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Abstract

Let 𝐾 be a field. The central object of this thesis is the 𝜏 -cluster morphism category

W(𝐴) of a finite-dimensional 𝐾-algebra 𝐴. This category encodes the information of

all possible 𝜏 -tilting reductions in mod𝐴 and encompasses many objects considered in

representation theory, for example (semi-)bricks, (𝜏 -)tilting modules and (𝜏 -)exceptional

sequences. When 𝐴 is a hereditary algebra, the category W(𝐴) is well-understood and

its classifying space ℬW(𝐴) is a 𝐾(𝜋, 1) space in all representation finite and some

tame cases. By definition, this means that the fundamental group is the only nontrivial

homotopy group. This is insightful, because the fundamental group of this space, known

as the picture group, is closely connected to maximal green sequences, a central object

in the theory of cluster algebras.

The guiding question of this thesis is based on the conjecture that the classifying

space of the 𝜏 -cluster morphism category is a 𝐾(𝜋, 1) space for all 𝜏 -tilting finite al-

gebras. It is known that the classifying space of W(𝐴) is a cube complex. Thus, the

conditions developed by Gromov for cube complexes to be nonpositively curved may

be lifted to three conditions which together imply that ℬW(𝐴) is a 𝐾(𝜋, 1) space. The

focus of this thesis lies on one of these conditions: the existence of a faithful functor from

W(𝐴) to a group considered as a groupoid with one object. In fact, given this condition

ℬW(𝐴) is nonpositively curved if and only if it satisfies the other two conditions.

Such a faithful functor to a group is conjectured to exist for all finite-dimensional

algebras which are 𝜏 -tilting finite. However, few families of algebras satisfying this condi-

tion have been found so far. The first part of this thesis builds on a recently introduced

geometric viewpoint of W(𝐴) by Schroll–Tattar–Treffinger–Williams. This geometric

approach is developed further to obtain a new family of algebras admitting faithful
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functors to groups. This is achieved by relaxing a condition in the geometric definition.

In this way, a category is defined for any simplicial polyhedral fan with an admissible

partition, so that the collection of these categories, for a given fan, forms a lattice. For

the 𝑔-vector fan of an algebra 𝐴, the category W(𝐴) is an element of this lattice. If the

𝑔-vector fan of 𝐴 is a finite hyperplane arrangement, it is shown that W(𝐴) admits a

faithful functor to a group by using the theory of hyperplane arrangements in convex

geometry.

In the second part of this thesis, a lattice theoretic approach to W(𝐴) is introduced.

As a first step, the 𝜏 -cluster morphism category is defined using the lattice of torsion

classes of mod𝐴. Whenever 𝐴 is 𝜏 -tilting finite, this definition is purely combinatorial,

so that the lattice of torsion classes determines W(𝐴) up to equivalence. Moreover, the

lattice of torsion classes of a 𝜏 -tilting finite algebra is isomorphic to that of infinitely

many others. Thus, this result extends the families of algebras whose 𝜏 -cluster morphism

categories admit faithful functors to groups. Let 𝐼 be an ideal of 𝐴. The lattice theoretic

approach provides a framework for constructing a functor 𝐹𝐼 : W(𝐴) → W(𝐴/𝐼) and

various properties of this functor are investigated. In particular, if 𝐴 is 𝜏 -tilting finite,

the functor is a regular epimorphism in the category of small categories.

The final chapter contains another application of the lattice theoretic approach. Let

𝐿 : 𝐾 be a MacLane separable field extension. After further developing the behaviour of

𝜏 -tilting theory under base field extension, a faithful functor ℱ : W(𝐴)→W(𝐴⊗𝐾𝐿) is

constructed using lattice theory. The existence of ℱ leads to the discovery of new families

of algebras whose 𝜏 -cluster morphism categories admit faithful functors to groups. Thus,

this thesis contributes substantially to understanding the relationship between 𝜏 -cluster

morphism categories of different algebras as well as to answering the question of when

their classifying spaces are 𝐾(𝜋, 1) spaces.



Zusammenfassung

Es sei 𝐾 ein Körper. Das zentrale Objekt dieser Dissertation ist die 𝜏 -Clustermorphis-

muskategorie W(𝐴) einer endlich-dimensionalen 𝐾-Algebra 𝐴. Diese Kategorie enthält

die Information aller möglichen 𝜏 -Kippreduktionen in mod𝐴 und umfasst außerdem

viele Objekte der Darstellungstheorie, zum Beispiel (Halb-)Ziegel, (𝜏 -)Kippmoduln und

(𝜏 -)exzeptionelle Folgen. Wenn 𝐴 eine erbliche Algebra ist, dann ist W(𝐴) gut verstan-

den und der klassifizierende Raum ℬW(𝐴) is in allen darstellungsendlichen und manchen

zahmen Fällen ein 𝐾(𝜋, 1)-Raum. Per Definition bedeutet das, dass die einzige nicht-

triviale Homotopiegruppe die Fundamentalgruppe ist. Das ist aufschlussreich, weil die

Fundamentalgruppe, die auch als Bildgruppe bekannt ist, mit maximalen grünen Folgen

zusammenhängt, welche zentrale Objekte in der Clustertheorie sind.

Die Leitfrage dieser Dissertation beruht auf der Vermutung, dass der klassifzierende

Raum der 𝜏 -Clustermorphismuskategorie ein 𝐾(𝜋, 1)-Raum für alle 𝜏 -kippendlichen Al-

gebren ist. Der klassifizierende Raum ℬW(𝐴) ist ein kubischer Komplex. Deshalb können

die von Gromov entwickelten Bedingungen, an einen kubischen Komplex nichtpositiv

gekrümmt zu sein, benutzt werden, um drei Bedingungen zu geben, die zusammen impli-

zieren, dass ℬW(𝐴) ein 𝐾(𝜋, 1)-Raum ist. Der Fokus dieser Dissertation liegt auf einer

dieser Bedingungen: der Existenz eines treuen Funktors von W(𝐴) zu einer Gruppe, die

als Gruppoid mit einem Objekt betrachtet wird. Unter dieser Voraussetzung ist ℬW(𝐴)

genau dann nichtpositiv gekrümmt wenn die beiden anderen Bedingungen erfüllt sind.

Die Existenz eines solchen treuen Funktors wird für alle endlich-dimensionalen Alge-

bren vermutet, welche 𝜏 -kippendlich sind. Bisher sind nur wenige Klassen von Algebren,

die diese Bedingung erfüllen, bekannt. Der erste Teil dieser Dissertation baut auf einem

kürzlich eingeführten geometrischen Ansatz von Schroll–Tattar–Treffinger–Williams auf.
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Diese geometrische Herangehensweise wird weiterentwickelt, um eine neue Familie von

Algebren, deren 𝜏 -Clustermorphismuskategorien treue Funktoren zu einer Gruppe zu-

lassen, zu finden. Zu diesem Zweck wird eine Bedingung der geometrischen Definition

gelockert. Dadurch wird für jeden glatten, polyedrischen Fächer mit einer zulässigen

Partition eine Kategorie definiert, sodass die Sammlung dieser Kategorien eines Fä-

chers einen Verband formt. Für den Fächer der 𝑔-Vektoren einer Algebra, enthält dieser

Verband die Kategorie W(𝐴). Falls der Fächer der 𝑔-Vektoren von 𝐴 eine endliche An-

ordnung von Hypereben ist, wird mit Hilfe der Theorie der Hyperebenenanordnungen

ein treuer Funktor von W(𝐴) zu einer Gruppe konstruiert.

Der zweite Teil dieser Dissertation führt einen verbandstheoretischen Ansatz ein.

Als erster Schritt wird die 𝜏 -Clustermorphismuskategorie mit Hilfe des Verbands der

Torsionsklassen in mod𝐴 definiert. Wenn 𝐴 eine 𝜏 -kippendliche Algebra ist, ist diese De-

finition gänzlich kombinatorisch, sodass der Verband der Torsionsklassen die Kategorie

W(𝐴) bis auf Äquivalenz bestimmt. Außerdem ist der Verband der Torsionsklassen jeder

𝜏 -kippendlichen Algebra isomorph zu unendlich vielen solcher Verbände anderer Alge-

bren. Dadurch erweitert dieses Ergebnis die derzeit bekannten Familien von Algebren,

deren 𝜏 -Clustermorphismuskategorien treue Funktoren zu Gruppen zulassen. Darüber

hinaus sei 𝐼 ein Ideal von 𝐴. Die verbandstheoretische Herangehensweise und die Theorie

der Verbandskongruenzen ermöglichen es, einen Funktor 𝐹𝐼 : W(𝐴)→W(𝐴/𝐼) zu kon-

struieren und es werden einige Eigenschaften dieses Funktors untersucht. Insbesondere,

falls 𝐴 eine 𝜏 -kippendliche Algebra ist, ist dieser Funktor ein regulärer Epimorphismus

in der Kategorie der kleinen Kategorien.

Das letzte Kapitel behandelt eine weitere Anwendung des verbandstheoretischen

Ansatzes. Es sei 𝐿 : 𝐾 eine MacLane separable Körpererweiterung. Nachdem das Ver-

halten der 𝜏 -Kipptheorie unter Körpererweiterungen weiter entwickelt wurde, wird ein

treuer Funktor ℱ : W(𝐴)→W(𝐴⊗𝐾 𝐿) konstruiert. Die Existenz des Funktors ℱ führt

zur Entdeckung weiterer Familien von Algebren, deren 𝜏 -Clustermorphismuskategorien

treue Funktoren zu Gruppen zulassen. Zusammenfassend trägt diese Dissertation so-

wohl zum Verständnis des Verhältnisses zwischen 𝜏 -Clustermorphismuskategorien un-

terschiedlicher Algebren als auch zur Beantwortung der Frage, wann deren klassifizie-

renden Räume 𝐾(𝜋, 1)-Räume sind, bei.
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Chapter 1

Introduction

In the representation theory of finite-dimensional associative algebras, a central role

is played by the class of hereditary algebras. The classification of representation finite

hereditary algebras (over algebraically closed fields) as path algebras of quivers whose

underlying graph is a Dynkin diagram of the form 𝐴𝑛, 𝐷𝑛, 𝐸6, 𝐸7 or 𝐸8 establishes

a strong relationship between finite-dimensional hereditary algebras, quantum groups

and Lie algebras [74]. In fact, indecomposable modules over these algebras correspond

bijectively to positive roots of the associated root systems. This connection was devel-

oped further to relate the Hall algebra [160] of the hereditary algebra with the universal

enveloping algebra of the associated Lie algebra [85, 161].

Moreover, the theory of hereditary algebras has been applied in [49–51, 136] to pro-

vide important insights into cluster algebras [71]. Since their introduction, the combina-

torial structure underlying cluster algebras has been discovered in various mathematical

objects, including some objects arising in theoretical physics [75, 126, 127]. Conversely,

this combinatorial structure has been categorified using representations of hereditary

algebras, resulting in cluster categories [48]. In a cluster category, the role held by

mutable seeds in a cluster algebra is taken by mutable cluster tilting objects. These

objects are in bijection with many important objects in representation theory, including

functorially finite torsion classes [62] and wide, that is, exactly-embedded abelian and

extension-closed, subcategories [98] of the module category [108].

Combinatorially, cluster tilting objects are in bijection with non-crossing partitions
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1. Introduction 2

[108, 129]. Other than being of inherent algebraic combinatorial interest, non-crossing

partitions arise naturally in the theory of free probability [177] and even in idealised

models coming from molecular biology [175].

Additionally, cluster tilting objects are intimately related to exceptional sequences

[54, 103, 164]. In fact, there exists an explicit map between these two classes of objects.

Generally, this map is neither injective nor surjective, but an extension of the notion to

signed exceptional sequences establishes an explicit bijection between these sequences

and ordered cluster tilting objects [105]. The study of (unsigned) exceptional sequences

dates back 30 years and was initiated in the setting of triangulated categories [30, 82,

83, 167] and shortly after in abelian categories [54, 164]. Exceptional sequences can be

used to gain a better understanding of derived categories [128] and they are closely

connected to stratifying systems [69].

Direct summands of cluster tilting objects, called partial cluster tilting objects, are

equally important. Considering Hom-Ext-orthogonal modules to the modules underlying

partial cluster tilting objects yields so-called perpendicular subcategories of the module

category. Perpendicular subcategories had previously been studied independently and

various of their applications can be found in [78, 131, 137]. Perpendicular subcategories

give rise to various reduction techniques, for example, applicable to the classification

of representations of tame hereditary algebras via a reduction of the problem to the

Kronecker quiver.

Many of the notions discussed above are united in the cluster morphism category

[105]. The objects of this category are functorially finite wide subcategories, which are in

bijection with non-crossing partitions and functorially finite torsion classes for hereditary

algebras [108]. The morphisms of this category are indexed by partial cluster tilting

objects, that is, a morphism [𝑇 ] :𝒲1 →𝒲2 is given by a partial cluster tilting object 𝑇

of the cluster category satisfying 𝑇⊥ ∩𝒲1 =𝒲2, where 𝑇⊥ denotes the perpendicular

subcategory corresponding to 𝑇 .

Associated to any category is its classifying space [172]. The classifying space of

the cluster morphism category of a representation finite hereditary algebra 𝐴 is a cube

complex [106, 171] and homeomorphic to the picture space of 𝐴 as defined in [105, 107].

In fact, it is a 𝐾(𝜋, 1) space whose fundamental group is called the picture group.
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The picture group 𝐺(𝐾−→𝐴𝑛) of the linearly oriented quiver of type 𝐴𝑛 was originally

defined as the “Stasheff group” in 1999 [134]. The name “Stasheff group” comes from

the fact that a 𝐾(𝐺(𝐾−→𝐴𝑛), 1) space can be obtained as a quotient space of the Stasheff

associahedron. Its connection to representation theory follows from the observation that

the partially ordered set of tilting modules of 𝐾−→𝐴𝑛 corresponds to the 1-skeleton of the

Stasheff associahedron [44].

For hereditary algebras of finite type, the picture group contains a “Coxeter element”.

In the defining presentation of the group, expressions for the Coxeter element, which

do not contain inverse generators, are in bijection with maximal green sequences [104].

These green sequences [124] originate in the study of cluster algebras and arise in the

context of Donaldson-Thomas invariants and BPS states in mathematical physics [127].

More generally, if the hereditary algebra is of finite type or of certain tame types, the

classifying space exhibits the stronger property of being a locally CAT(0) cube complex

[106]. This may be proved using the conditions developed in the celebrated work [86] for

cube complexes to be (locally) CAT(0), which have been translated into the language of

category theory [101]. In this case, the universal covering space of the classifying space

is a CAT(0) cube complex. Since the picture group is isomorphic to the group of deck

transformations of the universal cover, it acts on this CAT(0) cube complex [95]. Finitely

generated groups with similarly well-behaved actions on CAT(0) cube complexes are

known as cubulated (or CAT(0)) groups [183] and have received significant attention in

the literature [4, 80, 89, 148, 174] because of their special properties.

In conclusion, the cluster morphism category demonstrates the interlinked structure

of many notions within representation theory and their connections to other mathemat-

ical areas via hereditary algebras. The aim of this thesis is to expand the understanding

of these concepts and relationships beyond the setting of hereditary algebras. Appro-

priate generalisations of perpendicular subcategories [115], exceptional sequences [45],

picture groups [91] and cluster morphisms categories [40] have already been established

and provide the foundation for the work herein. The primary focus lies on the question of

whether (generalised) cluster morphism categories are CAT(0) and thus 𝐾(𝜋, 1) spaces

for the (generalised) picture group. One crucial part of a sufficient condition for this to

be the case is the existence of a faithful functor from the (generalised) cluster morphism
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category to the (generalised) picture group, considered as a groupoid with one object.

The main contribution of the present thesis lies in the (further) development of two new

approaches for constructing such a faithful functor. One approach is of convex geometric

nature and one approach is of lattice theoretic nature. Along the way, other new re-

sults about (generalised) exceptional sequences and the (generalised) cluster morphism

category which are of independent interest as well as new structural results relating

(generalised) cluster morphism categories of different algebras are established.

1.1 Generalisations using 𝜏 -tilting theory

One decade ago, the combinatorial structure of cluster tilting objects in cluster cate-

gories was transferred to module categories of arbitrary finite-dimensional algebras. The

central objects of the newly introduced 𝜏 -tilting theory are (support) 𝜏 -tilting modules,

which generalise the mutation behaviour of cluster tilting objects [3]. To understand this

relationship, fix a cluster tilting object in a cluster category and consider its endomor-

phism algebra. Then, there is a bijection between cluster tilting objects in the cluster

category and the support 𝜏 -tilting modules over the endomorphism algebra which pre-

serves and reflects the mutation of both structures [3].

The name-giving “𝜏” in 𝜏 -tilting theory denotes the Auslander–Reiten translation,

which is the central notion of Auslander–Reiten theory as initiated in [14]. This theory

utilises almost split exact sequences to gain a better understanding of module categories.

The importance of the relationship of a module with its Auslander–Reiten translation

has been demonstrated repeatedly, see for example [16]. Restricting to the class of

hereditary algebras, 𝜏 -tilting modules coincide with tilting modules [35], which were

introduced to generalise reflection functors [13, 28]. Tilting modules of hereditary al-

gebras are of particular importance, because their endomorphism algebras, known as

tilted algebras [31, 93], can be studied using the representation theory of the heredi-

tary algebra. However, tilting modules generally do not admit a well-behaved notion

of mutation for arbitrary algebras. Because tilting modules can be viewed as 𝜏 -tilting

modules of projective dimension at most one [15], the area of 𝜏 -tilting theory is often

seen as a completion of classical tilting theory from the viewpoint of mutation.
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Since its introduction, 𝜏 -tilting theory has been widely accepted as the appropriate

framework for translating problems and notions from hereditary algebras to arbitrary

finite-dimensional algebras. For example, 𝜏 -tilting finite algebras are those admitting

only finitely many isomorphism classes of basic 𝜏 -tilting modules [56] and generalise

representation finite algebras. It is remarkable, that even some representation wild al-

gebras can be 𝜏 -tilting finite, thus offering a new method for understanding at least

some aspects of wild algebras better. While there is no universally agreed upon notion

of “𝜏 -tilting tameness”, various generalisations have been suggested, see [153] and the

references therein. Moreover, the classical Brauer-Thrall conjectures [114] have found

𝜏 -tilting analogues [144, 170] as well as Hochschild cohomology [53].

More importantly, for the goal of a suitably defined “𝜏 -cluster morphism category”,

the notion of 𝜏 -perpendicular subcategories generalise the classical. Using direct sum-

mands of 𝜏 -tilting modules, so-called 𝜏 -rigid modules, gives rise to 𝜏 -perpendicular sub-

categories of the module category which are equivalent to module categories of other

finite-dimensional algebras [57, 115]. In particular, these 𝜏 -perpendicular subcategories

constitute the objects of the 𝜏 -cluster morphism category as defined in [40, 46]. Mor-

phisms [(𝑀,𝑃 )] : 𝒲1 → 𝒲2 in this category are then given by 𝜏 -rigid pairs (𝑀,𝑃 ),

which consist of a 𝜏 -rigid module 𝑀 and an orthogonal projective module 𝑃 , of 𝒲1

such that the 𝜏 -perpendicular category with respect to (𝑀,𝑃 ) in 𝒲1 is equal to 𝒲2,

see Definition 2.3.1 for details.

Similar to the hereditary setting, factorisations of morphisms in the 𝜏 -cluster mor-

phism category into irreducible ones correspond to signed 𝜏 -exceptional sequences [45,

46]. In general, (signed) 𝜏 -exceptional sequences coincide with (signed) exceptional se-

quences for hereditary algebras and one of the main motivations for their introduc-

tion is the fact that exceptional sequences of maximal length do not always exist for

non-hereditary algebras. Whereas, using the reduction process 𝜏 -perpendicular subcat-

egories enable, the existence of 𝜏 -exceptional sequences of maximal length is guaranteed

for any finite-dimensional algebra. Furthermore, a mutation operation for 𝜏 -exceptional

sequences was recently introduced in [41], which generalises the mutation in the hered-

itary setting. While transitivity of this mutation is known for 𝜏 -tilting finite algebras

[41–43, 150], it appears that in most cases this generalisation comes at the cost of the
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Braid group action present in the hereditary setting [54, 164].

A generalisation of the picture group to 𝜏 -tilting finite algebras was proposed in [91],

and shown to be isomorphic to the fundamental group of the classifying space of the

𝜏 -cluster morphism category. Moreover, the classifying space is again a cube complex,

which enables the use of the sufficient condition developed in [86, 101] for it to be locally

CAT(0) and thus a 𝐾(𝜋, 1) space. Based on the definition in [40], a generalisation of

the picture group to arbitrary finite-dimensional algebras is straightforward and given

in Definition 2.3.2. Since the classifying spaces of cluster morphism categories of rep-

resentation finite hereditary algebras are a 𝐾(𝜋, 1) spaces, it is natural to investigate

this question in a more general setting. This gives rise to the guiding conjecture of the

present thesis, see also [102, Problem 3.0.5].

Conjecture 1.1.1. Let 𝐴 be a finite-dimensional algebra over a field 𝐾 and let ℬW(𝐴)

denote the classifying space of the 𝜏 -cluster morphism category of 𝐴. If 𝐴 is 𝜏 -tilting

finite, then ℬW(𝐴) is a 𝐾(𝜋, 1) space.

All previous work attempting to answer this question, including the approaches

taken in this thesis, relies on the following sufficient condition of [101] which leverages

those for cube complexes developed in [86].

Proposition 1.1.2. If the following three conditions are satisfied, then ℬW(𝐴) is locally

CAT(0) and thus a 𝐾(𝜋, 1) space:

(1) There exists a faithful functor Ψ : W(𝐴) → 𝐺 for some group 𝐺 considered as a

groupoid with one object;

(2) The category W(𝐴) satisfies the pairwise compatibility condition of first factors;

(3) The category W(𝐴) satisfies the pairwise compatibility condition of last factors.

The second and third conditions are defined in Proposition 2.4.4. In the presence of

Condition (1), they coincide precisely with those developed in [86]. Moreover, a detailed

description of previous work regarding these three conditions is given in Example 2.4.5.

It is important to highlight that the second condition is always satisfied due to the struc-

ture of 𝜏 -rigid pairs, whereas the third condition may not hold [20, 92]. Moreover, it was

conjectured in [92], that the first condition, the existence of a faithful (group) functor,
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holds for all 𝜏 -tilting finite algebras. In this thesis, the focus therefore lies on show-

ing that the first condition holds for various classes of algebras. For this purpose, new

approaches to the 𝜏 -cluster morphism category are developed, which reveal interesting

structural results regarding this category as well as new insights into Conjecture 1.1.1.

1.2 A geometric approach

In the theory of cluster algebras, an important role is played by 𝑔-vectors, which were

introduced to express the cluster variables of any mutated cluster in terms of the initial

seed [72]. Many of the conjectures raised in [72] were later answered using the theory

of representations of quivers (with potential) and 𝑔-vectors in [61]. It is a fundamental

observation that the collection of polyhedral cones generated by compatible 𝑔-vectors

forms a polyhedral fan. This fan appears in the tropical cluster 𝒳 -variety [70] and is a

subfan of the cluster scattering diagram [87] and the stability scattering diagram [36]

in many cases. Moreover, when the cluster algebra is of finite type, it also arises as the

normal fan of the generalised associahedron [52].

Returning to the representation theory of finite-dimensional algebras, 𝑔-vector fans

find a natural analogue using minimal projective presentations [3, 55, 56, 60]. In this

setting, the 𝑔-vector fan of an algebra encodes its 𝜏 -tilting theory by definition. Thus,

if the algebra is 𝜏 -tilting finite, its 𝑔-vector fan is finite and complete [56]. The com-

pleteness of the fan gives rise to a notion of 𝑔-tameness proposed in [7]. Moreover, the

𝑔-vector fan embeds into the wall-and-chamber structure [9, 38] of the algebra which is

the support of the scattering diagram [36].

A new approach to the 𝜏 -cluster morphism category was recently initiated in [169],

where a category equivalent to the 𝜏 -cluster morphism category is constructed from

𝑔-vector cones. Due to its geometric definition, this construction simplifies the proof

of associativity of morphisms in the category, which had previously been a significant

hurdle [33, 40, 46]. Objects of the geometrically defined 𝜏 -cluster morphism category

are equivalence classes of 𝑔-vector cones. In Chapter 3, the rule for identifying cones is

relaxed. This defines a category associated to any simplicial polyhedral fan and a choice

of (admissible) partition of its cones. The resulting “category of the partitioned fan”
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shares many properties with the 𝜏 -cluster morphism category since its construction

generalises that of [169]. In particular, the simplicial fan structure implies that the

classifying spaces of these categories form cube complexes.

As a consequence, the collection of different admissible partitions of the 𝑔-vector fan

establishes a lattice (in the order theoretic sense) of categories containing the 𝜏 -cluster

morphism category. If the 𝑔-vector fan of an algebra is a finite hyperplane arrangement,

the theory of hyperplane arrangements may be applied to show that Condition (1) of

Proposition 1.1.2 holds for the maximal element in this lattice. Moreover, since there

exists a faithful functor from the 𝜏 -cluster morphism category of the algebra to the

maximal element, this establishes the existence of a faithful group functor from the 𝜏 -

cluster morphism category. Two important classes of algebras whose 𝑔-vector fan forms

a finite hyperplane arrangement are (generalised) preprojective algebras [79, 141, 146]

and contraction algebras [12, 182].

Moreover, the ubiquity of polyhedral fans throughout many areas of mathematics

[27, 37, 73, 143, 168, 185] suggests that fans arising in other contexts may admit mean-

ingful admissible partitions. This opens up many directions for future research, aiming

to obtain new insights from the categories constructed from partitioned fans.

1.3 A combinatorial approach

In an abelian category, a torsion class [62] is a subcategory which axiomatises the prop-

erties of torsion groups in the category of abelian groups. Torsion classes are intimately

connected to the study of triangulated categories and their 𝑡-structures [24]. Moreover,

torsion classes are closely related to classical tilting theory [35], as well as 𝜏 -tilting

theory [3]. Indeed, the subset of functorially finite torsion classes is in bijection with

support 𝜏 -tilting modules. Moreover, an algebra is 𝜏 -tilting finite if and only if every

torsion class is functorially finite [56].

The significance of torsion classes in a variety of settings has inspired substantial

research. In particular, the partially ordered structure of the set of all torsion classes,

which forms a lattice, provides the foundation for a large body of research [18, 57, 77,

109, 111, 162]. It turns out that, in many cases, algebraic information can be recovered
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combinatorially from the lattice structure of the poset of torsion classes, especially

when the lattice is finite. For example, 𝜏 -exceptional sequences [19] and the poset of

wide subcategories [67] can be constructed entirely combinatorially. To a certain extent,

it is even possible to reconstruct an algebra given its lattice of torsion classes [94, 121].

In Chapter 4 the 𝜏 -cluster morphism category of a 𝜏 -tilting finite algebra is con-

structed combinatorially from its (finite) poset of torsion classes. This leads to the

observation that two algebras with isomorphic finite posets of torsion classes have equiv-

alent 𝜏 -cluster morphism categories. However, for each 𝜏 -tilting finite algebra, there are

infinitely many nonisomorphic algebras with isomorphic posets of torsion classes [66].

Consequently, this result extends the known families of algebras satisfying the conditions

of Proposition 1.1.2. Another consequence is that the signed 𝜏 -exceptional sequences of

two such algebras are in bijection, and may be constructed combinatorially.

Additionally, using this lattice theoretic construction reveals a relationship between

the 𝜏 -cluster morphism category of an algebra and that of a quotient algebra by an ideal.

More precisely, using the theory of lattice congruences, an explicit “quotient” functor

is constructed. Whenever the lattice of torsion classes is finite, this functor is a regular

epimorphism in the category of small categories. Thus, in a vague sense, the “quotient

relationship” between two algebras is reflected by their 𝜏 -cluster morphism categories.

This lattice theoretic viewpoint of the 𝜏 -cluster morphism category may then be applied

to find further examples of algebras whose 𝜏 -cluster morphism categories admit faithful

group functors.

1.4 Base field extensions of algebras

Recall that representation finite hereditary algebras over algebraically closed fields are

precisely path algebras of simply laced Dynkin quivers [74]. Using the theory of field ex-

tensions and of valued quivers, also known as species [63, 64], this connection is extended

to give a classification of representation finite hereditary algebras over perfect fields as

those coming from finite Dynkin diagrams, that is, including types 𝐵𝑛, 𝐶𝑛, 𝐹4 and 𝐺2.

Again indecomposable modules correspond bijectively to roots of the corresponding root

systems [118].
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Many interesting families of algebras arise from valued quivers and illustrate that the

world of finite-dimensional algebras beyond bound quiver algebras should be explored

further. In fact, given a field extension 𝐿 : 𝐾, many properties of 𝐴⊗𝐾𝐿 are inherited by

the finite-dimensional 𝐾-algebra 𝐴, and vice versa. However, by passing to an algebraic

closure of 𝐾, for example, certain geometric tools become available, which were not

available in the original setting. This idea is common in algebraic geometry where it

provides the basis of descent theory, see [97, 140] and the references therein.

In representation theory, the proof of the 2nd Brauer–Thrall conjecture can be ex-

tended from algebraically closed fields to perfect fields [22] and many homological di-

mensions are preserved under field extension [116]. Moreover, representation finiteness

of an algebra is preserved [116, 122], as well as the notion of (semi-)generic tameness

[123, 138, 152]. Some particular families of algebras are also preserved under base field

extension, for example hereditary algebras [116], piecewise hereditary algebras, canoni-

cal algebras, tilted algebras [132], and derived-discrete algebras [133]. Furthermore, the

techniques of base field extension have been applied to extend proofs over algebraically

closed fields to arbitrary fields [56, 110, 133] and to unfold valued quivers to classi-

cal quivers [58, 59, 100], offering a close relationship and frequently revealing beautiful

symmetries.

In Chapter 5, the study of 𝜏 -tilting theory under base field extension is developed fur-

ther. The chapter culminates in the construction of a faithful functor from the 𝜏 -cluster

morphism category of a finite-dimensional algebra 𝐴 over a field 𝐾 to the 𝜏 -cluster

morphism category of 𝐴 ⊗𝐾 𝐿, where 𝐿 : 𝐾 is a MacLane separable field extension.

Consequently, if the latter admits a faithful group functor, so does the former. This

result may be applied to find new families of algebras whose 𝜏 -cluster morphism cat-

egories admit faithful group functors. In particular, this is made precise for quotients

of representation finite and hereditary algebras over perfect fields, partially extending

results of [92, 106].



Chapter 2

Preliminaries

Most generally, consider the setting of an essentially small abelian length category 𝒜,

which will later be specialised to the category of finite-dimensional right modules of a

finite-dimensional algebra. Let 𝒞 be a full subcategory of 𝒜 and define the following

related subcategories:

• add 𝒞 := {𝑋 ∈ 𝒜 : ∃ a split epimorphism 𝐶𝑛 → 𝑋 for some 𝐶 ∈ 𝒞 and 𝑛 ≥ 1};

• Fac 𝒞 := {𝑋 ∈ 𝒜 : ∃ an epimorphism 𝐶𝑛 ↠ 𝑋 for some 𝐶 ∈ 𝒞 and 𝑛 ≥ 1};

• Sub 𝒞 := {𝑋 ∈ 𝒜 : ∃ a monomorphism 𝑋 →˓ 𝐶𝑛 for some 𝐶 ∈ 𝒞 and 𝑛 ≥ 1};

• Filt 𝒞 := {𝑋 ∈ 𝒜 : ∃ a filtration 0 = 𝑋0 ⊆ · · · ⊆ 𝑋𝑟 = 𝑋 with 𝑋𝑖+1/𝑋𝑖 ∈ add 𝒞};

• 𝒞⊥ := {𝑋 ∈ 𝒜 : Hom(𝐶,𝑋) = 0 for all 𝐶 ∈ 𝒞};

• ⊥𝒞 := {𝑋 ∈ 𝒜 : Hom(𝑋,𝐶) = 0 for all 𝐶 ∈ 𝒞}.

Moreover, given an object 𝐶 ∈ 𝒜, define the subcategories Fac𝐶,Sub𝐶 and Filt𝐶 as

Fac(add𝐶), Sub(add𝐶) and Filt(add𝐶) respectively. In cases where explicit reference

to the ambient category 𝒜 is important to avoid ambiguities, a subscript is added to

the subcategories above. For example, Fac𝒜 𝒞 or 𝒞⊥𝒜 .

Among the most well-studied classes of subcategories of an abelian category are

torsion classes as introduced in [62], which axiomatise the properties of torsion groups in

the category of abelian groups. These will play a central role in this thesis. Torsion classes

are closely related to 𝑡-structures of triangulated categories [24] and have analogues in

a plethora of categorical settings [2, 25, 117, 179]. In representation theory, torsion

11
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classes are essential objects of tilting theory [35], 𝜏 -tilting theory [3] and Auslander–

Reiten theory [16]. As subcategories, torsion classes admit a partial order with respect to

inclusion and arise as the Tamari lattice [181], as Cambrian lattices [108] and as the weak

order of Weyl groups [141] in combinatorics. Their purely lattice theoretic properties

have also inspired substantial research [18, 57, 77, 109, 111, 162]. Additionally, the study

of torsion classes is motivated by their connection to cluster algebras [39].

Definition 2.0.1. [62] A pair (𝒯 ,ℱ) of full subcategories 𝒯 ,ℱ ⊆ 𝒜 is called a torsion

pair if ℱ = 𝒯 ⊥ and 𝒯 = ⊥ℱ . In this case 𝒯 is called a torsion class and ℱ a torsion-free

class.

An equivalent characterisation [62, Thm. 2.3], states that a full subcategory 𝒯 ⊆ 𝒜

is a torsion class if and only if it is closed under factor objects and extensions and ℱ ⊆ 𝒜

is a torsion-free class if and only if it is closed under subobjects and extensions. For any

subcategory 𝒞, the smallest torsion class containing it is denoted by T(𝒞) and may be

expressed explicitly as T(𝒞) = Filt(Fac 𝒞), see [135, Lem. 3.1]. Denote by tors𝒜 and

torf 𝒜 the collections of torsion classes and torsion-free classes of 𝒜 respectively. By

definition there are mutually inverse bijections

tors𝒜 torf 𝒜.
(−)⊥

⊥(−)
(2.0.1)

Beside torsion classes, this thesis focuses on wide subcategories of abelian categories,

which were first considered in [98]. They are intimately related to torsion classes [135]

and the study of stability conditions [9, 38, 125, 184]. Again these subcategories admit

a partial order with respect to inclusion and in this context wide subcategories arise as

non-crossing partitions [108] and as the shard-intersection order of Weyl groups [180].

In fact, the poset of wide subcategories can be reconstructed in a combinatorial way

from the partially ordered set of torsion classes [67].

Definition 2.0.2. [98] A full subcategory 𝒲 ⊆ 𝒜 is called wide if it is closed under

kernels, cokernels and extensions.

In later sections, a particular focus will lie on wide subcategories which arise as par-

ticular intersections of a torsion-free class with a torsion class. As abelian subcategories
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of 𝒜, wide subcategories 𝒲 ⊆ 𝒜 have their own (relative) simple objects, therefore let

simp(𝒲) denote the set of all simple objects in 𝒲. More generally, a collection 𝒮 ⊆ 𝒜

of objects such that every morphism 𝑆 → 𝑆′ in 𝒜 is either zero or an isomorphism

is called a semibrick, see [8]. This generalises the notion of a brick, an object 𝑋 ∈ 𝒜

such that End(𝑋) is a division algebra. The following bijective correspondence was first

observed in [163, Sec. 1.2]:

{𝒲 ⊆ 𝒜 :𝒲 is wide} {𝒮 ⊆ 𝒜 : 𝒮 is a semibrick}.
simp(−)

Filt(−)
(2.0.2)

The collection of all wide subcategories of 𝒜 is denoted by wide𝒜, that of all semib-

ricks by sbrick𝒜 and that of all bricks by brick𝒜. Consider the following two classical

definitions which play an important role throughout this thesis, see for example [17].

Definition 2.0.3. Let 𝒞 ⊆ 𝒜 be a full subcategory and 𝑋 ∈ 𝒜 an object. A right

𝒞-approximation of 𝑋 is a map 𝑓𝑋 : 𝐶𝑀 → 𝑋 with 𝐶𝑀 ∈ 𝒞 such that for any map

𝑔 : 𝐶 ′ → 𝑋 with 𝐶 ′ ∈ 𝒞, there exists a map 𝑔′ : 𝐶 ′ → 𝐶 such that 𝑔 = 𝑓𝑋𝑔
′.

Dually, a left 𝒞-approximation of 𝑋 is a map 𝑔𝑋 : 𝑋 → 𝐶𝑋 with 𝐶𝑋 ∈ 𝒞 such that

for any map ℎ : 𝑋 → 𝐶 ′ with 𝐶 ′ ∈ 𝒞, there exists a map ℎ′ : 𝐶𝑋 → 𝐶 ′ such that

ℎ = ℎ′𝑔𝑋 .

Definition 2.0.4. A full subcategory 𝒞 ⊆ 𝒜 is called contravariantly finite (resp. co-

variantly finite) if every object 𝑋 ∈ 𝒜 admits a right (resp. left) 𝒞-approximation. It is

called functorially finite if it is both contravariantly finite and covariantly finite.

It is well-known and easy to show that torsion classes are always contravariantly

finite. However, both the subcollection of functorially finite torsion classes, denoted

by f-tors𝒜, as well as that of functorially finite wide subcategories are particularly

interesting and important. In the setting where 𝒜 is the category of finite-dimensional

(right) modules of a finite-dimensional algebra, a torsion class 𝒯 is functorially finite if

and only if 𝒯 = Fac𝑀 for some module 𝑀 by [176]. In particular, 𝑀 may be chosen to

be a so-called 𝜏 -rigid module [3]. These form an important class of modules studied in

detail in Section 2.2 and throughout this thesis. Functorially finite wide subcategories,

on the other hand, are equivalent to categories of finite-dimensional modules of other

finite-dimensional algebras, see [68, Prop. 4.12].
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2.1 Lattice theory and brick labelling

Recall that torsion classes, torsion-free classes and wide subcategories of𝒜 form partially

ordered sets (posets) under inclusion and also denote these posets by tors𝒜, torf 𝒜

and wide𝒜, respectively. In this section, these posets are endowed with the additional

structure of a labelling of cover relations. This labelling provides a useful tool, used

frequently throughout this thesis, in particular in Chapter 4. For a textbook reference

on lattices and lattice theory see for example [84].

Definition 2.1.1. Let 𝐿 be a poset.

(1) 𝐿 is called a join-semilattice if there exists a unique minimal common upper bound,

the join 𝑥 ∨ 𝑦 ∈ 𝐿 of 𝑥 and 𝑦 for all 𝑥, 𝑦 ∈ 𝐿.

(2) 𝐿 is called a meet-semilattice if there exists a unique maximal common lower

bound, the meet 𝑥 ∧ 𝑦 ∈ 𝐿 of 𝑥 and 𝑦 for all 𝑥, 𝑦 ∈ 𝐿.

A join-semilattice (resp. meet-semilattice) 𝐿 is called complete if every subset 𝑆 ⊆ 𝐿

admits a unique minimal upper bound
⋁︀
𝑆 (resp. a unique maximal lower bound

⋀︀
𝑆).

Definition 2.1.2. A poset 𝐿 which is both a join-semilattice and a meet-semilattice

is called a lattice. A lattice is complete if it is both a complete join-semilattice and a

complete meet-semilattice.

Definition 2.1.3. Let 𝐿 be a join-semilattice (resp. meet-semilattice). Then a join-

subsemilattice (resp. meet-subsemilattice) 𝐾 is a subset 𝐾 ⊆ 𝐿 such that all 𝑥, 𝑦 ∈ 𝐾

satisfy 𝑥∨ 𝑦 ∈ 𝐾 (resp. 𝑥∧ 𝑦 ∈ 𝐾). A subset 𝐾 of a lattice 𝐿 is a sublattice if it is both

a join-subsemilattice and meet-subsemilattice.

Lemma 2.1.4. [84, Lem. I.3.14] The following coincide for a poset 𝐿:

(1) 𝐿 is a complete join-semilattice.

(2) 𝐿 is a complete meet-semilattice.

(3) 𝐿 is complete lattice.

It is well-known and easy to see that torsion classes, torsion-free classes and wide

subcategories are closed under taking arbitrary intersections and therefore form com-
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plete meet-semilattices. By Lemma 2.1.4 they thus form complete lattices. Moreover,

the bijections of Eq. (2.0.1) define an order reversing map between posets.

Definition 2.1.5. Let 𝐿1, 𝐿2 be complete lattices. A map 𝜂 : 𝐿1 → 𝐿2 is a morphism

of complete lattices if 𝜂(
⋁︀
𝐿1
𝑆) =

⋁︀
𝐿2
𝜂(𝑆) and 𝜂(

⋀︀
𝐿1
𝑆) =

⋀︀
𝐿2
𝜂(𝑆) for all 𝑆 ⊆ 𝐿1.

The following is an important but rather rare property of a lattice.

Definition 2.1.6. Let 𝐿 be a complete lattice, 𝑥 ∈ 𝐿 and 𝑆 ⊆ 𝐿. Then 𝐿 is called

completely semidistributive if the following two conditions hold:

• If 𝑥 ∧ 𝑦 = 𝑥 ∧ 𝑧 for all 𝑦, 𝑧 ∈ 𝑆, then also 𝑥 ∧ (
⋁︀
𝑆) = 𝑥 ∧ 𝑦 for all 𝑦 ∈ 𝑆;

• If 𝑥 ∨ 𝑦 = 𝑥 ∨ 𝑧 for all 𝑦, 𝑧 ∈ 𝑆, then also 𝑥 ∨ (
⋀︀
𝑆) = 𝑥 ∨ 𝑦 for all 𝑦 ∈ 𝑆.

Throughout this thesis, intervals of posets play a central role. For two elements

𝑥, 𝑦 ∈ 𝐿 in a poset 𝐿, denote by [𝑥, 𝑦] ⊆ 𝐿 the set of all elements 𝑧 ∈ 𝐿 such that

𝑥 ≤ 𝑧 ≤ 𝑦. Let 𝑥, 𝑦 ∈ 𝐿 be distinct, then 𝑥 ≤ 𝑦 is called a cover relation and denoted by

𝑥⋖ 𝑦, if there does not exists an element 𝑧 ∈ 𝐿 such that 𝑥 < 𝑧 < 𝑦. Moreover, a chain

in 𝐿 is a sequence of cover relations. Define the Hasse quiver, denoted by Hasse(𝐿), of 𝐿

to be the quiver whose vertices are elements of 𝐿 and which has a unique arrow 𝑦 → 𝑥

whenever 𝑥⋖ 𝑦 is a cover relation. This leads to the following notion.

Definition 2.1.7. Let 𝐿 be a lattice and 𝑥, 𝑦 ∈ 𝐿. An interval [𝑥, 𝑦] is called a polygon

if it is the union of two finite chains from 𝑥 to 𝑦 which are disjoint except at 𝑥 and

𝑦. Moreover, 𝐿 is called polygonal if for any two cover relations 𝑥 ⋖ 𝑦1 and 𝑥 ⋖ 𝑦2 the

interval [𝑥, 𝑦1 ∨ 𝑦2] is a polygon and if for any two cover relations 𝑥1 ⋖ 𝑦 and 𝑥2 ⋖ 𝑦 the

interval [𝑥1 ∧ 𝑥2, 𝑦] is a polygon.

Furthermore, two maximal chains in an interval [𝑥, 𝑦] ⊆ 𝐿 are said to be related by a

polygon move if the two chains from 𝑥 to 𝑦 differ only in that one chain covers one side

of a polygon inside [𝑥, 𝑦] while the other covers the other side. For further background

on polygonal lattices see [157, Sec. 9.6]. Finally, a lattice 𝐿 is called ℓ-regular for some

ℓ ∈ Z≥0 if every vertex in Hasse(𝐿) has ℓ arrows incident to it. Fig. 2.1 displays the

Hasse quivers of four different lattices which illustrate the properties described in this

section.
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(a) Not polygonal, not semidistribu-

tive, not regular lattice

∙

∙

∙ ∙
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∙

(b) Polygonal, not semidistributive,

not regular lattice

∙

∙
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∙

∙

(c) Not polygonal, semidistributive,

not regular lattice

∙

∙

∙ ∙

∙

∙

(d) Polygonal, semidistributive, regular

lattice

Figure 2.1: Examples of lattices

Example 2.1.8. Let 𝒜 be the category of finite-dimensional (right) modules of a finite-

dimensional algebra. Then tors𝒜 is completely semidistributive, see [77, Thm. 4.5] and

[57, Thm. 3.1(a)]. If tors𝒜 is finite, then it is regular and polygonal, see [57, Cor. 4.6,

Prop. 4.21(a)].

In the setting of a general abelian category 𝒜 intervals of the form [𝒰 , 𝒯 ] ⊆ tors𝒜

where 𝒰⊥ ∩ 𝒯 is a wide subcategory of 𝒜 are of particular interest. Such intervals are

called wide intervals [10]. They have been studied in great detail in [10] and in the
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setting of Example 2.1.8 under the name “polytopes” in [57]. Wide intervals are also

sometimes called binuclear intervals [90] since they can be described combinatorially as

follows.

Theorem 2.1.9. [10, Thm. 1.6] Let [𝒰 , 𝒯 ] ⊆ tors𝒜. The following are equivalent:

• [𝒰 , 𝒯 ] is a wide interval;

• 𝒯 =
⋁︀
𝒰𝑖, where 𝒰 ⋖ 𝒰𝑖 in [𝒰 , 𝒯 ] and the torsion classes 𝒰𝑖 are called the atoms

of the interval [𝒰 , 𝒯 ];

• 𝒰 =
⋀︀
𝒯𝑖, where 𝒯𝑖⋖𝒯 in [𝒰 , 𝒯 ], and the torsion classes 𝒯𝑖 are called the coatoms

of the interval [𝒰 , 𝒯 ].

To conclude this section, tors𝒜 is endowed with an additional structure called brick

labelling. By [57, Thm. 3.3(b)], see also [8, 10, 18], there is an arrow 𝑞 : 𝒯 → 𝒰 in

Hasse(tors𝒜) if and only if there exists exact one brick 𝑆𝑞 contained in 𝒰⊥ ∩ 𝒯 . Thus

the brick 𝑆𝑞 is assigned as a label to 𝑞 : 𝒯 → 𝒰 . Generally, define brick[𝒰 , 𝒯 ] to be the

collection of bricks in 𝒰⊥ ∩ 𝒯 and note that 𝒰⊥ ∩ 𝒯 = Filt(brick[𝒰 , 𝒯 ]) by [57, Lem.

3.10]. It can be checked that Eq. (2.0.1) preserves the brick labelling, see [10, Prop. 3.4].

2.2 𝜏 -tilting theory

Let 𝐾 be an arbitrary field and 𝐴 a basic finite-dimensional 𝐾-algebra. In this section,

the categorical and combinatorial definitions from the previous sections are united via

representation theory. Let by mod𝐴 the category of finite-dimensional right 𝐴-modules

and by proj𝐴 the full subcategory of projective 𝐴-modules. Throughout 𝜏 denotes

the Auslander–Reiten translation. Given 𝑀 ∈ mod𝐴, denote by |𝑀 | the number of

nonisomorphic indecomposable direct summands of 𝑀 and by dim𝑀 the dimension

vector defined as (dim𝑀)𝑖 := dimEnd𝐴(𝑆(𝑖))(𝑀𝑒𝑖) where {𝑒𝑖}
|𝐴|
𝑖=1 is a set of primitive

orthogonal idempotents of 𝐴. The most important class of modules for this thesis is the

following.

Definition 2.2.1. [3] A module 𝑀 ∈ mod𝐴 is called 𝜏 -rigid if Hom(𝑀, 𝜏𝑀) = 0 and

𝜏 -tilting if additionally |𝑀 | = |𝐴|. A pair (𝑀,𝑃 ) ∈ mod𝐴 × proj𝐴 is called 𝜏 -rigid if

𝑀 is 𝜏 -rigid and Hom(𝑃,𝑀) = 0. It is called 𝜏 -tilting if additionally |𝑀 |+ |𝑃 | = |𝐴|.
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Saying that a 𝜏 -rigid pair (𝑁,𝑄) is a direct summand of a 𝜏 -rigid pair (𝑀,𝑃 ),

means that 𝑁 is a direct summand of 𝑀 and 𝑄 is a direct summand of 𝑃 . Similarly,

a 𝜏 -rigid pair (𝑀,𝑃 ) is called basic if 𝑀 and 𝑃 are both basic modules, which means

that distinct indecomposable direct summands are nonisomorphic. Thus, denote the set

of basic 𝜏 -rigid pairs by 𝜏 -rigidp𝐴 and its subset of basic 𝜏 -tilting pairs by 𝜏 -tiltp𝐴.

These modules and pairs are closely related to torsion classes.

Theorem 2.2.2. [3, Thm. 2.7] There is a bijection

𝜏 -tiltp𝐴 −→ f-tors𝐴

given by sending (𝑀,𝑃 ) ∈ 𝜏 -tiltp𝐴 to Fac𝑀 .

This bijection equips 𝜏 -tiltp𝐴 with the structure of a partially ordered set which is

inherited from f-tors𝐴. Whenever it is finite, this structure can also be seen intrinsically

using the process of mutation [3, Sec. 2.3-2.4]. Roughly speaking, if an indecomposable

direct summand of a basic 𝜏 -tilting pair (𝑀,𝑃 ) is deleted, there is a unique indecom-

posable 𝜏 -rigid module completing the resulting 𝜏 -rigid pair to a different basic 𝜏 -tilting

pair. This defines the mutation, and the direction is determined by the corresponding

torsion classes via Theorem 2.2.2.

Theorem 2.2.3. The following are equivalent:

(1) 𝜏 -tiltp𝐴 is finite, in which case 𝐴 is called 𝜏 -tilting finite;

(2) f-tors𝐴 is finite;

(3) brick𝐴 is finite;

(4) f-tors𝐴 is a complete lattice;

(5) f-tors𝐴 = tors𝐴.

Proof. (1) ⇔ (2) is Theorem 2.2.2, (1) ⇔ (3) is [56, Thm. 1.4], (1) ⇔ (5) is [56, Thm.

1.2], (1)⇔ (4) is [109, Thm. 0.2].

The characterisations of 𝜏 -tilting finiteness in Theorem 2.2.3 have inspired significant

work expanding these equivalent conditions, see for example [8, 76, 135, 170, 173]. Recall

from Example 2.1.8 the additional lattice theoretic properties of the poset 𝜏 -tiltp𝐴,

which are exhibited whenever it is finite.



