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ABSTRACT

Chiral magnets are materials that lack inversion symmetry in their crystal struc-
ture and contain a number of different magnetic phases. In this thesis we focus
on cubic crystals. Besides a field-polarized phase for strong applied magnetic
fields and a paramagnetic phase above a critical temperature, there are the more
interesting helical and conical phases as well as, most prominently, a trigonal
lattice of topologically stable magnetic whirls, so-called skyrmions. Their recent
discovery in MnSi has sparked a great interest in them, largely because of their
topological nature and the prospects of novel applications, for instance in future
magnetic storage devices. The last three mentioned phases are spin textures
due to the Dzyaloshinskii-Moriya spin-orbit interaction which is induced by the
aforementioned lack of inversion symmetry. We theoretically study spin wave
excitations with a focus on these phases, which are essential to understand for
dynamic applications.

Part T is an introductory chapter to chiral magnets, their phases, and their
static properties. The skyrmions deserve special attention as they are the most
complex phase and necessitate the introduction of concepts from topology. We
conclude this overview by a theoretical description of chiral magnets in terms of
a Ginzburg-Landau theory. To study the dynamics, we work in a mean-field limit
with added Gaussian fluctuations. The latter are also necessary to stabilize the
skyrmion lattice phase with respect to the conical phase.

In part IT we introduce and prepare expressions and concepts relevant for the
study of spin waves. The first two sections cover their fundamental origin and two
experimental methods, namely microwave excitation with coplanar waveguides
and inelastic neutron scattering. Collaborators employed those two methods to
measure spin waves in various chiral magnets. Their data are also presented in
the course of this thesis and compared to theory.

Part IIT addresses spin waves in the helical/conical phase, so-called helimagnons,
and first focuses on homogeneous spin waves at the I'-point of the one dimensional
magnetic Brillouin zone. We find two modes whose resonance frequencies are
decisively influenced by dipole-dipole interaction. They are, in particular, dege-
nerate without it. An astonishing effect is their perfectly linear polarization at
zero field. This can be used to excite the two modes individually. Their resonance
frequencies can also be calculated analytically for which we employed a non-linear
o model, opposed to the Ginzburg-Landau model for numerical calculations. The

iii



latter is then used to calculate the helimagnon spectrum in the remainder of the
Brillouin zone. We also calculate spectral weights in correspondence with neutron
scattering experiments. In the longitudinal spectrum we find three branches whose
detection depends on the ability to detect spin-flip and non-spin-flip scattering.

The structure of part IV resembles the previous one but covers magnons in the
skyrmion lattice. At the I'-point there are two gyration and a breathing mode.
The spectrum with finite momentum exhibits a plethora of modes. The weight
distribution for neutron scattering spreads over all of them in a way, that on
average resembles the three helimagnon branches. Finally, we calculate topological
invariants called Chern numbers with good confidence for the lowest 14 bands.
Four of them have Chern number zero, the remaining ones have Chern number
one.

iv



KURZZUSAMMENFASSUNG

Chirale Magnete sind Materialien ohne Inversionssymmetrie in ihrer Kristall-
struktur, die aufgrund dessen eine Vielzahl von unterschiedlichen, magnetischen
Phasen aufweisen. In dieser Arbeit stehen chirale Magnete mit kubischer Kris-
tallstruktur im Vordergrund. Neben einer feldpolarisierten Phase bei starken
angelegten Magnetfeldern und einer paramagnetischen Phase oberhalb einer kriti-
schen Temperatur, gibt es die interessanteren helischen und konischen Phasen,
sowie die wohl prominenteste Phase, ndmlich die sogenannte Skyrmionphase.
Skyrmionen sind in einem Dreiecksgitter angeordnete, topologisch stabile, ma-
gnetische Wirbel. Thre kiirzliche Entdeckung in MnSi erzeugte grofies Interesse,
besonders wegen ihrer topologischen Natur und die dadurch erhoffte Aussicht auf
neuartige Anwendungen, beispielsweise in zukiinftigen, magnetischen Datentra-
gern. Die letzten drei genannten Phasen sind Spinstrukturen, die durch die auf
Spin-Bahn-Kopplung basierende Dzyaloshinskii-Moriya Wechselwirkung bedingt
sind. Letztere ist wiederum durch die fehlende Inversionssymmetrie induziert ist.
Wir untersuchen theoretisch die Spinwellenanregungen in diesen Phasen, deren
Verstédndnis unabdingbar fiir dynamische Anwendungen ist.

Part I ist eine Einfithrung iiber chirale Magnete, ihre Phasen und statischen
Eigenschaften. Die Skyrmionen bediirfen besonderer Aufmerksamkeit, da sie die
komplexeste Phase ausmachen fiir die Konzepte der Topologie von Bedeutung
ist. Wir schlieen diese Ubersicht mit der theoretischen Beschreibung chiraler
Magnete mithilfe einer Ginzburg-Landau Theorie ab. Die Dynamik untersuchen
wir basierend auf einer Molekularfeldtheorie mit zusétzlichen Gauflschen Fluktua-
tionen. Letztere sind auflerdem notwendig um das Skyrmion-Gitter im Vergleich
zur konischen Phase zu stabilisieren.

In Part I bereiten wir Ausdriicke und Konzepte vor, die relevant fiir das Studi-
um von Spinwellen sind. Die ersten zwei Sektionen behandeln ihren fundamentalen
Ursprung und stellen zwei experimentelle Methoden vor, ndmlich Mikrowellen-
anregungen mit ko-planaren Wellenleitern, und inelastische Neutronenstreuung.
Kollegen aus der Experimentalphysik benutzten diese zwei Methoden um Spin-
wellen in verschiedenen, chiralen Magneten zu messen. Thre Daten werden auch
im Rahmen dieser Arbeit vorgestellt und mit der Theorie verglichen.

