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Abstract

Chiral magnets are materials that lack inversion symmetry in their crystal struc-
ture and contain a number of di�erent magnetic phases. In this thesis we focus
on cubic crystals. Besides a field-polarized phase for strong applied magnetic
fields and a paramagnetic phase above a critical temperature, there are the more
interesting helical and conical phases as well as, most prominently, a trigonal
lattice of topologically stable magnetic whirls, so-called skyrmions. Their recent
discovery in MnSi has sparked a great interest in them, largely because of their
topological nature and the prospects of novel applications, for instance in future
magnetic storage devices. The last three mentioned phases are spin textures
due to the Dzyaloshinskii-Moriya spin-orbit interaction which is induced by the
aforementioned lack of inversion symmetry. We theoretically study spin wave
excitations with a focus on these phases, which are essential to understand for
dynamic applications.

Part I is an introductory chapter to chiral magnets, their phases, and their
static properties. The skyrmions deserve special attention as they are the most
complex phase and necessitate the introduction of concepts from topology. We
conclude this overview by a theoretical description of chiral magnets in terms of
a Ginzburg-Landau theory. To study the dynamics, we work in a mean-field limit
with added Gaussian fluctuations. The latter are also necessary to stabilize the
skyrmion lattice phase with respect to the conical phase.

In part II we introduce and prepare expressions and concepts relevant for the
study of spin waves. The first two sections cover their fundamental origin and two
experimental methods, namely microwave excitation with coplanar waveguides
and inelastic neutron scattering. Collaborators employed those two methods to
measure spin waves in various chiral magnets. Their data are also presented in
the course of this thesis and compared to theory.

Part III addresses spin waves in the helical/conical phase, so-called helimagnons,
and first focuses on homogeneous spin waves at the �-point of the one dimensional
magnetic Brillouin zone. We find two modes whose resonance frequencies are
decisively influenced by dipole-dipole interaction. They are, in particular, dege-
nerate without it. An astonishing e�ect is their perfectly linear polarization at
zero field. This can be used to excite the two modes individually. Their resonance
frequencies can also be calculated analytically for which we employed a non-linear
‡ model, opposed to the Ginzburg-Landau model for numerical calculations. The
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latter is then used to calculate the helimagnon spectrum in the remainder of the
Brillouin zone. We also calculate spectral weights in correspondence with neutron
scattering experiments. In the longitudinal spectrum we find three branches whose
detection depends on the ability to detect spin-flip and non-spin-flip scattering.

The structure of part IV resembles the previous one but covers magnons in the
skyrmion lattice. At the �-point there are two gyration and a breathing mode.
The spectrum with finite momentum exhibits a plethora of modes. The weight
distribution for neutron scattering spreads over all of them in a way, that on
average resembles the three helimagnon branches. Finally, we calculate topological
invariants called Chern numbers with good confidence for the lowest 14 bands.
Four of them have Chern number zero, the remaining ones have Chern number
one.
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Kurzzusammenfassung

Chirale Magnete sind Materialien ohne Inversionssymmetrie in ihrer Kristall-
struktur, die aufgrund dessen eine Vielzahl von unterschiedlichen, magnetischen
Phasen aufweisen. In dieser Arbeit stehen chirale Magnete mit kubischer Kris-
tallstruktur im Vordergrund. Neben einer feldpolarisierten Phase bei starken
angelegten Magnetfeldern und einer paramagnetischen Phase oberhalb einer kriti-
schen Temperatur, gibt es die interessanteren helischen und konischen Phasen,
sowie die wohl prominenteste Phase, nämlich die sogenannte Skyrmionphase.
Skyrmionen sind in einem Dreiecksgitter angeordnete, topologisch stabile, ma-
gnetische Wirbel. Ihre kürzliche Entdeckung in MnSi erzeugte großes Interesse,
besonders wegen ihrer topologischen Natur und die dadurch erho�te Aussicht auf
neuartige Anwendungen, beispielsweise in zukünftigen, magnetischen Datenträ-
gern. Die letzten drei genannten Phasen sind Spinstrukturen, die durch die auf
Spin-Bahn-Kopplung basierende Dzyaloshinskii-Moriya Wechselwirkung bedingt
sind. Letztere ist wiederum durch die fehlende Inversionssymmetrie induziert ist.
Wir untersuchen theoretisch die Spinwellenanregungen in diesen Phasen, deren
Verständnis unabdingbar für dynamische Anwendungen ist.

Part I ist eine Einführung über chirale Magnete, ihre Phasen und statischen
Eigenschaften. Die Skyrmionen bedürfen besonderer Aufmerksamkeit, da sie die
komplexeste Phase ausmachen für die Konzepte der Topologie von Bedeutung
ist. Wir schließen diese Übersicht mit der theoretischen Beschreibung chiraler
Magnete mithilfe einer Ginzburg-Landau Theorie ab. Die Dynamik untersuchen
wir basierend auf einer Molekularfeldtheorie mit zusätzlichen Gaußschen Fluktua-
tionen. Letztere sind außerdem notwendig um das Skyrmion-Gitter im Vergleich
zur konischen Phase zu stabilisieren.

In Part II bereiten wir Ausdrücke und Konzepte vor, die relevant für das Studi-
um von Spinwellen sind. Die ersten zwei Sektionen behandeln ihren fundamentalen
Ursprung und stellen zwei experimentelle Methoden vor, nämlich Mikrowellen-
anregungen mit ko-planaren Wellenleitern, und inelastische Neutronenstreuung.
Kollegen aus der Experimentalphysik benutzten diese zwei Methoden um Spin-
wellen in verschiedenen, chiralen Magneten zu messen. Ihre Daten werden auch
im Rahmen dieser Arbeit vorgestellt und mit der Theorie verglichen.

Part III behandelt Spinwellen in der helischen und konischen Phase, sogenannte
Helimagnonen, und konzentriert sich zuerst auf homogene Spinwellen am �-Punkt
der hier eindimensionalen, magnetischen Brillouin-Zone. Wir finden zwei Moden,
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deren Resonanzfrequenzen bestimmend durch die Dipol-Dipol-Wechselwirkung
beeinflusst werden. Ohne sie sind die beiden Moden entartet. Ein erstaunlicher
E�ekt ist ihre perfekte, lineare Polarisation im Nullfeld. Dieser kann ausgenutzt
werden um die Moden unabhängig voneinander anzuregen. Ihre Resonanzfrequen-
zen können analytisch bestimmt werden, wofür wir ein nichtlineares ‡-Modell, im
Gegensatz zu dem Ginzburg-Landau-Modell für numerische Rechnungen, anwen-
den. Letzteres benutzen wir um das Helimagnonspektrum im restlichen Bereich
der Brillouin-Zone zu berechnen. Außerdem berechnen wir spektrale Gewichte,
die Ergebnissen inelastischer Neutronenstreuung entsprechen. Im longitudina-
len Spektrum gibt es drei Zweige deren Detektion von der Einstellung abhängt
Spin-Flip- und nicht-Spin-Flip-Streuung zu messen.

Part IV ähnelt strukturell dem vorherigen, behandelt jedoch Magnonen im
Skyrmion-Gitter. Am �-Punkt finden sich zwei rotierende und eine atmende Mode,
während das Spektrum bei endlichem Impuls eine Unmenge an Moden aufweist.
Die Gewichtsverteilung der inelastischen Neutronenstreuung verteilt sich über
ihnen in einer Art und Weise die gemittelt den drei Zweigen des Helimagnon-
spektrums ähnelt. Abschließend berechnen wir topologische Invarianten, genannt
Chern Zahlen, für die 14 tiefsten Bänder. Vier von ihnen haben den Wert Null,
die anderen Chern Zahlen den Wert eins.
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General Introduction

All around us in everyday life ranging from staircases to flower patterns, shapes
of animals and more, one encounters a sense of handedness or chirality. It is
the fundamental property responsible for all the fascinating e�ects that we will
explore in this thesis and they are not only present at macroscopic but also
microscopic length scales and occur in materials and places which may not be
that obvious. In the following parts and chapters we will explore a category of
such materials, namely cubic chiral magnets, or helimagnets, and study their spin
wave excitations.

Arguably the most prominent chiral magnet is manganese silicide, MnSi, which
has been intensively studied since the 60’s. At that time MnSi was still considered
mainly a ferromagnet [1, 2] while the helimagnetic behavior was discovered later
in 70’s [3, 4]. In the helimagnetic phase, the magnetization forms an arrangement
of screws that either align with certain crystal directions when applied external
magnetic fields are low (helical phase), or align with the field direction for higher
fields (conical phase). Eventually, for increasing field strength, there is a 2nd

order phase transition into a field polarized phase. First experiments to probe
spin waves have also been performed during that time using neutron scattering [5]
covering the extent of the nuclear Brillouin zone. MnSi was still full of surprises
like the non-Fermi liquid behavior at high pressures [6], which drove further
studies. The most relevant discovery to our studies, was the discovery of a
lattice of topologically stable, magnetic whirls, so-called skyrmions, in 2009 [7].
The description of their topological structure goes back to a proposal of nuclear
physicist Tony H. R. Skyrme in the late 50’s to think of neutrons and protons as
non-linear excitations of pion fields [8]. While he used a three dimensional field
description in his work, the corresponding structure in MnSi, or as we now know
many other materials as well, is two dimensional and therefore sometimes called a
“baby-skyrmion”. Such a description was proposed by Bogdanov and Yablonskii
in 1989 [9].

After said discovery the community studying skyrmion hosting materials, like
the bulk chiral magnets we consider in this thesis, grew substantially. This was
not least because of the prospect of novel applications in future magnetic storage
devices like racetrack memory as suggested by Stuart Parkin et al. [10]. A big
advantage of skyrmions is their comparably very low threshold current density
of the order of j ≥ 106 A/m2 above which the skyrmion lattice texture gets
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unpinned from disorder. This is ultra-low compared to a current density of around
j ≥ 1011 A/m2 needed to move ordinary domain walls, which is used in current
devices [11].

Equally important to information storage in information technology is the ability
to carry information. This is where spin waves or magnons have gained increased
attention [12]. Magnons usually refer to the particle-like spin excitation in a
magnetic material while the wave-like part is referred to as spin waves. Spin waves
o�er the possibility to transmit and process information without moving electrical
charge carriers which can lead to unwanted heating e�ects. Magnonic devices
also o�er an integration with microwave electronics. A big advantage is that the
wavelength of spin waves corresponds to the practically relevant frequencies within
the GHz to THz range. This o�ers prospects for miniaturization [13]. Before
one is able to build devices that can exploit such benefits, detailed fundamental
research is a prerequisite, which is the objective of this thesis.

After giving more detailed introductions to helimagnets, their magnetically
ordered phases and basic aspects of spin waves in parts I and II, we will discuss in
detail the spin wave modes and spectra in chiral magnets. In part III we will focus
on spectra in the helical and conical phases while the focus in part IV is on spin
waves in the skyrmion lattice phase. Unique to part III is an analytical calculation
based on a non-linear ‡ model which yields an exact formula for uniform spin
wave resonances including dipolar interactions. Additionally, we also get good
analytical approximations for the helimagnon spectrum for momenta longitudinal
and perpendicular to the helix pitch. The non-trivial topological nature of
skyrmions motivates us in part IV to also address and calculate topological
invariants, called Chern numbers, of the magnon bands in the skyrmion phase.
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Part I.

Chiral Magnets
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1
Introduction

1.1. Definition of Chirality

The word chirality is derived from the Greek word ‰‘ÿ́fl (Kheir) which means hand.
It is a property of asymmetry and, like a hand, a chiral object is non-superposable
on its mirror image [14]. After creating the mirrored image of such an object,
it is hence not possible to map it onto the original image just by rotations and
translations alone. Ultimately, there is a right and left sense of handedness like
that of right and left feet depicted in figure 1.1. Rotating and translating one of
the feet will never generate the other.

Figure 1.1: Left and right feet as
examples of chiral objects. The
image shows a logo of a famous
band of Cologne called De Bläck

Fööss which translates to The

Naked Feet [15].

Chiral objects occur in several branches of
science like Biology and Chemistry in the form
of chiral molecules, but also in many parts of
Physics ranging from left and right handed
quarks in Particle Physics to chiral magnets
which are the center of attention in this thesis.
The latter are, as the name suggests, magnets
that possess a certain sense of chirality or hand-
edness intrinsic to the atomic lattice structure.
It is achieved by having neither mirror nor
inversion symmetry. Examples of such mate-
rials are the metal MnSi [16] and the insulator
Cu2OSeO3 [17]. In section 1.3 we elaborate
more on these and on more materials and their
properties.

In the model description of chiral magnets, an interaction term in the free
energy, called Dzyaloshinskii-Moriya interaction, is responsible for the occurrence
of chirality. Ordinary (anti-)ferromagnets on the other hand are non-chiral and well
described by the exchange interaction between spins [18]. Exchange interaction is
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1. Introduction

well modeled by the Heisenberg model1 in which the exchange Hamiltonian for
spins S on a lattice is given by

HHeisenberg = ≠
ÿ

i,j
JijSi · Sj , (1.1)

summing over lattice sites i and j. The exchange integral Jij is a measure for
the strength of the interaction. In many models, it is su�cient to only consider
interaction between neighboring sites which is usually denoted by Èi, jÍ and also
an isotropic exchange, i.e., Jij = J . The ferromagnetic case is then realized for
J > 0 as the energy will be lowest for a parallel spin-alignment. Depending on
the lattice structure, a negative J can, for example, yield an anti-ferromagnetic
state, but it can become arbitrarily complicated, for example when frustration
plays a role in an Ising-spin model.

In the systems that we focus on in this thesis, the magnetization varies on a
length scale much larger than the lattice spacings. It is hence permitted to use a
continuum approach for the magnetization M(r) as a continuous function of space.
In that context, a Ginzburg-Landau theory is often used, see sections 3.2 and 3.5.
There, equilibrium thermodynamics are completely determined by the free energy
functional F that depends on temperature and the (local) order parameter, here
M(r). Deviations from parallel alignment get penalized by finite gradients:

FHeisenberg =
⁄

dr J (ÒM(r))2 . (1.2)

The Dzyaloshinskii-Moriya interaction can also be written in a discrete and
continuous version which read

HDM =
ÿ

i,j
Dij · (Si ◊ Sj) (1.3)

FDM =
⁄

dr D M(r) · (Ò ◊ M(r)) . (1.4)

Equation (1.3) was part of Moriya’s initial publication [20], which was an extension
of Dzyaloshinskii’s study on weak ferromagnetism in ↵-Fe2O3, MnCO3 and CoCO3
via a phenomenological Landau-theory of second order phase transitions. Therein,
D is a constant vector pointing along the trigonal axis of ↵-Fe2O3, an axis fixed
by the crystal structure. Spins then prefer a canted arrangement, that would even
be perpendicular, if (1.3) would be the solely relevant term. Perpendicular to
each other and to D. Left- or right-handed chirality is determined by an overall
negative or positive sign of HDM, respectively.

Both Heisenberg- and DM interaction are present in chiral- or helimagnets.
They compete against each other and the result of that competition is a helical
structure with neither parallel nor perpendicular neighboring spins.

1In the Heisenberg model, spins have an O
3

symmetry, meaning they can rotate any way in
three dimensions. This stands in contrast to the Ising-model with a Z

2

symmetry, where
spins variables are only allowed to take two values, either up or down. A mixture between
those two can be realized via a clock model that has a Z

N

symmetry [19].
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1.2. Typical Magnetic Phases

Figure 1.2: Typical magnetic phase
diagram of the exemplary chi-
ral magnet MnSi. Picture taken
from [21].

(a) Helical phase (b) Conical phase
_

(c) Field polarized phase

(d) Skyrmion lattice phase

Figure 1.3: Magnetically ordered phases in chiral magnets.

1.2. Typical Magnetic Phases
A well known chiral magnet, and probably the most studied one for its availability
of high-quality single crystals, is MnSi. Therefore, we use its phase diagram
for the discussion of magnetic phases generally present in chiral magnets. More
detailed properties of MnSi and further materials, which also contain the same or
similar magnetic phases, are listed and described in section 1.3. For now, let us
focus on a typical phase diagram as shown in figure 1.2.

At high temperatures, the system is in a paramagnetic state (PM) where local
magnetization points in arbitrary directions and the net-magnetization is zero.
Lowering the temperature, one first enters an intermediate regime (IM), i.e.,
the fluctuation disordered regime [22–24]. It is a crossover region between the
paramagnetic and magnetically ordered phases. On a mean-field level one obtains
a second-order phase transitions, but fluctuations drive it to first order.

After said first order transition at a critical temperature Tc one enters an ordered
phase. At zero magnetic field this is the helical phase where magnetization forms

7



1. Introduction

a twisted structure as shown in figure 1.3(a). Note, that the local magnetization is
perpendicular to the helix pitch and hence does not carry any mean magnetization.
At zero field, the pitch direction is determined by cubic anisotropies [25, 26] and
the formation of domains with di�erent pitch directions is possible. Upon applying
and increasing an external magnetic field Hext, the system transitions from a
helical into a conical arrangement. First, all pitch vectors start to align with
the direction of H int, which generally comprises of Hext, demagnetization and
anisotropy e�ects, but mostly corresponds to the direction Hext, especially for
higher fields. This process is completed at a critical field strength Hc1. For
more details see section 3.4. After that, the magnetization tilts towards H int

forming a conical shape, as shown in figure 1.3(b), and generating a finite mean
magnetization also pointing towards H int. This is the conical phase.

Increasing the magnetic field makes the cone more and more acute until it
vanishes and a field polarized or ferromagnetic state (FM) is obtained, figure 1.3(c).
This happens at a critical field Hc2 and the phase transition is of second order,
i.e., the magnetization changes continuously.

Just below Tc and at a finite magnetic field between Hc1 and Hc2, roughly at
0.5 Hc2, there exists a small phase pocked indicated as the A-phase in figure 1.2. It
contains a trigonal lattice of magnetic whirls, so-called skyrmions. An impression
of this skyrmion lattice or skyrmion crystal phase is shown in figure 1.3(d). More
details are given in chapter 2.

1.3. Materials & Properties

By today, many materials exhibiting the previously described phases have been
found and investigated. The initial spark that ignited growing interest and re-
search on, at first, chiral magnets, was the discovery of a skyrmion lattice phase
in MnSi [7]. From then on, a lot of e�ort has been put into creating and studying
materials that might be able to host skyrmions natively, cf. chapter 2.

The focus of this thesis lies on models that apply to study bulk chiral mag-
nets with corresponding experiments being conducted by collaborators on MnSi,
Fe1–xCoxSi and Cu2OSeO3. The first two crystallize in a cubic B20 alloy struc-
ture, which is a name for the FeSi-structure type, but all three have the space
group P 213 of point group 23, cf. No. 198 in [27]. This space group lacks a center
of inversion, which leads to the existence of both left and right handed versions
of the crystals. The selection process can depend on the substrate or seed on top
of which the crystals are grown. It hands down their own chirality to the sample.
In the following, we describe those three materials in more detail. Characteristic
parameters are summarized in table 1.1 on page 14.
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1.3. Materials & Properties

Mn
Si

(a) Unit cell of MnSi. Manganese atoms
(orange) have an atomic radius of 127 pm
while the silicon atoms (blue) are only a
little bit smaller with a radius of 117.6 pm
[16].

(b) Magnetic susceptibility measurements in
MnSi [21].

Figure 1.4: B20 crystal structure and magnetization measurements of MnSi.

Manganese Silicide: MnSi
This material is a metallic, itinerant-electron magnet [3]. The cubic structure
has an edge length of aMnSi = (4.5480 ± 0.0002) Å[16] forming a cube containing
eight atoms per unit cell, i.e., four formula units, and their positions are defined
by the following coordinates:

3
(u, u, u); (1

2 + u, 1
2 ≠ u, ū); (1

2 ≠ u, ū, 1
2 + u); (ū, 1

2 + u, 1
2 ≠ u)

4
(1.5)

with uMn = 0.138 and uSi = 0.845 [5], cf. figure 1.4(a). The magnetization in the
ferromagnetic state comprises 0.4 µB per Mn atom [28].

Furthermore, MnSi can be grown in an ultra-pure form with a mean free path
of up to 5000 Å which suggests a good description by Fermi-liquid theory, a theo-
retical model dating back to Landau that is able to describe the normal state of
most metals at su�ciently low temperatures. MnSi, however, shows an uncharac-
teristic behavior for Fermi-liquids above a critical pressure pc. At lower pressures,
when the system is weakly spin polarized, the resistivity fl depends quadratically
on temperature as is expected by Fermi-liquid-theory. When magnetic order is
suppressed at p > pc, this behavior changes abruptly to fl Ã T 3/2 [6, 29–33]. Note
that this phenomenon is not only confined to an area close to the quantum critical
point but over a wider area of the phase diagram. Reasons for the appearance of
this non-Fermi-liquid phase are still unknown and its understanding is sometimes
referred to as the holy grail of MnSi.

The magnetic phase diagram of MnSi was already shown in figure 1.2. Below
a critical temperature of Tc ¥ 29 K, the system exhibits helical magnetic order
at zero or small magnetic field [3, 34, 26]. The pitch vector Q is pinned to a

9
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a

CoSiFe0.5Co0.5SiFeSiFe0.5Mn0.5SiMnSi
0

50

100
T
(K
)

HMM

PMM

PMI

PMM

HMM

Fe1–xMnxSi Fe1–yCoySi

Figure 1.5: Effects of doping
and temperature on Fe1–xMnxSi
(left) and Fe1–xCoxSi (right).
Paramagnetic metallic (PMM),
paramagnetic insulating (PMI)
and helimagnetic metallic at zero
field (HMM) phases are possible
[38].

È1 1 1Í direction in the helical phase via cubic anisotropies and the corresponding
wavelength is approximately 180 Å long and almost temperature independent. In
terms of chirality it can be said that a left handed chirality of the crystal structure
corresponds to a left handed magnetic chirality [35, 36].

Another important property concerns the magnetic susceptibility in the conical
phase ‰con. The striking feature is a constant behavior at low temperatures.
Measurements have, for example, been performed by Bauer et al. [21] and are
shown in figure 1.4(b). The slope of magnetization vs. applied field is truly linear
for temperatures around 2 K, but softens out a little bit for higher temperatures.
This is still fine for small fields, but needs to be kept in mind for situations
with comparably high temperatures and fields. As the magnetic field inside of a
macroscopic sample depends on the strength of the shape dependent demagneti-
zation field, ‰con is also shape dependent. Said field can be characterized via a
demagnetization factor Nz corresponding to a principal axis in field direction, cf.
section 3.3. A shape independent constant, however, can be extracted via [37]

‰int
con = 1

‰≠1
con ≠ Nz

. (1.6)

The material constant ‰int
con of MnSi has a value of 0.34. The property of a constant

conical susceptibility is not reserved for MnSi alone, but occurs in the other chiral
magnets as well. Values for other materials are listed in table 1.1.

Iron Cobalt Silicide: Fe1– xCoxSi
The magnetic and conducting properties of Fe1–xCoxSi depend on doping and
temperature as can be seen in figure 1.5. When interested in helimagnets, most
experiments are therefore conducted with a doping between x = 0.2 and x = 0.5.
Like MnSi, both FeSi and CoSi also crystallize in a B20 structure which allows
the full doping range.

10



1.3. Materials & Properties

Figure 1.6: (a) and (b): left-
and right-handed crystal
structure of B20-alloys like
MnSi or Fe1–xCoxSi. (c)
left- and (d) right-handed
skyrmion- or, more gener-
ally, magnetic helicity with
respect to the magnetic
field.
Case I and II refer to the
different possibilities of as-
sociation between the two.
While for MnSi case I is al-
ways true, for Fe1–xCoxSi
both cases may apply.
Picture taken from [39].

The helix pitch is weakly oriented along È1 0 0Í and in some measurements even
a random distribution has been found [40].
Figure 1.6 shows a B20 structure like iron cobalt silicide in both chiralities, illus-
trated by yellow arrows.

Contrary to MnSi, the handedness of the magnetic spin structure does not
always correspond to the handedness of the atomic crystal structure, i.e., a left
handed crystal structure does not mean that magnetic helices or skyrmions have a
left handed chirality as well (case I in figure 1.6), but can be exactly the opposite
(case II). In Fe1–xCoxSi the association between crystal and magnetic chirality is
doping dependent. That means choosing a fixed crystal chirality and changing
the doping strength will flip the sign of the Dzyaloshinskii-Moriya interaction at
a doping strength around x = 0.65 [41].

The change of the Dzyaloshinskii-Moriya interaction D also influences the pitch
length leading to a variation of the helix wavelength ⁄hel Ã 1/D between 200 and
2300 Å [42–44]. Dependent on doping, ⁄hel first decreases but soon increases with
increasing x [40].

Copper(II)-oxo-selenite: Cu2OSeO3

Below a critical temperature of 58.8 K CuSeO4 shows spontaneous magnetization
[45]. Copper(II)-oxo-selenite in general can appear in a multitude of crystal struc-
tures going from monoclinic and triclinic forms of Cu4O(SeO3)3 to Cu2O(SeO3),
which can be monoclinic and even cubic. The latter is the type we focus on.
The material in question is a dark olive green multiferroic and magnetoelectric
insulator. Comparing to MnSi, it crystallizes similar to the B20 structure but
with a di�erent coordination number. It contains eight formula units per unit

11
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Se

O

Cu

a

b
c

(a) Cu2OSeO3 crystal structure [47]

H || [111]H || [110]H || [001]

H [111]H [110]H [001]

p

ρ

  pz, ρ

+1

-1

[1̄10]

[1̄1̄0] [001]

[1̄10]

[1̄1̄2]

[1̄10]P = 0 P P

(b) Electric polarization in Cu2OSeO3 [48]

Figure 1.7: (a) The empirical formula of Cu2OSeO3 contains two Cu2+ ions. They are
characterized by a different oxygen coordination.
(b) Top: depending on the direction of an applied magnetic field H with respect to
the atomic lattice, a finite mean electric polarization P is able to form with a direction
also dependent on the direction of H.
(b) Bottom: besides a possibly finite mean polarization, the skyrmion phase experiences
also a modulating local one that induces a local charge distribution fl plotted in the
bottom row of (b).

cell of edge length aCu
2

OSeO
3

= (8.9250 ± 0.0001) Å[17]. A picture of the crystal
structure is shown in figure 1.7(a). The helical magnetic modulation has a length
of (616 ± 45) Å and is pinned to a È1 0 0Í direction at zero field [46].

In a magnetoelectric material, an external magnetic field influences electric
polarization [49]. Although Cu2OSeO3 does not show spontaneous ferroelectric
polarization, it can be induced by an external magnetic field [50]. For the setup
used here, this polarization can locally be written as [51]

P = –

Q

a
MyMz

MzMx

MxMy

R

b . (1.7)

The direction of the average polarization depends on the direction of applied
magnetic field and may also vary on strength. When the system is in the skyrmion
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1.3. Materials & Properties

phase, then also the local polarization varies significantly with respect to the
direction of the magnetic field. Both e�ects are shown in the top and bottom
parts of figure 1.7(b), respectively. Electric forces are generally much stronger
than magnetic forces, but the induced polarization has, nevertheless, only a small
e�ect as can be seen, for example, when comparing magnetic and electric dipolar
energies. Seki et al. measured a saturation magnetization between 0.5 µ

B/Cu2+

at 5 K and 0.2 µ
B/Cu2+ at 57 K ¥ Tc for H Î [1 1 1] [47]. This corresponds to

approximately 16 µC/m2 and 1 µC/m2 at H = Hc2, respectively. Having eight
formula units per unit cell providing 16 copper ions responsible for the magnetic
moments per unit cell, leads to

P T =5 K
[1 1 1] = 16 µC

m2

MT =5 K
[1 1 1] = 0.5 µB

Cu2+ · 16 Cu2+

710.8 Å
¥ 104 000 A

m

giving corresponding dipolar energies of

Edipole,electric = 1
8fi‘0

1
P T =5 K

[1 1 1]

22
¥ 1 J

m

Edipole,magnetic = µ0
8fi

1
MT =5 K

[1 1 1]

22
¥ 540 J

m.

There are hence at least two to three orders of magnitude between those energies.
But because Cu2OSeO3 is insulating, electric fields can still influence the magnetic
structure without needing to worry about a�ecting itinerant charge carriers.

Summary and Other Noteworthy Materials
Table 1.1 summarizes typical values of the materials above. One should mention,
that temperature generally plays a role in all obtained data. It is ultimately a
matter of focus which allows us to approximate some values as constant opposed
to others. For example the lattice constants and hence the Vf.u. (Å3) depend on
temperature. We chose to mention low temperature values in the text, while
values in table 1.1 correspond to ambient temperatures. Their discrepancies are
fairly small at about one percent. The pitch length varies more significantly with
around 10 % between 0 K and Tc [52]. The biggest influence of temperature can,
however, be observed in Hc2 which is around a factor of two. Therefore, the other
temperature dependencies can be regarded as constant compared to Hc2(T ).

Apart from those three materials, there are, for one, more B20-type alloys like
FeGe [57] or MnGe [58] that host skyrmions. To a great deal driven by the need
for skyrmions at room temperature to be able to use them in applications and
novel computer technologies (cf. section 2.3), other approaches were explored.
For example Heusler compounds like Mn2RhSn of space group I 4̄m2 (No. 119),
as an example of other non-centrosymmetric magnets, are studied [59], but also
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MnSi Fe0.8Co0.2Si Cu2OSeO3 FeGe

metallic semi-conducting insulating metallic
Tc (K) 29 28 58 278.2
H int

c2 (T = 0) (
T
µ0
) 0.60 0.15 0.08 0.93 at T=271 K

2⇡/Q (Å) 180 340 600 700

pitch alignment h1 1 1i weakly h1 0 0i h1 0 0i h1 0 0ihighT
h1 1 1ilowT

�int
con 0.34 0.64 1.76 3.43
Vf.u. (Å3) 24.02 22.52 89.02 103.80
Z 4 4 8 4
g 2.0 2.1 2.1 1.9

Table 1.1: Summary of material properties. The number Z equals the number of formula
units per unit cell and note that pitch alignment refers to the direction of Q at zero field
in the helical phase. Most values are taken from samples used in [37], the remaining
sources are mentioned in the text and [53–56]. Note that the listed data for FeGe are
for its low-temperature B20 structure.

centrosymmetric magnets, where Dzyaloshinskii-Moriya interaction does not play
a role but the interplay between magnetic dipole–dipole interaction and uniaxial
anisotropy causes the formation of a skyrmion spin texture. Also, broken inversion
symmetry at interfaces can lead to the formation of skyrmions as can be seen
in [60] where the authors create a square, atomic-scale skyrmion lattice in a
one-atomic iron film on top of an iridium (1 1 1) surface. For a collection of
materials see [61, chapter 2].
Although near-room temperature formation of a skyrmion lattice was already
achieved in thin-films of FeGe [57], skyrmions at and beyond room temperature
were first found in a di�erent family of chiral magnets: —-Mn-type Co–Zn–Mn
alloys. One example is Co10Zn10, which belongs to the cubic chiral space group
P4132 or P4332 depending on its handedness containing 20 atoms in the unit
cell and the critical temperature lies at Tc ¥ 462 K [62]. Doping with manganese
systematically decreases Tc until Co6Mn6Zn8 does not show ferromagnetic be-
havior any longer. The authors e�ectively detect skyrmions at 283 K and 345 K
respectively for Co8Zn8Mn4 and Co8Zn10Mn2.
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2
Skyrmions

2.1. Historical Origin
Skyrmions date back to studies by T. H. R. Skyrme in the late 1950’s and early
1960’s [8, 63–67]. He developed a unified field theory of K- and fi-mesons and
baryons. It turned out to be a non-linear theory of self-interacting (boson) meson
fields, which admit states that have phenomenological properties of fermion
particles, interacting with mesons. This was achieved by separating the field into
meson-like and particle-like parts.

In the following we sketch his original work in a rough fashion and mainly
follow the beginning of [67]. Let the initial field at any point be characterized by
a unitary symbol U :

UU† = U†U = 1. (2.1)
While he also discussed simpler, one-dimensional models where U corresponds to
a complex number ei–, in the physically relevant case U is a quaternion1, which
can also be written in terms of four real fields „–:

U = „4 + i
3ÿ

–=1
·–„– (2.2)

where the coe�cients ·– are a set of three Pauli matrices. In his model, the three
independent pion field amplitudes are replaced by such four fields, that interact
symmetrically with the nuclear field. The vector composed of those fields is then
constrained to have constant length:

4ÿ

–=1
„2

– = 1. (2.3)

The domain of U is hence the surface of a unit-sphere in a four-dimensional
Euclidean space. A constant of motion called N , that can be interpreted as a

1Quaternions can be seen as an extension of the complex numbers. They have been discovered
by Sir William Rowan Hamilton (1805–65) and are the first non-commutative algebra to be
studied [68].
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2. Skyrmions

particle number, has the global meaning of the number of times that the field
distribution U(x) maps the 3-dimensional configuration space onto this domain.
U has to obey the boundary condition

U(Œ) = 1 (2.4)

to ensure an integer particle number. In a state where there is one particle, U
has to wrap around the sphere at least once and therefore take the value of ≠1
at least once. This leads to a native definition of the position of the particle,
namely at x = x0 when U(x0) = ≠1. He then separates U into a mesonic part Û
that never takes the value ≠1, and a particle part, that is only significant in the
vicinity of x0. He gives

Û = 1 + Á + U

1 + Á + U† , (2.5)

which is unequal to ≠1 for Á > 0. As Á æ 0 Û approaches U almost everywhere.
Because Û is particle free, i.e., N = 0, a separation can be made as

U = ÛS. (2.6)

Except near the positions x0 of particles, the new field S = 1. Near particles S
can be written as

S = ≠Á + i·–B–
i (x ≠ x0)i

Á ≠ i·–B–
i (x ≠ x0)i

. (2.7)

·– are the Pauli matrices and B–
i are proportional to the field gradients of U at

x = x0:

ˆU

ˆxi
= i·–B–

i U (2.8)

B–
i = (1/2i) Tr(U†·– ˆU

ˆxi
). (2.9)

It then needed to be shown that singularities like S, describing the branch
points of

Ô
U , behave like Dirac particles coupled to the residual meson field U .

Those are some longer calculations that we will not address here. Still noteworthy
is a derived expression for the particle number (in the limit of Á æ 0)

N = ≠sgn det B–
i (x0). (2.10)

At this point he believed that the particle operators have many fermionic prop-
erties but did not show it explicitly. He did, however, demonstrate this for the
one-dimensional model in [65] where neutrino-like properties were evident.

In retrospect Skyrme’s particle solutions, the now so-called skyrmion solutions,
were the first example of a topological soliton model of a particle [69]. Seen in
a broader context, they emerged from the Yukawa model which describes how
heavy spin- 1

2 nucleons interact through pion exchange. He reconsidered the pion
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2.2. Topological Aspects of Skyrmions

exchange which leads to a Lagrangian with a topological structure, that allowed
a topologically stable soliton solution. He saw that these solutions had rotational
degrees of freedom and the key was that when quantized, the state was allowed
to carry spin- 1

2 . Hence, a bosonic field theory could lead to fermionic states.

While skyrmions occurred here as field configurations on a 3-sphere as defined
by (2.12), the concept and their topological properties can be generalized to other
dimensions, in particular to the 2-sphere S2. This brings us back to the texture
shown in figure 1.3(d), the skyrmions present in chiral magnets. Because they are
formulated in one dimension less than the original skyrmions, they are sometimes
called baby-skyrmions. In contrast to objects in other magnetic phases present in
chiral magnets they are topologically non-trivial. This aspect is elucidated in the
following.

2.2. Topological Aspects of Skyrmions
Skyrmions or magnetic textures in general are described by a vector field, i.e.,
a mapping between two manifolds, in this example position and spin-direction.
This paragraph follows [69] to introduce topological characteristics and their
application on the skyrmion structure.
Let

�0 : X æ Y (2.11)
x ‘æ y

be a map between two manifolds X and Y . In particular, let there be points
x0 œ X and y0 œ Y . In the following, we consider based maps, i.e., maps
�0(x0) = y0. To formulate topological aspects in a proper way, the concept of
homotopy is important. �1 homotopic to �0 means, that �0 can be continuously
deformed into �1. Homotopic is symmetric, transitive and reflexive, which are the
properties of an equivalence relation. Proof can be found in [70]. Therefore, maps
can be classified in homotopy classes. The constant class, for example, contains
all maps that are homotopic to the constant map �(x) = y0 for all x œ X.
Of special interest to us are maps from a sphere to a target manifold.

Sn =
)

x œ Rn+1 : ÎxÎ = 1
*

(2.12)

is the definition of an n-sphere, a sphere embedded in n + 1 dimensions [71].
Based maps � : Sn æ Y from such a sphere are of a class in fin(Y ), which has
a group structure for n Ø 1. In particular fi1(Y ) is known as the fundamental
group.
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2. Skyrmions

Example: fi
1

(Y )
fi

1

(Y ) is the class containing all maps of circles or loops that get mapped to
a target Y . If Y is a connected manifold and fi

1

(Y ) = {e}, where {e} is the
trivial group containing only the identity element, then Y is simply connected.
This means, that all loops can be smoothly contracted to a single point. This,
in turn, implies that Y does not have any holes.

If the target is a circle or loop itself, i.e., Y = S1, then there exists a map
f : S1 æ S1 with f(1) = 1. A map f̃ : R æ S1 is clearly induced by f̃(t) = f(eit).
It can be shown that due to fi

1

(R) = 0 every map g : R æ S1 with g(0) = 1 can
be uniquely lifted to a map ĝ : R æ R with g(0) = 0 [71]. In particular, there
exists a unique map f̂ with f̂(0) = 0 such that the diagram

R

p

✏✏
R

ˆ

f

77

t‘æe

it

// S1

f

// S1,

commutes.
Clearly, there exists k œ Z that f̂(2fi) = 2fik. The number k can be seen as a

winding number that counts the number of times the image of f winds around
S1. It follows from the uniqueness of the lifting property that the winding
number is well-defined.

The statement of the second part of the example can be generalized and reads

fin(Sn) = Z ’n Ø 1. (2.13)

For Skyrme’s original skyrmions n = 3. The case of baby skyrmions, which we
will simply call skyrmions in the remainder of the text, of course also falls into
the same set of classes, only with n = 2. In that context, they can easily be
drawn as arrows on a sphere like in the upper part of figure 2.1. The magnetic
texture in chiral magnets is, however, set on a planar surface and not the surface
of a sphere. That transition is achieved via a stereographic projection of S2 onto
R2. Let p be the north pole of the sphere, then there exists a homeomorphism
R2 æ S2 \ {p}. A complete correspondence is obtained by adding a single point
at infinity to R2 and identifying it with the image of p. A based map � : S2 ‘æ S2,
or to any other target manifold for that matter, is hence a continuous extension
of a map � : R2 æ S2 provided that limxæŒ �(x) = p. Of course, the occurring
skyrmions have a finite extent, but a contraction of R2 is easily done, for example
by applying the map fl ‘æ tan≠1 fl, or other less distorting functions, where fl is
the distance to the origin of R2. The result after such transformations is shown
in the lower part of figure 2.1. On the left hand side so-called Néel-skyrmions
are shown. They are characterized by having always outward-pointing spins on
the sphere. Combing those spins around the axis connecting north and south
pole of the sphere yields a sense of chirality that is, of course, also present in the

18



2.2. Topological Aspects of Skyrmions

Figure 2.1: Stereographical projections of (baby) skyrmions. The south pole of the sphere
is mapped to the origin of R2 while the north pole is mapped to infinity. Via the map
⇢ 7! tan�1(⇢) one can map R2 onto a finite sized disk, where ⇢ is the distance to
the origin. Left: Néel-skyrmion. Note the similarity to Néel-type domain walls, in
which spins rotate in a plane perpendicular to the domain boundary. Right: Chiral- or
Bloch-type skyrmion. Note the similarity to Bloch-type domain walls, in which spins
rotate in a plane parallel to the domain boundary. It evolves from a Néel-skyrmion
by first combing the spherical hedgehog arrangement around the axis defined by the
north and south poles of the sphere before projecting it onto a plane. This type is the
one observed in chiral magnets.

projected version. This texture is then called chiral skyrmion and it is the type
of texture that occurs in chiral magnets and therefore the kind of skyrmion that
we refer to in the remainder of the thesis unless explicitly stated otherwise.

