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Abstract

The first part of thesis presents new meshless methods for solving time harmonic electro-
magnetic fields in closed two- or three-dimensional volumes containing heterogeneous
materials. This new methods will be used to simulate magnetotelluric experiments, when
an Earth conductivity model is given in advanced. Normally, classical approximation
methods like finite elements or finite differences are used to solve this task. The algorithms
here in this thesis, only need an unstructured point sampling in the modelling domain for
the discretization and is able to gain a solution for the partial differential equation without
a fixed mesh or grid. This is advantageous when complex model geometries have to be
described, because no adapted mesh or grid need to be generated. The meshless methods,
described here in this thesis, use a direct discretization technique in combination with
a generalized approximation method. This allows to formulate the partial differential
equations in terms of linear functionals, which can be approximated and directly form the
discretization. For the two-dimensional magnetotelluric problem, a second-order accurate
algorithm to solve the partial differential equations was developed and tested with several
example calculations. The accuracy of the new meshless methods was compared to
analytical solutions, and it was found, that a better accuracy can be achieved with less
degrees of freedoms compared to previously published results. For the three-dimensional
case, a meshless formulation was given and numerical calculations show the ability of the
scheme to handle models with heterogeneous conductivity structures. In the second part
of this thesis, the newly developed two-dimensional simulation method will be used in an
inversion scheme. Here, the task is to recover the unknown Earth conductivity model
with the help of data gained from a magnetotelluric experiment. Due to the previously
developed meshless approximation algorithm, some numerical tasks during the inversion
can be simplified by reusing the discretization defined on the point sampling from the
forward simulation. The newly developed meshless inversion algorithm will be tested
with synthetic data to reconstruct known conductivity anomalies. It can be shown, that
the inverse algorithm produces correct results, even in the presence of topography.
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Zusammenfassung

Im Rahmen dieser Arbeit wurde ein neuartiges Verfahren zur zwei- und dreidimensionalen
Modellierung von magnetotellurischen Daten vorgestellt. Weiterhin wurde, basierend auf
den Entwicklungen zur mangetotellurischen Modellierung, ein Verfahren implementiert,
welches die zweidimensionale Inversion von magnetotellurischen Daten ermöglicht.
Im Gegensatz zu etablierten Simmulationsverfahren, verwendet diese neu entwickelte
Methode kein numerisches Gitter zur Diskretisierung der partiellen Differentialgleichun-
gen. Es genügen lediglich im Modellraum gleichmäßig verteilte Punkte zur Berechnung
der Diskretisierung. Durch die Vermeidung eines starren Gitters zur Berechnung der
Diskretisierung ergeben sich numerische Vorteile, welche schwer durch eine starre
Gitterdiskretisierung realisierbar sind.
Komplexe Modellgeometrien können besser diskretisiert werden und der rechnerische
Aufwand, ein qualitativ hochwertiges Gitter zu erzeugen, entfällt. Weiterhin kön-
nen die Berechnungen, welche nötig sind um ein Gleichungssystem zu erstellen, das
zur Näherungslösung der Differentialgleichung führt, für jeden Freiheitsgrad unab-
hängig voneinander durchgeführt werden. Das verwendete Verfahren, welches zur
Diskretisierung genutzt wird, hat seinen Ursprung in der Approximationstheorie und
ermöglicht es beliebige, lineare Funktionale zu approximieren. Die Diskretisierung
der Differentialgleichungen ist dann möglich, da sie als System linearer Funktionale
formuliert werden können. Durch diese Art der Approximation ergeben sich in der
weiteren Verwendung zusätzliche Vorteile. Wurde eine Differentialgleichung einmal
mit dem Verfahren diskretisiert, erhält man durch die vorhandene Diskretisierung die
Möglichkeit jegliche Approximation oder Integration auf den Punkten im Modellraum
ohne erheblichen Mehraufwand zu berechnen. Dieses ist von Vorteil bei der Inversion von
magnetotellurischenDaten. Das im letzten Teil der Arbeit vorgestellte Inversionsverfahren
verwendet genau diesen Ansatz, um die Diskretisierung für eine Regularisierung des In-
versionsalgorithmus zu verwenden. Das inverse Verfahren wird hierbei für die Erstellung
von Leitfähigkeitsmodellen aus gemessenen magnetotellurischen Daten verwendet. Tests
mit Hilfe von synthetische Datensätzen, wobei blockförmige Leitfähigkeitsanomalien
innerhalb eines homogenen Halbraumes rekonstruiert werden, zeigen die Anwendbarkeit
des Algorithmus.
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Introduction

To understand the interior composition of Earth material several applied geophysical
methods have been developed during the last decades. An important tool in the interpre-
tation is the numerical simulation of the real geophysical experiment through boundary
value problems and their corresponding partial differential equations. Simplifications of
the physical description should be made to reasonably simulate the physical process with
the available numerical tools at hand. Classical numerical methods like finite differences
or finite elements have been successfully applied to simulate the geophysical experiment
with a given idealistic material parameter distribution. All of these numerical methods
rely on computational grids or meshes to calculate the discretization of the underlying
partial differential equation. A lot of effort has been devoted to the process of mesh
generation. To generate qualitative meshes to handle complex geometries is a significant
task and even if a lot of mesh generators are freely available, the main valuable part of a
mesh based application, which solves partial differential equations, is the mesh generator.
In the development of numerical simulation tools for the computation of electromagnetic
fields used in applied geophysical methods the progress has been mostly devoted to
improve existent classical approaches. Even if different numerical methods were available,
less progress has been made to adapt these novel schemes to the field of electromagnetic
geophysics. This thesis will present first attempts utilizing novel discretization strategies,
to solve the boundary value problems for the simulation of electromagnetic fields, which
occur in an applied geophysical method called Magnetoellurics. This newly developed
approach can be categorized into the class of meshless or meshfree methods. These
discretization schemes do not rely on a fixed mesh or grid and can handle unorganized
point samplings to solve a boundary value problem. In the second part of this thesis,
the simulation method will be applied in an inverse scheme to reconstruct conductivity
models from given magnetotelluric data.
Methods to solve the magnetotelluric forward problem have a long history of use and
development in theoretical geophysics. The focus here is on finite differences and finite
elements, because of their popularity, even if there are other methods like the integral
equation method or boundary element method. One of the first practically usable finite
difference implementations has been provided by Jones and Pascoe (1971). Followed by
a publication by Brewitt-Taylor and Weaver (1976) about the finite difference solution of
two-dimensional induction problems and an implementation of Červ et al. (1978). An
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2 Introduction

implementation that incorporates two-dimensional anisotropic conductivity structures
was given by Pek and Verner (1997). Even though the finite differences implementations
gave reasonable results, the development of two-dimensional finite element formulations
began at the same time. One of the earliest publication is due to Coggon (1971) followed
by Kisak and Silvester (1975). This was the time, when the theoretical work of finite
element methods dealt with discontinuous approximations Babuška (1970). Finally, the
work of Rodi (1976) improves the modelling using finite element methods and one decade
later the formulation of Wannamaker et al. (1985) was published. Their work is used up
to now, and is one of the building blocks in the well known Occam’s inversion developed
by Degroot and Constable (1990). Reasonable improvements have been made in Li
and Key (2007) and Franke et al. (2007) as well as in Key and Ovall (2011), by using
unstructured meshes which can be adapted to the error of the calculations. The work of
Key and Ovall (2011) results in the most up-to-date implementation of Key (2016).
Parallel to the development of two-dimensional finite element and finite difference
approximations, three-dimensional modelling schemes have been developed. Here the
developments of the finite element algorithms are tied strongly to the use of elements
proposed by Nedelec (1980). While the first three-dimensional schemes given by Weidelt
(1975) and Ting and Hohmann (1981) used the integral equation approach, early finite
element formulations were given byMogi (1996), Everett and Schultz (1996) or Zyserman
and Santos (2000). In contrast to finite element methods, finite differences often use
a staggered Yee scheme (Yee, 1966) for the discretization and have been investigated
by Wannamaker et al. (1984), Mackie et al. (1993), Mackie et al. (1994) or Weiss and
Newman (2002). Recent developments use finite element schemes with unstructured
grids as described by Schwarzbach (2009); Schwarzbach and Haber (2013), Ansari and
Farquharson (2014) or Grayver and Kolev (2015).
Nevertheless, meshless methods for geophysical electromagnetic modelling have not
been considered until the work of Wittke and Tezkan (2014). Up to now, only Li et
al. (2015) and Ji et al. (2017) published results on this topic. Here in this thesis, new
research on this topic will be presented, including two- and three dimensional meshless
magnetotelluric modelling and inversion.

1.1 Outline of research

An introduction on electromagnetic theory to describe the basic electromagnetic phe-
nomena and the fundamental principles of the magnetotelluric method is presented in the



1.1. OUTLINE OF RESEARCH 3

Sub-chapter 1.1. Starting with an overview on the magnetotelluric method, Maxwell’s
equations and various physical assumptions, as well as electromagnetic potential formu-
lation are given to describe electromagnetic fields. Here, gauge conditions are essential
for these formulations and as a result gauged vector potential formulations are stated.
This special choice, describing the electromagnetic fields using potentials, results in the
smoothness of the vector potential fields. In this formulation the potential fields are
smooth across conductivity interfaces, what is beneficial for the meshless approximation
scheme. This is described in the Sub-chapter 3.6 of electromagnetic interface condi-
tions. When interface conditions are defined, it is possible to apply them at the outer
boundaries of a computational domain. Here, boundary conditions have to be considered.
The description of various conditions, that can be imposed on outer boundaries which
closes the computational domain are given in Sub-chapter 2.4.2. After presenting all
components for arranging boundary values problems, formulations for the induction
in two-dimensional conductivity structures are given in the Sub-chapter 2.5. Here the
formulation splits into two separate equation systems, corresponding to the electrical and
magnetic fields. The Sub-chapter 2.6 about second order formulations gives the complete
sets of equations for the boundary value problems in two and three dimensions. At the
end of this Chapter, special modifications for the earlier stated differential equations are
given, to adapt the general formulations to the magnetotelluric case.
In the Chapter 2.8 about meshless methods for Maxwell’s equations, a general description
of the generalized moving least squares method is given first. After presenting an
extension to this method, error bounds are given. The Sub-chapter 3.4 about the meshless
formulations presents the formulations for the two- and three-dimensional problems
according to a description using linear functionals. The actual implementation is given
in Sub-chapter 3.5, while Sub-chapter 3.6 discusses the descriptions of interfaces and
their discretization. Sub-chapter 3.7 informs about how to generate point samplings and
how to solve the sparse linear system of equations. Convergence results for the meshless
algorithms are given in Sub-chapter 3.8. In this Sub-chapter magnetotelluric example
calculations are also conducted, to test the newly developed forward algorithm.
The Section 3.9 is devoted to the development of a meshless inverse algorithm. Sub-
chapter 4.1 introduces the basic inversion theory and, later on, the Sub-chapter 4.2 deals
with the calculation of meshless fréchet derivatives. After presenting regularization
schemes in Sub-chapter 4.3 example inversions are given in Sub-chapter 4.4.



The magnetotelluric method

The magnetotelluric (MT) method is one of the oldest and best established geophysical
exploration techniques to probe the Earth’s conductivity structure down to depth of several
thousands meters. It is a passive, natural-source electromagnetic method, easy to apply
in the field, and widely used for scientific and industrial exploration. The fundamental
principle of the method is to establish a better understanding of the conductivity structure
inside the Earth by comparing measured electrical and magnetic fields at its surface.
Precise information about the source current distribution which generates the measured
electromagnetic fields can be neglected. These natural time-varying electromagnetic
fields have their origin in the Earth’s ionosphere and magnetosphere. Here, interactions
of solar and near-Earth plasma with the geomagnetic field generate electrical currents
of mostly unknown shape and size. Basic types of magnetotelluric field variations are
generated by pulsations, polar sub-storms, solar daily variations and worldwide magnetic
storms (Berdichevsky and Dmitriev, 2002). These sources are substantial for generating
long-period (>1 s) signals, while short periods are commonly due to meteorological
processes. A significant drop in the signal strength can be observed in the frequency
around 1 Hz, which is commonly referred as the MT dead-band (Simpson and Bahr,
2005).
The most basic assumption which can be made, is a plane electromagnetic wave vertically
incident on an Earth consisting of homogeneous, horizontal, isotropic conductivity
layering. This plane-wave assumption is mathematical justifiable, but lacks a precise
physical model (Chave and Jones, 2012). Nevertheless, it is the basic foundation of the
classical magnetotelluric theory given by Rikitake (1948), Tikhonov (1950), Cagniard
(1953) and establishes a tensor relationship between the horizontal electric field E and
magnetic field H

E = Z ·H, (2.1)

with the MT impedance Z as a function of period. The impedance contains information
about the electrical conductivity structure and can be transformed into an apparent
resistivity and phase. For the simple case of a one-dimensional, isotropic layered Earth,
this transformation is given by

ρ̄a =
i

µ0ω
Z2 = ρaeiφa, (2.2)

4
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in which the absolute value

ρa = | ρ̄a | =
|Z2 |

µ0ω
, (2.3)

defines the apparent resistivity ρa. The complex argument

ϕa = arg ρ̄a = 2 arg Z + π/2, (2.4)

is the magnetotelluric phase (Berdichevsky and Dmitriev, 2002). Both are a function of
the frequency ω and this formulation allows interpreting qualitatively the variation of
Earth’s resistivity with depth, because the penetration depth of electromagnetic fields
varies with their frequency. The apparent resistivity can be interpreted as the weighted
average of Earth’s resistivity within a specific volume, in which electromagnetic energy
is dissipated (Berdichevsky, 1968).
During a magnetotelluric experiment, time series of the electric and magnetic fields are
recorded. A sketch of a magnetotelluric measurement set-up is displayed in Figure 2.1.
The electric field can be measured by grounded, separated electrodes, sensing voltage
variations versus time. Dividing these voltage variations by the electrode spacing gives an
approximation of the electric field. The magnetic field can be sensed by induction coils
measuring either horizontal or vertical field variations. After processing the recorded
data, the final product is in the most simple case a set of apparent resistivity values
and phases plotted against a different frequency range. They can be used to identify
conductivity changes in the subsurface beneath the measuring site.

a) b) c) d)

Figure 2.1: Schematic of a magnetotelluric measurement experiment set-up including: a) & d)
electrical sensors, b) recording unit, c) magnetic sensors.

The magnetotelluric assumptions

Simulating an experiment utilizing the magnetotelluric method, some basic assumptions
can be made to simplify the underlying physical model. A general list is given by
Simpson and Bahr (2005) and have been discussed in many publications (Vozoff, 1991;
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Berdichevsky and Dmitriev, 2002). Here, two important simplifications will be restated:

• The electromagnetic source fields, which are used by the magnetotelluric method,
are generated far away from the Earth surface by large uniform current sheets. These
source fields can be simply described as uniform plane-polarized electromagnetic
waves, normally incident on the Earth surface.

• Propagation of electromagnetic fields are described by a diffusion process rather
than an electromagnetic wave propagation. This assumption, often referred to as
theMT-approximation, neglects occurring displacement currents due to the applied
time scales, as well as size of the induction process.

Assuming a source field which can be characterized as a plane-wave leads to the time
invariance of the magnetotelluric impedance tensor Z. Repeated measurements should be
similar or even equal if the conductivity structure inside Earth does not change over time.

Electromagnetic properties of Earth materials

One of the main objective of a magnetotelluric experiment is to increase an understanding
of the Earth’s interior composition. The link between magnetotelluric field variations and
induction processes in Earth are the electromagnetic properties of naturally occurring
materials. However, interpretations of magnetotelluric measurements will only be
successful if valuable laboratory measurements of material parameter are available to
compare with.
The electromagnetic properties of Earth materials in this thesis will be described with
three basic parameters, the electrical conductivity σ (or reciprocal the electrical resistivity
ρ), the electrical permittivity ε and the magnetic permeability µ. All of them can be
functions of other physical parameters for example temperature, pressure or water content.
For simplicity, in this thesis only a spatial dependence is assumed and their mathematical
description will be stated more precisely in the subsequent chapter. For a general overview
of different physical processes and descriptions about these properties, the reader is
referred to the work of Chave and Jones (2012) or Palacky (1988). To get an idea about
the ranges in electrical conductivities, a table (see Figure 2.2) is compiled to give an
overview on common Earth materials.
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resistivity (Ωm)

conductivity (mS/m)

Figure 2.2: Overview of conductivity and resistivity values of some common Earth materials,
modified after (Miensopust, 2010; Palacky, 1988).

2.1 Basic notations

Assuming spatial varying material parameters, mathematical descriptions are needed
to specify the behaviour of the electromagnetic fields. Generally, all considerations
take place in a proper subset of the whole space in R3. This finite domain is named by
Ω ( R3, while its Lipschitz-continuous boundary is denoted by Γ = ∂Ω. If a boundary is
composed of several individual parts, a superscript index Γi=1,...,k is used to differentiate
them into k different components. In some cases, a boundary can be named after its
special type. For example, Dirichlet type boundaries will be named with ΓD, Neumann
type boundaries are denoted by ΓN , electric boundaries by Γe, and so on. In the three
dimensional case, ∂Ω ( R2 and for a two dimensional domain its boundary is in R.
All of these domains can be decomposed in non-overlapping parts. For example, the
computational domainΩ can be divided intoΩ = ∪iΩi and for some i , j the intersection
Ωi

⋂
Ω j = ∅. The same is also valid for the boundaries. Thus, the computational domain

is a convex polygon (see Figure 2.3). An interface between two regions Ωi and Ω j is
denoted by Γint

i, j = Ω̄i ∩ Ω̄ j . If a function f (x) has a discontinuity on an interface, this
will be expressed with

[ f (x)]i, j = f +(x) − f −(x), x ∈ Γint
i, j , (2.5)
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(a) (b)
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Γ

Γ

Γ

Γ

Figure 2.3: Example of computational domains. (a) A three-dimensional model domain composed
from various sub-domains, calledΩ. Enclosed by a boundary denoted by Γ (b) A two-dimensional
model abstraction, where the labeling is the same as in the three-dimensional model.

whereas functions at the interface are defined with f +(x) = limδ→0 f (x + δn) and
f −(x) = limδ→0 f (x − δn).

2.2 Material parameters and Ohm’s law

As stated in the previous chapter, the main intention of this work is the calculation of
electromagnetic fields from a given, spatial material parameter distribution as well as
the prediction of material parameters according to measured electromagnetic fields. As
material properties be defined at a microscopic level, macroscopic scale properties of
materials play a prominent role. Here, all electromagnetic fields are related through
constitutive relations which define a linear dependence between the fields:

D = εεεE, (2.6)

B = µµµH. (2.7)

The proportionally factors εεε : R3 → R3×3 and µµµ : R3 → R3×3 are the electrical permit-
tivity and the magnetic permeability tensors, respectively. When the electromagnetic
process is driven by an applied current density Je the generalized Ohm’s law reads

J = σσσE + Je, (2.8)
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with the electrical conductivity tensor as a matrix valued function σσσ : R3 → R3×3. In
this experimentally justified relation, the conductivity takes the prominent role, as all
following electromagnetic calculations are based on this parameter. All these material
parameters are generally not constant, but symmetric and uniformly positive definite
matrices with bounded functions of the spatial position. For the conductivity, this reads
(in coordinates) for example:

*....
,

Jx

Jy
Jz

+////
-

=

*....
,

σ11 σ12 σ13

σ21 σ22 σ23

σ33 σ23 σ33

+////
-

*....
,

Ex

Ey

Ez

+////
-

. (2.9)

The conductivity should also uniformly bounded from below and above by two strictly
positive constants (Santos and Sheen, 2000). This is physically intuitive, because Earth
materials should always have a positive conductivity. If the extremal values are denoted
by σmax and σmin, it can be mathematically assumed for all ξ ∈ R3 and x ∈ Ω that

σmin��ξ��2 ≤
3∑

i, j=1
σi j (x)ξ jξk ≤ σmax ��ξ��2 . (2.10)

Then it follows that the eigenvalues of σ are uniformly bounded from below and above
by two strictly positive constants, denoted by σmin and σmax . Different distinctions can
be made with respect to the distribution of the material parameters:

• material parameters independent of the position are called homogeneous

• a parameter dependent on the spatial position is termed inhomogeneous

• material parameters having different values in different spatial directions are called
anisotropic

• material parameters depending on the amplitude of the applied fields are termed
nonlinear

• parameters depending on the frequency or time of the applied fields are termed
dispersive.

The relations (2.6) through (2.8) are usable when the medium is almost dispersion free
in a broad frequency range. For a causal medium and when the constitutive relations
depend on the time, Equations (2.6) and (2.7) must be written as convolution-type
integrals (Mackay and Lakhtakia, 2010). Throughout this work linear, isotropic and
inhomogeneous material parameters, which do not depend on time or frequency are
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considered. This assumption reduces the tensor in (2.9) to a constant, scalar value and
Ohm’s law reads

J = σE + Je. (2.11)

This is also valid for the magnetic permeability and electrical permittivity. Throughout
this thesis, constant values are used for both. These values are the magnetic permeability
and electrical permittivity for the free space

µ = µ0 = 4π × 10−7, (2.12a)

ε = ε0 =
(
µ0c2

)−1
. (2.12b)

Therein, c is the speed of light in vacuum.

2.3 Maxwell’s equations

Maxwell equations are known as the fundamental, complete description of the behavior
between electric and magnetic fields (Jackson, 1999). They consist of two vectorial
equations and two scalar equations

∇ × E +
∂B
∂t
= 0, (2.13a)

∇ ×H −
∂D
∂t
= J, (2.13b)

∇ · D = ρe, (2.13c)

∇ · B = 0. (2.13d)

Faraday’s law (2.13a) describes that circulating electric fields are generated by time-
varying magnetic fields. Maxwell-Ampere’s law (2.13b) states that the sum of electrical
currents and time-varying electric fields produce circulating magnetic fields. The Gauss
law for magnetism (2.13d) and Gauss law for electricity (2.13c) state that there are no
magnetic monopoles and the electric field diverges from electrical charges.In this form,
Maxwell’s equations are valid in a resting or moving inertial reference frame, in which
materials are at rest. Fourier transform in time of Equations (2.13a) through (2.13d) and



2.3. MAXWELL’S EQUATIONS 11

using constitutive relations and Ohm’s law leads to:

∇ × E − iωµ0H = 0, (2.14a)

∇ ×H + iωε0E = σE + Je, (2.14b)

∇ · (ε0E) = ρe, (2.14c)

∇ · (µ0H) = 0. (2.14d)

Equations (2.14a - 2.14d) are Maxwell’s equations in the frequency domain. Both sets
of equations are suitable for magnetotelluric modelling, whereas the frequency domain
equations are used more often as the time domain version (de la Kethulle de Ryhove
and Mittet, 2014). Furthermore, Amperes law can be rewritten using a notation as
σ̂ = σ − iωε0, introducing the complex conductivity σ̂.

2.3.1 Electromagnetic vector potential formulations

As a result of the Helmholtz theorem, every vector field can be decomposed in a part that
is divergence free and in a part that is curl free (Girault and Raviart, 2012, Theorem 3.5).
To derive a formulation of differential equation using vector potentials, the electrical field
intensity and the magnetic flux density will be decomposed as described in Huray (2011):

E = ∇ × F − ∇ψ, (2.15)

B = ∇ × A − ∇χ. (2.16)

Here F and A are the vector potentials corresponding to the fields E and B. While
the associated scalar fields are ψ and χ. This transformation allows a different way of
describing electromagnetic fields. It is not only a different mathematical formulation, the
converse argument is also true: electromagnetic phenomena can be either described by
the fields E and B or by using potentials from which E and B can be derived. Both can
exist independently of each other and the Aharonov-Bohm effect (Aharonov and Bohm,
1959) shows the existence of electromagnetic potentials even if E and B are zero.
Following Tyler et al. (2004), inserting Equations (2.15 - 2.16) into (2.13a) gives

∇ × E + ∂t (∇ × A − ∇χ) = ∇ × (∇ × F − ∇ψ) + ∂t (∇ × A − ∇χ)

= ∇ × ∇ × F + ∂t (∇ × A) − ∂t∇χ

= ∇2F − ∇(∇ · F) + ∂t (∇ × A) − ∂t∇χ

= 0.

(2.17)
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Also, by inserting Equations (2.15) and (2.16) into (2.13b) and using (2.6) gives

∇ × B − µ0J − µ0ε0∂t (∇ × F − ∇ψ) = ∇2A − ∇(∇ · A) − µ0J − µ0ε0∂t (∇ × F − ∇ψ)

= ∇2A − ∇(∇ · A) − µ0σ(∇ × F − ∇ψ)

− µ0ε0∂t (∇ × F − ∇ψ)

= µ0Je.
(2.18)

To proceed, the divergence is applied to Equation (2.13b) together with Ohm’s law and
Equation (2.15) is inserted :

∇ ·
(
µ0σE + µ0Je − µ0ε0∂tE

)
= ∇ ·

(
µ0σ(∇ × F − ∇ψ) − µ0ε0∂t (∇ × F − ∇ψ) + µ0Je)

= ∇ · µ0
(
σ∇ × F − σ∇ψ − ε0∂t (∇ × F) − ε0∂t∇ψ + Je)

= 0.
(2.19)

Now, arriving at three Equations (2.17-2.19) for the decomposition ofMaxwell’s Equation,
they need to be decoupled and written only in terms of one vector potential. By inserting
the decomposition (2.16) into Gauss’ law (2.13d) a homogeneous Poisson equation for χ
could be derived. A natural choice is to specify χ = 0 at boundaries of the computational
domain and as consequence χ will also be zero all over the domain. Using this assumption
allows rewriting Equation (2.17) as

∇ × F + ∂tA + ∇ξ = 0, (2.20)

because χ vanishes in Equation (2.17). The last term ∇ξ results from the fact, that
every vector field whose curl is zero, can be written as a gradient of some scalar
function which was introduced here as ξ. Using Equation (2.20) and the identity
∇ × ∇ × A = ∇2A − ∇(∇ · A), it is now possible to eliminate F from Equations (2.18)
and (2.19)

∇2A − ∇(∇ · A) − µ0σ(∇ × F − ∇ψ) − µ0ε0∂t (∇ × F − ∇ψ)

= ∇2A − ∇(∇ · A) − µ0σ(∂tA − (∇ψ + ∇ξ))

− ε0µ0∂t (∂tA − (∇ψ + ∇ξ))

= µ0Je.
(2.21)

By using φ = ψ + ξ Equation (2.21) can finally be written as

∇2A − ∇(∇ · A) − µ0σ∂tA − µ0σ∇φ − ε0µ0∂t∂tA − ε0µ0∂t∇φ = µ0Je, (2.22)
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and also Equation (2.19) becomes

∇ ·
(
σ∇φ − σ∂tA − µ0ε0∂t∂tA − ε0∂t∇φ + µ0Je) = 0. (2.23)

Both equations are now decoupled from F and are also independent of ξ. This is a partial
differential equation system with four equations and four scalar unknowns, which is rather
diagonal dominant as well as weakly coupled, as noted by Aruliah (2001).

Comparing Equations (2.22) and (2.23) with (2.13a) and (2.13b), the relation between
(E,B) and (A, φ) is now given by

B = ∇ × A (2.24)

and
E = −∂tA − ∇φ. (2.25)

Equation (2.24) can also be seen as a direct consequence of Equation (2.13d), because B
is a solenoidal vector field (Girault and Raviart, 2012, Corollary 3.4). By using Faraday’s
law (2.13a), Equation (2.25) can be written as:

∇ ×
(
E + ∂tA

)
= 0. (2.26)

Every vector field, whose curl is zero, can be written as a gradient of some scalar function
(Zhdanov, 2009):

(E + ∂tA) = −∇φ. (2.27)

This gives an expression for the electric field in terms of magnetic vector potential A and
a gradient of some scalar potential, which is Equation (2.25).

