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Parts of this work have been published:

Teile dieser Arbeit wurden bereits verffentlicht:

Diletta Edifizi and Björn Schumacher

Genome Instability in Development and Aging: Insights from Nucleotide Excision Repair in

Humans, Mice, and Worms

Biomolecules 2015, 5, 1855-1869; — doi: 10.3390/biom5031855

i



Berichterstatter: Prof. Dr. Björn Schumacher

Prof. Dr. Markus Krüger
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Summary

DNA damage comprises a causal factor for ageing and ageing-associated diseases. Defects

in genome maintenance pathways give rise to a variety of human congenital syndromes that

are characterized by growth retardation, cancer susceptibility, and accelerated ageing. The spe-

cific consequences of unrepaired DNA damage in human diseases are particularly apparent

in syndromes caused by distinct nucleotide excision repair (NER) defects; however, with yet

poorly understood genotype-phenotype correlations and highly complex disease phenotypes.

It is established that the equivalent mutations in the simple metazoan Caenorhabditis elegans

reflect the distinct outcomes of DNA repair defects and allow investigation of the consequences

of persistent DNA damage during animal development and ageing. Here, we conducted pro-

teome, lipidome, and phosphoproteome analysis of NER-deficient animals in response to UV-B

treatment to gain comprehensive insights into the full range of physiological adaptations to

unrepaired DNA damage. We derive metabolic changes indicative of a tissue maintenance pro-

gram and implicate an autophagy-mediated protoestatic response. We assign central roles for

the IIS regulator DAF-2, and the EGF- and AMPK-like signalling pathways in orchestrating

the adaptive response to DNA damage. Our results provide new insights into the DNA damage

responses in the organismal context.

iv



Zusammenfassung

DNA-Schäden zählen zu den grundlegenden Faktoren, die sowohl für das Entstehen von al-

tersbedingten Krankheiten, als auch den Alterungsprozess selbst verantwortlich sind. Defekte in

DNA-Schadensreparaturmechanismen verursachen zahlreiche kongenitale Syndrome im Men-

schen, die durch Wachstumshemmungen, ein erhöhtes Krebsrisiko sowie einen beschleunigten

Alterungsprozess charakterisiert sind.

Die spezifischen Konsequenzen nichtreparierter DNA-Schäden, die während menschlicher

Krankheiten auftreten können, sind besonders bei verschiedenen durch Defekte in Nuk-

leotidexzisionsreparaturmechanismen ausgelösten Syndromen, wobei deren genauen Genotyp-

Phänotyp-Korrelationen und hochkomplexen Krankheitsbilder noch immer unvollständig

definiert sind.

Äquivalente Mutationen im mehrzelligen Modellorganismus Caenorhabditis elegans resul-

tieren in ähnlichen DNA-Reparaturdefekten und erlauben daher eine eingehendere Unter-

suchung der Konsequenzen von bleibenden DNA-Schäden, die während der Entwicklung und

des Alterungsprozesses des Tieres auftreten können.

In der vorliegenden Arbeit wurden UV-bestrahlte Würmer mit defizitärer Nukleotidexzision-

sreparatur einer Proteom-, Lipidom-, und Phosphoproteomanalyse unterzogen, um einen um-

fassenden Überblick über die Gesamtheit der physiologischen Adaptionen an das Vorhanden-

sein fortbestehender DNA Schäden zu erhalten.

Wir beobachten metabolische Veränderungen, die auf ein spezifisches Gewebeinstandhal-

tungsprogramm hindeuten und eine Autophagie-vermittelte, proteostatische Antwort im-

plizieren. Wir bestimmen zentrale Rollen für den insulinähnlichen Signalwegsregula-

tor DAF-2 und die EGF- und AMPK-hnlichen Signalwege in der Orchestrierung dieser

DNA-Schadensantwort. Die Ergebnisse dieser Arbeit bieten neue Einblicke in die DNA-

Schadensantworten im organismischen Kontext.
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Chapter 1

Introduction

Global societies experience demographic changes with an increasing burden of ageing-

associated diseases. Understanding the causes of ageing and the mechanisms driving the ageing

process remains still one of the major scientific challenges. The maintenance of the genome

throughout life is of particular importance, as the DNA damage accumulation is thought to

comprise a driving factor for the ageing process [91, 238]. Indeed, DNA lesions are con-

stantly formed amid genotoxic attacks by exogenous sources such as UV light (UV) and ioniz-

ing radiation (IR) or endogenous insults, such as reactive oxygen species (ROS) or metabolic

by-products. To overcome the potential deleterious effects of genomic instability, cells have

evolved specialized DNA repair systems, each repairing specific types of lesions. Base exci-

sion repair (BER) rapidly removes ROS and oxidized bases produced during metabolic pro-

cesses [68]. Mismatch repair (MMR) swipes up mistakes missed by the replication machinery,

through scanning the newly replicated strand [138]. The error-prone non-homologous endjoin-

ing (NHEJ) [142] and the accurate homologous recombination (HR) pathways [222] are key

mechanisms for repairing DNA double strand breaks (DSBs). Bulky DNA lesions that disturb

the normal double-helical structure of DNA, such as UV-induced 6-4 pyrimidine photoproducts

(6-4PPs) [154] and cyclobutane pyrimidine dimers (CPDs) [211], are repaired by the nucleotide

excision repair (NER) [?]. The bulky DNA lesions that disturb the normal double-helical struc-

ture of DNA, as UV-induced 6-4 pyrimidine photoproducts (6-4PPs) [154] and cyclobutane

pyrimidine dimers (CPDs) [211], are repaired by the nucleotide excision repair (NER) [36].

Mutations in the above-mentioned DNA repair systems have been identified in human patients

who suffer from elevated cancer susceptibility or premature ageing syndromes [209]. A clear
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CHAPTER 1. INTRODUCTION

distinction between cancer susceptibility and premature ageing has been observed in patient

groups that carry distinct mutations in NER. For this reason, mutations in NER have been

highly instructive for understanding the links between unrepaired DNA damage, and cancer

development and accelerated ageing.

1.1 Ultraviolet-induced DNA lesions

Sunlight is a primary energy source for life on earth, but can also pose a serious genotoxic

threat for most living organisms due to the variety of its adverse effects [217]. UV radiation is

a component of sunlight, and its electromagnetic spectrum can be subdivided into ranges de-

pending on its wavelength: UV-A (400-315 nm), UV-B (315-280 nm) and UV-C (280-100 nm).

UV-C is almost completely absorbed by the ozone layer and the atmosphere, along with most

of the UV-B radiation [149]. UV-A is the most abundant but is less biologically relevant than

UV-B, which is the best-absorbed radiation by the DNA [191]. UV radiation directly interacts

with nucleotides to form mainly three types of mutagenic DNA lesions: CPDs [211], 6-4PPs

[154], and Dewar valence isomers (DEWs) [225] (Figure 1.1). CPDs are the most prevalent

UV-induced DNA photoproducts, causing only a slight bend in the DNA helix, while the 6-

4PPs induce a severe structural distortion of the DNA backbone at the site of the lesion [113].

6-4PPs are easily converted into their related DEWs upon further exposure to UV-B radiation

[192]. Some organisms that are highly exposed to sunlight, such as plants and marsupials, pos-

sess specialized photolyases that can directly revert either one of these lesions by splitting up

the bulky bond [23]. Other organisms only employ the NER to repair the damage by excising a

stretch of DNA surrounding the lesion and synthesizing a new undamaged strand [92].

1.2 The NER pathway

6-4PPs and CPDs, are removed by two distinct NER sub-pathways: global-genome (GG-)

NER, which scans the entire genome for helix-distorting lesions, and transcription-coupled (TC-

) NER, which is directed at locations of stalled transcriptional complexes in actively transcribed

genes [152] (Figure 1.2).
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UV radiation 

UV radiation 

UV radiation 

UV radiation 

Figure 1.1: Chemical structure of UV-induced DNA lesions. The structure and formation of the three major

classes of DNA lesions: CPDs, 6-4PPs and DEWs (modified from Rastogi,2010 [191]).

1.2.1 DNA damage recognition

GG-NER initiates with the detection of the DNA helix distortion by the damage sensor com-

plex XPC-RAD23B [220]. The poor substrate specificity of XPC-RAD23B for CPDs requires

the presence of the additional UV-DDB (UV DNA damage binding protein) complex, con-

3
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sisting of DDB1 and DDB2/XPE [241, 67]. UV-DDB, together with CUL4A (cullin 4A) and

ROC1 (regulator of cullins 1), forms a larger ubiquitin ligase complex [80] that ubiquitinates

DDB2 and XPC in response to UV-irradiation, thereby increasing XPC’s DNA-binding prop-

erties [221]. TC-NER is instead activated by the stalling of RNA polymerase II (RNAP II) at

the site of a transcription-blocking DNA lesion. The TC-NER-mediated response is initiated

by the recruitment of two TC-NER-specific proteins: CSA (Cockayne syndrome complemen-

tation group A) and CSB (Cockayne syndrome complementation group B) [69]. CSA encodes

a WD40 repeat protein, involved in protein-protein interactions with CSB, and a subunit of

RNAP II. It forms, along with DDB1, CUL4A, and ROC1, a complex exhibiting ubiquitin

ligase activity [204]. CSB is a repair-coupling factor that belongs to the SWI/SNF family of

ATP-dependent chromatin remodelers, and has additional nucleosome remodeling activity by

binding to core histone proteins in vitro [35]. CSB stimulates transcription elongation by RNAP

II [210], and together with CSA is required for further assembly of the TC-NER machinery.

Cells carrying defective CSA or CSB lack the selective repair of transcribed genes, showing

elevated UV-sensitivity [237].

1.2.2 DNA damage verification, strand incision and repair synthesis

Once a lesion is detected by the GG-NER or TC-NER machineries, the TFIIH (transcription

initiation factor IIH) complex is recruited for DNA damage verification, to unwind, and sub-

sequently to open the DNA helix using its core helicase subunits XPB and XPD [208]. After

helix opening, XPA, XPG, and the replication protein A (RPA) are recruited to the repair site,

with a consequent release of the XPC-RAD23 complex from the DNA [198]. XPA allows the

assembly of the preincision complex, meanwhile RPA coats and protects the undamaged strand,

aiding the positioning of the endonucleases ERCC1-XPF and XPG on the damaged strand [50].

The ERCC1-XPF endonuclease catalyzes the first incision at the 5-end, followed by the 3-end

incision performed by XPG [218]. The free 3-hydroxyl group produced by the 5-excision is

sufficient to start repair synthesis. Meanwhile the TFIIH-bound oligonucleotide carrying the

lesion is released and subsequently degraded [108]. Distinct DNA polymerases (DNA Polδ ,

Polε , and Polκ) [183] are required for the repair synthesis, with the help of the replication

clamp PCNA and the clamp loader RFC [214]. The DNA Polε requires the DNA ligase 1 for

gap-filling synthesis in proliferating cells [168] (Figure 1.2).

4



CHAPTER 1. INTRODUCTION

CPDs

6-4PPs

GG-NER
CPDs

6-4PPs

nascent mRNA
RNA Pol IICSB

RNA Pol IICSA

RAD23B

XPB XPD

XPG

XPB

XPA

XPD

PCNA

XPF

ERCC1

XPA

RPA

XPG

TC-NER

XPE UV-DDB

XPC

XPE UV-DDB

XPC

RPA

CSB

XPGXPF

ERCC1

DNA ligase

DNA polymerase

PCNA

PCNA

RPA

Figure 1.2: Nucleotide excision repair sub-pathways. GG-NER recognizes DNA lesions while scanning the

whole genome, while TC-NER initiates repair when RNA polymerase II stalls at a lesion. Except the initial

damage recognition part, the verification, dual excision, repair synthesis and ligation mechanisms are shared.
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1.3 NER-deficiency syndromes in humans:

cancer versus development and ageing

Congenital syndromes that are caused by heritable mutations in DNA repair and genome

stability pathways, and that are manifested in cancer susceptibility and accelerated ageing, un-

derline the importance of genome maintenance for withstanding ageing [62]. Important in-

sights about the distinct consequences of genome instability have been provided by studying

NER deficiency syndromes [209]. Xeroderma pigmenstosum (XP) is an autosomal recessive

disease caused by mutations compromising only the GG-NER sub-pathway. Patients carrying

mutations in XPC or XPE genes, involved in initial damage detection, show UV-induced pig-

mentation abnormalities and high skin cancer susceptibility [119]. Mutations impairing only

the TC-NER sub-pathway (affecting CSA or CSB genes), cause instead the onset of Cockayne

syndrome (CS), a disease characterized by severe mental retardation traits and accelerated age-

ing [131]. Mutations in NER factors such as XPA and XPD, which are employed by both GG-

and TC-NER, can lead to XP (typically with neurodegenerative components) [54], rare cases

of XP combined with CS, and trichothiodystrophy (TTD) [119]. TTD patients in addition to

displaying photosensitivity, also suffer from prematurely aged appearance (progeria) [36].

1.4 Model organisms as a tool to study NER-deficiency

syndromes

Due to the complexity of the physiological alterations occurring in human pathologies re-

sulting from DNA repair defects, a number of model organisms including mice [5, 48, 47] and

nematodes [126, 219, 19], have been extensively used to investigate the mechanisms responding

to persistent DNA lesions in the context of development and ageing (Figure 1.3).

Mouse models, carrying the same mutations in NER genes identified in human subjects with

skin cancer susceptibility [51, 233, 206] or in CS and TTD patients [246, 226, 47, 234, 106],

have been created to better understand the pathological outcomes of DNA repair defects. The

complete inactivation of NER activity in Xpa mutant mice leads to high susceptibility to UV-

induced carcinogenesis [51]. The same susceptibility is observed upon partial NER inactivation
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Figure 1.3: Consequences of NER mutations in human patients in comparison to mice and C. elegansNER

models. In contrast to human patients, genetic inactivation of GG-NER (e.g., Xpc) or TC-NER (Csb or Csa) genes

alone in mice have comparatively mild consequences and mainly elevate susceptibility to UV-induced carcinogen-

esis. However, when genetically combined, the mutations give rise to severe CS-like phenotypes such as retarded

postnatal developmental growth and features of premature ageing.

in Xpc and Csb mutant mice, indicating distinct consequences compared to human patients in

whom skin cancer susceptibility had been primarily linked to GG-NER [233, 206]. The mild

progeroid phenotypes of Csb mutant mice were severely enhanced when either Xpc or Xpa

were additionally inactivated [234]. Although the mouse models are highly instructive, the

links between NER mutations and the pathological outcomes have remained poorly understood

[131]. Therefore simpler metazoan systems might be utilized to shed new light on the response

mechanisms to unrepaired DNA lesions in the context of development and ageing.

1.4.1 C. elegans as an in vivo model for NER-studies

The soil nematode Caenorhabditis elegans has been extensively used as a metazoan in vivo

model [22] to study ageing [174, 39] and to better understand the consequences of DNA re-

pair defects [125]. C. elegans is a microscopic (adults are about 1 mm long) and transparent
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free-living nematode, that undergoes a deterministic developmental program and that can be

easily genetically manipulated. Newly hatched larvae pass through four larval stages (L1 to

L4) before reaching adulthood. The adult worm, in case of hermaphrodites, self-fertilize to

generate offsprings within the first few days of adulthood [26]. C. elegans L1 larvae, in re-

sponse to environmental stresses, such as crowding, starvation and heat stress, are able to arrest

their development and enter in L1 diapause stage. This arrest is reversible, and characterized

by an increased nematode stress resistance [14]. In C. elegans most of the major mammalian

repair pathways, including NER, are evolutionarily conserved. NER in C. elegans is the major

pathway involved in the DNA damage response caused by UV radiation [125]. Mutations in

the two NER branches result in distinct outcomes of the UV response. Mutations in the GG-

NER gene xpc-1 lead to genome instability in proliferating cells, which in adult nematodes are

restricted to the germline [124]. UV-treated GG-NER-deficient xpc-1 mutant larvae complete

somatic development, though they are unable to develop a germline [169]. In contrast, TC-

NER-deficient csb-1 or csa-1 mutants undergo a somatic developmental arrest or delay upon

UV exposure, without their germline being affected [169, 124, 219, 7]. Thus, GG-NER de-

fects are linked to genome instability in proliferating cells, a hallmark of cancer development

in humans, while TC-NER defects mirror the growth defects and accelerated decline in tissue

functionality associated with CS [249, 196]. Completely NER-deficient xpa-1 or xpc-1;csb-1

double-mutants are UV-hypersensitive: even low UV doses cause both somatic and germline

growth arrest [219, 124, 169]. Taken together, the phenotypic distinction of GG- and TC-NER

mutants has established C. elegans as a useful genetic model for the study of NER deficiencies.

where GG-NER defects lead to genome instability in proliferating cells which in humans

comprises a causal event in malignant transformation, while TC-NER defects lead to severe

developmentalgrowth delays mirroring a primary CS-associated clinical feature.