2. Preliminaries 19

Given a basic 𝜏 -rigid pair (𝑀,𝑃 ), the maximal (in the poset 𝜏 -tiltp𝐴) basic 𝜏 -tilting

pair containing (𝑀,𝑃 ) as a direct summand is called the Bongartz completion of (𝑀,𝑃 ),

denoted by (𝑀+, 𝑃 ). It is characterised by satisfying Fac𝑀+ = ⊥𝜏𝑀 ∩ 𝑃⊥, see [3,

Thm. 2.10] and [57, Thm. 4.4]. On the other hand, the smallest 𝜏 -tilting pair containing

(𝑀,𝑃 ) as a direct summand is called the co-Bongartz completion of (𝑀,𝑃 ), denoted by

(𝑀−, 𝑃−), and characterised by satisfying Fac𝑀 = Fac(𝑀−). The mutation of 𝜏 -tilting

pairs mentioned above corresponds exactly to changing the Bongartz completion of a

basic 𝜏 -rigid pair with |𝐴| − 1 isomorphism classes of indecomposable direct summands

into the co-Bongartz completion.

Definition 2.2.4. Let (𝑀,𝑃 ) be a 𝜏 -rigid pair.

• The interval [(𝑀−, 𝑃−), (𝑀+, 𝑃 )] ⊆ 𝜏 -tiltp𝐴 is called a 𝜏 -perpendicular interval;

• The interval [Fac𝑀,⊥𝜏𝑀 ∩ 𝑃⊥] ⊆ tors𝐴 is called a 𝜏 -perpendicular interval.

It should be highlighted that elements in interval [Fac𝑀,⊥𝜏𝑀 ∩ 𝑃⊥] ⊆ tors𝐴 are

generally not in bijection with elements in the interval [(𝑀−, 𝑃−), (𝑀+, 𝑃 )] ⊆ 𝜏 -tiltp𝐴

if the algebra 𝐴 is 𝜏 -tilting infinite, see Theorem 2.2.3.

In the introduction, it was mentioned that 𝜏 -rigid modules and pairs give rise to

perpendicular wide subcategories of mod𝐴. This is made precise in the following re-

sult, which shows how to construct these subcategories and that they are equivalent to

categories of modules of another finite-dimensional algebra.

Theorem 2.2.5. [115, Thm. 3.8][57, Thm. 4.12][38, Thm. 3.14] Let (𝑀,𝑃 ) be a 𝜏 -rigid

pair. Then the wide subcategory

𝒲(𝑀,𝑃 ) := 𝑀⊥ ∩ ⊥𝜏𝑀 ∩ 𝑃⊥ ⊆ mod𝐴

is equivalent to a module category mod𝐵(𝑀,𝑃 ), for some finite-dimensional algebra

𝐵(𝑀,𝑃 ) with |𝐴| − |𝑀 | − |𝑃 | isomorphism classes of simples. Moreover, there exists

an isomorphism of complete lattices

− ∩𝒲(𝑀,𝑃 ) : [Fac𝑀,⊥𝜏𝑀 ∩ 𝑃⊥]→ tors𝒲(𝑀,𝑃 ).

which restricts to an order-preserving bijection of functorially finite torsion classes.
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Wide subcategories 𝒲(𝑀,𝑃 ) of mod𝐴 arising in this way are called 𝜏 -perpendicular

and 𝐵(𝑀,𝑃 ) is called the 𝜏 -tilting reduction of 𝐴 with respect to (𝑀,𝑃 ). If 𝐴 is hereditary

then 𝜏 -perpendicular subcategories are precisely the perpendicular subcategories studied

in [78]. Moreover, by [108], see also [40, Rmk. 4.10], if 𝐴 is 𝜏 -tilting finite, then every

wide subcategory is 𝜏 -perpendicular.

Example 2.2.6. Let 𝐴 ∼= 𝐾𝑄/𝐼, where

𝑄 : 1 2 𝑎 , 𝐼 = ⟨𝑎2⟩.

Then, the Auslander–Reiten quiver of 𝐴 is given by

1
2
2

1

2
2

1
1 2

2

2 1 2
2

1
2

1
2 2

The nonzero indecomposable 𝜏 -rigid modules are 1
2
2

and 2
2 since they are projective and

thus have zero Auslander–Reiten translation, and 1 and 1
1 2

2
whose Auslander–Reiten

translations are the indecomposable projective 𝐴-modules. The Hasse quiver of the poset

of 𝜏 -tilting pairs is displayed in Fig. 2.2a with the Hasse quiver of its corresponding poset

of torsion classes displayed in Fig. 2.2b. The bricks of 𝐴 are 2 , 1
2
2

and 1
2 , which label

the arrows in these Hasse quivers, as discussed in Section 2.1. Observe that the posets

coincide with the polygonal, semidistributive, regular lattice of Fig. 2.1d.

2.3 The 𝜏 -cluster morphism category

Loosely speaking, the 𝜏 -cluster morphism category encodes the possible 𝜏 -tilting re-

ductions, in the sense that its objects are 𝜏 -perpendicular subcategories. Since each
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0
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1
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2
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(b) Poset of torsion classes in

mod 𝐴

Figure 2.2: Hasse quivers of Example 2.2.6

𝜏 -perpendicular category𝒲 is equivalent to a module category, it has its own (relative)

Auslander–Reiten translation 𝜏𝒲 and (relative) 𝜏𝒲 -rigid pairs, which may differ from

those of mod𝐴. The algebraic definition of the 𝜏 -cluster morphism category below holds

in the general setting of arbitrary finite-dimensional algebras. For earlier definitions of

the category for hereditary and 𝜏 -tilting finite algebras see [105] and [46], respectively.

For definitions in more general settings see [32, 33].

Definition 2.3.1. [40, Def. 6.1] The 𝜏 -cluster morphism category W(𝐴) has as its

objects the 𝜏 -perpendicular wide subcategories of mod𝐴. Given two 𝜏 -perpendicular

wide subcategories 𝒲1,𝒲2 of mod𝐴, define

HomW(𝐴)(𝒲1,𝒲2)

= {𝑔𝒲1
(𝑀,𝑃 ) : (𝑀,𝑃 ) is a basic 𝜏𝒲1

-rigid pair and 𝒲2 = 𝑀
⊥𝒲1 ∩ ⊥𝒲1 𝜏𝒲1

𝑀 ∩ 𝑃⊥𝒲1}.

The details on composition of morphisms for this category is omitted for now. The

associativity of the composition of morphisms is highly nontrivial to prove, see [46,
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Thm. 5.9] and [40, Thm. 6.12]. The generalisation of W(𝐴) to nonpositive differential

graded algebras with finite-dimensional cohomology in all degrees of [33] specialises to

the above for finite-dimensional algebras and replaces 𝜏 -perpendicular categories by

certain thick subcategories of the bounded derived category 𝒟𝑏(mod𝐴). The process of

𝜏 -tilting reduction then becomes silting reduction [112], whose functoriality implies the

associativity more directly [33, Thm. 4.3].

For hereditary algebras, the 𝜏 -cluster morphism category has close connections to

exceptional sequences [54, 164]: Factorisations of morphisms W(𝐴) into irreducible mor-

phisms are in bijection with the more general signed exceptional sequences [105]. As a

generalisation of signed exceptional sequences for hereditary algebras, define signed 𝜏 -

exceptional sequences [45] to be factorisations of morphisms in W(𝐴) into irreducible

ones, see [46, Sec. 11]. These sequences have recently inspired much research [41–43, 47,

139, 145, 149, 150].

An arbitrary category 𝒞 defines a topological space, called the classifying space ℬ𝒞.

This space is the geometric realisation of a simplicial set known as the simplicial nerve

of the category. Its 0-simplices correspond to objects of 𝒞 and its 𝑘-simplices correspond

to chains of composable nonidentity morphisms (𝑋0
𝑓1−→ 𝑋1

𝑓2−→ . . .
𝑓𝑘−→ 𝑋𝑘) in 𝒞.

The classifying space ℬW(𝐴) of the 𝜏 -cluster morphism category is particularly

interesting because, by [91, Thm. B], its fundamental group is isomorphic to the picture

group as defined in [107] for hereditary algebras and in [91] for 𝜏 -tilting finite algebras.

The appropriate general definition is as follows.

Definition 2.3.2. Let 𝐴 be a finite-dimensional algebra. The picture group 𝐺(𝐴) is

defined by having generators

{𝑋𝑆 : 𝑆 ∈ brick𝐴 and Filt{𝑆} is 𝜏 -perpendicular} ∪ {𝑔𝒯 : 𝒯 ∈ f-tors𝐴}

with a relation 𝑔𝒯1
= 𝑋𝑆𝑔𝒯2

whenever there is an arrow 𝒯1
𝑆−→ 𝒯2 in Hasse(f-tors𝐴) and

the relation 𝑔0 = 𝑒.

Moreover, for hereditary algebras, the picture group is closely connected to maximal

green sequences [124] arising in the context of cluster algebras [104]. For many algebras

the classifying space ℬW(𝐴) is even a 𝐾(𝜋, 1) space for the picture group [91, 92, 105,
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106]. As mentioned in the introduction, Conjecture 1.1.1 poses the question of whether

this is always the case. In particular, later chapters establish many new examples of

𝐾(𝜋, 1) spaces arising in this way. The main tool to achieve this is the fact that the

classifying space ℬW(𝐴) is a cube complex, see [91, Thm. A].

Example 2.3.3. Let 𝐴 be the finite-dimensional 𝐾-algebra of Example 2.2.6. Recall

that the 𝜏 -tilting pairs in mod𝐴 are displayed in Fig. 2.2a. The indecomposable direct

summands of these pairs may be used to obtain the following description of the 𝜏 -cluster

morphism category W(𝐴) of 𝐴. The category is displayed in Fig. 2.3, where the arrows

correspond to the irreducible morphisms and the label (𝑀,𝑃 ) : 𝒲1 → 𝒲2 abbreviates

the formal symbol 𝑔𝒲1
(𝑀,𝑃 ).

mod𝐴

add { 2 ⊕ 2
2 } add { 1 } add

{︁ 1
2
2

}︁
add

{︁
1
2 ⊕

1
1 2

2

}︁

0

(︁
0 ,

1
2
2

)︁
(︁ 1

2
2
, 0

)︁
( 0 , 2

2 )
( 2

2 , 0 )
(︁ 1

1 2
2
, 0

)︁ ( 1 , 0 )

( 2
2 , 0 )

( 0 , 2
2 )

( 0 , 1 )

( 1 , 0 ) (︁
0 ,

1
2
2

)︁
(︁ 1

2
2
, 0

)︁ (︁ 1
1 2

2
, 0

)︁
(︁

0 ,
1

1 2
2

)︁

Figure 2.3: The 𝜏 -cluster morphism category W(𝐴) of Example 2.3.3

2.4 Cubical categories

A cube complex is a metric space made up from cubes of different dimensions which are

glued together along their faces. This construction is similar to that of a simplicial com-

plex by replacing ℓ-simplices by ℓ-cubes. Gromov [86] observed that for cube complexes,
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being (locally) CAT(0) and thus a 𝐾(𝜋, 1) space, is equivalent to a local combinato-

rial condition. Informally speaking, CAT(0) spaces are geodesic metric spaces whose

geodesic triangles are “no fatter than Euclidean triangles” and locally CAT(0) spaces,

also known as nonpositively curved spaces, are those which admit a CAT(0) universal

cover. Such spaces are important examples of 𝐾(𝜋, 1) spaces, a class of Eilenberg–

MacLane spaces whose only nontrivial homotopy group is its fundamental group 𝜋. For

more background and an introduction to CAT(0) cube complexes see [171]. By defi-

nition, a connected topological space 𝑋 is a 𝐾(𝜋, 1) space if it satisfies the following

equivalent conditions:

(1) The homotopy groups of 𝑋 above degree 1 are all trivial;

(2) The universal cover of 𝑋 is contractible;

(3) The cohomology of 𝑋 with arbitrary coefficients is isomorphic to the cohomology

of its fundamental group.

Igusa [101] categorified Gromov’s conditions and introduced cubical categories, whose

classifying spaces are cube complexes. In this setting, the conditions of Gromov for

a cube complex to be CAT(0) constitute two parts of a sufficient conditions for the

classifying space of the category to be a 𝐾(𝜋, 1) space, see [101, Prop. 3.4]. The definition

of a cubical category is based on the following two categories:

• The standard 𝑘-cube category ℐ𝑘 is the name-giving example of a cubical category.

It is the poset category on subsets of {1, . . . , 𝑘} where morphisms are given by

inclusion.

• For any category 𝒞 and any morphism (𝐴 𝑓−→ 𝐵) ∈ 𝒞, the factorisation category

Faq(𝑓) is the category whose objects are factorisations 𝐴 𝑔−→ 𝐶
ℎ−→ 𝐵 such that

ℎ ∘ 𝑔 = 𝑓 and whose morphisms

𝐶1

𝐴 𝐵

𝐶2

ℎ1

𝜑

𝑔1

𝑔2 ℎ2

are morphisms 𝜑 : 𝐶1 → 𝐶2 such that 𝜑 ∘ 𝑔1 = 𝑔2 and ℎ1 = ℎ2 ∘ 𝜑.

Given an object (𝐴 𝑔−→ 𝐶
ℎ−→ 𝐵) in Faq(𝑓), call 𝑔 a first factor of 𝑓 if 𝑔 is irreducible

in 𝒞 and ℎ a last factor of 𝑓 if ℎ is irreducible in 𝒞.
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Definition 2.4.1. A cubical category is a small category 𝒞 with the following properties:

(1) Every morphism 𝑓 : 𝐴→ 𝐵 in 𝒞 has a rank rk(𝑓), which is a non-negative integer

such that rk(𝑔 ∘ 𝑓) = rk(𝑓) + rk(𝑔) for all composable morphisms 𝑓, 𝑔 ∈ 𝒞;

(2) If rk(𝑓) = 𝑘 then there is an isomorphism Faq(𝑓) ∼= ℐ𝑘;

(3) The forgetful functor Faq(𝑓) → 𝒞 sending (𝐴 −→ 𝐶 −→ 𝐵) ↦→ 𝐶 is an embedding,

that is, faithful and injective-on-objects . Thus, every morphism of rank 𝑘 has 𝑘

distinct first factors and 𝑘 distinct last factors;

(4) Every morphism of rank 𝑘 is determined by its 𝑘 first factors;

(5) Every morphism of rank 𝑘 is determined by its 𝑘 last factors.

Condition 2 implies that in a cubical category, the classifying space of any morphism

𝑓 is a solid cube, that is, ℬ Faq(𝑓) = [0, 1]rk(𝑓). Moreover, in a cubical category, every

morphism is both a monomorphism and an epimorphism.

Lemma 2.4.2. Let 𝒞 be a category satisfying Condition (3) of Definition 2.4.1. Then

every morphism in 𝒞 is both a monomorphism and an epimorphism.

Proof. Suppose that the morphism 𝑋
𝑓−→ 𝑌 in 𝒞 is not a monomorphism. Then, by

definition, there exists a diagram in 𝒞 of the form

𝑍 𝑋 𝑌,
𝑔1

𝑔2

𝑓 (2.4.1)

where the compositions 𝑓 ∘ 𝑔1 and 𝑓 ∘ 𝑔2 are equal but 𝑔1 ̸= 𝑔2. Let ℎ = 𝑓 ∘ 𝑔1 = 𝑓 ∘ 𝑔2,

and consider the two objects (𝑍 𝑔1−→ 𝑋
𝑓−→ 𝑌 ) and (𝑍 𝑔2−→ 𝑋

𝑓−→ 𝑌 ) in the factorisation

category Faq(ℎ). They are distinct since 𝑔1 and 𝑔2 are, but they are sent to the same

object by the forgetful functor Faq(ℎ)→ 𝒞 defined in Condition (3) of Definition 2.4.1

above. Thus, the forgetful functor is not injective-on-objects, so that Condition (3) of

Definition 2.4.1 cannot hold. As a consequence, the morphisms must satisfy 𝑔1 = 𝑔2,

which makes 𝑓 a monomorphism. A similar argument shows that every morphism in 𝒞

is an epimorphism, hence the proof is complete.

Example 2.4.3. The following are examples of cubical categories:

• The standard 𝑘-cube category ℐ𝑘 for any 𝑘 ≥ 1;

• For hereditary algebras the category W(𝐴) is cubical by [106, Thm. A];
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• For 𝜏 -tilting finite algebras the category W(𝐴) is cubical by [91].

In Chapter 3 a large new class of cubical categories is introduced. The sufficient

criteria mentioned previously and stated imprecisely in Proposition 1.1.2 for a cubical

category to have a locally CAT(0) classifying space, which would thus be a 𝐾(𝜋, 1)

space, are as follows.

Proposition 2.4.4. [101, Prop. 3.4, Prop. 3.7] Let 𝒞 be a cubical category. If the

following properties are satisfies, then the classifying space ℬ𝒞 is locally CAT(0) and

thus a 𝐾(𝜋, 1) space:

(1) There is a faithful (group) functor Ψ : 𝒞 → 𝐺 for some group 𝐺, viewed as a

groupoid with one object;

(2) A set of 𝑘 rank 1 morphisms {𝑓𝑖}
𝑘
𝑖=1 forms the set of first factors of a rank 𝑘

morphism if and only if each pair {𝑓𝑖, 𝑓𝑗} forms the set of first factors of a rank 2

morphism for 𝑖 ̸= 𝑗. In other words, first factors are given by pairwise compatibility

conditions;

(3) A set of 𝑘 rank 1 morphisms {𝑔𝑖}
𝑘
𝑖=1 forms the set of last factors of a rank 𝑘

morphism if and only if each pair {𝑔𝑖, 𝑔𝑗} forms the set of last factors of a rank 2

morphism for 𝑖 ̸= 𝑗. In other words, last factors are given by pairwise compatibility

conditions.

This sufficient condition highlights the usefulness of cubical categories for investi-

gating fundamental groups of classifying spaces. In particular, Condition (1) of Propo-

sition 2.4.4 implies that the universal cover of ℬ𝒞 is a cube complex, see the proof of

[101, Prop. 3.4]. If Condition (1) holds, then Condition (2) and Condition (3) of Propo-

sition 2.4.4 are exactly those of [86] and are equivalent to the universal cover of ℬ𝒞 being

CAT(0). Consequently, it makes sense to focus on the existence of a faithful group func-

tor, as Condition (2) and Condition (3) build on Condition (1). Nonetheless, from the

viewpoint of representation theory, these conditions are also interesting in their own

right [20, 92].

Example 2.4.5. In this example all currently known results regarding the different

parts of Proposition 2.4.4 are collected in the setting of the 𝜏 -cluster morphism category
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W(𝐴) of a finite-dimensional 𝐾-algebra 𝐴. Firstly, Condition (2) of Proposition 2.4.4

always holds for W(𝐴) by the compatibility properties of 𝜏 -rigid pairs. Furthermore,

Condition (1) is conjectured hold for all 𝜏 -tilting finite algebras in [92, Conj. 5.10], but

is known to hold only for the following classes:

• [106, Thm. 3.7] If 𝐴 is hereditary of finite or tame type;

• [92, Thm. 5.9] If 𝐾 is a finite field, the 𝐾-algebra 𝐴 admits Hall polynomials [160]

and additionally satisfies the following: Any two bricks 𝐵1, 𝐵2 ∈ brick𝐴 which

form a semibrick together, also satisfy Ext1(𝐵1, 𝐵1) = 0 = Ext1(𝐵2, 𝐵2) and

End(𝐵1) = 𝐾 = End(𝐵2) or otherwise satisfy Ext1(𝐵1, 𝐵2) = 0 = Ext1(𝐵2, 𝐵1).

Regarding Condition (3) of Proposition 2.4.4, the pairwise compatibiliy of last factors,

the following is known:

• [106, Thm. 2.5] If 𝐴 is hereditary of finite or tame type, then W(𝐴) satisfies

Condition (3) if and only if the Auslander–Reiten quiver of 𝐴 has no tubes of

rank ≥ 3;

• [91, Thm. 2.1] If 𝐴 is a Nakayama algebra, then W(𝐴) satisfies Condition (3);

• [92, Thm. 4.1] If 𝐴 is a 𝜏 -tilting finite gentle algebra without loops and 2-cycles,

then W(𝐴) satisfies Condition (3) if and only if every vertex in the underlying

quiver has degree at most 2;

• [20, Thm. 1] If 𝐴 is 𝜏 -tilting finite and mod𝐴 has at most three isomorphism

classes of simple modules, then W(𝐴) satisfies Condition (3) of Proposition 2.4.4;

• [20, Thm. 4] If 𝐴 is a preprojective algebra of type ADE, then W(𝐴) satisfies

Condition (3) of Proposition 2.4.4 if and only if it is of type 𝐴1, 𝐴2 or 𝐴3.

As can be concluded from the length of the list above, a lot of research has inves-

tigated these properties. This thesis contributes to the problem of finding a faithful

group functor from W(𝐴) using two new approaches and obtains various new families

of algebras satisfying Condition (1) of Proposition 2.4.4 in this way.

Example 2.4.6. Let 𝐴 be the finite-dimensional 𝐾-algebra of Example 2.2.6 for which

W(𝐴) is displayed in Fig. 2.3. In Fig. 2.4 the classifying space ℬC(𝐴) is displayed in

a way that highlights its cubical structure. The gray arrows, which are labelled by the
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𝜏 -tilting pairs in mod𝐴, form diagonals of the 2-cubes of ℬC(𝐴). The vertices (labelled

by wide subcategories) with the same label and the arrows (labelled by relative 𝜏 -rigid

pairs corresponding to morphisms in W(𝐴)) with the same colour and pointing in the

same direction are supposed to be identified.
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Figure 2.4: The cubical structure of the classifying space ℬC(𝐴) of Example 2.4.6

2.5 Fans and simplicial complexes

The first new approach taken in Chapter 3 uses the theory of polyhedral fans in con-

vex geometry. The subsequent Section 2.6 associates a polyhedral fan to the 𝜏 -tilting

theory of a finite-dimensional algebra. This fan was used in [169] to construct W(𝐴)

geometrically, and this construction lies at the foundation of Chapter 3.
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Polyhedral fans arise naturally in many areas of mathematics. In toric geometry,

fans serve as fundamental tools for defining toric varieties [73]. In commutative algebra,

the Gröbner fan is an invariant associated to an ideal in a commutative polynomial ring

[143]. Polytopes give rise to normal fans and face fans [185] which play an important role

in the theory of optimisation [168]. In matroid theory, the Bergman fan is a subfan of the

normal fan of the matroid polytope [27]. Recently, it was shown that abelian categories

define heart fans [37]. Within representation theory, in classical tilting theory, tilting

modules define fans [96] and the 𝜏 -tilting theory of an algebra is encoded by the 𝑔-vector

fan [56], as described in Section 2.6.

Generally, a convex polyhedral cone 𝜎 in R𝑛 is a set of the form

𝜎 =
{︃

𝑠∑︁
𝑖=𝑖

𝜆𝑖𝑣𝑖 ∈ R𝑛 : 𝜆𝑖 ≥ 0
}︃

, where 𝑣1, . . . , 𝑣𝑠 ∈ R𝑛.

Denote such a nonnegative linear combination by 𝜎 = cone{𝑣1, . . . , 𝑣𝑠} and call the

positive linear combination span>0{𝑣1, . . . , 𝑣𝑠} ⊆ R𝑛 the interior cone of 𝜎. Given two

polyhedral cones 𝜎 = cone{𝑣1, . . . , 𝑣𝑠} and 𝜅 = cone{𝑤1, . . . , 𝑤𝑡} ⊆ R𝑛, denote the cone

they span together by cone{𝜎, 𝜅} = cone{𝑣1, . . . , 𝑣𝑠, 𝑤1, . . . , 𝑤𝑡}. Note that {0} is also

regarded as a convex polyhedral cone. Unless otherwise specified, in this thesis, a cone

𝜎 is a convex polyhedral cone with the following two properties:

• 𝜎 is strongly convex, that is, 𝜎 ∩ (−𝜎) = {0} holds;

• 𝜎 is simplicial, that is, the generating set of 𝜎 is linearly independent (up to

duplicate generators).

The dimension or rank dim(𝜎) of a cone is the dimension of the linear subspace

span{𝜎} in R𝑛. Denote by ⟨−,−⟩ the standard inner product in R𝑛. A face of a cone

𝜎 is the intersection of 𝜎 with a hyperplane {𝑣 ∈ R𝑛 : ⟨𝑢, 𝑣⟩ = 0} for some 𝑢 ∈ R𝑛

satisfying ⟨𝑢,𝑤⟩ ≥ 0 for all 𝑤 ∈ 𝜎. If 𝜎 = cone{𝑣1, . . . , 𝑣𝑠} ⊆ R𝑛 is a simplicial cone,

then a face of 𝜎 is simply a cone generated by a proper subset of {𝑣1, . . . , 𝑣𝑠}.

Definition 2.5.1. A fan Σ in R𝑛 is a collection of cones in R𝑛 satisfying the following:

(1) Each face of a cone in Σ is also a cone contained in Σ;

(2) The intersection of two cones in Σ is a face of each of the two cones.
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Denote by Σ𝑖 ⊆ Σ the subset of cones of dimension 𝑖. A fan Σ in R𝑛 is said to be finite

if it consists of a finite number of cones and complete if
⋃︀
𝜎∈Σ 𝜎 = R𝑛. There are two

different ways of viewing fans. Firstly, fans naturally have the structure of a poset (Σ,⊆)

ordered by inclusion, whose corresponding poset category has cones as its objects and a

unique morphism 𝜅→ 𝜎 whenever 𝜅 ⊆ 𝜎. A maximal cone of a fan Σ is any cone 𝜎 ∈ Σ

which is not contained in another cone 𝜌 ∈ Σ, that is, a maximal element of (Σ,⊆). The

collection of cones containing a cone 𝜎 is denoted by star(𝜎) := {𝜌 ∈ Σ : 𝜎 ⊆ 𝜌}, and

define star(𝜎)𝑖 := star(𝜎)∩Σ𝑖. If Σ is a finite and complete fan in R𝑛, then all maximal

cones are of the same dimension equal to 𝑛, and this dimension is called the rank of Σ.

For a thorough introduction to fans in the context of toric geometry see [73].

On the other hand (simplicial) fans can be viewed as simplicial complexes, which

are finite sets Δ0 together with a collection Δ of subsets of Δ0 such that if 𝑋 ∈ Δ and

𝑌 ⊆ 𝑋, then 𝑌 ∈ Δ. Elements 𝑣 ∈ Δ0 such that {𝑣} ∈ Δ are called vertices and subsets

consisting of vertices are called faces or more specifically k-simplices if they consist

of exactly 𝑘 + 1 vertices. A simplicial fan Σ in R𝑛 defines a simplicial complex Δ(Σ)

whose vertices are the dimension 1 cones Σ1 and whose simplices are sets of vertices

which together generate a cone of the fan. When a fan Σ in R𝑛 is simplicial, finite and

complete, the geometric realisation of Δ(Σ) is a simplicial sphere, that is, homeomorphic

to a (𝑛 − 1)-sphere. However, this geometric realisation is not necessarily a polytope

[185, Ex. 7.5].

Example 2.5.2. Consider the complete fan Σ(F𝑎) in R2 as shown in Fig. 2.5a,

which gives rise to a common toric variety called the Hirzebruch surface F𝑎 where

𝜎3 = cone{(−1, 𝑎)} and 𝑎 is a positive integer. The simplicial complex is given by the

vertex set Δ0 = {𝜎𝑖 : 1 ≤ 𝑖 ≤ 4} and Δ = {{𝜎𝑖}4𝑖=1, {𝜎1, 𝜎2}, {𝜎2, 𝜎3}, {𝜎3, 𝜎4}, {𝜎4, 𝜎1}}

and is depicted in Fig. 2.5b.

The viewpoint of a fan as a simplicial complex is useful when constructing the

classifying space of the 𝜏 -cluster mophism category. For this purpose the following two

constructions for simplicial complexes are necessary:

(1) The link lkΔ(𝜎) of a simplex 𝜎 ∈ Δ is the simplicial subcomplex of Δ given by

lkΔ(𝜎) := {𝜅 ∈ Δ : 𝜎 ∩ 𝜅 = ∅ and 𝜎 ∪ 𝜅 ∈ Δ}.
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(a) Geometric depiction of Σ(F𝑎)
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(b) Simplicial complex associated to Σ(F𝑎)

Figure 2.5: The polyhedral fan of a Hirzebruch surface F𝑎
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(a) Heart fan of coh(P1) of Example 2.5.3
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(b) Fan of tilting modules of Ex-

ample 2.5.4

Figure 2.6: Examples of polyhedral fans in R2

(2) The join Δ1 *Δ2 of two simplicial complexes Δ1,Δ2 has vertex set Δ0
1 ∪Δ0

2 and

simplices given by

Δ1 *Δ2 := {𝜎 ∈ Δ0
1 ∪Δ0

2 : 𝜎 ∩Δ0
1 ∈ Δ1 and 𝜎 ∩Δ0

2 ∈ Δ2}.

The join with a simplicial complex consisting of a single vertex is called the (topo-

logical) cone over a simplicial complex.

To conclude this section, consider two more examples of polyhedral fans arising in
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different contexts.

Example 2.5.3. [37, Exmp. 4.7] Let 𝒜 be an abelian category. Then 𝒜 may be viewed

as the heart of the standard 𝑡-structure in its bounded derived category. The authors of

[37] define a cone associated to each heart of a bounded 𝑡-structure on a triangulated

category. Such hearts admit a partial order via inclusion of the co-aisles. The cones

defined by those hearts lying between 𝒜 and 𝒜[1] with respect to this partial order define

a fan called the heart fan in [37]. As an example consider Fig. 2.6a, where 𝒜 = coh(P1
𝐾)

is the category of coherent sheaves on the projective line P1
𝐾 . Observe that this fan is

infinite, incomplete and simplicial.

Example 2.5.4. Let 𝐴 be the finite-dimensional 𝐾-algebra from Example 2.2.6. The

(classical) tilting modules of this algebra are

2
2 ⊕

1
2
2
,

1
2
2
⊕ 1

1 2
2
, and 1

1 2
2
⊕ 1 .

By definition these are the modules 𝑀 ∈ mod𝐴 whose projective dimension is at most

one and which satisfy Ext1(𝑀,𝑀) = 0 and |𝑀 | = |𝐴|, see [15, Cor. IV.4.7]. If 𝑀 is of

projective dimension at most one, then [16, Prop. 5.8] and [11, Cor. IV.2.14] imply that

Hom(𝑀, 𝜏𝑀) = 0 if and only if Ext1(𝑀,𝑀) = 0. Hence classical tilting modules are a

subset of 𝜏 -tilting modules, and for this algebra, they actually coincide with them. By

[96, Thm. 4.1, 4.2] the cones spanned by dimension vectors of indecomposable direct

summands of tilting 𝐴-modules define a fan, displayed in Fig. 2.6b. Observe that this

is a finite, incomplete and simplicial fan.

2.6 The 𝑔-vector fan

In this section the 𝑔-vector fan of a finite-dimensional algebra is introduced. It is defined

as a fan in the real vector space 𝐾0(proj𝐴)R := 𝐾0(proj𝐴) ⊗Z R which is isomorphic

to R|𝐴|. By construction it encodes the compatibility of 𝜏 -rigid pairs.

Definition 2.6.1. Let 𝑀 ∈ mod𝐴 and let 𝑃−1 → 𝑃 0 → 𝑀 → 0 be a minimal

projective presentation of 𝑀 , where 𝑃 0 =
⨁︀|𝐴|

𝑖=1 𝑃 (𝑖)𝑎𝑖 and 𝑃−1 =
⨁︀|𝐴|

𝑖=1 𝑃 (𝑖)𝑏𝑖 . Define

the 𝑔-vector of 𝑀 as

𝑔𝑀 := (𝑎1 − 𝑏1, 𝑎2 − 𝑏2, . . . , 𝑎|𝐴| − 𝑏|𝐴|) ∈ R|𝐴|.
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This vector corresponds to [𝑃 0]− [𝑃−1] ∈ 𝐾0(proj𝐴)R. Furthermore, define the 𝑔-vector

of a 𝜏 -rigid pair (𝑀,𝑃 ) as 𝑔(𝑀,𝑃 ) = 𝑔𝑀 − 𝑔𝑃 . In this way, associate a polyhedral cone

𝒞(𝑀,𝑃 ) := cone{𝑔𝑀1 , . . . , 𝑔𝑀𝑘 ,−𝑔𝑃𝑘+1 , . . . ,−𝑔𝑃𝑡} ⊆ R|𝐴| to each 𝜏 -rigid pair (𝑀,𝑃 ),

where {𝑀𝑖}
𝑘
𝑖=1 and {𝑃𝑗}𝑡𝑗=𝑘+1 are the indecomposable direct summands of 𝑀 and 𝑃

respectively. The interior cone of 𝒞(𝑀,𝑃 ) is denoted by 𝒞(𝑀,𝑃 ).

Now consider the fan whose cones are generated by the 𝑔-vectors of 𝜏 -rigid pairs.

Definition 2.6.2. Define the 𝑔-vector fan of an algebra 𝐴 to be given by

Σ(𝐴) := {𝒞(𝑀,𝑃 ) ⊆ R|𝐴| : (𝑀,𝑃 ) ∈ 𝜏 -rigidp𝐴}.

Since the 𝑔-vectors of a 𝑔-vector cone are linearly independent [3, Thm. 5.1], faces of

𝑔-vector cones are 𝑔-vector cones of direct summands. Moreover, the intersection of two

𝑔-vector cones is a face of both, see [56, Cor. 6.7(b)] and [120, Thm. 6.13]. Therefore

Σ(𝐴) is a simplicial polyhedral fan.

Example 2.6.3. Let 𝐴 be the finite-dimensional 𝐾-algebra of Example 2.2.6. Its poset

of 𝜏 -tilting pairs is displayed in Fig. 2.2a. The 𝑔-vectors of the indecomposable projective

modules 1
2
2

and 2
2 are given by the standard basis vectors 𝑒1 and 𝑒2 of R2, respectively.

Moreover, the minimal projective presentations of the other indecomposable 𝜏 -rigid

modules are as follows:

2
2 →

(︁ 1
2
2

)︁2
→ 1

1 2
2
→ 0, 2

2 →
1
2
2
→ 1 → 0.

The 𝑔-vector fan Σ(𝐴) of 𝐴 is displayed in Fig. 2.7.

As demonstrated in [169] the 𝜏 -cluster morphism category W(𝐴) can be constructed

from the 𝑔-vector fan Σ(𝐴). In the remainder of this section, this construction is recalled.

Denote by Σ𝑜(𝐴) the poset of interior cones of Σ(𝐴) induced by the poset structure of

Σ(𝐴). That is, Σ𝑜(𝐴) is a category with a unique morphism 𝑓𝒞(𝑀,𝑃 )𝒞(𝑁,𝑄)
whenever

𝒞(𝑀,𝑃 ) ⊆ 𝒞(𝑁,𝑄) in Σ(𝐴).

Definition 2.6.4. [169, Def. 3.3] Let 𝐴 be a finite-dimensional algebra. Define C(𝐴)

to be the category
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Figure 2.7: The 𝑔-vector fan Σ(𝐴) of Example 2.6.3

• whose objects are equivalence classes of interior 𝑔-vector cones 𝒞(𝑀,𝑃 ), coming

from 𝒞(𝑀,𝑃 ) ∈ Σ(𝐴), under the identification 𝒞(𝑀1,𝑃1) ∼ 𝒞(𝑀2,𝑃2) whenever their

corresponding 𝜏 -perpendicular subcategories 𝒲(𝑀1,𝑃1) and 𝒲(𝑀2,𝑃2) coincide;

• whose morphisms HomC(𝐴)([𝒞(𝑀,𝑃 )], [𝒞(𝑁,𝑄)]) are given by the set of morphisms

⋃︁
𝒞

(𝑀
′
,𝑃

′)
∈[𝒞(𝑀,𝑃 )],𝒞

(𝑁
′
,𝑄

′)
∈[𝒞(𝑁,𝑄)]

HomΣ𝑜(𝐴)(𝒞(𝑀 ′
,𝑃

′), 𝒞(𝑁 ′
,𝑄

′))

under the identification 𝑓𝒞(𝑀1,𝑃1)𝒞(𝑁1,𝑄1)
∼ 𝑓𝒞(𝑀2,𝑃2)𝒞(𝑁2,𝑄2)

whenever

𝜋𝒞(𝑀1,𝑃1)
(𝒞(𝑁1,𝑄1)) = 𝜋𝒞(𝑀2,𝑃2)

(𝒞(𝑁2,𝑄2)),

where 𝜋𝒞(𝑀,𝑃 )
: R|𝐴| → span(𝒞(𝑀,𝑃 ))⊥ denotes the orthogonal projection of R|𝐴|

onto the orthogonal complement of span(𝒞(𝑀,𝑃 )).

This definition omits the composition of morphisms again, which will be made precise

in the subsequent chapter.
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Theorem 2.6.5. [169, Thm. 1] The category C(𝐴) defined from the 𝑔-vector fan Σ(𝐴)

is equivalent to W(𝐴).

The advantage of Definition 2.6.4 over Definition 2.3.1 lies in showing that composi-

tion of morphisms is associative, but gives rise to certain ambiguities since equivalence

classes are involved. This issue is discussed further in the subsequent chapter.

Example 2.6.6. Let 𝐴 be the finite-dimensional 𝐾-algebra of Example 2.2.6 and com-

pare the cubical structure of ℬW(𝐴) displayed in Fig. 2.4 with the 𝑔-vector fan Σ(𝐴)

displayed in Fig. 2.7. The similarities between the two figures illustrates Theorem 2.6.5.



Chapter 3

The category of a partitioned fan

The starting point for this chapter is the geometric Definition 2.6.4 of the 𝜏 -cluster mor-

phism category from the 𝑔-vector fan. In Section 3.1 the necessary geometric properties

are extracted from this construction and the category generalised to arbitrary simplicial

polyhedral fans. In this general setting, the algebraic information on which cones of

the fan should be identified is not available, which leads to the definition of admissible

partitions of the fan in Definition 3.1.1. An admissible partition guarantees that when

mimicking the construction, the resulting category, called the the category of a parti-

tioned fan, is well-defined, see Proposition 3.1.8. This raises the question which of the

properties of the 𝜏 -cluster morphism category are satisfied by these categories. In Sec-

tion 3.2, it is shown that all categories constructed from admissible partitions are cubical,

see Section 2.4, and that their classifying spaces thus form cube complexes. Moreover,

in Section 3.3 these classifying space are shown to have the structure of CW-complexes

which simplifies studying their fundamental groups. By generalising Definition 2.3.2 in

Definition 3.4.4, a geometric analogue of the picture group is defined for any finite com-

plete fan whose maximal cones are equipped with a well-behaved (fan) poset. Then, the

relationship between this group and the fundamental group of the category is investi-

gated. In Section 3.5 the focus lies on fans in R2 , where it is characterised when the

three parts of the sufficient condition of Proposition 2.4.4 are satisfied. This yields many

examples of 𝐾(𝜋, 1) spaces. In a similar way, in Section 3.6, the existence of a faithful

group functor from the category, is proven to hold for the category of a partitioned fan

36
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whenever the fan is a hyperplane arrangement and the partition is maximal. This result

is extended to all partitions in Section 3.7 by showing that the collection of admissible

partitions, and hence of their associated categories, forms a complete lattice. Moreover,

the existence of a faithful group functor is inherited by finer, that is, “smaller” in the lat-

tice, partitions. Finally, in Section 3.8, these general results are applied to the 𝜏 -cluster

morphism category of an algebra. In particular, to show that whenever the 𝑔-vector fan

Σ(𝐴) is a finite hyperplane arrangement, then the 𝜏 -cluster morphism category admits

a faithful group functor to the picture group. This gives a new family of algebras ad-

mitting a faithful group functor, extending those listed in Example 2.4.5, one particular

example is given in Example 3.8.5.

3.1 Definition of the category

Let Σ be a polyhedral fan in R𝑛. Recall that the collection of cones containing a cone 𝜎 of

Σ is denoted by star(𝜎) = {𝜌 ∈ Σ : 𝜎 ⊆ 𝜌}. Cones which are identified in Definition 2.6.4

“have the same relative fan structure around them”. To make this statement precise,

let 𝜋𝜎 : R𝑛 → span{𝜎}⊥ be the projection onto the orthogonal complement of 𝜎.

For each cone 𝜎 ∈ R𝑛, this defines another fan 𝜋𝜎(star(𝜎)). Then two cones 𝜎1, 𝜎2

of Σ which are identified in Definition 2.6.4 satisfy both span{𝜎1}
⊥ = span{𝜎2}

⊥ as

well as 𝜋𝜎1
(star(𝜎1)) = 𝜋𝜎2

(star(𝜎2)). Importantly, not all pairs of cones sharing these

properties are identified. However, when generalising from the 𝑔-vector fan of a finite-

dimensional algebra to an arbitrary simplicial fan, the information of which cones to

identify is lost. Therefore, consider for each cone 𝜎1 ∈ Σ the collection of potential

identifications

ℰ𝜎1
:= {𝜎2 ∈ Σ : span{𝜎1}

⊥ = span{𝜎2}
⊥ and 𝜋𝜎1

(star(𝜎1)) = 𝜋𝜎2
(star(𝜎2))}.

It is clear that this is an equivalence relation and therefore ℰ𝜎1
= ℰ𝜎2

for any two

cones sharing these properties. Now the set of potential identifications may be parti-

tioned into sets of actual identifications. Recall, that a partition of a set 𝑋 is a set 𝑃

of nonempty pairwise-disjoint subsets, called blocks, of 𝑋 whose union is 𝑋. In other

words, each ℰ𝜎 is split into blocks ℰ1
𝜎, . . . , ℰ

𝑚𝜎
𝜎 for some 1 ≤ 𝑚𝜎 ≤ |ℰ𝜎| such that these
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coincide for all representatives of 𝜎 ∈ ℰ𝜎. This induces a partition P of the fan Σ, for

which 𝜎1 ∼ 𝜎2 whenever 𝜎1, 𝜎2 ∈ ℰ
𝑘
𝜎 for some 1 ≤ 𝑘 ≤ 𝑚𝜎 and 𝜎 ∈ Σ.

Definition 3.1.1. A partition P of Σ as described above is called admissible if whenever

𝜎1 ∼ 𝜎2 are such that 𝜋𝜎1
(𝜌1) = 𝜋𝜎2

(𝜌2) for some 𝜌1 ∈ star(𝜎1) and 𝜌2 ∈ star(𝜎2), then

𝜌1 ∼ 𝜌2. A partitioned fan is a pair (Σ,P) of a simplicial fan Σ and an admissible

partition P of Σ.

This says that if two cones 𝜎1, 𝜎2 are in the same equivalence class, then any two

cones in their respective stars which are “in the same relative position” should be identi-

fied. This restriction is necessary to make the composition of morphisms in the category

of a partitioned fan well-defined. It is not obvious that nontrivial admissible partitions

exist, because the cones 𝜌1, 𝜌2 in the definition might not satisfy ℰ𝜌1
= ℰ𝜌2

. In other

words it might not be possible to identify 𝜌1 and 𝜌2 with the rules defined above. Before

proving that nontrivial admissible partitions always exist, recall the following elemen-

tary result from linear algebra, whose proof is included for the sake of completeness.

Lemma 3.1.2. Let 𝜎 ⊆ 𝜌 ∈ Σ𝑛, then 𝜋𝜌 ∘ 𝜋𝜎 = 𝜋𝜌.

Proof. Every vector 𝑣 ∈ R𝑛 has a unique orthogonal decomposition 𝑣 = 𝜋𝜎(𝑣) + 𝑝𝜎(𝑣),

where 𝑝𝜎 : R𝑛 → span{𝜎} is the orthogonal projection onto the subspace of R𝑛 spanned

by 𝜎. Then

𝜋𝜌(𝑣) = 𝜋𝜌(𝜋𝜎(𝑣) + 𝑝𝜎(𝑣)) = 𝜋𝜌 ∘ 𝜋𝜎(𝑣) + 𝜋𝜌 ∘ 𝑝𝜎(𝑣).

But since 𝑝𝜎(𝑣) ⊆ span{𝜌}, it follows that 𝜋𝜌 ∘ 𝑝𝜎 = 0.

The following result shows that admissible partitions exist by showing that the

relevant cones lie in the same set of potential identifications.

Lemma 3.1.3. Let 𝜎1 ∼ 𝜎2 in C(Σ,P). If there exist 𝜌1 ∈ star(𝜎1) and 𝜌2 ∈ star(𝜎2)

such that 𝜋𝜎1
(𝜌1) = 𝜋𝜎2

(𝜌2), then 𝜌1, 𝜌2 ∈ ℰ𝜌 for some 𝜌 ∈ Σ.

Proof. By definition, one needs to show that in this case span{𝜌1}
⊥ = span{𝜌2}

⊥ and

𝜋𝜌1
(star(𝜌1)) = 𝜋𝜌2

(star(𝜌2)) are satisfied, which directly implies 𝜌1, 𝜌2 ∈ ℰ𝜌1
= ℰ𝜌2

.

Because 𝜋𝜎1
(𝜌1)∩ 𝜎1 = {0}, it is possible to take any basis 𝐵1 of 𝜋𝜎1

(𝜌1) = 𝜋𝜎2
(𝜌2) and
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any basis 𝐵2 of span(𝜎1) = span(𝜎2) and then obtain a basis 𝐵1 ∪ 𝐵2 of span{𝜌1} and

span{𝜌2}. This implies span{𝜌1}
⊥ = span{𝜌2}

⊥, as required.

To show that 𝜋𝜌1
(star(𝜌1)) = 𝜋𝜌2

(star(𝜌2)) holds, Lemma 3.1.2 is invoked. For

𝜎, 𝜌 ∈ Σ such that 𝜎 ⊆ 𝜌, write starΣ(𝜌) to mean the star of 𝜌 in Σ, and write

star𝜋𝜎(star(𝜎))(𝜋𝜎(𝜌)) to mean the star of 𝜋𝜎(𝜌) in 𝜋𝜎(star(𝜎)). It is easy to see that

star𝜋𝜎(star(𝜎))(𝜋𝜎(𝜌)) = 𝜋𝜎(starΣ(𝜌)) holds. From 𝜎𝑖 ⊆ 𝜌𝑖 for 𝑖 = 1, 2 and 𝜎1 ∼ 𝜎2 it

follows that 𝜋𝜎1
(star(𝜌1)) = 𝜋𝜎2

(star(𝜌2)) holds. In conclusion

𝜋𝜌1
(star(𝜌1)) = 𝜋𝜌1

(𝜋𝜎1
(star(𝜌1))) = 𝜋𝜌2

(𝜋𝜎2
(star(𝜌2))) = 𝜋𝜌2

(star(𝜌2)),

holds by Lemma 3.1.2 since 𝜋𝜌1
= 𝜋𝜌2

. Therefore, ℰ𝜌1
= ℰ𝜌2

.

Thus, admissible partitions exist and throughout this chapter, let P denote an ad-

missible partition. Using admissible partitions it is now possible to generalise Defini-

tion 2.6.4. This definition and the subsequent discussion make precise the definition of

composition of morphisms omitted in Definition 2.6.4.

Definition 3.1.4. Given a partitioned fan (Σ,P), define the category of the partitioned

fan C(Σ,P) as follows:

(1) The objects of C(Σ,P) are equivalence classes [𝜎] of the partition P of Σ;

(2) The set of morphisms HomC(Σ,P)([𝜎], [𝜌]) consists of equivalence classes of objects

in ⋃︁
𝜎𝑖∈[𝜎],𝜌𝑗∈[𝜌]

HomΣ(𝜎𝑖, 𝜌𝑗)

under the equivalence relation where 𝑓𝜎1𝜌1
∼ 𝑓𝜎2𝜌2

if and only if 𝜋𝜎1
(𝜌1) = 𝜋𝜎2

(𝜌2);

(3) Given [𝑓𝜎𝜅] ∈ HomC(Σ,P)([𝜎], [𝜅]) and [𝑓𝜅𝜌] ∈ HomC(Σ,P)([𝜅], [𝜌]), their composition

is defined as [𝑓𝜅𝜌] ∘ [𝑓𝜎𝜅] = [𝑓𝜎𝜌].

Because there exists a unique morphism 𝑓𝜎𝜌 in the poset category Σ whenever 𝜎 ⊆ 𝜌,

any two compositions of morphisms [𝑓𝜅1𝜌
] ∘ [𝑓𝜎𝜅1

] and [𝑓𝜅2𝜌
] ∘ [𝑓𝜎𝜅2

] which map to the

same representative of an equivalence class coincide. Similar to [169, Rem. 3.5] it is not

clear that the composition of morphisms in C(Σ,P) is well-defined for two reasons:
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(1) In order to define the composition of two nonzero morphisms [𝑓𝜎1𝜅1
] and [𝑓𝜅2𝜌2

]

where 𝜅1 ∼ 𝜅2 there must exist a morphism 𝑓𝜅1𝜌1
∼ 𝑓𝜅2𝜌2

so that

[𝑓𝜅2𝜌2
] ∘ [𝑓𝜎1𝜅1

] = [𝑓𝜎1𝜌1
].

(2) Given morphisms 𝑓𝜎1𝜅1
∼ 𝑓𝜎2𝜅2

and 𝑓𝜅1𝜌1
∼ 𝑓𝜅2𝜌2

it needs to be shown that

[𝑓𝜅1𝜌1
] ∘ [𝑓𝜎1𝜅1

] = [𝑓𝜅2𝜌2
] ∘ [𝑓𝜎2𝜅2

].

In an analogous way to [169, Lem. 3.9, Lem. 3.10], these problems are resolved by

the following two lemmas.

Lemma 3.1.5. For any two morphisms [𝑓𝜎1𝜅1
] and [𝑓𝜅2𝜌2

] in C(Σ,P) with 𝜅1 ∼ 𝜅2

there exists a morphism 𝑓𝜅1𝜌1
∼ 𝑓𝜅2𝜌2

with 𝜌1 ∼ 𝜌2.

Proof. Since 𝜅1 ∼ 𝜅2 it follows by definition that 𝜋𝜅1
(star(𝜅1)) = 𝜋𝜅2

(star(𝜅2)). Thus,

for each 𝜌2 ∈ star(𝜅2) there exists 𝜌1 ∈ star(𝜅1) such that 𝜋𝜅1
(𝜌1) = 𝜋𝜅2

(𝜌2). Since the

partition is admissible, it follows that therefore 𝜌1 ∼ 𝜌2. Thus, there exists a morphism

𝑓𝜅1𝜌1
which satisfies 𝑓𝜅1𝜌1

∼ 𝑓𝜅2𝜌2
.

The following is a special case of Lemma 3.1.5 where 𝜎1 = 𝜅1, which will be used

repeatedly throughout.

Corollary 3.1.6. Let P be an admissible partition and let 𝑓𝜎2𝜌2
be a morphism of the

poset category Σ. If 𝜎1 ∼ 𝜎2 in P, then there exists a morphism 𝑓𝜎1𝜌1
in the poset

category such that 𝑓𝜎1𝜌1
∼ 𝑓𝜎2𝜌2

in C(Σ,P).

The second concern regarding composition of morphisms in C(Σ,P) is resolved as

follows.

Lemma 3.1.7. Let 𝑓𝜎1𝜅1
∼ 𝑓𝜎2𝜅2

and 𝑓𝜅1𝜌1
∼ 𝑓𝜅2𝜌2

be two pairs of identified morphisms

in C(Σ,P). Then [𝑓𝜅1𝜌1
] ∘ [𝑓𝜎1𝜅1

] = [𝑓𝜅2𝜌2
] ∘ [𝑓𝜎2𝜅2

].