2.3.2 Gauging conditions

The vector field A is not uniquely determined, since Equation (2.24) only specifies the curl
of A. Hence, a gauge procedure is needed to ensure uniqueness of the potentials. This is
important from the computational point of view, not from the physical aspect. If the system
is not unique, every potential could also give exactly the same1 electromagnetic fields, as
noted also by Biro and Preis (1989). But if non uniqueness occurred, discretisations will
raise to singular or ill-conditioned algebraic systems. As pointed out by Fernandes (1995),

1Adding an arbitrary function f to the potential A which satisfy ∇ × ∇ f ≡ 0 gives exactly the same
magnetic field as defined in Equation (2.24).
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’gauging ensures setting conditions on potentials that makes a one-to-one correspondence
between field solutions and potential solutions’. Gauging conditions are needed for the
uniqueness of the potentials, but they are also used to prove existence and uniqueness
of solutions calculated from different vector potential formulations (Fernandes, 1995;
Kordy, 2014). Rather than choosing a gauging function which sets the potential unique,
a constraint on A can be imposed to ensure uniqueness.
Mostly, two different gauging procedures are commonly described in the literature. The
first one, the Coulomb gauge is established by:

∇ · A = 0. (2.28)

Now, the curl of A is set with Equation (2.24) and also the divergence is determined by
Equation (2.28). Another popular choice is:

∇ · A = −µ0σ̂φ. (2.29)

Equation (2.29) is called Lorenz gauge2 (Bossavit, 1999; Kordy et al., 2015) and relates the
divergence of the vector potential A to the scalar φ. Both conditions can be transformed
into one other by specifying a gauge function (Jackson, 2002) and both are useful to
derive different partial differential systems for calculating electromagnetic phenomena
e.g. (Biro and Preis, 1989; Bryant et al., 1990, 1998; Biro et al., 1996).

2.3.3 Gauged vector potential formulations

Having the different gauge constrains at hand, vector potential formulations for general
three-dimensional computations can be derived. They are the basic formulations to
simulate magnetotelluric fields for a given three-dimensional conductivity structure.
Starting with Equation (2.22) by applying the Fourier transformation gives

∇2A − ∇(∇ · A) + iωµ0σA − µ0σ∇φ + ω
2ε0µ0A + iωε0µ0∇φ = −µ0Je. (2.30)

Rearranging and ordering terms gives

∇2A − ∇(∇ · A) + iωµ0σ̂A + σ̂µ0∇φ = −µ0Je. (2.31)

2The condition is correctly called Lorenz gauge and not Lorentz, as often erroneously written (Sihvola,
1991).
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Using the gradient on Equation (2.29), inserting it in Equation (2.31) and rearranging
terms leads to

∇(∇ · A) = −∇(µ0σ̂φ) = −(µ0∇σ̂φ + µ0σ̂∇φ). (2.32)

Finally, by inserting Equation (2.32) into (2.30), leads to

∇2A + iωµ0σ̂A + µ0φ∇σ̂ = −µ0Je. (2.33)

Inspecting Equation (2.33), four unknowns (Ax, Ay, Az, φ) are embedded into this system
with three equations. To complete it, one additional condition is needed which weakly
couples the partial differential equations. Here, in accordance to several other authors e.g.
(Aruliah et al., 2001; Aruliah, 2001; Tyler et al., 2004; Weiss, 2013) Equation (2.23) can
be used to close the system. Transforming this equation to the frequency domain gives

∇ ·
(
σ∇φ + iωσ̂A − µ0ω

2ε0A + iωµ0ε0∇φ
)
= −µ0Je. (2.34)

Using the divergence, as well as the Lorenz gauge (2.29) and rearranging terms leads to

∇ ·
(
σ∇φ

)
− iωε0∇ · (∇φ) − iωε0µ0∇ · (∇φ) + iωσµ0σ̂φ − µ0ω

2ε0µ0σ̂φ = −µ0Je,

(2.35)
and finally to

∇ ·
(
σ̂∇φ

)
+ iωσ̂µ0σ̂φ − iωA · ∇σ̂ = ∇ · Je. (2.36)

At this point, Equations (2.33) and (2.36) can be used together to determine the vector
potential A as well as the scalar φ for a given conductivity distribution and frequency.
Afterwards, the electric and magnetic field can be derived through relations (2.24) and
(2.25). As Tyler et al. (2004) point out, Equations (2.33) and (2.36) are almost equal
for different gauging constrains and can be written in a general form, in which different
gauging lead to different coefficients.
By using the gauging constrain (2.28), a similar set of differential equations can be
derived. Following the same mathematical steps as before, Equation (2.33) changes to:

∇2A + iωµ0σ̂A − µ0σ̂∇φ = −µ0Je. (2.37)

Again, Equation (2.37) comprises three differential equations involving four different
unknowns. Thus, an additional statement has to close the system. In the case of Coulomb
gauging,

∇ ·
(
σ̂∇φ

)
− iω∇ · (σ̂A) = ∇ · Je (2.38)
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can be used for this purpose. By using Equations (2.37) and (2.38) together, an operator
form notation of the system is

*.......
,

Cx 0 0 Px

0 Cy 0 Py

0 0 Cz Pz

Px Py Pz D

+///////
-

*.......
,

Ax

Ay

Az

φ

+///////
-

=

*.......
,

−µ0 Je
x

−µ0 Je
y

−µ0 Je
z

∇ · Je

+///////
-

. (2.39)

The coefficient matrix can be composed according to the used gauge formulation. Using
Coulomb gauging, the diagonal coefficients are Cx,y,z = ∇

2 + iωµ0σ̂ and D = ∇ · (σ̂∇).
The off diagonal coupling terms are, in this case, component wise representations of
Pi = µ0σ̂∂iφ, i ∈ {x, y, z}. Using Lorenz gauging, the coefficients have to be changed
accordingly.
Finally, a table is compiled to give an overview for the different coefficients and terms
occurring in the system (2.39). Table 2.3 summarizes the used terms and coefficients.

Gauge Cx,y,z D Px,y,z

Lorenz ∇2 + iωµ0σ̂ ∇ ·
(
σ̂∇

)
+ iωσ̂µ0σ̂

µ0φ∂x,y,zσ̂
−iωA · ∇σ̂

Coulomb ∇2 + iωµ0σ̂ ∇ ·
(
σ̂∇

) µ0σ̂∂x,y,zφ
−iω∇ ·

(
σ̂A

)
Table 2.3: Overview of the coefficients for the two gauging conditions in Equation (2.39)

Here, Cx,y,z act on Ax, Ay, Az according to the correct dimension, while the off-diagonal
elements Px,y,z act in one case on the scalar potential φ and in another case Px,y,z on the
vector potential A. This can be seen also in the coefficient matrix of system (2.39). The
first three entries of the last column act on the scalar potential, while the first three entries
of the last row act on the vector potential. This fact is also included in Table 2.3, where
two entries for Px,y,z for each gauging exists.

2.4 Interface and boundary conditions

Interface and boundary conditions define the behavior of electromagnetic fields at
transitions of different materials or at the outer boundaries of the computational domain.
With prior defined interface condition it is possible to derive a set of rules how the fields
must behave at boundaries of the modelling domain. With defined boundary and interface



2.4. INTERFACE AND BOUNDARY CONDITIONS 17

conditions, it is possible to formulate a boundary value problem, describing the correct
physical behavior of the electromagnetic fields.

2.4.1 Electromagnetic interface conditions

Interface conditions are generally derived, for example, by using integral formulations
of Maxwell’s equations. Here, a different determination will be used based on Namias
(1988) and Idemen (2011). Maxwell’s equations (2.13b-2.13d) are presented in the
differential formulation and the interface condition should be determined from these
expressions. It is possible to derive interface conditions directly from the differential
formulation with less effort. If the domain is separated by an interface Γ1,2 into two
different regions Ω1 and Ω2, as sketched in Figure 2.3 for example, it is always possible
to express the surface of separation with an equation like ϕ(x) = 0,∀x ∈ Γ1,2. Also, the
function will be positive ϕ(x1) > 0 for points in region Ω1 and negative ϕ(x2) < 0 in
region Ω2. This is essentially the definition of a signed distance function (Osher and
Fedkiw, 2006). To proceed, the electromagnetic fields in the complete domain can be
written as

E = E1Θ(−ϕ) + E2Θ(ϕ), (2.40a)

D = D1Θ(−ϕ) + D2Θ(ϕ), (2.40b)

B = B1Θ(−ϕ) + B2Θ(ϕ), (2.40c)

H = H1Θ(−ϕ) +H2Θ(ϕ). (2.40d)

In which the Heavyside step function is defined, to separate both sides, by

Θ(x) =



1, if x ≥ 0

0, if x < 0.
(2.41)

Inserting Equation (2.40b) into Gauss’ law (2.13c), gives

∇ · D1Θ(−ϕ) + ∇ · D2Θ(ϕ) + n ·
[
(D2 − D1)

] ��∇ϕ�� δ(ϕ) = ρe. (2.42)

Here, δ(·) is the Dirac’s delta-function. The last term results from the fact that
∇Θ(±ϕ) = ±n��∇ϕ�� δ(ϕ), which is described by Idemen (2011). The same can be done
for the charge density by splitting it for two regions:

ρe = ρe1Θ(−ϕ) + ρe2Θ(ϕ) + ρs��∇ϕ�� δ(ϕ). (2.43)
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The last summand in (2.43) includes a surface charge density ρs. Setting Equation (2.42)
equal to (2.43), and comparing the resulting terms gives:

n ·
[
D
]

1,2 = ρs . (2.44)

Equation (2.44) holds point-wise on Γ1,2 and states a discontinuity of the electrical
displacement field if a surface charge is present. As previously,

[
D
]
in Equation (2.44) is

expressed by a limiting value as defined in Equation (2.5). For the tangential components
of the magnetic field intensity, a similar procedure can be applied. Using Equation
(2.40d) and (2.40b) together with Ampere’s law (2.13b) gives

(∇×H1)Θ(−ϕ)+(∇×H2)Θ(ϕ)−∂tD1Θ(−ϕ)−∂tD2Θ(ϕ)−H1×∇Θ(−ϕ)−H2×∇Θ(ϕ) = J.
(2.45)

Again, a relation for the right hand side of Equation (2.45), the electrical current density,
can be given in analogy to Equation (2.43):

J = J1Θ(−ϕ) + J2Θ(ϕ) + Js��∇ϕ�� δ(ϕ). (2.46)

Grouping the terms of Equation (2.45) for the two regions and comparing them to (2.46),
a condition of

n ×
[
H

]
1,2 = Js, (2.47)

is derived. Here, a surface current Js is involved. Also, similar interface conditions for
the tangential components of E and the normal parts of B can be found

n ·
[
B
]

1,2 = 0, (2.48)

n ×
[
E
]

1,2 = 0. (2.49)

To summarize, possible discontinuities can occur at junctions of different media. For
geophysical applications, the surface current in Equation (2.47) vanishes (Ward and
Hohmann, 1988) and the tangential components of H will be continuous.
For the electromagnetic vector potential, interface conditions can be derived in a similar
way,see Namias (1988):

A = A1Θ(−ϕ) + A2Θ(ϕ), (2.50a)

φ = φ1Θ(−ϕ) + φ2Θ(ϕ). (2.50b)
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Using Equations (2.24) and (2.25) with (2.40a), (2.40c) gives

n × (A1 − A2)��∇ϕ�� δ(ϕ) = 0 (2.51)

and
(φ1 − φ2)��∇ϕ�� δ(ϕ) = 0. (2.52)

This induce the interface condition for the tangential part of the vector potential, which is
continuous by

n ×
[
A
]

1,2 = 0, (2.53)

as well as the continuity of the scalar potential

[
φ
]

1,2 = 0. (2.54)

By using the Lorenz constrain Equation (2.29) together with Equation (2.50a), what is

∇·A1Θ(−ϕ)+∇·A2Θ(ϕ)+∇µ0σ̂φ1Θ(−ϕ)+∇µ0σ̂φ2Θ(ϕ)+n·
[
(A2 − A1)

] ��∇ϕ�� δ(ϕ) = 0,
(2.55)

gives the continuity of the normal part of the vector potential

n ·
[
A
]

1,2 = 0. (2.56)

Inspecting Equation (2.53) as well as Equation (2.56), the complete set of interface
conditions between two materials are given as

[
A
]

1,2 = 0, (2.57a)[
φ
]

1,2 = 0. (2.57b)

The vector potential as well as the scalar potential are continuous between an interface.
The tangential continuity (2.53) is caused by vanishing magnetic charges (2.13d) and
using a Lorenz gauge constrain, the continuity of the vector potential in the normal
direction is enforced.

2.4.2 Electromagnetic boundary conditions

To state a system of partial differential equations which solution is uniquely defined,
boundary conditions have to be considered. At least two general kinds of boundary
conditions can be used. If the computational domain is spatially bounded, interface
conditions can be used to determine values of the fields along boundaries. Thereby,
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in the outer domain fields are treated as given and in the inner computational domain
fields at this interface can be calculated according to the defined interface conditions.
Suppose that the outer boundaries of the computational domain Γ are divided into two
separate parts, Γe and Γh whereat Γe = Γ \ Γh. With some predefined values E0 and H0

the following boundary conditions can be used:

n × E = n × E0 on Γe,

n ×H = n ×H0 on Γm.
(2.58)

If the predefined fields are zero at the outer boundary, e.g. E0 = 0 and H0 = 0 they
describe either a perfect electric conductor (PEC) or for the latter a perfect magnetic
conductor (PMC). Due to their simplicity, they are often used in a lot of applications
where simple conditions are sought after (Jin, 2015). In an oppositional case, when the
outer boundary is absent or respectively extended to infinity, electromagnetic fields have
to satisfy the Silver-Müller radiation conditions (Kirsch and Hettlich, 2015). Especially,
if x ∈ R3 and goes to infinity uniformly in all directions x→ ∞, then

|x|E(x, ω) and |x|H(x, ω) are bounded and

E(x, ω) +
x
|x|
×H(x, ω) = O

(
1
|x|

)
.

(2.59)

A partial differential system using this conditions proves to have a unique solution, which
was shown by Santos and Sheen (2000). To reduce the simulation costs and downsize
the computational domain, in which the solution has to be calculated, the Silver-Müller
radiation conditions can be approximated by an absorbing boundary condition (ABC)
(Zyserman et al., 1999) in which is

αPτE + n ×H = 0 on Γ. (2.60)

These extended boundary conditions will absorb a plane wave travelling into the direction
n to the boundary. Although, in context of magnetotellurics α is defined as

α =
1 − i
√

2ω

√
σ

µ
, (2.61)

where σ and µ are positive, bounded functions. The projection of the trace operator on Γ
is defined as PτE = −n × (n × E).
For geophysical applications using low and moderate frequency sources like magnetotel-
lurics, the boundary influence is not as important as in high frequency wave scattering
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applications, for example ground penetrating radar (GPR). Here, special care has to
be taken into account when formulating boundary conditions, because errors, which
arise at the boundaries, can populate into the entry solution (Gonzalez Huici, 2013).
Electromagnetic vector potential formulations require different boundary conditions.
Nevertheless, compared to Equations (2.58) similar conditions are given by Haber et al.
(2000)

−n × (∇ × A) = 0 on Γ,

n · A = 0 on Γ,

n · ∇φ = 0 on Γ,∫
Ω

φ dΩ = 0 in Ω.

(2.62)

In case of a magnetotelluric simulation, simplified boundary conditions can be applied in
contrast to Equations (2.62). This will be explored in the subsequent chapter about the
magnetotelluric model.

2.5 Induction into two-dimensional conductivity struc-
tures

Besides a general three-dimensional formulation, simplifications can be made if the
underlying conductivity structure has variations only in two spatial directions. In the
direction, in which the conductivity structure does not change, the source fields are
constant and the directional derivatives of the conductivity vanish. This direction is
often called strike direction. This simplification decouples Maxwell’s equations into two
independent sets of equations. The first set derived from Equations (2.14a - 2.14b) is

∂Hz

∂y
−
∂Hy

∂z
= σ̂Ex + Je

x, (2.63a)

∂Ex

∂z
= −iωµ0Hy, (2.63b)

−
∂Ex

∂y
= −iωµ0Hz . (2.63c)

In this set of equations, the electrical field Ex is the only component in the direction of
strike and hence it is called TE-mode (or E-polarization). The opposed set is subsequently
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called the TM-mode (or B-polarization)

∂Ez

∂y
−
∂Ey

∂z
= −iωµ0Hx, (2.64a)

∂Hx

∂z
= σ̂Ey + Je

y, (2.64b)

−
∂Hx

∂y
= σ̂Ez + Je

z . (2.64c)

Within the TE-Mode, electrical currents are parallel to the strike direction and in the
TM-mode perpendicular to the strike direction. Both modes are driven by a generating

ρ1 ρ2 ρ1 ρ2z

x
y

−∞

zair

(a) (b)

zair

∞

∞

−∞

Figure 2.4: Schematic representation of the two-dimensional magnetotelluric modes. (a) TM-
mode, where a uniform sheet current at a height zair in the y-direction is extended to infinity. (b)
TE-mode, where a uniform sheet current at a height zair in the x-direction is extended to infinity.
In both sketches two unequal conductivities are present (σ1 , σ2) (modified, after (Chave and
Jones, 2012).)

current systems at a height zair < 0. Assuming that the z-direction is positive downwards
(see Figure 2.4), by inspecting Equations (2.64b) and (2.64c), the magnetic field Hx

is constant in the non-conducting air half-space. For the TE-mode a horizontal sheet
current of the form

Je = −H0
x δ(z − zair )êx, (2.65)

at height zair can be assumed, which produces a two-dimensional inducing magnetic
field in the air half-space. For the TM-mode a source term

Je = H0
x δ(z − zair )êy, (2.66)

can be assumed (Chave and Jones, 2012). The sources are coupled to the conductive
half-space only by induction and not by galvanic contact. But since Hx is constant in
the air half-space, it can be set to Hx (y, z = 0) = H0 at the air-Earth interface for the
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TM-mode. The air half-space doesn’t have to be modelled, whereas in the TE-mode the
air half-space has to be considered.
A second order differential equation can be derived for both modes. First, for the TE-mode,
inserting Equations (2.63b) and (2.63c) into (2.63a) gives

∇ · (µ−1
0 ∇Ex) − iωσ̂Ex = −iωH0

x δ(z − zair ). (2.67)

Also, for the TM-mode, rearranging Equations (2.64b) as well as (2.64c) into (2.64a)
gives

∇ · (σ̂−1∇Hx) − iωµ0Hx = 0. (2.68)

In order to model the electrical field, the partial equation for the TE-mode has to be used.
If the magnetic field is required, the second order partial differential equation for the
magnetic field has to be utilised.
If Equation (2.67) is multiplied by µ0, or Equation (2.68) by σ̂ (if a homogeneous
conducting half-space is present) a simplification in the notation can be introduced by
writing:

k2 = iωµ0σ̂. (2.69)

Here, k defines a wave number that implies the equality of the real and imaginary part of
this absorption coefficient

k = e(π/4)i (ωµ0σ̂)1/2 = (1 + i)(ωµ0σ̂/2)1/2. (2.70)

Examining the differential equation for the electrical field (2.67) at interfaces Γint , it must
hold

[
Ex

]
Γint
= 0, (2.71a)

n ·
[
∇Ex

]
Γint
= 0. (2.71b)

At an interface between different conductivities the electrical field is continuous as well
as its normal derivative. For the TM-mode examining Equation (2.68) reveals, that

[
Hx

]
Γint
= 0, (2.72a)

n ·
[
σ−1∇Hx

]
Γint
= 0. (2.72b)

Assuming conductivity inhomogeneities far away from the outer boundaries, simple
one-dimensional analytical solutions as described, for example by Wait (1953) for a
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layered half-space, can be used as Dirichlet boundary conditions.

2.6 Second order formulations

Having introduced all necessary preconditions to formulate the boundary value problems,
the main formulations for the two- and three-dimensional case will be given. First, the
general case for the Lorenz and Coulomb gauged vector potential formulation will be
considered and later on the two-dimensional case will follow. Using formulations for the
vector potential, the task is to find A and φ such that

∇2A + iωµ0σ̂A + µ0φ∇σ̂ = −µ0Je in Ω,

∇ ·
(
σ̂∇φ

)
+ iωσ̂µ0σ̂φ − iωA · ∇σ = ∇ · Je in Ω,

−n × (∇ × A) = 0 on Γ,

n · A = 0 on Γ,

n · ∇φ = 0 on Γ,∫
Ω

φ dΩ = 0 in Ω,[
A
]

1,2 = 0 on Γint,[
φ
]

1,2 = 0 on Γint .

(2.73)

The boundary value problem (2.73) can be used to find an approximation for the desired
electromagnetic fields. The constraint equation can be replaced by setting φ = 0 at some
point on the boundary. This is commonly done in fluid simulations, where the pressure
must be constrained in the same way (Girault and Raviart, 2012). In the same manner,
a boundary value problem using the Coulomb gauging can be stated by interchanging
Equations from (2.73) with Equations (2.37) and (2.38). For the two-dimensional problem,
a set of two boundary value problems should be considered. The entire boundary value
problem for the TE-mode is to find an Ex such that

∇ · (µ−1
0 ∇Ex) − iσ̂Ex = −iωH0

x δ(z − zair ) in Ω,

Ex = E1D
x on ΓD,[

Ex
]
Γint
= 0 on Γint,

n ·
[
∇Ex

]
Γint
= 0 on Γint .

(2.74)
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Combining equations (2.68) and (2.72a - 2.72b) gives the boundary value problem for
the TM-mode, which is to find an Hx such that

∇ · (σ̂−1∇Hx) − iωµ0Hx = 0 in Ω \Ωair,

Hx = H1D
x on ΓD,[

Hx
]
Γint
= 0 on Γint,

n ·
[
σ̂−1∇Hx

]
Γint
= 0 on Γint .

(2.75)

Assuming a quasi-uniform source term by setting it to zero in Equations (2.74) and (2.75)
allows for imposing pre-calculated field values as boundary conditions.

2.7 The magnetotelluric model

Now, after describing Maxwell’s equations, their generalizations and restrictions, an
application to the magnetotelluric method will be represented in the next subsections.
The outcome of these are boundary value problems which can be used to describe the
induction within the Earth. They will be later discretized with meshless methods and
applied to example calculations.

2.7.1 MT-Approximation - neglecting displacement currents

To use the Maxwell equations (2.14a - 2.14d) for magnetotelluric modelling, one
assumption is to neglect displacement currents. However, the time-variation of magnetic
induction is still important, but in magnetotellurics applications wave lengths are much
larger than the physical domain. InspectingMaxwell-Ampere’s law (2.13b), this statement
implies that ∂tD is much smaller than the curl of the magnetic field or the total electric
current density. Following Bossavit (1998) as well as de Castro et al. (2014), if L is
the typical length of the induction process and ω a typical frecuency, dropping the
displacement currents is valid if

|ω | |D| � |H|L−1 and |ω | |D| � |σE|. (2.76)

Using Faraday’s equation (2.13a) and the constitutive relation connecting the electrical
field intensity with the magnetic flux gives

|ω | |E| ≈ |ω | |µ0H|. (2.77)
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Inserting Equation (2.77) into (2.76) and rearranging the terms results in

L �
1

√
ε0µ0 |ω |

. (2.78)

Thus, dropping the displacement currents is only valid if the wavelength of the electro-
magnetic field is much lager than the length scale L. Note that (ε0µ0)−1/2 is the speed of
light in vacuum. The second assumption from (2.76) is that a product of the electrical
permittivity and the time is much smaller than the conductivity or otherwise formulated,
the charge relaxation time is many orders of magnitude smaller than a typical period used
in a magnetotellurics experiment:

σ−1ε0 |ω | � 1. (2.79)

The latter relation is more often recited when arguing that it is possible to drop the
displacement current term in magnetotelluric applications. Assuming a typical magne-
totelluric frequency of ω = 2π × 10−1rad s−1 and conductivity σEarth = 0.01 S m−1, the
estimations

L �
1

√
ε0µ0 |ω |

= 1010 m and σ−1ε0 |ω | = 5.6 × 10−8 (2.80)

give an appropriate reason to drop the displacement currents from Maxwell’s equations
in common magnetotelluric experiments.
Rewriting Equations (2.14a - 2.14d) without displacement currents will describe the
eddy-current approximation3 or quasi-static approximation of Maxwell’s equations

∇ × E − iωµ0H = 0, (2.81a)

∇ ×H − σE = Je, (2.81b)

∇ · (ε0E) = ρe, (2.81c)

∇ · (µ0H) = 0. (2.81d)

Mathematically, the equations changes from a hyperbolic partial differential system to a
parabolic system. Using this formulation, all terms related to displacement currents can
be neglected in boundary value problems like the proposed ones in sub-chapter 2.6. This
amounts to change σ̂ to σ in most cases.

3A name often used in the engineering literature (Kriezis et al., 1992)
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2.7.2 Plane-wave approximation

Another physical assumption can be made if it is supposed that the current systems,
which generates electromagnetic fields utilized by the magnetotelluric technique, are
large-scale, homogeneous horizontal current sheets in the ionosphere. Due to the distance
to Earth, they generate electromagnetic plane-waves normally incident on the Earth’s
surface. This key property lead to constant electromagnetic fields as exciting source and
as consequence, a time-invariance of the magnetotelluric impedance tensor. The fields
can now be written as

E = E0e(iωt−kz), (2.82a)

H = H0e(iωt−kz), (2.82b)

with constant amplitudes E0 and H0 and a wave number k. If periods considered within
less than a time scale of a day, Earth’s curvature is negligible and all calculations are
valid in a flat model description using Cartesian coordinates, as shown by Srivastava
(1965). For magnetotelluric simulations, different versions of the modelling domain,
corresponding to the used dimensionality, displayed in Figure 2.3 are adoptable.

2.7.3 Secondary field approach

A common approach, not only applied in magnetotellurics, is to split the electromagnetic
fields into a part given by a known primary field and a secondary field that has to
be calculated. In this approach, the primary field should be easily calculated and in
magnetotelluric modelling a simple layered half-space model is used, for which the
solution is analytically given. The secondary field is generated by anomalous conductivity
structures. Splitting the fields, yields into a primary part and a secondary part in

E = Ep + Es, (2.83a)

H = Hp +Hs . (2.83b)

The primary fields in (2.83a) and (2.83b) satisfies Maxwell’s equations, assuming no
source currents are applied in a simple half-space or layered model. Subsequently,
Maxwell’s equations for the secondary fields including the primary parts as sources read

∇ × Es − iωµ0Hs = iωµ0Hp, (2.84a)

∇ ×Hs − σEs = ∆σEp. (2.84b)
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In (2.84b) the difference is ∆σ = σ − σp, in which σp is the conductivity of the
one-dimensional layered background. Solving for the secondary field is numerically
beneficial, because the primary field is calculated by a simple analytical expression and
also the secondary field is often significantly smaller than the primary fields (Coggon,
1971; Livelybrooks, 1993; Wannamaker et al., 1985; Rätz, 2000).

2.7.4 Secondary field formulation for three dimensional conductiv-
ity structures

For a three-dimensional case the electromagnetic potentials can be separated into a
primary and secondary part as well:

A = Ap + As, (2.85a)

φ = φp + φs . (2.85b)

This changes the boundary value problem (2.73) and the task is to find a As and φ such
that

∇2As + iωµ0σ̂As + µ0φ
s∇σ̂ = −µ0∆σEp in Ω, (2.86a)

∇ ·
(
σ̂∇φs) + iωσ̂µ0σ̂φ

s − iωAs · ∇σ = ∇ · ∆σEp in Ω, (2.86b)

n · A = 0 on Γ, (2.86c)

n · ∇φ = 0 on Γ, (2.86d)[
A
]

1,2 = 0 on Γint, (2.86e)[
φ
]

1,2 = 0 on Γint . (2.86f)

The primary part of the field enters the system as an electrical field generated by a simple
conductivity structure.

2.7.5 Secondary field formulation for two dimensional conductivity
structures

The two sets of Maxwell equations for a two-dimensional conductivity structure can also
be applied to a splitted field. The resulting differential equations for the secondary fields
differ only in adding a non-zero source term, which results from a conductivity difference
multiplied by some pre-calculated field values. Solving the TE-mode secondary field



2.7. THE MAGNETOTELLURIC MODEL 29

gives the following boundary value problem to find an Ex such that

∇ · (µ−1
0 ∇Es

x) − iωσEs
x = iω∆σEp

x in Ω,

Es
x = 0 on ΓD,

[
Es

x

]
Γint
= 0 on Γint,

n ·
[
∇Es

x

]
Γint
= 0 on Γint .