1.4.2 Linking DNA damage to ageing and longevity

The conserved NER mechanisms acting during somatic development and tissue maintenance

provide a unique opportunity to investigate DNA damage response mechanisms during meta-

zoan development and ageing. In worms, as in mammals, highly conserved longevity assur-

ance mechanisms are involved in counteracting the detrimental consequences of persistent DNA

damage [62]. In NER-deficient mutants, the insulin/insulin-like growth factor signalling (IIS),
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a conserved pathway regulating development, stress resistance and lifespan, is activated. The

role of the IIS is to control the C. elegans development in response to environmental stresses

through its effector, the transcription factor DAF-16/FOXO. Under normal conditions, DAF-16

is hyperphosphorylated by IIS signalling and sequestered in the cytosol in its inactive form.

Only when IIS is turned off, for example during starvation, hypophosphorylated DAF-16 is ac-

tivated and it translocates into the nucleus to modulate expression of genes involved in stress

resistance and longevity [182]. The IIS pathway, through DAF-16, also responds in somatic

tissues upon UV treatment to counteract DNA damage-driven ageing by elevating tolerance

to persistent DNA damage [169, 28]. IIS attenuation in somatic tissues, leads to the activa-

tion of DAF-16, which overcomes the developmental delay and promotes tissue integrity in the

presence of unrepaired DNA lesions. A plethora of DAF-16 target genes have already been

identified, some of which regulated ROS scavengers, detoxification enzymes, chaperones, and

a large number of functionally uncharacterized genes [172, 250]. The bona fide longevity assur-

ance mechanisms of DAF-16 activity might antagonize DNA damage-driven growth retardation

and ageing by elevating tolerance towards persistent or accumulating DNA damage, thus raising

the threshold when the age-dependent accumulation of DNA damage leads to functional dete-

rioration [169]. Strikingly, NER-deficient csb-1;xpa-1 double mutant and ercc-1 mutant mice,

with growth defects and accelerated ageing phenotype, showed a similar dampening of the IIS-

equivalent somatotropic axis [178, 234, 232]. Taken together, studies on NER mutants sug-

gest the presence of highly conserved system-wide response mechanisms to genome instability

during nematode and mammalian developmentand ageing [62].

1.5 High-throughput approaches to identify global response

mechanisms upon stress

To date, high-throughput and quantitative mass-spectrometry (MS)-based approaches are

largely used for detection of global protein dynamics in complex organismal mixtures [76].

In C. elegans, many transcriptome and proteome studies have been performed, allowing the

identification of key regulators in response to stress [20, 169, 129, 188, 141], to IIS dampening

[78, 83, 202, 59, 53, 242], and during ageing [242, 174, 141, 39]. Moreover, coupling large-

scale proteome analyses [141, 129, 93, 242] and their post-translational modifications (PTMs),
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[17, 147] with global transcriptome studies [20, 169], is a powerful approach to gain knowl-

edge about the role of signalling pathways involved under normal and altered conditions [75].

MS-based lipidomic and metabolomics approaches [115, 102, 174, 39, 70, 53, 34] are recently

emerging as high throughput technologies to advance our understanding about molecular bio-

logical processes and metabolic changes indicative of physiological adaptations upon specific

conditions, such as stress [184, 89] or ageing [166, 97].

1.5.1 Role of lipids in cellular metabolism

In biological systems, fatty acids (FAs) play important roles in energy storage, membrane

dynamics and structure, and signalling [240, 95]. Lipids undergo cycles of synthesis and degra-

dation, fundamental to store and produce energy, generally defined as lipid metabolism. In the

cell, lipids are usually stored as triacylglycerols in cytoplasmic organelles, called lipid droplets,

which play a crucial role in the regulation of intracellular fat storage and energy metabolism

[11, 243]. Upon increased energy demand, triacylglycerols are hydrolyzed by lipases to form

the lipid intermediate diacylglycerol (DAG), working as second messenger to activate the down-

stream protein kinase C (PKC) [227], and free FAs, used as energy source [130]. Fatty acids not

only work as energy storage, but also serve as structural components of membranes. The biosyn-

thesis of complex straight chain FAs, starts in the cytosol from acetyl-CoA, which undergoes

chain elongation and extension steps through the action of carboxylase and fatty acid synthases

enzymes. Further cycles of elongation and desaturation of the previously formed short- and

medium-chain FAs lead to the formation of saturated (SFAs) and unsaturated (UFAs) long-chain

fatty acids, building blocks for the more complex sphingolipids (SL) and glycerophospholipids

[258](Figure 1.4).

Both SLs and glycerophospholipids are highly conserved components of cell membranes.

SLs are intermediates for the production of ceramide (Cer), a key product for the synthesis

of glucosylceramide (GlcCer) [236, 258], having a role in stress responses upon DNA dam-

age [261, 255, 256], and sphingomyelin (SM), which controls growth and ageing [46, 84].

Another major component of cellular membranes is the lipid class of glycerophospholipids

[236, 90, 258], synthesized from the intermediate phosphatidic acid. The downstream prod-

ucts of phosphatidic acid, DAG and cytidine diphosphatediacylglycerol (CDP-DAG), are both

intermediates for the synthesis of more complex glycerophospholipids: phosphatidylcholine
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Figure 1.4: Overview of the lipid biosynthesis processes. Principal pathways for the production of: lipid storage

(triacylglycerols) and the more complex membrane components sphingolipids (SL) and glycerophospholipids. The

key lipid class members are highlighted (modified from [94]).

(PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidylinositol (PI) and

phosphatidylglycerol (PG) [258] (Figure 1.4). Glycerophospholipids are pathogenic indica-

tors of many disorders, such as the neurodegenerative Alzheimers disease [247, 170] or cancer

[58], suggesting their possible implication in ageing-related changes. Based on the diverse and

widespread biological roles of lipids in terms of energy storage and intracellular signalling,

complete quantitative lipid profiles will be important to understand how biological system are

influenced by stress conditions.

1.5.2 Metabolic alterations as hallmark of stress and ageing

Lipids metabolism [251, 101, 112] is a biological modulator upon ageing [166, 97] or in re-

sponse to stress [184, 96, 223].

Together with protein synthesis, and autophagy [200, 193] it acts in cellular processes
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downstream of key pathways involved in growth, metabolism, stress responses, and can-

cer, such as the IIS pathway [70, 194, 53] and the target of rapamycin (TOR) pathway

[261, 262, 99, 128, 251] (Figure 1.5).

Figure 1.5: IIS and TOR as sensor pathways for nutrients and stress. TOR and IIS pathways incorporate en-

docrine (insulin and IGFs) and local signals (amino acids) in order to modulate growth and metabolism accordingly

(modified from [18])

The TOR signalling network, in parallel to the phosphatidylinositol 3-kinase (PI3)/AKT

pathway, controls fat metabolism by regulating the activation of the nuclear receptor PPAR,

which is responsible for efficient lipid accumulation [112]. Parallel to this, TOR also reg-

ulates, through phosphorylation, two downstream effectors, the ribosomal protein S6 kinase

beta-1 (S6K1, RSKS-1 in C. elegans) and the eukaryotic translation initiation factor 4E-binding

protein 1 (4E-BP1), to positively regulate protein synthesis. Upon increased amino acid avail-
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ability, TOR, via S6K1 phosphorylation, induces a negative feedback loop on the IIS pathway

[230], an important regulator of glucose and lipid metabolism [205, 252, 70, 71]. In response

to impaired proteostasis, a direct cause of ageing and genotoxic stress [189],TOR also activates

autophagy pathways. Under unfavorable conditions (such as nutrient deprivation) the inhibition

of TOR leads to autophagy, which through breakdown of lipid droplets (lipophagy), favours

lipid mobilization for use as an energy source [216]. Autophagy, under the regulation of the

IIS and TOR pathways, acts on lipid homeostasis upon germline loss C. elegans to positively

modulate ageing and longevity [127]. The autophagy process starts with the recruitment, in a

hierarchical order, of autophagy machinery components to sequester aberrant protein aggregates

into autophagosomes, which subsequently will fuse to lysosomes for degradation [43, 259, 200]

(Figure 1.6).
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Figure 1.6: Assembly of the C. elegans autophagy machinery. Autophagy-related proteins and protein com-

plexes are sequentially involved in the assembly of the autophagosome (macroautophagy) (modified from [259]).

1.5.3 Mass spectrometry approach and analysis

The liquid chromatography-tandem mass spectrometry (LC-MS/MS) is a very powerful and

sensitive technique used to identify and quantify molecules, from simple to complex mixtures,

based on their mass-to-charge (m/z) ratio. A MS experiment starts with protein extraction from

the biological sample, followed by protein lysis, reduction of protein disulfide bonds, and cys-

teine alkylation. The proteins are then digested into small peptides, which are easily fractionated

by LC to produce simpler spectra for protein identification. The purified sample is ionized and
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placed in a mass detection system for analysis. The values on the x-axis in the mass spectra re-

fer to mass-to-charge (m/z) ratios, whereas the values on the y-axis usually report the intensity

or abundance of the peptides [82] (Figure 1.7).

Mass (m/z)

R
el

at
iv

e 
In

te
ns

it
ie

s

Trypsin
Lys-c 
Asp-N
Glu-c

Cell/tissue

Spectra Analysis

Peptide Separation

HPLC
Ion exchange

Sample ionization/
Mass spectrometry

Protein 
Extraction 
and Lysis

In- Solution 
digestion

Reduction
Alkylation
DIgestion

Trypsin
Lys-c 
Asp-N
Glu-c

In- Gel
digestion

Reduction
Alkylation
DIgestion

Peptide Enrichment/Cleanup

Peptide 
Extraction 

1DE

Gel plug

Figure 1.7: Mass-spectrometry experimental procedure. Sample preparation involves a first step of lysis, fol-

lowed by protein or peptide enrichment, sample clean-up and protein digestion.

The identification of specific PTMs (e.g., phosphorylation, ubiquitination and glycosylation)

is obtained by enrichment of specific target peptides and sample clean-up using PTM-specific

antibodies or ligands. For example, global phosphorylation status can be assessed by immuno-

precipitation (IP) using anti-phospho-specific antibodies or by a sample pull-down using ti-

tanium dioxide (TiO2) beads, which selectively binds phosphorylated serine (pS), threonine

(pT) or tyrosine (pY). The raw files from the mass spectrometer are subjected to analysis using

the MaxQuant software, implemented with the Andromeda search engine [42, 40]. Acquired

MS/MS spectra are compared to reference proteome databases of the model organism used in

the study (for example, Uniprot and Wormbase for C. elegans assays). Gene Ontologies (GO),

KEGG and GSEA annotations (provided by the Uniprot database) are used as classification

methods to gain more detailed information about the proteins changing in the tested sample.

An improved knowledge about the protein signalling networks upon normal and altered condi-

tions can be achieved by creating a protein-protein interaction map, with the help of bioinfor-
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matics software platforms, such as Cytoscape [212]. In Cytoscape, protein abundance changes

and PTMs alterations are integrated with interaction data available from database repositories,

allowing to specifically highlighting regulated nodes and protein clusters.

1.6 Aim of study

The aim of this study is to use a MS technology-based approach to gain a comprehensive un-

derstanding of the response mechanisms to persistent DNA lesions on the C. elegans organismal

level. We analysed proteome, phosphoproteome, and lipidome alterations in response to UV-B

irradiation of xpc-1;csb-1 mutant worms, that are completely defective in the NER-mediated

removal of UV-induced DNA lesions [169]. This multiple omics approach on NER-deficient

mutants will provide a unique and detailed vision of the organismal adaptations the response

to persistent DNA damage. On the proteome level, we found similarities between the response

to UV irradiation in NER-deficient animals and proteome alterations during ageing, as well as

proteome alterations in response to starvation, both of which are regulated through the IIS path-

way [174, 242, 141, 129, 188, 59, 53]. Moreover, at the metabolic level we observed a reduction

in abundance of proteins functioning in carbohydrate, amino acid, and lipid metabolism that re-

semble metabolic changes observed upon starvation [129] and during ageing [174, 39]. We also

observed a significant role of autophagy, under the regulation of TOR and IIS pathways, in the

maintenance of tissue functioning amid persistent DNA damage. Next, we devised a compre-

hensive signalling response network to DNA damage by integrating proteome and phosphopro-

teome changes upon persistent DNA damage. Furthermore, by analysing lipidome changes, we

identified metabolic alterations that indicate a shift to somatic preservation in response to DNA

damage. With our analysis we provide new insights into the physiological adaptations of animal

response to persistent DNA damage, and an interesting starting point for future investigations

of protein candidates to develop signal transduction networks.
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Materials and Methods

2.1 C. elegans handling techniques

2.1.1 Growing conditions

In this study, C. elegans strains were cultured and maintained according to standard

laboratory conditions (20◦C) on nematode growth medium (NGM) plates seeded with OP50

Escherichia coli strain [22]. E. coli cultures were grown in lysogeny broth (LB) medium,

overnight at 37 ◦C with constant shaking at 180 rpm. M9 buffer was used to collect and wash

the worm samples. The strains and the specific solutions used in the study are listed in Table

2.1 and Table 2.2 .

Strain Genotype

N2 Wildtype

BJS724 atg-3(bp412)

BJS725 atg-9(bp564)

BJS21 xpc-1(tm3886);csb-1(ok2335)

BJS21 xpc-1(tm3886);csb-1(ok2335);daf-16(mu86);zIs356[daf-16::GFP;rol-6]

RB796 sta-1(ok587)

Table 2.1: C. elegans strains used in this study provided by the CGC
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M9 buffer (for 1 liter)

KH2PO4 3 g

NaHPO4 6 g

NaCl 5 g

reached 1 liter with distilled H2O

autoclaved at 121◦C for 20 min

cooled down to room temperature before adding:

1 M MgSO4 1 ml

NGM Agar (for 1 liter)

Bacto Peptone 2.5 g

NaCl 3 g

Serva Agar 17 g

reached 1 liter with distilled H2O

autoclaved at 121◦C for 20 min

cooled down to room temperature before adding:

1 M CaCl2 1 ml

1 M MgSO4 1 ml

5 mg/ml Cholesterol 1 ml

1 M KPO4 25 ml

Nystatin 2.5 ml

EP Agar (for 1 liter)

Bacto Peptone 20 g

NaCl 1.2 g

Serva Agar 25 g

reached 1 liter with distilled H2O

autoclaved at 121◦C for 20 min

cooled down to room temperature before adding:

1 M CaCl2 1 ml

1 M MgSO4 1 ml

5 mg/ml Cholesterol 1 ml

1 M KPO4 25 ml

Nystatin 2.5 ml

LB medium (for 400 ml)

NaCl 4 g

Tryptone 4 g

Yeast extract 2 g

reached 400 ml with distilled H2O

Table 2.2: Common solutions used for C. elegans handling
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2.1.2 Genotyping strains

The genotype of worm strains were confirmed using polymerase chain reaction (PCR) per-

formed in the C1000 Thermal Cycler (BioRad) with the corresponding primer sets. The DNA

was obtained by incubating the worms in worm lysis buffer, supplemented with proteinase K

to allow protein digestion (see recipes below). After 1 h at 65 ◦C and 10 min at 95 ◦C in the

Thermal Cycler, the lysate can be mixed with the PCR master mix to allow for the genotyping

reaction to be run (Table 2.3 and Table 2.4) .