Proof. By assumption the equalities 𝜋𝜎1
(𝜅1) = 𝜋𝜎2

(𝜅2) and 𝜋𝜅1
(𝜌1) = 𝜋𝜅2

(𝜌2) hold.

Now take two vectors 𝑤1 ∈ 𝜅1 and 𝑤2 ∈ 𝜅2 such that 𝜋𝜎1
(𝑤1) = 𝜋𝜎2

(𝑤2) and take

𝑣 ∈ 𝜋𝜅1
(𝜌1) = 𝜋𝜅2

(𝜌2). Then, similar to the proof of Lemma 3.1.3, a basis of span{𝜌1}

consists of the union of a basis of 𝜅1 and a basis of 𝜋𝜅1
(𝜌1). Hence there exists a scalar
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𝜖1 > 0 such that 𝑤1 + 𝜖1𝑣 ∈ 𝜌1. Similarly, there exists 𝜖2 > 0 such that 𝑤2 + 𝜖2𝑣 ∈ 𝜌2.

Set 𝛿 = min{𝜖1, 𝜖2}, then 𝑤𝑖 + 𝛿𝑣 ∈ 𝜌𝑖 for 𝑖 = 1, 2. Then

𝜋𝜎1
(𝑤1 + 𝛿𝑣) = 𝜋𝜎1

(𝑤1) + 𝛿𝜋𝜎1
(𝑣) = 𝜋𝜎2

(𝑤2) + 𝛿𝜋𝜎2
(𝑣) = 𝜋𝜎2

(𝑤2 + 𝛿𝑣).

Hence 𝜋𝜎1
(𝜌1) ∩ 𝜋𝜎2

(𝜌2) ̸= {0}. Because of the equivalence of fans between 𝜋𝜎1
(star𝜎1)

and 𝜋𝜎2
(star𝜎2), the intersection is either zero or the two projections coincide. This

implies 𝜋𝜎1
(𝜌1) = 𝜋𝜎2

(𝜌2) and thus 𝑓𝜎1𝜌1
∼ 𝑓𝜎2𝜌2

.

As a consequence of Lemma 3.1.5 and Lemma 3.1.7, the composition of morphisms

in C(Σ,P) is well-defined and therefore the following holds.

Proposition 3.1.8. The category of Definition 3.1.4 is well-defined.

Example 3.1.9. Consider the complete fan Σ(F𝑎) in Fig. 2.5a. The possible identifica-

tions for this fan are:

ℰ0 = {0}, ℰ𝜎1
= {𝜎1}, ℰ𝜎2

= {𝜎2, 𝜎4}, ℰ𝜎3
= {𝜎3}, ℰ𝜅1

= {𝜅1, 𝜅2, 𝜅3, 𝜅4}.

The trivial case of not making any identifications gives the standard poset category

(Σ,⊆) = C(Σ,Pposet) whose classifying space is the disk, or more specifically a square.

Only two cones of dimension 1 may be identified since their linear spans coincide, namely

𝜎2 and 𝜎4. Moreover, they are such that 𝜋𝜎2
(𝜅2) = 𝜋𝜎4

(𝜅1) and 𝜋𝜎2
(𝜅3) = 𝜋𝜎4

(𝜅4) and

therefore to make the partition admissible, one must identify the cones in the following

way:

P1 = {{0}, {𝜎1}, {𝜎2, 𝜎4}, {𝜎3}, {𝜅1, 𝜅2}, {𝜅3, 𝜅4}}.

The category is displayed in Fig. 3.1, where the identified morphisms are given the

same label and colour. The classifying space is a cylinder and is obtained from the square

by identifying the opposite “sides” 𝜅4 ←− 𝜎4 −→ 𝜅1 and 𝜅3 ←− 𝜎2 −→ 𝜅2, see Section 3.3 for

more details. It is also possible to additionally identify all rank 2 cones whose classifying

space would join the two ends of the cylinder in one point. If the rank 1 cones are not

identified, arbitrary identifications may be made among the rank 2 cones, giving rise to

the topological spaces coming from a square with any combination of vertices identified.

Recall for Fig. 3.1 that any two compositions having the same target are identified.
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[0]

[𝜎1] [𝜎2] [𝜎4] [𝜎3]

[𝜌2] [𝜌1] [𝜌3] [𝜌4]

𝑎
𝑏

𝑎
𝑏

Figure 3.1: The category of the partitioned fan (Σ,P1), with Σ(F𝑎) as in Fig. 2.5a

3.2 Cubical structure

In this section, it is shown that the category C(Σ,P) of a partitioned fan is cubical, see

Definition 2.4.1. The rank of a morphism [𝑓𝜎𝜌] in C(Σ,P) is defined to be the difference

of the dimensions of the cones, in other words,

rk([𝑓𝜎𝜌]) = dim 𝜌− dim 𝜎.

This is well-defined since two identified cones 𝜎1 ∼ 𝜎2 in C(Σ,P) have the same

linear span in R𝑛 by definition and therefore the same dimension. As a starting point,

consider the finest partition, the trivial poset partition Pposet of the fan. In this case

the category C(Σ,Pposet) is just the poset category naturally associated with the fan.

Lemma 3.2.1. Let Σ be a simplicial fan. The category C(Σ,Pposet) satisfies Condition

(2) of Definition 2.4.1.

Proof. Let 𝜎 ⊆ 𝜌 ∈ Σ be two cones and consider the morphism [𝑓𝜎𝜌] ∈ C(Σ,Pposet).

Assume that dim 𝜎 = 𝑘 and dim 𝜌 = ℓ. Then 𝜌 can be expressed as

𝜌 = cone{𝑣1, . . . , 𝑣ℓ−𝑘, 𝜎} ∈ Σ,

where 𝑣1, . . . , 𝑣ℓ−𝑘 ∈ Σ are the linearly independent dimension 1 cones of Σ generating

𝜌 which are not contained in 𝜎. This way of writing 𝜌 is unique. The following bijection
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between objects of ℐℓ−𝑘 and Faq([𝑓𝜎𝜌]) induces an isomorphism of categories

ℐℓ−𝑘 → Faq([𝑓𝜎𝜌])

{1, . . . , ℓ− 𝑘} ⊇ 𝑆 ↦→ (𝜎 → cone {{𝑣𝑖}𝑖∈𝑆 , 𝜎} → 𝜌),

where morphisms are induced by the poset structures, in other words 𝑆 ⊆ 𝑃 ∈ ℐℓ−𝑘 if

and only if cone {{𝑣𝑖}𝑖∈𝑆 , 𝜎} ⊆ cone {{𝑣𝑖}𝑖∈𝑃 , 𝜎}. It is clear how to define the inverse

and that this is an isomorphism.

Since more general categories of a partitioned fan are constructed from the poset

category C(Σ,Pposet) via identifications, the following key lemma is essential in under-

standing how the category changes when cones are identified. In particular, it shows

that two morphisms which are identified have coinciding factorisation cubes.

Lemma 3.2.2. Let 𝜎1, 𝜎2, 𝜌1, 𝜌2 ∈ Σ be distinct cones such that 𝑓𝜎1𝜌1
∼ 𝑓𝜎2𝜌2

in

C(Σ,P). Then for every factorisation 𝜎1
𝑓𝜎1𝜅1−−−→ 𝜅1

𝑓𝜅1𝜌1−−−→ 𝜌1 of 𝑓𝜎1𝜌1
there exists a

unique factorisation 𝜎2
𝑓𝜎2𝜅2−−−→ 𝜅2

𝑓𝜅2𝜌2−−−→ 𝜌2 of 𝑓𝜎2𝜌2
such that 𝜅1 ∼ 𝜅2. In this case

𝑓𝜎1𝜅1
∼ 𝑓𝜎2𝜅2

and 𝑓𝜅1𝜌1
∼ 𝑓𝜅2𝜌2

hold in C(Σ,P).

Proof. If 𝜎1 or 𝜎2 is a maximal cone, then such 𝜌1 and 𝜌2 do not exist and the result is

trivial. Therefore assume that 𝜎1 and 𝜎2 are not maximal. By assumption 𝜎1 ∼ 𝜎2 and

𝜌1 ∼ 𝜌2 and thus 𝜋𝜎1
(star(𝜎1)) = 𝜋𝜎2

(star(𝜎2)). So for every 𝜅1 ∈ star(𝜎1) satisfying

𝜅1 ⊆ 𝜌1 there exists a unique 𝜅2 ∈ star(𝜎2) such that 𝜋𝜎1
(𝜅1) = 𝜋𝜎2

(𝜅2). Because

the partition P is admissible and 𝜎1 ∼ 𝜎2, this implies that 𝜅1 ∼ 𝜅2. This implies

𝑓𝜎1𝜅1
∼ 𝑓𝜎2𝜅2

by definition. These cones satisfy 𝜅2 ⊆ 𝜌2, since

𝜋𝜎2
(𝜅2) = 𝜋𝜎1

(𝜅1) ⊆ 𝜋𝜎1
(𝜌1) = 𝜋𝜎2

(𝜌2)

implies that 𝜅2 is a face of 𝜌2. It is clear that 𝜎𝑖 ⊆ 𝜅𝑖 implies 𝜅⊥
𝑖 ⊆ 𝜎⊥

𝑖 for 𝑖 = 1, 2.

Hence Lemma 3.1.2 may be applied to show that 𝑓𝜅1𝜌1
∼ 𝑓𝜅2𝜌2

by observing that

𝜋𝜅1
(𝜌1) = 𝜋𝜅1

(𝜋𝜎1
(𝜌1)) = 𝜋𝜅2

(𝜋𝜎2
(𝜌2)) = 𝜋𝜅2

(𝜌2)

holds since 𝜋𝜎1
(𝜌1) = 𝜋𝜎2

(𝜌2) follows from 𝑓𝜎1𝜌1
∼ 𝑓𝜎2𝜌2

by definition.

Therefore, the category C(Σ,P) of a partitioned fan satisfies Condition (2) of Defi-

nition 2.4.1 for any admissible partition. The following example illustrates the identifi-

cation of factorisation cubes described in the previous lemma.
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Example 3.2.3. Consider the standard coordinate fan Σ in R3 whose cones are spanned

by the linearly independent (nonnegative) combinations of the vectors ±𝑒𝑖 ∈ R3. Choose

a partition P such that 𝑒1 ∼ −𝑒1 ∈ C(Σ,P). For P to be admissible the factorisation

cubes of [𝑓𝑒1,cone{𝑒1,𝑒2,𝑒3}] and [𝑓−𝑒1,cone{−𝑒1,𝑒2,𝑒3}] must be identified as follows:

[ cone{𝑒1}] [ cone{−𝑒1}]

[ cone{𝑒1, 𝑒2}] [ cone{−𝑒1, 𝑒2}] [ cone{𝑒1, 𝑒3}] [ cone{−𝑒1, 𝑒3}]

[ cone{𝑒1, 𝑒2, 𝑒3}] [ cone{−𝑒1, 𝑒2, 𝑒3}]

𝑎

𝑐

𝑐

𝑎

𝑏

𝑏 𝑑

𝑑

Consider the following analogue of [91, Lem. 2.5b] a tool for showing Condition (3)

of Definition 2.4.1.

Lemma 3.2.4. Let [𝑓𝜎𝜌] ∈ C(Σ,P). There exists exactly one morphism

([𝜎] [𝑔1]−−→ [𝜅] [ℎ1]−−→ [𝜌])→ ([𝜎] [𝑔2]−−→ [𝜆] [ℎ2]−−→ [𝜌])

in Faq([𝑓𝜎𝜌]) whenever 𝜅1 ⊆ 𝜆1 for some 𝜅1 ∈ [𝜅] and 𝜆1 ∈ [𝜆] and none otherwise.

Proof. If there exist two morphisms [𝑓𝜅1𝜆1
] ̸= [𝑓𝜅2𝜆2

] in Faq([𝑓𝜎𝜌]), consider the repre-

sentatives 𝜅1 ∼ 𝜅2 and 𝜆1 ∼ 𝜆2 in the equivalence classes. It is immediate from the rule

for identifying morphisms that if 𝜅1 = 𝜅2, then 𝜆1 = 𝜆2. Conversely, if 𝜆1 = 𝜆2 but

𝜅1 ̸= 𝜅2, then span(𝜅1) = span(𝜅2) gives a contradiction to the cones being simplicial.

Thus we may assume that if the morphisms are distinct so are the cones. Assume there

exists only one representative 𝜎 ∈ [𝜎], then 𝜅1, 𝜅2 ∈ star(𝜎) implies 𝜋𝜎(𝜅1) ̸= 𝜋𝜎(𝜅2).

Hence [𝑓𝜎𝜅1
] ̸= [𝑓𝜎𝜅2

] which is a contradiction since they both equal [𝑔1]. It follows that

there need to be distinct representatives 𝜎1, 𝜎2 ∈ [𝜎] and thus there are two sets of

inclusions 𝜎𝑖 ⊆ 𝜅𝑖 ⊆ 𝜆𝑖 satisfying [𝑓𝜎𝑖𝜆𝑖
] = [𝑔2] for 𝑖 = 1, 2. Then Lemma 3.2.2 implies

that [𝑓𝜅1𝜆1
] = [𝑓𝜅2𝜆2

], a contradiction. The (non-)existence is obvious.

Notice however, that there is not necessarily a unique morphism [𝜅]→ [𝜆] in C(Σ,P)

in general. However, if one 𝜅1 ⊆ 𝜆1 exists, then there exist 𝜅𝑖 ⊆ 𝜆𝑖 for every 𝜅𝑖 ∈ [𝜅],
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such that 𝜆𝑖 ∈ [𝜆] and 𝑓𝜅𝑖𝜆𝑖
∈ [𝑓𝜅𝜆] by Lemma 3.2.2. This sets up the proof of the third

condition of the definition of a cubical category.

Lemma 3.2.5. Let [𝑓𝜎𝜌] be a morphism in C(Σ,P). The forgetful functor

Faq([𝑓𝜎𝜌])→ C(Σ,P)

([𝜎]→ [𝜅]→ [𝜌]) ↦→ [𝜅]

is an embedding.

Proof. Consider two distinct factorisations of a morphism [𝑓𝜎𝜌] ∈ C(Σ,P) given by

[𝜎1]
[𝑓𝜎1𝜅1

]
−−−−→ [𝜅1]

[𝑓𝜅1𝜌1
]

−−−−→ [𝜌1] and [𝜎2]
[𝑓𝜎2𝜅2

]
−−−−→ [𝜅2]

[𝑓𝜅2𝜌2
]

−−−−→ [𝜌2]

satisfying [𝜅1] = [𝜅2]. Without loss of generality, by Lemma 3.2.2, assume that 𝜎1 = 𝜎2

and 𝜌1 = 𝜌2. Assume 𝜅1 ̸= 𝜅2. Then, since 𝜅1 and 𝜅2 have the same linear span but are

distinct, it follows that there is no generator of one which is linearly independent with

respect to the generators of the other and thus they cannot both be contained in the

same simplicial cone 𝜌. Hence 𝜌1 and 𝜌2 have to be distinct maximal cones, yielding a

contradiction. Thus 𝜅1 = 𝜅2, so that the functor is injective-on-objects. Additionally,

the functor is faithful since there exists at most one morphism between any two objects

in Faq([𝑓𝜎𝜌]) by Lemma 3.2.4.

In C(Σ,P), like in the poset category of the fan Σ, the irreducible morphisms are

exactly the morphisms of rank 1. Hence, given a morphism [𝑓𝜎𝜌] ∈ C(Σ,P) where

dim(𝜌) = ℓ and dim(𝜎) = 𝑘, write 𝜌 = cone{𝜎, 𝑣1, . . . , 𝑣ℓ−𝑘}. Then it is easily seen that

the ℓ− 𝑘 first factors are the rank 1 morphisms [𝑓𝜎𝜅𝑖
], where 𝜅𝑖 := cone{𝜎, 𝑣𝑖} ⊆ 𝜌 and

the last factors are the rank 1 morphisms [𝑓𝜆𝑖𝜌
], where

𝜆𝑖 := cone{𝜎, 𝑣1, . . . , 𝑣𝑖−1, 𝑣𝑖+1, . . . , 𝑣ℓ−𝑘}.

Putting the above results together yields the following.

Theorem 3.2.6. The category C(Σ,P) of a partitioned fan is cubical.

Proof. As stated at the beginning of this section, the rank of a morphism is given

by rk([𝑓𝜎𝜌]) = dim 𝜌 − dim 𝜎. Condition (2) of Definition 2.4.1 follows from combin-

ing Lemma 3.2.1 and Lemma 3.2.2, whereas Condition (3) was shown explicitly in
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Lemma 3.2.5. Let [𝑓𝜎𝜌] ∈ C(Σ,P) be a morphism. Given a choice of representative

𝑓𝜎′
𝜌

′ ∈ [𝑓𝜎𝜌], the first factors are given by {[𝑓𝜎′
𝜅

′
𝑖
]}ℓ−𝑘𝑖=1 , where 𝜅′

𝑖 ⊆ 𝜌′ are constructed

from 𝜎′ and 𝜌′ as above. It is then clear that they uniquely determine the morphism

[𝑓𝜎′
𝜌

′ ] by writing 𝜌′ = cone{𝜎′, 𝜅′
1, . . . , 𝜅

′
ℓ−𝑘}. On the other hand, the last factors [𝑓𝜆𝑖𝜌

]

are easily seen to determine the morphism [𝑓𝜎𝜌], where 𝜎 =
⋂︀ℓ−𝑘
𝑖=1 𝜆𝑖.

3.3 Classifying spaces as a CW-complexes

The previous section established that categories of partitioned fans are cubical cate-

gories, hence it is natural to study their topological properties next. Throughout this

section, let Σ be a finite and complete fan in R𝑛 and P an admissible partition of Σ.

In this case, the classifying space of the category C(Σ,P) can be described as a finite

CW-complex, similar to [91], [101] and [105].

A CW-complex 𝑋 is a topological space of particular importance in algebraic topol-

ogy. It is constructed starting with a discrete set 𝑋0, called 0-cells. Iteratively, the 𝑘-

skeleton 𝑋𝑘 is formed from 𝑋𝑘−1 by attaching 𝑘-cells 𝑒𝑘𝑖 via maps 𝜙𝑖 : 𝑆𝑘−1 → 𝑋𝑘−1 for

some index set 𝐼. Hence 𝑋𝑘 is the quotient space of the disjoint union 𝑋𝑘−1 ⊔
⨆︀
𝑖∈𝐼 𝐷

𝑘
𝑖

of 𝑋𝑘−1 with a collection of 𝑘-disks {𝐷𝑘
𝑖 }𝑖∈𝐼 under the identification 𝑥 ∼ 𝜙𝑖(𝑥) for

𝑥 ∈ 𝜕𝐷𝑘
𝑖 . As a set, 𝑋𝑘 is the disjoint union of 𝑋𝑘−1 with open 𝑘-disks. The name

CW-complex comes from two properties of such complexes: closure-finiteness and weak

topology. Furthermore, the fundamental group of CW-complexes is completely deter-

mined by their 1-cells and 2-cells. For more details see [95]. In the following construction

of the CW-complex ℬC(Σ,P), each cell is the (topological) cone of the simplicial sphere

described in the following definition, hence a disk.

Definition 3.3.1. Let (Σ,P) be a partitioned fan and 𝜎 ∈ Σ be of dimension 𝑘 ̸= 𝑛.

Define 𝒮(𝜎) to be the simplicial complex whose vertices are the cones 𝜌 ∈ star(𝜎)𝑘+1

and for which {𝜌𝑖}ℓ−𝑘𝑖=1 spans a simplex if and only if

cone{𝜋𝜎(𝜌1), . . . , 𝜋𝜎(𝜌ℓ−𝑘)} ∈ 𝜋𝜎(star(𝜎)).

Lemma 3.3.2. 𝒮(𝜎) is homeomorphic to an (𝑛− 𝑘 − 1)-sphere.

Proof. By intersecting a finite and complete simplicial fan in R𝑛 with a (𝑛− 1)-sphere
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centred at the origin, one obtains the geometric realisation of Σ to be an (𝑛−1)-sphere.

Similarly for 𝒮(𝜎), the projection 𝜋𝜎(star(𝜎)) is a finite and complete simplicial fan and

thus its geometric realisation is a (𝑛− dim(𝜎)− 1)-sphere.

Note that all representatives 𝜎𝑖 ∈ [𝜎] define isomorphic simplicial complexes because

𝜎𝑖 ∼ 𝜎𝑗 implies that the fans 𝜋𝜎1
(star𝜎1) = 𝜋𝜎2

(star𝜎2) coincide. Therefore, given an

equivalence class [𝜎] ∈ P, denote by [𝒮(𝜎)] the isomorphism class of simplicial complexes

𝑆(𝜎𝑖) for 𝜎𝑖 ∈ [𝜎].

Example 3.3.3. Consider the fan Σ given in Fig. 3.2a which is the complete fan un-

derlying the toric variety P1×P1 and at the same time the 𝑔-vector fan of a semisimple

algebra with two isomorphism classes of simple modules. In Fig. 3.2b (the geometric

realisation of) the simplicial complex 𝒮(0) is seen to be homeomorphic to a 1-sphere,

where the vertices are labelled by the defining cones. Similarly, in Fig. 3.2c the simplicial

complex 𝒮(𝜎1) consists only of the vertices and is a 0-sphere.

𝜌1

𝜌2𝜌3

𝜌4

𝜎4

𝜎2

𝜎1𝜎3

(a) The complete fan Σ

𝜎4

𝜎2

𝜎1𝜎3

(b) The complex 𝒮(0)

𝜌1

𝜌2

(c) The complex 𝒮(𝜎1)

Figure 3.2: An example of the simplicial complexes of a fan.

The remainder of this subsection is devoted to proving the following result. Its proof

closely follows that of [91, Prop. 4.7]. Thus, identify each morphism [𝑓𝜎𝜌] ∈ C(Σ,P)

with its factorisation cube in ℬC(Σ,P).

Theorem 3.3.4. Let Σ be a finite and complete fan in R𝑛 and P an admissible partition

of Σ. The classifying space ℬC(Σ,P) is a 𝑛-dimensional CW-complex having one cell
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𝑒([𝜎]) of dimension 𝑘 = 𝑛−dim(𝜎) for each equivalence class [𝜎] ∈ P. The 𝑘-cell 𝑒([𝜎])

is the union of the factorisation cubes of the morphisms [𝑓𝜎𝜌], where 𝜌 ∈ star(𝜎)𝑛.

Proof. Let 𝑒([𝜎]) be the union of factorisation cubes of all morphisms [𝑓𝜎𝜌], where 𝜌 is

in star(𝜎)𝑛. To obtain the CW-structure of ℬC(Σ,P), one must show that each 𝑒([𝜎])

is a disk of dimension 𝑘 = 𝑛 − dim(𝜎) attached to lower dimensional cells along its

boundary. This is achieved in three steps.

Step 1: Starting with the disjoint union of factorisation cubes.

Let 𝜎1, 𝜎2 ∈ [𝜎] and let 𝜌1 ∈ star(𝜎1) and 𝜌2 ∈ star(𝜎2) be maximal cones such that

𝑓𝜎1𝜌1
∼ 𝑓𝜎2𝜌2

. From Lemma 3.2.2 it follows that factorisation cubes of the two morphisms

[𝑓𝜎1𝜌1
] and [𝑓𝜎2𝜌2

] are identified, hence it suffices to consider only one representative

𝜎 ∈ [𝜎] by Corollary 3.1.6. First, define the disjoint union of factorisation cubes to

be 𝑋([𝜎]) =
⨆︀
𝜌∈star(𝜎)𝑛 [𝑓𝜎𝜌]. It is clear that a face of the factorisation cube of [𝑓𝜎𝜌]

corresponds to the factorisation cube of some morphism [𝑓𝜅𝜆] satisfying 𝜎 ⊆ 𝜅 ⊆ 𝜆 ⊆ 𝜌.

Consider the equivalence relation ∼1 on 𝑋([𝜎]) which identifies faces corresponding to

the same morphism. By definition this gives 𝑒([𝜎]) ∼= 𝑋([𝜎])/ ∼1. Now split ∼1 into

two types of identifications. First, only identify factorisation cubes of morphisms of the

form [𝑓𝜎𝜆] and denote this equivalence relation on 𝑋([𝜎]) by ∼2. After showing that

the resulting space is a disk, let ∼3 identify the factorisation cubes of morphisms [𝑓𝜅𝜌]

not starting at 𝜎 for which it is shown that the identifications of ∼3 occur only on the

boundary. Thus since 𝑋([𝜎])/ ∼1= (𝑋([𝜎])/ ∼2)/ ∼3 the desired result follows.

Step 2: Showing that 𝑋([𝜎])/ ∼2 is a disk.

The strategy is to compare the quotient space 𝑋([𝜎])/ ∼2 with the classifying space of

the following category.

Definition 3.3.5. Given an object [𝜎] ∈ C(Σ,P), the under category (or coslice cate-

gory), denoted by [𝜎]∖C(Σ,P), is the category whose objects are morphisms [𝜎] → [𝜌]

in C(Σ,P) and whose morphisms ([𝜎] → [𝜌1]) → ([𝜎] → [𝜌2]) are morphisms [𝑓𝜌1𝜌2
]
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making the following triangle commute:

[𝜎]

[𝜌1] [𝜌2]

[𝑓𝜎𝜌2
][𝑓𝜎𝜌1

]

[𝑓𝜌1𝜌2
]

.

The 0-simplices of the classifying space ℬ([𝜎]∖C(Σ,P)) are in bijection with (identity

morphisms of) elements of [𝜎]∖C(Σ,P). There exists one 0-simplex for every cone in

star(𝜎). It follows from Lemma 3.2.4 that this category is a poset category, and one can

easily observe that ℬ([𝜎]∖C(Σ,P)) ∼= 𝑋([𝜎])/ ∼2.

There is a bijection between those 0-simplices of ℬ([𝜎]∖C(Σ,P)), which correspond

to cones of dimension dim(𝜎) + 1 in star(𝜎), and vertices of the simplicial complex

𝒮(𝜎) of Definition 3.3.1. The other 0-simplices of ℬ([𝜎]∖C(Σ,P)) correspond to cones

𝜌 ∈ star(𝜎) of dimension equal to dim(𝜎) + ℓ for ℓ ∈ {2, . . . , 𝑘} and are in bijection

with the (ℓ− 1)-simplices of the simplicial complex 𝒮(𝜎), recalling that 𝜎1 ∼ 𝜎2 implies

[𝒮(𝜎1)] = [𝒮(𝜎2)]. Therefore ℬ([𝜎]∖C(Σ,P)) may be viewed as the cone with cone point

[𝑓𝜎𝜎] over 𝒮(𝜎). This implies that ℬ([𝜎]∖C(Σ,P)) and consequently 𝑋([𝜎])/ ∼2 is an

(𝑛− 𝑘 − 1)-disk.

Step 3: Showing that identifications happen on the boundary.

Define ∼3 to be the equivalence relation on ℬ([𝜎]∖C(Σ,P)) identifying all faces corre-

sponding to the same morphism [𝑓𝜅𝜌] for [𝜅] ̸= [𝜎]. By definition there is a homeomor-

phism 𝑒([𝜎]) ∼= (ℬ([𝜎]∖C(Σ,P)))/ ∼3. From the construction of ℬ([𝜎]∖C(Σ,P)) as the

cone over 𝒮(𝜎), it follows from Lemma 3.3.2 that the link of [𝑓𝜎𝜎] is a (𝑛−𝑘−1)-sphere.

Hence [𝑓𝜎𝜎] is in the interior of the disk. Consider now a different 0-simplex [𝑓𝜎𝜌] of

ℬ([𝜎]∖C(Σ,P)). Then its link lk([𝑓𝜎𝜌]) is given by the simplicial join of:

• the link of [𝑓𝜌𝜌] in ℬ([𝜌]∖C(Σ,P)), which is the part of lk([𝑓𝜎𝜌]) in the boundary

of 𝑒([𝜎]); and

• the link of [𝜎]
[𝑓𝜎𝜌]
−−−→ [𝜌]

[𝑓𝜌𝜌]
−−−→ [𝜌] in the factorisation cube [𝑓𝜎𝜌], which is the part

of lk([𝑓𝜎𝜌]) in the interior of 𝑒([𝜎]).

This is the join of an (𝑛− dim(𝜌)− 1)-sphere with a (dim(𝜌)− dim(𝜎)− 1)-disk, which

is a (𝑘− 1)-disk. Thus [𝑓𝜎𝜌] is a boundary vertex of ℬ([𝜎]∖C(Σ,P)). Any simplex which
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contains the cone point [𝑓𝜎𝜎] has to be the only representative in its equivalence class of

∼3, by definition. It follows that ∼3 identifies simplices containing exclusively simplices

on the boundary of ℬ([𝜎]∖C(Σ,P)). Moreover, these identified simplices are factorisation

cubes of morphisms of rank strictly less than 𝑘. Hence 𝑒([𝜎]) is attached to lower-

dimensional cells. This concludes the proof of Theorem 3.3.4.

Example 3.3.6. Consider the complete fan of Fig. 3.2a with the partition P identifying

𝜎1 ∼ 𝜎3 and 𝜎2 ∼ 𝜎4. This partition implies the identification of all maximal cones. In

Fig. 3.3, the three steps of constructing the 2-cell 𝑒([0]) are illustrated. To begin, consider

the disjoint union of factorisation cubes in Fig. 3.3a. Then ∼2 identifies corresponding

factorisation cubes of morphisms starting at 0, which are labelled with the same number.

The resulting space is a disk with only one 0-simplex in the interior. Then ∼3 identifies

all factorisation cubes of morphisms on the boundary which are identified in C(Σ,P).

For example, in this partition [𝑓𝜎4𝜌4
] = [𝑓𝜎2𝜌3

], which are labelled “5” in Fig. 3.3b. A

detailed picture of 𝑋([0])/ ∼2= ℬ([0]∖C(Σ,P)) is given in Fig. 3.4. These identifications

give the 2-cell 𝑒([0]) of the classifying space ℬC(Σ,P) to be a torus.

3.4 Picture groups and fan posets

In this section, let Σ be a finite and complete fan in R𝑛 and P an admissible partition,

so that the maximal cones of Σ may be equipped with a well-behaved poset structure

following [156, Sec. 3]. This poset is called weak fan poset and is a straightforward

generalisation of the notion of a fan poset introduced in [156, Sec. 3]. The poset structure

gives rise to a geometric generalisation of the picture group.

Definition 3.4.1. A fan poset is a pair (Σ,𝒫) where Σ is a finite and complete fan in

R𝑛 and 𝒫 is a finite poset whose elements are the maximal cones of Σ, subject to the

following conditions:

(1) For every cone 𝜎 ∈ Σ, the set of maximal cones star(𝜎)𝑛 containing 𝜎 is an interval

in 𝒫, which is denoted by [𝜎−, 𝜎+] and called a facial interval.

(2) For every interval 𝐼 of 𝒫, the union of all maximal cones in 𝐼 is a convex polyhedral

cone, which is not required to be strongly convex.
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(a) 𝑋([0])
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(b) 𝑋([0])/ ∼2

7

8

5 6

(c) (𝑋([0])/ ∼2)/ ∼3

Figure 3.3: The construction of 𝑒([0]) from factorisation cubes.

For example, the poset of regions of a central simplicial hyperplane arrangement

with an arbitrary choice of base region as defined by Edelman [65] defines a fan poset

by [156, Thm. 4.2]. Moreover, 𝑔-vector fans of 𝜏 -tilting finite algebras are equipped

with a natural fan poset induced by the poset of torsion classes as will be shown in

Proposition 3.8.1. To achieve greater generality the definition above is weakened in the

following way.

Definition 3.4.2. A weak fan poset is a pair (Σ,𝒫) where Σ is a finite and complete

fan in R𝑛 and 𝒫 is a finite poset whose elements are the maximal cones of Σ, subject

to the following conditions:

(1) For every cone 𝜎 ∈ Σ, the set of maximal cones star(𝜎)𝑛 containing 𝜎 is an interval

in 𝒫, which is denoted by [𝜎−, 𝜎+] and called a facial interval.

(2) Every cover relation 𝜌1 ⋖ 𝜌2 in 𝒫 can be viewed as a facial interval [𝜎−, 𝜎+] for a

(𝑛− 1)-dimensional cone 𝜎 = 𝜌1 ∩ 𝜌2.
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[𝑓 0𝜌 1
]

[𝑓0𝜎1
]

[𝑓0𝜌
2 ]
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𝜎

2 ][𝑓 0𝜌 3
]

[𝑓0𝜎3
]

[𝑓0𝜌
4 ]

[𝑓
0𝜎

4
]

[𝑓𝜎4𝜌1
][𝑓𝜎4𝜌4
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[𝑓
𝜎

1
𝜌

1 ]
[𝑓
𝜎

1
𝜌

2 ]

[𝑓𝜎2𝜌2
][𝑓𝜎2𝜌3

]

[𝑓
𝜎

3
𝜌

3
]

[𝑓
𝜎

3
𝜌

4
]

[𝑓𝜎4𝜎4
]

[𝑓𝜎2𝜎2
]

[𝑓𝜎3𝜎3
] [𝑓𝜎1𝜎2

]

[𝑓𝜌1𝜌1
]

[𝑓𝜌2𝜌2
][𝑓𝜌3𝜌3

]

[𝑓𝜌4𝜌4
]

Figure 3.4: The classifying space ℬ([0] ∖ C(Σ,P)).

The result [156, Prop. 3.3] implies that if (Σ,𝒫) is a fan poset then it is also a weak

fan poset. A triple (Σ,P,𝒫) is called a partitioned fan poset if (Σ,P) is a partitioned

fan and (Σ,𝒫) is a weak fan poset.

Example 3.4.3. Consider the fan of the Hirzebruch surface in Fig. 2.5a, then the poset

𝒫 whose two maximal chains are given by 𝜅3 ⋖ 𝜅2 ⋖ 𝜅1 and 𝜅3 ⋖ 𝜅4 ⋖ 𝜅1 with no other

cover relations forms a weak fan poset but not a fan poset, since the union 𝜅2 ∪ 𝜅3 is

not a convex polyhedral cone.

Similar to the brick labelling in the lattice of torsion classes, see Section 2.1, if

(Σ,𝒫) is a weak fan poset, the arrows of Hasse(𝒫) can be labelled with the cone of

codimension 1 giving rise to the cover relation. This idea is used to define the picture

group of a partitioned fan with a choice of fan poset.

Definition 3.4.4. Let (Σ,P,𝒫) be a partitioned fan poset. Define the picture group

𝐺(Σ,P,𝒫) to have generators {𝑋[𝜎] : 𝜎 ∈ Σ𝑛−1} and the following sets of relations:

(1) 𝑋[𝜎1] . . . 𝑋[𝜎𝑘] = 𝑋[𝜎′
1] . . . 𝑋[𝜎′

ℓ] whenever 𝜌2
𝜎1−→ . . .

𝜎𝑘−→ 𝜌1 and 𝜌2
𝜎

′
1−→ . . .

𝜎
′
ℓ−→ 𝜌1 are
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two distinct ordered sequences of cones of codimension 1 labelling the arrows of

some maximal chain of an interval [𝜌1, 𝜌2] in Hasse(𝒫). Let this group element be

denoted by 𝑋[𝜌1,𝜌2], and let 𝑋[𝜌,𝜌] = 𝑒 for all 𝜌 ∈ Σ𝑛;

(2) 𝑋[𝜎−
1 ,𝜅

−
1 ] = 𝑋[𝜎−

2 ,𝜅
−
2 ], whenever [𝑓𝜎1𝜅1

] = [𝑓𝜎2𝜅2
] in C(Σ,P).

Notice that the picture group 𝐺(Σ,P,𝒫) satisfies 𝑋[𝜌2𝜌3]𝑋[𝜌1𝜌2] = 𝑋[𝜌1𝜌3] for a

sequence 𝜌1 ≤ 𝜌2 ≤ 𝜌3 in 𝒫. In Section 3.8, it is shown that the picture group defined

for 𝜏 -tilting finite algebras in Definition 2.3.2 may be recovered through Definition 3.4.4.

Given a fan Σ, different choices of a weak fan poset (Σ,𝒫) may define nonisomorphic

picture groups. Moreover, it is possible that some generators become trivial due to the

relation 𝑋[𝜎] = 𝑒 arising from relations of the second type in Definition 3.4.4.

ome trivial due to the relation 𝑋[𝜎] = 𝑒 arising from relations of the second type in

Definition 3.4.4.

Example 3.4.5. Consider the algebra 𝐴 of Example 2.6.3 whose 𝑔-vector fan is dis-

played in Fig. 2.7. Consider the poset 𝒫 defined by the cover relations

𝒞( 1 , 2
2 ) ⋖ 𝒞(︁ 0 ,

1
2
2

⊕ 2
2

)︁ ⋖ 𝒞(︁ 2
2 ,

1
2
2

)︁ ⋖ 𝒞(︁ 1
2
2

⊕ 2
2 , 0

)︁, and

𝒞( 1 , 2
2 ) ⋖ 𝒞(︁ 1 ⊕

1
1 2

2
, 0

)︁ ⋖ 𝒞(︁ 1
2
2

⊕
1

1 2
2
, 0

)︁ ⋖ 𝒞(︁ 1
2
2

⊕ 2
2 , 0

)︁.
Let P be any admissible partition of Σ(𝐴) which identifies the 𝑔-vector cones 𝒞( 2

2 , 0 )
and 𝒞( 0 , 2

2 ). Then the relations of the second type in Definition 3.4.4 impose that

𝑋[︁
𝒞(︂

2
2 ,

1
2
2

)︂,𝒞(︂ 1
2
2

⊕ 2
2 , 0

)︂]︁ = 𝑋[︁
𝒞( 1 ,

2
2 ),𝒞( 1 ,

2
2 )
]︁ = 𝑒

in 𝐺(Σ(𝐴),P,𝒫).

This prompts the following definition.

Definition 3.4.6. A partitioned fan poset (Σ,P,𝒫) is called nondegenerate if for any

two cones 𝜎1, 𝜎2 ∈ Σ𝑛−1 such that 𝜎1 ∼P 𝜎2, the equality [𝑓𝜎1𝜌1
] = [𝑓𝜎2𝜌2

] in C(Σ,P)

implies that either 𝜎−
1 = 𝜌1 and 𝜎−

2 = 𝜌2 or that 𝜎−
1 ̸= 𝜌1 and 𝜎−

2 ̸= 𝜌2.

In a similar spirit, for a partitioned fan poset (Σ,P,𝒫), the poset 𝒫 is said to be

well-defined on identified stars whenever the induced fan posets 𝒫|𝜋𝜎1
and 𝒫|𝜋𝜎2

on
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𝜋𝜎1
(star𝜎1) and 𝜋𝜎2

(star𝜎2) coincide for distinct cones 𝜎1, 𝜎2 ∈ Σ such that [𝜎1] = [𝜎2]

in C(Σ,P). These two notions are equivalent.

Lemma 3.4.7. A fan poset (Σ,𝒫) is nondegenerate if and only if 𝒫 is well-defined on

identified stars. In this case the second set of relations of Definition 3.4.4 is trivially

satisfied.

Proof. (⇐=). If [𝑓𝜎1𝜌1
] = [𝑓𝜎2𝜌2

], then by definition 𝜋𝜎1
(𝜌1) = 𝜋𝜎2

(𝜌2). If 𝜎−
1 = 𝜌1 holds,

then 𝜋𝜎2
(𝜌2) = 𝜋𝜎1

(𝜌1) = 𝜋𝜎1
(𝜎−

1 ) = 𝜋𝜎2
(𝜎−

2 ) where the last equality uses the fact that

the induced posets on the stars coincide, that is, the fan poset being well-defined on

identifies stars implies the following sequence of equalities holds:

𝜋𝜎1
(𝜎−

1 ) = 𝜋𝜎1
(𝜎1)− = 𝜋𝜎2

(𝜎2)− = 𝜋𝜎2
(𝜎−

2 ).

Thus 𝜌2 = 𝜎−
2 . If 𝜎−

1 ̸= 𝜌1 we must have 𝜎+
1 = 𝜌1 and the same argument shows 𝜎+

2 = 𝜌2,

so 𝜎−
2 ̸= 𝜎+

2 = 𝜌2.

(=⇒). Since the poset is determined by cover relations, there exists 𝜎1 ∼P 𝜎2 of

codimension 1, such that 𝜋𝜎1
(𝜎1)−𝜎1 ̸= 𝜋𝜎2

(𝜎2)−𝜎2 . Here, taking 𝜏− on the left-hand

side is done with respect to 𝒫|𝜋𝜎1
, whereas it is done with respect to 𝒫|𝜋𝜎2

on the

right-hand side. From this it follows that 𝜋𝜎1
(𝜎−

1 ) ̸= 𝜋𝜎2
(𝜎−

2 ). Since the projections

coincide and 𝜎𝑖 is of codimension 1 it follows that then 𝜋𝜎1
(𝜎−

1 ) = 𝜋𝜎2
(𝜎+

2 ). However,

then [𝑓
𝜎1𝜎

−
1

] = [𝑓
𝜎2𝜎

+
2

] yields a contradiction to non-degeneracy.

The moreover part holds in this case: By definition [𝑓𝜎1𝜌1
] = [𝑓𝜎2𝜌2

] implies that

𝜋𝜎1
(𝜌1) = 𝜋𝜎2

(𝜌2) and since the poset is well-defined on identified stars it follows that

𝜋𝜎1
(𝜎−

1 ) = 𝜋𝜎2
(𝜎−

2 ) and similarly 𝜋𝜎1
(𝜌−

1 ) = 𝜋𝜎2
(𝜌−

2 ). Since the paths from 𝜋𝜎𝑖
(𝜌−
𝑖 ) to

𝜋𝜎𝑖
(𝜎−
𝑖 ) coincide in the projection for 𝑖 = 1, 2 and the partition is admissible, the labels

of the paths from 𝜌−
𝑖 to 𝜎−

𝑖 must be pairwise identified.

The assumption on a (weak) fan poset 𝒫 of the following lemma is referred to as 𝒫

being induced by a linear functional 𝑏 ∈ (R𝑛)∨ in [156, Sec. 3].

Lemma 3.4.8. Let (Σ,𝒫) be a weak fan poset. Let 𝑏 : R𝑛 → R be a linear map. For

any 𝜌1 ⋖ 𝜌2 in 𝒫, let 𝜈 be the unit normal vector to the hyperplane span{𝜌1 ∩ 𝜌2} ⊆ R𝑛

separating 𝜌1 from 𝜌2, oriented to point from 𝜌1 to 𝜌2. If every 𝜌1 ⋖ 𝜌2 in 𝒫 with
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corresponding 𝜈 is such that 𝑏(𝜈) > 0, then the poset is nondegenerate, equivalently,

well-defined on identified stars.

Proof. Any poset is determined by its cover relations. Let [𝜎1] = [𝜎2] ∈ C(Σ,P) be an

equivalence class of cones of codimension 1. Assume for a contradiction that 𝜌1 ⋖ 𝜌2

is the cover relation given by the star of 𝜎1 and 𝜌3 ⋖ 𝜌4 the covering relation given by

the star of 𝜎2 such that 𝜋𝜎1
(𝜌1) = 𝜋𝜎2

(𝜌4) and 𝜋𝜎1
(𝜌2) = 𝜋𝜎2

(𝜌3), that is to say not

well-defined on identified stars. Then the normal vector 𝜈1 pointing from 𝜌1 to 𝜌2 is

orthogonal to the hyperplane span{𝜎1} and satisfies 𝑏(𝜈1) > 0, but at the same time the

normal vector 𝜈2 pointing from 𝜌3 to 𝜌4 is orthogonal to the hyperplane span{𝜎2} and

satisfies 𝑏(𝜈2) > 0. Since [𝜎1] = [𝜎2] the cones satisfy span{𝜎1} = span{𝜎2}, it follows

that 𝜈1 = −𝜈2, but then either 𝑏(𝜈1) < 0 or 𝑏(𝜈2) < 0, a contradiction.

In a similar way to [91, Prop. 4.4d], the following alternative presentation of the

picture group makes the connection of Definition 3.4.4 with Definition 2.3.2 more ap-

parent.

Lemma 3.4.9. If 𝒫 is nondegenerate, the picture group 𝐺(Σ,P,𝒫) may be presented

with the set of generators {𝑋[𝜎] : 𝜎 ∈ Σ𝑛−1} ∪ {𝑔𝜌 : 𝜌 ∈ Σ𝑛} and a relation

𝑔𝜌2
= 𝑋[𝜎]𝑔𝜌1

if there is an arrow 𝜌2
𝜎−→ 𝜌1 in Hasse(𝒫) labelled by 𝜎 and the relation 𝑔0− = 𝑒.

Proof. Let 𝐻 be a group with presentation given as above and let 𝜌2
𝜎1−→ . . .

𝜎𝑘−→ 𝜌1 and

𝜌2
𝜎

′
1−→ . . .

𝜎
′
ℓ−→ 𝜌1 be two distinct sequences of codimension 1 cones labelling the arrows

of some maximal chain in the interval [𝜌1, 𝜌2] ⊆ 𝒫. These sequences of codimension 1

cones give rise to the relation

𝑋[𝜎1] . . . 𝑋[𝜎𝑘]𝑔𝜌1
= 𝑔𝜌2

= 𝑋[𝜎′
1] . . . 𝑋[𝜎′

ℓ]𝑔𝜌1

in 𝐻 which implies that 𝐻 satisfies the relation 𝑋[𝜎1] . . . 𝑋[𝜎𝑘] = 𝑋[𝜎′
1] . . . 𝑋[𝜎′

ℓ] as re-

quired. Since 𝒫 has a minimal element 0−, there exists a sequence 𝜌 𝜎
′′
1−→ . . .

𝜎
′′
𝑠−→ 0−

labelling the arrows of a maximal chain in the interval [0−, 𝜌] in Hasse(𝒫). Therefore

the generators corresponding to maximal cones can be expressed as

𝑔𝜌 = 𝑋[𝜎′′
1 ] . . . 𝑋[𝜎′′

𝑠 ]



3. The category of a partitioned fan 56

since 𝑔0− = 𝑒. Hence every generator of 𝐻 can be written in terms of generators of

𝐺(Σ,P,𝒫). As a consequence of these two observations it is possible to replace the

generators {𝑔𝜌 : 𝜌 ∈ 𝒫} by expressions using only generators 𝑋[𝜎𝑖] and obtain the

presentation of the picture group in Definition 3.4.4.

The finite CW-structure obtained for ℬC(Σ,P) in Theorem 3.3.4 helps to describe

its fundamental group in the following way: By definition, the 1-skeleton ℬC(Σ,P)1 of

the CW-complex ℬC(Σ,P) is a graph, which contains a loop whenever two adjacent

maximal cones get identified. Since this graph is connected, it contains a maximal tree

𝑇 . Now every edge 𝑒 which is not part of the tree determines a loop 𝑓𝑒 in the graph and

thus a generator of the fundamental group. For more details see [95, Sec. 1.A].

Lemma 3.4.10. The fundamental group 𝜋1(ℬC(Σ,P)) is the free group with one gen-

erator [𝑓𝑒] for each edge 𝑒 ∈ ℬC(Σ,P)1 − 𝑇 modulo the relations given by the attaching

maps of the 2-cells.

Remark 3.4.11. Consider any fan Σ with its trivial poset partition Pposet, since the

classifying space ℬC(Σ,Pposet) is a ball, its fundamental group is trivial but the picture

group is not. So, in contrast to the setting of finite-dimensional algebras, the picture

group 𝐺(Σ,P,𝒫) is not necessarily isomorphic to the fundamental group of ℬC(Σ,𝒫).

Nonetheless, for a special class of fan posets, the picture group is isomorphic to the

fundamental group.

Proposition 3.4.12. Let (Σ,P,𝒫) be a nondegenerate partitioned fan poset. If 𝒫 is a

polygonal lattice, then it suffices to consider facial intervals coming from cones of codi-

mension 2 to obtain all relations of 𝐺(Σ,P,𝒫). If additionally P identifies all maximal

cones of Σ, then 𝐺(Σ,P,𝒫) is isomorphic to 𝜋1(ℬC(Σ,P)).

Proof. The type 2 relations of Definition 3.4.4 are satisfied due to nondegeneracy of the

poset by Lemma 3.4.7. Let [𝑥, 𝑦] be an interval in 𝒫. Since 𝒫 is a finite polygonal lattice,

any two maximal chains in [𝑥, 𝑦] are related by a sequence of polygon moves by [157,

Lem. 9-6.3]. Trivially, the labels of two maximal chains which are related by a polygon

move differ only in the labels of the two sides of the polygon. Thus it is sufficient
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to consider the group relations coming from polygons of 𝒫 to give a presentation of

𝐺(Σ,P,𝒫).

Let 𝜎 ∈ Σ be a cone of codimension 2 and consider the induced weak fan poset

𝒫|𝜋𝜎
on 𝜋𝜎(star𝜎), which has a maximal and minimal element, and two disjoint chains

similar to Fig. 3.5b. Hence the interval [𝜎−, 𝜎+] is a polygon of 𝒫. Conversely, take a

polygon [𝜌1 ∧ 𝜌2, 𝜌3] ⊆ 𝒫 for some 𝜌1 ⋖ 𝜌3 and 𝜌2 ⋖ 𝜌3, then 𝜅 = 𝜌1 ∩ 𝜌3 ∩ 𝜌2 is a cone

of codimension 2 since 𝜌1 ∩ 𝜌3 and 𝜌2 ∩ 𝜌3 are both generated by distinct subsets of

(𝑛−1) vectors generating 𝜌3. By the previous, [𝜅−, 𝜅+] is a polygon which must contain

𝜌1, 𝜌2 and 𝜌3 by construction. More precisely the interval satisfies 𝜅+ = 𝜌3 and by the

uniqueness of the meet in a lattice also 𝜅− = 𝜌1 ∧ 𝜌2. Hence every polygon arises as a

facial interval of a cone of codimension 2 and every cone of codimension 2 gives rise to

a polygon.

Additionally, if all maximal cones are identified, then there exists a unique 0-cell in

ℬC(Σ,P) and Lemma 3.4.10 implies that the generators of 𝐺(Σ,P,𝒫) and 𝜋1(ℬC(Σ,P))

coincide. The relations of the fundamental group of a CW-complex are given exactly by

the 2-cells which correspond with the cones of codimension 2.

The previous result implies that different choices of nondegenerate fan posets define

isomorphic picture groups when all maximal cones are identified by P and the fan poset

is a polygonal lattice. A similar result holds for any fan in R2.

Lemma 3.4.13. Let Σ be a finite and complete fan in R2 and (Σ,𝒫1) and (Σ,𝒫2) be

nondegenerate weak fan posets. Then 𝐺(Σ,P,𝒫1) ∼= 𝐺(Σ,P,𝒫2).

