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Abstract

Let K be a field. The central object of this thesis is the 7-cluster morphism category
QW (A) of a finite-dimensional K-algebra A. This category encodes the information of
all possible 7-tilting reductions in mod A and encompasses many objects considered in
representation theory, for example (semi-)bricks, (7-)tilting modules and (7-)exceptional
sequences. When A is a hereditary algebra, the category 203(A) is well-understood and
its classifying space B2J(A) is a K(m, 1) space in all representation finite and some
tame cases. By definition, this means that the fundamental group is the only nontrivial
homotopy group. This is insightful, because the fundamental group of this space, known
as the picture group, is closely connected to maximal green sequences, a central object
in the theory of cluster algebras.

The guiding question of this thesis is based on the conjecture that the classifying
space of the T-cluster morphism category is a K (m,1) space for all 7-tilting finite al-
gebras. It is known that the classifying space of 20(A) is a cube complex. Thus, the
conditions developed by Gromov for cube complexes to be nonpositively curved may
be lifted to three conditions which together imply that B2J(A) is a K (m, 1) space. The
focus of this thesis lies on one of these conditions: the existence of a faithful functor from
2(A) to a group considered as a groupoid with one object. In fact, given this condition
B2 (A) is nonpositively curved if and only if it satisfies the other two conditions.

Such a faithful functor to a group is conjectured to exist for all finite-dimensional
algebras which are 7-tilting finite. However, few families of algebras satisfying this condi-
tion have been found so far. The first part of this thesis builds on a recently introduced
geometric viewpoint of 2J(A) by Schroll-Tattar—Treffinger—Williams. This geometric

approach is developed further to obtain a new family of algebras admitting faithful



functors to groups. This is achieved by relaxing a condition in the geometric definition.
In this way, a category is defined for any simplicial polyhedral fan with an admissible
partition, so that the collection of these categories, for a given fan, forms a lattice. For
the g-vector fan of an algebra A, the category 20(A) is an element of this lattice. If the
g-vector fan of A is a finite hyperplane arrangement, it is shown that 20(A) admits a
faithful functor to a group by using the theory of hyperplane arrangements in convex
geometry.

In the second part of this thesis, a lattice theoretic approach to 20(A) is introduced.
As a first step, the T-cluster morphism category is defined using the lattice of torsion
classes of mod A. Whenever A is 7-tilting finite, this definition is purely combinatorial,
so that the lattice of torsion classes determines 20(A) up to equivalence. Moreover, the
lattice of torsion classes of a 7-tilting finite algebra is isomorphic to that of infinitely
many others. Thus, this result extends the families of algebras whose 7-cluster morphism
categories admit faithful functors to groups. Let I be an ideal of A. The lattice theoretic
approach provides a framework for constructing a functor F; : 20(A) — W(A/I) and
various properties of this functor are investigated. In particular, if A is 7-tilting finite,
the functor is a regular epimorphism in the category of small categories.

The final chapter contains another application of the lattice theoretic approach. Let
L : K be a MacLane separable field extension. After further developing the behaviour of
7-tilting theory under base field extension, a faithful functor F : 2(A) — W(A® L) is
constructed using lattice theory. The existence of F leads to the discovery of new families
of algebras whose 7-cluster morphism categories admit faithful functors to groups. Thus,
this thesis contributes substantially to understanding the relationship between 7-cluster
morphism categories of different algebras as well as to answering the question of when

their classifying spaces are K (m, 1) spaces.



/Zusammenfassung

Es sei K ein Korper. Das zentrale Objekt dieser Dissertation ist die 7-Clustermorphis-
muskategorie 20(A) einer endlich-dimensionalen K-Algebra A. Diese Kategorie enthélt
die Information aller méglichen 7-Kippreduktionen in mod A und umfasst aulerdem
viele Objekte der Darstellungstheorie, zum Beispiel (Halb-)Ziegel, (7-)Kippmoduln und
(7-)exzeptionelle Folgen. Wenn A eine erbliche Algebra ist, dann ist 20(A) gut verstan-
den und der klassifizierende Raum B2J(A) is in allen darstellungsendlichen und manchen
zahmen Féllen ein K (7, 1)-Raum. Per Definition bedeutet das, dass die einzige nicht-
triviale Homotopiegruppe die Fundamentalgruppe ist. Das ist aufschlussreich, weil die
Fundamentalgruppe, die auch als Bildgruppe bekannt ist, mit maximalen griinen Folgen
zusammenhéngt, welche zentrale Objekte in der Clustertheorie sind.

Die Leitfrage dieser Dissertation beruht auf der Vermutung, dass der klassifzierende
Raum der 7-Clustermorphismuskategorie ein K (7, 1)-Raum fiir alle 7-kippendlichen Al-
gebren ist. Der klassifizierende Raum B (A) ist ein kubischer Komplex. Deshalb kénnen
die von Gromov entwickelten Bedingungen, an einen kubischen Komplex nichtpositiv
gekriimmt zu sein, benutzt werden, um drei Bedingungen zu geben, die zusammen impli-
zieren, dass BQJ(A) ein K (m,1)-Raum ist. Der Fokus dieser Dissertation liegt auf einer
dieser Bedingungen: der Existenz eines treuen Funktors von 20(A) zu einer Gruppe, die
als Gruppoid mit einem Objekt betrachtet wird. Unter dieser Voraussetzung ist B2J(A)
genau dann nichtpositiv gekriimmt wenn die beiden anderen Bedingungen erfiillt sind.

Die Existenz eines solchen treuen Funktors wird fiir alle endlich-dimensionalen Alge-
bren vermutet, welche 7-kippendlich sind. Bisher sind nur wenige Klassen von Algebren,
die diese Bedingung erfiillen, bekannt. Der erste Teil dieser Dissertation baut auf einem

kiirzlich eingefiihrten geometrischen Ansatz von Schroll-Tattar—Treffinger—Williams auf.



Vi

Diese geometrische Herangehensweise wird weiterentwickelt, um eine neue Familie von
Algebren, deren 7-Clustermorphismuskategorien treue Funktoren zu einer Gruppe zu-
lassen, zu finden. Zu diesem Zweck wird eine Bedingung der geometrischen Definition
gelockert. Dadurch wird fiir jeden glatten, polyedrischen Facher mit einer zulédssigen
Partition eine Kategorie definiert, sodass die Sammlung dieser Kategorien eines Fé-
chers einen Verband formt. Fiir den Facher der g-Vektoren einer Algebra, enthélt dieser
Verband die Kategorie 20(A). Falls der Facher der g-Vektoren von A eine endliche An-
ordnung von Hypereben ist, wird mit Hilfe der Theorie der Hyperebenenanordnungen
ein treuer Funktor von 20(A) zu einer Gruppe konstruiert.

Der zweite Teil dieser Dissertation fiihrt einen verbandstheoretischen Ansatz ein.
Als erster Schritt wird die 7-Clustermorphismuskategorie mit Hilfe des Verbands der
Torsionsklassen in mod A definiert. Wenn A eine 7-kippendliche Algebra ist, ist diese De-
finition génzlich kombinatorisch, sodass der Verband der Torsionsklassen die Kategorie
20(A) bis auf Aquivalenz bestimmt. AuBerdem ist der Verband der Torsionsklassen jeder
7-kippendlichen Algebra isomorph zu unendlich vielen solcher Verbédnde anderer Alge-
bren. Dadurch erweitert dieses Ergebnis die derzeit bekannten Familien von Algebren,
deren 7-Clustermorphismuskategorien treue Funktoren zu Gruppen zulassen. Dariiber
hinaus sei I ein Ideal von A. Die verbandstheoretische Herangehensweise und die Theorie
der Verbandskongruenzen ermdéglichen es, einen Funktor F; : 20(A) — 20(A/I) zu kon-
struieren und es werden einige Eigenschaften dieses Funktors untersucht. Insbesondere,
falls A eine 7-kippendliche Algebra ist, ist dieser Funktor ein regularer Epimorphismus
in der Kategorie der kleinen Kategorien.

Das letzte Kapitel behandelt eine weitere Anwendung des verbandstheoretischen
Ansatzes. Es sei L : K eine MacLane separable Korpererweiterung. Nachdem das Ver-
halten der 7-Kipptheorie unter Kérpererweiterungen weiter entwickelt wurde, wird ein
treuer Funktor F : 20(A4) — W(A®g L) konstruiert. Die Existenz des Funktors F fiithrt
zur Entdeckung weiterer Familien von Algebren, deren 7-Clustermorphismuskategorien
treue Funktoren zu Gruppen zulassen. Zusammenfassend tragt diese Dissertation so-
wohl zum Versténdnis des Verhéltnisses zwischen 7-Clustermorphismuskategorien un-
terschiedlicher Algebren als auch zur Beantwortung der Frage, wann deren klassifizie-

renden Rdume K (7, 1)-Réume sind, bei.
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Chapter 1

Introduction

In the representation theory of finite-dimensional associative algebras, a central role
is played by the class of hereditary algebras. The classification of representation finite
hereditary algebras (over algebraically closed fields) as path algebras of quivers whose
underlying graph is a Dynkin diagram of the form A,,, D,,, Eg, E; or Eg establishes
a strong relationship between finite-dimensional hereditary algebras, quantum groups
and Lie algebras . In fact, indecomposable modules over these algebras correspond
bijectively to positive roots of the associated root systems. This connection was devel-
oped further to relate the Hall algebra of the hereditary algebra with the universal
enveloping algebra of the associated Lie algebra .

Moreover, the theory of hereditary algebras has been applied in to pro-
vide important insights into cluster algebras . Since their introduction, the combina-
torial structure underlying cluster algebras has been discovered in various mathematical
objects, including some objects arising in theoretical physics . Conversely,
this combinatorial structure has been categorified using representations of hereditary
algebras, resulting in cluster categories . In a cluster category, the role held by
mutable seeds in a cluster algebra is taken by mutable cluster tilting objects. These
objects are in bijection with many important objects in representation theory, including
functorially finite torsion classes and wide, that is, exactly-embedded abelian and
extension-closed, subcategories of the module category .

Combinatorially, cluster tilting objects are in bijection with non-crossing partitions
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. Other than being of inherent algebraic combinatorial interest, non-crossing
partitions arise naturally in the theory of free probability and even in idealised
models coming from molecular biology .

Additionally, cluster tilting objects are intimately related to exceptional sequences
. In fact, there exists an explicit map between these two classes of objects.
Generally, this map is neither injective nor surjective, but an extension of the notion to
signed exceptional sequences establishes an explicit bijection between these sequences
and ordered cluster tilting objects . The study of (unsigned) exceptional sequences
dates back 30 years and was initiated in the setting of triangulated categories
and shortly after in abelian categories . Exceptional sequences can be
used to gain a better understanding of derived categories and they are closely
connected to stratifying systems .

Direct summands of cluster tilting objects, called partial cluster tilting objects, are
equally important. Considering Hom-Ext-orthogonal modules to the modules underlying
partial cluster tilting objects yields so-called perpendicular subcategories of the module
category. Perpendicular subcategories had previously been studied independently and
various of their applications can be found in . Perpendicular subcategories
give rise to various reduction techniques, for example, applicable to the classification
of representations of tame hereditary algebras via a reduction of the problem to the
Kronecker quiver.

Many of the notions discussed above are united in the cluster morphism category
. The objects of this category are functorially finite wide subcategories, which are in
bijection with non-crossing partitions and functorially finite torsion classes for hereditary
algebras . The morphisms of this category are indexed by partial cluster tilting
objects, that is, a morphism [T'] : W, — W, is given by a partial cluster tilting object T'
of the cluster category satisfying TN W, = W,, where T denotes the perpendicular
subcategory corresponding to T'.

Associated to any category is its classifying space . The classifying space of
the cluster morphism category of a representation finite hereditary algebra A is a cube

complex [106 and homeomorphic to the picture space of A as defined in [105] [107].

In fact, it is a K(m, 1) space whose fundamental group is called the picture group.
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The picture group G(K Zn) of the linearly oriented quiver of type A,, was originally
defined as the “Stasheff group” in 1999 . The name “Stasheff group” comes from
the fact that a K (G(K Zn), 1) space can be obtained as a quotient space of the Stasheff
associahedron. Its connection to representation theory follows from the observation that
the partially ordered set of tilting modules of K Xn corresponds to the 1-skeleton of the
Stasheff associahedron [44].

For hereditary algebras of finite type, the picture group contains a “Coxeter element”.
In the defining presentation of the group, expressions for the Coxeter element, which
do not contain inverse generators, are in bijection with maximal green sequences .
These green sequences originate in the study of cluster algebras and arise in the
context of Donaldson-Thomas invariants and BPS states in mathematical physics .

More generally, if the hereditary algebra is of finite type or of certain tame types, the
classifying space exhibits the stronger property of being a locally CAT(0) cube complex
. This may be proved using the conditions developed in the celebrated work for
cube complexes to be (locally) CAT(0), which have been translated into the language of
category theory . In this case, the universal covering space of the classifying space
is a CAT(0) cube complex. Since the picture group is isomorphic to the group of deck
transformations of the universal cover, it acts on this CAT(0) cube complex [95]. Finitely
generated groups with similarly well-behaved actions on CAT(0) cube complexes are
known as cubulated (or CAT(0)) groups and have received significant attention in
the literature because of their special properties.

In conclusion, the cluster morphism category demonstrates the interlinked structure
of many notions within representation theory and their connections to other mathemat-
ical areas via hereditary algebras. The aim of this thesis is to expand the understanding
of these concepts and relationships beyond the setting of hereditary algebras. Appro-
priate generalisations of perpendicular subcategories , exceptional sequences ,
picture groups and cluster morphisms categories have already been established
and provide the foundation for the work herein. The primary focus lies on the question of
whether (generalised) cluster morphism categories are CAT(0) and thus K (7, 1) spaces
for the (generalised) picture group. One crucial part of a sufficient condition for this to

be the case is the existence of a faithful functor from the (generalised) cluster morphism
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category to the (generalised) picture group, considered as a groupoid with one object.
The main contribution of the present thesis lies in the (further) development of two new
approaches for constructing such a faithful functor. One approach is of convex geometric
nature and one approach is of lattice theoretic nature. Along the way, other new re-
sults about (generalised) exceptional sequences and the (generalised) cluster morphism
category which are of independent interest as well as new structural results relating

(generalised) cluster morphism categories of different algebras are established.

1.1 Generalisations using 7-tilting theory

One decade ago, the combinatorial structure of cluster tilting objects in cluster cate-
gories was transferred to module categories of arbitrary finite-dimensional algebras. The
central objects of the newly introduced 7-tilting theory are (support) 7-tilting modules,
which generalise the mutation behaviour of cluster tilting objects [3]. To understand this
relationship, fix a cluster tilting object in a cluster category and consider its endomor-
phism algebra. Then, there is a bijection between cluster tilting objects in the cluster
category and the support 7-tilting modules over the endomorphism algebra which pre-
serves and reflects the mutation of both structures [3].

The name-giving “7” in 7-tilting theory denotes the Auslander—Reiten translation,
which is the central notion of Auslander—Reiten theory as initiated in . This theory
utilises almost split exact sequences to gain a better understanding of module categories.
The importance of the relationship of a module with its Auslander—Reiten translation
has been demonstrated repeatedly, see for example . Restricting to the class of
hereditary algebras, 7-tilting modules coincide with tilting modules , which were
introduced to generalise reflection functors . Tilting modules of hereditary al-
gebras are of particular importance, because their endomorphism algebras, known as
tilted algebras , can be studied using the representation theory of the heredi-
tary algebra. However, tilting modules generally do not admit a well-behaved notion
of mutation for arbitrary algebras. Because tilting modules can be viewed as 7-tilting
modules of projective dimension at most one , the area of 7-tilting theory is often

seen as a completion of classical tilting theory from the viewpoint of mutation.
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Since its introduction, 7-tilting theory has been widely accepted as the appropriate
framework for translating problems and notions from hereditary algebras to arbitrary
finite-dimensional algebras. For example, 7-tilting finite algebras are those admitting
only finitely many isomorphism classes of basic 7-tilting modules and generalise
representation finite algebras. It is remarkable, that even some representation wild al-
gebras can be 7-tilting finite, thus offering a new method for understanding at least
some aspects of wild algebras better. While there is no universally agreed upon notion
of “r-tilting tameness”, various generalisations have been suggested, see and the
references therein. Moreover, the classical Brauer-Thrall conjectures have found
T-tilting analogues as well as Hochschild cohomology .

More importantly, for the goal of a suitably defined “7-cluster morphism category”,
the notion of 7-perpendicular subcategories generalise the classical. Using direct sum-
mands of 7-tilting modules, so-called 7-rigid modules, gives rise to 7-perpendicular sub-
categories of the module category which are equivalent to module categories of other
finite-dimensional algebras . In particular, these 7-perpendicular subcategories
constitute the objects of the 7-cluster morphism category as defined in . Mor-
phisms [(M, P)] : W, — W, in this category are then given by 7-rigid pairs (M, P),
which consist of a 7-rigid module M and an orthogonal projective module P, of W,
such that the 7-perpendicular category with respect to (M, P) in W is equal to W,
see Definition for details.

Similar to the hereditary setting, factorisations of morphisms in the 7-cluster mor-
phism category into irreducible ones correspond to signed 7-exceptional sequences
. In general, (signed) T-exceptional sequences coincide with (signed) exceptional se-
quences for hereditary algebras and one of the main motivations for their introduc-
tion is the fact that exceptional sequences of maximal length do not always exist for
non-hereditary algebras. Whereas, using the reduction process 7-perpendicular subcat-
egories enable, the existence of T-exceptional sequences of maximal length is guaranteed
for any finite-dimensional algebra. Furthermore, a mutation operation for 7-exceptional
sequences was recently introduced in [41], which generalises the mutation in the hered-
itary setting. While transitivity of this mutation is known for 7-tilting finite algebras

[41] 150], it appears that in most cases this generalisation comes at the cost of the
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Braid group action present in the hereditary setting .

A generalisation of the picture group to 7-tilting finite algebras was proposed in [91],
and shown to be isomorphic to the fundamental group of the classifying space of the
T-cluster morphism category. Moreover, the classifying space is again a cube complex,
which enables the use of the sufficient condition developed in for it to be locally
CAT(0) and thus a K(m,1) space. Based on the definition in [40], a generalisation of
the picture group to arbitrary finite-dimensional algebras is straightforward and given
in Definition Since the classifying spaces of cluster morphism categories of rep-
resentation finite hereditary algebras are a K(m, 1) spaces, it is natural to investigate
this question in a more general setting. This gives rise to the guiding conjecture of the

present thesis, see also [102] Problem 3.0.5].

Conjecture 1.1.1. Let A be a finite-dimensional algebra over a field K and let B2J(A)
denote the classifying space of the 7-cluster morphism category of A. If A is 7-tilting

finite, then BU(A) is a K(m,1) space.

All previous work attempting to answer this question, including the approaches
taken in this thesis, relies on the following sufficient condition of [101] which leverages
those for cube complexes developed in .

Proposition 1.1.2. If the following three conditions are satisfied, then BQI(A) is locally
CAT(0) and thus a K(m,1) space:
(1) There exists a faithful functor ¥ : W(A) — G for some group G considered as a
groupoid with one object;
(2) The category W (A) satisfies the pairwise compatibility condition of first factors;

(3) The category W(A) satisfies the pairwise compatibility condition of last factors.

The second and third conditions are defined in Proposition In the presence of
Condition (1), they coincide precisely with those developed in . Moreover, a detailed
description of previous work regarding these three conditions is given in Example[2.4.5]
It is important to highlight that the second condition is always satisfied due to the struc-
ture of 7-rigid pairs, whereas the third condition may not hold . Moreover, it was
conjectured in , that the first condition, the existence of a faithful (group) functor,
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holds for all 7-tilting finite algebras. In this thesis, the focus therefore lies on show-
ing that the first condition holds for various classes of algebras. For this purpose, new
approaches to the 7-cluster morphism category are developed, which reveal interesting

structural results regarding this category as well as new insights into Conjecture [1.1.1]

1.2 A geometric approach

In the theory of cluster algebras, an important role is played by g-vectors, which were
introduced to express the cluster variables of any mutated cluster in terms of the initial
seed . Many of the conjectures raised in were later answered using the theory
of representations of quivers (with potential) and g-vectors in . It is a fundamental
observation that the collection of polyhedral cones generated by compatible g-vectors
forms a polyhedral fan. This fan appears in the tropical cluster X-variety and is a
subfan of the cluster scattering diagram and the stability scattering diagram
in many cases. Moreover, when the cluster algebra is of finite type, it also arises as the
normal fan of the generalised associahedron [52].

Returning to the representation theory of finite-dimensional algebras, g-vector fans
find a natural analogue using minimal projective presentations . In this
setting, the g-vector fan of an algebra encodes its 7-tilting theory by definition. Thus,
if the algebra is 7-tilting finite, its g-vector fan is finite and complete . The com-
pleteness of the fan gives rise to a notion of g-tameness proposed in . Moreover, the
g-vector fan embeds into the wall-and-chamber structure @ of the algebra which is
the support of the scattering diagram .

A new approach to the T-cluster morphism category was recently initiated in ,
where a category equivalent to the 7-cluster morphism category is constructed from
g-vector cones. Due to its geometric definition, this construction simplifies the proof
of associativity of morphisms in the category, which had previously been a significant
hurdle . Objects of the geometrically defined 7-cluster morphism category
are equivalence classes of g-vector cones. In Chapter 3] the rule for identifying cones is
relaxed. This defines a category associated to any simplicial polyhedral fan and a choice

of (admissible) partition of its cones. The resulting “category of the partitioned fan”
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shares many properties with the 7-cluster morphism category since its construction
generalises that of . In particular, the simplicial fan structure implies that the
classifying spaces of these categories form cube complexes.

As a consequence, the collection of different admissible partitions of the g-vector fan
establishes a lattice (in the order theoretic sense) of categories containing the -cluster
morphism category. If the g-vector fan of an algebra is a finite hyperplane arrangement,
the theory of hyperplane arrangements may be applied to show that Condition (1) of
Proposition holds for the maximal element in this lattice. Moreover, since there
exists a faithful functor from the 7-cluster morphism category of the algebra to the
maximal element, this establishes the existence of a faithful group functor from the 7-
cluster morphism category. Two important classes of algebras whose g-vector fan forms
a finite hyperplane arrangement are (generalised) preprojective algebras
and contraction algebras .

Moreover, the ubiquity of polyhedral fans throughout many areas of mathematics
suggests that fans arising in other contexts may admit mean-
ingful admissible partitions. This opens up many directions for future research, aiming

to obtain new insights from the categories constructed from partitioned fans.

1.3 A combinatorial approach

In an abelian category, a torsion class is a subcategory which axiomatises the prop-
erties of torsion groups in the category of abelian groups. Torsion classes are intimately
connected to the study of triangulated categories and their t-structures . Moreover,
torsion classes are closely related to classical tilting theory , as well as 7-tilting
theory . Indeed, the subset of functorially finite torsion classes is in bijection with
support 7-tilting modules. Moreover, an algebra is 7-tilting finite if and only if every
torsion class is functorially finite .

The significance of torsion classes in a variety of settings has inspired substantial
research. In particular, the partially ordered structure of the set of all torsion classes,
which forms a lattice, provides the foundation for a large body of research
. It turns out that, in many cases, algebraic information can be recovered
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combinatorially from the lattice structure of the poset of torsion classes, especially
when the lattice is finite. For example, T-exceptional sequences and the poset of
wide subcategories can be constructed entirely combinatorially. To a certain extent,
it is even possible to reconstruct an algebra given its lattice of torsion classes .
In Chapter [4| the 7-cluster morphism category of a 7-tilting finite algebra is con-
structed combinatorially from its (finite) poset of torsion classes. This leads to the
observation that two algebras with isomorphic finite posets of torsion classes have equiv-
alent 7-cluster morphism categories. However, for each 7-tilting finite algebra, there are
infinitely many nonisomorphic algebras with isomorphic posets of torsion classes .
Consequently, this result extends the known families of algebras satisfying the conditions
of Proposition Another consequence is that the signed 7-exceptional sequences of
two such algebras are in bijection, and may be constructed combinatorially.
Additionally, using this lattice theoretic construction reveals a relationship between
the 7-cluster morphism category of an algebra and that of a quotient algebra by an ideal.
More precisely, using the theory of lattice congruences, an explicit “quotient” functor
is constructed. Whenever the lattice of torsion classes is finite, this functor is a regular
epimorphism in the category of small categories. Thus, in a vague sense, the “quotient
relationship” between two algebras is reflected by their 7-cluster morphism categories.
This lattice theoretic viewpoint of the 7-cluster morphism category may then be applied
to find further examples of algebras whose 7-cluster morphism categories admit faithful

group functors.

1.4 Base field extensions of algebras

Recall that representation finite hereditary algebras over algebraically closed fields are
precisely path algebras of simply laced Dynkin quivers . Using the theory of field ex-
tensions and of valued quivers, also known as species , this connection is extended
to give a classification of representation finite hereditary algebras over perfect fields as
those coming from finite Dynkin diagrams, that is, including types B,,, C,,, F; and G,.

Again indecomposable modules correspond bijectively to roots of the corresponding root

systems [11§].
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Many interesting families of algebras arise from valued quivers and illustrate that the
world of finite-dimensional algebras beyond bound quiver algebras should be explored
further. In fact, given a field extension L : K, many properties of AQ g L are inherited by
the finite-dimensional K-algebra A, and vice versa. However, by passing to an algebraic
closure of K, for example, certain geometric tools become available, which were not
available in the original setting. This idea is common in algebraic geometry where it
provides the basis of descent theory, see and the references therein.

In representation theory, the proof of the 2nd Brauer—Thrall conjecture can be ex-
tended from algebraically closed fields to perfect fields and many homological di-
mensions are preserved under field extension . Moreover, representation finiteness
of an algebra is preserved , as well as the notion of (semi-)generic tameness
. Some particular families of algebras are also preserved under base field
extension, for example hereditary algebras , piecewise hereditary algebras, canoni-
cal algebras, tilted algebras , and derived-discrete algebras . Furthermore, the
techniques of base field extension have been applied to extend proofs over algebraically
closed fields to arbitrary fields and to unfold valued quivers to classi-
cal quivers , offering a close relationship and frequently revealing beautiful
symmetries.

In Chapter 5] the study of 7-tilting theory under base field extension is developed fur-
ther. The chapter culminates in the construction of a faithful functor from the 7-cluster
morphism category of a finite-dimensional algebra A over a field K to the 7-cluster
morphism category of A @ L, where L : K is a MacLane separable field extension.
Consequently, if the latter admits a faithful group functor, so does the former. This
result may be applied to find new families of algebras whose 7-cluster morphism cat-
egories admit faithful group functors. In particular, this is made precise for quotients

of representation finite and hereditary algebras over perfect fields, partially extending

results of .



Chapter 2

Preliminaries

Most generally, consider the setting of an essentially small abelian length category A,
which will later be specialised to the category of finite-dimensional right modules of a
finite-dimensional algebra. Let C be a full subcategory of A and define the following
related subcategories:

e addC = {X € A: 3 a split epimorphism C" — X for some C € C and n > 1};

o FacC:={X € A: 3 an epimorphism C" — X for some C € C and n > 1};

e SubC :={X € A: 3 a monomorphism X — C" for some C € C and n > 1};

e FiltC:={X € A: 3 a filtration 0 = Xy C --- C X, = X with X, ,,/X; € addC};

e Ct={X e A:Hom(C,X)=0forall C €C};

e C:={X € A:Hom(X,C) =0 for all C €C}.

Moreover, given an object C € A, define the subcategories Fac C, Sub C and Filt C as
Fac(add C), Sub(add C) and Filt(add C) respectively. In cases where explicit reference
to the ambient category A is important to avoid ambiguities, a subscript is added to
the subcategories above. For example, Fac 4 C or ctA,

Among the most well-studied classes of subcategories of an abelian category are
torsion classes as introduced in [62], which axiomatise the properties of torsion groups in
the category of abelian groups. These will play a central role in this thesis. Torsion classes

are closely related to ¢-structures of triangulated categories and have analogues in

a plethora of categorical settings . In representation theory, torsion

11
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classes are essential objects of tilting theory , T-tilting theory and Auslander—
Reiten theory . As subcategories, torsion classes admit a partial order with respect to
inclusion and arise as the Tamari lattice , as Cambrian lattices and as the weak
order of Weyl groups in combinatorics. Their purely lattice theoretic properties

have also inspired substantial research . Additionally, the study

of torsion classes is motivated by their connection to cluster algebras .

Definition 2.0.1. A pair (T, F) of full subcategories 7, F C A is called a torsion
pair if F = 7+ and 7 = 1 F. In this case T is called a torsion class and F a torsion-free

class.

An equivalent characterisation Thm. 2.3], states that a full subcategory 7 C A
is a torsion class if and only if it is closed under factor objects and extensions and 7 C A
is a torsion-free class if and only if it is closed under subobjects and extensions. For any
subcategory C, the smallest torsion class containing it is denoted by T(C) and may be
expressed explicitly as T(C) = Filt(FacC), see Lem. 3.1]. Denote by tors A and
torf A the collections of torsion classes and torsion-free classes of A respectively. By
definition there are mutually inverse bijections

1

)
tors A L<:> torf A. (2.0.1)
=)

Beside torsion classes, this thesis focuses on wide subcategories of abelian categories,
which were first considered in . They are intimately related to torsion classes
and the study of stability conditions @ . Again these subcategories admit
a partial order with respect to inclusion and in this context wide subcategories arise as
non-crossing partitions and as the shard-intersection order of Weyl groups .
In fact, the poset of wide subcategories can be reconstructed in a combinatorial way

from the partially ordered set of torsion classes .

Definition 2.0.2. A full subcategory W C A is called wide if it is closed under

kernels, cokernels and extensions.

In later sections, a particular focus will lie on wide subcategories which arise as par-

ticular intersections of a torsion-free class with a torsion class. As abelian subcategories
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of A, wide subcategories WW C A have their own (relative) simple objects, therefore let
simp(W) denote the set of all simple objects in W. More generally, a collection S C A
of objects such that every morphism S — S in A is either zero or an isomorphism
is called a semzibrick, see . This generalises the notion of a brick, an object X € A
such that End(X) is a division algebra. The following bijective correspondence was first

observed in [163] Sec. 1.2]:

simp(—)
{W C AW is wide} <:()> {§ C A: S is a semibrick}. (2.0.2)
Filt(—
The collection of all wide subcategories of A is denoted by wide A, that of all semib-
ricks by sbrick A and that of all bricks by brick .A. Consider the following two classical

definitions which play an important role throughout this thesis, see for example .

Definition 2.0.3. Let C C A be a full subcategory and X € A an object. A right
C-approzimation of X is a map fx : Cpy — X with C;; € C such that for any map
g:C' — X with C’" € C, there exists a map ¢’ : C' — C such that g = fyg'.

Dually, a left C-approximation of X is a map gy : X — Cx with Cx € C such that
for any map h : X — C’ with C" € C, there exists a map h' : Cy — C’ such that
h="hgy.

Definition 2.0.4. A full subcategory C C A is called contravariantly finite (resp. co-
variantly finite) if every object X € A admits a right (resp. left) C-approximation. It is

called functorially finite if it is both contravariantly finite and covariantly finite.

It is well-known and easy to show that torsion classes are always contravariantly
finite. However, both the subcollection of functorially finite torsion classes, denoted
by f-tors.A, as well as that of functorially finite wide subcategories are particularly
interesting and important. In the setting where A is the category of finite-dimensional
(right) modules of a finite-dimensional algebra, a torsion class 7 is functorially finite if
and only if 7 = Fac M for some module M by . In particular, M may be chosen to
be a so-called 7-rigid module . These form an important class of modules studied in
detail in Section and throughout this thesis. Functorially finite wide subcategories,
on the other hand, are equivalent to categories of finite-dimensional modules of other

finite-dimensional algebras, see Prop. 4.12].
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2.1 Lattice theory and brick labelling

Recall that torsion classes, torsion-free classes and wide subcategories of A form partially
ordered sets (posets) under inclusion and also denote these posets by tors.A, torf A
and wide A, respectively. In this section, these posets are endowed with the additional
structure of a labelling of cover relations. This labelling provides a useful tool, used
frequently throughout this thesis, in particular in Chapter [4} For a textbook reference
on lattices and lattice theory see for example .

Definition 2.1.1. Let L be a poset.
(1) L is called a join-semilattice if there exists a unique minimal common upper bound,
the join x Vy € L of x and y for all x,y € L.
(2) L is called a meet-semilattice if there exists a unique maximal common lower

bound, the meet x Ay € L of x and y for all x,y € L.