(2.87)

As previous, ∆σ = σ−σp is the difference between a composed conductivity distribution
and the layered host. Using the same splitting for the magnetic field, a boundary value
problem for the TM-mode is finding an Hx such that

∇ · (σ−1∇H s
x ) − iωµ0H s

x =
∂

∂z

(σp

σ

)
Ep
y + iωµ0

(
1 −

σp

σ

)
Hp

x on Ω \Ωair,

Hx = 0 on ΓD,
[
H s

x

]
Γint
= 0 on Γint,

n ·
[
σ−1∇H s

x

]
Γint
= 0 on Γint .

(2.88)

Note, the right-hand side involves derivatives of the conductivity, which has to be carefully
implemented into a numerical algorithm.

2.7.6 Magnetotelluric transfer functions

The primary method to present magnetotelluric results, is based on the concept of apparent
resistivities and phases. They are both based on the conjunction of the magnetic and
electrical field through the magnetotelluric impedance tensor. Assuming the horizontal
magnetic field H measured at a point on or beneath the surface of Earth and an electrical
horizontal field E, the magnetotelluric impedance is defined as

E = Z ·H. (2.89)

This relation is fundamental to the magnetotelluric method and for Chave and Jones
(2012) it "is the point where experiment and theory is connected". The impedance is a
complex second-rank tensor Z : R3 → R3×3 and its entries are populated according to
the dimensionality of the conductivity structure. If the underlying conductivity structure
is purely one-dimensional, the diagonal elements of the impedance tensor vanish and the
off-diagonal entries are equal in amplitude, but have opposite signs. A two-dimensional
conductivity structure generates diagonal entries, which are equal in amplitude and
different in sign as well as off-diagonal elements, which are different to each other. For a
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purely three-dimensional conductivity structure all entries are populated with different
values. The tensor is frequency dependent according to the measured fields. If the
conductivity structure is purely one-dimensional, the impedance reduces to

Z1D =
Ex

Hy
. (2.90)

Using Equation (2.90), the apparent resistivity can be calculated by

ρa (ω) =
1

ωµ0
|Z1D (ω) |2, (2.91)

ϕ(ω) = arg
(
Z1D (ω)

)
= tan−1

(
re(Z1D (ω))
im(Z1D (ω))

)
. (2.92)

These equations generalize up to three dimensions, in which the magnetotelluric
impedance is fully a populated second-rank tensor. The apparent resistivity and phase is
defined as

ρ
i j
a (ω) =

1
ωµ0
|Z i j (ω) |2, (2.93)

ϕi j (ω) = arg
(
Z i j (ω)

)
= tan−1 *

,

re(Z i j (ω))
im(Z i j (ω))

+
-
. (2.94)

Here, the impedance is Z i j with i, j ∈ {x, y} which are entries of the full impedance tensor.
Calculating the apparent resistivities and phases for a three-dimensional simulation need
to solve Equation (2.89) for the impedance. A more general treatment and description
is given in Chave and Jones (2012). When using the two-dimensional formulation,
the solution of the boundary value problem gives one field component: Ex or Hx . To
calculate the apparent resistivity as well as the phase the corresponding complementary
field (Ey or Hy) must be calculated by using Maxwell’s equations.

2.8 Summary and Conclusions

In this chapter, the basic mathematical description for simulating a magnetotelluric
experiment was derived. As introduced, this applied geophysical method is based on the
comparison of electromagnetic fields measured on Earths surface. If a set of time series
have been recorded, transfer functions can be derived through post-processing. In a simple
case, apparent resistivities and phases for different time periods or frequencies are derived,
which can be used to establish an understanding of the regional conductivity structure



2.8. SUMMARY AND CONCLUSIONS 31

beneath the measuring area. To simulate such experiment, a physical description has to
be formulated in which electromagnetic fields can be represented by partial differential
equation system depending on the conductivity of Earths surface.
To derive such mathematical abstraction, simplifications have to be made in order to
capture the right physical behavior of this experiment. The first simplification is to lighten
the geometrical description of the problem, where simulations take place. The modelling
domain will be constructed from a simple convex polygon with a Lipschitz-continuous
boundary. This simplification is mathematically important later on, because this implies
that the computational domain automatically satisfy a so called cone condition (Mirzaei,
2015a).
As described, material parameters should be bounded from below and above. For
the simplest case piece-wise constant material parameters will be used to describe a
conductivity model defined by a simplified Earth geometry.
Starting from a general, time-dependent form of Maxwell’s equations a simpler parabolic
system, which describes the eddy current approximation in the frequency domain, was
derived. To further simplify the mathematical description a vector potential ansatz is
used. Here, the fields are continuous at material interfaces whereas in a formulation
with electric and magnetic fields discontinuities occur. This simplifies the numerical
implementation in a general three-dimensional modelling algorithm. In order to avoid
the discretization of a coupled partial differential system, a weakly coupled second
order system of partial differential equations based on the vector potential ansatz was
derived. This procedure is commonly used in finite-element discretizations when standard
node-based finite elements are used to discretize electromagnetic vector-valued problems
(Boyse et al., 1992). In the sense Bossavit (1999) states: "... the discrete analogue of
the ∇ × (µ−1∇ × ·) operator, which is poor with nodal elements because of this property,
precisely. To cure that, anything that will replace this operator by a Laplacian is good,
hence the guiding idea of somehow introducing ∇ · (µ−1∇).". To benefit from this, a
meshless algorithm based on a Laplacian formulation will be used. While vector-valued
discretizations are not common in the meshless community this formulation should be
consistent with existing meshless schemes.
The resulting system of partial differential equations has almost the same form for different
gauging constraints. A general implementation allows a variety of formulations, while
the main discretization for a three-dimensional conductivity structure needs to be based
on a properly gauged system.
When using two-dimensional conductivity structures, Maxwell’s equations separate into
two sets of differential equation systems. Defining a geological strike direction, the
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electrical field is parallel in one of the formulations and in the other set a magnetic field
parallel to the strike occurs. As before, the systems are converted into second order
partial differential equations, which will be discretized by the meshless scheme. As in
the electrical formulation, the field is continuous at conductivity interfaces, the behavior
of the transversal magnetic mode is different. Here, a Laplacian operator ∇ · (σ̂−1∇Hx)

appears in the formulation, while the conductivity σ̂ can be discontinuous at material
interfaces. This resembles the well-known elliptic interface problem (Peskin, 2002; Gong
et al., 2008; Bennoune et al., 2016). The numerical scheme should be able to handle the
continuity of the flux n ·

[
σ̂−1∇Hx

]
Γint
= 0 and provide an appropriate discretization for

this kind of physical behavior. An overview about different methods is given in the book
of Li and Ito (2006). This topic will be addressed and discussed in an upcoming chapter.
The magnetotelluric model provides some further simplifications to the physical descrip-
tion. With considering adjusted time scales and dilatation of the induction process in a
magnetotelluric experiment, Maxwell’s equations change from a system of hyperbolic
partial differential equations to a parabolic system. Also, the total electrical current
density must be divergence-free, while changes in charge density do not lead to a magnetic
field.
A popular way to simplify the numerical approach is to divide the electromagnetic fields
into two separate parts, in which one is generated by a homogeneous or vertically layered
conductivity structure. Analytical methods to calculate those fields are available and the
numerical algorithm only needs to solve for the anomalous part.



Meshless methods for
Maxwell’s equations

This chapter is devoted to the development of a meshless magnetotelluric forward
calculation scheme. The aim is to calculate electromagnetic fields influenced by a given
Earth’s conductivity structure. This computational scheme will be able to calculate the
electromagnetic fields only with spatial distributed points inside the modelling domain,
no fixed mesh or grid is needed. Here, the meshless technique will be adapted to model
magnetotelluric experiments.

3.1 Introduction

Meshless methods for the discretization of partial differential equations have become
a popular field of research during the last decades. Since mathematical modelling has
turned into an important tool in science and engineering, the numerical solution of partial
differential equations has also become a crucial part of this modelling process. A various
bunch of classical numerical techniques like the finite differences method, finite volume
method, or the finite element method, and several other techniques have been developed.
All of these methods rely on the discrete representation of the modelling domain through
a mesh or grid. This dependence is sometimes a drawback, especially when complex
geometries are involved (Dolbow and Belytschko, 1999). In order to avoid using a mesh
or a grid representation for the numerical simulation, a lot of research has been done in
numerical methods and engineering applications. All of these newly developed meshless
algorithms have in common, that they will construct a discretization "only in terms on
nodes" as noted by Belytschko et al. (1994). Only the distribution and location of the
points (or nodes4) are used to discretize a partial differential equation, no connections or
fixed global relations have to be considered. This property is of growing importance in
the mathematical, as well as the engineering scientific community.
The need for new approximation techniques besides established, long-time developed
methods like finite elements, was primary the difficulty to handle and generate meshes for

4Here in this thesis, points will be called points and not nodes, as used in many publications on meshless
methods.
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complex geometries. Generating quality meshes for complex models is not a trivial task
and requires a serious amount of time in the total cost of a simulation (Owen, 1998). This
is even more tedious for three-dimensional problems and dynamic, time-dependent tasks,
which needs re-meshing at every time step. Here, a prominent examples are problems
in the computational mechanics, where crack growth simulations account for complex
adapted meshes (Barsoum, 1976). Directly linked to this topic is the rapid development of
massively parallel algorithms for solving partial differential equations. Today’s hardware
architectures involve more and more parallel computations, where several (up to several
thousand) multi-core or multi-processor units are linked together while each one working
on small pieces of the numerical problem. In this regime it is essential for the algorithm
to reduce the cost of communication to a minimum (Gropp et al., 1999). Here, simple
point sets with no direct link among each other are preferable to fully adapted meshes.
Furthermore, by constructing meshless approximations with arbitrary order of continuity
and by building high-order approximation schemes for partial differential equations, it is
possible to outbid actual processor architecture, where huge amounts of floating-point
operations are available. If custom tailored schemes are demanded for problems where
traditional methods perform poorly, creating customized approximation spaces, where
some (physical) constrains or special enrichment are embedded, is one of the preferred
tasks for meshless methods (Nguyen et al., 2008).
Many of these new methods can be coarsely categorized into two different types of
discretizations. On the one hand, particle methods (Li and Liu, 2007) have been developed
to solve classical physical phenomena like atomic, molecular (Plimpton, 1995) or galaxy
(Barnes and Hut, 1986) behaviour. Here, the motion of interacting particles are calculated
on a Langrangian description of discrete and continuum physical systems. They enforce
an approximate solution of the PDE, depending on the particle interaction and the density
of their distribution (Li and Liu, 2007). On the other hand, a different approach used
for meshless algorithms is a discretization obtained by using methods from data fitting.
Here, for every point a surrounding subset of n neighbouring points, called stencil,
is gathered while the union of these local patches form an overlapping cover of the
computational domain. This scheme is briefly diagrammed in Figure 3.5. Within these
patches, local approximation or interpolation methods are used to generate meshless
approximation functions. These functions, often called shape functions, are used to span
finite dimensional meshless trial spaces to be used in a Galerkin or strong form collocation
framework for solving a partial differential equation. In this step, several methods from
the multivariate approximation theory can be chosen to set-up a linear system of equations
which raises to a solution of the mathematical problem. It can be distinguished between
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Ξ1

Ξ2

Ξ3

(a) (b) (c) (d)

Figure 3.5: Overview of meshless computational scheme. From a set of points (a) local sub-
sets (stencils) Ξi i = {1, 2, 3} are selected as displayed in (b) to (c) to construct a meshless
approximation.

direct approximations of the linear operator or explicitly constructing shape functions,
according to the local point stencil. In contrast to univariate polynomial interpolation,
where the polynomial space only depends on the number of used points and not on the
chosen data-sites, multivariate approximation can only generate trial spaces which are
data-depended (Mairhuber, 1956). Popular approximation techniques are least squares
methods, especially moving least squares (Lancaster and Šalkauskas, 1981) and its
variants, or kernel fitting techniques based on either radial basis functions (Franke and
Schaback, 1998) or translates of kernel functions. The basis of all these underlying
multivariate approximation or interpolation methods is the problem to reconstruct a
d-dimensional unknown function f : Ω ⊂ Rd → R from a discrete set of known
values (xi, f (xi)) ∈ Rd × R for i = 1, . . . , N . The numerical task is to find a function
P f : Ω ⊂ Rd → R which approximates function values such that P f (xi) ≈ f (xi) for
all i = 1, . . . , N . If an exact reproduction of the values is needed i.e. P f (xi) = f (xi),
then the underlying scheme is an interpolation. Independent of the chosen method, the
recovery of unknown functions from data samples can be written as a linear combination
of some coefficients c with corresponding known function values from a local stencil

P f (xi) ≈
n∑

j=1
c j (xi) f (x j ). (3.1)

This local recovery scheme will be later generalized to the approximation of linear
functionals from function values at the points.
These approximation schemes, especially the moving least squares technique, have their
origin in surface generation. In a seminal paper by Lancaster and Šalkauskas (1981), the
moving least squares technique was used to generate surfaces from scattered data and to
generalize the metric interpolation technique of Shepard (1968). A first error analysis
was given by Farwig (1986, 1991) and an approach using a different basis functions is



36 Meshless methods for Maxwell’s equations

mentioned in Šalkauskas (1992).
First applications for solving partial differential equations were presented in the work
of Nayroles et al. (1992) and Belytschko et al. (1994). Since then, the moving least
squares technique has been established as a robust basis of many meshless applications in
engineering an applied science. It is worth mentioning that a particular link to geophysical
applications exists. The Backus-Gilbert inverse theory (Backus and Gilbert, 1968, 1970)
is strongly related to moving least squares methods, as pointed out by Bos and Šalkauskas
(1989) and both of them can be derived from each other. This is also true for a variant of
Shepard’s method (Abramovici, 2011).
While the classical theory of moving least squares addresses the case of function approxi-
mation, a first step towards a general scheme was done by Levin (1998). There, a moving
least squares theory introduced to approximate bounded linear functionals from a normed
function space. Later on, this theory was applied to Dirac’s point evaluation functionals
to approximate functions from a given data-set. In a following publication by Levin
(1999), the author also applied this technique to produce multidimensional integration
rules from scattered data. This scheme was also used for derivative recovery by Nayroles
et al. (1992) as a diffuse derivative method. Later on, in the work of Mirzaei et al. (2012)
this generalized approximation scheme was analysed, and for the recovery of derivatives
the authors proved optimal rates of convergence towards true derivatives. The aim of
their work was to simplify calculations in the Meshless Local Petrov-Galerkin (MLPG)
method of Atluri and Zhu (1998). This weak-form based scheme utilizes a huge amount
of integrals which have to be calculated. By using a generalized moving least squares
scheme this effort can almost be avoided. Introducing successive an advanced Direct
Meshless Local Petrov-Galerkin (DMLPG) method by Mirzaei and Schaback (2013)
yields to varieties of new advanced meshless methods, using the generalized moving least
squares approximation (Salehi and Dehghan, 2013; Taleei and Dehghan, 2014a; Mirzaei
and Schaback, 2014; Ramezani et al., 2015; Mirzaei, 2015b; Mirzaei and Hasanpour,
2016).
Recently, the work of Trask et al. (2017) generalize staggered finite difference methods to
the meshless case. The work is inspired by mimetic discretizations (Arnold et al., 2007),
which mimic fundamental properties of the continuum partial differential equations.
On this basis, a meshless local primal-dual grid complex with a virtual dual grid is
used to chain a topological gradient operator locally on the primal complex with an
approximation of the divergence on the dual grid by a generalized moving least squares
method. Nevertheless, no real grid is used here, but a definition of virtual edges and faces
generated from the local point stencils is used in the meshless discretization. Fortunately,
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this kind of meshless discretization is capable to handle problems with discontinuous
coefficients well. Therefore, it will be used in this thesis for extending the generalized
moving least squares technique.

This chapter is organized as follows. First, the generalized moving least squares
technique is derived and will be presented in Sub-chapter 3.2. This presentation also
includes theoretical error estimates and the extension to the staggered moving least
squares. These techniques are fundamental for all meshless calculations presented in this
thesis. Then, a direct discretization scheme is given in Sub-chapter 3.3 to make use of
these meshless techniques and provide a formulation to convert the discretization into a
linear algebra problem. After presenting the meshless scheme, computational aspects
will be illustrated in Sub-chapter 3.7. Here, the focus is placed on how suitable point sets
could be generated and how computations can be done in parallel to speed up calculations.
The chapter will close with several selected example calculations in Sub-chapter 3.8, a
conclusion and a summary in Sub-chapter 3.9.

3.2 Generalized moving least squares

This subsection provides the basis for the following developments in constructing ap-
proximations for the boundary value problems discussed in Chapter 2.3. Since a more
rigorous mathematical descriptive explanation is needed, this section follows the work of
Levin (1998), Mirzaei et al. (2012) and Mirzaei and Schaback (2013).

Let V ⊆ Ck (Ω) be a function space, for functions that have continuous first k ≥ 0
derivatives and let u ∈ V . The domain Ω is defined as before, with Ω ⊆ Rd where d

defines the dimensionality of the domain. Also, let {Li (u)}ni=1 be a set of continuous,
bounded, linear functionals from V ∗, the dual space of V . The generalization of (3.1) is
to find an approximation of a linear target functional L(u) ∈ V ∗, utilizing the function u,
with the help of a finite functional data set {Li (u)}ni=1. Since a linear approximation is
sought after, this process can be written as

L(u) ≈ EL(u) =
n∑

i=1
ai (L)Li (u). (3.2)
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The coefficients are linear in L and to calculate the coefficient vector a = (a1, a2, . . . , aN )T ,
one has to minimize the quadratic form

1
2

n∑
i=1

a2
i (L)

w(L, Li)
, (3.3)

subject to the linear constraints

n∑
i=1

ai (L) Li (p) = L(p), ∀p ∈ P . (3.4)

Here, we assume that Pm(Rd) = span{p1, p2, . . . , pQ} is the space of d-variate poly-
nomials of absolute degree at most m and Q = dim(P) =

(
m+d

d

)
. From Equation

(3.4) follows that the approximation (3.2) is exact for the finite dimensional subspace
P ⊂ V . In (3.3) a non-negative weight function w(L, Li) > 0, if Li , L is used which
forms the stencil Ξ :=

{
j ∈ {1, . . . , n} : w(L, L j ) > 0

}
. Constructing a quadratic matrix

W = diag
(
1/w(L, Li)

)
(i∈Ξ) ∈ R

n×n, allows rewriting Equation (3.3) to

1
2

aTWa. (3.5)

Additionally, the linear constraints (3.4) can be recast into a matrix equivalent formulation
using P = (Li (pm))(i∈Ξ, m=1,...,Q) ∈ R

n×Q and Lp = (L(p1), . . . , L(pQ))T ∈ RQ

Pa = Lp. (3.6)

Now, using Lagrange parameters δ ∈ RQ and the constraints (3.6) gives

1
2

aTWa − δT
(
PTa − Lp

)
. (3.7)

By differentiating (3.7) with respect to a and δ, the following system can be derived

*.
,

W −PT

P 0
+/
-

*.
,

a
δ

+/
-
=

*.
,

0
Lp

+/
-
. (3.8)

This gives the solution for the coefficients

a(L) =WP(PTWP)−1Lp, (3.9)
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and allows to write the approximation (3.2) as

L(u) ≈ EL(u) =
n∑

i=1
ai (L)Li (u)

= L(u)Ta(L)

= L(u)TWP(PTWP)−1Lp

= b(L)TLp.

(3.10)

In Equation (3.10) it is evident, that the approximation of L(u) can be done by a linear
combination of the sample functionals {Li (u)}ni=1 and the calculated coefficients a(L)

or a linear combination of the target functionals evaluated at the basis and some basis
functions b(L).
Similar, a solution to the approximation (3.2) can also be obtained, by a weighted least
squares problem of finding one p∗ = b(L)Tp ∈ P that is the solution of

min



n∑
i=1

(
Li (u) − Li (p)

)2 wi : p ∈ P


. (3.11)

It follows, that the two methods are connected through

L(u) ≈ EL(u) = L(p∗) =
n∑

i=1
ai (L)Li (u). (3.12)

It can be shown (Mirzaei et al., 2012) that the weighted least squares problem (3.11) for
identifying p∗ is equivalent to finding the best weighted least-squares polynomial fit to
the function values. This is done, by choosing the Dirac point evaluation functional

δx : u 7→ u(x), (3.13)

for the target functional Lx (u) := δxu = u(x) for a fixed x ∈ Ω. The functional data set is
now {δxiu}

n
i=1 = {u(xi)}ni=1, the function u evaluated at a finite set of points {xi}

n
i=1. Also

the weight function should be of the form w(x, xi) : Ω ×Ω→ R and localized in a sense
that w vanishes for arguments ‖x − xi‖2 greater than a predefined threshold. Thus, p∗ is
the solution of

min



n∑
i=1

(
u(xi) − p(xi)

)2 w(x, xi) : p ∈ P


, (3.14)
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where

p∗(x) = b(x)TLp(δx) =
Q∑

j=1
b j (x)p j (x). (3.15)

The coefficients can similarly be determined with the method above, to form the normal
Equation (3.9). Mirzaei et al. (2012) came to the conclusion that the coefficients in (3.15)
depend on the weights and index set on x, but not on the functionals L. This allows to
construct the approximation of L(u) in (3.2) with

L(u(x)) ≈ L̂(u(x)) = L(p∗) =
Q∑

j=1
b j (x)L(p j ) =

n∑
i=1

ai,L (x) u(xi). (3.16)

Nevertheless, the approximation (3.16) depends on x through the dependency of b(x).
If different functionals should be approximated by the same data, the coefficient vector
b(x) has to be computed only once. This is different for the coefficients a(L) in the
approximation (3.2). Here, a depends on the functional and must be recomputed every
time when the target functional changes. In the presentation so far, some important
aspects have been omitted due to the readability. To ensure that the problem (3.14) is
uniquely determinable, the point set needs to be P-unisolvent.

Definition 3.1 The point set {xi}
N
i=1 ⊆ R

d with N ≥ Q = dimP is called P-unisolvent if
the zero polynomial is the only polynomial from P that vanishes on all of them (Wendland,
2010).

This also has to be valid for the generalization to linear functionals (Wendland, 2010).
Obviously, the matrix term PWPT , which is often called ‘moment matrix’, needs to
be positive definite, to ensure a unique solution of the minimization problem (3.3-3.4)
(Peypouquet, 2015). If the point set is P-unisolvent, the matrix P in Equation (3.6) has
full rank and PWPT is positive definite (Salehi and Dehghan, 2013).

With this formulation, it is possible to approximate different linear target function-
als acting on u using the data-set {u(xi)}ni=1. For the application to partial differential
equations, two different target functionals are important. First, the approximation of
derivatives of u

L(u) := δx ◦ Dα (u), (3.17)
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of the order |α | is possible with

D̂αu(x) =
Q∑

j=1
b j (x)Dαp j (x) =

n∑
i=1

ai,α (x) u(xi). (3.18)

In Equation (3.18) the coefficients ãi,α are calculated by the GMLS-approximation using
L := δxDα. This type of approximation can be used in the collocation formulation of the
boundary value problem. The second functional used in the weak formulations is

L(u) :=
∫

B
v (x) Lu(x) dx. (3.19)

Here, B = B(x, r0) or ∂B(x, r0) ⊂ Rd is the sphere (in three dimensions) or the circle (in
two dimension) at a point x with radius r0. Furthermore L is a linear differential operator
and v is a compactly supported test function. Calculating coefficients using the GMLS
method, the functional (3.19) can be easily approximated.

3.2.1 The GMLS divergence operator

Here, a summary of the generalized moving least squares divergence operator is given
based on the work of Trask et al. (2017). The foundation of this operator is the geometric
local structure of the meshless stencil as displayed in Figure 3.6. By defining a local

xi

xi j

f i j
x j

ei j

Ci

(a) (b) (c)

Figure 3.6: Stencil-wise construction of a local primal-dual grid complex. (a) Selecting enough
points to form a stencil in a predefined neighbourhood. (b) Definition of midpoints (blue diamonds)
from the central point to all other points. (c) Definition of the primal edges ei j and dual faces f i j
inside a dual cell Ci from the definition of midpoints xi j .

meshless stencil for points inside a predefined area Ξi := {xi ∈ Ω | | |xi − x j | |2 < h}, a
set of local vertex and edge points can be specified:

Vi := {vi = xi | xi ∈ Ξi}, Ei := {ei j = xi − x j | xi ∈ Ξi}. (3.20)
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Using these definitions, a variety of approximation spaces can be derived to define a
proper divergence operator. The edges defined in Ei have tangent vectors which can be
derived by ti j = (xi − x j )/| |ei j | |2. A local vertex and edge space can be derived as

Vi := {ui ∈ R | ∀vi ∈ Vi}, Ei := {ui j ∈ R | ∀ei ∈ Ei}. (3.21)

Dual to these two spaces, a cell (or stencil) space Ci := {ui ∈ R} can be defined, which
contains the function value at the stencil midpoint xi. As well as a dual face space

Fi := {ui j ∈ R | ∀fi j ∈ Fi}. (3.22)

The face space and the edge space are isomorphic to each other. Because of this, the
function values defined by the edge space ui j = ui j · ti j can be written as values from the
face space ui j = ui j · ni j since tangential vectors ti j on edges coincidence with normal
vectors ni j on faces.
Using the previous definitions of the stencil spaces the following gradient and divergence
operators should be defined as

∇i : Vi → Ei, and ∇i · : Fi → Ci . (3.23)

The key ingredient, presented in Trask et al. (2017), is to define a topological gradient
operator by

∇i (u) = u ∈ Ei ⇔ ui j = ui − u j ∈ Vi, (3.24)

which can be "chained" with a divergence oprator ∇·. To define a divergence operator
which utilizes the generalized moving least squares approximation the following Lemma
proved in Trask et al. (2017) is necessary:

Lemma 3.1 Let u ∈ Ck+1(Ω) ⊆ Rd and ui→ ∈ C
k+1(Ω) ⊆ R be the radial component

function defined as ui→(xi j ) = u(xi j ) · 2(xi − x j ) = ui j , then it holds

u(xi) =
1
2
∇i→(xi), as well as ∇ · u(xi) =

1
4
∆i→(xi). (3.25)

Now the task is to use the generalized moving least squares technique to approximate the
gradient and divergence of the radial component function ui→. By defining a polynomial
space Pi := {p ∈ P | p(xi) = 0}, because u(xi) = 0, and a finite functional data set
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defined on the midpoint set Mi

Λi := {δxi j ◦ u | xi j ∈ Mi} (3.26)

and furthermore a GMLS target functional

Li (u) := δxi ◦ Dα (u), (3.27)

the following approximation can be done. First, solve the least-squares problem to
calculate a p∗(xi) which solves

min



n∑
j=1

(
u(xi j ) · 2(xi j − x j ) − p(xi j )

)2
w(xi, xi j ) : p ∈ Pi



. (3.28)

After solving the minimization problem, the calculated coefficients can be used to
calculate the GMLS approximation:

û(xi) =
1
2
∇̂p∗(xi) =

1
2

Q∑
j

b j (xi)∇p∗k (xi),

̂∇ · u(xi) =
1
4
∆̂p∗(xi) =

1
4

Q∑
j

b j (xi)∆p∗k (xi).

(3.29)

This forms the basis of approximating vector fields and their divergence in the framework
of generalized moving least squares approximations. In Trask et al. (2016) the authors
used this technique for the solution of the Stokes problem with application to suspension
flows. In this thesis, it will be used for the discretization of the three- and two-dimensional
magnetotelluric problem.

3.2.2 Error estimates

In order to determine the behavior of an approximation, theoretical results about the error
should be given to serve as a basis for further investigations. Here, the error estimates
are cited mainly from (Wendland, 2010; Mirzaei et al., 2012; Mirzaei, 2016; Trask et
al., 2017). They are given for the generalized functional approximation. The task is to
bound the approximation error in terms of a characteristic constant, which is linked to
the organization of the used point set. A natural choice, frequently used in meshless
methods, is the fill distance hX,Ω for a specific point set X which covers the domain Ω
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(Wendland, 2010; Fasshauer, 2007):

hX,Ω = sup
x∈Ω

min
xi∈X
‖x − xi‖2 . (3.30)

This distance is a value for the maximal diameter of a sphere in Ω which includes no
points. A point set is said to be quasi-uniform if there is a constant θ, which bounds the
fill distance

‖x − xi‖2 ≤ 2hX,Ω ≤ θ‖x − xi‖2 . (3.31)

The main requirement to build approximations as (3.1) or (3.2) is the ability of the method
to provide a local polynomial reproduction. If the approximation is able to do so, error
estimates can be given, which are bounded by the fill distance (3.30) (Wendland, 2001).
Formally, in the context of a GMLS approximation, some basis functions ai (L) provide a
stable local polynomial reproduction, if

(a) L(u) ≈ EL(u) :=
∑n

i=1 ai (L)Li (u), ∀u ∈ P,

(b)
∑n

i=1 |ai (L) | ≤ C1, ∀L ∈ V ∗,

(c) ai (L) = 0 if w(L, Li) = 0.