At this point, it is appropriate to give another quantity that characterizes the
skyrmion. This is its winding number . In the general mathematical scheme it is
rooted in the concept of the topological degree, which is defined for an everywhere
continuously di�erentiable map � : X æ Y between two oriented and closed
manifolds of the same dimension. Then the topological degree is defined as the
integral over the pullback �ú of a normalized volume form � on the target Y :

deg � =
⁄

X

�ú(�). (2.14)

The topological degree is an integer number and therefore a homotopy invariant.
It also does not depend on � [69].
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2. Skyrmions

To make the transition from this abstract definition to the skyrmion configuration,
let us specify the integrand of (2.14). Given � = —(y) dy1 · dy2 with y œ Y and
let the map � be represented by y(x), then the integrand is written in terms of
local coordinates as

�ú(�) = —(y(x)) ˆy1

ˆxj
dxj · ˆy2

ˆxk
dxk

= —(y(x)) J(x) dx1 · dx2 (2.15)

with J(x) = det
1

ˆyi

ˆxj

2
and i, j, k œ {1, 2}.

In the physical context the map describes the local magnetization M(x) © y(x)
and, when normalized, (M̂) can be described by angles Ë and Ï of the standard
spherical coordinates. Using those coordinates the normalized volume form
specifies to � = 1

4fi sin(Ë) dË · dÏ. We now need to pull this integration over
a sphere back to an integration over R2 in Cartesian coordinates by inverting
the spherical coordinate representation. To avoid an abundance of indices we set
(x, y) = (x1, x2) œ X.

Ë = arcsin
Ò

M̂2
x + M̂2

y (2.16)

Ï = arctan M̂x

M̂y

(2.17)

Also, the explicit dependence on (x, y) has been dropped for clarity, i.e., Mx =
Mx(x, y) is the first component of the magnetization at position (x, y). Using
those coordinates in (2.15) and evaluating the derivatives in the second step yields

deg M = 1
4fi

⁄

R2

sin Ë
Ò

M2
x + M2

y

3
ˆË

ˆx

ˆÏ

ˆy
≠ ˆÏ

ˆx

ˆË

ˆy

4
dx dy

= 1
4fi

⁄

R2

1Ò
1 ≠ M̂2

x ≠ M̂2
y

A
ˆM̂x

ˆx

ˆM̂y

ˆy
≠ ˆM̂y

ˆx

ˆM̂x

ˆy

B
dx dy

= 1
4fi

⁄

R2

1Ò
1 ≠ M̂2

x ≠ M̂2
y

A
ˆM̂

ˆx
◊ ˆM̂

ˆy

B

z

dx dy. (2.18)

The normalization of M is encoded in Mz =
Ò

1 ≠ M2
x ≠ M2

y . Furthermore, it
can be shown that the last line can be written as a triple product, which results
in the common form used to calculate the skyrmion winding number W :

W = 1
4fi

⁄

R2

M̂ ·
1

ˆxM̂ ◊ ˆyM̂
2

dx dy. (2.19)

This number counts how often the magnetization wraps around a sphere. Applying
(2.19) to a texture as shown in the bottom half of figure 2.1, one obtains W = ≠1.
Strictly speaking this object is called an anti-skyrmion. The minus sign appears
because magnetization at the center is pointing down.
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Figure 2.2: Structure factors obtained via neutron scattering. Left: Helical/conical phase
of the helimagnet Cu2OSeO3 [46]. Two peaks are clearly visible aligned with the
magnetic field along which they represent the helical modulation. Right: Skyrmion
phase in MnSi [7]. Six major peaks a visible indicating a superposition of three helices.
Additionally, smaller higher order peaks are recognizable. A more thorough study on
them can be found in [74].

2.3. Experimental Realization and Application
Around the early 90’s, Bogdanov et al. showed, that such skyrmions may occur as
a thermodynamically stable system of magnetic vortices in magnetically ordered
crystals with an easy axis [9, 72, 73]. The vortices themselves form a lattice
similar to that of type-II superconductors and can be stabilized by a so-called
Dzyaloshinskii-Moriya interaction. Besides tetragonal materials like Tb3Al2, the
authors also suggested cubic magnets like FexCo1–xSi and, in particular, MnSi as
possible candidates to exhibit skyrmions.

In 2009, MnSi was subject to studies by a research group in Munich where
Mühlbauer et al. performed small angle neutron scattering experiments (cf. sec-
tion 5.2) on it while applying a magnetic field and thus inducing an easy axis
of magnetization [7]. Contrary to previous experiments, they did not apply the
incident neutron beam perpendicular to the magnetic field, but in parallel. Unlike
two peaks in the structure factor that one expects at intermediate fields in the
perpendicular setup indicating the conical phase, the result were six major peaks
forming a hexagon around the center, cf. figure 2.2. Having a spirally modulated
structure in mind when observing two opposing peaks it seemed natural to su-
perpose three of them when seeing six peaks. Doing exactly that and properly
fixing the relative phases amounts to the magnetic lattice structure shown in
figure 1.3(d). This actually three dimensional texture is translation invariant
in the direction parallel to the magnetic field, i.e., perpendicular to the shown
plane, thus forming a tube-like structure similar to the Abrikosov vortex lattice of
type-II superconductors. Atomic scale skyrmion have also been realized by using
a surface Dzyaloshinskii-Moriya interaction [60]. There, the chirality is not an
intrinsic property of a material but arises because of material di�erences between
the substrate and the studied layer on top of it.
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2. Skyrmions

Skyrmions have the prospect of becoming a key ingredient in future computer
technology. Their topological structure leads to an emergent electrodynamics
which can be used to couple them very e�ciently to currents. Due to their
incommensurability and large extent compared to the atomic lattice, skyrmion
lattices can be moved by currents a million times smaller than needed to move
ordinary magnetic domain walls [11, 75]. Novel ideas about applying single
skyrmions range from racetrack memories [10, 76, 77] to entire logic elements.
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3
Theoretical Description

The magnetic structure in bulk chiral magnets can be described by several methods.
In this thesis we primarily choose a description via a Ginzburg-Landau theory
which we introduce in this chapter. In part III we also employ a description
via a non-linear ‡ model, which restricts the magnetization to be normalized.
Before turning to the description of the theoretical model we introduce necessary
quantities.

3.1. Conventions
In the following chapters we compare our models to data obtained by di�erent
experimental methods: ferromagnetic resonance and neutron scattering experi-
ments. The first applies an oscillating external magnetic field, which enters the
relevant equations, while the latter method focuses on much shorter length scales
which makes it convenient to use the internal magnetic field in the describing
equations. At this point we establish a connection between these quantities and
define notation.

External quantities will be indicated by the index “ext” and internal quantities
by an index “int”. Magnetic fields and inductions are therefore denoted by Hext

and H int respectively Bext and Bint. While vectors are written in bold letters,
their norms will mostly be denoted by normal font and omitted absolute value
bars.

Magnetic moments are indicated by µ and magnetization, which has units of
magnetic moment over volume, by a capital M . When encountering spatially ho-
mogeneous quantities, they will carry an index “0”, i.e., M0 or H0. Furthermore,
(static) mean-field solutions carry an index “mf” like Mmf.

In the vacuum, the two magnetic fields B and H are just scaled versions of
each other related by the permeability of free space µ0 = 4fi ◊ 10≠7 N/A2:

B = µ0H. (3.1)
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3. Theoretical Description

Inside a magnetic solid, their relation is more complex and the general relationship
is given by

B = µ0(H + M) (3.2)

with magnetization M , which is defined as the magnetic moment per unit volume
and therefore usually considered in the continuum limit and seen as a smooth
vector field. In the special case that the magnetization is linearly dependent on
H, one can write

M = M Õ + ‰H (3.3)

where ‰ a dimensionless quantity and called magnetic susceptibility. The term
M Õ stands for a spontaneous magnetization in the absence of an applied field.
The linear relation of (3.3) also keeps the relation between H and B linear:

B = µ0(1 + ‰)H = µ0µrH (3.4)

where µr = (1 + ‰) is called the relative permeability and is the ratio of the
permeability of a specific medium to the permeability of free space: µr = µ

µ
0

.
When dealing with the description of magnetizable media, one needs to be cautious
to define those fields, as they can di�er significantly inside and outside of the
media. In free space, it is simple and

Bext = µ0Hext (3.5)

holds. The field inside a sample, that enters the above fields, is changed via a
demagnetization field Hdem (more information in section 3.3):

H int = Hext + Hdem. (3.6)

Note that a magnetized sample also influences the magnetic field around it.
For para- or diamagnetic samples of ellipsoidal shape this can be neglected as
stray-fields cancel each other. The internal magnetic induction then reads

Bint = µ0(H int + M) = Bext + µ0(Hdem + M). (3.7)

Fourier transformations are performed with the following convention:

M(r) = 1
‹

ÿ

k
mk eik·r mk =

⁄

‹

dr M(r) e≠ik·r (3.8)

M(r) =
⁄

‹

dr ”(r ≠ rÕ)M(rÕ) mk =
ÿ

kÕ

”k,kÕmkÕ (3.9)

”(r ≠ rÕ) = 1
‹

ÿ

k
eik·(r≠rÕ) ”k,kÕ = 1

‹

⁄

‹

dr ei(k≠kÕ)·r (3.10)

where ‹ is the integration volume.
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3.2. Ginzburg-Landau Theory
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(c) Behavior of F (M) around the phase
transition

Figure 3.1: Temperature dependence of order parameter M at first order (a) and second
order (b) phase transitions. Designs taken from [19]. Panel (c) shows the behavior of
the free energy around a second order phase transition at Tc. Above and at Tc the
order parameter M vanishes. For T > Tc, a finite magnetization arises.

3.2. Ginzburg-Landau Theory
Originally formulated as a model for superconductivity, Ginzburg-Landau theory
is now widely used throughout solid state physics to describe phase transitions.
It is based on Lev Landau’s phenomenological mean-field theory to describe
second order phase transitions, which is based on a power series expansion of the
free energy in terms of spatially uniform order parameters for the transition of
interest [19, 78]. The series expansion is motivated, because the order parameter
is small around the phase transition. For example, the textbook free energy of
Landau-theory, sometimes simply called Landau function, of ferromagnetism, is
given by [79]

F (M) = F0 + a(T )M2 + bM4. (3.11)

Because states up and down are energetically the same due to time reversal
symmetry, only even powers occur. While a(T ) is temperature dependent, F0 and
b are constants with b > 0 assumed. Second order phase transitions are charac-
terized by a continuous change in the order parameter at a critical temperature
Tc from zero in the disordered phase (T > Tc) to a finite value in the ordered
phase (T < Tc), cf. figure 3.1(b). In Landau-theory, the quantity with such a
behavior is the minimum position or mean-field Mmf of the free energy (3.11).
The parameter a(T ) is constructed proportional to (T ≠ Tc), so that a(T ) > 0
corresponds to T > Tc and a(T ) < 0 to T < Tc. Those two cases are shown in
figure 3.1(c). Note that Landau-theory is a mean-field theory, which means, that
all spins “feel” the same averaged field generated by all their neighbors, here
proportional to the magnetization.

In studying fluctuations, which we will see later play a significant role in
stabilizing the skyrmion lattice, the more general case of spatially dependent local
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3. Theoretical Description

order parameters needs to be addressed, i.e., M(r) in this case. Following and
using notations of [7, 80], the free energy G can generally be described by the
partition function Z via

Z = e≠G =
⁄

DM e≠F [M ]. (3.12)

F [M ] is called the free energy functional and respects the fundamental symmetries
of the system. The free energy depends on magnetic field and temperature, and
the state that minimizes G is the one taken by the system in thermal equilibrium.
The mean-field approximation is then obtained by applying the stationary-phase
approximation to (3.12), leading to

e≠G ¥ e≠F [Mmf]

G ¥ min
M(r)

F [M ] © F
#
Mmf$ . (3.13)

where the stationary solution Mmf satisfies the mean-field equation

ˆF [M ]
ˆM

----
Mmf

= 0. (3.14)

Going beyond mean-field means to include corrections in terms of thermal fluctu-
ations. The leading order correction is given by Gaussian fluctuations and the
free energy takes the form

G ¥ F
#
Mmf$ + 1

2 ln det
3

”2F

”M”M

4----
Mmf

. (3.15)

The formulation with a now spatially dependent order parameter M(r) leads
to the di�erence between Landau- and Ginzburg-Landau theory, namely non
vanishing gradient terms in the free energy functional. The admissibility of
their order and kind depends on the symmetries of the system of interest. The
Ginzburg-Landau free energy functional of a ferromagnet analogous to (3.11)
reads

F [M(r)] =
⁄

dr
!
r0M(r)2 + J(ÒM(r))2 + UM(r)4 ≠ BM(r)

"
(3.16)

where M(r)4 = (M(r) · M(r))2 and the gradient term is written in a shorthand
notation for (ÒM(r))2 = ˆr

i

Mj(r)ˆr
i

Mj(r). Note, that the gradient term
corresponds to the exchange term (1.2) already mentioned in section 1.1. Again,
the pre-factor U of the highest power of M needs to be chosen positive to
obtain a stable system. B is the magnetic field which makes ≠BM(r) the well
known Zeeman-term. As already mentioned in the summary of section 1.3, in
real systems everything depends somewhat on temperature and so do all these
pre-factors. As we are interested in the vicinity of the phase transition, one can
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3.3. Dipolar Interactions

linearize all temperature dependencies around the critical temperature. In this
phenomenological theory, only a linear temperature dependence of r0 remains,
i.e., r0 Ã (T ≠ Tc) like a(T ) was in (3.11). Because of this linearization and even
negligence of smaller temperature dependences, the mean-field critical temperature
varies slightly compared to the true experimental critical temperature.

At zero magnetic field, (3.16) possesses symmetries with respect to M(r) æ
≠M(r) and is translationally and rotationally invariant with an O(3)-symmetry.
An applied magnetic field reduces that symmetry to O(2), leaving only rotations
around the axis defined by B. Also, only a combined symmetry transformation
of M(r) æ ≠M(r) and B æ ≠B is allowed. An emphasis should be put on
spatial symmetries, that are not only translation and rotation symmetries, but
especially inversion symmetry r æ ≠r. This is the key symmetry that is broken
in chiral magnets.

Before we write down the full Ginzburg-Landau free energy functional for
chiral magnets including the aforementioned Dzyaloshinskii-Moriya interaction
equation (1.4), two additional types of contributions to the free energy functional
are first presented and discussed in more detail: dipolar interactions and crystal
anisotropies

3.3. Dipolar Interactions
In contrast to the exchange and Dzyaloshinskii-Moriya interactions, dipolar
interaction has a long-range nature generally resulting in the need for a more
elaborate e�ort in calculations and especially simulations. Their ramifications,
however, have significant consequences. In this thesis, we find them in particular
responsible for the splitting of resonance peaks in the conical phase which otherwise
would be degenerate. But already on the mean-field level, their influences are
quite noticeable, especially when dealing with skyrmions, whose magnetic profile
changes due to them. The space in the phase diagram taken by skyrmions in thin
films increases with increasing dipole-dipole strength [81].

For the discussions in this text, their influences on magnons and in particular
ferromagnetic resonances is important. Already in 1947, Charles Kittel studied
their influence in a ferromagnet [82]. In that paper, he commented on experiments
conducted by J. H. E. Gri�ths in the 1940s which showed unexpected values of
resonance frequencies, that were two to six times larger than the Larmor frequency,
cf. equation (4.13) later in the text. Kittel became aware that magnetization was
large and a di�erentiation between internal and external fields had to be made.
The former is strongly influenced by the sample geometry. Before giving a more
detailed account of this revelation, we first provide a more general introduction
to magnetic dipoles and dipolar interaction.

Microscopic magnetic dipoles can be introduced in two di�erent, but equivalent
ways [83]. One option is to see a dipole as a circular current loop whose radius
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3. Theoretical Description

is decreased while simultaneously increasing the current strength keeping the
magnetic dipole moment constant. The second possibility is to consider two
magnetic monopoles1 which approach each other while their magnetic charge
is increased to keep its dipole moment here constant as well. Both approaches
ultimately result in a point-like object, that creates the magnetic field

B(r) = µ0
4fi

3 r̂(µ · r̂) ≠ µ

|r|3
(3.17)

given in SI-units. cgs-units lack the pre-factor of µ
0

4fi . The magnetic dipole moment
is given by µ, µ0 is the magnetic vacuum permeability and the point-dipole is
situated at the origin. The energy contribution of a magnetic dipole to an external
magnetic field reads

Edipole = ≠µ · Bext. (3.18)
If the external field is generated by a second dipole µ2, then the energy between
those two dipoles is given by

EDD = ≠ µ0
4fi

µ1 · 3 r̂(µ2 · r̂) ≠ µ2

|r|3
= µ0

4fi
µ1

A
13 ≠ 3 r̂ ¢ r̂

|r|3

B
µ2. (3.19)

The operation ¢ is the tensor product and 13 is the unit-matrix in 3 dimensions.
With electrons, having an intrinsic magnetic moment of about one µB and typical
distances on the length scale of Å, yields energies of no more than 10≠4 eV [18],
it is quite small compared to the electrostatic interaction and also, typically,
a thousand times smaller than the exchange coupling. But because exchange
interaction is short- and dipolar interaction long-ranged, as it only falls o� as the
inverse cube of the separation, dipolar interaction becomes important for large
samples and is especially responsible for the domain formation in ferromagnets.

Demagnetization Fields and Factors
In macroscopic solids, there exists a vast number of either electrons or atoms,
that carry spins contributing to the dipole-dipole energy. This makes it virtually
impossible to calculate the true magnetic field created by all those microscopic
dipoles. Luckily, ellipsoidal samples pose a special case. When a sample is brought
into an external magnetic field Hext parallel to one of the (semi-)principal axes
of the sample, then all spins align and collectively form a field, the so-called
demagnetization field Hdem, that points exactly opposite to Hext. The internal
field is given by simply adding these both fields:

H int = Hext + Hdem. (3.20)
1So far, magnetic monopoles as elementary particles have never been observed. The closest

thing are Dirac monopoles [84], which are monopoles with an infinitesimally thin flux line
connecting two magnetic monopoles of opposite charge. As an example, they can be found
in spin-ice [85, 86]. In chiral magnets, monopoles may also occur from an emergent magnetic
field which is due to an emergent electrodynamics in the skyrmion phase [87]. There,
individual skyrmions carry a quantized amount of emergent flux.
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3.3. Dipolar Interactions
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Figure 3.2: This figure illustrates
the demagnetization effect inside
an ellipsoidal, magnetizable sam-
ple. When subjected to an ex-
ternal magnetic field Hext(dashed
lines), the microscopic elemen-
tary magnets align. Due to this
alignment, neighboring “north and
south poles” cancel each other, ex-
cept at the boundaries of the sam-
ple. Between these open ends, a
magnetic field arises similar to an
electric charge polarization. This
is the demagnetization field Hdem.
Because it is anti-parallel to the
external magnetic field, the inter-
nal magnetic field H intis reduced.

This opposing direction can be explained as follows and is illustrated in figure 3.2.
When subjected to Hext, a magnetized body produces e�ective magnetic surface
charges. This is because, when all microscopic internal elementary magnets align,
neighboring “north and south poles” cancel each other everywhere except at the
boundaries of the sample. From the outside, this results in a collective magnetic
moment which aligns parallel to Hext. Inside the material, the surface charges,
too, create a field with field lines also starting at the accumulated e�ective surface
charges. This direction is now opposite to Hext.

The demagnetization field can be characterized by demagnetization factors Nx,
Ny and Nz which respectively correspond to the directions of the (semi-)principal
axes x̂, ŷ and ẑ of the sample. Then Hdem can be written as

Hdem = ≠

Q

a
Nx 0 0
0 Ny 0
0 0 Nz

R

b · M =: ≠N · M . (3.21)

The demagnetization factors do not depend on the size of the sample, but only
on its shape and proportions. They abide the restriction that their sum equals
unity in SI-units and 4fi in cgs-units. Here, we use the former:

Nx + Ny + Nz = 1. (3.22)

Examples of demagnetization factors:
To familiarize oneself with their values, we give three typical shapes as examples:
a perfect sphere, a rod and a disk. The sphere is rotationally invariant which
means, that all directions should be treated equally, i.e., also their demagne-
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tization factors are equal, namely N
x

= N
y

= N
z

= 1

3

. Having the picture of
surface charges in mind, that generate the demagnetizing field, it is natural
that this field becomes weaker, when those charges are further apart. The
demagnetization factor corresponding to an axis along an otherwise rotationally
symmetric rod should therefore decrease compared to the other two. In an
infinitely long rod, this would yield zero for that direction, e.g., N

x

= N
y

= 0 and
N

z

= 1. For a disc, or a finitely thick but infinitely extended plane, the opposite
case applies. The two directions of infinite or very large extent correspond to
a vanishing demagnetization factor, while the remaining one becomes unity.

y
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Figure 3.3: Examples of three different shapes and their corresponding demagne-
tization factors.
Left: perfect sphere with Nx = Ny = Nz = 1

3 ,
Middle: rod or infinite cylinder with Nx = Ny = 1

2 and Nz = 0,
Right: disk or infinite surface (dark gray) with Nx = Ny = 0 and Nz = 1.

Remembering the relation µ0He� = ≠ ”F
”M between free energy, e�ective magnetic

field and magnetization, gives a contribution of

FDD,|k|π1/L[M ] =
⁄

dr
1
2µ0M · N · M (3.23)

to the free energy. The index |k| π 1/L indicates, that this is the homogeneous
contribution. Homogeneous in the sense, that the modulation is small compared
to the sample size L.

Note, that this is not only true for a strictly parallel spin alignment, but also
for modulated spin textures like a helix. In such a case, M has to be replaced by
only the homogeneous net-component M0 of M to obtain the internal magnetic
field. Changes in the external field that are of a homogeneous nature, i.e., with
zero wave-vector k = 0 or at least |k| π 1/L like in ferromagnetic resonance
experiments, imply a homogeneous change of magnetization inside the sample.
Therefore, this dynamics can be described using demagnetization factors as well.
For local excitations, i.e., |k| ∫ 1/L, one needs to take a closer look at the field
generated by the spins themselves, and the explicit dipole-dipole interaction needs
to be considered.
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3.4. Crystal Anisotropies

Full Dipole-Dipole Interaction
Calculating the full contribution in real space in a microscopic way is more
complicated, especially due to its long ranged influence. Even in small and discrete
systems, dipole-dipole interaction can pose cumbersome problems. Calculations
in Fourier space o�er a less expensive approach, which we will therefore use
throughout this thesis. The contribution to the free energy is given by

FDD,|k|∫1/L[m] = 1
2

µ0
‹

ÿ

k

(mk · k)(m≠k · k)
|k|2

. (3.24)

A detailed derivation is given in appendix A. Note that this expression is valid for
3-dimensional bulk samples. In the 2-dimensional case, for a plane perpendicular
to the êz-direction, of finite thickness d and infinite extent, things change to [81]

F 2-dim
DD,|k|∫1/L[m] =

µ0
2‹

d
ÿ

k
mk

5
êz ¢ êz +

3
1 ≠ 1 ≠ ed|k|

d|k|

4
(kz ¢ kz ≠ êz ¢ êz)

6
m≠k (3.25)

with k œ R2.

Together with results from the previous paragraph we can obtain the expression

FDD[m] = 1
2

1
‹

ÿ

k
mi

k ‰≠1
dip, ij mj

≠k (3.26)

with

‰≠1
dip, ij(k) = µ0

I
k

i

k
j

|k|2

for |k| ∫ 1/L

Nij for |k| π 1/L
(3.27)

for the free energy of dipolar interactions in the limits of very large or very small
wavelengths compared with the sample size L. The intermediate regime is more
di�cult to address because then explicit surface terms enter the calculations.
Note, that the demagnetization matrix with Tr[Nij ] = 1 is technically speaking
only diagonal when coordinate axes align with the principal axes of the ellipsoid.
Cases where this is not true are, however, not considered in this work.

3.4. Crystal Anisotropies
In terms of energy scales (see section 3.5) crystal anisotropies form the lower end,
hence only play a minor role and can often be neglected in e�ective calculations.
However, they play a big phenomenological role as they are responsible for pinning
directions of helix pitches at zero or low magnetic fields, as well as skyrmion
lattice Q-vectors.
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Studies on the theory of crystal anisotropies in ferromagnets have been per-
formed already around the 1930’s by, for example, Akulov [88]. The energy term
deemed to determine the preferred direction of the spontaneous magnetization
for temperatures below the Curie temperature has the form [89, 90]

fKÕ = K Õ(–2
1–2

2 + –2
2–2

3 + –2
3–2

1) = ≠K Õ

2 (–4
1 + –4

2 + –4
3) (3.28)

= ≠K Õ

2
!
sin2 2Ë + sin4 Ë sin2 2Ï

"
. (3.29)

Terms –i are the direction cosines of the direction of the magnetization with
respect to the cubic edges being the coordinate axes. In the last line one passed
to an angle description with Ë and Ï respectively being the angle between M
and the main axis and the angle in the basal plane, cf. figure 4.3 on page 49.
fKÕ is the work per cm3 necessary to rotate the magnetization from [1 0 0] to the
direction –1, –2, –3. A more modern representation is given by

Fcub
0

[M(r)] = K

⁄
dr

1
M4

!
M4

x + M4
y + M4

z

"
(3.30)

with anisotropy constant K = ≠K Õ/2. This term may fix the direction of spon-
taneous magnetization and defines easy and hard axes, but does not necessarily
give a preferred direction of the helix pitch.

In section 1.3 we have already seen that, at zero field, helices in chiral magnets
can orient along a È1 1 1Í direction, like in MnSi, or along È1 0 0Í, like in Cu2OSeO3.
While Fcub

0

also does the job, there exist further popular terms and one of the
free energy functional in lowest order spin-orbit coupling, that describes this
behavior, is given by

Fcub
1

[M(r)] = c1

⁄
dr M(r)

!
ˆ4

x + ˆ4
y + ˆ4

z

"
M(r)

= c1
1
‹

ÿ

q

!
q4

x + q4
y + q4

z

"
|mq|2.

(3.31)

The sign of the pre-factor determines the pinning direction, which in turn can
easily be seen by minimizing the q-sum for a fixed q © Q that is the helix
pitch. Therefore, a minimum for a negative (positive) pre-factor is obtained for
Q Î È1 1 1Í (Q Î È1 0 0Í).

Of course, there are many more possible anisotropy terms which are allowed by
symmetries of the P 213 space group. An organized list can be found in appendix
A of [80]. At this point, we would like to mention one more term also considered
in one of the original theory of helical magnetic structures by Bak and Jensen
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[26], namely

Fcub
2

[M(r)] = c2

⁄
dr

1
(ˆxMx(r))2 + (ˆyMy(r))2 + (ˆzMz(r))2

2

= c2
1
‹

ÿ

q

!
q2

xmx
qmx

≠q + q2
ymy

qmy
≠q + q2

zmz
qmz

≠q
"

.
(3.32)

It also fixes the helix pitch direction to È1 1 1Í for c2 < 0 and to È0 0 1Í for c2 > 0.
An interesting consequence of cubic anisotropies in cubic chiral magnets is a

crossover between the purely helical and the conical phase at a particular magnetic
field strength Hc1. Without anisotropies, an infinitesimally small magnetic field
su�ces to align the helices along said field. Given cubic anisotropies, for example
Fcub

1

with a negative pre-factor, it is not completely clear from the start where
the helices ultimately point to at small magnetic fields, but depends on several
factors. One big factor is the di�erence between field-cooling (fc) with a subsequent
lowering of the magnetic field and zero-field-cooling (zfc) followed by an increase
of the magnetic field.

Figure 3.4: Special high
symmetry directions
(see text for details).
Dotted: h1 1 1i
Red: h1 1 0i
Blue: h1 0 0i

Considering MnSi with its preferred È1 1 1Í direction
as an example, the following cases can occur. Field-
cooling the sample into the conical phase with H Î
È1 1 1Í and then decreasing the magnetic field down
to zero actually does not yield a phase transition at
all, because the helix already points in the preferred
crystal direction. As soon as H deviates from that
direction, the story is di�erent. H close to a È1 1 1Í
direction leads to a simple rearrangement of the pitch
towards the closest È1 1 1Í direction for fields below
Hc2. For fields along other high symmetry directions
like È1 1 0Í (red line in figure 3.4) and È1 0 0Í (blue line
in figure 3.4), the helix “does not know” which È1 1 1Í
direction to take and domains with helices pointing
in di�erent directions get created. As a result, two
kinds of domains arise for H Î È1 1 0Í and even four
for H Î È1 0 0Í. The result is a spontaneous transition, i.e., of second order [91].

Zero-field-cooling the sample achieves already an initial multi-domain state with
four domains. What happens when increasing the magnetic field then also depends
on the direction of H with respect to high symmetry directions. Ultimately, there
is always a transition at a finite critical field Hc2 for fields oriented along high
symmetry directions [92]. These phenomena can therefore lead to di�erent phase
diagrams depending on the process used to trace and traverse transitions.

Because the critical field depends on temperature and, depending on the mate-
rial, may have a non-zero slope with respect to temperature, the cooling process
itself may already suppress the helical phase.
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The orientation of the skyrmion lattice is characterized by the direction of the
applied magnetic field to which this two dimensional lattice lies perpendicular
with the center spin of a skyrmion pointing anti-parallel to the field direction.
This leaves rotational degrees of freedom around the field axis. This liberty is
destroyed by cubic anisotropies that, again, try to align pitch vectors and certain
crystal directions. To fix the arbitrary rotation angle „ to a preferred direction,
one needs an e�ective potential of the form cos(6n „ + „0) with n = 1, 2, . . . and
constant phase „0, to accommodate the six-fold symmetry of the skyrmion lattice.
One example of such a term in lowest order perturbation theory is [75]

Fcub
3

[M(r)] = c3

⁄
dr

1!
ˆ3

xM(r)
"2 +

!
ˆ3

yM(r)
"2 +

!
ˆ3

z M(r)
"2

2
. (3.33)

3.5. Free Energy of Chiral Magnets
In this section, we present the Ginzburg-Landau description of chiral magnets,
which is the basis for numerical calculations throughout this thesis. The relevant
terms of the free energy functional have already been introduced in previous
sections. They will be partly summarized and collected and rescaled, following
the supplementary information of [7] as well as [80, 93], to reduce the number of
parameters of the theory.

The free energy functional of an ordinary ferromagnet was stated in section 3.2.
As chiral magnets lack spatial inversion symmetry, additional and in particular
odd powered gradient terms are allowed. The most relevant one was introduced
in section 1.1, the Dzyaloshinskii-Moriya interaction

FDM[M(r)] =
⁄

dr 2DM · (Ò ◊ M). (3.34)

The additional factor of two has been introduced to yield a helix pitch of unity in
later calculations. Together with dipolar interaction FDD[M ] and cubic anisotropy
Fcub[M ] terms, the free energy is given by

F [M , t] = F0[M ] + FDD[M ] + Fcub[M ] + Fexcitation[M , t]. (3.35)

The term F0[M ] contains the quadratic and quartic Ginzburg-Landau terms, as
well as exchange, Dzyaloshinskii-Moriya and Zeeman interaction terms:

F0[M ] =
⁄

dr
1

r0M2 + J(ÒM)2 + 2DM · (Ò ◊ M) + U
!
M2"2 ≠ µ0Hext · M

2

(3.36)

It alone would su�ce to generate the sought-after magnetic structures. The
time dependent term Fexcitation[M , t] represents additional contributions of, for
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3.6. Mean-Field Analysis & Fluctuations

example, oscillating magnetic or electric fields, that may excite the system. For
now, we focus on F0[M ] and introduce a rescaling of variables to lower the number
of unknown parameters. We follow hereby [7].

As was previously motivated, Dzyaloshinskii-Moriya and exchange interaction
compete against each other resulting in a helical arrangement. Its pitch Q is given
by Q = D/J and is therefore quite small since we consider D to be much smaller
than J , which is also a necessary requirement for the validity of this gradient
expansion of the free energy. Such a representation is valid for magnetic structures,
where the magnetization is locally almost ferromagnetic [26]. Remember also, that
D and J are temperature dependent which is transferred to Q as well. The first
step of rescaling is to measure distances in units of helix pitch, namely r̃ = Qr.
Reducing the number of parameters is achieved by rescaling magnetization and
magnetic field as M̃ = [U/JQ2]1/2M and H̃ext = [U/(JQ2)3]1/2Hext. This
leads to a constant global pre-factor Ÿ = J2Q/U and a new parameter t =
r0/(JQ2) ≠ 1 Ã T ≠ Tc, which is a measure for the distance to the mean-field
phase transition at t = 0. Negative t then yields a finite order parameter. The
finite result is given by

F0[M̃ ] =

Ÿ

⁄
dr̃

1
(t + 1)M̃2 + (ÒM̃)2 + 2M̃ · (Ò ◊ M̃) +

!
M̃2"2 ≠ µ0H̃ext · M̃

2

(3.37)
Note, that only a linear explicit temperature dependence is kept in the param-
eters, because one linearizes all T dependencies around Tc in the Ginzburg-
Landau approach. Dipolar interaction (3.26) obtains an additional pre-factor of
1/(JQ2) =: 1/– when using rescaled quantities. That means, that whenever a
quantity is expressed in rescaled units – = 1, and whenever considering physical
units – = JQ2. See also appendix A.

3.6. Mean-Field Analysis & Fluctuations
On a mean-field level, the conical or helical state is always the state with the
lowest minimum. This is especially important in comparison to the skyrmion
lattice state. At this point we only give summarized statements but a more
detailed discussion can be found in appendix B, as well as in [7, 80, 93]. The
necessary steps to see that the ground state is achieved by a helical solution is
to rewrite F0[M ] as a sum of a constant and several quadratic terms creating a
lower bound. Plugging in a helical ansatz like

M̃hel[r] =

Q

a
A cos Qz
A sin Qz

M̃0

R

b (3.38)

with Hext Î êz then minimizes all the quadratic terms individually. Another
significant result is the border of the phase transition between the helical/conical
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3. Theoretical Description

and the field polarized phase. The critical field value H̃c2 follows a square root
behavior:

µ0H̃c2 =
Ô

≠2t. (3.39)

The zero-field phase transition happens at t = 0 which is obvious due to its
construction as a parameter proportional to T ≠ Tc. Including dipolar interaction
does not change this square root behavior, merely the pre-factor:

µ0H̃c2 =
Ô

≠2t

3
1 + µ0Nz

2–

4
. (3.40)

It can, however, be absorbed when considering the internal field H int
c2 . Rescaling

leads to a helix pitch Q = 1. Choosing the chiral basis2

ê± = 1Ô
2

(êx ± iêy)

lets us rewrite equation (3.38) in the form

M̃hel(r) = M̃0 êz + A ê≠ eiQr + Aú ê+ e≠iQr (3.41)

leads us more easily to an expression for the homogeneous magnetization of the
form

M̃0 = µ0H̃z

2 + µ
0

– Nz
. (3.42)

This leads to an almost temperature independent susceptibility (‰con = M0/Hz)
in the conical phase

‰̃con = µ0
2 + µ

0

– Nz
. (3.43)

Compared to the dominating temperature dependence of Hc2, the conical suscep-
tibility can indeed be seen as a constant [21]. The translation to physical units is
done via ‰con = ‰̃con/– and results in

‰con = µ0
2– + µ0Nz

, (3.44)

where one should keep in mind, that the pre-factor conventions of the free energy
functional play a role and are responsible for the maybe surprising appearance of
the number 2 when compared to [37, 94]. These conventions, however and most
importantly, were used in numerical implementations with regard to this thesis.
Furthermore, since this section of the text still serves as an introduction to chiral
magnets, we thought it be a good point to make the reader aware of di�erent
conventions. When discussing helimagnons in part III, we will revisit the above
quantities in a form which used in the cited publications.

2More and proper information on the chiral basis is given later in section 8.2 and a list of
identities can be found in appendix D.2.
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3.6. Mean-Field Analysis & Fluctuations

As basic helical approaches like (3.38) and (3.41) have proven to be the global
minimum of the simple free energy defined by (3.37) or (3.36), a skymion solution
like

Msky(r) = M0 +
Œÿ

i=1

!
MQ

i

eiQ
i

·r + c.c.
"

(3.45)

¥ M0 +
3ÿ

i=1
|Ai|

1
n̂Õ

Q
i

cos (Qi · r + „i) ≠ n̂ÕÕ
Q

i

sin (Qi · r + „i)
2

(3.46)

can obviously not be a global minimum on the mean-field level. Here, MQ
i

=
Ai(n̂Õ

Q
i

+ i n̂ÕÕ
Q

i

)/2 with complex amplitudes Ai = |Ai| exp(i„i). The vectors n̂Õ
Q

i

and n̂ÕÕ
Q

i

are orthogonal to each other.
To motivate the occurrence of a skyrmion lattice, we need to consider two

points. First, an ansatz Msky(r) like (3.45), which can be approximated to first
order by the superposition of just three helices as in (3.46), is a local minimum of
the free energy. Second, already Gaussian fluctuations around the mean-field lead
to a small pocket in the phase diagram, where this skyrmion ansatz is favored
compared to a helical ansatz. Those two points were addressed in [7]. Regarding
the first point, the authors found that the phenomenological approximation (3.46),
due to the six major peaks in the structure factor, locally minimizes the free
energy. In particular, the three wave vectors Q1, Q2 and Q3 form a tripod
with mutual angles of 120° and the phases „i are fixed in a way so that the
magnetization in the center of a skyrmion points anti-parallel to the external
magnetic field. Furthermore, the three superposing helices are of identical chirality,
leading to n̂Õ

Q
i

◊ n̂ÕÕ
Q

i

= Qi, and have the same amplitudes, i.e., |A1| = |A2| = |A3|.

Q1

Q2

Q3

Figure 3.5: Basis vectors
of the spin order in the
skyrmion lattice phase.

The previously mentioned angle of 120° between
the helices is also a consequence of the minimization
process, but can easier be motivated by an analogy to
crystal formation out of a liquid phase. The latter is
often driven by cubic interactions and can be written
in momentum space as [19]

ÿ

G,GÕ,GÕÕ

flGflGÕflGÕÕ”(G + GÕ + GÕÕ),

with densities flG and the G are in some reciprocal
lattice. If a finite uniform magnetization M0 is present,
a similar mechanism can arise in chiral magnets as well.
Some of the quartic terms of (3.38) have hence a similar structure and these
terms cause a gain in energy, when the momenta form the proclaimed tripod as
shown in figure 3.5, so that the delta function vanishes:

ÿ

Q,QÕ,QÕÕ

(M0 · MQ)(MQÕ · MQÕÕ)”(Q + QÕ + QÕÕ).

37



3. Theoretical Description

(a) Phase diagram and free energy comparison with
and without additional Gaussian fluctuations [7].
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(b) Phase diagram through Monte-Carlo
simulation [95].

Figure 3.6: (a): The inset compares the energy of the skyrmion lattice and conical phase
as a function of magnetic field for t = �3.5. Including Gaussian fluctuations leads to
a small region, where the skyrmion lattice is energetically favorable. While in the main
plot this region is the larger area labeled A-crystal, this part of the phase diagram
needs to be subjected to the Ginzburg criterion, which is a measure for the reliability of
the theory around the phase transition. The gray-shaded area indicates the part that is
proven to be reliable leading to a stable, global minimum of the skyrmion lattice phase.
(b): Performing Monte-Carlo simulations to obtain the magnetic phase diagram means
to also include all orders of thermal fluctuations. While the method from (a) proves
the existence of a skyrmion lattice phase, a Monte-Carlo simulation almost exactly
reproduces the experimental phase diagram. Temperature and magnetic field were
gauged to the ferromagnetic exchange coupling J.

Fluctuations
To address the second point, the authors of [7] considered Gaussian fluctuations
around the mean-field, cf. equation (3.15), as a first order correction. This
inclusion already su�ces to obtain a pocket in the phase diagram, where a
skyrmion lattice is energetically favored. This is shown in figure 3.6(a). The
gray-shaded area of the phase diagram indicates the region in which not only the
energy of the skyrmion solution is lower than the conical solution when including
Gaussian fluctuations, but also is reliable according to the Ginzburg criterion.
Figure 3.6(b) shows an even better calculation of the phase diagram via a classical
Monte-Carlo study that natively incorporates higher order thermal fluctuations
[95]. It resembles almost exactly the experimental phase diagrams.
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Part II.