Worm lysis buffer (for 100 ml)

1 M KCl 5 ml

1 M Tris (pH 8.3) 1 ml

1 M MgCl2 250 µl

Tween 20 450 µl

reached 100 ml with distilled H2O

autoclaved at 121◦C for 20 min

cooled down to room temperature before adding:

Gelatine 0.01 g

Proteinase K (20 mg/ml) with 1:20 dilution right before use

Table 2.3: C. elegans lysis buffer

PCR Master-mix (for 20 µl)

Distilled H2O 11.3 µl

5x reaction buffer(Bioline) 4 µl

50 mM MgCl2 1 µl

10 mM dNTP 0.5 µl

10 mM primer forward 1 µl

10 mM primer reverse 1 µl

Mango Taq DNA polymerase 0.2 µl

Single-worm lysate 1 µl

Table 2.4: Reagents mix for PCR reaction

Running a gradient of the annealing temperatures allowed the optimization, for each muta-

tion, of the final PCR programs (see the set up for a standard genotyping PCR in Table 2.5).
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Standard Genotyping PCR

95◦C 4 minutes Initial denaturation

95◦C 30 seconds Denaturation

55◦C-60◦C 30 seconds Annealing

72◦C (1min/kb) Extension

Go to step 2 for another 34 cycles Cycles of denaturation,annealing and extension

72◦C 7 minutes Final extension

10◦C forever

Table 2.5: Standard PCR reaction for genotyping C. elegans strains

2.1.3 Hypochlorite treatment for worm synchronization

Adult worms growing on NGM plates were washed off with M9 buffer (see Table 2.2)

adjusted to a volume of 4 ml and mixed with 1:1 volume of bleaching solution (see Table

2.6). The worms were lysed in this mixture by vortexing for 5 m to allow their rupture and the

consequent release of the eggs. Eggs were collected by centrifugation for 1 m at 2000 rcf and

washed three times with M9 buffer. Synchronized L1 larvae were obtained by leaving these

eggs hatching in M9 buffer overnight at 20 ◦C with shaking.

Bleaching solution (for 50 ml)

1 M KOH 12.5 ml

Sodium hypochloride 10 ml

reached 50 ml with distilled H2O

Table 2.6: Solution mix for hypochlorite treatment

2.2 Sample processing for mass spectrometry

2.2.1 Entire worm lysate (EWL) preparation for Mass Spectrometry

Aged-synchronized xpc-1;csb-1 double mutants growing on EP-agar plates were treated

with hypochlorite treatment to obtain a large population of synchronised L1 larvae. L1 larvae

were filtered through a 11 m Nylon Net filter, then transferred to NGM OP50-seeded plates

and fed for 3 h at 20◦C before being UV-treated (310 nm) with 100mJ/cm2, using a UV6 bulb

(Phillips) in a Waldmann UV236B irradiation device or mock-treated. In parallel, worms for

the starvation assay were kept rolling in M9 buffer. Around 2 million L1 larvae were used for
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each replicate condition. Starved and UV-treated worms were kept at 20◦C for 6 h before they

were collected in M9 buffer. Worms were concentrated by centrifugation and washed using an

Extraction buffer (see Table 2.7). The pellet was immediately flash frozen in liquid nitrogen.

Extraction solution (for 25 ml)

1 M HEPES−KOH,pH 7.5 1.25 ml

5 M NaCl 1.5 ml

0.5 M EDTA,pH 8.0 50µl

10% Triton X 2.5 ml

10 % sodium deoxycholate 250µl

50 % glycerol 5 ml

reached 25 ml with distilled H2O

added 1 tablet of Protease inhibitor cocktail right before use

Table 2.7: Protein extraction buffer

Worms pellets were resuspended in one volume of Extraction buffer (compatible with the

Pierce 660nm Protein assay requirements) and homogenised in tubes with zirconia beads (4 cy-

cles, 6000 x 2; 20 s) using the Precellys24 Homogenizer with the Cryolys Cooling Unit (Peqlab,

Germany). The supernatant containing the proteins was collected after 15 m of centrifugation

at 4◦C. The total protein concentration was measured using the Pierce 660nm Protein assay

(Thermo Scientific).

2.2.2 In solution digestion

Pellets were re-suspended in 6 M Urea, 2 M Thio-Urea in 10 mM Hepes buffer using a

Bioruptor instrument. Clarification of lysate was done by centrifugation (14,000 rpm, 10 m).

Supernatant was collected and proteins were reduced by Dithiothreitol (DTT, 10 mM, room

temperature, 45 m) and alkylated by Iodacetamide (55 mM, room temperature in the dark, 45

m). Lys-C was added at a 1 to 100 (enzyme to substrate) ratio and pre-digestion was performed

for at least 2h at room temperature. Urea concentration was diluted to 2M using 50 mM Ammo-

nium bicarbonate and Trypsin was added at a 1 to 100 ratio. Digestion was performed overnight

at room temperature and was stopped by acidification. Peptides were desalted by C18 Water

Cartridges and 50 g peptides were used for proteome analysis while the remaining peptides

were subjected for phosphopeptide enrichment.
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2.2.3 Phosphopeptide enrichment

Eluted peptides were acidified to 6 % trifluoroacetic acid (TFA) and the final acetonitrile

(ACN) concentration was 60 %. In total, 5 extraction steps were performed at a beads-to-peptide

ratio of 3:1. In detail, beads were dissolved in 60 % ACN, 6 % TFA, added to peptide mixture,

and incubated on a rotating wheel for 20 m at room temperature. This step was repeated five

times and fractions were washed in 60 % ACN, 1 % TFA. Beads were transferred on C8 stage

tips, pooling the last two fractions, and washed three times with 300 L of 60 % ACN, 1 % TFA.

Then, beads were washed using 40 % ACN, 0.5 % CH3COOH. Phosphorylated peptides were

eluted by 3 x 30 µL of 40 % ACN, 3.75 % NH4OH, dried in a speed vacuum and re-suspended

in 2.5 % ACN, 5 % formic acid.

2.2.4 Peptide analysis by liquid chromatography and mass spectrometry

Peptides were eluted from C18 tips with 30 µL of 0.1 % formic acid in 60 %ACN, con-

centrated in a speed vacuum to complete dryness and re-suspended in 10 µL buffer A (0.1 %

formic acid). The liquid chromatography tandem mass spectrometry (LC-MS/MS) equipment

consisted out of an EASY nLC 1000 coupled with a nano-spray electroionization source to the

quadrupole based QExactive Plus instrument (Thermo Scientific). Peptides were separated on

an in-house packed 50 cm column (1.9 m C18 beads, Dr. Maisch) using a binary buffer system:

A) 0.1 % formic acid, and B) 0.1 % formic acid in acetonitrile as described previously [120].

The content of buffer B was raised from 7 % to 23 % within 220 m and followed by an increase

to 45 % within 10 m. Then, the column was washed with 85 % B for 5 m and re-equilibrated

to 5 % B within. Total gradient time was 240 m. A similar gradient shape was applied for

phosphor-proteome analysis but shortened to a total gradient time of 120 m. Eluting peptides

were ionized by an applied voltage of approx. 2.2 kV. MS1 spectra were acquired using a

resolution of 70,000 (at 200 m/z), an Automatic Gain Control (AGC) target of 3e6 and a max-

imum injection time of 20 ms in a scan range of 300-1750 Th. In a data-dependent mode, the

10 most intense peaks were selected for isolation and fragmentation in the higher-energy col-

lisional dissociation (HCD) cell using a normalized collision energy of 25 % and an isolation

window of 2.0 Th for proteome and 1.8 for phosphor-proteome analysis. Dynamic exclusion

was enabled and set to 20 s. The MS/MS scan properties were: 17.500 resolution at 200 m/z,
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an AGC target of 5e5 (for phosphor proteome analysis: 1e6) and a maximum injection time

of 50 ms. Excellent reproducibility for the proteome dataset (r >0.95 for biological replicates)

was determined by the Pearson correlation coefficient (r) (Figure 2.1A). The correlation plot of

the phosphoproteome dataset upon each treatment (untreated, UV-treated and starvation) shows

how the biological replicates cluster together (Figure 2.1B). The distributions of the individual

phosphorylated residues (Ser/Thr/Tyr) (Figure 2.1C) and the number of phospho groups per

peptide we detected, were similar to those obtained in previous studies [17, 147].

2.2.5 MaxQuant and bioinformatics

All raw files were subjected to MaxQuant 1.5.2.8 analysis using the implemented Andromeda

search engine [42, 40]. Acquired MS/MS spectra were compared to the Uniprot reference pro-

teome database of C. elegans. Using the implemented revert-algorithm, we used a false dis-

covery rate (FDR) cutoff at the peptide-spectrum-match, protein and modif. site level of 1 %.

For first and main MS/MS searches the peptide mass tolerance was set to 20 and 4.5 ppm,

respectively. Phosphorylation (STY), acetylation at protein N-termini, and oxidation of methio-

nine residues were defined as variable modification, while carbamidomethylation was set as a

fixed modification. The minimal score for modified peptides was 40. Re-Quantify, label-free-

quantification and match-between-runs options were enabled using default settings. BLAST

searches were performed using desktop version 2.2.31 by comparing C. elegans and human

reference proteomes of the Uniprot consortium (downloaded Jan. 2015). BLAST results were

accompanied by E-values and Bitscores, as well as the alignment length. An e-value cutoff of

1E-4 was used. Note that the e-value is highly dependent on the search space and varies be-

tween different databases. Gene Ontology annotations for both species were imported based on

Uniprot entries using Perseus. Heatmaps were done with the statistical programming software

package Rstudio using the ggplots package. Network analysis was performed in Cytoscape

[212, 37] using WormBase (www.wormbase.org) as the reference network. The color gradient

of the nodes indicates the grades of up or down-regulation at the proteome level while the three

different shapes indicate the phosphorylation status of these proteins. Proteomics light label

free quantification data (not SILAC data) from [242] were imported based on the first Uniprot

identifier and correlated to our dataset. Ratios were also calculated based on these values mean-

ing that the calculated ratio might differ from the SILAC based ratio presented in the study. The
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Figure 2.1: Proteome and phosphoroteome datasets reproducibility from xpc-1;csb-1 double mutants upon

each treatment (untreated, UV-treated, and starvation). (A) Almost a linear correlation was observed for

biological replicates of the proteome dataset. (B) Biological replicates of the phosphoproteome dataset cluster

together, within a range of correlation from 0,7 to 1 as reported in the colour key map on the top left of the panel.

(C) Distribution of the individual phosphorylated residues (Ser/Thr/Tyr): serine phosphorylation was the most

represented (shown in blue), while tyrosine phosphorylation occurred in less than 1 % of the phosphorylation sites

(orange).

mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium

via the PRIDE [239] partner repository with the dataset identifier PXD005649.
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2.3 Lipid analysis

2.3.1 Thin layer chromatography

500,000 C. elegans L1 larvae, collected after starvation and UV treatment, were homogenized

in 1 ml of Milli-Q water using the Precellys 24 Homogenisator (Peqlab, Erlangen, Germany)

at 6,500 rpm for 30 s. The protein content of the homogenate was routinely determined using

bicinchoninic acid. Lipids were extracted and purified as previously described [15]. Lipids

were applied to 20 10 cm high performance thin layer chromatography (HPTLC) Silica Gel 60

plates (Merck, Darmstadt, Germany), which were pre-washed twice with chloroform/methanol

1:1 (v/v) and air-dried for 30 m. For the detection of triacylglycerols, each lane of the TLC

plate was loaded with the equivalent of 40 g of protein. The TLC solvent system used was

hexane/toluene 1:1 (v/v), followed by hexane/diethyl ether/glacial acetic acid 80:20:1 (v/v).

Standard lipids (Sigma-Aldrich, Taufkirchen, Germany) applied to the TLC plates in addition

to the lipid samples were used for lipid identification. For detection of lipid bands, the TLC

plates were sprayed with a phosphoric acid/copper sulfate reagent 15.6 g of CuSO4(H2O)5 and

9.4 ml of H3PO4 (85 %, w/v in 100 ml of water) and charred at 180 ◦C for 10 m [253].

2.3.2 Lipid analysis by mass spectrometry

Relative amounts of sphingolipids (ceramides, glucosylceramides, and sphingomyelins),

were determined by liquid chromatography coupled to electrospray ionization tandem mass

spectrometry (LC-ESI-MS/MS). Aliquots of the C. elegans L1 larvae homogenates (see above)

being equivalent to 80 g of protein were diluted to 100 l with Milli-Q water. 750 µl of

methanol/chloroform 2:1 (v/v) and internal standards (100 pmol ceramide 17:0, Matreya, Pleas-

ant Gap, PA, USA; 123 pmol sphingomyelin 12:0, 122 pmol glucosylceramide 12:0, both Avanti

Polar Lipids, Alabaster, AL, USA) were added. Lipid extraction and LC-ESI-MS/MS analysis

were performed as previously described Schwamb:2012bi. Sphingolipid species were moni-

tored in the positive ion mode with their specific multiple reaction monitoring (MRM) tran-

sitions. As characteristic product ions in Q3 the choline headgroup (m/z 184) was used for

sphingomyelin species, and the C17 isosphingosine base after water loss (m/z 250) was used for

endogenous ceramides and glucosylceramides [158]. Endogenous sphingolipids were quanti-
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fied by normalizing their peak areas to those of the internal standards. Relative amounts of glyc-

erophospholipids (PC, PE, PI, PS, PG) were determined by ESI-MS/MS with direct infusion of

the lipid extract (Shotgun Lipidomics). Aliquots of the C. elegans L1 larvae homogenates (see

above), equivalent to 100 g of protein were diluted to 500 l with Milli-Q water. 1.875 ml of

methanol/chloroform 2:1 (v/v) and internal standards (135 pmol PC 17:0-14:1, 161 pmol PE

17:0-14:1, 127 pmol PI 17:0-14:1, 136 pmol PS 17:0-14:1, 155 pmol PG 17:0-14:1, Avanti Po-

lar Lipids, Alabaster, AL, USA) were added. Lipid extraction and ESI-MS/MS analysis were

performed as previously described [121].

2.4 Analysis of somatic arrest post UV-B-irradiation

An aged-synchronized population of adult worms was bleached, and the eggs were allowed

to hatch overnight rolling at 20◦C, in M9 buffer. Arrested L1 larvae were put onto empty

NGM plates and irradiated with 310 nm UV-B light using Phillips UV6 bulbs in a Waldmann

UV236B irradiation device, or were mock-treated. (Irradiation was measured using a UVX

digital radiometer and a UVX-31 probe from UVP and was generally around 0.3 mW*cm-2).

E. coli OP50 bacteria was to the plates, which were then incubated at 20 ◦C. After 48 h the

larval stages were scored.

2.5 Statistical analysis

Statistical analyses were performed in Rstudio. Information about sample size and statistical

methods isdescribed in figure legends. Volcano plots, scatter plots, and bar charts were created

in Rstudio. The independent 2-group t-test was used for calculating statistical significance. A

* single asterisk represents a p value < 0.05, **double asterisks < 0.01 and *** triple asterisks

< 0.001.