A join-semilattice (resp. meet-semilattice) L is called complete if every subset S C L

admits a unique minimal upper bound \/ S (resp. a unique maximal lower bound A S).

Definition 2.1.2. A poset L which is both a join-semilattice and a meet-semilattice
is called a lattice. A lattice is complete if it is both a complete join-semilattice and a

complete meet-semilattice.

Definition 2.1.3. Let L be a join-semilattice (resp. meet-semilattice). Then a join-
subsemilattice (resp. meet-subsemilattice) K is a subset K C L such that all z,y € K
satisfy x Vy € K (resp. x Ay € K). A subset K of a lattice L is a sublattice if it is both

a join-subsemilattice and meet-subsemilattice.
Lemma 2.1.4. Lem. 1.3.14] The following coincide for a poset L:
(1) L is a complete join-semilattice.

(2) L is a complete meet-semilattice.

(3) L is complete lattice.

It is well-known and easy to see that torsion classes, torsion-free classes and wide

subcategories are closed under taking arbitrary intersections and therefore form com-
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plete meet-semilattices. By Lemma they thus form complete lattices. Moreover,
the bijections of Eq. (2.0.1) define an order reversing map between posets.

Definition 2.1.5. Let L, Ly be complete lattices. A map n : L; — Ly is a morphism
of complete lattices if n(\/ 1 S) =V, n(S) and n(Ar, S) = Ap,n(S) for all S C L.

The following is an important but rather rare property of a lattice.

Definition 2.1.6. Let L be a complete lattice, x € L and S C L. Then L is called

completely semidistributive if the following two conditions hold:
e IfzNy=aANzforally,ze€ S, thenalsoxA(\/S)=xAyforal yes,

o fzvVy=aVzforally,z€ S, thenalsoxV (AS)=xVyforallyes.

Throughout this thesis, intervals of posets play a central role. For two elements
xz,y € L in a poset L, denote by [z,y] C L the set of all elements z € L such that
x <z <y.Let x,y € L be distinct, then x < y is called a cover relation and denoted by
x <y, if there does not exists an element z € L such that x < z < y. Moreover, a chain
in L is a sequence of cover relations. Define the Hasse quiver, denoted by Hasse(L), of L
to be the quiver whose vertices are elements of L and which has a unique arrow y — =

whenever x < y is a cover relation. This leads to the following notion.

Definition 2.1.7. Let L be a lattice and z,y € L. An interval [z, y] is called a polygon
if it is the union of two finite chains from x to y which are disjoint except at x and
y. Moreover, L is called polygonal if for any two cover relations z < y; and x < y, the
interval [z, y; V y,] is a polygon and if for any two cover relations z; <y and x4 <y the

interval [z A zq,y] is a polygon.

Furthermore, two maximal chains in an interval [z, y] C L are said to be related by a
polygon move if the two chains from x to y differ only in that one chain covers one side
of a polygon inside [z, y] while the other covers the other side. For further background
on polygonal lattices see Sec. 9.6]. Finally, a lattice L is called ¢-regular for some
{ € Zx if every vertex in Hasse(L) has ¢ arrows incident to it. Fig. displays the
Hasse quivers of four different lattices which illustrate the properties described in this

section.
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Figure 2.1: Examples of lattices

Example 2.1.8. Let A be the category of finite-dimensional (right) modules of a finite-
dimensional algebra. Then tors A is completely semidistributive, see Thm. 4.5] and

Thm. 3.1(a)]. If tors A is finite, then it is regular and polygonal, see Cor. 4.6,
Prop. 4.21(a)].

In the setting of a general abelian category A intervals of the form [/, 7] C tors.A
where U N T is a wide subcategory of A are of particular interest. Such intervals are

called wide intervals . They have been studied in great detail in and in the
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setting of Example under the name “polytopes” in [57]. Wide intervals are also
sometimes called binuclear intervals since they can be described combinatorially as

follows.

Theorem 2.1.9. [10, Thm. 1.6] Let [U,T] C tors A. The following are equivalent:
o [U,T] is a wide interval;
o T =\ U;, where U <U; in [U,T] and the torsion classes U; are called the atoms
of the interval U, T];
o U= N\T;, where T; <T in [U,T], and the torsion classes T; are called the coatoms
of the interval [U,T].

To conclude this section, tors A is endowed with an additional structure called brick
labelling. By Thm. 3.3(b)], see also , there is an arrow ¢ : 7 — U in
Hasse(tors A) if and only if there exists exact one brick S, contained in U NT. Thus
the brick S, is assigned as a label to ¢ : 7 — U. Generally, define brick[/, 7] to be the
collection of bricks in 4 N7 and note that = N T = Filt(brick[i{, T]) by Lem.
3.10]. It can be checked that Eq. preserves the brick labelling, see Prop. 3.4].

2.2 r-tilting theory

Let K be an arbitrary field and A a basic finite-dimensional K-algebra. In this section,
the categorical and combinatorial definitions from the previous sections are united via
representation theory. Let by mod A the category of finite-dimensional right A-modules
and by proj A the full subcategory of projective A-modules. Throughout 7 denotes
the Auslander—Reiten translation. Given M € mod A, denote by |M| the number of
nonisomorphic indecomposable direct summands of M and by dim M the dimension
vector defined as (dim M); = dimgyq, (5(:))(Me;) where {ei}i‘i‘l is a set of primitive
orthogonal idempotents of A. The most important class of modules for this thesis is the

following.

Definition 2.2.1. A module M € mod A is called 7-rigid if Hom(M,7M) = 0 and
T-tilting if additionally |M| = |A|. A pair (M, P) € mod A x proj A is called 7-rigid if
M is 7-rigid and Hom(P, M) = 0. It is called 7-tilting if additionally |M|+ |P| = |A|.
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Saying that a 7-rigid pair (V,Q) is a direct summand of a 7-rigid pair (M, P),
means that IV is a direct summand of M and @ is a direct summand of P. Similarly,
a 7-rigid pair (M, P) is called basic if M and P are both basic modules, which means
that distinct indecomposable direct summands are nonisomorphic. Thus, denote the set
of basic 7-rigid pairs by 7-rigidp A and its subset of basic 7-tilting pairs by 7-tiltp A.

These modules and pairs are closely related to torsion classes.

Theorem 2.2.2. [§, Thm. 2.7] There is a bijection
T-tiltp A — f-tors A
given by sending (M, P) € 7-tiltp A to Fac M.

This bijection equips 7-tiltp A with the structure of a partially ordered set which is
inherited from f-tors A. Whenever it is finite, this structure can also be seen intrinsically
using the process of mutation [3| Sec. 2.3-2.4]. Roughly speaking, if an indecomposable
direct summand of a basic 7-tilting pair (M, P) is deleted, there is a unique indecom-
posable 7-rigid module completing the resulting 7-rigid pair to a different basic 7-tilting
pair. This defines the mutation, and the direction is determined by the corresponding

torsion classes via Theorem

Theorem 2.2.3. The following are equivalent:
(1) T-tiltp A is finite, in which case A is called T-tilting finite;
(2) f-tors A is finite;
(8) brick A is finite;
(4) f-tors A is a complete lattice;
(5) f-tors A = tors A.

Proof. (1) < (2) is Theorem [2.2.2] (1) < (3) is Thm. 1.4], (1) & (5) is Thm.
1.2], (1) & (4) is Thm. 0.2]. O

The characterisations of 7-tilting finiteness in Theorem have inspired significant

work expanding these equivalent conditions, see for example [173]. Recall

from Example the additional lattice theoretic properties of the poset 7-tiltp A,

which are exhibited whenever it is finite.
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Given a basic 7-rigid pair (M, P), the maximal (in the poset 7-tiltp A) basic 7-tilting
pair containing (M, P) as a direct summand is called the Bongartz completion of (M, P),
denoted by (M7, P). It is characterised by satisfying Fac M t=LtrMn PL, see \
Thm. 2.10] and Thm. 4.4]. On the other hand, the smallest 7-tilting pair containing
(M, P) as a direct summand is called the co-Bongartz completion of (M, P), denoted by
(M, P7), and characterised by satisfying Fac M = Fac(M ). The mutation of 7-tilting
pairs mentioned above corresponds exactly to changing the Bongartz completion of a
basic 7-rigid pair with |A| — 1 isomorphism classes of indecomposable direct summands

into the co-Bongartz completion.

Definition 2.2.4. Let (M, P) be a 7-rigid pair.
o The interval [(M—,P7), (M, P)] C 7-tiltp A is called a T-perpendicular interval,

« The interval [Fac M, 7M N P*] C tors A is called a T-perpendicular interval.

It should be highlighted that elements in interval [Fac M, ~7M N P*] C tors A are
generally not in bijection with elements in the interval [(M~, P~), (M ™, P)] C r-tiltp A
if the algebra A is 7-tilting infinite, see Theorem [2.2.3]

In the introduction, it was mentioned that 7-rigid modules and pairs give rise to
perpendicular wide subcategories of mod A. This is made precise in the following re-
sult, which shows how to construct these subcategories and that they are equivalent to

categories of modules of another finite-dimensional algebra.

Theorem 2.2.5. Thm. 3.8][57, Thm. 4.12J[38, Thm. 3.14] Let (M, P) be a T-rigid
pair. Then the wide subcategory

W, py = MTntrM NPt Cmod A

is equivalent to a module category mod By py, for some finite-dimensional algebra
B,py with |A] — |M| — |P| isomorphism classes of simples. Moreover, there exists

an isomorphism of complete lattices
— O Warpy : [Fac M, 7M 0P| — tors Wy py-

which restricts to an order-preserving bijection of functorially finite torsion classes.



2. Preliminaries 20

Wide subcategories W, py of mod A arising in this way are called 7-perpendicular
and By, py is called the 7-tilting reduction of A with respect to (M, P). If A is hereditary
then 7-perpendicular subcategories are precisely the perpendicular subcategories studied

in [78]. Moreover, by [108], see also Rmk. 4.10], if A is 7-tilting finite, then every

wide subcategory is T-perpendicular.

Example 2.2.6. Let A= KQ/I, where

NS
SN
NSNS

1
The nonzero indecomposable 7-rigid modules are 2 and 3 since they are projective and
1
thus have zero Auslander—Reiten translation, and 1 and 1 52 whose Auslander—Reiten
translations are the indecomposable projective A-modules. The Hasse quiver of the poset

of 7-tilting pairs is displayed in Fig.[2.2a]with the Hasse quiver of its corresponding poset

of torsion classes displayed in Fig. [2.2bl The bricks of A are 2, % and 1, which label

the arrows in these Hasse quivers, as discussed in Section Observe that the posets
coincide with the polygonal, semidistributive, regular lattice of Fig.

2.3 The 7-cluster morphism category

Loosely speaking, the 7-cluster morphism category encodes the possible 7-tilting re-

ductions, in the sense that its objects are 7-perpendicular subcategories. Since each
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Figure 2.2: Hasse quivers of Example|2.2.6

T-perpendicular category W is equivalent to a module category, it has its own (relative)
Auslander—Reiten translation 7y, and (relative) m-rigid pairs, which may differ from
those of mod A. The algebraic definition of the T-cluster morphism category below holds
in the general setting of arbitrary finite-dimensional algebras. For earlier definitions of
the category for hereditary and 7-tilting finite algebras see and , respectively.

For definitions in more general settings see .

Definition 2.3.1. Def. 6.1] The 7-cluster morphism category 20(A) has as its
objects the 7T-perpendicular wide subcategories of mod A. Given two 7-perpendicular

wide subcategories Wy, W5 of mod A, define

Hoan(A) Wy, Wa)

= {g(M P : (M, P) is a basic 7y, -rigid pair and W, = M0t Tw, M 0 PLV"l}.

The details on composition of morphisms for this category is omitted for now. The

associativity of the composition of morphisms is highly nontrivial to prove, see [46]
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Thm. 5.9] and Thm. 6.12]. The generalisation of 20(A) to nonpositive differential
graded algebras with finite-dimensional cohomology in all degrees of specialises to
the above for finite-dimensional algebras and replaces T-perpendicular categories by
certain thick subcategories of the bounded derived category Db(mod A). The process of
7-tilting reduction then becomes silting reduction [112], whose functoriality implies the
associativity more directly Thm. 4.3].

For hereditary algebras, the 7-cluster morphism category has close connections to
exceptional sequences [164]: Factorisations of morphisms 20(A) into irreducible mor-
phisms are in bijection with the more general signed exceptional sequences . As a
generalisation of signed exceptional sequences for hereditary algebras, define signed 7-
exceptional sequences to be factorisations of morphisms in 23(A) into irreducible
ones, see Sec. 11]. These sequences have recently inspired much research
1139} |145] 149} [150].

An arbitrary category C defines a topological space, called the classifying space BC.
This space is the geometric realisation of a simplicial set known as the simplicial nerve
of the category. Its 0-simplices correspond to objects of C and its k-simplices correspond
to chains of composable nonidentity morphisms (X EING'e 1 By I x x) in C.

The classifying space BQJ(A) of the 7-cluster morphism category is particularly
interesting because, by Thm. B], its fundamental group is isomorphic to the picture
group as defined in for hereditary algebras and in for 7-tilting finite algebras.

The appropriate general definition is as follows.

Definition 2.3.2. Let A be a finite-dimensional algebra. The picture group G(A) is

defined by having generators
{Xg: S € brick A and Filt{S} is 7-perpendicular} U {gy : T € f-tors A}

with a relation g7. = Xgg7, whenever there is an arrow 7; 5, 7, in Hasse(f-tors A) and

the relation gy = e.

Moreover, for hereditary algebras, the picture group is closely connected to maximal
green sequences [124] arising in the context of cluster algebras [104]. For many algebras
the classifying space BQJ(A) is even a K(m, 1) space for the picture group 105]
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106]. As mentioned in the introduction, Conjecture poses the question of whether
this is always the case. In particular, later chapters establish many new examples of
K(m,1) spaces arising in this way. The main tool to achieve this is the fact that the

classifying space B(A) is a cube complex, see Thm. A].

Example 2.3.3. Let A be the finite-dimensional K-algebra of Example Recall
that the 7-tilting pairs in mod A are displayed in Fig. The indecomposable direct
summands of these pairs may be used to obtain the following description of the 7-cluster
morphism category 20(A) of A. The category is displayed in Fig. where the arrows
correspond to the irreducible morphisms and the label (M, P) : W, — W, abbreviates

the formal symbol gz/]\(/} Py

add{2 @ 3}

add {1}

Figure 2.3: The 7-cluster morphism category 25(A) of Example|2.3.3

2.4 Cubical categories

A cube complex is a metric space made up from cubes of different dimensions which are
glued together along their faces. This construction is similar to that of a simplicial com-

plex by replacing ¢-simplices by ¢-cubes. Gromov observed that for cube complexes,
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being (locally) CAT(0) and thus a K(m,1) space, is equivalent to a local combinato-
rial condition. Informally speaking, CAT(0) spaces are geodesic metric spaces whose
geodesic triangles are “no fatter than Euclidean triangles” and locally CAT(0) spaces,
also known as nonpositively curved spaces, are those which admit a CAT(0) universal
cover. Such spaces are important examples of K(m, 1) spaces, a class of Eilenberg—
MacLane spaces whose only nontrivial homotopy group is its fundamental group 7. For
more background and an introduction to CAT(0) cube complexes see [171]. By defi-
nition, a connected topological space X is a K(m, 1) space if it satisfies the following

equivalent conditions:
(1) The homotopy groups of X above degree 1 are all trivial;
(2) The universal cover of X is contractible;
(3) The cohomology of X with arbitrary coefficients is isomorphic to the cohomology
of its fundamental group.

Igusa categorified Gromov’s conditions and introduced cubical categories, whose
classifying spaces are cube complexes. In this setting, the conditions of Gromov for
a cube complex to be CAT(0) constitute two parts of a sufficient conditions for the
classifying space of the category to be a K (7, 1) space, see Prop. 3.4]. The definition

of a cubical category is based on the following two categories:

e The standard k-cube category 7" is the name-giving example of a cubical category.

It is the poset category on subsets of {1,...,k} where morphisms are given by
inclusion.
o For any category C and any morphism (A EN B) € C, the factorisation category

Faq(f) is the category whose objects are factorisations A 9 ¢ M B such that

h o g = f and whose morphisms

/ 3¢\hlB
\52/h

2
are morphisms ¢ : C; — Cy such that ¢ o gy = g and hy = hy 0 ¢.

Given an object (A EAYO RN B) in Faq(f), call g a first factor of f if g is irreducible
in C and h a last factor of f if h is irreducible in C.
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Definition 2.4.1. A cubical category is a small category C with the following properties:

(1) Every morphism f: A — B in C has a rank rk(f), which is a non-negative integer
such that rk(g o f) = rk(f) + rk(g) for all composable morphisms f, g € C;

(2) If tk(f) = k then there is an isomorphism Faq(f) = Z*;

(3) The forgetful functor Faq(f) — C sending (A — C — B) — C is an embedding,
that is, faithful and injective-on-objects . Thus, every morphism of rank k& has k
distinct first factors and k distinct last factors;

(4) Every morphism of rank k is determined by its k first factors;

(5) Every morphism of rank k is determined by its k last factors.

Condition 2 implies that in a cubical category, the classifying space of any morphism
f is a solid cube, that is, BFaq(f) = [0, 1}rk(f ). Moreover, in a cubical category, every

morphism is both a monomorphism and an epimorphism.

Lemma 2.4.2. Let C be a category satisfying Condition (3) of Definition|2.4.1, Then

every morphism in C is both a monomorphism and an epimorphism.

Proof. Suppose that the morphism X i) Y in C is not a monomorphism. Then, by

definition, there exists a diagram in C of the form
91 f
Z — =X ——Y, (2.4.1)
92

where the compositions f o g; and f o gy are equal but g; # go. Let h = fog; = f o go,
and consider the two objects (Z 2 X EN Y)and (Z & X EN Y') in the factorisation
category Faq(h). They are distinct since g; and g, are, but they are sent to the same
object by the forgetful functor Faq(h) — C defined in Condition (3) of Definition [2.4.1]
above. Thus, the forgetful functor is not injective-on-objects, so that Condition (3) of
Definition cannot hold. As a consequence, the morphisms must satisfy g; = go,

which makes f a monomorphism. A similar argument shows that every morphism in C

is an epimorphism, hence the proof is complete. O

Example 2.4.3. The following are examples of cubical categories:
e The standard k-cube category 7" for any k > 1;
o For hereditary algebras the category 20(A) is cubical by [106], Thm. Al;
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o For 7-tilting finite algebras the category 20(A) is cubical by .

In Chapter (3| a large new class of cubical categories is introduced. The sufficient
criteria mentioned previously and stated imprecisely in Proposition for a cubical
category to have a locally CAT(0) classifying space, which would thus be a K(m,1)

space, are as follows.

Proposition 2.4.4. Prop. 3.4, Prop. 3.7 Let C be a cubical category. If the
following properties are satisfies, then the classifying space BC is locally CAT(0) and
thus a K(m,1) space:

(1) There is a faithful (group) functor ¥ : C — G for some group G, viewed as a

groupoid with one object;

(2) A set of k rank 1 morphisms {fi}le forms the set of first factors of a rank k
morphism if and only if each pair {f;, f;} forms the set of first factors of a rank 2
morphism fori # j. In other words, first factors are given by pairwise compatibility

conditions;

(3) A set of k rank 1 morphisms {gi}le forms the set of last factors of a rank k
morphism if and only if each pair {g;,g;} forms the set of last factors of a rank 2
morphism for i # j. In other words, last factors are given by pairwise compatibility

conditions.

This sufficient condition highlights the usefulness of cubical categories for investi-
gating fundamental groups of classifying spaces. In particular, Condition (1) of Propo-
sition implies that the universal cover of BC is a cube complex, see the proof of
Prop. 3.4]. If Condition (1) holds, then Condition (2) and Condition (3) of Propo-
sitionare exactly those of and are equivalent to the universal cover of BC being
CAT(0). Consequently, it makes sense to focus on the existence of a faithful group func-
tor, as Condition (2) and Condition (3) build on Condition (1). Nonetheless, from the

viewpoint of representation theory, these conditions are also interesting in their own
right .

Example 2.4.5. In this example all currently known results regarding the different

parts of Proposition are collected in the setting of the 7-cluster morphism category
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20(A) of a finite-dimensional K-algebra A. Firstly, Condition (2) of Proposition [2.4.4]
always holds for 20(A) by the compatibility properties of 7-rigid pairs. Furthermore,
Condition (1) is conjectured hold for all 7-tilting finite algebras in Conj. 5.10], but

is known to hold only for the following classes:

. Thm. 3.7] If A is hereditary of finite or tame type;

. Thm. 5.9] If K is a finite field, the K-algebra A admits Hall polynomials
and additionally satisfies the following: Any two bricks By, By € brick A which
form a semibrick together, also satisfy Ext'(By,B;) = 0 = Ext'(By, By) and
End(B;) = K = End(B,) or otherwise satisfy Ext' (B, By) = 0 = Ext'(By, B;).

Regarding Condition (3) of Proposition the pairwise compatibiliy of last factors,

the following is known:

. Thm. 2.5] If A is hereditary of finite or tame type, then 20(A) satisfies
Condition (3) if and only if the Auslander-Reiten quiver of A has no tubes of
rank > 3;

. Thm. 2.1] If A is a Nakayama algebra, then 20(A) satisfies Condition (3);

. Thm. 4.1] If A is a 7-tilting finite gentle algebra without loops and 2-cycles,
then 20(A) satisfies Condition (3) if and only if every vertex in the underlying
quiver has degree at most 2;

. Thm. 1] If A is 7-tilting finite and mod A has at most three isomorphism
classes of simple modules, then 20(A) satisfies Condition (3) of Proposition [2.4.4}

. Thm. 4] If A is a preprojective algebra of type ADE, then 20(A) satisfies
Condition (3) of Proposition if and only if it is of type A;, A, or As.

As can be concluded from the length of the list above, a lot of research has inves-
tigated these properties. This thesis contributes to the problem of finding a faithful
group functor from 20(A) using two new approaches and obtains various new families

of algebras satisfying Condition (1) of Proposition in this way.

Example 2.4.6. Let A be the finite-dimensional K-algebra of Example for which
Q(A) is displayed in Fig. In Fig. the classifying space BE(A) is displayed in
a way that highlights its cubical structure. The gray arrows, which are labelled by the
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7-tilting pairs in mod A, form diagonals of the 2-cubes of BE(A). The vertices (labelled
by wide subcategories) with the same label and the arrows (labelled by relative 7-rigid
pairs corresponding to morphisms in 20(A)) with the same colour and pointing in the

same direction are supposed to be identified.

04 (0.1) add {1} (1.0) >0

A

add {2 @

.( (0,1) add?l}—(lmﬁ—).(—\add{é@12%}

1
(O,l 2)
2

Figure 2.4: The cubical structure of the classifying space BE(A) of Example [2.4.6

2.5 Fans and simplicial complexes

The first new approach taken in Chapter (3| uses the theory of polyhedral fans in con-
vex geometry. The subsequent Section associates a polyhedral fan to the 7-tilting
theory of a finite-dimensional algebra. This fan was used in [169] to construct 2J(A)

geometrically, and this construction lies at the foundation of Chapter



2. Preliminaries 29

Polyhedral fans arise naturally in many areas of mathematics. In toric geometry,
fans serve as fundamental tools for defining toric varieties . In commutative algebra,
the Grébner fan is an invariant associated to an ideal in a commutative polynomial ring
. Polytopes give rise to normal fans and face fans which play an important role
in the theory of optimisation . In matroid theory, the Bergman fan is a subfan of the
normal fan of the matroid polytope . Recently, it was shown that abelian categories
define heart fans . Within representation theory, in classical tilting theory, tilting
modules define fans and the 7-tilting theory of an algebra is encoded by the g-vector
fan [56], as described in Section

Generally, a convez polyhedral cone o in R" is a set of the form

o= {Z)\ﬂi E]R":)\Z-ZO},Where v1,...,vs € R

=1

Denote such a nonnegative linear combination by o = cone{vy,...,v,} and call the
positive linear combination span.y{vi,...,v,} C R" the interior cone of o. Given two
polyhedral cones o = cone{vy,...,v,} and k = cone{wy,...,w,;} C R", denote the cone

they span together by cone{o, k} = cone{vy,...,v,, wy,...,w;}. Note that {0} is also
regarded as a convex polyhedral cone. Unless otherwise specified, in this thesis, a cone
o is a convex polyhedral cone with the following two properties:

o 0 is strongly conver, that is, o N (—o) = {0} holds;

o o is simplicial, that is, the generating set of o is linearly independent (up to

duplicate generators).

The dimension or rank dim(o) of a cone is the dimension of the linear subspace
span{c} in R". Denote by (—, —) the standard inner product in R". A face of a cone
o is the intersection of o with a hyperplane {v € R" : (u,v) = 0} for some v € R"
satisfying (u,w) > 0 for all w € o. If 0 = cone{vy,...,v,} € R" is a simplicial cone,

then a face of o is simply a cone generated by a proper subset of {vy,...,v,}.

Definition 2.5.1. A fan ¥ in R" is a collection of cones in R" satisfying the following:
(1) Each face of a cone in ¥ is also a cone contained in ¥;

(2) The intersection of two cones in ¥ is a face of each of the two cones.
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Denote by 3" C ¥ the subset of cones of dimension i. A fan ¥ in R™ is said to be finite
if it consists of a finite number of cones and complete if |J, ¢y, 0 = R". There are two
different ways of viewing fans. Firstly, fans naturally have the structure of a poset (X, C)
ordered by inclusion, whose corresponding poset category has cones as its objects and a
unique morphism x — o whenever k C . A maximal cone of a fan X is any cone ¢ € X
which is not contained in another cone p € ¥, that is, a maximal element of (3, C). The
collection of cones containing a cone o is denoted by star(o) :== {p € ¥ : 0 C p}, and
define star(c)’ := star(c) NS". If ¥ is a finite and complete fan in R", then all maximal
cones are of the same dimension equal to n, and this dimension is called the rank of 3.
For a thorough introduction to fans in the context of toric geometry see .

On the other hand (simplicial) fans can be viewed as simplicial complexes, which
are finite sets A” together with a collection A of subsets of A such that if X € A and
Y C X, then Y € A. Elements v € A” such that {v} € A are called vertices and subsets
consisting of vertices are called faces or more specifically k-simplices if they consist
of exactly k + 1 vertices. A simplicial fan ¥ in R" defines a simplicial complex A(X)
whose vertices are the dimension 1 cones X! and whose simplices are sets of vertices
which together generate a cone of the fan. When a fan 3 in R" is simplicial, finite and
complete, the geometric realisation of A(X) is a simplicial sphere, that is, homeomorphic

to a (n — 1)-sphere. However, this geometric realisation is not necessarily a polytope
[185] Ex. 7.5].

Example 2.5.2. Consider the complete fan X(F,) in R® as shown in Fig.
which gives rise to a common toric variety called the Hirzebruch surface F, where
o3 = cone{(—1,a)} and a is a positive integer. The simplicial complex is given by the
vertex set A” = {o; : 1 <i <4} and A = {{0;}1_1, {01, 02}, {09, 03}, {03,004}, {04, 01 }}

and is depicted in Fig.

The viewpoint of a fan as a simplicial complex is useful when constructing the
classifying space of the 7-cluster mophism category. For this purpose the following two

constructions for simplicial complexes are necessary:

(1) The link lka (o) of a simplex o € A is the simplicial subcomplex of A given by

lka(o) ={k€eA:o0Nk=0and o Uk € A}.
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(a) Geometric depiction of 3(F,)
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(b) Simplicial complex associated to X(IF,)

Figure 2.5: The polyhedral fan of a Hirzebruch surface F,

dim 1

<
A)

C/(coh(Px)[1]) C/(coh(Px))

(a) Heart fan of coh(P") of Example

2.5.3

N
4

(b) Fan of tilting modules of Ex-

ample W

Figure 2.6: Examples of polyhedral fans in R?

(2) The join A * Ay of two simplicial complexes A, A, has vertex set AYUAY and

simplices given by

A x Ay ZZ{O‘GA?UA%IO’QA?EAl andUﬂAgeAz}.

The join with a simplicial complex consisting of a single vertex is called the (topo-

logical) cone over a simplicial complex.

To conclude this section, consider two more examples of polyhedral fans arising in
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different contexts.

Example 2.5.3. Exmp. 4.7] Let A be an abelian category. Then A may be viewed
as the heart of the standard t-structure in its bounded derived category. The authors of
define a cone associated to each heart of a bounded ¢-structure on a triangulated
category. Such hearts admit a partial order via inclusion of the co-aisles. The cones
defined by those hearts lying between A and .A[1] with respect to this partial order define
a fan called the heart fan in . As an example consider Fig. where A = coh(IF’}()
is the category of coherent sheaves on the projective line IP’}(. Observe that this fan is

infinite, incomplete and simplicial.

Example 2.5.4. Let A be the finite-dimensional K-algebra from Example The

(classical) tilting modules of this algebra are

2o

NN
NN

1 1
@122, and 122@1.

Y

By definition these are the modules M € mod A whose projective dimension is at most
one and which satisfy Ext' (M, M) = 0 and |M| = |A], see Cor. IV.4.7]. If M is of
projective dimension at most one, then Prop. 5.8] and Cor. IV.2.14] imply that
Hom(M,7M) = 0 if and only if Ext' (M, M) = 0. Hence classical tilting modules are a
subset of 7-tilting modules, and for this algebra, they actually coincide with them. By
Thm. 4.1, 4.2] the cones spanned by dimension vectors of indecomposable direct
summands of tilting A-modules define a fan, displayed in Fig. Observe that this

is a finite, incomplete and simplicial fan.

2.6 The g-vector fan

In this section the g-vector fan of a finite-dimensional algebra is introduced. It is defined
as a fan in the real vector space K(proj A)g := Ky(proj A) ®z R which is isomorphic

to R, By construction it encodes the compatibility of T-rigid pairs.

Definition 2.6.1. Let M € modA and let P! — P — M — 0 be a minimal
projective presentation of M, where P° = @Lﬂl P(i)% and P! = @Lﬂl P(i)". Define

the g-vector of M as

M A
g ::(alfbl,aszQ,...,a‘Al7b‘A|)GRI |
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This vector corresponds to [P’] —[P™!] € K(proj A)g. Furthermore, define the g-vector

(M.P) _ gM — gP. In this way, associate a polyhedral cone

of a 7-rigid pair (M, P) as g
é(M7P) = cone{ng,...,gM’“,—gP’““,...,—gPt} c R to each 7-rigid pair (M, P),
where {M,}F_, and {Pj}zzk 41 are the indecomposable direct summands of M and P

respectively. The interior cone of E( M, p) is denoted by C(y py.
Now consider the fan whose cones are generated by the g-vectors of 7-rigid pairs.

Definition 2.6.2. Define the g-vector fan of an algebra A to be given by
2(A) = {Car.py C R : (M, P) € 7-rigidp A}.

Since the g-vectors of a g-vector cone are linearly independent 3] Thm. 5.1], faces of
g-vector cones are g-vector cones of direct summands. Moreover, the intersection of two
g-vector cones is a face of both, see Cor. 6.7(b)] and Thm. 6.13]. Therefore
Y (A) is a simplicial polyhedral fan.

Example 2.6.3. Let A be the finite-dimensional K-algebra of Example[2.2.6] Its poset
of 7-tilting pairs is displayed in Fig. The g-vectors of the indecomposable projective
modules é and 2 are given by the standard basis vectors e; and ey of R2, respectively.
Moreover, the minimal projective presentations of the other indecomposable 7-rigid

modules are as follows:

12 1 1
%—>(2)—>1 2 — 0, 252210
2 2 2

The g-vector fan ¥(A) of A is displayed in Fig.

As demonstrated in the 7-cluster morphism category 20(A) can be constructed
from the g-vector fan ¥(A). In the remainder of this section, this construction is recalled.
Denote by X°(A) the poset of interior cones of ¥(A) induced by the poset structure of
Y (A). That is, 3°(A) is a category with a unique morphism Jeor.pCingy Whenever

Definition 2.6.4. [169] Def. 3.3] Let A be a finite-dimensional algebra. Define €(A)

to be the category
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Figure 2.7: The g-vector fan X(A) of Example [2.6.3

« whose objects are equivalence classes of interior g-vector cones C(js p), coming
from Cyy, p) € X(A), under the identification Cys, p;y ~ C(ar,,p,) Whenever their
corresponding 7-perpendicular subcategories Wy, p,) and Wy, p,) coincide;

o whose morphisms Homg(4)([C(as,p)]s [Cv,)]) are given by the set of morphisms

U Homye () Coar py: v @)
C(M/’P/)G[C(M,P)]vc(N/’Q/)E[C(N,Q)]

under the identification fC(M P CN- .0 whenever
171 11

~ fC(MQ,P2>C<N2,Q2>

TCmy Py (C(Nlan)) = TCa, . py) (C(N%Qz))’

where T : R 5 span(C L denotes the orthogonal projection of R
Ca,p) p (M,P)

onto the orthogonal complement of span(Cyy,p))-

This definition omits the composition of morphisms again, which will be made precise

in the subsequent chapter.
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Theorem 2.6.5. Thm. 1] The category €(A) defined from the g-vector fan 3(A)
is equivalent to 2(A).