Proof. Lemma 3.4.7 and nondegeneracy imply that the type 2 relations are satisfied by

both 𝐺(Σ,P,𝒫1) and 𝐺(Σ,P,𝒫2). Denote the generators of 𝐺(Σ,P,𝒫1) by 𝑋[𝜎𝑖] and

the generators of 𝐺(Σ,P,𝒫1) by 𝑌[𝜎𝑖] for 𝜎𝑖 ∈ Σ1. Given an arbitrary cover relation

𝜌𝑖 ⋖ 𝜌𝑗 in 𝒫1 with 𝜎𝑘 := 𝜌𝑖 ∩ 𝜌𝑗 , define

𝛿𝜎𝑘 :=

⎧⎪⎨⎪⎩
1 if 𝜌𝑖 ⋖ 𝜌𝑗 in 𝒫2,

−1 if 𝜌𝑗 ⋖ 𝜌𝑖 in 𝒫2.

Then the desired group isomorphism 𝜑 : 𝐺(Σ,P,𝒫1) → 𝐺(Σ,P,𝒫2) is given on the

generators by 𝜙(𝑋[𝜎𝑖]) = 𝑌
𝛿𝜎𝑖

[𝜎𝑖]
. Note that this is well-defined on equivalence classes by
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the assumption that 𝒫1 and 𝒫2 are nondegenerate.

3.5 Eilenberg-MacLane spaces in dimension 2

Let Σ be a finite and complete fan in R𝑛 and P an admissible partition. While the

picture group of the partitioned fan (Σ,P), with respect to a fan poset, is not necessarily

isomorphic to the fundamental group of ℬC(Σ,P) in general, it still plays an important

role in understanding the classifying spaces of the categories of a partitioned fan. Recall,

that C(Σ,P) is a cubical category by Theorem 3.2.6 and that there are three conditions

which together imply that ℬC(Σ,P) is a 𝐾(𝜋, 1) space, see Proposition 2.4.4.

In particular, the picture group appears to be the most natural group to study

Condition (1) of Proposition 2.4.4. While there is a recipe for constructing a 𝐾(𝐺, 1)

space for any finitely presented group 𝐺, the result may be an infinite-dimensional CW-

complex, see [95, Sec. 1.B.]. Hence it is natural to ask whether the finite CW-complex of

Theorem 3.3.4 is a 𝐾(𝜋, 1) space for its fundamental group. For this purpose, consider

the following functor from the category of a partitioned fan to its picture group with

respect to some nondegenerate weak fan poset:

Ψ : C(Σ,P)→ 𝐺(Σ,P,𝒫)

[𝑓𝜎𝜅] ↦→ 𝑋[𝜎−
,𝜅

−].
(3.5.1)

It follows from basic hyperplane arrangement theory (i.e. convex geometry) and

the definition of admissible partitions that the functor is well-defined. Indeed, take two

representatives 𝜎1, 𝜎2 ∈ [𝜎] and 𝜅1, 𝜅2 ∈ [𝜅] such that [𝑓𝜎1𝜅1
] = [𝑓𝜎2𝜅2

]. Now consider the

projection of their stars onto the orthogonal complements, 𝜋𝜎1
(star𝜎1) = 𝜋𝜎2

(star𝜎2),

then 𝜋𝜎(𝜅−
1 ) = 𝜋𝜎(𝜅−

2 ) follows from 𝜋𝜎(𝜅1) = 𝜋𝜎(𝜅2) which follows from [𝑓𝜎1𝜅1
] = [𝑓𝜎2𝜅2

]

by definition. The terms 𝑋[𝜎−
𝑖 ,𝜅

−
𝑖 ] for 𝑖 = 1, 2 are determined by the paths 𝜋𝜎(𝜅−

𝑖 ) to

𝜋𝜎(𝜎−
𝑖 ) for 𝑖 = 1, 2, which coincide in 𝜋𝜎(star(𝜎)), and hence coincide. It is easily seen

to be well-defined on identity morphisms [𝑓𝜎𝜎], which get sent to the trivial element

𝑋[𝜎−
,𝜎

−] = 𝑒. Furthermore, since the weak fan poset is nondegenerate, the functor is

well-defined on composition of morphisms by construction.

Example 3.5.1. Consider a partitioned fan (Σ,P) as in Fig. 3.5a, then the set of

three rank 1 morphisms {[𝑓1], [𝑓2], [𝑓3]} cannot be the last factors of a rank 3 morphism
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since no such morphism exists when Σ is a fan in R2. However, the pairs of morphisms

{[𝑓1], [𝑓3]}, {[𝑓1], [𝑓2]} and {[𝑓2], [𝑓3]} form the last factors of the morphisms [𝑓0𝜌1
], [𝑓0𝜌3

]

and [𝑓0𝜌2
] respectively.

Example 3.5.2. Consider a finite and complete fan with only three cones of dimension

1, for example the fan Σ(P2) whose toric variety is the projective plane P2, see [73, p. 6-7].

This fan Σ(P2) has three cones, cone{𝑒1}, cone{𝑒2} and cone{−𝑒1−𝑒2}, of dimension 1,

which are all pairwise compatible as first factors. But since there is no morphism of rank

3, this gives an example where the first factors are not given by pairwise compatibility

conditions.

Lemma 3.5.3. Let Σ be a fan in R2. Then C(Σ,P) satisfies the pairwise compatibility

of first (resp. last) factors if and only there is no set of three pairwise compatible first

(resp. last) factors.

Proof. Any category trivially satisfies the pairwise compatibility of first (resp. last)

factors for 𝑘 = 2 in Proposition 2.4.4. For 𝑘 ≥ 3, there is no morphism of rank 𝑘

in C(Σ,P) and hence the pairwise compatibility condition is equivalent to there being

no set of 𝑘 pairwise compatible first (resp. last) factors. For 𝑘 ≥ 4, it is geometrically

impossible to have four compatible first (resp. last) factors in R2 so the result follows.

The restricted setting of a fan in R2 enables a detailed understanding of the functor

in Eq. (3.5.1). This is used to obtain many examples of 𝐾(𝜋, 1) spaces.

Theorem 3.5.4. Let Σ be a fan in R2 and 𝒫 be a nondegenerate weak fan poset, then

the functor of Eq. (3.5.1) is faithful. Moreover, if C(Σ,P) does not admit a set of three

pairwise compatible rank 1 morphisms, then ℬC(Σ,P) is a 𝐾(𝜋, 1) space.

Proof. Without loss of generality, by Lemma 3.4.13, choose one particular nondegenerate

weak fan poset defined as follows: Choose a base region 𝜌𝐴 ∈ Σ2 and consider the angle

bisector of the angle spanned by the two dimension 1 cones defining 𝜌𝐴. Then let 𝜌𝐷
be the region containing the opposite of the angle bisector. If the opposite of the angle

bisector is contained in a cone of codimension 1, then choose either of the adjacent

maximal cones as 𝜌𝐷. The set-up is depicted in Fig. 3.5b, where the angle bisector is
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[𝜎3]

[𝜎3]

[𝜎1][𝜎1]

[𝜎2]

[𝜎2]

[𝑓1]

[𝑓3]

[𝑓1]

[𝑓3]

[𝑓2]

[𝑓2]

𝜌1
𝜌3

𝜌2

(a) Three pairs of compatible morphisms.

𝜅1

𝜎𝑘+1

𝜎1
𝜅𝑠+1

𝜎2

𝜎3

𝜎𝑘

. . .

𝜅2𝜅3

𝜅𝑠
. . . 𝜌𝐴

𝜌𝐷

𝜌𝐵1

𝜌𝐵2

𝜌𝐵𝑘

𝜌𝐶1𝜌𝐶2

𝜌𝐶𝑠

(b) A weak fan poset on a rank 2 fan.

Figure 3.5: Last factors and fan poset of fans in R2.

the dotted line and the fan poset is indicated in red and given by the following Hasse

quiver:
𝜌𝐵1

. . . 𝜌𝐵𝑘

𝜌𝐴 𝜌𝐷.

𝜌𝐶1
. . . 𝜌𝐶𝑠

Showing that the functor is faithful is equivalent to showing that the induced map

Ψ[𝜎][𝜌] : Hom([𝜎], [𝜌]) → 𝐺(Σ,P,𝒫) is injective. It is sufficient to show that two dis-

tinct morphisms [𝑓𝜎𝜌1
] and [𝑓𝜎𝜌2

] cannot map to the same group element under Ψ, by

Corollary 3.1.6 and Lemma 3.2.2. Using the description of the picture group in Defini-

tion 3.4.4 it is easily seen that the generators are distinct since the presentation only

contains one relation. Consider the different possible dimensions of 𝜎 and 𝜌:

• Dimension 0 to 1: For 0 ∈ Σ0 and 𝜆 ∈ Σ1, any morphism [𝑓0𝜆] ∈ C(Σ,P) gets

mapped to 𝑋[𝜌𝐷,𝜆
−]. All group elements of this form are clearly distinct, except

potentially 𝑋[𝜌𝐷,𝜌𝐶𝑠
] and 𝑋[𝜌𝐷,𝜌𝐵𝑘

]. However, if the cones 𝜎𝑘+1 and 𝜅𝑠+1 give rise

the same generator 𝑋[𝜎𝑘+1] then their linear span must be equal, hence the cone

𝜌𝐷 is a half-plane and not strongly convex. This is also the reason why it is no

problem that [𝑓0𝜎𝑘+1
] and [𝑓0𝜅𝑠+1

] have the same image under Ψ, since 𝜎𝑘+1 and
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𝜅𝑠+1 cannot be identified in C(Σ,P).

• Dimension 0 to 2: For 0 ∈ Σ0 and 𝜌 ∈ Σ2, each such morphism [𝑓0𝜌𝑖
] ∈ C(Σ,P)

maps to 𝑋[𝜌𝐷,𝜌𝑖] and by the previous case, all these elements of 𝐺(Σ,P,𝒫) of this

form are distinct.

• Dimension 1 to 2: For 𝜎 ∈ Σ1 and 𝜌 ∈ Σ2, there are exactly two possibilities,

either [𝑓𝜎𝜌] ∈ C(Σ,P) maps to 𝑋[𝜎] or it maps to the identity element 𝑒, which

are different group elements by the nondegeneracy assumption.

Thus the functor is faithful. Now by Lemma 3.5.3 if C(Σ,P) does not admit a set of three

pairwise compatible rank 1 morphisms, then it satisfies the pairwise compatibility of first

and last factors. In this case, ℬC(Σ,P) is a 𝐾(𝜋, 1) space by Proposition 2.4.4.

Corollary 3.5.5. In the setting of Theorem 3.5.4. If P identifies all maximal cones,

then ℬC(Σ,P) is a 𝐾(𝐺(Σ,P,𝒫), 1) space.

Proof. In this case, the graph ℬC(Σ,P)1 contains 1 vertex and a loop for every equiva-

lence class [𝜎] ∈ P of a dimension 1 cone. Hence the generators of 𝜋1(ℬC(Σ,P)) coincide

with those of 𝐺(C,P,𝒫). Moreover, the attaching map of the unique 2-cell induces a

homotopy which is equivalent to the unique relation of the picture group, similar to

Proposition 3.4.12.

Example 3.5.6. The main examples of fan posets are the following:

(1) The poset of regions of a finite central simplicial hyperplane arrangement as in-

troduced by [65] is a fan poset by [156], a lattice by [29] and polygonal by [157].

Furthermore, it is easily seen to be nondegenerate.

(2) The fan poset induced by tors𝐴 on the 𝑔-vector fan of a 𝜏 -tilting finite algebra is

a polygonal lattice [57] and nondegenerate, see Proposition 3.8.1.

(3) Nondegenerate fan posets in R2 constructed as in the proof of Theorem 3.5.4.

3.6 Hyperplane arrangements

Recall briefly the theory of hyperplane arrangements, which are collections of subspaces

of codimension one. A central simplicial hyperplane arrangement ℋ in R𝑛 is a collection
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of subspaces of codimension 1 which defines a simplicial fan Σℋ and dissects the space

into regions. All fans considered in this section are induced by hyperplane arrangements.

The closures of these regions are maximal cones of the fan and two regions are called

adjacent whenever their closures intersect in a cone of codimension one. Choosing any

such region 𝐵 as the base region and orienting the adjacency graph away from 𝐵 defines

a poset, called the poset of regions 𝒫(ℋ, 𝐵) see [65]. For any choice of base region 𝐵,

this defines a fan poset on Σℋ obtained by taking the closure of each region, by [156,

Sec. 4]. Denote this induced fan poset of regions by 𝒫𝐵. Given a region 𝑅, its separating

set (with respect to 𝐵), denoted by 𝑆(𝑅), is the collection of all hyperplanes in ℋ

separating 𝑅 from the region −𝐵. This gives an equivalent way of defining the poset of

regions by saying 𝑅1 ≤ 𝑅2 whenever 𝑆(𝑅1) ⊆ 𝑆(𝑅2).

A flat of a hyperplane arrangement ℋ ⊆ R𝑛 is an intersection of hyperplanes of ℋ,

and thus a linear subspace of the ambient space R𝑛. In particular, the empty intersection

gives the ambient space R𝑛 as a flat. The support of a cone 𝜎 ∈ Σℋ is the smallest flat

𝑠(𝜎) which contains 𝜎. This leads to the flat-partition Pflat of the simplicial fan Σℋ

given by [𝜎1]Pflat
= [𝜎2]Pflat

if and only if 𝑠(𝜎1) = 𝑠(𝜎2). In other words, cones whose

support is the same flat are identified in Pflat.

Proposition 3.6.1. The partition Pflat is an admissible partition of Σℋ and thus the

category of the flat-partition C(Σℋ,Pflat) is a well-defined category.

Proof. Let 𝜎1, 𝜎2 ∈ Σℋ be two cones such that the flat 𝑋 = 𝑠(𝜎1) = 𝑠(𝜎2) is the same

intersection of hyperplanes. It follows immediately that

span{𝜎1} = 𝑋 = span{𝜎2}.

It follows from [5, Lem. 1.36] that both star(𝜎1) and star(𝜎2) are “equivalent” to the

arrangement over the flat 𝑋 whose essentialisation is precisely the projection onto

the orthogonal complement, see [5] for more details. The partition is admissible by

Lemma 3.1.3 since it identifies the whole set of possible identifications.

Shards of hyperplane arrangements were introduced in [155]. Informally speaking

a shard of a hyperplane arrangement ℋ ⊆ R𝑛 is a “piece of a hyperplane”. They are

obtained as follows: Let 𝐵 be a choice of base region and call the 𝑛 hyperplanes defining
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it basic. Each pair of hyperplanes 𝐻1, 𝐻2 ∈ ℋ gives rise to a subarrangement defined by

ℋ(𝐻1, 𝐻2) := {𝐻 ∈ ℋ : 𝐻1∩𝐻2 ⊆ 𝐻}, which has an induced (relative) base region. Say

that 𝐻1 cuts 𝐻2 if 𝐻1 is basic in ℋ(𝐻1, 𝐻2) and 𝐻2 is not basic in ℋ(𝐻1, 𝐻2). For each

hyperplane 𝐻 ∈ ℋ remove from 𝐻 all points contained in hyperplanes 𝐻 ′ which cut 𝐻

in the subarrangement ℋ(𝐻,𝐻 ′). The closures of the remaining connected components

are called shards.

Remark 3.6.2. Essentially, shards partition hyperplanes in the same way that stability

spaces of bricks define parts of hyperplanes in the wall-and-chamber structure of a finite-

dimensional algebra, see [9, 38]. In particular, for preprojective algebras whose wall-and-

chamber structure is a hyperplane arrangement [141], the shards coincide exactly with

stability spaces of bricks [180] and shards were generalised and this result extended to

all finite-dimensional algebras in [142].

Following [158], let Ξ denote the set of arbitrary intersections of shards, which has a

natural poset structure by inclusion with maximal element the empty intersection R𝑛.

Using this set, define a partition Pshard of the cones Σℋ of a hyperplane arrangement

given by [𝜎1]Pshard
= [𝜎2]Pshard

if and only if the smallest elements 𝜉𝑖 ∈ Ξ which contain

𝜎𝑖, for 𝑖 = 1, 2 respectively, coincide.

Proposition 3.6.3. Let Σℋ be the fan of a finite central simplicial hyperplane arrange-

ment in R𝑛. The partition Pshard is an admissible partition of Σℋ and thus the category

of the shard-partition C(Σℋ,Pshard) is a well-defined category.

Proof. Since by definition each intersection of shards is contained in the intersection of

corresponding hyperplanes, two such cones 𝜎1, 𝜎2 have the same support and hence the

proof of Proposition 3.6.1 yields that they are in the same class of potential identifica-

tions.

To see that Pshard is admissible, let 𝜎1 ∼ 𝜎2 in Pshard be distinct cones, and let cones

𝜅𝑖 ∈ star(𝜎𝑖) for 𝑖 = 1, 2 be such that 𝜋𝜎1
(𝜅1) = 𝜋𝜎2

(𝜅2). It follows from Lemma 3.1.3

that span{𝜅1} = span{𝜅2}. If 𝜅1 and 𝜅2 are maximal, then the minimal intersection of

shards they are each contained in is the empty one, which gives [𝜅1]Pshard
= [𝜅2]Pshard

.

Otherwise, since Σℋ is finite and complete there exists a hyperplane 𝐻 ∈ ℋ containing

𝜅1, 𝜅2. Assume for a contradiction that 𝜅1 ̸∼ 𝜅2 in Pshard which means that the hyper-
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plane 𝐻 is cut by a hyperplane 𝐻 ′ separating 𝜅1 and 𝜅2 in the sense that the interiors

of 𝜅1 and 𝜅2 lie in opposite half-spaces defined by 𝐻 ′. Since 𝜎𝑖 ⊆ 𝜅𝑖, the hyperplane 𝐻 ′

also separates 𝜎1 and 𝜎2 and in particular the cut on 𝐻 induced by 𝐻 ′ implies that the

interiors of 𝜎1 and 𝜎2 lie in different shards, a contradiction.

Finally, it is left to verify that Pshard is well-defined, in other words, when 𝜎1 and 𝜎2

are two distinct cones identified in Pshard then given cones 𝜅𝑖, 𝜅′
𝑖 ∈ star(𝜎𝑖) for 𝑖 = 1, 2

satisfying

𝜋𝜎1
(𝜅1) = 𝜋𝜎2

(𝜅2), 𝜋𝜎1
(𝜅′

1) = 𝜋𝜎2
(𝜅′

2),

they are such that 𝜅1 ∼ 𝜅′
1 if and only if 𝜅2 ∼ 𝜅′

2 in Pshard. Let 𝜎1, 𝜎2 be two distinct

cones identified in Pshard and 𝜅𝑖, 𝜅
′
𝑖 ∈ star(𝜎𝑖) be as above for 𝑖 = 1, 2. Assume for a

contradiction that 𝜅1 ∼ 𝜅
′
1 but 𝜅2 ̸∼ 𝜅

′
2 in Pshard. By Lemma 3.1.3 these cones satisfy

span{𝜅2} = span{𝜅1} = span{𝜅′
1} = span{𝜅′

2}.

Therefore every hyperplane containing one of 𝜅1, 𝜅
′
1, 𝜅2 and 𝜅′

2 also contains all others

and the same holds for 𝜎1 and 𝜎2. Since 𝜅2 ̸∼ 𝜅′
2 in Pshard, there must exist a shard 𝑆

that contains 𝜅2 but not 𝜅′
2. By definition this means that there exists a hyperplane 𝐻

containing 𝜅2 and 𝜅′
2 and a hyperplane 𝐻 ′ which separates 𝜅2 from 𝜅′

2 in such a way that

𝐻 ′ is basic in ℋ(𝐻,𝐻 ′) whereas 𝐻 is not. By definition if 𝐻 ′ separates 𝜅2 and 𝜅′
2 then it

must pass through their intersection, in other words it contains 𝜎2 and thus 𝜎1. However,

𝐻 also contains 𝜎1 and 𝜎2. Consider now the orthogonal projections 𝜋𝜎1
(star(𝜎1)) and

𝜋𝜎2
(star(𝜎2)) which coincide by assumption. Then the images of 𝜋𝜎1

(𝜅1) = 𝜋𝜎2
(𝜅2) lie

on the same linear subspace of 𝜋𝜎𝑖
(R𝑛) as 𝜋𝜎1

(𝜅′
1) and 𝜋𝜎2

(𝜅′
2). Moreover, 𝜋𝜎𝑖

(𝐻) and

𝜋𝜎𝑖
(𝐻 ′) are hyperplanes in 𝜋𝜎𝑖

(R𝑛) and 𝜋𝑖(𝐻 ′) separates 𝜋𝜎1
(𝜅1) from 𝜋𝜎1

(𝜅′
1). Since

𝜅1 and 𝜅′
1 both lie on 𝐻, which is cut by 𝐻 ′, and they are separated by 𝐻 ′, they

cannot be identified in Pshard, a contradiction. Swapping the indices proves the reverse

direction.

Besides the importance of establishing the flat-partition and the shard-partition, it

is also necessary to understand picture groups of fans coming from hyperplane arrange-

ments.
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Lemma 3.6.4. Let ℋ be a finite central simplicial hyperplane arrangement. The fan

poset of regions 𝒫𝐵 with any choice of base region 𝐵 is well-defined on identified stars

and hence the presentation of the picture group in Lemma 3.4.9 may be used.

Proof. This follows from the fact that any poset of regions 𝒫(ℋ, 𝐵) of a simplicial

hyperplane arrangement is induced by any linear functional 𝑏 ∈ (R𝑛)∨ whose minimum

on the unit sphere lies inside the base region 𝐵 of 𝒫(ℋ, 𝐵), see [156, Thm. 4.2], and

Lemma 3.4.8.

For the flat-partition Pflat, for which all possible identifications are made, equivalence

classes [𝜎] of cones 𝜎 ∈ Σ𝑛−1
ℋ of codimension 1 are given by all such cones contained

in the same hyperplane denoted by 𝐻𝜎 = span{𝜎}. Therefore these equivalence classes

may be represented by a unit normal vector 𝑛𝐻𝜎
to the hyperplane. The following is

one of the main results of this thesis and the rest of this section concerns its proof. In

Section 3.8 its algebraic implications are discussed.

Theorem 3.6.5. Let ℋ ⊆ R𝑛 be a finite central simplicial hyperplane arrangement.

Let 𝐵 be a chosen base region and 𝒫𝐵 the corresponding fan poset of regions on Σℋ.

Assume that the unit normal vectors 𝑛𝐻 to all hyperplanes 𝐻 ∈ ℋ can be taken to lie

in the positive orthant R𝑛≥0. Then the functor of Eq. (3.5.1) is faithful.

Denote by ZJR𝑛K the formal power series with generators {𝑥𝑣 : 𝑣 ∈ R𝑛} over Z

whose multiplication is given by 𝑥𝑣1 * 𝑥𝑣2 = 𝑥𝑣1+𝑣2 . This is a commutative associative

algebra. The group of units ZJR𝑛K* is therefore an abelian group consisting of all formal

sums with constant term equal to 1 or -1.

Lemma 3.6.6. In the setting of Theorem 3.6.5 there exists a group homomorphism

𝜑 : 𝐺(Σℋ,Pmax,𝒫ℬ)→ ZJR𝑛K*

𝑋𝑛𝐻
↦→ 1 + 𝑥𝑛𝐻 .

Proof. As pointed out in Example 3.5.6 the poset of regions 𝒫ℬ is a polygonal lattice,

so by Proposition 3.4.12 it is sufficient to consider the relations coming from facial

intervals of cones of codimension 2, which are called polygon relations. To show that the

polygon relations are preserved is simple because of the commutativity of ZJR𝑛K* and
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the hyperplane structure. In particular, because the fan Σℋ comes from a hyperplane

arrangement and Pmax is the maximal partition, the labels of the two disjoint chains in

any polygon of 𝒫ℬ correspond to the two sequences (𝐻1, . . . ,𝐻𝑟) and (𝐻𝑟, . . . ,𝐻1) of

hyperplanes. These clearly satisfy

𝜑(𝑋𝑛𝐻1
. . . 𝑋𝑛𝐻𝑟

) = (1 + 𝑥
𝑛𝐻1 ) * · · · * (1 + 𝑥

𝑛𝐻𝑟 )

= (1 + 𝑥
𝑛𝐻𝑟 ) * · · · * (1 + 𝑥

𝑛𝐻1 )

= 𝜑(𝑋𝑛𝐻𝑟
. . . 𝑋𝑛𝐻1

)

since ZJR𝑛K* is abelian.

Remark 3.6.7. In [91, Sec. 4.3] and [92, Sec. 5.2] the authors take a similar approach

and find a group homomorhism into the groups of units of different versions of Hall

algebras. However, in the geometric setting of this section, the hyperplane arrangement

gives the polygon relations a symmetric structure, so that the abelian group ZJR𝑛K* is

a more natural candidate to consider.

Corollary 3.6.8. Let 𝐻1, 𝐻2 ∈ ℋ be distinct hyperplanes. Then they satisfy 𝑛𝐻1
̸= 𝑛𝐻2

and hence 𝑒 ̸= 𝑋𝑛𝐻1
̸= 𝑋𝑛𝐻2

∈ 𝐺(Σℋ,Pmax,𝒫𝐵).

Proof. This immediately follows from the existence of the group homomorphism defined

in Lemma 3.6.6 because

𝜑(𝑋𝑛𝐻1
) = 1 + 𝑥

𝑛𝐻1 ̸= 1 + 𝑥
𝑛𝐻2 = 𝜑(𝑋𝑛𝐻2

).

In other words, the generators 𝑋𝑛𝐻1
and 𝑋𝑛𝐻2

of 𝐺(Σℋ,Pmax,𝒫𝐵) are mapped to

distinct elements in ZJR𝑛K* by 𝜑, hence they are distinct.

Since the poset of regions is nondegenerate by Lemma 3.6.4, consider the additional

generators of the alternative presentation of the picture group given in Lemma 3.4.9.

Lemma 3.6.9. In the setting of Theorem 3.6.5, let all unit normal vector 𝑛𝐻 to the

hyperplanes lie in the positive orthant. Let 𝑅1 ̸= 𝑅2 ∈ R𝑛 ∖ ℋ be distinct regions, then

𝑔𝑅1
̸= 𝑔𝑅2

in 𝐺(ℋ,Pmax,𝒫𝐵).

Proof. Let 𝑅1
𝑛𝐻1−−→ . . .

𝑛𝐻𝑠−−→ −𝐵 and 𝑅2

𝑛
𝐻

′
1−−→ . . .

𝑛
𝐻

′
𝑟−−→ −𝐵 be two (labelled) chains in

Hasse(𝒫𝐵). Assume for a contradiction that 𝑔𝑅1
= 𝑔𝑅2

. The inequality max(𝑟, 𝑠) > 0
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must hold as otherwise 𝑅1 = −𝐵 = 𝑅2. Let 𝑚 ∈ {𝑛𝐻1
, . . . ,𝑛𝐻𝑠

,𝑛𝐻
′
1
, . . . ,𝑛𝐻

′
𝑟
} be any

vector. Then, the assumption 𝑔𝑅1
= 𝑔𝑅2

implies

𝑋𝑛𝐻1
. . . 𝑋𝑛𝐻𝑠

𝑒 = 𝑔𝑅1
= 𝑔𝑅2

= 𝑋𝑛
𝐻

′
1
. . . 𝑋𝑛

𝐻
′
𝑟

𝑒.

After applying the group homomorphism 𝜑 of Lemma 3.6.6, this yields

(1 + 𝑥
𝑛𝐻1 ) * · · · * (1 + 𝑥

𝑛𝐻𝑠 ) = (1 + 𝑥
𝑛

𝐻
′
1 ) * · · · * (1 + 𝑥

𝑛
𝐻

′
𝑟 ).

Therefore 𝑥𝑚 arises with positive coefficient on one of the sides. Since the sum of

the entries of 𝑚 is minimal (and all unit normal vectors have nonnegative entries)

𝑥𝑚 cannot be written as the product of other terms (since 𝑚 cannot be written

as a sum of the other unit normal vectors). Hence it must appear on both sides of

the equality. Since 𝑚 was chosen arbitrarily, this holds for all (unit normal) vec-

tors in {𝑛𝐻1
, . . . ,𝑛𝐻𝑠

,𝑛𝐻
′
1
, . . . ,𝑛𝐻

′
𝑟
}. In other words, the sets {𝑛𝐻1

, . . . ,𝑛𝐻𝑠
} and

{𝑛𝐻
′
1
, . . . ,𝑛𝐻

′
𝑟
} coincide, and hence do the sets {𝐻1, . . . ,𝐻𝑠} and {𝐻 ′

1, . . . ,𝐻
′
𝑟} of hy-

perplanes.

By [157, Prop. 9-1.15], each cover relation 𝑅⋖𝑅′ in 𝒫(ℋ, 𝐵) comes from adjacent re-

gions separated by a hyperplane 𝐻 and is such that 𝑆(𝑅′) = 𝑆(𝑅)∪{𝐻}. Consequently,

there is an equality

𝑆(𝑅1) = {𝐻1, . . . ,𝐻𝑠} = {𝐻 ′
1, . . . ,𝐻

′
𝑟} = 𝑆(𝑅2),

which implies 𝑅1 = 𝑅2, a contradiction. Therefore 𝑔𝑅1
̸= 𝑔𝑅2

.

These intermediate results are combined in the following proof.

Proof of Theorem 3.6.5. Consider the functor

Ψ : C(Σℋ,Pmax)→ 𝐺(Σℋ,Pmax,𝒫𝐵)

[𝑓𝜎𝜅] ↦→ 𝑔
𝜅

− · 𝑔−1
𝜎

−

(3.6.1)

which is simply an alternative way of writing the one in Eq. (3.5.1) using the presen-

tation of the picture group given in Lemma 3.4.9, which is possible by Lemma 3.6.4.

To show that Ψ is faithful it is required to show that the induced map Ψ𝜎𝜅 from

HomC(Σℋ,Pflat)([𝜎], [𝜅]) to Hom𝐺(Σℋ,Pmax,𝒫𝐵)(∙, ∙) is injective. By Corollary 3.1.6 and
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Lemma 3.2.2, it suffices to prove this for one representative 𝜎 ∈ [𝜎]. Hence, take distinct

morphisms [𝑓𝜎𝜅1
] ̸= [𝑓𝜎𝜅2

] ∈ HomC(Σℋ,Pflat)([𝜎], [𝜅]) which are such that 𝜅1 ̸= 𝜅2 but

𝜅1 ∼ 𝜅2 in Pmax. Applying the functor yields

Ψ([𝑓𝜎𝜅1
]) = 𝑔

𝜅
−
1
· 𝑔−1
𝜎

− and Ψ([𝑓𝜎𝜅2
]) = 𝑔

𝜅
−
2
· 𝑔−1
𝜎

− .

Then Lemma 3.6.9 implies that these group elements coincide if and only if 𝜅−
1 = 𝜅−

2 ,

which would mean that 𝜅−
1 = 𝜅−

2 ∈ star(𝜅1) ∩ star(𝜅2). This leads to a contradiction

because span{𝜅1} = span{𝜅2} and 𝜅1 ̸= 𝜅2 imply that star(𝜅1) and star(𝜅2) intersect

only at the boundary. Therefore the functor is faithful.

Corollary 3.6.10. In the setting of Theorem 3.6.5, if C(Σℋ,Pflat) satisfies the pairwise

compatibility of first and last factors, then the classifying space is a 𝐾(𝜋, 1) space for 𝜋

the picture group.

Proof. It follows from Proposition 2.4.4 and Theorem 3.6.5 that ℬC(Σℋ,Pflat) is a

𝐾(𝜋, 1) space and from Proposition 3.4.12 that the fundamental group is isomorphic to

the picture group, in this case.

3.7 Lattice of admissible partitions

It is well-known that the collection of partitions of a set, ordered by refinement, forms

a complete lattice, see [84, Sec. IV.4]. As a first step in this section, it is proven that

the restriction to admissible partitions of a fan preserves the lattice structure, thus

establishing a lattice of categories (one for each admissible partition) of a fan. In the

special case where the underlying fan is the 𝑔-vector fan of a finite-dimensional algebra,

see Section 3.8, the 𝜏 -cluster morphism category is an element of this lattice. Similarly

if the underlying fan is a hyperplane arrangement, the category of the flat-partition and

the category of the shard-partition lie in this lattice. Recall that an equivalence relation

induces a partition on a set 𝑋 and vice versa. Define the following poset relation on

partitions.

Definition 3.7.1. Let 𝑃1 and 𝑃2 be partitions of 𝑋. The partition 𝑃1 is called a finer

partition than 𝑃2 if

𝑥 ∼𝑃1
𝑦 =⇒ 𝑥 ∼𝑃2

𝑦, or equivalently, {𝑥, 𝑦} ⊆ 𝑎 ∈ 𝑃1 =⇒ {𝑥, 𝑦} ⊆ 𝑏 ∈ 𝑃2
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for 𝑥, 𝑦 ∈ 𝑋 and some 𝑎 ∈ 𝑃1 and 𝑏 ∈ 𝑃2. In this case, write 𝑃1 ≤ 𝑃2 and say that 𝑃2

is coarser than 𝑃1.

Denote by Part(𝑋) the set of all partitions of a set 𝑋. The set Part(𝑋) is partially

ordered by refinement and forms a lattice with meet and join described as follows.

Given a (possibily infinite) subset 𝒮 = {𝑃𝑖}𝑖∈𝐼 ⊆ Part(𝑋), define the meet
⋀︀
𝒮 to be

the partition satisfying

𝑥 ∼⋀︀
𝒮 𝑦 if and only if 𝑥 ∼𝑃𝑖

𝑦 for all 𝑖 ∈ 𝐼.

Define the join
⋁︀
𝒮 to be the partitioned satisfying 𝑥 ∼⋁︀

𝒮 𝑦 if and only if there

exists a natural number 𝑚, indices 𝑖0, . . . , 𝑖𝑚 ∈ 𝐼 and 𝑥0, . . . , 𝑥𝑚+1 ∈ 𝑋 such that

𝑥 = 𝑥0, 𝑦 = 𝑥𝑚+1 and 𝑥𝑗 ∼𝑃𝑖𝑗
𝑥𝑗+1 for 0 ≤ 𝑗 ≤ 𝑚. In view of Definition 3.1.1, denote

by APart(Σ) the set of all admissible partitions of a fan Σ. The following shows that

APart(Σ) is a complete sublattice of Part(Σ).

Proposition 3.7.2. The partially ordered set APart(Σ) forms a complete lattice.

Proof. Since Part(Σ) is a complete lattice, it is sufficient to show that APart(Σ) is closed

under the lattice operations. Recall from Section 4.2 that this means showing that the

join and meet partitions preserve the sets of potential identifications and are admissible.

Regarding the meet, take a subset 𝒮 = {P𝑖}𝑖∈𝐼 ⊆ APart(Σ) of admissible partitions

and take a block ℰℓ𝜎 ∈
⋀︀
𝒮. If |ℰℓ𝜎| = 1, then there is nothing to show, so assume |ℰℓ𝜎| > 1

and take 𝜎1, 𝜎2 ∈ ℰ
ℓ
𝜎. By definition 𝜎1 ∼P𝑖

𝜎2 for all 𝑖 ∈ 𝐼, so the partition
⋀︀
𝒮 consists

of possible identifications. Similarly, whenever 𝜋𝜎1
(𝜌1) = 𝜋𝜎2

(𝜌2), then 𝜌1 ∼P𝑖
𝜌2 for all

𝑖 ∈ 𝐼 and thus 𝜌1 ∼⋀︀
𝒮 𝜌2, hence

⋀︀
𝒮 is an admissible partition.

For the join, take ℰℓ𝜎 ∈
⋁︀
𝒮 and 𝜎1, 𝜎2 ∈ ℰ

ℓ
𝜎, then if both 𝜎1 and 𝜎2 are contained

in one block ℰℎ𝜆 ∈ P𝑖 for some 𝑖 ∈ 𝐼, the result is immediate. Therefore assume that 𝜎1

and 𝜎2 are not contained in the same block in any P𝑖. However, by the construction of

the join, there exists a sequence

𝜎1 ∼P𝑖1
𝜎𝑖1 ∼P𝑖2

· · · ∼P𝑖𝑟−1
𝜎𝑖𝑟−1

∼P𝑖𝑟
𝜎2

for some 𝑟 ≥ 1, such that each term is contained in ℰ𝜎1
= ℰ𝜎2

, hence
⋁︀
𝒮 consists of

possible identifications. This sequence of possible identifications implies that

𝜋𝜎1
(star(𝜎1)) = 𝜋𝜎𝑖𝑗

(star(𝜎𝑖𝑗 )) = 𝜋𝜎2
(star(𝜎2)),
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for 𝑗 = 1, . . . , 𝑟 − 1. To show that
⋁︀
𝒮 is admissible, assume 𝜋𝜎1

(𝜌1) = 𝜋𝜎2
(𝜌2) holds

for some 𝜌1 ∈ star(𝜎1) and 𝜌2 ∈ star(𝜎2). Then by the above there exists a sequence of

𝜌𝑖𝑗 ∈ star(𝜎𝑖𝑗 ) for 𝑗 = 1, . . . , 𝑟 − 1 such that

𝜋𝜎1
(𝜌1) = 𝜋𝜎𝑖𝑗

(𝜌𝑖𝑗 ) = 𝜋𝜎2
(𝜌2).

Since each P𝑖𝑗
is admissible for 𝑗 = 1, . . . , 𝑟 this yields a sequence

𝜌1 ∼P𝑖1
𝜌𝑖1 ∼P𝑖2

· · · ∼P𝑖𝑟−1
𝜌𝑖𝑟−1

∼P𝑖𝑟
𝜌2,

as required. Hence
⋁︀
𝒮 is an admissible partition.

It is easily seen that this is a bounded lattice, that is, there exists a maximal and

a minimal element. The minimal element is the partition Pposet mentioned in previous

sections, which is just the finest partition with trivial equivalence classes. The maximal

element is the coarsest partition, whose equivalence classes are exactly the ℰ𝜎 described

following Definition 3.1.1. When the fan is a hyperplane arrangement the coarsest par-

tition is exactly the flat-partition, see Proposition 3.6.1. The main result of this section

is the following description of the relationship between comparable partitions.

Theorem 3.7.3. Let (Σ,𝒫) be a fan poset and P1,P2 be two admissible partitions of

Σ such that P1 is finer than P2. Then the following hold:

(1) There exists a faithful surjective-on-objects functor 𝐹 : C(Σ,P1)→ C(Σ,P2).

(2) The classifying spaces satisfy ℬC(Σ,P2) ∼= ℬC(Σ,P1)/ ∼, where ∼ identifies the

cells 𝑒([𝜎1]P1
) and 𝑒([𝜎2]P1

) whenever [𝜎1]P2
= [𝜎2]P2

.

(3) If (Σ,𝒫) is nondegenerate, then the groups 𝐺(Σ,P2,𝒫) and 𝐺(Σ,P1,𝒫)/𝐼 are

isomorphic, where the normal subgroup 𝐼 is generated by the relations 𝑋[𝜎1] = 𝑋[𝜎2]

whenever [𝜎1]P1
̸= [𝜎2]P1

but [𝜎1]P2
= [𝜎2]P2

.

Proof. (1) The functor 𝐹 : C(Σ,P1) → C(Σ,P2) is given on objects by the map

sending [𝜎]P1
↦→ [𝜎]P2

for all cones 𝜎 ∈ Σ and given on morphisms by sending

[𝑓𝜎𝜌]P1
↦→ [𝑓𝜎𝜌]P2

for all 𝜎, 𝜌 ∈ Σ. Objects of C(Σ,P𝑖) are exactly the blocks of P𝑖

for both 𝑖 = 1, 2. By definition, P2 being coarser than P1 means [𝜎]P1
⊆ [𝜎]P2

.

Hence P2 has at most as many blocks as P1. Thus, 𝐹 is surjective-on-objects.
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To see that the functor is faithful, one observes that the identification of morphisms

in the construction of the category does not depend on a choice but is induced when

certain cones are identified. Take two different morphisms [𝑓𝜎1𝜌1
]P1
̸= [𝑓𝜎2𝜌2

]P1

in HomC(Σ,P1)([𝜎]P1
, [𝜌]P1

) satisfying 𝜎1 ̸= 𝜎2 or 𝜌1 ̸= 𝜌2 but 𝜎1 ∼P1
𝜎2 and

𝜌1 ∼P1
𝜌2. Assume for a contradiction that [𝑓𝜎1𝜌1

]P2
= [𝑓𝜎2𝜌2

]P2
then the cones

must satisfy 𝜋𝜎1
(𝜌1) = 𝜋𝜎2

(𝜌2) by definition. However, then they should have also

been identified in P1, a contradiction. Hence the induced map

𝐹[𝜎],[𝜌] : HomC(Σ,P1)([𝜎]P1
, [𝜌]P1

)→ HomC(Σ,P2)([𝜎]P2
, [𝜌]P2

)

is injective and hence the functor faithful.

(2) This follows from the description of the CW-complex in Theorem 3.3.4 whose cells

are the union of factorisation cubes, and the fact that the factorisation cubes of

two identified morphisms get identified, by Lemma 3.2.2.

(3) Let 𝜅1, 𝜅2, 𝜅3 ∈ Σ. The quotient group homomorphism

𝐻 : 𝐺(Σ,P1,𝒫)→ 𝐺(Σ,P1,𝒫)/𝐼

identifies the elements 𝑋[𝜅1]P1
and 𝑋[𝜅2]P1

of 𝐺(Σ,P1,𝒫) whenever 𝜅1 ∼P2
𝜅2 but

𝜅1 ̸∼P1
𝜅2. More precisely, in this case 𝑋[𝜅1]P1

+ 𝐼 = 𝑋[𝜅2]P1
+ 𝐼 ∈ 𝐺(Σ,P1,𝒫)/𝐼.

Furthermore if 𝜅3 ∼P1
𝜅1, then also 𝑋[𝜅3]P1

+𝐼 = 𝑋[𝜅2]P1
+𝐼 ∈ 𝐺(Σ,P1,𝒫)/𝐼. By

construction the generators 𝑋[𝜅𝑖]P1
+ 𝐼 and 𝑋[𝜅𝑗 ]P1

+ 𝐼 coincide in 𝐺(Σ,P1,𝒫)/𝐼

exactly when 𝑋[𝜅𝑖]P2
and 𝑋[𝜅𝑗 ]P2

coincide in 𝐺(Σ,P2,𝒫) for any 𝜅𝑖, 𝜅𝑗 ∈ Σ. It

is easily checked that the canonical assignment 𝑋[𝜅]P1
+ 𝐼 ↦→ 𝑋[𝜅]P2

provides a

group homomorphism between 𝐺(Σ,P1,𝒫)/𝐼 and 𝐺(Σ,P2,𝒫). Indeed, there is

clearly a bijection between the generators and the relations of the quotient group

are preserved as they are inherited from 𝐺(Σ,P1,𝒫) by construction.

Corollary 3.7.4. Let (Σ,𝒫) be a fan poset and P1 ≤ P2 be two admissible partitions

of Σ. If there exists a faithful group functor 𝐻 : C(Σ,P2) → 𝐺(Σ,P2,𝒫), then there

exists a faithful group functor C(Σ,P1)→ 𝐺(Σ,P2,𝒫).

Proof. Let 𝐹 : C(Σ,P1) → C(Σ,P2) be the faithful functor of Theorem 3.7.3(1). The
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desired group functor is given by the composition 𝐻 ∘ 𝐹 of faithful functors, which is

faithful.

Corollary 3.7.5. In the setting of Theorem 3.6.5, the category C(Σℋ,P) admits a

faithful functor to the group 𝐺(Σℋ,Pflat,𝒫) for all admissible partitions P.

Proof. The flat-partition Pflat is the maximal partition, so that any other partition P is

finer, that is, P ≤ Pflat. The result follows from Corollary 3.7.4 and Theorem 3.6.5.

3.8 Applications to the 𝜏 -cluster morphism category

In this final section, the results of this chapter are applied to the 𝜏 -cluster morphism

category of a finite-dimensional 𝐾-algebra 𝐴. First, it is shown that tors𝐴 induces a

natural fan poset structure on the 𝑔-vector fan Σ(𝐴) whenever Σ(𝐴) is 𝜏 -tilting finite.

Proposition 3.8.1. Let 𝐴 be a 𝜏 -tilting finite algebra, then the poset of torsion classes

tors𝐴 induces a fan poset (Σ,≤tors𝐴) on Σ(𝐴) via the bijection of Theorem 2.2.2.

Proof. By definition, every cone 𝜎 ∈ Σ(𝐴) is the 𝑔-vector cone of a 𝜏 -rigid pair (𝑀,𝑃 ).

Since 𝐴 is 𝜏 -tilting finite, the maximal cones containing 𝒞(𝑀,𝑃 ) are exactly those corre-

sponding to the interval [Fac𝑀,⊥𝜏𝑀 ∩𝑃⊥] ⊆ tors𝐴. This is because maximal 𝑔-vector

cones containing 𝒞(𝑀,𝑃 ) are exactly those 𝒞(𝑁,𝑄) ∈ Σ(𝐴) such that (𝑁,𝑄) is a 𝜏 -tilting

pair with 𝑀 ∈ add𝑁 and 𝑃 ∈ add𝑄. Hence the interval of maximal cones corresponds

to the 𝜏 -perpendicular interval between the co-Bongartz and Bongartz completions of

(𝑀,𝑃 ), see also Definition 2.2.4.

It remains to show that each interval is a cone. For a torsion class 𝒯 ∈ tors𝐴 and a

torsion-free class ℱ ∈ torf 𝐴, respectively, define the following subspaces of R𝑛:

ℋ+
𝒯 :=

⋂︁
𝑇∈𝒯
{𝑣 ∈ R𝑛 : ⟨𝑣,dim𝑇 ⟩ ≥ 0}, ℋ−

ℱ :=
⋂︁
𝐹∈ℱ
{𝑣 ∈ R𝑛 : ⟨𝑣,dim𝐹 ⟩ ≤ 0}.

Both spaces are intersections of half-spaces and thus convex cones. Take an interval

𝐼 = [𝜎1, 𝜎2] ∈ (Σ(𝐴),≤tors𝐴) corresponding to the interval [𝒯𝜎1
, 𝒯𝜎2

] ⊆ tors𝐴, and define

𝒯𝑖 := 𝒯𝜎𝑖
. Proving that (Σ(𝐴),≤tors𝐴) is a fan poset requires showing that⋃︁

𝜎𝑖∈𝐼
𝜎𝑖 = ℋ+

𝒯1
∩ℋ−

𝒯 ⊥
2
.
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Take 𝑣 ∈
⋃︀
𝜎𝑖∈𝐼 𝜎𝑖. From [38, Lem. 3.12] it follows that ⟨𝑣,dim𝑇 ⟩ ≥ 0 for all 𝑇 ∈ 𝒯1

since 𝒯1 ⊆ 𝒯𝑖 for all 𝜎𝑖 ∈ 𝐼. Therefore 𝑣 ∈ ℋ+
𝒯1

. Dually, it follows for the torsion-free

class 𝒯 ⊥
2 that ⟨𝑣,dim𝐹 ⟩ ≤ 0 for all 𝐹 ∈ 𝒯 ⊥

2 . Hence
⋃︀
𝜎𝑖∈𝐼 𝜎𝑖 ⊆ ℋ

+
𝒯1
∩ℋ−

𝒯 ⊥
2

.

Conversely, assume for a contradiction that there exists 𝑣 ∈ ℋ+
𝒯1
∩ ℋ−

𝒯 ⊥
2

such that

there is no 𝜎𝑖 ∈ 𝐼 satisfying 𝑣 ∈ 𝜎𝑖. Since the 𝑔-vector fan is finite and complete by [9,

Thm. 4.7], there exists some other maximal cone 𝜎′ ∈ Σ(𝐴) with 𝜎′ ̸∈ 𝐼 containing 𝑣.

By construction of ℋ+
𝒯1

, the torsion class 𝒯𝑣 corresponding to the maximal cone 𝜎′ via

Theorem 2.2.2 contains 𝒯1 since 𝒯𝑣 can be written as

𝒯𝑣 = {𝑇 ∈ mod𝐴 : ⟨𝑣,dim𝑋⟩ ≥ 0, for every quotient 𝑋 of 𝑇}

by [21] and [38, Prop. 3.27, Rmk. 3.28]. Therefore 𝒯1 ⊆ 𝒯𝜎′ . Dually, it follows that

(𝒯𝜎′)⊥ ⊆ (𝒯2)⊥ and hence 𝜎′ ∈ 𝐼.

Therefore any properties of the poset tors𝐴 also hold for the induced fan poset

(Σ(𝐴),≤tors𝐴). In particular it is a polygonal completely semidistributive lattice, see

Example 2.1.8. Moreover, the fan poset is well-defined on identified stars as the pro-

jection onto stars coincide with the process of 𝜏 -tilting reduction, which is an order-

preserving operation [115, Thm. 3.12], see also [57, Thm. 4.12]. Hence (Σ(𝐴),≤tors𝐴) is

nondegenerate by Lemma 3.4.7.

In order to apply results from previous sections it is necessary to understand where

the 𝜏 -cluster morphism category fits into the construction of the categories of parti-

tioned fans. Comparing Definition 3.1.4 with Definition 2.6.4 suggests the definition of

a partition PWAC via the identification

𝒞(𝑀1,𝑃1) ∼PWAC
𝒞(𝑀2,𝑃2) whenever 𝒲(𝑀1,𝑃1) =𝒲(𝑀2,𝑃2).

By [169, Cor. 3.7, Lem. 3.8], the partition PWAC is admissible. Then the categories

defined in Definition 3.1.4 and Definition 2.6.4 differ only in whether objects are closed

cones or interior cones. It follows directly that the 𝜏 -cluster morphism category C(𝐴) is

equivalent to the category of the partitioned fan C(Σ(𝐴),PWAC).

Now compare the picture group 𝐺(𝐴) of the finite-dimensional algebra 𝐴, as defined

in Definition 2.3.2, with the picture group of the partitioned 𝑔-vector fan (Σ(𝐴),PWAC)

with respect to the fan poset (Σ(𝐴),≤tors𝐴) as in Proposition 3.8.1. The following proof
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uses the notion of a stable module with respect to a stability condition [125] in the

context of the wall-and-chamber structure [9, 38]. The definitions of these notions are

omitted for the sake of brevity since they are not important for the proof.

Proposition 3.8.2. Let 𝐴 be 𝜏 -tilting finite. Let C(𝐴) ∼= C(Σ,PWAC), then the group

𝐺(Σ(𝐴),PWAC,≤tors𝐴) is isomorphic to 𝐺(𝐴), where (Σ(𝐴),≤tors𝐴) is the fan poset

induced by tors𝐴.

Proof. Since (Σ(𝐴),≤tors𝐴) is nondegenerate, consider the presentation of the picture

group 𝐺(Σ(𝐴),PWAC,≤tors𝐴) of the partitioned fan poset as in Lemma 3.4.9. The

equivalence classes of PWAC are determined by bricks for the following reason: Let

𝒞(𝑀,𝑃 ) ∈ Σ(𝐴) be of codimension 1, then by [38, Prop. 3.17] and [166, Thm. 1] there

exists a brick 𝐵 associated to 𝒞(𝑀,𝑃 ), which is obtained as a 𝑣-stable module for all

𝑣 ∈ 𝒞(𝑀,𝑃 ). Moreover, by [38, Prop. 3.13, Thm. 3.14] is the unique 𝑣-stable module

in 𝒲(𝑀,𝑃 ). Take now a distinct cone 𝒞(𝑀 ′
,𝑃

′) ∼ 𝒞(𝑀,𝑃 ) ∈ C(Σ,PWAC), then since

𝒲(𝑀 ′
,𝑃

′) = 𝒲(𝑀,𝑃 ), it follows that the brick 𝐵′ corresponding to 𝒞(𝑀 ′
,𝑃

′) is isomor-

phic to 𝐵. Hence the generators 𝑋[𝒞(𝑀,𝑃 )] of 𝐺(Σ(𝐴),PWAC,≤tors𝐴) are in bijection

with the generators 𝑋𝐵 of 𝐺(𝐴).