Part IIT behandelt Spinwellen in der helischen und konischen Phase, sogenannte
Helimagnonen, und konzentriert sich zuerst auf homogene Spinwellen am I'-Punkt
der hier eindimensionalen, magnetischen Brillouin-Zone. Wir finden zwei Moden,



deren Resonanzfrequenzen bestimmend durch die Dipol-Dipol-Wechselwirkung
beeinflusst werden. Ohne sie sind die beiden Moden entartet. Ein erstaunlicher
Effekt ist ihre perfekte, lineare Polarisation im Nullfeld. Dieser kann ausgenutzt
werden um die Moden unabhéngig voneinander anzuregen. Thre Resonanzfrequen-
zen konnen analytisch bestimmt werden, wofiir wir ein nichtlineares o-Modell, im
Gegensatz zu dem Ginzburg-Landau-Modell fiir numerische Rechnungen, anwen-
den. Letzteres benutzen wir um das Helimagnonspektrum im restlichen Bereich
der Brillouin-Zone zu berechnen. Auflerdem berechnen wir spektrale Gewichte,
die Ergebnissen inelastischer Neutronenstreuung entsprechen. Im longitudina-
len Spektrum gibt es drei Zweige deren Detektion von der Einstellung abhingt
Spin-Flip- und nicht-Spin-Flip-Streuung zu messen.

Part IV &hnelt strukturell dem vorherigen, behandelt jedoch Magnonen im
Skyrmion-Gitter. Am I'~Punkt finden sich zwei rotierende und eine atmende Mode,
wahrend das Spektrum bei endlichem Impuls eine Unmenge an Moden aufweist.
Die Gewichtsverteilung der inelastischen Neutronenstreuung verteilt sich iiber
ihnen in einer Art und Weise die gemittelt den drei Zweigen des Helimagnon-
spektrums dhnelt. Abschlieflend berechnen wir topologische Invarianten, genannt
Chern Zahlen, fiir die 14 tiefsten Bander. Vier von ihnen haben den Wert Null,
die anderen Chern Zahlen den Wert eins.
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GENERAL INTRODUCTION

All around us in everyday life ranging from staircases to flower patterns, shapes
of animals and more, one encounters a sense of handedness or chirality. It is
the fundamental property responsible for all the fascinating effects that we will
explore in this thesis and they are not only present at macroscopic but also
microscopic length scales and occur in materials and places which may not be
that obvious. In the following parts and chapters we will explore a category of
such materials, namely cubic chiral magnets, or helimagnets, and study their spin
wave excitations.

Arguably the most prominent chiral magnet is manganese silicide, MnSi, which
has been intensively studied since the 60’s. At that time MnSi was still considered
mainly a ferromagnet [1, 2] while the helimagnetic behavior was discovered later
in 70’s [3, 4]. In the helimagnetic phase, the magnetization forms an arrangement
of screws that either align with certain crystal directions when applied external
magnetic fields are low (helical phase), or align with the field direction for higher
fields (comical phase). Eventually, for increasing field strength, there is a 2
order phase transition into a field polarized phase. First experiments to probe
spin waves have also been performed during that time using neutron scattering [5]
covering the extent of the nuclear Brillouin zone. MnSi was still full of surprises
like the non-Fermi liquid behavior at high pressures [6], which drove further
studies. The most relevant discovery to our studies, was the discovery of a

lattice of topologically stable, magnetic whirls, so-called skyrmions, in 2009 [7].

The description of their topological structure goes back to a proposal of nuclear
physicist Tony H. R. Skyrme in the late 50’s to think of neutrons and protons as
non-linear excitations of pion fields [8]. While he used a three dimensional field
description in his work, the corresponding structure in MnSi, or as we now know
many other materials as well, is two dimensional and therefore sometimes called a
“baby-skyrmion”. Such a description was proposed by Bogdanov and Yablonskii
in 1989 [9].

After said discovery the community studying skyrmion hosting materials, like
the bulk chiral magnets we consider in this thesis, grew substantially. This was
not least because of the prospect of novel applications in future magnetic storage
devices like racetrack memory as suggested by Stuart Parkin et al. [10]. A big
advantage of skyrmions is their comparably very low threshold current density
of the order of j ~ 10° A/m? above which the skyrmion lattice texture gets
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unpinned from disorder. This is ultra-low compared to a current density of around
j ~ 10" A/m? needed to move ordinary domain walls, which is used in current
devices [11].

Equally important to information storage in information technology is the ability
to carry information. This is where spin waves or magnons have gained increased
attention [12]. Magnons usually refer to the particle-like spin excitation in a
magnetic material while the wave-like part is referred to as spin waves. Spin waves
offer the possibility to transmit and process information without moving electrical
charge carriers which can lead to unwanted heating effects. Magnonic devices
also offer an integration with microwave electronics. A big advantage is that the
wavelength of spin waves corresponds to the practically relevant frequencies within
the GHz to THz range. This offers prospects for miniaturization [13]. Before
one is able to build devices that can exploit such benefits, detailed fundamental
research is a prerequisite, which is the objective of this thesis.