2.6 Software and databases

Data analysis, processing and visualization were performed using the following software:

MaxQuant and Perseus (MPI), Adobe Creative Suite CS4 (Adobe Systems Inc), Papers 3
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(Mekentosj), Microsoft Office 2011 (Microsoft Corp.), GraphPad prism 5 (GraphPad Software),

R (CRAN), R Studio (version 0.99.489, 2009-2015), TeXShop 3.36.1 (Richard Koch). Mining

of scientific literature was done using National Center for Biotechnology Information database

(NCBI,www.ncbi.nlm.nih.gov) was used to mining scientific literature. Interaction maps were

built using the Cytoscape software 3.2.1 and the existing network of interaction provided by

WormBase (www.wormbase.org). Gene Ontology Consortium (www.geneontology.org) was

used to perform Gene ontology classification. Uniprot (EMBL-EBI) was used as a platform for

protein information, such as protein sequence, classification and functional information. C. ele-

gans handling techniques were obtained from WormBook (www.wormbase.org) and C. elegans

specific gene and protein information were obtained from WormBase (www.wormbase.org).

2.7 Reagents and instruments

In this study standard laboratory techniques for molecular biology, biochemical and microbi-

ological experiments have been used. Consumable plastic ware, reagents, chemicals and instru-

ments were obtained from the following suppliers: Amersham Biosciences, Applied Biosys-

tems, Bio-rad, Carl Roth, Clontech, Diagenode, Eppendorf, Fermentas, GE Healthcare, Invit-

rogen, Merck, Metabion, Millipore, New England Biolabs, Peqlab, Qiagen, Roche, Sarstedt,

Serva, Sigma Aldrich, ThermoFisher Scientific, VWR, Union Biometrica.
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Results

In order to gain knowledge into the proteome response to unrepaired DNA damage at the

organismal level, we employed a mass-spectrometry-based quantitative proteomics approach

using C. elegans as a model. To achieve persistence of specific DNA lesions, we treated

worms that were completely NER-deficient, due to mutations in the xpc-1 and csb-1 genes (xpc-

1(tm3886);csb-1(ok2335)), with UV-B irradiation. We exposed worms synchronized at the first

larvae stage (L1) and lysed them 6 h post UV or mock treatment. Proteins were digested in solu-

tion followed by peptide identification and quantification by liquid chromatography and tandem

mass spectrometry (LC-MS/MS) as shown in Figure 3.1. To monitor the effectiveness of the

DNA damage response, we followed in parallel the nuclear localization of DAF-16::GFP, that

we previously showed to translocate into the nucleus in response to UV-induced DNA damage

to mediate a gene expression program alleviating the UV-induced developmental arrest [169].

3.1 Proteome analysis upon UV treatment

3.1.1 Protein annotations based on Gene Ontologies classification method

In total more than 7500 proteins were quantified by our LC-MS/MS label-free-quantification

based experimental strategy at a false discovery rate (FDR) of less than 1 % at the protein and

peptide spectrum match level, of which more than 5000 proteins were quantified between UV

and untreated conditions at least in two out of three biological replicates. Excellent reproducibil-

ity (r >0.95 for biological replicates) was determined by the Pearson correlation coefficient (r)
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Figure 3.1: Experimental workflow of the proteomic analysis upon UV-induced DNA damage in C. elegans.

Synchronized L1 worm population of xpc-1;csb-1 double mutant was treated with UV light (100 mJ/cm2). Worms

were collected and concentrated by centrifugation 6 h post-treatment. The worm pellet was homogenized and the

proteins were extracted. After digestion the peptides were analysed using the liquid chromatography-coupled mass

spectrometry (LC-MS/MS) procedure.

(Figure 2.1A). To identify significantly regulated proteins, we performed a two-sided t-test and

corrected for multiple testing by estimating the FDR to 5 % using a permutation based algo-

rithm [229]. By this approach, we were able to identify about 1000 significantly differentially

expressed proteins, of which more than 550 proteins were more than 2-fold altered between UV

and untreated conditions, indicating comprehensive protein abundance changes in response to

UV-induced stress. Gene Ontologies (GO) classification method was used to perform a more

systematic analysis of protein changes in NER-deficient UV irradiated animals. GO annota-

tions and associated data were obtained from Uniprot (release January 2016) and the online C.

elegans portal WormBase (version WS246). As shown in Figure 3.2A, we observed abundance

changes of significantly regulated proteins in most of the subcellular compartments. The vol-

cano plot in Figure 3.2B, enables a quick visualization of the overall distribution of proteins

identified in the screen. The log2 ratio of UV-treated vs. untreated for each protein group was

plotted against the respective log10 p value. Between the 5126 detected proteins (highlighted in

grey), we could display specific clusters of proteins with statistically significant (FDR < 5 %)

changes in abundance: the upregulated are highlighted in red, while the downregulated ones in

blue.
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Figure 3.2: Changes in abundance of proteins detected in xpc-1;csb-1 double mutants upon UV treatment.

(A) Distribution of significantly regulated proteins (FDR <5 %) in the different subcellular compartments follow-

ing GO classification. (B) Volcano plot of the proteins detected in xpc-1;csb-1 double mutants upon UV treatment

(log2 values of fold-changes are showed). The proteins found significantly (FDR <5 %) increased and decreased

in abundance are highlighted in red and blue respectively.

Using the GO classification method, we recapitulated the most represented clusters of pro-

teins which were found significantly (FDR <5 %) increased and decreased in abundance in

UV-treated vs. not treated xpc-1;csb-1 double mutants, respectively in Figure 3.3 and Figure

3.4.

3.1.2 Implementation of C. elegans proteins annotations coverage

In order to improve the annotations of C. elegans proteins and obtain more insights into their

potential functions, we used our data to perfotm a BLAST search results (e value <10 – 4) of

well annotated species, including human and mouse [180]. Using Gene Ontologies, KEGG

and GSEA annotations provided by the Uniprot database for C. elegans protein entries and

the corresponding human orthologues, we could observed an increased coverage of proteins

annotation (the amount of annotated proteins raised from ca. 35 % in C. elegans to ca. 62 % in

human) (Figure 3.5). Based on the human annotations, we then implemented our data analysis

by classifying into known GO clusters the proteins still missing any annotation in C. elegans.
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Proteins significantly (FDR<5%) increased in abundance in UV-treated vs not treated xpc-1;csb-1 double mutants 

                         UniProt accession                Gene name        Biological function                                                   Fold change 

Nucleus
Histones    Q9XWP6   spr-5  Lysine-specific histone demethylase 1        1.7
    P34537   rfp-1  E3 ubiquitin-protein ligase mediating monoubiquitination of histone H2B    1.99
    Q27511   htz-1  Histone H2A         2.08
    G5ECH0   hda-3  Histone deacetylase         2.3
    Q9U757   hil-2  Histone H1.2         2.56

Chromatin organizers    G5EF53   swsn-4  SWI/SNF nucleosome remodeling complex component      1.61
    O61845   chd-7  Chromodomain and Helicase Domain protein      1.65 
    Q19848   vrk-1  Ser/Thr kinase regulating the association of baf-1 with chromatin and nuclear membrane proteins  1.66
    Q21443   lmn-1  Lamin-1, Major component of the nuclear lamina      1.67
    O01971   emr-1  Emerin homolog, involved in chromosome segregation and cell division    1.85
    Q03565   baf-1  Barrier-to-autointegration factor, essential role in nuclear envelope formation    2.26
    Q9XTB5   lem-2  LEM protein, involved in chromosome segregation and cell division    2.5
    Q21831   snfc-5  SNF chromatin remodeling Complex component      2.53

Chromosome cohesion                    Q9U2C1   smc-3  Structural maintenance of chromosomes protein 3      1.94
    Q21306   coh-1  Cohesin complex subunit        2.52
    Q19555   scc-3  Cohesin complex subunit        3.1  
 
Regulators of transcription   O45624   math-33  Ubiquitin carboxyl-terminal hydrolase       1.62
from RNA polymerase II promoter   H2KYN6   smk-1  Suppressor of MEK null proteins; affects the transcription of DAF-16 target genes   1.64
    P34703   emb-5  Regulator of transcriptional elongation by RNA polymerase II     1.71
    B3GWA1   nono-1  Conserved nuclear protein, forms a complex with the mRNA export factor NXF-1   1.85
    Q197206   ceh-38  Homeobox protein,DNA-binding regulatory protein      1.92
    Q09390   hmg-1.2  Positive regulation of transcription from RNA polymerase II promoter    2.24
    Q9NAD6   sta-1  Signal transducer and activator of transcription 1      2.46 
    G5EC23   hcf-1  Transcriptional regulator that associates with histone modification enzymes     2.5
    G5EBY0   rtfo-1  RNA polymerase-associated protein, component of the PAF1 complex     2.56
    Q9TZ93   spt-4  Transcription elongation factor         2.63
          
Synthetic multivulva class B  P90916   lin-53  Synthetic multivulva class B (synMuvB) protein,  transcription factor member of the (DRM) complex  1.78
    Q23482   lin-37  Synthetic multivulva class B (synMuvB) protein,  transcription factor member of the (DRM) complex  1.89
    G5EDT1   lin-35  Synthetic multivulva class B (synMuvB) protein,  transcription factor member of the (DRM) complex  2.83
    Q22703   dpl-1  Synthetic multivulva class B (synMuvB) protein,  transcription factor member of the (DRM) complex  3.02

mRNA processing     O44985   teg-4  Pre-mRNA splicing factor, tumorous enhancer of Glp-1      1.51
    Q9U2U0   uaf-2  Splicing factor         1.76
    Q9U2P3    pap-1  Poly (A) polymerase         1.83
    Q21832   rnp-4  Core component of the splicing-dependent multiprotein exon junction complex (EJC)   1.83
    Q9GRZ2   prp-65  Pre-mRNA processing factor 6        1.95
    Q09511   rsp-4  Splicing factor         2.33
    Q23543   lsm-7  mRNA splicing factor, via spliceosome       2.9

Ribonucleoproteins (RNP)   Q10013/Q9XTU6/Q9N4G9 snr- 3/-6/-7 Heptameric complex required for biogenesis and function of the snRNPs     1.88/2.62/2.91
    Q18265   fust-1  FUS/TLS RNA binding protein homolog       1.95
    Q21322   rnp-2  Small nuclear ribonucleoprotein (snRNP)-associated protein RNP-2/U1A    2.48 
    Q27274   rop-1  Protein component of the Ro ribonucleoprotein (RNP) complex     4.06
    Q9BIB7/Q8MXR2  hrpf-1/-2  Orthologous to human hnRNP F and hnRNP H, act as pre-mRNA splicing factors   4.12/2.71

Transport     Q9TZQ3/G5EBV6  pgl-1/-3  P granule abnormality protein         1.52/3.72
    Q22078/G5EEH9/...  npp- 2/-4/-7/-9/-10/ Nuclear Pore complex Proteins        1.57-4.04
       -14/-16/-19
    Q23089   xpo-1  Nuclear export receptor        1.61
    O17915/P34342  ran-1/2  GTP-binding nuclear protein        1.64/1.63
    Q18212   hel-1  Spliceosome RNA helicase DDX39B homolog      1.79
    P91867   thoc-3  THO Complex (Transcription factor/nuclear export) subunit     1.94
    G1K0V8   iff-1  Eukaryotic translation initiation factor 5A-1       2.01
    B5BM32   nxf-1  Nuclear RNA export factor 1        2.14
    Q9U757   nxt-1  NTF2-related export protein        2.15
    Q9BIB8   imb-1  Importin Beta family         2.15
    Q17561/Q21559  aly-1/-3  Ref/ALY RNA export adaptor family        3.45/1.58

    
Extracellular 
Transthyretins   Q03575/O17345/...  ttr-5/-6/-15/-17/-26/ Transthyretin-like protein        1.8-4.17
       -32/-51
Fatty acid binding proteins/transporters  Q93796   nrf-5  Lipid-binding protein         1.9
    Q20223   lbp-1  Fatty acid-binding protein        2.5

Others    G5EFQ9   mec-5  Collagen unique in the number of Gly-X-Y repeats      1.58
    G5ECN9   egl-3  Prohormone convertase        1.92
    G5ECR5   sod-4  Extracellular superoxide dismutase [Cu-Zn]       8.32
    

Plasma membrane
Transmembrane channel proteins  Q19746/Q9U3N4/...   inx-3/-6/-12/-16 Innexin          1.7-3.26

Heterotrimeric G proteins  P17343   gpb-1  Guanine nucleotide-binding protein subunit beta-1      1.65
    P51875   goa-1  Heterotrimeric G protein alpha subunit Go (Go/Gi class)     1.93
    G5EGU1   egl-30  Heterotrimeric G protein alpha subunit Gq (Gq/G11 class)     1.95
    O17589   eat-16  RGS protein ,interacts with the egl-30 and goa-1 signaling pathways    2.42

ATPases     P90735   eat-6  Alpha subunit of a sodium/potassium ATPase      1.7
    Q93235   nkb-1  Sodium/potassium-transporting ATPase subunit beta-1      1.79
    G5EEK9   vha-5  V-type proton ATPase subunit a        1.97
    Q95XP6   mca-3  Calcium-transporting ATPase        3.32
    Q8IA86   catp-3  Cation transporting ATPase        3.46

Amino acid, ion and ATP transporters Q20943/Q9U2G5  mrp-2/7  ATP-binding cassette transporter, member of the ABCC subfamily     1.51/1.58
    G5EC65/Q8MQ15  abts-1/3  Sodium-driven chloride-bicarbonate transporter      1.77/1.75
    Q9XVU3/O45298  atgp-1/-2  Amino acid Transporter GlycoProtein subunit      2.16/1.51
    O02086/Q9U275  haf-2/-7  Transmembrane protein of the ATP-binding cassette transporter superfamily     2.75/2.16

Endocytosis/ Vesicles traffiking   O02626   aex-3  MAP kinase protein required for intracellular vesicle trafficking as well as synaptic vesicle release  1.83
    Q9U2S4    arf-6  ADP-Ribosylation Factor         1.83
    Q9U2T9   itsn-1  Endocytic adaptor protein to regulate cargo sorting through the endolysosomal system   1.84
    Q95QV3   rab-3  Involved in exocytosis by regulating a late step in synaptic vesicle fusion    1.9
    P83351   snap-29  SNARE, soluble essential protein for fusion of cellular membrane     2.12
    P39055   dyn-1  Dynamin GTPase, its activity is required for endocytosis, synaptic vesicle recycling   2.13
    G5EDC6   arl-8  Arf-like small GTPase, regulates transport of axonal presynaptic vesicle protein cargo   3.05
    Q22436   sqst-1  ATP-binding cassette transporter, member of the ABCC subfamily     30.27

Figure 3.3: Most represented clusters of proteins which were found significantly (FDR <5 %) increased in

abundance in xpc-1;csb-1 double mutants upon UV irradiation.
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Proteins significantly (FDR<5%) decreased in abundance in UV- treated vs not treated xpc-1;csb-1 double mutants 

              UniProt accession               Gene name        Biological function                                                   Fold change 

Ribosomes
Large subunit   O02056/P49405/...  rpl-4/-5/-6/-7/10/ 60Sribosomal proteins        0.42-0.70
       -11.2/-19/-20/-30

Small subunit   P37165   ubl-1  Ubiquitin-like protein 1-40S ribosomal protein      0.4
    P48154/Q9N3X2/...  rps-1/-4/-6/-8/-12/ 40S ribosomal proteins        0.44-0.69
       -13/-16/-22/-24

Translation initiation factors   G5EGT7   iffb-1  Eukaryotic translation initiation factor eIF5B       0.56  
    P30642   eif-3.D  Eukaryotic translation initiation factor 3 subunit D      0.62
    O61820   eif-3.E  Eukaryotic translation initiation factor 3 subunit E      0.65
    P34339   egl-45  Eukaryotic translation initiation factor 3 subunit A      0.66
    
Others                   Q9XVT0   rrbs-1  Ribosome biogenesis regulatory protein homolog      0.31 
    P48154/Q9N3X2/...  mrps-2/-5/-22/-30 Mitochondrial Ribosomal Protein, Small       0.46-0.69
    O02056/P49405/...  mrpl-15/-22/-35/ Mitochondrial Ribosomal Protein, Large       0.49-0.69
       -38/-40/-50  
    