There are bijections 𝒞(𝑀,𝑃 ) ↔ (𝑀,𝑃 ) ↔ Fac𝑀 between maximal 𝑔-vector cones,

basic 𝜏 -tilting pairs and functorially finite torsion classes, hence the generators 𝑔𝒞(𝑀,𝑃 )

of 𝐺(Σ(𝐴),PWAC,≤tors𝐴) and the generators 𝑔𝒯(𝑀,𝑃 )
of 𝐺(𝐴) are also in bijection.

The fact that the relations of the two groups coincide follows immediately from [56,

Thm. 6.11]. Hence they are isomorphic.

Therefore, Definition 3.4.4 is indeed a generalisation of Definition 2.3.2 in the 𝜏 -

tilting finite case. Recall from [91, Thm. 4.10] that, the picture group 𝐺(𝐴) is isomorphic

to the fundamental group of ℬC(𝐴). Through this connection, an infinite new class of

algebras is obtained whose 𝜏 -cluster morphism category admits a faithful group functor.

Theorem 3.8.3. Let 𝐴 be a finite-dimensional 𝐾-algebra such that Σ(𝐴) is a finite

hyperplane arrangement. Then C(𝐴) admits a faithful functor to 𝐺(Σ(𝐴),Pflat,≤tors𝐴
),

and hence to 𝐺(𝐴).

Proof. Let 𝜎 be a cone of codimension 1 of Σ(𝐴). Then 𝜎 is contained in a hyperplane

whose normal vector is given by the dimension vector of a brick 𝐵 ∈ brick𝐴 see [38,
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Prop. 3.13]. Since the dimension vector lies in the positive orthant, it can be normalised

and then Σ(𝐴) satisfies the assumptions of Theorem 3.6.5. Since the 𝜏 -cluster morphism

category C(𝐴) is equivalent to the category C(Σ(𝐴),PWAC,≤tors𝐴), Corollary 3.7.5 gives

the desired result. Since 𝐺(𝐴) is the fundamental group of ℬC(𝐴) by [91, Thm. 4.10],

the faithful functor to 𝐺(Σ(𝐴),Pflat,≤tors𝐴) factors through a faithful functor to 𝐺(𝐴),

see the proof of [101, Prop. 3.7].

Corollary 3.8.4. Let 𝐴 be such that Σ(𝐴) is a finite hyperplane arrangement. Then

the classifying space ℬC(𝐴) is a 𝐾(𝜋, 1) space if C(𝐴) satisfies the pairwise compatibility

condition of last factors. In particular, if Σ(𝐴) ⊆ R3, then ℬC(𝐴) is a 𝐾(𝜋, 1) space.

Proof. The 𝜏 -cluster morphism category always satisfies the pairwise compatibility con-

dition of first factors. The first part of the statement is then the remaining sufficient

condition of Proposition 2.4.4, and the second part follows from [20], where it is shown

that the pairwise compatibility of last factors always holds for algebras with three iso-

morphism classes of simple modules.

As a consequence of Theorem 3.8.3, the family of algebras whose 𝑔-vector fan is

a finite hyperplane arrangement yields a new family of algebras whose 𝜏 -cluster mor-

phism category admits a faithful group functor, extending Example 2.4.5. For example,

preprojective algebras of Dynkin type ADE [141]. More generally, the generalised pre-

projective algebras coming from Cartan matrices of finite (Dynkin) type, as introduced

in [79], have 𝑔-vector fans which define finite hyperplane arrangements by [146, Thm.

3.19]. The theorem states that their 𝑔-vector fans come from the root systems of the

corresponding Weyl groups. On the other hand, conjecturally, the finite hyperplane

arrangements coming from crepant resolutions as in [182] define contraction algebras

whose 𝑔-vector fan would then be the finite hyperplane arrangement by [12].

To conclude this chapter consider the following new example of an algebra 𝐴 for

which ℬC(𝐴) is a 𝐾(𝜋, 1) space.

Example 3.8.5. Let 𝐴 be the generalised preprojective algebra of type 𝐶3, see [79,

Sec. 13.8]. That is, the algebra coming from the Cartan matrix 𝐶 with symmetrizer 𝐷
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given as follows:

𝐶 =

⎛⎜⎜⎜⎝
2 −1 0

−1 2 −2

0 −1 2

⎞⎟⎟⎟⎠ , 𝐷 = diag(1, 1, 2).

In other words, write 𝐴 ∼= 𝐾𝑄/𝐼 with quiver given by

𝑄 : 1 2 3
𝛼21

𝛼12

𝛼32

𝛼23
𝜖3

and 𝐼 = ⟨𝛼21𝛼12, 𝛼32𝛼23−𝛼12𝛼21, 𝜖3𝛼23𝛼32 +𝛼23𝛼32𝜖3, 𝜖
2
3⟩. Similar to [141, Thm. 3.9] for

preprojective algebras of type ADE, the result [146, Thm. 3.19] states that up to a base

change the 𝑔-vector cones of generalised preprojective algebras of arbitrary Dynkin type

of [79] coincide with the (Weyl) chambers in the hyperplane arrangement obtained by

taking orthogonal hyperplanes to the roots of the corresponding root system. Moreover,

by [79, Thm. 1.3] these roots are a positive scalar multiple of the dimension vectors of

certain (𝜏 -locally free) modules. For this example of type 𝐶3, it can be read off from

[79, Sec. 13.8] that the dimension vectors of these modules are the following 9 integer

vectors: ⎛⎜⎜⎜⎝
1

0

0

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
0

1

0

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
0

0

2

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
1

1

0

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
0

2

2

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
2

2

2

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
0

1

2

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
1

1

2

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
1

2

2

⎞⎟⎟⎟⎠ ,

Since Ext1(𝑆(3), 𝑆(3)) ̸= 0, the algebra 𝐴 is not a𝐾-stone algebra, so that [92, Thm. 5.9]

does not apply to yield a faithful group functor. Instead, since Σ(𝐴) is a finite hyperplane

arrangement, Theorem 3.8.3 gives the existence of a faithful group functor. Furthermore,

by [20] the category C(𝐴) satisfies the pairwise compatibility condition of last factors

since 𝐴 has 3 isomorphism classes of simples. Therefore ℬC(𝐴) is a new example of a

𝐾(𝐺(𝐴), 1) space obtained from 𝜏 -cluster morphism categories, by Proposition 2.4.4.



Chapter 4

𝜏 -cluster morphism categories of factor

algebras

This chapter approaches the 𝜏 -cluster morphism category from a new perspective. Using

lattice theory, a relationship between W(𝐴) and W(𝐴/𝐼) for some finite-dimensional

𝐾-algebra 𝐴 and its quotient algebra 𝐴/𝐼 by some ideal 𝐼 of 𝐴 is established. To

achieve this, some additional lattice theoretic notions and techniques are introduced in

Section 4.1. In particular the notion of lattice congruences plays an important role in this

chapter. The new perspective on W(𝐴), introduced in Section 4.2, defines the 𝜏 -cluster

morphism category via 𝜏 -perpendicular intervals of tors𝐴. As shown in Section 4.3,

the necessary information for this construction is encoded purely combinatorially in the

poset tors𝐴 when it is finite. Consequently, Corollary 4.3.8 shows that if two finite-

dimensional algebras 𝐴 and 𝐵 are such that tors𝐴 ∼= tors𝐵 and such that both are

finite lattices, then W(𝐴) ∼= W(𝐵). Subsequently, the study of the 𝜏 -cluster morphism

category of factor algebras is initiated in Section 4.4. The lattice congruence from tors𝐴

to tors𝐴/𝐼, established in [57, Sec. 5.2], forms the main ingredient for constructing

a functor 𝐹𝐼 : W(𝐴) → W(𝐴/𝐼) in Section 4.4. In that section and the following,

categorical properties of 𝐹𝐼 are investigated, leading to the conclusion that 𝐹𝐼 is a

regular epimorphism in the category of small categories. To conclude, a comparison of

the different approaches to the 𝜏 -cluster morphism category is presented in Section 4.7

using some examples.

77
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4.1 Lattice congruences

In this chapter, let 𝐴 denote a finite-dimensional 𝐾-algebra over an arbitrary field 𝐾,

unless stated otherwise. When studying factor algebras some additional lattice theory

is required. In particular, the following notion plays a central role.

Definition 4.1.1. An equivalence relation ≡ on a complete lattice 𝐿 is called a complete

lattice congruence if for an indexing set 𝐼 and families {𝑥𝑖}𝑖∈𝐼 , {𝑦𝑖}𝑖∈𝐼 ⊆ 𝐿 the following

holds:

𝑥𝑖 ≡ 𝑦𝑖 for all 𝑖 ∈ 𝐼

=⇒
⋁︁
{𝑥𝑖 : 𝑖 ∈ 𝐼} ≡

⋁︁
{𝑦𝑖 : 𝑖 ∈ 𝐼} and

⋀︁
{𝑥𝑖 : 𝑖 ∈ 𝐼} ≡

⋀︁
{𝑦𝑖 : 𝑖 ∈ 𝐼}.

Given the corresponding set of partitions Φ≡ of the equivalence relation ≡, define the

quotient lattice 𝐿/ ≡ as the complete lattice whose elements are elements of Φ≡ and such

that for a subset 𝑆 ⊆ Φ≡, the element
⋁︀
𝑆 ∈ 𝐿/ ≡ is the equivalence class containing⋁︀

𝑆′ ∈ 𝐿, where 𝑆′ ⊆ 𝐿 is constructed from 𝑆 as a union of representatives 𝑐 ∈ 𝐶 for

every equivalence class 𝐶 ∈ 𝑆. The meet 𝐶1 ∧ 𝐶2 is defined dually.

The focus of this chapter lies on lattice congruences on the lattice of torsion classes

tors𝐴. In particular, those lattice congruences which arise from quotient algebras in the

following way.

Theorem 4.1.2. [57, Thm. 5.12] For any ideal 𝐼 ∈ ideal𝐴, the map

(−)𝐼 : 𝒯 ↦→ (𝒯 )𝐼 := 𝒯 ∩mod𝐴/𝐼

is a surjective morphism of complete lattices tors𝐴↠ tors𝐴/𝐼 and the induced equiva-

lence relation Φ𝐼 on tors𝐴 is a complete lattice congruence.

For convenience, write (−) := (−)𝐼 and 𝒯 := (𝒯 )𝐼 when no confusion about the

ideal 𝐼 of 𝐴 may arise. The following properties of lattice congruences are frequently

used.

Proposition 4.1.3. Let Φ be a complete lattice congruence on 𝐿, then the equivalence

classes [𝑥] ∈ Φ correspond to intervals which will be denoted by

[𝜋Φ
↓ 𝑥, 𝜋

Φ
↑ 𝑥] ⊆ 𝐿.
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Define 𝜋Φ
↓ (𝐿) to be the subset of elements which are minimal in their equivalence class

and define 𝜋Φ
↑ (𝐿) to be the subset of elements which are maximal in their equivalence

class. Then, 𝜋Φ
↓ (𝐿) and 𝜋Φ

↑ (𝐿) are isomorphic to the quotient lattice 𝐿/Φ and 𝜋Φ
↓ : 𝐿→

𝜋Φ
↓ (𝐿) and 𝜋Φ

↑ : 𝐿→ 𝜋Φ
↑ (𝐿), which send 𝑥 to the minimal and maximal elements in its

equivalence class respectively, are morphisms of complete lattices.

Proof. If 𝐿 is a finite lattice, then [157, Prop. 9-5.2] implies that an equivalence class

[𝑥] ∈ Φ corresponds to an interval [𝜋Φ
↓ 𝑥, 𝜋

Φ
↑ 𝑥] ⊆ 𝐿 and [157, Prop. 9-5.5] states that

𝜋Φ
↓ : 𝐿→ 𝜋Φ

↓ 𝐿 is a morphism of lattices and that 𝐿/Φ is equivalent to 𝜋Φ
↓ 𝐿. The same

result holds for 𝜋Φ
↑ by the dual of [157, Prop. 9-5.5]. By [157, Exercise 9.42] these result

hold analogously for complete lattices and complete lattice congruences.

For a complete lattice congruence Φ on a complete lattice 𝐿, the surjective mor-

phisms of lattices 𝐿→ 𝐿/Φ is sometimes also denoted by Φ. The first part of Proposi-

tion 4.1.3 then states that for any 𝑥 ∈ 𝐿/Φ, the preimage Φ−1(𝑥) is an interval, which

will be denoted by [𝜋↓Φ−1(𝑥), 𝜋↑Φ−1(𝑥)] ⊆ 𝐿.

4.2 Lattice theoretic definition of the 𝜏 -cluster morphism category

In contrast to the geometric approaches of [169] and Chapter 3 to the 𝜏 -cluster morphism

category, in this section the 𝜏 -cluster morphism category is defined from the lattice

of torsion classes. Let itv(tors𝐴) denote the poset of intervals of tors𝐴 ordered (by

convention) by reverse containment. That means, if [𝒰 , 𝒯 ], [𝒮,𝒱] ∈ itv(tors𝐴) are two

intervals, then [𝒰 , 𝒯 ] ≤ [𝒮,𝒱] whenever 𝒰 ⊆ 𝒮 and 𝒱 ⊆ 𝒯 . The connection of this

construction with the geometric one comes from the correspondence

Σ(𝐴)→ itv(tors𝐴)

𝒞(𝑀,𝑃 ) ↦→ [Fac𝑀,⊥𝜏𝑀 ∩ 𝑃⊥].
(4.2.1)

For the sake of brevity, given a 𝜏 -rigid pair (𝑀,𝑃 ) denote by [𝒰(𝑀,𝑃 ), 𝒯(𝑀,𝑃 )] the

interval [Fac𝑀,⊥𝜏𝑀 ∩ 𝑃⊥]. In particular, considering only maximal cones 𝒞(𝑀,𝑃 ) of

Σ(𝐴) in Eq. (4.2.1), which means that (𝑀,𝑃 ) is 𝜏 -tilting and ⊥𝜏𝑀 ∩ 𝑃⊥ = Fac𝑀

by [3, Prop. 2.16b], Eq. (4.2.1) is the bijection between 𝜏 -tilting modules (𝑀,𝑃 ) and

functorially finite torsion classes Fac𝑀 ∈ f-tors𝐴 of Theorem 2.2.2.
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The analogue of the projection map 𝜋𝒞(𝑀,𝑃 )
in the geometric construction of Defi-

nition 3.1.4, which defines the identification of morphisms corresponding to “the same

relative 𝜏 -tilting reduction”, is the following result, which is a direct consequence of

Theorem 2.2.5.

Lemma 4.2.1. Let [𝒰(𝑀1,𝑃1), 𝒯(𝑀1,𝑃1)] and [𝒰(𝑀2,𝑃2), 𝒯(𝑀2,𝑃2)] be 𝜏 -perpendicular inter-

vals of tors𝐴 such that 𝒲(𝑀1,𝑃1) =𝒲(𝑀2,𝑃2). Then there are three lattice isomorphisms

[𝒰(𝑀1,𝑃1), 𝒯(𝑀1,𝑃1)] [𝒰(𝑀2,𝑃2), 𝒯(𝑀2,𝑃2)]

tors𝒲(𝑀𝑖,𝑃𝑖)

∼=

−∩𝒲(𝑀1,𝑃1) −∩𝒲(𝑀2,𝑃2)
(4.2.2)

The isomorphism between the 𝜏 -perpendicular intervals factors through the lattice

of torsion classes of their shared 𝜏 -perpendicular wide subcategory. The following is a

key feature of these isomorphisms.

Proposition 4.2.2. [57, Prop. 4.13] The three lattice isomorphisms in Eq. (4.2.2) pre-

serve the brick labelling of Hasse quivers.

Using the isomorphisms of Eq. (4.2.2) as analogues of the projection onto the orthog-

onal complement in Definition 3.1.4, the 𝜏 -cluster morphism category may be defined

from the lattice of torsion classes as follows.

Definition 4.2.3. The (lattice theoretic) 𝜏 -cluster morphism category T(𝐴) has as its

objects equivalence classes [𝒰(𝑀,𝑃 ), 𝒯(𝑀,𝑃 )]∼ of 𝜏 -perpendicular intervals of tors𝐴 under

the equivalence relation

[𝒰(𝑀1,𝑃1), 𝒯(𝑀1,𝑃1)] ∼ [𝒰(𝑀2,𝑃2), 𝒯(𝑀2,𝑃2)]

whenever𝒲(𝑀1,𝑃1) =𝒲(𝑀2,𝑃2). The morphisms of T(𝐴) are given by equivalence classes

of morphisms in the poset category itv(tors𝐴). More precisely,

HomT(𝐴)([𝒰(𝑀,𝑃 ), 𝒯(𝑀,𝑃 )]∼, [𝒰(𝑁,𝑄), 𝒯(𝑁,𝑄)]∼)

=
⋃︁

[𝒰
(𝑀

′
,𝑃

′)
,𝒯

(𝑀
′
,𝑃

′)
]∈[𝒰(𝑀,𝑃 ),𝒯(𝑀,𝑃 )]∼

[𝒰
(𝑁

′
,𝑄

′)
,𝒯

(𝑁
′
,𝑄

′)
]∈[𝒰(𝑁,𝑄),𝒯(𝑁,𝑄)]∼

Homitv(tors𝐴)([𝒰(𝑀 ′
,𝑃

′), 𝒯(𝑀 ′
,𝑃

′)], [𝒰(𝑁 ′
,𝑄

′), 𝒯(𝑁 ′
,𝑄

′)])
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modulo the equivalence relation

𝑓[𝒰(𝑀1,𝑃1),𝒯(𝑀1,𝑃1)][𝒰(𝑁1,𝑄1),𝒯(𝑁1,𝑄1)] ∼ 𝑓[𝒰(𝑀2,𝑃2),𝒯(𝑀2,𝑃2)][𝒰(𝑁2,𝑄2),𝒯(𝑁2,𝑄2)]

whenever

[𝒰(𝑁1,𝑄1), 𝒯(𝑁1,𝑄1)] ∩𝒲(𝑀1,𝑃1) = [𝒰(𝑁2,𝑄2), 𝒯(𝑁2,𝑄2)] ∩𝒲(𝑀2,𝑃2).

Composition of morphisms in T(𝐴) is defined analogously to the geometric realisa-

tion of the 𝜏 -cluster morphism category in Definition 3.1.4. In Lemma 4.2.6, ambiguities

regarding different representatives of equivalence classes are resolved, which makes the

composition well-defined.

It is not difficult to see that there are bijections between the objects of the category

C(𝐴) and those of T(𝐴) via the correspondence Eq. (4.2.1). When the reference to the

specific 𝜏 -rigid pair is not important in later sections, 𝜏 -perpendicular intervals will

simply be denoted by [𝒰 , 𝒯 ] suppressing explicit reference to the corresponding 𝜏 -rigid

pair, which further shortens the notation. As a first step, it is easy to connect objects

and morphisms of C(𝐴) and T(𝐴), showing that identifications happen in the same way

in C(𝐴) and T(𝐴).

Lemma 4.2.4. The assignment of Eq. (4.2.1) induces a well-defined bijection between

the objects of C(𝐴) and T(𝐴).

Proof. It is clear that there exists a bijection between 𝑔-vector cones 𝒞(𝑀,𝑃 ) ∈ Σ(𝐴) and

𝜏 -perpendicular intervals [𝒰(𝑀,𝑃 ), 𝒯(𝑀,𝑃 )] as they are both in bijection with basic 𝜏 -rigid

pairs (𝑀,𝑃 ) by definition. It then suffices to show that the identifications happen the

same way in C(𝐴) and T(𝐴). From the respective definitions it follows immediately that

𝒞(𝑀1,𝑃1) ∼C(𝐴) 𝒞(𝑀2,𝑃2) ⇔𝒲(𝑀1,𝑃1) =𝒲(𝑀2,𝑃2)

⇔ [𝒰(𝑀1,𝑃1), 𝒯(𝑀1,𝑃1)] ∼T(𝐴) [𝒰(𝑀2,𝑃2), 𝒯(𝑀2,𝑃2)].

Therefore the equivalence relation is preserved on objects.

Lemma 4.2.5. The assignment of Eq. (4.2.1) induces a well-defined map between mor-

phisms of C(𝐴) and T(𝐴). That is, the identification of morphisms is preserved, or in
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other words, two inclusions of 𝑔-vector cones 𝒞(𝑀𝑖,𝑃𝑖) ⊆ 𝒞(𝑁𝑖,𝑄𝑖) ∈ Σ(𝐴) for 𝑖 = 1, 2 with

corresponding 𝜏 -perpendicular intervals [𝒰(𝑀𝑖,𝑃𝑖), 𝒯(𝑀𝑖,𝑃𝑖)] ≤ [𝒰(𝑁𝑖,𝑄𝑖), 𝒯(𝑁𝑖,𝑄𝑖)] satisfy

𝜋𝒞(𝑀1,𝑃1)
(𝒞(𝑁1,𝑄1)) = 𝜋𝒞(𝑀2,𝑃2)

(𝒞(𝑁2,𝑄2))

⇔ ([𝒰(𝑁1,𝑄1), 𝒯(𝑁1,𝑄1)]) ∩𝒲(𝑀1,𝑃1) = [𝒰(𝑁2,𝑄2), 𝒯(𝑁2,𝑄2)] ∩𝒲(𝑀2,𝑃2).

Proof. This follows from [169, Lem. 3.8] and [9, Lem. 4.4(3)]. More precisely, the result

[169, Lem. 3.8] relates the projection map 𝜋𝒞(𝑀,𝑃 )
: R|𝐴| → span{𝒞(𝑀,𝑃 )}

⊥ defined in

Chapter 3 with the map 𝜋 : 𝐾0(proj𝐴) → 𝐾0(proj𝒲(𝑀,𝑃 )) defined in [9, p. 33]. Then

[9, Lem. 4.4(3)] implies that

𝜋𝒞(𝑀1,𝑃1)
(𝒞(𝑁1,𝑄1)) = 𝜋𝒞(𝑀2,𝑃2)

(𝒞(𝑁2,𝑄2))

⇔ 𝒯(𝑁1,𝑄1) ∩𝒲(𝑀1,𝑃1) = 𝒯(𝑁2,𝑄2) ∩𝒲(𝑀2,𝑃2)

and 𝒰(𝑁1,𝑄1) ∩𝒲(𝑀1,𝑃1) = 𝒰(𝑁2,𝑄2) ∩𝒲(𝑀2,𝑃2)

⇔ ([𝒰(𝑁1,𝑄1), 𝒯(𝑁1,𝑄1)]) ∩𝒲(𝑀1,𝑃1) = [𝒰(𝑁2,𝑄2), 𝒯(𝑁2,𝑄2)] ∩𝒲(𝑀2,𝑃2).

Whence the result follows.

Next, it is shown that composition of morphisms in T(𝐴) is well-defined. The first

concern, see also Lemma 3.1.5, is that it is not clear how to compose two morphisms

[𝑓[𝒰 ,𝒯 ][𝒱1,𝒮1]] and [𝑓[𝒱2,𝒮2][𝒳2,𝒴2]] when [𝒱1,𝒮1] ∼ [𝒱2,𝒮2]. The following lemma implies

the existence of a morphism 𝑓[𝒱1,𝒮1][𝒳1,𝒴1] ∼ 𝑓[𝒱2,𝒮2][𝒳2,𝒴2] so that composition of the two

morphisms is simply [𝑓[𝒰 ,𝒯 ][𝒳1,𝒴1]].

Lemma 4.2.6. Let (𝑀1, 𝑃1) and (𝑀2, 𝑃2) be 𝜏 -rigid pairs with the property that

𝒲(𝑀1,𝑃1) =𝒲(𝑀2,𝑃2). Then, for every 𝜏 -perpendicular interval

[𝒰(𝑁1,𝑄1), 𝒯(𝑁1,𝑄1)] ⊆ [𝒰(𝑀1,𝑃1), 𝒯(𝑀1,𝑃1)],

there exists a 𝜏 -perpendicular interval

[𝒰(𝑁2,𝑄2), 𝒯(𝑁2,𝑄2)] ⊆ [𝒰(𝑀2,𝑃2), 𝒯(𝑀2,𝑃2)]]

such that 𝒲(𝑁1,𝑄1) =𝒲(𝑁2,𝑄2) and such that

[𝒰(𝑁1,𝑄1), 𝒯(𝑁1,𝑄1)] ∩𝒲(𝑀1,𝑃1) = [𝒰(𝑁2,𝑄2), 𝒯(𝑁2,𝑄2)] ∩𝒲(𝑀2,𝑃2).



4. 𝜏 -cluster morphism categories of factor algebras 83

By definition, this means that

𝑓[𝒰(𝑀1,𝑃1),𝒯(𝑀1,𝑃1)][𝒰(𝑁1,𝑄1),𝒯(𝑁1,𝑄1)] ∼ 𝑓[𝒰(𝑀2,𝑃2),𝒯(𝑀2,𝑃2)][𝒰(𝑁2,𝑄2),𝒯(𝑁2,𝑄2)]

in T(𝐴).

Proof. By Lemma 4.2.1, there is an isomorphism of lattices

𝜑 : [𝒰(𝑀1,𝑃1), 𝒯(𝑀1,𝑃1)]→ [𝒰(𝑀2,𝑃2), 𝒯(𝑀2,𝑃2)],

which, by Proposition 4.2.2, preserves the brick labelling of the intervals. Therefore,

given a subinterval [𝒰(𝑁1,𝑄1), 𝒯(𝑁1,𝑄1)] ⊆ [𝒰(𝑀1,𝑃1), 𝒯(𝑀1,𝑃1)] consider the image

[𝒱,𝒮] := 𝜑([𝒰(𝑁1,𝑄1), 𝒯(𝑁1,𝑄1)]) ⊆ [𝒰(𝑀2,𝑃2), 𝒯(𝑀2,𝑃2)].

By definition of 𝜑, the interval [𝒱,𝒮] is such that

[𝒱,𝒮] ∩𝒲(𝑀2,𝑃2) = [𝒰(𝑀1,𝑃1), 𝒯(𝑀1,𝑃1)] ∩𝒲(𝑀1,𝑃1).

The brick labelling of [𝒱,𝒮] coincides with that of [𝒰(𝑁1,𝑄1), 𝒯(𝑁1,𝑄1)] by Proposi-

tion 4.2.2. It follows from [10, Thm. 5.2, Prop. 5.3] that 𝒱⊥ ∩ 𝒮 = 𝒲(𝑁1,𝑄1), making

[𝒱,𝒮] a 𝜏 -perpendicular interval. Indeed, the corresponding basic 𝜏 -rigid pair (𝑁2, 𝑄2)

such that [𝒰(𝑁2,𝑄2), 𝒯(𝑁2,𝑄2)] = [𝒱,𝒮] is obtained as follows.

There exists an explicit bijection 𝐸(𝑀𝑖,𝑃𝑖) from basic 𝜏 -rigid pairs in mod𝐴 contain-

ing (𝑀𝑖, 𝑃𝑖) as a direct summand to basic 𝜏 -rigid pairs in the subcategory 𝒲(𝑀𝑖, 𝑃𝑖)

for 𝑖 = 1, 2, see [45, Sec. 5] and [43, Def. 3.5]. The desired basic 𝜏 -rigid pair is then

obtained as (𝑁2, 𝑄2) = 𝐸−1
(𝑀2,𝑃2)(𝐸(𝑀1,𝑃1)(𝑁1, 𝑄1)), by [40, Lem. 6.5, 6.6].

The second concern is whether the composition of pairwise-identified morphisms

gives identified morphisms, see [169, Lem. 3.10] and Lemma 3.1.7. However, this is

easily seen to hold via the lattice isomorphism of Lemma 4.2.1 similar to Lemma 4.2.6.

Theorem 4.2.7. The category T(𝐴) is well-defined and equivalent to C(𝐴).

Proof. The composition of morphisms is well-defined by Lemma 4.2.6, therefore T(𝐴)

is a well-defined category. The equivalence Ψ : C(𝐴)→ T(𝐴) is induced by Eq. (4.2.1).

From Lemma 4.2.4 and Lemma 4.2.5 it follows that Ψ is a well-defined on objects and
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morphisms. Lemma 4.2.6 is the lattice theoretic analogue of Lemma 3.1.5, making Ψ

well-defined on compositions of morphisms. By definition, every 𝜏 -perpendicular interval

comes from a 𝜏 -rigid pair (𝑀,𝑃 ) and hence from a 𝑔-vector cone 𝒞(𝑀,𝑃 ) via Eq. (4.2.1),

so Ψ is essentially surjective. For the same reason, two 𝜏 -rigid pairs (𝑀,𝑃 ) and (𝑁,𝑄)

satisfy 𝒞(𝑁,𝑄) ⊆ 𝒞(𝑀,𝑃 ) if and only if [𝒰(𝑁,𝑄), 𝒯(𝑁,𝑄)] ≤ [𝒰(𝑀,𝑃 ), 𝒯(𝑀,𝑃 )]. This determines

the morphisms of C(𝐴) and T(𝐴) respectively, therefore there are bijections between

Hom-sets. So Ψ is fully faithful and hence an equivalence.

Remark 4.2.8. The structure of the lattice of torsion classes and its brick labelling is

encoded in the morphism spaces of the 𝜏 -cluster morphism category. For example, there

is a bijection

HomT(𝐴)([0,mod𝐴]∼, [0, 0]∼) ←→ 𝒯 ∈ f-tors𝐴

since [0, 0]∼ = [𝒯 , 𝒯 ]∼ for all 𝒯 ∈ f-tors𝐴. Each such interval is 𝜏 -perpendicular since

functorially finite torsion classes correspond bijectively to basic 𝜏 -tilting pairs (𝑀,𝑃 )

for which Fac𝑀 = ⊥𝜏𝑀 ∩𝑃⊥ by [3, Prop. 2.16]. Moreover, let 𝒯2
𝐵←− 𝒯1 be an arrow of

Hasse(f-tors𝐴) labelled by the brick 𝐵, then there is a bijection

HomT(𝐴)([0,mod𝐴]∼, [𝒯2, 𝒯1]∼) ←→ {arrows labelled by 𝐵 in Hasse(f-tors𝐴)}.

And more generally for an arbitrary 𝜏 -perpendicular interval [𝒯4, 𝒯3] ⊆ tors𝐴:

HomT(𝐴)([0,mod𝐴]∼, [𝒯4, 𝒯3]∼)

←→ {𝜏 -perpendicular intervals with brick label preserving isomorphism to [𝒯4, 𝒯3]}.

4.3 Invariance under 𝜏 -tilting equivalence

In this section the focus lies on families of algebras for which there exists an isomor-

phism between their respective posets of 𝜏 -tilting pairs. The idea of using only lattice

theoretic information to study 𝜏 -tilting theory is common throughout the literature,

see for example [10, 18, 19, 57, 67, 121]. Similarly, Definition 4.2.3 can be rephrased

so that the 𝜏 -cluster morphism category is defined using only the underlying poset of

(functorially finite) torsion classes when tors𝐴 is finite.
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Definition 4.3.1. Two finite-dimensional 𝐾-algebras 𝐴 and 𝐵 are called 𝜏 -tilting equiv-

alent if there exists a poset isomorphism f-tors𝐴 ∼= f-tors𝐵.

Example 4.3.2. The following algebras are 𝜏 -tilting equivalent:

(1) Any two Brauer graph algebras with the same underlying ribbon graph [1, Thm.

1.1(1)].

(2) Any algebra 𝐴 and 𝐴/⟨𝑐⟩, where 𝑐 ∈ 𝐴 is a central element contained in the

Jacobson radical [66, Thm. 1]. See also [57, Cor. 5.20].

(3) Two algebras 𝐴 and 𝐵 which geometrically have coinciding 𝑔-vector fans, by the

duality of the poset f-tors𝐴 with the chambers of the 𝑔-vector fan, see [56].

(4) The algebras 𝒦2 = 𝐾( 1 2 ) and 𝒦𝑚 = 𝐾( 1 2
𝑚

), for any 𝑚 ≥ 3, by

the description of f-tors(𝒦2) and f-tors(𝒦𝑚) as polygons with one infinite side.

Note that f-tors𝐴 is a complete lattice if and only if 𝐴 is 𝜏 -tilting finite by Theo-

rem 2.2.3. However, since f-tors𝐴 ⊆ tors𝐴 it is possible to consider the join and meet of

elements of f-tors𝐴 in tors𝐴. The first example of some of the 𝜏 -tilting theory of mod𝐴

being encoded lattice theoretically in f-tors𝐴 is that of 𝜏 -perpendicular intervals.

Proposition 4.3.3. [57, Prop. 4.19 and 4.20] Let 𝒰 ∈ f-tors𝐴. Consider ℓ atoms

𝒰𝑖 → 𝒰 ⊆ Hasse(f-tors𝐴). Then 𝒯 :=
⋁︀ℓ
𝑖=1 𝒰𝑖 is functorially finite and [𝒰 , 𝒯 ] ⊆ tors𝐴

is a 𝜏 -perpendicular interval of tors𝐴. Moreover, every 𝜏 -perpendicular interval is a

so-called join-interval of this form.

Theorem 2.1.9 states that the construction of Proposition 4.3.3 gives all intervals

[𝒰 , 𝒯 ] ⊆ tors𝐴 for which 𝒰⊥ ∩ 𝒯 is a wide subcategory of mod𝐴. For this construction

to yield 𝜏 -perpendicular subcategories, the bottom torsion class 𝒰 has to be functorially

finite. Thus, knowledge of the subset f-tors𝐴 ⊆ tors𝐴 is necessary. Determining this

subset of tors𝐴 using lattice theoretic techniques is not known to be possible. Therefore,

this section restricts itself to the case when 𝐴 is 𝜏 -tilting finite, which implies f-tors𝐴 =

tors𝐴 by Theorem 2.2.3.

In this case, 𝜏 -perpendicular intervals and join-intervals (and the dually defined

meet-intervals) all coincide. In order to distinguish between intervals, which admit a

poset isomorphism but which correspond to distinct subcategories, the brick labelling
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of tors𝐴 needs to be encoded combinatorially. Since the brick labelling determines

the corresponding 𝜏 -perpendicular subcategory by [57, Thm. 4.16] and [10, Prop. 5.3],

this would enable the correct identification of intervals in an entirely combinatorial

construction of the 𝜏 -cluster morphism category.

Let 𝐿 be a complete lattice, an element 𝑗 ∈ 𝐿 is called completely join-irreducible if

there does not exist a subset 𝑆 ⊆ 𝐿 such that 𝑗 =
⋁︀
𝑆 and 𝑗 ̸∈ 𝑆. A join-irreducible

element 𝑗 ∈ 𝐿 covers exactly one other element 𝑗*. Take 𝑥⋖ 𝑦 then the set

{𝑡 ∈ 𝐿 : 𝑡 ∨ 𝑥 = 𝑦} ⊆ 𝐿

has a minimum element ℓ ∈ 𝐿 which is completely join-irreducible and which satisfies

ℓ* ≤ 𝑥 by [159, Lem. 3.7]. For an interval [𝑥, 𝑦] ⊆ 𝐿, write j-irrc[𝑥, 𝑦] for the set of

completely join-irreducible elements 𝑗 ∈ 𝐿 which arise as labels of some cover relation

𝑥 ≤ 𝑎⋖ 𝑏 ≤ 𝑦. This inspires the following definition, similar to [159, Rmk. 3.8].

Definition 4.3.4. Let 𝐿 be a completely semidistributive lattice. By definition, the

join-irreducible labelling of 𝐿 associates to each arrow 𝑥 ← 𝑦 ⊆ Hasse(𝐿) the unique

completely join-irreducible element 𝑗 which is minimal in the set {𝑡 ∈ 𝐿 : 𝑥∨𝑡 = 𝑦} ⊆ 𝐿.

Lemma 4.3.5. [57, Thm. 3.11] Let 𝐿 be an abstract lattice isomorphic to tors𝐴,

then the join-irreducible labelling on 𝐿 corresponds to the brick labelling of tors𝐴. In

other words, the brick labelling is determined combinatorially by the underlying lattice

structure.

Remark 4.3.6. This fact is used in [67] to construct the poset of wide subcategories and

the poset of and image-cokernel-extension-closed (ICE-closed) subcategories of mod𝐴

from the lattice theoretic information of tors𝐴. The formulation of Theorem 4.3.7 is

inspired by the phrasing of [67, Thm. A].

The following is the main result of this section and follows the spirit of the previous

remark.

Theorem 4.3.7. Let 𝐿 be an abstract finite lattice which is isomorphic to tors𝐴 for

some finite-dimensional algebra 𝐴. Then T(𝐴) can be constructed combinatorially from

𝐿 without using any algebraic information of 𝐴 or mod𝐴. More precisely, there is an

equivalence of categories T(𝐿) ∼= T(𝐴), where T(𝐿) is defined to be the category:
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• whose objects are equivalence classes of join-intervals [𝒰 , 𝒯 ] = [𝒰 ,
⋁︀ℓ
𝑖=1 𝒰𝑖] ⊆ 𝐿

under the equivalence

[𝒰1, 𝒯1] ∼ [𝒰2, 𝒯2]

whenever j-irrc[𝒰1, 𝒯1] = j-irrc[𝒰2, 𝒯2]. In this case there exists an isomorphism

𝜑[𝒰1,𝒯1][𝒰2,𝒯2] : [𝒰1, 𝒯1]→ [𝒰2, 𝒯2] preserving the join-irreducible labels (in 𝐿) of the

arrows in the respective Hasse diagrams;

• whose morphisms are given by equivalence classes of morphisms in the poset cat-

egory itv(𝐿) of intervals of 𝐿 partially-ordered by reverse containment. More pre-

cisely

HomT(𝐿)([𝒰 , 𝒯 ]∼, [𝒱,𝒮]∼) =
⋃︁

[𝒰 ′
,𝒯 ′]∈[𝒰 ,𝒯 ]∼

[𝒱 ′
,𝒮′]∈[𝒱,𝒮]∼

Homitv(𝐿)([𝒰 ′, 𝒯 ′], [𝒱 ′,𝒮 ′])

under the equivalence relation 𝑓[𝒰1,𝒯1][𝒱1,𝒮1] ∼ 𝑓[𝒰2,𝒯2][𝒱2,𝒮2] whenever

𝜑[𝒰1,𝒯1][𝒰2,𝒯2]([𝒱1,𝒮1]) = [𝒱2,𝒮2];

• and for which composition of morphisms is given by

[𝑓[𝒱2,𝒮2][𝒳2,𝒴2]] ∘ [𝑓[𝒰1,𝒯1][𝒱1,𝒮1]]

:= [𝑓𝜑[𝒱2,𝒮2][𝒱1,𝒮1]([𝒱2,𝒮2])𝜑[𝒱2,𝒮2][𝒱1,𝒮1]([𝒳2,𝒴2])] ∘ [𝑓[𝒰1,𝒯1][𝒱1,𝒮1]].

Proof. Denote by 𝜓 : 𝐿→ tors𝐴 the isomorphism of complete lattices. Since 𝐿 is finite

it follows that tors𝐴 is finite and hence f-tors𝐴 = tors𝐴 by Theorem 2.2.3. Let [𝒰1, 𝒯1]

and [𝒰2, 𝒯2] be two distinct join-intervals of 𝐿 satisfying j-irrc[𝒰1, 𝒯1] = j-irrc[𝒰2, 𝒯2].

By Proposition 4.3.3 and Lemma 4.3.5, this is equivalent to saying that 𝜓([𝒰1, 𝒯1])

and 𝜓([𝒰2, 𝒯2]) are 𝜏 -perpendicular intervals of tors𝐴 with the additional property that

brick(𝜓([𝒰1, 𝒯1])) = brick(𝜓([𝒰2, 𝒯2])). Moreover, using [57, Lem. 3.10] gives

𝜓(𝒰1)⊥ ∩ 𝜓(𝒯1) = Filt(brick(𝜓([𝒰1, 𝒯1]))) = Filt(brick(𝜓([𝒰2, 𝒯2]))) = 𝜓(𝒰2)⊥ ∩ 𝜓(𝒯2).

It follows that [𝒰1, 𝒯1] ∼T(𝐿) [𝒰2, 𝒯2] implies 𝜓([𝒰1, 𝒯1]) ∼T(𝐴) 𝜓([𝒰2, 𝒯2]). More-

over, then Lemma 4.2.1 and Proposition 4.2.2 imply that there is an isomorphism

𝜙 : 𝜓([𝒰1, 𝒯1]) → 𝜓([𝒰2, 𝒯2]) which preserves the brick labelling. By Lemma 4.3.5, the

isomorphism 𝜙 lifts to an isomorphism

𝜑[𝒰1,𝒯1][𝒰2,𝒯2] := 𝜓−1𝜙𝜓 : [𝒰1, 𝒯1]→ [𝒰2, 𝒯2],
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which preserves the join-irreducible labelling.

Let [𝒱𝑖,𝒮𝑖] ⊆ 𝐿 be join-intervals such that [𝒱𝑖,𝒮𝑖] ⊆ [𝒰𝑖, 𝒯𝑖] for 𝑖 = 1, 2. Then

𝑓[𝒰1,𝒯1][𝒱1,𝒮1] ∼T(𝐿) 𝑓[𝒰2,𝒯2][𝒱2,𝒮2] means 𝜑[𝒰1,𝒯1][𝒰2,𝒯2]([𝒱1,𝒮1]) = [𝒱2,𝒮2] which, by defini-

tion, implies

𝜓([𝒱1,𝒮1]) ∩ (𝜓(𝒰1)⊥ ∩ 𝜓(𝒯1)) = 𝜓([𝒱2,𝒮2]) ∩ (𝜓(𝒰2)⊥ ∩ 𝜓(𝒯2))

as 𝜙 factors through tors(𝜓(𝒰1)⊥ ∩ 𝜓(𝒯1)) = tors(𝜓(𝒰2)⊥ ∩ 𝜓(𝒯2)). Thus

𝑓[𝒰1,𝒯1][𝒱1,𝒮1] ∼T(𝐿) 𝑓[𝒰2,𝒯2][𝒱2,𝒮2] =⇒ 𝑓𝜓([𝒰1,𝒯1])𝜓([𝒱1,𝒮1]) ∼T(𝐴) 𝑓𝜓([𝒰2,𝒯2])𝜓([𝒱2,𝒮2]).

Conversely, let [𝒰 ′
1, 𝒯

′
1 ] and [𝒰 ′

2, 𝒯
′

2 ] be 𝜏 -perpendicular intervals of tors𝐴 such that

(𝒰 ′
1)⊥∩𝒯 ′

1 = (𝒰 ′
2)⊥∩𝒯 ′

2 , then Lemma 4.2.1 and Proposition 4.2.2 imply that there exists

an isomorphism 𝜙′ : [𝒰 ′
1, 𝒯

′
1 ] → [𝒰 ′

2, 𝒯
′

2 ], which preserves the brick labelling, and which

lifts to an isomorphism

𝜑′
[𝒰 ′

1,𝒯
′

1 ][𝒰 ′
2,𝒯

′
2 ] := 𝜓−1𝜙′𝜓 : 𝜓−1([𝒰 ′

1, 𝒯
′

1 )]→ 𝜓−1([𝒰 ′
2, 𝒯

′
2 ]),

which preserves the join-irreducible labelling.

From Lemma 4.3.5 it follows that j-irrc(𝜓−1([𝒰 ′
1, 𝒯

′
1 ])) = j-irrc(𝜓−1([𝒰 ′

2, 𝒯
′

2 ])). There-

fore

[𝒰 ′
1, 𝒯

′
1 ] ∼T(𝐴) [𝒰 ′

2, 𝒯
′

2 ] =⇒ 𝜓−1([𝒰 ′
1, 𝒯

′
1 ]) ∼T(𝐿) 𝜓

−1([𝒰 ′
2, 𝒯

′
2 ]).

Consequently the objects of T(𝐴) and T(𝐿) are in bijection. Now let [𝒱 ′
𝑖,𝒮

′
𝑖] be

𝜏 -perpendicular intervals of tors𝐴 such that [𝒱 ′
𝑖,𝒮

′
𝑖] ⊆ [𝒰 ′

𝑖 , 𝒯
′
𝑖 ] for 𝑖 = 1, 2. Then

𝑓[𝒰 ′
1,𝒯

′
1 ][𝒱 ′

1,𝒮
′
1] ∼T(𝐴) 𝑓[𝒰 ′

2,𝒯
′

2 ][𝒱 ′
2,𝒮

′
2] means [𝒱 ′

1,𝒮
′
1] ∩ ((𝒰 ′

1)⊥ ∩ 𝒯 ′
1 ) = [𝒱 ′

2,𝒮
′
2] ∩ ((𝒰 ′

2)⊥ ∩ 𝒯 ′
2 ).

Since 𝜙′ factors through tors((𝒰 ′
1)⊥ ∩ 𝒯 ′

1 ) = tors((𝒰 ′
2)⊥ ∩ 𝒯 ′

2 ), it follows that

𝜑[𝒰 ′
1,𝒯

′
1 ][𝒰 ′

2,𝒯
′

2 ]([𝒱
′
1,𝒮

′
1]) = [𝒱 ′

2,𝒮
′
2].

Therefore 𝜑′
[𝒰 ′

1,𝒯
′

1 ][𝒰 ′
2,𝒯

′
2 ]

(︁
𝜓−1([𝒱 ′

1,𝒮
′
1])

)︁
= 𝜓−1([𝒱 ′

2,𝒮
′
2]), which implies

𝑓[𝒰 ′
1,𝒯

′
1 ][𝒱 ′

1,𝒮
′
1] ∼T(𝐴) 𝑓[𝒰 ′

2,𝒯
′

2 ][𝒱 ′
2,𝒮

′
2] =⇒ 𝑓

𝜓
−1([𝒰 ′

1,𝒯
′

1 ])𝜓−1([𝒱 ′
1,𝒮

′
1]) ∼T(𝐿) 𝑓𝜓−1([𝒰 ′

2,𝒯
′

2 ])𝜓−1([𝒱 ′
2,𝒮

′
2]).

Hence morphism sets of T(𝐴) and T(𝐿) are in bijection. It is clear that Lemma 4.2.6

may be transferred to the lattice theoretic setting via the lattice isomorphism 𝜓 and the

interval isomorphism of Lemma 4.2.1, making T(𝐿) a well-defined category and showing
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that composition of morphisms is defined in the same way in T(𝐿) as in T(𝐴). Thus the

construction of the T(𝐴) and T(𝐿) coincide. As a consequence, the categories T(𝐴) and

T(𝐿) are equivalent.

Corollary 4.3.8. Let 𝐴 be 𝜏 -tilting finite and 𝐵 be 𝜏 -tilting equivalent to 𝐴. Then there

exists an equivalence of categories T(𝐴) ∼= T(𝐵).

Proof. Since 𝐴 is 𝜏 -tilting finite tors𝐴 = f-tors𝐴 ∼= f-tors𝐵 and therefore 𝐵 is 𝜏 -tilting

finite. Then both are isomorphic to an abstract finite lattice 𝐿 ∼= f-tors𝐴 and the

equivalences T(𝐴) ∼= T(𝐿) ∼= T(𝐵) follow from Theorem 4.3.7.

As an alternative definition, see [45, Prop. 11.7], signed 𝜏 -exceptional sequences may

be defined as factorisations of morphisms in T(𝐴) into irreducible morphisms. As a

consequence of Theorem 4.3.7, the following holds.

Corollary 4.3.9. Let 𝐴 be 𝜏 -tilting finite and 𝐵 be 𝜏 -tilting equivalent to 𝐴. Then there

exists a bijection

{signed 𝜏 -exceptional sequences of mod𝐴}

←→ {signed 𝜏 -exceptional sequences of mod𝐵}.

Proof. The fully faithful functor of the equivalence of categories T(𝐴) ∼= T(𝐵) of Corol-

lary 4.3.8 induces a bijection between Hom-sets of T(𝐴) and T(𝐵), which consequently

gives a bijection between all factorisations of morphisms in the Hom-sets and thus all

signed 𝜏 -exceptional sequences corresponding with those.

Remark 4.3.10. Recently, a mutation for 𝜏 -exceptional sequences was defined [41]. This

mutation generalises that of exceptional sequences of hereditary algebras [54, 164]. If

𝐴 and 𝐵 are two finite-dimensional algebras such that tors𝐴 ∼= tors𝐵 and both are

finite, then there is a bijection between 𝜏 -exceptional sequences of mod𝐴 and mod𝐵

by [19, Thm. 8.10, Rmk. 8.11]. However, the mutation of 𝜏 -exceptional sequences relies

heavily on signed 𝜏 -exceptional sequences. Since Corollary 4.3.9 shows that these are in

bijection as well, it seems plausible that the mutation of 𝜏 -exceptional sequences may

be determined by the lattice of torsion classes, whenever it is finite.
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4.4 Factor algebras and lattice congruences

In this section the lattice theoretic definition of the 𝜏 -cluster morphism category of

Definition 4.2.3 is used to gain new insights into its structure. In particular, comparing

it with previous approaches in Example 4.7.1, this approach appears to be the most

natural one to study factor algebras of 𝐴 by an ideal 𝐼. An intuitive reason for this is

that tors𝐴 ∩ mod𝐴/𝐼 = tors𝐴/𝐼 but the same behaviour is generally not exhibited

by 𝜏 -rigid pairs or wide subcategories. More precisely, recall from Theorem 4.1.2 that

an ideal 𝐼 of 𝐴 induces a surjective morphism of lattices tors𝐴 ↠ tors𝐴/𝐼 given by

𝒯 ↦→ 𝒯 ∩mod𝐴/𝐼. Throughout this section, let 𝐴 be a finite-dimensional 𝐾-algebra, 𝐼

an ideal of 𝐴 and Φ𝐼 the lattice congruence on tors𝐴 induced by 𝐼 as in Theorem 4.1.2.

The relationship between the brick labelling of Hasse(tors𝐴) and Hasse(tors𝐴/𝐼) is

made explicit in the following result.

Theorem 4.4.1. [57, Thm. 5.15] The brick labelling of Hasse(tors𝐴) satisfies the

following:

(1) An arrow 𝑞 ∈ Hasse(tors𝐴) is not contracted by Φ𝐼 if and only if its brick label

𝐵𝑞 lies in mod𝐴/𝐼. In this case, the arrow 𝑞 has the same label in Hasse(tors𝐴)

and Hasse(tors𝐴/𝐼).

(2) Let 𝒰 ⊆ 𝒯 ∈ tors𝐴, then 𝒰 ≡Φ𝐼
𝒯 if and only if, 𝐼𝐵 ̸= 0 for all bricks 𝐵 ∈ 𝒰⊥∩𝒯 .

The following two results illustrate the nice behaviour of torsion and torsion-free

classes under intersection.