After giving more detailed introductions to helimagnets, their magnetically
ordered phases and basic aspects of spin waves in parts I and II, we will discuss in
detail the spin wave modes and spectra in chiral magnets. In part III we will focus
on spectra in the helical and conical phases while the focus in part IV is on spin
waves in the skyrmion lattice phase. Unique to part III is an analytical calculation
based on a non-linear o model which yields an exact formula for uniform spin
wave resonances including dipolar interactions. Additionally, we also get good
analytical approximations for the helimagnon spectrum for momenta longitudinal
and perpendicular to the helix pitch. The non-trivial topological nature of
skyrmions motivates us in part IV to also address and calculate topological
invariants, called Chern numbers, of the magnon bands in the skyrmion phase.
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INTRODUCTION

1.1. DEFINITION OF CHIRALITY

The word chirality is derived from the Greek word xelp (Kheir) which means hand.
It is a property of asymmetry and, like a hand, a chiral object is non-superposable
on its mirror image [14]. After creating the mirrored image of such an object,
it is hence not possible to map it onto the original image just by rotations and
translations alone. Ultimately, there is a right and left sense of handedness like
that of right and left feet depicted in figure 1.1. Rotating and translating one of
the feet will never generate the other.

Chiral objects occur in several branches of
science like Biology and Chemistry in the form
of chiral molecules, but also in many parts of
Physics ranging from left and right handed
quarks in Particle Physics to chiral magnets
which are the center of attention in this thesis.
The latter are, as the name suggests, magnets
that possess a certain sense of chirality or hand-
edness intrinsic to the atomic lattice structure.
It is achieved by having neither mirror nor

Figure 1.1: Left and right feet as
examples of chiral objects. The
image shows a logo of a famous

inversion symmetry. Examples of such mate- band of Cologne called De Blick
rials are the metal MnSi [16] and the insulator Fé6ss which translates to The
Cuz08e03 [17]. In section 1.3 we elaborate Naked Feet [15].

more on these and on more materials and their

properties.

In the model description of chiral magnets, an interaction term in the free
energy, called Dzyaloshinskii-Moriya interaction, is responsible for the occurrence
of chirality. Ordinary (anti-)ferromagnets on the other hand are non-chiral and well
described by the exchange interaction between spins [18]. Exchange interaction is
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well modeled by the Heisenberg model' in which the exchange Hamiltonian for
spins S on a lattice is given by

HHeisenberg = - Z quSz . Sj7 (1-1)
i.J

summing over lattice sites ¢ and j. The exchange integral J;; is a measure for
the strength of the interaction. In many models, it is sufficient to only consider
interaction between neighboring sites which is usually denoted by (i, 7) and also
an isotropic exchange, i.e., J;; = J. The ferromagnetic case is then realized for
J > 0 as the energy will be lowest for a parallel spin-alignment. Depending on
the lattice structure, a negative J can, for example, yield an anti-ferromagnetic
state, but it can become arbitrarily complicated, for example when frustration
plays a role in an Ising-spin model.

In the systems that we focus on in this thesis, the magnetization varies on a
length scale much larger than the lattice spacings. It is hence permitted to use a
continuum approach for the magnetization M (r) as a continuous function of space.
In that context, a Ginzburg-Landau theory is often used, see sections 3.2 and 3.5.
There, equilibrium thermodynamics are completely determined by the free energy
functional F' that depends on temperature and the (local) order parameter, here
M (7). Deviations from parallel alignment get penalized by finite gradients:

Flioisenberg = /dr J(VM(r))*. (1.2)

The Dzyaloshinskii-Moriya interaction can also be written in a discrete and
continuous version which read

Hom =Y _ Dij - (S x S) (1.3)
Fpoum = /erM('r) (V x M(r)). (1.4)

Equation (1.3) was part of Moriya’s initial publication [20], which was an extension
of Dzyaloshinskii’s study on weak ferromagnetism in a-FeoO3, MnCO3 and CoCOg
via a phenomenological Landau-theory of second order phase transitions. Therein,
D is a constant vector pointing along the trigonal axis of a-FesOgs, an axis fixed
by the crystal structure. Spins then prefer a canted arrangement, that would even
be perpendicular, if (1.3) would be the solely relevant term. Perpendicular to
each other and to D. Left- or right-handed chirality is determined by an overall
negative or positive sign of Hpy, respectively.

Both Heisenberg- and DM interaction are present in chiral- or helimagnets.
They compete against each other and the result of that competition is a helical
structure with neither parallel nor perpendicular neighboring spins.

In the Heisenberg model, spins have an O3 symmetry, meaning they can rotate any way in
three dimensions. This stands in contrast to the Ising-model with a Zs symmetry, where
spins variables are only allowed to take two values, either up or down. A mixture between
those two can be realized via a clock model that has a Zy symmetry [19].



1.2. Typical Magnetic Phases
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Figure 1.3: Magnetically ordered phases in chiral magnets.

1.2. TyrPicAL MAGNETIC PHASES

A well known chiral magnet, and probably the most studied one for its availability
of high-quality single crystals, is MnSi. Therefore, we use its phase diagram
for the discussion of magnetic phases generally present in chiral magnets. More
detailed properties of MnSi and further materials, which also contain the same or
similar magnetic phases, are listed and described in section 1.3. For now, let us
focus on a typical phase diagram as shown in figure 1.2.

At high temperatures, the system is in a paramagnetic state (PM) where local
magnetization points in arbitrary directions and the net-magnetization is zero.

Lowering the temperature, one first enters an intermediate regime (IM), i.e.,

the fluctuation disordered regime [22-24]. It is a crossover region between the
paramagnetic and magnetically ordered phases. On a mean-field level one obtains
a second-order phase transitions, but fluctuations drive it to first order.