UPS machinery and 
Chaperones
    Q1ZXT4   sao-1  Suppressor of aph-1,regulates the Notch receptor signaling pathway     0.26 
    Q86S73   ubc-26  UBiquitin Conjugating enzyme        0.31
    V6CJX7   hecd-1  E3 ubiquitin protein ligase 1 homolog, involved in ubiquitin-dependent protein catabolic process  0.50  
    O17391   cul-3  RING-finger protein,form the catalytic core of SCF-type E3-ubiquitin ligase complex   0.58 
    O17071    rpt-4  ATPase subunit of the 19S regulatory complex of the proteasome     0.68

Chaperones        
    Q17433/Q94216/...  dnj-2/-11/-13/-27/-29 Ribosome-associated molecular chaperones      0.09-0.69
    P90788   D2030.2  Orthologous to human ATP-dependent Clp protease, hsp100 family    0.48
    P47209/P46550  cct-5/-6  T-complex protein 1 subunit epsilon and zeta      0.67/0.67
    

Mitochondria   
    P54815   mspn-1  Mitochondrial sorting homolog         0.42
    Q9XVQ2   timm-23  Translocase, Inner Mitochondrial Membrane      0.47
    Q23125   W02B12.9  Mitochondrial iron transporter that mediates iron uptake enzymes     0.49
    P34519   K11H3.3  Putative tricarboxylate transport protein, mitochondrial      0.5
    H2KYN3   acdh-13  Acyl CoA DeHydrogenase involved in fatty acid beta-oxidation      0.53 
    O01578   F53F10.3  Mitochondrial pyruvate carrier 2        0.58

Peroxisomes    
    O62140   acox-1  Acyl-coenzyme A oxidase        0.3
    P34355   C48B4.1  Peroxisomal acyl-coenzyme A oxidase 5       0.34
    Q09652   gstk-15  Glutathione S-transferase kappa 1       0.35
    G5EDP2   daf-22  Ortholog of human sterol carrier protein SCP2, catalyzes final step in peroxisomal fatty acid beta-oxidation 0.6
    Q27487   ctl-2  Peroxisomal catalase 1        0.7
  
      
Endoplasmic reticulum 
ER Chaperones   Q22235   enpl-1  Endoplasmin homolog        0.58
    P27420   hsp-3  Heat shock 70 kDa protein C        0.6

Others     Q20065   phy-2  Prolyl 4-hydroxylase subunit alpha-2       0.11
    Q10576   dpy-185  Prolyl 4-hydroxylase subunit alpha-1       0.11
    P34329   C14B9.2  Protein disulfide-isomerase A4        0.28
    O16309/Q23338/P91180 fkb-3/-4/-5  Peptidyl-prolyl cis-trans isomerase       0.35/0.32/0.20
    Q20822   srpa-68  Signal recognition particle subunit SRP68, has 7S RNA binding activity    0.45
    Q17770   pdi-2  Protein disulfide-isomerase 2        0.55

    
Fatty acid metabolism   
    Q9NEQ0/G5EGA5/...  fat-1/-2/-4/-6 Omega-3 fatty acid desaturases        0.02-0.24
    Q5TKA3/Q9XWD1/...  acs-1/-5/-7/-16/-22 Fatty Acid CoA Synthetase family       0.06-0.57
    P91871   fasn-1  Fatty Acid SyNthase         0.20
    Q9GZI3   pod-2  Acetyl-CoA carboxylase, catalyzes the first step in de novo fatty acid biosynthesis   0.30
    G5EEE5/Q9XVQ9/...  elo-1/-2/-5/-6 Elongation of very long chain fatty acids proteins      0.31-0.45
    P34559/Q9NEZ8  ech-6/-7  Enoyl-CoA hydratase         0.45/0.31
    P54688   bcat-1  Branched-chain-amino-acid aminotransferase      0.53
   
Glycerolipid/glycerophospholipid
metabolism    O17680   sams-1  S-adenosylmethionine synthase 1       0.42
    G5EC53   mboa-3  Membrane Bound O-Acyl transferase       0.48
    Q22949/G5EFP8  acl-6/-7  Glycerol-3-phosphate acyltransferase, plays a role in triacylglycerol biosynthesis   0.51/0.32
    Q9GZF3   ckb-4  Choline/Ethanolamine kinase        0.51
    Q86MJ6   ckc-1  Choline/Ethanolamine kinase        0.55

Sphingolipid metabolism    
    Q20375/Q9XVI6  sptl-2/-3  Glycerol-3-phosphate acyltransferase, plays a role in triacylglycerol biosynthesis   0.28/0.25
    

 
                Figure 3.4: Most represented clusters of proteins which were found significantly (FDR <5 %) decreased in

abundance in xpc-1;csb-1 double mutants upon UV irradiation.

Then, we used 1D enrichment analysis to identify groups of proteins that both in untreated

and UV-treated conditions are involved in identical pathways, carry similar PFAM domains or

localize in the same compartment (e.g. categorical annotations) between C. elegans and human

[41]. Significantly regulated group of proteins (Benjamini-Hochberg FDR <0.02) were visual-
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Figure 3.5: Distribution of GO categories of significantly up and downregulated proteins in xpc-1;csb-1

double mutants upon UV treatment. The upper panel shows Gene Ontology annotations for C. elegans whereas

the lower one the implemented GO annotation for human orthologues (e-value cut-off <10 – 4).

ized by plotting the log2 of UV-treated to mock-treated mean of all proteins with the particular

categorical annotation against the enrichment score (Figure 3.6). Categories grouping proteins

related to nuclear mechanisms and synaptic machinery showed a positive enrichment score,

while categories related to protein synthesis and cellular metabolic processes were observed

with a significant negative score. We also observed and overlap of the same categories be-

tween human and C. elegans organisms. Overall, this systematic analysis indicates widespread

changes of protein levels during the UV-induced DNA damage in C. elegans.

3.1.3 Upregulated protein clusters upon genotoxic stress

Proteins belonging to the categories related to nuclear mechanisms such as chromatin re-

modelers, regulator of transcription, protein-DNA complex and structures of the nuclear pore,
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Figure 3.6: 1D enrichment plot highlights similarly regulated categories of proteins between C. elegans and

Human. Gene Ontology categories of Human (highlighted in orange) and C. elegans (highlighted in blue) of

annotated proteins.

showed in our study a clear upregulation compared to the whole population of proteins. This

upregulation is consistent with the chromatin remodelling, in response to DNA damage, impor-

tant in modulating replication and transcription. In addition, the increased expression of mem-

bers of the synaptic machinery and G-protein signalling partners, belonging to plasma mem-

brane and extracellular space categories, suggests that signals are released from genotoxically-

compromised cells that mediate the adaptation to the damage. The significantly enriched up-

regulated proteins belonging to the nuclear Gene Ontology category represented in Figure

3.2A and listed in Figure 3.3, includes some chromatin-remodelers, (CHD-7, BAF-1, SWSN-4,

SNFC-5 and LMN-1), several transcription regulators (HMG-1.2, RTFO-1, STA-1, NONO-1,

EMB-5, SPT-4, HCF-1, SMK-1) and some histone post-translational modifiers (SPR-5, HIL-

2, HTZ-1, HDA-3) associated with the epigenetic control of gene expression. Some of the

chromatin-associated proteins we found upregulated, as BAF-1, SWSN-4 and HCF-1, were
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previously shown to interact with the IIS effector DAF-16 to remodel the local chromatin and

in turn activate transcription [197, 139]. Other transcription factors specifically mediate the

response to DNA damage and oxidative stress in C. elegans (SMK-1) [248], or play a role in

the DNA-damage response to UV radiation in mammalian cells (NONO-1) [2]. Among the

proteins upregulated upon UV-induced DNA damage we found also some transcription elonga-

tion, pre-mRNA processing proteins and some ribonucleoproteins (RNPs) (Figure 3.3). This

is consistent with the changes in spliceosome organization and the PTMs of splicing factors,

found recently implicated in the cellular DNA-damage response [159, 171, 228, 136, 31, 187].

Nuclear import/export transport is enhanced upon DNA damage

Our data reveal that a number of factors involved in translation, spliceosome assembly, and

nuclear-cytoplasmic transport were upregulated following UV treatment, suggesting an involve-

ment of RNA biogenesis and translocation in the DNA damage response (Figure 3.3). In line

with this, changes in spliceosome organization and mobilization, as well as PTMs of slicing fac-

tors, have recently been implicated in the cellular DNA-damage response [159, 171, 228, 136].

We observed an UV-dependent induction of some ribonucleoprotein (RNPs) involved, together

with their accessory proteins, in the assembly of the spliceosome on the pre-mRNA, and of

many nuclear-cytoplasmic transport proteins (Figure 3.3). The nuclear pore complex proteins

(nucleoporins or NPPs), together with some Ran-GTPases are known factors playing an im-

portant role, not only in the nuclear import/export and the nuclear envelope (NE) assembly

dynamics, but also in regulating the localization of MEL-28 [64, 49]. MEL-28 is a structural

component of the nuclear envelope (NE) which, if depleted, leads to defects in distribution

of the other integral nuclear-envelope proteins: EMR-1, LMN-1, LEM-2 and BAF-1 (Figure

3.3) [72]. These nuclear proteins provides an anchor by which chromosomes are attached to

the nuclear membrane, and are required for proper chromosome segregation [10, 145]. They

also promote the reorganization of damaged chromatin upon UV-C and ionizing radiation (IR)-

induced DNA damage [57]. The protein BAF-1, in particular, is able to respond dynamically to

stress: when immobilized at the nuclear lamina it stabilizes the chromatin structure and influ-

ences the gene expression via histone PTMs [164]. Exposure of human cells to UV treatment,

instead, causes BAF-1 to dynamically interact with the histone H3/ H4 ubiquitin ligase complex

(CUL4-DDB-ROC1), facilitating the recruitment of repair proteins to the damaged DNA [165].
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BAF-1 expression is regulated by transcription factors that modulate lifespan, including SKN-

1, PHA-4, DAF-16, and ELT-3 [9]. Similarly to what has been previously reported in aged IIS

mutant worms [83] and in cells responding to DNA damage [17, 61, 155], proteins belonging

to the nuclear category, but implicated in DNA replication and cell cycle progression (CDK-1,

MCM-2,-7 and RFC-4), were decreased in abundance upon UV treatment.

Differences in ion transport and synaptic transmission in UV-treated worms

Apart from nuclear proteins, in our dataset we observed also a marked upregulation of

proteins belonging to plasma membrane and extracellular space, suggesting a possible in-

tra/extracellular trafficking of signals from genotoxically-compromised cells (Figure 3.2A and

Figure 3.6). Proteins belonging to the plasma membrane category are mostly transmembrane

channel proteins, ATPases, amino acid, ion and ATP transporters and heterotrimeric G-proteins

(key regulators of the GPCR signalling) (Figure 3.3). The GPCR signalling has been implicated

in different and fundamental aspects of development and behaviour, regulating in addition the

synaptic transmission in the ventral cord motor neurons [161, 181]. ACh-dependent GPCR

signalling was shown to inhibit the ubiquitin-proteasome system-mediated degradation of mus-

cle proteins in C. elegans [224, 135]. The highest expression of the heterotrimeric G-proteins

is found in excitable cells, together with components of the endocytic pathway involved in

the initial vesicles assembly (ARF-6, ARL-8, DYN-1), vesicle fusion (SNAP-29 and AEX-3),

and vesicles recycling through the endo-lysosomal system (ITSN-1 and SQST-1). All these

proteins were upregulated in our dataset, suggesting a clear association of neuronal signalling

and the regulation of DNA damage response (Figure 3.3). The importance of the DNA dam-

age response in the neuronal development has been highlighted in various human congenital

progeroid syndromes including CS [116], and has been connected to ageing and age-related

neurodegenerative disorders such as Alzheimers disease (AD) and amyotrophic lateral sclerosis

(ALS) [98]. Consistent with neuronal developmental processes being affected by unrepaired

DNA damage, we found also elevated levels of proteins implicated in axonal outgrowth (EAT-

6, CAM-1, UNC-44, TBB-4) and neuronal positioning during development (SAX-7, WRK-1,

UNC-33,-37). The extracellular proteins found increased in abundance following UV treatment

were mainly hormone carrier transthyretin (TTR)-Related factors, reported already as elevated

in aged C. elegans proteome studies [141, 242, 39], and associated to a mechanisms of neuro-
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protection in a mouse model for AD [25]. The extracellular Cu2+/Zn2+ superoxide dismutase

SOD-4, and some lipid binding proteins/transporters NRF-5, LBP-1, EGL-3, which sequester

respectively potential toxic peroxidation products and toxic FA, were also upregulated (Figure

3.3).

3.1.4 Downregulated protein clusters upon genotoxic stress

The categories of downregulated proteins following UV treatments include instead a large

number of ribosomal proteins, including components of the small (40S), large (60S) and mi-

tochondrial ribosome subunits, together with components of the translation machinery (Figure

3.4). Factors involved in protein homeostasis and lipid metabolism, localized between cyto-

plasm, mitochondria, endoplasmic reticulum (ER) and peroxisomes (Figure 3.2A, Figure 3.4

and Figure 3.6), showed a similar drop in abundance.

This general decline in protein synthesis and dampening of metabolic processes observed

upon UV treatment is consistent with previous reports from proteomic studies in aged worms

[16, 174, 141, 242, 39], supporting parallels between the DNA damage response and ageing

[74].

Protein targeting for degradation

Impaired protein homeostasis has been suggested as a characteristic hallmark of ageing and

some ageing-related diseases [189]. Specific mechanisms for protein fold stabilization restore

the structure of misfolded polypeptides, or remove and degrade, via the proteasome or the

lysosome, the aberrant proteins. In our dataset we found many components of the proteosta-

sis network, as chaperones, ubiquitin ligases and members of the ubiquitin-proteasome system

(UPS) machinery, together with ER proteins, peroxisomal enzymes and mitochondrial home-

ostasis related proteins generally downregulated (Figure 3.4). A similar scenario has also been

proposed in CSB ablated cells, which in global gene expression patterns showed endoplasmic

reticulum stress and impaired unfolded proteins response mediating a pro-apoptotic effect [27].

Among the E3 ubiquitin ligases we have detected, Y54E10A.11 was the only ligase containing

a RING-type-domain showing homology with the human E3 RING ubiquitin ligase TRAIP,

found recently implicated in response to UV-induced DNA lesions in cells. Missense mutations

36



CHAPTER 3. RESULTS

affecting the TRAIP RING-domain have also been identified in patients suffering of premature

ageing syndromes [85]. The E3 ubiquitin ligase Y54E10A.11 in C. elegans, is a component of

the ribosome quality control complex (RQC), which recognizes stalled ribosome and associates

with the 60S subunit, allowing the ubiquitination and extraction of incompletely synthesized

nascent polypeptides [52]. The translation stress specifically sensed by the RQC complex is

communicated to the transcription factor HSF-1 [21], which in turn promotes lifespan extension

[4, 111, 33, 167], suggesting a combined role in both longevity and stress responses. Misfolded

proteins that cant be properly refolded or degraded due to chaperones and UPS machinery

impairment, are targeted for autophagic degradation: they are imported into lysosomes dur-

ing chaperone-mediated autophagy, or sequestered in autophagosomes during macroautophagy

[157, 43] (Figure 1.5). Compared to ageing, in which the autophagy is gradually impaired

[146, 200], upon UV-induced DNA damage we found an upregulation of some members of

the macroautophagy sub-pathway as ATG-3,-18 and SQST-1 (the homolog of the mammalian

sequestosome p62 [143]). To assess whether the induction of autophagy was required for with-

standing DNA damage we next tested the sensitivity of two autophagy mutants, atg-3(bp412)

and atg-9(bp564) to UV treatment. We observed a significantly higher sensitivity in the au-

tophagy mutants to UV treatment compared to wild type (WT) worms (Figure 3.7), suggesting

that proteins involved in the formation of autophagosomes are essential to endure DNA damage.