The advantage of Definition over Definition lies in showing that composi-
tion of morphisms is associative, but gives rise to certain ambiguities since equivalence

classes are involved. This issue is discussed further in the subsequent chapter.

Example 2.6.6. Let A be the finite-dimensional K-algebra of Example and com-
pare the cubical structure of BQJ(A) displayed in Fig. with the g-vector fan X (A)
displayed in Fig. The similarities between the two figures illustrates Theorem



Chapter 3

The category of a partitioned fan

The starting point for this chapter is the geometric Definition [2.6.4] of the 7-cluster mor-
phism category from the g-vector fan. In Section [3.1] the necessary geometric properties
are extracted from this construction and the category generalised to arbitrary simplicial
polyhedral fans. In this general setting, the algebraic information on which cones of
the fan should be identified is not available, which leads to the definition of admissible
partitions of the fan in Definition An admissible partition guarantees that when
mimicking the construction, the resulting category, called the the category of a parti-
tioned fan, is well-defined, see Proposition This raises the question which of the
properties of the 7-cluster morphism category are satisfied by these categories. In Sec-
tion[3.2] it is shown that all categories constructed from admissible partitions are cubical,
see Section and that their classifying spaces thus form cube complexes. Moreover,
in Section these classifying space are shown to have the structure of CW-complexes
which simplifies studying their fundamental groups. By generalising Definition in
Definition a geometric analogue of the picture group is defined for any finite com-
plete fan whose maximal cones are equipped with a well-behaved (fan) poset. Then, the
relationship between this group and the fundamental group of the category is investi-
gated. In Section the focus lies on fans in R? , where it is characterised when the
three parts of the sufficient condition of Proposition [2.4.4]are satisfied. This yields many
examples of K (m, 1) spaces. In a similar way, in Section the existence of a faithful

group functor from the category, is proven to hold for the category of a partitioned fan

36
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whenever the fan is a hyperplane arrangement and the partition is maximal. This result
is extended to all partitions in Section by showing that the collection of admissible
partitions, and hence of their associated categories, forms a complete lattice. Moreover,
the existence of a faithful group functor is inherited by finer, that is, “smaller” in the lat-
tice, partitions. Finally, in Section [3.8] these general results are applied to the 7-cluster
morphism category of an algebra. In particular, to show that whenever the g-vector fan
Y(A) is a finite hyperplane arrangement, then the 7-cluster morphism category admits
a faithful group functor to the picture group. This gives a new family of algebras ad-

mitting a faithful group functor, extending those listed in Example one particular
example is given in Example

3.1 Definition of the category

Let ¥ be a polyhedral fan in R". Recall that the collection of cones containing a cone o of
3 is denoted by star(c) = {p € ¥ : o C p}. Cones which are identified in Definition [2.6.4]
“have the same relative fan structure around them”. To make this statement precise,
let 7, : R" — span{a}J‘ be the projection onto the orthogonal complement of o.
For each cone o € R", this defines another fan m,(star(c)). Then two cones oq,0,
of ¥ which are identified in Definition satisfy both span{o;}" = span{oy}" as
well as 7, (star(oy)) = m,,(star(oy)). Importantly, not all pairs of cones sharing these
properties are identified. However, when generalising from the g-vector fan of a finite-
dimensional algebra to an arbitrary simplicial fan, the information of which cones to
identify is lost. Therefore, consider for each cone o; € X the collection of potential

identifications
&y, ={op€X: span{c, }= = span{oy}" and T, (star(oy)) = 7, (star(og))}

It is clear that this is an equivalence relation and therefore £, = &, for any two
cones sharing these properties. Now the set of potential identifications may be parti-
tioned into sets of actual identifications. Recall, that a partition of a set X is a set P
of nonempty pairwise-disjoint subsets, called blocks, of X whose union is X. In other

words, each &, is split into blocks &L, ..., &M for some 1 < m, < |€,| such that these
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coincide for all representatives of ¢ € &,. This induces a partition B of the fan X, for

which o; ~ 0y whenever g,,0,5 € 55 for some 1 < k <m, and o € 3.

Definition 3.1.1. A partition *J8 of ¥ as described above is called admissible if whenever
o1 ~ 09 are such that 7, (p;) = 7,,(ps) for some p; € star(o;) and p, € star(oy), then
p1 ~ po. A partitioned fan is a pair (3,B) of a simplicial fan ¥ and an admissible

partition B of X.

This says that if two cones o;,0, are in the same equivalence class, then any two
cones in their respective stars which are “in the same relative position” should be identi-
fied. This restriction is necessary to make the composition of morphisms in the category
of a partitioned fan well-defined. It is not obvious that nontrivial admissible partitions
exist, because the cones py, py in the definition might not satisty £, = &,,. In other
words it might not be possible to identify p; and p, with the rules defined above. Before
proving that nontrivial admissible partitions always exist, recall the following elemen-

tary result from linear algebra, whose proof is included for the sake of completeness.

Lemma 3.1.2. Letc Cpe X", thenm,on, =

P pr
Proof. Every vector v € R" has a unique orthogonal decomposition v = 7, (v) + p,(v),
where p, : R" — span{c} is the orthogonal projection onto the subspace of R" spanned
by o. Then

7, (v) = my(76(v) + Py (v) = 7, 0 7, (v) + 7 © Py (V).

But since p,(v) C span{p}, it follows that m, o p, = 0. O

The following result shows that admissible partitions exist by showing that the

relevant cones lie in the same set of potential identifications.

Lemma 3.1.3. Let 01 ~ oy in €(X,B). If there exist p; € star(oy) and py € star(oy)

such that m, (p1) = T4, (p2), then py, py € E, for some p € 3.

Proof. By definition, one needs to show that in this case span{p;}= = span{p,}* and
m,, (star(py)) = 7, (star(py)) are satisfied, which directly implies py,p € €, = &,,.

Because 7, (p1) Moy = {0}, it is possible to take any basis By of 7, (p1) = 7,,(ps) and
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any basis By of span(o;) = span(o,) and then obtain a basis B; U By of span{p;} and
span{p,}. This implies span{p;}~ = span{p,}*, as required.

To show that m, (star(p;)) = 7, (star(py)) holds, Lemma is invoked. For
o,p € X such that 0 C p, write stars;(p) to mean the star of p in ¥, and write
stary (star(o))(To(p)) to mean the star of m,(p) in m,(star(c)). It is easy to see that
stary (star(o)) (Mo (p)) = m,(starg(p)) holds. From o; C p; for i = 1,2 and oy ~ oy it

follows that 7, (star(p;)) = 7,,(star(ps)) holds. In conclusion

Ty, (star(py)) = m,, (14, (star(py))) = mp, (g, (star(ps))) = m,, (star(pz)),

holds by Lemma since 7, = m, . Therefore, £, =& O

p2”

Thus, admissible partitions exist and throughout this chapter, let 3 denote an ad-
missible partition. Using admissible partitions it is now possible to generalise Defini-
tion This definition and the subsequent discussion make precise the definition of

composition of morphisms omitted in Definition

Definition 3.1.4. Given a partitioned fan (X, ), define the category of the partitioned
fan €(X,B) as follows:
(1) The objects of €(X,) are equivalence classes [o] of the partition B of 3;
(2) The set of morphisms Homg s, g ([0], [p]) consists of equivalence classes of objects
in
U Homs(o;,p;)
ai€lol,p;€lp]
under the equivalence relation where f, , ~ f, , ifand only if 7, (p1) = 75, (p2);
(3) Given [fy,] € Homgs q)([o], [£]) and [f,,,] € Homeg(s g ([#], [p]), their composition
is defined as [f,] o [for] = [fop)-

Because there exists a unique morphism f,, in the poset category 3 whenever o C p,
any two compositions of morphisms [f, ,] o [f,.,] and [f.,,] © [fsx,] Which map to the
same representative of an equivalence class coincide. Similar to [169} Rem. 3.5] it is not

clear that the composition of morphisms in €(X%,9) is well-defined for two reasons:
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(1) In order to define the composition of two nonzero morphisms [f, . | and [f,,,,]

where K1 ~ Ky there must exist a morphism f, , ~ fx,,, so that
[fezps) © forn) = [forp,)-

(2) Given morphisms f; . ~ f, ., and f. , ~ f., ,, it needs to be shown that

[fnlpl] o [falm] = [f,@pg] o [fogl-eg]’

In an analogous way to [169] Lem. 3.9, Lem. 3.10], these problems are resolved by

the following two lemmas.

Lemma 3.1.5. For any two morphisms [f, .| and [f.,,,] in €(X,B) with k1 ~ ky

there exists a morphism f, , ~ fr,p, With p1 ~ ps.

Proof. Since k1 ~ Ky it follows by definition that m, (star(k;)) = 7, (star(xy)). Thus,
for each py € star(ky) there exists p; € star(s;) such that 7, (p;) = 7, (p2). Since the
partition is admissible, it follows that therefore p; ~ py. Thus, there exists a morphism

Jr,p, Which satisfies f. , ~ fq . - O

The following is a special case of Lemma where 01 = Ky, which will be used

repeatedly throughout.

Corollary 3.1.6. Let P be an admissible partition and let f,,, be a morphism of the
poset category ¥. If o ~ oy in P, then there exists a morphism f, , in the poset

category such that f, , ~ fq,,, 1M €L, P).

The second concern regarding composition of morphisms in €(X,B) is resolved as

follows.

Lemma 3.1.7. Let f; 1, ~ fo,n, and [ ) ~ fiyp, be two pairs of identified morphisms

in C(E,‘B) Then {fnlpl] o [folnl] = [fn2p2] o [fUQKQ]'

Proof. By assumption the equalities 7, (k1) = 7,,(k2) and 7, (p1) = 7.,(p2) hold.
Now take two vectors wy € ky and wy € Ko such that 7, (w;) = 7,,(wy) and take
v € Ty, (p1) = T, (p2). Then, similar to the proof of Lemma a basis of span{p; }

consists of the union of a basis of x; and a basis of 7, (p;). Hence there exists a scalar
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€; > 0 such that w; + ;v € p;. Similarly, there exists €5 > 0 such that wy + e5v € p,.

Set § = min{ey, €5}, then w; + dv € p; for ¢ = 1,2. Then
T, (W1 4 00) = 75 (wy) + 074, (V) = Ty, (W3) + 674, (V) = Ty, (wy + S0).

Hence 7, (p1) N7y, (p2) # {0}. Because of the equivalence of fans between 7, (star o)

and 7, (star oy), the intersection is either zero or the two projections coincide. This

implies 7, (p1) = 74, (p2) and thus f, , ~ fs,,,- O

As a consequence of Lemma and Lemma [3.1.7] the composition of morphisms
in €(X,P) is well-defined and therefore the following holds.

Proposition 3.1.8. The category of Definition s well-defined.

Example 3.1.9. Consider the complete fan X(FF,) in Fig. The possible identifica-

tions for this fan are:

& = {0}7 gal = {O-l}a 502 = {02’04}7 503 = {03}7 5/«;1 = {"Qla ”27“3,/{4}'

The trivial case of not making any identifications gives the standard poset category
(3,C) = (X, Bposet) Whose classifying space is the disk, or more specifically a square.
Only two cones of dimension 1 may be identified since their linear spans coincide, namely
09 and o4. Moreover, they are such that 7, (ky) = 7, (k1) and 7, (k3) = 7, (k4) and
therefore to make the partition admissible, one must identify the cones in the following
way:

P = {{0}, {01}, {02, 04}, {03}, {K1, K2}, {3, K4} }-

The category is displayed in Fig. where the identified morphisms are given the
same label and colour. The classifying space is a cylinder and is obtained from the square
by identifying the opposite “sides” ky <— 04 — k1 and k3 < 09 — Ky, see Section [3.3|for
more details. It is also possible to additionally identify all rank 2 cones whose classifying
space would join the two ends of the cylinder in one point. If the rank 1 cones are not
identified, arbitrary identifications may be made among the rank 2 cones, giving rise to
the topological spaces coming from a square with any combination of vertices identified.

Recall for Fig. that any two compositions having the same target are identified.
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Pay

[ > X

[p2] == [p1]

Figure 3.1: The category of the partitioned fan (X,93,), with 3(F,) as in Fig. |2.5a

3.2 Cubical structure

In this section, it is shown that the category €(X,B) of a partitioned fan is cubical, see
Definition The rank of a morphism [f,, /] in €(3,B) is defined to be the difference

of the dimensions of the cones, in other words,
rk([f,,]) = dim p — dim 0.

This is well-defined since two identified cones oy ~ oy in €(X,) have the same
linear span in R" by definition and therefore the same dimension. As a starting point,
consider the finest partition, the trivial poset partition 9, of the fan. In this case

the category €(3, Pposet) is just the poset category naturally associated with the fan.

Lemma 3.2.1. Let X be a simplicial fan. The category €(X,B,qset) satisfies Condition
(2) of Definition |2.4.1,

Proof. Let 0 C p € X be two cones and consider the morphism [f;,] € €(2, Bposet)-

Assume that dimo = k and dim p = £. Then p can be expressed as
p =cone{vy,...,vy_p,0} €Y,

where vy, ...,vy_;, € X are the linearly independent dimension 1 cones of 3 generating

p which are not contained in ¢. This way of writing p is unique. The following bijection
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between objects of Z* and Faq(] fop)) induces an isomorphism of categories

Igik - FaQ([fUp])
{1,...,0 =k} DS+ (6 — cone {{v; };cs,0} — p),

where morphisms are induced by the poset structures, in other words S C P € 7% i
and only if cone {{v;};cq,0} C cone{{v;};cp,o}. It is clear how to define the inverse

and that this is an isomorphism. O

Since more general categories of a partitioned fan are constructed from the poset
category €(3,Bposet) Via identifications, the following key lemma is essential in under-
standing how the category changes when cones are identified. In particular, it shows

that two morphisms which are identified have coinciding factorisation cubes.

Lemma 3.2.2. Let 0,09,p1,po € ¥ be distinct cones such that f, , ~ fg,,, 0

fo'lnl f’“”lﬁl
Y

C(X,B). Then for every factorisation o,

. . . f52}€2 fﬁ2p2 .
unique factorisation oq Ko p2 Of fo,p, such that ki ~ ky. In this case

falnl ~ fa'2n2 and fmlpl ~ fﬁgpg hold in C(Zam)

p1 of fs,p, there exists a

Proof. 1f 01 or g4 is a maximal cone, then such p; and py do not exist and the result is
trivial. Therefore assume that o; and o, are not maximal. By assumption o; ~ o, and
p1 ~ pg and thus m, (star(oy)) = 7, (star(cy)). So for every sy € star(oy) satisfying
k1 C p; there exists a unique ko € star(oy) such that m, (k) = 7,,(k2). Because
the partition P is admissible and o; ~ o9, this implies that x; ~ k9. This implies

Joyry ~ Joun, Dy definition. These cones satisfy ry C po, since

WUQ(HQ) = 7TO'1 (Kl) g 7TO'1 (pl) = 71—0'2 (pZ)
implies that k9 is a face of py. It is clear that o; C k; implies /ﬁj‘ C Uf‘ for i = 1,2.
Hence Lemma may be applied to show that f, , ~ f. , by observing that
U (pl) = Ty (7T01 (Pl)) = Tk, (7‘—02 (pZ)) = Tk, (PQ)
holds since 7, (p1) = 74, (p2) follows from f, , ~ f;,,, by definition. O
Therefore, the category €(X,) of a partitioned fan satisfies Condition (2) of Defi-

nition for any admissible partition. The following example illustrates the identifi-

cation of factorisation cubes described in the previous lemma.
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Example 3.2.3. Consider the standard coordinate fan ¥ in R? whose cones are spanned
by the linearly independent (nonnegative) combinations of the vectors t+e; € R?. Choose
a partition P such that e; ~ —e; € €(X,P). For P to be admissible the factorisation

cubes of [fe, conefe;,en.es}) AN [f_c| conef{—e;eq,e5}] MUst be identified as follows:

[cone{e; }] === [cone{—e;}]
., \

\ .

coneley al) — [oone{epal] - [oome{seal] — [conef-er)
[cone{eq, eq,e3}] = [cone{—eq, ey, e3}]

Consider the following analogue of Lem. 2.5b] a tool for showing Condition (3)
of Definition

Lemma 3.2.4. Let [f,,] € &(X,B). There exists exactly one morphism
h h
(fo] 22 1] 25 o)) = (o] 22 [\ =25 [p))
in Faq([f,,]) whenever k1 C Ay for some ry € [5] and Ay € [\] and none otherwise.

Proof. If there exist two morphisms [f,. ] # [fs,x,] in Faq([f,,]), consider the repre-
sentatives Ky ~ ko and Ay ~ Ay in the equivalence classes. It is immediate from the rule
for identifying morphisms that if Ky = Ky, then A\; = Ay. Conversely, if A\; = Ay but
K1 7 Kq, then span(k;) = span(ky) gives a contradiction to the cones being simplicial.
Thus we may assume that if the morphisms are distinct so are the cones. Assume there
exists only one representative o € [o], then Kk, ky € star(o) implies 7, (k1) # Ty (ko).
Hence [f,,,] # [fr,] Which is a contradiction since they both equal [g;]. It follows that
there need to be distinct representatives 0,09 € [0] and thus there are two sets of
inclusions o; C x; C A; satisfying [f;.5.] = [g2] for i = 1,2. Then Lemma implies

that [f. ] = [fs,,); @ contradiction. The (non-)existence is obvious. O

Notice however, that there is not necessarily a unique morphism [k] — [A] in €(X,‘B)

in general. However, if one k; C \; exists, then there exist x; C \; for every k; € [k],
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such that A; € [A\] and f, . € [f.\] by Lemma This sets up the proof of the third

condition of the definition of a cubical category.

Lemma 3.2.5. Let [f,,] be a morphism in &(X,B). The forgetful functor

Faq([fop]) = €(X, %)

([o] = [x] = [p]) = [K]
is an embedding.

Proof. Consider two distinct factorisations of a morphism [f,,] € €(%, %) given by

Foyre,] Fry,] Fgry) [Fregpo]

[p2]

[£i1] [p1] and  [oy] (o]

satisfying [k;] = [k]. Without loss of generality, by Lemma assume that oy = oy

[01]

and p; = pg. Assume K # Ky. Then, since k; and k9 have the same linear span but are
distinct, it follows that there is no generator of one which is linearly independent with
respect to the generators of the other and thus they cannot both be contained in the
same simplicial cone p. Hence p; and py have to be distinct maximal cones, yielding a
contradiction. Thus k; = kg, so that the functor is injective-on-objects. Additionally,

the functor is faithful since there exists at most one morphism between any two objects

in Faq([f,,]) by Lemma O

In €(%,), like in the poset category of the fan ¥, the irreducible morphisms are
exactly the morphisms of rank 1. Hence, given a morphism [f,,] € €(3,B) where
dim(p) = ¢ and dim(o) = k, write p = cone{o,vy,...,v,_;}. Then it is easily seen that
the ¢ — k first factors are the rank 1 morphisms [f,,. ], where &, := cone{c,v;} C p and

the last factors are the rank 1 morphisms [fy ,], where
A; = cone{o, vy, ..., Vi1, V41, Vg i)
Putting the above results together yields the following.
Theorem 3.2.6. The category €(3,B) of a partitioned fan is cubical.

Proof. As stated at the beginning of this section, the rank of a morphism is given
by 1k([fs,]) = dim p — dimo. Condition (2) of Definition follows from combin-
ing Lemma and Lemma whereas Condition (3) was shown explicitly in
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Lemma Let [f,,] € €(X,%) be a morphism. Given a choice of representative
[y € [f+p); the first factors are given by {] fg/ng]}f;f , where k; C p’ are constructed
from o’ and p’ as above. It is then clear that they uniquely determine the morphism
[falpl] by writing p’ = cone{o’, k], ..., ky_;}. On the other hand, the last factors [fx.p]

are easily seen to determine the morphism [f,,,], where o = ﬂf:f A O

3.3 Classifying spaces as a CW-complexes

The previous section established that categories of partitioned fans are cubical cate-
gories, hence it is natural to study their topological properties next. Throughout this
section, let ¥ be a finite and complete fan in R" and 3 an admissible partition of X.
In this case, the classifying space of the category €(X,3) can be described as a finite
CW-complex, similar to , and .

A CW-complex X is a topological space of particular importance in algebraic topol-
ogy. It is constructed starting with a discrete set X 0, called 0-cells. Tteratively, the k-
skeleton X" is formed from X*! by attaching k-cells ef via maps ; : SEE o X for
some index set I. Hence X* is the quotient space of the disjoint union X k=1 Licr Df
of X*7! with a collection of k-disks {D!};c; under the identification z ~ ¢;(x) for
T € an. As a set, X" is the disjoint union of X" with open k-disks. The name
CW-complex comes from two properties of such complexes: closure-finiteness and weak
topology. Furthermore, the fundamental group of CW-complexes is completely deter-
mined by their 1-cells and 2-cells. For more details see . In the following construction
of the CW-complex BE(X, ), each cell is the (topological) cone of the simplicial sphere
described in the following definition, hence a disk.

Definition 3.3.1. Let (X,) be a partitioned fan and o € 3 be of dimension k # n.
Define S(c) to be the simplicial complex whose vertices are the cones p € star(a)"™

and for which {pi}f;f spans a simplex if and only if

COHG{WU(pl), s 77Ta(p€—k:)} € Wa(Star(U))'
Lemma 3.3.2. §(0) is homeomorphic to an (n — k — 1)-sphere.

Proof. By intersecting a finite and complete simplicial fan in R" with a (n — 1)-sphere
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centred at the origin, one obtains the geometric realisation of ¥ to be an (n — 1)-sphere.
Similarly for S(o), the projection 7, (star(o)) is a finite and complete simplicial fan and

thus its geometric realisation is a (n — dim(o) — 1)-sphere. O

Note that all representatives o; € [o] define isomorphic simplicial complexes because
0; ~ o, implies that the fans , (staroy) = 7, (staroy) coincide. Therefore, given an
equivalence class [o] € B, denote by [S(0)] the isomorphism class of simplicial complexes

S(o;) for o; € [o].

Example 3.3.3. Consider the fan ¥ given in Fig. which is the complete fan un-
derlying the toric variety P! x P! and at the same time the g-vector fan of a semisimple
algebra with two isomorphism classes of simple modules. In Fig. (the geometric
realisation of) the simplicial complex S(0) is seen to be homeomorphic to a 1-sphere,
where the vertices are labelled by the defining cones. Similarly, in Fig. [3.2c|the simplicial

complex S(oy) consists only of the vertices and is a O-sphere.

0y

A 04 ,01

°
Pa | P1

93 € > 01 o4 o

P3 P2

~ °

02 02 P2

(a) The complete fan ¥ (b) The complex S(0) (¢) The complex S(o;)

Figure 3.2: An example of the simplicial complexes of a fan.

The remainder of this subsection is devoted to proving the following result. Its proof
closely follows that of Prop. 4.7]. Thus, identify each morphism [f, ] € €(%,)
with its factorisation cube in BE(X,P).

Theorem 3.3.4. Let X be a finite and complete fan in R™ and B an admissible partition
of ¥. The classifying space BE(X,B) is a n-dimensional CW-complex having one cell
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e([o]) of dimension k = n—dim(o) for each equivalence class [o] € B. The k-cell e([o])

is the union of the factorisation cubes of the morphisms [f,,], where p € star(o)".

Proof. Let e([o]) be the union of factorisation cubes of all morphisms [f,,], where p is
in star(o)". To obtain the CW-structure of BE(X,), one must show that each e([o])
is a disk of dimension k& = n — dim(o) attached to lower dimensional cells along its

boundary. This is achieved in three steps.

Step 1: Starting with the disjoint union of factorisation cubes.

Let 01,09 € [o] and let p; € star(oy) and py € star(oy) be maximal cones such that
Jorpy ~ Jfoyp,- From Lemma it follows that factorisation cubes of the two morphisms
[fo,p,) and [f,,,,] are identified, hence it suffices to consider only one representative
o € [o] by Corollary First, define the disjoint union of factorisation cubes to
be X([o]) = Upestar(o)”[fop)- It is clear that a face of the factorisation cube of [f, ]
corresponds to the factorisation cube of some morphism [f,,] satisfying o C k C X C p.
Consider the equivalence relation ~; on X ([o]) which identifies faces corresponding to
the same morphism. By definition this gives e([o]) = X([o])/ ~i. Now split ~; into
two types of identifications. First, only identify factorisation cubes of morphisms of the
form [f,,] and denote this equivalence relation on X([o]) by ~y. After showing that
the resulting space is a disk, let ~3 identify the factorisation cubes of morphisms [f, ]

not starting at ¢ for which it is shown that the identifications of ~3 occur only on the

boundary. Thus since X ([0])/ ~1= (X ([o])/ ~3)/ ~3 the desired result follows.

Step 2: Showing that X ([o])/ ~5 is a disk.

The strategy is to compare the quotient space X ([o])/ ~o with the classifying space of

the following category.

Definition 3.3.5. Given an object [0] € €(X,B), the under category (or coslice cate-
gory), denoted by [0]\&€(X,P), is the category whose objects are morphisms [o] — [p]

in ¢(%,B) and whose morphisms ([o] — [p1]) = ([o] — [ps]) are morphisms [f, , ]
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making the following triangle commute:

o]

UUV %m]
(Foy 0]

(1] [p2]

The 0O-simplices of the classifying space B([c]\€(X,*B)) are in bijection with (identity
morphisms of) elements of [¢]\&(X,). There exists one 0-simplex for every cone in
star(o). It follows from Lemmathat this category is a poset category, and one can
easily observe that B([o]\C(X,P)) = X ([o])/ ~a.

There is a bijection between those 0-simplices of B([c]\€(X,)), which correspond
to cones of dimension dim(o) + 1 in star(o), and vertices of the simplicial complex
S(o) of Definition The other 0-simplices of B([c]\€(3,P)) correspond to cones
p € star(o) of dimension equal to dim(o) + £ for ¢ € {2,...,k} and are in bijection
with the (¢ — 1)-simplices of the simplicial complex S(o), recalling that oy ~ oy implies
[S(01)] = [S(09)]. Therefore B([o]\€(XZ,)) may be viewed as the cone with cone point
[fs] over S(o). This implies that B([o]\€(X,R)) and consequently X ([o])/ ~» is an
(n — k — 1)-disk.

Step 3: Showing that identifications happen on the boundary.

Define ~3 to be the equivalence relation on B([¢]\€(X,)) identifying all faces corre-
sponding to the same morphism [f, ] for [] # [0]. By definition there is a homeomor-
phism e([o]) = (B([¢]\€(X,D)))/ ~3. From the construction of B([c]\€(X,B)) as the
cone over S(o), it follows from Lemma 3.3.2]that the link of [f,,] is a (n —k — 1)-sphere.
Hence [f,,] is in the interior of the disk. Consider now a different 0-simplex [f,,] of
B([o]\€(3,B)). Then its link 1k([f,,]) is given by the simplicial join of:
o the link of [f,,] in B([p]\€(%,*B)), which is the part of Ik([f,,]) in the boundary
of e([o]); and
o the link of [o] [_ﬁ._,J_} (0] M [p] in the factorisation cube [f,,], which is the part
of Ik([f,,]) in the interior of e([o]).
This is the join of an (n — dim(p) — 1)-sphere with a (dim(p) — dim(o) — 1)-disk, which
is a (k —1)-disk. Thus [f,,] is a boundary vertex of B([o]\&€(%,%)). Any simplex which
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contains the cone point [f,,] has to be the only representative in its equivalence class of
~3, by definition. It follows that ~3 identifies simplices containing exclusively simplices
on the boundary of B([¢]\&€(X,)). Moreover, these identified simplices are factorisation
cubes of morphisms of rank strictly less than k. Hence e([o]) is attached to lower-

dimensional cells. This concludes the proof of Theorem [3.3.4] O

Example 3.3.6. Consider the complete fan of Fig.[3.2a] with the partition B identifying
o1 ~ o3 and o9 ~ 4. This partition implies the identification of all maximal cones. In
Fig. the three steps of constructing the 2-cell e(]0]) are illustrated. To begin, consider
the disjoint union of factorisation cubes in Fig. Then ~4 identifies corresponding
factorisation cubes of morphisms starting at 0, which are labelled with the same number.
The resulting space is a disk with only one O-simplex in the interior. Then ~3 identifies
all factorisation cubes of morphisms on the boundary which are identified in €(3,B).
For example, in this partition [f,,,,] = [fs,p,], Which are labelled “5” in Fig. A
detailed picture of X ([0])/ ~o= B([0]\€(X,P)) is given in Fig. These identifications
give the 2-cell e([0]) of the classifying space BE(X,B) to be a torus.

3.4 Picture groups and fan posets

In this section, let 3 be a finite and complete fan in R™ and 3 an admissible partition,
so that the maximal cones of ¥ may be equipped with a well-behaved poset structure
following Sec. 3]. This poset is called weak fan poset and is a straightforward
generalisation of the notion of a fan poset introduced in Sec. 3]. The poset structure

gives rise to a geometric generalisation of the picture group.

Definition 3.4.1. A fan poset is a pair (X, P) where ¥ is a finite and complete fan in
R™ and P is a finite poset whose elements are the maximal cones of ¥, subject to the

following conditions:

(1) For every cone o € X, the set of maximal cones star(c)" containing o is an interval
in P, which is denoted by [0, 0] and called a facial interval.
(2) For every interval I of P, the union of all maximal cones in I is a convex polyhedral

cone, which is not required to be strongly convex.
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(c) (X([O])/ ~2)/ ~s

Figure 3.3: The construction of e([0]) from factorisation cubes.

For example, the poset of regions of a central simplicial hyperplane arrangement
with an arbitrary choice of base region as defined by Edelman defines a fan poset
by Thm. 4.2]. Moreover, g-vector fans of 7-tilting finite algebras are equipped
with a natural fan poset induced by the poset of torsion classes as will be shown in
Proposition To achieve greater generality the definition above is weakened in the

following way.

Definition 3.4.2. A weak fan poset is a pair (X, P) where ¥ is a finite and complete
fan in R" and P is a finite poset whose elements are the maximal cones of 3, subject

to the following conditions:

(1) For every cone o € ¥, the set of maximal cones star(c)" containing o is an interval

in P, which is denoted by [0, 0] and called a facial interval.

(2) Every cover relation p; < ps in P can be viewed as a facial interval [¢~, o] for a

(n — 1)-dimensional cone o = p; N py.
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Figure 3.4: The classifying space B([0] \ €(3,B)).

The result [156] Prop. 3.3] implies that if (X,P) is a fan poset then it is also a weak
fan poset. A triple (2,93, P) is called a partitioned fan poset if (3,B) is a partitioned

fan and (X, P) is a weak fan poset.

Example 3.4.3. Consider the fan of the Hirzebruch surface in Fig. then the poset
‘P whose two maximal chains are given by k3 < kg < k1 and k3 < k4 < K1 With no other
cover relations forms a weak fan poset but not a fan poset, since the union kg U k3 is

not a convex polyhedral cone.

Similar to the brick labelling in the lattice of torsion classes, see Section if
(X,P) is a weak fan poset, the arrows of Hasse(P) can be labelled with the cone of
codimension 1 giving rise to the cover relation. This idea is used to define the picture

group of a partitioned fan with a choice of fan poset.

Definition 3.4.4. Let (X,9,P) be a partitioned fan poset. Define the picture group
G(X,%,P) to have generators { X[, : 0 € Enfl} and the following sets of relations:

’

(1) Xigy] - Xjop] = X[a’l] ... X, s, whenever py 5 ... 2% p; and py -5 ... 25 p; are

(%]
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two distinct ordered sequences of cones of codimension 1 labelling the arrows of
some maximal chain of an interval [py, py] in Hasse(P). Let this group element be

denoted by X, ,., and let X}, ; = e for all p € ¥";

(2) Xy o = Xy o whenever [fy,] = [frye,] in €(Z.50).

