MD and LD, it is most likely due to the collisional
dynamics. When two symmetric dimers collide at acute angles, they will likely
align parallel due to motility-induced attraction. This is different for asymmetric
dimers. Having the small bead at front, it is likely that collisions take place with
the larger back bead. A probable mechanism is that the two dimers do not crash
with their front beads, but in passing get stuck with their back beads touching.
Such a configuration has the dimers going in opposite directions, i.e. anti-parallel
aligned, as evident in fig. 7.5d. The collision dynamics seem to provide the main
contribution to the behavior in MPC-MD as the curves are quite similar to LD
at the short ranges now considered. The discussed behaviors of symmetric and
asymmetric dimers are also somewhat visible in the graphic depictions in figs. 7.4b
and 7.4d.
The quantifications discussed are in agreement with the physical mechanism of

phoretic clustering. Phoretic clustering will always induce unmoving clusters of
similar structure, more or less independent of the number of swimmers and vol-
ume fraction. The formation dynamics may of course be slower for lower volume
fractions, and many unmoving clusters will form that take long times to meet and
agglomerate together as they just move by Brownian motion. To confirm this, a
simulation of symmetric dimers with a higher number of swimmers N = 200 at a
lower volume fraction of φ = 0.03 was performed, with a comparable runtime to
those discussed already. The resulting behavior is exactly as expected. An Illus-
trating snapshot as well as characterizations in terms of the cluster velocities and
radial distribution function are shown in fig. 7.6. It is visible in the snapshot in
fig. 7.6a that, in comparison to the reference case shown in fig. 7.4d, more clusters
of lower size are formed. This is mainly a result of the runtime of the simulation.
Due to the lower volume fraction, it is less likely for swimmers to meet and smaller
clusters build up first. These will eventually still form one large cluster but not
within the frame of time considered. The cluster velocities and radial distribution
function in figs. 7.6b and 7.6c show a course very similar to that observed in fig. 7.5,
indicating very similar dynamics and structures. The radial distribution function
at lower volume fraction in fig. 7.6c shows qualitatively the same peaks as that
at higher volume fraction in fig. 7.5b, indicating the structural properties to be

103



7 Collective Swimmer Dynamics

(a)

0 10 20 30

Nc

0.00

0.25

0.50

0.75

1.00

v c
/v

s
| γ

(b)

0 1 2 3 4 5 6

r/(sp + sp)

0

1

2

3

4

5

g p
−

p
(r

)

(c)

Figure 7.6: Snapshot (a)) and system properties (b),c)) of a system of N = 200
thermophilic dimers with γ = 1 at volume fraction φ = 0.03. Color coding is the
same as in fig. 7.4. b) Cluster velocities vc normalized by single dimer velocity vs.
c) Radial distribution function considering phoretic-phoretic beads.

the same. The lower absolute values are due to the fact that the system at lower
volume fraction still features more free dimers. The mechanism working the same
in a bigger system at lower volume fraction also ensures that finite size effects are
unlikely to influence these dynamics.

7.2.6 Collectives of Thermophobic Dimers
7.2.6.1 Swarming Behavior

Thermophobic dimers show a collective behavior very different from that observed
for thermophilic ones. In simulations of many thermophobic dimers, no long-time
stable clusters form. Instead, one observes a dynamic clustering into moving aggre-
gates with a pronounced tendency to align, with a front-like propulsion in a layer
type of structure. Illustrating snapshots of symmetric and asymmetric dimers are
shown in fig. 7.7. It can be made out that in both cases, clusters with more or
less random orientations as well as some with pronounced alignment are formed. A
typical random cluster is for example the light blue one in fig. 7.7b. Strong align-
ment can be seen for the golden cluster in fig. 7.7a and the green one in fig. 7.7b.
Notably, the green one of asymmetric dimers has a higher cluster size as well as
a more coherent orientation. These features are representative also of the typical
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(a) (b)

Figure 7.7: Snapshots of ensembles of N = 100 thermophobic dimers of size ratio
γ = 1 (a)) and γ = 3 (b)). Non-assembled dimers are translucent, with red heated
beads and blue phoretic beads. Dimers assembled in clusters of size five or larger
are solid, with red heated beads and phoretic beads colored according to cluster
identity.

dynamics observed. An indication of the most typical cluster sizes can be found
in the plateaus of the cluster size probability distribution in fig. 7.8a, indicating
Nc = 10 to 20 for γ = 1 and Nc = 30 to 55 for γ = 3. To compare the two types of
construction, consider the reference system size of N = 100, given by the solid blue
and red lines in the figure. Neither construction forms long-time stable aggregates
due to the phoretic repulsion and thermal noise. However, the asymmetric dimers
tend to not only form bigger, but also faster (c.f. fig. 7.8b) and more coherently
oriented clusters(c.f. fig. 7.8c). For symmetric dimers, the oriented cluster velocity
drops quickly as a function of cluster size to roughly 0.2vs. The same function for
asymmetric dimers drops much slower and strongly shows a pronounced plateau at
roughly 0.4vs, reaching up to ca. 60 swimmers. The course of the clusters’ orienta-
tional correlation is similar. While that of symmetric dimers drops quickly to zero,
the decay is slower for asymmetric dimers and reaches a plateau at ca. 0.12, with
the same range as for the cluster velocities.
Symmetric dimers show a tendency towards aligned propulsion in small, short-