Basic Aspects of Spin
Waves
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4
Introduction to Spin Waves

This part draws on introductory chapters of references [96, 89, 13] and summarizes
key points and properties of spin waves that widely overlap with the topic of this
thesis.

A big motivation behind studying spin waves is their capability of carrying
and processing information on the nanoscale, which is a similar goal to that of
spintronics1. A nice additional feature is the lack of necessity to move charge
carriers to transfer information. This field is called magnonics and combines the
study of waves and magnetism. Spin waves are interesting because of several
characteristics that di�er to those of light and sound waves. Their dispersion
relation Ê(k), for example, is highly dispersive, generally exhibits a gap, and can
be anisotropic even if the magnetic medium is isotropic. It is not those aspects
alone that spark the interest in spin waves, but also the prospect of miniaturization
of technical devices, because the wavelengths of spin waves is several orders of
magnitude smaller compared to electromagnetic waves [13]. Another advantage of
magnonic devices is the ease with which they can be manipulated by an applied
magnetic field.

The concept of spin waves was developed by Bloch around the year 1930 [97].
In his description they consist of one flipped spin compared to, and coherently
distributed over, a large number of otherwise aligned spins. Most generally, they
can be seen as excitations in a magnetic material. Classically, they are represented
by a phase-coherent precession of microscopic magnetization vectors [13]. Holstein
and Primako� [98] as well as Dyson [99] were the first to interpret spin waves as
quasiparticles called magnons, which turned out to be of bosonic nature. While
those coherent magnons usually have distinct values for wave vector k and energy
~Ê, where Ê is the frequency of the exciting field, finite temperatures also lead
to non-coherent thermal magnons. Their distribution over the k and energy
space is much broader, but they significantly influence thermodynamic properties
of magnetically ordered materials. For example, early indirect evidence of spin

1i.e., spin transport electronics
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4. Introduction to Spin Waves

waves was found in thermodynamic properties, like the temperature dependence
of magnetization which led to the T 3/2 Bloch law. Direct measurements of spin
waves were, for example, performed by Gri�ths in 1946 [100], using ferromagnetic
resonance measuring homogeneous spin waves at k = 0. Spin waves with a finite
wave vector were verified via light scattering two decades later [101].

Hosts for spin waves are, of course, magnetic materials. Their properties can
be well described via the magnetic susceptibility defined by (3.3). When placing
a ferro- or ferrimagnetic material in a strong magnetic field, then this field is
often strong enough to align all domains of spins parallel to the applied field.
Furthermore, this prevents a changing magnetic field along the magnetization
direction from a�ecting the magnetization altogether and the magnetization is
said to be saturated. The system is, however, still susceptible to perturbations
perpendicular to the field. Rapid changes lead to increasingly larger o�-diagonal
susceptibility contributions, which in turn lead to a more involved response of the
system. Those conditions are typical for the propagation of dipolar spin waves.
In case one only considers spin angular momentum, as is the case throughout
this thesis, the two main interaction mechanisms are magnetic dipole-dipole
coupling and some form of exchange interaction. The former is important for
spin excitation with a long wavelength whereas the latter dominates when the
wavelength is comparable to the spin-lattice spacing. Before we further elucidate
their di�erences further, we go back and revisit precession and resonance in more
detail.

4.1. Precession
The orbital motion and the spin of electrons are almost solely responsible for
the magnetic properties of most materials. Magnetic moments stemming from
nuclear particles are generally smaller by a factor of 103 [96]. Because of the
electron’s subatomic nature, a rigorous description requires quantum mechanics.
Their general behavior can, in the classical limit, be understood by taking a look
at the classical analog of a spinning top. There, the force of gravity Fg = mG
given by the gravitational field G acting on a mass m, induces a precessional
motion that follows the equation of motion

d ◊ Fg = · = dJ

dt
, (4.1)

where d is the vector pointing along the rotation axis of the spinning top, and ·
is the torque generated by Fg, which is equal to the change in angular momentum
J . This equation can be rewritten in the form

dJ

dt
= � ◊ J , (4.2)

where � = Êp sgn(d · J)êz points along the negative direction of gravity and Êp

is the angular precession frequency.
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4.1. Precession

Adding an electric charge to the top generates a magnetic moment due to the
rotation, which is influenced by magnetic fields. When dealing with elementary
particles like electrons, their masses are so small, that one can neglect the e�ects of
gravity and ultimately the magnetic field B will take the place of the gravitational
field G and the spinning top becomes a magnetic moment µ.
The torque on µ is given by

· = µ ◊ B. (4.3)
The magnetic moment is proportional to angular momentum J with proportion-
ality constant “ called gyromagnetic ratio:

µ = “J , (4.4)

with “ < 0 for a negative charge and positive otherwise. For the spinning top
this would mean an identification of � = ≠“B. This leads to the well known
precession equation for a magnetic moment in a magnetic field:

dJ

dt
= “J ◊ B. (4.5)

Strictly speaking, J = L + S consists of both orbital (L) and spin (S) angular
momentum and their individual gyromagnetic ratios di�er by a factor of two.
Following the appropriate quantum mechanical calculations yields “L = q

2m
q

and
“S = q

m
q

, respectively, where q is the charge and mq is the mass of the particle.
Together, one can write µ = “LL + “SS = “L(L + 2S). Also, µ and J are not
completely parallel anymore, when both kinds of angular momentum are involved.
Luckily, only the component of µ parallel to J has a well-defined and measurable
value, which makes (4.4) still valid with

“ = g
q

2mq
= sgn(q)g µB

~ , (4.6)

where g is the so-called Landé factor or g-factor and µB the Bohr magneton. The
second equality is only valid for electrons or holes with charge q. The Landé
factor takes on the value 2 for pure spin and 1 for pure orbital angular momentum.
Mixtures of momenta will take on di�erent values representing the projection of µ
onto the direction of J and they ultimately need to be measured experimentally.
Let there be N magnetic moments per unit volume, then multiplying both sides
of (4.5) by “N and noting that magnetization M = “NJ leads to

dM

dt
= “µ0M ◊ He�. (4.7)

Of course, the magnetic field Be� = µ0He� can have several types of origin mak-
ing it an e�ective magnetic field potentially including anisotropy, demagnetization
and other fields as well. Some of these are not real magnetic fields but a�ect the
system similar to one. Equation (4.7) is again called precession equation and is
the lossless form of the Landau-Lifshitz equation. The precession of magnetization
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M

Heff

(a) Lossless precession

M

Heff

(b) Damped precession

Figure 4.1: Precession of magnetization M around a static effective magnetic field Heff.
(a) Lossless precession following the Landau-Lifshitz equation (4.7).
(b) Damped precession following the Landau-Lifshitz-Gilbert equation (4.8).

due to electron spin, i.e., “ < 0, is visualized in figure 4.1(a). Once magnetization
and magnetic field are misaligned, the magnetization would continue to precess in-
definitely and never reach the state of minimal energy, i.e., alignment with the field.

A form that includes damping, and thereby solving this issue, was also given
by Landau and Lifshitz [102] by adding a comparatively small term that leads to
dissipation. It was later refined by Gilbert [103]. Both forms are widely used and
nowadays known as the Landau-Lifshitz-Gilbert equations [89]. The latter reads

dM

dt
= “µ0M ◊ He� + –

M
M ◊ dM

dt
. (4.8)

The damping parameter is denoted by –. The term M ◊ dM
dt gives an additional

component to dM
dt that points towards the center of motion e�ectively decreasing

the radius of precession until M is parallel to the field.

4.2. Ferromagnetic Resonance
Let us now consider a particular dynamical setup by splitting the applied magnetic
field into a static part H0 and a much smaller, oscillating component ”H(t) Ã
e≠iÊt perpendicular to it. Furthermore, let us for simplicity consider a simple
ferromagnet and let H0 be large enough, so that the equilibrium magnetization
is saturated, parallel to H0 and denoted by Ms. It will then also only be slightly
perturbed and the perturbation ”M can be seen as perpendicular to Ms. In
total:

H(t) = H0 + ”H(t) (4.9)
M(t) = Ms + ”M(t). (4.10)
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4.2. Ferromagnetic Resonance

Note that since H0 and ”H(t) are both homogeneous fields, the created wave has
zero momentum which ultimately means a spatially uniform precession.
Sought-after is a linear relation between an oscillating excitation ”H at time tÕ

and the induced oscillating magnetization ”M at time t. Because the system
is not explicitly time dependent, it follows that the response will only depend
on the time di�erence t ≠ tÕ. Fourier transformation with respect to time gives
the important statement that a perturbation acting at a frequency Ê results in a
system response at the same frequency Ê within the linear response regime [68],
i.e., ”M Ã e≠iÊt. Plugging the above ansatz into the Landau-Lifshitz equation
(4.7) gives

d ”M

dt
= “µ0 (Ms ◊ H0 + Ms ◊ ”H + ”M ◊ H0 + ”M ◊ ”H) . (4.11)

The first term vanishes, because Ms Î H0. The last term may also be neglected,
since ”M and ”H are both considered small, making it a perturbation of second
order. Assuming that field and magnetization point along êz, the equation above
be can written as

≠ iÊ ”M = êz ◊ (≠ÊM ”H + Ê0 ”M) , (4.12)

with
ÊM = ≠“µ0Ms and Ê0 = ≠“µ0H0. (4.13)

Note that “ < 0 for electrons leading to positive frequencies. Solving (4.12) for
”H gives 3

”Hx

”Hy

4
= 1

ÊM

3
Ê0 iÊ

≠iÊ Ê0

4 3
”Mx

”My

4
. (4.14)

The susceptibility tensor ‰ is obtained by inverting the equation above giving
”M = ‰ · ”H with

‰ =
3

‰0 ≠iŸ
iŸ ‰0

4
(4.15)

and

‰0 = Ê0ÊM

Ê2
0 ≠ Ê2 (4.16)

Ÿ = ÊÊM

Ê2
0 ≠ Ê2 . (4.17)

The frequency Ê0 is called Larmor frequency and is more generally known as
a resonance frequency at which the susceptibility has a pole. That means the
magnetic response is infinitely large for any excitation at this frequency. As (4.7)
is a lossless equation of motion, this can be expected. A more realistic description
is provided by (4.8), since the damping term fixes this singular behavior.

In reality, one also needs to di�erentiate between the internal and external
fields of finite but macroscopically sized samples, cf. section 3.3. Let us assume
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4. Introduction to Spin Waves

an ellipsoidal sample with the static field Hext
0 Î êz parallel to a (semi-) principal

axis. In the same setup as above the internal field is then given by, cf. section 3.3,

H int
0 = Hext

0 ≠ NzMs

assuming again a saturated magnetization Ms. With

”H int = ”Hext ≠ N ”M = ”Hext ≠

Q

a
Nx ”Mx

Ny ”My

0

R

b (4.18)

and ”Mz = 0 equation (4.11) becomes

d ”M

dt
= “µ0

!
Ms ◊ ”Hext ≠ Ms ◊ N ”M + ”M ◊ Hext

0 ≠ ”M ◊ NzMs

"

(4.19)
after the first and last term of (4.11) vanish again for the same reasons as above.
Fourier transform and simplification lead to

≠ iÊ”M = êz ◊
!
≠ÊM ”Hext + (Ê0 ≠ NzÊM + ÊM N) ”M

"
, (4.20)

and, because ”Mz = 0, this equation can also be reduced to two dimensions and
solving analogously for ”H gives

3
”Hx

”Hy

4
= 1

ÊM

3
Ê0 + ÊM (Nx ≠ Nz) iÊ

≠iÊ Ê0 + ÊM (Ny ≠ Nz)

4 3
”Mx

”My

4
. (4.21)

Here, the demagnetization tensor is assumed to have diagonal form as in (3.21).
The susceptibility tensor then looks similar to (4.15), namely

‰ =
3

‰x ≠iŸ
iŸ ‰y

4
(4.22)

and

‰x/y =
!
Ê0 + ÊM (Nx/y ≠ Nz)

"
ÊM

(Ê0 + ÊM (Nx ≠ Nz)) (Ê0 + ÊM (Ny ≠ Nz)) ≠ Ê2 (4.23)

Ÿ = Ê ÊM

(Ê0 + ÊM (Nx ≠ Nz)) (Ê0 + ÊM (Ny ≠ Nz)) ≠ Ê2 (4.24)

with a pole at

ÊKittel =
Ò

(Ê0 + ÊM (Nx ≠ Nz)) (Ê0 + ÊM (Ny ≠ Nz)) (4.25)

= |“|µ0

Ò
(Hext

0 + (Nx ≠ Nz)Ms) (Hext
0 + (Ny ≠ Nz)Ms) (4.26)

known as the Kittel formula for ferromagnetic resonance.
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Examples for the Kittel formula:
First, let Hext

0

Î ê
z

. Here, we present the three limiting cases of shapes already
presented in section 3.3. Those were a perfect sphere with N

x

= N
y

= N
z

= 1

3

(case 1), an infinite rod or cylinder aligned with the ê
z

-axis with N
x

= N
y

= 1

2

and N
z

= 0 (case 2), and a disk or infinite surface with N
x

= N
y

= 0 and
N

z

= 1 (case 3). Additionally, we also consider an infinite rod perpendicular to
the field, e.g. N

x

= N
z

= 1

2

and N
y

= 0 (case 4), and a disc with a magnetic
field parallel to the surface, e.g. N

x

= N
z

= 0 and N
y

= 1 (case 5).

case 1: Ê = |“|µ
0

Hext

0

(4.27)

case 2: Ê = |“|µ
0

1
Hext

0

+ 1
2M

s

2
(4.28)

case 3: Ê = |“|µ
0

!
Hext

0

≠ M
s

"
(4.29)

case 4: Ê = |“|µ
0

Ú
Hext

0

1
Hext

0

≠ 1
2M

s

2
(4.30)

case 5: Ê = |“|µ
0


Hext

0

(Hext

0

+ M
s

) (4.31)

Hext
0

! case 2

Hext
0

! case 3

Hext
0

! case 4

Hext
0

! case 5

Figure 4.2: Examples of extremal cases of ferromagnetic resonances calculated
via the Kittel formula (4.26) for different sample shapes shown as insets. The
orientation of the external magentic field is indicated by a black arrow. The
resonance of the perfect sphere, i.e., case 1, equals the Larmor-frequency and
is depicted as a dashed line in each panel. The remaining four cases (see text)
are indicated by solid blue lines in the panels.

The next step is to include crystal anisotropies into the calculation. Kittel
[104] suggested and Macdonald [105] confirmed that not only shape but also
crystalline and even strain anisotropies may be taken into account by e�ective
demagnetization factors. Following [89], one needs to choose a coordinate system
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in which êz is parallel to the static magnetization and oscillations need to be
small. To simplify things here, we still assume that the external field points along
the principal axis êz of the specimen and that the field strength is large enough,
so that anisotropies do not notably influence the direction of Ms. Now, however,
the demagnetization tensor might contain o�-diagonal terms Nxy, taking the form

N Õ =

Q

a
Nx Nxy 0
Nxy Ny 0

0 0 Nz

R

b . (4.32)

This gives a slightly modified Kittel formula

ÊÕ
Kittel = |“|µ0

Ò
(Hext

0 + (Nx ≠ Nz)Ms) (Hext
0 + (Ny ≠ Nz)Ms) ≠ N2

xyM2
s .

(4.33)
In such a setup, demagnetization factors of shape and cubic anisotropy are additive
and all Ni in (4.33) need to be replaced by Ni + Na

i where Na
i are the e�ective

demagnetization factors due to cubic anisotropies. Starting from an energy density
H containing demagnetization, anisotropy and Zeeman terms, i.e.,

H = µ0
2 M · N Õ · M + K

M4
s

!
M4

x + M4
y + M4

z

"
≠ µ0Hext · M , (4.34)

the additive anisotropy contributions take the form [89]2

Na
x = ≠3 ≠2K

µ0M2
s

sin2 Ë sin2 2Ï (4.35)

Na
y = ≠3 ≠2K

µ0M2
s

sin2 2Ë

3
1 ≠ 1

4 sin2 2Ï

4
(4.36)

Na
xy = ≠3 ≠2K

µ0M2
s

sin2 Ë cos Ë sin 4Ï (4.37)

Na
z = ≠ ≠2K

µ0M2
s

!
1 + cos2 2Ë ≠ sin4 Ë sin2 2Ï

"
(4.38)

The angles Ë and Ï are as defined in figure 4.3. The angle between [0 0 1] = êa
z and

magnetization Ms is Ë, and Ï is the angle between [1 0 0] and the projection of Ms

onto the plane spanned by [1 0 0] and [0 1 0]. Since it is common in experiments
to apply static and oscillating magnetic fields along principal axes of the sample,
N Õ is usually still diagonal, i.e., the principal axes are êx, êy and êz. One then
just needs to know how the crystallographic directions êa

x, êa
y and êa

z are rotated
with respect to the sample in order to obtain the resonance frequencies.

Results: As results we present two examples where not only the above cal-
culations for shape and cubic anisotropies but additionally the damping from
the LLG equation (4.8) has been considered for completion. This lets us obtain

2Note, that there are typographical errors in the cited formulas in this source.
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4.2. Ferromagnetic Resonance

[1 0 0]

êaxêx

[0 1 0]

êay

êy

[0 0 1] êaz

êz

Ë Ms

Ï

Figure 4.3: Angle definiton for cubic anisotropies: Ë is the angle between [0 0 1] = êaz and
the magnetization Ms , while angle Ï is the angle between [1 0 0] and the projection
of Ms onto the plane spanned by [1 0 0] and [0 1 0]. Design taken from [89].

the complex resonance frequency of a ferromagnet with damping to linear order.
The extended calculation is provided in appendix C. The angles used in the two
examples are shown in figure 4.3.
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Case 2: Hext
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0.1 0.2 0.3 0.4 0.5 0.6
0

5

10

15

µ0H
ext
0 (T)

f
(
G

H
z)

Hext
0 k [0 0 1]

Hext
0 k [1 1 1]
!Kittel
!res,1
!res,2

Figure 4.4: Influence of cubic anisotropies on the Kittel mode (dashed line) with an
anisotropy constant of K = −0.6 ◊ 103 J m−3 applied to cases one and two outlined in
the text. Data obtained by [106].

Corresponding experiments with coplanar waveguides, cf. section 5.1, have
been performed by Ioannis Stasinopolous and collaborators [106] on a rod-like
Cu2OSeO3 sample with shape demagnetization factors of

Nx = 0.0658 Ny = 0.4064 Nz = 0.5278, (4.41)

a g-factor of 2.14 and a saturation magnetization of µ0Ms = 0.131 T. Devia-
tions from the ordinary Kittel mode without anisotropy corrections are clearly
noticeable and shown in figure 4.4. A fit results in an anisotropy constant
K = ≠0.6 ◊ 103 J/m3.

4.3. Ellipticity
Be it a uniformly precessing mode like in section 4.2 or in later chapters when
more complicated magnetic structures oscillate, we meet with the question of
polarization of the oscillating magnetization. Although helices and skyrmions con-
sist of twisted magnetic structures, they still have a homogeneous magnetization
component, which precesses comparable to the magnetization of a ferromagnet.
At this point we would like to introduce a definition for the ellipticity of precessing
magnetization. There are several definitions for the ellipticity " of an ellipse
mostly just di�ering by a square. The one we use is given by

" =
Ô

a2 ≠ b2

a
. (4.42)
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a ab

b

Figure 4.5: Ellipse with
indicated principal
axes a and b.

The longer principal axis is denoted by a and the shorter
by b as is shown in figure 4.5. This definition is sometimes
also called eccentricity. For a perfect circle " = 0 and for
a completely flat ellipse, i.e., linear polarization, " = 1.
When considering a precessing magnetization M = M0 +
”M consisting of a static (M0) and a dynamic (”M)
part, then, although the tip of M potentially traces an
ellipse, it is ”M that lies in the same plane as that ellipse.
It is therefore enough to consider the x and y components
of ”M if M0 Î êz since ”M ‹ M0. One can then define

"‡ = ‡

Ú---|”Mx|2 ≠ |”My|2
---

max(|”Mx|, |”My|) (4.43)

In this definition, the principal axes point along the x and y coordinates and ”Mx

and ”My are the respective amplitudes of the dynamic part. It turns out to be
useful to also define a sign ‡ = ±1 for " that indicates along which coordinate
axis the longer elliptical axis points. We define

‡ :=
;

+1 if long axis Î êx

≠1 if long axis Î êy
. (4.44)

4.4. Types of Spin Waves
Spin waves generally do not consist of uniform and homogeneous precession but
are usually modulated in space. For their study it is important to know the
influence of the dominating spin interactions. Previously mentioned were the two
main mechanisms leading to exchange and dipolar spin waves, respectively.

Exchange Spin Waves
Exchange interaction has the dominating influence on the spin wave spectrum when
wavelengths of spin waves are comparable to the distance between neighboring
spins, e.g., atomic lattice spacings. An example is a model chain of spins with
basically only nearest neighbor Heisenberg interaction, cf. (1.1). Flipping one
spin in a quantum mechanical picture then leads to a proliferation of said flipped
state throughout the chain via the Heisenberg exchange, which can be written
in terms of a spin exchange operator P for two coupled spins with the property
PÂø¿ = Â¿ø for spin eigenfunctions Â, see chapter 2.4 in [96]. The obtained
dispersion relation for a chain of ferromagnetic spins, i.e., J > 0, then reads

~Êfm = J (1 ≠ cos ka) (4.45)

where a is the lattice spacing between two neighboring spins.
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Figure 4.6: Dispersion relations of (a) ferromagnetic and (b) antiferromagnetic chains.
Especially noticeable are their differences in the limit ka⌧ 1 where the ferromagnetic
dispersion is quadratic and an the antiferromagnetic dispersion is linear.

Considering an antiferromagnetic system with J < 0, the antiferromagnetic
dispersion relation is obtained similarly to the ferromagnetic one by dividing the
lattice into two opposing ferromagnetic sublattices [107] and reads

~Êafm = ≠J |(sin ka)|. (4.46)

Both dispersion relations are shown in figure 4.6. The most pronounced di�erence
between them is observed in the long wavelength limit ka π 1 where the energy
~Êfm ¥ J

2 a2k2 is approximately quadratic while ~Êafm ¥ ≠J |ak| becomes linear.
In this limit, however, exchange interaction looses its influence compared to
dipolar interaction and the latter dominate

Dipolar Spin Waves
Dipolar spin waves dominate at wave lengths much larger than the lattice spacing.
To see what they are composed of, we take a look at a plane wave propagating
in an arbitrary direction k in a magnetized medium. The magnetic field can be
assumed to be

H = H0 + ”H = H0 + ”Heik·r≠iÊt

and Maxwell’s equations can be written as [96]

k ◊ ”H = ≠Ê‘ ”E (4.47)
k ◊ ”E = Êµ0(”H + ”M), (4.48)

where ”E is then the electric field associated with the wave. We also assume the
magnetized medium to be electrically isotropic with electric permittivity ‘.
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4.4. Types of Spin Waves

It can be shown, that so-called slow branches, i.e., with small phase and group
velocities, exist in their spectrum [89]. For certain frequencies, the wavelength
inside the material di�ers significantly from the wavelength of the same wave
outside the sample while still having the same frequency in either places, i.e.,
|k| ∫ |k0| = Ê

Ô
µ0‘ and |k| π |k0|. After employ this approximation [96],

Maxwell’s equations become

Ò ◊ ”H = 0 (4.49)
Ò ◊ ”B = 0 (4.50)
Ò ◊ ”E = iÊ(”B). (4.51)

The last line is obtained by solving equations (4.49) and (4.50) for B and H,
leading to an approximation for the electric field E. It is therefore called mag-
netostatic approximation. Waves described by theses equations are hence called
magnetostatic waves. To be a little more precise, these waves propagate in the
sample when the frequency lies in the range Ê0 Æ Ê Æ


Ê0(Ê0 + ÊM ) [96] with

Larmor frequency Ê0 = ≠“µ0H0 and ÊM = ≠“µ0Ms where Ms is the saturation
magnetization, see also section 4.2.

Unlike the exchange spin waves, the coupling of the spins is here dominated by
dipolar fields from the magnetic moments. This is the case when k π fi/a. This
makes these kind of waves most important to this thesis, because they just meet
the criteria in which the dynamical processes, that we study here, occur.
Including dipolar interactions alters the dispersion relations of the ferromagnet and
antiferromagnet in the small wavelength limit stated in the previous paragraph.
The dispersion relation for a cubic ferromagnet of finite size and ellipsoidal shape
reads [108–110]

(~Êfm)2 =
ËJ

2 a2k2 + gµBµ0
!
Hext ≠ NzM

" È

◊
ËJ

2 a2k2 + gµBµ0
!
Hext ≠ NzM + M sin2 ◊k

" È (4.52)

=
ËJ

2 a2k2 + gµBµ0H int
ÈËJ

2 a2k2 + gµBµ0
!
H int + M sin2 ◊k

" È
(4.53)

where cubic anisotropies are neglected and Hext Î êz. The angle between wave
vector k and magnetization M is denoted by ◊k. Dipolar interactions hence
results in an anisotropy in the k æ 0 limit. For k Î M the dispersion Ê Ã k2

is quadratic in k while k ‹ M results in Ê Ã k a linear dispersion for H int = 0.
Due to the finite extend of the sample, one needs to be careful in terms of
stability of the magnetically ordered state. When the external field is too small,
then there will be a point below which it is favorable to create a state with
multiple domains and this formula is not directly applicable anymore. Note also
that dipole-dipole interaction alone does not yield a ferromagnetic state [111].
Therefore, the exchange contribution is always present, even though it may only
play a minor role in some cases.
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The dispersion relation for an antiferromagnet is even more complex. There,
two branches of the frequency spectrum exist and are given at zero field by
[110, 112]

(~Êafm)2 =
ËJ

2 a2k2
ÈËJ

2
!
2 ≠ a2k2"

≠ 2gµBµ0

3
1
3 ≠ sin2 ◊k

4
M

È
(4.54a)

=
ËJ

2 a2k2
ÈËJ

2
!
2 ≠ a2k2"

≠ 2
3gµBµ0M

È
. (4.54b)

4.5. Damon Eshbach Physics
Magnetostatic waves can be divided into additional categories. While modes
with zero k-vector were addressed in section 4.2, let us here consider waves with
non-zero wave vector. Then some of their properties depend on the anisotropy
between the directions of the static magnetic field, wave vector k and the sample
shape. In section 4.4 we noted that magnetostatic spin waves propagate inside a
sample within frequency range [96]

Ê0 Æ Ê Æ


Ê0(Ê0 + ÊM ) (4.55)

which corresponds to the region extending from

Ê = |“|µ0H int to Ê = |“|


µ0H intBint.

Because this range comprises many waves, it is sometimes called magnetostatic
spin wave manifold and contains the dipole-exchange spin wave spectrum like
calculated by Herring and Kittel in an unlimited ferromagnetic medium [109]. A
finite sample like a film however breaks the translational symmetry in the vicinity
of the surface and hence modifies the spin wave spectrum [113]. Considering
a thin slab that is either magnetized perpendicular or parallel to the surface
ultimately yields di�erent kinds of modes which also depend on the direction
of k. It was found by Damon and Eshbach [114, 115] that the mode spectrum
then extends over a wider area from Ê = |“|µ0H int to Ê = |“|µ0(H int + M/2)
containing the previously mentioned region at the lower end. The other region


Ê0(Ê0 + ÊM ) Æ Ê Æ (Ê0 + ÊM

2 ) (4.56)

contains surface modes with exponentially decaying amplitude when going further
inside the sample. To describe their key di�erences one can calculate the wave
amplitude distribution, group and phase velocities.

Starting with a normally magnetized slab, as shown in figure 4.7(a), one arrives
at the conclusion that phase and group velocities may be di�erent in magnitude,
but their directions are the same. Furthermore, the wave amplitude is distributed
sinusoidally throughout the sample. Due to those features, they are called forward
volume modes, which becomes clear when contrasted with the cases discussed
next.

54



4.5. Damon Eshbach Physics
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Figure 4.7: Characterization of volume and surface modes of a magnetized slab. Panels
(a) and (b) depict volume modes, while panel (c) shows the necessary configuration
for surface modes. The slab needs to be magnetized in plane and k ‹ Hext

0

. The
two possible configurations for k are shown with different colors. Note, that one
configuration leads to a mode on the top surface while the other configuration
with opposite k leads to a mode on the bottom surface, both also indicated in the
corresponding colors. Picture refurbished from [96].

For a tangentially magnetized sample one needs to consider two cases: k Î Hext
0

and k ‹ Hext
0 . The first one again yields a volume mode, however with opposing

group and phase velocities, hence the name backward volume modes. When k is
perpendicular to the field, phase and group velocities are again aligned making it
a forward mode. However, the wave amplitude is maximal on a surface of the
sample and decays exponentially in both directions. This makes it a surface wave.
Note that this time it is important which sign k has. If the propagation direction
is reversed, the mode shifts from one surface of the thin slab to the other. This is
called field displacement non-reciprocity.

Another thing to note about the surface modes is that there is only one surface
mode present in a particular frequency range. For the volume modes, there does
not exist a finite frequency range, where only one volume mode is present, but
there are always several modes close and densely packed to each other. This is at
least in the absence of exchange interaction which is, nevertheless, said to be of
lower order.
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5
Experimental Methods

While this work focuses on theoretical descriptions of magnons in chiral magnets,
it also forms the link to the experimental methods to probe spin wave dynamics.
In collaboration with research groups in Munich and Los Alamos, theoretical and
experimental results are brought together. This chapter introduces their di�erent
methods. The first uses coplanar waveguides (CPWs) to measure resonance
frequencies in the GHz range for wave lengths much larger than intrinsic length
scales. So large that one may speak of homogeneous excitations at, or at least
very close to, k = 0. Inelastic neutron scattering is the second method and can be
used to probe magnon spectra at large momenta compared to the inverse sample
size.

5.1. Coplanar Waveguides
Waveguides, as stated by the name, are linear structures used to guide waves
from one endpoint to the other. CPWs go a little beyond that. They are open
structures compared with classic waveguides, which means that materials placed
close to it influence the traveling wave dominantly via absorption. A CPW has a
number of advantages compared to conventional microstrip lines. They include a
simpler fabrication and a reduction of radiation loss, which improves the signal to
loss ratio. Furthermore, they o�er tailored excitation via appropriate geometrical
design and minimize electromagnetic crosstalk with adjacent structures.

They come in di�erent varieties. The kind used in corresponding experiments
is called a conventional CPW which ideally consists of a center strip conductor
with semi-infinite ground planes on either side. In practical circuits, these ground
planes are, of course, of finite extent but still large compared to the signal line.
This arrangement is situated on a dielectric substrate [116]. A sketch is shown
in figure 5.1(a). Other variants may have an additional ground line beneath
the substrate, e.g. the conductor backed CPW, or include layered substrates,
etc. Besides being considered a waveguide by itself, CPWs can also be used as
inductive input and read out antennas to insert magnetostatic spin waves into a
ferrite waveguide. The first CPW inserts a wave at one point after which phase
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signal groundground

substrate

sample

(a) CPW with sample and currents

Hac

(b) Cross section of CPW with oscillat-
ing magnetic field

Figure 5.1: Sketches of a coplanar waveguide that consist out of a signal and two ground
lines in a coplanar arrangement on top of a dielectric substrate. The sample to study
is placed on top of the CPW (a) and absorbs some of the magnetic field created by
the CPW shown in (b). Because the sample has a frequency dependent susceptibility
influencing the inductive response of the system. These changes are measured between
the two end points of the signal line of the CPW.

and/or amplitude are varied. They are later read out at the position of the second
CPW [13].

In the experiments conducted in the context of this thesis, the specimen to
study is placed on top of one CPW as shown in figure 5.1(a). The arrows indicate
the direction of applied alternating currents, which lead to an oscillating magnetic
field Hac shown in figure 5.1(b). When examined closely, it is evident that Hac

is not completely homogeneous when considered as a whole, but has a certain
finite momentum distribution k. Also the direction of the oscillating magnetic
field varies across the cross section. In the middle of the signal line it is parallel
to the surface and in the gaps between ground and signal lines it is vertical. This
has significant influence on which resonances can be theoretically expected. The
sample shown in figure 5.1(a) reaches over both those areas. However, for a more
controlled excitation with an oscillating field dominantly in a particular direction,
one either needs a sample smaller than the width of the signal line, for the gap to
be able to consider the field as unidirectional, or a larger CPW. A larger CPW
decreases the momentum distribution towards a more homogeneous excitation
field.

5.2. Neutron Scattering
Neutron scattering has become an invaluable tool to study microscopic properties
of solids and liquids. This section introduces some aspects of neutron scattering
necessary to understand this work. A more detailed discussion can be found in
[117, 118].

The wavelength of neutrons is comparable to interatomic distances, i.e., of the
order of Å, which results in interference e�ects when scattered o� the atomic
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Quantity Value

Rest mass mn 1.675 ◊ 10−24 g
Spin 1⁄2

Magnetic moment µn 1.913 µN = 1.041 ◊ 10−3µB
1

Charge 0

Table 5.1: Summarized properties of neutrons [117].

structure. Also, since neutrons do not carry electric charge, there is no Coulomb
barrier to overcome and neutrons may penetrate deep into a sample making it
possible to study bulk properties. The most important property for us is the
fact, that neutrons possess a magnetic moment. This allows interaction with
the magnetic structure of a sample and the scattering cross sections includes
this information, of course next to the interaction with the nuclei. Quantitative
properties of neutrons are collected in table 5.1. Neutrons can be controlled
by a moderator that slows them down via collisions with atoms of similar mass.
An energy range of 1–100 meV is achieved by a moderator at room temperature,
which gives them the name thermal neutrons. These energies lie in the same
range of elementary excitations in condensed matter which allows the study of
dynamics through the energy transfer into the sample. So-called cold neutrons
complement that range.

One usually di�erentiates between elastic and inelastic scattering. Both pro-
cesses are sketched in figure 5.2. All scattering experiments are governed by well
known momentum and energy conservation laws

Q = kf ≠ ki (5.1)
|Q|2 = |ki|2 + |kf |2 ≠ 2|ki||kf | cos 2◊S (5.2)
~Ê = Ei ≠ Ef . (5.3)

Incident and final momenta of neutrons are denoted by ki and kf , respectively,
and their energies by Ei and Ef . The total change in momentum after scattering
about an angle ◊S is Q.

When considering elastic scattering, then |ki| = |kf |. If a circle with radius of
this length passes through two points of the reciprocal lattice, then the condition
for Bragg scattering is fulfilled. It is called Ewald circle or Ewald sphere in three
dimensions. The change of momentum Q then equals a reciprocal vector G of
the nuclear lattice and

|Q| = |G| = 2|ki| sin ◊S = 4fi

⁄i
sin ◊S . (5.4)

1The nuclear magneton is given by µ
N

= e~
2m

p

with elementary charge e and proton rest
mass m

p

. It is the natural unit to express magnetic dipole moments of heavy particles like
nucleons, whereas the much larger magnetic dipole moment of electrons is usually expressed
in units of the Bohr magneton µ

B

.
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Figure 5.2: Reciprocal space of an atomic lattice showing the Ewald circle and a vector
representation of elastic (kf ) and inelastic (k0

f ) scattering processes for fixed incoming
momentum ki . For a more detailed description see the main text. The design is
adapted from [117].

For inelastic scattering |ki| ”= |kf | one has to additionally consider a momentum
transfer k onto the sample. In an experiment, usually either ki or kf remain
fixed while the other is varied. The momentum di�erence is then given by

Q = G + k. (5.5)

Setups considered in this thesis to measure magnons in helical or skyrmion
lattices use inelastic scattering where k traces a path through the reciprocal
magnetic lattice. Vectors Q of these reciprocal lattices are much smaller than the
reciprocal vectors of the nuclear lattice and form satellites around nuclear Bragg
peaks as pictured in figure 5.3. There, the (one dimensional) reciprocal lattices

[1 1 0]

[1 1 1]

[1 1 1]

G

Figure 5.3: Satellites of the magnetic re-
ciprocal lattice of a multi-domain he-
lical state around the nuclear Bragg
peak [1 1 0].

of four di�erent helical domains of, e.g., MnSi, are shown around the nuclear
Bragg peak [1 1 0]. A helix is pinned in a general È1 1 1Í crystal direction which
corresponds to four di�erent Q directions. These are indicated by the colored
points. Red and orange points are, as an example, labeled by the specific [1 1 1]
and [1 1 1] directions, respectively.

Probably the most important and versatile instrument in neutron scattering
spectroscopy is a triple-axis spectrometer. It was invented by Brockhouse [119]
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in 1961 and o�ers controlled measurement of the scattering function S(Q, Ê) at
a very wide range of momentum Q and energy ~Ê. Both elastic and inelastic
scattering measurable by the triple axis spectrometer, but it is especially suited
for inelastic scattering experiments since it was designed to be as flexible as
possible. It not only covers a wide range of energies but also renders the rotational
parameters accessible. Moreover, it is possible to readily change the energy
momentum resolution to accommodate intense and weak patterns.

Resolution in general is a topic that one needs to consider in depth when
comparing experimental to plain theoretical data. To compare intensity at a
given point in momentum and energy space to theory, say (k0, Ê0), one needs to
convolute a four dimensional ellipsoidal region (k0 ± �k, Ê0 ± �Ê) around that
point. Those points together contribute to the measured intensity at the given
point (k0, Ê0). To obtain a spectrum, one then needs to repeat that process for
an array of momenta. This procedure smears out the spectrum initially obtained
without the convolution. Minimizing this smearing-out is one of the big challenges
for experimentalists as shape and extent of those resolution ellipses depend on
numerous factors in the setup.

To conclude this section we want to mention a method well suited for elastic
neutron scattering, namely small angle neutron scattering (SANS). The images
in figure 2.2 are the result of such measurements. SANS allows to probe spacial
correlations in a sample on length scales between nano- and micrometers, i.e.
large compared to intrinsic length scales like atomic distances. A small scattering
momentum Q is hence needed and can, according to (5.4), be achieved by
increasing the neutron wavelength or decreasing the scattering angle ◊S .
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6
Linear Response Dynamics

This chapter focuses on numerical aspects on how to calculate resonance frequen-
cies not only for a ferromagnet, but also more complicated spin arrangements, in
particular helical and skyrmion structures. This has partially been outlined in
[93].

6.1. Derivation of Resonance Frequencies
Similar to section 4.2 we want to divide the system into a static and a dynamic
part. All information about the system we want to study enters the free energy
functional F as in (3.35). Schematically, we can split F into a static part Fstat
and a time dependent part F (t):

F = Fstat + F (t). (6.1)

The time dependent part contains for example oscillating external magnetic
or electric fields, while the static part contains F0 (cf. (3.36) or (3.37)) plus
demagnetization and anisotropy terms. We are looking for the response of the
magnetization to time dependent excitations. To be more precise, we are looking
for a small deviation of the magnetization away from a mean-field configuration to
first order, hence the name linear response. The magnetization M can therefore
be divided into two parts as well

M = Mmf + ”M(t). (6.2)

Because exciting and responding frequencies are equal in not explicitly time
dependent systems studied via linear response, we can make the following ansatz
for the time dependent terms

F (r, t) = F̄ ei(k·r≠iÊt) (6.3)
”M(r, t) = ”M ei(k·r≠iÊt) (6.4)

where F̄ and ”M are vectorial amplitudes. Due to translational invariance of the
system, not only the resonance frequencies are equal, but the statement holds
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in a similar way also for spatial oscillations. Because there is only a discrete
translation symmetry, the momenta of excitation and response only coincide up
to reciprocal lattice vectors.