Lemma 4.4.2. Let 𝒰 ∈ tors𝐴, then (𝒰 ∩mod𝐴/𝐼)⊥𝐴/𝐼 = 𝒰⊥𝐴 ∩mod𝐴/𝐼 in mod𝐴/𝐼.

Proof. To show the inclusion ⊇, take 𝑋 ∈ 𝒰⊥𝐴 ∩mod𝐴/𝐼. Assume for a contradiction

that there exists 𝑌 ∈ 𝒰 ∩ mod𝐴/𝐼 such that Hom(𝑌,𝑋) ̸= 0. Since 𝑌 ∈ 𝒰 it follows

immediately that 𝑋 ̸∈ 𝒰⊥𝐴 , a contradiction. To show the reverse inclusion ⊆, take

𝑋 ∈ (𝒰 ∩ mod𝐴/𝐼)⊥𝐴/𝐼 ⊆ mod𝐴/𝐼. Assume for a contradiction that there exists

0 ̸= 𝑓 ∈ Hom(𝑌,𝑋) with 𝑌 ∈ 𝒰 . By the assumption on 𝑋, it follows that 𝑌 ̸∈ mod𝐴/𝐼.

However, im 𝑓 is a submodule of 𝑋, and thus lies in mod𝐴/𝐼. Moreover, since 𝒰 is a

torsion class and hence closed under quotients it follows that im 𝑓 ∈ 𝒰 . In conclusion,
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im 𝑓 ∈ 𝒰∩mod𝐴/𝐼. By assumption, there does not exist a nonzero morphism im 𝑓 → 𝑋.

This is a contradiction and equality follows.

Corollary 4.4.3. Let [𝒰 , 𝒯 ] ⊆ tors𝐴. Then 𝒰⊥𝐴/𝐼 ∩ 𝒯 = 𝒰⊥𝐴 ∩ 𝒯 ∩mod𝐴/𝐼.

Proof. By Lemma 4.4.2 the chain of equalities

𝒰⊥𝐴/𝐼 ∩ 𝒯 = (𝒰 ∩mod𝐴/𝐼)⊥𝐴/𝐼 ∩ (𝒯 ∩mod𝐴/𝐼) = 𝒰⊥𝐴 ∩ 𝒯 ∩mod𝐴/𝐼

holds, as required.

The following result is a simple observation, but since wide subcategories play a

central role in this dissertation it is included.

Lemma 4.4.4. Let 𝒲 be a wide subcategory of mod𝐴, then 𝒲 ∩ mod𝐴/𝐼 is a wide

subcategory of mod𝐴/𝐼.

Proof. Let 𝐿,𝑀,𝑁 ∈ mod𝐴/𝐼 lie in a short exact sequence 0 → 𝐿 → 𝑀 → 𝑁 → 0

with 𝐿,𝑁 ∈ 𝒲 ∩mod𝐴/𝐼 ⊆ mod𝐴. Since 𝐿,𝑁 ∈ 𝒲 ⊆ mod𝐴, it follows that 𝑀 ∈ 𝒲

since 𝒲 is wide. Hence 𝑀 ∈ 𝒲 ∩ mod𝐴/𝐼 as required. Similarly, let 𝑓 : 𝑀 → 𝑁

be a morphism with 𝑀,𝑁 ∈ 𝒲 ∩ mod𝐴/𝐼, then from 𝑀,𝑁 ∈ 𝒲 it follows that

ker 𝑓, coker 𝑓 ∈ 𝒲. Moreover ker 𝑓, coker 𝑓 ∈ mod𝐴/𝐼 since mod𝐴/𝐼 is an abelian full

subcategory of mod𝐴.

Corollary 4.4.5. Let [𝒰 , 𝒯 ] be a wide interval of tors𝐴, then [𝒰 , 𝒯 ] is a wide interval

of tors𝐴/𝐼.

Proof. By assumption 𝒰⊥𝐴∩𝒯 is a wide subcategory of mod𝐴, then by Corollary 4.4.3,

the equality 𝒰⊥𝐴/𝐼 ∩𝒯 = 𝒰⊥𝐴 ∩𝒯 ∩mod𝐴/𝐼 holds. As 𝒰⊥𝐴 ∩𝒯 is a wide subcategory

of mod𝐴, Lemma 4.4.4 gives the desired result..

The following is the starting point for relating T(𝐴) and T(𝐴/𝐼).

Lemma 4.4.6. If [𝒰 , 𝒯 ] is a 𝜏 -perpendicular interval of tors𝐴, then the image [𝒰 , 𝒯 ]

is a 𝜏 -perpendicular interval of tors𝐴/𝐼.

Proof. Let [𝒰 , 𝒯 ] be a 𝜏 -perpendicular interval, in particular, it is wide. By Corol-

lary 4.4.5 the interval [𝒰 , 𝒯 ] is a wide interval of tors𝐴/𝐼. Thus, Theorem 2.1.9 implies
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that the interval [𝒰 , 𝒯 ] ⊆ tors𝐴/𝐼 is a join interval. Since 𝒰 ∈ f-tors𝐴 it follows that

𝒰 ∈ f-tors𝐴/𝐼. In conclusion, it follows that [𝒰 , 𝒯 ] is a 𝜏 -perpendicular interval of

tors𝐴/𝐼 by Proposition 4.3.3.

This implies that the lattice isomorphisms between the 𝜏 -perpendicular intervals of

Lemma 4.2.1 may be extended to their quotients in a natural way.

Proposition 4.4.7. The following diagram extending Lemma 4.2.1 is commutative:

[𝒰(𝑀1,𝑃1), 𝒯(𝑀1,𝑃1)] [𝒰(𝑀2,𝑃2), 𝒯(𝑀2,𝑃2
)]

tors𝒲(𝑀1,𝑃1) = tors𝒲(𝑀2,𝑃2)

[𝒰(𝑀1,𝑃1), 𝒯(𝑀1,𝑃1)] [𝒰(𝑀2,𝑃2), 𝒯(𝑀2,𝑃2)]

tors(𝒲(𝑀𝑖,𝑃𝑖) ∩mod𝐴/𝐼)

(−)∩𝒲(𝑀1,𝑃1)

∼=

(−)∩mod𝐴/𝐼
(−)∩𝒲(𝑀2,𝑃2)

(−)∩mod𝐴/𝐼

(−)∩mod𝐴/𝐼

(−)∩(𝒲(𝑀1,𝑃1)∩mod𝐴/𝐼)

∼=

(−)∩(𝒲(𝑀2,𝑃2)∩mod𝐴/𝐼)

The top and bottom parts are lattice isomorphisms coming from Lemma 4.2.1, and the

downward-facing arrows are given by intersecting with mod𝐴/𝐼.

Proof. Let 𝒲 := 𝒲(𝑀1,𝑃1) = 𝒲(𝑀2,𝑃2). By Lemma 4.4.4, 𝒲 ∩mod𝐴/𝐼 is a wide sub-

category of mod𝐴/𝐼. For 𝒯 ∈ tors𝒲 it follows trivially that 𝒯 ∩mod𝐴/𝐼 is a torsion

class of the wide subcategory 𝒲 ∩mod𝐴/𝐼 of mod𝐴/𝐼. By Lemma 4.4.6, the intervals

[𝒰(𝑀1,𝑃1), 𝒯(𝑀1,𝑃1)] and [𝒰(𝑀2,𝑃2), 𝒯(𝑀2,𝑃2)]

are 𝜏 -perpendicular intervals of tors𝐴/𝐼 which correspond, by Corollary 4.4.3, to the

wide subcategory𝒲∩mod𝐴/𝐼 =𝒲∩mod𝐴/𝐼. Thus Lemma 4.2.1 implies the existence

of the lattice isomorphisms in the bottom half of the diagram and the downward-facing

arrows are well-defined. The commutativity of the squares is obvious from the descrip-

tions of the maps.

As a consequence the following relationship can now be established.

Theorem 4.4.8. Let 𝐼 ∈ ideal𝐴. There exists a functor 𝐹𝐼 : T(𝐴) → T(𝐴/𝐼) induced

by (−)𝐼 , that is, 𝐹𝐼 is given on objects by [𝒰 , 𝒯 ]∼ ↦→ [𝒰 , 𝒯 ]∼ and on morphisms by

[𝑓[𝒰 ,𝒯 ][𝒱,𝒮]] ↦→ [𝑓[𝒰 ,𝒯 ][𝒱,𝒮]].
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Proof. 𝐹𝐼 maps 𝜏 -perpendicular intervals of tors𝐴 to 𝜏 -perpendicular intervals of

tors𝐴/𝐼 by Lemma 4.4.6. Then, Corollary 4.4.3 implies that 𝐹𝐼 is well-defined on objects

since

[𝒰1, 𝒯1] ∼ [𝒰2, 𝒯2]⇔ 𝒰⊥𝐴
1 ∩ 𝒯1 = 𝒰⊥𝐴

2 ∩ 𝒯2

⇒ 𝒰⊥𝐴
1 ∩ 𝒯1 ∩mod𝐴/𝐼 = 𝒰⊥𝐴

2 ∩ 𝒯2 ∩mod𝐴/𝐼

⇔ [𝒰1, 𝒯 1] ∼ [𝒰2, 𝒯 2].

It is clear that containment of intervals is preserved by (−)𝐼 . Let [𝒰𝑖, 𝒯𝑖] ≤ [𝒱𝑖,𝒮𝑖] for

𝑖 = 1, 2 be such that 𝑓[𝒰1,𝒯1][𝒱1,𝒮1] ∼T(𝐴) 𝑓[𝒰2,𝒯2][𝒱2,𝒯2]. The commutativity of the diagram

in Proposition 4.4.7 implies that

[𝒱1,𝒮1] ∩ (𝒰⊥𝐴
1 ∩ 𝒯1) = [𝒱2,𝒮2] ∩ (𝒰⊥𝐴

2 ∩ 𝒯2)

=⇒ [𝒱1,𝒮1] ∩ (𝒰⊥𝐴
1 ∩ 𝒯1 ∩mod𝐴/𝐼) = [𝒱2,𝒮2] ∩ (𝒰⊥𝐴

2 ∩ 𝒯2 ∩mod𝐴/𝐼).

Thus 𝐹𝐼 is well-defined on morphisms, that is, 𝑓[𝒰1,𝒯 1][𝒱1,𝒮1] ∼T(𝐴) 𝑓[𝒰2,𝒯 2][𝒱2,𝒯 2]. To

show that composition is preserved it is sufficient, by Lemma 4.2.6, to consider any

three 𝜏 -perpendicular intervals [𝒳 ,𝒴] ⊆ [𝒱,𝒮] ⊆ [𝒰 , 𝒯 ] ⊆ tors𝐴. The following is

obvious:

𝐹𝐼([𝑓[𝒰 ,𝒯 ][𝒳 ,𝒴]]) = [𝑓[𝒰 ,𝒯 ][𝒳 ,𝒴]]

= [𝑓[𝒱,𝒮][𝒳 ,𝒴]] ∘ [𝑓[𝒰 ,𝒯 ][𝒱,𝒮]]

= 𝐹𝐼([𝑓[𝒱,𝒮][𝒳 ,𝒴]]) ∘ 𝐹𝐼([𝑓[𝒰 ,𝒯 ][𝒱,𝒮]]).

It is clear that identity morphisms are preserved. Thus, 𝐹𝐼 is a well-defined functor.

The remainder of this section is dedicated to characterising properties of 𝐹𝐼 .

Lemma 4.4.9. The functor 𝐹𝐼 is faithful if and only if the restriction

(−) : f-tors𝐴→ f-tors𝐴/𝐼

is injective.

Proof. (⇐). Let [𝑓[𝒱,𝒮][𝒰1,𝒯1]], [𝑓[𝒱,𝒮][𝒰2,𝒯2]] ∈ HomT(𝐴)([𝒱,𝒮]∼, [𝒰 , 𝒯 ]∼) be distinct mor-

phisms, which is to say that either 𝒰1 ̸= 𝒰2 or 𝒯1 ̸= 𝒯2. Then applying 𝐹𝐼 gives

[𝑓[𝒱,𝒮],[𝒰1,𝒯 1]], [𝑓[𝒱,𝒮],[𝒰2,𝒯 2]] ∈ HomT(𝐴/𝐼)([𝒱,𝒮]∼, [𝒰 , 𝒯 ]∼),
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which coincide if and only if [𝒰1, 𝒯 1] = [𝒰2, 𝒯 2], which would imply that the restriction

(−) : f-tors𝐴 → f-tors𝐴/𝐼 is not injective. Thus 𝐹𝐼 is injective on Hom-sets, hence

faithful.

(⇒). Let 𝐹𝐼 be faithful and assume that the map (−) : f-tors𝐴→ f-tors𝐴/𝐼 is not

an injection. There exists a distinct morphism

[𝑓[0,mod𝐴][𝒯 ,𝒯 ]] : [0,mod𝐴]∼ → [𝒯 , 𝒯 ]∼

in T(𝐴) for every functorially finite torsion class 𝒯 ∈ f-tors𝐴, see also Remark 4.2.8. If

(−) is not injective, then 𝒯1∩mod𝐴/𝐼 = 𝒯2∩mod𝐴/𝐼 for two distinct 𝒯1, 𝒯2 ∈ f-tors𝐴.

However, then the distinct morphisms

[𝑓[0,mod𝐴][𝒯1,𝒯1]] ̸= [𝑓[0,mod𝐴][𝒯2,𝒯2]]

of T(𝐴) have the same image under 𝐹𝐼 and hence 𝐹𝐼 would not be faithful.

Remark 4.4.10. If 𝐴 is 𝜏 -tilting finite, then tors𝐴 = f-tors𝐴 by Theorem 2.2.3. In this

case, (−) : f-tors𝐴 → f-tors𝐴/𝐼 is surjective by [57, Prop. 5.7(d)] for all 𝐼 ∈ ideal𝐴.

Thus, Lemma 4.4.9 holds for 𝜏 -tilting finite algebras if and only if there is a lattice

isomorphism tors𝐴 ∼= tors𝐴/𝐼. The map (−) is generally not surjective when 𝐴 is

𝜏 -tilting infinite, see Example 4.7.2 or [57, Exmp. 5.11].

Let 𝒮 = {𝐵1, . . . , 𝐵𝑟} ⊆ mod𝐴/𝐼 be a semibrick, then 𝒮 ⊆ mod𝐴 is also a semibrick

in mod𝐴. Thus, for any 𝐼 ∈ ideal𝐴, define the following map using Eq. (2.0.2) by

factoring through the canonical inclusion of semibricks:

𝜄 : wide𝐴/𝐼 → wide𝐴

Filt𝐴/𝐼{𝐵1, . . . , 𝐵𝑟} ↦→ Filt𝐴{𝐵1, . . . , 𝐵𝑟}
(4.4.1)

If the algebra 𝐴 is 𝜏 -tilting finite, then every wide subcategory is 𝜏 -perpendicular

[108, Cor. 2.17], see also [40, Rmk. 4.10] and 𝐴/𝐼 is 𝜏 -tilting finite [57, Cor. 1.9]. In this

setting, it is possible to lift semibricks, which in turn lifts 𝜏 -perpendicular subcategories.

This the key idea of the following result.

Lemma 4.4.11. Let 𝐴 be 𝜏 -tilting finite and 𝐼 ∈ ideal𝐴, then the functor

𝐹𝐼 : T(𝐴)→ T(𝐴/𝐼)

in Theorem 4.4.8 is surjective-on-objects.
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Proof. Let [𝒰 , 𝒯 ]∼ ∈ T(𝐴/𝐼), then 𝒰⊥ ∩ 𝒯 = Filt𝐴/𝐼{𝐵1, . . . , 𝐵𝑟} for some semibrick

{𝐵1, . . . , 𝐵𝑟} ⊆ mod𝐴/𝐼 ⊆ mod𝐴, by Eq. (2.0.2). Consider the lifted wide subcate-

gory 𝜄(Filt𝐴/𝐼{𝐵1, . . . , 𝐵𝑟}) ⊆ mod𝐴. Since 𝐴 is 𝜏 -tilting finite, the wide subcategory

Filt𝐴{𝐵1, . . . , 𝐵𝑟} is also a 𝜏 -perpendicular. By [40, Thm. 4.5], there then exists some

𝜏 -perpendicular interval [𝒜,ℬ] ⊆ tors𝐴 such that 𝒜⊥ ∩ ℬ = Filt𝐴{𝐵1, . . . , 𝐵𝑟}. It is

clear that [𝒜,ℬ] ∼ [𝒰 , 𝒯 ] since

𝒜⊥ ∩ ℬ = 𝒜⊥ ∩ ℬ ∩mod𝐴/𝐼

= Filt𝐴{𝐵1, . . . , 𝐵𝑟} ∩mod𝐴/𝐼

= Filt𝐴/𝐼{𝐵1, . . . , 𝐵𝑟}

= 𝒰⊥ ∩ 𝒯 .

Hence every object [𝒰 , 𝒯 ]∼ ∈ T(𝐴/𝐼) lies in the image of 𝐹𝐼 .

Example 4.7.2 illustrates that the assumption of 𝜏 -tilting finiteness is necessary in

Lemma 4.4.11. To understand in which cases 𝐹𝐼 : T(𝐴)→ T(𝐴/𝐼) is full, the Cartesian

product of posets is required.

Definition 4.4.12. Let (𝑃1,≤1) and (𝑃2,≤2) be two posets. Define the product of

posets (𝑃1 × 𝑃2,≤) via the partial order

(𝑎, 𝑏) ≤ (𝑐, 𝑑) ⇔ 𝑎 ≤1 𝑐 and 𝑏 ≤2 𝑑.

If (𝑃1,≤1) and (𝑃2,≤2) are lattices, define the join and meet componentwise, then

(𝑃1 × 𝑃2,≤) is a lattice.

The following intermediate result is similar to [6, Thm. 4.19(a)], where a similar

relationship is established for 𝑔-vector fans.

Lemma 4.4.13. Let 𝐴 ∼= 𝐴1 × 𝐴2 where 𝐴1, 𝐴2 are finite-dimensional algebras. Then

as posets

tors𝐴 ∼= tors𝐴1 × tors𝐴2, and f-tors𝐴 ∼= f-tors𝐴1 × f-tors𝐴2.

Proof. It is well-known that mod𝐴 ∼= mod𝐴1 ×mod𝐴2 in this case. This implies that
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the inverse bijections are given by

tors𝐴 ∼= tors𝐴1 × tors𝐴2

𝒯 ↦→ (𝒯 ∩mod𝐴1, 𝒯 ∩mod𝐴2)

add(𝒯1 ∪ 𝒯2)←[ (𝒯1, 𝒯2).

If 𝒯 ⊆ mod𝐴 is a torsion class, it is clear that 𝒯 ∩mod𝐴𝑖 ∈ tors𝐴𝑖 for 𝑖 = 1, 2 since both

terms of the intersection are closed under extensions and quotients. In particular, if 𝒯 is

functorially finite then 𝒯 ∩mod𝐴𝑖 is functorially finite, for 𝑖 = 1, 2 by [57, Prop. 5.6(b)].

Conversely, given 𝒯𝑖 ∈ mod𝐴𝑖 for 𝑖 = 1, 2, the full subcategory add(𝒯1 ∪𝒯2) is a torsion

class. This follows because the equality Ext1
𝐴(𝑋𝑎

1 , 𝑋
𝑏
2) = 0 = Ext1

𝐴(𝑋𝑐
2, 𝑋

𝑑
1 ) for all

𝑋1 ∈ mod𝐴1, 𝑋2 ∈ mod𝐴2 and 𝑎, 𝑏, 𝑐, 𝑑 ≥ 1 implies closure under extensions. Because

Hom𝐴(𝑋1, 𝑋2) = 0 = Hom𝐴(𝑋2, 𝑋1) it follows that add(𝒯1 ∪ 𝒯2) is functorially finite,

since any module 𝑀 ∈ mod𝐴 admits left and right add(𝒯1∪𝒯2)-approximations. Indeed,

a add(𝒯1 ∪ 𝒯2)-approximation is given by a 𝒯1-approximation of the direct summand of

𝑀 which is in mod𝐴1, and a 𝒯2-approximation of the direct summand of 𝑀 which is in

mod𝐴2. One sees directly that these are inverse assignments and order preserving.

For the remainder of this section, assume for simplicity that the field 𝐾 is alge-

braically closed. This assumption implies that 𝐴 ∼= 𝐵 × 𝐶 for some finite-dimensional

algebras 𝐵 and 𝐶 if and only if there exist two sets of simple 𝐴-modules 𝒮1 and 𝒮2

such that Ext1
𝐴(𝑆1, 𝑆2) = Ext1

𝐴(𝑆2, 𝑆1) for 𝑆𝑖 ∈ 𝒮𝑖 and 𝑖 = 1, 2. This is because then

𝐴 ∼= 𝐾𝑄/𝐼 for some ideal 𝐼, where 𝑄 is the Ext-quiver of the algebra, see [11, Lem.

II.2.5, Lem. III.2.12]. The following result is a converse to Lemma 4.4.13.

Lemma 4.4.14. Let 𝐴 be a finite-dimensional algebra such that there is a lattice iso-

morphism tors𝐴 ∼= tors𝐵′ × tors𝐶 ′, for some finite-dimensional algebras 𝐵′ and 𝐶 ′.

Then 𝐴 ∼= 𝐵 × 𝐶 for some finite-dimensional algebras 𝐵 and 𝐶.

Proof. Denote the lattice isomorphism by 𝜑 : tors𝐵′ × tors𝐶 ′ → tors𝐴. Take 𝑋1 to be

a simple 𝐵′-module and 𝑋2 to be a simple 𝐶 ′-module, then by definition of the join

(Filt𝐵′{𝑋1}, 0) ∨ (0,Filt𝐶′{𝑋2} = (Filt𝐵′{𝑋1},Filt𝐶′{𝑋2}). (4.4.2)

Applying 𝜑 to both sides of the equation, there are 𝐴-modules, say ̂︀𝑋1 and ̂︀𝑋2, labelling

the cover relations 𝜑(Filt𝐵′{𝑋1}, 0) → 0 and 𝜑(0,Filt𝐶′{𝑋2}) → 0 in Hasse(tors𝐴)
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respectively, which are simple by [57, Prop. 3.16(a)]. By Eq. (4.4.2) and [57, Thm.

4.16(b)], the simples ̂︀𝑋1 and ̂︀𝑋2 are such that Filt𝐴{ ̂︀𝑋1, ̂︀𝑋2} contains no bricks other

than ̂︀𝑋1 and ̂︀𝑋2 themselves. It follows that Ext1
𝐴( ̂︀𝑋1, ̂︀𝑋2) = 0 = Ext1

𝐴( ̂︀𝑋2, ̂︀𝑋1) by [57,

Lem. 4.26].

Repeating this process for all such pairs of cover relations, it follows that there exist

two sets of simple modules 𝒮1,𝒮2 ⊆ mod𝐴 such that 𝒮1 ∪ 𝒮2 = simp(mod𝐴) and such

that Ext1
𝐴(𝑆1, 𝑆2) = 0 = Ext1

𝐴(𝑆2, 𝑆1) for 𝑆𝑖 ∈ 𝒮𝑖 for 𝑖 = 1, 2. Define

𝐵 ∼= 𝐴/

⟨ ∑︁
𝑖:𝑆(𝑖)∈𝒮1

𝑒𝑖

⟩
, and 𝐶 ∼= 𝐴/

⟨ ∑︁
𝑖:𝑆(𝑖)∈𝒮2

𝑒𝑖

⟩
.

Then 𝐴 ∼= 𝐵 × 𝐶 as required.

To avoid technicalities involving isomorphisms between infinite lattices of functori-

ally finite torsion classes like in Example 4.3.2(3), the following result assumes that the

lattice of torsion classes is finite.

Proposition 4.4.15. Let 𝐴 be 𝜏 -tilting finite. The functor 𝐹𝐼 is full if and only if

tors𝐴 ∼= tors𝐴/𝐼 × tors𝐵 for some finite-dimensional algebra 𝐵.

Proof. (⇐). It follows from (the proof of) Lemma 4.4.14 that 𝐴 ∼= 𝐶 ×𝐵 where 𝐶 is a

quotient algebra of 𝐴 by an ideal generated by the primitive orthogonal idempotents,

such that tors𝐶 ∼= tors𝐴/𝐼. By Theorem 4.3.7 there is a (fully faithful) equivalence

𝐺 : T(𝐶)
∼=−→ T(𝐴/𝐼). Moreover, there is a sequence of surjective algebra morphisms

𝐴 ↠ 𝐶 ↠ 𝐴/𝐼 and hence the lattice congruences on tors𝐴 induced by 𝐴 ↠ 𝐶 and

𝐴 ↠ 𝐴/𝐼 coincide. Furthermore, the functor 𝐹𝐼 factors through this equivalence, that

is, 𝐹𝐼 ∼= 𝐺∘𝐹𝐶 , where 𝐹𝐶 : T(𝐴)→ T(𝐶) is induced by the epimorphism 𝐴↠ 𝐶. Since

the composition of full functors is full, it is sufficient to show that 𝐹𝐶 is full.

Let [𝒱 ′,𝒮 ′]∼, [𝒰 ′, 𝒯 ′]∼ ∈ T(𝐴) be such that there exists a pair of representatives

[𝒱,𝒮] ∈ [𝒱 ′,𝒮 ′]∼ and [𝒰 , 𝒯 ] ∈ [𝒰 ′, 𝒯 ′]∼ satisfying [𝒱,𝒮] ≤ [𝒰 , 𝒯 ]. It remains to show

that the induced map

HomT(𝐴)([𝒱,𝒮]∼, [𝒰 , 𝒯 ]∼)

→ HomT(𝐶)([𝒱 ∩mod𝐶,𝒮 ∩mod𝐶]∼, [𝒰 ∩mod𝐶, 𝒯 ∩mod𝐶]∼)
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is surjective. Thus, take an arbitrary morphism 𝑓[𝒱1,𝒮1][𝒰1,𝒯1] ∈ T(𝐶) in the codomain,

where [𝒱1,𝒮1] ∼ [𝒱 ∩mod𝐶,𝒮 ∩mod𝐶] and [𝒰1, 𝒯1] ∼ [𝒰 ∩mod𝐶, 𝒯 ∩mod𝐶]. Define

[ ̂︀𝒰 , ̂︀𝒯 ] := [add(𝒰1 ∪ (𝒰 ∩mod𝐵)), add(𝒯1 ∪ (𝒯 ∩mod𝐵))],

which is an interval of tors𝐴 because both boundary terms are additive closures of a

torsion classes in mod𝐵 and a torsion class in mod𝐶. Since mod𝐴 ∼= mod𝐵 ×mod𝐶

the result is a torsion class by Lemma 4.4.13. Then, the simple objects of the wide

subcategories satisfy

simp(𝒰⊥ ∩ 𝒯 ) = (simp(𝒰⊥ ∩ 𝒯 ) ∩mod𝐶) ∪ (simp(𝒰⊥ ∩ 𝒯 ) ∩mod𝐵)

= simp(𝒰⊥
1 ∩ 𝒯1) ∪ (simp(𝒰⊥ ∩ 𝒯 ∩mod𝐵))

= simp( ̂︀𝒰⊥ ∩ ̂︀𝒯 ),

where the second equality follows from Corollary 4.4.3. By [57, Thm. 4.16(a)] this implies

𝒰⊥ ∩ 𝒯 = ̂︀𝒰⊥ ∩ ̂︀𝒯 and thus [ ̂︀𝒰 , ̂︀𝒯 ]∼ = [𝒰 , 𝒯 ]∼ ∈ T(𝐴). Similarly, define

[̂︀𝒱, ̂︀𝒮] := [add(𝒱1 ∪ (𝒱 ∩mod𝐵)), add(𝒮1 ∪ (𝒮 ∩mod𝐵))]

from which it follows that [̂︀𝒱, ̂︀𝒮]∼ = [𝒱,𝒮]∼ ∈ T(𝐴) using an analogous argument.

Then [𝑓[̂︀𝒱, ̂︀𝒮][ ̂︀𝒰 ,̂︀𝒯 ]] ∈ HomT(𝐴)([𝒱,𝒮]∼, [𝒰 , 𝒯 ]∼) gets mapped to [𝑓[𝒱1,𝒮1][𝒰1,𝒯1]] ∈ T(𝐶) as

required. Therefore the induced map between Hom-sets is surjective. Hence, 𝐹𝐶 is full

and so is 𝐹𝐼 = 𝐺 ∘ 𝐹𝐶 .

(⇒). Assume 𝐹𝐼 is full. If tors𝐴 ∼= tors𝐴/𝐼 there is nothing to show, otherwise

let 𝒯1
𝑋←− 𝒯2 ⊆ Hasse(tors𝐴) be an arrow contracted by the lattice congruence. In

particular, since 𝐹𝐼 is full the following induced map of Hom-sets is surjective:

HomT(𝐴)([0,mod𝐴]∼, [𝒯1, 𝒯2]∼)→ HomT(𝐴/𝐼)([0,mod𝐴/𝐼]∼, [0, 0]∼).

Let 𝒳 ∈ tors𝐴/𝐼 be any (functorially finite) torsion class, then the corresponding

morphism [𝑓[0,mod𝐴/𝐼][𝒳 ,𝒳 ]] ∈ T(𝐴/𝐼) lies in the codomain of the map above. Thus the

above map is surjective only if there exists an arrow 𝒯3
𝑋←− 𝒯4 ⊆ Hasse([𝜋↓𝒳 , 𝜋↑𝒳 ]).

Applying this idea to all contracted arrows in a congruence class of Φ𝐼 , it follows that

brick[𝜋↓𝒳1, 𝜋↑𝒳1] = brick[𝜋↓𝒳2, 𝜋↑𝒳2], (4.4.3)
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for all 𝒳1,𝒳2 ∈ tors𝐴/𝐼. Let 𝒮2 := simp𝐴/𝐼 and 𝒮1 := simp𝐴 ∖ 𝒮2 and. The aim

is to show that Ext1
𝐴(𝑆1, 𝑆2) = 0 = Ext1

𝐴(𝑆2, 𝑆1) for all simple modules 𝑆1 ∈ 𝒮1 and

𝑆2 ∈ 𝒮2. This implies that the two corresponding idempotents 𝜖1 :=
∑︀

𝑖:𝑆(𝑖)∈𝒮1
𝑒𝑖 and

𝜖2 :=
∑︀

𝑖:𝑆(𝑖)∈𝒮2
𝑒𝑖 are central and thus that 𝐴 is not connected. Let 𝑆1 ∈ 𝒮1 and

𝑆2 ∈ 𝒮2. Since 𝐴 is 𝜏 -tilting finite, the descriptions of the lattice congruence in [57,

Prop. 4.21, Thm. 4.23] and [157, Thm. 9-6.5] imply that all cover relations arising in

[0,Filt𝐴{𝑆1, 𝑆2}] ⊆ tors𝐴 except two, which are labelled by 𝑆2, are contracted by the

congruence Φ𝐼 . Hence the polygon consists of two halves, one half is the side lying in

the congruence class Φ−1
𝐼 (0) ⊆ tors𝐴, and the other half lies in the congruence class

Φ−1
𝐼 (Filt𝐴/𝐼{𝑆2}) ⊆ tors𝐴. These halves of the polygon are connected by the two arrows

labelled by 𝑆2.

Let 0 → 𝑆2 → 𝑀 → 𝑆1 → 0 be a non-split short exact sequence, so in particular

𝑀 ̸∈ 𝑆⊥
2 . Then, by [57, Thm. 4.26] the module 𝑀 is a brick and therefore arises as

a label of an arrow in the polygon [0,Filt𝐴{𝑆1, 𝑆2}] ⊆ tors𝐴 by [57, Thm. 4.21(b)].

More precisely 𝑀 arises in the half of the polygon which lies in Φ−1
𝐼 (0) = [0, 𝜋↑0]

since 𝑀 ̸∈ 𝑆⊥
2 . However, from Eq. (4.4.3) it follows that 𝑀 must arise as a label of

some arrow in Φ−1
𝐼 (Filt𝐴/𝐼{𝑆2}) = [Filt𝐴{𝑆2}, 𝜋↑ Filt𝐴/𝐼{𝑆2}], which is a contradiction,

since this requires 𝑀 ∈ Filt𝐴{𝑆2}
⊥ = 𝑆⊥

2 by definition of the brick labelling. Thus

Ext1
𝐴(𝑆1, 𝑆2) = 0.

Let 0→ 𝑆1 →𝑀 → 𝑆2 → 0 be a non-split short exact sequence. Like in the previous

paragraph, it follows that 𝑀 arises as a label of an arrow in the half of the polygon

[0,Filt𝐴{𝑆1, 𝑆2}] ⊆ tors𝐴

which is contained in Φ−1
𝐼 (Filt𝐴/𝐼{𝑆2}). However, by Eq. (4.4.3) it must also arise in

Φ−1
𝐼 (0). Since 𝑀 ̸∈ 𝑆⊥

1 , 𝑀 cannot label an arrow above Filt𝐴{𝑆1} in Hasse(tors𝐴).

Consequently, there must exist another simple module 𝑆3 ∈ mod𝐴 with the property

that 𝑀 ∈ brick[Filt𝐴{𝑆3}, 𝜋↑0]. As Filt𝐴{𝑆3} ∈ Φ−1
𝐼 (0) it follows that 𝑆3 ∈ 𝒮2. In

other words, there exists an arrow 𝒯 ′ 𝑀←− 𝒯 ⊆ Hasse([Filt𝐴{𝑆3}, 𝜋↑0]) labelled by 𝑀 .

Because 𝑀 ∈ 𝒯 it follows that 𝑆2 ∈ Fac𝑀 ⊆ 𝒯 . Moreover, it follows that 𝑆2 ̸∈ (𝒯 ′)⊥,

as otherwise there would be two bricks 𝑀 and 𝑆2 in the intersection (𝒯 ′)⊥∩𝒯 , which is

a contradiction to [57, Thm. 3.3(b)]. Thus, there exists a morphism 𝑓 : 𝑇 → 𝑆2 for some
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𝑇 ∈ 𝒯 ′. However, any morphism to the simple module 𝑆2 is an epimorphism, and since

torsion classes are closed under quotients, it follows that 𝑆2 ∈ 𝒯
′. As a consequence

the join Filt𝐴{𝑆2} ∨ Filt𝐴{𝑆3} = Filt𝐴{𝑆2, 𝑆3} is contained in 𝒯 ′. In particular, there

exists an arrow 𝒯 ′′ 𝑆2←− Filt𝐴{𝑆2, 𝑆3} in Hasse(tors𝐴) for some 𝒯 ′′ containing Filt𝐴{𝑆3}.

Combining these observations, it follows that

0 ⊆ Filt𝐴{𝑆3} ⊆ 𝒯
′′ ⊆ Filt𝐴{𝑆2, 𝑆3} ⊆ 𝒯

′ ⊆ 𝜋↑0.

In conclusion, the interval [0, 𝜋↑0] contains arrows labelled by 𝑆2 which are not con-

tracted by Φ𝐼 . Therefore the equivalence class [0] of Φ𝐼 is not an interval, a contradiction

to Proposition 4.1.3. Hence, Ext1
𝐴(𝑆2, 𝑆1) = 0.

In conclusion, 𝐴 ∼= (𝐴/⟨𝜖1⟩) × (𝐴/⟨𝜖2⟩). By construction tors(𝐴/⟨𝜖2⟩) ∼= tors(𝐴/𝐼)

and from Lemma 4.4.13 it follows that tors𝐴 ∼= tors(𝐴/⟨𝜖1⟩)×tors(𝐴/𝐼) as required.

4.5 Epimorphisms and lifting 𝜏 -perpendicular intervals

In this section, let 𝐴 be 𝜏 -tilting finite 𝐾-algebra, implying that tors𝐴 = f-tors𝐴

is finite. Let 𝐼 denote an ideal of 𝐴. Under this assumption it is to define the lift-

ing of 𝜏 -perpendicular intervals of tors𝐴/𝐼 to 𝜏 -perpendicular intervals of tors𝐴 in a

more precise way than in the proof of Lemma 4.4.11. Recall from Proposition 4.1.3 the

isomorphism of lattices 𝜋Φ𝐼
↑ (tors𝐴) ∼= tors𝐴/𝐼. By a slight abuse of notation, given

𝒯 ∈ tors𝐴/𝐼 denote by 𝜋
Φ𝐼
↑ 𝒯 , or 𝜋↑𝒯 for short, the top element 𝜋Φ𝐼

↑ Φ−1
𝐼 (𝒯 ) of the

preimage of 𝒯 under the lattice congruence Φ𝐼 . As a first step, consider the lemma

which makes it possible to lift 𝜏 -perpendicular intervals of tors𝐴/𝐼 to 𝜏 -perpendicular

intervals of tors𝐴 explicitly.

Lemma 4.5.1. Let 𝐼 ∈ ideal𝐴. For every 𝜏 -perpendicular interval [𝒰 , 𝒯 ] ⊆ tors𝐴/𝐼

there exists a 𝜏 -perpendicular interval [𝒜𝒰 ,ℬ𝒯 ] ⊆ [𝜋↑𝒰 , 𝜋↑𝒯 ] ⊆ tors𝐴. The interval is

such that [𝒜𝒰 ,ℬ𝒯 ] = [𝒰 , 𝒯 ] and satisfies 𝒜⊥𝐴
𝒰 ∩ ℬ𝒯 = 𝜄(𝒰⊥𝐴/𝐼 ∩ 𝒯 ), where 𝜄 is the

inclusion of Eq. (4.4.1). Moreover, it is given by

[𝒜𝒰 ,ℬ𝒯 ] = [𝜋↑𝒰 , 𝜋↑𝒰 ∨ T(𝒲)],

where 𝒲 = 𝜄(𝒰⊥𝐴/𝐼 ∩ 𝒯 ).
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Proof. Let [𝒰 , 𝒯 ] be a 𝜏 -perpendicular interval of tors𝐴/𝐼 whose corresponding wide

subcategory is given by 𝒰⊥𝐴/𝐼 ∩𝒯 = Filt𝐴/𝐼{𝑆1, . . . , 𝑆𝑘} ∈ wide𝐴/𝐼, for some semibrick

{𝑆1, . . . , 𝑆𝑘} ∈ sbrick𝐴 by Eq. (2.0.2). This implies that

{𝑆1, . . . , 𝑆𝑘} ⊆ 𝒰
⊥𝐴/𝐼 ∩ 𝒯 = (𝜋↑𝒰)⊥𝐴 ∩ 𝜋↑𝒯 ∩mod𝐴/𝐼 ⊆ (𝜋↑𝒰)⊥𝐴 ∩ 𝜋↑𝒯 (4.5.1)

by using Corollary 4.4.3 to obtain the equality. Since (𝜋↑𝒰)⊥𝐴 and 𝜋↑𝒯 are a torsion-

free and a torsion class of mod𝐴, respectively, they are closed under extensions. As a

consequence the lifted 𝜏 -perpendicular subcategory 𝒲 = Filt𝐴{𝑆1, . . . , 𝑆𝑘} ∈ wide𝐴

satisfies 𝒲 ⊆ (𝜋↑𝒰)⊥𝐴 ∩ 𝜋↑𝒯 , as 𝒲 = Filt𝐴{𝑆1, . . . , 𝑆𝑘} consists of iterated extensions

of modules contained in (𝜋↑𝒰)⊥𝐴 ∩ 𝜋↑𝒯 .

By the dual of [157, Prop. 9-5.10] and Proposition 4.1.3, the intersection with

mod𝐴/𝐼 induces a bijection from the elements 𝒱 ∈ tors𝐴 covering 𝜋↑𝒰 in tors𝐴 to the

elements 𝒱 ′ covering 𝒰 in tors𝐴/𝐼. Thus, using Proposition 4.2.2 and Theorem 4.4.1,

there is a brick label preserving bijection between arrows{︁
𝜋↑𝒰 ∨ T𝐴(𝑆𝑖)

𝑆𝑖−→ 𝜋↑𝒰 in Hasse([𝜋↑𝒰 , 𝜋↑𝒯 ]) ⊆ Hasse(tors𝐴)
}︁𝑘
𝑖=1

←→
{︁
𝒰 ∨ T𝐴/𝐼(𝑆𝑖)

𝑆𝑖−→ 𝒰 in Hasse([𝒰 , 𝒯 ]) ⊆ Hasse(tors𝐴/𝐼)
}︁𝑘
𝑖=1

,

(4.5.2)

which are labelled by the bricks {𝑆1, . . . , 𝑆𝑘} generating 𝒰⊥𝐴/𝐼 ∩ 𝒯 by [57, Thm. 4.16].

It is easy to see that T𝐴(𝒲) = T𝐴(𝑆1) ∨ · · · ∨ T𝐴(𝑆𝑘), so that Proposition 4.3.3

gives the following 𝜏 -perpendicular interval by taking the join of all atoms:

[𝒜𝒰 ,ℬ𝒯 ] := [𝜋↑𝒰 , 𝜋↑𝒰 ∨ T(𝒲)] ⊆ tors𝐴.

By [57, Thm. 4.16] this intervals satisfies 𝒜⊥𝐴 ∩ ℬ𝒯 = 𝒲. Since both 𝒲 ⊆ 𝜋↑𝒯 and

𝜋↑𝒰 ⊆ 𝜋↑𝒯 , the interval satisfies [𝒜𝒰 ,ℬ𝒯 ] ⊆ [𝒰 , 𝒯 ] ⊆ tors𝐴/𝐼. By Corollary 4.4.3,

𝒜⊥𝐴/𝐼

𝒰 ∩ ℬ𝒯 = Filt𝐴{𝑆1, . . . , 𝑆𝑘} ∩mod𝐴/𝐼 = Filt𝐴/𝐼{𝑆1, . . . , 𝑆𝑘}.

Hence 𝒜⊥𝐴/𝐼

𝒰 ∩ ℬ𝒯 = 𝒰⊥𝐴/𝐼 ∩ 𝒯 and by Lemma 4.2.1 there is a lattice isomorphism

between [𝒜𝒰 ,ℬ𝒯 ] and [𝒰 , 𝒯 ]. Since [𝒜𝒰 ,ℬ𝒯 ] ⊆ [𝒰 , 𝒯 ] it follows that [𝒜𝒰 ,ℬ𝒯 ] = [𝒰 , 𝒯 ].

Using Lemma 4.5.1, define a map of 𝜏 -perpendicular intervals:

i : 𝜏 -itv(tors𝐴/𝐼)→ 𝜏 -itv(tors𝐴)

[𝒰 , 𝒯 ] ↦→ i[𝒰 , 𝒯 ] = [𝜋↑𝒰 , 𝜋↑𝒰 ∨ T(𝒲)].
(4.5.3)
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Example 4.5.2. The map of 𝜏 -perpendicular intervals i : 𝜏 -itv(tors𝐴/𝐼) → 𝜏 -itv(𝐴)

of Eq. (4.5.3) is not inclusion-preserving. For example, take the surjective algebra mor-

phism 𝐴 ∼= 𝐾(1→ 2) ↠ 𝐾(1 2) ∼= 𝐾2. The inclusion [Fac( 1 ),Fac( 1 )] ⊆ [0,Fac( 1 )] of

𝜏 -perpendicular intervals of tors𝐾2 maps to [Fac( 1
2 ),Fac( 1

2 )] ̸⊆ [0,Fac( 1 )].

Nonetheless, there is a way of resolving this problem by restricting the lattice con-

gruence to the desired interval.

Proposition 4.5.3. For every inclusion of 𝜏 -perpendicular intervals [𝒱,𝒮] ⊆ [𝒰 , 𝒯 ] in

tors𝐴/𝐼, there exists a 𝜏 -perpendicular interval i𝒯𝒰 [𝒱,𝒮] ⊆ i[𝒰 , 𝒯 ] whose corresponding

wide subcategory is 𝜄(𝒱⊥𝐴/𝐼 ∩𝒮) and such that it satisfies (i𝒯𝒰 [𝒱,𝒮])∩mod𝐴/𝐼 = [𝒱,𝒮].

These intervals are such that

𝐹𝐼([𝑓(i[𝒰 ,𝒯 ])(i𝒯𝒰 [𝒱,𝒮])]) = [𝑓[𝒰 ,𝒯 ][𝒱,𝒮]].

Thus, every morphism of T(𝐴/𝐼) lies in the image of 𝐹𝐼 : T(𝐴)→ T(𝐴/𝐼).

Proof. Let 𝒰 ,𝒱,𝒮, 𝒯 ∈ tors𝐴/𝐼 have the property that [𝒱,𝒮] ⊆ [𝒰 , 𝒯 ] is an inclusion of

𝜏 -perpendicular intervals of tors𝐴/𝐼. By definition of T(𝐴/𝐼) every nonzero morphism

in T(𝐴/𝐼) is of the form [𝑓[𝒰 ,𝒯 ][𝒱,𝒮]] ∈ T(𝐴/𝐼). Consider the representative 𝑓[𝒰 ,𝒯 ][𝒱,𝒮]

of its equivalence class. Using the map i of Eq. (4.5.3) gives a 𝜏 -perpendicular inter-

val i[𝒰 , 𝒯 ] of tors𝐴 such that 𝐹𝐼((i[𝒰 , 𝒯 ])∼) = [𝒰 , 𝒯 ]∼. However, the 𝜏 -perpendicular

interval i[𝒱,𝒮] may not be contained in i[𝒰 , 𝒯 ], see Example 4.5.2.

Thus, consider the restriction of the lattice congruence Φ := Φ𝐼 to the interval

lattice i[𝒰 , 𝒯 ], and denote it by Φ|𝒯𝒰 . By the dual of [157, Lem. 9-5.7], the interval

i[𝒰 , 𝒯 ] = [𝒰 , 𝒯 ] of tors𝐴/𝐼, which contains [𝒱,𝒮], is isomorphic to the quotient lattice

i[𝒰 , 𝒯 ]/(Φ|𝒯𝒰 ). Let𝒲 := 𝜄(𝒱⊥𝐴/𝐼∩𝒮) and let {𝑆1, . . . , 𝑆𝑘} be the relative simple modules

of 𝒱⊥𝐴/𝐼 ∩ 𝒮, so that 𝒲 = Filt𝐴{𝑆1, . . . , 𝑆𝑘} by Eq. (2.0.2).

Restricting Proposition 4.1.3 to [𝒰 , 𝒯 ] yields that the preimage of 𝒱 under Φ|𝒯𝒰 is

an interval of i[𝒰 , 𝒯 ] which is denoted by [(𝜋|𝒯𝒰 )↓(𝒱), (𝜋|𝒯𝒰 )↑(𝒱)] ⊆ i[𝒰 , 𝒯 ]. Now, let

𝒱 ′ = (𝜋|𝒯𝒰 )↑(𝒱) ∈ tors𝐴. Similar to the proof of Lemma 4.5.1, one applies the dual of

[157, Prop. 9-5.10] and Proposition 4.2.2 to obtain a brick label preserving bijection{︁
𝒱 ′ ∨ T𝐴(𝑆𝑖)

𝑆𝑖−→ 𝒱 ′ in Hasse([(𝜋|𝒯𝒰 )↑(𝒱), (𝜋|𝒯𝒰 )↑(𝒮)]) ⊆ Hasse(i[𝒰 , 𝒯 ])
}︁𝑘
𝑖=1

←→
{︁
𝒱 ∨ T𝐴/𝐼(𝑆𝑖)

𝑆𝑖−→ 𝒱 in Hasse([𝒱,𝒮]) ⊆ Hasse([𝒰 , 𝒯 ])
}︁𝑘
𝑖=1

,

(4.5.4)
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between covering relations which are labelled by the bricks {𝑆1, . . . , 𝑆𝑘} generating

𝒱⊥𝐴/𝐼∩𝒮 by [57, Thm. 4.16]. Since T(𝒲1) =
⋁︀𝑘
𝑖=1 T(𝑆𝑖) it follows from Proposition 4.3.3

that

i
𝒯
𝒰 [𝒱,𝒮] := [(𝜋𝒯

𝒰 )↑(𝒱), (𝜋𝒯
𝒰 )↑(𝒱) ∨ T(𝒲)] (4.5.5)

is a 𝜏 -perpendicular interval of tors𝐴 such that the corresponding wide subcategory

is 𝒲 by [57, Thm. 4.16]. Write 𝒮 ′ = (𝜋𝒯
𝒰 )↑(𝒮). Because (Φ|𝒯𝒰 )−1(𝒱) ⊆ Φ−1(𝒱) and

(Φ|𝒯𝒰 )−1(𝒮) ⊆ Φ−1(𝒮), it follows that 𝒱 ′ = 𝒱 and 𝒮 ′ = 𝒮. Moreover, it follows from

Corollary 4.4.3 that therefore (𝒱 ′)⊥𝐴∩𝒮 ′∩mod𝐴/𝐼 = 𝒱⊥𝐴/𝐼 ∩𝒮. Now the argument fol-

lowing Eq. (4.5.1) in the proof of Lemma 4.5.1 applies to give𝒲 ⊆ 𝒮 ′. Since furthermore

𝒱 ′ ⊆ 𝒮 ′, it follows that (i𝒯𝒰 [𝒱,𝒮]) ∩mod𝐴/𝐼 ⊆ [𝒱,𝒮].

Again, analogous to the proof of Lemma 4.5.1, it follows from Lemma 4.2.1 and

Corollary 4.4.3 that actually (i𝒯𝒰 [𝒱,𝒮])∩mod𝐴/𝐼 = [𝒱,𝒮] because there exists a lattice

isomorphism between the two. To complete the proof it is left to show that

𝒱 ′ ∨ T(𝒲) ⊆ 𝒱 ′ ∨ T(𝜄(𝒰⊥𝐴/𝐼 ∩ 𝒯 )) ⊆ 𝜋↑𝒰 ∨ T(𝜄(𝒰⊥𝐴/𝐼 ∩ 𝒯 )).

Indeed, the first inclusion holds since the inclusion 𝒱⊥𝐴/𝐼 ∩ 𝒮 ⊆ 𝒰⊥𝐴/𝐼 ∩ 𝒯 and the

inclusion T(𝒲) ⊆ T(𝒰⊥𝐴/𝐼 ∩ 𝒮) in mod𝐴/𝐼 lift to inclusions in mod𝐴. The second

inclusion follows from the same observation and the fact that 𝒱 ′ ⊆ 𝜋↑𝒰∨T(𝜄(𝒰⊥𝐴/𝐼∩𝒯 ))

by construction.

In conclusion, given an inclusion of 𝜏 -perpendicular intervals [𝒱,𝒮] ⊆ [𝒰 , 𝒯 ] in

tors𝐴/𝐼, there exists an inclusion of 𝜏 -perpendicular intervals

i
𝒯
𝒰 [𝒱,𝒮] ⊆ i[𝒰 , 𝒯 ]

such that ((i𝒯𝒰 [𝒱,𝒮])∩mod𝐴/𝐼 = [𝒱,𝒮] and i[𝒰 , 𝒯 ]∩mod𝐴/𝐼 = [𝒰 , 𝒯 ]. Consequently,

𝐹𝐼((i
𝒯
𝒰 [𝒱,𝒮])∼) = [𝒱,𝒮]∼ and 𝐹𝐼((i[𝒰 , 𝒯 ])∼) = [𝒰 , 𝒯 ]∼. Therefore, it is possible to

obtain any morphism [𝑓[𝒰 ,𝒯 ][𝒱,𝒮]] ∈ T(𝐴/𝐼) by applying 𝐹𝐼 to [𝑓(i[𝒰 ,𝒯 ])(i𝒯𝒰 [𝒱,𝒮])].