After said first order transition at a critical temperature T, one enters an ordered
phase. At zero magnetic field this is the helical phase where magnetization forms
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a twisted structure as shown in figure 1.3(a). Note, that the local magnetization is
perpendicular to the helix pitch and hence does not carry any mean magnetization.
At zero field, the pitch direction is determined by cubic anisotropies [25, 26] and
the formation of domains with different pitch directions is possible. Upon applying
and increasing an external magnetic field H®*%, the system transitions from a
helical into a conical arrangement. First, all pitch vectors start to align with
the direction of H'™, which generally comprises of H*' demagnetization and
anisotropy effects, but mostly corresponds to the direction H®**, especially for
higher fields. This process is completed at a critical field strength H,. For
more details see section 3.4. After that, the magnetization tilts towards H™®
forming a conical shape, as shown in figure 1.3(b), and generating a finite mean
magnetization also pointing towards H'™*. This is the conical phase.

Increasing the magnetic field makes the cone more and more acute until it
vanishes and a field polarized or ferromagnetic state (FM) is obtained, figure 1.3(c).
This happens at a critical field H.o and the phase transition is of second order,
i.e., the magnetization changes continuously.

Just below T, and at a finite magnetic field between H.; and H.o, roughly at
0.5 Heo, there exists a small phase pocked indicated as the A-phase in figure 1.2. It
contains a trigonal lattice of magnetic whirls, so-called skyrmions. An impression
of this skyrmion lattice or skyrmion crystal phase is shown in figure 1.3(d). More
details are given in chapter 2.

1.3. MATERIALS & PROPERTIES

By today, many materials exhibiting the previously described phases have been
found and investigated. The initial spark that ignited growing interest and re-
search on, at first, chiral magnets, was the discovery of a skyrmion lattice phase
in MnSi [7]. From then on, a lot of effort has been put into creating and studying
materials that might be able to host skyrmions natively, cf. chapter 2.

The focus of this thesis lies on models that apply to study bulk chiral mag-
nets with corresponding experiments being conducted by collaborators on MnSi,
Fe;_,Co,Si and CuyOSeOg3. The first two crystallize in a cubic B20 alloy struc-
ture, which is a name for the FeSi-structure type, but all three have the space
group P213 of point group 23, cf. No. 198 in [27]. This space group lacks a center
of inversion, which leads to the existence of both left and right handed versions
of the crystals. The selection process can depend on the substrate or seed on top
of which the crystals are grown. It hands down their own chirality to the sample.
In the following, we describe those three materials in more detail. Characteristic
parameters are summarized in table 1.1 on page 14.
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Figure 1.4: B20 crystal structure and magnetization measurements of MnSi.

MANGANESE SILICIDE: MNSI

This material is a metallic, itinerant-electron magnet [3]. The cubic structure
has an edge length of aymsi = (4.5480 4 0.0002) A[16] forming a cube containing
eight atoms per unit cell, i.e., four formula units, and their positions are defined
by the following coordinates:

1 1 1 1 1 1
((uau»u); (5 +U,§ _uaﬁ); (7 _uaavf +u)7 (a,f —I-’LL,* _u)) (15)

2 2
with uym = 0.138 and ug; = 0.845 [5], cf. figure 1.4(a). The magnetization in the
ferromagnetic state comprises 0.4 up per Mn atom [28].

Furthermore, MnSi can be grown in an ultra-pure form with a mean free path
of up to 5000 A which suggests a good description by Fermi-liquid theory, a theo-
retical model dating back to Landau that is able to describe the normal state of
most metals at sufficiently low temperatures. MnSi, however, shows an uncharac-
teristic behavior for Fermi-liquids above a critical pressure p.. At lower pressures,
when the system is weakly spin polarized, the resistivity p depends quadratically
on temperature as is expected by Fermi-liquid-theory. When magnetic order is
suppressed at p > p., this behavior changes abruptly to p oc T73/2 [6, 29-33]. Note
that this phenomenon is not only confined to an area close to the quantum critical
point but over a wider area of the phase diagram. Reasons for the appearance of
this non-Fermi-liquid phase are still unknown and its understanding is sometimes
referred to as the holy grail of MnSi.

The magnetic phase diagram of MnSi was already shown in figure 1.2. Below
a critical temperature of T, ~ 29 K, the system exhibits helical magnetic order
at zero or small magnetic field [3, 34, 26]. The pitch vector Q is pinned to a
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§50— Figure 1.5: Effects of doping
and temperature on Fe;_xMn,Si
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(111) direction in the helical phase via cubic anisotropies and the corresponding
wavelength is approximately 180 A long and almost temperature independent. In
terms of chirality it can be said that a left handed chirality of the crystal structure
corresponds to a left handed magnetic chirality [35, 36].

Another important property concerns the magnetic susceptibility in the conical
phase Xcon. The striking feature is a constant behavior at low temperatures.
Measurements have, for example, been performed by Bauer et al. [21] and are
shown in figure 1.4(b). The slope of magnetization vs. applied field is truly linear
for temperatures around 2 K, but softens out a little bit for higher temperatures.
This is still fine for small fields, but needs to be kept in mind for situations
with comparably high temperatures and fields. As the magnetic field inside of a
macroscopic sample depends on the strength of the shape dependent demagneti-
zation field, xcon is also shape dependent. Said field can be characterized via a
demagnetization factor N, corresponding to a principal axis in field direction, cf.
section 3.3. A shape independent constant, however, can be extracted via [37]

. 1
mt-— | 1.6
Xcon —1 Nz ( )

con —

The material constant y of MnSi has a value of 0.34. The property of a constant
conical susceptibility is not reserved for MnSi alone, but occurs in the other chiral

magnets as well. Values for other materials are listed in table 1.1.