Plugging equations (6.3) and (6.4) into the precession equation (4.7) provides
a general scheme to calculate resonance frequencies. The e�ective magnetic field
in (4.7) now contains both static and dynamic external fields as well as internal
demagnetization fields etc. that are all contained within F . It is calculated via
the relation µ0He� = ≠ ”F

”M . This all results in

dM

dt
= “µ0M ◊ He� = ≠“M ◊ ”F

”M
= ≠“M ◊

3
”Fstat
”M

+ ”F (t)
”M

4
. (6.5)

To be able to collect terms in linear order of ”M we need to expand Fstat in ”M
which gives

Fstat[M ] = Fstat[Mmf]+0 ·”M + 1
2”Mi

”2Fstat
”Mi”Mj

----
Mmf

”Mj +O
!
”M3"

. (6.6)

The linear term vanishes due to the mean-field equation of state ”F
stat

”M

--
Mmf

= 0.
The next step is to plug this expansion into (6.5) and keep only terms linear in
”M , F̄ and their combinations. Furthermore, ˆtM

mf = 0 and using the explicit
time dependence (6.4) of ”M leads to

≠iÊ”M = ≠“

3
Mmf ◊ ”2Fstat

”M2

----
Mmf

”M + Mmf ◊ ”F̄

”M

----
Mmf

4
(6.7)

”M =
5
Ê + i“Mmf ◊ ”2Fstat

”M2

----
Mmf

6≠1

·
3

i“Mmf ◊ ”F̄

”M

----
Mmf

4
(6.8)

y Êres = Im Eigenvalues
#
“Mmf ◊ ‰≠1

0
$

(6.9)

with ‰≠1
0 = ”2F

stat

”M2

---
Mmf

. The goal was to find resonance, which means to find a
maximal ”M . This is achieved in the second line when the denominator equals
zero. ”M in this form has an infinite pole like a ”-function because the lossless
Landau-Lifshitz equation was used. The weight can therefore not be obtained by
calculating the area below the resonance curve, but instead the pre-factor of the
pole is taken as the weight. Before continuing with details about the weights in
section 6.3, we reformulate the above concept in a more precise form in momentum
space. This is then also the form used in numerical calculations.

6.2. Formulation in Momentum Space
The magnetic structures studied in this thesis are a skyrmion lattice, a heli-
cal/conical phase and a field polarized phase. The first two are periodic structures
in space, which means that one can decompose an arbitrary vector k in momen-
tum space into a reciprocal lattice vector Q and a vector q restricted to the
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Q

�Q

(a) Reciprocal helical lattice

Q1

Q2

�Q1 � Q2

(b) Reciprocal skyrmion lattice

Figure 6.1: Image of the reciprocal lattice in the helical/conical (a) and skyrmion lattice
phase (b). The latter is spanned by the two vectors Q1 and Q2. The size of the lattice
can be defined by rings. Dark blue solid dots define the first ring, mid-toned ones the
second ring, light blue ones the third and so forth. Lattice vectors of the i th ring are
defined to have a distance to k = 0 between ((i � 1)|Q1|+ ✏) and (i |Q1|+ ✏), with
✏ ⌧ 1.

first Brillouin zone (BZ), i.e., k = Q + q. The discrete part Q will also func-
tion as a Brillouin zone index in implemented matrices or vectors. For example
vi(k) = vi

Q(q) is a vector of potentially infinite dimensions. The index Q labels
sub-vectors of dimension three, whose components are labeled by i œ {1, 2, 3} and
depend only on q œ 1.BZ. The multiples of Q form a reciprocal lattice which is
one dimensional in the helical case but two dimensional in the skyrmion lattice
case. Those lattices are shown in figure 6.1. In Fourier space, magnetization
depends on momentum k but, because of the periodicity, intrinsic properties
only depend on q œ 1.BZ. However, to realize higher bands in the reduced zone
scheme it is rather straight forward to consider many zones in the repeated zone
scheme. It later turns out, that the repeated zone scheme is actually necessary
when external momenta play a role. This momentum structure of the Fourier
transformed magnetization, or any other quantity for that matter, can be orga-
nized in a potentially infinite-dimensional vector containing a list of all Fourier
components.

We have chosen the following convention for the vectorial structure for the
conical phase in momentum space:

mcon(k) =
Ó

mx
0 , my

0, mz
0, mx

Q, my
Q, mz

Q, mx
≠Q, my

≠Q, mz
≠Q; ...

Ô
(q) (6.10)

=: {m0, mQ, m≠Q, m2Q, m≠2Q, ...} (q). (6.11)
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The zero momentum Fourier component takes on the first position and the larger
nQ with n œ Z, the larger the position index. Analogously for the skyrmion phase
we put the zero-Q component to the first position, then collect all components of
the first ring closest to Q = 0, then of the second ring, etc., and get

msky(k) =
)

m0, mQ
1

, m≠Q
1

, mQ
2

, m≠Q
2

,
mQ

1

+Q
2

, m≠Q
1

≠Q
2

, m2Q
1

, m≠2Q
1

, ...
*

(q). (6.12)

Before considering the entire equation of motion in that notation, we first examine
individual parts. Following the conventions of [7], i.e., using (3.35) in rescaled
units with F0 as defined in (3.37), the Fourier transform of the fluctuation matrix
”2F

stat

”M2

---
Mmf

is given by

”2Fstat

”mi(≠k) ”mj(kÕ)

-----
mmf

= 2 gij
kkÕ =

k = Q + q
kÕ

= QÕ
+ qÕ

q, qÕ œ 1.BZ

2 gij
QQÕ(q, qÕ) =

!
‰≠1

0
"ij

QQÕ (q, qÕ)

= “

C
”qqÕ”QQÕ rij(Q + q) + 2 ”ij

ÿ

QÕÕ

m≠QÕÕ · mQ≠QÕ+QÕÕ”qqÕ

+ 4
ÿ

QÕÕ

mi
≠QÕÕmj

Q≠QÕ+QÕÕ ”qqÕ

D
=

!
‰≠1

0
"ij

QQÕ (q) ”qqÕ (6.13)

with rij(k) = (1 + t + k2)”ij ≠ 2i ‘ijlkl + Dij(k) + Aij
cub where Dij(k) is an

additional term representing the contributions from demagnetization field:

Dij(k) = 1
2

µ0
–

I
ki kj

|k|2

|k| ∫ 1/L

”ijNi |k| π 1/L
. (6.14)

The anisotropy terms Fcub
1

and Fcub
2

, equations (3.31) and (3.32) can be added,
too, if one is interested in the Hc1 transition between the helical and the conical
phase. Their contribution to the fluctuation matrix takes the form

Aij
cub =

Ë
c1

1!
k1"4 +

!
k2"4 +

!
k3"4

2
+ c2

!
ki

"2È
”ij . (6.15)

Einstein’s sum convention is used for the three field dimensions indicated by i, j, l.
The sample size is given by L and the parameter – toggles again between the
rescaled units (– = 1) and physical units (– = JQ2). The next quantity we want
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to transform is the e�ective magnetic field1

µ0He�,i(k) = µ0He�,i
Q (q) = ≠

ÿ

kÕ

”2Fstat

”mi(≠k) ”mj(kÕ)
”mj(kÕ) ≠ ”F (t, k)

”mi(k)

= ≠
ÿ

QÕqÕ

!
‰≠1

0
"ij

QQÕ (q) ”qqÕ mj
QÕ(qÕ) ≠ ”F (t, Q + q)

”mi
Q(q)

= ≠
ÿ

QÕ

!
‰≠1

0
"ij

QQÕ (q) ”mj
QÕ(q) ≠ ”F (t, Q + q)

”mi
Q(q) .

(6.16)

With these preliminary achievements at the ready, we can recast the initially
schematic calculation in Fourier space. Doing the Fourier transform in space via
equations (3.8) yields the following expression for (6.5)

ˆt mi(k, t) = ˆt ”mi
Q,t(q) = “µ0

‹

ÿ

QÕQÕÕ

‘ijl mj
QÕ He�,l

QÕÕ (q, t) ”QÕ+QÕÕ,Q

= ≠ “

‹

ÿ

QÕÕ

Q

a
ÿ

QÕ

‘ijl mj
QÕ ”QÕ+QÕÕ,Q

R

b

¸ ˚˙ ˝
=:(m◊)il

QQÕÕ

1
≠µ0He�,l

QÕÕ (q, t)
2

= ≠ “

‹

ÿ

QÕÕQÕÕÕ

(m◊)il
QQÕÕ

3 !
‰≠1

0
"lb

QÕÕQÕÕÕ (q) ”mb
QÕÕÕ(q) + ”F (QÕÕ + q, t)

”ml
QÕÕ(q)

4
.

(6.17)

Note that kÕ was shifted by q resulting in the Kronecker delta and an m-term
to solely depend on reciprocal lattice vectors. The matrix (m◊)il

QQÕÕ is skew-
hermitian (anti-hermitian) due to the anti-symmetric epsilon tensor and has
therefore purely imaginary eigenvalues.
Following the scheme outlined in section 6.1 and now also using Einstein’s sum
convention for reciprocal lattice momenta lets us obtain an analog expression to
(6.7) given by

≠ iÊ ”mi
Q(q, Ê)

= ≠“

‹

Ë
(mmf◊)il

QQÕÕ
! !

‰≠1
0

"lb

QÕÕQÕÕÕ (q)
"
”mb

QÕÕÕ(q, Ê) + (mmf◊)in
QQÕÕ›n

QÕÕ(q, Ê)
È
,

(6.18)

where

›n
QÕÕ(q, Ê) = ≠ ”F (QÕÕ + q, Ê)

”mn
QÕÕ(q)

-----
mmf

(6.19)

1The general structure is µ
0

He� = ≠ ”F

”m
¥ ≠ ”

2

F

”m2

”m and the pair of m in the denominator
are arranged in a m(≠k)m(k) fashion due to momentum conservation. Hence, the structure
of ”

2

F

”m2

is ”

2

F

”m(≠k) ”m(k)

.
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contains, for example, the direction and strength of an oscillating field coupling
to the magnetization, eg. ›(k, Ê) = µ0Hac(k, Ê). Solving for ”m(k) returns, in
analogy to (6.8),

”mb
QÕÕÕ(q, Ê) =

C
Ê ”ib”QQÕÕÕ+i“

!
mmf◊

"il

QQÕÕ

!
‰≠1

0
"lb

QÕÕQÕÕÕ (q)
¸ ˚˙ ˝

Wib

QQÕÕÕ (q)

D≠1 3
i“

‹
(mmf◊)in

QQÕÕ›n
QÕÕ(q, Ê)

4
.

(6.20)

The resonances of the system are therefore eigenvalues Ê–(q) of W and obtained
in a cleaner form from the eigenvalue equation

ÿ

j,QÕ

Wij
QQÕ(q) v–,j(QÕ + q) = Ê–(k) v–,i(k) (6.21)

for k = Q + q and v–(k) being a normalized eigenvector with
ÿ

j,Q

!
v–,j(Q + q)

"ú
v—,j(Q + q) = ”–—

where ú denotes complex conjugation and –, — label the eigenvalue branches. Due
to Bloch’s theorem, the eigenvalues are periodic, Ê–(k + Q) = Ê–(k).

Numerical refinements
In principle, the sums in (6.20) extend over infinitely many Q-vectors. Numerically,
a cuto� � has to be chosen with |Q| Æ �. This is reasonable since the magnetic
structures are smooth and the free energy approaches a finite value for � æ Œ in
the mean-field limit plus Gaussian fluctuations [7].

The numerical challenge is to include as many Q-vectors and corresponding m-
parameters in the calculations as possible, especially in calculations regarding the
skyrmion phase. An initial challenge is to compute the mean-field by minimizing
the free energy functional with respect to the reciprocal lattice vectors Qi and the
corresponding Fourier components mQ

i

. The setup discussed so far is very flexible
in terms of implementing di�erent field directions even when cubic anisotropies
are additionally implemented with respect to which the external field is misaligned.
The Qi and m-fields are simply returned as an output in that geometry. This
flexibility comes at the cost of calculation time and especially memory because of
the plethora of Fourier component parameters. The most dramatic e�ect occurs
in the treatment of the skyrmion lattice which we consider in the following.

The reciprocal skyrmion lattice size can be characterized by the number of rings
within the cuto� region, cf. figure 6.1 for the definition of rings. To minimize F
with respect to the first ring alone, already 3 · 2 · 7 + 2 · 3 = 48 parameters have to
be considered. Three complex Fourier components (= 6 parameters) per lattice
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Figure 6.2: Shown in dark are the
unique Fourier components
that remain after exploiting
symmetries. All others can
be constructed via simple ro-
tations or complex conjuga-
tions.

vector, of which there are seven, plus two lattice vectors with three parameters
each. Taking two rings into account leads to 120 parameters, three rings to 228,
etc. To calculate resonance frequencies and weights at k = 0, also known as
the �-point, the computing cost is easily manageable, because the sought-after
resonance frequencies already converge almost perfectly between three and four
rings, and one can use the advantages of this setup.

However, when studying an extended skyrmion magnon spectrum, this size
turns out to be insu�cient to emit reliable and convergent results before either
the computer runs out of memory, or the user out of patience. Therefore, it is
useful to restrict the liberties of the implementation a little, by also reducing the
number of parameters significantly by exploiting symmetries.

The first thing one can do is fix the direction of the magnetic field along êz and
one of the Q vectors along êx. This predefinition already leads to a significant
number of vanishing parameters from the start, because Qi ‹ Re(mQ

i

) ‹
Im(mQ

i

), cf. section 3.6. Additionally, it was already shown in [7] that the
center spin points opposite to the magnetic field, which fixes another number of
parameters. Furthermore, two opposing lattice points with respect to the center,
corresponding to a helix, are each others complex conjugates. And last but not
least, because the real-space picture has a 120° rotational symmetry, lattice points
in the reciprocal lattice connected by a 120° rotation R120 around êz share that
symmetry, too, as long as anisotropies are neglected. The consequence for the
parameters is that if R120Qi = Qj , then R120mi = mj . For a four ring system
size, this reduces the number of parameters from 372 to only 33 in exchange for
not being able to use crystal anisotropy terms, which can be neglected in most
scenarios anyway, and a more predetermined lattice. The reduction of relevant
Fourier modes for a system with a five ring cuto� is shown in figure 6.2.
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6.3. Spectral Weights
The following calculations are closely related to those in the supplementary
information of [37]. If an oscillating external field Hac is present, then (6.20) can
be written as

Ë
Ê ”ib”QQÕÕÕ + Wib

QQÕÕÕ(q)
È
”mb

QÕÕÕ(q, Ê) = i“

‹
(mmf◊)in

QQÕÕ µ0Hac,n
QÕÕ (q, Ê). (6.22)

Expanding ”m in the basis of the eigenvectors v, ”mi(k) =
q

– c–(k) v–,i(k) with
c–(k + Q) = c–(k), the expansion coe�cients c–(q) of the –th excitation branch
are determined by the right hand side of

(Ê ≠ Ê–(q)) c–(q) = i“µ0
‹

!
v–,i(Q + q)

"ú (mmf◊)ij
QQÕ Hac,j

QÕ (q, Ê) (6.23)

and determine the sought after spectral weights. They are later encoded in the dot
sizes of points in the spectrum. Particularly for magnetic resonance measurements
with homogeneous fields Hac

0 only coe�cients with k = 0 are finite with

(Ê ≠ Ê–(0)) c–(0) = i“µ0
‹

!
v–,i(Q + q)

"ú (mmf◊)ij
Q,0 Hac,j

0 (0, Ê). (6.24)

A homogeneous field thus measures magnetic excitation frequencies at zero mo-
mentum.

Regarding neutron scattering experiments, the scattering cross section for
neutrons with a given momentum transfer Q = G+k close to a nuclear reciprocal
lattice vector G is proportional to [120]

[1 + nB(Ê)] Im
1

Tr [‰(k, Ê + i0)] ≠ Q̂‰(k, Ê + i0)Q̂
2

, (6.25)

where nB(Ê) = 1/(e~Ê/k
B

T ≠ 1) is the Bose function. The projection via Q̂ takes
into account, that neutrons only couple to the components of ‰ perpendicular
to Q and stems from the dipole-dipole interaction. It also assumes the valid
approximation to neglect multiple scattering events.

To derive a physically correct form of the susceptibility ‰(k, Ê) we start at the
linearized form of the precession equation in real space (4.7)

ˆt”M = ≠“ Mmf ◊ ‰≠1
0 ”M , (6.26)

and rewrite it in a more suitable way to calculate ‰≠1(Ê):

M̂mf

|Mmf| ◊ ˆt”M = ≠“ ‰≠1
0 ”M . (6.27)

Only terms linear in ”M are kept.
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Derivation of (6.27):
Multiplying (6.27) by Mmf◊ leads to

M̂mf ◊
!
M̂mf ◊ ˆ

t

”M
"

= “Mmf ◊ Be�

with ≠‰≠1

0

”M = Be�. Rewriting the ith component of the l.h.s. yields

‘
ijk

M̂mf

j

‘
knm

M̂mf

n

ˆ
t

”M
m

= (”
in

”
jm

≠ ”
im

”
jn

)M̂mf

j

M̂mf

n

ˆ
t

”M
m

= M̂mf

i

M̂mf

j

ˆ
t

”M
j

≠ M̂mf

j

M̂mf

j¸ ˚˙ ˝
1

ˆ
t

”M
i

Disregarding longitudinal fluctuations of the magnetization leads to the first
term being zero since M̂mf · ˆ

t

”M = 0 and it follows (4.7) for |Mmf| > 0. At
this point arises a conceptual problem regarding the length of the magnetization.
Although the magnetization is, strictly speaking, not fixed to a certain length,
it does not vary much and allows for a description of dynamic processes with
|M | = constant, cf. non-linear ‡ model in chapter 8. In the case above, we
do not assume a constant magnetization, but still assume that M does not
fluctuate longitudinally.

Solving (6.27) for ”M yields

0 =
A

1
i“

1
|Mmf|2

!
Mmf◊

"
Ê + ‰≠1

0

B
”M =: ‰≠1 ”M . (6.28)

An alternative but equivalent route is to invert the (Mmf◊) matrix on the r.h.s.
of (4.7) and one arrives at

0 =
3

1
i“

!
Mmf◊

"≠1
Ê + ‰≠1

0

4
”M =: ‰≠1 ”M . (6.29)

Although both forms may be used, they each pose di�erent kinds of problems
regarding the numerical implementation in momentum space. The first equation
contains a term 1

|Mmf|2

!
Mmf◊

"
or 1

|Mmf|

1
M̂mf◊

2
which is already unhandy

when subjected to a Fourier transform as the normalization of M already poses
an impediment let alone the resulting convolution of this product in real space.
This makes (6.29) more attractive. However, the implementation is still not
straight forward, as (Mmf◊) is a singular matrix with eigenvalues {0, ±|Mmf|}.
Therefore, it cannot be inverted directly. A solution, or workaround, is to focus
only on the subspace corresponding to non-zero eigenvalues in which (Mmf◊) is
not singular. In the matrix notation of momentum space, the matrix (mmf◊)ij

QQÕ

has a multitude of eigenvalues Á–
◊.

Because of the finite cuto� �, cf. section 6.2, the distribution of these eigenvalues
is not confined to (mostly) three di�erent values but results in a relatively smooth
curve when plotted in increasing order. Albeit its continuity most of them do take
on values close to 0 and ±|Mmf|. To be precise, |Mmf| are the average values
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over space as they may vary a little, especially in the skyrmion case. When sorted
with increasing order they form plateaus whose extent grows percentage-wise over
the number of eigenvalues approaching a step function. This behavior is shown
for the skyrmion lattice and di�erent system sizes in figure 6.3.

To arrive not only at an invertible version of (Mmf◊) in momentum space, but
also at stable resonance frequencies that properly converge with increasing system
size, it is not only necessary to disregard the subspace where (Mmf◊) has zero
eigenvalues, but necessary to consider only the subspace where Á–

◊ ¥ ±|Mmf|,
i.e. dark blue plateaus in figure 6.3. Let Á̃–

◊ be those eigenvalues and w̃–
◊ their

corresponding eigenvectors. Then a matrix T can by constructed containing all
w̃–

◊ as its columns. The (Mmf◊) matrix restricted to that eigenspace is then
given by

^(Mmf◊) = T † · (Mmf◊) · T (6.30)
where † denotes complex conjugation and transposition. Analogously, ‰≠1

0 needs
to be projected onto that subspace via

Á‰≠1
0 = T † · ‰≠1

0 · T (6.31)

leading to a physical susceptibility

Á‰≠1(k, Ê) =
3

1
i“

^(Mmf◊)
≠1

Ê(k) + Á‰≠1
0 (k)

4
. (6.32)

The frequencies Ê–(k) at which Á‰≠1(k, Ê) is evaluated to obtain the corresponding
weights are easily calculated via equation (6.9) after substituting (6.30) and (6.31)
into it. One hence has the eigenvalue equation

1
≠i“ ^(Mmf◊) · Á‰≠1

0 (k)
2

w– = Á–w– (6.33)

with w†
–w— = ”–— for eigenvectors w–. With their help it is possible to construct

a Lehmann representation of ‰ which makes it easy to identify the weights
corresponding to a particular frequency Á–. One starts by multiplying with w–

from the right hand side of

Á‰≠1(k, Ê) = 1
i“

^(Mmf◊)
≠1 Ë

Ê + i“ ^(Mmf◊) · Á‰≠1
0 (k)

È
(6.34)

and using equation (6.33) to arrive at

Á‰≠1(k, Ê)w– = (Ê ≠ Á–) 1
i“

^(Mmf◊)
≠1

w–. (6.35)

In the next step we contract with w†
– by, in particular, summing over – leading to

Á‰≠1(k, Ê) = 1
i“

^(Mmf◊)
≠1 ÿ

–

(Ê ≠ Á–) w–w†
–. (6.36)
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Now, we take the inverse of this equation which can be shown to equal

Â‰(k, Ê) =
ÿ

–

1
Ê ≠ Á–

Ë
w–w†

–

1
i“ ^(Mmf◊)

2È
(6.37)

with Â‰Á‰≠1 = Á‰≠1 Â‰ = 1. The weight corresponding to frequency Á– can now
be extracted from

Ë
w–w†

–

1
i“ ^(Mmf◊)

2È
. The formal calculation employs the

familiar Dirac identity

lim
÷√0

1
x ± i÷

= ûifi”(x) + P
3

1
x

4
(6.38)

after shifting the frequency Ê slightly above the real axis forming a retarded
response. P

! 1
x

"
is the principal value integral of 1

x . We can then define the
spectral matrix function to be

A(k, kÕ, Ê) = ≠ 1
fi

Im
ÿ

–

lim
÷√0

1
Ê + i÷ ≠ Á–

Ë
w–w†

–

1
i“ ^(Mmf◊)

2È

= ≠ 1
fi

Im
ÿ

–

3
≠ifi”(Ê ≠ Á–)[. . . ] + P

3
1

Ê ≠ Á–

4
[. . . ]

4

=
ÿ

–

Ë
w–w†

–

1
i“ ^(Mmf◊)

2È
”(Ê ≠ Á–). (6.39)

Important for relative weights corresponding to a specific energy Á–Õ is then the
pre-factor of the delta function evaluated at – = –Õ, i.e., the matrix

Ë
w–Õw†

–Õ

1
i“ ^(Mmf◊)

2È
(k, kÕ) =

Ë
w–Õw†

–Õ

1
i“ ^(Mmf◊)

2È

Q,QÕ
(q) (6.40)

where the explicit momentum dependence di�ers as before only up to reciprocal
lattice vectors. While the spectrum follows Bloch’s theorem, spectral weights
given by (6.25) depend on the actual magnitude of k, i.e., the weight di�ers
between Brillouin zones. This is because the external neutron does not obey
Bloch’s theorem. One now has two options in this construction. The first is to
adjust Q accordingly and hence jump between sub-blocks within the matrix to
select the right contribution which then depends on q œ 1. BZ. The second and
easier option is to select the Q = 0 sub-block and increase q beyond the first
Brillouin zone until one arrives at the desired k. Therefore, the relative weights
for inelastic neutron scattering can be written as

�(k, Ê–Õ) = Im
3

Tr
5Ë

w–w†
–

1
i“ ^(Mmf◊)

2È

0,0
(k)

6

≠Q̂
5Ë

w–w†
–

1
i“ ^(Mmf◊)

2È

0,0
(k)

6
Q̂

4
. (6.41)
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To be precise, the Bose function [1 + nB(Ê)] as stated in equation (6.25) is addi-
tionally required for a quantitative agreement with experiments.

Recognizing, that (6.37) does not depend on the inverse of the (M◊) matrix,
one could argue that it may not be necessary to use the projection onto the
non-zero and non-volatile subspaces of (M◊), as its inverse is neither used to
calculate weights nor resonance frequencies. However, these subspaces, whose
eigenvalues are indicated by red and light blue colors in figure 6.3, lead to false
contributions in the spectrum and weight distribution. The ones in red correspond
to zero modes that may become finite due to numerics. Modes corresponding
to the light blue eigenvalues stem mostly from the momentum space boundaries
due to the Fourier mode cuto� � and may lead to misleading or plainly wrong
resonances traversing the entire spectrum. This is especially challenging in the
skyrmion phase and discussed further in chapter 12.
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6.3. Spectral Weights
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(a) Reciprocal skyrmion lattice size up to 3 Rings.
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(b) Reciprocal skyrmion lattice size up to 5 Rings.
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(c) Reciprocal skyrmion lattice size up to 7 Rings.

Figure 6.3: Eigenvalues "↵⇥ of the
�
mmf⇥

�
matrix for three different cutoffs. The

eigenvalues are sorted in increasing order and labeled by ↵. Eigenvalues with values
close to |M| are colored in dark blue, those close to zero in red, and the eigenvalues
in between those three plateaus in a light blue color. It can be seen that an increase in
system size leads to a relatively steeper slope between the three plateaus.
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7
Resonance at the �-Point

In momentum space, the �-point labels the center of the Brillouin zone. This
chapter focuses on magnon excitations at such a point of zero momentum. We
state an analytical formula for said excitations and discuss the nature of the
modes. In the second part, we focus in particular on the ellipticity of the mean
magnetization of each mode.

7.1. Excitation Modes
This section serves as a summary on excitation modes in the helical and conical
phases. More extensive details can be found in [93, 37]. Three specific samples of
MnSi, Fe0.8Co0.2Si and Cu2OSeO3 were excited in multiple phases via coplanar
waveguides, i.e., with wavelengths much larger than intrinsic length scales, cf.
section 5.1. The most relevant di�erences between the samples are their shape
and internal conical susceptibility. These values are listed in table 7.1. Resonance
frequencies are obtained with respect to an applied static magnetic field strength
Hext

0 . For an increasing magnetic field, starting in a prepared one-domain state,
one traces first through the conical phase and reaches a field polarized phase
beyond a critical field Hc2. Resonances in the field polarized phase are given
by the Kittel mode (4.26). Because the magnetic susceptibility in the conical
phase ‰con is constant and the magnetization above the critical field Hc2 can be
considered as saturated, one may approximate the saturation magnetization by
Ms = ‰conHc2. This lets us write the Kittel mode in a form that is normalized to

Sample Material Nx Ny Nz �int
con �con Shape

#1 MnSi 0.175 0.175 0.65 0.34 0.28 disc
#2 Fe0.8Co0.2Si 0.074 0.463 0.463 0.65 0.5 rod
#3 Cu2OSeO3 0.39 0.27 0.34 1.76 1.1 spherical

Table 7.1: Sample properties of the three samples discussed in the main text and [37].
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7. Resonance at the �-Point
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Figure 7.1: Calculated resonances of samples #1, #2 and #3 as a function of the
externally applied magnetic field h = Hext

0 /Hc2. The dashed lines represent resonances
without dipolar interactions, i.e., �int

con = 0. In the field polarized phase this results in
the familiar Larmor frequencies.

Hc2 as well

ÊKittel
|“|µ0Hc2

=
Ò

(h + (Nx ≠ Nz)‰con) (h + (Ny ≠ Nz)‰con). (7.1)

Whereas in the spin-polarized phase only a single resonance exists, two modes,
labeled +Q and ≠Q for reasons that will become clear later in this section, can
be magnetically excited in the conical and helical phases [121]. Their frequencies
can be calculated analytically and amount to [91, 37]
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Here, the magnetic field h = Hext
0 /Hc2 is normalized to the critical field and Hext

0
is defined to point along êz. ‰con may be rewritten in terms of ‰int

con via (1.6).
Also Ê+Q > Ê≠Q. A thorough derivation is given in section 8.4. Graphs that
illustrate (7.2) and (7.1) for the three samples are shown in figure 7.1.

A couple of points are especially noteworthy. The first thing to notice is that
‰int

con is a measure that describes the general distance between the two modes in
the conical phase. It is also a measure for the strength of dipolar interactions. If
set to zero, then the two modes are degenerate. This frequency is shown as the
dashed lines in figure 7.1. Therefore, dipolar interaction is the reason for mode
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7.1. Excitation Modes

splitting in the conical phase. Additionally, the splitting s = (Ê
+Q

)≠(Ê≠Q

)
|“|µ

0

H
c2

is also
shape dependent, which is natural considering that dipolar interactions are shape
dependent. In the extremal case of a static field applied perpendicular to the
surface of an infinite disk with Nz = 1, the two modes are degenerate again and
that degeneracy is independent of ‰int

con. Taking a closer look at the splitting for
Hext

0 = Hc2 or h = 1, one arrives at the following formulas for either rotationally
symmetric shapes with Nx = Ny or maximally asymmetric shapes with Nx = 0

sh=1(Nx = Ny) = 1
2

1 ≠ Nz

(‰int
con)≠1 + Nz

(7.3)

sh=1(Nx = 0) =


1 + (1 ≠ Nz)‰int
con ≠ 1

1 + Nz‰int
con

. (7.4)

Especially in the first expression it is evident, that the splitting increases for
increasing ‰int

con but decreases with increasing Nz. Rewritten in terms of ‰con it is
even more obvious

sh=1(Nx = Ny) = 1 ≠ Nz

2 ‰con. (7.5)

Furthermore, the splitting of these two modes at zero field depends crucially on
whether the sample is rotationally invariant around the field axis or not. If it is,
as is the case for sample #1, then the two modes are degenerate in this point. A
slight deviation already leads to a small gap at Hext

0 = 0 as is observed for the
almost spherical cuboid sample #3. The largest splitting is observed when Nx

and Ny are maximally di�erent as is the case for example for a rod like sample
like sample #2. As above the formulas for these two extremal cases are given by

sh=0(Nx = Ny) = 0 (7.6)

sh=0(Nx = 0) =


2 + ‰int

con

3Ò
1 + 1≠N

z

4 ‰int
con ≠ 1

4

1 + Nz‰int
con

. (7.7)

Indeed, also experimentally two modes have been observed in microwave or early
electron spin resonance experiments [122, 123] for excitation fields perpendicular
to an applied static field. Signatures of the conical modes were also observed
in recent pump-probe measurements in Fe1–xCoxSi [124]. Before circling back
in section 7.2 and elucidating what more besides a large distance between the
two modes is needed to measure and resolve them individually and e�ciently, we
briefly focus on their nature and characteristics as already discussed in [93, 37].

Of course, the modes are characterized by di�erent k-dependent contributions
”Mk(Ê). Starting with the higher frequency Ê+Q, numerical calculations provide
the corresponding eigenvector in momentum space which has the form

”Mk(Ê+Q) = {v0, 0, v+Q, 0, v+2Q}
with

v+Q =

Q

a
0
0

vz
+Q

R

b and v+2Q =

Q

a
vx

+Q
vy

+Q
0

R

b
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7. Resonance at the �-Point

The eigenvector of the lower frequency mode Ê≠Q has components of the form

”Mk(Ê≠Q) =
)

vú
0 , vú

≠Q, 0, vú
≠2Q, 0

*

with

vú
≠Q =

Q

a
0
0

(vz
≠Q)ú

R

b and vú
≠2Q =

Q

a
(vx

≠Q)ú

(vy
≠Q)ú

0

R

b

The vectors v≠2Q and v+2Q possess the chiral character in the xy-plane for
v≠2Q · v≠2Q = 0 and v+2Q · v+2Q = 0, cf. properties of the basis vectors ê±
of a chiral basis in appendix D.2. More importantly, for the higher frequency
mode Ê+Q the z-component of the magnetization (êz-direction is the helix pitch
direction in the conical phase) oscillates with vz

+Q ei(Qz≠(Ê
+Q

)t).
While locally, the magnetic moments all precess in the same way as determined

by the Landé factor g and indicated by the red arrow in figure 7.2, the collective
character of the excitations is reflected in periodic compressions of spins within
the helix. These compressions move, similar to an Archimedean screw, with a
finite phase vector either parallel or anti-parallel to the helix pitch vector Q, i.e.,
either up (+Q) or down (≠Q) the helical staircase. The movement is illustrated
in figure 7.2.

+Q

�Q

Figure 7.2: Illustration of the ex-
citations in the conical phase.
Left: Equilibrium state in
which the tips of all neighbor-
ing magnetic moments have
the same distance from each
other.
Right: The equilibrium state
is distorted in such a way,
that the tips of neighboring
magnetic moments are either
closer together (green) or far-
ther away (red). This dis-
tortion propagates either up

or down the spiral staircase
where up is the direction of
the helix pitch vector.

If we would not consider demagnetization fields or only excitations at zero-field
for a rotationally symmetric shape, the two resonance frequencies would be equal
and two-fold degenerate. The calculated eigenvectors that span the degenerate
eigenspace would then contain mixed components of both ”M+Q and ”M≠Q
which can be decomposed into two eigenvectors that carry pure +Q and ≠Q
contributions.

Note, that the numerical calculations have been performed by employing a
negative gyromagnetic ratio “ < 0 in the precession equation (4.7), as is the case
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7.2. Ellipticity & Magnetic Linear Dichroism

for electrons. It fixes the sense of the local precession of individual moments. As
the conical helix state continuously resembles more and more a field polarized
state with increasing magnetic field, at least one of the resonances needs to have
a continuous transition between the two phases. The orientation of the precession
in the field polarized phase is fixed by the gyromagnetic ratio, i.e., right-handed
or counter-clockwise around the static field in the case of electrons. As local
moments precess the same way in the conical phase, it is the mode in which
also the mean magnetization precesses counter-clockwise around the field, that
continuously transitions into the Kittel mode of the field-polarized phase. For
a right handed helix, this is the +Q mode, cf. figure 7.2. When the chirality
is reversed by changing the sign of D in (1.4) or (3.36), the local moments still
precess in the same direction. Now however, a counter-clockwisely rotating mean
magnetization means that the compression moves anti-parallel to the helix pitch,
i.e., now the ≠Q mode connects with the Kittel mode. A summary is shown in
table 7.2.

� D FP Helix
high low

+ + �Q +Q
+ � +Q �Q
� + +Q �Q
� � �Q +Q

Table 7.2: Summarized relationship between chirality, the gyromagnetic ratio “ and
the ±Q modes. The table lists the signs of “ and D. While local precession and
precession in the field-polarized (FP) phase are only influenced by the former, their
combination determines in whether the conical mode with higher energy, which is
the one continuously connected to the Kittel mode, propagates parallel (+Q) or
anti-parallel (≠Q) to the helix pitch vector Q.
Convention: and show a top view of the collective rotations with the magnetic

field pointing towards the viewer: ‚= .

7.2. Ellipticity & Magnetic Linear Dichroism
To visualize the mode splitting experimentally most e�ciently, the first step is
to think about choosing a material with high internal conical susceptibility like
Cu2OSeO3 and a maximally asymmetrical shape and, in the best case, Nz = 0
for Hext

0 Î êz. This corresponds to a disc-like sample with the static magnetic
field applied parallel to the surface.

While such a setup leads to modes that are maximally apart from each other,
the question remains whether they can be seen in experiment. At this point,
the calculation of their spectral weights enters. They can be calculated via
equations (6.8) and (6.24). The results are quite astonishing as the weight
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Figure 7.3: Weight distribution in conical phase for a “standing” disc with demagnetization
factors Nx = 1 and Ny = Nz = 0, Hext

0

Î êz and a varying excitation direction
Hac ‹ Hext

0

.

distribution depends significantly on the excitation direction within the plane
perpendicular to the static field. Figure 7.3 shows such resonances for three
di�erent ac-field directions. Most noticeable is the region for small magnetic fields,
where the spectral weight is shifted almost entirely from one mode to the other
by rotating Hac by 90°.

Experimentally, this e�ect has been explicitly measured [125] on three di�erent
Cu2OSeO3 samples using two di�erent sizes of coplanar waveguides. The samples
were rod shaped, as such a geometry makes it easier to mount the sample on a
CPW, compared with a “standing” disc, and serve the same purpose. Figure 7.4
shows data of these experiments. In panels (a) and (b) and (e), also corresponding
to figure 7.3(a), one can easily trace out a single mode in the conical/helical phase.
In particular, a single resonance is measured at Hext

0 = 0. Upon rotation around
êz a second mode appears whose weight becomes maximal after a 90° rotation, as
seen in panels (c) and (f) of figure 7.4 and figure 7.3(c). Again, only one resonance
appears at Hext

0 = 0 but now at a di�erent frequency. Resonances shown in
figure 7.4 that occur in the skyrmion lattice phase are discussed in section 11.1.
There, resonances not only occur when for Hac ‹ Hext

0 but also for Hac Î Hext
0 .

The observation, that it is possible to select complementary modes at small
fields by rotating excitation field or alternatively the sample by 90°, which can be
seen as interchanging the demagnetization factors Nx and Ny, suggests an existing
cross-polarization between the linearly polarized field Hac and either mode +Q
and ≠Q, respectively. The corresponding linear polarization of the ±Q modes
occurring near 2 GHz has not been considered before. To explain this occurrence
or absence of modes we consider the ellipticity of magnetization precession in the
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7.2. Ellipticity & Magnetic Linear Dichroism

Figure 7.4: Spin resonance data and comparison with theory.
(a)-(d): Typical resonance spectra measured at temperatures around 57 K on three
different samples positioned differently on the CPW as sketched at the top of each
panel. Data are shown for different applied field values in the helical, conical, and
skyrmion lattice phases and are offset for clarity. The static field is applied È1 0 0Í and
the symbols are guides for the eye and indicate resonance frequencies.
(e)-(g): Comparison between experiment and theory. Lines correspond to calculations
at k = 0 and shaded bands to potential deviations due to finite wave vectors that arise
from the construction of a CPW, cf. section 5.1. Dashed lines indicate modes with
small spectral weight. Circles highlight the modes resolved at small H. Figure taken
from [125].

spin helix phase. We introduce the homogeneous dynamic magnetization ”M0,‡
averaged along a helix period, where ‡ = ± respectively corresponds to the ±Q
modes. For a helix at zero field, the local magnetization is perpendicular to Q, cf.
figure 1.3(a), and if Q Î êz, then it is easy to see that ”M0,‡ lies and oscillates in
the xy-plane, since longitudinal deviations cancel each other out. This statement
is also true in the conical phase, as the additional contribution parallel to Q
is static. This mean magnetization oscillates counterclockwise for the +Q and
clockwise for the ≠Q mode. While their frequencies are given by equation (7.2),
we obtain

”Mx
0,‡

”My
0,‡

=
----
2h2NxNy‰int

con + ‡W1 ≠ (Nx ≠ Ny)(2 + (1 ≠ h2)‰int
con) ≠ 2NxhW‡,2

2h2NxNy‰int
con + ‡W1 + (Nx ≠ Ny)(2 + (1 ≠ h2)‰int

con) ≠ 2NyhW‡,2

----
(7.8)
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7. Resonance at the �-Point

for the ratio of their amplitudes. The abbreviations W1, W‡,2 > 0 are given by

W 2
1 = (Nx ≠ Ny)2(2 + (1 ≠ h2)‰int

con)2

+ 4h2NxNy

1
(2 + ‰int

con)(4 + ‰int
con(Nx + Ny))

≠ h2(4 + ‰int
con(4 + ‰int

con(Nx + Ny) ≠ ‰int
conNxNy))

2
(7.9)

W 2
‡,2 = ‡W1‰int

con + (2 + ‰int
con)(4 + ‰int

con(Nx + Ny))
≠ h2!

4 + ‰int
con(4 + ‰int

con(Nx + Ny) ≠ 2‰int
conNxNy)

" (7.10)

where h = Hext
0 /Hc2 is again in units of Hc2. For a derivation see section 8.4.