lived agglomerates. Asymmetric dimers tend to move in front-like, flattened swarms
that also persist for longer periods of time, propelling together over one to several
dimer lengths. Note that the velocity and orientation of moving flattened swarms
are underestimated by the values given in fig. 7.8, since these averages also account
for non-moving clusters formed by the collisions of smaller clusters.
Before discussing the physical origin of the swarming behavior observed, note that
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Figure 7.8: a) Averaged probability for a dimer to be in a cluster of size NC. Blue
(dark) lines stand for asymmetric dimers and red (light) for symmetric dimers.
Solid lines correspond to hydrodynamic simulations (MPC-MD), dashed lines to
non-hydrodynamic results (LD). b) Normalized cluster velocities as a function of
normalized cluster size. c) Orientational correlation of dimers within the same
cluster as a function of the normalized cluster size. b,c) Solid gray lines are a
guide to the eye indicating a saturation value. The corresponding inlays show
results for asymmetric dimers in systems of size 75 (green), 150 (gold) 200 (pink)
and 500 (green) swimmers, blue line is the same as in the main figure. Red and
blue datasets are averaged over five realizations and datasets in inlays over two;
both with runtimes of around 70,000. LD results are averaged over 8 realizations.

motility-induced attraction alone could account for oriented propulsion. This effect
can however not be strong, as the dimers feature very low aspect ratios. To estimate
its influence, the full hydrodynamic simulations are compared to LD simulations,
in which hydrodynamics and phoretic effects are completely disregarded. Results
are shown in fig. 7.8 with dashed lines. LD leads for both considered geometries to
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nearly identical results, emphasizing that the difference between the two observed
in MPC-MD simulations originates in their different hydrodynamic and phoretic
behavior. Only small, short-lived aggregates with low orientational correlation form
in LD, and very quickly dissolve again. The low orientational correlation indicates
that jamming is the main clustering mechanism in LD. The residual orientational
correlation still being non-zero and positive is due to motility-induced attraction,
since this favors aligned propulsion already for the dimers, though their aspect ratio
is very low. That velocities and orientational correlations are much lower in LD
for the asymmetric dimer shows that motility-induced attraction is not the cause
for the emergence of swarming structures. The lower orientational correlation of
symmetric dimers in LD indicates that their short-ranged hydrodynamic attractions
enhance their alignment quite strongly (cf. blue lines in fig. 7.8c). The importance of
short-ranged hydrodynamic interactions is currently discussed for various swimmer
types, and in particular has been observed to be of importance in other colloidal
systems [86].
The significant differences in collective behavior of these construction types orig-

inate in the dimers’ geometries and their consequences on hydrodynamic behavior.
Recalling the measured flow fields of fig. 7.3d, asymmetric dimers show long-ranged
hydrodynamic attraction, while symmetric dimers show long-ranged hydrodynamic
repulsion and short-ranged weak attraction. Then, the emergence of swarming
structures in the particular sheet-like geometry is based on the interplay between
phoretic repulsion and hydrodynamics. Phoretic repulsion is mainly affecting other
swimmers in the propulsion direction, especially keeping any other dimer from at-
taching to the front or rear. Hydrodynamic attraction works lateral to the propul-
sion direction, drawing other dimers near. In combination, front-like swarming in
single-layered fronts results. Thermal fluctuations and random collisions destabilize
the emerging structures. Stability and velocity are also decreased as the formation
of planar-like sheets is hydrodynamically unfavorable, hence friction is increased as
compared to single dimers.
The swarm size in the reference system of 100 asymmetric dimers is limited by

the simulation box size. To gain insight into whether one can expect them to form
very large swarms, extensive simulations with up to 500 swimmers were performed.
Their results are shown in the inlays of fig. 7.8. Snapshots of the largest system
and a swarming cluster are shown in fig. 7.9. The results obtained from the largest
system indicate that clusters with more than ca. 200 constituents are not being
formed anymore. The largest clusters do not show a relevant velocity and orienta-
tional correlation anymore, what indicates that they are resulting from collisions of
two or more swarming clusters. Up to the size of 150 however, significant cluster ve-
locities and orientational correlations are still observed. As these swarms are small
enough as compared to the simulation box size, this limit will likely not depend
on the system size but rather on the stability of hydrodynamic lateral attraction
as compared to both thermal fluctuations as well as the increased friction due to
the planar-like geometry. This limiting size will however strongly depend on var-
ious other system parameters such as the volume fraction, single swimmer Peclet
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(a)
(b) (c)

Figure 7.9: Snapshots of an ensemble of N = 500 thermophobic dimers of size
ratio γ = 3. a) shows the whole simulation box, b) a view from the back and c)
a view from the side on a large swarming cluster in it. Non-assembled dimers are
translucent, with red heated and blue phoretic beads. Dimers assembled in clusters
of size five or larger are solid, with heated beads colored red while phoretic beads
are colored according to cluster identity.

number, and particle geometry. Before considering such influences, the structural
characteristics will be discussed still within the scope of the reference system.