IRON COBALT SILICIDE: FE;_xC0OxSI

The magnetic and conducting properties of Fe; ,Co,Si depend on doping and
temperature as can be seen in figure 1.5. When interested in helimagnets, most
experiments are therefore conducted with a doping between x = 0.2 and x = 0.5.
Like MnSi, both FeSi and CoSi also crystallize in a B20 structure which allows
the full doping range.

10
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Figure 1.6: (a) and (b): left-
and right-handed crystal
structure of B20-alloys like
MnSi or Fei—xCoxSi. (c)
left- and (d) right-handed

) skyrmion- or, more gener-

A o g < s ally, magnetic helicity with

e » } = casel he magnetic

“ X | \'\:\> case II ;espect to t 9
ield.
Case | and Il refer to the

L different possibilities of as-

{« "2 sociation between the two.
=T lB While for MnSi case | is al-
ways true, for Fej_xCoxSi
both cases may apply.

Picture taken from [39].

The helix pitch is weakly oriented along (100) and in some measurements even
a random distribution has been found [40].
Figure 1.6 shows a B20 structure like iron cobalt silicide in both chiralities, illus-
trated by yellow arrows.

Contrary to MnSi, the handedness of the magnetic spin structure does not
always correspond to the handedness of the atomic crystal structure, i.e., a left
handed crystal structure does not mean that magnetic helices or skyrmions have a
left handed chirality as well (case I in figure 1.6), but can be exactly the opposite
(case II). In Fe;_,Co,Si the association between crystal and magnetic chirality is
doping dependent. That means choosing a fixed crystal chirality and changing
the doping strength will flip the sign of the Dzyaloshinskii-Moriya interaction at
a doping strength around = = 0.65 [41].

The change of the Dzyaloshinskii-Moriya interaction D also influences the pitch
length leading to a variation of the helix wavelength Ay o 1/D between 200 and
2300 A [42—44]. Dependent on doping, Ape first decreases but soon increases with
increasing x [40].

COPPER(II)-0XO-SELENITE: CU;OSEQO;

Below a critical temperature of 58.8 K CuSeO4 shows spontaneous magnetization
[45]. Copper(II)-oxo-selenite in general can appear in a multitude of crystal struc-
tures going from monoclinic and triclinic forms of CusO(SeO3); to CuyO(SeO3),
which can be monoclinic and even cubic. The latter is the type we focus on.
The material in question is a dark olive green multiferroic and magnetoelectric
insulator. Comparing to MnSi, it crystallizes similar to the B20 structure but
with a different coordination number. It contains eight formula units per unit

11
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(a) Cup0SeO3 crystal structure [47] (b) Electric polarization in CupOSeOs [48]

Figure 1.7: (a) The empirical formula of Cu,0SeOs contains two Cu®* ions. They are
characterized by a different oxygen coordination.
(b) Top: depending on the direction of an applied magnetic field H with respect to
the atomic lattice, a finite mean electric polarization P is able to form with a direction
also dependent on the direction of H.
(b) Bottom: besides a possibly finite mean polarization, the skyrmion phase experiences
also a modulating local one that induces a local charge distribution p plotted in the
bottom row of (b).

cell of edge length acu,0s:0, = (8.9250 4 0.0001) A[17]. A picture of the crystal
structure is shown in figure 1.7(a). The helical magnetic modulation has a length
of (616 +45) A and is pinned to a (100) direction at zero field [46].

In a magnetoelectric material, an external magnetic field influences electric
polarization [49]. Although CuyOSeOs does not show spontaneous ferroelectric
polarization, it can be induced by an external magnetic field [50]. For the setup
used here, this polarization can locally be written as [51]

M, M,
P=o|MM,|. (1.7)
M, M,

The direction of the average polarization depends on the direction of applied
magnetic field and may also vary on strength. When the system is in the skyrmion

12



1.3. Materials & Properties

phase, then also the local polarization varies significantly with respect to the
direction of the magnetic field. Both effects are shown in the top and bottom
parts of figure 1.7(b), respectively. Electric forces are generally much stronger
than magnetic forces, but the induced polarization has, nevertheless, only a small
effect as can be seen, for example, when comparing magnetic and electric dipolar
energies. Seki et al. measured a saturation magnetization between 0.5 18 /cu®*
at 5K and 0.2#8/cu®*t at 57K ~ T, for H || [111] [47]. This corresponds to
approximately 1618€/m? and 11C/m? at H = H.o, respectively. Having eight
formula units per unit cell providing 16 copper ions responsible for the magnetic
moments per unit cell, leads to

PIEK = 162

iy =13
- 16 Cu**t A
MT=5K _ 5 _HB ~ 104000 =
nry =05 et TI0SA 04000 -

giving corresponding dipolar energies of

1 _ 2 J
Edipole,electric = (P[jljfi)]K) ~1 E

8meg
Ho —5K\2 J
Edipole,magnetic = g (M[:fl ?]K) ~ 540 E

There are hence at least two to three orders of magnitude between those energies.

But because CuyOSeQs is insulating, electric fields can still influence the magnetic
structure without needing to worry about affecting itinerant charge carriers.