This lets us use equations (4.43) and (4.44) as the definitions for ellipticity "‡ and
sign ‡, respectively, to obtain a set of curves for the ellipticity plotted against one
of the demagnetization factor. Here, we take the exemplary specification of one
of the samples used in the previously described experiments conducted in [125].
They read Nx = 0.07, Ny = 0.4 and Nz = 0.53 for a rod in êx-direction. Nz is
kept steady while Nx and Ny are varied continuously between 0 and 0.47 while
fulfilling Nx + Ny + Nz = 1. In the experiment this was achieved by rotating the
sample around êz and the resulting graphs can be seen in panels (b) and (c) of
figure 7.5, showing the ellipticity and weight distribution in dependence of nx,
respectively.

In a rotationally symmetric sample with Nx = Ny like a circular disk, the
ellipticity vanishes "‡ = 0 for symmetry reasons. This leads to circular polarization
of the ±Q modes as shown in figure 7.5(a) for a small but finite field. As soon
as a sample is of slightly elliptical shape within the xy-plane, i.e., Nx ”= Ny, the
polarization becomes elliptical, too, and "‡ finite.

The most interesting e�ect takes place at zero field Hext
0 = 0 which is depicted

as black lines in panels (b) and (c) of figure 7.5. For a disc with Nx = Ny the
screw symmetry of the helix ensures that the two excitation modes are degenerate
and any polarization can be achieved. When this degeneracy is lifted, Nx ”= Ny,
the two modes become strictly linearly polarized. This can be explained by the
fi-rotation symmetry of a helix at Hext

0 = 0 around one of its spins pointing
along one of the principal axes of the ellipsoid, i.e., along êx or êy. Because of
these symmetries, one can always find pairs of spins whose precessional motion
conspires to yield a linear polarization along one of the principal axes. A similar
e�ect can be observed in easy-plane anti-ferromagnets where magnetization on the
two sub-lattices, labeled up and down, precesses in opposite direction. While their
components along one direction cancel each other, they add up in the direction
perpendicular to it resulting in a linear oscillation [126]. As a consequence of this
crossover polarization the ellipticities of modes +Q (solid line) and ≠Q (dashed
line) follow step functions

"‡|Hext

0

=0 = sgn[‡ · (Nx ≠ Ny)]. (7.11)
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Figure 7.5: Ellipticity and spectral weights for excitations in the conical phase. Solid
(dotted) lines correspond to the +Q(≠Q) modes. Figure taken from [125].
(a): Special case of a rotationally symmetric disc. Shown are the circularly polarized
”M± for Nx = Ny = 0.235 and Nz = 0.53 for a field Hext

0

= 0.1Hc2.
(b): Ellipticity plotted for different shapes and different field. Most notable is the black
curve for Hext

0

/Hc2 = 0 which is singular for rotationally symmetric samples, here at
Ny = 0.235. The opposite extreme, the solid red curve of the +Q mode, coincides
with the expected ellipticity in the field-polarized phase.
(c): Spectral weights in dependence on Nx . Again, the black curve at zero field has a
singular feature for a rotationally symmetric shape.

This singular shape dependence impacts the spectral weights �‡ in an equally
singular fashion, cf. black lines in figure 7.5(c). For an ac field Hac Î êx we find

�‡(Nx, Ny)|Hext

0

=0 Ã �[‡ · (Nx ≠ Ny)]
1 + 2+N

x

6 ‰int
con

(7.12)

with the Heaviside step function �[s] = 1 for s > 0 and zero otherwise. Hence,
the ±Q modes can be individually excited, because the weights can be shifted in
a way, so that all weight accumulates in one mode or the other. Taking the rod in
êx-direction as an example with Nx < Ny, then the +Q mode is linearly polarized
along êy ("+ = ≠1). Therefore, Hac Î êx does not couple to it which returns
zero for the spectral weight �+ represented by the solid black line in figure 7.5(c)
for Nx < 0.235. This e�ect is called magnetic linear dichroism, see below.

When increasing the magnetic field, one notices that ellipticities and weights
of the +Q and ≠Q modes are not symmetrical with respect to the perfect disc
shape at Nx = 0.235. Considering the ≠Q mode (dotted lines) for Nx π Ny it is
evident, that its ellipticity persists over a wide field range. We extract "≠ = 0.999
at Hext

0 = 0.5 Hc2 for Nx = 0.07, which is the specification of the sample used in
[125]. On the contrary, ≠Q looses spectral weight significantly earlier. This is
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7. Resonance at the �-Point

due to the mismatch of handedness with the Kittel mode in the field-polarized
phase. The spectral weight �+, on the other hand, increases strongly while +Q
gets elliptically polarized.

Upon a further increase, one notices that the +Q mode changes the polarization
axis at some intermediate field hcirc

+ . The +Q mode is then circularly polarized
independently of demagnetization factors Nx and Ny, i.e., "+(hcirc

+ ) = 0 for all
Nx. For this field we obtain the expression

hcirc

+

= 2 + ‰int

conÒ
(2 + ‰int

con

)(2 + (2 ≠ N
z

)‰int

con

) +


(1 ≠ N
z

)‰int

con

(2 + ‰int

con

)2(4 + (1 ≠ N
z

)‰int

con

)
.

(7.13)

For the Cu2OSeO3 sample from [125] with ‰int
con = 1.76 and Nz = 0.53 we get

hcirc
+ ¥ 0.76.

In the limit Hext
0 æ Hc2, the spectral weight of the ≠Q mode vanishes completely

while weights of the +Q mode connect seamlessly to the Kittel mode which is also
reflected in the ellipticity of the +Q mode. The latter takes on the same values
of the ellipticity in the field-polarized or ferromagnetic phase, which is generally
given by [89]

"fm =
Û

Nx ≠ Ny

Nx ≠ Nz + Hext
0 /M0

(7.14)

or explicitly at Hc2 with Hext
0 = h Hc2 and M0 = ‰con Hc2 we get

"fm|h=1 =
Û

Nx ≠ Ny

Nx ≠ Nz + ‰≠1
con

=

Û
(Nx ≠ Ny)‰int

con
1 + Nx‰int

con
. (7.15)

Linear Dichroism
Linear dichroism in general is the phenomenon of polarization dependent absorp-
tion of electromagnetic waves. It plays a prominent role in polarization filters in
optical technology and in structure determination or the study of the functional-
ity of bio-molecules. Magnetic linear dichroism comes into play when studying
magneto-optical e�ects. Experiments are most often conducted by using X-rays
to examine element-specific magnetic characterizations. Their frequencies are
much higher, though, than the few gigahertz regime that is key in communication
technologies. There, linear dichroism is not known, because magnetic precession
within this frequency range has been argued to be circularly or elliptically polar-
ized. The features described in this section lie at approximately 2 GHz, which
is within the operating frequency range of modern telecommunication networks.
The previously mentioned similar features occurring in anti-ferromagnets also
lie above that frequency in the terrahertz regime. Therefore, our findings o�er
new prospects in designing new applications in this technologically important
frequency range.
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8
Non-Linear ‡ Model

In this chapter we introduce the non-linear ‡ model as a way to not only calculate
the resonance frequencies in the conical phase analytically, but also the consequen-
tial expressions used in the previous section for the discussion about ellipticity.
Furthermore, we use it to get a more intuitive insight into the remainder of the
spectrum, which will be discussed in the next chapter.

The ‡ model goes back to work Gell-Mann and Lévi in 1960 [127] which was,
similar to the work of Skyrme, a contribution to particle physics. The sigma
notation comes from the field they introduced describing a new scalar meson ‡
with isotopic spin zero. Linear ‡ models, which generally boil down to linear
wave equations, are well implementable in numerics and were therefore used in
this thesis up to now. For analytical calculations, it is sometimes easier to use a
non-linear ‡ model as it is a mode with a decreased number of degrees of freedom.
In the original paper, the ‡ field was made into a function of pion fields already
present in the theory, instead of being a field of a new particle. Translated to solid
state physics, this means that we could make an ansatz for the magnetization with
a fixed length or amplitude M and a normalized field n̂(r), e�ectively reducing
the degrees of freedom by one

M(r) = M n̂(r). (8.1)

Because the target manifold of n̂(r) is the non-linear surface of a sphere, instead
of R3 of M(r), it is referred to as a non-linear ‡ model [128]. ‡ models are
described by a Lagrangian density L. Since the n̂ field is forced to have length
one, there is no need for quartic terms like in the Ginzburg-Landau theory to
stabilize the energy. The Lagrangian density therefore only consist of terms which
are directly linked to physical e�ects. For our model we consider

L = Ldyn ≠ F (8.2)
with

F = Fex + Fdip (8.3)
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8. Non-Linear ‡ Model

where Fex contains Heisenberg exchange, Dzyaloshinskii-Moriya and Zeeman
interaction

Fex = fls

2

Ë
(Òin̂j)2 + 2Q n̂ · (Ò ◊ n̂)

È
≠ µ0M n̂ · Hext

0 (8.4)

with spin sti�ness density1 fls = 2JM2 and Q = D/J. The spin sti�ness is a
measure of the strength of the exchange interaction. The static external magnetic
field is denoted by Hext

0 . The dipolar interaction is given by

Fdip = 1
2 n̂i ‰≠1

dipij n̂j (8.5)

with

‰≠1
dip,ij = µ0M2

I
k

i

k
j

|k|2

for |k| ∫ 1/L

Nij for |k| π 1/L
(8.6)

for a sample size L, cf. (3.26).
The equation of motion describing the system is the Landau-Lifshitz equation
(4.7). This equation should hence also be retrieved when evaluating the Euler-
Lagrange equations from (8.2). This dynamics is encoded in the last term given
by

Ldyn = ≠M

“
A(n̂) ˆtn̂ (8.7)

where the gyromagnetic ratio “ is defined as in (4.6) with “ < 0 for electrons. The
gauge field obeys ‘ijk

ˆA
j

ˆn̂
i

= n̂k … ˆA
j

ˆn̂
i

= 1
2 ‘ijkn̂k + symij , where the symmetric

part symij cancels out in the here performed calculations. A derivation can be
found in appendix D.1.

8.1. Mean-Field and Parameterization

Q

✓ n̂helix

ê1

ê22⇡
Q

Figure 8.1: Parameteriza-
tion of magnetization
M = M n̂.

Let the external field be along the z-axis. Neglecting
cubic anisotropies and assuming an ellipsoidal sample
shape leads to an alignment of the helix pitch vector
with that field, Hext

0 = Hext
0 êz Î Q. This lets us

parameterize an arbitrary equilibrated helix in that
direction as

n̂helix =

Q

a
sin ◊ cos(Qz)
sin ◊ sin(Qz)

cos ◊

R

b . (8.8)

The angle ◊ is the angle between helix pitch Q and
n̂helix, cf. figure 8.1. Plugging this ansatz for n̂helix

1Note, that a pre-factor of 1⁄2 canonical to field theories has been introduced in F
ex

, compared
with the theories before. It gives, for example, a cleaner version of the conical susceptibility
without the unnecessary factor of two, cf. equations (B.10) and (8.15)
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8.2. Fluctuations

into (8.2) and evaluating the derivatives while assuming that ‰≠1
dip,ij is diagonal,

leads to the free energy density

f(◊) = ≠flsQ2

2 sin2 ◊ ≠ Mµ0Hext
0 cos ◊ + µ0M2

2 Nz cos2 ◊. (8.9)

Because Q Î êz there is only a homogeneous component in z-direction in the
dipolar contribution and is obtained by using and evaluating ‰≠1

dip,ij in the limit
k = 0. Within the xy-plane, however, n̂helix modulates with respect to Q ∫ 1/L

and the full dipole-dipole interaction, i.e., ‰≠1
dip,ij in the limit k ∫ 0, should be

evaluated. Since Q Î êz, these terms are zero. A more physical picture is, that
these oscillations average out and cancel each other. To find the minimum of f(◊)
with respect to ◊, we di�erentiate f(◊) set it to zero yielding the equation of state

0 = ≠flsQ2 cos ◊ + Mµ0Hext
0 ≠ µ0M2Nz cos ◊ (8.10)

= ≠flsQ2 cos ◊ + Mµ0

1
Hext

0 ≠ M cos ◊¸ ˚˙ ˝
|M

0

|

Nz

2
(8.11)

= ≠flsQ2 cos ◊ + Mµ0H int
0 (8.12)

The internal magnetic field in the last line is given via equations (3.6) and (3.21)
as

H int
0 = Hext

0 ≠ NzM0 = Hext
0 ≠ NzM cos ◊ (8.13)

for M0 Î êz. Equation (8.10) lets us derive an expression for the homogeneous
net magnetization, i.e., the part parallel to Q:

|M0| = M cos ◊ = µ0M2Hext
0

flsQ2 + µ0M2Nz
. (8.14)

We saw earlier that the susceptibility in the conical phase ‰con is approximately
constant and here given by M cos ◊ = ‰conHext

0 with

‰con = µ0M2

flsQ2 + µ0M2Nz
= ‰int

con
1 + Nz‰int

con
(8.15)

where the internal conical susceptibility is given by ‰int
con = µ

0

M2

fl
s

Q2

and defined
via ‰conHext

0 = ‰int
conH int

0 . Particularly at the critical field between conical and
field-polarized phase at ◊ = 0 we get

M = ‰conHc2 = ‰int
conHint

c2 . (8.16)

8.2. Fluctuations
To study excitations in the conical phase, we add a small fluctuating field fi on top
of the equilibrium state n̂helix. Since length fluctuations of n̂helix are neglected

91



8. Non-Linear ‡ Model

by construction, fi| = (fi1, fi2) is e�ectively two dimensional and lies in the plane
perpendicular to n̂helix. To this end, we introduce an orthogonal frame

ê1 =

Q

a
≠ sin(Qz)
cos(Qz)

0

R

b ê2 =

Q

a
≠ cos ◊ cos(Qz)
≠ cos ◊ sin(Qz)

sin ◊

R

b ê3 = n̂helix (8.17)

where fi lies in the plane spanned by ê1 and ê2. The latter are depicted in
figure 8.1. Due to the chiral nature of the equation of motion, it is useful to also
introduce a chiral basis ê+ and ê≠ that accommodates the twisted structure:

ê± = 1Ô
2

(ê1 ± iê2) ∆ ê1 = 1Ô
2

(ê+ + ê≠) ê2 = 1Ô
2

i(≠ê+ + ê≠)

(8.18)

ê± = 1Ô
2

Q

a
≠ sin(Qz) û i cos(Qz) cos ◊
+ cos(Qz) û i sin(Qz) cos ◊

±i sin ◊

R

b . (8.19)

Additionally, we denote the projections of n̂helix onto the pitch vector Q and the
plane perpendicular it by nÎ and n‹, respectively. They are given by

nÎ = cos ◊

Q

a
0
0
1

R

b n‹ = sin ◊

Q

a
cos(Qz)
sin(Qz)

0

R

b . (8.20)

Identities for calculations with these vectors are listed in appendix D.2.
The fluctuating field can now be parameterized as

n̂ = n̂helix


1 ≠ fi2 + ê1fi1 + ê2fi2 (8.21)

¥ n̂helix

3
1 ≠ fi2

2

4
+ ê1fi1 + ê2fi2 (8.22)

where the square root ensures that n̂ stays normalized and in the second line
we expanded the square root to second order. To make use of the chiral basis,
we can change from the real fi field to a complex spinor Â| = (Â, Âú) with

gµ
B

M Â = 1Ô
2 (fi1 ≠ ifi2) and obtain

n̂ = n̂helix

Ú
1 ≠ 2gµB

M
|Â|2 +

Ú
gµB

M
(Âê+ + Âúê≠) (8.23)

¥ n̂helix

1
1 ≠ gµB

M
|Â|2

2
+

Ú
gµB

M
(Âê+ + Âúê≠) (8.24)

The factor gµ
B

M with units of volume ‹ has been introduced for later convenience.
That makes Â of unit 1/Ô

‹ and the Fourier transformed Â(k) of unit
Ô

‹, cf.
equation (3.8). The transformation from one description into the other is achieved
by R · fi = Â where R is given by the matrix

R = 1Ô
2

Ú
gµB

M

3
1 ≠i
1 i

4
(8.25)
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8.2. Fluctuations

which is unitary when normalized and also yields the identities

R · ·x,y,z · R≠1 = ·y,z,x (8.26)

for Pauli matrices · i.

With this preparatory work at hand, we can now derive an e�ective action S in
lowest order of Â. The recipe is to plug (8.24) into L, expand all other quantities
around Â = 0 as well and collect all second order terms. Terms of zeroth order
only contribute a constant energy o�set and first order terms only yield surface
terms, which are not considered here. Expansion of Fex even up to fourth order
can be found in appendix D.3. There, we derive the second order term to be

1
2Â†HexÂ := F (2)Õ

ex = 1
2

E0
Q2 Â†

Ë
≠ 1Ò2 + Q2 sin2 ◊

2 (1 ≠ ·x) ≠ i2Q·zn‹(r) · Ò
È
Â

(8.27)
with E0 = gµBQ2fls/M = gµBµ0Hint

c2 , cf. definitions in (8.16). The factor E
0

Q2

=: D
is often referred to as the spin sti�ness.
The second order contribution of the dynamic part Ldyn is also obtained straight-
forward to be

L(2)
dyn = ≠1

2 i
gµB

“
Â†ˆt·

zÂ = ≠ sgn(q)1
2 i~Â†ˆt·

zÂ (8.28)

for charge q. For clarity and brevity, we will assume electrons as spin carriers
and hence sgn(q) = ≠1 and “ < 0. The goal is to obtain an e�ective action of the
form

S = 1
2

⁄
dr Â† (i~·zˆt ≠ H) Â. (8.29)

where H = Hex + Hdip contains all second order contributions of F . The only
thing left is the treatment of the dipolar contributions. Here, things get slightly
more complex. Since we consider ‰≠1

dip in Fourier space, we also need to Fourier
transform the action

Sdip = 1
2

⁄
dr Â† (≠Hdip) Â (8.30)

= ≠ 1
2‹

ÿ

k

!
Â†(k + Q), Â†(k), Â†(k ≠ Q)

"
Vdip(k)

Q

a
Â(k + Q)

Â(k)
Â(k ≠ Q)

R

b . (8.31)

This structure arises, because n̂ and êi with i œ {1, 2, +, ≠} have, beyond
homogeneous ones, only Fourier components with k = ±Q, cf. appendix D.4. The
matrix Vdip(k) is a block-matrix with nine 2 ◊ 2 blocks and can be constructed
by introducing momentum indices – and — via

Sdip = ≠ 1
2‹

ÿ

k

ÿ

–,—=1,0,≠1
Â†(k + –Q) V –—

dip (k) Â(k + —Q) (8.32)
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which makes

Vdip(k) = E0‰int
con

2

Q

ca
V 1,1

dip (k) V 1,0
dip (k) V 1,≠1

dip (k)
V 0,1

dip (k) V 0,0
dip (k) V 0,≠1

dip (k)
V ≠1,1

dip (k) V ≠1,0
dip (k) V ≠1,≠1

dip (k)

R

db . (8.33)

Such as before, ‰≠1
dip is divided into two cases with momentum much smaller

respectively larger than one over sample size. In the former case of basically zero
momentum, ‰≠1

dip consist of the demagnetization factor description. Assuming a
diagonal form with Nx, Ny and Nz on the diagonal, we obtain

Vdip(0) = E0‰int
con

2 ◊
Q

ca

N

x

+N

y

2

!
1+cos

2

◊

2

1+

sin

2

◊

2

·

x

+cos◊·

z

"
0

N

x

≠N

y

2

!
≠ sin

2

◊

2

1≠icos◊·

y ≠ 1+cos

2

◊

2

·

x

"

0 N

z

sin

2

◊(1≠·

x

) 0

N

x

≠N

y

2

!
≠ sin

2

◊

2

1+icos◊·

y ≠ 1+cos

2

◊

2

·

x

"
0

N

x

+N

y

2

!
1+cos

2

◊

2

1+

sin

2

◊

2

·

x ≠cos◊·

z

"

R

db.

(8.34)

plus the additional term

≠ 1
2E0‰int

conNz cos2 ◊
ÿ

k
Â†(k)Â(k). (8.35)

This term can be absorbed in the calculation to obtain Hex in (8.27). E�ectively,
the external magnetic field as in (D.16) is replaced by the internal magnetic field.
For the case of finite momentum k it is handy to introduce abbreviations for the
components of k̂, i.e., k̂z = k̂ · êz and k̂± = 1Ô

2 k̂ · (êx ± iêy). Using them lets us
write the potential as

Vdip(k) = E0‰int
con

2 ◊
Q

ca
ˆ

k

≠
ˆ

k

+

!
1+c

2

2

1+

s

2

2

·

x

+c·

z

"
ˆ

k

≠
ˆ

k

z

!
≠csÔ

2

(1≠·

x

)+

isÔ
2

(·

y

+i·

z

)

"
ˆ

k

≠
ˆ

k

≠
!

≠ s

2

2

1≠ic·

y ≠ 1+c

2

2

·

x

"

ˆ

k

z

ˆ

k

+

!
≠csÔ

2

(1≠·

x

)≠ isÔ
2

(·

y ≠i·

z

)

"
ˆ

k

z

ˆ

k

z

s

2

(1≠·

x

)

ˆ

k

z

ˆ

k

≠
!

≠csÔ
2

(1≠·

x

)+

isÔ
2

(·

y ≠i·

z

)

"

ˆ

k

+

ˆ

k

+

!
≠ s

2

2

1+ic·

y ≠ 1+c

2

2

·

x

"
ˆ

k

+

ˆ

k

z

!
≠csÔ

2

(1≠·

x

)≠ isÔ
2

(·

y

+i·

z

)

"
ˆ

k

+

ˆ

k

≠
!

1+c

2

2

1+

s

2

2

·

x ≠c·

z

"

R

db

(8.36)

where s = sin ◊ and c = cos ◊ are abbreviated due to lack of space. Note, that only
the center element remains finite when k Î êz Î Q, so in particular if k = nQ
for n œ Z and n ”= 0. A thorough derivation of Vdip(0) and Vdip(k) is given in
appendix D.5.
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8.3. Eigenmodes

8.3. Eigenmodes
Minimization of the action S (8.29) leads to a bosonic version of the Bogoliubov-
deGennes equation2

i~·zˆtÂ = HÂ. (8.37)

We define the Fourier transformed free Green’s function as

g≠1
0 (Ê, k) = ~Ê·z + D

3
k2 + Q2 sin2 ◊

2 (1 ≠ ·x)
4

. (8.38)

The wave equation is obtained by setting the functional derivative of S with
respect to Â to zero and is given by

0 = g≠1
0 (Ê, k)ÂÊ(k) + V (k)ÂÊ(k + Q) + V ú(k)ÂÊ(k ≠ Q)

+
ÿ

–,—
V –—

dip (k ≠ –Q) Â(k ≠ (– ≠ —)Q). (8.39)

The last term was derived in the previous section and the shift k æ k ≠ –Q was
necessary to obtain the correct derivative. The potential V (k) comes from the
remaining term already present in Hex. Its Fourier transformed form is given by

V (k) = DQ sin ◊ (kx + iky) ·z = DQ sin ◊ k‹eiÏ ·z (8.40)

with k = (k‹ cos Ï, k‹ sin Ï, kÎ) for the angle Ï = \(k, êx).
Combining the diagonal elements of the dipolar contribution and the free Green
function to

g≠1(Ê, k) = g≠1
0 (Ê, k) +

ÿ

–

V ––
dip (k ≠ –Q) (8.41)

lets us collect corresponding Fourier components and rewrite the wave equation
as

0 = g≠1(Ê, k)ÂÊ(k) + V ú(k)ÂÊ(k ≠ Q) + V (k)ÂÊ(k + Q)
+

ÿ

–”=—

V –—
dip (k ≠ –Q)ÂÊ(k ≠ (– ≠ —)Q)

(8.42)

= g≠1(Ê, k)ÂÊ(k) +
Ë
V ú(k) + V 1,0

dip (k ≠ Q) + V 0,≠1
dip (k)

È
ÂÊ(k ≠ Q)

+
Ë
V (k) + V 0,1

dip (k) + V ≠1,0
dip (k + Q)

È
ÂÊ(k + Q)

+V 1,≠1
dip (k ≠ Q)ÂÊ(k ≠ 2Q)

+V ≠1,1
dip (k + Q)ÂÊ(k + 2Q).

(8.43)

2Bogoliubov-deGennes equations known from the BCS-theory are fermionic and have the
general form

1
H

0

�(r)
�ú(r) ≠Hú

0

2
Â = EÂ.
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8.4. Uniform Chiral Magnetic Resonances
The derivation of the resonances in the conical phase, i.e., ofthe formula already
stated in the beginning of chapter 7, is now obtainable in just a few steps. Sought
after are fluctuations at zero momentum k and with a finite frequency Ê. The
latter argument restricts the modes to just Â(±Q). Evaluating (8.43) for di�erent
values of k œ {. . . , ≠Q, 0, Q, . . . } results in a set of equations. The only finite
contributions come from equations for k = ±Q. They can be rewritten as

A
g≠1(Ê, Q) V 1,≠1

dip (0)
V ≠1,1

dip (0) g≠1(Ê, ≠Q)

B 3
Â(Q)

Â(≠Q)

4
= 0. (8.44)

Since V only depends on k‹ rendering V (nQ) = 0 for n œ Z and n ”= 0, combined
with properties of Vdip(k) for Q Î êz, there is no coupling to higher order Fourier
modes. The Green’s function results in

g≠1(Ê, ±Q) = g≠1
0 (Ê, ±Q) + V 0,0

dip (±Q) + V ±1,±1
dip (0)

= ~Ê·z + E0

1
1 + (1 + ‰int

con) sin2 ◊

2 (1 ≠ ·x)
2

+ V ±1,±1
dip (0)

(8.45)

As a solution of the secular equation3 (8.44) we obtain

(~Ê±Q

)2

E2

0

=
Ê2

±Q

(“µ
0

Hint

c2

)2

=

1
4

3
(2 + ‰int

con

)
!

4 + (N
x

+ N
y

)‰int

con

"
+ h2

1
≠ 4 + ‰int

con

!
≠ 4 ≠ N

y

‰int

con

+ N
x

(≠1 + 2N
y

)‰int

con

"2

± ‰int

con

Ë
N2

y

(2 + ‰int

con

≠ h2‰int

con

)2 + N2

x

!
2 + (1 + h2(≠1 + 2N

y

))‰int

con

"
2 ≠ 2N

x

N
y

1
(2 + ‰int

con

)2

≠ 2h2(2 + ‰int

con

)(4 + ‰int

con

+ N
y

‰int

con

) + h4

!
8 + ‰int

con

(8 + ‰int

con

+ 2N
y

‰int

con

)
"2È

1/2

4
(8.46)

with cos ◊ = h which is the projection of n̂ onto Q. It is a measure of the
magnetic field between zero and Hc2 respectively Hint

c2 [37]. The former was used
in the previous expression (7.2) while the latter was used for this one leading to
a description in terms of ‰int

con instead of ‰con. Since h = Hext/Hc2 = H int/Hint
c2 ,

substituting Hint
c2 = (1 ≠ Nz‰con)Hc2 on the left and (‰int

con)≠1 = (‰con)≠1 ≠ Nz on
the right hand side of equation (8.46) gives equation (7.2).

Plugging the two positive eigenvalues w±Q into (8.44) lets us obtain two
corresponding eigenvectors. They are needed, for example, to calculate the
ellipticity in section 7.2. To calculate the ellipticity one requires the change of
the mean magnetization which is in this formalism given by

”M0 =
⁄

dr n̂ ≠ n̂helix. (8.47)

3also called characteristic equation
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The di�erence n̂ ≠ n̂helix = ”M is the local deviation from the equilibrium
configuration of the helix. This deviation is then averaged over a helix to obtain
the change in the mean magnetization. Using (8.24) for n̂ leaves three terms and
the integral basically results in a Fourier transformation. The first term then
vanishes because only Â(±Q) are finite and only the two terms proportional to
ê+ and ê≠ remain. One is ultimately left with the vector

”M0 Ã

Q

a
≠i

#
(1 + h)

!
Â(+Q) ≠ Âú(≠Q)

"
+ (1 ≠ h)

!
Âú(+Q) ≠ Â(≠Q)

"$

(1 + h)
!
Â(+Q) + Âú(≠Q)

"
+ (1 ≠ h)

!
Âú(+Q) + Â(≠Q)

"

0

R

b .

(8.48)
Whether it is an elliptical or linear rotation or polarization is encoded in the
eigenvectors Â. Note, that now Â and Âú only label the components of Â and
are not necessarily the complex conjugate of each other anymore. This expression
then naturally leads to the ratio ”Mx

0,‡

”My

0,‡

stated in (7.8), with ‡ labeling the plus
or minus Q mode, respectively, as well as to the subsequent abbreviations and
results.
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9
Finite Momentum Spin Waves

We start this chapter by analytically analyzing first aspects of spin waves with
finite momentum on the basis of the non-linear ‡ model described in the previous
chapter. We then continue the investigation revisiting and using the numerical
approach to obtain flat helimagnon bands, discuss neutron scattering weights and
take a look at the magnetic field dependence of the spectrum.

9.1. Analysis via the Non-Linear ‡ Model
When dealing with finite momenta we can distinguish between two di�erent cases
discussed in the following.

Longitudinal Momenta
This first one considers momenta kÎ Î Q parallel to the helix pitch. In this case,
the dipolar contribution simplifies and the wave equation reads [94]

i~·zˆtÂ(kÎ) = D
1

k2
Î1 + Q2 (1 + ‰int

con) sin2 ◊

2 (1 ≠ ·x)
2

Â(kÎ). (9.1)

The eigenfrequencies are given by

~Ê = D
--kÎ

--
Ò

k2
Î + Q2(1 + ‰int

con) sin2 ◊ (9.2)

and shown in figure 9.1. The spectrum for a helix in zero field corresponding to
◊ = fi/2 is shown in solid dark blue. Note the linear behavior around kÎ = 0. When
the field increases, this behavior softens and becomes quadratic at Hext

0 = Hc2,
i.e., ◊ = 0, shown in solid light blue. This corresponds to a ferromagnetic or
field-polarized state which is achieved for Hext

0 Ø Hc2. A gap opens for fields
truly larger than Hc2 and the parabola is shifted upwards. Dashed lines in
the background depict the zero-field spectrum in the repeated zone-scheme. Of
course, a repeated zone scheme is also applicable for the spectrum at Hc2 and
actually necessary because the only parabola with remaining weight has its apex
at kÎ = +Q for positive and at kÎ = ≠Q for negative chirality.

99



9. Finite Momentum Spin Waves

-2Q -Q Q 2Q
kk

~Ê

Figure 9.1: Helimagnon spectrum for longitudinal momenta kÎ Î Q parallel to the helix
pitch as given by (9.2). The spectrum for a helix in zero field, i.e., ✓ = ⇡/2, is shown in
solid dark blue. Note the linear behavior around kk = 0. When the field increases, this
behavior softens and becomes quadratic at Hext

0 = Hc2, i.e., ✓ = 0, shown in solid light
blue. The dashed lines in the background indicate this spectrum in the repeated zone
scheme of the former case.

Large Perpendicular Momenta
For momenta k‹ ‹ Q the last term in Hex becomes finite, cf. equation (8.27).
For large momenta k‹ ∫ Q dipolar interactions may be neglected as well as the
term proportional to sin2 ◊ in Hex. The remaining e�ective Schrödinger equation
for the first component of the spinor Â reads

i~ˆtÂ(k‹, z) = D
#
k2

‹ ≠ ˆ2
z + 2Q n‹ · k‹

$
Â(k‹, z)

= D
#
k2

‹ ≠ ˆ2
z + 2Q k‹ sin ◊ cos(Qz ≠ Ï)

$
Â(k‹, z) (9.3)

for k|
‹ = (k‹ cos Ï, k‹ sin Ï, 0). It e�ectively describes a particle in a cosine

potential along the êz-direction. Equation (9.3) is generally called Mathieu
equation. The strength of the cosine potential can by controlled by the size of
k‹. Finite k‹ activates Bragg reflections at Bragg planes which open gaps in the
longitudinal spectrum. Because the cosine only has two Fourier components, the
size of these gaps decreases quickly with increasing band index n = 0, 1, 2, . . .
[129]. When k‹ is large, the magnons will become localized along the êz-direction
around the minima of the cosine:

cos (Qz ≠ Ï) ¥ ≠1 + 1
2Q2

3
z ≠ Ï + fi

Q

42
≠ 1

24Q4
3

z ≠ Ï + fi

Q

44
. (9.4)

Shifting z æ z + Ï+fi
Q lets us obtain

i~ˆtÂ(k‹, z) ¥

D
5
k2

‹ ≠ 2Qk‹ sin ◊ ≠ ˆ2
z + Q3k‹ sin ◊ z2 ≠ 1

12Q5k‹ sin ◊ z4
6

Â(k‹, z) (9.5)
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9.2. Extended Analysis with Numerical Input

This expression now contains the harmonic oscillator with a quartic higher order
perturbation. The eigenenergies are given by [130, 131]

~Ên(k) ¥ D
5
k2

‹ ≠ 2Qk‹ sin ◊ + 2Q


Qk‹ sin ◊

3
n + 1

2

4
≠ Q2

8

3
n2 + n + 1

2

46

(9.6)
where the second and third term derive from the harmonic oscillator potential and
the last term is attributed to the anharmonicity. The last summand ≠ Q2

16 may
be neglected as has been done in [94]. Equation (9.6) is plotted at zero field, i.e.,
◊ = fi/2, for di�erent n in figure 9.2. Due to the cosine approximation valid for
k‹ ∫ Q, formula (9.6) is only valid for such momenta. Additionally, this entire
theory is a low energy theory. That means that although the cosine expansion
might be valid in that regime, high energy corrections to the free energy are
necessary for high momenta. Size and form are discussed in chapter 10.

Q 2Q 3Q 4Q 5Q
k?

~!n(k)

Figure 9.2: Helimagnon spectrum for large perpendicular momenta k‹ ‹ Q perpendicular
to the helix pitch as given by (9.6) for a helix in zero field, i.e., ✓ = ⇡/2. Different
curves correspond to different band indices n starting with n = 0 being the lowest
and n = 5 the highest curve in this figure. Due to the cosine approximation valid for
k? � Q, formula (9.6) is only valid for such momenta. Experimental comparison gives
already good agreement for k? being simply larger than Q, cf. chapter 10.

9.2. Extended Analysis with Numerical Input
As mentioned before, a finite k‹ opens gaps in the longitudinal spectrum. By
selecting a finite but fixed k‹ it is possible to calculate the longitudinal spectrum
for that given perpendicular momentum. Since the spectrum for an arbitrary
momentum is more elaborate, we employ the numerical method outlined in
chapter 6. Results are shown in figure 9.3. While figure 9.3(a) shows again
the longitudinal helimagnon spectrum at k‹ = 0, one can see that already a
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(a) k‹ = 0
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(b) k‹ = 0.1 Q
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(c) k‹ = 1 Q
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(d) k‹ = 2 Q

Figure 9.3: Helimagnon spectra for longitudinal momenta at various perpendicular momenta.
Already a small finite perpendicular momentum opens visible gaps in the lower part
of the spectrum, compare (a) and (b). Large perpendicular momenta lead to an
increasing number of flat bands in the spectrum, compare (c) and (d).

small finite perpendicular momentum opens visible gaps in the lower part of the
spectrum, figure 9.3(b). For a significantly larger k‹, several flat bands arise due
to Bragg scattering.

Another interesting aspect is the influence of dipolar interaction on the spectrum.
Figure 9.4 compares the spectra with and without dipolar interactions. The
strength has been assumed to be that of Cu2OSeO3 with ‰int

con = 1.76 to have a
strong e�ect. The observation with regard to the longitudinal spectrum depicted
in light blue is stretched along the ~Ê-axis increasing its sti�ness. A similar e�ect
is seen in the overall perpendicular spectrum as well. The most interesting e�ect
happens in the region around energies corresponding to ferromagnetic resonance
highlighted by the red circle and ellipse. Without dipolar interactions the two
±Q modes with k π 1/L for sample size L are degenerate. Let their energy be
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(b) ‰int
con = 1.76 (Cu2OSeO3)

Figure 9.4: Helimagnon spectra plotted for both longitudinal and perpendicular k-directions
for k � 1/L with sample size L. Sub-figures (a) and (b) compare present and non-
present dipolar interactions. Highlighted by the red circle is the energy range of
chiral magnetic resonances. Especially noteworthy is the non-unique and directionally
dependent limit k ! 0 in the presence of dipolar interactions.

~Ê0. The helimagnon spectra are calculated in the regime of k ∫ 1/L, which
means there is a momentum range in between which is not controlled by neither
of those theories. One can, however, take the limit of k æ 0 considering finite
momentum. This is shown in figure 9.4 around k = 0. When dipolar interactions
are not present, figure 9.4(a), one can see that this limit converges to a single
point which also coincides with ~Ê0. Switching on dipolar interactions leads to
mode splitting in the ferromagnetic resonance regime and to energies ~Ê±Q. The
magnon spectrum for finite k reacts in a singular way. The longitudinal spectrum
gets sti�er but most importantly the limit ~Ê(kÎ æ 0) for k‹ = 0 still converges
to a single value instead of two. The limit ~Ê(k‹ æ 0) for kÎ = 0, on the other
hand, changes from two bands sharing a degenerate point to two distinct values.
There is still a band crossing of those two modes but it is now located at a
larger value of k‹. Most interestingly, the limit limkæ0 ~Ê(k) is therefore highly
dependent on the direction of k. It also does not coincide with the resonances at
k = 0 anymore.

This e�ect has a profound consequence for experimental measurements, in
particular with coplanar waveguides. Figure 5.1(b) on page 58 already indicates
that the oscillating magnetic field has a momentum distribution with a dominant
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9. Finite Momentum Spin Waves

but not exclusive direction. This leads to a potential frequency range for expected
resonances instead of only two distinct modes at k = 0, which ultimately smears
out the measured absorption. This smearing out is indicated in figures 7.4 and 10.2
in the form of the extended dark gray bands around the resonances in the conical
and field-polarized phases. For most shapes and setups, the resonances at k = 0 lie
within that range. The exception is a rod-like sample, with the static field along
its rotation axis. Then also the Kittel mode lies above the possible resonance
values in the limit of k ∫ 1/L [109].

Still regarding figure 9.4 we can move the focus to the low energy regime, i.e.,
to the goldstone mode of the spectrum. Goldstone modes are soft modes due to
residual fluctuations on top of a symmetry broken ground state [68], for example
the ordered state in a ferromagnet. In section 4.4 we have seen that they have a
quadratic dispersion for the ferromagnet in the low energy limit. Belitz et al. [132]
found that the helimagnonic ones are highly anisotropic. The mode is softer in
the direction perpendicular to the pitch vector than in the longitudinal direction,

Ê Ã
Ò

cÎk2
Î + c‹k4

‹. (9.7)

This formula was derived for zero applied field and the behavior it describes is also
nicely visible in figure 9.4. There and maybe even better in figure 9.1, one can see
that the mode is linear in the longitudinal direction while in the perpendicular
direction the behavior is quadratic. Added dipole-dipole interactions does not
change that. Also note in that context that while dipolar interactions induce
a gap in the ferromagnetic spectrum [133], they do not a�ect the degree of
the mode dispersion in the helical/conical phases. The external magnetic field,
on the other hand, does have an e�ect. We have already seen in figure 9.1
that the mode becomes softer with an increasing magnetic field until reaching
a quadratic dispersion at the critical field Hc2. As the state at Hc2 is already
field-polarized, we expect a quadratic dispersion in all directions. Since the
dispersion in perpendicular direction is already quadratic one could expect, that it
will stay that way. Upon an increase in the magnetic field, the dispersion changes
to a linear behavior around k = 0 and then settles to be quadratic again [93].