7.2.6.2 Structural Characteristics

The positive orientational correlation indicates alignment of the swimmers. How-
ever, it does not provide any information about the actual cluster shape. High ori-
entational correlations would also result from a chain-like propulsion. To quantify
the cluster shape, and in particular its planarity, the gyration tensor is measured.
Unfortunately, a precise quantification is not possible due to the large stochastic-
ity of the cluster configurations in conjunction with the prohibitive computational
cost of the simulations. The results obtained suggest a ratio of around 10 of the
largest to smallest eigenvalue for many cluster sizes of both asymmetric and sym-
metric dimers, albeit with large errors. The ratio of the intermediate to smallest
eigenvalue is then around ca. 4, again with large errors. It is worth to remind that
clustering through jamming also happens and is included in the averages. Though
not precisely quantifying structural properties, these values indicate that the align-
ment in swarming stems from structures akin to planar fronts, and definitely not
from line-like formations.
Structural characteristics are shown in fig. 7.10. These take into account all

dimers or beads in the system, without differentiating between clustered and free
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swimmers. The spatial distribution of dimer-dimer angles in fig. 7.10a clearly indi-
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Figure 7.10: Structural features of collectives of thermophobic dimers. a) Spa-
tial distribution of dimer-dimer angle, according to eq. (7.2). Radial distribution
functions are shown for phoretic-phoretic beads (b)), hot-hot beads (c)) and hot-
phoretic beads (d)). Blue lines stand for asymmetric dimers and red for symmetric
dimers. Solid lines correspond to hydrodynamic simulations (MPC-MD), dashed
lines to non-hydrodynamic results (LD). e) and f) sketch a perfectly aligned con-
figuration with phoretic beads at contact and show the relevant lengths in units of
sp, to relate them to the radial distribution functions in b)-d).

cates that it is more likely to have two dimers aligned than not, both for symmetric
as well as for asymmetric dimers. In LD simulations, this correlation is very short
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ranged and greatly reduced as compared to the MPC-MD results, confirming the
already made assumption that motility-induced attraction has a rather weak effect
in these systems. In the MPC-MD results, it is observed that at short ranges, the
angular correlation is stronger for symmetric than for asymmetric dimers, which
is not directly consistent with the different strengths of hydrodynamic lateral at-
traction observed in the quantification of the single dimer flow field in fig. 7.3d. It
is then likely due to the combined effect of hydrodynamics with motility-induced
attraction, which is stronger for symmetric dimers as visible in this figure when com-
paring the dashed red to blue line. Both types of construction show long-ranged
alignment, which can only result from the hydrodynamic and phoretic effects. Of
these two, phoresis will not induce alignment. The long-range alignment is compa-
rable for both types of construction. Though their lateral hydrodynamic behavior
is opposite, the effect on alignment is similar.
The radial distribution functions in figs. 7.10b to 7.10c indicate, most of all, that

there is more structure inherent in clusters formed in MPC-MD simulations resolv-
ing hydrodynamics and phoresis than in those formed in LD. Sketches of aligned
dimer, highlighting the relevant lengths to relate the radial distribution functions
to, are shown in figs. 7.10e and 7.10f. The phoretic-phoretic radial distribution
function in fig. 7.10b shows a pronounced peak at contact for both MPC-MD and
LD, that is broadened towards higher distances in MPC-MD with an additional
small peak around four times the colloid-colloid interaction range at (2.2(sp + sp)).
This second peak indicates that dimers order in a second layer, which is consistent
with a higher number of constituents in clusters that also extend longer. While the
phoretic-phoretic radial distribution function has a similar course for both types of
dimer construction, the hot-hot radial distribution function shown in fig. 7.10c is
pronouncedly different for them. That of symmetric dimers shows a peak at contact,
though less pronounced and oriented towards higher distances both in MPC-MD
and LD as compared to the phoretic-phoretic one. This indicates a higher probabil-
ity for dimers to collide with the front than with the rear, which is to be expected
due to the propulsion direction. This is also true for the asymmetric dimers, though
here the peak is shifted towards higher distances, broadly distributed around ca.
8sh for both MPC-MD and LD. This indicates that it is nearly impossible for hot
beads to touch due to the propulsion with the phoretic bead at front, which stands
in strong contrast especially to thermophilic dimers (c.f. fig. 7.5c). The hot-phoretic
radial distribution function does start at contact in both cases, but not with a pro-
nounced peak as for the phoretic-phoretic one. As visible in fig. 7.10d, the peaks
build up to show a maximum at larger distances. Notably, the peaks are at roughly
the same distance for both asymmetric and symmetric dimers, as the normaliza-
tion for the two is different with sh taking on values of 2 and 6 respectively. This
radial distribution function also shows the most prominent differences in between
MPC-MD and LD simulations. In LD, it is in no way hindered for hot and phoretic
beads to touch. In fact, it is just more likely for swimmers to collide head-on, but
it does statistically happen that they will collide head-rear, such that there is a
small peak at contact.
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7.2.6.3 Finite Size Effects