Recent evidence have also demonstrated a role of autophagy, via the elimination of SQST-1, in

the regulation of the DNA damage response via chromatin ubiquitination [245].

Translation and autophagy are both downstream targets of the IIS signalling and of the TOR

pathway (CeTOR in C. elegans), key mechanisms regulating growth, metabolism and stress

responses [251, 230] (Figure 1.4). Under stress conditions as food deprivation, the inhibition

of TOR leads to the activation of autophagy [148, 200]. Upon UV treatment instead, although

we observed an increase in abundance of autophagy-related proteins, the main components

of the CeTOR complex (LET-363 and DAF-15), as well as of the IIS and PI3/AKT pathways

(DAF-2, -18, AKT-1, PPRT-1, SMK-1) were upregulated.

The increased autophagy can then be interpreted as a compensatory response to clear damaged

proteins and recycle their component amino acids when both subpathways, the chaperone-

mediates re-folding and the proteasomal degradation, are impaired. A proposed compensatory

role of autophagy upon proteasome dysfunction indeed suggests that the two mechanisms are
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Figure 3.7: Autophagy mutants are sensitive to UV-induced DNA damage. Wild type (WT), atg-3(bp412)

and atg-9(bp564) L1 larvae were irradiated or mock-treated and developmental stages were evaluated 48 h later.

(average of n = 3 independent experiments per strain and dose is shown; >15 individuals analysed per experiment;

error bars show the standard deviation (SD); *p <0.05, ** p <0.01 and ***p <0.001, two- tailed t-test compared

with WT).

functionally coupled [56, 32]. At the same time, the activation of TOR upon persistent DNA

damage can be explained as a way to control translation, through S6K1 (RSKS-1 in C. elegans)

[230], to limit the production of abnormal proteins, and lipid metabolism, by regulating the

activation of the nuclear receptor PPARγ [112], to preserve somatic functioning. In our study,

we found that lipid metabolism was highly impaired due to a drop in abundance of key factors

involved in fat biosynthesis and metabolism (Figure 3.4). The regulation of these genes
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involved in adipogenesis could be related to the activity of the nuclear receptor NHR-49, which

in C. elegans has similar biological activity to the mammalian PPARγ in regulating the lipid

biosynthesis and metabolism, by promoting for example FA desaturation and FA β -oxidation

[235, 97]. Another C. elegans PPARγ hormone receptor, DAF-12, has been reported interacting

with the IIS downstream effector DAF-16 in a reciprocal antagonistic manner [60].

In general all these observations suggest that amid persistent DNA damage worms reduce

DNA transcription and translation, thus potentially avoiding the production of aberrant pro-

teins. Meanwhile proteins refolding mechanisms are impaired while autophagy is promoted,

suggesting protein recycling as part of metabolic shift in response to the DNA damage.

3.1.5 Analysis of proteome and transcriptome variations upon persistent

DNA damage

In order to address whether the proteome alterations we observed might result from a tran-

scriptional response to UV-induced DNA damage, we performed a Pearson correlation analy-

sis with previously published transcriptomic data of worms that, due to a mutation in xpa-1,

were similarly NER-deficient as the xpc-1;csb-1 mutants employed here [169]. Since it exists

a highly positive correlation between the gene expression changes in WT and NER-deficient

xpa-1 mutants in the UV response [169], our proteome analysis has been specifically focused

on NER-deficient mutants. Indeed, we found a significant moderate positive correlation (r =

0.347) between the significantly changed transcripts and proteins upon UV (Figure 3.8), sug-

gesting that the expression levels of only a part of proteins can be explained by transcription,

while a large fraction is subject to post-transcriptional regulation.

This aspect will be investigated in detail later, when we used a phosphopeptide enrichment

approach to extend our MS analysis also to PTMs. The positive correlation between mRNA-

level and protein-level changes we observed, is consistent with the observations described re-

cently in nematodes during development [81] and during ageing [242]. Between the factors

increased both at gene and protein expression level upon UV treatment (depicted in red in

Figure 3.8) there were mainly members of the nucleus-cytoplasm molecular transport, some

transmembrane channel proteins and extracellular TTR factors (Figure 3.9). We observed the
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Figure 3.8: Comparison between proteome of xpc-1;csb-1 double mutants and transcriptome of similarly

NER-deficient xpa-1 mutants after UV treatment. log2 values of fold-changes are shown in the dot-plot repre-

sentation. The strength of the correlation is determined by the Pearson correlation coefficient (r), indicated in the

figure. The proteins found commonly up- and down-regulated, both at the proteome and transcriptome level are

highlighted in red and dark green.

same transcriptome/proteome trend also for stress response metabolism-related factors, such

as the cytochrome P450 (CYP) and glutathione S-transferases family (GSTs) family members,

together with many UDP-glucuronosyl transferases (UGTs) and some autophagy factors. The

proteins we found UV-dependently elevated here, belonging to CYPs, GSTs and UGTs fami-

lies for the detoxification response, were previously shown to be transcriptionally induced upon

UV-C in WT, xpa-1 and glp-1 mutants [20]. Interestingly, key members of the IIS signalling

reported an increase in abundance upon UV treatment, although at the transcript levels were

significantly downregulated. An explanation for the DAF-2 increased protein abundance could

be due to its accumulation at the cellular membrane in its inactive form: only upon insulin

stimulus, in fact, the activated receptor gets internalized. The DAF-2 inactivation, together

with the activation of the phosphatases PPTR-1 and DAF-18, promote the dephosphorylation

of the serine/threonine-protein kinase AKT-1, which couldt act anymore act as repressor of the
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DAF-16 nuclear translocation [123]. The active transcription factor DAF-16 can then regu-

late the expression of genes involved in stress resistance and longevity, possibly elevating in

this way tolerance towards persistent DNA damage [169] (details about the phosphorylation

status of the IIS members will be analysed later in the proteome/phosphoproteome interaction

map). The categories showing instead a downregulation both at gene and protein expression

level upon UV treatment (depicted in green in Figure 3.8), contain a family of dehydrogenases,

key components of FA metabolism and protein kinases, many of which have been implicated in

controlling larval development. Details on clusters of regulated proteins are reported in Figure

3.9.

3.2 Analysis of correlations between the UV-proteome and

data from ageing and starvation studies

3.2.1 Correlation between proteome upon UV treatment and ageing

DNA damage is considered to be a driving force of ageing. In line with this concept, mu-

tations in NER genes can accelerated ageing in mice and human patients [74]. We therefore

wondered whether proteome changes in response to UV-induced DNA damage might bear sim-

ilarities with those occurring during natural ageing. To this end we conducted a correlation

analysis between proteomes of UV-treated xpc-1;csb-1 double mutants, unable to repair the

UV-induced DNA damage, and WT worms during ageing [242]. The Pearson correlation coef-

ficient was increased between UV-treated xpc-1;csb-1 double mutants and WT worms with age

(from day 12 (r = 0.26) to day 27 (r = 0.34), Figure 3.10), suggesting that the regulation at the

protein level upon persistent DNA damage recapitulates proteome alterations during the ageing

process. The processes that were similarly regulated upon persistent DNA damage and during

natural ageing revealed a general enrichment of factors involved in FA metabolism, oxidative-

stress response, unfolded protein response (UPR) and belonging to IIS pathway [174, 242].

3.2.2 Correlation between proteomes from UV and starvation treatment

L1 larvae arrest for extended periods of time in the absence of food and only resume develop-

mental growth when food becomes available. We have previously found similar and contrasting
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Proteins significantly (FDR<5%) increased in abundance in xpc-1;csb-1 double mutants upon UV treatment compared to the transcriptome of xpa-1 mutants (Mueller et al.2014)

Gene family

Fold change 
Proteome 

xpc-1;csb-1 

Nuclear Pore complex 
Proteins (NPP)

npp-2, -4, -5, -7, -9, -10, -12, -14, -15, -16, -17, 

Fold change 
Transcriptome  

xpa-1 

Transmembrane 
transport proteins inx-3, -6, -12, -13, -16

xpo-1, -2

Extracellular 
Transthyretins (TTR) ttr-5, -6, -7, -15, -17, -20, -26, -30, -32, -47, -51

Glutathione S- transferases
(GST)

gst-12, -16, -20, -24

gst-4

UDP-glucuronosyl transferases 
(UGTs) ugt-26, -28, -29, -31

Cytochrome P450 cyp-14a5

 
cyp-33c8

Autophagy (ATG) atg-3, -18

C-type lectin (CLEC)
clec-17, -67

rnp-2

rop-1

snr-6, -7

Small Nuclear Ribonucleoprotein 
(SNR)

Gene name

Fatty Acid CoA Synthetase 
(ACS) acs-1, -5, -7

acs-16, -22

Peroxisomal Membrane Protein  
(PMP) pmp-2, -4, -5

Fatty Acid - desaturase (FAT)

DeHydrogenases 

Peptidyl-prolyl cis-trans isomerase
(FKB) 

fkb-3, -5

fkb-4

akt-1

daf-2

pptr-1

Insulin/IGF signalling

fat-1, -6

fat-4

C25A1.5

dhs-3, -18

dhs-27

Mitochondrial ribosomal protein
(MRPL/MRPS) 

mrpl-15, -22, -35, -38, -50

mrps-5, -22, -30

- 2-hydroxylase 

Kinases air-1

ckd-1, -12

kin-20

mtk-1

nsy-1

plk-1

spk-1

riok-1

Fatty Acid Elongation (ELO) elo-1, -2

elo-6

Translation initiation factor
eif-3.D, -3.E

egl-45

Proteins significantly (FDR<5%) decreased in abundance in xpc-1;csb-1 double mutants upon UV treatment compared to the transcriptome of xpa-1 mutants (Mueller et al.2014)

Gene family

Fold change 
Proteome 

xpc-1;csb-1 

Fold change 
Transcriptome  

xpa-1 Gene name

Figure 3.9: Most represented clusters of proteins which were found up- and/or down-regulated at the pro-

teome (xpc-1;csb-1 double mutants) and at the transcriptome (xpa-1 mutants) level after UV treatment. Red

arrows refer to upregulation while blue arrows refer to downregulation.
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Figure 3.10: Comparison between proteins detected in xpc-1;csb-1 double mutants upon UV treatment vs.

ageing in WT worms (Walther et al.,2015 [242]). log2 values of fold-changes are shown in the dot-plot repre-

sentation. The strength of the correlation is determined by the Pearson correlation coefficient (r), indicated in the

figure.

transcription responses between starvation conditions and UV-induced DNA damage in NER-

deficient mutants [169]. We performed, in parallel to UV treatment, also starvation experiment

using xpc-1;csb-1 double mutants: three independent biological replicates were analysed and

an excellent reproducibility (r >0.95 for biological replicates) was reported (Figure 2.1A). To

determine whether proteome changes upon starvation and UV treatment were related, we com-

pared the changes in protein abundance occurring in xpc-1;csb-1 double mutants upon the two

treatments. We obtained a positive Pearson correlation between the proteomes of UV-treated
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and starved animals (r = 0.77) (Figure 3.11).
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Figure 3.11: A positively high correlation is registered for proteins that significantly change in abundance

in xpc-1;csb-1 double mutants upon UV treatment vs. starvation. log2 values of fold-changes are shown in

the dot-plot representation. The strength of the correlation is determined by the Pearson correlation coefficient (r),

indicated in the figure.

In our study, upon UV treatment we detected mainly changes in abundance of chromatin-

associated proteins and members involved in vesicles/neurotransmitters trafficking (Figure 3.3

and (Figure 3.6). A similar involvement of heterotrimeric G-proteins occurs in C. elegans

pharynx for the starvation-induced activation of the Ras-MAP kinase pathway [254]. Upon UV

treatment we observed also significant changes of metabolic pathways involved in the synthesis

and use of carbohydrate, amino acid and lipids. In particular many enzymes involved in FA

biosynthesis showed a significant drop in abundance (Figure 3.4,Figure 3.6 and Figure 3.9).

Members of the same protein classes were found similarly changed in abundance also in our

starvation study consistent with previous reports on starvation [129], in IIS deficient worms

[70, 53] and upon ageing [141, 174, 39].

These results suggest that NER-deficient worms, when subjected to stress condition, such as

UV treatment or starvation, activate a somatic preservation program to avoid energy expense,

which resembles the metabolic shift occurring during ageing.
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3.3 Lipidome analysis upon UV and starvation

3.3.1 Fatty acid biosynthetic pathways are affected by starvation and UV

treatment

Based on these parallels indicating a dampening of metabolic processes following DNA dam-

age and starvation, we decided to trace lipid profiles of xpc-1;csb-1 double mutants upon the

two treatments. Upon starvation and UV treatment, key enzymes involved in FA biosynthesis

(Figure 3.12) and playing important roles in FA accumulation and consumption during lifespan

[240, 95, 260] were downregulated both at the protein (Figure 3.3) and transcript level (Figure

3.9). The expression of the same class of genes related to lipid metabolism has been found sig-

nificantly decreased in the UV-irradiated and photoaged human skin, suggesting that inhibition

of de novo lipid synthesis may have a detrimental effect, leading also to collagen destruction

[110].

We used the Thin Layer Chromatography (TLC) and mass spectrometry (MS) to assess any

evident changes in content of various lipid classes that could reflect the downregulation of en-

zymes of the FAs metabolism observed in the proteomics data. Upon UV treatment we observed

a decrease in the amount of triacylglycerols, the storage form of FAs, with a consequent increase

in free FAs content, that strikingly resembled the metabolic shift observed in aged nematodes

[39]. This shift from triacylglycerols to free FAs was even more pronounced upon starvation

(Figure 3.13), consistently with the fact that worms derive energy from degradation of fat stored

to survive the food deprivation [63, 216].