Spectral Weights
In section 10.2 we present inelastic neutron scattering data obtained by collab-
orators in the group of Prof. Böni. At this point we want to investigate which
results can be expected. Which part of the helimagnon spectrum can actually
be observed depends on the spectral weights which are given by the previously
mentioned scattering cross section (6.25) on page 70 that is proportional to

[1 + nB(Ê)] Im
1

Tr [‰(k, Ê + i0)] ≠ Q̂‰(k, Ê + i0)Q̂
2

. (9.8)

The spectral weights of the susceptibility were given in (6.39) and the only thing
left to do is to apply the appropriate projection. The measurements take place
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Figure 9.5: Spectral weight distributions are shown for different inelastic neutron scattering
setups without dipolar interaction and at zero field. The weights are proportional to
the area of the circles. Panels (a)-(d) show the four extremal cases in the weight
distribution when considering either kÎ or k‹ to be finite while the other remains zero.
The insets illustrate the relationships between the direction of the nuclear Bragg peak
G ¥ Q, the helix pitch direction Q and momentum k. The most noticeable effect is
lack of otherwise detectable modes when k Î G.

very close to a nuclear Bragg peak G and since the wavelength of the studied
helices is much larger than the atomic lattice spacing, we can approximate Q ¥ G
and hence Q̂ ¥ G/|G| to simplify the calculation. This leaves us with several
geometric arrangements of G, Q and k. When considering either finite kÎ or k‹
while the other remains zero, it turns out that only four extremal cases in the
weight distribution exist with two corresponding to the longitudinal and two to
the perpendicular spectrum. They are shown in figure 9.5. The most prominent
e�ect is that some modes do not carry finite weights when k Î G, figures 9.5(a)
and 9.5(d), which do otherwise. This can be attributed to the type of scattering
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9. Finite Momentum Spin Waves

processes. The outer two and remaining branches of the longitudinal spectrum are
due to spin-flip scattering, while the middle one is not. When all momentum and
spin is and remains along G and Q, then there is no reason for a detection in the
plane perpendicular to it and the middle branch is not detected. During spin-flip
scattering the perpendicular spin components are part of the flipping process
which leads to the detectable outer branches. When Q ‹ G, then the non-spin-flip
process is also in the plane perpendicular to G and its corresponding branch can
be detected. The outer spin-flip branches, however, lose weight because the plane
perpendicular to Q does not equal the scattering plane any more, but merely
intersects it. Ultimately, all three branches are also individually detectable by
polarized neutron scattering.

For completion one should also mention the case where k ‹ Q ‹ G. This
case yield a perpendicular spectrum and the weight distribution is such that the
weights are as equally distributed as possible. For examples modes two and three
in figure 9.5(b), the lower of which vanishes in the case shown in figure 9.5(d),
obtain equal weights. So do modes five and six.

9.3. Resonances Close to Hc2

Instead of preparing the system at a fixed point in the field-temperature phase
diagram and subsequently measuring the spectrum by performing momentum
scans in di�erent directions, we can also fix the momentum and study the field-
dependence of the helimagnon dispersion. To do this, we select a finite k‹ and
kÎ = 0 so then be able to follow the positions of the obtained flat bands with
increasing field. Such a setup, with two di�erent cases of orientations between helix
pitch Q and nuclear Bragg peak G, has also been measured by our collaborators,
in particular Tobias Weber of the group of Prof. Böni in Munich [134]. His results
are presented in section 10.2. Because of these measurements, we choose to
present the theory graphs corresponding to two of their exact setups. What both
described setups have in common is the direction of the nuclear Bragg peak given
by [1 1 0] and that k‹ = 2.52 Hc2. What di�ers is the orientation of the magnetic
field and hence the pitch vector of the helix. In the first case Q Î [0 0 1] ‹ G and
in the second Q Î [1 1 0] Î G. The direction of k‹ changes from [1 1 0] to [1 1 0]
for cases one and two, respectively, but this is tantamount for the theory as both
directions are perpendicular to Q and G.

The spectra of those two cases are shown in figure 9.6. In the background and
colored light blue are spectra without including dipolar interactions. The dark
blue lines are calculations for the dipole-dipole strength of MnSi, which is the
material studied in [134]. It is interesting to see, that all modes bend towards
the point of resonance in the field polarized phase at Hc2. Ultimately only one
mode remains with weight while all others loose their spectral weight before
reaching Hc2. Although to be fair, this loss of weight happens rather very close
to the phase transition. It is also nice to see, that the property of relatively equal
weights between the modes, as was mentioned at the end of the previous section
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Figure 9.6: Field dependence of the helimagnon spectrum for different orientations of
magnetic field Hext

0

, nuclear Bragg peak G Î [1 1 0] and fixed but finite momentum
k = k‹. In cases (a) and (b) k‹ points along a h1 1 0i direction perpendicular to the
G, while it is parallel to G in panel (c). Its value is chosen to be fixed and given by
k? = 2.52. The magnetic field and hence pitch vector Q Î Hext

0

direction changes
as described in the corresponding sub-captions. Light blue spectral lines correspond
to the spectrum without dipolar interaction while the dark blue lines represent the
spectrum as it is for MnSi which was used in the corresponding experiments [134].
The dotted lines in (a) represent the there used values for the magnetic field and
correspond successively to panels (a)-(d) of figure 10.5 on page 114.

corresponding to the setup k ‹ Q ‹ G, i.e., figure 9.6(a) in the current context,
stays that way over almost the entire field range.

Of theoretical interest is also the configuration where k‹ is chosen corresponding
to figure 9.5(d), where some of the modes are not excited at all. Their development
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9. Finite Momentum Spin Waves

with increasing field is shown in figure 9.6(c). The true non-excitability is only
given at zero field. However, the increase in weight happens only slowly. Significant
value is only taken on above around Hext

0 ¥ 1/3 Hc2.

108



10
Comparison to Experiments

In chapter 7 we presented a field dependent formula for helimagnonic resonances at
zero momentum, i.e., at the �-point of momentum space. Measurements of these
excitations have been performed numerous times, for example by [124, 122, 123].
Our collaborators in the groups of Prof. Pfleiderer and Prof. Grunder in Munich
respectively Lausanne use coplanar waveguides for their experiments [37, 125], cf.
section 5.1. In this chapter we first briefly review these ferromagnetic resonance
experiments and then focus on neutron scattering experiments also performed by
collaborators from Munich in the group of Prof. Böni. Neutrons can be used to
probe the helimagnon spectrum for a broader range of energies and momenta.

10.1. Ferromagnetic Resonances

(a) (b)T=5 K T=27.5 K

A-phase

Figure 10.1: Grayscale plots of ab-
sorbed microwave intensity in
bulk MnSi. The scale of dark-
ness corresponds to the absorp-
tion strength. Figure from An-
dreas Bauer [52].

The experiments in [37], producing absorption
data similar to those shown in figure 10.1, focus
on ferromagnetic resonances which correspond
to excitations at k ¥ 0. The typical ac field
distribution generated by their CPW setup
is around kCPW = 9.4 ◊ 10≠6 Å≠1 which is
much smaller than intrinsic momentum scale
Q of the magnetic structure but still finite.
For this reason, it is su�cient to confine the
discussion to the small momentum limit of
the magnetic resonances, limkæ0 limLæŒ Ê(k)
where L is the length of the sample. However,
bear in mind that we have seen, at the end of
section 9.2, that the limit k æ 0 is not unique.
Figure 10.2 compares theory and experimental data. The resonances at k = 0
in the helical and conical phases, given by equations (7.2) and (8.46), are shown
as thin lines. As previously discussed, depending on the momentum distribution
of Hac(k, Ê), the non-uniqueness of the limit k æ 0 leads to a superposition of
resonances located within the dark gray bands provoking an increased line width.
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(a)

(b)

(c)

H C CS
Figure 10.2: Comparison between exper-

imental data (triangles) and theory
(lines and shaded bands) as found in
[37]. Magnetic resonances at the �-
point are shown for different materials
and shapes in dependence on the mag-
netic field. Tracing along the magnetic
field covers different phases indicated
by the colored background. Helical (H)
and conical (C) phases are the focus
in this section while the skyrmion lat-
tice phase (S) is discussed later. The
panels not only include resonances at
k = 0 (light gray lines) but also the-
oretical results for the zero momen-
tum limit of the resonance frequen-
cies, limk!0 limL!1 !(k), which de-
pends on the orientation of k. The
resulting bands of possible resonances
is shown as light gray shaded bands for
H, C and the field polarized phase, and
as red shaded bands in S. Due to the
differences in conical susceptibility and
shape, the broadness of these bands
can vary significantly.

This phenomenon is also present in the skyrmion lattice phase which is indicated
in red. These modes are discussed in section 11.1.

Corresponding spectra are in agreement with this analysis as shown in figure 10.1.
However, to obtain a defined double peak structure in the conical phase, as it
is expected at k = 0, the momentum distribution needs to decrease, which can
be achieved by selecting a larger CPW. This has been done in [125]. There, the
authors mostly used a CPW with a signal line width of 1000 µm, additionally to
a CPW with a 20 µm wide signal line, which is the same size as the one used by
[37]. Their obtained data was already shown in figure 7.4 on page 85 where one
is able to observe a well defined double peak structure in the conical phase.

10.2. Neutron Scattering
In order to verify the helimagnon theory presented in chapter 8, our collaborators,
in particular Maximilian Kugler from the group of Prof. Böni at the TU Munich,
conducted inelastic neutron scattering experiments (see section 5.2) on MnSi at
the cold neutron triple-axis spectrometer MIRA-2 in Garching [94]. They used
neutrons with incident energies between 3.18–5.04 meV and most experiments
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Figure 10.3: Inelastic neutron
scattering data of [94]. (a)-
(c) show the scattering planes
for three setups described in
the text. The magnetic field
indicated by blue arrows and
¢ symbols defines the di-
rection of Q forming satel-
lite peaks indicated by green
squares. In (b) and (c) they
are located above and below
the scattering plane. Red
circles mark positions where
constant Q scans were per-
formed. (d)-(f) show ex-
ample scans of setups 1 to
3. Full lines are fits of
multi-Gaussian profiles. (d)
Three helimagnon branches
are measured and set apart
by 40 counts for clarity. Se-
tups 2 and 3 clearly resolve
the first two and five bands,
respectively. The elastic
peak appears due to the Q-
independent incoherent scat-
tering.

were performed at around 20 K. Three di�erent setups, labeled 1, 2 and 3, were
chosen to measure various parts of the spectrum. They are shown in figure 10.3
(a)-(c). In all three cases, measurements were conducted around the nuclear
Bragg peak [1 1 0] for various fixed incident energies Ei and with the magnetic
field pointing in various crystal directions. The latter turned out to not have
noticeable influence on the spectrum. Earlier experiments conducted by Janoschek
et al. [120] used similar setups. Their measurements, however, were performed
in a helical multi-domain state at zero field. Although their data are very well
described by the theory as well, the average over the multiple domains does not
enable a distinction between individual modes. Therefore, the magnetic field
was increased to a value just above Hc1 in the experiments discussed here. This,
most importantly, prepares a single domain state while still being close to a truly
helical state with Mhelix(r) still almost perpendicular to the helix pitch vector.
The pitch direction Q then also conveniently aligns with the field direction.

The measurement points of setup 1 can be arranged to trace the longitudinal
spectrum along kÎ for k‹ = 0. Combining results from setups 2 and 3 traces out
the perpendicular spectrum. This is plotted in figure 10.4 (a) and (b), respectively.
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Figure 10.4: Comparison between helimagnon theory and experiment. Panel (a) shows
data and theory of the longitudinal spectrum while (b) combines data from setups
2 and 3 to trace the perpendicular spectrum. The helimagnon theory described in
chapter 8 is shown by dotted lines. The solid lines include an additional high energy
correction to that theory, which is necessary to achieve quantitative agreement at
higher energies. The black dashed lines in (a) account for the instrumental resolution
slightly shifting the lower and center branches upwards. Figure taken from [94] and
relabeled.

The expected theory is shown as dotted lines. There is evidently great agreement
at low energies. At higher energies the quantitative agreement is less pronounced.
These deviations can be attributed to corrections to the low energy theory, caused
by higher-order contributions in the gradient expansion, arising, for example,
from cubic anisotropies like (3.31) or (3.32). For an estimate, we consider here a
simpler and isotropic term of the form

”Fmag = fls

2
A
Q2

!
Ò2n̂

"2 , (10.1)

where A is an expectedly small number of order A ≥ O
!
(aQ)2"

with atomic
lattice spacing a. For MnSi we have Vf.u. = a3 ¥ 24 Å3 for the volume per formula
unit and a helix pitch of Q ¥ 0.035 Å≠1, cf. table 1.1. For momenta of k ¥ 3Q,
for example, such a correction amounts to (a 3Q)2 ≥ 10 % when comparing (10.1)
with the first term in Fex (8.4). This discrepancy is comparable to the size of
the observed deviation. The energy correction (10.1) was therefore taken into
account providing us with a single fit-parameter A for the entire investigated
energy range. The best fit was obtained for a value of Afit = ≠0.0073 ± 0.0004.
This fit is shown as solid lines in figure 10.4.

Another e�ect that influences the quantitative alignment between measured
data and theory is the instrument resolution. The bands in figure 10.4 (b) are the
flat bands in the tight binding limit and are therefore nearly independent of kÎ.
This makes them rather insensitive to the vertical, i.e., longitudinal, momentum
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resolution. The dispersive bands in figure 10.4 (a), on the other hand, have a
significant k‹ dependence. Considering all contributions of the resolution ellipsoid
by convolving the spectral weights, including points in the spectrum with finite
k‹, into the nominal k‹ = 0 spectrum, as was done by Maximilian Kugler and
Tobias Weber, leads to a slight upward shift. The result of this process is indicated
by the black dashed lines in figure 10.4 (a).

The continuation to much higher energies was measured by Tucker et al. [135].
They also performed inelastic neutron scattering on a helimagnet, this time
Cu2OSeO3, to measure spin excitations. Their focus was the atomic Brillouin
zone which is much larger than the magnetic one. In their setup, they were not
able to resolve the fine structure of the modes and their results resembles only a
single mode that originates at zero at the �-point. Considering the resolution and
the much larger energy scales this fits well to the observation that, in figure 9.5
and corresponding measurements shown in figure 10.4, not all branches obtain
weights and are excited in a broad fashion. Extrapolated and from afar, they give
the impression being one big mode as seen by [135] which hence fits well together.

Last but not least we show, in figure 10.5, measurements at a fixed momentum
for four di�erent magnetic field strengths. These measurement were obtained by
Tobias Weber [134] of the group of Prof. Böni at the TU Munich, and correspond
to the theoretically calculated spectrum shown in figure 9.6(a). The setup was
such that the three relevant directions Q, k and G form an orthogonal set. It
is also the setup with the best possibility to resolve all modes, because of the
most regular weight distribution. Additionally to the helimagnon model used in
section 9.3 it was again necessary to incorporate the higher order correction term
(10.1) to obtain this excellent quantitative agreement. Hereby we used the same
fitting value Afit = ≠0.0073 ± 0.0004 as for the previous helimagnon bands.
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Figure 10.5: Constant k-scans performed using the cold triple-axis spectrometer MIRA
at temperature T = 20 K, for different values of the magnetic field strength B. The
critical field is given by Bc2 =0.56 T which makes (a) 0.595Bc2, (b) 0.764Bc2, (c)
0.848Bc2 and (d) 1.102Bc2. These relative positions are marked in figure 9.6(a) by
successive dotted lines. The helix pitch Q is denoted by kh and the momentum k by q.
Arrows mark the positions of the energies of the individual helimagnon bands. The
blue lines show the convoluted contributions of individual helimagnon bands which
form the total convolution indicated by the green lines. The figure is taken from [134].
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11
Resonances at the �-Point

Coming from the one dimensional magnetic crystal structure present in the helical
phases, we now make our way to the two dimensional skyrmion lattice phase.
Here, we focus on uniform excitations at the �-point, i.e., the regime that can
be probed by ferromagnetic resonance experiments. The first section serves as a
reminder of the type of resonances and modes that are present at zero momentum
while the second section complements section 7.2 by briefly revisiting the ellipticity
of the mean magnetization.

11.1. Excitation Modes
Studies of Cu2OSeO3 using stripline waveguides provided first experimental
evidence of the excitations in the skyrmion phase [122, 136]. Then existing
theories were, however, not able to account for these modes in di�erent materials
or for di�erent sample shapes. Schwarze et al. [37] filled this gap with a universal
theory achieving good quantitative agreement, in particular on the three samples
and materials already listed in table 7.1.

These calculations are the ones presented in chapter 6. Since they are much
more elaborate for the skyrmion phase, analytical calculations in a closed form, like
for the helical phase, have not been achieved so far. In figures 7.4 and 10.2 results
of these numerical calculations were already shown alongside results for the conical
and field polarized phases and compared to experimental data. These graphs
show fixed temperature scans through a phase diagram as, or similar to, figure 1.2.
Following such a scan one may enter up to four di�erent magnetically ordered
phases, the helical, conical, skyrmion lattice and field polarized phases. Since
the numerics are based on a mean-field calculation, the corresponding theoretical
phase diagram does not correspond to the experimental one, cf. section 3.6. One
can, however, enforce the desired phase by fixing the Q-directions to be, up to
numerical errors, either parallel or perpendicular to the applied magnetic field to
achieve a conical or skyrmion lattice state, respectively. Since the here presented
formalism is based on equivalent parameters for all phases, just applied for di�erent
fields and initial configurations, one merely needs to manually selection which
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Figure 11.1: Potential resonance frequencies and weights of the skyrmion lattice for
perpendicular (light blue) and longitudinal (dark blue) excitations if the skyrmion
phase would be stable over a more extended area in the phase diagram. The plotted
values correspond to a spherical sample of Cu2OSeO3, chosen for its relatively strong
dipole-dipole interaction. Dashed lines in the background correspond to resonances in
the conical and field polarized phase as if they were present in the same parameter
range. They serve as a guide to the eye.

region of the phase diagram is of interest and apply the appropriate code. Of
course, not only resonances at k = 0 follow that rule, but so do those in the
finite momentum regime, which is mainly responsible for the peak broadening
indicated by the broad gray and red shaded bands in figures 7.4 and 10.2. The
phase pocked where the skyrmion lattice phase is stable occurs in the vicinity of
Hext

0 ¥ 0.5 Hc2. Figure 11.1 shows the potential resonance frequencies calculated
by our method for a much more extended phase pocket than is experimentally
realized in bulk chiral magnets. The assumed sample shape is a sphere and the
dipolar interaction strength has been chosen to be that of Cu2OSeO3. While we
have seen in the helical and conical phases that geometry, excitation direction
and dipolar interactions play a pronounced role for the peak positions and mode
degeneracies, the skyrmion lattice phase behaves more stable to changes in these
parameters. The relative peak positions between the three skyrmion modes and
the Kittel mode are almost not influenced by dipole-dipole interaction. Depending
on the shape, the Kittel mode takes on values in a broad range and the energies
of the three skyrmion modes change accordingly. The e�ect of a change in shape
on the spectral weight distribution is discussed in section 11.2, but it can already
be said that also regarding the weights, the modes in the skyrmion phase are
much less susceptible to the change than the ±Q modes in the conical phase.

In the conical phase, the excitation perpendicular to the applied field at k = 0
resulted in the excitation of the +Q and ≠Q modes, which took only distinct values
due to dipole-dipole interaction, while longitudinal excitation yielded no response.
In the skyrmion lattice phase, this is di�erent. First, perpendicular excitation
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Figure 11.2: Visualization of resonance modes in the skyrmion lattice phase in real space
at different times t during a period T . The external magnetic field points out of the
image plane. The in-plane components of the magnetization are shown by amber
colored arrows while the out-of-plane component is represented by a contour plot where
green corresponds to the magnetization pointing anti-parallel to the external field,
i.e., into the plane, and red indicates magnetization pointing out of plane. The three
different modes are sorted in columns as indicated with a downward time evolution.

also excites two distinct modes, but they are already non-degenerate even without
dipolar interaction. The latter only leads to a quantitative change but does not
have a qualitative influence. Contrary to the conical phase, longitudinal excitation
also excites a mode. The nature of the modes present in the skyrmion lattice
phase, and excitable via FMR experiments, have already been simulated and
identified by Mochizuki [137] in qualitative terms. They consist of a clockwise and
a counter-clockwise precession of the skyrmion cores for perpendicular excitations,
and a breathing mode in the longitudinal case. In the latter, the size of the
skyrmion core in- and decreases, if seen as being embedded in a ferromagnetic
background, without changing the distance between cores. Their motion is
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11. Resonances at the �-Point

illustrated in figure 11.2. Additional uniform modes that do not carry a finite
weight are presented and discussed in section 12.1.

Just like in the helical case, the direction of gyration does not depend on the
chirality D, but on the sign of the gyromagnetic “ which is defined negative for
electrons. In table 11.1 we list those relations in the skyrmion case compared
to the helical one. We remember that the combination of the signs of “ and D
determines whether the +Q or ≠Q has the higher frequency. In the skyrmion case,
it is just the sign of “ that determines whether the clockwise or counter-clockwise
mode has a higher frequency.

“ D Skyrmion Helix FM
high low high low

+ + +C ≠C ≠Q +Q
+ ≠ ≠C +C +Q ≠Q
≠ + ≠C +C +Q ≠Q
≠ ≠ +C ≠C ≠Q +Q

Table 11.1: Summarized relationship between chirality, the gyromagnetic ratio � and the
chiral magnetic resonances in the helical/conical phase, i.e., the ±Q modes, and the
gyration modes of the skyrmion phase. The table lists the signs of � and D. and

show a top view of the collective rotations with the magnetic field pointing towards

the viewer: b= . The handedness of the skyrmion chirality is illustrated by
(right handed) and (left handed). +C and �C respectively indicate whether the
rotation direction of that modes coincides with the chirality or not.

11.2. Ellipticity and Weight Distribution
In section 7.2 we studied the ellipticity of the mean magnetization ”M0 in
the conical phase and discovered a sensitive relationship towards the shape of
the sample. We now study the same in the skyrmion lattice phase. Hereby,
we disregard the breathing mode since the magnetic structure is rotationally
symmetric and the mean magnetization oscillates linearly along Hext

0 . The mean
magnetization of the other two modes oscillates counter-clockwise and clockwise
within the plane perpendicular to the applied magnetic field. Analyzing the
ellipticity and weight distributions of their mean magnetization leads to results
shown in figure 11.3. For these plots we used the same setup as for figure 7.5
with the demagnetization factor along Hext

0 fixed to Nz = 0.53 and varying Nx

and Ny between zero and 0.47 while fulfilling
q

i Ni = 1. Furthermore, only field
values around 0.5 Hc2 are of interest to us, because this is the region in which the
skyrmion lattice phase is stable in bulk crystals.

Contrary to the conical phase, the ellipticity is not a step-function and we also
do not observe linear polarization in the skyrmion phase since the ellipticity never
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11.2. Ellipticity and Weight Distribution

Figure 11.3: Shape and field dependence of the ellipticity " of the mean magnetization of
the clockwise (CW) and counter-clockwise (CCW) gyration modes in the skyrmion
lattice is shown on the left. The right panel shows the shape and field dependence of
their spectral weights. As in figure 7.5, the demagnetization factor along Hext

0

is fixed
to Nz = 0.53 while Nx and Ny are varied between zero and 0.47 fulfilling

P
i Ni = 1.

Here, we concentrate on field values around 0.5Hc2 because the skyrmion lattice is
only stable in that regime. The figure is taken from [125].

becomes unity. Most interestingly, the ellipticity of the counter-clockwise mode is
independent with respect to a change in magnetic field strength. To be precise, its
ellipticity already equals the ellipticity in the field-polarized phase at Hext

0 = Hc2
given by (7.15). This behavior corresponds to that of a paramagnet in a finite field.
Coming from high fields and crossing the threshold above which the magnetization
is saturated, there is a linear relationship between external field and magnetization.
Since the counter-clockwise motion matches the handedness of the rotation of the
mean magnetization in the field-polarized phase, one could say that the system
behaves like an ordinary paramagnet just without a disordered redistribution of
spins pointing in all directions, but with an ordered one by forming skyrmions in
a ferromagnetic background. With decreasing field strength, the skyrmion core
radius becomes larger. Because many of the magnetic moments within a skyrmion
point opposite to the magnetic field, their contributions add and the average
static magnetization consequently decreases like the magnetic field strength does.
The ellipticity, however, is still dominated by the ferromagnetic background.

Since there is a mismatch between the handedness of the Kittel mode in the
field-polarized phase and the clockwise mode, this argument does not apply for
this mode. This mismatch is ultimately the reason why the clockwise mode always
has a smaller spectral weight than the counter-clockwise mode. It is similar to
the mismatch between the handedness between the Kittel and ≠Q modes. There,
as well as in the skyrmion case, the mode with the mismatched handedness looses
weight with increasing magnetic field while the other gains weight. The latter
can be easily understood because the magnetic structure becomes more and more
ferromagnetic with increasing field.
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12
Spectrum

In the previous chapter we focused on the regime where k π 1/L for sample size L.
Here, we focus on the opposite regime of the magnon spectrum in the skyrmion
lattice phase. To obtain the spectrum, we use again the formalism and method
described in chapter 6. The numerical refinements described in section 6.2 gain
particular importance in this context.

Hext
0

kk

k?

Figure 12.1: Directions of kÎ and
k‹ with respect to the reciprocal
skyrmion lattice.

In the conical phase, we identified the direc-
tions kÎ Î Q and k‹ ‹ Q as the two concep-
tionally di�erent momentum directions. In the
skyrmion phase, we can distinguish between
in-plane and out-of-plane momenta. The for-
mer is discussed in the first two sections and
the out-of-plane case in section 12.3. In that
context, we also define kÎ Î Q to be in plane
along one of the Q vectors and k‹ ‹ Q per-
pendicular to all Q vectors, i.e., perpendicular
to the skyrmion lattice plane. These direction
are illustrated in figure 12.1.

12.1. Spectrum within the 1. Brillion Zone
In this section we present magnon spectra in the first Brillouin zone. Figure 12.2
shows three spectra to demonstrate the influence of dipolar interaction on the
spectrum. The figures show in each case the first 16 bands in a stable configuration
for which a momentum space cuto� of 7 rings, cf. figure 6.1, is su�cient. The
aspect of stability and reliability of the obtained modes is not trivial and will be
addressed further in section 12.2. Also, here and in the remaining sections, the
magnetic field strength has been chosen to be Hext

0 = 0.5 Hc2, because this value
brings us within the skyrmion lattice phase pocket of typical bulk chiral magnets.

The energy bands shown in figure 12.2 correspond to momenta that trace a
path through the first Brillouin zone connecting high symmetry points. The
first part, i.e., ≠æ�M, of said path follows the direction of one of the six Q-vectors
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Figure 12.2: Shown are the lowest 16 bands of three magnon spectra in the skyrmion lattice
phase within the first Brillouin zone. The x-axis traces a path through the 1. BZ as
shown in the small inset. One of the Q-vectors lies along the

�!
�M direction. Calculations

were performed with a reciprocal lattice size containing 7 rings, cf. figure 6.1, and
for different dipolar interaction strengths. Panel (a) shows the spectrum without
dipole-dipole interaction. It is, for comparison, also shown in light blue colors in the
backgrounds of panels (b) and (c) which, respectively, show the magnon spectrum with
small (MnSi, �int

con = 0.34) and large dipolar interaction (Cu2OSeO3, �int
con = 1.76).

connecting neighboring �-points. The path then turns perpendicular, extends
until it reaches the corner K of the Brillouin zone and returns to the �-point.
Figure 12.2(a) shows the magnon spectrum without dipolar interaction and
the modes are labeled by small encircled numbers on the right hand side. A
three-dimensional illustration of the first 12 bands of this spectrum provides
figure 12.3. When comparing this spectrum to previous calculations at the
�-point we notice, that modes 3, 5 and 6 connect with the counter-clockwise,
breathing and clockwise modes, respectively. This connection becomes even
clearer when spectral weights are considered, as we do in section 12.4, and those
three modes are the only ones that remain with finite spectral weight in the
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12.1. Spectrum within the 1. Brillion Zone

limit k æ 0. Also, upon inspection of the Goldstone mode marked by 1 in
figure 12.2(a), its quadratic dispersion in the long wavelength limit is evident.
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Figure 12.3: 3D representation of the first
twelve modes in the magnon spectrum in
the skyrmion phase.

There, a Berry phase contribution to
the Lagrangian dominates over the ki-
netic term and renders an otherwise
linear dispersion, for waves propagat-
ing within the skyrmion lattice plane,
quadratic [138].

Figures 12.2(b) and 12.2(c) then
move on to elucidate the e�ect of
dipole-dipole interaction. Continuing
with regard to the Goldstone mode,
one can see that its long wavelength be-
havior is practically not influenced and
still quadratic, see also [93]. Further-
more, figure 12.2(b) corresponds to the
dipolar interaction strength in MnSi
with ‰int

con = 0.34, which is compara-
bly weak, but from there it is already
evident that higher energy modes are
generally influenced more strongly by
dipole-dipole interaction than low en-
ergy modes. It becomes even clearer
in panel (c), that its influence results
in a general decrease in energy of each
mode. Besides that, there are more
things to observe. First, while most
bands show a decrease in energy, in
particular modes 3, 5 and 6, corre-
sponding to the gyration and breath-
ing modes, remain at a relatively con-
stant frequency and mostly only get
distorted in shape. Another peculiarity are three (almost) flat modes 4, 7 and
11. Besides being flat, they are also the only ones that cross into other modes.
At these crossing points hybridization is present. They also move at di�erent
speeds, compared to the other modes, when the strength of the dipolar interaction
changes. This phenomenon is not completely understood yet, but the occurrence
of flat bands in a spectrum reminds us of the flat Helimagnon bands and motivates
the explanation of the magnon spectrum in the skyrmion phase by a superposition
of helimagnon spectra. Further supporting arguments of an analogy are given on
page 137 as part of section 12.4.

Seeing this large number of bands, one may ask the question what those
modes actually look like and how they behave. Since a finite momentum vector
distorts the mode behavior over space, we take again a look at the corresponding
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uniform modes. In section 11.1 we already saw three of those modes. There, we
considered those modes excitable via FMR experiments and incorporated the
corresponding weights into their motion and the distortion of their shape. Doing
that, only three modes remained, the counter-clockwise (mode 3), breathing
(mode 5) and clockwise mode (mode 6). In a more general approach we can
consider the eigenvectors of all modes and plot them. Figure 12.4 shows the
real space magnetization of the first 16 modes, all at a fixed time, analogously
to figure 11.2. The color red corresponds to magnetization pointing parallel
and green anti-parallel to the applied magnetic field. Said field points out of
the shown planes. The first thing one notices is a number of di�erent shapes
beyond the round ones seen in the three previously studied modes. There are rod,
triangle, cross and pentagon shapes, among others. Their motion can be even more
intricate. Let us take the counter-clockwise and clockwise modes as examples,
i.e., modes 3 and 6. A more detailed observation lets us notice that, besides the
obviously di�erent sense of gyration, cf. figure 11.2, there is a second di�erence.
In the still picture of mode 3 one can see that the entire skyrmion is “pushed”
towards one direction out of its equilibrium state. This pushed-away state then
starts to rotate counter-clockwise. Looking more closely at mode 6 on the other
hand, one notices, that while the center is “pushed” towards one direction, the
outer part of the skyrmion is “pushed” towards the opposite direction creating
something like an additional node in its structure. This new distorted state
then rotates clockwise. This di�erence can be seen more clearly when plotting
the change ”M in magnetization away from equilibrium instead of the full real
space magnetization M = Mmf + ”M . This is illustrated in figure 12.5 which
shows ”M for the first 16 modes at the same time frames as those snapshots in
figure 12.4. Note, that the first mode is the Goldstone mode and hence has an
excitation frequency zero leading to no distortion. In figure 12.5, one can clearly
see the di�erence in node structure between modes three and six manifested in a
di�erent number of rings which we will count and label by the letter m. Such a
labeling is also common in the classification of linearly polarized optical waveguide
modes (LP-modes) of optical fibers. They have radially symmetric index profiles
in the approximation of weak guidance, which resemble those patterns shown in
figure 12.5 very much, cf. section about multimode fibers in [139]. That means,
that m = 1 for the counter-clockwise and m = 2 for the clockwise mode. The
color-code is such that red stands again for magnetization pointing parallel to
the external magnetic field. The anti-parallel direction on the other hand is
encoded by blue. The change in color has been made to emphasize the di�erence
between M and ”M . Although resemblance to the aforementioned LP-modes or
to vibrations of a circular membrane is remarkable, the skyrmion modes (SM)
show clear di�erences. The first is, that the change in magnetization at the center
of the Brillouin zone is zero, i.e., meaning no intensity at the center. This is the
case for many LP-modes, too, but in particular for those that can be compared
to the skyrmion breathing modes, i.e., modes 5 and 13, it is not. Complexity
does not stop there. The rotation direction of the resulting structure does not
necessarily need to be uniform. Let us take mode 9 for example. There, we also
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12.1. Spectrum within the 1. Brillion Zone

have m = 2 but this time the inner and outer ring rotate in opposite directions!
And even without this opposite sense of rotation, mode 9 falls already into a
di�erent category because of additional splicings within a ring, that lead to the
triangular shape. Looking at the real space picture using the full magnetization
in figure 12.4 of modes three, two and four, in that order, the mode shape changes
from round, to rod, to triangle. This di�erence is labeled by the letter l = 1, 2, 3
for modes three, two and four, respectively. This labeling is more evident when
looking at the density plots of the change of the magnetization ”M , figure 12.5,
where l counts the splicings across the Brillouin zone.

Additionally, we can also introduce a labeling for observed rotation directions
or breathing properties. The letter b labels a breathing mode tantamount to a
standing wave property. More delicate distinctions can be made for the rotation
directions. The most obvious is a continuous process where a fixed intensity
moves around a circle. For these types of rotations we will use c for a clockwise
and c̄ for a counter-clockwise rotation. But a rotation can also take a more
discrete form, where intensity is lost at a point A and gained at a neighboring
point B, but with a finite distance between A and B. These types of rotations
will be indicated by cú and c̄ú for such clockwise and counter-clockwise rotations,
respectively. Skyrmion mode 9 can therefore be labeled via SMrot. dirs

l,m = SMcc̄
32,

where the rotation directions are ordered from the center to the rim.
There are, however, slight exceptions or anomalies to these descriptive classifi-

cations. Those cases are:

modes 8, 10, 15 linner ring = 2, louter ring = 3. We labeled these modes with
l = 23 to indicate this anomaly. However, although it is evident, that there
are 6 spots on the outer part, i.e., corresponding to l = 3, and only 4 in
the inner part, the intensity or color accumulates only in 4 joint areas on
the outer ring. So in terms of global intensity, the characteristics of l = 2
dominates.

mode 11 On first sight, it seems like a clockwise rotating mode, because the red
and blue structure stays as it is and continuously rotates clockwise, which
would justify an index c. However, the intensities change in a way, that
they shift weight from one adjacent zone to the next in a counter clockwise
direction, and that faster than the node structure rotates. This, in turn,
would mean a rotation corresponding to the label c̄ú.

mode 12 There is again not a normal “color to l”-correspondence as l = 3 but
there are only 2 pits (blue) and 2 hills (red) instead of 3 each. At the
same time, same colors neighbor each other which resembles, on average, a
splitting according to l = 1.

At this point we also want to mention and list in table 12.1 the change of
the homogeneous magnetization ”M0 of each mode obtained from normalized
eigenvectors ”M . Expected non-zero values for the known and measured counter-
clockwise, clockwise and breathing modes are recovered nicely. Furthermore, there
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13 14 15 16

Figure 12.4: Snapshots at a fixed time t of the real space magnetization M = Mmf +�M of
the first 16 uniform modes. The applied magnetic field points out of the shown planes.
Red (green) color indicates magnetization pointing parallel (anti-parallel) to that field.
The arrows illustrate the in-plane component. Dashed lines are a guide to the eye
and their crossing point marks the center of the Wiegner Seitz cell. The latter is
indicated by the dotted line. Modes 3, 5 and 6 are the counter-clockwise, breathing
and clockwise modes accessible via FMR. Note, that the other modes exhibit a variety
of different shapes. The motion of the remaining modes can be quite complex and
can be explained via their node structure shown in figure 12.5, see text.
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Figure 12.5: Snapshots at a fixed time t of the change in magnetization ”M of the first
16 uniform modes to illustrate the node structure of the modes. The applied magnetic
field points out of the shown planes. Red (blue) color indicates ”M pointing parallel
(anti-parallel) to that field. Dashed lines are a guide to the eye and their crossing point
marks the center of the Wiegner Seitz cell. The latter is indicated by the dotted line.
Modes 3, 5 and 6 are the counter-clockwise, breathing and clockwise modes accessible
via FMR. Each skyrmion mode (SM) is labeled by the expression in the lower left
corner of each panel. See the main text for a description.
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Mode max

0<tT

���M0(t)
�� Motion

1 0
2 0
3 4.40 CCW
4 0
5 5.55 breathing
6 2.11 CW
7 0
8 0
9 0
10 0
11 0.07 CCW
12 0.18 CCW
13 0.42 breathing
14 0.14 CW
15 0
16 0

Table 12.1: List of the absolute values and motions of the change of the homogeneous or
mean magnetization ”M

0

(t) over the period T of the first 16 modes. Motion types
are counter-clockwise (CCW), clockwise (CW) and breathing types.

are further homogeneous motions of that type evident. However, the maximal
absolute values of ”M0 of those modes are less than a tenth than that of the
already barely measurable clockwise mode, which makes them extremely di�cult
to observe in experiments. The restriction to the maximal value is only necessary
for the breathing modes as all others are constant. The likeliest of the higher modes
to see in experiment is mode 13, which is a second breathing mode. Interesting to
see is also that the sequence of the motion of the higher modes is the same as that
of the lower modes, i.e., CCW æ breathing æ CW. It would be interesting to see
whether this is a general trend up to higher energies, since the pattern “relatively
flat band enclosed by convex bands below and concave band above” repeats itself.

The Goldstone mode, mode 1, of course has zero frequency and is hence not
excited. It is listed here to complete the picture and shown as a black and white
equilibrium configuration in figures 12.4 and 12.5.

12.2. Spectrum beyond the 1. Brillion Zone
In this section we discuss two major aspects. The first is the e�ect of the finite
size of the reciprocal skyrmion lattice on the spectrum while simply following the
recipe leading to equation (6.9). The second step concerns mode stability and
mode selection, which is not trivial as was indicated in the previous section.
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12.2. Spectrum beyond the 1. Brillion Zone

It is our goal to obtain a reliable spectrum for momenta and energies as large as
possible. This is particularly the case with the foresight to compare experimental
data, of inelastic neutron scattering experiments, similar to those discussed
in section 10.2, to the theoretically obtained spectrum. Such experiments are
generally performed in a momentum range of k ≥ 1–4 Q and beyond. Figure 12.6
illustrates how the spectrum evolves in terms of the momentum space system
size. While it is already enough to consider a system size containing three
to four rings when interested in the modes at the �-point relevant for FMR
experiments, since their values only change marginally above 3 rings, this is not
enough when examining higher energies. Here, we are particularly interested in
obtaining reliable values for the spectrum in the red shaded area highlighted in
figure 12.6(c). The reason is that while the spectrum itself may obey Bloch’s
theorem, the distribution with weights attributed to neutron scattering does not,
because of the momentum transfer that is potentially larger than the extent of the
first Brillouin zone. In principle, one could increase the system size until reaching
a stable spectrum in the energy and momentum range of interest. As numerical
e�ort grows at least quadratically with system size, we rather focus on obtaining
a reliable spectrum for the first Brillouin zone first, reaching up to the overall
desired energies. We do this with the intention to use these results to construct
the extended zone scheme and deal with the weights later.

We consider the spectrum as stable when it does not change noticeably upon
an increase in system size. When taking a look at the evolution with system
size illustrated in figure 12.6, we notice a plethora of flat bands that cross the
entire spectrum that seem to be far from any convergence. It is hence crucial to
understand whether these modes are relevant or maybe numerical artifacts. They
actually change their relative positions and numbers not only when varying the
system size, but also when varying the parameter t introduced in the rescaled free
energy functional (3.37). It is a measure of the distance to the phase transition
and one may think that increasing that distance would give better results. This
is generally true, but does not improve the situation regarding these flat bands.