In systems of single swimmer, the finite size of the simulation box will influence
the propulsion velocity as well as the hydrodynamic behavior, mainly in terms of
limiting the maximum range of the flow field, as discussed in section 3.3.1.1 and
section 4.1.4.1. In a system of many thermophobic dimers, these effects will also be
present, but screened. A stronger effect for these systems is that the swarm size in
simulations of asymmetric dimers can be limited. As observed in the largest simu-
lations of thermophobic dimers, the swarms are stable up to ca. 150 constituents,
with the largest cluster observed containing a bit more than 200 dimers. Reaching
these values is of course impossible when not enough dimers are present, which in
that sense limits the swarm size. In addition to that, a small simulation box may
also have a rather specific effect in this system. When the simulation box is small
enough as compared to a swarm, it may happen that one cluster gets so large that
the system percolates. The percolated structure gets stabilized and grows due to the
effect of periodic boundary conditions. The stabilized structure contains in the end
nearly all dimers, which become part of one huge, very coherently aligned front that
propels fast and as a whole with only little number fluctuations. Illustrating snap-
shots of a back and side view of such a percolated structure are shown in fig. 7.11.
This behavior was only observed in few realizations of the system dynamics and

(a) (b)

Figure 7.11: Snapshots of a percolated formation of asymmetric dimers. a) shows
a view from the back, b) from the side.

the analysis discussed so far did not consider simulations that showed percolation.
The increased stability of the percolated front is due to a finite size effect. When
the swarm extends over the whole simulation box, fluid can not very well stream at
the now-vanished sides of the swarm, thereby friction is reduced and the structure
accelerates. No percolation was observed in realizations with more than 100 swim-
mers, though it may probably happen in systems with less dimers than constituting
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the maximum swarm size. Although these very coherent structures result from a
finite size effect, they indicate that additional stabilization mechanisms may favor
further the formation of coherently aligned swarms of dimers.

7.2.6.4 Effect of Volume Fraction

The volume fraction φ will influence the collective dynamics. Before discussing its
effect, it should be noted that all the MPC-MD results presented in the following
are to some extent preliminary. Due to the high computational cost, the datasets
are extracted from just one realization of the system dynamics. To draw definite
conclusions and offer precise quantifications, future work will need to consider more
simulations to provide reliable statistics. However, the main trends can already be
extracted quite clearly, and are presented in the following.
The swarming behavior of asymmetric dimers discussed so far is only possible

at intermediate volume fractions, such as in the reference system which features
φ = 0.05. If φ is too low, the swimmers will meet too rarely to form larger structures
as the dissolution of clusters takes place before more dimers can arrive at the
agglomerate. If it is too high, the clustering mechanism will be dominated by
jamming and frequent collisions that are, due to the close packing, to a lesser degree
influenced by the hydrodynamic interactions. Results on the collective behavior of
dimers with size ratios γ = sp/sh of 3, 2, and 1 are shown in fig. 7.12.
Consider first the results obtained using the asymmetric dimer with γ = 3 in

fig. 7.12a. For low volume fractions, only small clusters form, with sizes only up
to Nc = 5 at φ = 0.01 and Nc = 20 at φ = 0.025. At the lowest volume fraction,
there is nearly no orientational correlation observed for these small clusters. This is
attributed to the very limited statistics in this system, as collisions of dimers are a
rather rare event in this dilute regime. To discuss the influence of volume fraction,
it is sufficient to observe that clearly no swarming behavior emerges and this is
referred to as the dilute phase. For the next higher volume fraction, φ = 0.025,
all cluster properties show a course similar already to the reference system, but
clusters do not reach sizes larger than ca. 20. This points to the swarming behavior
starting to develop, but due to the lower density the lifetime of aggregates is too
short for more dimers to attach to those structures that have built up. This phase
is called small swarms.
At φ = 0.075, the system shows a similar behavior to the reference system at

φ = 0.05. At both volume fractions swarming behavior emerges, showing also similar
plateaus in cluster velocity and orientational correlation of clusters. This indicates
φ = 0.075 to also be in the aforementioned intermediate range of volume fractions,
in which swarming behavior can be observed, and this is referred to as the phase
of large swarms.
The highest volume fraction tested is φ = 0.1. There, very big clusters form, but

have a very low propelled velocity and close to zero orientational correlation. These
properties point out that, even though some orientational correlation remains due
to remnants of swarming behavior, the dominant clustering mechanism is jamming
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Figure 7.12: Cluster properties of ensembles of thermophobic dimers with γ = 3
(a),b),c)), γ = 2 (d),e),f)), and γ = 1 (g),h),i)) at volume fractions φ = 0.01 (pink),
0.025 (gold), 0.05 (blue), 0.075 (red) and 0.1 (green). Dashed lines show results
obtained with LD. a,d,g) Averaged probability for a dimer to be in a cluster of size
NC. b,e,h) Normalized cluster velocities as a function of normalized cluster size.
c,f,i) Orientational correlation of dimers within the same cluster as a function of
the normalized cluster size. Results for γ = 2 stem from simulations using N = 200
dimers, and the cluster size is given as Nc/N ×100% to facilitate comparison to the
other size ratios, where N = 100 was used.
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here and it is referred to as the jamming phase.
Overall, these simulation results confirm that the emergence of swarming be-

havior is dependent on the volume fraction. More precisely, there is a balance in
between the lifetime of clusters, the probability to meet other dimers and the space
and time available for each dimer to feel the hydrodynamic and phoretic influence
of others. Together, these factors determine the kind of collective behavior possi-
ble. Within the volume fractions considered so far, four different phases emerge,
the dilute, small swarms, large swarms, and jamming phase. Based on these, a
phase diagram may be constructed and is shown in fig. 7.13a. The four phases are
illustrated with snapshots of γ = 3 dimers in figs. 7.13b to 7.13e The assignation
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Figure 7.13: a) Phase diagram of thermophobic dimers as a function of bead
size ratio γ and volume fraction φ. b,c,d,e) Illustrations of the dilute (b)), small
swarms (c)), swarming (d)) and jammed (e)) states for dimers with γ = 3.