Here, these functions should be able to reproduce polynomials exactly from P (a), be
bounded up to a constant C1 (b) and should have a compact support defined by the
weighting function (c). For the approximation of derivatives, Mirzaei et al. (2012) gives
adapted properties for a stable polynomial reproduction, while Wendland (2001) defines
properties for plain function approximation.
Various error estimates for moving least squares approximations were derived by several
authors e.g. (Armentano, 2001; Wendland, 2001; Zuppa, 2003; Ren et al., 2014), some
results for the generalized approximation scheme are given by Mirzaei (2016). Here,
important is the:

Theorem 3.1 (Mirzaei, 2016) Suppose thatΩ ⊂ Rd is a bounded domain with a Lipschitz
boundary. Fix m ∈ N, p ≥ 1 and q ≥ 1 and let u ∈ W k+1

p . For α with |α | ≤ m, assume
m + 1 > |α | + d/p for p > 1 and m + 1 ≥ |α | + d for p = 1. If there are some constants
C and h as defined in (Mirzaei, 2016, Theorem 3.6), such that for all points in X with
hX,Ω ≤ h0, which are quasi-uniform with the same θ as in (3.31) it follows that




Dαu − D̂αu


Lq (Ω)
≤ Chm+1−|α |−d(1/p−1/q)+

X,Ω ‖u‖W k+1
p (Ω) , (3.32)
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while

D̂αu(x) =
n∑

i=1
ai,α (x) u(xi) (3.33)

is the GMLS derivative approximation of order α and (1/p−1/q)+ = max{(1/p−1/q), 0}.

The Theorem 3.1 defines error bounds for GMLS derivatives through Equation (3.32)
in dependence of the fill-distance hX,Ω. Mirzaei (2016) also provides error bounds
for functionals (similar to 3.19), which are used in weak formulations like MLPG and
DMLPG:

Theorem 3.2 (Mirzaei, 2016) Suppose that all conditions of Theorem 3.1 are satisfied.
If there are some constants C and h as defined in (Mirzaei, 2016, Theorem 3.6), such
that for all points in X with hX,Ω ≤ h0, which are quasi-uniform with the same θ as in
(3.31) it follows that





L(u) −EL(u)




Lq (Ω)

≤ Chm+1−l−d(1/p−1/q)+
X,Ω ‖u‖W k+1

p (Ω) . (3.34)

With an approximation defined as

EL(u)(x) =
n∑

i=1
ai,L (x) u(xi), (3.35)

which is a GMLS derivative approximation of EL(u)(x) = 1/vol (B)
∫

B v
(
x − y

)
Lu(y) dy

and l is the maximal order of the involved linear operatorL. The constant n is determined
such that L(xα) , 0 for some α with |α | ≤ k and L(xα) = 0 for all α with |α | > k.

Both Theorems 3.1 and 3.2 provide estimates for the approximation order, when using the
generalized moving least squares scheme. It is obvious that the error is affected either by
the order of the derivatives α and by the polynomial degree m. Using a weak formulation
deploying functionals, which use integrals, the approximation order is influenced by the
order of the linear operatorL. By using weak formulations the order of the involved linear
operator is usually reduced by one degree in contrast to an equivalent strong formulation.
By using the staggered approximation scheme, presented in the previous chapter, similar
error estimates can be derived. By inspecting the approximation of u(x) and ∇ · u(x) in
Equation (3.29), two differential operators are involved. Thus, point-wise error estimates
are given by Trask et al. (2017):





u(xi) − û(xi)




 ≤ Chm

X,Ω‖u‖Ck+1(Ω) (3.36)
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and




∇ · u(xi) − ̂∇ · u(xi)





 ≤ Chm−1
X,Ω ‖u‖Ck+1(Ω) . (3.37)

The preconditions for these error bounds are comparable to the ones presented before.
By comparing the order of the approximation, both schemes are equal. Special for the
presented schemes is that the convergence rate cannot be increased, when going from
m = 2k to m = 2k + 1, k ≥ 1. Here the contribution of odd powers from the polynomials
are missed, as Mirzaei (2016) explains.

3.3 Discretizations

To derive a set of linear equations obtained from the formulation of Maxwell’s equations,
a variety of methods are available. Having derived a correct mathematical abstraction in
form of the boundary value problem, as described in chapter 2.3, the next step is to make
use of the generalized moving least squares technique. In order to proceed, the boundary
value problem has to be reformulated for the discretization. This thesis represents a further
development of the work presented in Wittke and Tezkan (2014), some formulations
from this publication will be reused and serve as starting point for later developments in
this thesis. All the formulations presented here, will make use of two schemes for the
discretization of Maxwell’s equations. First, a meshless Petrov-Galerkin (MLPG) scheme
will be used as in Wittke and Tezkan (2014) to reformulate the boundary value problems
and in a second step the generalized moving least squares technique will be deployed. By
using such approximation techniques, a direct discretization as presented by Mirzaei and
Schaback (2013) or Schaback (2013) can be utilized to produce an algebraic system of
equations. The staggered approximation scheme will be used in a strong formulation.
Here, the previously introduced boundary value problem can be directly transformed into
an algebraic system of equations by approximating the differential operators.
Generally, the well-known discretization framework of the finite elements can be converted
to a meshless setting. The idea of using trial and shape functions to construct the solution
of a linear operator equation from a finite-dimensional function space Vh , where trial
functions are generated by some specifically chosen shape functions, is not restricted
by using a mesh. Shape functions can be calculated for some scattered points by using
moving least squares techniques, translates of kernels or radial basis functions. For
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example, a linear, partial differential system of equations is

Lu = f in Ω,

Bu = g on ∂Ω,
(3.38)

utilizing a linear differential operator 5 L : V → F and a boundary operator B : V → F

on some normed linear function space V . Also, { f , g} ∈ F and u ∈ V and the task is to
find an approximation of û ∈ Vh, for which meshless methods should generate the finite
dimensional subspace Vh ⊂ V . This operator equation can be rewritten as a set of N

linear functionals {Li}
N
i=1 ∈ V ∗, which form the system

Li (u) = fi ∈ R, 1 ≤ i ≤ N . (3.39)

Here N = |X | is the cardinality of the used point set. If a functional corresponds to
a boundary operator, suitable values of gi should be used instead of fi (Schaback and
Wendland, 1999). If a GMLS approximation is used to recover the linear functionals,

L(u) ≈ EL(u) =
n∑

i=1
ai (L)u(xi), (3.40)

an algebraic system in the form of
Au = f (3.41)

can be written (Schaback, 2017), with components defined as

A = (ai (L j ))1≤i≤N,1≤ j≤N ∈ R
N×N,

u = (u(x1), . . . , u(xN ))T ∈ RN,

f = ( f1, . . . , f N )T ∈ RN .

(3.42)

Now, two main options are possible to set-up the system matrix A. The first one based
on using meshless shape functions and the second method directly approximates the
set of linear functionals used in the system (3.39). Both approximations can always be
written as Equation (3.40) (Schaback and Wendland, 1999), but if using shape functions
generated by a meshless method, the functionals (3.40) must act on them. As avowed in
the previous section, the generation of suitable meshless approximation spaces heavily
involves linear algebra and no closed form expressions are available. This is unfavorable
if the functionals define derivatives or integration. In the case of integration, mostly

5For example a linear differential operator of the order k likeL =
∑
|α | ≤k aαDα so,L : Ck (Ω) → C(Ω)
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Gaussian quadrature rules are used. This rules evaluate functions at selected Gauss
points, which leads to an enormous amount of shape function evaluation and slows down
the construction of the system matrix seriously. The main intention of direct methods
developed in (Mirzaei et al., 2012; Mirzaei and Schaback, 2013, 2014) was to bypass
these calculations, and it was also the main drawback of the method used in the work of
Wittke and Tezkan (2014) compared to finite element formulations. This thesis adapts
these newly developed direct methods and extends the work of Wittke and Tezkan (2014).
Nevertheless, which path is chosen, a connection of the continuous partial differential
system to a discrete counterpart, explicitly construct an approximation as Equation (3.40)
can be done in several ways. Here, we use two schemes, which are commonly refereed in
the literature as strong formulations and weak formulations (Sadiku, 2000).

3.4 Meshless formulations

Strong formulations, or often referred to as point collocation methods, are popular
schemes for the meshless discretization of partial differential equations. A variety of
several variants are available, using different approximation strategies. Most prominent
are the Generalized Finite Differences (Seibold, 2006), the Finite Point Method (Oñate
et al., 1996) or meshless collocation schemes (Franke and Schaback, 1998). Strong
formulations do not weaken the partial differential formulation by integration over test
functions and using identities from vector calculus. These formulations are simpler to
use, but their convergence order are reduced in comparison to weak formulations. In this
subsection the relevant implementations for the discretizations of Maxwell’s equations
are given. First, the three-dimensional formulations from chapter 2.3.1 are discretized
and then subsequently the two-dimensional problem will be described.

3.4.1 Two-dimensional scalar field formulation

Compiling the strong formulation for a two-dimensional scalar field ismore straightforward
than using vector valued expressions. The basis are systems of partial differential equations
for the TE- and TM-mode. Given in the chapter about second order formulations, the
system used here is described through Equations (2.74) and (2.75). Both equations have
the same characteristic structure and can be reformulated as a system of generic partial
differential equations. To get a specific formulation, only a change in the coefficients is
needed to get from one formulation to the other. Using Equations (2.74) and (2.75) and a
generic place-holder u ∈ {Ex, Hx } as well as the coefficients C A and CB, the simplified
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system can be written as

∇ ·
(
C A(x)∇u(x)

)
+ CB (x)u(x) = s(x) in Ω ,

u(x) = u1D (x) on ΓD,

C A(x)
∂u
∂n

(x) = g(x) on ΓN .

(3.43)

Now, x ∈ R2 and the point-set is X = {xi}i=1,...,N divided into X = XΩ ∪ Xd ∪ Xn, in
which XΩ ⊂ Ω ( R2 are points inside the domain Ω, while XD ⊂ Γ

D are points on a
Dirichlet boundary and XN ⊂ Γ

N are points on a Neumann boundary. By comparing
system (3.43) to (2.74) and (2.75), the coefficients for the TE-mode can be identified as
C A(x) = µ−1

0 andCB (x) = −iωσ(x). The TM-mode the coefficients areC A(x) = σ(x)−1

and CB (x) = −iωµ0. A suitable set of functionals for interior points can be given as

LΩi (u) := ∇ ·
(
C A(xi)∇u(xi)

)
+ CB (xi)u(xi), xi ∈ XΩ ⊂ Ω. (3.44)

As in the vectorial case, presented before, the functional can be split into two parts and
the correct coefficients for the selected mode has to be used. If functionals connecting
the fields to boundary values are required, a suitable set is

LD
j (u) := δxj ◦ u, x j ∈ XD ⊂ Γ

D, (3.45a)

LN
l (u) := C A(xl )

∂u
∂n

(xl ), xl ∈ XN ⊂ Γ
N . (3.45b)

Having all functionals defined, the whole formulation can be written as

Li (u) = s(xi), ∀xi ∈ Ω ∪ Γ
D ∪ ΓN, (3.46)

where the index i = 1, . . . , N contains all points from Ω including the boundary. Using
the approximation of the functionals gives

Li (u) ≈
n∑

j=1
ai j (Li) u(x j )

= si (xi), ∀xi ∈ Ω ∪ Γ
D ∪ ΓN .

(3.47)

Assembling all the coefficients into an algebraic system results in

Au = s. (3.48)
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The complex-valued matrix A ∈ C N×N should be constructed by the coefficients resulting
from a GMLS expansion (3.47), while u ∈ {Ex, Hx } is the vector for all field components
at all N points, so for example in the TE-mode u = (Ex (x1), . . . , Ex (xN )). The right-hand
side of Equation (3.43) is s ∈ C N including also all possible values for points at the
boundary.

3.4.2 Three-dimensional potential field formulation

First, the simplified operator form notation (2.39) of the potential formulation will be
used to identify the functionals used for the discretization

*.......
,

C1 0 0 Px

0 C2 0 Py

0 0 C3 Pz

Px Py Pz D

+///////
-

*.......
,

Ax

Ay

Az

φ

+///////
-

=

*.......
,

−µ0 Je
x

−µ0 Je
y

−µ0 Je
z

∇ · Je

+///////
-

. (3.49)

Using x ∈ R3 and subdividing a point set X = {xi}i=1,...,N into X = XΩ ∪ Xd ∪ Xn, in
which XΩ ⊂ Ω ( R3 are points inside the domain Ω, whereas XD ⊂ Γ

D are points on
a Dirichlet boundary and XN ⊂ Γ

N are points on a Neumann boundary. As described
in chapter 2.3.1 and summarized in Table 2.3, the diagonal coefficients for a Coulomb
gauging are C1,2,3 = ∇

2 + iωµ0σ̂(x) and D = ∇ · (σ̂(x)∇). The off-diagonal coupling
terms are the component wise representations of Pi = µ0σ̂(x)∂k with k ∈ {x, y, z}. This
allows setting up functionals corresponding to interior points from the set XΩ and the
diagonal terms of (3.49) :

LC1
i (Ax) := ∇2 Ax (xi) + iωµ0σ̂(xi) Ax (xi)

LC2
i (Ay) := ∇2 Ay (xi) + iωµ0σ̂(xi) Ay (xi)

LC3
i (Az) := ∇2 Az (xi) + iωµ0σ̂(xi) Az (xi)

LD
i (φ) := ∇ · (σ̂(xi)∇φ(xi))




xi ∈ XΩ ⊂ Ω. (3.50)

The diagonal terms C1 to C3 can also be decomposed into six different functionals. The
off-diagonal coupling terms result in a set of functionals for the interior point set:

LPl

i (u) := µ0σ̂(xi)∂ku(xi), xi ∈ XΩ ⊂ Ω. (3.51)

The indices k in Equation (3.51) are used for the spatial direction k ∈ {x, y, z} and
u ∈ {Ax, Ay, Az, φ}. To complete the assembly of functionals, resulting from the
description of the partial differential equations, a suitable set of functionals connecting
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the fields to Dirichlet and Neumann boundary values should be established:

LD
k (u) := δxj ◦ u, x j ∈ XD ⊂ Γ

D,

LN
l (u) :=

∂u
∂n

(xl ), xl ∈ XN ⊂ Γ
N .

(3.52)

In Equations (3.52), the specific fields (Ax, Ay, Az, φ) should be used instead of the generic
place-holder u. Now, for every point inside the domain, a functional from Equations
(3.50) through (3.52) can be used to set up a system of algebraic equations which, can be
solved for the field values. Since this problem can be assembled from individual scalar
functionals, the entire formulation requires a vector valued notation. The whole system,
combining all functionals for all fields can be written as

Li (u) = si (xi), ∀xi ∈ Ω ∪ Γ
D ∪ ΓN . (3.53)

Here, d ∈ {1, 2, 3} describes the dimensionality, s(d)
i (xi) is the right-hand side of Equation

(3.49) evaluated at a point xi and û = ( Âx, Ây, Ây, Ây)T . To set-up the algebraic system
in terms of coefficients gained from an expansion of the functionals, the left-hand side of
Equation (3.53) must be expanded as:

Li (u) ≈
n∑

j=1
Ai ju(x j )

=

N∑
j=1

*........
,

a(11)
i j a(12)

i j a(13)
i j a(14)

i j

a(21)
i j a(22)

i j a(23)
i j a(24)

i j

a(31)
i j a(32)

i j a(33)
i j a(34)

i j

a(41)
i j a(42)

i j a(43)
i j a(44)

i j

+////////
-

*.......
,

Ax (x j )

Ay (x j )

Az (x j )

φ(x j )

+///////
-

= si (xi), ∀xi ∈ Ω ∪ Γ
D ∪ ΓN .

(3.54)

As explained before, each functional must be approximated at each point i within its
neighbourhood containing n points and by using Equation (3.49), the resulting algebraic
system is complex-valued and can be constructed as

Au = s. (3.55)
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Here, the matrix A ∈ C 4N×4N is assembled block-wise by the coefficient matrices from
expansion (3.54), while

u = (Ax (x1), Ay (x1), Az (x1), φ(x1),

Ax (x2), Ay (x2), Az (x2), φ(x2),

. . . , Ax (x 4N ), Ay (x 4N ), Az (x 4N ), φ(x 4N ))T, ∈ C 4N

(3.56)

is the field vector for all field components at all 4N points and s ∈ C 4N is the right-hand
side of Equation (3.49) including possible values for points at the boundary. The
generalized moving least squares approach should generate the coefficients used in the
expansion (3.54). A detailed description, how to calculate these coefficients is given in
chapter 3.5, which describes the specific implementation.

3.4.3 Weak formulation

Weak formulations of a boundary value problems are commonly used in Finite Element
analysis. Here, the partial differential equation system is reformulated into an integral
expression, where a bilinear form is connected to the integral of the source termmultiplied
by a test function. If the bilinear form is bounded and coercive, an unique solution can
be found. A beneficial property of a weak formulation is the reduced order of partial
derivatives. In a strong formulation, second order derivatives have to be used, whereas in
a weak formulation one derivative is “transferred” to the test function. This lowers the
requirement that the trial functions need to be continuously differentiable until at least
second partial derivative.
In this thesis, a formulation by Wittke and Tezkan (2014) is used. While the context, a
meshless formulation, is the same, the implementation differs. Here, a direct method
is used to approximate the resulting integral formulations from the weak form instead
of using meshless shape functions and quadrature rules. The derivation of the weak
formulation will be geared to the well-known MLPG scheme of Atluri and Zhu (1998);
Atluri et al. (1999); Atluri and Shen (2002). The general description of the boundary
value problem (3.43) is transformed to a weak formulation using the weighted residual
method. This is also a typical step in a finite element analysis. Therefore, the weighted
(with a test function w), minimal residual of Equation (3.43) will be integrated over Ω∫

Ω

[
∇ ·

(
C A∇u

)
− CBu − s

]
w dΩ = 0. (3.57)
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Here, the generic place-holder u and the coefficients must be exchanged with the relevant
fields and coefficients according to the actual magnetotelluric formulation. We finally
derive the general weak form of Equation (3.43) by separating (3.57) into parts∫

Γ

[
wC A ∂u

∂n

]
dΓ −

∫
Ω

[
C A∇w · ∇u

]
dΩ

−

∫
Ω

wCBu dΩ =
∫
Ω

ws dΩ .

(3.58)

A common vector identity w∇ · (α∇u) = ∇ · (wα∇u) − ∇w · (α∇u) and the divergence
theorem is used to derive the first integrals in Equation (3.58). Also, n is the unit normal
outward to the boundary Γ. Now, the general weak statement of Equation (3.43) will
be transformed to the MLPG formulation. Within the MLPG local sub-domains Ωs are
defined which can be equal to the support of the weight function Ωte for one arbitrarily
chosen point i. This definition is the main idea in theMLPG-fomulation. In a conventional
Finite Element or Element-Free Galerkin method, the weak form of Equation (3.43)
will be globally used all over the whole model domain. In a MLPG-formulation small
sub-domains inside the global domain Ω are used. If the set of points X = {x1, . . . , xN }

Ξi

(a) (b) (c) (d)

Ωi
Γi

i

Γi
i ΓD

i

ΓN
i

Figure 3.7: Overview of the MLPG integration domain generation construction. From a set
of points (a) a local stencil Ξi is selected from the support of the weight function. In (b) the
rectangular integration domain Ωi is defined and clipped with the outer domain boundary (c). In
(d) the outer boundaries of the integration domains are defined.

fills the model domain, patches of
{
Ωi

s

}N

i=1
sub-domains covers the whole model domain.

Each point creates its own sub-domain and mentioned before, it is a Petrov-Galerkin
formulation, so the approximation of the boundary value problem can be done with shape
and weight functions from different function spaces. In Atluri et al. (1999) six different
weight functions are examined which led to several MLPG schemes. Equation (3.58)
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transforms to∫
Γis

[
wiC A ∂u

∂n

]
dΓ −

∫
Ωi

s

[
C A∇wi · ∇u

]
dΩ −

∫
Ωi

s

wiCBu dΩ

=

∫
Ωi

s

wis dΩ.
(3.59)

Themodel boundary Γ (partly) includes all other boundaries
(
∂Ωs = Γ

i
s = Γ

i
i ∪ Γ

D
i ∪ Γ

N
i

)
,

thus ∫
Γii \Γ

N
i

[
wiC A ∂u

∂n

]
dΓ +

∫
ΓNi

[
wiC A ∂u

∂n

]
dΓ

−

∫
Ωi

s

[
C A∇wi · ∇u

]
dΩ −

∫
Ωi

s

wiCBu dΩ =
∫
Ωi

s

wis dΩ .

(3.60)

The index i identifies the actual test function point corresponding to the local sub-domain
Ωi

s. In the framework of MLPG a distinction is drawn between different weight functions
due to the Petrov-Galerkin formulation. For the purpose of this thesis, a constant function
wi (x) = 1 is used. This simplifies the local weak formulation, because the first areal
integration on the left hand side of Equation (3.60) vanishes and only the boundary integral
remains. If the weight function is inserted into Equation (3.60), the final formulation
reads ∫

Γii \Γ
N
i

C A ∂u
∂n

dΓ +
∫
ΓNi

g dΓ −
∫
Ωi

s

CBu dΩ =
∫
Ωi

s

s dΩ . (3.61)

This is the MLPG-5 formulation proposed by Atluri and Zhu (1998) for the boundary
value problem (3.43). The shape of local sub-domains can be arbitrarily chosen and for a
two-dimensional problem rectangle shapes are used. By constructing these sub-domains,
they are clipped against boundaries and the resulting polygon is used. Figure 3.7 illustrate
the construction of sub-domains and/or integration domains. In opposite to the work of
Wittke and Tezkan (2014), no approximation of u is constructed to use within the MLPG
weak form (3.61). Instead, the direct GMLS approximation presented in the sub-chapter
is used to directly approximate the integrals of (3.61), which was proposed by Mirzaei
and Schaback (2013). Whichever MLPG formulation is chosen, a set of designated
functionals can be defined to set up an algebraic system of equations. Starting from
Equation (3.61), all integrals acting on u can be approximated by the GMLS formulation
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using the functional set

L1
i (u) :=

∫
Γis\Γ

N
i

C A ∂u
∂n (xi) dΓ

L2
i (u) := −

∫
Ωi

s
CBu(xi) dΩ




xi ∈ XΩ \ ΓN ⊂ Ω. (3.62)

While for the boundary functionals, the same procedure as using the collocation method
can be used,

LD
j (u) := δxj ◦ u, x j ∈ XD ⊂ Γ

D, (3.63a)

LN
l (u) := C A(xl )

∂u
∂n

(xl ), xl ∈ XN ⊂ Γ
N . (3.63b)

Having all functionals defined, the complete formulation can be written as

Li (u) = S(xi), xi ∈ XΩ ⊂ Ω ∪ ΓD ∪ ΓN, (3.64)

where the index i = 1, . . . , N selects every point fromΩ including points on the boundary.
Using the approximation of the functionals gives

Li (u) ≈
n∑

j=1
ai j (Li) u(x j )

= si (xi), xi ∈ XΩ ⊂ Ω ∪ ΓD ∪ ΓN .

(3.65)

Inspecting the weak formulation presented above, it is noticeable that it is possible to
enforce the boundary conditions by using strong collocation. When using inhomogeneous
boundary conditions or a formulation with a source term, the right-hand sides of Equations
(3.43) need to be evaluated in terms of line and area integrals.
The MLPG formalism decreases the order of the partial derivatives of the first equation
in (3.43) and in a second step with the specified constant weight function the first areal
integral of Equation (3.60) vanishes.

3.5 Implementations

In the previous chapter the required functional formulations to set-up an algebraic system
of equations have been presented. This step towards a fully discrete system was done
without an explicit definition of the used coefficients and how they should be calculated.
In this chapter the details for a feasible implementation will be presented.
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First, a suitable basis should be defined and its properties will be discussed. Later on, a
potential weight function will be given to complete the requirements for constructing the
normal equations for the generalized moving least squares approximation. After defining
a proper basis and weight function, it is possible to give explicitly the implementation for
calculating the coefficients of the approximation.

initalization

loop over all points

find neighbouring points

calculate coefficients

insert into global matrix

solving

postprocessing

(a) (b) (c)

(d)

Figure 3.8: Overview of a meshless calculation scheme. After initializing the computational
domain and generating the point cloud (a), for every point (b), its neighbouring points which
forms a local stencil must be selected. From this stencil, the coefficients can be calculated and
should be inserted into the global sparse matrix. After solving (c) the sparse matrix and post
process the data (d) the results of the meshless simulations are ready.

3.5.1 General work flow

Now, it is possible to formulate a specific implementation for each of the earlier stated
boundary value problems. To give a comprehensive overview, a flow chart is presented
in Figure 3.8. Here, retrospect and in combination with Figure 3.5 the procedure of a
meshless computational scheme can be seen. The general work flow is mostly the same
for every meshless method (Dolbow and Belytschko, 1998), but varies in some specific
points. After initializing the computational domain and generating the point cloud, for
every point its neighbouring points, which forms a local stencil must be selected. From
these stencils, the coefficients can be calculated and should be inserted into the global
sparse matrix. After solving the sparse system of equations and post process the data,
results of the meshless simulations can be used otherwise. The point cloud generation in
the initialization will be discussed in a subsequent chapter as well as the stencil selection.
For now, the actual implementation of part (b) as displayed in Figure 3.8 is for interest.
After having defined a proper polynomial basis and a suitable weight function, the



3.5. IMPLEMENTATIONS 57

computation of the coefficients will be described. Not all parts of the implementation will
be described in detail, due to their similarity. Here, the focus lies in the implementation
of the staggered generalized moving least squares approach for the two-dimensional
magnetotelluric problem and an implementation of the three-dimensional potential
formulation.

3.5.2 Polynomial basis

To solve the quadratic minimization problem (3.3) subject to the linear constrains
(3.4) a suitable polynomial basis should be used. Inspecting Equation (3.15), the
Generalized Moving Least Squares provides a polynomial from some polynomial space
of d-variate polynomials of absolute degree at most m. A polynomial canonical basis,
such that Pm(Rd) = span{p1, p2, . . . , pQ} with Q =

(
m+d

d

)
, consists of monomials. In

two dimension this is

p(x) = p(x, y) = {p0 p1 . . . pQ} = {1 x y xy x2 y2 . . . xm ym}, (3.66)

and in three dimensions, a basis like

p(x) = p(x, y, z) = {p0 p1 . . . pQ} = {1 x y z xyz x2 y2 z2 . . . xm ym zm} (3.67)

can be used. Using such polynomial basis, care must be taken with regard to solve the
normal system (3.9). The condition of the matrix PWPT is directly linked to the used
monomial basis. To ensure a well conditioned normal equation, it is superior to scale and
shift the monomial basis to the evaluation point xi (Saad, 1986; Mirzaei et al., 2012)

pα (x) =
1
α!