It turns out, that they are due to finite size e�ects and numerical inaccuracies.
Their origin is elucidated in figure 12.7. In this figure we show 4 di�erent plots
on top of each other. The gray one in the background is the one obtained by a
straightforward application of equation (6.9) for a system containing 7 rings as was
also the case in figure 12.6(c). At the end of section 6.3 we already mentioned that
the

!
Mmf◊

"
matrix plays a non-trivial role in the construction of the spectrum

and that its eigenvalues in momentum space do not form clean plateaus. Instead,
they could be classified into three regions as illustrated in figure 6.3 on page 75,
namely those with values of approximately ±

--Mmf--, approximately zero, and
those in between. We can then project not only the

!
Mmf◊

"
but also ‰≠1

0 onto
the corresponding subspaces and obtain the modes that, for example, should be
zero-modes per construction, and see where they actually end up. In figure 12.7
these zero modes are indicated by red colors as are the corresponding eigenvalues
in figure 6.3(c). Dark blue in both figures corresponds to the subspace with
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Figure 12.6: Evolution of the resulting magnon spectrum in the skyrmion lattice phase
with increasing the momentum space system size from left to right. Notice in particular
arbitrarily crossing flat bands. The red shaded area in panel (c) roughly indicates the
region accessible with inelastic neutron scattering experiments.

eigenvalues of ±
--Mmf--. The subspace with intermediate eigenvalues is indicated

by black lines in figure 12.7 instead of light blue as in figure 6.3(c), for better
distinguishability. Figure 12.7 lets us draw the following conclusions. First of
all, alleged zero-modes can take on quite sizable finite values which explains the
lower lying flat bands in the initial spectrum. Second, the intermediate subspace
is responsible for the flat bands that cross through the entire spectrum without
diverging at the sides. Furthermore, they stem from the outer Fourier components
and are hence somewhat of a boundary or finite size e�ect. It can be concluded
from the parabolas that appear when this subspace is treated on its own without
the context of the rest of the spectrum. This has been double checked by applying
the same concept in the conical phase. There, numerics are much less volatile,
so that this identification is even more evident. Last but not least, the subspace
corresponding to eigenvalues of ±

--Mmf-- is the relevant one needed to construct a
clean magnon spectrum in the skyrmion phase.

To conclude a converged and clean spectrum in the first Brillouin zone, we
must hence check that there is not only marginal to no discrepancy between two
spectra constructed using consecutive system sizes, but also between the initial
spectrum and the spectrum restricted to the ±

--Mmf-- subspace. The light blue
shaded area in figure 12.7 indicates the area for pretty much exact agreement
of those terms for a system containing 7 rings. In practice, even higher energies
may be considered, depending on the area of application, since the discrepancies
are still very small for most modes. These di�erences do not play a decisive
role when interested in the comparison to inelastic neutron scattering data, since
the resolution ellipsoid, over which the weights of the spectrum are averaged,
is often even larger than the inter mode spacing itself. Numerical inaccuracies,
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between the general scheme of calculation (gray) and when one restricts the calculation
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matrix. Details are described in the main text.
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however, play a non negligible role when calculating ideally analytic quantities
like Chern numbers corresponding to individual bands. For those calculations see
section 13.1. The spectrum in the extended zone scheme representation can now
be obtained by simply folding and copying the modes of the first Brillouin zone.

12.3. k perpendicular to the 1. Brillion Zone
After discussing the spectrum for momenta within the skyrmion lattice plane, we
now focus on momenta k‹ perpendicular to it, as illustrated in figure 12.1. In
the helical and conical phases, the spectrum with respect to k‹ was independent
on the direction of k‹ as long as it was perpendicular to Q and Hext

0 . This
changes in the skyrmion case. Besides being perpendicular to the lattice, k‹ can
now be parallel or anti-parallel to the external field Hext

0 . The spectrum Ê(k‹)
at Hext

0 = 0.5 Hc2 and without considering dipolar interaction, i.e., ‰int
con = 0, is

shown in figure 12.8 (a). It is evident, that this spectrum is not symmetric with
respect to k‹ = 0. This is due to the skyrmion chirality. When it is reversed,
i.e., D æ ≠D, then the spectrum is mirrored at the y-axis. The corresponding
weights calculated in section 12.4 are mirrored accordingly, too. Additionally, the
Goldstone mode is observed to also have a quadratic behavior in perpendicular
direction. The part in positive k‹ direction, however, is sti�er and has small
tendencies to be of cubic nature.

Figure 12.8 (b) shows a magnified part of the spectrum for lower energies that
are of the relevant magnitude of the FMR modes, i.e., the gyration and breathing
modes. The latter occur at k = 0 and are indicated by red and yellow dots,
respectively. Remember, that those modes occur in the regime where k π 1/L for
sample size L, where as the modes of the spectrum indicated in blue correspond
to the k ∫ 1/L limit. Without dipolar interactions, these three FMR modes form
the unique limit of individual (k ∫ 1/L)-modes.

Including dipolar interaction, as was done in figure 12.8 (c), the uniqueness
of the limit k æ 0 is not given anymore for every mode, in particular not for
the three FMR modes. Like in the helical/conical phase, we arrive at a situation
where Ê(kÎ æ 0) ”= Ê(k‹ æ 0). This is illustrated in figure 12.8 (c) by the
added, appropriately colored, vertical lines connecting those two limits. They
form hence a broad band in which the expected FMR modes may lie, depending
on shape. The values without dipolar interactions are again indicated by the red
and yellow dots. To be precise, this non-analytic limit is actually only observed
for the three FMR-modes as far as we can tell from the investigation of the first
50 bands. An assumption, that this phenomenon is only valid for bands with
a certain Chern number seems plausible when only considering the lowest six
bands, but gets disproved for higher bands, see chapter 13. Furthermore, this
singular behavior also appears in the topologically trivial helical phase, and there
also only for the corresponding FMR-modes, which makes it unlikely to have a
topological origin. It is hence most likely a consequence of the chirality due to
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Figure 12.8: (a) Magnon spectrum for k perpendicular to the skyrmion lattice plane
without present dipolar interaction. The positive (negative) direction corresponds to
the direction parallel (anti-parallel) to the applied magnetic field. (b) shows a magnified
portion of that spectrum with energies of the order of magnitude of FMR resonances.
The gyration (breathing) modes are indicated by the additional red (yellow) dots. (c)
illustrates the effect of dipolar interactions on that part of the spectrum. As in the
helical case, the limit k ! 0 is not unique for all modes, in particular the three modes
accessible via FMR. Their discrepancies and resulting bands are illustrated by the
vertical correspondingly colored lines. Note that !gyr.

k (k ! 0) > !gyr.
? (k ! 0) but

!breathing
k (k ! 0) < !breathing

? (k ! 0). The colored dots still mark their mode position
for �int

con = 0.
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the Dzyaloshinskii-Moriya interaction, but a definite answer cannot be given at
the moment and leaves room for exploration.

12.4. Weights for Neutron Scattering
For inelastic neutron scattering experiments in the skyrmion lattice phase, similar
conditions apply as for experiments in the helical phases. Merely the magnetic
field strength is now relatively fixed to about 0.5 Hc2 to obtain a skyrmion lattice
state in the bulk chiral magnets that we study here. Also as before, the weights
given by (6.41) do not follow Bloch’s law, which brings us again to a point where
we have to weigh e�ort versus benefit. We would like to avoid using many Fourier
modes in the mean field minimization. We have seen in section 12.2 that one
needs at least a minimal amount of Fourier modes to achieve accuracy up to
the desired energies already within the first Brillouin zone. To natively achieve
the same amount of accuracy in other Brillouin zones would require many more
Fourier modes as was illustrated in figure 12.6. To avoid this and also use said
minimum number of rings for the minimization, we employ the following trick.

If k is so large that one ends up beyond the 1. BZ, then one would like to have
the information of the 1. BZ at that point in the concerning matrix including all
the possible coupling to other Fourier components, i.e., the o�-diagonal terms. To
this end, we define the initial data and matrix structure as the initial system which
we embed in an extended system consisting out of zeros. Figure 12.9 visualizes
this arrangement, and the process explained in the following, in a schematic way.
Brillouin zones are indicated by drawn honeycombs and each honeycomb leads to
an additional block dimension in the momentum matrix. Those considered by
the initial system are marked by the light blue dots and the remaining empty
ones, disregarding the dark blue rings at the moment, get added and filled up
with zeros to form the extended system. The center Brillouin zone is the 1. BZ. If
one now wishes to calculate the spectrum and weights in a Brillouin zone that is
not the first one, for example in the one indicated by the tip of the red arrow in
figure 12.9, then we rearrange the matrix in a way, that the 1. BZ information is
centered around that Brillouin zone of interest. The matrix then consists of entries
at positions indicated by the dark blue rings in figure 12.9 and zeros otherwise.
This provides us with the most accurate spectrum information at this point, while
the weights are calculated via (6.41) with respect to the center Brillouin zone of
the extended system and the larger-than-BZ-dimension large k vector. Moving
the matrix elements without the embedding in an extended system leads to loss
of information since some of the initial matrix elements are moved beyond the
scope of that smaller matrix.

Having created this new matrix lets us employ (6.41) again to calculate the
spectrum with the expected relative weight distribution for inelastic neutron
scattering. Figure 12.10 shows these results for di�erent relative orientations
between nuclear Bragg peak G, external magnetic field Hext

0 and probing momen-
tum transfer k. Whenever k is in plane with the skyrmion lattice, then k Î Q.
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12.4. Weights for Neutron Scattering

Figure 12.9: Schematic view
of the momentum space
matrix structure in the ex-

tended system whose ele-
ments are drawn as hexag-
onal shapes. Fourier modes
of the initial system are
centered around the 1. BZ.
They are indicated by the
light blue dots. When inter-
ested in the spectrum with
neutron scattering weights
it is necessary to move (red
arrow) those entries to the
BZ in focus. This new ar-
rangement is indicated by
the dark blue rings. For
more information see text.

Panels (a) and (b) show the in-plane spectrum perpendicular to the external
field. These two can be seen analogously to panels (a) and (c) of figure 9.5,
describing the helical phase, in terms of the relation between k and G. In the
first, k Î G and the middle helimagnon branch is not resolved and in the second
the middle branch is measured and actually carries most of the weight. A similar
trend is also observed in the skyrmion spectrum. There, one does not have three
individual branches or modes that get excited but a large and dense amount of
them. However, the weight distribution follows a similar pattern. Weights in
figure 12.10 (a) accumulate most dominantly on two curves similar to those two
of the longitudinal helimagnon spectrum while, on the other hand, weights in
figure 12.10 (b) rather form more dominantly in the space in between, just like
they do in figure 9.5 (c). The weights in the spectrum for k perpendicular to the
Q plane, panels (c) and (d) of figure 12.10, also follow the trend evident in the
corresponding helimagnon spectra.

The explanation for this is, at this point, a feature tracking argument. Starting
with the magnon spectrum in the skyrmion phase along a Q vector, figures 12.7
and 12.10 (a) and (b), one notices flat bands that remind us of the flat bands
observed in the longitudinal helimagnon spectrum for finite k‹. Indeed, measuring
along a Q vector in the skyrmion plane leaves us with a multitude of parallel
Q vectors at di�erent distances. It seems natural, that the skyrmion spectrum
comprises hence of the superposition of a multitude of helimagnon spectra. One
must, however, not only consider contributions of parallel helices but also those
angled by 120° which then also add partial contributions of the perpendicular
spectrum to the picture. Furthermore, all helices are distorted due to the finite
magnetic field perpendicular to the helix pitches, a setup not considered in this
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12.4. Weights for Neutron Scattering

Figure 12.10: (Caption to figure on previous page) Magnon spectra in the skyrmion lattice
phase for different orientations of nuclear Bragg peak G, external magnetic field Hext

0

and probing momentum transfer k. Whenever k is in plane with the skyrmion lattice,
then k Î Q. Panels (a) and (b) show the in-plane spectrum perpendicular to the
external field. Additionally, these graphs are analogs to panels (a) and (c) of figure 9.5
in terms of the relation between k and G, as well as panels (c) and (d) of this figure
are analogs to panels (b) and (d) of figure 9.5, respectively.

thesis. Because of this not yet controlled distortion it was not possible to achieve
quantitative agreement but the uncanny resemblance motivates the drawn analogy.

Experiments
There have already been inelastic neutron scattering experiments conducted to
measure the magnon spectrum of the skyrmion lattice by our collaborators [140].
Their data are shown in figure 12.11. Their setup was such as illustrated in
the inset of figure 12.10 (a). Qualitatively speaking, one can nicely see a two
peak structure as we now would expect with the theory at hand and the given
resolution.

In course of our collaborations, further experiments have been conducted by
Marc Janoschek and David Fobes from the Los Alamos National Laboratory, as
well as Maximilian Kugler from the TU Munich, with the goal to bring experiment
and theory even closer together. As mentioned before, the theoretically predicted
modes are very densely stacked and are unlikely to be resolved individually. This
is the reason why the convolution with the resolution ellipsoid needs to be very
precise to also obtain good quantitative agreement, which is current work in
progress.
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Figure 12.11: Magnon spectrum in the skyrmion lattice phase probed by inelastic neutron
scattering [140].
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13
Chern Numbers

In section 2.2 we learned that skyrmions are topologically non-trivial objects. We
also saw, that it is therefore possible to associate a winding number W given
by (2.19) with their individual magnetic structure. This, of course, still remains
when several of them are arranged in a lattice like they appear in chiral magnets.
Since the lattice is trigonal, the shape of the first Brillouin zone is hexagonal. The
winding number is then obtained by integration over this hexagonal shape where
magnetization points parallel to the magnetic field on the rim and anti-parallel in
the center.

It has also been shown, that the magnetic structure of skyrmions gives rise to
an emergent electrodynamics whose derivation can be found in [80] and uses a
technique outlined in [141]. The intriguing insight is that each skyrmion carries a
quantized amount of emergent flux, where the quantization is directly linked to
the finite integer winding number. It is hence a consequence of the topology of the
skyrmion and manifests itself, for example, in the topological Hall e�ect [142–144].
Recent studies on single skyrmions have additionally shown, that magnons scatter
o� these emergent fields in a non-obvious way [145, 146]. In particular, they
skew scatter always either towards the left or right direction independent of the
scattering parameter. The reason behind this is an e�ective Lorentz force due
to the emergent flux of a skyrmion. A densely packed arrangement of many
skyrmions, as is the hexagonal lattice, then suggests the prospect of a cyclotron
motion. This and the already found topological ramifications motivate the search
for non-zero Chern numbers for certain bands in the spectrum, in the former case
similar to Landau levels for charged particles in a magnetic field.

This is the objective for this chapter and we start by following mostly [147]
and [148] in the following section to provide a definition and some background for
Chern numbers and their relation to Berry’s phase, which we later use to compute
Chern numbers for the energy bands.
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13. Chern Numbers

13.1. Definition and Means of Calculation
In recent decades, topology has become an undeniably important tool to under-
stand many concepts in physics, that could otherwise not be explained, even
providing the notion of topological order as a new classification of matter. Ex-
amples of topologically ordered states are 3D s-wave superconductors or integer
quantum hall states. The latter occurs when electrons are confined to two di-
mensions and placed in a strong and perpendicular magnetic field. Quantization
of the circular orbits of electrons with cyclotron frequency Êc leads to so-called
Landau levels [149], which are quantized to energies En = ~Êc

!
n + 1

2
"
. When the

Fermi surface lies in a gap between these Landau levels then the state is similar to
that of an insulator. But unlike in an ordinary insulator, an applied electric field
causes the cyclotron orbits to drift leading to a Hall current which is characterized
by a quantized Hall conductivity [150] ‡H = e2

h ‹, where ‹ is known as the filling
factor and our first example of a Chern number. In the context of Bloch band
structures, it is also referred to as the TKNN invariant named after [150].

Mathematically, the concept of Chern numbers is rooted in the theory of fiber
bundles. To be precise, Chern numbers are the result of a special case when
studying more general topological invariants, Chern classes, associated with vector
bundles on a smooth manifold. When considering an oriented two-dimensional
manifold, then products of Chern classes can be integrated over that manifold
to produce a number, the Chern number. Rigorous mathematical definitions,
context and treatments can be found in [70]. Here, we want to focus on physical
applications.

In topological band theory, a rather recent extension to the field of band
theory that has existed since the foundation of quantum mechanics, a method
has been developed to calculate Chern numbers of energy bands via the quantum
mechanical Berry phase, also known as geometric or twist phase. The Berry phase
is an additional phase factor, that a quantum system in an eigenstate acquires
(next to the usual dynamical phase factor) when adiabatically transported along a
path C by varying parameters R in its Hamiltonian H(R) [151]. A time dependent
state |Â(t)Í of the system, evolving according to the Schrödinger equation

H(R(t))|Â(t)Í = i~|Â̇(t)Í, (13.1)

is then given by

|Â(t)Í = exp
3

≠i

~

⁄ t

0
En(R(tÕ)) dtÕ

4
exp (i“n(t)) |n(R(t))Í, (13.2)

where |n(R(t))Í is an eigenstate of the Hamiltonian the system is prepared in.
The first exponential is the dynamical phase factor and the second one contains
Berry’s phase “n. Using (13.1) one obtains the expression

“̇n(t) = iÈn(R(t))|ÒR|n(R(t))Í · Ṙ(t). (13.3)
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The explicit time dependence can be removed for closed loops C after which the
only thing needed is the dependence of the eigenstates on the parameters Ri:

“n(C) = i

j

C
Èn(R)|ÒR|n(R)Í dR =:

j

C
An(R) dR, (13.4)

where the last step defines the integrand as a Berry vector potential called Berry
connection with components

Aj
n(R) = iÈn(R)|ÒR

j

|n(R)Í. (13.5)

Note, that normalization of |n(R)Í ensures that “n is real. Also, for closed loops,
the Berry phase is gauge invariant1 and independent of the specific form of how R
varies in time. It is, however, gauge dependent in general, but we will not consider
this case here. For more details see [151, 148, 152]. The parameter space we are
interested in is the three dimensional momentum space (R = q = (q1, q2, q3)).
One can apply Stokes Theorem to transform the closed line into a surface integral
which gives

“n(C) = i

⁄
dS · (ÒR ◊ Èn(R)|ÒR|n(R)Í)

= i

⁄
dS · (ÈÒRn(R)| ◊ |ÒRn(R)Í)

= i

⁄
dSi ‘ijk (ˆjÈn(R)|ˆk|n(R)Í) , (13.6)

where dS denotes an area element in R space. We are interested in the integral
over a two-dimensional Brillouin zone in the xy-plane implying S Î êz leading to

“n(C) =
⁄

dqx dqy

!
ˆq

x

Ay
n(q) ≠ ˆq

y

Ax
n(q)

"
. (13.7)

The quantity bz
n(q) :=

!
ˆq

x

Ay
n(q) ≠ ˆq

y

Ax
n(q)

"
is called the Berry curvature.

A two-dimensional Brillouin zone is topologically a torus. Integration over it
corresponds to an integration over a closed surface also corresponding to a loop
that is a point at which Stokes theorem is not automatically applicable anymore.
A path that is a point describes a non-moving particle implying a vanishing Berry
phase, which is tantamount to it being an integer multiple of 2fi leading to the
second phase factor in (13.2) to be unity. Which integer that is, is defined by
the topology of the band and can be calculated. Barry Simon [153] provided the
more rigorous mathematical interpretation of Berry’s phase in terms of holonomy
where (13.6) emerged naturally as the curvature of a Hermitean line bundle which

1A gauge transformation |n(R)Í æ ei’(R)|n(R)Í leads to a change of the Berry phase “
n

of
’(R(0)) ≠ ’(R(T )), for a closed loop C and where T is the time needed to cover it once.
Because the basis state is then necessarily the same, this phase factor and change of the
Berry phase needs to be a multiple of 2fi.
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equals to the first Chern class and is a topological invariant. The corresponding
integer is given by

cn = 1
2fi

⁄

1. BZ

dqxdqy bz
n(q) œ Z (13.8)

and is called the Chern number.

Numerical Implementation
The recipe to calculate the Chern numbers for the magnon spectrum bands in
the skyrmion phase are, in principle, straight forward: the eigenstates of the nth

band with energy Án are obtained by using (6.33), they give means to calculate
the Berry connection needed to calculate the Berry curvature bz

n(q) which then
needs to be integrated over the first Brillouin zone.

The first numerical challenge is to obtain an expression for the occurring
derivatives. To achieve this, we discretized the first Brillouin zone by a square
lattice with a lattice constant of a = 0.01 Q. Local derivatives of the eigenstates
were then calculated at all points (qx, qy) for two directions in the xy-plane via

Òq
x

wn(qx, qy) =
wn(qx + a

2 , qy) ≠ wn(qx ≠ a
2 , qy)

a
(13.9a)

Òq
y

wn(qx, qy) =
wn(qx, qy + a

2 ) ≠ wn(qx, qy ≠ a
2 )

a
. (13.9b)

This brings us to the two expressions for the Berry connection

Ax
n(qx, qy) = i wn(qx, qy) · (Òq

x

wn(qx, qy)) (13.10a)
Ay

n(qx, qy) = i wn(qx, qy) ·
!
Òq

y

wn(qx, qy)
"

(13.10b)

which we then interpolated to obtain a smooth function within the used Math-
ematica framework. This made the evaluation of the next derivatives, that are
part of the Berry curvature bz

n(q), easier than an additional discretization. The
function bz

n(q) can then, in principle, be plugged into (13.8) and integrated over
the first Brillouin zone to obtain the Chern number for the nth band.

If one is lucky, then this readily works. But for most of the bands, one runs into
unwanted singularities in bz

n(q). They are due to the fact, that the eigenstates
are only determined up to a complex phase factor and this one does not behave
in a smooth way because it is a degree of freedom that the computer may choose
arbitrarily. In our case, the phase has finite sized jumps when following a path
through the first Brillouin zone. This is shown for two typical components of
an eigenstate wn in figure 13.1. The derivatives and discretizations then lead
to uncontrolled points or even neighborhoods of points of bz

n(q) within the first
Brillouin zone. To avoid this, it is common to employ a gauge-independent formula
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Figure 13.1: Typical absolute values and phase arguments of the ith component of the
eigenstate w

n

(q) of band n plotted on a path through the first Brillouin zone. It
illustrates the discontinuous behavior of the phase argument. It is responsible for
the singular behavior of the derivatives. For the smooth-gauging process it is also
important be aware of the zero points of the absolute value. Panel (a) shows a typically
directly usable behavior, while panel (b) does is not, as the absolute value becomes
zero. For our chosen gauge process we need a partner component, that has zero points
anywhere but in the center.

of the Berry phase given by [151]

“n = i

⁄

C
dS ·

ÿ

m”=n

Èn(R)|(ÒRH(R))|m(R)Í ◊ Èm(R)|(ÒRH(R))|n(R)Í
(Em(R) ≠ En(R))2 .

(13.11)
This, however, comes at the price of evaluating an additional sum over potentially
all bands, but at least those in a certain distance from each other since their
contribution decreases with one over energy di�erence squared. For systems with
just a few bands, this is very useful. In our case, the bands are relatively tightly
packed and there are infinitely many. The latter makes this formula a constant
approximation for our problem and the former introduces a significant amount of
needed computation power.

We therefore smooth-gauge the resulting eigenstates wn semi-manually. The
idea is to select one component of the eigenvectors and locally gauge it to be real
and therefore smooth. The manual step is to find that ith component wi

n(q). This
can be done by tracing across the entire Brillouin zone and through the �-point,
and search for components that do not reach an absolute value of zero. Allowing
those points, too, would require to check whether it is a zero point of odd or even
order, hence implying a sign change in the gauged real part or not. In either case
one would then need to decide whether to implement a phase change of fi at these
points or not. To circumvent this problem, we do one of the two following things.
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The first thing one can try is to search until one finds a component, that does
not have a zero absolute value anywhere in the first Brillouin zone like the one
shown in figure 13.1(a). Then we can modify the eigenstates locally so that
the ith component will be always real by multiplying the opposite phase of this
component to it, i.e.,

wn(qx, qy) æ wn(qx, qy)e≠i arg(wi

n

(q
x

,q
y

)). (13.12)

After that, the derivatives (13.9a) and (13.9b) will be smooth over the extent
of the Brillouin zone. In case we do not find such a component, we consider
two components, that have zero points, or rather zero point regions, at di�erent
positions. Usually, we can find one component with a zero point at the �-point,
like the one shown in figure 13.1(b), and one with zeros at a distance of around
0.4 Q from the �-point. This gives us two Berry curvatures that have singularities
at di�erent points in the Brillouin zone. Those can be patched together by only
selecting the non singular sub-parts of each one, giving ultimately one smooth
Berry curvature. This patch process gets more elaborate the higher the energy
bands lie, then involving also a high number of patches. But once obtained,
integration of the Berry curvature over the first Brillouin zone to calculate the
Chern numbers is straight forward.

13.2. Results
For the following discussion we refer to the spectrum in the first Brillouin zone
with di�erent dipolar interaction strengths shown in figure 12.2, calculated Berry
curvatures shown in figures 13.2 and 13.3, and the Chern numbers resulting from
the integration of the Berry curvatures from the previously mentioned figures
shown in figure 13.4 alongside the corresponding energy bands. We succeeded to
obtain Chern numbers that are reliable from our current viewpoint for the first
14 bands with an increasing sequence that reads

Chern number sequence = 0 0 1 0 1 1 0 1 1 1 1 1 1 1. (13.13)

Challenges and problems before obtaining these results are explained in the
following.

Figure 13.2 shows Berry curvatures calculated for the first 14 bands of the
magnon spectrum in the skyrmion lattice phase. One of the Q-vectors is aligned
with the x-direction. We mostly considered no dipolar interactions which worked
fine for most of the bands. The same results are obtained with dipolar interaction
included, as long as bands do not cut and hybridize, or change places hence
changing the Chern number sequence. Problems first arise with bands 11 and
12. Without dipolar interaction, one can argue for a level crossing between these
two bands seeing figure 12.2(a), although they do hybridize on a small scale.
The result were uncontrolled poles ultimately leading non-integer and random
Chern numbers. Random, for instance, upon a change in the discretization. To

146



13.2. Results

�Q
2 0

Q
2 �Q

2

0

Q
2�10

0

10

bz1(q)

qx
qy �Q

2 0
Q
2 �Q

2

0

Q
2

�2
0
2

bz2(q)

qx
qy �Q

2 0
Q
2 �Q

2

0

Q
2�50

0

50

bz3(q)

qx
qy

�Q
2 0

Q
2 �Q

2

0

Q
2�0.5

0

0.5

bz4(q)

qx
qy �Q

2 0
Q
2 �Q

2

0

Q
2�50

0

50

bz5(q)

qx
qy �Q

2 0
Q
2 �Q

2

0

Q
2�50

0

50

bz6(q)

qx
qy

�Q
2 0

Q
2 �Q

2

0

Q
2�0.5

0

0.5

bz7(q)

qx
qy �Q

2 0
Q
2 �Q

2

0

Q
2

�50
0

50

bz8(q)

qx
qy �Q

2 0
Q
2 �Q

2

0

Q
2�50

0

50

bz9(q)

qx
qy

�Q
2 0

Q
2 �Q

2

0

Q
2�100

0

100

bz10(q)

qx
qy �Q

2 0
Q
2 �Q

2

0

Q
2

�50
0

50

bz11(q)

qx
qy �Q

2 0
Q
2 �Q

2

0

Q
2�100

0

100

bz12(q)

qx
qy

�Q
2 0

Q
2 �Q

2

0

Q
2�50

0

50

bz13(q)

qx
qy �Q

2 0
Q
2 �Q

2

0

Q
2�50

0

50

bz14(q)

qx
qy

Figure 13.2: Berry curvatures of the first 14 bands of the skyrmion magnon spectrum
without dipolar interaction as seen in figures 12.2(a) and 12.3. Note the individually
different overall magnitudes. The feature at the center of bz14 is the suppression of
unwanted singularities that could not be cleaned up.
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Figure 13.3: Berry curvatures of bands 15 and 16 of the skyrmion magnon spectrum
without dipolar interaction as seen in figures 12.2(a) and 12.3. At this point reliability
may not be given anymore. For further discussion, see the main text.
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Figure 13.4: Shown is again the magnon band structure in the skyrmion lattice phase with
dipolar interaction strength present in MnSi to inhibit crossings between the first 14
bands. The bands are successively numbered as indicated by encircled numbers. Chern
numbers are listed in correspondence to each band and enclosed by squares. The
approximate values are also given to their right hand side. Bands 15 and 16 are only
shown by dashed lines to complement the spectrum. For them we failed to acquire
reliable Chern numbers, see text.
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13.2. Results

circumvent this problem we included dipolar interaction of the strength present
in MnSi, because that moves them apart just far enough so that they do not cross
into other bands, cf. figure 12.2(b). Up to a little but benign inaccuracy in the
center of bz

14(q) this gives us a quite large and reliable set of Berry curvatures.
Beyond the 14th band, the situation becomes more di�cult because, for one,

our numerical accuracy decreases. The two next bands in particular also seem to
be arguably crossing when following their general slope, which makes an abrupt
turn at the M-point of the Brillouin zone. This is reflected by poles at those points
in the Berry curvatures, see figure 13.3. Integrating them nevertheless results in
an unusually large deviation from an integer number for the 15th band, namely
c15 ¥ ≠2.2862. These reasons lead to a word of caution regarding its reliability.
A summary of the calculated Chern numbers together with their corresponding
bands is given in figure 13.4. There, we plotted the spectrum with the dipolar
interaction strength of MnSi to separate bands 11 and 12.
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Figure 13.5: Spectrum and Chern
numbers by Roldán-Molina et al.
[154]

The here calculated Chern numbers mostly
agree with those found by Roldán-Molina et
al. [154]. Their given sequence of the lowest
Chern numbers reads 0,0,1,0,1,-2,3,1, see fig-
ure 13.5. The first five are the same as ours.
There are several reasons for the discrepancies
of the remaining three. First of all, the stud-
ied systems are not exactly the same. The
most noticeable di�erence is their use of a
Dzyaloshinskii-Moriya interaction compatible
with interfacial inversion symmetry breaking,
which leads to the formation of Néel-skyrmions
instead of the Bloch-type skyrmions that we
considered. More subtle di�erences are the use
of a discrete model with a finite and relatively
small number of spins per unit cell opposed to
the continuum theory we applied. They also
employ a finite uniaxial anisotropy of the same
order of magnitude as are the ferromagnetic
exchange J and Dzyaloshinskii-Moriya inter-
action D. These reasons are most likely the
reason for the discrepancies in the shape of
the bands between our two calculations, although the first 5 modes have very
agreeable tendencies in terms of positions of maxima and minima. In our analysis
of the e�ect of dipolar interactions on the spectrum in figure 12.2 on page 124
we have seen that some modes are stronger influenced than others. It is hence
very plausible that this is the case with the additional uniaxial anisotropy as well,
which may have lead to a rearrangement of the modes. We also learned in our
calculations, that the flat and dispersive modes 11 and 12 gave mixed results
for the Chern numbers when they seemed to have been cutting through each
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13. Chern Numbers

other, while giving integer values when separated, implying a “violation” of the
adiabatic theorem or a much higher computation accuracy at and around these
poles. Considering Roldán-Molina’s results in figure 13.5, it can be argued that a
similar e�ect takes place for bands 6 and 7 as they also get very close together
and their slopes indicate that parts of the one mode may belong to the other and
vice versa. With this in mind, one can argue that the sum of the Chern numbers
of Roldán-Molina’s bands 6 and 7, which is one, only belongs to one of the bands
while the other band carries zero Chern number. If that is indeed the case, then
the Chern number sequences would agree perfectly. We also agree with chirality,
i.e., the sign of D, not having an e�ect on the calculated Chern numbers.

Another noteworthy work that calculated Chern numbers in the context of a
skyrmion lattice is [155]. But there are two considerable di�erences to our setup.
First, they do not consider a hexagonal but a quadratic skyrmion lattice hence
changing the shape of the Brillouin zone. The biggest di�erence is that they cal-
culate the electron band structure of a free-electron system coupled adiabatically
to the background spin texture of a skyrmion. They find, that each band has a
Chern number of ≠1, which they argue is the same as that of Landau levels. They
also state, that one can adiabatically pass from uniform magnetic field to the
space-dependent magnetic field induced by skyrmion lattice without a singularity
in this deformation

Trajectories
The presence of finite Chern numbers in the magnon and electron spectra form a
promising basis in the search of closed orbits in the movement of electrons in the
emergent magnetic field induced by the skyrmion lattice. With that in mind we
considered the simples model of a skyrmion lattice, namely the superposition of
three helices with equal wavelength arranged to form a tripod with 120° angles
between its legs, cf./ figure 3.5. Choosing

Q1 = (1, 0, 0)|

Q2 = (≠1
2 ,

Ô
3

2 , 0)|

Q3 = (≠1
2 , ≠

Ô
3

2 , 0)|

lets us obtain a relatively simple expression for the magnetization of the skyrmion
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. (13.14)

In the search for closed loops for electrons confined to two dimensions, we are
interested in the local z-component of the emergent magnetic field Be

z(x, y) which
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is proportional to the integrand of the winding number W given by (2.19) [80, 144].
For a path-parameterization r(t) = (x(t), y(t)) with t Ø 0 we obtain

Be
z(x(s), y(s)) Ã M̂sky(r(s)) ·

1
ˆxM̂sky(r(s)) ◊ ˆyM̂sky(r(s))

2
Ã

( 3
2 ≠ 2 cos x) cos

!Ô
3y

"
+ 2 cos x

2 (3 cos x ≠ 8) cos
1 Ô

3y
2

2
≠ 13

2 cos x ≠ (cos 2x + 9)
1

16 cos
! 3x

2
"

cos
! 1

2
Ô

3y
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+ 8 cos
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3y
"

+ 57
23/2

(13.15)

as an expression proportional to the emergent magnetic field, where we omitted
the t dependence in the last line due to lack of space. The velocity v dependent
Lorentz force F is given by

F = q Ee + qv ◊ Be (13.16)
r̈(t) = ≠ṙ(t) ◊ Be(r(t)). (13.17)

In the last line we have set q = ≠1 and the mass to unity. Since the magnetization
is considered to be static, there is also no emergent electric field. We then
solved this equation of motion numerically and simulated trajectories as shown
in figure 13.6. There, we plot three electron trajectories with di�erent initial
conditions traversing a real space lattice of skyrmion which are represented by
gray circles. The initial velocity is the same for all three, but the scattering
parameter is di�erent. The first one (dark blue) starts from the center of the
central skyrmion, while the second (red) starts at a small distance away from the
skyrmion center and the third one (light blue) two times that distance away from
the center.

One can see, that a circular motion is in principle possible, but also that it is
vulnerable to small changes in the initial conditions. That means, that a real
skyrmion lattice makes it much harder to achieve perfectly closed loops due to
further distortions, defects, possible domain formations etc. This issue becomes
better when going to higher energies, i.e., higher initial speed, but the issue of
rare and unstable, perfectly close loops remains. A more thorough analysis, also
regarding relevant energy scales and therefore realized, initial velocities is still
work in progress.

All this, however, o�ers a starting point for interesting future studies. Next
steps could be to make a statistical analysis trying to find a general rule for
the occurrence of closed loops. In the high energy regime, which can be treated
classically, too, one could try to correlate the density of states of the classical
problem to the quantum density of states of the spectrum like in the studies of
Gutzwiller who found that the density of states for bound states only depends on
such closed, classical orbits [156, 157].
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13. Chern Numbers

Figure 13.6: Possible trajectories of an electron in the effective magnetic field of a simple
model skyrmion lattice. The basis is a skyrmion lattice constructed via the superposition
of three helices of equal pitch forming a tripod with 120° angles and their real space
positions are marked by gray circles. Shown are three different paths of particles that
have the same initial velocity but slightly different scattering parameters. One can see
that it is principally possible to obtain closed loops (red), although they might not
be true circles. In any case, however, finding those closed loops can be hard as small
variations in the initial can lead immediately to almost chaotic behavior (light and dark
blue).
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14
Conclusions and Outlook

Magnetically ordered structures in bulk chiral magnets played the leading role in
our studies. We treated these phases on a mean-field level including Gaussian
fluctuations and especially dipolar interaction with the aim to study their spin
wave excitations. After introducing properties of chiral magnets and spin waves
in general, we focused on two of these phases in more detail in parts III and IV,
respectively.

In part III we analyzed spin waves in a phase of spin spirals. Without an
external magnetic field the spins form screws or helices where the spins are
perpendicular to the pitch vector Q. That pitch vector is aligned to certain high
symmetry directions of the crystal. Which directions are chosen depends on the
material. Applying a magnetic field eventually favors an alignment of those helices
with the field. Also, the individual spins tilt in field direction forming a cone
shape once the helix pitch is aligned with the magnetic field. In our models we
usually assumed to be in that conical phase immediately once there is an applied
field.

In our study of spin waves we di�erentiated between di�erent regimes. First, we
examined uniform excitations at the �-point and found two resonance modes called
+Q and ≠Q that are degenerate when dipolar interactions are not considered. If
they are considered, then the two modes split, unless in the special case when the
static external field is applied perpendicular to an (infinite) disc. An interesting
discovery was the truly linear polarization of those two modes at zero field,
especially in a frequency range of a few GHz. The resonances could also be obtained
analytically by using a non-linear ‡ model approach. The latter also gave us a
clearer insights into the specifics of the remaining spectrum. Of the full spectrum
Ê(k) we particularly studied four sections. First the longitudinal spectrum Ê(kÎ)
with kÎ Î Q and 0 = k‹ ‹ Q and second the perpendicular spectra Ê(k‹) with
k‹ ‹ Q. Both of them could also be understood analytically. The logical next
step is to study a mixture of both which we did by considering the longitudinal
spectrum after fixing k‹ to a finite value. There we discussed the formation of
flat bands that are consequences of Bragg scattering. While these analyses all
took place at zero, or at least a small magnetic field, we lastly also studied the
influence of the magnetic field on the spectrum. Collaborators from di�erent
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groups provided FMR and inelastic neutron scattering data, corresponding to the
described cases, that agree very well with the theory.

Part IV concerns spin wave excitations in the skyrmion lattice phase. Skyrmions
are topologically stable magnetic whirls that form perpendicular to an applied
magnetic field and arrange themselves in a trigonal lattice. It can also be seen in
first order as a superposition of three helices whose pitch vectors form a tripod
with angles of 120° between them. Unlike the conical phase, they only occur in
a small phase pocked at around 0.5 Hc2 and close to Tc. Hc2 is the critical field
strength between the conical and the field polarized phase and Tc the critical
temperature below which magnetic order sets in.

We first studied resonances at the �-point, too, where three modes can be
excited by FMR experiments. They are two gyration modes whose cores precess
clockwise and counter-clockwise around the applied field, and a breathing mode
whose core grows and shrinks over time. The magnon spectrum in the skyrmion
phase exhibits a plethora of modes, some flat and some dispersive. We studied the
e�ect of dipolar interaction on the spectrum in the first Brillouin zone. The result
was that dipolar interaction not only leads to a general decrease in the resonance
energies, but also a�ects some modes more than others. We also re-analyzed the
resonances at the �-point and presented and discussed some of the other modes,
that were not excitable by FMR measurements. We also calculated spectral
weights that correspond to inelastic neutron scattering experiments in the case
of k Î Qi ‹ Hext

0 , where Qi stands for one of the pitch vectors with which the
skyrmion lattice can be constructed via a superposition, and for k Î Hext

0 ‹ Qi.
Despite the plethora of modes, we observed similar features as we did in the conical
phase. Like in the conical case, collaborators performed successful experiments
to measure the magnon spectrum in the skyrmion phase. Because the skyrmion
case is much more elaborate conclusive quantitative agreement between neutron
scattering data and theory is still work in progress. Finally, the topological nature
of skyrmions and the fact that they carry finite flux quanta motivated us to
calculate Chern numbers for the bands of the spectrum. We achieved to calculate
the first 14 which took on values of zero or one.

Outlook and Open Questions
The helimagnon spectra and modes discussed in this thesis are already quite well
understood. In terms of dipolar interaction, we considered only two approximative
limits. The first was that of uniform excitation, i.e., k π 1/L with sample size
L, meaning that the exciting wavelength was basically infinite in regard to
intrinsic length scales. Those were the modes accessible by FMR measurements.
The second limit were local excitations, i.e., k ∫ 1/L, accessible via inelastic
neutron scattering. The next logical step is to study the intermediate regime
where Damon Eshbach physics and surface modes come into play. This region is
particularly interesting at the point of the first two finite resonances. Without
dipolar interactions, it is merely a crossing point of the +Q and ≠Q branches.
Including dipolar interactions opens up a gap at this point and the limit k æ 0 is
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highly anisotropic. It also does not necessarily coincide with the corresponding
resonance values of the limit of k π 1/L.