of phases for the asymmetric γ = 2 dimer is based on similar considerations as for
the γ = 3 dimer. For the γ = 2 dimer, the self-propelled velocity vc = −0.0268 is
a bit faster, but close to that of the other two constructions which feature about
−0.02 (see table 7.1). Its hydrodynamic interactions are similar to the γ = 3 dimer,
featuring long-ranged lateral hydrodynamic attraction (c.f. fig. 4.6c and fig. 4.7c
for details). Though similar, the differences lead to a shift of phase boundaries, in
that the region of large swarms seems narrower, at least judging from the dataset
considered. As visible in fig. 7.12f, at both φ = 0.075 and φ = 0.1, nearly no orienta-
tional correlation is observed for the clusters, from which follows that the jamming
phase starts at lower volume fractions than that of the γ = 3 dimer. This is consis-
tent with the observation that the lobe in the flow field leading to attractive lateral
hydrodynamic interactions grows with increasing γ, such that a weaker effect is
expected for smaller γ.
All results on the jamming phases are, for both the γ = 3 and the γ = 2 dimer,

well accounted for by a collisional mechanism leading to jamming and a certain
motility-induced attraction. This can be seen in the good agreement of MPC-MD
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and LD results in fig. 7.12a to 7.11f. It follows that for asymmetric dimers at
higher volume fractions, neither hydrodynamic nor phoretic effects seem to have
an important influence on the collective dynamics.
This is different for the symmetric dimer with γ = 1. First, starting from low

volume fractions, a dilute and a small swarms phase are observed. But at higher
volume fractions of φ = 0.075 and φ = 0.1, i.e. the region where jamming already
dominates for the γ = 2 dimer, the symmetric dimer starts swarming. Motility-
induced attraction has a stronger influence on the symmetric than on the asym-
metric dimer, but does not account at all for this effect. This is visible in fig. 7.12c,
where it can be made out that LD simulations at higher volume fractions show zero
orientational correlation, while cluster sizes, velocities as well as orientational cor-
relation obtained in MPC-MD are well comparable to those measured for the large
swarms of asymmetric dimers. That symmetric dimers show the formation of large
swarms at elevated volume fractions is likely attributable to their short-ranged,
laterally attractive hydrodynamic interactions. These are expected to show a more
distinct influence at higher swimmer densities, when the lack of space forces the
swimmers to be closer together such that short-range effects are more prominently
felt. Though this alone might account for the observed behavior, an additional
complication in this interpretation arises concerning the phoretic effect and its in-
terplay with hydrodynamics. The phoretic effect is strongest for symmetric dimers,
as the hot bead is largest here. It is thinkable that it provides an additional sta-
bilization of swarms, as one dimer located between two others will be phoretically
repelled by both of them, hence forced to keep its position. A future study offering
a precise quantification of the interplay of hydrodynamics and phoresis will provide
valuable insights into this phenomenology.

7.2.6.5 Inclusion of Depletion Effects

Up to this point, the main focus has been on studying the collective dynamics
of dimeric microswimmers in a scenario as close as possible to a suspension of
swimmers in an atomic/molecular fluid. Therefore, great care was taken that no
depletion artifacts were present that disturb the dynamics, and it was shown that
hydrodynamics and phoresis alone will lead to a dynamic swarming behavior. How-
ever, as discussed in chapter 5, the aligned formation of depleted pairs in the
swimming-together (ST) bound state can be of interest, and may also be exper-
imentally realizable, especially since inducing attractive depletion interactions in
colloidal systems is a well-known and controllable procedure [89]. The depletion
interaction in MPC-MD arises as numerical artifact through the ideal gas equation
of state and its strength is not well-controllable. Still, it is of interest to consider
what kinds of structures emerge when depletion is present, and an easy way to
do so is to use a parameter region where it is present as a numeric artifact of the
simulation method.
The dynamics of collective systems are different when depletion is present. Fig-

ure 7.14 shows visual representations of the structures formed in an ensemble of
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1000 asymmetric, thermophobic dimers with γ = 2. This simulation uses param-
eters close to those of the single dimers of chapter 4, with sp = 4, sh = 2, δb = 0.
The inter-dimer repulsion is modeled as in chapter 5, using a standard LJ potential
with εD = 1 and a a range sp +sh +0.2. With these parameters, attractive depletion
interactions between pairs of dimers will be present and induce formation of ST
bound states. As expected from the ST bound state, dimers attach laterally to

(a) (b)

Figure 7.14: Snapshots of ensembles of N = 1000 thermophobic dimers of size ratio
γ = 2 that feature depletion forces. Non-assembled dimers are translucent, with red
heated beads and blue phoretic beads. Dimers assembled in clusters of size five
or larger are solid, with red heated beads and phoretic beads colored according to
cluster identity. a) A representation of the whole simulation box. b) Close-up view
of a typical structure of a single swarm.