[o1 551 ]

Notice that the picture group G(X,P,P) satisfies X, ,1X] = X, p, for a

p1p2]

sequence p; < py < p3 in P. In Section [3.8] it is shown that the picture group defined
for 7-tilting finite algebras in Definition [2.3.2]may be recovered through Definition [3.4.4]
Given a fan ¥, different choices of a weak fan poset (X,P) may define nonisomorphic
picture groups. Moreover, it is possible that some generators become trivial due to the
relation X|,; = e arising from relations of the second type in Definition

ome trivial due to the relation X|,) = e arising from relations of the second type in

Definition

Example 3.4.5. Consider the algebra A of Example whose g-vector fan is dis-
played in Fig. Consider the poset P defined by the cover relations

Ci o <C <C/y\<Cpi , N, d
() <Coten) “Ced) Cltazay ™

1
2
0,24
b b
2 2 27,

C/ oy<C 1 <Cn 1 <C/ R .
(1,2) <1@122,0) (2@122,0> (;@2,0)

Let B be any admissible partition of 3(A) which identifies the g-vector cones @( )

20

and 5(0 2y Then the relations of the second type in Definition |3.4.4| impose that

’2

in G(X(A),B,P).
This prompts the following definition.

Definition 3.4.6. A partitioned fan poset (3,5, P) is called nondegenerate if for any
two cones 0,09 € X" such that oy ~q 09, the equality [f, ) ] = [fs,p,] D €(3,F)
implies that either o1 = p; and o5 = p, or that o1 # p; and oy # ps.

In a similar spirit, for a partitioned fan poset (3,9, P), the poset P is said to be

well-defined on identified stars whenever the induced fan posets P|, and P|, on
91 92
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o, (star 0q) and 7, (star oy) coincide for distinct cones 01,09 € ¥ such that [o4] = [0]

in €(X,9). These two notions are equivalent.

Lemma 3.4.7. A fan poset (X, P) is nondegenerate if and only if P is well-defined on
identified stars. In this case the second set of relations of Definition s trivially
satisfied.

Proof. (<=).If [f,,,,] = [fs,p,], then by definition 7, (p1) = 7,,(p2). If 01 = p; holds,
then 7, (p2) = 75, (p1) = 75, (01 ) = 7,4, (02 ) Where the last equality uses the fact that
the induced posets on the stars coincide, that is, the fan poset being well-defined on

identifies stars implies the following sequence of equalities holds:

Ty (01_) = Tg, (01) = T, (02) = To, (02_)

Thus py = 05 . If 07 # p; we must have o7 = p; and the same argument shows o5 = po,
50 05 # 03 = pa.

(=). Since the poset is determined by cover relations, there exists oy ~g oy of
codimension 1, such that 7, (01) 1 # m,, (02) °2. Here, taking 7~ on the left-hand
side is done with respect to 73|7T01, whereas it is done with respect to 'P\ﬂ% on the
right-hand side. From this it follows that 7, (01) # m,, (02 ). Since the projections

coincide and o; is of codimension 1 it follows that then 7, (07 ) = 7TU2(J;_ ). However,

then | fglgl_] = f@a;] yields a contradiction to non-degeneracy.
The moreover part holds in this case: By definition [f, , | = [fs,,,] implies that

T, (P1) = T4, (p2) and since the poset is well-defined on identified stars it follows that
T, (01) = 74, (0 ) and similarly 7, (p; ) = 7,,(py ). Since the paths from m, (p; ) to
7y, (0; ) coincide in the projection for i = 1,2 and the partition is admissible, the labels

of the paths from p; to o; must be pairwise identified. O

The assumption on a (weak) fan poset P of the following lemma is referred to as P

being induced by a linear functional b € (R™)" in [156] Sec. 3].

Lemma 3.4.8. Let (X, P) be a weak fan poset. Let b : R" — R be a linear map. For
any py < py in P, let v be the unit normal vector to the hyperplane span{p; N py} C R"

separating p; from ps, oriented to point from py to py. If every p; < py in P with
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corresponding v is such that b(v) > 0, then the poset is nondegenerate, equivalently,

well-defined on identified stars.

Proof. Any poset is determined by its cover relations. Let [o(] = [05] € €(X,B) be an
equivalence class of cones of codimension 1. Assume for a contradiction that p; < p,
is the cover relation given by the star of oy and p3 < p, the covering relation given by
the star of o, such that 7, (p1) = 7,,(ps) and 7, (p2) = 7,,(p3), that is to say not
well-defined on identified stars. Then the normal vector vy pointing from p; to p, is
orthogonal to the hyperplane span{o, } and satisfies b(v;) > 0, but at the same time the
normal vector vy pointing from ps to p, is orthogonal to the hyperplane span{o,} and
satisfies b(ry) > 0. Since [01] = [09] the cones satisfy span{c;} = span{o,}, it follows

that vy = —1y, but then either b(r;) < 0 or b(r,) < 0, a contradiction. O

In a similar way to Prop. 4.4d], the following alternative presentation of the
picture group makes the connection of Definition with Definition more ap-

parent.

Lemma 3.4.9. If P is nondegenerate, the picture group G(%,B,P) may be presented
with the set of generators { X, : 0 € En_l} U{g,:pe X"} and a relation

9py = X[‘T]gpl
if there is an arrow py = py in Hasse(P) labelled by o and the relation gy =€

Proof. Let H be a group with presentation given as above and let pq RN pp and
Do SN p1 be two distinct sequences of codimension 1 cones labelling the arrows
of some maximal chain in the interval [p;, po] C P. These sequences of codimension 1

cones give rise to the relation

Xiow - Xlow1 = 9p2 = Xioty -+ X190,
in H which implies that H satisfies the relation X, ... X[5,] = X[o’l] .. 'X[g;] as re-
quired. Since P has a minimal element 0, there exists a sequence p 2 0

labelling the arrows of a maximal chain in the interval [0, p] in Hasse(P). Therefore

the generators corresponding to maximal cones can be expressed as

99 = Xioy -+ Kol
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since g,- = e. Hence every generator of H can be written in terms of generators of
G(2,B,P). As a consequence of these two observations it is possible to replace the
generators {g, : p € P} by expressions using only generators Xs,] and obtain the

presentation of the picture group in Definition O]

The finite CW-structure obtained for B&(X%, ) in Theorem helps to describe
its fundamental group in the following way: By definition, the 1-skeleton BE(S, )" of
the CW-complex B&(X,B) is a graph, which contains a loop whenever two adjacent
maximal cones get identified. Since this graph is connected, it contains a maximal tree
T. Now every edge e which is not part of the tree determines a loop f, in the graph and

thus a generator of the fundamental group. For more details see Sec. 1.A].

Lemma 3.4.10. The fundamental group m(BE(X,P)) is the free group with one gen-
erator [f.] for each edge e € B(’:(E,‘B)l — T modulo the relations given by the attaching

maps of the 2-cells.

Remark 3.4.11. Consider any fan ¥ with its trivial poset partition B, since the
classifying space BE(X, Pposet) is a ball, its fundamental group is trivial but the picture
group is not. So, in contrast to the setting of finite-dimensional algebras, the picture

group G(X,9, P) is not necessarily isomorphic to the fundamental group of BE(X, P).

Nonetheless, for a special class of fan posets, the picture group is isomorphic to the

fundamental group.

Proposition 3.4.12. Let (X,B,P) be a nondegenerate partitioned fan poset. If P is a
polygonal lattice, then it suffices to consider facial intervals coming from cones of codi-
mension 2 to obtain all relations of G(X,B,P). If additionally B identifies all mazximal
cones of ¥, then G(X,B,P) is isomorphic to m(BE(X,P)).

Proof. The type 2 relations of Definition are satisfied due to nondegeneracy of the
poset by Lemma Let [z, y] be an interval in P. Since P is a finite polygonal lattice,
any two maximal chains in [z,y] are related by a sequence of polygon moves by
Lem. 9-6.3]. Trivially, the labels of two maximal chains which are related by a polygon

move differ only in the labels of the two sides of the polygon. Thus it is sufficient



3. The category of a partitioned fan 57

to consider the group relations coming from polygons of P to give a presentation of
G(3,8,P).

Let 0 € ¥ be a cone of codimension 2 and consider the induced weak fan poset
P|r, on m,(star o), which has a maximal and minimal element, and two disjoint chains
similar to Fig. Hence the interval [af,aJr] is a polygon of P. Conversely, take a
polygon [p; A pg, p3] € P for some p; < p3 and py < p3, then kK = p; N p3 N py is a cone
of codimension 2 since p; N p3 and py N p3 are both generated by distinct subsets of
(n—1) vectors generating p;. By the previous, [£~, k"] is a polygon which must contain
p1, py and p3 by construction. More precisely the interval satisfies ¥ = p3 and by the
uniqueness of the meet in a lattice also kK~ = p; A py. Hence every polygon arises as a
facial interval of a cone of codimension 2 and every cone of codimension 2 gives rise to
a polygon.

Additionally, if all maximal cones are identified, then there exists a unique 0-cell in
BE(X,P) and Lemma3.4.10|implies that the generators of G(X,B, P) and 7, (BE(X, B))

coincide. The relations of the fundamental group of a CW-complex are given exactly by

the 2-cells which correspond with the cones of codimension 2. ]

The previous result implies that different choices of nondegenerate fan posets define
isomorphic picture groups when all maximal cones are identified by P and the fan poset

is a polygonal lattice. A similar result holds for any fan in R

Lemma 3.4.13. Let ¥ be a finite and complete fan in R* and (3,P,) and (X, Py) be
nondegenerate weak fan posets. Then G(3,B,P;) = G(X,B, Ps).

Proof. Lemma [3.4.7)and nondegeneracy imply that the type 2 relations are satisfied by
both G(X,B, P;) and G(X,B, Py). Denote the generators of G(¥,8,P;) by X, and
the generators of G(X,9,P;) by Y, for o; € »!. Given an arbitrary cover relation
p; < pj in Py with oy, == p; N p;, define

50'k . 1 lf Pi < pj in 7)2,

Then the desired group isomorphism ¢ : G(X,B,P;) — G(3,B,P,) is given on the

S
generators by p(X[,,)) = Y[U]f Note that this is well-defined on equivalence classes by
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the assumption that P; and P, are nondegenerate. O

3.5 Eilenberg-MacLane spaces in dimension 2

Let ¥ be a finite and complete fan in R" and B an admissible partition. While the
picture group of the partitioned fan (3,B), with respect to a fan poset, is not necessarily
isomorphic to the fundamental group of BE(X,R) in general, it still plays an important
role in understanding the classifying spaces of the categories of a partitioned fan. Recall,
that €(32,) is a cubical category by Theorem and that there are three conditions
which together imply that BE(X, ) is a K (7, 1) space, see Proposition [2.4.4]

In particular, the picture group appears to be the most natural group to study
Condition (1) of Proposition While there is a recipe for constructing a K(G,1)
space for any finitely presented group G, the result may be an infinite-dimensional CW-
complex, see Sec. 1.B.]. Hence it is natural to ask whether the finite CW-complex of
Theorem is a K(m, 1) space for its fundamental group. For this purpose, consider
the following functor from the category of a partitioned fan to its picture group with

respect to some nondegenerate weak fan poset:

U (T, P) = G(T,B,P)
(3.5.1)
[fou] = X

CARCINN

It follows from basic hyperplane arrangement theory (i.e. convex geometry) and
the definition of admissible partitions that the functor is well-defined. Indeed, take two
representatives oy, 0y € [0] and ky, kg € [k] such that [f, . | = [fs,,]- Now consider the
projection of their stars onto the orthogonal complements, 7, (staro;) = m,, (staroy),
then 7, (k1 ) = 7, (kg ) follows from 7, (k1) = 7, (ko) which follows from [f; ... | = [fo,x,]
by definition. The terms X o7 7] for i = 1,2 are determined by the paths 7, (k; ) to
7y (0; ) for i = 1,2, which coincide in 7, (star(c)), and hence coincide. It is easily seen
to be well-defined on identity morphisms [f,,]|, which get sent to the trivial element
X o] = € Furthermore, since the weak fan poset is nondegenerate, the functor is
well-defined on composition of morphisms by construction.

Example 3.5.1. Consider a partitioned fan (X,9) as in Fig. then the set of

three rank 1 morphisms {[f1], [fa], [f3]} cannot be the last factors of a rank 3 morphism
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since no such morphism exists when ¥ is a fan in R®. However, the pairs of morphisms

{[fl]a [f3}}’ Hfl]? [fQ]} and {[fQ]a [fB}} form the last factors of the HlOl"phiSHlS [f(]pl]a [f0p3]

and [fy),,] respectively.

Example 3.5.2. Consider a finite and complete fan with only three cones of dimension
1, for example the fan E(IP’2) whose toric variety is the projective plane P?, see p. 6-7].
This fan 3(P?) has three cones, cone{e; }, cone{e,} and cone{—e; — e, }, of dimension 1,
which are all pairwise compatible as first factors. But since there is no morphism of rank
3, this gives an example where the first factors are not given by pairwise compatibility

conditions.

Lemma 3.5.3. Let X be a fan in R?. Then ¢C(X,B) satisfies the pairwise compatibility
of first (resp. last) factors if and only there is no set of three pairwise compatible first

(resp. last) factors.

Proof. Any category trivially satisfies the pairwise compatibility of first (resp. last)
factors for k = 2 in Proposition [2.4.4] For k£ > 3, there is no morphism of rank k
in €(X,) and hence the pairwise compatibility condition is equivalent to there being
no set of k pairwise compatible first (resp. last) factors. For k > 4, it is geometrically

impossible to have four compatible first (resp. last) factors in R? so the result follows. [

The restricted setting of a fan in R? enables a detailed understanding of the functor

in Eq. (3.5.1). This is used to obtain many examples of K (m,1) spaces.

Theorem 3.5.4. Let 3 be a fan in R? and P be a nondegenerate weak fan poset, then
the functor of Eq. (3.5.1) is faithful. Moreover, if €(X,B) does not admit a set of three
pairwise compatible rank 1 morphisms, then BE(3,B) is a K(m,1) space.

Proof. Without loss of generality, by Lemma([3.4.13] choose one particular nondegenerate
weak fan poset defined as follows: Choose a base region py € »? and consider the angle
bisector of the angle spanned by the two dimension 1 cones defining p4. Then let pp
be the region containing the opposite of the angle bisector. If the opposite of the angle
bisector is contained in a cone of codimension 1, then choose either of the adjacent

maximal cones as pp. The set-up is depicted in Fig. where the angle bisector is
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(0] (03]
A "i3 %) K1
P, Pey
[f2]
—
sl P1 - PA
P3 K
T[fﬂ [fl]T
[01] < T ; > [o1] Pc, ol
Ks+1 PB,
02
|
P2 PB,
...... PD
03
—— X [fa]
[£3] PBy,
v
[o3] 03] Okt oy,
(a) Three pairs of compatible morphisms. (b) A weak fan poset on a rank 2 fan.

Figure 3.5: Last factors and fan poset of fans in R?.

the dotted line and the fan poset is indicated in red and given by the following Hasse

quiver:

/PB1 >ka\
/

PA

T~

PD-

Pc, e P,

Showing that the functor is faithful is equivalent to showing that the induced map

Voo + Hom(lo], [p]) — G(X,B,P) is injective. It is sufficient to show that two dis-

[P]

tinct morphisms [f,, | and [f;,,] cannot map to the same group element under ¥, by
Corollary and Lemma Using the description of the picture group in Defini-
tion it is easily seen that the generators are distinct since the presentation only

contains one relation. Consider the different possible dimensions of ¢ and p:

« Dimension 0 to 1: For 0 € X° and A € %', any morphism [fo,] € €(Z,B) gets

mapped to X oA All group elements of this form are clearly distinct, except

pDv)‘

potentially X/ jand X[, ,. 1. However, if the cones o3, and s, give rise
? k

PD;PC

s

the same generator X [o4s1] then their linear span must be equal, hence the cone
pp is a half-plane and not strongly convex. This is also the reason why it is no

problem that [fo,, ] and [fo,,,,| have the same image under ¥, since oy, and
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ksy1 cannot be identified in €(X, ).

« Dimension 0 to 2: For 0 € ¥ and p € %?, each such morphism [fop,] € €(3,%)
maps to X, .1 and by the previous case, all these elements of G(X,B,P) of this
form are distinct.

« Dimension 1 to 2: For ¢ € ¥' and p € 22, there are exactly two possibilities,
either [f,,] € €(X,*B) maps to X, or it maps to the identity element e, which
are different group elements by the nondegeneracy assumption.

Thus the functor is faithful. Now by Lemma3.5.3]if €(3,9) does not admit a set of three

pairwise compatible rank 1 morphisms, then it satisfies the pairwise compatibility of first

and last factors. In this case, BE(Z, ) is a K (m,1) space by Proposition [2.4.4] O

Corollary 3.5.5. In the setting of Theorem |3.5.4 If B identifies all mazimal cones,
then BE(X,P) is a K(G(X,B,P),1) space.

Proof. In this case, the graph B&(3, ‘,B)l contains 1 vertex and a loop for every equiva-
lence class [o] € P of a dimension 1 cone. Hence the generators of 7, (BE€(3,P)) coincide
with those of G(€,B,P). Moreover, the attaching map of the unique 2-cell induces a

homotopy which is equivalent to the unique relation of the picture group, similar to

Proposition |3.4.12 O

Example 3.5.6. The main examples of fan posets are the following:

(1) The poset of regions of a finite central simplicial hyperplane arrangement as in-

troduced by is a fan poset by [156], a lattice by and polygonal by [157].

Furthermore, it is easily seen to be nondegenerate.

(2) The fan poset induced by tors A on the g-vector fan of a 7-tilting finite algebra is
a polygonal lattice and nondegenerate, see Proposition m

(3) Nondegenerate fan posets in R? constructed as in the proof of Theorem m

3.6 Hyperplane arrangements

Recall briefly the theory of hyperplane arrangements, which are collections of subspaces

of codimension one. A central simplicial hyperplane arrangement H in R" is a collection
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of subspaces of codimension 1 which defines a simplicial fan ¥4, and dissects the space
into regions. All fans considered in this section are induced by hyperplane arrangements.
The closures of these regions are maximal cones of the fan and two regions are called
adjacent whenever their closures intersect in a cone of codimension one. Choosing any
such region B as the base region and orienting the adjacency graph away from B defines
a poset, called the poset of regions P(H, B) see . For any choice of base region B,
this defines a fan poset on ¥, obtained by taking the closure of each region, by
Sec. 4]. Denote this induced fan poset of regions by Ppg. Given a region R, its separating
set (with respect to B), denoted by S(R), is the collection of all hyperplanes in H
separating R from the region —B. This gives an equivalent way of defining the poset of
regions by saying R; < Ry whenever S(R;) C S(R,).

A flat of a hyperplane arrangement H C R" is an intersection of hyperplanes of H,
and thus a linear subspace of the ambient space R". In particular, the empty intersection
gives the ambient space R" as a flat. The support of a cone o € 3, is the smallest flat
s(o) which contains o. This leads to the flat-partition g, of the simplicial fan ¥,
given by [o]q, = [02]y,., if and only if s(oy) = s(03). In other words, cones whose

support is the same flat are identified in Pg,;.

Proposition 3.6.1. The partition Py, is an admissible partition of ¥4, and thus the

category of the flat-partition €(Xq, Paat) 15 a well-defined category.

Proof. Let 0,09 € ¥4, be two cones such that the flat X = s(oy) = s(03) is the same

intersection of hyperplanes. It follows immediately that
span{o;} = X = span{o,}.

It follows from [5, Lem. 1.36] that both star(c;) and star(c,) are “equivalent” to the
arrangement over the flat X whose essentialisation is precisely the projection onto
the orthogonal complement, see for more details. The partition is admissible by

Lemma since it identifies the whole set of possible identifications. O

Shards of hyperplane arrangements were introduced in [155]. Informally speaking
a shard of a hyperplane arrangement H C R" is a “piece of a hyperplane”. They are

obtained as follows: Let B be a choice of base region and call the n hyperplanes defining
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it basic. Each pair of hyperplanes H,, Hy, € H gives rise to a subarrangement defined by
‘H(H,,Hy) ={H € H: HHNHy C H}, which has an induced (relative) base region. Say
that Hy cuts Hy if Hy is basic in H(H,, Hy) and H, is not basic in H(H;, H,). For each
hyperplane H € H remove from H all points contained in hyperplanes H' which cut H
in the subarrangement 7 (H, H'). The closures of the remaining connected components

are called shards.

Remark 3.6.2. Essentially, shards partition hyperplanes in the same way that stability
spaces of bricks define parts of hyperplanes in the wall-and-chamber structure of a finite-
dimensional algebra, see @, . In particular, for preprojective algebras whose wall-and-
chamber structure is a hyperplane arrangement , the shards coincide exactly with
stability spaces of bricks and shards were generalised and this result extended to

all finite-dimensional algebras in [142].

Following [158], let = denote the set of arbitrary intersections of shards, which has a
natural poset structure by inclusion with maximal element the empty intersection R".
Using this set, define a partition g} ..q of the cones ¥4, of a hyperplane arrangement

given by [o] = [09]g,,,,, if and only if the smallest elements §; € = which contain

mshard

o;, for i = 1,2 respectively, coincide.

Proposition 3.6.3. Let ¥4, be the fan of a finite central simplicial hyperplane arrange-
ment in R"™. The partition Beparq s an admissible partition of ¥y, and thus the category

of the shard-partition €(Xq, Pehard) 5 a well-defined category.

Proof. Since by definition each intersection of shards is contained in the intersection of
corresponding hyperplanes, two such cones oy, 09 have the same support and hence the
proof of Proposition yields that they are in the same class of potential identifica-
tions.

To see that Pparq is admissible, let 07 ~ 049 in Pg..q be distinct cones, and let cones
K; € star(o;) for i = 1,2 be such that 7, (k1) = 7,,(k2). It follows from Lemma
that span{r,} = span{ky}. If k; and k, are maximal, then the minimal intersection of
shards they are each contained in is the empty one, which gives [rq]y = [Kolp, .-
Otherwise, since ¥4, is finite and complete there exists a hyperplane H € H containing

K1, k9. Assume for a contradiction that kq o4 Ky in Py arq Which means that the hyper-
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plane H is cut by a hyperplane H' separating #; and o in the sense that the interiors
of k1 and ks lie in opposite half-spaces defined by H'. Since o; C k;, the hyperplane H'
also separates 0, and 0, and in particular the cut on H induced by H' implies that the
interiors of o; and oy lie in different shards, a contradiction.

Finally, it is left to verify that By apq is well-defined, in other words, when o; and g9
are two distinct cones identified in 9By.,q then given cones k;, s; € star(o;) for i = 1,2
satisfying

7T01 (’%1) = 7'['02 ("4‘2)7 7'('(71 (/{/1) = 7T02("1/2)7

they are such that k; ~ &} if and only if Ky ~ k5 in Pyarg. Let o1, 09 be two distinet
cones identified in Py.q and k;, k; € star(o;) be as above for i = 1,2. Assume for a

contradiction that k; ~ k] but kg o k5 in Pypurg. By Lemma these cones satisfy
span{xy} = span{r,} = span{x}} = span{xs}.

Therefore every hyperplane containing one of k1, K7, ko and k5 also contains all others
and the same holds for oq and oy. Since ky & ko in Paparq, there must exist a shard S
that contains ko but not k5. By definition this means that there exists a hyperplane H
containing ko and k5 and a hyperplane H' which separates k, from k4 in such a way that
H' is basic in H(H, H') whereas H is not. By definition if H' separates 4 and x5 then it
must pass through their intersection, in other words it contains o5 and thus o;. However,
H also contains ¢y and o,. Consider now the orthogonal projections 7, (star(coy)) and
Ty, (star(oy)) which coincide by assumption. Then the images of 7, (k) = m,, (k) lie
on the same linear subspace of 7, (R") as ﬂal(/ﬁlll) and 7T02(/<J/2). Moreover, 7, (H) and
wgi(H/) are hyperplanes in 7, (R") and m;(H') separates o, (K1) from 7701(/{/1). Since
k; and k] both lie on H, which is cut by H’, and they are separated by H', they
cannot be identified in Py ,.q, & contradiction. Swapping the indices proves the reverse

direction. n

Besides the importance of establishing the flat-partition and the shard-partition, it
is also necessary to understand picture groups of fans coming from hyperplane arrange-

ments.
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Lemma 3.6.4. Let H be a finite central simplicial hyperplane arrangement. The fan
poset of regions Pg with any choice of base region B is well-defined on identified stars

and hence the presentation of the picture group in Lemma|3.4.9 may be used.

Proof. This follows from the fact that any poset of regions P(H, B) of a simplicial
hyperplane arrangement is induced by any linear functional b € (]R")v whose minimum
on the unit sphere lies inside the base region B of P(H, B), see Thm. 4.2], and
Lemma [3.4.8] O

For the flat-partition Bg,;, for which all possible identifications are made, equivalence
classes [o] of cones o € Z%_l of codimension 1 are given by all such cones contained
in the same hyperplane denoted by H, = span{c}. Therefore these equivalence classes
may be represented by a unit normal vector ny  to the hyperplane. The following is
one of the main results of this thesis and the rest of this section concerns its proof. In

Section its algebraic implications are discussed.

Theorem 3.6.5. Let H C R" be a finite central simplicial hyperplane arrangement.
Let B be a chosen base region and Pg the corresponding fan poset of regions on 4.
Assume that the unit normal vectors ny to all hyperplanes H € H can be taken to lie

in the positive orthant RSo. Then the functor of Eq. 1} is faithful.

Denote by Z[R"] the formal power series with generators {z” : v € R"} over Z
whose multiplication is given by "' % £”2 = 2172, This is a commutative associative
algebra. The group of units Z[R"]" is therefore an abelian group consisting of all formal

sums with constant term equal to 1 or -1.

Lemma 3.6.6. In the setting of Theorem|3.6.5 there exists a group homomorphism

(rb : G(Z’Hagpmaxu,PB) - Z[[]Rn]]*

XnH»—>1—|—an.

Proof. As pointed out in Example the poset of regions Py is a polygonal lattice,
so by Proposition [3.4.12] it is sufficient to consider the relations coming from facial
intervals of cones of codimension 2, which are called polygon relations. To show that the

polygon relations are preserved is simple because of the commutativity of Z[R"]" and
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the hyperplane structure. In particular, because the fan ¥, comes from a hyperplane
arrangement and P, is the maximal partition, the labels of the two disjoint chains in
any polygon of Pg correspond to the two sequences (Hy,...,H,) and (H,,...,H;) of
hyperplanes. These clearly satisfy

nH)z(l—i—x"Hl)*-u*(l—i—x"Hr)

r

(X, - X
=(1+2") %% (1+2")
= ¢(XnHT .- 'XnHl)
since Z[R"]" is abelian. O

Remark 3.6.7. In Sec. 4.3] and Sec. 5.2] the authors take a similar approach
and find a group homomorhism into the groups of units of different versions of Hall
algebras. However, in the geometric setting of this section, the hyperplane arrangement
gives the polygon relations a symmetric structure, so that the abelian group Z[R"]" is

a more natural candidate to consider.

Corollary 3.6.8. Let Hy, Hy € H be distinct hyperplanes. Then they satisfy ny, # ny,
and hence e # XnHl # XnH2 € G(21, Paxs PB)-

Proof. This immediately follows from the existence of the group homomorphism defined

in Lemma because
¢(XTLH1) = 1 + anl 7é 1 + an2 = (Zs(X’I‘LHQ)

In other words, the generators X, ~—and X, of G(3y,Bnax, Pp) are mapped to
1 2
distinct elements in Z[R"]" by ¢, hence they are distinct. O

Since the poset of regions is nondegenerate by Lemma consider the additional

generators of the alternative presentation of the picture group given in Lemma [3.4.9]

Lemma 3.6.9. In the setting of Theorem [3.6.5] let all unit normal vector ny to the

hyperplanes lie in the positive orthant. Let Ry # Ry € R"™ \ ‘H be distinct regions, then
gﬁl 7é gEQ in G(’Hammax? PB)

mn._.s n._.

— "H nH, — Hy H, . .
Proof. Let Ry — ... —> —B and Ry — ... —= —B be two (labelled) chains in

Hasse(Pp). Assume for a contradiction that gz = gg . The inequality max(r,s) > 0
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must hold as otherwise Ry = —B = Ry. Let m € {ny,... ST T , My } be any

vector. Then, the assumption IR, = IR, implies

XnH1 ...Xane =9g, = 9R, = X”H{ "'X"H’ e.

After applying the group homomorphism ¢ of Lemma this yields

I+ z"F ) sk (1 + ™) = (1—|—an1)*---*(1+an;).

Therefore 2™ arises with positive coefficient on one of the sides. Since the sum of
the entries of m is minimal (and all unit normal vectors have nonnegative entries)
2™ cannot be written as the product of other terms (since m cannot be written
as a sum of the other unit normal vectors). Hence it must appear on both sides of
the equality. Since m was chosen arbitrarily, this holds for all (unit normal) vec-
tors in {an"'7anvnH{7"‘7nH;}' In other words, the sets {ng ,...,ng } and
{nH{7 .. ,nH;} coincide, and hence do the sets {Hj,..., H,} and {Hj,..., H.} of hy-
perplanes.

By Prop. 9-1.15], each cover relation R< R’ in P(H, B) comes from adjacent re-
gions separated by a hyperplane H and is such that S(R') = S(R)U{H}. Consequently,

there is an equality
S(Rl) = {le . '7Hs} - {Hia . 7H7,‘} = S(R2)7

which implies Ry = R,, a contradiction. Therefore 9w, # 9. O

2

These intermediate results are combined in the following proof.
Proof of Theorem [3.6.5 Consider the functor

U Q(Eﬂammax) — G(E’H,(’Bmax’PB)
(3.6.1)
Forl = 9,92

which is simply an alternative way of writing the one in Eq. (3.5.1) using the presen-
tation of the picture group given in Lemma which is possible by Lemma [3.6.4]
To show that W is faithful it is required to show that the induced map V., from

Homg (s, ..y ([0]; [K]) to Homeg(s, g p,.y(e, @) is injective. By Corollary (3.1.6| and
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Lemma it suffices to prove this for one representative o € [o]. Hence, take distinct
morphisms [f,. | # [for,] € Homes, g,..)([0]; [k]) which are such that rk; # kg but
K1 ~ Ko in B .- Applying the functor yields

\Il([fmﬁ]) =9,.-

g and U([foe)) =g, -9

Then Lemma implies that these group elements coincide if and only if k| = Ky,
which would mean that k| = kg € star(x;) N star(ky). This leads to a contradiction
because span{x;} = span{ky} and k; # ko imply that star(x;) and star(x) intersect

only at the boundary. Therefore the functor is faithful. O

Corollary 3.6.10. In the setting of Theorem if ©(Xg, Paar) satisfies the pairwise
compatibility of first and last factors, then the classifying space is a K(m, 1) space for w
the picture group.

Proof. Tt follows from Proposition and Theorem that BE(Xy, Paar) is a
K(m,1) space and from Proposition [3.4.12|that the fundamental group is isomorphic to

the picture group, in this case. O

3.7 Lattice of admissible partitions

It is well-known that the collection of partitions of a set, ordered by refinement, forms
a complete lattice, see Sec. IV.4]. As a first step in this section, it is proven that
the restriction to admissible partitions of a fan preserves the lattice structure, thus
establishing a lattice of categories (one for each admissible partition) of a fan. In the
special case where the underlying fan is the g-vector fan of a finite-dimensional algebra,
see Section the 7-cluster morphism category is an element of this lattice. Similarly
if the underlying fan is a hyperplane arrangement, the category of the flat-partition and
the category of the shard-partition lie in this lattice. Recall that an equivalence relation
induces a partition on a set X and vice versa. Define the following poset relation on

partitions.

Definition 3.7.1. Let P; and P, be partitions of X. The partition P; is called a finer

partition than P, if

T ~p Y= ~p y, orequivalently, {z,y} Ca€ P = {z,y} Cbe P,
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for z,y € X and some a € P, and b € P,. In this case, write P; < P, and say that P,

is coarser than P;.

Denote by Part(X) the set of all partitions of a set X. The set Part(X) is partially
ordered by refinement and forms a lattice with meet and join described as follows.
Given a (possibily infinite) subset S = {F;},c; C Part(X), define the meet A S to be

the partition satisfying
z~psy ifandonlyif z~p yforalliel.

Define the join \/S to be the partitioned satisfying x ~ys y if and only if there
exists a natural number m, indices ¢y,...,%,, € I and xzg,..., 2,11 € X such that
T =g, Y = Tpyqq and T ~P, Tl for 0 < 5 < m. In view of Definition denote
by APart(X) the set of all admissible partitions of a fan ¥. The following shows that
APart(X) is a complete sublattice of Part(X).