3.3.2 Change in sphingolipids abundance upon treatments

The downstream products of these FA biosynthetic pathways are normally used to synthesize

more complex lipids: the SLs and the glycerophospholipids (Figure 3.12). SL works as an

intermediate for the production of Cer, a key product for the synthesis of glucosylceramide and

sphingomyelin SM [236, 258] (Figure 3.12). The ceramide signalling pathway downstream

of SLs has reported having a role in stress responses: Cer is produced from SM in UV- and

IR-treated mammalian cells [255, 256], whereas an increased synthesis of SM from Cer is

45



CHAPTER 3. RESULTS

significantly - down-regulated 
upon:Acetyl -CoA

Malonyl -CoA

C13ISO branched-
chain acyl-CoA

3-Ketoacyl  CoA

C16 straight-
chain acyl-CoA

Saturated long-
chain fatty acids

POD-2

FASN-1

ELO-5,6

C15ISO branched-
chain acyl-CoA

Sphingolipids

Unsaturated long-
chain fatty acids

PhospholipidsGlycerols

ACS-1

LC
FA

 b
io

sy
nt

he
is

C16:1n7 C18:1n7
FAT-6

S
ho

rt-
an

d 
m

ed
iu

m
-c

ha
in

fa
tty

 a
ci

d 
bi

os
yn

th
ei

s

C18straight-
chain acyl-CoA

C18:1n9
FAT-6 FAT-2

C18:2n6

C18:3n6 C18:3n3

C20:3n6 C18:4n3

C18:4n6 C20:4n3

C20:5n3

FAT-1

FAT-1

FAT-1 ELO-1,2FAT-4

FAT-4FAT-1

Serine+ palmitoyl -CoA

SPTL-2,3

Dihydroceramide

Ceramide

Sphingomyelin
(SM)

Glucosylceramide/ 
glycosphingolipids

Dihydroxyacetone phosphate

Dihydroxyacetone phosphate 
acyl ester

ACL-6

3-Ketosphinganine

Phosphatidic acid 

Diacylglycerol
(DAG)

Triacylglycerol 

Cytidine diphosphate
diacylglycerol (CDP-DAG)

Phosphatidyl-
choline (PC)

Phosphatidyl-
ethanolamine (PE)

Glycerol-3-phosphate 

ACL-6

Phosphatidyl-
inositol (PI)

Phosphatidyl-
serine (PS)

Phosphatidyl-
glycerol (PG)

Cardiolipin

Lysophosphatidic acid 

ECH-6,7

SPTL-1,2,3

POD-2

FASN-1

ACS-1

ECH-6,7

ELO-1

ELO-1,2
ELO-1

ELO-1,2
ELO-1

UV treatment
Starvation

Figure 3.12: Fatty acid biosynthetic pathways coupled with sphingolipid and phospholipid metabolic path-

ways. Key members of these metabolic pathways were all significantly decreased in abundance in xpc-1;csb-1

double mutants upon starvation and UV treatment. Regulated proteins upon starvation and UV treatment are

highlighted in red and blue respectively.
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Figure 3.13: A shift from triacylglycerols to free fatty acids was observed in xpc-1;csb-1 double mutants

larvae upon starvation and UV treatment. Changes in fatty acid and triacylglycerol content upon each treatment

were assessed using the TLC technique. Quantification of the TLC results is indicated by the histogram. Grey bars

indicate untreated samples, while red and blue bars refer to starvation and UV treatment, respectively. Significant

levels of pairwise comparisons are indicated by the p-value: *p <0.05, ** p <0.01 and ***p <0.001.

associated to accelerated development and ageing [46]. Similarly to the observations gained in

ageing studies [46], our MS-based quantitative SLs profiling showed a general increase in SM

and decrease in Cer amount upon both treatments (Figure 3.14). This can be explained as a

direct consequence of the impaired SFAs biosynthesis, which usually provides building blocks

for the SLs synthesis (Figure 3.12).
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Figure 3.14: Changes in the amount of three sphingolipids subclasses (ceramides, sphingomyelins and gluco-

sylceramides) upon treatments in xpc-1;csb-1 double mutants larvae. Changes in the content of sphingolipids

were assessed using Mass Spectrometry analysis. Grey bars indicate untreated samples, while red and blue bars

refer to starvation and UV treatment, respectively. Significant levels of pairwise comparisons are indicated by the

p-value: *p <0.05, ** p <0.01 and ***p <0.001.

Lowering SFA synthesis in cells, by impairing the function of critical factors involved in their

biosynthesis, has a positive effect on the DNA damage response, reducing the risk of cancer de-

velopment [257]. Previous studies on C. elegans mutants deficient for the monomethyl branched

chain FAs (mmBCFAs) synthesis (elo-5 loss-of-function mutation), demonstrate an arrested de-

velopment [261] similar to the starvation-induced L1 arrest [114]. This arrest could be rescued

by specific SFAs-derived sphingolipids, the d17iso-glucosylceramides (d17iso-GlcCer), which

act in the intestine, together with the downstream factors of the CeTOR pathway, to promote
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postembryonic growth and development [261]. Our data on UV-treated animals suggest as well

a link between lipids and CeTOR signalling in coordinating development since we observed

both an increase in abundance of glucosylceramides (d17iso-GlcCer)and of members of the

CeTOR pathway (Figure 3.14). In line with previous study [114] reporting stable mmBCFAs

levels in starved L1 larvae, we also observed stable levels of d17iso-GlcCer species upon star-

vation (Figure 3.14). The previously described role of the GlcCer/TOR pathway in promoting

development independently from the IIS and DAF-7/TGF-signalling [261, 114] might suggest

its involvement in the UV-induced DNA damage response.

3.3.3 Glycerophospholipids profiling upon treatments

Another major component of cellular membranes is the lipid class of glycerophospholipids

[236, 90, 258], synthesised from the intermediate phosphatidic acid, through a series of re-

duction and acylation reactions (Figure 3.12). Phosphatidic acid is dephosphorylated to yield

DAG, which successively is converted into PC and PE, both being intermediates for the for-

mation of PS [137]. PS and PI are generally synthesized from the CDP-DAG precursor, which

is also upstream of the synthesis of PG and cardiolipin (CL) [258]. Quantitative glycerophos-

pholipids MS profiling, upon starvation and UV treatments, showed a change in abundance

specifically of the DAG downstream products, indicating a preferential direction in the phos-

pholipids synthesis (Figure 3.15). Upon UV, the PC and the PC-derived PS were preferentially

synthesized, whereas PE was significantly downregulated. In contrast, upon starvation the PE

and the PE-derived PS were preferentially synthesized while PC was significantly downregu-

lated. We did not observe changes of the other CDP-DAG derived phospholipids PI, while we

observed a significant downregulation of PG in response to starvation (Figure 3.15). This de-

crease upon starvation resembles the behaviour previously described in cells for the PG-derived

downstream target CL, which drastically decreases in quantity when cells enter the cell cycle ar-

rest [29]. Abnormalities in CL can impair mitochondrial bioenergetics [163], since this complex

phospholipid is intimately involved in maintaining mitochondrial functionality and membrane

integrity [186].

All together these observations suggest that the worms respond to persistent DNA damage

by a metabolic shift reminiscent of adaptations during starvation [129] and ageing [141, 174].
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Figure 3.15: Changes in the amount of the five glycerophospholipids subclasses (PC, PE, PI, PS and PG)

upon treatments in xpc-1;csb-1 double mutants larvae. Changes in the content of sphingolipids were assessed

using Mass Spectrometry analysis. Grey bars indicate untreated samples, while red and blue bars refer to starvation

and UV treatment, respectively. Significant levels of pairwise comparisons are indicated by the p-value: *p <0.05,

** p <0.01 and ***p <0.001.

3.4 Proteome and phosphoproteome-coupled analysis to

build a regulatory network in response to persistent DNA

damage

To date, MS-coupled proteomics has developed as a very efficient technique [115] for de-

tecting changes in protein abundance [129, 242] and the metabolic shifts induced by specific
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treatments or particular genotypes [102, 39]. In order not only to detect protein expression

changes but to also follow the dynamics of UV-induced PTMs, we extended our label-free

quantitative MS analysis by performing phosphopeptide enrichment. Among the 7430 detected

phosphosites, we identified 3276 of them that were significantly modulated in response to UV

treatment: specifically 1571 were more than 1.5-fold downregulated and 1705 were more than

1.5-fold upregulated at the p-value <0.05. Different phosphorylation sites on the same protein

may play specific roles in modulating the protein functions upon DNA damage. For example,

in the phosphoproteome analysis, we detected phosphorylations on the TXY motif (Thr-xxx

and Tyr-xxx), which are required for the activation of the ERK/MAP kinase (MPK-1). Previ-

ous studies showed that MPK-1 activity is primarily controlled by signalling-mediated cycles

of phosphorylation and dephosphorylation, rather than its accumulation [132, 201]. To further

understand signalling networks involving proteins that are changed upon DNA damage, we cre-

ated a protein-protein interaction map (using the bioinformatics software platform Cytoscape

[212]), based on the map of interactions available from the C. elegans data repository (Worm-

Base, http://www.wormbase.org). For the network analysis we selected only significantly reg-

ulated proteins upon UV treatment and the significantly changed phosphosites normalized to

the proteome. Network nodes are highlighted as up- or downregulated at the proteome level

depending on the grades of the colour gradient and the different shapes indicate their phospho-

rylation status (Figure 3.16).

The central node of the network is the DAF-2 protein, component of the IIS signalling, a path-

way that has been implicated in the regulation of both the DNA damage response and longevity

[156, 78, 169, 242]. The main clusters of upregulated proteins arising from the DAF-2 central

node are: chromatin organizers, the synthetic multivulva class B family of proteins, the Ce-

TOR and proteins involved in nucleus-cytoplasm transport (Figure 3.16 and proteins listed in

Figure 3.3). Nuclear transport proteins as PGL-1 and PGL-3 are intermediary nodes between

DAF-2 and some autophagy proteins, in particular with the highly upregulated SQST-1, which

together with other upregulated components of the endocytic pathway is involved in the neu-

ronal synaptic machinery (Figure 3.16). The nodes that work in connection with the synaptic

machinery for the hormones and neurotransmitters release, like heterotrimeric G-proteins, or

for the mechanosensation, like the MEC proteins, were also found indirectly linked to DAF-2
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and all upregulated. A member of the glutathione S-transferases family, GST-4, which plays a

role in the detoxification from ROS, was also increased in abundance and under the regulation

of DAF-2 (Figure 3.16 and Figure 3.9). As it happens upon ageing and in some age-related

diseases, upon UV treatment we observed a general decrease in abundance of proteins related

to protein homeostasis. Many factors belonging to the UPS machinery, as well as some chap-

erones, and members of the ER proteostasis network were downregulated and linked to the

DAF-2 central node (Figure 3.16 and Figure 3.4). Members of FA metabolism, localized be-

tween the cytoplasm, ER, peroxisomes and mitochondria (Figure 3.4), and proteins involved

in amino-acid biosynthesis (SAMS-1), development (DAO-2, DNJ-25, CALU-1, CUA-1) and

stress response (NSY-1 and LYS-7) were also decreased in abundance. This network of in-

teractions suggests a general dampening of somatic functions in response to UV treatment, in

favor of mechanisms involved in protein clearance, synaptic transmission and stress resistance,

mainly targets of the IIS pathway [70, 194, 53]. Using the BiNGO tool from Cytoscape soft-

ware [150, 37] we were able to determine which Gene Ontology biological processes were

statistically overrepresented in our network of proteins. Within this interaction map (Figure

3.17) the main regulated metabolic processes upon UV-induced DNA damage were larval de-

velopment, cellular biosynthetic processes, leading to modulation of translation, and organic

acid biosynthetic processes, in particular the UFAs metabolism (Figure 3.15).

Based on the combined proteome and phosphoproteome alterations previously observed, we

next derived signalling pathways that respond to persistent DNA damage (Figure 3.18). We

included in the analysis also proteins that showed significant alterations at the phosphoproteome

level without having quantitative values for the protein, getting in this way a comprehensive

view of the PTM role in response to stress.

In the whole network of interactions, the epidermal growth factor (EGF) pathway appears as

the central signalling platform. Intriguingly, EGF signalling has been linked to development,

metabolism, and longevity in C. elegans [103]. The EGF pathway works through the activa-

tion of downstream signalling cascades, which include the phospholipase C (PLC)/PKC, the

PI3/AKT and the Janus kinase/Signal transducer and activator of transcription (JAK/ STAT)

pathways [104]. EGF also acts through the RAS/extracellular signal regulated kinase (ERK)
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CHAPTER 3. RESULTS

to regulate protein homeostasis via the expression of antioxidant genes and the stimulation of

the UPS activity via the activation of SKR-5 protein [144]. Interestingly, we found two of the

downstream effector of the EGF signalling, the transcription factor STA-1 and MPK-1, both sig-

nificantly phosphorylated upon unrepaired DNA damage (Figure 3.18), suggesting that these

PTMs might have a role upon persistent DNA damage [109]. We tested threfore the sensitiv-

ity of the STAT mutant sta-1(ok587) upon UV treatment and indeed, it showed a significantly

increased sensitivity compared to WT worms (Figure 3.19), suggesting a possible role of this

transcription factor in enduring DNA damage. The role of activated STAT transcription fac-

tors in repression of dauer formation [244] might suggests the possible involvement of STA-1,

together with DAF-16, in alleviating the developmental arrest upon persistent DNA damage

[169].

The EGF pathway, is also a biological target of the synthetic multivulva class A and B

family of proteins (Figure 3.3), which control the ectopic vulva development by tightly re-

pressing the spatial expression of the EGF-like signalling molecule, encoded by the gene lin-3

[203]. EGF signalling also regulates cell growth and survival via the PI3/AKT kinase cascade,

that impacts the activity of CeTOR and the IIS effector DAF-16 [87]. Between the signalling

molecules commonly targeted by the EGF signalling [231] and the G-protein signalling [12],

there are regulators of phospholipid metabolism such as PLC, which is involved in mediating

the hydrolysis of phosphatidylinositol 4,5 bisphosphate (PIP2) into the second messengers DAG

and inositol 1,4,5-triphosphate (IP3). DAG is a cofactor for the activation of PKC-dependent

pathways, while the IP3 promotes the calcium release (Ca2+). DAG is an intermediate of the

glycerophospholipids synthesis (Figure 3.12), a mechanism that together with the lipid biosyn-

thesis and metabolism we saw already being dampened (Figure 3.13), due to a general decrease

of the main factors involved in regulating it. Members of the DAG-downstream PKC pathway

have been implicated in the regulation of daf-2 IIS-dependent control of dauer formation [162]

and also in the secretion of synaptic vesicles at the motor neurons [215]. Consistently, in our

dataset we detected a high expression of the downstream components of G-protein signalling,

involved in the neuronal synaptic machinery, and mediating the initial vesicles assembly (Fig-

ure 3.6, Figure 3.16, Figure 3.18 and Figure 3.3). The heterotrimeric G proteins α subunits,

as EGL-30 and GOA-1, not only mediate serotonin signalling, promoting intracellular vesicle

trafficking and synaptic transmission [181, 12, 30], but also regulate the expression of DAF-7, a
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Figure 3.19: Animals lacking the transcription factor STA-1 are sensitive to persistent DNA damage caused

by UV treatment. Wild type (WT) and sta-1(ok587) L1 larvae were irradiated or mock-treated and developmental

stages were evaluated 48 h later. (average of n = 3 independent experiments per strain and dose is shown; >20

individuals analysed per experiment; error bars show the standard deviation (SD); *p <0.05, ** p <0.01 and ***p

<0.001, two- tailed t-test compared with WT)

member of the TGF-signalling pathway which during larval development is known to regulate

DAF-16 and STA-1 nuclear localization [173, 213, 133, 244]. The activity of the two G-protein

subunits EGL-30 and GOA-1 in regulating neurotransmitter secretion is itself regulated by the

guanine nucleotide exchange factor RIC-8 [160]. RIC-8 is able to activate another subunit of

the heterotrimeric G proteins pool, GSA-1, which through the activation of the adenylyl cyclase

ACY-1 leads to the production of cyclic AMP (cAMP) [195].

This signalling cascade activates the regulatory subunits (KIN-1 and KIN-2) of cAMP de-

pendent protein kinase A (PKA), to modulate growth and locomotion [207]. Once activated,
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PKA acts on the cAMP- responsive element (CRE)-binding protein (CREB, CRH-1 in C. ele-

gans), modifying its phosphorylation status and altering, in this way, its subcellular localization.

This stimulates the association of CRH-1 with its cAMP-regulated transcriptional co-activator

(CRTC, CRTC-1 in C. elegans). Together these two factors target the expression of genes, car-

rying CRE elements at the promoters site, which regulate the glucose and lipid metabolism [3].

CRH-1 and CRTC-1 are also targets of AMP-activated protein kinases (AMPK, AAK-2 in C.

elegans) and calcineurin. In particular, AMPK and calcineurin antagonistically modulate the

phosphorylation status of CRTC-1, controlling its activity and effect on ageing and longevity

[151, 24]. Neuronal CRTC-1, in C. elegans, has been shown regulating metabolic genes in

peripheral tissues antagonistically with the nuclear receptor NHR-49, previously mentioned

as downstream target of TOR pathway in regulating lipid metabolism and fat accumulation

[112, 235].

Apart from its involvement in the control of energy metabolism, AAK-2 also regulates longevity

via interaction with the daf-2-mediated IIS pathway [45]. Previous tests performed in our labo-

ratory on two independent alleles of aak-2, showed the involvement of AAK-2 also in response

to DNA damage, due to their significantly increased sensitivity to UV treatment compared to

wild type worms. Loss of AAK-2 in ASI neurons is also sufficient to promote fat reduction,

slower movements, and the exit from dauer arrest, via an enhanced secretion of dense core vesi-

cles, containing pro-growth regulators [44]. This enhanced secretions in aak-2 mutants works

through the activity of members from the dense core vesicle release machinery, as the protein

UNC-31, which if mutated abrogate these effect [44]. UNC-31, together with another compo-

nent of the synaptic vesicle fusion machinery, UNC-64, is known to be involved in the secretion

of neurotransmitter inputs regulating lifespan and dauer formation through the IIS pathway [1].