each other and form large, aligned and rather flat sheets as well as more string-like
structures. The behavior is dynamic, with clusters assembling and disassembling
constantly. Figure 7.15 shows a quantification of the cluster properties. These are
very similar in terms of all measured properties to those observed in the undepleted
case, which are also shown in the figure for comparison, even though the size ratio of
the dimers’ beads is different. Notably, a very similar limit on cluster size emerges,
indicating that the same physical effect of increased fluid friction also limits the
size of the flattened swarms in the depleted case, and no percolation takes place.
However, due to the depletion interaction being stronger than pure hydrodynamic
attraction, the stability of these structures is increased. The depletion interaction
of the MPC-MD method is not very well controllable, especially in a complex sce-
nario as used here which involves non-equilibrium driving forces and temperature
gradients [54]. Therefore, care must be taken to draw definite conclusions from
these results. However, these simulations serve as a proof-of-concept that swarm-
ing structures based on the ST state can be induced by depletion as well, and may
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Figure 7.15: Cluster properties of ensembles of N = 1000 asymmetric, depleted,
thermophobic dimers at volume fraction φ = 0.04 featuring a size ratio of γ =

2 (purple). Also shown are the results for N = 100 (blue) and N = 500 (gold)
undepleted asymmetric dimers with γ = 3 at φ = 0.05. a) Averaged probability for
a dimer to be in a cluster of size NC. b) Normalized cluster velocities as a function
of normalized cluster size. c) Orientational correlation of dimers within the same
cluster as a function of the normalized cluster size.

then be more stable as compared to those relying on pure hydrodynamic attraction
while showing comparable dynamics. In an extended study based on these results,
it will be advisable to use a parameter region which avoids artificial depletion and
induce controlled depletion forces by means of a pair-wise potential, akin to what
has been considered in [96].
The major difference between employing depletion and relying on hydrodynam-

ics to induce swarm formation in dimeric swimmers is, besides the stability of the
formed clusters, what happens when the driving force is taken away by switching off
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the illumination. In a non-depleted scenario, all clusters will dissolve by Brownian
motion and the equilibrium distribution of a colloidal suspension will be regained
after some relaxation time. But in a scenario involving depletion, all formed struc-
tures will tend to stay together when the local heating is removed, likely even more
so than in case when driving forces are present as there are less fluctuations then.
Without self-propulsion, they will of course not propel anymore, by eventually meet
by diffusive processes and then cluster together further, likely forming a large bulk
of colloidal crystal. This difference will be crucial in determining the practical use
of both types of system.

7.3 Summary and Discussion
Thermophilic Dimers For thermophilic dimer swimmers, the attractive phoretic
interactions dominate the collective dynamics, leading to the formation of stable
unmoving aggregates. The main mechanism determining structure and behavior is
that the phoretic beads are attracted by the hot beads of other dimers, becoming
surrounded by as many hot beads as possible. This behavior is in some way ex-
pected from the observation that in the simulations of pairs of thermophilic dimers,
phoretic and hot beads also are close together. There however, the structures are
stable due to depletion interactions. When the dimer-dimer repulsion is too strong,
no stable pairs form for two thermophilic dimers. This is different in a system of
many thermophilic dimers. Even though no depletion is present, the dimers form
stable clusters due to a multi-body effect where the phoretic propulsion force is
being diminished when a phoretic bead is in close contact to several hot beads,
which is inherently not possible for a low number of swimmers.
The resulting structures are solid-like, as is also the case in those formed by the

mechanism of MIPS in two dimensions. In three dimensions, MIPS leads rather
to liquid-like structures [8]. Coexistence with a gas-like phase is also given here,
as swimmers may detach from the agglomerates through thermal fluctuations and
then move freely until they are attracted to one another again. But in contrast to
MIPS, solid- and not liquid-like structures form in the three-dimensional case here
due to the existence of strong phoretically attractive interactions, which is a very
different clustering mechanism resulting in different structures.
The degree of crystallization will depend on the strength of the phoretic attrac-

tion. Also, in contrast to MIPS as well, the reorientation time of swimmers does not
play a significant role as the attachment is induced by an actual attractive interac-
tion. Many swimmers are pointing outwards from the centers of solid-like clusters,
in this sense, the (effective) attraction is working in reverse as compared to MIPS
in two dimensions. Since the dimers in the clusters barely move, hydrodynamic
interactions do not seem to play a role in the observed phenomenology.

Thermophobic dimers Thermophobic dimeric colloidal swimmers show a swarm-
ing behavior that is determined by their geometric construction and the resulting
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phoretic and hydrodynamic behavior. It is observed that asymmetric dimers form
big swarms of up to around 150 dimers for the chosen model parameters. This
size and stability of such swarms will depend on a multitude of factors, such that
the simulation results presented should be taken as a proof-of-concept that such
collective behavior is possible, as well as provide insight into which physical ef-
fects originate it. Preliminary results at different volume fractions indicate that
four distinct phases form, as a result of the balance in between hydrodynamic at-
traction, fluctuations and swimmer density. There is a dilute phase with dimers
moving freely, a phase in which small swarms form as well as one featuring large
swarms, and a jamming phase in dense systems. Likely, the swarms will be more
stable at lower temperature, when thermal fluctuations are of reduced importance.
Experimentally, this can be achieved also by using larger colloidal particles. The
combination of phoretic repulsion with lateral hydrodynamic attraction, and to a
lesser part motility-induced attraction, leads to swarming in structures with a pro-
nounced tendency to propel as sheet-like fronts. Such behavior seems specific to
these systems, and no equivalent structures were observed in either biological or
synthetic active systems [5–7, 9, 20].
Though based on the results obtained here, the basic mechanism is plausible