Proposition 3.7.2. The partially ordered set APart(X) forms a complete lattice.

Proof. Since Part(X) is a complete lattice, it is sufficient to show that APart(X) is closed
under the lattice operations. Recall from Section that this means showing that the
join and meet partitions preserve the sets of potential identifications and are admissible.
Regarding the meet, take a subset S = {P;};c;r € APart(X) of admissible partitions
and take a block £5 € A'S. If |€5| = 1, then there is nothing to show, so assume |£5| > 1
and take 01,09 € Eﬁ. By definition o ~gy, 05 for all i € I, so the partition A\ S consists
of possible identifications. Similarly, whenever 7, (p;) = 7,,(p2), then p; ~g. py for all
i € I and thus p; ~p s pa, hence /'S is an admissible partition.

For the join, take &f € \/S and 0,04 € &f, then if both ¢; and o, are contained
in one block 5;3 € B, for some ¢ € I, the result is immediate. Therefore assume that oy

and g9 are not contained in the same block in any *3;. However, by the construction of

the join, there exists a sequence

01 ™, iy ™Mo, P, iy g, 02

for some r > 1, such that each term is contained in &, = &, , hence \/ S consists of

possible identifications. This sequence of possible identifications implies that

o, (star(oy)) = 7r01_j (Star(crij)) = 7, (star(oy)),
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for j = 1,...,r — 1. To show that \/ S is admissible, assume 7, (p1) = 7,,(p2) holds
for some p; € star(o;) and py € star(oy). Then by the above there exists a sequence of

pi; € star(o; ) for j =1,...,7 — 1 such that

J

7T(71 (pl) = Ty, (pz]) = 7T02 (pQ)

j

Since each &Bij is admissible for j = 1,...,r this yields a sequence

P1 N‘Bil pil Nq3i2 N‘Bi 1 pir—l N‘Bir P2;

r—

as required. Hence \/ S is an admissible partition. O

It is easily seen that this is a bounded lattice, that is, there exists a maximal and
a minimal element. The minimal element is the partition ... mentioned in previous
sections, which is just the finest partition with trivial equivalence classes. The maximal
element is the coarsest partition, whose equivalence classes are exactly the &, described
following Definition When the fan is a hyperplane arrangement the coarsest par-
tition is exactly the flat-partition, see Proposition The main result of this section

is the following description of the relationship between comparable partitions.

Theorem 3.7.3. Let (X,P) be a fan poset and B, Py be two admissible partitions of
3 such that By is finer than PBo. Then the following hold:
(1) There exists a faithful surjective-on-objects functor F : €(3,B;) — €(X,Bs).
(2) The classifying spaces satisfy BE(X,By) = BE(X,B,)/ ~, where ~ identifies the
cells e([oq]g,) and e([oq]y,) whenever [oq]y, = [o2]p,-
(3) If (X,P) is nondegenerate, then the groups G(X,PBy,P) and G(X,B,,P)/I are
isomorphic, where the normal subgroup I is generated by the relations X|5 1 = X[,

whenever [oq]y, # ooy, but [01]p, = [o2]y, -

Proof. (1) The functor F : €(X,B;) — €(X,B,) is given on objects by the map
sending [o]y, — [o]q, for all cones o € ¥ and given on morphisms by sending
[foplp, = [foply, for all o, p € 3. Objects of €(X,;) are exactly the blocks of %,
for both i = 1,2. By definition, ¥, being coarser than P, means [o]y, C [o]yp, .

Hence 3, has at most as many blocks as J3;. Thus, F' is surjective-on-objects.
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To see that the functor is faithful, one observes that the identification of morphisms
in the construction of the category does not depend on a choice but is induced when
certain cones are identified. Take two different morphisms [f, , lp, # [fo,p,lp,
in Homg(s g,y ([0]sp,, [ply,) satisfying oy # a5 or py # py but 01 ~gp, 0y and
p1 ~p, P2- Assume for a contradiction that [f, , s, = [fo,p,lq, then the cones
must satisfy 7, (p1) = 7,,(p2) by definition. However, then they should have also

been identified in B¢, a contradiction. Hence the induced map

Flo11p) - Homes gy ([0, [plyg,) — Homes g, ([0, 5 [Plss,)

is injective and hence the functor faithful.

(2) This follows from the description of the CW-complex in Theorem whose cells
are the union of factorisation cubes, and the fact that the factorisation cubes of

two identified morphisms get identified, by Lemma

(3) Let Ky, kg, kg € X. The quotient group homomorphism
H: G(E7§’;3177)) - G(Eamlvp)/l

identifies the elements X, 1. ~and X, )~ of G (3,9, P) whenever ky ~q, Ko but
1

By
K1 7bq, Ko. More precisely, in this case X[mqu +1= X[Kﬂfpl +1eGX,P,,P)/I.
H3]q}1+I:X[ +1e€G(2,%,,P)/I. By

construction the generators X[Mq3 + I and X[“j]m + I coincide in G(2,9,,P)/I
v 1

Furthermore if k3 ~qp, #1, then also X Kol
1

exactly when X[Ni]% and X[ﬂj]g'32 coincide in G(X,By, P) for any x;,k; € . It
is easily checked that the canonical assignment X Iwly, + 1 = X 2, provides a
group homomorphism between G(X,%,P)/I and G(X,B,, P). Indeed, there is
clearly a bijection between the generators and the relations of the quotient group

are preserved as they are inherited from G(3,B;,P) by construction.

O]

Corollary 3.7.4. Let (X,P) be a fan poset and By < Py be two admissible partitions
of 3. If there exists a faithful group functor H : €(X,Py) — G(3,By, P), then there
exists a faithful group functor €(3,B;) — G(3,B,, P).

Proof. Let F : €(X,B,) — €(X,By) be the faithful functor of Theorem 1). The
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desired group functor is given by the composition H o F of faithful functors, which is

faithful. ]

Corollary 3.7.5. In the setting of Theorem the category €(34,B) admits a
faithful functor to the group G(X4, Baas, P) for all admissible partitions B.

Proof. The flat-partition Bg,; is the maximal partition, so that any other partition 9 is

finer, that is, P < Py, The result follows from Corollary and Theorem O

3.8 Applications to the 7-cluster morphism category

In this final section, the results of this chapter are applied to the 7-cluster morphism
category of a finite-dimensional K-algebra A. First, it is shown that tors A induces a

natural fan poset structure on the g-vector fan 3(A) whenever ¥(A) is 7-tilting finite.

Proposition 3.8.1. Let A be a T-tilting finite algebra, then the poset of torsion classes
tors A induces a fan poset (X, <iys 1) on L(A) via the bijection of Theorem [2.2.2,

Proof. By definition, every cone o € X(A) is the g-vector cone of a 7-rigid pair (M, P).
Since A is 7-tilting finite, the maximal cones containing @( M, p) are exactly those corre-
sponding to the interval [Fac M, LrMn PL] C tors A. This is because maximal g-vector
cones containing C (s py are exactly those C(y ) € X(A) such that (N, Q) is a 7-tilting
pair with M € add N and P € add (). Hence the interval of maximal cones corresponds
to the T-perpendicular interval between the co-Bongartz and Bongartz completions of
(M, P), see also Definition [2.2.4]

It remains to show that each interval is a cone. For a torsion class 7 € tors A and a
torsion-free class F € torf A, respectively, define the following subspaces of R":

Hr= ({veR": (v,dimT) >0}, Hr:= (){veR": (v,dimF) <0}.
TeT FeF

Both spaces are intersections of half-spaces and thus convex cones. Take an interval
I = [oy,05] € (¥(A), <tors a) corresponding to the interval [T, ,7,. ] C tors A, and define
T; = T,,. Proving that (3(A), <tos 4) is a fan poset requires showing that

+ —
U g; :HTl ﬁHT;.

o,el
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Take v € J,. ¢ 0i- From Lem. 3.12] it follows that (v,dimT) > 0 for all T € T;
since 7; C 7, for all o; € I. Therefore v € 7—[7+—1 . Dually, it follows for the torsion-free
class T3+ that (v,dim F) < 0 for all F € T5". Hence Us,eroi © ’H;r—l N H7_’2L'

Conversely, assume for a contradiction that there exists v € 7-[;31 N 7—[7__; such that
there is no o; € I satisfying v € g;. Since the g-vector fan is finite and complete by @
Thm. 4.7], there exists some other maximal cone ¢’ € X(A) with ¢’ ¢ I containing v.
By construction of ’H% , the torsion class 7T, corresponding to the maximal cone o’ via

Theorem contains 7y since 7, can be written as
T, ={T € mod A : (v,dim X) > 0, for every quotient X of T'}

by and Prop. 3.27, Rmk. 3.28]. Therefore 7; C 7_:. Dually, it follows that
(’7;,)L C (7‘2)L and hence o’ € I. O

Therefore any properties of the poset tors A also hold for the induced fan poset
(X(A), <iors 4)- In particular it is a polygonal completely semidistributive lattice, see
Example Moreover, the fan poset is well-defined on identified stars as the pro-
jection onto stars coincide with the process of 7-tilting reduction, which is an order-
preserving operation Thm. 3.12], see also Thm. 4.12]. Hence (X(A), <iors 4) 18
nondegenerate by Lemma [3.4.7]

In order to apply results from previous sections it is necessary to understand where
the 7-cluster morphism category fits into the construction of the categories of parti-
tioned fans. Comparing Definition with Definition suggests the definition of

a partition Pywac via the identification

Comy,P) ~Pwac CMy,p)  Whenever Wiy, py = Wi, py)-

By Cor. 3.7, Lem. 3.8], the partition Bywac is admissible. Then the categories
defined in Definition and Definition differ only in whether objects are closed
cones or interior cones. It follows directly that the 7-cluster morphism category €(A) is
equivalent to the category of the partitioned fan €(X(A), Bwac)-

Now compare the picture group G(A) of the finite-dimensional algebra A, as defined
in Definition [2.3.2] with the picture group of the partitioned g-vector fan (X(A), Bwac)
with respect to the fan poset (X(A), <;os 4) as in Proposition [3.8.1} The following proof
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uses the notion of a stable module with respect to a stability condition [125] in the
context of the wall-and-chamber structure @ . The definitions of these notions are

omitted for the sake of brevity since they are not important for the proof.

Proposition 3.8.2. Let A be 7-tilting finite. Let €(A) = €(X, Pwac), then the group
G(2(A), Bwacs <tors4) is isomorphic to G(A), where (X(A), <(orsa) S the fan poset

induced by tors A.

Proof. Since (X(A), <ioxs4) is nondegenerate, consider the presentation of the picture
group G(3(A4), Bwac, <torsa) of the partitioned fan poset as in Lemma The
equivalence classes of Pywac are determined by bricks for the following reason: Let
Cm,p) € X(A) be of codimension 1, then by Prop. 3.17] and Thm. 1] there
exists a brick B associated to é( M,p), which is obtained as a v-stable module for all
v € Cipr,p). Moreover, by Prop. 3.13, Thm. 3.14] is the unique v-stable module
in W, p)- Take now a distinct cone K(M/,P,) ~ E(M,p) € €(X,Pwac), then since
W( M Py = Wi, p), it follows that the brick B’ corresponding to E( M P is isomor-
phic to B. Hence the generators X[E(M,P)] of G(X(A), Bwac, <tors 4) are in bijection
with the generators Xp of G(A).

There are bijections C (s py <+ (M, P) <+ Fac M between maximal g-vector cones,
basic 7-tilting pairs and functorially finite torsion classes, hence the generators g;

(M, P)

of G(X(A), PBwac, <tors 4) and the generators gr of G(A) are also in bijection.

(M,P)

The fact that the relations of the two groups coincide follows immediately from

Thm. 6.11]. Hence they are isomorphic. O

Therefore, Definition is indeed a generalisation of Definition in the 7-
tilting finite case. Recall from Thm. 4.10] that, the picture group G(A) is isomorphic
to the fundamental group of BE(A). Through this connection, an infinite new class of

algebras is obtained whose 7-cluster morphism category admits a faithful group functor.

Theorem 3.8.3. Let A be a finite-dimensional K-algebra such that 3(A) is a finite
hyperplane arrangement. Then €(A) admits a faithful functor to G(3(A), Baat, <tors, )
and hence to G(A).

Proof. Let o be a cone of codimension 1 of 3(A). Then o is contained in a hyperplane

whose normal vector is given by the dimension vector of a brick B € brick A see
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Prop. 3.13]. Since the dimension vector lies in the positive orthant, it can be normalised
and then X(A) satisfies the assumptions of Theorem [3.6.5| Since the 7-cluster morphism
category €(A) is equivalent to the category €(X(A), Bwac, tors 4), Corollary[3.7.5|gives
the desired result. Since G(A) is the fundamental group of BE(A) by Thm. 4.10],
the faithful functor to G(X(A), Paat, <tors a4) factors through a faithful functor to G(A),
see the proof of Prop. 3.7]. O

Corollary 3.8.4. Let A be such that 3(A) is a finite hyperplane arrangement. Then
the classifying space BE(A) is a K(m,1) space if €(A) satisfies the pairwise compatibility
condition of last factors. In particular, if X(A) C R>, then BE(A) is a K(m, 1) space.

Proof. The 7-cluster morphism category always satisfies the pairwise compatibility con-
dition of first factors. The first part of the statement is then the remaining sufficient
condition of Proposition and the second part follows from , where it is shown
that the pairwise compatibility of last factors always holds for algebras with three iso-

morphism classes of simple modules. O

As a consequence of Theorem the family of algebras whose g-vector fan is
a finite hyperplane arrangement yields a new family of algebras whose 7-cluster mor-
phism category admits a faithful group functor, extending Example For example,
preprojective algebras of Dynkin type ADE . More generally, the generalised pre-
projective algebras coming from Cartan matrices of finite (Dynkin) type, as introduced
in , have g-vector fans which define finite hyperplane arrangements by Thm.
3.19]. The theorem states that their g-vector fans come from the root systems of the
corresponding Weyl groups. On the other hand, conjecturally, the finite hyperplane
arrangements coming from crepant resolutions as in define contraction algebras
whose g-vector fan would then be the finite hyperplane arrangement by .

To conclude this chapter consider the following new example of an algebra A for

which BE(A) is a K (m,1) space.

Example 3.8.5. Let A be the generalised preprojective algebra of type Cs, see

Sec. 13.8]. That is, the algebra coming from the Cartan matrix C' with symmetrizer D
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given as follows:

C=1-1 2 -2, D=diag(1,1,2).

and I = (091 (19, QizpQlog — Q9o , €3093 0039 + (g3 (ian€s, €3). Similar to Thm. 3.9] for
preprojective algebras of type ADE, the result Thm. 3.19] states that up to a base
change the g-vector cones of generalised preprojective algebras of arbitrary Dynkin type
of coincide with the (Weyl) chambers in the hyperplane arrangement obtained by
taking orthogonal hyperplanes to the roots of the corresponding root system. Moreover,
by Thm. 1.3] these roots are a positive scalar multiple of the dimension vectors of
certain (7-locally free) modules. For this example of type Cj, it can be read off from

Sec. 13.8] that the dimension vectors of these modules are the following 9 integer

Since Ext' (5(3), S(3)) # 0, the algebra A is not a K-stone algebra, so that Thm. 5.9]
does not apply to yield a faithful group functor. Instead, since 3(A) is a finite hyperplane
arrangement, Theorem [3.8.3|gives the existence of a faithful group functor. Furthermore,
by the category €(A) satisfies the pairwise compatibility condition of last factors
since A has 3 isomorphism classes of simples. Therefore BE(A) is a new example of a

K(G(A),1) space obtained from 7-cluster morphism categories, by Proposition [2.4.4]



Chapter 4

T-cluster morphism categories of factor

algebras

This chapter approaches the 7-cluster morphism category from a new perspective. Using
lattice theory, a relationship between 20(A) and 20(A/I) for some finite-dimensional
K-algebra A and its quotient algebra A/I by some ideal I of A is established. To
achieve this, some additional lattice theoretic notions and techniques are introduced in
Section[4.1} In particular the notion of lattice congruences plays an important role in this
chapter. The new perspective on 20(A), introduced in Section defines the 7-cluster
morphism category via 7-perpendicular intervals of tors A. As shown in Section
the necessary information for this construction is encoded purely combinatorially in the
poset tors A when it is finite. Consequently, Corollary shows that if two finite-
dimensional algebras A and B are such that tors A = tors B and such that both are
finite lattices, then 20(A) = 25(B). Subsequently, the study of the 7-cluster morphism
category of factor algebras is initiated in Section[4.4] The lattice congruence from tors A
to tors A/I, established in Sec. 5.2], forms the main ingredient for constructing
a functor F; : QW(A) — W(A/I) in Section In that section and the following,
categorical properties of F} are investigated, leading to the conclusion that Fj} is a
regular epimorphism in the category of small categories. To conclude, a comparison of
the different approaches to the 7-cluster morphism category is presented in Section

using some examples.

7
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4.1 Lattice congruences

In this chapter, let A denote a finite-dimensional K-algebra over an arbitrary field K,
unless stated otherwise. When studying factor algebras some additional lattice theory

is required. In particular, the following notion plays a central role.

Definition 4.1.1. An equivalence relation = on a complete lattice L is called a complete
lattice congruence if for an indexing set I and families {x;};cr, {¥; }ier € L the following

holds:

x; =y; foralliel

= \{zriel}=\{y;siel}and N{z;:iel}= Ny:iel}

Given the corresponding set of partitions ®_ of the equivalence relation =, define the
quotient lattice L/ = as the complete lattice whose elements are elements of _ and such
that for a subset S C ®_, the element \/ S € L/ = is the equivalence class containing
V S" € L, where S’ C L is constructed from S as a union of representatives ¢ € C' for

every equivalence class C' € S. The meet C| A Cy is defined dually.

The focus of this chapter lies on lattice congruences on the lattice of torsion classes
tors A. In particular, those lattice congruences which arise from quotient algebras in the

following way.

Theorem 4.1.2. Thm. 5.12] For any ideal I € ideal A, the map

(=);:T—=(T);=TnNmodA/I

is a surjective morphism of complete lattices tors A — tors A/I and the induced equiva-

lence relation ®; on tors A is a complete lattice congruence.

For convenience, write (—) = QI and T = ml when no confusion about the
ideal I of A may arise. The following properties of lattice congruences are frequently

used.

Proposition 4.1.3. Let ® be a complete lattice congruence on L, then the equivalence

classes [x] € ® correspond to intervals which will be denoted by

[fo, Tr}bx] C L.
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Define ﬂf(L) to be the subset of elements which are minimal in their equivalence class
and define W}P(L) to be the subset of elements which are mazximal in their equivalence
class. Then, Wf(L) and F(TI)(L) are isomorphic to the quotient lattice L/® and Wf L —
Wf(L) and W}D : L — W?(L), which send x to the minimal and mazimal elements in its

equivalence class respectively, are morphisms of complete lattices.

Proof. If L is a finite lattice, then [157, Prop. 9-5.2] implies that an equivalence class
[x] € ® corresponds to an interval [Wfl’,ﬂ'? z] € L and Prop. 9-5.5] states that
Wf L — ﬂfL is a morphism of lattices and that L/® is equivalent to WfL. The same
result holds for 7r$ by the dual of \ Prop. 9-5.5]. By Exercise 9.42] these result

hold analogously for complete lattices and complete lattice congruences. O

For a complete lattice congruence ® on a complete lattice L, the surjective mor-
phisms of lattices L — L/® is sometimes also denoted by ®. The first part of Proposi-
tion then states that for any = € L/®, the preimage & '(z) is an interval, which
will be denoted by [r,® ' (z), 7@ ' (z)] C L.

4.2 Lattice theoretic definition of the 7-cluster morphism category

In contrast to the geometric approaches of and Chapterto the 7-cluster morphism
category, in this section the 7-cluster morphism category is defined from the lattice
of torsion classes. Let itv(tors A) denote the poset of intervals of tors A ordered (by
convention) by reverse containment. That means, if [, T],[S,V] € itv(tors A) are two
intervals, then [, 7] < [S,V] whenever Y C S and V C T. The connection of this
construction with the geometric one comes from the correspondence
Y(A) — itv(tors A)
(4.2.1)
5(M’p) — [FacM,LTM N PL].

For the sake of brevity, given a 7-rigid pair (M, P) denote by [U py, T(ar,p)] the
interval [Fac M M N PJ‘]. In particular, considering only maximal cones E( a,p) of
Y(A) in Eq. , which means that (M, P) is 7-tilting and LrM N Pt = FacM
by [3} Prop. 2.16b], Eq. is the bijection between 7-tilting modules (M, P) and
functorially finite torsion classes Fac M € f-tors A of Theorem [2.2.2]
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The analogue of the projection map T in the geometric construction of Defi-

\P)
nition which defines the identification of morphisms corresponding to “the same
relative 7-tilting reduction”, is the following result, which is a direct consequence of

Theorem

Lemma 4.2.1. Let [Ung, pys Ty, py)l and U, py)s Ty, py)) be T-perpendicular inter-
vals of tors A such that Wy, py = W, p,)- Then there are three lattice isomorphisms

o

[M(M17P1)’7ZM17P1)] [U(M27P2)’7EM21P2)]

S~ o (4.2.2)
—Wia,,py) —MW(1,, Py)

tors W, p,)

The isomorphism between the 7-perpendicular intervals factors through the lattice
of torsion classes of their shared T-perpendicular wide subcategory. The following is a

key feature of these isomorphisms.

Proposition 4.2.2. Prop. 4.13] The three lattice isomorphisms in Eq. (4.2.2) pre-

serve the brick labelling of Hasse quivers.

Using the isomorphisms of Eq. (4.2.2) as analogues of the projection onto the orthog-
onal complement in Definition [3.1.4] the 7-cluster morphism category may be defined

from the lattice of torsion classes as follows.

Definition 4.2.3. The (lattice theoretic) T-cluster morphism category T(A) has as its
objects equivalence classes [U s, p), T(ar,pyl~ of T-perpendicular intervals of tors A under

the equivalence relation
[U(erpl)’ 7EM17P1)] ~ [U(szpz)’ 7EM2:P2)]
whenever Wy, p,y = Wu,,p,)- The morphisms of T(A) are given by equivalence classes
of morphisms in the poset category itv(tors A). More precisely,
Homg4) ([Z/{(M,P)v 7EM,P)]M [U(N,Q), T(N,Q)]~)
= U Homiex vors 4) (Mar py Toar' o) M @ T @)))

U by Tonr’ oI E€EM Py T, Py~
[M(N/,Q/)’ﬁN’,Q')]E[u(NvQ)VT(N,Q)]N
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modulo the equivalence relation

f[u(Ml7P1)’7ZN117P1)][M(N1,Q1)77—(1\’1,@1)] ~ fV/’(Mg,PyvT<M2,P2>W<N2,Q2>7T<N2,Q2)]

whenever

[U(N1’Q1)’7ZN17Q1)] N W(M17P1) = [U(N27Q2)’ 7ZN21Q2)] N W(M27P2).

Composition of morphisms in T(A) is defined analogously to the geometric realisa-
tion of the 7-cluster morphism category in Definition[3.1.4] In Lemmal[4.2.6] ambiguities
regarding different representatives of equivalence classes are resolved, which makes the
composition well-defined.

It is not difficult to see that there are bijections between the objects of the category
€(A) and those of T(A) via the correspondence Eq. (4.2.1). When the reference to the
specific 7-rigid pair is not important in later sections, T-perpendicular intervals will
simply be denoted by [U, T| suppressing explicit reference to the corresponding 7-rigid
pair, which further shortens the notation. As a first step, it is easy to connect objects
and morphisms of €(A) and T(A), showing that identifications happen in the same way
in €(A) and T(A).

Lemma 4.2.4. The assignment of Eq. (4.2.1) induces a well-defined bijection between
the objects of €(A) and T(A).

Proof. 1t is clear that there exists a bijection between g-vector cones 5( M,p) € Y(A) and
T-perpendicular intervals [Z/{( Py T, p)] as they are both in bijection with basic 7-rigid
pairs (M, P) by definition. It then suffices to show that the identifications happen the

same way in €(A) and T(A). From the respective definitions it follows immediately that
Comy, ) ~ea) Cty, By & Wity ) = Wiy, py)
= [U(Mhpl)’ ’T(Mhpl)] ~T(A) [U(M%PQ)’ 7V(M2,P2)]'
Therefore the equivalence relation is preserved on objects. ]

Lemma 4.2.5. The assignment of Eq. (4.2.1)) induces a well-defined map between mor-

phisms of €(A) and T(A). That is, the identification of morphisms is preserved, or in
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other words, two inclusions of g-vector cones é(Mi7Pi) C 5( Q) € Y(A) fori=1,2 with

Niv
<

corresponding T-perpendicular intervals [U, p.y, T, pyl < UK, 0,0 TN, satisfy

71—@(1\/[17131) (é(leQl)) = ﬂ-g(MQ’p?) (€(N27Q2))

< (U, Tivy.enD) OWar, py) = Uiy, Q) TiNg,@2)] O Wiy, py)-

Proof. This follows from [169] Lem. 3.8] and [9] Lem. 4.4(3)]. More precisely, the result

169, Lem. 3.8] relates the projection map Mo rA spaun{@(M,p)}L defined in
Chapter (3| with the map 7 : Ky(proj A) — Ky(proj W,y py) defined in @, p. 33]. Then
[9] Lem. 4.4(3)] implies that

Trg(Ml’Pl) (6(1\717@1)) = 7T6<1y127p2) (C(N27Q2))
= 7EN1’Q1) n W(Mlvpl) = ﬁNQ:QZ) A W(M2:P2)
and U, @) N W,y = U, Qp) MW, y)

= ([M(Nl’Ql)’ 7’(N17Q1)]) N W(Mlapl) = [U(N27Q2)’ 7EN21Q2)] N W(M%PQ)'
Whence the result follows. ]

Next, it is shown that composition of morphisms in T(A) is well-defined. The first
concern, see also Lemma [3.1.5] is that it is not clear how to compose two morphisms
fmv,,sg) and [fp, s,01x,,0,)) When [Vi,S81] ~ [Va, So]. The following lemma implies
the existence of a morphism fjy, s )12, 0,] ~ J,.8,][%,,Y,] S0 that composition of the two

morphisms is simply [ 7712, ,])-

Lemma 4.2.6. Let (My,P;) and (M, Py) be T-rigid pairs with the property that

W,,p) = Wi, p,)- Then, for every T-perpendicular interval

[U(Nth)’ 7ZN1:Q1)] g [U(erpl)’ 7EM17P1)]’

there exists a T-perpendicular interval

[U(N27Q2)’ 7-(N21Q2)] < [U(M27P2)’ 7-(M27P2)}]

such that Wn, o,) = W(n,,@,) and such that

[u(vaQl)’ﬁleQl)] N W(Ml’Pl) = [U(N27Q2)’ 7EN27Q2)] N W(MzaPQ)'
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By definition, this means that

f[u(Ml7P1)’7ZN117P1)][M(N1,Q1)77—(1\’1,@1)] ~ fW(Mg,P2>vT<M2,P2>W<N2,Q2>7T<N2,Q2)]
in T(A).

Proof. By Lemma there is an isomorphism of lattices

¢ [U(Mlvpl)’ 7-(M11P1)] - [U(M27P2)’ 7ZM2=P2)]’

which, by Proposition preserves the brick labelling of the intervals. Therefore,

given a subinterval Uy, o,), T(v,,00)] € U, p,)s Tia,,py)) consider the image

[V’S] = ¢([U(N1:Q1)’7EN17Q1)D < [U(M27P2)77EM27P2)]'

By definition of ¢, the interval [V, S] is such that

[V’ S] N W(M27P2) = [U(M17P1)’ 7ZM1=P1)] N W(M17P1)'

The brick labelling of [V, S] coincides with that of (U, o,), T(n,,@,)] by Proposi-
tion It follows from Thm. 5.2, Prop. 5.3] that vins = W(n,,q,), making
[V, S] a T-perpendicular interval. Indeed, the corresponding basic 7-rigid pair (N, Qs)
such that [Un, q,)s T(n,,0,)] = [V, S] is obtained as follows.

There exists an explicit bijection E(;, p,y from basic 7-rigid pairs in mod A contain-
ing (M;, P;) as a direct summand to basic 7-rigid pairs in the subcategory W(M;, P;)
for i = 1,2, see Sec. 5] and Def. 3.5]. The desired basic 7-rigid pair is then
obtained as (Ny, Qy) = E(_J\}Q,PZ)(E(Ml,Pl)(vaQl))a by Lem. 6.5, 6.6]. O

The second concern is whether the composition of pairwise-identified morphisms
gives identified morphisms, see [169] Lem. 3.10] and Lemma However, this is
easily seen to hold via the lattice isomorphism of Lemma similar to Lemma

Theorem 4.2.7. The category T(A) is well-defined and equivalent to €(A).

Proof. The composition of morphisms is well-defined by Lemma [4.2.6] therefore T(A)
is a well-defined category. The equivalence ¥ : €(A) — T(A) is induced by Eq. (4.2.1).
From Lemma and Lemma it follows that W is a well-defined on objects and
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morphisms. Lemma is the lattice theoretic analogue of Lemma making ¥
well-defined on compositions of morphisms. By definition, every 7-perpendicular interval
comes from a 7-rigid pair (M, P) and hence from a g-vector cone 6( Mm,p) Via Eq. ,
so U is essentially surjective. For the same reason, two 7-rigid pairs (M, P) and (N, Q)
satisfy @(N,Q) - é(M7P) if and only if Uy q), Tiv,@)] < U, pys Tiar,pyl- This determines
the morphisms of €(A) and T(A) respectively, therefore there are bijections between

Hom-sets. So ¥ is fully faithful and hence an equivalence. O

Remark 4.2.8. The structure of the lattice of torsion classes and its brick labelling is
encoded in the morphism spaces of the 7-cluster morphism category. For example, there
is a bijection

Homg(4)([0,mod A]._,[0,0].) <+— T €f-tors A
since [0,0] = [T, 7]~ for all T € f-tors A. Each such interval is 7-perpendicular since
functorially finite torsion classes correspond bijectively to basic 7-tilting pairs (M, P)

for which Fac M = “7M n P+ by [3} Prop. 2.16]. Moreover, let 7, E 7, be an arrow of
Hasse(f-tors A) labelled by the brick B, then there is a bijection

Homg(4)([0,mod A].., [T3, T1].) <— {arrows labelled by B in Hasse(f-tors A)}.
And more generally for an arbitrary 7-perpendicular interval [Ty, 73] C tors A:

HOHlfI(A)([O, mod A]Na [727 E]N)

+— {7-perpendicular intervals with brick label preserving isomorphism to [74, 73]}.

4.3 Invariance under 7-tilting equivalence

In this section the focus lies on families of algebras for which there exists an isomor-
phism between their respective posets of 7-tilting pairs. The idea of using only lattice
theoretic information to study 7-tilting theory is common throughout the literature,
see for example . Similarly, Definition can be rephrased
so that the 7-cluster morphism category is defined using only the underlying poset of

(functorially finite) torsion classes when tors A is finite.
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Definition 4.3.1. Two finite-dimensional K-algebras A and B are called 7-tilting equiv-

alent if there exists a poset isomorphism f-tors A = f-tors B.

Example 4.3.2. The following algebras are 7-tilting equivalent:

(1) Any two Brauer graph algebras with the same underlying ribbon graph |1} Thm.
1.1(1)].

(2) Any algebra A and A/(c), where ¢ € A is a central element contained in the
Jacobson radical Thm. 1]. See also Cor. 5.20].

(3) Two algebras A and B which geometrically have coinciding g-vector fans, by the
duality of the poset f-tors A with the chambers of the g-vector fan, see .

(4) The algebras Ko = K( 1 —=< 2 )and K,,, = K( 1 £§ 2 ), for any m > 3, by

the description of f-tors(XCy) and f-tors(/C,,) as polygons with one infinite side.

Note that f-tors A is a complete lattice if and only if A is 7-tilting finite by Theo-
rem However, since f-tors A C tors A it is possible to consider the join and meet of
elements of f-tors A in tors A. The first example of some of the 7-tilting theory of mod A

being encoded lattice theoretically in f-tors A is that of T-perpendicular intervals.

Proposition 4.3.3. Prop. 4.19 and 4.20] Let U € f-tors A. Consider ¢ atoms
U; — U C Hasse(f-tors A). Then T = \/f:1 U; is functorially finite and [U,T] C tors A
is a T-perpendicular interval of tors A. Moreover, every T-perpendicular interval is a

so-called join-interval of this form.