SUMMARY AND OTHER NOTEWORTHY MATERIALS

Table 1.1 summarizes typical values of the materials above. One should mention,
that temperature generally plays a role in all obtained data. It is ultimately a
matter of focus which allows us to approximate some values as constant opposed
to others. For example the lattice constants and hence the V4. (A?’) depend on
temperature. We chose to mention low temperature values in the text, while
values in table 1.1 correspond to ambient temperatures. Their discrepancies are
fairly small at about one percent. The pitch length varies more significantly with
around 10 % between 0K and T, [52]. The biggest influence of temperature can,
however, be observed in H.o which is around a factor of two. Therefore, the other
temperature dependencies can be regarded as constant compared to Heo(T).

Apart from those three materials, there are, for one, more B20-type alloys like
FeGe [57] or MnGe [58] that host skyrmions. To a great deal driven by the need
for skyrmions at room temperature to be able to use them in applications and
novel computer technologies (cf. section 2.3), other approaches were explored.
For example Heusler compounds like MnaRhSn of space group I4m2 (No. 119),
as an example of other non-centrosymmetric magnets, are studied [59], but also

13
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MnSi Feo.8COo.QSi CU2OS€O3 FeGe
metallic  semi-conducting  insulating metallic
T (K) 29 28 58 278.2
HIH(T = 0) (;77;) 0.60 0.15 0.08 0.93 4t T=271K
21/ Q (A) 180 340 600 700
pitch alignment (111) weakly (100) (100) {10 0)nignT
. (111)owt
X 0.34 0.64 1.76 3.43
Vi, (R3) 24.02 22.52 89.02 103.80
Z 4 4 8 4
g 2.0 2.1 2.1 1.9

Table 1.1: Summary of material properties. The number Z equals the number of formula
units per unit cell and note that pitch alignment refers to the direction of Q at zero field
in the helical phase. Most values are taken from samples used in [37], the remaining
sources are mentioned in the text and [53-56]. Note that the listed data for FeGe are
for its low-temperature B20 structure.

centrosymmetric magnets, where Dzyaloshinskii-Moriya interaction does not play
a role but the interplay between magnetic dipole—dipole interaction and uniaxial
anisotropy causes the formation of a skyrmion spin texture. Also, broken inversion
symmetry at interfaces can lead to the formation of skyrmions as can be seen
in [60] where the authors create a square, atomic-scale skyrmion lattice in a
one-atomic iron film on top of an iridium (111) surface. For a collection of
materials see [61, chapter 2].

Although near-room temperature formation of a skyrmion lattice was already
achieved in thin-films of FeGe [57], skyrmions at and beyond room temperature
were first found in a different family of chiral magnets: -Mn-type Co—Zn—Mn
alloys. One example is Coj9Znjg, which belongs to the cubic chiral space group
P4,32 or P4332 depending on its handedness containing 20 atoms in the unit
cell and the critical temperature lies at T, ~ 462K [62]. Doping with manganese
systematically decreases T, until CogMngZng does not show ferromagnetic be-
havior any longer. The authors effectively detect skyrmions at 283 K and 345K
respectively for CogZngMn, and CogZnigMns.

14



SKYRMIONS

2.1. HISTORICAL ORIGIN

Skyrmions date back to studies by T. H. R. Skyrme in the late 1950’s and early
1960’s [8, 63—67]. He developed a unified field theory of K- and m-mesons and
baryons. It turned out to be a non-linear theory of self-interacting (boson) meson
fields, which admit states that have phenomenological properties of fermion
particles, interacting with mesons. This was achieved by separating the field into
meson-like and particle-like parts.

In the following we sketch his original work in a rough fashion and mainly
follow the beginning of [67]. Let the initial field at any point be characterized by
a unitary symbol U:

Ut =UU = 1. (2.1)

While he also discussed simpler, one-dimensional models where U corresponds to
a complex number €’®, in the physically relevant case U is a quaternion', which
can also be written in terms of four real fields ¢:

3
U=¢s+iy m¢a (2.2)

a=1

where the coefficients 7% are a set of three Pauli matrices. In his model, the three
independent pion field amplitudes are replaced by such four fields, that interact
symmetrically with the nuclear field. The vector composed of those fields is then
constrained to have constant length:

4
> el =1. (2.3)
a=1

The domain of U is hence the surface of a unit-sphere in a four-dimensional
Euclidean space. A constant of motion called N, that can be interpreted as a

1Quaternions can be seen as an extension of the complex numbers. They have been discovered
by Sir William Rowan Hamilton (1805-65) and are the first non-commutative algebra to be
studied [68].
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2. Skyrmions

particle number, has the global meaning of the number of times that the field
distribution U(z) maps the 3-dimensional configuration space onto this domain.
U has to obey the boundary condition

U(o) =1 (2.4)

to ensure an integer particle number. In a state where there is one particle, U
has to wrap around the sphere at least once and therefore take the value of —1
at least once. This leads to a native definition of the position of the particle,
namely at * = 2o when U(xzg) = —1. He then separates U into a mesonic part U
that never takes the value —1, and a particle part, that is only significant in the
vicinity of xo. He gives

A 1+e+U

it on (2:5)

which is unequal to —1 for e > 0. Ase — 0 U approaches U almost everywhere.
Because U is particle free, i.e., N = 0, a separation can be made as

U=US. (2.6)

Except near the positions xg of particles, the new field S = 1. Near particles S
can be written as )
€ +it*Bf (@ — x0);
e —iT*BX(x — x0);

S = (2.7)

7% are the Pauli matrices and B* are proportional to the field gradients of U at
r = Xo:
oU
=497 B}U (2.8)

8xi o
BY = (1/2i) Tr(UTTO‘$

. 2.9
=) (29)
It then needed to be shown that singularities like S, describing the branch
points of v/U, behave like Dirac particles coupled to the residual meson field U.
Those are some longer calculations that we will not address here. Still noteworthy
is a derived expression for the particle number (in the limit of € — 0)

N = —sgndet B{¥*(x). (2.10)

At this point he believed that the particle operators have many fermionic prop-
erties but did not show it explicitly. He did, however, demonstrate this for the
one-dimensional model in [65] where neutrino-like properties were evident.