and the phenomenology clear, there are questions remaining. For one, the relative
importance of short- and long-ranged hydrodynamic interactions is not easily quan-
tifiable. It has been shown that short-range hydrodynamic interactions importantly
influence the collective dynamics of colloidal swimmers [82, 86, 99]. Clusters of sym-
metric dimers show a pronounced increase in velocity and orientational correlation
when phoresis and hydrodynamics are considered as compared to LD simulations
and this can only be due to the short-rang hydrodynamic attraction. An increase in
volume fraction seems to also have the effect of increasing the importance of short-
ranged hydrodynamic interactions, such that in fact a phase of large swarms forms
at volume fractions of symmetric dimers where some asymmetric constructions jam
already. In the cases considered here, the large hot beads will lead to a slow down
of swarms. This is due to the temperature field getting more uniform when many
hot beads are close-by and the phoretic driving forces being thereby reduced, akin
to the case of thermophilic clusters. Simulations that only consider exclusively ei-
ther the phoretic effect or hydrodynamic effect may give further insight into this
phenomenology. Specifically, they may answer the question if the swarm formation
of symmetric dimers is stabilized by the phoretic effect. Unfortunately, for ther-
mophoretic swimmers it is difficult to only include just one of either hydrodynamic
or phoretic interactions in MPC-MD simulations, as they both rely on the fluid
particles’ velocities. Randomizing the fluid particles’ velocities, by means of a ran-
domized MPC collision step [108], will lead to a diminishing or eventually vanishing
of the phoretic driving force, as has also been observed for diffusiophoretic swim-
mers [97]. A possibility could be to perform LD simulations, and within these solve
numerically the Laplace equation describing the temperature field with constant-
temperature boundaries at the hot beads and no-flux boundary conditions at the
phoretic ones. Based on the results obtained in chapter 3, the response of a col-
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loid to a temperature gradient is easily accessible for any colloid-fluid interaction
potential. Then, the temperature gradients at each phoretic bead are known, from
which the force can be calculated and applied. This would provide a possibility to
study solely the effect of phoresis.

Depletion The addition of depletants to a suspension of dimeric swimmers, whose
effect is here estimated by taking advantage of the fact that this interaction may
result from MPC-MD itself, can modify the phenomenology. Interestingly, it may
stabilize swarm formation, which can be of high relevance for a possible experi-
mental realization of such systems. A major difference between depleted and non-
depleted systems lies in the equilibrium state, when no illumination and propul-
sion are present. This will be, for colloids repelling each other, a rather uniform
colloidal suspension in non-depleted systems, but a clustered state in a depleted
system. Switching in between the equilibrium and the active state is easily pos-
sible by turning on and off the light source, but will then feature very different
phenomenology depending on the presence of depletants.
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8 Concluding Summary and Outlook
This work investigated and discussed the behavior of colloidal microswimmers
driven by the thermophoretic mechanism, with a special focus on the dimeric type
of construction, using hydrodynamic simulations performed with the MPC-MD
method.
A microscopic hydrodynamic approach to describe the thermophoretic mecha-

nism is developed in chapter 3, based on the general framework for phoretic mech-
anisms [74]. The approach describes thermophoresis in an ideal-gas-like solvent
as the combination of a temperature gradient and a density gradient, resulting
from the surface colloid-solvent interaction potential. These combined effects lead
to a phoretic force or slip velocity, which will vary with the interaction potential
and accounts for the self-propulsion of the swimmers. With it, Soret coefficients
of single colloids in temperature gradients are obtained for different interaction
potentials and agreement to simulation measurements is found in many cases. A
linearized variant of the approach makes understandable why the Soret coefficient
has a positive or negative sign, depending on the molecular interaction potential
and on temperature. Some insight into the scaling of the Soret coefficient with par-
ticle size is achieved as well. However, some of the simulation results for stronger
attractive potentials are not in agreement with the theoretical predictions. Some
experimental results suggest a linear scaling, while others suggest a quadratic one,
a discrepancy which could not be explained by the theoretical approach here. In
any case, these features should be related with the density distribution around the
colloid. It will be of interest to see if the framework can be extended further to also
include other equations of state, since these may have a significant influence on the
density distribution and could provide further insight into this phenomenology.
Single dimeric and Janus colloidal swimmers are studied in chapter 4. The Janus

swimmer does show a variation in hydrodynamic short range interactions as a func-
tion of its coverage with active material, quantified in terms of the coating angle.
A rather precise control of the coating angle is possible also experimentally [109],
and the importance of short-ranged hydrodynamics has already been observed in
several studies [82, 86, 99]. Therefore, the dynamics of ensembles of Janus swim-
mers are expected to also be influenced by the choice of coating angle, as will be
the behavior when confining walls are present.
The dimeric swimmers are found to show intriguing hydrodynamic behavior in