Another factor involved in the determination of adult lifespan via regulation of the IIS down-

stream target DAF-16, is the enzyme HCF-1 [139]. This factor works also as transcriptional

regulator of chromatin modification and histone phosphorylation [134]. Consistently, we also

found a number of histone modifiers and chromatin organizers highly upregulated in response

to UV treatment (Figure 3.6, Figure 3.18 and Figure 3.3). Other proteins found increase in

abundance upon UV belongs to the cohesion complexes, required for proper chromosome seg-

regation and repair of double strand breaks [13, 177, 190]. The cohesion complex requires the

activity of four proteins SMC-1, SMC-3, COH-1 and SCC-3, many of which were increased in
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abundance upon UV treatment (Figure 3.3). The dissociation of this cohesion complex by the

action of AIR-1 and PLK-1 kinases [77] or the cleavage by separase (SEP-1), all found highly

dampened upon UV treatment, is necessary for the segregation of sister chromatids during mi-

tosis [86].

Taken together the network analysis reveal an intricate network of differentially regulated sig-

nalling nodes and centrally place IIS, EGF and AMPK signalling in the DNA damage response.

The main findings lead us to propose a role of the intermediates of key pathways, such as

IIS, CeTOR and the heterotrimeric G-proteins, on the EGF signalling cascade to affect stress

response and regulate lipid metabolism. Moreover, the alterations in abundance of proteins

involved in chromosome segregation and chromatin organization suggest that NER-deficient

worms responds to persistent DNA damage by impairing DNA replication, meanwhile favour-

ing transcription regulation and promoting a stress survival response.
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Discussion

Unrepaired DNA damage promotes cancer development and causally contributes to the age-

ing process. To better understand how metazoan organism respond to persistent DNA dam-

age we have taken advantage of NER-deficient C. elegans mutants that are unable to remove

UV-induced DNA lesions. The simple metazoan system is particularly useful to understand

the physiological adaptations upon persistent DNA damage since, similarly to human NER-

deficient patients, the worms show growth retardation, accelerated tissue dysfunction, and

premature death. Previous experiments based primarily on transcriptome analyses of NER-

deficient mice have suggested an adaptive survival response that is triggered in response to

DNA damage to preserve tissue functionality by attenuated the somatic growth axis amid ac-

cumulating DNA damage during ageing [178, 234, 232, 73]. Although in C. elegans, detailed

proteomic studies have been conducted to illustrate the scenario of the organismal response

upon stress [129, 141] or during development [81] and ageing [242, 174, 141], still little is

known about the physiological adaptations upon common genotoxic threats, such as UV radi-

ation. In this study we used a proteomics and metabolomics approach to gain insights into the

response to UV-induced DNA damage in NER-mutated worms, which mimics the scenario of

NER-deficient patients. The alterations we observed at the proteomics, phosphproteomics and

lipidomics levels in response to persistent DNA damage are highly consistent with a shift of

the organisms resources to preservation of somatic function at the expense of growth signalling.

Our analysis places the insulin-like growth factor receptor DAF-2 as a central hub, consistent

with the role of the IIS effector transcription factor DAF-16 in counteracting the detrimental

consequences of DNA damage [169] (Figure 3.16 and Figure 4.1).
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Modulation of protein-DNA complexes activity upon DNA damage

In line with previous studies of aged IIS mutant worms [83] and cells undergoing DNA

damage [17, 61, 155], we also detected in our screen a reduction in transcription-associated

processes upon DNA damage. This could be explained as a mechanisms adopted by the

organism that is challenged by unrepaired DNA lesions, to avoid the synthesis of new aberrant

proteins, which might be toxic for the cells. Consistent with function of chromatin remodelling

in modulating repair, replication and transcription in response to DNA damage, we also ob-

served a widespread induction of proteins involved in nuclear functions (Figure 3.2A, Figure

3.3 and Figure 3.6). The mostly represented nuclear categories recollect some histone proteins,

chromatin organizers and many regulator of transcription. Among the chromatin-associated

proteins that we found increased in abundance upon UV treatment, BAF-1, SWSN-4 and

HCF-1 (Figure 3.3) are known to interact with the transcription factor DAF-16 to remodel the

local chromatin and in turn to activate transcription [197, 139, 9].

Cells frequently employ PTMs to regulate the activity of transcription factors and chromatin-

associated proteins in response to alterations in the extracellular environment [100, 66]. Some

of the transcription regulators we found increased in abundance in our study (RTFO-1, STA-1,

HCF-1, SMK-1) were also significantly regulated at the phopshoproteome level (Figure 3.3,

Figure 3.16 and Figure 3.18), suggesting a phosphorylation-dependent modulation of their

activities. Changes in spliceosome organization and PTMs of splicing factors have been found

recently implicated in the cellular DNA-damage response [159, 171, 228, 136, 31, 187]. In

line with these observations we also observed changes in abundance of factors involved in

transcription elongation and mRNA processing upon persistent DNA damage. The concomitant

upregulation of factors playing important roles in mRNA nuclear import/export trafficking

suggests an involvement of the RNA synthesis and translocation in the DNA damage response

(Figure 3.3, Figure 3.9 and Figure 3.16). Transport across the nuclear envelope has been

described as an essential cellular function, since it regulates nuclear availability of proteins,

which can directly affect gene expression and cell growth and proliferation [176, 105]. The

trafficking of proteins between the cytoplasmic and the nuclear compartments is also finely

regulated by PTMs; in particular, phosphorylation can stimulate or inhibit the passage of

cargos through the nuclear pore complex structures [105]. Examples of proteins whose

nuclear import is promoted upon phosphorylation are the members of Signal Transducers and
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Activators of Transcription (STAT) family and the kinases downstream of the ERK pathway

[176, 132, 201, 185]. Interestingly, in our study we found two downstream effectors of EGF

signalling, the transcription factor STA-1 and MPK-1, both significantly phosphorylated upon

unrepaired DNA damage (Figure 3.18), suggesting that their nuclear translocation might have

a role upon persistent DNA damage [109]. The STAT mutant sta-1(ok587) indeed showed a

significantly increased sensitivity to UV treatment compared to WT worms (Figure 3.19).

The nuclear import/export transport was not the only trafficking activity found improved

upon UV treatment. The increased expression of members of the synaptic machinery down-

stream of the EGF and GPCR pathways (Figure 3.3, Figure 3.6, Figure 3.16 and Figure 3.18),

suggests the implication of neuronal signalling in the release of possible intra/extracellular sig-

nals, mediating the organismal adaptation to persistent DNA damage. The EGF and the G-

protein signalling pathway have also as common target some regulators of the lipid metabolism

[104, 231, 118] (Figure 3.18). Given the role of complex lipid classes not only as structural

membrane components, but also as signal transduction molecules [153, 65], we hypothesized as

well their active involvement in mediating the organismal response to persistent DNA damage.

In line with the idea of an involvement of lipids in controlling intracellular signalling network,

we detected an increased abundance of some extracellular lipid binding proteins/transporters

(Figure 3.3).The lipid intermediate DAG, generated upon activation of PLC downstream of the

EGF signalling, has been previously identified as a second messenger in the activation of PKC

[227, 179], a known regulator of the DAF-2 IIS-dependent control of dauer formation [162]

(Figure 3.18).

Protein homeostasis is impaired upon persistent DNA damage

The loss of protein homeostasis is a common trait found in organisms upon stress, ageing,

and in age-associated diseases [107, 189]. In line with proteomic studies of aged animals

[16, 174, 141, 242, 39], in our dataset we observed a drop in abundance of a large number

of ribosomal proteins and components of the translation machinery (Figure 3.4 and Figure

3.6). This result can be interpreted as a response to avoid the production and accumulation of

aberrant proteins, which if not cleared, can be deleterious for the organism. Indeed, the pro-
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teostasis network, important for the refolding or degradation of unfolded proteins, was in fact

dampened in animals carrying persistent DNA damage. Many chaperones, ubiquitin ligases,

members of the UPS machinery, together with various peroxisomal enzymes and mitochon-

drial homeostasis related proteins, were all decreased in abundance upon UV treatment (Figure

3.4 and Figure 3.9). Although this drop in protein homeostasis (Figure.3.4), we observed a

consistently elevated autophagy activity following DNA damage (Figure 3.16). This elevated

autophagy activity can be interpreted as a compensatory response to clear damaged proteins

and recycle their amino acids when protein homeostasis is impaired [56, 32, 107]. Autophagy-

defective mutants showed indeed a significantly increased sensitivity to UV treatment compared

to WT worms a upon UV treatment (Figure 3.7), suggesting that a mechanism of degradation

of aberrant proteins is required to stand the persistent DNA damage. Consistent with a shift

from UPS-mediated to autophagic degradation, oncogenically transformed human cells treated

with proteasome inhibitors, also showed an enhanced ability to trigger autophagy, suggesting

a strong dependence of transformed cells on this mechanism of protein degradation for sur-

vival [55]. Interestingly, the member of macroautophagy SQST-1 (mammalian p62), highly

upregulated in our study (Figure 3.3), selectively targets unfolded proteins for degradation via

macroautophagy and shuttles between the nucleus and the cytoplasm, creating a link between

autophagy, UPS and DNA repair [88, 117]. Moreover, SQST-1 participates in the neuronal

pathway, suggesting its possible involvement in coupling autophagy and synaptic mechanisms

to regulate C. elegans growth and development. A role of autophagy in receptor degradative

trafficking at the presynaptic terminals to control neuronal excitation and inhibition has been

previously described in C. elegans [199]. The increased abundance of autophagy proteins upon

UPR impairment, together with the upregulation of members of the endocytosis/vesicle traf-

ficking observed upon UV treatment, might suggest the necessity of the NER mutant worms of

alleviating stress, when recycling pathways are compromised, by releasing unwanted or dam-

aged material, for example in the form of exosomes. Since exosomes are small vesicles released

in the extracellular environment [8], they might have a role as signal transferred from one cell

to another, to mediate the whole organismal adaptation to persistent DNA damage.
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Metabolic adaptations upon unrepaired DNA damage

Similarly to the proteome alterations occurring during ageing [174, 242, 141] (Figure 3.10)

and in response to starvation [129] (Figure 3.11), upon persistent DNA damage we detected sig-

nificant changes of metabolic pathways involved in the synthesis and use of carbohydrate, amino

acid and lipids (Figure 3.4, (Figure 3.6 and Figure 3.18). Lipid and carbohydrate metabolism,

together with protein synthesis and autophagy, are important mechanisms regulated through the

IIS and the TOR pathways [70, 53, 251, 128, 99, 193] (Figure 3.15). As in proteomic studies of

IIS-deficient worms [70, 53], or upon starvation [129], and during ageing [141, 174, 39], many

enzymes involved in fatty acid biosynthesis also showed significant decreases in abundance in

our study (Figure 3.4, Figure 3.9, (Figure 3.16 and Figure 3.18). The consequence of this de-

creased FA biosynthesis (Figure 3.13) is an imbalance in the downstream complex lipid classes,

the sphingolipids and the glycerophospholipids (Figure 3.14 and Figure 3.15). As in ageing

studies [46, 79], we observed an increase in SM synthesis from the sphingolipids intermedi-

ate Cer, and in parallel an upregulation of the d17iso-GlcCer, which together with the CeTOR

signalling is involved in bypassing the developmental arrest caused by the decreased FA syn-

thesis [261] (Figure 3.14). The MS profiling of the other lipid class, the glycerophospholipids,

revealed a preferential direction in the phospholipids synthesis downstream of the DAG upon

UV treatment and starvation (Figure 3.15). In particular, the two major phospholipids sub-

classes, PC and PE, showed a striking opposite change in abundance upon the two treatments.

Previously, it was demonstrated that the PC/PE ratio is a critical modulator of membrane com-

position/integrity [140]: the positive PC/PE ratio we observed upon UV treatment suggests

retention of membrane structure, in contrast to starvation where the increase of PE will suggest

a loss of membrane integrity with an increase of solutes permeability. Upon starvation we also

observed a significant decrease of PG (Figure 3.15), the upstream regulator of CL, suggest-

ing a link of this lipid subclass with mitochondria dysfunctions (Figure 3.4 and Figure 3.9) as

observed in starvation studies [6] and in neurodegenerative disorders as AD [163]. Recent find-

ings in human centenarians suggested glycerophospholipids and sphingolipids classes as puta-

tive markers and modulators of healthy ageing, which is usually characterized by established

membrane lipid remodelling process and a better antioxidant capacity [166, 38, 79, 163]. In

agreement with ageing studies, together with changes in phospholipid composition we also ob-

served an increase in cellular detoxification mechanisms upon persistent DNA damage, through

65



CHAPTER 4. DISCUSSION

enhanced CYPs, GSTs and UGTs enzymes activity (Figure 3.7 and Figure 3.9). A similarly

altered phospholipid composition was observed also in synaptic brain mitochondria, which if

dysfunctional lead to neurodegenerative disorders as AD. Despite the increase in amount of

choline-containing phospholipids (PC and SM), the amount of CL content was found signifi-

cantly decreased, suggesting reduced function and oxidative capacity of synaptic mitochondria

[163]. Taken together, our observations suggest that the worms respond to persistent DNA dam-

age by a metabolic shift reminiscent of adaptations during starvation (Figure 3.11) and ageing

(Figure 3.10).

In general, all of these findings reflect the necessity of worms to cope with persistent DNA

damage by saving energy, through decreased lipid metabolism and protein synthesis, mean-

while trying to avoid accumulation of aberrant proteins, which can be toxic for organisms. The

increased autophagy activity, coupled with an extracellular trafficking, suggests the require-

ment of a signal transduction throughout the whole organisms to modulate its adaptation to the

damage.

Networks of proteins involved in response to persistent DNA damage

We next combined proteome and phosphoproteome datasets in a protein-protein interaction

map to extend our analysis to the identification of regulators that are linked to IIS and modulate

a range of cellular processes. The network analysis revealed an intricate connection of differ-

entially regulated signalling nodes, and assigned central roles for the IIS (Figure 3.16), and the

EGF- and AMPK-like signalling pathways in response to DNA damage (Figure 3.18). Muta-

tions affecting the AMP-activated protein kinases AAK-2, playing a central role in controlling

energy metabolism and regulating longevity through the CeTOR and the daf-2-mediated IIS

pathways [175, 45], have been reported, in previous tests performed in our laboratory, increas-

ing the C. elegans sensitivity to UV-induced DNA damage. Upon UV treatment, upregulation

of members both of the CeTOR and IIS pathway, reminiscent of recent C. elegans studies dur-

ing ageing [174], reinforces the concept of response to accumulating DNA damage during the

natural ageing process. Moreover, the dampening of lipid biosynthesis (Figure 3.13) suggests

that at least in C. elegans, physiological adaptations occur in favor of a tissue maintenance pro-

gram, allowing survival upon unrepaired DNA damage. This survival program is also promoted

by an increase in autophagy (Figure 3.16), which favors proteostasis [32, 157, 43] and stress
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resistance [56, 122].

In conclusion, our analysis of proteome, lipidome, and phosphoproteome in NER-deficient

C. elegans provides a comprehensive picture of the response processes involved to persistent

DNA damage in a metazoan animal model. The future prospective for this proteomic and

metabolomic investigation will be to further experimentally assess the protein and signalling

mechanisms we found significantly regulated to establish a more complete model of how ani-

mals respond to persistent DNA damage. The final aim of such a general analysis is to translate

the findings about signal transduction networks we found involved in the C. elegans response to

UV treatment to other model organisms and ultimately to humans, to help deciphering outcomes

of syndromes related to NER deficiencies.
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