In the skyrmion case, there are even more unanswered questions and interesting
possibilities for future studies. One of the natural questions is the question of
theory verification. It would be nice to not only be able to see the average
of the weight distribution of the modes, as is currently possible with neutron
scattering, but also to resolve individual modes. Maybe further analysis of
the modes that were not accessible via FMR reveals other possibilities, maybe
excitation via a specially constructed, inhomogeneous magnetic field. Electrical
excitation has been proposed, too, by coupling to the potentially finite polarization
of the skyrmion [158, 93, 48]. However, because an oscillating electric field is
accompanied by an oscillating magnetic one and since the resonances of electrical
excitation are much weaker than the magnetic ones, it was so far not possible to
resolve electrically excited modes without being overshadowed by the magnetic
resonances.

Another big open question is the exact origin of the Chern numbers and why
some bands have Chern number zero and others Chern number one. Besides asking
for their origin, it is also still an open problem to determine the exact consequences
that non-zero Chern numbers have for the skyrmion lattice. Analogously to
topological insulators, where finite Chern numbers lead to edge states, one can
take a look at boundary and surface modes. This also brings us back to a follow-up
question already asked in the conical phase, i.e., what happens when the limit
k æ 0 is not unique? This questions applies to the gyration and breathing modes,
like it did for the +Q and ≠Q modes in the conical phase.

The next step into the future consists of device constructions. An optimistic
projection would be to exploit the magnetic linear dichroism found in the helical
phase to construct polarization filters, or to save energy since such a system is
easier to excite.

All these points show that helices and skyrmions have many exciting aspects,
but also that a number of interesting questions remain to be answered.
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A
. Derivation of .
. Dipole-Dipole Interaction

This derivation is mostly taken from [93]. The major di�erence is the definition
of the Fourier transform, which introduces additional factors of 1

‹ (cf. (3.8)).

Since its origin are the microscopic magnetic moments, the magnetic field Hs

due to the spins themselves depends on the distribution of the magnetization M .
The magnetic induction is B = µ0(H + M), which suggest the application of
Maxwell’s equations to establish a relation between the two entities M and Hs.

Ò · B = µ0Ò · (–Hs + M) != 0 and Ò ◊ Hs = 0 (A.1)

The uncommon factor – is a remnant of unit rescaling as introduced in section 3.5.
One can toggle between the physical and rescaled units in the following calculation
by setting – = 1 for physical units and – = JQ2 in the rescaled case. The Fourier
representations of magnetization M(r) and Hs(r) are

M(r) = 1
‹

ÿ

k
mkeik·r and Hs(r) = 1

‹

ÿ

k
hs,keik·r

Fourier transforming the second equation of (A.1) fixes the direction of hs,k.

Ò ◊ Hs = 1
‹

ÿ

k
(ik ◊ hs,k)eik·r != 0

y k Î hs,k (A.2)

The Fourier transformed spin field hs,k is hence, up to a complex phase „k with
|„k| = 1, parallel to k1. This means that one can write

hs,k = |hs,k|„k k̂ (A.3)
1The fact, that the requirement of a global phase is enough is not completely trivial but can

be seen by proving the statement: 0 = ‘
–—“

k
—

hk,“

… ÷ ck œ C : k
–

= ckhk,–

’–.
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A. Derivation of Dipole-Dipole Interaction

with k̂ = k
|k| . Continuing with the first equation of (A.1) gives

Ò · M(r) = 1
‹

ÿ

k
(mk · ik)eik·r != ≠–Ò · Hs = ≠–

‹

ÿ

k
(hs,k · ik)eik·r. (A.4)

Comparing coe�cients leads to

mk · k = ≠– hs,k · k (A.2)= ≠„k–|hs,k| |k|

y |hs,k| = ≠ 1
– „k

(mk · k)
|k|

(A.3)
y hs,k = ≠ 1

–

(mk · k)
|k| k̂

y Hs(r) = ≠ 1
–

1
‹

ÿ

k

(mk · k)
|k| k̂ eik·r (A.5)

Because Hs is an additional component to the internal magnetic field, an additional
term FDD in the free energy needs to arise with the property ”F

DD

”M = ≠µ0Hs or,
in Fourier representation, ”F

DD

”m = ≠µ0hs. A first guess is

≠µ0

⁄
d3r M · Hs = ≠µ0

–

⁄
d3r

A
1
‹

ÿ

k
mkeik·r

B
·
A

1
‹

ÿ

kÕ

hs,kÕeikÕ·r

B

= µ0
–

1
‹

ÿ

k kÕ

mk · (mkÕ · kÕ)
|k|2

kÕ 1
‹

⁄
d3r ei(k+kÕ)r

¸ ˚˙ ˝
”kÕ

,≠k

= µ0
–

1
‹

ÿ

k

(mk · k)(m≠k · k)
|k|2

(A.6)

To substantiate this guess, it is good to di�erentiate (A.6) with respect to the ith
component of m≠k.

≠µ0
ˆ

s
d3r M · Hs

ˆmi
≠k

=µ0
–

1
‹

ˆ

ˆmi
≠k

ÿ

kÕ

(mkÕ · kÕ)(m≠kÕ · kÕ)
|kÕ|2

=µ0
–

1
‹

C
ˆ

ˆmi
≠k

A
(mk · k)(m≠k · k)

|k|2

B

+ ˆ

ˆmi
≠k

A
(m≠k · (≠k))(mk · (≠k))

|≠k|2

BD

=µ0
–

1
‹

mk · k
|k|2

qi = µ0
2
–

hi
s,k (A.7)
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To obtain the right contribution to the free energy, we just need to compensate
the additional factor of 2 in our initial formula leading to

FDD,k∫1/L[m] = 1
2

µ0
–

1
‹

ÿ

k

(mk · k)(m≠k · k)
|k|2
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B
. Ground State .
. on Mean-Field Level

This extract is almost an exact copy of subsection 1.4.1 of [93] and serves to
complement the argument that the helical phase minimizes the free energy F0[M ]
(cf. (3.36) and (3.37)) on a mean-field level. Here, the rescaled units of section 3.5
are used and the tildes omitted.

To prove, that the helical/conical phase represents the global minimum, let us
consider the Fourier transformation of M(r) defined by (3.8), which is allowed
due to translation invariance of F0[M ] [80]. Plugging this transformation into
the free energy, (3.37) can be written as a sum of a constant term plus several
quadratic terms [7]:

F0
Ÿ

= ≠ 1
‹

t2 ≠ µ2
0 (Hext)2

4 + 1
‹

ÿ

k”=0
m–

≠k
#
r–—(k) ≠ t ”–—

$
m—

k

+
⁄ 3

M2 + t

2

42
dr + 1

‹

3
M0 ≠ µ0Hext

2

42

(B.1)

The system volume is given by ‹ and r–— = (1 + t + k2)”–— ≠ 2i ‘–—“ k“ . The
two terms on the far right in (B.1) are obviously greater or equal to zero. The
eigenvalues of the matrix

#
r–—(k) ≠ t ”–—

$
are

)
1 + k2, (1 ≠ k)2, (1 + k)2*

, which
makes it positive semi-definite. As a result, the free energy is bounded from below
by the constant ≠ Ÿ

‹ (t2 ≠ µ2
0(Hext)2)/4.

To get a first, simple idea of the representation of the structure and parameter
relations, let us consider a helical ansatz for the magnetization in the mean-field
limit.

Mhel(r) =

Q

a
A cos(Q · r)
A sin(Q · r)

M0

R

b =

Q

a
A cos(Q z)
A sin(Q z)

M0

R

b (B.2)

We choose here, as a simplification, the propagation direction of the helix Q = Qêz

to be parallel to êz, which in turn is also the direction of a static external magnetic
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B. Ground State on Mean-Field Level

field Hext = {0, 0, Hz}. Plugging (B.2) into (3.37) and minimizing with respect
to Q, A and M0 yields the solution:

Q = 1 A2 = ≠M2
0 ≠ t

2 M0 = 1
2µ0Hz (B.3)

One can see, that this solution e�ectively minimizes the free energy as it puts all
quadratic terms of (B.1) simultaneously to zero.
Through a combination of the equations in (B.3) and setting A to zero, one
obtains the boundary of the phase transition between the conical and the field
polarized phase as

Hc2 =
Ô

≠2t.

Notably, the zero-field phase transition is at t = 0.

Before we go into more detail and study the e�ect of demagnetization factors
in the mean-field limit, it is worthwhile to elaborate on the previous calculation
in a new basis, that accommodates the twist in the magnetic structure. While êx,
êy and êz are the ordinary Cartesian unit vectors, the new basis has the form

êz = êz, ê± = êx ± iêyÔ
2

or êx = ê+ + ê≠
Ô

2
, êy = ê+ ≠ ê≠

i
Ô

2
(B.4)

We further assumed that the pitch of the helix, as well as the magnetic field,
point in êz-direction. In this new basis, we can formulate an ansatz for the
magnetization in the mean-field limit as follows.

Mhel(r) = M0 êz + A ê≠ eiQr + Aú ê+ e≠iQr (B.5)

Here, A is a complex amplitude of the helix and M0 the homogeneous component
in direction of the applied magnetic field. One may note, that this ansatz is still
valid even while considering dipole-dipole interaction. Since k ‹ Mk, no dipole
fields arise. Using this ansatz in the free energy (3.35), which now only consists
of the contributions F0 and FDD, which are respectively defined by (3.37) and
(3.26), we obtain an expression for the energy density f = f0 + fDD, i.e., the
integrand of the free energy functional, in terms of the new basis and the rescaled
units:

f = (t + 1)
1

M2
0 + 2|A|2

2
+ 2Q2|A|2 ≠ 4Q|A|2 +

1
M2

0 + 2|A|2
22

≠ µ0HzM0 + 1
2

µ0
–

N̄M2
0 (B.6)

We have introduced N̄ as the demagnetization factor “pointing along” the magnetic
field direction N̄ = Ĥext · N · Ĥext. A field Hext Î êz would mean N̄ = Nz.
Di�erentiation with respect to Q leads to Q = 1, which concurs with the rescaling
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of units. Minimizing (B.6) with respect to M0 and Aú gives two equation of states.

1
2(t + 1) + µ0

–
N̄

2
M0 + 4

1
M2

0 + 2|A|2
2

M0 = µ0Hz (B.7a)

2tA + 4
1

M2
0 + 2|A|2

2
A = 0 (B.7b)

Being in the conical/helical phase implies a finite helix amplitude. Assuming
hence a finite A and combining both equations of (B.7) yields an expression for
the homogeneous component of the magnetization. To avoid confusion in the
following, we have reintroduced the tilde to indicate rescaled quantities.

M̃0 = µ0H̃z

2 + µ
0

– N̄
(B.8)

It is noteworthy, that M̃0 does not depend on temperature to first order, which
leads to an also temperature independent susceptibility (‰̃con = M̃0/H̃z) in the
conical phase

‰̃con = µ0

2 + µ
0

– N̄
(B.9)

This makes the susceptibility indeed nearly constant in the conical phase, as
has been measured by Bauer et al. [21]. The measured susceptibility however is
expressed by the susceptibility ‰con calculated analogously in the not rescaled
units used of (3.35). The relation amongst each other is given by

‰con = 1
–

‰̃con = µ0

2JQ2 + µ0N̄
(B.10)

Combining this relation and (B.9) provides us with a concrete value for the thus
far unfixed pre-factor – in terms of measurable quantities.

µ0
–

= 2
‰≠1

con ≠ N̄
(B.11)

For the helix amplitude we obtain via (B.7b) and (B.8) the expression

|A|2 = ≠ t

4 ≠ 1
2

A
µ0H̃z

2 + µ
0

– N̄

B2

(B.12)

A finite helix amplitude is given as long as H̃z is smaller than a critical field H̃c2,
for which the relation

0 = ≠ t

2 ≠
A

µ0H̃c2

2 + µ
0

– N̄

B2

(B.13)

holds. The helix amplitude can then also be expressed in terms of the critical
field Hc2

|A|2 = ‰̃2
con
2

!
H̃2

c2 ≠ H̃2
z

"
(B.14)
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C
FMR with Damping

This is a calculation that describes magnetic resonance of a ferromagnet in a
magnetic field Bext

0 = µ0Hext
0 with shape and cubic anisotropies and including

damping via the Landau-Lifshitz-Gilbert equation. An energy density is given by

H = µ0
2 M · N · M + K

M4
s

!
M4

x + M4
y + M4

z

"
≠ Bext

0 · M . (C.1)

Note that K = K Õ
1 = K

1

≠2 in terms of Gurevich’s notation [89]. Ms is the saturation
magnetization making the anisotropy constant of units J/m3. The equation of
motion is given by

dM

dt
= “M ◊ Be� + –

Ms
M ◊ dM

dt
. (C.2)

Two coordinate systems are used, namely êx, êy, êz represent axes aligned with
the principal axes of the sample and êa

x, êa
y, êa

z represent the crystallographic axes.

Setup: External magnetic field always points along the same (principal) axis êz

of the sample so that the demagnetization tensor is diagonal. However, two cases
arise due to cubic anisotropies. In the first one Bext

0 Î [0 0 1] and in the second
Bext

0 Î [1 1 1].

First Case: B Î [0 0 1]

The êx-axis and the êa
x-axis di�er from each other by a fi/4 rotation around

êz = êa
z . We hence rotate the (diagonal) demagnetization tensor N around the

êz-axis by fi/4 and obtain

N rot =

Q

a
N

1

2 + N
y

2 ≠ N
1

2 + N
y

2 0
≠ N

1

2 + N
y

2
N

1

2 + N
y

2 0
0 0 Nz

R

b (C.3)
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C. Complex Resonances in the Ferromagnet

The e�ective magnetic field is given by

Be� = ≠ ˆH
ˆM

=

Q

a
0
0

Bext
0

R

b ≠ µ0N rot · M ≠ 4 K

M4
s

Q

a
M3

x

M3
y

M3
z

R

b (C.4)

Plugging this into the equation of motion, and expanding up to first order with
M = Ms + ”M(t) leads to Be� = BÕ + BÕÕ + O(”M2) with

BÕ =

Q

a
0
0

Bext

R

b ≠ µ0N rot ·

Q

a
0
0

Ms

R

b ≠ 4K

M4
s

Q

a
0
0

M3
s

R

b (C.5)

BÕÕ = ≠µ0N rot ·

Q

a
”Mx

”My

”Mz

R

b ≠ 4K

M4
s

Q

a
0
0

3M2
s ”Mz

R

b (C.6)

Plugging this expansion into the Fourier transformed equation of motion (C.2),
keeping only terms up to first order and collecting all terms on one side yields

v0 := iÊ

Q

a
”Mx

”My

”Mz

R

b + “

S

U

Q

a
”Mx

”My

”Mz

R

b ◊ BÕ +

Q

a
0
0

Ms

R

b ◊ BÕÕ ≠ – iÊ

“Ms

Q

a
0
0

Ms

R

b ◊

Q

a
”Mx

”My

”Mz

R

b

T

V

(C.7)
= 0 (C.8)

For v0 to be zero, the determinant of W, given by

W =

Q

a
ˆ”M

x

v0,x ˆ”M
y

v0,x ˆ”M
z

v0,x
ˆ”M

x

v0,y ˆ”M
y

v0,y ˆ”M
z

v0,y
ˆ”M

x

v0,z ˆ”M
y

v0,z ˆ”M
z

v0,z

R

b , (C.9)

needs to be zero since W · ”M = 0 has to hold for all ”M . Solving det W = 0
for Ê and only keeping terms up to first order in – leads to three solutions with
one being Ê = 0 and the other two are equal up to a sign change of the Êres part.
The positive solution is given by

Ê1 = Êres,1 + i�

= |“|
Û3

4 K

Ms
≠ (Bext

0 + µ0Ms (Nx ≠ Nz))
4 3

4 K

Ms
≠ (Bext

0 + µ0Ms (Ny ≠ Nz))
4

(C.10)

≠ i“

3
4 K

Ms
≠

3
Bext

0 + µ0Ms

2 (Nx + Ny ≠ 2Nz)
44

–.
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Second Case: B Î [1 1 1]

Again, we need to rotate the demagnetization tensor in a way, that it concurs with
the crystallographic direction. This is achieved by rotating the shape coordinate
system away from the crystal system, first with a rotation of arccos 1Ô

3 around
the êa

x-axis, followed by a fi/4 rotation around the êa
z -axis, i.e. the former êz-axis.

Then, the crystallographic [1 1 1] direction points along the êz-direction of the
sample and the oscillating field component of the corresponding experiment, cf.
figure 4.4, along the êx-axis points along the crystallographic [1 1 0] direction.
The rotated demagnetization tensor takes the form

N rot =

Q

a
1
6 (3Nx + Ny + 2Nz) 1

6 (≠3Nx + Ny + 2Nz) 1
3 (≠Ny + Nz)

1
6 (≠3Nx + Ny + 2Nz) 1

6 (3Nx + Ny + 2Nz) 1
3 (≠Ny + Nz)

1
3 (≠Ny + Nz) 1

3 (≠Ny + Nz) 1
3 (2Ny + Nz)

R

b

(C.11)
after a rotation via

Mrot =

Q

ca

1Ô
2

1Ô
6

1Ô
3

≠ 1Ô
2

1Ô
6

1Ô
3

0 ≠
Ò

2
3

1Ô
3

R

db . (C.12)

Employing the same scheme as above leads to

BÕ = 1Ô
3

Q

a
Bext

Bext

Bext

R

b ≠ µ0N rot ·

Q

a
Ms

Ms

Ms

R

b 1Ô
3

≠ 4K

(
Ô

3)3M4
s

Q

a
M3

s

M3
s

M3
s

R

b (C.13)

BÕÕ = ≠µ0N rot ·

Q

a
mx

my

mz

R

b ≠ 4K

(
Ô

3)2M4
s

Q

a
3M2

s mx

3M2
s my

3M2
s mz

R

b (C.14)

v0 := iÊ

Q

a
”Mx

”My

”Mz

R

b+“

S

U

Q

a
”Mx

”My

”Mz

R

b ◊ BÕ + 1Ô
3

Q

a
Ms

Ms

Ms

R

b ◊ BÕÕ ≠ –

“ Ms

iÊÔ
3

Q

a
Ms

Ms

Ms

R

b ◊

Q

a
”Mx

”My

”Mz

R

b

T

V

(C.15)
Rand ultimately to the resonance formula for Bext Î [1 1 1]

Ê2 = Êres,2 + i�

= |“|
Û3

8
3

K

Ms
+ (Bext + µ0Ms (Nx ≠ Nz))

4 3
8
3

K

Ms
+ (Bext + µ0Ms (Ny ≠ Nz))

4

(C.16)

+ i“

3
8
3

K

Ms
+

3
Bext + µ0Ms

2 (Nx + Ny ≠ 2Nz)
44

–
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D
. Auxiliary Calculations .
. in the non-linear ‡ model

D.1. Derivation of Equation (8.7)

The goal is to obtain the Landau-Lifshitz equation ˆtM = “M ◊ Be� as a result
of the Euler-Lagrange equations

ˆL
ˆn̂i

≠ ˆt
ˆL

ˆ(ˆtn̂i)
= 0 (D.1)

with L as defined by (8.2) in the main text. To make things clearer, we directly
collect the contributions of Fex and Fdip in a single term with an e�ective magnetic
field ≠M n̂ · (µ0He�). This makes

L = ≠M

“
A(n̂) ˆtn̂ + M n̂ · Be�. (D.2)

Plugging (D.2) into n̂◊(D.1) and using the Einstein summation convention gives

0 = M

“

3
‘ijkn̂j

ˆAl

ˆn̂k
(ˆtn̂l) ≠ ‘ijkn̂j(ˆtAj)

4
≠ M ‘ijkn̂jBe�

k . (D.3)

Requiring ‘ijk
ˆA

j

ˆn̂
i

= n̂k … ˆA
j

ˆn̂
i

= 1
2 ‘ijkn̂k + symij for the gauge potential A,

where symij is a general symmetric part, lets us rewrite

ˆAl

ˆn̂k
= 1

2‘klmn̂m + symkl and

ˆAj

ˆt
= ˆAj

ˆn̂–

ˆn̂–

ˆt
= 1

2‘–k—n̂—
ˆn̂–

ˆt
+ sym–j

ˆn̂–

ˆt
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D. Auxiliary Calculations in the non-linear ‡ model

of the first and second term in the large parentheses, respectively, and we obtain

0 = M

“

3
1
2‘kij‘klm n̂j n̂m (ˆtn̂l) ≠ 1

2‘kij‘k—– n̂j n̂— (ˆtn̂–)
4

≠ M ‘ijkn̂jBe�
k

+ M

“

1
‘kij n̂j symkl (ˆtn̂l) ≠ ‘kij n̂j sym–j (ˆtn̂–)

2

= M

“
(‘kij‘klm n̂j n̂m ˆtn̂l) ≠ M ‘ijkn̂jBe�

k (D.4)

To get to the last line we renamed – æ l and — æ m making the two terms in the
first parentheses equal so they can be added. The terms in the second parentheses
cancel each other because symij = symji. Using ‘kij‘klm = ”il”jm ≠ ”im”jl we
arrive at

0 = M

“

Q

ca(ˆtn̂i) n̂2
¸˚˙˝

=1

≠n̂i (n̂m ˆtn̂m)¸ ˚˙ ˝
=0, since ˆ

t

n̂‹n̂

R

db ≠ M ‘ijkn̂jBe�
k (D.5)

Rewritten in vector notation gives

y ˆt(M n̂) = “(M n̂) ◊ Be� (D.6)
ˆtM = “M ◊ Be� (D.7)

D.2. Identities for Chiral Basis Vectors
A list of identities and relations between vectors defined in section 8.2.

n̂2
helix = ê2

1 = ê2
2 = 1 n̂helix · ê1 = n̂helix · ê2 = ê1 · ê2 = 0

ê2
+ = ê2

≠ = 0 ê+ · ê≠ = 1 n̂helix · ê± = 0

ê1 ◊ ê2 = n̂helix

ê+ ◊ ê≠ = ≠in̂helix

ê± ◊ ê± = 0
n̂helix ◊ ê+ = ≠iê+

n̂helix ◊ ê≠ = iê≠

n‹ · ê± = û i cos ◊Ô
2

nÎ · ê± = ± i sin ◊Ô
2

Ò ◊ ê1 = ≠Q ê1

Ò ◊ ê2 = Q

tan ◊
n‹

Ò ◊ n̂helix = ≠Q n‹

Ò ◊ ê+ = ≠Qê+ + i
Q tan ◊Ô

2
nÎ

Ò ◊ ê≠ = ≠Qê≠ ≠ i
Q tan ◊Ô

2
nÎ
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D.3. F
ex

Expansion to 4th Order

(ˆzn̂helix) · n̂helix = 0
(ˆzê±) · ê± = 0
(ˆzê±) · êû = ûiQ cos ◊

(ˆzê±) · n̂helix = ≠Q sin ◊Ô
2

Ò2n̂helix = ≠Q2 n‹

Ò2ê1 = ≠Q2ê1

Ò2ê2 = Q2

tan ◊
n‹

Ò2ê± = ≠Q2ê± ± iQ2 tan ◊Ô
2

nÎ

D.3. Fex Expansion to 4

th Order
The part of the Lagrangian density in the discussed non-linear ‡ model was given
by (8.4) in the main text as

Fex = fls

2
#
n̂

!
≠Ò2"

n̂ + 2Q n̂ · (Ò ◊ n̂)
$

≠ µ0M n̂ · Hext. (D.8)

Here, we go a step further and state all expansion terms of Fex up to first order.
Further expansion of n̂ in terms of fi or Â are needed

n̂ ¥ n̂helix

A
1 ≠ fi2

2 ≠
!
fi2"2

8

B
+ ê1fi1 + ê2fi2 (D.9)

¥ n̂helix

Q

ca1 ≠ gµB

M
|Â|2 ≠

1
gµ

B

M |Â|2
22

2

R

db +
Ú

gµB

M
(Âê+ + Âúê≠) . (D.10)

Plugging these expansions into (D.8) and keeping terms up to fourth order yields
the following contributions.

Zeroth Order
The static part is given by

F (0)
ex = ≠flsQ2

2 sin2 ◊ ≠ Mµ0Hext
0 cos ◊. (D.11)

Linear Order
Although one might expect a completely vanishing term due to a mean-field
calculation, a finite term is obtained

F (1)
ex =

!
+flsQ2 cos ◊ ≠ Mµ0Hext

0
"

sin ◊
¸ ˚˙ ˝

≠æ 0

+ flsQ

5
(ˆx, ˆy) ·

3
cos(Qz) ≠ sin(Qz)
sin(Qz) cos(Qz)

4
·
3

fi1 cos ◊
fi2

46 (D.12)

F (1)Õ

ex = flsQ

5
(ˆx, ˆy) · (cos(Qz)1 ≠ i sin(Qz)·y) ·

3
fi1 cos ◊

fi2

46
. (D.13)
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D. Auxiliary Calculations in the non-linear ‡ model

The first term vanished due to the mean-field equation of state when combining
with the remaining term of the dipolar contribution. The second term remains but
only generates surface term of the corresponding action, which can be rewritten
in terms of Pauli matrices · i to allow an easier conversion to the formulation in
terms of Â:

F (1)Õ

ex = flsQ

Ú
gµB

M

C 3
R ·

3
ˆx

ˆy

44†
· (cos(Qz)1 + i sin(Qz)·z)

·
3

1 + ·x

2 cos ◊ + 1 ≠ ·x

2

4
·
3

Â
Âú

4 D
. (D.14)

Quadratic Order

F (2)
ex = fi–

C 3
M

2 µ0Hext
0 cos ◊ ≠ fls

2 Ò2
4

1–— ≠ flsQ2

2

3
cos2 ◊ 0

0 cos(2◊)

4

–—

≠ iflsQ sin ◊
!

cos(Qz)ˆx + sin(Qz)ˆy

"
·y

–—

D
fi— (D.15)

where ·y is the second Pauli-matrix and Einstein summation convention has been
used. Using again the identities for the Pauli matrices (8.26) let us obtain the Â
representation.

F (2)
ex = 1

2
gµB

M
Â†

Ë !
Mµ0Hext

0 cos ◊ ≠ flsÒ2"
1

≠ flsQ2

2
!
(1 + ·x) cos2 ◊ + (1 ≠ ·x) cos(2◊)

"

+ i2flsQ sin ◊
!

cos(Qz)ˆx + sin(Qz)ˆy

"
·z

È
Â (D.16)

This expression can be simplified further by rewriting cos(2◊) = cos2 ◊ ≠ sin2 ◊
and using the equation of state to eliminate the therms proportional to cos ◊ and
cos2 ◊. Again, to use the equation of state, one also includes the “left over term”
of the dipolar contribution, i.e., (8.35) at this point.
With n‹ as defined in (8.20) we get

F (2)Õ

ex = fls

2
gµB

M
Â†

Ë
≠ 1Ò2 + Q2 sin2 ◊

2 (1 ≠ ·x) + i2Q·zn‹(r) · Ò
È
Â. (D.17)

By defining E0 = gµBQ2fls/M = gµBµ0Hint
c2 using definitions in (8.16), the

pre-factor can be summarized to fl
s

2
gµ

B

M = 1
2

E
0

Q2

.
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D.3. F
ex

Expansion to 4th Order

Cubic Order

F (3)
ex = ≠1

4flsQ2 sin(2◊) fi2fi2

+ 1
4flsQ

5
fi2

1

1
≠ 2 cos(Qz) [ˆyfi2 ≠ cos ◊ ˆxfi1] + 2 sin(Qz) [cos ◊ ˆyfi1 + ˆxfi2]

2

+ fi2
2

1
+ 2 cos(Qz) [ˆyfi2 ≠ cos ◊ ˆxfi1] ≠ 2 sin(Qz) [cos ◊ ˆyfi1 + ˆxfi2]

2

+ 2fi1fi2

1
2 sin(Qz) [cos ◊ ˆyfi2 ≠ ˆxfi1] + 2 cos(Qz) [ˆyfi1 + cos ◊ ˆxfi2]

26

(D.18)

F (3)
ex = ≠1

4flsQ2 sin(2◊) fi2fi2

+ 1
2flsQ

5
fi2

1

1
≠ cos(Qz) [ˆyfi2 ≠ cos ◊ ˆxfi1] + sin(Qz) [cos ◊ ˆyfi1 + ˆxfi2]

2

+ fi2
2

1
+ cos(Qz) [ˆyfi2 ≠ cos ◊ ˆxfi1] ≠ sin(Qz) [cos ◊ ˆyfi1 + ˆxfi2]

2

+ fi1fi2

1
sin(Qz) [2 cos ◊ ˆyfi2 ≠ 2ˆxfi1] + cos(Qz) [2ˆyfi1 + 2 cos ◊ ˆxfi2]

26

(D.19)

Partial integration, i.e. fi2
1(ˆifi2) æ ≠(ˆifi2

1)fi2 = ≠2fi1fi2(ˆifi1) leads to

F (3)
ex = ≠1

4flsQ2 sin(2◊) fi2fi2

+ 1
2flsQ

5
cos(Qz) cos ◊

#
fi2

1ˆxfi1 + fi2
2ˆyfi2

$
+ sin(Qz) cos ◊

#
fi2

1ˆyfi1 ≠ fi2
2ˆxfi2

$

+4 sin(Qz) [cos ◊ fi1fi2ˆyfi2 ≠ fi1fi2ˆxfi1]+4 cos(Qz) [fi1fi2ˆyfi1 + cos ◊ fi1fi2ˆxfi2]
6

(D.20)

In the case of a pure helix, i.e. ˆ̂nhelix ‹ Qhelix the angle ◊ = fi
2 ∆ cos ◊ = 0.

Hence, the above expression simplifies significantly to

L(3)
0 (◊ = fi

2 ) = ≠1
4flsQ2 sin(2◊) fi2fi2 ≠ 2flsQfi1fi2 [sin(Qz)ˆx ≠ cos(Qz)ˆy] fi1

= 1
4flsQ2 sin(2◊) fi2fi2 ≠ 2flsQfi1fi2 (ê1 · Ò)fi1 (D.21)
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Quartic Order

F (4)
ex = 1

8

5 !
≠2flsQ2 sin2 ◊ ≠ Mµ0Hext

0 cos ◊
" !

fi2"2

≠ 4fls

3
2fi2

1
!
(ˆxfi1)2 + (ˆyfi1)2 + (ˆzfi1)2"

+ fi2
1

!
(ˆxfi2)2 + (ˆyfi2)2 + (ˆzfi2)2"

+ 2fi2
2

!
(ˆxfi2)2 + (ˆyfi2)2 + (ˆzfi2)2"

+ fi2
2

!
(ˆxfi1)2 + (ˆyfi1)2 + (ˆzfi1)2"

+ 2fi1fi2fi2
1 ((ˆxfi1)(ˆxfi2) + (ˆyfi1)(ˆyfi2) + (ˆzfi1)(ˆzfi2))

+ fi2
1fi2

!
ˆ2

xfi2 + ˆ2
yfi2 + ˆ2

z fi2
"

+ fi1fi2
2

!
ˆ2

xfi1 + ˆ2
yfi1 + ˆ2

z fi1
"

+ fi3
1

!
ˆ2

xfi1 + ˆ2
yfi1 + ˆ2

z fi1
"

+ fi3
2

!
ˆ2

xfi2 + ˆ2
yfi2 + ˆ2

z fi2
" 26

(D.22)

A first partial integration i.e. fi2
1(ˆifi2)(ˆifi2) æ ≠2fi1fi2(ˆifi1)(ˆifi2) ≠ fi2

1fi2(ˆ2
i fi2)

yields

F (4)
ex = 1

8

5 !
≠2flsQ2 sin2 ◊ ≠ Mµ0Hext

0 cos ◊
" !

fi2"2

≠ 4fls

3
2fi2

1
!
(ˆxfi1)2 + (ˆyfi1)2 + (ˆzfi1)2"

+ 2fi2
2

!
(ˆxfi2)2 + (ˆyfi2)2 + (ˆzfi2)2"

+ fi2
2

!
(ˆxfi1)2 + (ˆyfi1)2 + (ˆzfi1)2"

+ fi1fi2
2

!
ˆ2

xfi1 + ˆ2
yfi1 + ˆ2

z fi1
"

+ fi3
1

!
ˆ2

xfi1 + ˆ2
yfi1 + ˆ2

z fi1
"

+ fi3
2

!
ˆ2

xfi2 + ˆ2
yfi2 + ˆ2

z fi2
" 26

(D.23)

A second partial integration fi2
2(ˆifi1)(ˆifi2) æ ≠2fi1fi2(ˆifi1)(ˆifi2) ≠ fi1fi2

2(ˆ2
i fi1)

leads to

F (4)
ex = 1

8

5 !
≠2flsQ2 sin2 ◊ ≠ Mµ0Hext

0 cos ◊
" !

fi2"2

≠ 4fls

3
2fi2

1
!
(ˆxfi1)2 + (ˆyfi1)2 + (ˆzfi1)2"

+ 2fi2
2

!
(ˆxfi2)2 + (ˆyfi2)2 + (ˆzfi2)2"

≠ 2fi1fi2 ((ˆxfi1)(ˆxfi2) + (ˆyfi1)(ˆyfi2) + (ˆzfi1)(ˆzfi2))

+ fi3
1

!
ˆ2

xfi1 + ˆ2
yfi1 + ˆ2

z fi1
"

+ fi3
2

!
ˆ2

xfi2 + ˆ2
yfi2 + ˆ2

z fi2
" 26

(D.24)

Collecting all the terms by summing over all fi components – and spacial compo-
nents i gives the following compacted expression.

F (4)
ex = ≠1

8
!
2flsQ2 sin2 ◊ + Mµ0Hext

0 cos ◊
" !

fi2"2

≠ fls

2
ÿ

–,i

1
2fi2

– (ˆifi–)2 ≠ 2fi1fi2 (ˆifi1) (ˆifi2) + fi3
–

!
ˆ2

i fi–

" 2
(D.25)
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D.4. Fourier Transformation of n̂(r)

n̂
helix

(k) =
⁄

dr n̂
helix

(r)e≠ik·r =
⁄

dr
#
nÎ + n‹(r)

$
e≠ik·r =

⁄
dr

C
nÎ + sin ◊

2

A
eiQ·r + e≠iQ·r

≠ieiQ·r + ie≠iQ·r

0

BD
e≠ik·r

= ‹

C
nÎ”(k) + sin ◊

2

A
”(k + Q) + ”(k ≠ Q)

i”(k + Q) ≠ i”(k ≠ Q)
0

BD
(D.26)

ê
1

(k) =
⁄

dr ê
1

(r)e≠ik·r =
⁄

dr

A
≠ 1

2i

(eiQ·r ≠ e≠iQ·r)
1

2

(eiQ·r + e≠iQ·r)
0

B
e≠ik·r = ‹

2

A
≠i”(k + Q) + i”(k ≠ Q)

”(k + Q) + ”(k ≠ Q)
0

B
(D.27)

ê
2

(k) =
⁄

dr ê
2

(r)e≠ik·r =
⁄

dr

Ë
tan ◊nÎ ≠

1
tan ◊

n‹(r)
È

e≠ik·r = ‹

C
tan ◊nÎ”(k) ≠

cos ◊

2

A
”(k + Q) + ”(k ≠ Q)

i”(k + Q) ≠ i”(k ≠ Q)
0

BD
(D.28)

ê
+

(k) =
⁄

dr ê
+

(r)e≠ik·r = ‹
Ô

2

S

Ui tan ◊nÎ”(k) +

Q

a
≠i cos2

!
◊

2

"
”(k + Q) + i sin2

!
◊

2

"
”(k ≠ Q)

cos2

!
◊

2

"
”(k + Q) + sin2

!
◊

2

"
”(k ≠ Q)

0

R

b

T

V (D.29)

ê≠(k) =
⁄

dr ê≠(r)e≠ik·r = ‹
Ô

2

S

U≠i tan ◊nÎ”(k) +

Q

a
≠i sin2

!
◊

2

"
”(k + Q) + i cos2

!
◊

2

"
”(k ≠ Q)

sin2

!
◊

2

"
”(k + Q) + cos2

!
◊

2

"
”(k ≠ Q)

0

R

b

T

V (D.30)

Collecting all those terms yields

n̂(k) =
⁄

dr n̂(r)e≠ik·r

= n̂
helix

(k) ≠
1

2‹2

ÿ

kÕkÕÕ

n̂
helix

(k ≠ kÕ ≠ kÕÕ)
!

fi(kÕ) · fi(kÕÕ)
"

+ 1
‹

ÿ

kÕ
,i

fi
i

(kÕ)ê
i

(k ≠ kÕ) (D.31)

= n̂
helix

(k) ≠
gµ

B

µ„

1
‹2

ÿ

kÕkÕÕ

n̂
helix

(k ≠ kÕ ≠ kÕÕ)
!

Â(kÕ) · Âú(kÕÕ)
"

+
Ú

gµ
B

µ„

1
‹

ÿ

kÕ

#
ê

+

(k ≠ kÕ)Â(kÕ) + ê≠(k ≠ kÕ)Âú(kÕ)
$

(D.32)177
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D.5. Quadratic order of Sdip in fi

To derive the matrices Vdip(0) and Vdip(k), cf. equations (8.34) and (8.36), we first consider n̂ dependent on the real fields
fi instead of the complex fields Â. This makes the derivation of Sdip easier. To obtain the representation in terms of the
natural Â fields is finally obtained by a rotation via R, (8.25).
The first step is to plug (D.29) into the Fourier transform of Sdip and only keep terms quadratic in fii to give the e�ective
action S(2)

dip.

S
dip

= 1

2‹

q
k

n̂(k)‰≠1

dip

(k)n̂(≠k)

=

1

2‹

q
k

5
ˆn

h

(k)≠ 1

2‹

2

q
qÕqÕÕ

ˆn
h

(k≠qÕ≠qÕÕ
)(fi(qÕ

)·fi(qÕÕ
))+

1

‹

q
qÕ
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i

(k≠qÕ
)ˆe

i

(qÕ
)

6
‰

≠1
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(k)

5
ˆn

h

(≠k)≠ 1

2‹

2

q
qÕqÕÕ

ˆn
h

(≠k≠qÕ≠qÕÕ
)(fi(qÕ

)·fi(qÕÕ
))+

1

‹

q
qÕ

fi

i

(≠k≠qÕ
)ˆe

i

(qÕ
)

6

(D.33)

S(2)
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=

1
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3

q
k

5
≠ ˆn
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q
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(qÕ
)fi

i
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)

D

(D.34)

with abbreviation n̂h = n̂helix. In the following, we examine each term individually and separate between the two cases of
k π 1/L (case 1) and k ∫ 1/L (case 2), respectively. In those two cases the dipolar tensors take are

case 1: ‰≠1
dip(0) = µ0M2

Q

a
Nx 0 0
0 Ny 0
0 0 Nz

R

b case 2: ‰≠1
dip(k) = µ0M2

Q

a
k̂xk̂x k̂xk̂y k̂xk̂z

k̂yk̂x k̂yk̂y k̂yk̂z

k̂z k̂x k̂z k̂y k̂z k̂z

R

b . (D.35)
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Third terms: i = j = 1
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Third terms: i = 1, j = 2
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ê
2

(q)‰≠1

dip

(k)ê
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by also renaming the remaining sums over qÕ to sums over k. In the first case, when ‰≠1
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Note that the sign changes between the upper left and lower right block are not obvious in when only collecting term for k = 0 since the
relation between k and ≠k is lost. This structure, however, becomes clear when evaluating case 2. To derive the representations (8.34)
and (8.36) of the main text, one first rewrites the individual block matrices in terms of Pauli matrices. A followed rotation from the fi
to the Â fields via (8.25), which ultimately permutes the Pauli matrices and provides an e�ective conversion of µ

0

M2 æ E
0

‰int

con

/2,
gives the desired result.185
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