Theorem [2.1.9] states that the construction of Proposition [4.3.3] gives all intervals
U4, T] C tors A for which 4 NT is a wide subcategory of mod A. For this construction
to yield T-perpendicular subcategories, the bottom torsion class U has to be functorially
finite. Thus, knowledge of the subset f-tors A C tors A is necessary. Determining this
subset of tors A using lattice theoretic techniques is not known to be possible. Therefore,
this section restricts itself to the case when A is 7-tilting finite, which implies f-tors A =
tors A by Theorem [2.2.3]

In this case, T-perpendicular intervals and join-intervals (and the dually defined
meet-intervals) all coincide. In order to distinguish between intervals, which admit a

poset isomorphism but which correspond to distinct subcategories, the brick labelling
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of tors A needs to be encoded combinatorially. Since the brick labelling determines
the corresponding 7-perpendicular subcategory by Thm. 4.16] and Prop. 5.3],
this would enable the correct identification of intervals in an entirely combinatorial
construction of the 7-cluster morphism category.

Let L be a complete lattice, an element j € L is called completely join-irreducible if
there does not exist a subset S C L such that j = \/S and j7 ¢ S. A join-irreducible

element j € L covers exactly one other element j,. Take x < y then the set
{teL:tvVe=y} CL

has a minimum element ¢ € L which is completely join-irreducible and which satisfies
l, < z by [159] Lem. 3.7]. For an interval [z,y] C L, write j-irt°[z,y] for the set of
completely join-irreducible elements j € L which arise as labels of some cover relation

x < a < b < y. This inspires the following definition, similar to Rmk. 3.8].

Definition 4.3.4. Let L be a completely semidistributive lattice. By definition, the
join-irreducible labelling of L associates to each arrow = <— y C Hasse(L) the unique

completely join-irreducible element j which is minimal in the set {t € L : zVt =y} C L.

Lemma 4.3.5. Thm. 3.11] Let L be an abstract lattice isomorphic to tors A,
then the join-irreducible labelling on L corresponds to the brick labelling of tors A. In
other words, the brick labelling is determined combinatorially by the underlying lattice

structure.

Remark 4.3.6. This fact is used in to construct the poset of wide subcategories and
the poset of and image-cokernel-extension-closed (ICE-closed) subcategories of mod A
from the lattice theoretic information of tors A. The formulation of Theorem is
inspired by the phrasing of Thm. A].

The following is the main result of this section and follows the spirit of the previous

remark.

Theorem 4.3.7. Let L be an abstract finite lattice which is isomorphic to tors A for
some finite-dimensional algebra A. Then T(A) can be constructed combinatorially from
L without using any algebraic information of A or mod A. More precisely, there is an

equivalence of categories T(L) = T(A), where T(L) is defined to be the category:
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o whose objects are equivalence classes of join-intervals U, T] = [U, \/f:1 Ul C L

under the equivalence
[th, Th] ~ [Us, Ts)]

whenever j-irt’[Uy, Ty] = j-irr[Uy, T3]. In this case there exists an isomorphism
bty Tty 73 * (U Ti] = [Us, T3] preserving the join-irreducible labels (in L) of the
arrows in the respective Hasse diagrams;

e whose morphisms are given by equivalence classes of morphisms in the poset cat-
egory itv(L) of intervals of L partially-ordered by reverse containment. More pre-
cisely

HomK(L) (U, T, [V, S)N) = U Homitv(L)([ula T/]v [Vlv S,])

o T e, T
V'.81€V,8].

under the equivalence relation fiy, 7,1v,.8,] ~ Jthy, T3)[Vs,5,] Whenever
St 1ty 73] (V15 S1]) = [V, Sal;
e and for which composition of morphisms is given by

[fvasaliaa, 1l © [y, mivn s,1]

= [F g, 5,80 (VoS o, sy vy sy (oD © Wiea 7y s)-
Proof. Denote by ¢ : L — tors A the isomorphism of complete lattices. Since L is finite
it follows that tors A is finite and hence f-tors A = tors A by Theorem [2.2.3] Let [Uf;, T}]

and [Us, T3] be two distinct join-intervals of L satisfying j-irr[U;, T1] = j-irr®[Us, T3).

By Proposition and Lemma this is equivalent to saying that ([, T1])
and ¢ ([Uy, T5]) are T-perpendicular intervals of tors A with the additional property that

brick(¢([Uy, T1])) = brick(¢([Us, T5])). Moreover, using Lem. 3.10] gives
W) N $(Th) = Filb(brick(4([U, T1]))) = File(brick (4 (Uy, T2)))) = (Ua) ™ N (T2)-

It follows that [Uy, 1] ~x(r) [Up,To] implies (U, T1]) ~z(ay ¥ ([Us, T2]). More-
over, then Lemma and Proposition imply that there is an isomorphism
¢ (Ui, T1]) = ¥([Us, T5]) which preserves the brick labelling. By Lemma the

isomorphism ¢ lifts to an isomorphism

Op T =0 e Uy, Th] — U, Tl
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which preserves the join-irreducible labelling.
Let [V;,S;] € L be join-intervals such that [V;,S;] C [U;,T;] for i = 1,2. Then

S mivesy) ~5n) S, T3)vs,s,) means oy, 7w, 7] (V15 S1]) = [V, Sol which, by defini-

tion, implies

B([V1, S1)) N () N(T7)) = 9([Va, Sal) N (0 (Us) ™ N (T3))

as ¢ factors through tors(yv(U;)" NY(T;)) = tors(¥(Us)™ N 1p(T3)). Thus

funmves) ~s@) i, Tive.s.) = Fe(un, mwvi,s1) ~3(4) Fets, T (vaSa))-

Conversely, let [U,T{] and [U3, T3] be T-perpendicular intervals of tors A such that
(Z/{{)L N7, = (Z/lé)L N75, then Lemma, and Proposition imply that there exists
an isomorphism ' : [Uy, 7] — [Us, T3], which preserves the brick labelling, and which

lifts to an isomorphism
qb,[U{,T{][Méﬂ;] = '(/)7190/'(# : @Z}il([u{?’rl/)] - wil([ué;TQ/])a

which preserves the join-irreducible labelling.
From Lemma it follows that j-irr®(v ™ ([Uy, T])) = j-irr® (¢ (s, T3])). There-
fore

Uy, TH) ~xay Us, T3l = 07 (UL TH]) ~any ¥ (Uss T3)).
Consequently the objects of T(A) and T(L) are in bijection. Now let [V}, S:] be
r-perpendicular intervals of tors A such that [V.,S;] C [U;,7;] for i = 1,2. Then
Fug sy ~sa) fug sy means VLSO (@) M) = V5, S0 (Uy) " N T3).
Since ¢’ factors through tors((U;)" NTY) = tors((Us)™ N T3), it follows that

QS[u{,T{][ugq;’]([Vi,Sﬂ) = V3, Sy].

Therefore ¢y, 1 o+ (¢—1([v{, 51])) — " (M, S})), which implies

Fug mvtsi ~5) fg mvsi) = et e visly ~S@ Fy @l e (visi)y:

Hence morphism sets of T(A) and T(L) are in bijection. It is clear that Lemma [4.2.6]
may be transferred to the lattice theoretic setting via the lattice isomorphism v and the

interval isomorphism of Lemma making ¥(L) a well-defined category and showing
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that composition of morphisms is defined in the same way in T(L) as in T(A). Thus the
construction of the T(A) and T(L) coincide. As a consequence, the categories T(A) and
T (L) are equivalent. O

Corollary 4.3.8. Let A be T-tilting finite and B be T-tilting equivalent to A. Then there

~Y

exists an equivalence of categories T(A) = T(B).

Proof. Since A is 7-tilting finite tors A = f-tors A = f-tors B and therefore B is 7-tilting
finite. Then both are isomorphic to an abstract finite lattice L = f-tors A and the

equivalences T(A) = T(L) = T(B) follow from Theorem [4.3.7] O

As an alternative definition, see Prop. 11.7], signed T-exceptional sequences may
be defined as factorisations of morphisms in ¥(A) into irreducible morphisms. As a

consequence of Theorem [4.3.7] the following holds.

Corollary 4.3.9. Let A be T-tilting finite and B be T-tilting equivalent to A. Then there

exists a bijection

{signed T-exceptional sequences of mod A}

+— {signed T-exceptional sequences of mod B}.

Proof. The fully faithful functor of the equivalence of categories T(A) = T(B) of Corol-
lary induces a bijection between Hom-sets of T(A) and T(B), which consequently
gives a bijection between all factorisations of morphisms in the Hom-sets and thus all

signed T-exceptional sequences corresponding with those. O

Remark 4.3.10. Recently, a mutation for T-exceptional sequences was defined . This
mutation generalises that of exceptional sequences of hereditary algebras . If
A and B are two finite-dimensional algebras such that tors A = tors B and both are
finite, then there is a bijection between T-exceptional sequences of mod A and mod B
by Thm. 8.10, Rmk. 8.11]. However, the mutation of T-exceptional sequences relies
heavily on signed T-exceptional sequences. Since Corollary [4.3.9]shows that these are in
bijection as well, it seems plausible that the mutation of T-exceptional sequences may

be determined by the lattice of torsion classes, whenever it is finite.



4. T-cluster morphism categories of factor algebras 90

4.4 Factor algebras and lattice congruences

In this section the lattice theoretic definition of the 7-cluster morphism category of
Definition is used to gain new insights into its structure. In particular, comparing
it with previous approaches in Example this approach appears to be the most
natural one to study factor algebras of A by an ideal I. An intuitive reason for this is
that tors A Nmod A/I = tors A/I but the same behaviour is generally not exhibited
by 7-rigid pairs or wide subcategories. More precisely, recall from Theorem that
an ideal I of A induces a surjective morphism of lattices tors A — tors A/I given by
T — T Nmod A/I. Throughout this section, let A be a finite-dimensional K-algebra, I
an ideal of A and ®; the lattice congruence on tors A induced by I as in Theorem[4.1.2]
The relationship between the brick labelling of Hasse(tors A) and Hasse(tors A/I) is

made explicit in the following result.

Theorem 4.4.1. Thm. 5.15] The brick labelling of Hasse(tors A) satisfies the
following:
(1) An arrow q € Hasse(tors A) is not contracted by ®; if and only if its brick label
B, lies in mod A/I. In this case, the arrow q has the same label in Hasse(tors A)
and Hasse(tors A/T).
(2) LetU C T € tors A, thenU =g, T if and only if, IB # 0 for all bricks B € unT.

The following two results illustrate the nice behaviour of torsion and torsion-free

classes under intersection.
Lemma 4.4.2. Let U € tors A, then (UNmod A/I)*4/1 =14 \mod A/I in mod A/I.

Proof. To show the inclusion D, take X € Y4 Nmod A /I. Assume for a contradiction
that there exists Y € & N mod A/I such that Hom(Y, X) # 0. Since Y € U it follows
immediately that X ¢& ULA, a contradiction. To show the reverse inclusion C, take
X € (U N mod A/I)LA/I C mod A/I. Assume for a contradiction that there exists
0 # f € Hom(Y, X) with Y € Y. By the assumption on X, it follows that Y & mod A/I.
However, im f is a submodule of X, and thus lies in mod A/I. Moreover, since U is a

torsion class and hence closed under quotients it follows that im f € Y. In conclusion,
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im f € UNmod A/I. By assumption, there does not exist a nonzero morphism im f — X.

This is a contradiction and equality follows. O
Corollary 4.4.3. Let U, T] C tors A. Then U " AT =U** 1T Nmod A/l

Proof. By Lemma the chain of equalities
U"nT = (U Nmod A/I)4/1 N (T Nmod A/I) = U4 NT Nmod A/T
holds, as required. O

The following result is a simple observation, but since wide subcategories play a

central role in this dissertation it is included.

Lemma 4.4.4. Let W be a wide subcategory of mod A, then W Nmod A/I is a wide

subcategory of mod A/I.

Proof. Let L, M, N € mod A/I lie in a short exact sequence 0 - L — M — N — 0
with L, N € W Nmod A/I C mod A. Since L, N € W C mod A, it follows that M € W
since W is wide. Hence M € W Nmod A/I as required. Similarly, let f : M — N
be a morphism with M, N € W N modA/I, then from M,N € W it follows that
ker f, coker f € W. Moreover ker f, coker f € mod A/I since mod A/I is an abelian full
subcategory of mod A. O

Corollary 4.4.5. Let [U,T] be a wide interval of tors A, then [U,T] is a wide interval
of tors A/I.

Proof. By assumption U 14T is a wide subcategory of mod A, then by Corollary ,
the equality U AT =Ur N T Nmod A/I holds. As U4 N T is a wide subcategory
of mod A, Lemma gives the desired result.. O

The following is the starting point for relating T(A) and T(A/I).

Lemma 4.4.6. If [U,T] is a T-perpendicular interval of tors A, then the image [U,T]

is a T-perpendicular interval of tors A/I.

Proof. Let [U,T] be a 7T-perpendicular interval, in particular, it is wide. By Corol-
lary the interval [, T] is a wide interval of tors A/I. Thus, Theorem implies
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that the interval [U,T| C tors A/I is a join interval. Since U € f-tors A it follows that
U € f-tors A/I. In conclusion, it follows that [/, T] is a 7-perpendicular interval of
tors A/I by Propositionm O

This implies that the lattice isomorphisms between the 7-perpendicular intervals of

Lemma may be extended to their quotients in a natural way.

Proposition 4.4.7. The following diagram extending Lemma is commutative:

o

[U(Mhpl)’ 7ZM1’P1)] > [U(M2,P2)’7EM27P2)]

(—)mwm (=)"MW(aty,py)

(=)Nmod A/I tors W(Mlypl) = tors W(M27p2) (=)Nmod A/I

o

(=)Nmod A/I

[U(M1»P1)’7EM17P1)] ’ [U(M2»P2)’7ZM27P2)]

(_)O(W(le,Pl)mmm J A\’(JVIZ,PQ)WHO(jl A/T)

tors(Was,,p,y N mod A/ )
The top and bottom parts are lattice isomorphisms coming from Lemma and the

downward-facing arrows are given by intersecting with mod A/I.

Proof. Let W = Wy, p,y = Wm,,p,)- By Lemma W NmodA/I is a wide sub-
category of mod A/I. For T € tors W it follows trivially that 7 N mod A/I is a torsion
class of the wide subcategory W Nmod A/ of mod A/I. By Lemma the intervals

[U(M1»P1)77V(M17P1)] and [U(szpz)’ 7ZM2’P2)]

are T-perpendicular intervals of tors A/I which correspond, by Corollary to the
wide subcategory WNmod A/I = WnNmod A/I. Thus Lemma implies the existence
of the lattice isomorphisms in the bottom half of the diagram and the downward-facing
arrows are well-defined. The commutativity of the squares is obvious from the descrip-

tions of the maps. O

As a consequence the following relationship can now be established.

Theorem 4.4.8. Let I € ideal A. There exists a functor Fy : T(A) — T(A/I) induced

by (—);, that is, Fy is given on objects by [U,T). — [U,T|. and on morphisms by

unvs] = Faaps)-
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Proof. F; maps 7-perpendicular intervals of tors A to 7-perpendicular intervals of
tors A/I by Lemma Then, Corollary implies that F} is well-defined on objects

since

Uy, To) ~ U, To) & UTA N Ty = Uy A N T,
:>U1LAO’T10m0dA/I:L{2LAﬂTQHmodA/I

& Uy, T ~ [Us, Tl

It is clear that containment of intervals is preserved by (—);. Let [U;, T;] < [V;, S;] for
i = 1,2 be such that f, 71,8, ~3(4) S, 73][v,,75)- The commutativity of the diagram
in Proposition implies that
1 1

Vi SN UANT) = Vo, S N (U # N T)

— V0, S NUANT, Nmod A/T) = Vo, Sy] N (U * N'T, N mod A/).
Thus F; is well-defined on morphisms, that is, f[@fﬂ[vhgll ~T(A) f[ﬂgfg}[%fg]‘ To
show that composition is preserved it is sufficient, by Lemma to consider any

three 7T-perpendicular intervals [X,Y] C [V,S] C [U,T] C tors A. The following is

obvious:

]
= fvsEyl e fanavs)

Fr(lfunxy)) = faae,

<l

Fr([fy,si2.1]) © Fr(lfu,mp,s))-

It is clear that identity morphisms are preserved. Thus, F7 is a well-defined functor. [

The remainder of this section is dedicated to characterising properties of F7.

Lemma 4.4.9. The functor Fy is faithful if and only if the restriction

(=) : f-tors A — f-tors A/T
1S injective.

Proof. (<=). Let [fiy.sju, 71l [fv.8)iuy,73]] € Homea)([V, S]o, [U, T].) be distinct mor-
phisms, which is to say that either Uy # Uy or T; # T3. Then applying F; gives

Uwsm, 700 U ms.m, 7, € Homean([V, S]., U, T].),
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which coincide if and only if [U;, T 1] = [, T5], which would imply that the restriction
(=) : f-tors A — f-tors A/I is not injective. Thus F; is injective on Hom-sets, hence
faithful.

(=). Let F; be faithful and assume that the map (—) : f-tors A — f-tors A/I is not

an injection. There exists a distinct morphism

[f[O,mod Al [T,T]] : [O’ mod A]N - [T’ ﬂw

in T(A) for every functorially finite torsion class 7 € f-tors A, see also Remark If
(=) is not injective, then 7; Nmod A/I = T;Nmod A/I for two distinct 77, T3 € f-tors A.

However, then the distinct morphisms

[fio,mod A7, 731] 7 [f10,mod 41175, 75]]

of T(A) have the same image under F; and hence F; would not be faithful. O

Remark 4.4.10. If A is 7-tilting finite, then tors A = f-tors A by Theorem [2.2.3] In this
case, (—) : f-tors A — f-tors A/I is surjective by Prop. 5.7(d)] for all I € ideal A.
Thus, Lemma holds for 7-tilting finite algebras if and only if there is a lattice

isomorphism tors A = tors A/I. The map (—) is generally not surjective when A is

7-tilting infinite, see Example or Exmp. 5.11].
Let S = {By,...,B,} C mod A/I be a semibrick, then S C mod A4 is also a semibrick
in mod A. Thus, for any I € ideal A, define the following map using Eq. (2.0.2) by

factoring through the canonical inclusion of semibricks:

t:wide A/I — wide A
(4.4.1)
Filty,{B1,..., B} = Filt4{By,..., B, }
If the algebra A is 7-tilting finite, then every wide subcategory is 7-perpendicular
[108] Cor. 2.17], see also Rmk. 4.10] and A/T is 7-tilting finite Cor. 1.9]. In this

setting, it is possible to lift semibricks, which in turn lifts 7-perpendicular subcategories.

This the key idea of the following result.
Lemma 4.4.11. Let A be T-tilting finite and I € ideal A, then the functor
Fr:%(A) - %(A/I)

in Theorem[4.4.8 is surjective-on-objects.
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Proof. Let [U,T]. € T(A/I), then U NT = Filt4/;{B,...,B,} for some semibrick
{Bi,....,B,} € modA/I C modA, by Eq. (2.0.2). Consider the lifted wide subcate-
gory t(Filt 4, {By,...,B,}) € mod A. Since A is 7-tilting finite, the wide subcategory
Filt4{By,...,B,} is also a T-perpendicular. By Thm. 4.5], there then exists some
r-perpendicular interval [A, B] C tors A such that A" N B = Filt ,{By,...,B,}. It is

clear that [A, B] ~ [U,T] since

A NB=A"NBNmod A/I
= Filt4{B;,...,B,} Nmod A/I
= Filty/;{By,..., B,}
—uUtnT.

Hence every object [U, T]. € T(A/I) lies in the image of F}. O

Example illustrates that the assumption of 7-tilting finiteness is necessary in
Lemma [4.4.11] To understand in which cases F : T(A) — T(A/I) is full, the Cartesian

product of posets is required.

Definition 4.4.12. Let (P}, <;) and (P, <,) be two posets. Define the product of

posets (P} x Py, <) via the partial order
(a,b) < (c,d) < a<icandb<,d.

If (P,<;) and (P, <) are lattices, define the join and meet componentwise, then

(P x Py, <) is a lattice.

The following intermediate result is similar to [6] Thm. 4.19(a)], where a similar

relationship is established for g-vector fans.

Lemma 4.4.13. Let A = A, x Ay where Ay, Ay are finite-dimensional algebras. Then

as posets
tors A = tors A x tors Ay, and f-tors A = f-tors A; x f-tors A,.

Proof. 1t is well-known that mod A = mod A; X mod A, in this case. This implies that
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the inverse bijections are given by

tors A = tors A; X tors Ay
T — (T Nmod Ay, 7 Nmod As)
add(Ty UTp) = (T1,T2)-

If 7 C mod A is a torsion class, it is clear that 7T Nmod A; € tors A; for ¢ = 1, 2 since both
terms of the intersection are closed under extensions and quotients. In particular, if T is
functorially finite then 7 Nmod A; is functorially finite, for ¢ = 1,2 by Prop. 5.6(b)].
Conversely, given T, € mod A; for i = 1,2, the full subcategory add(7; U75) is a torsion
class. This follows because the equality Exty(X{, X2) = 0 = Ext4 (X5, X9 for all
X, €mod Ay, X9 € mod Ay and a, b, c,d > 1 implies closure under extensions. Because
Hom 4 (X, Xy) = 0 = Homy (X, X;) it follows that add(7; U Ty) is functorially finite,
since any module M € mod A admits left and right add(7; U75)-approximations. Indeed,
a add(7; U Ty)-approximation is given by a 7T;-approximation of the direct summand of
M which is in mod A, and a Ty-approximation of the direct summand of M which is in

mod A,. One sees directly that these are inverse assignments and order preserving. [J

For the remainder of this section, assume for simplicity that the field K is alge-
braically closed. This assumption implies that A = B x C for some finite-dimensional
algebras B and C if and only if there exist two sets of simple A-modules §; and S,
such that Ext} (S, S,) = Ext}(S,,5;) for S; € S; and i = 1,2. This is because then
A = KQ/I for some ideal I, where @ is the Ext-quiver of the algebra, see Lem.
I1.2.5, Lem. II1.2.12]. The following result is a converse to Lemma

Lemma 4.4.14. Let A be a finite-dimensional algebra such that there is a lattice iso-
morphism tors A = tors B’ x tors C', for some finite-dimensional algebras B’ and C'.

Then A= B x C for some finite-dimensional algebras B and C.

Proof. Denote the lattice isomorphism by ¢ : tors B’ x tors C' — tors A. Take X; to be

a simple B'-module and X, to be a simple C’-module, then by definition of the join
(Filt 5 {X1},0) v (0, Filt , { Xy} = (Filt g { X4}, Filt ./ { X5 }). (4.4.2)

Applying ¢ to both sides of the equation, there are A-modules, say X 1 and )?2, labelling
the cover relations ¢(Filt;{X;},0) — 0 and ¢(0,Filt/{X,}) — 0 in Hasse(tors A)
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respectively, which are simple by Prop. 3.16(a)]. By Eq. (4.4.2) and Thm.
4.16(b)], the simples )?1 and )?2 are such that Filt A{)?l,)A(Q} contains no bricks other

than X, and )?2 themselves. It follows that Exth()A(l,)Afg) =0= Exth()A(Q,)Afl) by
Lem. 4.26].

Repeating this process for all such pairs of cover relations, it follows that there exist
two sets of simple modules S, S; € mod A such that §; US; = simp(mod A) and such
that Ext}y (5], 95) = 0 = Ext}(S,, 8;) for S; € S; for i = 1,2. Define

B%A/< > e> and C%A/< > e>

1:5(1) €S 1:5(1)€Sy

Then A = B x C as required. O

To avoid technicalities involving isomorphisms between infinite lattices of functori-
ally finite torsion classes like in Example [4.3.2]3), the following result assumes that the

lattice of torsion classes is finite.

Proposition 4.4.15. Let A be 7-tilting finite. The functor Fy is full if and only if

tors A = tors A/I x tors B for some finite-dimensional algebra B.

Proof. («<). It follows from (the proof of) Lemma that A = C' x B where C'is a
quotient algebra of A by an ideal generated by the primitive orthogonal idempotents,
such that torsC' = tors A/I. By Theorem there is a (fully faithful) equivalence
G : %) = T(A/I). Moreover, there is a sequence of surjective algebra morphisms
A — C — A/I and hence the lattice congruences on tors A induced by A — C and
A — A/I coincide. Furthermore, the functor F; factors through this equivalence, that
is, F; =2 Go F¢, where F : ¥(A) — ¥(C) is induced by the epimorphism A — C. Since
the composition of full functors is full, it is sufficient to show that F is full.

Let V', 8], U, T'].. € T(A) be such that there exists a pair of representatives
V,S] € [V,S8]. and [U,T] € U, T']. satisfying [V,S] < [U,T]. It remains to show

that the induced map

Homg4)([V,S]~, U, T]~)

— Homg () ([V N mod C, S Nmod C] ., [Y Nmod C, T Nmod C]..)
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is surjective. Thus, take an arbitrary morphism fjy, s, 7] € T(C) in the codomain,

where [V;,S;] ~ [V Nmod C,S Nmod C] and [Uy, T;] ~ [U Nmod C, T Nmod C]. Define
U, T] = [add(4; U (U N mod B)), add(T; U (T N'mod B))],

which is an interval of tors A because both boundary terms are additive closures of a
torsion classes in mod B and a torsion class in mod C'. Since mod A = mod B x mod C
the result is a torsion class by Lemma [4.4.13] Then, the simple objects of the wide

subcategories satisfy

simp(U™ NT) = (simp(U~ NT) Nmod C) U (simp N T) Nmod B)
= simp(U;- N T7) U (simp(U™ N T N mod B))

= s.imp(Z/A{L N '?\'),

where the second equality follows from Corollary By Thm. 4.16(a)] this implies
UTNT =U"NT and thus [, 7] = [U,T].. € T(A). Similarly, define

~

V,8] == [add(V; U (V N mod B)), add(S; U (S N mod B))]

~

from which it follows that [V,8]. = [V,8]. € T(A) using an analogous argument.
Then [f[9,§][1,7,7°]] € Homg(4)([V, S, [U, T].) gets mapped to [fjy, s,1u,,73)] € T(C) as
required. Therefore the induced map between Hom-sets is surjective. Hence, F is full
and so is F; = G o F.

(=). Assume F7y is full. If tors A = tors A/I there is nothing to show, otherwise
let Ty & Ty € Hasse(tors A) be an arrow contracted by the lattice congruence. In

particular, since F7 is full the following induced map of Hom-sets is surjective:
Homg(4)([0, mod A]._, [T1, T5]~) — Homg(4/7)([0, mod A/I].., [0,0]..).

Let X € tors A/I be any (functorially finite) torsion class, then the corresponding
morphism [fio mod a/njx,x])] € T(A/I) lies in the codomain of the map above. Thus the
above map is surjective only if there exists an arrow 7Tz & Ty € Hasse([m X, mpX]).

Applying this idea to all contracted arrows in a congruence class of ®;, it follows that

briCk[’]T\LXh T‘-TXI] = briCk[’]T\LXQ, T‘-TX2]’ (443)
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for all X}, X, € torsA/I. Let Sy := simp A/l and §; = simp A \ S, and. The aim
is to show that Ext4 (S}, 9) = 0 = Ext}(S,, ;) for all simple modules S; € S; and
Sy € Sy. This implies that the two corresponding idempotents e; = ). S(i)es, €i and
€y = Zizs(i)e& e; are central and thus that A is not connected. Let S; € &§; and
Sy € S,. Since A is 7-tilting finite, the descriptions of the lattice congruence in [57]
Prop. 4.21, Thm. 4.23] and Thm. 9-6.5] imply that all cover relations arising in
[0, Filt 4{S1, S2}] C tors A except two, which are labelled by S,, are contracted by the
congruence ®;. Hence the polygon consists of two halves, one half is the side lying in
the congruence class 1131_1(0) C tors A, and the other half lies in the congruence class
o7 (Filt /1{S2}) C tors A. These halves of the polygon are connected by the two arrows
labelled by S,.

Let 0 - Sy — M — S; — 0 be a non-split short exact sequence, so in particular
M & S2L . Then, by \ Thm. 4.26] the module M is a brick and therefore arises as
a label of an arrow in the polygon [0, Filt 4{S,S2}] C tors A by Thm. 4.21(b)].
More precisely M arises in the half of the polygon which lies in <1>;1(0) = [0, m,0]
since M ¢ 52L . However, from Eq. it follows that M must arise as a label of
some arrow in @fl(FiltA/I{SQ}) = [Filt 4{Sy}, 7y Filt 4 /7{S5}], which is a contradiction,
since this requires M € Filt A{SQ}J‘ = Sé‘ by definition of the brick labelling. Thus
Ext} (S, 5,) = 0.

Let 0 —» S; =& M — S5 — 0 be a non-split short exact sequence. Like in the previous

paragraph, it follows that M arises as a label of an arrow in the half of the polygon
[0,Filt 4 {57, S2}] C tors A

which is contained in @, (Filt 4 /1{S2}). However, by Eq. it must also arise in
®71(0). Since M ¢ S, M cannot label an arrow above Filt 4{5,} in Hasse(tors A).
Consequently, there must exist another simple module S3 € mod A with the property
that M € brick[Filt4{Ss}, m,0]. As Filt4{S5} € ®;'(0) it follows that S5 € S,. In
other words, there exists an arrow T <0 T C Hasse([Filt 4{S3}, m,0]) labelled by M.
Because M € T it follows that Sy € Fac M C T. Moreover, it follows that Sy & (77)%,
as otherwise there would be two bricks M and S, in the intersection (7)™ N7, which is

a contradiction to Thm. 3.3(b)]. Thus, there exists a morphism f : 7' — S, for some
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T € T'. However, any morphism to the simple module S, is an epimorphism, and since
torsion classes are closed under quotients, it follows that S, € 7. As a consequence
the join Filt 4{S5} V Filt 4{S3} = Filt 4{S5, S5} is contained in 7”. In particular, there
exists an arrow T 2 Filt {85, S5} in Hasse(tors A) for some 7" containing Filt 4 {S5}.

Combining these observations, it follows that
0 Q FlltA{Sg} Q 7-” Q FlltA{SQ, 53} g T/ Q 7TT0.

In conclusion, the interval [0, 7+0] contains arrows labelled by S, which are not con-
tracted by ®;. Therefore the equivalence class [0] of ®; is not an interval, a contradiction
to Proposition Hence, Exty(S,,5;) = 0.

In conclusion, A = (A/(€;)) x (A/(€ey)). By construction tors(A/{ey)) = tors(A/I)
and from Lemmal[4.4.13]it follows that tors A = tors(A/(e;)) x tors(A4/I) as required. [

4.5 Epimorphisms and lifting 7-perpendicular intervals

In this section, let A be 7-tilting finite K-algebra, implying that tors A = f-tors A
is finite. Let I denote an ideal of A. Under this assumption it is to define the lift-
ing of 7-perpendicular intervals of tors A/I to T-perpendicular intervals of tors A in a
more precise way than in the proof of Lemma Recall from Proposition the
isomorphism of lattices W(Tb T(tors A) = tors A/I. By a slight abuse of notation, given
T € tors A/I denote by Tr}I)IT, or myT for short, the top element Wf’@fl(T) of the
preimage of 7 under the lattice congruence ®;. As a first step, consider the lemma

which makes it possible to lift 7-perpendicular intervals of tors A/I to T-perpendicular

intervals of tors A explicitly.

Lemma 4.5.1. Let I € ideal A. For every T-perpendicular interval [U,T| C tors A/I

there exists a T-perpendicular interval [Ay, By] C [mU, 74 T] C tors A. The interval is
such that [Ay, Br] = [U,T] and satisfies Aé"‘ N By = U1 NT), where ¢ is the
inclusion of Eq. (4.4.1). Moreover, it is given by

[Ay, Br] = [mU, mU V T(W)],

where W = (U410 T).
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Proof. Let [U,T] be a T-perpendicular interval of tors A/I whose corresponding wide
subcategory is given by U4/ NT = Filt 4 /{51, ..., Sk} € wide A/, for some semibrick
{S1,..., S} € sbrick A by Eq. (2.0.2). This implies that

(S1,.o s S} CUAT AT = (mU) 4 N T Nmod A/I C (mU)™ N T (4.5.1)

by using Corollary to obtain the equality. Since (m )J‘A and 7,7 are a torsion-
free and a torsion class of mod A, respectively, they are closed under extensions. As a
consequence the lifted 7-perpendicular subcategory W = Filt4{S,...,S,} € wide 4
satisfies W C (mU)lA N T, as W = Filt4{S5, ..., 5} consists of iterated extensions
of modules contained in (7 >4 n mT.