(x − xi

h

)α
, α = 0, . . . ,Q. (3.68)

The choice of the polynomial degree m is important for the convergence of the approxima-
tion. Inspecting the error bounds in Theorem 3.1 and 3.2, the polynomial order controls
the error according to the used norm of the function space. Nevertheless, using high order
polynomial degrees, a trade-off between stability while inverting the matrix PWPT , and
a high order convergence must be found. In order to provide a convergent reconstruction
and a stable local polynomial reproduction oversampling is needed: The number of
points in the stencil n = |Ξ| must be greater or at least equal to the used polynomial
order m = dim(P) (Wendland, 2010). A methodical way to reduce the stencil size and
providing a more compact discretization was presented in Trask et al. (2016).
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3.5.3 Weight function

In the Moving Least Squares framework a weight function is assigned to each point
in the local stencil. This weight function should produce a spatial dependence and
prefer points from the evaluation stencil, which are closer to the stencil mid-point. A
possible choice is to use a weight function dependent on the Euclidean distance, which is
rotationally invariant. The Euclidean distance in Rd between two points x = (x1, . . . , xd)

and y = (y1, . . . , yd) is given by

d(x, y) =

x − y

2 =

√√√ d∑
i=1

(xi − yi)2. (3.69)

This suggests to use a weight w : Ω ×Ω→ R function like

zi (x) = z(d(x, xi)). (3.70)

If the argument of z vanishes and the value of z approaches infinity, the approximation
scheme interpolates the wanted function values. Normally, the values of the weight
function should attenuate rapidly with an increasing distance. Also, by choosing a
maximum support distance h0 ≤ hX,Ω, the weight function should vanish if the argument
is greater than this constant:

zi (x) = z(d(x, xi)) = 0, ∀d(x, xi) > h0. (3.71)

If the weight function posses a k-smoothness (if w ∈ Ck), than the approximation P f (x)

is also in Ck (Wendland, 2010). A reasonable choice for a weight function is

zi (x) = z(d(x, xi)) =



exp((−d(x,xi )/c)2)−exp(−(h0/c)2)
1−exp(−(h0/c)2) for 0 ≤ d(x, xi) ≤ h0,

0 for h0 < d(x, xi).
(3.72)

In Equation (3.72), a constant value c is used to control the shape of the weight function
and an often used value is c = 0.6 (Mirzaei and Schaback, 2013).

3.5.4 Two-dimensional implementations

As before, the computational domain is covered by a point set X = {xi}i=1,...,N divided
into X = XΩ ∪ Xd ∪ Xn, in which XΩ ⊂ Ω ( R2 are points inside the domain Ω, whereas
XD ⊂ Γ

D are points on a Dirichlet boundary and XN ⊂ Γ
N are points on a Neumann
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boundary. A stencil Ξi = {xi, x1, x2, . . . , xn} for the point xi is formed from a number
of surrounding points {x j }

n
j=1, specifically: Ξi := {x j ∈ Ω | | |xi − x j | |2 < h}. Now, for

every stencil in the computational domain, the coefficients of the local expansion of the
functionals for the specific boundary value problem have to be computed. The proposed
generalized form of the two-dimensional magnetotelluric boundary value problem (3.43)

∇ ·
(
C A(x)∇u(x)

)
+ CB (x)u(x) = s(x) in Ω ,

u(x) = u1D (x) on ΓD,

C A(x)
∂u
∂n

(x) = g(x) on ΓN,

(3.73)

will be used for the two-dimensional calculations. The coefficients for the TE-mode
can be identified as C A(x) = µ−1

0 and CB (x) = −iωσ(x), whereas for the TM-mode the
coefficients are C A(x) = σ(x)−1 and CB (x) = −iωµ0. This gives two sets of functionals,
one for the TE mode and one for the TM mode. First the functionals for the TE mode are
given by

LΩi (Ex) := ∇ ·
(
µ−1

0 ∇Ex (xi)
)
− iωσ(xi)Ex (xi), xi ∈ XΩ ⊂ Ω,

LD
j (Ex) := δxj ◦ Ex, x j ∈ XD ⊂ Γ

D,

LN
l (Ex) := µ−1

0
∂Ex

∂n
(xl ), xl ∈ XN ⊂ Γ

N .

(3.74)

The specific functionals for the TM mode are given by

LΩi (Hx) := ∇ ·
(
σ(x)−1∇Hx (xi)

)
− iωµ0Hx (xi), xi ∈ XΩ ⊂ Ω,

LD
j (Hx) := δxj ◦ Hx, x j ∈ XD ⊂ Γ

D,

LN
l (Hx) := σ(x)−1 ∂Hx

∂n
(xl ), xl ∈ XN ⊂ Γ

N .

(3.75)

Now for every point inside the computational domain, the set of functionals will be
approximated according to a local expansion based on the specific stencil of the point.
The right functional will be selected according to the placement of the point. If a point
does not belong to a boundary set, the first functional of Equations (3.74) or (3.75) will
be used. If the point is on a boundary the corresponding functionals for the boundary
will be used. The approximation of a functional according to the local stencil is

Ll
i (u) ≈

n∑
j=1

al
i j (Li) u(x j ), (3.76)
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where l = {Ω, D, N } is the descriptor of the functional. Using the introduced monomial
basis and the weight functions, the coefficients can be calculated by Equation (3.9)

al (L) =WP(PTWP)−1Ll (P). (3.77)

The weighting matrix is explicitly given by

W = diag(w(x1), . . . ,w(xn)) =
*....
,

w(x1) . . . 0

0 . . . 0
0 . . . w(xn)

+////
-

, (3.78)

and the monomial basis is used for forming

P =

*..........
,

p1(x1) p2(x1) . . . pq(x1)

p1(x2) p2(x2) . . . pq(x2)

p1(x3) p2(x3) . . . pq(x3)

. . . . . . . . . . . .

p1(xn) p2(xn) . . . pq(xn)

+//////////
-

. (3.79)

Special for the generalized moving least squares is the vector of functionals Ll (P) acting
on the monomial basis, which should be calculated according to the selected functionals.
By inspecting Equations (3.74) and (3.75) they can be written for the TE-mode as

LΩi (P) :=
[
∇ ·

(
µ−1

0 ∇p1(xi)
)
− iωσ(xi)p1(xi), . . . ,∇ ·

(
µ−1

0 ∇pQ (xi)
)
− iωσ(xi)pQ (xi)

]T
,

LD
j (P) :=

[
p1(x j ), p2(x j ), . . . , pQ (x j )

]T
,

LN
l (P) :=

[
µ−1

0
∂p1

∂n
(xl ), µ−1

0
∂p2

∂n
(xl ), . . . , µ−1

0
∂pQ

∂n
(xl )

]
,

(3.80)
and for the TM-mode as

LΩi (P) :=
[
∇ ·

(
σ(xi)−1∇p1(xi)

)
− iωµ0p1(xi), . . . ,∇ ·

(
σ(xi)−1∇pQ (xi)

)
− iωµ0pQ (xi)

]T
,

LD
j (P) :=

[
p1(x j ), p2(x j ), . . . , pQ (x j )

]T
,

LN
l (P) :=

[
σ(xl )−1 ∂p1

∂n
(xl ), σ(xl )−1 ∂p2

∂n
(xl ), . . . , σ(xl )−1 ∂pQ

∂n
(xl )

]
.

(3.81)
The next step is tomake use of the previously described staggered scheme. As noted before,
the numerical procedure should be able to handle discontinuous material coefficients.
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Make use of the staggered scheme is a step towards an efficient implementation to handle
discontinuous material coefficients. To proceed, the functional vector LΩi (P) will be
split into two parts as

LΩa

i (P) :=
[
∇ ·

(
µ−1

0 ∇p1(xi)
)
, . . . ,∇ ·

(
µ−1

0 ∇pQ (xi)
)]T

,

LΩb

i (P) :=
[
−iωσ(xi)p1(xi), . . . , . . . ,−iωσ(xi)pQ (xi)

]T
,

(3.82)

for the TE-mode and for the TM mode accordingly

LΩa

i (P) :=
[
∇ ·

(
σ(xi)−1∇p1(xi)

)
, . . . ,∇ ·

(
σ(xi)−1∇pQ (xi)

)]T
,

LΩb

i (P) :=
[
−iωµ0p1(xi), . . . , . . . ,−iωµ0pQ (xi)

]T
.

(3.83)

Now, according to Trask et al. (2017) the minimization problem defined in Equation
(3.28) will be used to form an expression like Equation (3.77) to calculate coefficients in
a staggered approximation to the functionals LΩa

i (P) for the TE- and TM-mode.
Using the definition of the topological gradient in Equations (3.24) together with the
minimization problem (3.28) gives

min



n∑
j=1

(
c̃i j GRADi (u) − p(xi j )

)2
w(xi, xi j ) : p ∈ Pi



. (3.84)

In this minimization problem, where p∗(xi) is a solution, the gradient operator is defined
through the relation GRADi (u) = u(x j ) − u(xi), which previously was written down in
Equation (3.24). Also, included in the minimization is an average material parameter
c̃i j between points xi and x j . The right calculation of this parameter will be justified in
the next chapter. The solution of the minimization problem gives a staggered coefficient
vector as

astagg
i j (L) =

1
4
Σi jWP(PTWP)−1Lstagg (P). (3.85)

The material parameter enters the equation as a diagonal matrix Σi j = diag(c̃i1, . . . , c̃in),
assembled with all averaged values from the stencil and the factor of 1

4 is due Lemma 3.1.
The functional occurring in the last part of Equation (3.85) can explicitly be written as

Lstagg
i (P) :=

[
∆p1(xi), . . . ,∆pQ (xi)

]T
. (3.86)
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This staggered method chains the approximation, so that

∇ ·
(
C A(xi)∇u(xi)

)
i
= DIVi ◦ c̃i j GRADi (u)

=
1
4
∆p∗(xi)

=

n∑
j

astagg
i j (u(x j ) − u(xi)).

(3.87)

It can be seen that an approximate solution for the boundary value problem (3.43) can
be constructed in two ways using strong point collocation techniques. First, a pure
collocation technique can be applied through an approximation of the functionals (3.74)
and (3.75). In a second way, using the staggered divergence operator, both techniques
can be mixed to form an approximation technique, which is capable to handle spatial
varying material parameters. The difference, including these parameters can be seen in
the formulation described up to now. Using the classical point collocation scheme, the
material parameter enters the approximation with defining the functionals (3.80) and
(3.81) this keeps the material parameter constant over the stencil. Using the staggered
scheme, an averaged material parameter can be used in the functional approximation.
This procedure will be analysed in the subsequent chapter about approximations in the
presence of material interfaces.
To derive an implementation for the two-dimensional weak formulation, the functionals
in (3.62) must be approximated. Luckily, compared to the pure point collocation
technique, only the functionals for the interior points change. Boundary conditions can be
implemented as before using the collocation technique. This gives a direct approximation
of the boundary conditions and a local weak form approximation for the interior points.
This rather mixed approach was already proposed in the seminal publication about the
DMLPG method (Mirzaei and Schaback, 2013). To use the weak formulation, only the
functionals (3.82) and (3.83) should be changed according to equations (3.62). The right
functionals for the TE-mode are

L1
i (Ex) :=

∫
Γis\Γ

N
i

(iωµ0)−1 ∂Ex

∂n
(xi) dΓ,

L2
i (Ex) := −

∫
Ωi

s

σ(xi)Ex (xi) dΩ,
(3.88)
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whereas the index i referees to the interior point set. Also, for the TM-mode the functionals
are

L1
i (Hx) :=

∫
Γis\Γ

N
i

σ(xi)−1 ∂Hx

∂n
(xi) dΓ,

L2
i (Hx) := −

∫
Ωi

s

iωµ0Hx (xi) dΩ.
(3.89)

Here, the indexing has to be done with caution. The domains of integration (Γi
s, Ω

i
s)

should not be confounded with the computational domains. Now, by applying the
functionals to the monomial basis, the functional vectors for the normal system (3.77)
using different point sets, can be derived

LΓi (P) := (iωµ0)−1



∫
Γis

∂p1

∂n
(xi) dΓ, . . . ,

∫
Γis

∂pq

∂n
(xi) dΓ



T

,

LΩi (P) :=



−

∫
Ωi

s

σ(xi)p1(xi) dΩ, . . . ,−
∫
Ωi

s

σ(xi)pq(xi) dΩ



T

,

LD
j (P) :=

[
p1(x j ), p2(x j ), . . . , pQ (x j )

]T
,

LN
l (P) :=

[
µ−1

0
∂p1

∂n
(xl ), µ−1

0
∂p2

∂n
(xl ), . . . , µ−1

0
∂pQ

∂n
(xl )

]
,

(3.90)

for the TM-mode as

LΓi (P) :=



∫
Γis

σ(xi)−1 ∂p1

∂n
(xi) dΓ, . . . ,

∫
Γis

σ(xi)−1 ∂pq

∂n
(xi) dΓ



T

,

LΩi (P) := −iωµ0



∫
Ωi

s

p1(xi) dΩ, . . . ,
∫
Ωi

s

pq(xi) dΩ



T

,

LD
j (P) :=

[
p1(x j ), p2(x j ), . . . , pQ (x j )

]T
,

LN
l (P) :=

[
σ(xl )−1 ∂p1

∂n
(xl ), σ(xl )−1 ∂p2

∂n
(xl ), . . . , σ(xl )−1 ∂pQ

∂n
(xl )

]
.

(3.91)

Using these vectors together with Equation (3.77), the coefficients for theweak formulation
can be derived. As it can be seen, the integration from the weak formulation is shifted
to integration over the low-degree polynomials. This is beneficial compared to other
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meshless formulations, where complex shape functions have to be evaluated inside high
order quadrature routines.
The coefficients (3.77) and (3.85) as well as in the weak formulation, have compact
support due to the local nodal stencil and the weight function. This leads to a sparse
matrix, which has n-entries in each row, where n is the number of points used in the
stencil. It follows that the sparse system (3.48)

Au = s, (3.92)

will be row-wise constructed and the i-th row is filled with the coefficient vector resulting
from a solution of the normal system (3.77) with respect to the i-th point. Subsequently,
the bandwidth of this sparse matrix depends on the number of points used in the stencil and
can vary in each row. Therefore, there is a strong trade-off between a stable approximation
and solving the sparse linear system of equation. Since oversampling is needed to provide
a stable functional reconstruction, the limit has to be found, where additional points
do not provide more stability to the approximation and do not increase the bandwidth
of the system matrix. An algorithm to circumvent this problem, using kernel based
approximation, was given by Schaback (2014) and used in solving heat conduction
problems (Fadaei and Moghadam, 2017).

3.5.5 Three-dimensional implementation

By describing the two-dimensional approximation techniques first, the three-dimensional
case naturally follows. Now, the difference is assuming a domain covered by a point
set X = {xi}i=1,...,N , which is divided into X = XΩ ∪ Xd ∪ Xn, in which XΩ ⊂ Ω ( R3

are points inside the domain Ω, where XD ⊂ Γ
D are points on a Dirichlet boundary and

XN ⊂ Γ
N are points on a Neumann boundary. A stencil Ξi = {xi, x1, x2, . . . , xn} for the

point xi is formed, as before from a number of surrounding points {x j }
n
j=1, specifically:

Ξi := {x j ∈ Ω | | |xi − x j | |2 < h}.
The task now is to find coefficients for the approximations of the functionals, according to
the vector potential description. Here, an approximation of the functionals (3.50 - 3.52)
with the help of the generalized moving least squares technique must be derived. Luckily,
all needed formulations are already given in the implementation for the two-dimensional
scheme. As discussed before, the vector potential formulation can be treated as a system
of independent, but weakly coupled equations. Therefore, it is possible to approximate
each functional for each field component separately and no real vector formulation is
required. Only the part, in which the coefficients are inserted into the global matrix needs
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to be carefully implemented.
First, the basis monomials is now the weighted and scaled version of Equation (3.67)
and used together with a three-dimensional implementation of the weight function in
Equation (3.72). All operators such as the divergence or the gradient operator now act
on three spatial dimensions, while possible derivatives with respect to a normal vector
are also in three dimension6. With these preconditions, the two-dimensional scheme for
the functional approximation can be transferred to the three-dimensional case only with
slight modifications.
For the functionals (3.50) and (3.52) everything was defined in the previous description
about the two dimensional implementation. For the approximation of the diagonal term
in Equation (3.49) a mixed formulation is recommended. The parts which belong to
the vector potential A will be discretized using the pure collocation scheme. Since the
scalar potential comprises possible jumps at material interfaces, it will be discretized
using the staggered scheme. For the sake of completeness, the vectors resulting from the
application of the functionals onto the monomial basis will be repeated.
For the diagonal terms this will be

LΩi

Ax
(P) :=

[
∇2p1(xi) + iωσ̂(xi)p1(xi), . . . ,∇2pQ (xi) + iωσ̂(xi)pQ (xi)

]T
,

LΩi

Ay
(P) :=

[
∇2p1(xi) + iωσ̂(xi)p1(xi), . . . ,∇2pQ (xi) + iωσ̂(xi)pQ (xi)

]T
,

LΩi

Az
(P) :=

[
∇2p1(xi) + iωσ̂(xi)p1(xi), . . . ,∇2pQ (xi) + iωσ̂(xi)pQ (xi)

]T
,

LΩi

φ (P) :=
[
∇ ·

(
σ̂(xi)∇p1(xi)

)
, . . . ,∇ ·

(
σ̂(xi)∇pQ (xi)

)]T
.

(3.93)

In comparison to the two-dimensional formulation, one functional included in the three-
dimensional approach was not described. The off-diagonal terms, which couple the
individual field components, should now be examined. Here the functionals are

LPl

i (u) := µ0σ̂(xi)∂lu(xi), (3.94)

with l ∈ {x, y, z} and defined for interior points. Using the monomial basis, the resulting
vector for the normal equation can be written as

LΩi

Pl
(P) :=

[
µ0σ̂(xi)∂l p1(xi), . . . , µ0σ̂(xi)∂l pq(xi)

]T
. (3.95)

6For example when ∂u
∂n is required, it should be calculated as ∂u

∂n = n · ∇u = nx∂xu + ny∂yu + nz∂zu,
when n ∈ R3 and ∇ = (∂x, ∂y, ∂z )T , as well as u : R3 → R
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Up to now, everything is defined to calculate the expansions of the functionals for the
three-dimensional formulation. If a boundary condition should be approximated, for
example as defined in Equations (3.52), the methods from the two-dimensional scheme
could also be applied. However, even if some methods from the two-dimensional scheme
can be reused, the critical part is the correct assembly of the sparse system matrix. Due to
the coupling of the differential equation system the coefficients for the approximation of
the occurring functionals should be treated with care. Starting from the block character
of the coefficient matrix in the expansion (3.54) of the functional, the coefficients should
be calculated according to the operator form notation from Equation (3.49). Writing the
whole system of coefficients accordingly and with careful labeling, this reads

Li (u) ≈
n∑

j=1
Ai ju(x j ) =

N∑
j=1

*........
,

aAx

i j 0 0 aPx

i j

0 aAy

i j 0 aPy

i j

0 0 aAz

i j aPz

i j

aPx

i j aPy

i j aPz

i j aφi j

+////////
-

*.......
,

Ax (x j )

Ay (x j )

Az (x j )

φ(x j )

+///////
-

= si (xi), ∀xi ∈ Ω ∪ Γ
D ∪ ΓN .

(3.96)

The i-th row of the matrix Ai j represents the i-th block row of the coefficient matrix of
the final sparse linear system. It should be noted, that this system is populated block-wise
with the index j as column index. When describing boundary conditions the coefficient
matrix from Equation (3.96) is a diagonal matrix without coupling terms.

3.6 Interface description

Up to now, one question remains unanswered: how to discretize the partial differential
equations, when the conductivity σ is piecewise constant or varies smoothly over the
computational domain. The latter case is already covered by the actual implementation.
When σ ∈ Cn with n ≥ 1 and spatially varies over the computational domain the general-
ized moving least squares will produce high-order continuity fields. Nevertheless, the
high-order continuity imposes difficulties when considering conductivity discontinuities,
which incur jumps in electromagnetic fields across a conductivity interface.
As noted before, this behaviour can be observed in the partial differential equation for the
two-dimensional case in the TM-mode, as well as in the partial differential equation for
the scalar potential in the three-dimensional formulation. They are both described by a
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differential equation of the form

∇ ·
(
σ(x)∇u(x)

)
+ β(x)u(x) = s(x) in Ω1,2 ,

u(x) = g(x) on Γ.
(3.97)

Including the conductivity σ(x) in the first term and a material parameter β(x) in the
second term. At an interface, the fields are connected to boundary values generated by
g(x). Inspecting the first equation of (3.97), it can be determined that if the conductivity
is discontinuous at an interface Γint separating two domains Ω1 and Ω2, jump conditions
at this interface must be considered. Here, the field u must comply with

[
u(x)

]
Γint = u1(x) − u2(x) = k1(x),

[
σ(x)

∂u(x)
∂n

]

Γint

= σ1(x)
∂u1(x)
∂n

− σ2(x)
∂u2(x)
∂n

= k2(x).
(3.98)

If k1(x) = 0 and k2(x) = 0, these conditions are called homogeneous. This is the
case in magnetotelluric modelling. In the engineering community often a distinction is
made, how the fields behave at an interface. If the field only has a kink at the interface,
for example if the interface conditions are homogeneous, they belong to the family of
weak discontinuities. If the field value has a jump in its magnitude at an interface, this
case is often called a strong discontinuity (Fries and Belytschko, 2006). Nevertheless,
this formulation resembles the well known elliptic interface problem, which is of great
importance in the correct numerical description of partial differential equations. Generally
in a broader setting, if the source s is a function of L2(Ω) on the bounded domain Ω and
the coefficient (in this case here, the conductivity) are functions of L∞(Ω), the numerical
procedure must construct an approximation for a second order elliptic problem with rough
coefficients. In the geosciences this problem arises, when Earth formations with high
conductivity contrasts are existent. Normally, these problems are solved by mesh-based
algorithms with elements, which are conform to the interfaces. But for example finite
element methods can perform arbitrarily bad in these cases if the interfaces do not align
to the mesh (Babuška and Osborn, 2000). Methods to construct approximations for
Equation (3.97) have been developed since decades. A recent overview of homogenization
techniques was presented, for example by Owhadi and Zhang (2011).
To put the main focus on meshless methods, some recent developments will be presented
here. A first review on different techniques to handle material interfaces was presented
by Herault and Marechal (1999). They present some early approaches to handle interface
conditions, but their review does not include comparative results from these methods.
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Thereafter, a lot of different methods to handle material interfaces had been developed.
They can be coarsely catalogued in a following way:

• ‘double node’ approach,

• enrichment or modification of the approximation space,

• Lagrange multiplier technique,

• material averaging techniques.

One of the most used methods to incorporate interface conditions is the ’double node’
approach. In the context of Equations (3.97), these methods directly approximate the
interface conditions (3.98) using a meshless method. At the interface a ’double’ layer of
points is placed and for every side of the layer an approximation is done. Here, the field
values are approximated as a linear combination of some coefficients (marked with an
appropriate subscript) with the field values:

[
u(xi)

]
Γint = u1(xi) − u2(xi)

≈

n1∑
j=1

a(δx )
i j u(x j ) −

n2∑
j=1

a(δx )
i j u(x j ) = k1(xi), ∀xi ∈ Γ

int,

[
σ(xi)

∂u(xi)
∂n

]

Γint

= σ1(xi)
∂u1(xi)
∂n

− σ2(xi)
∂u2(xi)
∂n

≈

n1∑
j=1

a(∂ n)
i j u(x j ) −

n2∑
j=1

a(∂ n)
i j u(x j ) = k2(xi), ∀xi ∈ Γ

int .

(3.99)

When using a ‘double node’ approach, these additional approximations, which are needed
to fulfill the interface conditions, increases the size of the system matrix. Every point in
the double layer increase the size of the system matrix by two. In addition, for each point
on the interface two sets of coefficients have to be calculated. The point stencil will be
split into two sets, according to the side of the interface. A schematic description of this
process can be seen in Figure 3.9. This method increases the overall computational effort,
nevertheless many researchers have used this method to increase the error performance of
their computations. Cai and Zhu (2004) used this approach to model mechanical systems,
while Aziz and Haider (2017) used this method in a collocation scheme. Recently,
Taleei and Dehghan (2014b) used this approach to handle interface condition, while the
same authors extend it to model electrostatic phenomena with a direct approximation
method (Taleei and Dehghan, 2014a). In this thesis the ‘double node’ approach will
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be used to handle interfaces with high material contrasts like the air-Earth interface.
The reason, to use this method for magnetotelluric modelling, is the need of a precise
air-Earth description. A layer of points is already present at this interface, because the
apparent resistivities and phases should be computed here. To add another layer of
points at this interface easily makes the ‘double node’ approach attractive. Besides using
the ‘double node’ approach, the enrichment of the approximation space is also a very
popular method to handle discontinuities in meshless approximation schemes. Here, an
enrichment of the underlying basis functions takes place to construct custom-tailored
approximation spaces, which can handle singularities, material interfaces or jumps in
the field variables. Possible enrichments are due to incorporated special functions into
the basis or by modifying the weight function. Examples for the first procedure are
given for example by Fleming et al. (1997), Yoon et al. (2006) or Kim et al. (2007),
while modifications of the weight function are described by Schweitzer and Wu (2014)
or Belytschko et al. (1994). Modifications of the underlying basis can be problematic,

(a) (b) (c)

Figure 3.9: Schematic description of the ‘double node’ approach. (a) displays the point set with
the interface points in red and a point which should be evaluated in black. (b) the points will be
doubled at the interface. The blue and red points share the same position. (c) If the splitting is
done, the approximation of equations (3.99) will be calculated on both sides of the interface.

because the special functions which should enrich the approximation scheme can have
an effect on the inversion of the moment matrix (Joyot et al., 2006). When using weak
meshless formulations, a possible way to enforce interface conditions is to apply the
Lagrange multiplier technique. Here, special terms are added to the weak form of
the partial differential equation and by introducing Lagrange multiplier the interface
conditions can be described. Examples using this technique are given by Batra et al.
(2007), Batra et al. (2004) or Cordes and Moran (1996). The discretization of partial
differential equations with rough coefficients or interfaces using averaging schemes have
a long history. Early finite difference schemes using material averaging can be dated back
to Tikhonov and Samarskii (1962). Recently, special finite difference approximations
have been developed, which are referred to as immersed interface methods originally
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developed by Leveque and Li (1994). Nevertheless, finite volume schemes lead naturally
to a material averaging. By constructing difference schemes from the integration of the
flux over a control volume, material averaging occur (Samarskii, 2001; Chernogorova
et al., 2002). The link to meshless methods was done in the framework of smoothed
particle hydrodynamics, which was used to model heat conduction in heterogeneous
media by Cleary and Monaghan (1999). Here, the physical model needs the continuity of
heat fluxes across material interfaces, so Cleary and Monaghan (1999) used a simple
averaging correction implemented into their numerical formulation successfully. Other
smoothed particle hydrodynamic formulations used Taylor series expansions on both
sides of the interface to implement a numerical correct scheme (Liu et al., 2003; Xu et
al., 2013). These methods are essentially comparable to immersed interface techniques.
Nearly all of the presented methods need to know the exact location of the material
interface. Especially the ‘double node’ approach, which also needs a double point layer at
the interface. Hence, a lot of enrichment methods use a technique called level-set method,
originally proposed by Sethian (1999), to describe the evolution of interfaces. Even if
high order convergence is obtained by these methods the prior needed location of the
interface is often a drawback, especially when using these discretizations in a parameter
estimation algorithm. Evolving conductivity contrasts should be easily described by
the method, while keeping additional calculations to a minimum. Suitable methods
to achieve this are the ones using an averaging technique. Only by considering the
conductivity values at the points of the stencil, roughly varying material parameters
should be resolved. The first step to handle these changes in the conductivity distributions
is to exterminate possible averaging techniques in combination with the staggered moving
least squares technique of Trask et al. (2017). Here, the combination of both methods will
be physically justified and extended for the application to magnetotelluric modelling. In
all computations, the air-Earth interface remains fixed. Here, the ‘double node’ approach
will be used to describe this interface. Nevertheless, by inspecting the partial differential

σ1

σ2
σ2 σ1

Ci Ci

E‖

E⊥

(a) (b)

Figure 3.10: Dual Cell with two different conductivities σ1 and σ2. In (a), the electrical field is
parallel to the contrast, in (b) the electrical field is perpendicular to the contrast.
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equation systems defined in the chapter 2.7.5, similar assumptions can be made about
different averaging techniques. This is also normally done in finite differences time
domain methods (Bijan et al., 1997; Marcysiak and Gwarek, 1994; Przybyszewski, 2001).
By using the dual cell Ci as before and dividing it into two parts, in which every part
has his own conductivity, rules can be defined how an averaging should act on the
conductivity. Here, two cases can be examined: where the electrical field is parallel to
the conductivity contrast and in the latter an electrical field perpendicular to the contrast
is present. A sketch of these cells is displayed in Figure 3.10. Now, using Ohm’s law an
averaged conductivity σ‖ can be derived by

σ‖ =
J̄‖
Ē‖
=

1
S

(!
S1
σ1E‖dS +

!
S2
σ2E‖dS

)
1
S

∫
S E‖dS

. (3.100)

In Equation (3.100) the integration is done over parts of the dual cell. Here, S1 denotes
the area corresponding to the conductivity σ1 and S2 corresponds to σ2. The whole
area is denoted by S. Assuming a constant electrical field in the whole cell, the known
arithmetic average conductivity is

σ‖ =
J̄‖
Ē‖
=

(σ1S1 + σ2S2)
S

. (3.101)

In the second case, when the electrical field is perpendicular to the conductivity contrast,
a similar averaging scheme can be derived. Here, one finds that

σ⊥ =
J̄⊥
Ē⊥
=

1
S

∫
S J⊥dS

1
S

(!
S1

1/σ1 J⊥dS +
!