terms of a lateral attraction and repulsion that changes as a function of their
geometric construction. A linearized and simplified version of the theoretical de-
scription of thermophoresis is employed to describe these features, capturing the
qualitative features of swimming velocity and flow fields as a function of bead size
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ratio quite well. The comparison to chemically driven swimmers leads to the con-
clusion that the main features of colloidal phoretic swimmers do not depend on the
type of phoretic mechanism employed for propulsion. This is confirmed in chap-
ter 5, in which pairs of dimeric swimmers are studied. The thermophilic dimers
mainly show the same behavior as already observed for phoretically attractive,
chemical dimers [77]. For thermophobic dimers, a very different behavior is ob-
served, in which depletion-induced attraction leads, for a wide range of parameters,
to a bound state that features the two dimers propelling together in an aligned
fashion, the ST bound state. Since depletion is commonly used in experimental
systems to induce attractive interactions, such a state is likely to be reproducible
in real systems.
In order to study the behavior of ensembles of these microswimmers, a reexami-

nation of depletion forces that can emerge as a simulation artifact in MPC-MD is
undertaken in chapter 6. This is of special relevance when attractive interaction
potentials are used, as for these artificial depletion is very strong. The introduction
of displacements into the interaction potentials reduces the issue, allowing to per-
form simulations employing such potentials without suffering artificial depletion.
Overall, the discussion provides a basis to choose a parameter regime in MPC-
MD simulations, independent of the precise system and interaction potential, in
which artificial depletion is avoided, while at the same time capturing the relevant
short-range interactions, like hydrodynamics and phoresis.
Based on the observations concerning single swimmer dynamics, ensembles of

thermophoretic dimers are studied in chapter 7. It is found that for thermophilic
dimers, the phoretic attraction leads to long-time stable crystalline structures.
Thermophobic asymmetric dimers combine lateral hydrodynamic attraction with
axial phoretic repulsion, which leads at intermediate volume fractions to a unique
kind of dynamic swarming behavior in which many dimers propel in fronts with a
pronounced tendency to be planarly aligned. It is a question of general interest how
and to what extent hydrodynamic interactions play a role in systems of colloidal
particles. The swarming behavior of asymmetric thermophobic dimers provides a
proof-of-concept that hydrodynamic interactions can influence collective dynamics
not only quantitatively, but also lead to new phenomenology. That there are, at ele-
vated volume fractions, swarming phases also observed for symmetric dimers,which
feature only short-ranged hydrodynamic attraction, highlights the importance of
short-range hydrodynamic effects. For a test case involving depletion forces, a very
similar swarming behavior is observed for asymmetric dimers as well in the presence
of depletion, which is found to enhance the effect, stabilizing the swarms through
the additional attraction.
Based on the simulation studies performed here, the different kinds of collective

behavior observed may find applications in experimental systems, in particular as
their behavior is tunable and switchable. Specifically, these systems are tunable
in two ways. One is to turn on and off or regulating the intensity of the light
source providing the heating of the hot beads and thereby switching in between
self-propelled and Brownian systems. The other is to change the sign of the Soret
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coefficient by changing the average temperature, or another relevant parameter
such as pressure or a solvent property like salt concentration, depending on the
system. As evident from the experimental results shown in fig. 1.5, there are colloids
that change their behavior from thermophilic to thermophobic within the easily
accessible temperature range of 0 and 40○C.
The crystallization of thermophilic dimers is induced not by depletion or jam-

ming, but by phoretic attraction, which presents in itself a means to induce re-
versible colloidal crystallization by switching on and off the light source. Any
structure formed will, when no depletion is involved, dissolve when the illumination
is turned off and after some relaxation time reproduce the equilibrium distribution
of unpropelled swimmers. As the particles are self-propelled, the crystal formation
is expected to happen quite quickly, and also at low volume fractions. Dissolution
will likely take longer, as it relies on Brownian motion. This would be different
when one, instead of turning off the light source, reverses the Soret coefficient by
changing the average temperature. It might be possible to switch the behavior of
ensembles of thermophoretic dimers from non-moving clusters to swarm formation
also in experiments. Due to the system being active, this process should happen
quite fast in both directions.
The front-like swarming behavior of thermophobic dimers presents a unique kind

of dynamic structure formation. By itself, it might for example be useful in cleaning
and substance removal applications, since these formations, as opposed to vortices
or crystalline clusters, do constantly move and span up area more efficiently than
many other formations. With appropriate boundary conditions, they might cover
up cross sections of microfluidic channels, dragging immersed and unwanted parti-
cles along.
Further tunability of such systems could be achieved by the introduction of deple-

tants. Especially when a constantly moving and stable formation is desired, adding
depletants to thermophobic dimers could provide a means to achieve this. However,
this would mean that no state akin to a suspension of unpropelled colloids without
depletion can be regained by Brownian motion, as the depletion forces will likely
hold any structure that built up together and rather lead to growth by attaching
further colloids than to a dissolution. Still, also in the presence of depletants, a
switch of the Soret coefficient should switch from swarming to crystalline clusters,
given that the phoretic repulsion in the thermophobic state is strong enough as
compared to depletion.
In general, the fact that thermophoretic microswimmers are tunable systems

which can be made to switch in between dense states when clustered and extended
states when swarming, or, depending on boundary conditions, even percolated
states, suggests that they might also find application in systems where such prop-
erties could be used to change in between conducting and non-conducting states.
The unique phenomenology of front-like swarming may offer new possibilities in
applications of active matter systems, for example in the design of microfluidic
devices or bio-compatible micromotors.
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