Recall that an epimorphism 𝑒 in a category 𝒞 is called extremal if whenever one can

write 𝑒 = 𝑚 ∘ 𝑓 , with 𝑚 a monomorphism, then 𝑚 is an isomorphism. Let 𝒞at denote

the category of small categories.

Corollary 4.5.4. The smallest subcategory of T(𝐴/𝐼) containing the image of 𝐹𝐼 is

T(𝐴/𝐼) itself. Thus 𝐹𝐼 is an extremal epimorphism in the category 𝒞at.



4. 𝜏 -cluster morphism categories of factor algebras 104

Proof. It follows immediately from Proposition 4.5.3 that the image of 𝐹𝐼 is T(𝐴/𝐼).

Thus, the functor 𝐹𝐼 of Theorem 4.4.8 is an extremal epimorphism in 𝒞at by [23, Thm.

3.4].

Moreover, a functor 𝐺 : 𝒜 → ℬ is said to reflect composition if given two morphisms

𝑓 and 𝑔 in 𝒜 such that 𝐺(𝑓) ∘𝐺(𝑔) is defined in ℬ, there exist morphisms 𝑓 ′ and 𝑔′ in

𝒜 such that 𝐺(𝑓) = 𝐺(𝑓 ′), 𝐺(𝑔) = 𝐺(𝑔′) and 𝑓 ′ ∘ 𝑔′ is defined in 𝒜.

Lemma 4.5.5. The functor 𝐹𝐼 : T(𝐴) → T(𝐴/𝐼) reflects composition. Moreover, if

[𝑓[𝒱,𝒮][𝒳 ,𝒴]] ∘ [𝑓[𝒰 ,𝒯 ][𝒱 ′
,𝒮′]] is defined in T(𝐴/𝐼) then the composition

[𝑓(i[𝒱,𝒮])(i𝒮𝒱 [𝒳 ,𝒴])] ∘ [𝑓(i[𝒰 ,𝒯 ])(i𝒯𝒰 [𝒱 ′
,𝒮′])]

is defined in T(𝐴), where the maps of 𝜏 -perpendicular intervals are as in Eq. (4.5.3)

and Eq. (4.5.5).

Proof. By Lemma 4.2.6, assume that 𝒱 = 𝒱 ′ and 𝒮 = 𝒮 ′ without loss of generality.

From Lemma 4.5.1 it follows that the interval i[𝒱,𝒮] ⊆ tors𝐴 corresponds to the wide

subcategory 𝜄(𝒱⊥𝐴/𝐼) ∩ 𝒮) ∈ wide𝐴. On the other hand, Proposition 4.5.3 implies that

the interval i𝒯𝒰 [𝒱,𝒮] corresponds to the wide subcategory 𝜄(𝒱⊥𝐴/𝐼)∩𝒮) as well. Therefore

(i𝒯𝒰 [𝒱,𝒮])∼ = (i[𝒱,𝒮])∼ in T(𝐴). It follows from Lemma 4.2.6 that the composition

is defined in T(𝐴). It is clear from Proposition 4.5.3 that the functor 𝐹𝐼 sends this

composition in T(𝐴) to the desired one in T(𝐴/𝐼).

Corollary 4.5.6. The functor 𝐹𝐼 : T(𝐴) → T(𝐴/𝐼) is a regular epimorphism in 𝒞at,

that is, it is the coequaliser of a pair of morphisms in 𝒞at.

Proof. The result [23, Prop. 5.1] states that an extremal epimorphism in 𝒞at which

reflects composition is regular. Therefore, the result follows from Corollary 4.5.4 and

Lemma 4.5.5.

Example 4.5.7. Continuing with the surjective algebra homomorphism of Exam-

ple 4.5.2, one sees that the assignment from morphisms of T(𝐴/𝐼) to morphisms of

T(𝐴) given by

[𝑓[𝒰 ,𝒯 ][𝒱,𝒮]] ↦→ [𝑓(i[𝒰 ,𝒯 ])(i𝒯𝒰 [𝒱,𝒮])] (4.5.6)
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is not well-defined on composition. Consider the morphism [𝑓[0,mod𝐴/𝐼][Fac( 1 ),Fac( 1 )]] of

T(𝐴/𝐼) which may be decomposed as

[𝑓[0,Fac( 1 )][Fac( 1 ),Fac( 1 )]] ∘ [𝑓[0,mod𝐴][0,Fac( 1 )]] = [𝑓[0,mod𝐴][Fac( 1 ),Fac( 1 )]].

However, applying Eq. (4.5.6) componentwise to the left-hand side yields the composi-

tion

[𝑓[0,Fac( 1 )][Fac( 1 ),Fac( 1 )]] ∘ [𝑓[0,mod𝐴][0,Fac( 1 )]],

which composes to [𝑓[0,mod𝐴][Fac( 1 ),Fac( 1 )]], whereas applying Eq. (4.5.6) to the right-

hand side gives [𝑓[0,mod𝐴][Fac( 1
2 ) Fac( 1

2 )]].

4.6 Classifying spaces and picture groups

Having established a certain quotient relationship between T(𝐴) and T(𝐴/𝐼) in Sec-

tion 4.5, this section considers the classifying space and picture group. This section

demonstrates that they exhibit similar quotient relationships.

Proposition 4.6.1. Let 𝐴 be 𝜏 -tilting finite and 𝐼 ∈ ideal𝐴, then the classifying space

ℬT(𝐴/𝐼) is a quotient space of ℬT(𝐴) and the quotient map is induced by 𝐹𝐼 from

Theorem 4.4.8.

Proof. The 𝜏 -cluster morphism category T(𝐴) is a cubical category by Theorem 3.2.6.

This means that every morphism can be seen as (the diagonal of) a cube, whose edges

correspond to factorisations of the morphism into irreducible ones. It is shown in The-

orem 3.3.4 that the classifying space ℬT(𝐴) of the 𝜏 -cluster morphism category is a

CW-complex with one 𝑘-cell 𝑒([𝒰 , 𝒯 ]∼) for each equivalence class of wide intervals,

where 𝑘 is the number of isomorphism classes of (relative) simple modules of 𝒰⊥ ∩ 𝒯 .

This cell is the union of factorisation cubes of morphisms [𝑓[𝒰 ,𝒯 ][𝒳 ,𝒳 ]] for 𝒳 ∈ [𝒰 , 𝒯 ].

Given an ideal 𝐼 ∈ ideal𝐴, define an equivalence ≍ relation on factorisation cubes by

setting

[𝑓[𝒰 ,𝒯 ][𝒳 ,𝒳 ]]] ≍ [𝑓[𝒰 ′
,𝒯 ′][𝒳 ′

,𝒳 ′]]

whenever 𝐹𝐼 applied to these morphisms coincides. Since factorisation cubes are simply

geometric realisations of morphisms, this identification coincides with the generalised
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congruence ≍𝐼 on T(𝐴) induced by the functor 𝐹𝐼 , as defined in [23, Sec. 3]. By [23,

Cor. 3.11] there is a monomorphism (T(𝐴)/ ≍) → T(𝐴/𝐼) in 𝒞at from the quotient

category T(𝐴)/ ≍ as defined in [23, Sec. 3.9]. Since 𝐹 is an extremal epimorphism by

Corollary 4.5.4, it follows that (T(𝐴)/ ≍) ∼= T(𝐴/𝐼). Clearly, ℬ(T(𝐴)/ ≍) is a quotient

space of ℬT(𝐴) and the result follows.

Likewise, the picture groups 𝐺(𝐴) and 𝐺(𝐴/𝐼) are related by a surjective group

homomorphism, when the underlying algebras are 𝜏 -tilting finite.

Proposition 4.6.2. Let 𝐴 be 𝜏 -tilting finite and 𝐼 ∈ ideal𝐴. Then there is a surjective

group homomorphism 𝐺(𝐴)→ 𝐺(𝐴/𝐼) induced by (−) : tors𝐴→ tors𝐴/𝐼.

Proof. Define a map 𝜑 : 𝐺(𝐴)→ 𝐺(𝐴/𝐼) given by

𝑋𝑆 ↦→

⎧⎪⎨⎪⎩
𝑋𝑆 if 𝑆 ∈ brick(𝐴/𝐼),

𝑒 otherwise,
and 𝑔𝒯 ↦→ 𝑔𝒯 .

Since mod𝐴/𝐼 is a full subcategory of mod𝐴, identify brick(𝐴/𝐼) with the subset

{𝑆 ∈ brick𝐴 : 𝐼𝑆 = 0} ⊆ brick𝐴, similar to [57, Sec. 5.2]. Thus, 𝜑 obviously induces

a surjection on the generators 𝑋𝑆 ∈ 𝐺(𝐴/𝐼). Similarly, by Theorem 4.1.2, the map

(−) : tors𝐴 → tors𝐴/𝐼 is surjective and hence 𝜑 is surjective on the generators 𝑔𝒯 .

To show that the group relations 𝑔𝒯1
= 𝑋𝑆𝑔𝒯2

are preserved distinguish between two

cases: If 𝑆 ∈ brick(𝐴/)𝐼, the corresponding arrow of Hasse(tors𝐴) is not contracted, by

Theorem 4.4.1. Then, the group relation becomes

𝜑(𝑔𝒯1
) = 𝑔𝒯 1

= 𝑋𝑆𝑔𝒯 2
= 𝜑(𝑋𝑆)𝜑(𝑔𝒯2

).

If 𝑆 ̸∈ brick(𝐴/𝐼), then 𝜑(𝑋𝑆) = 𝑒 and the corresponding arrow of Hasse(tors𝐴) is

contracted, so 𝒯1 = 𝒯2 and the group relation becomes

𝜑(𝑔𝒯1
) = 𝑔𝒯 1

= 𝑔𝒯 2
= 𝑒𝑔𝒯2

= 𝜑(𝑋𝑆)𝜑(𝑔𝒯2
).

Hence 𝜑 is a well-defined group homomorphism and surjective.

4.7 Examples

The final section of this chapter illustrates the obtained results using some examples. In

particular, the following example illustrates the different realisations W(𝐴), C(𝐴) and
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T(𝐴) of the 𝜏 -cluster morphism category.

Example 4.7.1. Let 𝐴 := 𝐾(1 𝑎−→ 2) and consider 𝐾2 ∼= 𝐴/⟨𝑎⟩ ∼= 𝐾(1 2). The

objects of the different realisations of the 𝜏 -cluster morphism categories are displayed

in Table 4.1.

W(𝐴) C(𝐴) T(𝐴)

mod𝐴 [𝒞(0,0)] [0,mod𝐴]∼

Filt{1} [𝒞( 2 , 0 )] = [𝒞( 0 , 2 )] [0,Fac( 1 )]∼ = [Fac( 2 ),mod𝐴]∼

Filt{ 2 } [𝒞( 1
2 , 0 )] = [𝒞( 0 , 12 )] [ 0 ,Fac( 2 )]∼ = [Fac( 1

2 ),mod𝐴]∼

Filt{ 1
2 } [𝒞( 1 , 0 )] [Fac( 1 ),Fac( 1

2 )]∼

0
[𝒞(𝑀,𝑃 )]

(𝑀,𝑃 ) ∈ 𝜏 -tilt𝐴

[𝒯 , 𝒯 ]∼

𝒯 ∈ tors𝐴

Table 4.1: Objects of the 𝜏 -cluster morphism categories of 𝐴

Recall that the correspondence between the objects of the different realisations of

the 𝜏 -cluster morphism categories are given as follows:

(1) C(𝐴) ∋ [𝒞(𝑀,𝑃 )] ↦→𝑀⊥ ∩ ⊥𝜏𝑀 ∩ 𝑃⊥ ∈W(𝐴).

(2) T(𝐴) ∋ [𝒰 , 𝒯 ]∼ ↦→ 𝒰⊥ ∩ 𝒯 ∈W(𝐴).

(3) C(𝐴) ∋ [𝒞(𝑀,𝑃 )] ↦→ [Fac𝑀,⊥𝜏𝑀 ∩ 𝑃⊥]∼ ∈ T(𝐴).

These translations are used to describe the image of the functor 𝐹𝐼 : T(𝐴)→ T(𝐴/𝐼)

in W(𝐴) and C(𝐴) in Table 4.2. Each entry in Table 4.2 represents the image under

𝐹⟨𝑎⟩ : 𝐴 → 𝐾2 of the entry in the same position of Table 4.1. Moreover, the image of

the morphism [𝑓[0,mod𝐴][Fac( 1 ),Fac( 1
2 )]] ∈ T(𝐴) under 𝐹𝐼 is displayed in Table 4.3. This

example suggests that describing the functor 𝐹𝐼 : T(𝐴) → T(𝐴/𝐼) is most natural in

the lattice theoretic realisation T(𝐴) of the 𝜏 -cluster morphism category.

The assumption of 𝜏 -tilting finiteness in Lemma 4.4.11 is justified by the following.
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W(𝐾2) C(𝐾2) T(𝐾2)

mod𝐾2 [𝒞(0,0)] [0,mod𝐾2]∼

Filt{ 1 } [𝒞(2,0)] = [𝒞(0,2)] [0,Fac( 1 )]∼ = [Fac( 2 ),mod𝐾2]∼

Filt{ 2 } [𝒞(1,0)] = [𝒞(0,1)] [0,Fac( 2 )]∼ = [Fac( 1 ),mod𝐾2]∼

0 [𝒞( 1 , 2 )] [Fac( 1 ),Fac( 1 )]∼

0
[𝒞(𝑀,𝑃 )]

(𝑀,𝑃 ) ∈ 𝜏 -tilt𝐾2

[𝒯 , 𝒯 ]∼

𝒯 ∈ tors𝐾2

Table 4.2: The corresponding images under 𝐹𝐼 of objects in Table 4.1.

category / algebra 𝐴 𝐾2

W(−) [( 1 , 0 )] : mod𝐴→ Filt{ 1
2 } [( 1 , 2 )] : mod𝐾2 → 0

C(−) [𝑓𝒞(0,0)𝒞(1,0)
] [𝑓𝒞(0,0)𝒞(1,2)

]

T(−) [𝑓[0,mod𝐴][Fac( 1 ),Fac( 1
2 )]] [𝑓[0,mod𝐾2][Fac( 1 ),Fac( 1 )]]

Table 4.3: The image of a morphism under 𝐹𝐼 in the different presentations of the 𝜏 -

cluster morphism category

Example 4.7.2. Let 𝐴 := 𝐾( 1 2
𝑏

) and 𝐵 := 𝐴/⟨𝑏⟩ ∼= 𝐾( 1 2 ) then 𝐴

is well-known to be 𝜏 -tilting infinite and 𝐵 to be 𝜏 -tilting finite. Consider the interval

[Fac𝐵( 1 ),Fac𝐵( 1
2 )] ⊆ tors𝐵, which is a 𝜏 -perpendicular interval and gives rise to the

𝜏 -perpendicular subcategory Filt𝐵{ 1
2 } ⊆ mod𝐵.

The preimage [𝜋↓ Fac𝐵( 1 ), 𝜋↑ Fac𝐵( 1
2 )] ⊆ tors𝐴 of this interval under the surjection

(−) : tors𝐴 → tors𝐵 is [Fac𝐴( 1 ),Fac𝐴( 1
22 )] ⊆ tors𝐴 which is not 𝜏 -perpendicular.
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Moreover the 𝜏 -perpendicular intervals contained in this preimage come in four families

of the forms

[Fac𝐴(𝜏−𝑚
𝐴 ( 1

22 )),Fac𝐴(𝜏−(𝑚+1)
𝐴 ( 2 ))], [Fac𝐴(𝜏−(𝑚+1)

𝐴 ( 2 )),Fac𝐴(𝜏−(𝑚+1)
𝐴 ( 1

22 ))],

[Fac𝐴(𝜏𝑚𝐴 ( 1 )),Fac𝐴(𝜏𝑚𝐴 ( 11
2 ))], [Fac𝐴(𝜏𝑚𝐴 ( 11

2 ))],Fac𝐴(𝜏𝑚+1
𝐴 ( 2 ))]

for 𝑚 ≥ 0, where 𝜏−𝑚 := 𝜏−1 ∘ · · · ∘ 𝜏−1 is a composition of 𝑚 terms. Importantly,

the image of the intervals under (−) : tors𝐴 → tors𝐵 in the top row is the trivial

interval [Fac𝐵( 1
2 ),Fac𝐵( 1

2 )] and the image of the intervals in the bottom row is the

trivial interval [Fac𝐵( 1 ),Fac𝐵( 1 )]. Hence no 𝜏 -perpendicular interval of tors𝐴 maps

onto the interval [Fac𝐵( 1 ),Fac𝐵( 1
2 )] ⊆ tors𝐵. In particular, the module 1

2 is 𝜏 -rigid in

mod𝐵 but not in mod𝐴, where it is a regular module.

The example [57, Exmp. 5.11] shows that the map (−) : f-tors𝐴 → f-tors𝐴/𝐼 may

also not be a surjection when both 𝐴 and 𝐴/𝐼 are 𝜏 -tilting infinite.

Recall from Proposition 2.4.4 that besides the existence of a faithful group functor,

the pairwise compatibility condition of last factors of the 𝜏 -cluster morphism category

is a sufficient condition for ℬT(𝐴/𝐼) to be a 𝐾(𝜋, 1) space. The following example

illustrates that this pairwise compatibility condition is independent of taking quotient

algebras.

Example 4.7.3. Let 𝐴 = 𝐾𝐷4 be the representation finite hereditary algebra of Dynkin

type 𝐷4 with orientation

𝐷4 :

1

2 3

4

𝛾1

𝛾2

𝛾4

It is shown in [106, Thm. 2.5] that T(𝐴) satisfies the pairwise compatibility property

since 𝐴 is hereditary of finite type. The quotient 𝐴/⟨𝛾4𝛾2⟩ is gentle with no loops and

2-cycles, thus [92, Thm. 4.1] implies that 𝐴/𝐼 does not satisfy the pairwise compatibility

condition since there exists a vertex of valency greater than 2. Hence taking quotients

does not preserve the pairwise compatibility condition. Moreover, 𝐴 is a quotient of the

preprojective algebra Π𝐷4
of type 𝐷4 which is shown in [20, Thm. 4] to not satisfy the
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pairwise compatibility condition of last factors, so taking quotient also does not preserve

the failure of the pairwise compatibility condition. In conclusion, there is a sequence of

surjective algebra morphisms:

Π𝐷4
↠ 𝐾𝐷4 ↠ 𝐾𝐷4/⟨𝛾4𝛾2⟩↠ 𝐾4

where 𝐾4 is the semisimple algebra on 4 vertices, which does satisfy the pairwise com-

patibility property.

By Theorem 4.3.7, the purely combinatorial definition of T(𝐴) yields that when

f-tors𝐴 is finite, it determines T(𝐴) up to equivalence. This reduces the problem of

obtaining faithful group functors for some classes of algebras. For example, by [1, Thm.

1.1(1)], two Brauer graph algebras with the same underlying ribbon graph are 𝜏 -tilting

equivalent. Thus, if a Brauer graph algebra is 𝜏 -tilting finite and its 𝜏 -cluster morphism

category admits a faithful group functor, the same holds for all other Brauer graph

algebras defined by the same ribbon graph.

Similarly, if 𝐴 is a 𝜏 -tilting finite 𝐾-algebra such that T(𝐴) admits a faithful group

functor, consider 𝐴(𝑟) := 𝐴 ⊗𝐾 𝐾[𝜖]/(𝜖𝑟) for some 𝑟 ≥ 2. Then since 1 ⊗ 𝜖, is a central

element contained in the Jacobson radical, it follows that f-tors𝐴 ∼= f-tors𝐴(𝑟). The

special case, where 𝐴 is hereditary and 𝑟 = 2, has been shown to be of special interest

in [165]. When 𝐾 is algebraically closed, a similar statement holds when replacing

𝐾[𝜖]/(𝜖𝑟) with a finite-dimensional local commutative 𝐾-algebra 𝑅, see also [149]. Thus

every known example of a finite-dimensional algebra such that T(𝐴) admits a faithful

group functor gives rise to an infinite family of finite-dimensional algebras with the same

property.

Moreover, the following example displays two algebras with similar properties, but

which are not connected via a relationship as described above.

Example 4.7.4. Consider the path 𝐾-algebras 𝐴 ∼= 𝐾𝑄1/𝐼1 and 𝐴′ ∼= 𝐾𝑄2/𝐼2 defined

by

𝑄1 : 1 2 3𝑎

𝑐

𝑏

𝑑

and 𝐼1 = ⟨𝑐2, 𝑑2, 𝑐𝑎𝑏− 𝑎𝑏𝑑⟩
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and

𝑄2 : 1 2 3𝑎 𝑏

𝑐

and 𝐼2 = ⟨𝑎𝑏, 𝑐2⟩.

It can be checked, using, for example, the applet [81], that there is a lattice isomorphism

tors𝐴 ∼= tors𝐴′. Therefore, there is an equivalence of categories T(𝐴) ∼= T(𝐴′) by

Corollary 4.3.8. Thus, if one of the algebras admits a faithful group functor, so does

the other. Furthermore, the signed 𝜏 -exceptional sequences of mod𝐴 and mod𝐴′ are in

bijection by Corollary 4.3.9 and it can be verified that the mutation of 𝜏 -exceptional

sequences coincides for these algebras, see Remark 4.3.10.

Finally, let 𝐾 and 𝐾 ′ be two different fields, possibly of different characteristic. Let

𝐴 be a finite-dimensional 𝐾-algebra and let 𝐵 be a finite-dimensional 𝐾 ′-algebra. One

may have that tors𝐴 ∼= 𝐿 ∼= tors𝐵, for some finite lattice 𝐿. Then, if T(𝐴) admits a

faithful group functor, so does T(𝐿) and hence T(𝐵), by Theorem 4.3.7. It follows that

the result [92, Thm. 5.9] may be extended beyond finite fields in some cases. In the

following final chapter, the case where 𝐾 ′ : 𝐾 is a field extension is considered.



Chapter 5

𝜏 -cluster morphism categories and base

field extension

In this chapter, the lattice theoretic approach developed in Chapter 4, is applied to study

how the 𝜏 -cluster morphism category behaves under base field extension. Let 𝐿 : 𝐾 be

a field extension and 𝐴 a finite-dimensional 𝐾-algebra, then the tensor product 𝐴⊗𝐾 𝐿

is a finite-dimensional 𝐿-algebra. The main result of this section, Theorem 5.5.1, is the

construction of a faithful functor ℱ : W(𝐴) → W(𝐴 ⊗𝐾 𝐿). As a consequence of this

result, the 𝜏 -cluster morphism category is shown to admit a faithful group functor for a

new family of algebras in Section 5.6. The following Section 5.1 introduces different types

of fields and field extensions used commonly throughout this chapter. Subsequently,

Section 5.2 investigates 𝜏 -tilting theory under base field extension in a general context

and Section 5.3 dually studies 𝜏−1-tilting theory in order to describe both Bongartz and

co-Bongartz completions under base field extension. These two sections are combined

in Section 5.4 to investigate 𝜏 -perpendicular intervals in this setting, which leads to the

proof of Theorem 5.5.1 in Section 5.5.

5.1 Preliminaries on field extensions

Let 𝐴 be a finite-dimensional algebra and let 𝐿 : 𝐾 be a field extension. Denote by 𝐴𝐿
the finite-dimensional 𝐿-algebra 𝐴⊗𝐾 𝐿. Let 𝐾 denote an algebraic closure of the base

112
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field 𝐾. Moreover, the field extension 𝐿 : 𝐾 defines a scalar extension functor

−⊗𝐾 𝐿 : mod𝐴→ mod𝐴𝐿

𝑀 ↦→𝑀𝐿 := 𝑀 ⊗𝐾 𝐿

which is faithful and preserves and reflects exact sequences since 𝐿 is a faithfully flat

𝐾-module. The following lemma collects essential properties of the scalar extension

functor −⊗𝐾 𝐿.

Lemma 5.1.1. Let 𝐿 : 𝐾 be a field extension and let 𝑀,𝑁 ∈ mod𝐴 and 𝑃 ∈ proj𝐴.

(1) Let 𝑀 be indecomposable. Then, 𝑀 is a direct summand of 𝑁 if and only if 𝑀𝐿

and 𝑁𝐿 have a common nonzero direct summand.

(2) Let 𝑀 and 𝑁 be indecomposable. Then 𝑀𝐿 and 𝑁𝐿 share a common nonzero

direct summand if and only if 𝑀 ∼= 𝑁 .

(3) 𝑀 ∼= 𝑁 if and only if 𝑀𝐿
∼= 𝑁𝐿. In other words, −⊗𝐾 𝐿 is injective-on-objects.

(4) Let 𝑀 and 𝑁 be basic. If add(𝑀𝐿) = add(𝑁𝐿), then 𝑀 ∼= 𝑁 .

(5)
⋃︀
𝑋∈add(𝑀)∩add(𝑁) add(𝑋𝐿) = {𝑋 : 𝑋 ∈ add(𝑀𝐿) ∩ add(𝑁𝐿)}.

(6) 𝑃𝐿 ∈ proj𝐴𝐿. Moreover, each projective 𝐴𝐿-module arises as a direct summand

of (𝑃 ′)𝐿 for some 𝑃 ′ ∈ proj𝐴.

Proof. (1)-(3) are [122, Lem. 2.5], where (2) is also known as the Noether-Deuring

Theorem, see [130, Thm. 19.25].

(4) Let 𝑋 be an indecomposable direct summand of 𝑀 . From add(𝑀𝐿) = add(𝑁𝐿)

it follows that 𝑋𝐿 is a direct summand of (𝑁𝐿)𝑟 for some 𝑟 ≥ 1. It follows from (1) that

𝑋 is a direct summand of 𝑁 𝑟, and since 𝑋 is indecomposable 𝑋 is a direct summand

of 𝑁 . Repeating this for all indecomposable direct summands of 𝑀 yields that every

indecomposable direct summand of 𝑀 is also direct summand of 𝑁 . Reversing the argu-

ment similarly gives every indecomposable direct summand of 𝑁 as a direct summand

of 𝑀 . It follows that add(𝑀) = add(𝑁). Since 𝑀 and 𝑁 are basic, 𝑀 ∼= 𝑁 follows.

(5) To show the inclusion (⊆), let 𝑋 ∈ add(𝑀) ∩ add(𝑁) be indecomposable. Then

𝑋 is a direct summand of 𝑀 and a direct summand of 𝑁 . It follows from (1) that 𝑋𝐿

is a direct summand of 𝑀𝐿 and of 𝑁𝐿, hence 𝑋𝐿 ∈ add(𝑀𝐿) ∩ add(𝑁𝐿). Thus

add(𝑋𝐿) ⊆ add(𝑀𝐿) ∩ add(𝑁𝐿).
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Conversely, to show the inclusion (⊇), let 𝑌 ∈ add(𝑀𝐿) ∩ add(𝑁𝐿) be indecompos-

able. Then 𝑌 ∈ add(𝑍𝐿) ⊆ add(𝑀𝐿) and 𝑌 ∈ add(𝑍 ′
𝐿) ⊆ add(𝑁𝐿), for some indecom-

posable modules 𝑍,𝑍 ′ ∈ mod𝐴. From (1) it follows that 𝑍 ∈ add(𝑀) and 𝑍 ′ ∈ add(𝑀),

and moreover it follows from (2) that 𝑍 ∼= 𝑍 ′. In conclusion, 𝑌 ∈ add(𝑍𝐿), where

𝑍 ∈ add(𝑀) ∩ add(𝑁) as required.

(6) is [122, Lem. 2.1].

Crucially, the homomorphisms and extensions between two modules behave well

under base field extension.

Lemma 5.1.2. [122, Lem. 2.2] Let 𝐿 : 𝐾 be a field extension. Let 𝑋,𝑌 ∈ mod𝐴 and

let 𝑖 ∈ Z≥0. Then the canonical homomorphism of 𝐿-vector spaces

Ext𝑖𝐴(𝑋,𝑌 )⊗𝐾 𝐿→ Ext𝑖𝐴𝐿
(𝑋𝐿, 𝑌𝐿)

is an isomorphism which is natural in both arguments, where Ext0
𝐴(−, ?) = Hom𝐴(−, ?).

The remainder of this section introduces different types of fields and field extensions.

Definition 5.1.3. A field 𝐾 is perfect if every algebraic field extension of 𝐾 is separable.

For example, by [113, Thm. IV.3], all fields of characteristic zero and all finite fields

are perfect. Moreover, the following type of field extension is of great importance.

Definition 5.1.4. Let 𝐿 : 𝐾 be a field extension and let 𝐿1 : 𝐾 and 𝐿2 : 𝐾 be

intermediate field extensions of 𝐿 : 𝐾. The field extensions 𝐿1 : 𝐾 and 𝐿2 : 𝐾 are called

linearly disjoint over 𝐾 in 𝐿 if the 𝐾-homomorphism

𝐿1 ⊗𝑘 𝐿2 𝐿1𝐿2 𝐿

𝜆1 ⊗ 𝜆2 𝜆1𝜆2

𝜇 ⊆

∈ ∈

is an isomorphism of 𝐾-algebras, where 𝐿1𝐿2 is the smallest subalgebra of 𝐿 containing

𝐿1 and 𝐿2. A field extension 𝐿 : 𝐾 is said to be MacLane separable if either char(𝐾) = 0

or char(𝐾) = 𝑝 ̸= 0 and the field extensions 𝐿 and 𝐾𝑝
−1

are linearly disjoint over 𝐿 in

an algebraic closure 𝐿. Here 𝐾𝑝
−1

denotes the subset {𝜆 ∈ 𝐿 : 𝜆𝑝 ∈ 𝐾}.
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For example, an algebraic field extension is separable if and only if it is MacLane

separable by [113, Thm. IV.9]. And generally every separable field extension is MacLane

separable [113, p. 163, MacLane’s Criterion]. By the same result, a finite field extension

is MacLane separable if and only if it is separable. An equivalent characterisation for

𝐿 : 𝐾 to be MacLane separable was given in [116, Thm. 2.4], which states that 𝐿 : 𝐾 is

MacLane separable if and only if gl.dim𝐴 = gl.dim𝐴𝐿 holds for any finite-dimensional

𝐾-algebra 𝐴.

Example 5.1.5. [113, Exercise IV.5.1] Let 𝐾 be a field of characteristic 𝑝 ̸= 0 and

let 𝐿 = 𝐾(𝜉, 𝜉𝑝
−1
, 𝜉𝑝

−2
, . . . ) where 𝜉 is transcendental over 𝐾. Then 𝐿 : 𝐾 is MacLane

separable but not separable.

MacLane separable field extensions interact particularly well with homological alge-

bra as can be seen by the results of [116]. Further properties in relation to the radical

and the socle of a module are summarised in the following lemma.

Lemma 5.1.6. [122, Lem. 3.3, 3.5] Let 𝐿 : 𝐾 be a field extension and 𝑀 ∈ mod𝐴.

(1) There is an inclusion (rad𝐴)𝐿 ⊆ rad𝐴𝐿.

(2) There is an inclusion (rad𝐴𝑀)𝐿 ⊆ rad𝐴𝐿
𝑀𝐿.

(3) There is an inclusion (soc𝐴𝑀)𝐿 ⊆ rad𝐴𝐿
𝑀𝐿.

Moreover, if 𝐿 : 𝐾 is MacLane separable, then all of the above are equalities.

5.2 𝜏 -tilting theory under base field extension

Let 𝐿 : 𝐾 be a field extension. Since mod𝐴 and mod𝐴𝐿 are categories of modules of

different algebras, they have their respective Auslander-Reiten translations, denoted by

𝜏𝐴 and 𝜏𝐴𝐿
. As a first step in establishing a connection between the two, consider the

following result concerning the Nakayama functor 𝜈𝐴 : mod𝐴 → mod𝐴 in relation to

𝜈𝐴𝐿
: mod𝐴𝐿 → mod𝐴𝐿.

Lemma 5.2.1. Let 𝐿 : 𝐾 be a field extension and 𝑀 ∈ mod𝐴. There is an isomorphism

of 𝐴𝐿-modules (𝜈𝐴𝑀)𝐿 ∼= 𝜈𝐴𝐿
𝑀𝐿.
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Proof. Let 𝑀 ∈ mod𝐴. The result follows from applying Lemma 5.1.2 twice and using

the definition 𝜈?(−) = Hom𝐾(Hom?(−, ?),𝐾) as follows:

𝜈𝐴(𝑀)⊗𝐾 𝐿 = Hom𝐾(Hom𝐴(𝑀,𝐴),𝐾)⊗𝐾 𝐿

∼= Hom𝐿(Hom𝐴(𝑀,𝐴)⊗𝐾 𝐿,𝐿)

∼= Hom𝐿(Hom𝐴𝐿
(𝑀𝐿, 𝐴𝐿), 𝐿)

= 𝜈𝐴𝐿
(𝑀𝐿).

This completes the proof.

This gives rise to an analogous result about Auslander-Reiten translations.

Lemma 5.2.2. Let 𝐿 : 𝐾 be a field extension and 𝑀 ∈ mod𝐴. There is an isomorphism

of 𝐴𝐿-modules (𝜏𝐴𝑀)𝐿 ∼= 𝜏𝐴𝐿
𝑀𝐿.

Proof. Let 𝑃 1 𝑝
1

−→ 𝑃 0 𝑝
0

−→ 𝑀 → 0 be a minimal projective presentation of 𝑀 in

mod𝐴. By Lemma 5.1.1(6), the modules 𝑃 1
𝐿 and 𝑃 0

𝐿 are projective 𝐴𝐿-modules and

by Lemma 5.1.6(2) the exact sequence 𝑃 1
𝐿

𝑝
1
𝐿−→ 𝑃 0

𝐿
𝑝

0
𝐿−→𝑀𝐿 → 0, is a minimal projective

presentation of 𝑀𝐿 in mod𝐴𝐿. After applying the (exact) Nakayama functor to these

sequences, consider the following diagram:

0 𝜏𝐴𝐿
𝑀𝐿 𝜈𝐴𝐿

𝑃 0
𝐿 𝜈𝐴𝐿

𝑃 1
𝐿 𝜈𝐴𝐿

𝑀𝐿 0

0 (𝜏𝐴𝑀)𝐿 (𝜈𝐴𝑃 0)𝐿 (𝜈𝐴𝑃 1)𝐿 (𝜈𝐴𝑀)𝐿 0

∼= ∼= ∼=

The three maps on the right are isomorphisms by Lemma 5.2.1, and the relevant squares

commute. By the Five Lemma, there is an induced isomorphism 𝜏𝐴𝐿
𝑀𝐿
∼= (𝜏𝐴𝑀)𝐿 as

required.

Therefore, it is possible to relate the 𝜏 -rigid modules and pairs of the two algebras.

Lemma 5.2.3. Let 𝐿 : 𝐾 be a field extension, 𝑀 ∈ mod𝐴 and 𝑃 ∈ proj𝐴. Then 𝑀 is

𝜏 -rigid in mod𝐴 if and only if 𝑀𝐿 is 𝜏 -rigid in mod𝐴𝐿. Moreover, (𝑀,𝑃 ) is a 𝜏 -rigid

pair in mod𝐴 if and only if (𝑀𝐿, 𝑃𝐿) is a 𝜏 -rigid pair in mod𝐴𝐿.

Proof. The first statement follows directly from the sequence of isomorphisms

Hom𝐴(𝑀, 𝜏𝐴𝑀)⊗𝐾 𝐿 ∼= Hom𝐴𝐿
(𝑀𝐿, (𝜏𝐴𝑀)𝐿) ∼= Hom𝐴𝐿

(𝑀𝐿, 𝜏𝐴𝐿
𝑀𝐿),
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where the first isomorphism follows from Lemma 5.1.2 and the second one follows

from Lemma 5.2.2. Moreover, the module 𝑃𝐿 is projective by Lemma 5.1.1(6) and

Lemma 5.1.2 implies that Hom𝐴(𝑃,𝑀) = 0 if and only if Hom𝐴𝐿
(𝑃𝐿,𝑀𝐿) which gives

the desired result.

The following is then an easy observation.

Lemma 5.2.4. Let 𝐿 : 𝐾 be a field extension and let (𝑀,𝑃 ) be a 𝜏 -tilting pair in

mod𝐴 and 𝑁 ∈ mod𝐴. Then, 𝑁 ∈ 𝒲(𝑀,𝑃 ) if and only if 𝑁𝐿 ∈ 𝒲(𝑀𝐿,𝑃𝐿).

Proof. The notation𝒲(𝑀𝐿,𝑃𝐿) ⊆ mod𝐴𝐿 is well-defined since (𝑀𝐿, 𝑃𝐿) is a 𝜏 -rigid pair

in mod𝐴𝐿 by Lemma 5.2.3. Then, using Lemma 5.1.2 the following hold:

(1) Hom𝐴(𝑀,𝑁) = 0 if and only if Hom𝐴𝐿
(𝑀𝐿, 𝑁𝐿) = 0;

(2) Hom𝐴(𝑃,𝑁) = 0 if and only if Hom𝐴𝐿
(𝑃𝐿, 𝑁𝐿) = 0;

(3) Hom𝐴(𝑁, 𝜏𝐴𝑀) = 0 if and only if Hom𝐴𝐿
(𝑁𝐿, (𝜏𝐴𝑀)𝐿) = 0 if and only if

Hom𝐴𝐿
(𝑁𝐿, 𝜏𝐴𝐿

𝑀𝐿) = 0 by Lemma 5.2.2.

Therefore the result follows from the definitions of 𝒲(𝑀,𝑃 ) and 𝒲(𝑀𝐿,𝑃𝐿).

Since the number of indecomposable direct summands of modules is difficult to

control under field extension, it is necessary to pass to the bounded homotopy category

𝐾𝑏(proj𝐴) of proj𝐴. For 𝑖 ∈ Z, denote by [𝑖] the 𝑖-th power of the suspension functor.

Definition 5.2.5. Let 𝑃 ∙ ∈ 𝐾𝑏(proj𝐴).

(1) The complex 𝑃 ∙ is called presilting if Hom(𝑃 ∙, 𝑃 ∙[𝑖]) = 0 for all 𝑖 > 0.

(2) The complex 𝑃 ∙ is called silting if it is presilting and additionally satisfies

thick(𝑃 ∙) = 𝐾𝑏(proj𝐴), where thick(𝑃 ∙) is the smallest triangulated subcate-

gory of 𝐾𝑏(proj𝐴) containing 𝑃 ∙.

Finally, 𝑃 ∙ is called 2-term if it is isomorphic to an object (𝑃 𝑖, 𝑑𝑖) in 𝐾𝑏(proj𝐴) such

that 𝑃 𝑖 = 0 for 𝑖 ̸= −1, 0.

The collections of basic 2-term presilting objects and basic silting objects of

𝐾𝑏(proj𝐴) are denoted by 2-presilt𝐴 and 2-silt𝐴 respectively. The induced scalar ex-

tension functor −⊗𝐾 𝐿 : 𝐾𝑏(proj𝐴)→ 𝐾𝑏(proj𝐴𝐿) behaves well with respect to silting

and presilting complexes.
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Lemma 5.2.6. Let 𝐿 : 𝐾 be a field extension and let 𝑃 ∙ ∈ 𝐾𝑏(proj𝐴) be a presilting

complex. Then 𝑃 ∙
𝐿 ∈ 𝐾

𝑏(proj𝐴𝐿) is a presilting complex. Moreover, if 𝑃 ∙ is silting, then

𝑃 ∙
𝐿 is silting.

Proof. The first part of the statement follows directly from Lemma 5.1.2 adapted to this

setting, where Ext𝑖(−, ?) becomes Hom(−, ?[𝑖]). Assume that 𝑃 ∙ ∈ 𝐾𝑏(proj𝐴) is silting

then 𝐴 ∈ thick(𝑃 ∙) ⊆ 𝐾𝑏(proj𝐴). Since − ⊗𝐾 𝐿 is a triangle functor it follows that

𝐴𝐿 ∈ thick(𝑃 ∙
𝐿) ⊆ 𝐾𝑏(proj𝐴𝐿), which implies that 𝑃 ∙

𝐿 is silting in 𝐾𝑏(proj𝐴𝐿).

The study of 2-term (pre)silting objects is the main focus of [60]. By [3, Thm. 3.2]

there exist mutually inverse bijections between basic 2-term silting objects of 𝐾𝑏(proj𝐴)

and basic 𝜏 -tilting pairs given by the following maps:

𝜏 -tiltp𝐴 2-silt𝐴
𝐹

𝐺

where 𝐹 (𝑀,𝑃 ) = (𝑃 1 ⊕ 𝑃 (𝑓 0)−−−−→ 𝑃 0) and 𝑃 1 𝑓−→ 𝑃 0 → 𝑀 is a minimal projective

presentation of 𝑀 and 𝐺(𝑃 ∙) = (𝐻0(𝑃 ∙), (𝑃 1)′′), where 𝑃 ∙ = 𝑃 1 𝑑−→ 𝑃 0 is decomposed

into 𝑃 ∙ = (𝑃 1)′ ⊕ (𝑃 1)′′ (𝑑′ 0)−−−−−→ 𝑃 0 with 𝑑′ right minimal, see [3, Prop. 3.6(b)]. This

relationship commutes with taking field extensions.

Lemma 5.2.7. Let 𝐿 : 𝐾 be a field extension. If (𝑀,𝑃 ) is a 𝜏 -tilting pair in mod𝐴,

then (𝑀𝐿, 𝑃𝐿) is a 𝜏 -tilting pair in mod𝐴𝐿. In particular, if 𝑀 is a 𝜏 -tilting module in

mod𝐴, then 𝑀𝐿 is a 𝜏 -tilting module in mod𝐴𝐿.

Proof. Let (𝑀,𝑃 ) ∈ 𝜏 -tiltp𝐴 and 𝑃 1 𝑝
1

−→ 𝑃 0 →𝑀 → 0 be a minimal projective presen-

tation. By Lemma 5.1.6(2), the sequence 𝑃 1
𝐿

𝑝
1
𝐿−→ 𝑃 0

𝐿 →𝑀𝐿 → 0 is a minimal projective

presentation of 𝑀𝐿. Since (𝑀,𝑃 ) is 𝜏 -tilting in mod𝐴, [3, Thm. 3.2] states that the

corresponding 2-term complex 𝑃 1 ⊕ 𝑃 (𝑝1 0)−−−−−→ 𝑃 0 is a silting object of 𝐾𝑏(proj𝐴). By

Lemma 5.2.6, the complex 𝑃 1
𝐿 ⊕ 𝑃𝐿

(𝑝1
𝐿 0)−−−−−→ 𝑃 0

𝐾 is a silting complex in 𝐾𝑏(proj𝐴𝐿).

Moreover, its corresponding 𝜏 -tilting pair in mod𝐴𝐿 is clearly (𝑀𝐿, 𝑃𝐿), completing the

proof.

Moreover, base field extension preserves the partial order on 𝜏 -tiltp𝐴 inherited from

tors𝐴 via Theorem 2.2.2.
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Lemma 5.2.8. Let 𝐿 : 𝐾 be a field extension and let (𝑀,𝑃 ) and (𝑁,𝑄) be two 𝜏 -tilting

pairs in mod𝐴 such that Fac𝑀 ⊆ Fac𝑁 ⊆ mod𝐴. Then Fac𝑀𝐿 ⊆ Fac𝑁𝐿 ⊆ mod𝐴𝐿.

Proof. Take 𝑋 ∈ Fac𝑀𝐿, then by definition there is an epimorphism 𝑀 𝑟
𝐿 ↠ 𝑋 → 0 in

mod𝐴𝐿 for some 𝑟 ≥ 1. Since Fac𝑀 ⊆ Fac𝑁 ⊆ mod𝐴, it follows that in particular

𝑀 𝑟 ∈ Fac𝑁 which gives rise to an epimorphism 𝑁 𝑠 ↠𝑀 𝑟 → 0 in mod𝐴 for some 𝑠 ≥ 1.

Applying the exact scalar extension functor then gives an epimorphism 𝑁 𝑠
𝐿 ↠𝑀 𝑟

𝐿 → 0

in mod𝐴𝐿. In conclusion, there is a chain of epimorphisms 𝑁 𝑠
𝐿 ↠𝑀 𝑟

𝐿 ↠ 𝑋 which yields

𝑋 ∈ Fac𝑁𝐿 as required.

Consequently, the image of 𝜏 -tilting pairs in mod𝐴 under base field extension gives

a subposet of 𝜏 -tilting pairs in mod𝐴𝐿, see also [110, Thm. 2.14(a)].

Proposition 5.2.9. Let 𝐿 : 𝐾 be a field extension. For an 𝐴𝐿-module 𝑁 , let 𝑁 𝑏 denote

a (choice of) basic direct summand of 𝑁 with add𝑁 = add𝑁 𝑏. There is an embedding

of posets

𝜏 -tiltp𝐴→ 𝜏 -tiltp𝐴𝐿

sending (𝑀,𝑃 ) to (𝑀 𝑏
𝐿, 𝑃

𝑏
𝐿). This map is well-defined up to isomorphism.

Proof. Since −⊗𝐾 𝐿 is injective-on-objects by Lemma 5.1.1(3), the result follows from

Lemma 5.2.7 and Lemma 5.2.8.

Similarly, it is possible to obtain the following result concerning functorially finite

torsion classes.

Corollary 5.2.10. There is an embedding of posets

f-tors𝐴→ f-tors𝐴𝐿

sending 𝒯 to 𝒯𝐿 = Fac𝑀𝐿, where (𝑀,𝑃 ) is the 𝜏 -tilting pair such that 𝒯 = Fac𝑀 under

Theorem 2.2.2. Moreover, if 𝒯 = Fac𝑁 , for some 𝜏 -rigid module 𝑁 , then 𝒯𝐿 = Fac𝑁𝐿.

Proof. The map f-tors𝐴→ f-tors𝐴𝐿 is defined as follows:

𝒯 (𝑀,𝑃 ) (𝑀 𝑏
𝐿, 𝑃

𝑏
𝐿) 𝒯𝐿.

Theorem 2.2.2
bijection

Proposition 5.2.9
injection

Theorem 2.2.2
bijection (5.2.1)

All maps are order preserving, so that the results cited along the arrows in (5.2.1) yield a

well-defined embedding. Let 𝑁 be 𝜏 -rigid and assume 𝒯 = Fac𝑁 . Consider the image of
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𝒯 under Theorem 2.2.2, and denote it by (𝑁 ′, 𝑃 ′). It follows that Fac𝑁 = Fac𝑁 ′. From

Lemma 5.2.8 it follows that Fac𝑁𝐿 = Fac(𝑁 ′)𝐿, and therefore 𝒯𝐿 = Fac(𝑁 ′)𝐿 = Fac𝑁𝐿

as required.

It should be remarked that 𝒯𝐿 is generally not equal to the full subcategory of

mod Λ𝐿 obtained by applying − ⊗𝐾 𝐿 to every object of 𝒯 ∈ f-tors Λ. This illustrates

why it is usually preferable to study the behaviour of individual objects under base field

extension, rather than the behaviour of subcategories.

5.3 Bongartz completions and 𝜏−1-tilting theory

The aim of this section is to describe 𝜏 -perpendicular intervals of 𝜏 -tiltp𝐴 under base

field extension. Recall from Section 2.2 that the co-Bongartz completion of a 𝜏 -rigid

pair (𝑀,𝑃 ) is the unique basic 𝜏 -tilting pair (𝑀−, 𝑃−) such that Fac𝑀 = Fac𝑀−

and the Bongartz completion of (𝑀,𝑃 ) is the unique basic 𝜏 -tilting pair (𝑀+, 𝑃 ) such

that Fac𝑀+ = ⊥𝜏𝑀 ∩ 𝑃⊥, see [57, Thm. 4.4]. By Definition 2.2.4, a 𝜏 -perpendicular

interval of 𝜏 -tiltp𝐴 is precisely the interval [(𝑀−, 𝑃−), (𝑀+, 𝑃 )] ⊆ 𝜏 -tiltp𝐴 for some

𝜏 -rigid pair (𝑀,𝑃 ).

Lemma 5.3.1. Taking co-Bongartz completions commutes with base field extension.

More precisely, let 𝐿 : 𝐾 be a field extension and (𝑀,𝑃 ) ∈ 𝜏 -rigidp𝐴. Then

((𝑀𝐿)−, (𝑃𝐿)−) = ((𝑀−)𝐿, (𝑃−)𝐿).

Proof. By definition, the co-Bongartz completion of (𝑀,𝑃 ) is the unique basic 𝜏 -tilting

pair (𝑀−, 𝑃−) in mod𝐴 such that Fac(𝑀−) = Fac(𝑀). By Lemma 5.2.3, (𝑀𝐿, 𝑃𝐿)

is a 𝜏 -rigid pair in mod𝐴𝐿 and thus ((𝑀𝐿)−, (𝑃𝐿)−) is a likewise defined to be the

unique basic 𝜏 -tilting pair in mod𝐴𝐿 such that Fac((𝑀𝐿)−) = Fac(𝑀𝐿). However, by

Corollary 5.2.10 the equality Fac(𝑀−) = Fac(𝑀) implies Fac((𝑀−)𝐿) = Fac(𝑀𝐿). This

implies that Fac((𝑀𝐿)−) = Fac(𝑀𝐿) = Fac((𝑀−)𝐿). Finally, since (𝑀−, 𝑃−) is also a

𝜏 -tilting pair in mod𝐴, it follows that ((𝑀−)𝐿, (𝑃−)𝐿) is a 𝜏 -tilting pair in mod𝐴𝐿 by

Lemma 5.2.7. Thus, Theorem 2.2.2 implies that ((𝑀𝐿)−, (𝑃𝐿)−) = ((𝑀−)𝐿, (𝑃−)𝐿) as

desired.
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A similar result for Bongartz completions requires the dualisation to torsion-free

classes and 𝜏−1-tilting modules which also play an important role in later sections.

Denote by 𝜏−1 the inverse Auslander-Reiten translation.

Definition 5.3.2. Let 𝑀 ∈ mod𝐴 and 𝑄 ∈ inj𝐴.

(1) The module 𝑀 is called 𝜏−1-rigid if Hom(𝜏−1𝑀,𝑀) = 0. If additionally |𝑀 | = |𝐴|

then 𝑀 is called 𝜏−1-tilting.

(2) The pair (𝑀,𝑄) is called 𝜏−1-rigid if 𝑀 is 𝜏−1-rigid and Hom(𝑄,𝑀) = 0. If

additionally |𝑀 |+ |𝑄| = |𝐴| then (𝑀,𝑄) is called 𝜏−1-tilting.

Denote by 𝜏 -1-tiltp𝐴 the collection of basic 𝜏−1-tilting pairs. It is clear that dual

statements of Lemma 5.2.3 and Lemma 5.2.7 hold for 𝜏−1-rigid and 𝜏−1-tilting pairs.