S2
1/σ2 J⊥dS

) . (3.102)

In Equation (3.100) the integration is done over parts of the dual cell. Here, S1 denotes
the area corresponding to the conductivity σ1 and S2 corresponds to σ2. Assuming a
constant current in the whole cell, the known harmonic average conductivity is

σ⊥ =
J̄⊥
Ē⊥
=

S(
S1/σ1 + S2/σ2

) . (3.103)
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Using these schemes in a finite differences approach, the resulting averages form the
effective conductivity from the integro-interpolation formula of Moskow et al. (1998):

σ
e f f
x =



∫ x2

x1



∫ y2

y1
σ(x, y)dy



−1

dx


−1

. (3.104)

In this formula the two presented averaging methods are combined. The effective
conductivity σe f f

x in the x-direction is assembled as a harmonic average along the
x-direction in combination with an arithmetic average in the y-direction.
Using the staggered meshless method, the conductivity enters the discretization in
Equation (3.85) as a diagonal matrix Σi j . This matrix is built from individual averaged
conductivities between the stencil mid-point and the surrounding points. As described
above, the right average must be used for evaluating the effective conductivity.

3.7 Computational aspects

The numerical solution of partial differential equations is a wide and highly diversified
field of research. Especially the use of meshless techniques covers a huge variety of
mathematical methods and techniques. Since not all topics can be discussed in this thesis,
two aspects should be presented. Beside the discussion of the generalized moving least
squares technique, they are most different compared to a finite element or finite difference
method. First, the proper generation of point sets will be discussed. The question, how to
generate quality point sets in a reasonable amount of time is not a trivial task. In this
discussion, the focus should be on how to generate good point sets, whereas the focus
lies on domain coverage, spatial density adaption and the generation time.
The second aspect, which should be discussed in this thesis, is how to solve the sparse
system of equations, which results from the discretization. Meshless schemes generate
sparse linear systems, which can be different compared to a finite element system matrix.
Some recent techniques will be discussed and illustrated examples are given in this
section.

3.7.1 Generation of point sets

The generation of suitable point sets is a delicate task in a meshless algorithm and needs to
be further discussed. Point sets should adapt naturally to the geometry of the computational
problem. One of the main promise of meshless methods is to be more flexible than a
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triangulation or mesh, which tries to capture the geometry of the problem. Interestingly,
there are more scientific publications about meshless approximation techniques and not
about generating suitable point sets for these methods. The computational domain should
be covered with points somehow in order to make these methods work. Particularly, the
simplest method, which can be applied, is to fill the computational domain with equally
spaced points. Nevertheless, if a blocky geometry is at hand, this might be suitable
for convergence studies, where homogeneity and constant parameters are needed all
over the computational domain. But for a further description, where the model involves
round or curved geometries, enhanced point distribution should be used. In the case
of rectangular grids, the error from a discretization of round interfaces is referred as
staircase effect. Aruliah (2001) showed that staircasing is not so problematic in the case
of diffusive electromagnetic problems, as in dispersive electromagnetic problems. But
to capture realistic geometries an increasing effort has to be made in grid refinement.
Here, point discretizations are an improvement due to the absence of fixed connections
among these points and samplings can be adapted flexibly to the geometric configuration.
Nevertheless, some rules have to be made to successfully generate such point sets.
In order to fill a complex geometry with points and adapt the spatial sampling density, a
lot of publications suggest to triangulating the domain first and then use these generated
points from the triangulation (Du et al., 2002). Popular also is a partition of the domain
with a Voronoi diagram and using Lloyd’s algorithm to relax the generated point set (Iske,
2000; Du et al., 2002). Also advancing front methods (Fornberg and Flyer, 2015) could
be used to generate spatially density adapted point sets. To produce a sequence of adapted
point sets, it is also possible to turn the generation process upside down and use a thinning
algorithm on many points (Iske, 2004). Further, the use of packed, interacting spheres
with varying radii and combined with a relaxation algorithm can produce well-behaved
computational meshes (Shimada and Gossard, 1995), but this idea can also be applied to
generate point sets (Nie et al., 2014). Recently, when using approximation schemes based
on radial basis functions, a promising technique has been developed by Schaback (2014).
Here, an error functional is defined and a geedy method is used to select points for the
computational stencil keeping the error optimal for each selected point. This reverses the
process of a discretization, because the numerical procedure is adapted to the existing
point set and not the point set is fit to the approximation. Another famous approach
is to modify the approximation algorithm to promote sparsity of the resulting linear
system of equations presented by Seibold (2006). Also, Davydov and Schaback (2016)
prove optimal convergence rates for the approximations of functions from a Sobolev
space W m

2 (Rd), no matter how many approximation points are used and where they are
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placed. Nevertheless, this also modifies the approximation to fit to the point set. Here, the
geometries of the model is known and the generation of the point set should be adapted
to the approximation.
Also there exists a lot of point generating algorithms developed by scientists from the
computer vision community. The motivation mainly comes from the development
of realistic ray-tracing algorithms, which can be used to generate three-dimensional
computer graphics. By using regular spaced sampling pattern, these algorithms generate
aliasing artifacts which become noticeable, as for example byMoiré pattern in the pictures.
One solution to avoid this problem is to add a small random displacement to the point
sampling to alleviate aliasing. The foundation of these problems is the existence of
frequencies above a so called Nyquist limit. Computer graphics is a sampling process,
because it is build upon discrete pixels, hence it can be probed with tools from the Fourier
analysis. This is also an important fact in understanding the human eye: it has a limited
number of photoreceptors and therefore is a sampling process, which also suffers from
the Nyquist limit. To avoid aliasing, the photoreceptors are places inside the eye in a
special pattern. This point pattern is called a Poisson disk distribution. When generating
such a Poission disk distribution, points are randomly placed, but with the restriction that
a minimum separation distance is kept between the samples. When using this sampling
for computer vision, the random process adds noise to the image and replaces the aliasing,
while keeping a minimum separation distance helps to control the amount of noise (Cook,
1986). Due to the sampling process a Fourier spectra can be determined and these spectra
resulting from a Poisson distribution is similar to a blue noise spectra (Kopf et al., 2006).
The behavior of these point spectra can be linked to the image quality and generating
point sets with carefully adapted frequency distributions to prevent noise or aliasing is a
wide area of research (Ebeida et al., 2014).
Interestingly, besides computer vision, point sets with a blue noise characteristics also
have a low discrepancy (Ahmed et al., 2016). This is beneficial for the Monte-Carlo
integration, because the error of the integration only depends on the discrepancy of the
point set and the mathematical statement for this is the famous Koksma-Hlawka inequality
(Niederreiter, 1992), which bounds the error in terms of the discrepancy. Nevertheless,
in this thesis, the Poisson disk sampling is used to generate point sets for the solution
of partial differential equations. This method is chosen, because of the availability of
different well-designed algorithms and the possibility to generate point sets, which have
a good uniformity. Figure 3.11 displays different point sampling pattern. To characterize
this behavior for a point set X = {x1, . . . , x1}, the separation distance is defined by
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(a) (b) (c)

Figure 3.11: Example of three different point samplings. (a) displays a regular point pattern, (b)
the points are placed randomly, (c) displays a Poisson disk sampling pattern.

Figure 3.12: Adapted spatial density using a Poisson sampling pattern and variable h(x). The
plotted circles around each point are proportional to h(x), while h(x) is adapted to a Eriksson
function as defined in Equation (3.107)

qX,Ω = min
i, j,{xi,xj }∈X

| |xi − x j | |2, (3.105)

and the previously in Equation (3.30) defined fill distance

hX,Ω = sup
x∈Ω

min
xi∈X
‖x − xi‖2 . (3.106)

As seen before, the fill distance bounds the error of the approximation. Nevertheless, a
trade-off between the minimization of hX,Ω and maximization of qX,Ω has to be found.
Proceeding with the generation of Poisson disk sampling, an algorithm has to be chosen to
generate a suitable set of points. As noted before, a variety of algorithms are available to
generate Poisson disc samplings e.g. (McCool and Fiume, 1992; Dunbar and Humphreys,
2006; Jones, 2006; Bridson, 2007; Wei, 2008; Lagae and Dutré, 2008; Ascencio-Lopez
et al., 2010; Jones and Karger, 2011; Medeiros et al., 2014).
In this thesis, the algorithm of Bridson (2007) is used, because of its simplicity and ability
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to generate N density adapted point samplings in O(N ) time. The pseudo-code of the

Algorithm 1 Poisson Disk sampling adapted from Bridson (2007)
1: procedure PDSampling(h(x), area, points)
2: processList.setup()
3: pointList .setup()
4: f ir stpoint ← random(x, y)
5: processList.add( f ir stpoint)
6: pointList .add( f ir stpoint)
7: k ← number_o f _trials
8: while processList.size() , 0 do
9: point ← processList.get()
10: for i ← 0, k do
11: newpoint ← generate_Point_around(point)
12: if newpoint.check_allowed(h(x), area) then
13: processList.add(newpoint)
14: pointList.add(newpoint)
15: end if
16: end for
17: end while
18: points ← pointList.extract()
19: return points
20: end procedure

used sampling algorithm is listed in Algorithm 1. While maintaining a list, where active
points are stored, the algorithm processes this list until it is empty. This is the case, when
no new point can be generated and the area, which should be sampled, is full of points.
The algorithm will check a number of trial points if they are suitable and inside the area,
which should be sampled. The critical part of the algorithm is, where it must be checked
if a new point has neighbours or not. If there are no direct neighbours below a distance
less than h(x) and if the point is inside the area, it will be accepted as a candidate for the
output list. It returns a point set, which has a minimal fill distance, which is proportional
to a function h(x). The algorithm is linear, only if the test for existing neighbours can
be done also in O(N ). Here, a Verlet list can be used efficiently to look up potential
neighbours (Verlet, 1967). A spatial adapted sampling pattern can be realized, if the
minimal separation distance is varied according to the needed adaption. In the end, this
procedure can be used to generate adapted point sets to handle complex geometries. In
the subsequent chapter on example calculations an adapted point sampling is used to
discretize a curved interface problem.
It is well known, that magnetotelluric simulations can significantly benefit from adapting
the discretization exponential to the air-Earth interface (Wannamaker et al., 1985). To
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adapt point samplings towards the air-Earth interface, in this thesis the grid stretching
formula of Eriksson (1982) is used. If a grid, or in this thesis a point sampling, should be
adapted exponentially to an interface at the depth of z = zi, this could be done using

z =



zi
[
(eα − eα(1−z/zi ))/(eα − 1)

]
, for 0 ≤ z ≤ zi,

zi + (1 − zi)
[
(eα(z−zi )/(1−zi ) − 1)/(eα − 1)

]
, for zi < z < zmax .

(3.107)

The parameter α controls the point spacing towards the interface and can be adapted
according to the physical settings. Values between α = 0.0 . . . 2.5 can be commonly
used to enhance the accuracy at the interface. The chapter about magnetotelluric example
calculations will show a study on how different point spacings affect the accuracy of the
modelling study. Using this ‘stretching’ formula, point samplings as the one pictured in
Figure 3.12 can be done, if the sampling distance function h(x) varies according to the
Eriksson scaling. The Figure 3.13 displays the adaptivity towards the interface (here at
z = 0) for various α values, while the total number of points remain the same. Only the
spatial position is transformed using the Eriksson function.

0.5
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α

Figure 3.13: Adapted spatial density using the Eriksson function as defined in Equation (3.107)
for different α.
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3.7.2 Solving the linear system

The bottleneck of every discretization is the solution of the resulting sparse linear
system of equations. High accuracy needs either high polynomial order or small-scale
discretization. This leads to large-scale sparse linear systems, which needs to be solved.
Using two dimensional approximations, the situation can be handled with less effort.
A variety of ready-to-use solvers are available and can be used. Here is the question,
if this modelling scheme will be used in an inverse algorithm or only as a stand-alone
application. If an inverse scheme is involved, a factorization of the system matrix is
indispensable. The inverse process needs to calculate the Jacobian matrix of the model
parameter. This involves solving many algebraic systems assembled from the sparse
matrix of the forward algorithm. The benefit of using a factorization is the rapid solution
of algebraic systems with different right-hand sides. Once the factorization is computed,
the solution can be calculated directly by forward and backward substitution. In this
thesis, the freely available multifrontal solver of Amestoy et al. (2000) is used to solve
algebraic systems, which results from a two-dimensional discretization. Also, this solver
is used in the inverse scheme to improve the speed of the algorithm by utilizing the
factorization of the system matrix.
Generally, the bandwidth of a sparse matrix which results from a meshless discretization,
is controlled by the amount of neighbouring points used in the calculation of the
approximation coefficients. Using many neighbouring points in the approximation results
in many non-zero elements in the sparse matrix, because every neighbour generates
one entry in the sparse matrix. The approximation scheme, which is used here in this
thesis, generates complex-valued, unsymmetrical, sparse algebraic systems. Two example

Figure 3.14: Sparsity pattern for the two-dimensional meshless calculation for the model of
Schwalenberg and Edwards (2004) displayed in the left picture and the sparsity pattern for the
three-dimensional example calculation pictured on the left right-side.
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sparsity pattern of the sparse matrices can be seen in Figure 3.14. One for the meshless
calculations using the model of Schwalenberg and Edwards (2004), and an adapted point
sampling and a sparsity pattern for the system matrix resulting from the discretization of
the three-dimensional conductivity structure. As is can be clearly seen in the pattern for
the two-dimensional case, the point sampling is adapted at the interface. This results
in more neighbours and therefore in more entries per row. Even if the pattern look
symmetrical, it is only structural symmetric. This results from the numbering of the points
in the calculations and from the neighbouring search procedure. In the sparsity pattern for
the three-dimensional case, it can be seen that a three dimensional discretization leads to a
more scattered non-zero pattern in the sparse matrix. Here, the matrix is highly diagonal
dominant as in the two-dimensional case, but with many off-diagonal entries. Compared
to the two-dimensional case, the overall degrees of freedom in the three-dimensional
calculations is determined by the amount of nodes times four, because for every node four
equations must be approximated. Also, the approximation needs at least ten times more
neighbours as in the two-dimensional case. For the example, sparsity pattern given in the
Figure 3.14 the number of non-zero elements is more then 1006. In the end, the number
of non-zero elements is significant higher compared to a two-dimensional discretization
scheme. The algebraic system of the three-dimensional discretization will be solved,
using a multilevel incomplete LU decomposition as preconditioner in combination with
an iterative GMRES solver as described by Bollhöfer and Saad (2006).
The overall computations can be coarsely categorized into four different stages. These
different components can be seen in Figure 3.8. All these parts of the computation, need
different amount of time to process. An overview of these times are given in Figure

30.00% (a)

18.71% (b)

39.03% (c)

12.26% (d)

0.48%

82.62%

3.71%

13.18%

0.45%

21.38%

77.12%

1.05%

Figure 3.15: Timing diagrams for three different meshless calculations. All values are normalized
onto the whole computational time. Two-dimensional calculation times left chart, two-dimensional
calculation times from Wittke and Tezkan (2014) for a comparable amount of points middle
chart and three-dimensional calculation times, right chart. The percentaged values are for
the pre-processing (a), the assembling of the sparse matrix (b), the solving time (c) and the
post-processing (d). The labelling corresponds to the labelling in Figure 3.8.

3.15. In this figure, the percentaged times of each computational stage is displayed for a
two-dimensional meshless calculation with approximately ten thousand points, values for
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the implementations of Wittke and Tezkan (2014) and values for the three-dimensional
meshless case from this thesis. It is obvious, by comparing the implementation presented
in this thesis and the one given by Wittke and Tezkan (2014), that the time used to
assemble the sparse matrix can be significantly reduced by using the direct meshless
formulations presented in this thesis. The time spend to solve the algebric system is nearly
equal when compared to the overall run-time. The post processing is also equal. The
significant differences in the pre processing is due to different point sampling strategies
and different point definitions inside the algorithm. By comparing the two-dimensional
run-times to the three-dimensional case, it can be seen that in the three-dimensional case
the overall process is dominated by solving the sparse system. This is due to the huge
amount of non-zero elements, which slows down the computation of the preconditioner.
The overall run-times of the two-dimensional computations are comparable to run-times
of finite element implementations. Using the three-dimensional scheme the overall
run-time is about one minute for approximately 103 points and can be increase up to
twenty minutes using approximately 105 points.

3.8 Magnetotelluric example calculations

This section will present some magnetotelluric example calculations to verify the
correctness of the algorithm. Also, the meshless scheme will be used to calculate
magnetotelluric responses for some selected Earth models published in the literature.
First, convergence results for the two-dimensional algorithms are presented to investigate
the behaviour of the two-dimensional implementations in terms of error. Afterwards,
two specific Earth models will be used to investigate some selected properties of the
two-dimensional modelling scheme. In the end of this section a three-dimensional
modelling example will be presented.

3.8.1 Two-dimensional example calculations - convergence results

The quality of the proposed meshless algorithms can be mainly described by the accuracy
of its solution. To investigate the behaviour of this accuracy, theoretical assumptions have
been made in the Chapter 3.2.2. From the error bounds presented there it is obvious, that
there should be an decrease in the error if the fill distance is reduced or if the polynomial
degree is increased. Using the theoretical error bounds to describe the behaviour of the
numerical calculations, two aspects are important. To compare the results of the general
error bound given in Theorem 3.1 and convergence rates from Franke-Börner (2013) with
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the numerical computations, the errors in the convergence study are given with respect to
a point-wise L2(Ω) norm in a relative root mean square sense and L∞(Ω) norm defined
by

| |e| |rms = *
,

∑
i∈X (ûi − ui)2

N
∑

i∈X u2
i

+
-

1/2

, (3.108)

and
| |e| |∞ = maxi∈X |ûi − ui |. (3.109)

Whereas the computed solution is denoted by û and the exact solution is u, given by an
analytical expression (Wait, 1953). For the two-dimensional magnetotelluric example, in
the TE-mode u will be u = Ex and in the TM-mode u = Hx . Using a strong collocation
meshless scheme should give approximately linear convergence for a polynomial degree
of m = 2 and third order convergence by using m = 4, if the underlying partial differential
system has a smooth solution. As explained in the previous chapter, the conductivity is
piecewise constant and the differential equations belong to the class of elliptic interface
problems. This will lower the convergence and optimal rates as in a smooth case will
not be achieved. Because of the strong interface between Earth and air, at which the
conductivity jumps several decades. Here, convergence studies are presented in which
both parameters, the point distance and polynomial degree, are varied. For two polynomial
degrees m = 2 and m = 4 and regular hX,Ω-refinement the convergence of different
meshless formulations for a homogeneous half-space model will be presented. The
results of the errors will be given in dependence to the overall degrees of freedom of the
whole discretization. To classify the results from these studies, comparable convergence
estimates for the finite element method taken from Franke-Börner (2013) are given.
Making all numerical convergence studies comparable, one reference Earth model, a
homogeneous half-space with a σ = 0.01S m−1 Earth conductivity, was used together
with a frequency of f = 0.1Hz and a regular equidistant point spacing. This model was
also used in convergence studies by Franke-Börner (2013). First, an implementation
only using the material averaging from Chapter 3.6 will be presented. In this example
only pure point collocation will be used and this needs to compute the coefficients by
Equation (3.77) in combination with the functionals presented in Equations (3.80) and
(3.81). Figure 3.16 displays the convergence of this implementation for both modes in
comparison with convergence results from Franke-Börner (2013). The errors in both
norms are plotted for two polynomial degrees, as well as the convergence result from
the FEM calculations. It can be seen from the left graph in figure 3.16 that using the
TE-mode calculations the error can be decreased, while in the TM-mode no convergence
is achieved. Also no better convergence is achieved when using an increased polynomial
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Figure 3.16: Convergence of the meshless algorithm using the magnetotelluric half-space example
only with material averaging, regular points. The left figure displays the TE-mode and the right
figure the TM-mode calculations. The solid lines show the error for m = 2 and for m = 4

using the L2 norm, the dashed lines the error in L∞. For comparison, the FEM results from
Franke-Börner (2013) with p = 1 , p = 2 and p = 3 are also plotted in both graphs.

degree. This behaviour is predictable, because in the calculation of the TM-mode, no
interface condition is considered. Here, the averaging will not be applicable to solve
this interface problem successfully for the TM-mode. Similar results, if the interface
is not explicitly considered, have been reported by Chen et al. (2009) using a radial
basis collocation approach for heterogeneous materials. In opposite to a pure collocation
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Figure 3.17: Convergence of the staggered meshless algorithm using the magnetotelluric half
space example with material averaging, regular points. The left figure displays the TE-mode and
the right figure the TM-mode calculations. The solid lines show the error for m = 2 and for
m = 4 using the L2 norm, the dashed lines the error in L∞. For comparison, the FEM results
from (Franke-Börner, 2013, Fig. 5.1 ) with p = 1 , p = 2 and p = 3 are also plotted in
both graphs.

scheme, the staggered moving least squares algorithm of Trask et al. (2017) is able to
handle the interface in both magnetotelluric modes. As Trask et al. (2017) explain,
the capability to handle interface problems correctly is the similarity of the scheme
to compatible discretization methods. Nevertheless, they do not provide convergence
results for the staggered scheme using rough or piecewise material parameters. The
convergence of the calculations for the magnetotelluric case can be seen in Figure 3.17
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using the calculated coefficients from Equation (3.85). In both modes the algorithm
converge, but the results from the TE-mode show no better performance than using
the plain averaging scheme. In the TM-mode, convergence is achieved and the overall
error is almost one decade less than in the TE-mode. Also, the maximum error in both
magnetotelluric modes is clearly less than the relative rms error. Nevertheless, an increase
in the polynomial degree do not enhance the quality of the solutions. To overcome the
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Figure 3.18: Convergence of the meshless algorithm using the magnetotelluric half-space example
with double nodes, regular points. The left figure displays the TE-mode and the right figure the
TM-mode calculations. The solid lines show the error for m = 2 and for m = 4 using the L2
norm, the dashed lines the error in L∞. For comparison, the FEM results from (Franke-Börner,
2013, Fig. 5.1 ) with p = 1 , p = 2 and p = 3 are also plotted in both graphs.

poor convergence rate, provided by the collocation and staggering methods in combination
with averaging, the ‘double node’ approach was implemented to handle the interface
conditions (3.99) exactly. Now, the two methods using plain averaging will be tested
again, using the explicit interface descriptions. As displayed in Figure 3.18, it is obvious
that the convergence rates for both magnetotelluric modes can be improved. In contrast
to the plain averaging, the convergence for the calculations using a polynomial degree of
m = 2 are comparable with the FEM convergence rates using second order polynomials
in the TE-mode and comparable to fist order polynomials in the TM-mode. Unfortunately
in the TE-mode calculations the convergence for the rms error using fourth degree
polynomials is not improved in comparison using a second order polynomial degree. In
opposite to the TE-mode calculations, the convergence of the TM-mode can be improved
by using polynomials with higher degrees. Here, the convergence rate for the fourth
order polynomial calculations can be significantly increased. By using the staggered
collocation scheme, no improvement in the convergence rate should be expected, because
the averaging here only works on points with equal conductivity. As seen in Figure 3.19,
similar convergence rates as using the plain collocation scheme can be observed. In
the TM-mode calculation using fourth order polynomials the overall error is increased,
but the convergence rate could be preserved. Nevertheless, the staggered scheme will
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Figure 3.19: Convergence of the staggered meshless algorithm using the magnetotelluric half-
space example with double nodes, regular points. The left figure displays the TE-mode and the
right figure the TM-mode calculations. The solid lines show the error for m = 2 and for m = 4

using the L2 norm, the dashed lines the error in L∞. For comparison, the FEM results from
(Franke-Börner, 2013, Fig. 5.1 ) with p = 1 , p = 2 and p = 3 are also plotted in both
graphs.

be used if conductivity contrasts are present inside Earth. The last convergence test is

av-only av-stagg dn-only dn-stagg dn-stagg pd
TM m = 4 bounded (-0.07) 0.56 2.21 2.00 2.00
TM m = 2 bounded (-0.06) 0.55 0.88 0.87 0.72
TE m = 4 0.45 0.46 1.51 1.80 0.95
TE m = 2 0.45 0.43 1.43 1.63 1.65

Table 3.4: Overview of the convergence rates of the rms error in the point-wise L2(Ω) norm,
displayed in the Figures 3.16 to 3.20. The row labelling is: ‘av-only’ denotes only material
averaging, ‘av-stagg’ denotes the staggered scheme with material averaging, ‘dn-only’ denotes a
plain collocation scheme with the ‘double node’ approach, ‘dn-stagg’ is the staggered scheme
with the ‘double node’ approach and ‘dn-stagg pd’ is the same algorithm as before, using a
Poisson disk sampling pattern.

done by using the staggered scheme with the ‘double node’ approach and the Poisson
point sampling. Here, a point sampling was generated, using the described Poission
disk sampling method from the previous chapter. The result is displayed in Figure 3.20.
As expected, only slight differences compared to the regular point sampling can be
encountered. For all convergence calculations, the Table 3.4 summarizes all rates for the
rms error.
As it is well known, that refining the discretization towards the air-Earth interface will
improve the solution and decrease the overall error, some studies will be presented to
investigate these effects. As noted in the previous chapter about point sampling, an
adapted sampling near the interface can be done using the Eriksson function (3.107). To
study the effect of adaptation near the air-Earth interface, the homogeneous half-space
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Figure 3.20: Convergence of the staggered meshless algorithm using the magnetotelluric half
space example with double nodes, Poisson disk sampling points. The left figure displays the
TE-mode and the right figure the TM-mode calculations. The solid lines show the error for m = 2

and for m = 4 using the L2 norm, the dashed lines the error in L∞. For comparison, the
FEM results from (Franke-Börner, 2013, Fig. 5.1 ) with p = 1 , p = 2 and p = 3 are
also plotted in both graphs.

model applied in the convergence studies was used in combination with a spatially adapted
point sampling. Different values for the parameter α in Equation (3.107) have been tested
and a increasing adaptation towards the interface should reduce the overall error. The
result from this study can be seen in Figure 3.21. Using different point samplings with an
initial regular distribution and then increasing the parameter α lead to smaller overall
errors. The calculations have been done with a second order polynomial degree and
a fixed frequency with the same value as in the convergence study. For the TE-mode
results it can be seen, that decreasing the regular point sampling distance will lead to
a smaller error as well as increasing α. Here the point set can be optimized according
to the magnetotelluric skin depth as explained in Wannamaker et al. (1985). For the
TM-mode this procedure is also possible, as the right panel in Figure 3.21 suggests, but
using an initial small regular point sampling can reverse the effect of reducing the error.
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Figure 3.21: Effect of an exponential point distribution by changing α. The left figure displays the
TE-mode and the right figure the TM-mode calculations. The different point graphs show the L2
error versus α for the regular point separation of 10000m , 5000m , 2500m and 2000m .
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3.8.2 Two-dimensional example calculations - Earth models

After studying the convergence of the meshless algorithms, some more complex examples
will be given to test the computational scheme. Upon now, magnetotelluric parameters
as the apparent resistivity and phase are used to display the results of the computations.
All examples will be calculated with the staggered scheme using conductivity averaging
and a polynomial degree of m = 2. Exceptions to this will be noted in the text. For all
model studies using a regular equidistant point sampling, this point sampling will not
be shown here. If a model has a special, adapted point sampling, it will be displayed in
the Appendix A.2. Here, these parameters are derived from Equations (2.91) and (2.92).

x = −10 km x = 10 km
z = 0 km

z = −50 km

0.1 S/m 1.0 S/m 0.5 S/m

∞ S/m

Figure 3.22: Schematic drawing of the model from Weaver et al. (1986) used in the calculations
below.