In retrospect Skyrme’s particle solutions, the now so-called skyrmion solutions,
were the first example of a topological soliton model of a particle [69]. Seen in
a broader context, they emerged from the Yukawa model which describes how
heavy Spin—% nucleons interact through pion exchange. He reconsidered the pion
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2.2. Topological Aspects of Skyrmions

exchange which leads to a Lagrangian with a topological structure, that allowed
a topologically stable soliton solution. He saw that these solutions had rotational
degrees of freedom and the key was that when quantized, the state was allowed
to carry spin—%. Hence, a bosonic field theory could lead to fermionic states.

While skyrmions occurred here as field configurations on a 3-sphere as defined
by (2.12), the concept and their topological properties can be generalized to other
dimensions, in particular to the 2-sphere S2. This brings us back to the texture
shown in figure 1.3(d), the skyrmions present in chiral magnets. Because they are
formulated in one dimension less than the original skyrmions, they are sometimes
called baby-skyrmions. In contrast to objects in other magnetic phases present in
chiral magnets they are topologically non-trivial. This aspect is elucidated in the
following.

2.2. TOPOLOGICAL ASPECTS OF SKYRMIONS

Skyrmions or magnetic textures in general are described by a vector field, i.e.,
a mapping between two manifolds, in this example position and spin-direction.
This paragraph follows [69] to introduce topological characteristics and their
application on the skyrmion structure.

Let

Up: X 5 Y (2.11)
r—y

be a map between two manifolds X and Y. In particular, let there be points
xo € X and yg € Y. In the following, we consider based maps, i.e., maps
Uo(xp) = yo. To formulate topological aspects in a proper way, the concept of
homotopy is important. ¥; homotopic to ¥y means, that ¥, can be continuously
deformed into Wy. Homotopic is symmetric, transitive and reflexive, which are the
properties of an equivalence relation. Proof can be found in [70]. Therefore, maps
can be classified in homotopy classes. The constant class, for example, contains
all maps that are homotopic to the constant map ¥(x) = yo for all € X.

Of special interest to us are maps from a sphere to a target manifold.

S*={z e R"": |z|| =1} (2.12)

is the definition of an m-sphere, a sphere embedded in n + 1 dimensions [71].

Based maps ¥: S™ — Y from such a sphere are of a class in 7, (Y"), which has
a group structure for n > 1. In particular w1 (Y) is known as the fundamental

group.
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2. Skyrmions

EXAMPLE: m1(Y)

m1(Y) is the class containing all maps of circles or loops that get mapped to
a target Y. If Y is a connected manifold and m1(Y) = {e}, where {e} is the
trivial group containing only the identity element, then Y is simply connected.
This means, that all loops can be smoothly contracted to a single point. This,
in turn, implies that Y does not have any holes.

If the target is a circle or loop itself, i.e., Y = S*, then there exists a map
f: 8 — St with f(1) = 1. Amap f: R — St is clearly induced by f(t) = f(e®).
It can be shown that due to 71 (R) = 0 every map g: R — S* with g(0) = 1 can
be uniquely lifted to a map §: R — R with ¢g(0) = 0 [71]. In particular, there
exists a unique map f with f(0) = 0 such that the diagram

R

)

R—s st — > 81,
tett f
commutes.

Clearly, there exists k € Z that f(27r) = 27k. The number k can be seen as a
winding number that counts the number of times the image of f winds around
S1. It follows from the uniqueness of the lifting property that the winding
number is well-defined.

The statement of the second part of the example can be generalized and reads
T (S™) =7 Vn > 1. (2.13)

For Skyrme’s original skyrmions n = 3. The case of baby skyrmions, which we
will simply call skyrmions in the remainder of the text, of course also falls into
the same set of classes, only with n = 2. In that context, they can easily be
drawn as arrows on a sphere like in the upper part of figure 2.1. The magnetic
texture in chiral magnets is, however, set on a planar surface and not the surface
of a sphere. That transition is achieved via a stereographic projection of S? onto
R2. Let p be the north pole of the sphere, then there exists a homeomorphism
R? — 52\ {p}. A complete correspondence is obtained by adding a single point
at infinity to R? and identifying it with the image of p. A based map ¥: S? — 52,
or to any other target manifold for that matter, is hence a continuous extension
of a map ¥: R? — S? provided that limg o, ¥(x) = p. Of course, the occurring
skyrmions have a finite extent, but a contraction of R? is easily done, for example
by applying the map p — tan~! p, or other less distorting functions, where p is
the distance to the origin of R2. The result after such transformations is shown
in the lower part of figure 2.1. On the left hand side so-called Néel-skyrmions
are shown. They are characterized by having always outward-pointing spins on
the sphere. Combing those spins around the axis connecting north and south
pole of the sphere yields a sense of chirality that is, of course, also present in the
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2.2. Topological Aspects of Skyrmions

Figure 2.1: Stereographical projections of (baby) skyrmions. The south pole of the sphere
is mapped to the origin of R? while the north pole is mapped to infinity. Via the map
p — tan~*(p) one can map R? onto a finite sized disk, where p is the distance to
the origin. Left: Néel-skyrmion. Note the similarity to Néel-type domain walls, in
which spins rotate in a plane perpendicular to the domain boundary. Right: Chiral- or
Bloch-type skyrmion. Note the similarity to Bloch-type domain walls, in which spins
rotate in a plane parallel to the domain boundary. It evolves from a Néel-skyrmion
by first combing the spherical hedgehog arrangement around the axis defined by the
north and south poles of the sphere before projecting it onto a plane. This type is the
one observed in chiral magnets.

projected version. This texture is then called chiral skyrmion and it is the type
of texture that occurs in chiral magnets and therefore the kind of skyrmion that
we refer to in the remainder of the thesis unless explicitly stated otherwise.