Proposition 5.3.3. [3, p. 12] There exists an explicit bijection

𝐻 : 𝜏 -tiltp𝐴→ 𝜏 -1-tiltp𝐴 (5.3.1)

given by 𝐻(𝑀,𝑃 ) = (𝜏𝑀⊕𝜈𝑃, 𝜈𝑀pr) where 𝑀pr is the largest projective direct summand

of 𝑀 . It fits into a commutative square

𝜏 -tiltp𝐴 𝜏 -1-tiltp𝐴

f-tors𝐴 f-torf 𝐴.

𝐻

Fac Sub
(−)⊥

The dual of Theorem 2.2.2 establishes a bijection 𝜏 -1-tiltp𝐴 → f-torf 𝐴 given by

𝑀 ↦→ Sub𝑀 . The interaction of the bijection in Proposition 5.3.3 with extension of

scalars is described in the following.

Lemma 5.3.4. Let 𝐿 : 𝐾 be a field extension. The following square is commutative:

𝜏 -tiltp𝐴 𝜏 -1-tiltp𝐴

𝜏 -tiltp𝐴𝐿 𝜏 -1-tiltp𝐴𝐿.

𝐻

−⊗𝐾𝐿 −⊗𝐾𝐿

𝐻

Proof. Let (𝑀,𝑃 ) ∈ 𝜏 -tiltp𝐴. By Lemma 5.2.2 there is an isomorphism of 𝐴𝐿-modules

(𝜏𝐴𝑀)𝐿 ∼= 𝜏𝐴𝐿
𝑀𝐿 and by Lemma 5.2.1 there is an isomorphism (𝜈𝐴𝑃 )𝐿 ∼= 𝜈𝐴𝐿

𝑃𝐿. In

combination, there is an isomorphism (𝜏𝐴𝑀 ⊕ 𝜈𝐴𝑃 )𝐿 ∼= 𝜏𝐴𝐿
𝑀𝐿 ⊕ 𝜈𝐴𝐿

𝑃𝐿 as the scalar

extension functor is additive. Finally, Lemma 5.1.1(6) implies that (𝑀pr)𝐿 ∼= (𝑀𝐿)pr

and using Lemma 5.2.1 again implies the desired result.
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Consequently, the dual of Lemma 5.3.1 is obtained in the following.

Lemma 5.3.5. Taking Bongartz completions commutes with base field extension. More

precisely, let 𝐿 : 𝐾 be a field extension and (𝑀,𝑃 ) ∈ 𝜏 -rigidp𝐴. Then

((𝑀𝐿)+, 𝑃𝐿) = ((𝑀+)𝐿, 𝑃𝐿).

Proof. By definition, the Bongartz completion of (𝑀,𝑃 ) is the unique basic 𝜏 -tilting pair

(𝑀+, 𝑃 ) in mod𝐴 with the property that Fac(𝑀+) = ⊥𝜏𝐴𝑀 ∩𝑃
⊥. Since ⊥𝜏𝐴𝑀 ∩𝑃

⊥ =
⊥(𝜏𝐴𝑀 ⊕ 𝜈𝐴𝑃 ), this is equivalent to saying Fac(𝑀+) = ⊥(𝜏𝐴𝑀 ⊕ 𝜈𝐴𝑃 ), and thus

equivalent to Fac(𝑀+)⊥ = Sub(𝜏𝐴𝑀 ⊕ 𝜈𝐴𝑃 ) since 𝜏𝐴𝑀 ⊕ 𝜈𝐴𝑃 is 𝜏−1-rigid in mod𝐴.

Because torsion classes uniquely determine their corresponding torsion-free classes, the

Bongartz completion (𝑀+, 𝑃 ) is also the unique basic 𝜏 -tilting pair in mod𝐴 such that

Fac(𝑀+)⊥ = Sub(𝜏𝐴𝑀⊕𝜈𝐴𝑃 ). Consequently, Sub(𝜏𝐴𝑀⊕𝜈𝐴𝑃 ) = Sub(𝜏𝐴(𝑀+)⊕𝜈𝐴𝑃 )

holds. Now, Lemma 5.3.4 and the dual of Corollary 5.2.10 imply that

Sub(𝜏𝐴𝐿
𝑀𝐿 ⊕ 𝜈𝐴𝐿

𝑃𝐿) = Sub(𝜏𝐴𝐿
(𝑀+)𝐿 ⊕ 𝜈𝐴𝐿

𝑃𝐿). (5.3.2)

On the other hand, (𝑀𝐿, 𝑃𝐿) is a 𝜏 -rigid pair in mod𝐴𝐿 by Lemma 5.2.3. Therefore,

((𝑀𝐿)+, 𝑃𝐿) may also be defined as the unique basic 𝜏 -tilting pair in mod𝐴𝐿 such that

Fac((𝑀𝐿)+)⊥ = Sub(𝜏𝐴𝐿
𝑀𝐿 ⊕ 𝜈𝐴𝐿

𝑃𝐿). However, since 𝐻(𝑀+, 𝑃 ) is a 𝜏−1-tilting pair

in mod𝐴, the dual of Lemma 5.2.7 implies that (𝐻(𝑀+, 𝑃 ))𝐿 is a 𝜏−1-tilting pair in

mod𝐴𝐿. By Eq. (5.3.2), the 𝜏 -tilting pair (𝐻(𝑀+, 𝑃 ))𝐿 in mod𝐴𝐿 also corresponds

to the torsion-free class Sub(𝜏𝐴𝐿
𝑀𝐿 ⊕ 𝜈𝐴𝐿

𝑃𝐿) under the dual of Theorem 2.2.2. This

implies (𝐻(𝑀+, 𝑃 ))𝐿 = 𝐻((𝑀𝐿)+, 𝑃𝐿). By Lemma 5.3.4 it thus follows that

𝐻((𝑀+)𝐿, 𝑃𝐿) = (𝐻(𝑀+, 𝑃 ))𝐿 = 𝐻((𝑀𝐿)+, 𝑃𝐿),

so that applying 𝐻−1 to both sides yields ((𝑀+)𝐿, 𝑃𝐿) = ((𝑀𝐿)+, 𝑃𝐿) as required.

The results of this section are combined to obtain the following result.

Proposition 5.3.6. Let 𝐿 : 𝐾 be a field extension. There is a well-defined map

−⊗𝐾 𝐿 : 𝜏 -itv𝐴→ 𝜏 -itv𝐴𝐿

[𝒰(𝑀,𝑃 ), 𝒯(𝑀,𝑃 )] ↦→ [𝒰(𝑀𝐿,𝑃𝐿), 𝒯(𝑀𝐿,𝑃𝐿)].
(5.3.3)
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Proof. Let (𝑀,𝑃 ) be a 𝜏 -tilting pair in mod𝐴. By definition 𝒰(𝑀,𝑃 ) ∈ f-tors𝐴

corresponds to the 𝜏 -tilting pair (𝑀−, 𝑃 ) and 𝒯(𝑀,𝑃 ) ∈ f-tors𝐴 corresponds to

the 𝜏 -tilting pair (𝑀+, 𝑃+) via Theorem 2.2.2. The result then follows from

Lemma 5.3.1, Lemma 5.3.5 and the fact that the order of 𝜏 -tilting pairs is preserved by

Lemma 5.2.8.

5.4 Left and right finite semibricks

The brick labelling of Hasse(tors𝐴) has already played a central role throughout this

thesis. In this section the focus lies on those brick labels which arise as labels of the

subquiver Hasse(f-tors𝐴). It was shown in [8], see also [57, Prop. 4.9], that it is possible

to calculate the labels adjacent to a torsion class 𝒯 ∈ f-tors𝐴 via the corresponding

𝜏 -tilting pair and 𝜏−1-tilting pair. Given a module 𝑀 ∈ mod𝐴, denote by ind(𝑀) the

set of isomorphism classes of indecomposable direct summands of 𝑀 .

Proposition 5.4.1. [8, Thm. 1.3][57, Prop. 4.9] Let 𝒯 ∈ f-tors𝐴 correspond to

(𝑀,𝑃 ) ∈ 𝜏 -tiltp𝐴 under the bijection of Theorem 2.2.2. Then the cover relations

𝒯 → 𝒯𝑖 in Hasse(tors𝐴) are labelled by distinct isomorphism classes of objects in the

(left-finite) semibrick

𝒮 = ind(𝑀/ radEnd𝐴(𝑀)𝑀). (5.4.1)

Dually, let (𝑁,𝑄) = 𝐻(𝑀,𝑃 ) ∈ 𝜏 -1-tiltp𝐴 be the corresponding 𝜏−1-tilting pair. Then

the cover relations 𝒯 ′
𝑗 → 𝒯 in Hasse(tors𝐴) are labelled by the distinct isomorphism

classes of objects in the (right-finite) semibrick

𝒮 ′ = ind(socEnd𝐴(𝑁)𝑁). (5.4.2)

Denote the collection of left-finite semibricks, that is, semibricks arising as in

Eq. (5.4.1) for some 𝜏 -tilting pair (𝑀,𝑃 ), by fℒ-sbrick𝐴 and the collection of right-

finite semirbricks, that is, semibricks arising as in Eq. (5.4.2) for some 𝜏−1-tilting pair

(𝑁,𝑄), by fℛ-sbrick𝐴. Given a set 𝒳 of indecomposable 𝐴-modules, denote by 𝒳𝐿 or

ind(𝒳 ⊗𝐾 𝐿) the set
⋃︀
𝑋∈𝒳 ind(𝑋𝐿) of 𝐴𝐿-modules. In particular, this notation is used

for semibricks.
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Lemma 5.4.2. Let 𝐿 : 𝐾 be a MacLane separable field extension. Then the following

square is commutative

𝜏 -tiltp𝐴 fℒ-sbrick𝐴

𝜏 -tiltp𝐴𝐿 fℒ-sbrick𝐴𝐿

−⊗𝐾𝐿 ind(−⊗𝐾𝐿) (5.4.3)

where the horizontal map at the top is given by (𝑀,𝑃 ) ↦→ ind(𝑀/ radEnd𝐴(𝑀)𝑀) and

the horizontal map at the bottom is given by (𝑀 ′, 𝑃 ′) ↦→ ind(𝑀 ′/ radEnd𝐴𝐿
(𝑀 ′)𝑀

′).

Proof. Let (𝑀,𝑃 ) ∈ 𝜏 -tiltp𝐴. As a first step to showing the desired an equality

ind(ind(𝑀/ radEnd𝐴(𝑀)𝑀)⊗𝐾 𝐿) = ind(𝑀𝐿/ radEnd𝐴𝐿
(𝑀𝐿)𝑀𝐿),

observe that since −⊗𝐾 𝐿 is additive the left-hand side may be simplified as

ind(ind(𝑀/ radEnd𝐴(𝑀)𝑀)⊗𝐾 𝐿) = ind((𝑀/ radEnd𝐴(𝑀)𝑀)⊗𝐾 𝐿). (5.4.4)

Moreover, since −⊗𝐾𝐿 is exact any quotient module 𝑀/𝑁 satisfies (𝑀/𝑁)𝐿 ∼= 𝑀𝐿/𝑁𝐿.

Now, Lemma 5.1.2 gives that End𝐴(𝑀)⊗𝐾𝐿 ∼= End𝐴𝐿
(𝑀𝐿) and since 𝐿 : 𝐾 is MacLane

separable, Lemma 5.1.6(2) yields that (rad𝐴𝑀)𝐿 ∼= rad𝐴𝐿
𝑀𝐿. Combining these obser-

vations it follows that

ind((𝑀/ radEnd𝐴(𝑀)𝑀)⊗𝐾 𝐿) = ind(𝑀𝐿/(radEnd𝐴(𝑀)𝑀)𝐿) (as −⊗𝐾 𝐿 is exact)

= ind(𝑀𝐿/ radEnd𝐴(𝑀)⊗𝐾𝐿
𝑀𝐿) (by Lemma 5.1.6(2))

= ind(𝑀𝐿/ radEnd𝐴𝐿
(𝑀𝐿)𝑀𝐿) (by Lemma 5.1.2)

so that Eq. (5.4.4) completes the proof.

The dual statement follows from a similar proof. It is included for the sake of com-

pleteness and for later reference.

Lemma 5.4.3. Let 𝐿 : 𝐾 be a MacLane separable field extension. Then the following

square is commutative

𝜏 -1-tiltp𝐴 fℛ-sbrick𝐴

𝜏 -1-tiltp𝐴𝐿 fℛ-sbrick𝐴𝐿

−⊗𝐾𝐿 ind(−⊗𝐾𝐿) (5.4.5)
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where the horizontal map at the top is given by (𝑀,𝑃 ) ↦→ ind(socEnd𝐴(𝑀)𝑀) and the

horizontal map at the bottom is given by (𝑀 ′, 𝑃 ′) ↦→ ind(socEnd𝐴𝐿
(𝑀 ′)𝑀

′).

Proof. Since 𝐿 : 𝐾 is MacLane separable, it follows that (soc𝐴𝑀)𝐿 ∼= soc𝐴𝐿
𝑀𝐿 by

Lemma 5.1.6(3). Similar to the previous lemma it follows that

ind(ind(socEnd𝐴(𝑀)𝑀)⊗𝐾 𝐿) = ind((socEnd𝐴
(𝑀))⊗𝐾 𝐿) (as −⊗𝐾 𝐿 is additive)

= ind(socEnd𝐴(𝑀)⊗𝐾𝐿
𝑀𝐿) (by Lemma 5.1.6(3))

= ind(socEnd𝐴𝐿
(𝑀𝐿)𝑀𝐿) (by Lemma 5.1.2).

This completes the proof.

Remark 5.4.4. Let 𝐿 : 𝐾 be any field extension. Then there exist two injective maps

ℒ : fℒ-sbrick(𝐴)→ fℒ-sbrick(𝐴𝐿), ℛ : fℛ-sbrick(𝐴)→ fℛ-sbrick(𝐴𝐿).

This observation follows from the fact that the horizontal maps in the commutative dia-

grams Eq. (5.4.3) and Eq. (5.4.5) are bijections by [8, Thm. 1.3] and the fact that −⊗𝐾𝐿

is injective-on-objects and lifts 𝜏 -tilting pairs and 𝜏−1-tilting pairs by Lemma 5.2.7 and

its dual. However, it is not clear whether ℒ and ℛ are given by ind(−⊗𝐾 𝐿) as demon-

strated in Lemma 5.4.2 and Lemma 5.4.3 when 𝐿 : 𝐾 is not MacLane separable .

In the following result the importance of studying left-finite and right-finite semib-

ricks for the aim of studying the 𝜏 -cluster morphism category becomes apparent.

Lemma 5.4.5. Let (𝑀,𝑃 ) be a 𝜏 -rigid pair. Write ℬ(𝑀,𝑃 )
ℒ for the left-finite semibrick

corresponding to (𝑀+, 𝑃 ) as in Eq. (5.4.1) and ℬ(𝑀,𝑃 )
ℛ for the right-finite semibrick cor-

responding to the 𝜏−1-tilting pair 𝐻(𝑀−, 𝑃−) as in Eq. (5.4.2), with 𝐻 as in Eq. (5.3.1).

Then the 𝜏 -perpendicular subcategory 𝒲(𝑀,𝑃 ) ⊆ mod𝐴 as defined in Theorem 2.2.5 is

given by

𝒲(𝑀,𝑃 ) = Filt𝐴
{︁
ℬ(𝑀,𝑃 )

ℒ ∩ ℬ(𝑀,𝑃 )
ℛ

}︁
.

Proof. Write [𝒰 , 𝒯 ] = [Fac𝑀,⊥𝜏𝑀 ∩ 𝑃⊥] ⊆ tors𝐴 for the 𝜏 -perpendicular interval

corresponding to (𝑀,𝑃 ). By Eq. (2.0.2) it is possible to write 𝒲(𝑀,𝑃 ) = Filt𝐴{𝒮}

for some semibrick 𝒮 ∈ sbrick𝐴 and by [57, Thm. 4.16(a)(c)], 𝒮 consists of labels of

arrows incident to 𝒰 in Hasse[𝒰 , 𝒯 ]. By Proposition 5.4.1, the right-finite semibrick
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ℬ(𝑀,𝑃 )
ℛ consists of labels of all arrows going into 𝒰 in Hasse(tors𝐴), it follows that

𝒮 ⊆ ℬ(𝑀,𝑃 )
ℛ . Dually by [57, Thm. 4.16(a)(d)], 𝒮 consists of labels of arrows incident to

𝒯 in Hasse[𝒰 , 𝒯 ]. Again by Proposition 5.4.1 the left-finite semibrick ℬ(𝑀,𝑃 )
ℒ consists of

labels of all arrows going out of 𝒰 in Hasse(tors𝐴). It follows that 𝒮 ⊆ ℬ(𝑀,𝑃 )
ℒ ∩ℬ(𝑀,𝑃 )

ℛ .

Conversely, assume that there is a brick 𝑆 ∈ ℬ(𝑀,𝑃 )
ℒ ∩ ℬ(𝑀,𝑃 )

ℛ , then by Proposi-

tion 5.4.1 the brick 𝑆 labels an arrow 𝒰 ′ → 𝒰 in Hasse(tors𝐴) and an arrow 𝒯 → 𝒯 ′ in

Hasse(tors𝐴). However, by definition of the brick labelling this means that 𝑆 ∈ 𝒰⊥ and

𝑆 ∈ 𝒯 , so that 𝑆 ∈ 𝒰⊥ ∩ 𝒯 = 𝒲(𝑀,𝑃 ). In particular, 𝒰 ′ = 𝒰 ∨ T(𝑆) ⊆ 𝒯 , so 𝑆 is the

label of an arrow adjacent to 𝒰 in Hasse[𝒰 , 𝒯 ], and thus 𝑆 ∈ 𝒮 by [57, Thm. 4.16].

Let 𝒯 ∈ f-tors𝐴, then define ℬ𝒳
ℒ := ℬ(𝑀,𝑃 )

ℒ , where (𝑀,𝑃 ) is the basic 𝜏 -tilting pair

corresponding to 𝒯 via Theorem 2.2.2.

Proposition 5.4.6. Let 𝐿 : 𝐾 be a MacLane separable field extension, and (𝑀,𝑃 ) be a

𝜏 -rigid pair in mod𝐴 whose 𝜏 -perpendicular subcategory is given by 𝒲(𝑀,𝑃 ) = Filt𝐴{𝒮}

for some semibrick 𝒮, then

𝒲(𝑀𝐿,𝑃𝐿) = Filt𝐴𝐿
{𝒮𝐿} ⊆ mod𝐴𝐿,

where 𝒮𝐿 =
⋃︀
𝑋∈𝒮 ind(𝑋𝐿).

Proof. Using Lemma 5.4.5, write 𝒮 = ℬ(𝑀,𝑃 )
ℒ ∩ℬ(𝑀,𝑃 )

ℛ . By Lemma 5.1.1(5) the equality

𝒮𝐿 =
⋃︁
𝑋∈𝒮

ind(𝑋𝐿) =
⋃︁

𝑋∈ℬ(𝑀,𝑃 )
ℒ ∩ℬ(𝑀,𝑃 )

ℛ

ind(𝑋𝐿) = ind((ℬ(𝑀,𝑃 )
ℒ )𝐿) ∩ ind((ℬ(𝑀,𝑃 )

ℛ )𝐿)

holds. Combining Lemma 5.3.5 and Lemma 5.4.2 gives the equality

ind((ℬ(𝑀,𝑃 )
ℒ )𝐿) = ℬ(𝑀𝐿,𝑃𝐿)

ℒ ∈ fℒ-sbrick𝐴𝐿,

and similarly combining Lemma 5.3.1, Lemma 5.3.4 and Lemma 5.4.3 gives the equality

ind((ℬ(𝑀,𝑃 )
ℛ )𝐿) = ℬ(𝑀𝐿,𝑃𝐿)

ℛ ∈ fℛ-sbrick𝐴𝐿.

By Lemma 5.4.5, it follows that

𝒲(𝑀𝐿,𝑃𝐿) = Filt𝐴𝐿

{︁
ℬ(𝑀𝐿,𝑃𝐿)

ℒ ∩ ℬ(𝑀,𝑃 )
ℛ

}︁
= Filt𝐴𝐿

{︁
ind((ℬ(𝑀,𝑃 )

ℒ )𝐿) ∩ ind((ℬ(𝑀,𝑃 )
ℛ )𝐿)

}︁
= Filt𝐴𝐿

{𝒮𝐿} ,

as required.
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5.5 Faithful functor

The understanding of 𝜏 -tilting theory under base field extension developed in the pre-

vious sections culminates in the following main theorem of this chapter.

Theorem 5.5.1. Let 𝐿 : 𝐾 be a MacLane separable field extension. There exists a

well-defined faithful functor ℱ : T(𝐴)→ T(𝐴𝐿) given by

ℱ : T(𝐴)→ T(𝐴𝐿)

[𝒰(𝑀,𝑃 ), 𝒯(𝑀,𝑃 )]∼ ↦→ [𝒰(𝑀𝐿,𝑃𝐿), 𝒯(𝑀𝐿,𝑃𝐿)]∼

[𝑓[𝒰(𝑁,𝑄),𝒯(𝑁,𝑄)][𝒰(𝑀,𝑃 ),𝒯(𝑀,𝑃 )]] ↦→ [𝑓[𝒰(𝑁𝐿,𝑄𝐿),𝒯(𝑁𝐿,𝑄𝐿)][𝒰(𝑀𝐿,𝑃𝐿),𝒯(𝑀𝐿,𝑃𝐿)]].

(5.5.1)

Consequently, if W(𝐴𝐿) admits a faithful group functor, so does W(𝐴).

It is not difficult to see that Proposition 5.4.6 may be used to show that ℱ is

well-defined on objects. To understand the morphisms of T(𝐴) under ℱ the following

equivalent condition for the identification of morphisms in Definition 4.2.3 is necessary.

Lemma 5.5.2. Let (𝑁,𝑄) and (𝑁 ′, 𝑄′) be two 𝜏 -rigid pairs which give rise to the

same wide subcategory 𝒲(𝑁,𝑄) = 𝒲(𝑁 ′
,𝑄

′). Similarly, let (𝑀,𝑃 ) ∈ add(𝑁,𝑄) and let

(𝑀 ′, 𝑃 ′) ∈ add(𝑁 ′, 𝑄′) be 𝜏 -rigid pairs such that 𝒲 := 𝒲(𝑀,𝑃 ) = 𝒲(𝑀 ′
,𝑃

′). Then, the

following are equivalent:

(1) {𝒱 ∩𝒲 : 𝒱 ∈ [𝒰(𝑁,𝑄), 𝒯(𝑁,𝑄)]} = {𝒱 ′ ∩𝒲 : 𝒱 ′ ∈ [𝒰(𝑁 ′
,𝑄

′), 𝒯(𝑁 ′
,𝑄

′)]};

(2) 𝒰(𝑁,𝑄) ∩𝒲 = 𝒰(𝑁 ′
,𝑄

′) ∩𝒲 and 𝒯(𝑁,𝑄) ∩𝒲 = 𝒯(𝑁 ′
,𝑄

′) ∩𝒲;

(3) ℬ(𝑁,𝑄)
ℛ ∩𝒲 = ℬ(𝑁 ′

,𝑄
′)

ℛ ∩𝒲 and ℬ(𝑁,𝑄)
ℒ ∩𝒲 = ℬ(𝑁 ′

,𝑄
′)

ℒ ∩𝒲.

Proof. (1)⇐⇒ (2). This is immediate.

(2) =⇒ (3). Let 𝒳 ∈ f-tors𝒲, then is exists a unique (relative) left-finite semibrick̃︀ℬ𝒳
ℒ ∈ fℒ-sbrick𝒲 corresponding to it by [8, Thm. 1.3] and Theorem 2.2.2. By Proposi-

tion 5.4.1 it labels the arrows going out of 𝒳 in Hasse(tors𝒲) and by Theorem 2.2.5,

there exists a unique 𝒴 ∈ [𝒰(𝑁,𝑄), 𝒯(𝑁,𝑄)] ⊆ tors𝐴 such that now 𝒳 = 𝒴 ∩ 𝒲. It fol-

lows that ̃︀ℬ𝒳
ℒ = ℬ𝒴

ℒ ∩ 𝒲, since the intersection with 𝒲 preserves the brick labels by

Proposition 4.2.2. Consequently, since 𝒯(𝑁,𝑄) ∩ 𝒲 = 𝒯(𝑁 ′
,𝑄

′) ∩ 𝒲 ∈ tors𝒲 it follows

that

ℬ(𝑁,𝑄)
ℒ ∩𝒲 = ̃︀ℬ𝒯(𝑁,𝑄)∩𝒲

ℒ = ̃︀ℬ𝒯
(𝑁

′
,𝑄

′)
∩𝒲

ℒ = ℬ(𝑁 ′
,𝑄

′)
ℒ ∩𝒲.
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An entirely analogous argument shows that the equality 𝒰(𝑁,𝑄) ∩ 𝒲 = 𝒰(𝑁 ′
,𝑄

′) ∩ 𝒲

implies ℬ(𝑁,𝑄)
ℛ ∩𝒲 = ℬ(𝑁 ′

,𝑄
′)

ℛ ∩𝒲, as required.

(3) =⇒ (2). Assume now ℬ(𝑁,𝑄)
ℒ ∩𝒲 = ℬ(𝑁 ′

,𝑄
′)

ℒ ∩𝒲. Using the same notation and

reasoning as above, this implies

̃︀ℬ𝒯(𝑁,𝑄)∩𝒲
ℒ = ℬ(𝑁,𝑄)

ℒ ∩𝒲 = ℬ(𝑁 ′
,𝑄

′)
ℒ ∩𝒲 = ̃︀ℬ𝒯

(𝑁
′
,𝑄

′)
∩𝒲

ℒ .

Then it follows directly from [8, Thm. 1.3] that 𝒯(𝑁,𝑄) ∩𝒲 = 𝒯(𝑁 ′
,𝑄

′) ∩𝒲 as required.

Again, an analogous argument shows that ℬ(𝑁,𝑄)
ℛ ∩ 𝒲 = ℬ(𝑁 ′

,𝑄
′)

ℛ ∩ 𝒲 implies that

𝒰(𝑁,𝑄) ∩𝒲 = 𝒰(𝑁 ′
,𝑄

′) ∩𝒲 as required.

The following lemma, in combination with the previous, is important to control the

identification of morphisms when proving Theorem 5.5.1.

Lemma 5.5.3. Let 𝐿 : 𝐾 be a MacLane separable field extension and (𝑀,𝑃 ) be a

𝜏 -rigid pair in mod𝐴. Then the square{︂
ℬ(𝑁,𝑄)

ℒ ∈fℒ-sbrick𝐴
s.t. (𝑁,𝑄)∈[(𝑀−

,𝑃
−),(𝑀+

,𝑃 )]⊆𝜏 -tiltp𝐴

}︂
fℒ-sbrick𝒲(𝑀,𝑃 )

{︂
ℬ(𝑁

′
,𝑄

′)
ℒ ∈fℒ-sbrick𝐴𝐿

s.t. (𝑁 ′
,𝑄

′)∈[(𝑀−
𝐿 ,𝑃

−
𝐿 ),(𝑀+

𝐿 ,𝑃𝐿)]⊆𝜏 -tiltp𝐴𝐿

}︂
fℒ-sbrick𝒲(𝑀𝐿,𝑃𝐿)

−∩𝒲(𝑀,𝑃 )

ind(−⊗𝐾𝐿) ind(−⊗𝐾𝐿)

−∩𝒲(𝑀𝐿,𝑃𝐿)

commutes and the horizontal maps are bijections.

Proof. The vertical maps are well-defined by Proposition 5.3.6 and Lemma 5.4.2. More-

over, the horizontal map given by intersection with𝒲(𝑀,𝑃 ) defines an isomorphism from

Hasse[(𝑀−, 𝑃−), (𝑀+, 𝑃 )] to Hasse(𝜏 -tiltp𝒲(𝑀,𝑃 )) which preserves the brick labelling

by Proposition 4.2.2. As discussed in the proof of Lemma 5.5.2, the horizontal map is

therefore well-defined, since the brick labelling is preserved and left-finite semibricks can

be read off as the labels of arrows going out of a 𝜏 -tilting pair in the Hasse quiver by

Proposition 5.4.1. The same holds for the bottom horizontal map. The horizontal maps

are bijections because the intervals of 𝜏 -tilting pairs are in bijection by Theorem 2.2.5

and basic 𝜏 -tilting pairs are in bijection with left-finite semibricks by [8, Thm. 1.3].

Let 𝑆 ∈ ℬ(𝑁,𝑄)
ℒ . Then 𝑆 ∈ 𝒲(𝑀,𝑃 ) if and only if 𝑆𝐿 ∈ 𝒲(𝑀𝐿,𝑃𝐿) by Lemma 5.2.4.

In particular, this is the case if and only if every indecomposable direct summand

𝑆′ ∈ add(𝑆𝐿) is contained in 𝒲(𝑀𝐿,𝑃𝐿). Therefore, the square commutes.
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Now all preliminary results have been collected, and this section is concluded by

proving Theorem 5.5.1.

Proof of Theorem 5.5.1. It is shown in Proposition 5.3.6 that if [𝒰(𝑀,𝑃 ), 𝒯(𝑀,𝑃 )] is a

𝜏 -perpendicular interval of tors𝐴, then [𝒰(𝑀𝐿,𝑃𝐿), 𝒯(𝑀𝐿,𝑃𝐿)] is a 𝜏 -perpendicular in-

terval of tors𝐴𝐿. Moreover, consider two 𝜏 -perpendicular intervals [𝒰(𝑀,𝑃 ), 𝒯(𝑀,𝑃 )]

and [𝒰(𝑀 ′
,𝑃

′), 𝒯(𝑀 ′
,𝑃

′)] of tors𝐴 such that 𝒲(𝑀,𝑃 ) = 𝒲(𝑀 ′
,𝑃

′) = Filt𝐴{𝒮} for some

𝒮 ∈ sbrick𝐴. It follows that

𝒲(𝑀𝐿,𝑃𝐿) = Filt𝐴𝐿
{𝑆𝐿} =𝒲((𝑀 ′)𝐿,(𝑃

′)𝐿)

by Proposition 5.4.6. Therefore, if [𝒰(𝑀,𝑃 ), 𝒯(𝑀,𝑃 )]∼ = [𝒰(𝑀 ′
,𝑃

′), 𝒯(𝑀 ′
,𝑃

′)]∼ in T(𝐴), then

[𝒰(𝑀𝐿,𝑃𝐿), 𝒯(𝑀𝐿,𝑃𝐿)]∼ = [𝒰((𝑀 ′)𝐿,(𝑃
′)𝐿), 𝒯((𝑀 ′)𝐿,(𝑃

′)𝐿)]∼ in T(𝐴𝐿). Thus ℱ is well-defined

on objects. To investigate morphisms, consider two 𝜏 -perpendicular intervals of tors𝐴

such that [𝒰(𝑁,𝑄), 𝒯(𝑁,𝑄)] ⊆ [𝒰(𝑀,𝑃 ), 𝒯(𝑀,𝑃 )]. Then

[𝒰(𝑁𝐿,𝑄𝐿), 𝒯(𝑁𝐿,𝑄𝐿)] ⊆ [𝒰(𝑀𝐿,𝑃𝐿), 𝒯(𝑀𝐿,𝑃𝐿)] ⊆ tors𝐴𝐿,

follows from the fact that − ⊗𝐾 𝐿 : 𝜏 -tiltp𝐴 → 𝜏 -tiltp𝐴𝐿 preserves the partial order

of 𝜏 -perpendicular intervals by Lemma 5.2.8.

Now, consider four 𝜏 -perpendicular intervals [𝒰(𝑁,𝑄), 𝒯(𝑁,𝑄)] ⊆ [𝒰(𝑀,𝑃 ), 𝒯(𝑀,𝑃 )] and

[𝒰(𝑁 ′
,𝑄

′), 𝒯(𝑁 ′
,𝑄

′)] ⊆ [𝒰(𝑀 ′
,𝑃

′), 𝒯(𝑀 ′
,𝑃

′)] of tors𝐴 whose corresponding wide subcategories

are such that Filt𝐴{𝒮} =𝒲(𝑀,𝑃 ) =𝒲(𝑀 ′
,𝑃

′) for some 𝒮 ∈ sbrick𝐴 and moreover such

that 𝒲(𝑁,𝑄) =𝒲(𝑁 ′
,𝑄

′) and{︀
𝒱 ∩𝒲(𝑀,𝑃 ) : 𝒱 ∈ [𝒰(𝑁,𝑄), 𝒯(𝑁,𝑄)]

}︀
= {𝒱 ′ ∩𝒲(𝑀 ′

,𝑃
′) : 𝒱 ′ ∈ [𝒰(𝑁 ′

,𝑄
′), 𝒯(𝑁 ′

,𝑄
′)]}

as subsets of tors(Filt𝐴{𝒮}). Then there is a chain of implications

𝒯(𝑁,𝑄) ∩𝒲(𝑀,𝑃 ) = 𝒯(𝑁 ′
,𝑄

′) ∩𝒲(𝑀 ′
,𝑃

′)

⇒ ℬ(𝑁,𝑄)
ℒ ∩ Filt𝐴{𝒮} = ℬ(𝑁 ′

,𝑄
′)

ℒ ∩ Filt𝐴{𝒮} (by Lemma 5.5.2)

⇒ ind((ℬ(𝑁,𝑄)
ℒ ∩ Filt𝐴{𝒮})𝐿) = ind((ℬ(𝑁 ′

,𝑄
′)

ℒ ∩ Filt𝐴{𝒮})𝐿)

⇒ ℬ(𝑁𝐿,𝑄𝐿)
ℒ ∩ Filt𝐴𝐿

{𝒮𝐿} = ℬ((𝑁 ′)𝐿,(𝑄
′)𝐿)

ℒ ∩ Filt𝐴𝐿
{𝒮𝐿} (by Lemma 5.5.3)

⇒ 𝒯(𝑁𝐿,𝑄𝐿) ∩ Filt𝐴𝐿
{𝒮𝐿} = 𝒯((𝑁 ′)𝐿,(𝑄

′)𝐿) ∩ Filt𝐴𝐿
{𝒮𝐿} (by Lemma 5.5.2)

⇒ 𝒯(𝑁𝐿,𝑄𝐿) ∩𝒲(𝑀𝐿,𝑃𝐿) = 𝒯((𝑁 ′)𝐿,(𝑄
′)𝐿) ∩𝒲((𝑀 ′)𝐿,(𝑃

′)𝐿) (by Proposition 5.4.6).
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An analogous argument shows that

𝒰(𝑁,𝑄) ∩𝒲(𝑀,𝑃 ) = 𝒰(𝑁 ′
,𝑄

′) ∩𝒲(𝑀 ′
,𝑃

′)

⇒ 𝒰(𝑁𝐿,𝑄𝐿) ∩𝒲(𝑀𝐿,𝑃𝐿) = 𝒰((𝑁 ′)𝐿,(𝑄
′)𝐿) ∩𝒲((𝑀 ′)𝐿,(𝑃

′)𝐿).

Therefore, Lemma 5.5.2 yields that{︀
𝒱 ∩𝒲(𝑀𝐿,𝑃𝐿) : 𝒱 ∈ 𝒰(𝑁𝐿,𝑄𝐿), 𝒯(𝑁𝐿,𝑄𝐿)]

}︀
=

{︁
𝒱 ′ ∩𝒲((𝑀 ′)𝐿,(𝑃

′)𝐿) : 𝒱 ′ ∈ [𝒰((𝑁 ′)𝐿,(𝑄
′)𝐿), 𝒯((𝑁 ′)𝐿,(𝑄

′)𝐿)]
}︁

in tors(Filt𝐴𝐿
{𝒮𝐿}). In other words, identification of morphisms is preserved. To inves-

tigate the composition of morphisms, let

[𝑓[𝒰
(𝑁

′
,𝑄

′)
,𝒯

(𝑁
′
,𝑄

′)
][𝒰

(𝑁
′′

,𝑄
′′)
,𝒯

(𝑁
′′

,𝑄
′′)

]] ∘ [𝑓[𝒰(𝑀,𝑃 ),𝒯(𝑀,𝑃 )][𝒰
(𝑀

′
,𝑃

′)
,𝒯

(𝑀
′
,𝑃

′)
]]

be two composable morphisms in T(𝐴), that is, such that their composition is nonzero.

Then by Lemma 4.2.6 there exists an interval [𝒰(𝑀 ′′
,𝑃

′′), 𝒯(𝑀 ′′
,𝑃

′′)] ⊆ [𝒰(𝑀 ′
,𝑃

′), 𝒯(𝑀 ′
,𝑃

′)]

such that [𝑓[𝒰
(𝑁

′
,𝑄

′)
,𝒯

(𝑁
′
,𝑄

′)
][𝒰

(𝑁
′′

,𝑄
′′)
,𝒯

(𝑁
′′

,𝑄
′′)

]] = [𝑓[𝒰
(𝑀

′
,𝑃

′)
,𝒯

(𝑀
′
,𝑃

′)
][𝒰

(𝑀
′′

,𝑃
′′)
,𝒯

(𝑀
′′

,𝑃
′′)

]] so

that their composition is given by

[𝑓[𝒰(𝑀,𝑃 ),𝒯(𝑀,𝑃 )][𝒰
(𝑀

′′
,𝑃

′′)
,𝒯

(𝑀
′′

,𝑃
′′)

]].

It is immediate that

ℱ([𝑓[𝒰
(𝑀

′
,𝑃

′)
,𝒯

(𝑀
′
,𝑃

′)
][𝒰

(𝑀
′′

,𝑃
′′)
,𝒯

(𝑀
′′

,𝑃
′′)

]]) ∘ ℱ([𝑓[𝒰(𝑀,𝑃 ),𝒯(𝑀,𝑃 )][𝒰
(𝑀

′
,𝑃

′)
,𝒯

(𝑀
′
,𝑃

′)
]])

= [𝑓[𝒰
((𝑀

′)𝐿,(𝑃
′)𝐿)

,𝒯
((𝑀

′)𝐿,(𝑃
′)𝐿)

][𝒰
((𝑀

′′)𝐿,(𝑃
′′)𝐿)

,𝒯
((𝑀

′′)𝐿,(𝑃
′′)𝐿)

]]

∘ [𝑓[𝒰(𝑀𝐿,𝑃𝐿),𝒯(𝑀𝐿,𝑃𝐿)][𝒰
((𝑀

′)𝐿,(𝑃
′)𝐿)

,𝒯
((𝑀

′)𝐿,(𝑃
′)𝐿)

]]

= [𝑓[𝒰(𝑀𝐿,𝑃𝐿),𝒯(𝑀𝐿,𝑃𝐿)][𝒰
((𝑀

′′)𝐿,(𝑃
′′)𝐿)

,𝒯
((𝑀

′′)𝐿,(𝑃
′′)𝐿)

]]

= ℱ([𝑓[𝒰(𝑀,𝑃 ),𝒯(𝑀,𝑃 )][𝒰
(𝑀

′′
,𝑃

′′)
,𝒯

(𝑀
′′

,𝑃
′′)

]]).

Thus ℱ preserves composition of morphisms. It is immediate that ℱ preserves identity

morphisms. Therefore ℱ : T(𝐴)→ T(𝐴𝐿) is a well-defined functor. Finally, to see that

ℱ is faithful, take two distinct morphisms

[𝑓[𝒰(𝑀,𝑃 ),𝒯(𝑀,𝑃 )][𝒰(𝑁,𝑄),𝒯(𝑁,𝑄)]],[𝑓[𝒰(𝑀,𝑃 ),𝒯(𝑀,𝑃 )][𝒰
(𝑁

′
,𝑄

′)
,𝒯

(𝑁
′
,𝑄

′)
]]

∈ HomT(𝐴)([𝒰(𝑀,𝑃 ), 𝒯(𝑀,𝑃 )]∼, [𝒰(𝑁,𝑄), 𝒯(𝑁,𝑄)]∼).
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By Lemma 4.2.6, see also Corollary 3.1.6, they may be taken to be represented by two

morphisms in itv(tors𝐴) with the same domain without loss of generality. Assume for

a contradiction that

[𝑓[𝒰(𝑀𝐿,𝑃𝐿),𝒯(𝑀𝐿,𝑃𝐿)][𝒰(𝑁𝐿,𝑄𝐿),𝒯(𝑁𝐿,𝑄𝐿)]] = [𝑓[𝒰(𝑀𝐿,𝑃𝐿),𝒯(𝑀𝐿,𝑃𝐿)][𝒰
((𝑁

′)𝐿,(𝑄
′)𝐿)

,𝒯
((𝑁

′)𝐿,(𝑄
′)𝐿)

]]

in T(𝐴𝐿). This would mean that the intervals

[𝒰(𝑁𝐿,𝑄𝐿), 𝒯(𝑁𝐿,𝑄𝐿)] and [𝒰((𝑁 ′)𝐿,(𝑄
′)𝐿), 𝒯((𝑁 ′)𝐿,(𝑄

′)𝐿)]

coincide since their intersections with 𝒲(𝑀𝐿,𝑃𝐿) coincide and the intervals

tors(𝒲(𝑀𝐿,𝑃𝐿)) and [𝒰(𝑀𝐿,𝑃𝐿), 𝒯(𝑀𝐿,𝑃𝐿)] ⊆ tors𝐴𝐿 are in bijection by Theorem 2.2.5.

Using Lemma 5.3.1 and Lemma 5.3.5, this implies that

𝒰(𝑁𝐿,𝑄𝐿) = 𝒰((𝑁 ′)𝐿,(𝑄
′)𝐿) and 𝒯(𝑁𝐿,𝑄𝐿) = 𝒯((𝑁 ′)𝐿,(𝑄

′)𝐿)

⇒ ((𝑁𝐿)−, (𝑄𝐿)−) = ((((𝑁 ′)𝐿)−, (𝑄′)𝐿)−) and ((𝑁𝐿)+, 𝑄𝐿) = (((𝑁 ′)𝐿)+, (𝑄′)𝐿)

⇒ ((𝑁−)𝐿, (𝑄−)𝐿) = (((𝑁 ′)−)𝐿, ((𝑄′)−)𝐿) and ((𝑁+)𝐿, 𝑄𝐿) = (((𝑁 ′)+)𝐿, (𝑄′)𝐿).

Since −⊗𝐾 𝐿 defines an injective map of 𝜏 -tilting pairs by Proposition 5.2.9 it follows

that (𝑁−, 𝑄−) = ((𝑁 ′)−, (𝑄′)−) and (𝑁+, 𝑄) = ((𝑁 ′)+, 𝑄′). Since two distinct distinct

𝜏 -rigid pairs cannot have both the same Bongartz completion and the same co-Bongartz

completion this yields (𝑁,𝑄) = (𝑁 ′, 𝑄′). However, this is a contradiction to the assump-

tion that the original morphisms are distinct. As a consequence the functor ℱ is faithful

as required.

Corollary 5.5.4. Let 𝐿 : 𝐾 be a MacLane separable field extension. If T(𝐴𝐿) admits

a faithful group functor, then so does T(𝐴).

Proof. This is an immediate consequence of Theorem 5.5.1 since the composition of

faithful functors is again a faithful functor.

5.6 Applications and examples

To conclude this chapter and this thesis, the 𝜏 -cluster morphism categories of a new

class of algebras are shown to admit faithful group functors. This partially extends the
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two classes of algebras admitting faithful group functors listed in Example 2.4.5, see

also [106, Thm. 3.7] and [92, Thm. 5.9]. To give a specific example, it is necessary to

first introduce the notion of species, a generalisation of quivers, which are designed to

encode information about field extensions.

Definition 5.6.1. Let 𝐾 be any field. A 𝐾-species S = (𝑄S, 𝐷𝑖, 𝑋𝛼) consists of the

data of:

• A quiver 𝑄S = (𝑄S
0, 𝑄

S
1);

• A division 𝐾-algebra 𝐷𝑖 for each 𝑖 ∈ 𝑄S
0;

• A 𝐷𝑖-𝐷𝑗-bimodule 𝑋𝛼 for each 𝛼 : 𝑖→ 𝑗 in 𝑄S
1.

If 𝐾 algebraically closed, then every division 𝐾-algebra is isomorphic to 𝐾 itself.

Choosing every division 𝐾-algebra in the definition of a 𝐾-species to be 𝐾 itself and

choosing moreover every 𝐾-𝐾-bimodule to be 𝐾 as well, then the resulting 𝐾-species

is simply a quiver. The tensor path algebra of a 𝐾-species S = (𝑄S, 𝐷𝑖, 𝑋𝛼) is defined

as the 𝐾-algebra

𝐾S :=
⨁︁
ℓ≥0

𝑋⊗ℓ, where 𝑋⊗0 =
⨁︁
𝑖∈𝑄S

0

𝐷𝑖, 𝑋 =
⨁︁
𝛼∈𝑄S

1

𝑋𝛼.

The tensor products in this definition are taken over 𝑋⊗0, with the bimodules

{𝑋𝛼}𝛼∈𝑄S
1

and 𝑋 becoming 𝑋⊗0-𝑋⊗0-bimodules in the standard way. For algebras over

non-algebraically closed fields, the endomorphism rings of bricks may not all be isomor-

phic to the ground field. The following definition and subsequent theorem illustrate the

usefulness of particularly well-behaved classes of bricks.

Definition 5.6.2. Let 𝐴 be a finite-dimensional 𝐾-algebra. A brick 𝐵 ∈ brick𝐴 is

called a stone if Ext1
𝐴(𝐵,𝐵) = 0. Moreover, it is called a 𝐾-stone if it additionally

satisfies End𝐴(𝐵) ∼= 𝐾. If every brick of 𝐴 is a (𝐾)-stone, then the algebra 𝐴 is called

a (𝐾)-stone algebra.

If the division ring 𝐷𝑖 is assigned to a vertex 𝑖 ∈ 𝑄S
0 of a 𝐾-species, then the

corresponding simple representation/module is a brick whose endomorphism ring is

isomorphic to 𝐷𝑖. In the remainder of this section the scope of the following result is

expanded using the theory of base field extensions and Theorem 5.5.1.
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Theorem 5.6.3. [92, Thm. 5.9] Let 𝐾 be a finite field and let 𝐴 be 𝜏 -tilting finite 𝐾-

algebra which admits Hall polynomials. Assume that 𝐴 is such that for every semibrick

{𝑆, 𝑇} ∈ sbrick𝐴 one of the following holds:

• 𝑆 and 𝑇 are both 𝐾-stones;

• Ext1
𝐴(𝑆, 𝑇 ) = 0 = Ext1

𝐴(𝑇, 𝑆).

Then there exists a faithful group functor T(𝐴)→ 𝐺(𝐴).

Remark 5.6.4. While the result [92, Thm. 5.9] is stated in greater generality in the

original text, the adaptation of the result as above is necessary to guarantee that the

result holds. In the original text the existence of Hall polynomials [160, 161] is assumed.

However, this notion is generally only defined for algebras over finite fields, and the

existence of Hall polynomials a highly nontrivial property, known to hold only for few

classes of algebras, see [88, 99, 147, 151, 160] and the references therein.

Using Corollary 5.5.4, the result Theorem 5.6.3 may be extended to yield new families

of algebras for which the 𝜏 -cluster morphism category admits a faithful group functor.

Theorem 5.6.5. Let 𝐾 be a perfect field and let 𝐴 be a quotient of a representation

finite and hereditary 𝐾-algebra. Then T(𝐴) admits a faithful group functor.

Proof. Since 𝐾 is a perfect field, the result [26, Cor. 4.1.11] states that any 𝐾-algebra

𝐴 is of the form 𝐾S/𝐼, where S is a 𝐾-species known as the Ext-𝐾-species of 𝐴 and

𝐼 is an ideal of 𝐾S. By assumption, it is possible to choose 𝐴 ∼= 𝐾S/𝐼 with 𝐾S a

representation finite and hereditary algebra. It then follows from the isomorphisms

𝐴𝐾
∼= (𝐾S/𝐼)𝐾 ∼= (𝐾S)𝐾/(𝐼𝐾),

that 𝐴𝐾 is isomorphic to a quotient of a representation finite and hereditary algebra.

That is, because 𝐾S is representation finite, so is (𝐾S)𝐾 by [116, Thm. 3.2], and because

𝐾S is hereditary, so is (𝐾S)𝐾 by [116, Thm. 2.4].

As a quotient of a representation finite hereditary 𝐾-algebra, it is possible to write

mod𝐴𝐾 ∼= mod(𝐾𝑄/⟨𝑃 ⟩) for some quiver 𝑄 of Dynkin type ADE and a set of mono-

mials 𝑃 , generating an admissible ideal. As a consequence of Gabriel’s Theorem [74],

finite-dimensional 𝐾𝑄-modules are in bijection with finite-dimensional F2𝑄-modules.
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It then follows from [108, Thm. 4.3], that both tors(F2𝑄) and tors(𝐾𝑄) are isomorphic

to a Cambrian lattice of type 𝑄, as introduced in [154]. Moreover, since the ideal ⟨𝑃 ⟩

of 𝐾𝑄 is generated by monomials, it makes sense to also consider F2𝑄/⟨𝑃 ⟩.

The lattice congruence on tors(𝐾𝑄) induced by ⟨𝑃 ⟩ is determined by the bricks the

ideal annihilates, by Theorem 4.4.1. The bijection between indecomposable𝐾𝑄-modules

and indecomposable F2𝑄-modules yields directly that tors(𝐾𝑄/⟨𝑃 ⟩) ∼= tors(F2𝑄/⟨𝑃 ⟩).

The corresponding lattice congruence on the Cambrian lattice of type 𝑄 may be de-

scribed using the join-irreducible elements corresponding to the annihilated bricks. It

follows from Theorem 4.3.7 that there is are equivalences of categories

T(𝐴𝐾) ∼= T(𝐾𝑄/⟨𝑃 ⟩) ∼= T(F2𝑄/⟨𝑃 ⟩). (5.6.1)

To conclude, it remains to show that T(F2𝑄/⟨𝑃 ⟩) admits a faithful group functor. It

is well-known that quotients of representation finite hereditary algebras are directed, so

that F2/⟨𝑃 ⟩ is a directed algebra. Hence, the algebra F2𝑄/⟨𝑃 ⟩ admits Hall polynomial

by [160, Thm. 1]. Similarly, since F2𝑄/⟨𝑃 ⟩ is the quotient of a representation finite

hereditary path algebra, it is an F2-stone algebra. Thus, T(F2𝑄/⟨𝑃 ⟩) admits a faithful

group functor by Theorem 5.6.3, and so does T(𝐴𝐾) by Eq. (5.6.1). Consequently, T(𝐴)

admits a faithful group functor by Corollary 5.5.4.

Example 5.6.6. Let 𝐾 = R and let S be the following 𝐾-species

R R R CRRR RRR RCC

of Dynkin type 𝐶4. Let 𝐴 be the radical square zero quotient of 𝐾S, so in the previous

notation 𝐴 ∼= 𝐾S/⟨𝑋⊗2⟩. Thus, T(𝐴) admits a faithful group functor by Theorem 5.6.5.

It can be checked, that 𝐴C is isomorphic to the radical square zero quotient of the path

algebra

C

⎛⎜⎜⎝ ∙
∙ ∙ ∙

∙

⎞⎟⎟⎠
of Dynkin type 𝐷5.

Similar types of (un)foldings of quivers and species and their associated representa-

tions have been studied in the literature, see [58, 59, 100, 178].
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