Since these parameters need two fields in each mode, the field which was not given by the
modelling scheme will be calculated according Equation (2.63b) for the TE-mode and
with the help of Equation (2.64b). In this section the choice of example calculations is
according to analytical results or comparable numerical values published in the literature.
The first example uses a conductivity model given by Weaver et al. (1985, 1986). For
this conductivity model analytical results are given and the meshless calculations will be
compared with them. Figure 3.22 displays the model, which consists of three different
regions of conductivities with horizontal contrasts of 1 : 10 and 2 : 1. To compare the
results properly with the values from the literature, regular spaced point samplings will
be used. The first meshless calculation is done for the TE-mode using a frequency of
f = 0.033Hz. The electrical field Ex is smooth across the conductivity boundaries. This
can be also seen in the apparent resistivity and phase. Figure 3.23 shows the result of the
meshless computations along a profile. Both results, the one for the apparent resistivity
and for the phase are in a good agreement with the analytical results. After comparing
the values for the TE-mode, results for the TM-mode will be given. This is the first
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Figure 3.23: Example calculations for the model of Weaver et al. (1986). The left figure displays
the apparent resistivity, the right figure the phase. The figures display meshless calculations ,
analytical results from Weaver et al. (1986) and a FEM caclulation .
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Figure 3.24: Example calculations for the model of Weaver et al. (1985). The left figure displays
the imaginary part of the electrical field, the right figure the imaginary part. The figures display
meshless calculations , analytical results from Weaver et al. (1985) and a FEM caclulation
from Kisak and Silvester (1975) and FD calculation from Brewitt-Taylor and Weaver (1976).

serious test for the meshless algorithm, because the electrical field Ey jumps according to
the conductivity structure. In this example the staggered meshless scheme in combination
with the conductivity averaging is used. To start, field values will be given for the
electrical field Ey and Figure 3.24 displays the results. From this Figure, it can be clearly
seen, that the electrical field is discontinuous at the conductivity contrasts. Nevertheless,
Figure 3.24 shows the good agreement of the meshless results in comparison to the
analytical solution and the other values computed by some classical numerical schemes.
This result generated by the staggered meshless scheme with conductivity averaging
shows the correctness of the algorithm and its ability to handle conductivity contrasts
accurately. Since the electrical field is discontinuous in the TM-mode, the apparent
resistivity and phase should also have jumps at the conductivity contrasts. In the next
example, the apparent resistivities and phase values are compared to the analytical ones.
Also, the effect of the averaging is demonstrated. The result is displayed in Figure 3.25.
Here, it can be seen that the combination of harmonic and arithmetic averaging lead
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to correct results. Using only arithmetic averaging as suggested by Trask et al. (2017)
can not handle conductivity contrasts in the TM mode right. Nevertheless, when using
the right averaging the results of the meshless scheme are in a good agreement with the
analytical values given by Weaver et al. (1985). After having confirmed the accuracy
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Figure 3.25: Example calculations for the model of Weaver et al. (1986) with different averaging.
The left figure displays the apparent resistivity, the right figure the phase. The figures display
meshless calculations using the right averaging and false averaging , as well as the analytical
solution from Weaver et al. (1986)

of the meshless schemes with respect to the simulated fields and capabilities to handle
conductivity contrasts, an example should be given demonstrating the ability to handle
complex geometries. Schwalenberg and Edwards (2004) gives semi-analytical results for
magnetotelluric fields over an Earth with topography. Here, their results will be compared
to meshless simulations using the same conductivity model. This conductivity model is
a homogeneous half-space, but the Earth surface is described by a sinusoidal interface
as displayed by Figure 3.26. This sinusoidal interface is modeled with a wavelength of
λ = 1000m and an Earth conductivity of σ = 0.01S m−1. Two versions of this model
should be used in the calculations. The first one has an amplitude of 4 = 50m and the
topography of the second one has an amplitude of 4 = 100m. Only the one model with an
amplitude of 50m is displayed in Figure 3.26. By using this kind of model, topographic
distortion should occur in the magnetotelluric fields. Nevertheless, the TM-mode will be
more distorted than the fields of the electrical mode. Here, the model parameters for the
simulation are given as the parameters Schwalenberg and Edwards (2004) used in their
‘standard model’. It consists of a sinusoidal homogeneous half-space with a conductivity
of σ = 0.01S m−1 beneath an air layer with a conductivity of σ = 10.0−10S m−1. A
frequency of f = 100.0Hz was used and the profile covers a length of 2000m. The
apparent resistivity and phase will be calculated every 50m along the profile. The
frequency was increased in comparison to the calculations of Schwalenberg and Edwards
(2004), because the TE-mode will not be effected by the topography using low frequencies.
This was also noted by Franke et al. (2007). Now, a meshless calculation will be presented
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Figure 3.26: Schematic drawing of the model from Schwalenberg and Edwards (2004), used in
the calculations below with an amplitude of 4 = 50m.
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Figure 3.27: TE-mode example calculations for the model of Schwalenberg and Edwards (2004)
with a regular point distribution. The left figure displays the apparent resistivity, the right figure
the phase. The figures display meshless calculations (4 = 50m) and (4 = 100m). Also the
values from the analytic calculations (4 = 50m) and (4 = 100m) are plotted, as well as the
FEM results for (4 = 50m) as a black solid line .

using an adapted point sampling to handle the sinusoidal interface. This sampling was
created by increasingly adapting the amplitude of the sinusoidal function from zero to
the final amplitude. A sampling distance of hX,Ω = 50m was used in this examples.
The whole point sampling for the model can be seen in Figure A.50 in the Appendix
A.2. Using this point sampling, the TE-mode solution for two sinusoidal interfaces
are calculated using the staggered scheme with averaging. The results can be seen in
Figure 3.27, where the meshless calculation and the analytical results are plotted. For
both amplitudes the meshless results, apparent resistivities and phases, are in a good
agreement to the analytical calculated values. Since for the TE-mode the resistivities and
phases only vary moderate due to the topographic distortion, in the TM-mode higher
deviations can be expected. As seen in the Figure 3.28, the apparent resistivities for both
amplitudes are in a good agreement with the analytical results. Only in the peak values
around profile meter zero, deviations between the meshless results and the analytical
solution can be detected. This effect is more visible in the apparent resistivity than in
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Figure 3.28: TM-mode example calculations for the model of Schwalenberg and Edwards (2004)
with a regular point distribution. The left figure displays the apparent resistivity, the right figure
the phase. The figures display meshless calculations (4 = 50m) and (4 = 100m). Also the
values from the analytic calculations (4 = 50m) and (4 = 100m) are plotted, as well as the
FEM results for (4 = 50m) as a black solid line .

the values for the phases. As it can be seen from the two Figures 3.27 and 3.28, results
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Figure 3.29: TE-mode example calculations for the model of Schwalenberg and Edwards (2004)
with an adapted point distribution. The left figure displays the apparent resistivity, the right
figure the phase. The figures display meshless calculations (4 = 50m). Also the values from the
analytic calculations (4 = 50m) are plotted, as well as the FEM results for (4 = 50m) as a
black solid line.

from a FEM calculation are included in the graphs as solid black line for the amplitude
of 4 = 50m. The adapted mesh for the FEM calculations can be seen in Appendix A.2
in Figure A.55 . Using a second order polynomial degree and the high adapted mesh
which results in 24353 degrees of freedom for the system matrix, are slightly better than
the meshless solution, which has only 2540 degrees of freedom. To gain more accuracy
and to improve the meshless results, the point sampling will be spatially adapted at the
sinusoidal interface. The resulting point sampling can be seen in Figure A.51 in the
Appendix A.2. Using this adapted point sampling, which has the same amount of points,
the meshless solution can be improved. The calculations for the TE-mode can be seen
in Figure 3.29. Here, for both sinusoidal amplitudes the meshless accuracy can slightly
be improved. While the effect of the improvement is not very noticeable, the results
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for the TM-mode could be significant improved. The calculations for the TM-mode,
using normal point distribution, can be seen in the Figure 3.28. Observing a deviation
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Figure 3.30: TM-mode example calculations for the model of Schwalenberg and Edwards (2004)
with an adapted point distribution. The left figure displays the apparent resistivity, the right figure
the phase. The figures display meshless calculations (4 = 50m) and (4 = 100m). Also the
values from the analytic calculations (4 = 50m) and (4 = 100m) are plotted, as well as the
FEM results for (4 = 50m) as a black solid line .

between the meshless values and the results from the analytical calculations, it can be
seen from Figure 3.30 that a spatial adaption towards the sinusoidal interface cures this
inaccuracy for the apparent resistivities. Here, an adaptation parameter α = 1.5 has been
chosen to refine the sampling near the interface. To emphasize the improvement between
the results of the normal point sampling and an adapted point sampling, a figure was
compiled, which visualize the differences better. Figure 3.31 shows the differences for
the two point samplings with a magnification around the peak values. Here it is obvious,
that the adapted point set performs better, and the results are more accurate especial for
the sinusoidal interface with an amplitude of 4 = 50m.
Studying the results for the model of Schwalenberg and Edwards (2004) it can be said,
that the meshless scheme can capture topographic distortions well. Using a regular point
sampling, the calculations are almost as accurate as the finite element results. Using a
spatially adapted point sampling, the accuracy of the scheme can be raised and the results
are accurate as the finite element solution. Comparing the costs of the calculation, it
can be stated that the meshless solution only needs one tenth of the degrees of freedom.
While the finite element calculations need a highly adapted mesh, the point sampling can
be done in a few lines of Fortran code. Here, the simplicity using a unconnected point
sampling is beneficial over using a highly adapted computational mesh. As last example,
to test the two-dimensional algorithm, the model of Schwalenberg and Edwards (2004) is
calculated using a Poisson disk point sampling generated with the methods described in
Sub-chapter 3.7. The whole point sampling for the model can be seen in Figure A.52 in
the Appendix A.2. The magnetotelluric responses can be seen in Figure 3.32. It can be
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Figure 3.31: TM-mode example calculations for the model of Schwalenberg and Edwards (2004)
with a regular point distribution. The left figure displays the apparent resistivity for the normal
point sampling, the right figure displays the calculation for the adapted point sampling. The values
around the peak at z = 0m are magnified in the upper right corner. The figures display meshless
calculations (4 = 50m) and (4 = 100m). Also the values from the analytic calculations
(4 = 50m) and (4 = 100m) are plotted, as well as the FEM results for (4 = 50m) as a black
solid line .
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Figure 3.32: TM-mode example calculations for the model of Schwalenberg and Edwards (2004)
with a Poisson disk point distribution. The figures display meshless calculations (4 = 50m).
Also the values from the analytic calculations (4 = 50m) are plotted, as well as the FEM results
for (4 = 50m) as a black solid line .

noted, that a unorganized point sampling can be used to calculate the magnetotelluric
responses for this model. As seen in Figure 3.32 only slight deviations of the results
compared to the analytical calculated values can be recognized. These deviations from
the analytical values are due to random distances from the air-Earth interface to the points
in Earth or air, due to the random nature of this point sampling method. Nevertheless,
convergence of this approximation scheme have been showed before.

3.8.3 Three-dimensional example calculations

In this subsection, example calculations using the three-dimensional potential formulations
are given. This calculations are done using the Coulomb gauged version, as described
in Sub-section 2.3.3. The implementation was done using a mixed formulation using
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a pure collocation scheme with material averaging for the vector potential A and a
staggered scheme using material averaging for the skalar potential φ. Also, the coulomb
gauged version of the potential formulation was used here. The meshless algorithm was
given in 3.5.5 and here we use second order polynomials m = 2 as basis functions. As
boundary conditions Neumann boundaries where used at the sides of the model and
Dirichlet boundaries are imposed at the top and bottom for all vector potential components
Ax, Ay, Az and for the scalar potential φ. For the two magnetotelluric modes (XY, YX)
Dirichlet conditions for the vector potential have been adjusted give an incident H0x-Field
in the XY-mode and an incident H0y-Field generates a in the YX-mode. This allows
to calculate E and B fields to define an three-dimensional magnetotelluric impedance
and calculate the apparent resistivities and phases with Equations (2.93) and (2.94).
All calculations are done using a spatially adapted point sampling based on a regular
separation distance. The conductivity model which was used is shown in Figure 3.33.
It is a conductive prism embedded into a more resistive homogeneous half-space. The
prism has the dimension of 6km × 6km × 3km and is buried 3km beneath the surface.
Here magnetoelluric responses have been calculated along a profile which pass the

6km
6kmProfile

3km
3km

0.01S m−1 0.01S m−1

0.1S m−1

0.1S m−1

x

y

x

z

(a) (b)

Figure 3.33: Conductivity model for the three-dimensional calculations. A conductive prism
with 0.1S m−1 embedded into a homogeneous half-space with a conductivity of 0.01S m−1. (a)
Map-view, showing the xy-plane. The measurement profile is drawn in red. (b) Side-view showing
the depth and height od the conductive prism.

middle of the conductive prism at the Earths surface into the x-direction. The profile
is marked in red in Figure 3.33 (a), which shows a sketch if it. For four different
frequencies (0.3Hz , 0.1Hz , 1.0Hz 3.0Hz ) and both polarizations (XY, YX),
apparent resistivities and phases have been computed with the meshless algorithm. Here,
these results will be compared with numerical results from the three-dimensional finite
differences implementations described in Mackie et al. (1994). The meshless calculations
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have been done using a spatially adapted point sampling with an value of α = 2.0. By
comparing Figure 3.13, the adaptivity around z = 0 can be seen.
The results for the XY-mode are displayed in Figure 3.34 and Figure 3.35. The results for
the YX-mode can be seen in Figure 3.36 and Figure 3.37. For every solution, the reference
results from the algorithm of Mackie et al. (1994) is plotted accordingly. At it can be
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Figure 3.34: Three-dimensional example calculations results for the buried prism model. The
figure displays the apparent resistivity for the xy-mode. Meshless calculations using the frequencies
0.3Hz , 0.1Hz , 1.0Hz 3.0Hz in red, the finite difference solutions in black.
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Figure 3.35: Three-dimensional example calculations results for the buried prism model. The
figure displays the phase for the xy-mode. Meshless calculations using the frequencies 0.3Hz ,
0.1Hz , 1.0Hz 3.0Hz in red, the finite difference solutions in black.

seen in Figure 3.34, the values for the last three frequencies are in a good agreement to
the finite difference solutions, while lowering the frequency deviations between booth
algorithms occur. The meshless algorithm overestimates the apparent resistivities for the
frequency of 0.1Hz. Here, also the phases differ significantly. This can be seen in Figure
3.35. Nevertheless, the values show a same behavior, compared to the solution of Mackie
et al. (1994). Crucial to gain the correct values for the three-dimensional meshless
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results is the right point sampling. For different adapted samplings the three-dimensional
algorithm is more sensitive to point distances at the interface, where the magnetotelluric
transfer functions will be calculated. In comparison to the results of the XY-mode, the
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Figure 3.36: Three-dimensional example calculations results for the buried prism model. The
figure displays the apparent resistivity for the yx-mode. Meshless calculations using the frequencies
0.3Hz , 0.1Hz , 1.0Hz 3.0Hz in red, the finite difference solutions in black.
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Figure 3.37: Three-dimensional example calculations results for the buried prism model. The
figure displays the phase for the yx-mode. Meshless calculations using the frequencies 0.3Hz ,
0.1Hz , 1.0Hz 3.0Hz in red, the finite difference solutions in black.

meshless algorithm for the YX-mode perform better. Here the results, which can be seen
in Figure 3.36 and Figure 3.37, are in a better agreement to the finite differences values
calculated by the algorithm of Mackie et al. (1994). Slight differences in the apparent
resistivity can be seen in Figure 3.36. Also in the phase, which is displayed in Figure 3.37
performs reasonable well. The crucial part of this computations for the YX-mode is the
conductivity contrast in the profile direction. As a consequence the skalar potential φ will
rapidly change at the conductivity interface. As a consequence this generates a rapidly
changing galvanic part in the electrical field and therefore a more narrow magnetotelluric
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response. Comparing both modes, this behavior can be seen. Also, by comparing the
values of the YX-mode, it can be presumed that the generation of the galvanic part is
described correct in the meshless potential formulation.

3.9 Summary and Conclusions

In this chapter, meshless formulations for approximating Maxwell’s equations have
been developed and tested. After an introduction about general meshless computational
methods, a method called generalized moving least squares was introduced. This
technique can be applied on general, unstructured point sets to approximate linear target
functionals from some functional data sampled at the point set. These linear target
functionals can be derivatives, integral formulation or plain function evaluations. Having
this numerical framework at hand, special approximation schemes can be constructed.
Here, a formulation for the divergence operator was presented using a staggered meshless
scheme, which is able to handle material contrasts and non-smooth solutions of the
underlying partial differential equations. After presenting the main approximation
schemes, error bounds are cited from the literature. They can give a preliminary error
estimation in terms of the point separation distance and polynomial degree. As the error
theory predict, stability and consistence leads to the convergence of the approximation
scheme, here convergence of the formulations have been numerical assured. The method
of a direct discretization of a partial differential equation was discussed and combining
it with the generalized approximation gives various discretization schemes, which can
be applied to simulate a magnetotelluric experiment. In this thesis a strong collocation
scheme is mainly used. Nevertheless, a weak formulation was presented, but it was
not used in this thesis. The reason is the overall simplicity of the collocation scheme
compared to the weak formulation. Even if using the direct approximation, this weak
scheme can be simplified, but the overhead of performing the integration leads to
choose the point collocation scheme. Formulations for the two and three-dimensional
magnetotelluric problems have been given, whereas the two-dimensional formulation
split in two schemes. Here, one for the TE-mode and one for the TM-mode are needed
to simulate the electromagnetic fields properly. The implementation for the staggered
scheme was given in addition to a plain point collocation method. Here, a material
averaging can be included to handle spatial variable conductivities and interfaces.
Thanks to the potential formulation for the three-dimensional partial differential system,
several parts developed for the two-dimensional scheme can be reused. An important
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aspect is the correct consideration of interface descriptions. While the fields occurring in
the TE-mode are smooth all over the domain, for the TM-mode the fields behave different.
Here, the computational scheme has to take care of interface conditions at jumps in the
conductivity. Using an average scheme in the numerical formulation, a combination of
harmonic and arithmetic averaging produces the most accurate results. The performance
of the numerical scheme can be increased if the interface between Earth and air will be
described by a ‘double node’ approach. Here, the points on the interface will be doubled
and constrains for the fields can be imposed on each layer separately. This improves the
overall solution and enhance the convergence of the numerical scheme, but the degrees
of freedom will be increased. Using this approach only for the air-Earth interface is
reasonable, because at this interface the steepest jump in the conductivity appears.
In the last section of this chapter magnetotelluric example calculations are given.
Convergence results have been given first and example simulations for Earth models from
the literature follow. In the part in which the convergence of the numerical schemes is
tested several observations can be made. First, a second order accuracy scheme can be
provided to solve the magnetotelluric problem. The best performing formulations in
terms of convergence are the pure point collocation and the staggered schemes using
material averaging and the ‘double node’ approach. Second, by only using these schemes
with averaging, low convergence can be achieved and also for the Poisson disk sampling
the algorithms are convergent in the same way as for the regular point samplings. The
presence of the interface interferer the meshless schemes to gain full convergence, as
predicted before in the theory part. Nevertheless, modifying the numerical schemes this
disadvantage can be compensated.
Some magnetotelluric example calculations from the literature have been presented with
comparable meshless results. Here, the fist example was the three-segment model given
by Weaver et al. (1985, 1986). This model includes three adjacent conductive parts on top
of an infinitely conductive basement. For both, the TE-mode and the TM-mode, analytical
solutions are available and the meshless algorithm have been tested against them. The
case where the electrical currents are perpendicular to the conductive interfaces are the
most critical. Also here, the meshless scheme provides accurate solutions to this kind of
problems. Important to use a right averaging scheme, to gain the best performance of
the meshless algorithm. The second magnetotelluric example was given by a model of
Schwalenberg and Edwards (2004), where topographic distortion effects the fields at the
Earth interface. This model, described by a sinusoidal interface is tailored for using a
meshless method and as the results suggest, the meshless scheme outperforms the finite
element solution. Here, with less then a tenth of degrees of freedoms the accuracy of
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both numerical schemes are comparable. With a spatially adapted point sampling the
accuracy can be increased.
Beside two-dimensional examples, three-dimensional meshless example calculations
are given and compared to the finite differences algorithm of Mackie et al. (1994).
These calculations show a good agreement compared to the results calculated by a finite
differences algorithm. Nevertheless, even if slight deviations occur the correctness of the
algorithm could be proved.



Meshless inversion of
magnetotelluric data

This chapter is devoted to the development of a meshless magnetotelluric inversion
scheme. By interpreting geophysical data, an Earth model is calculated during an
inversion. In contrast to the previous chapter, in which a conductivity structure was given
and the numerical procedure must calculate the electromagnetic fields according this
structure, is the task to calculate a conductivity distribution with the help of measured
data. The process, in which the conductivity structure is reconstructed on the basis of
measured data, is called an inversion. A general overview about geophysical inverse
theory is given, for example, in the books by Menke (1984), Zhdanov (2002) or Aster et
al. (2005).
Here in this chapter, a two-dimensional meshless inversion algorithm is proposed, which
can handle magnetotelluric data from the two magnetotelluric modes. At the beginning,
a general introduction is given on the basic theory of geophysical inversion. Due to the
nature of the magnetotelluric experiment, the problem is ill-posed and needs a regular-
ization to constrain the solution to a reasonable set of Earth models. Here, Tikhonov
regularization yields to a regularized parametric functional which has to be minimized.
In magnetotellurics, this results in a well-posed nonlinear optimization problem. For a
proper minimization of the Tikhonov functional several methods are available. Here,
a damped Gauss-Newton method in combination with a least squares solver will be
used. Nevertheless, this needs to calculate the Jacobian matrix using the meshless
framework. It turns out, that using the proposed meshless schemes the calculations
for the Jacobian matrix are unstable and no reasonable results for the TM-mode can
be calculated. Therefore, the actual implementation only inverts magnetotelluric data
from the TE-mode successfully. But to improve these calculations and adapt it to the
meshless setting a method based on electromagnetic reciprocity is applied, in which
the discretization from the froward modelling can be reused. In addition, by using a
factorization of the system matrix calculated in the forward modelling, solutions using
different right-hand sides can be solved efficiently. This chapter is organized as follows.
After describing the fundamental principles of an inversion algorithm, the adoption to
the meshless case will be made. All relevant parts, which differ from a conventional
scheme, are given and explained. After describing the meshless inversion algorithm,
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example applications are done. Then, synthetic generated data will be inverted to test
the algorithm and its implementation. The chapter closeswith a summary and a discussion.

4.1 Basic inversion theory

To find a conductivity model from a set of given data, using some mathematical algorithm,
a data vector should be defined. Here,

d =
(
d1, d2, . . . , dNdata

)T
(4.1)

corresponds to all given measured data. This, for example can be different apparent
resistivities or phases evaluated at the receiver stations for several frequencies. The
amount of used data, or the length of the data vector will be denoted with Ndata, so
d ∈ RNdata . The optimization problem, described here, is presented by

F [m] + e = d. (4.2)

The task is to find a model m ∈ H, whereas H denotes a Hilbert space and e the
measurement noise. The operator F : H → RNdata is the forward modelling operator.
The result in this calculations is a model vector

m =
(
m1,m2, . . . ,mMmodel

)T
, (4.3)

containing all values needed to characterize an appropriate parametrization of the
model. Using a meshless method, the parametrization of the model conductivity is
done using only the points from the forward modelling. In the case of two-dimensional
magnetotelluric inversion, this vector holds all conductivities (or resistivities). Therefore,
the transformation F becomes discrete: F : RMmodel → RNdata and the inverse problem
is now

F[m] + e = d. (4.4)

In the case of an electromagnetic method, Equation (4.4) is

Fem[σ] + e = {E,H}. (4.5)
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A mathematical solution to this problem can be by defining an inverse operator
(Fem)−1{E,H} = σ, acting on the fields to give the model parameter. Nevertheless, the
operator, which connects the model parameter to the fields, is generally non-linear. The
inverse problem also is usually ill-posed, in the sense that there are more than one model,
which fits the noisy data. This is the case, when Ndata < Mmodel and the inverse problem
is underdetermined. Also, an inverse operator for this kind of problems may not exist. To
address the problem of finding a solution to this ill-posed task, it can be regularized by a
standard procedure called Tikhonov regularization (Tikhonov and Aesenin, 1977). In the
framework of the Tikhonov regularization one seeks a model m∗, which minimizes the
parametric functional

φβ (m, d) = | |F[m] − d| |22 + β | |W(m −mre f ) | |22 = φd + βφm. (4.6)

In this minimization, a trade-off between the first term, which is the data misfit φd =

| |F[m] − d| |22 , and a stabilization functional φm = | |W(m −mre f ) | |22 can be achieved by
selecting a proper regularization parameter β. The stabilization functional in Equation
(4.6) referrers to a reference model mre f , which can be chosen in advanced. While the
choice of selecting a good regularization parameter, which balances the minimization
problem, is not a trivial task (Engl et al., 1996; Hansen, 1998). Two possible computational
schemes are mainly used. The first one assumes a fixed regularization parameter and
minimizes the given parametric functional. A popular way of selecting the right
regularization parameter β is the L-curve scheme developed by Hansen (1998). The
second method, finding an appropriate model, is to apply a two-stage method. Here, an
adaptive regularization parameter is used and the data misfit φd will be reduced first.
Than in the second stage, while trying to keep the data misfit constant, the model norm is
reduced. A popular implementation of this scheme is Occam’s inversion (Constable et
al., 1987; Degroot and Constable, 1990).
Beside constraining the model space, to add regularization to the ill-posed problem, a
non-linear functional has to be minimized. The classical mathematical way therefore is to
differentiate Equation (4.6) with respect to m and set the result equal zero. This results in

∂φβ (m, d)
∂m

= J[m]T (F[m] − d) + βWTW(m −mre f ) = 0. (4.7)

In this equation, J is the Jacobian or sensitivity matrix, describing how changes of the
j− th model parameter m j affects the i− th forward calculation Fi (m), which is expressed
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as
J[m] =

∂Fi[m]
∂m j

. (4.8)

Using a Newton method to solve Equation (4.7) would include calculating the Hessian
of F[m], which involves second order Fréchet derivatives. To avoid this, the forward
operator should be linearized by a Taylor expansion

F[m + 4m] = F[m] + J[m]4m + O(4m2). (4.9)

The last term of the linearized forward operator can be assumed as small and can be
neglected according to Aster et al. (2005). Using this linearization in Equation (4.7) gives

J[m]T (F[m] + J[m]4m − d) + βWTW(m + 4m −mre f ) = 0. (4.10)

Rearranging terms and simplifying leads to

J(m)TJ[m]4m + βWTW4m = J(m)T (d − F[m]) + βWTW(m −mre f ). (4.11)

This equation can be rearranged to a linear system, in which a perturbation 4m is its
solution

4m =
(
J[m]TJ[m] + βWTW

)−1
J[m]T (d − F[m]) + βWTW(m −mre f ). (4.12)

In the end, this problem must be solved iterative until the right Earth model is obtained.
This will be done with an iterative process solving for the next model with

mk+1 = mk + α4m. (4.13)

The perturbation of the k-th step, should be calculated according to Equation (4.12) with

4m =
(
J[mk]TJ[mk] + βWTW

)−1
J[mk]T (d − F[mk])+ βWTW(mk−mre f ). (4.14)

The parameter α in the update Equation (4.13) controls the step-length of the model
update. To prevent an update, which overshoots the minimum and cause an increase
in the parametric functional, a step-length of 0.1 < α < 0.5 was suggested by Armijo
(1966). In this work, the formulation of Haber and Oldenburg (2000) is used to solve the
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system (4.14). Thereby, the equivalent formulation



J [mk]
√
βW


4m =



d − F [mk]
−
√
βW

(
mk −mre f

) 
, (4.15)

is solved by an iterative solver (Paige and Saunders, 1982). In this implementation
the regularization parameter is kept fix. The step-length α can be chosen by a line
search method if a complex magnetotelluric data should be inverted. Here, setting α
small enough, the non-linearity of the Gauss step will be linearized enough (Haber and
Oldenburg, 2000).