By the dual of Prop. 9-5.10] and Proposition the intersection with
mod A/I induces a bijection from the elements V € tors A covering 74/ in tors A to the
elements V' covering U in tors A /I. Thus, using Proposition and Theorem m

there is a brick label preserving bijection between arrows

k
{TI'TU VT 4(S;) N mU in Hasse([mU, 7, T]) € Hasse(tors A)}

=1
: (4.5.2)

— {L{ VT y1(S;) Sl in Hasse([U, T]) C Hasse(torsA/I)}‘_l,
which are labelled by the bricks {Sj, ..., S} generating U1 N T by \ Thm. 4.16].
It is easy to see that T4(W) = T4(S;) V-V T4(Sy), so that Proposition [4.3.3]

gives the following 7-perpendicular interval by taking the join of all atoms:
[Ay, By == [mU, md V T(W)] C tors A.

By \ Thm. 4.16] this intervals satisfies Atan By = W. Since both W C 7,7 and
mU C 74T, the interval satisfies [A;, By] C [, T] C tors A/I. By Corollary

A OBy = Filty{Sy,..., S} Nmod A/T = Filt 4,1 {Sy, ..., S}.

L _
Hence A" N By = U 4/1 N'T and by Lemma [4.2.1] there is a lattice isomorphism

between [ Ay, Br] and [U, T]. Since [Ay, Br] C U, T] it follows that [Ay, By| = [U, T].

O
Using Lemma define a map of 7-perpendicular intervals:
i:7-itv(tors A/I) — 7-itv(tors A)
(4.5.3)

U, T] iU, T = [mU, 74U V TOV)].
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Example 4.5.2. The map of m-perpendicular intervals i : 7-itv(tors A/I) — 7-itv(A)
of Eq. (4.5.3)) is not inclusion-preserving. For example, take the surjective algebra mor-
phism A 2 K(1 — 2) - K(1 2) 2 K?. The inclusion [Fac(1),Fac(1)] C [0, Fac(1)] of

r-perpendicular intervals of tors K* maps to [Fac(}), Fac(1)] € [0, Fac(1)].

Nonetheless, there is a way of resolving this problem by restricting the lattice con-

gruence to the desired interval.

Proposition 4.5.3. For every inclusion of T-perpendicular intervals [V,S]) C [U,T] in
tors A/I, there exists a T-perpendicular interval {Z[V,S] C iU, T] whose corresponding
wide subcategory is L(V4/1 NS) and such that it satisfies ({Z[V, S))Nmod A/I = [V, S].

These intervals are such that

FI([f(l[Uﬂ_])({Z;[V,S])]) = [f[u,ﬂ[V,S}]'
Thus, every morphism of T(A/I) lies in the image of Fy: T(A) — T(A/I).

Proof. Let U,V,S, T € tors A/I have the property that [V, S] C [U, T] is an inclusion of
7-perpendicular intervals of tors A/I. By definition of T(A/I) every nonzero morphism
in T(A/I) is of the form [fi; 7v.s]] € T(A/I). Consider the representative fi;v,s)
of its equivalence class. Using the map i of Eq. gives a T-perpendicular inter-
val i[U, T] of tors A such that Fy((i[4,T])~) = [U, T|.. However, the 7-perpendicular
interval i[V, 8] may not be contained in i[lf, T], see Example [4.5.2]

Thus, consider the restriction of the lattice congruence ® := ®; to the interval
lattice i[f,T], and denote it by ®|/;. By the dual of Lem. 9-5.7], the interval
iU, T] = [U, T] of tors A/I, which contains [V,S], is isomorphic to the quotient lattice
i, T]/(<I>|Z;) Let W := (V' 4/1NS) and let {5y, ..., S, } be the relative simple modules
of V41 NS, so that W = Filt4{Sy,. .., S} by Eq. (2.0.2).

Restricting Proposition to [U,T] yields that the preimage of V under 5]2; is
an interval of i[f,T] which is denoted by [(ﬁm)\L(V), (ﬁ|z7,,—)¢(V)] C iU, T]. Now, let
V = (f|LT,)T(V) € tors A. Similar to the proof of Lemma one applies the dual of

[157] Prop. 9-5.10] and Proposition to obtain a brick label preserving bijection

(Vv Tas) 25V in Hasse([(m1 V), (74(S)]) € Hasse(i[l/l,’T])}k

s i =1 (4.5.4)
s {v VT a7(S;) 25V in Hasse([V, S]) Hasse([L{,T])}i:l ,
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between covering relations which are labelled by the bricks {Si,...,S.} generating
VEA/INS by Thm. 4.16]. Since T(W;) = \/f:1 T(S;) it follows from Propositionm
that
UV, S = (w1 V), G (V) v TW) (4.5.5)
is a 7T-perpendicular interval of tors A such that the corresponding wide subcategory
is W by \ Thm. 4.16]. Write S’ = (ﬁZ,-)T(S). Because (@Z,—)_I(V) C (V) and
(@;—)71(8) C & 1(8), it follows that V =Vand § = S. Moreover, it follows from
Corollarythat therefore (V)J‘A NS Nmod A/I = V4/1NS. Now the argument fol-
lowing Eq. in the proof of Lemmaapplies to give W C S’ Since furthermore
V' C &', it follows that ({Z[V,S]) Nmod A/I C [V,S].
Again, analogous to the proof of Lemma [4.5.1] it follows from Lemma and
Corollary that actually ({Z; [V,S])Nmod A/I = [V, S] because there exists a lattice

isomorphism between the two. To complete the proof it is left to show that
V'VTW) CV VTN T)) Cmld VTuU 4" NT)).

Indeed, the first inclusion holds since the inclusion V47 NS C U4/ 0T and the
inclusion TOW) C T(L{LA/I NS) in mod A/I lift to inclusions in mod A. The second
inclusion follows from the same observation and the fact that V' C VT (1(U LarnnTy)
by construction.

In conclusion, given an inclusion of 7-perpendicular intervals [V,S] C [U,T] in

tors A/I, there exists an inclusion of 7-perpendicular intervals
T .
YW [Vv S] - 1[“’ 7-]

such that (({Z[V,S]) Nmod A/I = [V,S] and ild, T]Nmod A/I = [U, T]. Consequently,
FI(({Z[V,S])N) = V,S]. and F((ilU,T])~) = [U,T]~. Therefore, it is possible to

obtain any morphism [fi, 7v.s]] € T(A/I) by applying F to [f O

T V.S)
Recall that an epimorphism e in a category C is called extremal if whenever one can
write e = m o f, with m a monomorphism, then m is an isomorphism. Let Cat denote

the category of small categories.

Corollary 4.5.4. The smallest subcategory of T(A/I) containing the image of Fy is
S(A/I) itself. Thus Fy is an extremal epimorphism in the category Cat.
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Proof. Tt follows immediately from Proposition that the image of Fy is T(A/I).
Thus, the functor F; of Theorem is an extremal epimorphism in Cat by Thm.
3.4]. O

Moreover, a functor G : A — B is said to reflect composition if given two morphisms
f and g in A such that G(f) o G(g) is defined in B, there exist morphisms f and ¢’ in
A such that G(f) = G(f), G(9) = G(¢') and f' o g’ is defined in A.

Lemma 4.5.5. The functor F; : T(A) — T(A/I) reflects composition. Moreover, if

[fv.sx] © [f[u,ﬂ[v’,s’]] is defined in T(A/I) then the composition

Vi spamean! * Vawrav sy
is defined in T(A), where the maps of T-perpendicular intervals are as in Eq. (4.5.3)

and Eq. (55).

Proof. By Lemma assume that V = V' and S = S’ without loss of generality.
From Lemma it follows that the interval i[V, S] C tors A corresponds to the wide
subcategory L(VLA/ D'NS) € wide A. On the other hand, Proposition implies that
the interval {Z [V, S] corresponds to the wide subcategory +(V-4/DNS) as well. Therefore
GV, 8]~ = (i[V,S]). in T(A). It follows from Lemma that the composition
is defined in T(A). It is clear from Proposition that the functor F; sends this
composition in T(A) to the desired one in T(A/I). O

Corollary 4.5.6. The functor F; : T(A) — T(A/I) is a regular epimorphism in Cat,

that is, it is the coequaliser of a pair of morphisms in Cat.

Proof. The result Prop. 5.1] states that an extremal epimorphism in Cat which
reflects composition is regular. Therefore, the result follows from Corollary and
Lemma [4.5.5 O

Example 4.5.7. Continuing with the surjective algebra homomorphism of Exam-
ple one sees that the assignment from morphisms of T(A/I) to morphisms of
T(A) given by
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is not well-defined on composition. Consider the morphism [flo mod A/1)[Fac(1),Fac(1)]] of

T(A/I) which may be decomposed as

[f0,Fac( 1)][Fac(1),Fac(1)]) © [f[0,mod AJ[0,Fac(1)]] = [f{0,mod A][Fac(1),Fac(1)])-

However, applying Eq. (4.5.6) componentwise to the left-hand side yields the composi-
tion

[f10,Fac( 1)][Fac( 1),Fac( 1)]] © [f{0,mod A)[0,Fac(1)])>

which composes t0 [f{o mod A][Fac(1),Fac(1)]}; Whereas applying Eq. (4.5.6) to the right-

hand side gives [f[O,mod A}[Fac(%)Fac(%)}]'

4.6 Classifying spaces and picture groups

Having established a certain quotient relationship between T(A) and T(A/I) in Sec-
tion this section considers the classifying space and picture group. This section

demonstrates that they exhibit similar quotient relationships.

Proposition 4.6.1. Let A be T-tilting finite and I € ideal A, then the classifying space
BZ(A/I) is a quotient space of BZ(A) and the quotient map is induced by F; from
Theorem [4.4.8

Proof. The 7-cluster morphism category T(A) is a cubical category by Theorem
This means that every morphism can be seen as (the diagonal of) a cube, whose edges
correspond to factorisations of the morphism into irreducible ones. It is shown in The-
orem that the classifying space BT(A) of the 7-cluster morphism category is a
CW-complex with one k-cell e([U,T].) for each equivalence class of wide intervals,
where k is the number of isomorphism classes of (relative) simple modules of U tnT.
This cell is the union of factorisation cubes of morphisms [fy, 7x,x] for & € [U,T].
Given an ideal I € ideal A, define an equivalence < relation on factorisation cubes by

setting
Vrizan) = U 72,2

whenever F; applied to these morphisms coincides. Since factorisation cubes are simply

geometric realisations of morphisms, this identification coincides with the generalised
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congruence <; on T(A) induced by the functor F;, as defined in Sec. 3]. By
Cor. 3.11] there is a monomorphism (T(A)/ <) — T(A/I) in Cat from the quotient
category T(A)/ =< as defined in Sec. 3.9]. Since F' is an extremal epimorphism by
Corollary [4.5.4] it follows that (T(A)/ =) = T(A/I). Clearly, B(T(A)/ <) is a quotient
space of BT(A) and the result follows. O

Likewise, the picture groups G(A) and G(A/I) are related by a surjective group

homomorphism, when the underlying algebras are 7-tilting finite.

Proposition 4.6.2. Let A be T-tilting finite and I € ideal A. Then there is a surjective

group homomorphism G(A) — G(A/I) induced by (—) : tors A — tors A/I.
Proof. Define a map ¢ : G(A) — G(A/I) given by

Xg if S € brick(A/I),
Xg+— and g7 — g7.

e otherwise,

Since mod A/I is a full subcategory of mod A, identify brick(A/I) with the subset
{S € brick A : IS = 0} C brick A, similar to Sec. 5.2]. Thus, ¢ obviously induces
a surjection on the generators Xg € G(A/I). Similarly, by Theorem the map
@ : tors A — tors A/I is surjective and hence ¢ is surjective on the generators g=.
To show that the group relations gy, = Xgg7, are preserved distinguish between two
cases: If S € brick(A/)I, the corresponding arrow of Hasse(tors A) is not contracted, by
Theorem [4.4.1] Then, the group relation becomes

o(97,) = 97, = Xs97, = 9(X5)d(97,)-

If S & brick(A/I), then ¢(Xg) = e and the corresponding arrow of Hasse(tors A) is

contracted, so 7T; = 75 and the group relation becomes

o(91) = 97, = 97, = e97; = ¢(Xs)d(97;)-
Hence ¢ is a well-defined group homomorphism and surjective. O

4.7 Examples

The final section of this chapter illustrates the obtained results using some examples. In

particular, the following example illustrates the different realisations 20(A), €(A) and
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T (A) of the T-cluster morphism category.

a

Example 4.7.1. Let A .= K(1 % 2) and consider K> = A/(a) = K(1 2). The
objects of the different realisations of the 7-cluster morphism categories are displayed

in Table

W (A) ¢(A) T(A)

mod A [C(()’())] [0, mod A] ~

Filt{1} [C(Q,O)] = [C(O,Q)] [0, Fac(1)].. = [Fac(2), mod 4]

Filt{2} [C(%,o)] =[Co.1y] [0, Fac(2)]. = [Fac(4), mod 4]

2
Filt{ 3 } [Ci1,0)] [Fac(1), Fac(3)]~
(Ciar,p)] [T, T]~
0
(M, P) € 7-tilt A T € tors A

Table 4.1: Objects of the 7-cluster morphism categories of A

Recall that the correspondence between the objects of the different realisations of
the 7-cluster morphism categories are given as follows:
(1) €(A4) 3 [Carpy] = M N TM NP € W(A).
(2) T(A) 2 U, T~ U NT € W(A).
(3) €(A) 3 [Ciarpy] = [Fac M, rM N P € T(A).
These translations are used to describe the image of the functor F; : ¥(A) — T(A/I)
in 2W(A) and €(A) in Table Each entry in Table represents the image under
Fgo:A— K 2 of the entry in the same position of Table Moreover, the image of

the morphism | fi ] € T(A) under Fy is displayed in Table This

0,mod A][Fac(1),Fac( % )]
example suggests that describing the functor Fy : T(A) — T(A/I) is most natural in
the lattice theoretic realisation T(A) of the T-cluster morphism category.

The assumption of 7-tilting finiteness in Lemma [4.4.11|is justified by the following.
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W(K?) C(K?) T(K?)

mod K2 [C(O,O)] [0, mod K2]N

Filt{ 1} [Cro0)] = [Cloz)] [0, Fac(1)]. = [Fac(2), mod K],

Filt{2} [Co] = [C(O,l)] [0, Fac(2)]., = [Fac(1), mod K?]..

0 [Ci1,2)] [Fac(1), Fac(1)].
[Ciar,p)] (T,T]~
0
(M, P) € r-tilt K> T € tors K*

Table 4.2: The corresponding images under F; of objects in Table

category / algebra A K?
W (—) [(1,0)] :mod A — Filt{1} [(1,2)]: mod K = 0
¢(-) (e [fewocan)
(=) [f[o,mod AJ[Fac(1),Fac(} )]] [f[O,mod K?|[Fac(1),Fac(1 )]]

Table 4.3: The image of a morphism under F; in the different presentations of the 7-

cluster morphism category

Example 4.7.2. Let A = K( 1 :b§ 2)and B:=A/(b) 2 K(1—— 2 ) then A
is well-known to be 7-tilting infinite and B to be 7-tilting finite. Consider the interval
[Facg(1),Facg(3)] C tors B, which is a 7-perpendicular interval and gives rise to the
r-perpendicular subcategory Filtz{ 1} C mod B.

The preimage [r; Facg (1), m Facg(3)] C tors A of this interval under the surjection

(=) : tors A — tors B is [Facs(1),Facy(4)] € tors A which is not 7-perpendicular.
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Moreover the 7-perpendicular intervals contained in this preimage come in four families

of the forms

[Fac(T1™ (%)), Fac (3 ™ (2))),  [Faca(ry ™ (2)), Fac(ry "V (H))),
[Fac(4'(1)), Faca (T4 (4)],  [Faca (75 (4))], Faca (754 (2))]

for m > 0, where 77" = r o iortisa composition of m terms. Importantly,

the image of the intervals under (—) : tors A — tors B in the top row is the trivial
interval [Facg(3),Facg(})] and the image of the intervals in the bottom row is the
trivial interval [Facg(1),Facg(1)]. Hence no 7-perpendicular interval of tors A maps

onto the interval [Facg(1),Facg(3)] C tors B. In particular, the module i is 7-rigid in

mod B but not in mod A, where it is a regular module.

The example Exmp. 5.11] shows that the map @ : f-tors A — f-tors A/I may
also not be a surjection when both A and A/I are 7-tilting infinite.

Recall from Proposition that besides the existence of a faithful group functor,
the pairwise compatibility condition of last factors of the 7-cluster morphism category
is a sufficient condition for BT(A/I) to be a K(m, 1) space. The following example
illustrates that this pairwise compatibility condition is independent of taking quotient

algebras.

Example 4.7.3. Let A = K D, be the representation finite hereditary algebra of Dynkin

type D, with orientation

It is shown in Thm. 2.5] that T(A) satisfies the pairwise compatibility property
since A is hereditary of finite type. The quotient A/(v,7,) is gentle with no loops and
2-cycles, thus Thm. 4.1] implies that A/I does not satisfy the pairwise compatibility
condition since there exists a vertex of valency greater than 2. Hence taking quotients
does not preserve the pairwise compatibility condition. Moreover, A is a quotient of the

preprojective algebra IIp, of type D4 which is shown in Thm. 4] to not satisfy the
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pairwise compatibility condition of last factors, so taking quotient also does not preserve
the failure of the pairwise compatibility condition. In conclusion, there is a sequence of

surjective algebra morphisms:
4
p, » KDy — KDy/(v472) > K

where K* is the semisimple algebra on 4 vertices, which does satisfy the pairwise com-

patibility property.

By Theorem the purely combinatorial definition of T(A) yields that when
f-tors A is finite, it determines T(A) up to equivalence. This reduces the problem of
obtaining faithful group functors for some classes of algebras. For example, by |1}, Thm.
1.1(1)], two Brauer graph algebras with the same underlying ribbon graph are 7-tilting
equivalent. Thus, if a Brauer graph algebra is 7-tilting finite and its 7-cluster morphism
category admits a faithful group functor, the same holds for all other Brauer graph
algebras defined by the same ribbon graph.

Similarly, if A is a 7-tilting finite K-algebra such that T(A) admits a faithful group
functor, consider A" = A ® K K|[e]/(€") for some r > 2. Then since 1 ® ¢, is a central
element contained in the Jacobson radical, it follows that f-tors A = f-tors A™ . The
special case, where A is hereditary and r = 2, has been shown to be of special interest
in . When K is algebraically closed, a similar statement holds when replacing
K[e]/(€") with a finite-dimensional local commutative K-algebra R, see also [149]. Thus
every known example of a finite-dimensional algebra such that T(A) admits a faithful
group functor gives rise to an infinite family of finite-dimensional algebras with the same
property.

Moreover, the following example displays two algebras with similar properties, but

which are not connected via a relationship as described above.

Example 4.7.4. Consider the path K-algebras A = KQ,/I; and A" = KQ,/I, defined

by
c d

C)

Q : 1—2%52-b43 and I = (%, d?, cab — abd)



4. T-cluster morphism categories of factor algebras 111

and
C

-

Q: 1—"52-"5,3 and I, = (ab,c?).

It can be checked, using, for example, the applet , that there is a lattice isomorphism
tors A = tors A’. Therefore, there is an equivalence of categories T(A) = T(A') by
Corollary Thus, if one of the algebras admits a faithful group functor, so does
the other. Furthermore, the signed 7-exceptional sequences of mod A and mod A" are in

bijection by Corollary and it can be verified that the mutation of 7-exceptional
sequences coincides for these algebras, see Remark [4.3.10

Finally, let K and K’ be two different fields, possibly of different characteristic. Let
A be a finite-dimensional K-algebra and let B be a finite-dimensional K’-algebra. One
may have that tors A & L = tors B, for some finite lattice L. Then, if T(A) admits a
faithful group functor, so does T(L) and hence T(B), by Theorem It follows that
the result Thm. 5.9] may be extended beyond finite fields in some cases. In the

following final chapter, the case where K’ : K is a field extension is considered.



Chapter 5

T-cluster morphism categories and base

field extension

In this chapter, the lattice theoretic approach developed in Chapter[4] is applied to study
how the 7-cluster morphism category behaves under base field extension. Let L : K be
a field extension and A a finite-dimensional K-algebra, then the tensor product A® g L
is a finite-dimensional L-algebra. The main result of this section, Theorem is the
construction of a faithful functor F : 2(A) — W(A @, L). As a consequence of this
result, the 7-cluster morphism category is shown to admit a faithful group functor for a
new family of algebras in Section[5.6] The following Section[5.1]introduces different types
of fields and field extensions used commonly throughout this chapter. Subsequently,
Section investigates 7-tilting theory under base field extension in a general context
and Section dually studies T_l—tilting theory in order to describe both Bongartz and
co-Bongartz completions under base field extension. These two sections are combined

in Section to investigate T-perpendicular intervals in this setting, which leads to the

proof of Theorem in Section

5.1 Preliminaries on field extensions

Let A be a finite-dimensional algebra and let L : K be a field extension. Denote by Ay

the finite-dimensional L-algebra A @ x L. Let K denote an algebraic closure of the base

112
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field K. Moreover, the field extension L : K defines a scalar extension functor

— ®g L:mod A — mod Ay,

MHML:M®KL

which is faithful and preserves and reflects exact sequences since L is a faithfully flat
K-module. The following lemma collects essential properties of the scalar extension

functor — @y L.

Lemma 5.1.1. Let L : K be a field extension and let M, N € mod A and P € proj A.

(1) Let M be indecomposable. Then, M is a direct summand of N if and only if My,
and Ny, have a common nonzero direct summand.

(2) Let M and N be indecomposable. Then M; and Ny share a common nonzero
direct summand if and only if M = N.

(8) M = N if and only if My = Ny . In other words, — Q@ L is injective-on-objects.

(4) Let M and N be basic. If add(Mp) = add(Ny), then M = N.

(5) Uxeadd(mnaaaryy 2dd(Xz) = {X : X € add(M) Nadd(Ng)}
(6) P;, € proj Ar. Moreover, each projective Ar-module arises as a direct summand

of (P for some P’ € proj A.

Proof. (1)-(3) are Lem. 2.5], where (2) is also known as the Noether-Deuring
Theorem, see Thm. 19.25].

(4) Let X be an indecomposable direct summand of M. From add(Mp) = add(Ny)
it follows that X is a direct summand of (N;)" for some r > 1. It follows from (1) that
X is a direct summand of N", and since X is indecomposable X is a direct summand
of N. Repeating this for all indecomposable direct summands of M yields that every
indecomposable direct summand of M is also direct summand of N. Reversing the argu-
ment similarly gives every indecomposable direct summand of N as a direct summand
of M. It follows that add(M) = add(N). Since M and N are basic, M = N follows.

(5) To show the inclusion (C), let X € add(M) Nadd(N) be indecomposable. Then
X is a direct summand of M and a direct summand of N. It follows from (1) that X,

is a direct summand of M and of Ny, hence X € add(Mp) Nadd(Ny,). Thus

add(X) C add(M) nadd(Ny,).
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Conversely, to show the inclusion (D), let Y € add(M) Nnadd(Ny,) be indecompos-
able. Then Y € add(Z;) C add(M}) and Y € add(Z}) € add(N;), for some indecom-
posable modules Z, Z' € mod A. From (1) it follows that Z € add(M) and Z’ € add(M),
and moreover it follows from (2) that Z = Z'. In conclusion, Y € add(Z.), where

Z € add(M) Nadd(N) as required.

(6) is Lem. 2.1]. O

Crucially, the homomorphisms and extensions between two modules behave well

under base field extension.

Lemma 5.1.2. Lem. 2.2] Let L : K be a field extension. Let X,Y € mod A and

let i € Zs(. Then the canonical homomorphism of L-vector spaces
Ext’y(X,Y) @ L — Extly, (X[, Y7)
is an isomorphism which is natural in both arguments, where Exty(—,?) = Hom(—, ?).
The remainder of this section introduces different types of fields and field extensions.

Definition 5.1.3. A field K is perfect if every algebraic field extension of K is separable.

For example, by [113] Thm. IV.3], all fields of characteristic zero and all finite fields

are perfect. Moreover, the following type of field extension is of great importance.

Definition 5.1.4. Let L : K be a field extension and let L; : K and Ly : K be
intermediate field extensions of L : K. The field extensions L, : K and L, : K are called

linearly disjoint over K in L if the K-homomorphism

Ly® Ly —— L;L, C L
w w
)\1 ® )\2 > )\1)\2
is an isomorphism of K-algebras, where L; L, is the smallest subalgebra of L containing
L, and L. A field extension L : K is said to be MacLane separable if either char(K) =0

-1
or char(K) = p # 0 and the field extensions L and K” are linearly disjoint over L in

— -1 —
an algebraic closure L. Here K”  denotes the subset {\ € L : \’ € K}.
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For example, an algebraic field extension is separable if and only if it is MacLane
separable by Thm. IV.9]. And generally every separable field extension is MacLane
separable p. 163, MacLane’s Criterion]. By the same result, a finite field extension
is MacLane separable if and only if it is separable. An equivalent characterisation for
L : K to be MacLane separable was given in Thm. 2.4], which states that L : K is
MacLane separable if and only if gl. dim A = gl. dim A}, holds for any finite-dimensional
K-algebra A.

Example 5.1.5. [113] Exercise IV.5.1] Let K be a field of characteristic p # 0 and
-1 —2
let L=K(&6 €7 | ...) where € is transcendental over K. Then L : K is MacLane

separable but not separable.

MacLane separable field extensions interact particularly well with homological alge-
bra as can be seen by the results of [116]. Further properties in relation to the radical

and the socle of a module are summarised in the following lemma.

Lemma 5.1.6. Lem. 3.3, 3.5] Let L : K be a field extension and M € mod A.
(1) There is an inclusion (rad A);, C rad Ay,.
(2) There is an inclusion (rady M)y, C rad,, M.
(3) There is an inclusion (socy M), C rady, My,

Moreover, if L : K is MacLane separable, then all of the above are equalities.

5.2 r-tilting theory under base field extension

Let L : K be a field extension. Since mod A and mod A;, are categories of modules of
different algebras, they have their respective Auslander-Reiten translations, denoted by
74 and 74, . As a first step in establishing a connection between the two, consider the
following result concerning the Nakayama functor v4 : mod A — mod A in relation to

vy, mod A;, — mod Ap.

Lemma 5.2.1. Let L : K be a field extension and M € mod A. There is an isomorphism

of Ap-modules (vaM)p, = vy, My,
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Proof. Let M € mod A. The result follows from applying Lemma twice and using
the definition v5(—) = Hom g (Hom,(—,?), K) as follows:

va(M)®p L =Homy (Homy (M, A), K) @) L
= HOII].L(HOIHA(M, A) ®K L, L)
= Homp, (Homy, (M, Ar), L)
= vy, (Mp).

This completes the proof. O

This gives rise to an analogous result about Auslander-Reiten translations.

Lemma 5.2.2. Let L : K be a field extension and M € mod A. There is an isomorphism
of Ap-modules (TaM)y, = 74, M.

1 0
Proof. Let Pt 2y PO 2y Af 5 0 be a minimal projective presentation of M in

mod A. By Lemma [5.1.1(6), the modules PLl and Pg are projective Aj-modules and

1 0
by Lemma [5.1.6(2) the exact sequence PL1 LN PLO Ly M 1, — 0, is a minimal projective

presentation of M; in mod Aj. After applying the (exact) Nakayama functor to these

sequences, consider the following diagram:

The three maps on the right are isomorphisms by Lemma and the relevant squares
commute. By the Five Lemma, there is an induced isomorphism 74, My, = (14 M), as

required. O

Therefore, it is possible to relate the 7-rigid modules and pairs of the two algebras.

Lemma 5.2.3. Let L : K be a field extension, M € mod A and P € proj A. Then M is
T-rigid in mod A if and only if My, is T-rigid in mod A;. Moreover, (M, P) is a T-rigid
pair in mod A if and only if (M, Pr) is a T-rigid pair in mod Ay,.

Proof. The first statement follows directly from the sequence of isomorphisms

Hom 4 (M, 7yM) @ L = Homy, (M, (T4M)r) = Homy, (M, 74, M),
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where the first isomorphism follows from Lemma and the second one follows
from Lemma Moreover, the module P; is projective by Lemma (6) and
Lemma implies that Hom 4 (P, M) = 0 if and only if Hom , (Pr, M) which gives
the desired result. ]

The following is then an easy observation.

Lemma 5.2.4. Let L : K be a field extension and let (M, P) be a T-tilting pair in
mod A and N € mod A. Then, N € Wy py if and only if N;, € W, p,)-

Proof. The notation Wy, p,) € mod Ay, is well-defined since (M, Pr) is a 7-rigid pair
in mod A; by Lemma Then, using Lemma the following hold:
(1) Homy (M, N) = 0 if and only if Hom 4, (M, Ny) = 0;
(2) Homy (P, N) = 0 if and only if Homy, (P, Ny) = 0;
(3) Homy(N,74M) = 0 if and only if Homy, (N, (14M);) = 0 if and only if
Homy, (N, 74, M) =0 by Lemmam

Therefore the result follows from the definitions of W, py and Wy, p,)- O

Since the number of indecomposable direct summands of modules is difficult to
control under field extension, it is necessary to pass to the bounded homotopy category

K b(proj A) of proj A. For i € Z, denote by [i] the i-th power of the suspension functor.

Definition 5.2.5. Let P* € K'(proj A).

(1) The complex P* is called presilting if Hom(P*®, P*[i]) = 0 for all i > 0.

(2) The complex P°® is called silting if it is presilting and additionally satisfies
thick(P®) = K b(proj A), where thick(P®) is the smallest triangulated subcate-
gory of Kb(proj A) containing P°.

Finally, P*® is called 2-term if it is isomorphic to an object (Pi, di) in K b(proj A) such
that P' =0 for i # —1,0.

The collections of basic 2-term presilting objects and basic silting objects of
K b(proj A) are denoted by 2-presilt A and 2-silt A respectively. The induced scalar ex-
tension functor — ® L : K°(proj A) — K°(proj A ) behaves well with respect to silting

and presilting complexes.
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Lemma 5.2.6. Let L : K be a field extension and let P* € Kb(proj A) be a presilting
complex. Then P] € Kb(proj Ayp) is a presilting complex. Moreover, if P*® is silting, then

Py s silting.

Proof. The first part of the statement follows directly from Lemmal[5.1.2)adapted to this
setting, where Ext’(—,?) becomes Hom(—, ?[i]). Assume that P* € K”(proj A) is silting
then A € thick(P®) C K”(proj A). Since — ® L is a triangle functor it follows that
A; € thick(P}) C K”(proj Ay), which implies that Pj is silting in Kb(proj Ar). O

The study of 2-term (pre)silting objects is the main focus of . By [3} Thm. 3.2]
there exist mutually inverse bijections between basic 2-term silting objects of K b(proj A)

and basic 7-tilting pairs given by the following maps:

F
T-tiltp A ? 2-silt A

where F(M,P) = (P' @ P v o, P") and P Iy P° - M is a minimal projective
presentation of M and G(P*) = (H°(P*), (P")"), where P* = P! 4 pOis decomposed
into P* = (P @ (P")" @9 pO Gith o right minimal, see 3| Prop. 3.6(b)]. This

relationship commutes with taking field extensions.

Lemma 5.2.7. Let L : K be a field extension. If (M, P) is a T-tilting pair in mod A,
then (M, Pr) is a T-tilting pair in mod Ay. In particular, if M is a T-tilting module in

mod A, then M; is a T-tilting module in mod Ay .

1
Proof. Let (M, P) € 7-tiltp A and P' 25 P® 5 M — 0 be a minimal projective presen-

1
tation. By Lemma [5.1.6(2), the sequence PLl Pr, Pg — M; — 0 is a minimal projective

presentation of Mp. Since (M, P) is 7-tilting in mod A, Thm. 3.2] states that the

1
0
corresponding 2-term complex Plap u Plisa silting object of K b(proj A). By

1
Lemma [5.2.6] the complex PLl @ Pr M PIO( is a silting complex in Kb(proj Ar).

Moreover, its corresponding 7-tilting pair in mod Ay, is clearly (M, P; ), completing the

proof. O

Moreover, base field extension preserves the partial order on 7-tiltp A inherited from

tors A via Theorem
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Lemma 5.2.8. Let L : K be a field extension and let (M, P) and (N, Q) be two T-tilting
pairs in mod A such that Fac M C Fac N C mod A. Then Fac M; C Fac N;, C mod Ay,

Proof. Take X € Fac M, then by definition there is an epimorphism M; —» X — 0 in
mod A;, for some r > 1. Since Fac M C Fac N C mod A, it follows that in particular
M" € Fac N which gives rise to an epimorphism N° — M" — 0 in mod A for some s > 1.
Applying the exact scalar extension functor then gives an epimorphism N} — M; — 0
in mod A; . In conclusion, there is a chain of epimorphisms Nj — Mj —» X which yields

X € Fac N;, as required. O

Consequently, the image of 7-tilting pairs in mod A under base field extension gives

a subposet of 7-tilting pairs in mod Ay, see also [110] Thm. 2.14(a)].