4.2 Meshless Fréchet Derivatives

One main difficulty in deploying an inverse scheme is the calculation of a Fréchet
derivative matrix or Jacobian matrix, which links a perturbation of the mode parameters
to a change of the data. The difficulties are not to construct such Jacobian matrix, but
involving a lot of solutions of the sparse linear system of equations makes the assembling
suffering from this computational effort. When using traditional methods like finite
elements or finite differences, several schemes have been proposed to calculate the
Jacobian matrix efficiently (Rodi, 1976; Farquharson and Oldenburg, 1996; Lugão et
al., 1997; Rodi and Mackie, 2001). In a magnetotelluric inversion the data, which is
incorporated in the inversion process, are normally the apparent resistivities and phases.
In this case, the Jacobian consists of Fréchet derivatives of the apparent resistivities and
phases with respect to the model parameters, the conductivities of the Earth model.
The aim of this section is to give an overview, how these derivatives of the apparent
resistivities and phases with respect to the model conductivities, can be calculated in a
meshless framework. The work here follows the ideas of Lugão and Wannamaker (1996)
and Lugão et al. (1997) as well as Jupp and Vozoff (1977) and Schwarzbach and Haber
(2013), adapted to the meshless framework.
First, the apparent resistivities in Equation (2.93) and phases from Equation (2.94) are
derived by using the magnetotelluric impedance. Now, the basic building block are
derivatives of the electromagnetic fields for both magnetotelluric modes with respect to
the model conductivities. On the other hand, the magnetotelluric impedance is derived
by the electromagnetic fields at the observation site. The first task is to derive the Fréchet
derivatives of the fields with respect to the model conductivities. As in Jupp and Vozoff
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(1977) this is done by direct differentiation of the linear system that was assembled in the
forward calculation

A(σ)u = S. (4.16)

The coefficient matrix is assembled from two individual matrices, depending on the
chosen magnetotelluric mode

A(σ) =



Aa + iωAb(σ), σ = (σ1, . . . , σN ) TE-mode,

Aa (σ) + iωAb, σ = (σ−1
1 , . . . , σ−1

N ) TM-mode,
(4.17)

and as defined before, the solution vector is u ∈ {Ex,Hx }. Here, the coefficient matrix is
parametrized by the conductivity vector σ, which holds the conductivities at all points.
In this formulation the source vector vanishes. Deviating Equation (4.16) with respect to
a conductivity at point i, for example in the TE-mode, gives

A(σ)
∂Ex

∂σi
= −

∂A(σ)
∂σi

Ex

= −iω
∂Ab(σ)
∂σi

Ex .

(4.18)

The matrix on the left hand-side of Equation (4.18) is sparse and has only n entries. In this
case, n is the number of neighbours used to calculate the coefficients for the approximation
of the functionals. Thus, Equation (4.18) consists of coefficients calculated from Equation
(3.77). These coefficients are already formed during the forward calculation. To proceed,
solving Equation (4.18) needs to invert the coefficient matrix A(σ). This rather numerical
expensive task can be avoided by explicitly calculating individual rows of the inverse
coefficient matrix. As explained by Lugão and Wannamaker (1996), this task has his
origin in the principle of electromagnetic reciprocity, in which the roles of sources and
receivers are interchangeable. In the notation of Lugão et al. (1997) this is

A(σ)Ĝ = S(1), (4.19)

in which the source vector is assembled with an unit source at the point i

S(1) =

*...........
,

0
...

1
...

0

+///////////
-

. (4.20)
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Solving this equation gives the responses for all points in the domain and multiplying the
solution vector with Equation (4.18), gives a formula for the Fréchet derivatives of the
fields with respect to the model conductivities. This results in

∂Ex

∂σi
= −iωĜ

∂Ab(σ)
∂σi

Ex, (4.21)

and
∂Hx

∂σi
= Ĝ

∂Aa (σ)
∂σi

Hx . (4.22)

The advantage of this procedure is a numerical cheaper way to calculate the Jacobian
matrix, without solving for each model conductivity. Only Nreceiver × N f req solutions
of Equation (4.19) are needed, in which Nreceiver is the number of receivers and N f req

is the number of used frequencies. This task demands a numerical algorithm, in which
capable to solve a system of equation with different right-hand sides many times. Thus
factorizing A(σ) during the forward calculation allows the solution of Equation (4.19)
with many right-hand sides at almost no extra costs. Using the meshless framework, the
derivatives of the system matrix with respect to the model conductivity σi can be done
by deviating the vectors LΩi (P) in Equations (3.80) for the TE-mode

LΩi (P)
∂σi

:=
[
−iωp1(xi), . . . ,−iωpQ (xi)

]T
, (4.23)

and deviating the vectors LΩi (P) in Equations (3.81) for the TM-mode

LΩi (P)
∂σi

:=
[
∇ ·

(
σ(xi)−2∇p1(xi)

)
, . . . ,∇ ·

(
σ(xi)−2∇pQ (xi)

)]T
. (4.24)

By examining Equation (4.24) it can be seen that a second order operator needs to
be approximated. This is problematic in the case of the proposed meshless algorithm
presented here. If combining Equation (4.24) with Equation (4.22) the resulting
formulation for the TM-mode is unstable and gives no results when using it in forming
the Jacobian matrix. Here, more research has to be done to stabilize this process to
successful calculate the Jacobian matrix in this meshless formulations. Nevertheless, if
the Fréchet derivatives of the fields have been calculated, derivatives of the auxiliary
fields should be derived. For the TE-mode this is

∂H k
y

∂σi
= −

1
iωµ0

∂

∂z
∂Ek

x

∂σi
. (4.25)



106 Inversion of magnetotelluric data

Where ∂Ek
x /∂σi is the electrical field at the surface for k-th frequency-receiver combina-

tion. As well as for the vertical magnetic field

∂H k
z

∂σi
=

1
iωµ0

∂

∂x
∂Ek

x

∂σi
. (4.26)

Using the TM-mode the auxiliary fields can be computed with

∂Ek
y

∂σi
=

1
σi

*
,

∂

∂z
∂H k

x

∂σi
− σiEy

+
-
. (4.27)

and also
∂Ek

z

∂σi
= −

1
σi

*
,

∂

∂x
∂H k

x

∂σi
+ σiEz+

-
. (4.28)

When utilizing a magnetotelluric inversion, the Jacobian matrix consist of partial
derivatives of the data with respect to the model conductivities. Normally in this case, the
data consists of apparent resistivities and phases. This requires partial derivatives with
respect to model resistivities which should also be logarithmically scaled as explained in
Wheelock et al. (2015). As all Fréchet derivatives of the fields for both magnetotelluric
modes can be derived, as the k-th apparent resistivity logarithmically scaled derivative
with respect to the i-th model parameter (Jupp and Vozoff, 1977):

∂ logρk
a

∂ logρi
=

2
ωµ0

Re *
,

∂Z k

∂ρi
Z̄ k+

-

(
ρi

ρa,i

)
, (4.29)

and for the derivative of the phase

∂ϕk

∂ logρi
=

ρi cos2ϕk

(
Im

(
∂Zk

∂ρi

)
− tanϕk Re

(
∂Zk

∂ρi

))
Re(Z k )

. (4.30)

In both Equations (4.29) and (4.30), the partial derivatives of the impedance Z is used,
while Z̄ denotes the complex conjugate. For both magnetotelluric modes, the derivatives
of the impedance can be derived with the help of the Fréchet derivatives of the field,
which is

∂Z k

∂ρi
=

1
H k

*
,

∂Ek

∂ρi
− Z k ∂H k

∂ρi
+
-
. (4.31)

By applying Equation (4.31), the fields have to be chosen according to the used
magnetotelluric mode. For the TE mode Ex, Hy should be used in Equation (4.31)
and for the TM mode Hx, Ey, while Z k is the normal magnetotelluric impedance.
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4.3 Regularization

Due to the non-linearity of the inverse problem, a regularization of the iterative scheme has
to be done. Here in this work, a smoothness regularized inversion is applied. Inspecting
the parametric functional in Equation (4.6), the norm of the stabilization term can be
expressed as

φ∇m =
1
2
| |∇(m −mre f ) | |22 =

1
2

∫
Ω

|∇(m −mre f ) |2 dΩ, (4.32)

or as
φ∇2

m
=

1
2
| |∇2(m −mre f ) | |22 =

1
2

∫
Ω

|∇2(m −mre f ) |2 dΩ, (4.33)

for either gradient smoothing or the latter Laplace smoothing. By using finite element
formulations, this task is non-trivial, because the conductivity assumes to be piecewise
constant on the elements and at an element interface, singularities occur. A primal-dual
finite element formulation using Raviart-Thomas elements must be used to calculate
the regularization functional, as Schwarzbach and Haber (2013) explain. But by
defining special gradient operators, as defined by Lelièvre and Farquharson (2013), the
regularization can be implemented with less effort. Here, the meshless framework is
used to calculate Equation (4.32) and (4.33). Thanks to the previously discretized partial
differential equation from the forward modelling, the coefficients from this discretization
can be reused. Here, the coefficients matrices defined in Equation (3.77) are already
calculated and only the convenient functionals need to be used to approximate Equation
(4.32) or (4.33). Therefore, for all points in the modelling domain, which should be
included into the inversion process, the functional φm(m) will be calculated using the
direct approximation and at the i-th point this is

φ∇m (mi) =
1
2

∫
Ω

|∇(mi − mi,re f ) |2 dΩ ≈
n∑

k=1
ak,

∫
∇(x)m(xk ), (4.34)

and

φ∇2
m

(mi) =
1
2

∫
Ω

|∇2(mi − mi,re f ) |2 dΩ ≈
n∑

k=1
ak,

∫
∇2 (x)m(xk ). (4.35)

Thus, Equations (4.32) and (4.32) can be approximated by calculating the integrals locally
at the points inside the modelling domain, and then summing over all approximations.
This procedure is also used by Levin (1999) to calculate stable integration rules.
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4.4 Magnetotelluric example inversions

In this section some example inversions will be presented. There will be four synthetic
models, which will be inverted to test the capabilities of the inverse algorithm. All
inversions use the TE-mode and eight selected frequencies from 0.4Hz to 0.003125Hz.
Thus, starting with 0.4Hz every next frequency is the half of the previous one, until
0.003125Hz is reached. The data, which should be inverted, will be synthetically
calculated, using the conductivity models presented in Figures 4.38, 4.44 and 4.47. Here
a fixed regularization parameter β = 100 will be used. This choice, based on trail and
error, performs the best for all models. In all example inversions the Laplacian smoothing
stabilizer will be used and a model update step length of α = 0.3 is selected. The stopping
criteria is in all cases a RMS-misfit calculated by

RMS =

√∑Ndata

i=1 |
di−F[m]

ei
|2

Ndata
, (4.36)

reaching a predefined value. Also if the misfit is not reduced in an iteration, the algorithm
stops the inversion. The example inversions should deliver insights into four different
aspects. First, a simple prism embedded into a homogeneous half-space will be inverted
to proof if the algorithm performs right. Therefore, every step of its iteration a Figure
will be presented here, to see how the conductivity model evolves during the iterations.
The second step, will be done with the same data, but 5% noise was added. This should

0.01S m−1

0.1Sm−1

10 km

10 km

10 km

z = 0 m

Figure 4.38: Conductivity model used in the first inversion example. The triangles mark the
receiver positions.

give a first insight how the algorithm perform with noisy data. The third test will be a
resolution test. Here, a model should be recovered, which consists of different conductive
bodies inside a homogeneous half-space. One of the conductors is thinner than the other
and the question is if it can be resolved. The last example will show the advantage of
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using a meshless model by incorporating topography. Here, an Earth surface including
topography will be used to recover the conductivity structure of a buried prism. Using a
point sampling instead of a mesh gives more flexibility. Beginning with the first example,
the conductivity model pictured in Figure 4.38 should be inverted, using seven receiver
stations with a separation distance of 10 km. First, the synthetic data was produced
using the meshless forward algorithm and afterwards this data will be inverted. The
inverse algorithm should give a precise recover of the conductivity model used in the
forward calculations. The final model is displayed in Figure 4.39. As it can be seen,
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Figure 4.39: Final conductivity model produced in the first inversion example.

the conductivity structure is reproduced at the place where it should be. The inverse
algorithm overshoots the conductivity of the prism by 4S m−1, but this can be avoided by
a step length selected with an adaptive algorithm. For this inversion, the algorithm needs
seven iterations and stops at a RMS-misfit of 1.45.
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(a) 1. iteration (96.72 rms)
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(b) 2. iteration (37.07 rms)
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(c) 3. iteration (10.35 rms)
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(d) 4. iteration (9.45 rms)
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(e) 5. iteration (2.45 rms)
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(f) 6. iteration (2.80 rms)
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(g) 7. iteration (2.41 rms)
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(h) 8. iteration (1.87 rms)
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(i) 9. iteration (1.45 rms)

Figure 4.40: All iterations for the first example inversion



4.4. MAGNETOTELLURIC EXAMPLE INVERSIONS 111

1.7

1.8

1.9

2

2.1

2.2

−40 −30 −20 −10 0 10 20 30 40

lo
g1
0
ρ

a
[Ω

m
]

Profile [km]

(a)
(b)

(c)
(d)

(e)
(f)

(g)
(h)

30

35

40

45

50

55

60

65

−40 −30 −20 −10 0 10 20 30 40

ϕ
[◦

]

Profile [km]

(a)
(b)

(c)
(d)

(e)
(f)

(g)
(h)

Figure 4.41: Synthetic data (solid lines) and modelled data (symbols) for the first inversion
example plotted for all stations and for the frequencies (a) 0.4Hz, (b) 0.2Hz, (c) 0.1Hz, (d)
0.05Hz, (e) 0.025Hz, (f) 0.0125Hz, (g) 0.00625Hz, (h) 0.003125Hz.

Every single iteration step can be seen in Figure 4.40. From these figures, it can be seen
that the algorithm reproduces geometry of the conductivity structure good until iteration
six. After this iteration, it begins to overestimate the conductivity values and the structure
begins to narrow. The synthetic data and the modelled data are pictured in Figure 4.41.
The next step will be to add random noise to the synthetic data, to test the algorithm if it
can handle data, which was polluted by noise. In this example 5% noise was added to the
synthetic generated apparent resistivities and phases. The results of the inversion can be
seen in Figure 4.42. This figure displays the final conductivity model. As it can be seen
in the inversion results, the added noise prevent the algorithm to perform as accurate as
without noise. The inversion routine stops with an RMS-misfit of 9.93 and the modelled
data, which can be seen in Figure 4.43, shows different estimates than using no noise.
Nevertheless, the depth and lateral position of the conductive prism can be estimated even
in the presence of noise. The next example which will be given, will test the resolution
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Figure 4.42: Final conductivity model produced in the first inversion example using noisy data.

of the inverse algorithm. For this test a homogeneous half-space model was used with
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Figure 4.43: Synthetic noisy data (solid lines) and modelled data (symbols) for the first inversion
example plotted for all stations and for the frequencies (a) 0.4Hz, (b) 0.2Hz, (c) 0.1Hz, (d)
0.05Hz, (e) 0.025Hz, (f) 0.0125Hz, (g) 0.00625Hz, (h) 0.003125Hz.

two vertical long conductivity structures. One structure is in a depth of ten kilometres
and is ten kilometres thick. The other structure is a shallow thin conductive structure.
The model is displayed in Figure 4.44. For this algorithm synthetic data was produces
with the meshless algorithm. The question, which should be answered, is if the inversion
algorithm can produce a conductivity model, in which both structures can be recovered.
Also, if it is possible to image thin conductive structures. For this example nine receivers
are placed in top of the surface in a distance of ten kilometres to each other. By using the

0.01S m−1

0.1Sm−1

10 km

10 km

10 km

z = 0 m

0.04Sm−1

Figure 4.44: Schematic of the conductivity model used in the inversion resolution test. The
triangles mark the position of the receivers.

same frequencies as before, a conductivity model was recovered in 13 iterations. The
final RMS-misfit of 1.69 is nearly good as in the case of the single prism model. The
final conductivity model can be seen in Figure 4.45. Here, it can be clearly seen, that
both of the conductivity structures can be distinguished. Also the thinner conductivity
structure can be recovered well. The thickness of these structures are good estimated.
Only the thicker structure is somehow larger at the middle of the model. Nevertheless,
the algorithm also performs well in this case. The synthetic data and the predicted values
can be seen in Figure 4.46.
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Figure 4.45: Final conductivity model produced in the resolution inversion example using
synthetic data.
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Figure 4.46: Synthetic data (solid lines) and modelled data (symbols) for the resolution inversion
example plotted for all stations and for the frequencies (a) 0.4Hz, (b) 0.2Hz, (c) 0.1Hz, (d)
0.05Hz, (e) 0.025Hz, (f) 0.0125Hz, (g) 0.00625Hz, (h) 0.003125Hz.

The last example is to test the algorithm if it can handle topography. This test is tailored to
use a meshless method, because point sets can be easily adapted to the topographic slope
of the air-Earth interface. The model, which will be used, is displayed in Figure 4.47. It
consists of a homogeneous half-space with a sinusoidal topography. At the surface nine
receivers are placed to capture magnetotelluric responses and the same frequency range
is used as before. Figure 4.47 shows the conductivity model used in this test. The same
conductive prism should be recovered, but here in additional topography is added to the
air-Earth interface. The final model can be seen in Figure 4.48. By inverting topography
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Figure 4.47: Conductivity topography model used in the inversion example. The triangles mark
the receiver positions.
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Figure 4.48: Final conductivity model produced in the first topography inversion example using
synthetic data data.

it can be seen, that the spatial position of the conductivity structure can be recovered.
Also, slight inversion artefacts can be seen at the air-Earth interface. The algorithm needs
18 iteration steps to reach a RMS of 6.26. This value cannot be improved with more
iterations. Nevertheless, to incorporate topography into the algorithm not many parts of
the program needs to be adapted. Here, only the point sampling needs to fill te surface
area. For the TE-mode an air layer has to be included, but this is not shown in the final
conductivity models. Also if topography is used, the fields at the receivers need to be
correctly described by incorporating the slope of the air-Earth surface as described in
Wannamaker et al. (1985). The final model responses displayed in conjunction with the
synthetic data is shown in Figure 4.49.
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Figure 4.49: Synthetic noisy data (solid lines) and modelled data (symbols) for the first inversion
example plotted for all stations and for the frequencies (a) 0.4Hz, (b) 0.2Hz, (c) 0.1Hz, (d)
0.05Hz, (e) 0.025Hz, (f) 0.0125Hz, (g) 0.00625Hz, (h) 0.003125Hz.

4.5 Summary and Conclusions

In this chapter a meshless inversion algorithm was developed to invert magnetotelluric
data on point sets. First, an introduction to general inversion theory was given and the
basic equations where stated to form an algebraic system to give the model update. In the
next step the calculation of the Jacobi matrix was discussed and the computational work
flow was described. Here the formulation for the two magnetotelluric modes are given.
This scheme uses the principle of electromagnetic reciprocity to calculate the derivatives
of the electromagnetic field with respect to the model parameters. Mathematically this
procedure is somehow related to calculate rows of the inverse of a matrix. Using unit
sources at the receiver points, these rows can be computed and in conjunction with the
derivatives od the sparse discretization with respect to the model parameter the derivatives
of the fields can be calculated. Using a meshless scheme, a working implementation for
the TE-mode was realized. Due to instabilities of the second order operator in derivatives
of the sparse matrix this formulation fails to calculate proper field derivatives for the
TM-mode. Here additional research on an extended formulation needs to be done to get
the Jacobi matrix calculations working.
Nevertheless for the TE-mode a full inversion implementation was developed. Here, the
calculation of the Jacobi matrix succeeded and a stable meshless inversion algorithm
was realized. Also first example inversions have been presented to show the potential of
the scheme. Simple block structures can be inverted successfully and even if noise is
included in the data reasonable conductivity models can be recovered. Also, due to the
meshless approach, topography enters the formulation with almost no extra effort and
Earth model with topography can be inverted successfully.



Summary

In this thesis, several new methods for the modelling and inversion of magnetotelluric
data have been developed. Starting from the physical description of the magnetotelluric
experiment, mathematical formulations have been derived for its simulation. Here,
two ways have been followed to realize this. The mathematical description for the
two-dimensional magnetotelluric problem was described and second order formulations
have been introduced. Here, the fields split into two modes, the TE- and TM-mode. To
simulate these modes, two second order partial differential systems need to be considered
in order to simulate the electrical or the magnetic field. Boundary value problems are
given for both and special assumptions have been made to use these formulations for
magnetotelluric modelling. For the three-dimensional case, a vector potential formulation
was given in terms of different gauging conditions. These gauging conditions are needed
to remove the ambiguousness in the formulation of the vector potential and enables a
stable discretization. To achieve this, second order formulations have been given to state a
boundary value problem for the three-dimensional case. In this potential field formulation
the fields are continuous across conductivity interfaces. This behavior is beneficial for
using a meshless algorithm, because in these kind of discretizations interfaces are difficult
to model. After defining the proper mathematical abstraction of the physical problem,
the numerical part of the formulation begins.
In this thesis, an introduction into meshless modelling was given and the basic concept
of a meshless modelling scheme was discussed. The advantages of using no meshes
and discretize the partial differential equations on point samplings have been described.
The basic scheme of constructing a discretization point by point, while gathering all
neighbours, was explained to introduce the building block of the discretization scheme
used in this thesis. The generalized moving least squares technique can approximate linear
functionals from a set of functional data, with the help of a local polynomial reproduction
system. This scheme needs to minimize a quadratic optimization problem with linear
constrains, to construct the coefficients used in the approximation. It was shown by a
couple of researchers, that this kind of approximation is related to the method of Backus
and Gilbert. An extension has been made to generalize the approximation scheme to
a staggered case, in which the divergence operator can be defined on a primal-dual
complex only using the neighbouring points and a radial component function. This forms
the basis of approximating vector fields and their divergence in the framework of the
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generalized moving least squares approximation. To predict theoretically the error of the
approximation scheme, error bounds are cited from the literature. In these bounds the
error is proportional to the fill distance of the point sampling and it should be decrease if
the fill distance increases. Also, the error is controlled by the polynomial degree. The
error bounds are given for all kinds of approximations presented in this thesis and they
can be used in conjunction with convergence tests.
By introducing a direct discretization scheme, it is possible to write the entire boundary
value problem in terms of functionals. Here, an algebraic system corresponding to the
discretization can be written only in terms of functionals. The task which remains, is to
approximate the functionals given by the actual partial differential system. To proceed
towards a meshless formulation for the magnetotelluric problem, two-dimensional and
three-dimensional meshless formulations of the second order systems are proposed. Here,
for the TE- and TM-mode different formulations using a set of linear functionals are
stated, and by using such methodology the formulation of the meshless three-dimensional
problem follows naturally. It can be seen, that a vector potential formulation can be
reformulated in terms of linear functionals. Using this scheme, one has to collect all
the coefficients from the functional approximation into an algebraic system to form the
discretization. After introducing the strong formulations to discretize the boundary value
problem, a weak formulation was given in terms of completeness. Here, integrals have to
be evaluated. This makes this formulation costly and an actual implementation was not
accomplished. After having defined all the formulations for the boundary value problems,
the actual implementations where described. The general work flow of a meshless scheme
purports the following tasks towards a meshless magnetotelluric scheme.
After defining proper scaled and shifted polynomial basis functions, weight functions have
to be defined. In order to calculate the normal equations in the functional approximations,
the actual implementations for the two- and three-dimensional case where given. Here,
different options are possible to define meshless approximation methods. The pure
point collocation scheme can be used, or the staggered scheme is available to discretize
the differential equations. An important part of the scheme is the description of the
conductivity interfaces. Different methods have been reviewed, and the ’double node’
approach has been selected in combination with a material averaging scheme, to serve in
the computations of this thesis.
Some remarks about the generation of point samplings have been made. Here, a lot of
possibility methods are available, but in this thesis a Poisson disk sampling algorithm is
used to generate unstructured point samplings. Also, it was discussed how to generate
spatially adapted point samplings using a stretching function. The chapter about solving
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the linear system informs about the methods, how to solve the sparse system of equations
which, results from the discretization. Here, the sparsity pattern of two matrices have
been presented and how the system is solved. Also, examples on the run times have
been given in comparison to values from the literature. After having all parts described
for the meshless implementations, example calculations were given. First, convergence
results have been presented for different meshless formulations. They confirm that it is
possible, even in the presence of steep conductivity contrasts, to achieve second order
accuracy. The results are compared to values from the literature and similar convergence
rates can be observed compared to finite element calculations. The effect of the spatially
adaptation of point samplings have been presented and discussed. After testing the
convergence of the meshless schemes, magnetotelluric example calculations have been
given to test the algorithm. Two models from the literature have been used to study the
accuracy of the meshless algorithm. The authors of these models provide analytical
results and the accuracy of the meshless scheme was tested against these values. It can
be concluded from the example calculations, that the meshless scheme provides a stable,
flexible and accurate solution to the two-dimensional magnetotelluric modelling problem.
The three-dimensional meshless algorithm was tested by using a simple conductivity
model. Here, in comparison to a solution from a finite differences algorithm the meshless
calculations are in a good agreement to these reference values.
After developing the two-dimensional magnetotelluric modelling algorithm, a meshless
scheme to invert magnetotelluric data has been proposed. Here, the difficulty lies in the
formulation of the Jacobian matrix, which is needed in the inversion process. Due to
instabilities in the Jacobi matrix formulation of the TM-mode, only the TE-mode was
considered in the later development. Then, a method to compute the needed regularization
was proposed and in the last part of this chapter, examples have been given to test the
newly developed inverse algorithm. Four different tests have been conducted in order
to investigate the resolution of the inverse problem, the ability to handle noisy data
and if it is possible to incorporate topography into the inversion process. All test have
been successfully accomplished and the newly inverse scheme performedwell in each case.
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Appendix

A.1 Mathematical function spaces

In this section the function spaces used in this thesis will be defined, and declared.
C0(Ω) denotes the space of all continuous functions in Ω equipped with the norm

| |u| |C0(Ω) = sup
x∈Ω
|u(x) |. (A.1)

Ck (Ω) denotes the space of all k-times continuous functions inΩ equipped and is defined
as

Ck (Ω) =
{
u ∈ C0(Ω); ∂αu ∈ C0(Ω), ∀|α | ≤ k

}
. (A.2)

Lp(Ω) is the space for all Lebesgue measurable functions u : Ω → R, for which
| |u| |Lp (Ω) < ∞, with the Lp(Ω)-norms

| |u| |Lp (Ω) =




(∫
Ω
|u|p dx

)1/p
for p < ∞

ess supx∈Ω |u(x) | for p = ∞
. (A.3)

W k
p (Ω) is a Sobolev Space

W k
p (Ω) =

{
u ∈ Lp(Ω); ∂αu ∈ Lp(Ω), ∀|α | ≤ k

}
, (A.4)

equipped with the W k
p (Ω)-norms

| |u| |W k
p (Ω) =




(∑
|α |≤k

∫
Ω
|∂αu|p dx

)1/p
, for p < ∞

max|α |≤k
(
ess supx∈Ω |∂

αu(x) |
)
, for p = ∞

. (A.5)

A.2 Point samplings
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Figure A.50: Regular point sampling for the model of Schwalenberg and Edwards (2004) with an
amplitude of 4 = 50m, used for the calculations in Chapter 3.8.
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Figure A.51: Spatial adapted regular point sampling for the model of Schwalenberg and Edwards
(2004) with an amplitude of 4 = 50m, used for the calculations in Chapter 3.8.
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Figure A.52: Spatial adapted regular point sampling for the model of Schwalenberg and Edwards
(2004) with an amplitude of 4 = 50m, used for the calculations in Chapter 3.8.
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Figure A.53: Regular point sampling for the model of Schwalenberg and Edwards (2004) with an
amplitude of 4 = 100m, used for the calculations in Chapter 3.8.
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Figure A.54: Spatial adapted regular point sampling for the model of Schwalenberg and Edwards
(2004) with an amplitude of 4 = 100m, used for the calculations in Chapter 3.8.
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Figure A.55: Finite element mesh for the model of Schwalenberg and Edwards (2004) with an
amplitude of 4 = 50m, used for comparison in Chapter 3.8.
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