Proposition 5.2.9. Let L : K be a field extension. For an Ar-module N, let N® denote
a (choice of) basic direct summand of N with add N = add N°. There is an embedding
of posets

T-tiltp A — 7-tiltp A,

sending (M, P) to (Mz, Pg). This map is well-defined up to isomorphism.

Proof. Since — ®g L is injective-on-objects by Lemma 3), the result follows from
Lemma and Lemma O

Similarly, it is possible to obtain the following result concerning functorially finite

torsion classes.
Corollary 5.2.10. There is an embedding of posets
f-tors A — f-tors Ay,

sending T to T;, = Fac My, where (M, P) is the T-tilting pair such that T = Fac M under
Theorem[2.2.2. Moreover, if T = Fac N, for some 7-rigid module N, then Ty, = Fac Ny

Proof. The map f-tors A — f-tors A, is defined as follows:

Proposition [5.2.9
T Thecirem. (M, P) P 1o ! (MS’PE) The<.).rern. ,TL (5'2‘1)
bijection injection bijection

All maps are order preserving, so that the results cited along the arrows in (5.2.1)) yield a

well-defined embedding. Let N be 7-rigid and assume 7 = Fac N. Consider the image of
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T under Theorem and denote it by (N, P). It follows that Fac N = Fac N'. From
Lemma it follows that Fac N, = Fac(N'),, and therefore 7, = Fac(N'); = Fac N[,

as required. O

It should be remarked that T; is generally not equal to the full subcategory of
mod A; obtained by applying — ® L to every object of T € f-tors A. This illustrates
why it is usually preferable to study the behaviour of individual objects under base field

extension, rather than the behaviour of subcategories.

5.3 Bongartz completions and 7 '-tilting theory

The aim of this section is to describe T-perpendicular intervals of 7-tiltp A under base
field extension. Recall from Section that the co-Bongartz completion of a 7-rigid
pair (M, P) is the unique basic 7-tilting pair (M, P~ ) such that Fac M = Fac M~
and the Bongartz completion of (M, P) is the unique basic 7-tilting pair (M, P) such
that FacM ' = M N PJ‘, see Thm. 4.4]. By Definition a T-perpendicular
interval of 7-tiltp A is precisely the interval [(M ", P~),(M™, P)] C 7-tiltp A for some
T-rigid pair (M, P).

Lemma 5.3.1. Taking co-Bongartz completions commutes with base field extension.

More precisely, let L : K be a field extension and (M, P) € T-rigidp A. Then

(M)~ (PL)") = ((M7)p, (P7)L).

Proof. By definition, the co-Bongartz completion of (M, P) is the unique basic 7-tilting
pair (M, P~ ) in mod A such that Fac(M ) = Fac(M). By Lemma |5.2.3 (M, P})
is a 7-rigid pair in mod A7 and thus (M), (Pr) ) is a likewise defined to be the
unique basic 7-tilting pair in mod A, such that Fac((My) ) = Fac(My). However, by
Corollarythe equality Fac(M ™) = Fac(M) implies Fac((M ~);) = Fac(M},). This
implies that Fac((M)") = Fac(My) = Fac((M ) ). Finally, since (M, P") is also a
T-tilting pair in mod A, it follows that ((M ™)y, (P~ )r) is a 7-tilting pair in mod Ay, by
Lemma . Thus, Theorem implies that (M) ,(Pr)") = (M), (P7).) as
desired. O
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A similar result for Bongartz completions requires the dualisation to torsion-free
classes and Tﬁl-tilting modules which also play an important role in later sections.

Denote by 7! the inverse Auslander-Reiten translation.

Definition 5.3.2. Let M € mod A and @ € inj A.
(1) The module M is called 7' -rigid if Hom(r ' M, M) = 0. If additionally | M| = | A|
then M is called 7 '-tilting.
(2) The pair (M,Q) is called 7 '-rigid if M is 7 '-rigid and Hom(Q, M) = 0. If
additionally |M|+|Q| = |A| then (M, Q) is called 7 '-tilting.

Denote by T'l-tiltpA the collection of basic Tﬁl—tﬂting pairs. It is clear that dual
statements of Lemma and Lemma hold for T_l—rigid and T_l—tilting pairs.

Proposition 5.3.3. @ p. 12] There exists an explicit bijection
H : 7-tiltp A — 7 -tiltp A (5.3.1)

given by H(M, P) = (tM©vP,vM,,) where M, is the largest projective direct summand

of M. It fits into a commutative square

T-tiltp A " T'l—tiltp A

lFac lSub
1

f-tors A % f-torf A.

The dual of Theorem establishes a bijection T'l—tﬂtpA — f-torf A given by
M — Sub M. The interaction of the bijection in Proposition with extension of

scalars is described in the following.
Lemma 5.3.4. Let L : K be a field extension. The following square is commutative:

T-tiltp A BN T-l—tﬂtp A
ot [
T-tiltp A, —H tiltp Ap.
Proof. Let (M, P) € 7-tiltp A. By Lemma [5.2.2] there is an isomorphism of A;-modules
(TaM)p, = 74, M}, and by Lemma there is an isomorphism (v4P); = vy, Pp. In
combination, there is an isomorphism (7gM @ vy P), = 74, M © vy, P, as the scalar
extension functor is additive. Finally, Lemma 6) implies that (M), = (M),
and using Lemma again implies the desired result. O
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Consequently, the dual of Lemma is obtained in the following.

Lemma 5.3.5. Taking Bongartz completions commutes with base field extension. More

precisely, let L : K be a field extension and (M, P) € T-rigidp A. Then
(Mp)", Pp) = (M), Pp).

Proof. By definition, the Bongartz completion of (M, P) is the unique basic 7-tilting pair
(M, P) in mod A with the property that Fac(M ") = “7,MNP*. Since 7, MNP+ =
H(74M @ v4P), this is equivalent to saying Fac(M ") = “(74M @ v4P), and thus
equivalent to Fac(M )" = Sub(r4M & v4P) since T4M @® vy P is 7~ '-rigid in mod A.
Because torsion classes uniquely determine their corresponding torsion-free classes, the
Bongartz completion (M + P) is also the unique basic 7-tilting pair in mod A such that
Fac(M 1) = Sub(74M & v, P). Consequently, Sub(4 M @v4P) = Sub(r4 (M) &v,P)

holds. Now, Lemma and the dual of Corollary [5.2.10imply that
Sub(r4, My, @ vy, Pr) = Sub(TAL(M+)L ©va, Pr). (5.3.2)

On the other hand, (M, Py) is a 7-rigid pair in mod A;, by Lemma Therefore,
(Mp)", P;) may also be defined as the unique basic 7-tilting pair in mod A; such that
Fauc((ML)jL)l = Sub(ry, My ® v4, Pp). However, since H(M™,P)is a 7 '-tilting pair
in mod A, the dual of Lemma implies that (H(M+,P))L is a T_l—tilting pair in
mod A;. By Eq. , the 7-tilting pair (H(M™, P)), in mod A; also corresponds
to the torsion-free class Sub(r4, My, ® v4, Pr) under the dual of Theorem This
implies (H(M ™", P)), = H((M.)", P). By Lemma it thus follows that

H((M ™)y, P) = (H(M", P)), = H(M)", Pp),
so that applying H ' to both sides yields (M), P;) = (My)", Pp) as required. O
The results of this section are combined to obtain the following result.

Proposition 5.3.6. Let L : K be a field extension. There is a well-defined map

—Qp L:7-itvA — 7-itv A,
(5.3.3)

[Uar,pys T, p)l = Ui, pyys Toa, Pyl
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Proof. Let (M, P) be a 7-tilting pair in mod A. By definition U, p)y € f-torsA
corresponds to the 7-tilting pair (M, P) and T p) € ftorsA corresponds to
the 7-tilting pair (MT,P") via Theorem The result then follows from
Lemma Lemma and the fact that the order of 7-tilting pairs is preserved by
Lemma [5.2.8 O

5.4 Left and right finite semibricks

The brick labelling of Hasse(tors A) has already played a central role throughout this
thesis. In this section the focus lies on those brick labels which arise as labels of the
subquiver Hasse(f-tors A). It was shown in [8], see also Prop. 4.9], that it is possible
to calculate the labels adjacent to a torsion class 7 € f-tors A via the corresponding
-tilting pair and 7 '-tilting pair. Given a module M € mod A4, denote by ind(M) the

set of isomorphism classes of indecomposable direct summands of M.

Proposition 5.4.1. [8, Thm. 1.3][57, Prop. 4.9] Let T € f-torsA correspond to
(M,P) € 7-tiltp A under the bijection of Theorem m Then the cover relations
T — 7T, in Hasse(tors A) are labelled by distinct isomorphism classes of objects in the
(left-finite) semibrick

S = ind(M/radgnq ,(ar) M)- (5.4.1)

Dually, let (N,Q) = H(M,P) € T'l—tﬂtpA be the corresponding Tﬁl-tiltz’ng pair. Then
the cover relations 7;’ — T in Hasse(tors A) are labelled by the distinct isomorphism

classes of objects in the (right-finite) semibrick
Sl = ind(SOCEndA(N) N) (542)

Denote the collection of left-finite semibricks, that is, semibricks arising as in
Eq. for some 7-tilting pair (M, P), by f,-sbrick A and the collection of right-
finite semirbricks, that is, semibricks arising as in Eq. 1} for some T_l—tilting pair
(N, Q), by fr-sbrick A. Given a set X of indecomposable A-modules, denote by X7 or
ind(X ®p L) the set (Jycpind(Xy) of Aj-modules. In particular, this notation is used

for semibricks.
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Lemma 5.4.2. Let L : K be a MacLane separable field extension. Then the following

square is commutative

7-tiltp A ——— f,-sbrick A
_®KLl lind(f®KL) (5.4.3)
T-tiltp A, —— f,-sbrick A,
where the horizontal map at the top is given by (M, P) — ind(M/radguq, vy M) and
M.

the horizontal map at the bottom is given by (M', P') — ind(M’/ ra‘dEndAL(M’)

Proof. Let (M, P) € T-tiltp A. As a first step to showing the desired an equality
ind(ind(M/ radgng , (vry M) @ L) = ind(ML/radEndAL (i) Mr),
observe that since — ®j L is additive the left-hand side may be simplified as
ind(ind(M/ radgyq ,(vr) M) @ L) = ind((M/ radgyq ,(ar) M) @k L). (5.4.4)

Moreover, since —® L is exact any quotient module M /N satisfies (M /N) = My, /Ny,
Now, Lemma gives that End,(M)® L = Endy, (M) and since L : K is MacLane
separable, Lemma 2) yields that (rad, M), = rady, M. Combining these obser-

vations it follows that

ind((M/ radgng , vy M) ®g L) = ind(Mp/(radgnq , (ar) M) 1) (as — ®p L is exact)

= ind(ML/radEndA(M)®KL ML) (by Lemma 2))

= ind(Mp/radgna, () M) (by Lemma |5.1.2)
so that Eq. (5.4.4) completes the proof. O

The dual statement follows from a similar proof. It is included for the sake of com-

pleteness and for later reference.

Lemma 5.4.3. Let L : K be a MacLane separable field extension. Then the following

square is commutative

rtiltp A —— fp-sbrick A
l—®KL lind(—@KL) (5.4.5)

T_l—tﬂtp A — fp-sbrick A,



5. 7-cluster morphism categories and base field extension 125

where the horizontal map at the top is given by (M, P) — ind(socgng , (ar) M) and the

horizontal map at the bottom is given by (M', P') — ind(socEndAL M) M.

Proof. Since L : K is MacLane separable, it follows that (socy M) = socy, My by
Lemma 3). Similar to the previous lemma it follows that

ind(ind(socgna , (ar) M) @k L) = ind((socgng, (M)) @k L) (as — @k L is additive)
= ind(SOCEndA(M)®KL ML) (by Lemma (3))
= ind(socEndAL(ML) M) (by Lemma [5.1.2).

This completes the proof. ]

Remark 5.4.4. Let L : K be any field extension. Then there exist two injective maps
L : f,-sbrick(A) — f,-sbrick(Ay), R :fr-sbrick(A) — fr-sbrick(Ay).

This observation follows from the fact that the horizontal maps in the commutative dia-
grams Eq. and Eq. are bijections by [8] Thm. 1.3] and the fact that —®x L
is injective-on-objects and lifts 7-tilting pairs and T_l—tilting pairs by Lemma and
its dual. However, it is not clear whether £ and R are given by ind(— ® L) as demon-

strated in Lemma and Lemma [5.4.3) when L : K is not MacLane separable .

In the following result the importance of studying left-finite and right-finite semib-

ricks for the aim of studying the 7-cluster morphism category becomes apparent.

Lemma 5.4.5. Let (M, P) be a T-rigid pair. Write B(ﬁM’P) for the left-finite semibrick
corresponding to (M *) P) as in Eq. and B%M’P) for the right-finite semibrick cor-
responding to the T *-tilting pair H(M ", P™) as in Bq. , with H as in Eq. .
Then the T-perpendicular subcategory Wy, py € mod A as defined in Theorem is
given by

War.p) = Filt 4 {B(EM’P) N B%M’P)} .

Proof. Write [, T] = [FacM,“7M N P*] C tors A for the 7-perpendicular interval
corresponding to (M, P). By Eq. it is possible to write W py = Filt4{S}
for some semibrick S € sbrick A and by Thm. 4.16(a)(c)], S consists of labels of
arrows incident to U in Hasse[ld,T|. By Proposition the right-finite semibrick



5. 7-cluster morphism categories and base field extension 126

B%M’P) consists of labels of all arrows going into U in Hasse(tors A), it follows that
S C B%M’P). Dually by Thm. 4.16(a)(d)], S consists of labels of arrows incident to
T in Hasse[d, T]. Again by Proposition the left-finite semibrick B(LM’P) consists of

labels of all arrows going out of U/ in Hasse(tors A). It follows that S C BE:M’P) N B%M’P).

Conversely, assume that there is a brick S € B(EM’P) N B%M’P), then by Proposi-

tion the brick S labels an arrow U’ — U in Hasse(tors A) and an arrow 7 — 7 in
Hasse(tors A). However, by definition of the brick labelling this means that S € U+ and
S €T, sothat S € UrnT = Wi, p)- In particular, U =uUVvT(S)CT,soS is the
label of an arrow adjacent to U in Hasse[d, 7], and thus S € S by Thm. 4.16]. O

Let T € f-tors A, then define BZ“/ = B(EM’P), where (M, P) is the basic 7-tilting pair
corresponding to 7 via Theorem

Proposition 5.4.6. Let L : K be a MacLane separable field extension, and (M, P) be a
T-rigid pair in mod A whose T-perpendicular subcategory is given by Wy py = Filt ,{S}

for some semibrick S, then
Wi, ,p,) = Filty, {Sp} € mod Ay,
where Sp, = Uxcgind(Xy).
Proof. Using Lemma write S = B(EM’P) N B%M’P). By Lemma 5) the equality

SL = U lnd(XL) = U lnd(XL) = lnd((B(ﬁM’P))L) N lnd((BgzM7P))L)
XeS XGBE:M,P)HB%MJD)

holds. Combining Lemma and Lemma gives the equality
ind((BM)y ) = B ¢ fsbrick Ay,
and similarly combining Lemma [5.3.1} Lemma([5.3.4]and Lemma [5.4.3| gives the equality
ind((B%M’P))L) = B%ML’PL) € fr-sbrick Ay
By Lemma it follows that
W, p,) = Filta, {BE 0 B
— Filt,, {ind((B(LM’P))L) N ind((B%M’P))L)}
=Filty, {S¢},

as required. O
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5.5 Faithful functor

The understanding of 7-tilting theory under base field extension developed in the pre-

vious sections culminates in the following main theorem of this chapter.

Theorem 5.5.1. Let L : K be a MacLane separable field extension. There exists a
well-defined faithful functor F : T(A) — T(Ar) given by

F:%(A) — F(Ar)
Unr,pys T, pyl~ = WUiar, ) Toar, Pl (5.5.1)

[f[U(N,Q)ﬂN,Q)][WM,P)ﬂM,P)” = [f[U(NL,QL)»WNL,QL)}[U(ML,PL)77’(ML,PL)]]’

Consequently, if W(Ay,) admits a faithful group functor, so does 23(A).

It is not difficult to see that Proposition may be used to show that F is
well-defined on objects. To understand the morphisms of T(A) under F the following
equivalent condition for the identification of morphisms in Definition is necessary.

Lemma 5.5.2. Let (N,Q) and (N', Q') be two T-rigid pairs which give rise to the
same wide subcategory Wiy o) = Wy or)- Similarly, let (M,P) € add(N,Q) and let
(M',P") € add(N',Q") be T-rigid pairs such that W = War,py = W(M/ Py Then, the

following are equivalent:

(1) VAWV € g Tival) = VWV € iy ) o o)
(2) Z/{(N,Q) NnW = u(N/,Q/) NW and ’T(N,Q) nNwW = 7ENI7QI) nNWw;

(3) B¥ aw = BV AW and BN aw = BV .,

Proof. (1) <= (2). This is immediate.

(2) = (3). Let X € f-tors W, then is exists a unique (relative) left-finite semibrick
gf € f,y-sbrick W corresponding to it by [8, Thm. 1.3] and Theorern By Proposi-
tion it labels the arrows going out of X in Hasse(tors W) and by Theorem
there exists a unique ) € [U(N,Q)’WN,Q)] C tors A such that now X = Y NW. It fol-
lows that gf = B% N W, since the intersection with W preserves the brick labels by
Proposition Consequently, since Ty gy N W = 7ZN'7Q') NW € tors W it follows

that

(N,Q) _ ZTve™ _ ST o™ (v Q)



5. 7-cluster morphism categories and base field extension 128

An entirely analogous argument shows that the equality Uy g N W = Z/l( @) N w
implies B%N’Q) nNw= B%N @) W, as required.
(3) = (2). Assume now BZN’Q) nw = BE;N L aw. Using the same notation and

reasoning as above, this implies

~ w NG T+ 4 .NW
BZ(N,Q)m — B(EN7Q) AW = BElN Q) AW = BE(N Q) )

Then it follows directly from [8) Thm. 1.3] that Ty o)W = 7E ]/V',/Q/) N W as required.
Again, an analogous argument shows that B%N’Q) nNw = B%N @ Aw implies that
Ung NW = M(N’ o N W as required. O

The following lemma, in combination with the previous, is important to control the

identification of morphisms when proving Theorem [5.5.1]

Lemma 5.5.3. Let L : K be a MacLane separable field extension and (M, P) be a

T-rigid pair in mod A. Then the square

N.Q) g g —"Warp ]
B, ” Eﬁﬁ sbrlikA ( ) y fﬁ—SbI‘ICk W(M P)
st (NQ)E[(M™,P7),(M ™ P)|Crtiltp A ’
iind(—®KL) lind(@KL)
w'.Q" . W, ,pp) .
o B T efﬁ'SbrkaL —————=— fp-sbrick Wy, p,)
s.t. (N, QHe[(Mg ,Py ),(M] ,Pp)|Cr-tiltp A, Lot L

commutes and the horizontal maps are bijections.

Proof. The vertical maps are well-defined by Proposition[5.3.6/and Lemma [5.4.2] More-
over, the horizontal map given by intersection with W, py defines an isomorphism from
Hasse[(M ", P7), (M, P)] to Hasse(7-tiltp Wi, py) Which preserves the brick labelling
by Proposition As discussed in the proof of Lemma the horizontal map is
therefore well-defined, since the brick labelling is preserved and left-finite semibricks can
be read off as the labels of arrows going out of a 7-tilting pair in the Hasse quiver by
Proposition [5.4.1] The same holds for the bottom horizontal map. The horizontal maps
are bijections because the intervals of 7-tilting pairs are in bijection by Theorem [2.2.5]
and basic 7-tilting pairs are in bijection with left-finite semibricks by [8) Thm. 1.3].
Let S € B(EN’Q). Then S € Wy, py if and only if S;, € Wy, p,) by Lemma |5.2.4

In particular, this is the case if and only if every indecomposable direct summand

S € add(S}) is contained in W, p,)- Therefore, the square commutes. O
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Now all preliminary results have been collected, and this section is concluded by

proving Theorem [5.5.1]

Proof of Theorem[5.5.1] It is shown in Proposition W that if (U py, T,y is a
7-perpendicular interval of tors A, then U, p,), T(m,,p,)l 18 a T-perpendicular in-
terval of tors A;. Moreover, consider two 7-perpendicular intervals [Z/{(Mvp),’]szp)]
and [L{(M/7P/),7EM/7P/)] of tors A such that Wy p) = W,y pry = Filt 4{S} for some
S € sbrick A. Tt follows that

Wiy, p) = FﬂtAL{SL} - W((Ml)Ly(P/)L)
by Propositionw Therefore, if (U py, T(ar,p)l~ = [U(M’,P’)’ 7EM’,P’)]~ in T(A), then
Uinr, ey Toy, )l = Uary, 2,y Tir'y 2y )~ T T(AL). Thus F is well-defined
on objects. To investigate morphisms, consider two 7-perpendicular intervals of tors A

such that [U(N,Q)7 7EN7Q)] g [Z/I(MJD), 7EM,P)]' Then

[U(NLvQL)’ ﬁNLaQL)} S [U(MvaL)’,]ZMLvPL)] C tors Ay,

follows from the fact that — @ L : 7-tiltp A — 7-tiltp A preserves the partial order
of T-perpendicular intervals by Lemma [5.2.8

Now, consider four 7-perpendicular intervals [U(y gy, T(n,0)] € [Uar,p)s TPyl and
[Z/{(N/Q/), 7EN/,Q’)} - [Z/{(M/7P/), 7EM’,P’)] of tors A whose corresponding wide subcategories
are such that Filt ,{S} = W py = W( M P for some S € sbrick A and moreover such

that Wy q) = W(N/Q/) and
{V N W(M7P) Ve [Z/{(N?Q),WJ\LQ):I} = {V/ N W(M',P') Ve [U(N/,Q/)’,UN/,Q')]}
as subsets of tors(Filt 4{S}). Then there is a chain of implications

Tiva) "Worr) = Tiv oy VW p)
= B9 A Filt 4 {S} = BN A Filt 4 {S) (by Lemma

= ind((BN? N Filt 1 {S})1) = ind((BY ) N Filt 4 {S});)

= BN A gty (8,) = BV @) R, (S} (by Lemma [5.5.3)
= T(n, 0, NFilty, {Sp} = 7E(NI)L7(Q/)L) NFilty, {Sr} (by Lemma [5.5.2)

= Tivg.@p) "W, p) = Ty, @) YWV ey, (by Proposition [5.4.6]).



5. 7-cluster morphism categories and base field extension 130

An analogous argument shows that

Un,g) "Warpy = Uy oy OWar pry

= Uy "Wy =Uwy, @) "W

Therefore, Lemma yields that

(YW, bV €U, ) Tivpanl}
Ny Ny
= {V MWiary, .y, PV € W((N’)L,(Q’)L)’T((N’>L,<Q/>L>]}

in tors(Filt 4, {S.}). In other words, identification of morphisms is preserved. To inves-

tigate the composition of morphisms, let

[f[u T ] °© [f[U(M,P)»ﬁM,P)][U ]}

'@y T oY 7

(N”,Q”) T

w".Q"y ' Py’ P

be two composable morphisms in T(A), that is, such that their composition is nonzero.
Then by Lemma there exists an interval [Z/I( M) 'T( V% P”)] C [L{( a2y T P/)]
= [fu

Ny T o) M oy T o)

that their composition is given by

1 T

(M/,P/)’ (MCP/)}[U T

7y ”
(M7, P7) (M, P

such that [f[u( ,,)]] S0

U ithiar, ) Tonn o U g por T

,,)]]-

It is immediate that

)

1D 0 F S heas, oy Toas iy r oy Toogr o,

F(lfu ., AU T

ar 2y Tod o Mo oy T b7y

= [fu T

<<M’>L,(P’>L>“u

(" (P’ <<M”)L,<P”>L>’T<<M”>L,(P”)L)}

(@]
[f[““‘/’LvPL”T(ML’PLﬂ W«M’)L,<P’)L>’T<<M’>L,<P’>L>]

[f[uW’L»PL)’T<MLPU”“((M”)L,(P”)L) ’T((M”>L,<P”>L)]

D

= ‘F([f[U(M,P)aﬁM,P)]W 7,

(M”,PN>7 <1\4//7}3//)

Thus F preserves composition of morphisms. It is immediate that F preserves identity
morphisms. Therefore F : T(A) — T(Ay) is a well-defined functor. Finally, to see that

F is faithful, take two distinct morphisms

[f[U(M,P) 77—(M,P)][U(N,Q),7—(N,Q)]] ’ [f[u(M,P) :7—(M,P)][U(N/’Q’)u,T(N/’Q’)]]

€ Homg( ) (Urr,pys Ton,pyl e Uin 0y Tiv,g)l~)-
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By Lemma [4.2.6] see also Corollary they may be taken to be represented by two
morphisms in itv(tors A) with the same domain without loss of generality. Assume for

a contradiction that

[f[u(ML,PL)v'T(ML,PL)][Z’I(NL,QL)J—(NL,QL)]} - [f[u(ML,PL):,T(ML,PL)][u((N/)L,(Q/)L)77-((N/)L7(Q/)L)]]

in T(Ay). This would mean that the intervals

Unyu): Tivpen] and Uy, @) Tvy @)

coincide since their intersections with W, p,) coincide and the intervals
torsOWar,,p,)) and U, p,ys T, ,p,)] € tors Ay are in bijection by Theorem
Using Lemma, and Lemma [5.3.5] this implies that

Unpao) =Unw) @y 24 Toveen = Tvy,@).)
= (Np)7,(Qr) ) = (((N))~,(@")") and ((Np)",Qr) = (N))",(Q")1)
= (N7, (@)z) = (N ). ((@))z) and (NT),Qp) = (N)" ). (Q")1)-

Since — ®j L defines an injective map of 7-tilting pairs by Proposition it follows
that (N",Q7) = (N)7,(Q") ") and (N',Q) = (N)*,Q’). Since two distinct distinct
T-rigid pairs cannot have both the same Bongartz completion and the same co-Bongartz
completion this yields (N, Q) = (N', Q"). However, this is a contradiction to the assump-
tion that the original morphisms are distinct. As a consequence the functor F is faithful

as required. O

Corollary 5.5.4. Let L : K be a MacLane separable field extension. If T(Ar) admits
a faithful group functor, then so does T(A).

Proof. This is an immediate consequence of Theorem since the composition of
faithful functors is again a faithful functor. O
5.6 Applications and examples

To conclude this chapter and this thesis, the 7-cluster morphism categories of a new

class of algebras are shown to admit faithful group functors. This partially extends the
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two classes of algebras admitting faithful group functors listed in Example see
also [106, Thm. 3.7] and Thm. 5.9]. To give a specific example, it is necessary to
first introduce the notion of species, a generalisation of quivers, which are designed to

encode information about field extensions.

Definition 5.6.1. Let K be any field. A K-species S = (Q°, D;, X,,) consists of the

data of:

« A quiver Q° = (Qp, Q1);
e A division K-algebra D; for each i € Q%;

e A D;-Dj-bimodule X, for each o :i — j in Q?-

If K algebraically closed, then every division K-algebra is isomorphic to K itself.
Choosing every division K-algebra in the definition of a K-species to be K itself and
choosing moreover every K-K-bimodule to be K as well, then the resulting K-species
is simply a quiver. The tensor path algebra of a K-species S = (QS, D;, X,,) is defined
as the K-algebra

KS =@ X®, where X*'= P D;,, X=(P X..
>0 ieQS acQf
The tensor products in this definition are taken over X ®0, with the bimodules
{X a}ae & and X becoming X ®0_X®0_himodules in the standard way. For algebras over
non-algebraically closed fields, the endomorphism rings of bricks may not all be isomor-
phic to the ground field. The following definition and subsequent theorem illustrate the

usefulness of particularly well-behaved classes of bricks.

Definition 5.6.2. Let A be a finite-dimensional K-algebra. A brick B € brick A is
called a stone if Exth(B,B) = 0. Moreover, it is called a K-stone if it additionally
satisfies End 4(B) = K. If every brick of A is a (K)-stone, then the algebra A is called

a (K )-stone algebra.

If the division ring D; is assigned to a vertex i € QE of a K-species, then the
corresponding simple representation/module is a brick whose endomorphism ring is
isomorphic to D,. In the remainder of this section the scope of the following result is

expanded using the theory of base field extensions and Theorem [5.5.1]
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Theorem 5.6.3. @ Thm. 5.9] Let K be a finite field and let A be T-tilting finite K -
algebra which admits Hall polynomials. Assume that A is such that for every semibrick
{S,T} € sbrick A one of the following holds:

e S andT are both K -stones;

e Ext}(S,T) =0=Ext)(T,59).

Then there exists a faithful group functor T(A) — G(A).

Remark 5.6.4. While the result Thm. 5.9] is stated in greater generality in the
original text, the adaptation of the result as above is necessary to guarantee that the
result holds. In the original text the existence of Hall polynomials is assumed.
However, this notion is generally only defined for algebras over finite fields, and the

existence of Hall polynomials a highly nontrivial property, known to hold only for few

classes of algebras, see 160] and the references therein.
Using Corollary the result Theorem may be extended to yield new families

of algebras for which the 7-cluster morphism category admits a faithful group functor.

Theorem 5.6.5. Let K be a perfect field and let A be a quotient of a representation
finite and hereditary K-algebra. Then T(A) admits a faithful group functor.

Proof. Since K is a perfect field, the result Cor. 4.1.11] states that any K-algebra
A is of the form KS/I, where S is a K-species known as the Ext-K-species of A and
I is an ideal of KS. By assumption, it is possible to choose A = KS/I with KS a

representation finite and hereditary algebra. It then follows from the isomorphisms
Ag = (KS/D)g = (KS)g /().

that Az is isomorphic to a quotient of a representation finite and hereditary algebra.
That is, because KS is representation finite, so is (K'S)z by Thm. 3.2], and because
KS is hereditary, so is (KS)z by Thm. 2.4].

As a quotient of a representation finite hereditary K-algebra, it is possible to write
mod Az = mod(KQ/(P)) for some quiver @ of Dynkin type ADE and a set of mono-
mials P, generating an admissible ideal. As a consequence of Gabriel’s Theorem ,

finite-dimensional K @Q-modules are in bijection with finite-dimensional FoQ-modules.
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It then follows from Thm. 4.3], that both tors(F,Q) and tors(K Q) are isomorphic
to a Cambrian lattice of type @, as introduced in . Moreover, since the ideal (P)
of KQ is generated by monomials, it makes sense to also consider F5Q/(P).

The lattice congruence on tors(K Q) induced by (P) is determined by the bricks the
ideal annihilates, by Theorem The bijection between indecomposable K Q-modules
and indecomposable FyQ-modules yields directly that tors(KQ/{P)) = tors(FyQ/(P)).
The corresponding lattice congruence on the Cambrian lattice of type @) may be de-
scribed using the join-irreducible elements corresponding to the annihilated bricks. It

follows from Theorem that there is are equivalences of categories
T(Ag) = TEQ/(P)) = T(F2Q/(P)). (5.6.1)

To conclude, it remains to show that T(FyQ/(P)) admits a faithful group functor. It
is well-known that quotients of representation finite hereditary algebras are directed, so
that Fy/(P) is a directed algebra. Hence, the algebra FoQ/(P) admits Hall polynomial
by Thm. 1]. Similarly, since FoQ/(P) is the quotient of a representation finite
hereditary path algebra, it is an Fy-stone algebra. Thus, T(F,Q/(P)) admits a faithful

group functor by Theorem and so does T(Az) by Eq. (5.6.1). Consequently, T(A)
admits a faithful group functor by Corollary O

Example 5.6.6. Let K = R and let S be the following K-species

of Dynkin type Cy. Let A be the radical square zero quotient of KS, so in the previous
notation A = KS/(X®?). Thus, T(A) admits a faithful group functor by Theoremm
It can be checked, that Ac is isomorphic to the radical square zero quotient of the path

algebra

C o*>o*>o/.
~

of Dynkin type Ds.

Similar types of (un)foldings of quivers and species and their associated representa-

tions have been studied in the literature, see .
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