At this point, it is appropriate to give another quantity that characterizes the
skyrmion. This is its winding number . In the general mathematical scheme it is
rooted in the concept of the topological degree, which is defined for an everywhere
continuously differentiable map ¥ : X — Y between two oriented and closed
manifolds of the same dimension. Then the topological degree is defined as the
integral over the pullback ¥* of a normalized volume form 2 on the target Y:

deg\I/:/X\Il*(Q). (2.14)

The topological degree is an integer number and therefore a homotopy invariant.

It also does not depend on § [69].
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2. Skyrmions

To make the transition from this abstract definition to the skyrmion configuration,
let us specify the integrand of (2.14). Given Q = B(y) dy' A dy? with y € Y and
let the map ¥ be represented by y(x), then the integrand is written in terms of
local coordinates as
oY ay i 52/
= B(y(x)) J(x) dz' A dx (2.15)

with J(z) = det ( ) and i, 7,k € {1,2}.

In the physical context the map describes the local magnetization M (x) = y(x)
and, when normalized, (M) can be described by angles ¥ and ¢ of the standard
spherical coordlnates Using those coordinates the normalized volume form
specifies to 2 = sm( )d¥ A dp. We now need to pull this integration over
a sphere back to an integration over R? in Cartesian coordinates by inverting
the spherical coordinate representation. To avoid an abundance of indices we set

(z,y) = (2',2%) € X.
¥ = arcsin y/ M2 + My2 (2.16)

~

o= (2.17)

Y

Also, the explicit dependence on (x,y) has been dropped for clarity, i.e., M, =
M, (z,y) is the first component of the magnetization at position (z,y). Using
those coordinates in (2.15) and evaluating the derivatives in the second step yields

09 0p D OV
2 2 _
deg M = — /stmﬂ,/M + M? (a 5y " oc ay)d dy

oML, NI, oM, aMx> ddy

Ar /]Rz /1 _ M2 < oxr Oy or Oy
/ 8M x 6M dx dy. (2.18)
471' R2 / _ M2 .

The normalization of M is encoded in M, = /1 — M2 — M2. Furthermore, it

can be shown that the last line can be written as a triple product, which results
in the common form used to calculate the skyrmion winding number W:

1 - ~ A
W= /R M - (&CM x 8yM> dz dy. (2.19)

This number counts how often the magnetization wraps around a sphere. Applying
(2.19) to a texture as shown in the bottom half of figure 2.1, one obtains W = —1.
Strictly speaking this object is called an anti-skyrmion. The minus sign appears
because magnetization at the center is pointing down.
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Figure 2.2: Structure factors obtained via neutron scattering. Left: Helical/conical phase
of the helimagnet Cu,OSeOs3 [46]. Two peaks are clearly visible aligned with the
magnetic field along which they represent the helical modulation. Right: Skyrmion
phase in MnSi [7]. Six major peaks a visible indicating a superposition of three helices.
Additionally, smaller higher order peaks are recognizable. A more thorough study on
them can be found in [74].

2.3. EXPERIMENTAL REALIZATION AND APPLICATION

Around the early 90’s, Bogdanov et al. showed, that such skyrmions may occur as
a thermodynamically stable system of magnetic vortices in magnetically ordered
crystals with an easy axis [9, 72, 73]. The vortices themselves form a lattice
similar to that of type-II superconductors and can be stabilized by a so-called
Dzyaloshinskii-Moriya interaction. Besides tetragonal materials like ThgAly, the
authors also suggested cubic magnets like Fe,Co;_,Si and, in particular, MnSi as
possible candidates to exhibit skyrmions.

In 2009, MnSi was subject to studies by a research group in Munich where
Miihlbauer et al. performed small angle neutron scattering experiments (cf. sec-
tion 5.2) on it while applying a magnetic field and thus inducing an easy axis
of magnetization [7]. Contrary to previous experiments, they did not apply the
incident neutron beam perpendicular to the magnetic field, but in parallel. Unlike
two peaks in the structure factor that one expects at intermediate fields in the
perpendicular setup indicating the conical phase, the result were six major peaks
forming a hexagon around the center, cf. figure 2.2. Having a spirally modulated
structure in mind when observing two opposing peaks it seemed natural to su-
perpose three of them when seeing six peaks. Doing exactly that and properly
fixing the relative phases amounts to the magnetic lattice structure shown in
figure 1.3(d). This actually three dimensional texture is translation invariant
in the direction parallel to the magnetic field, i.e., perpendicular to the shown
plane, thus forming a tube-like structure similar to the Abrikosov vortex lattice of
type-1I superconductors. Atomic scale skyrmion have also been realized by using
a surface Dzyaloshinskii-Moriya interaction [60]. There, the chirality is not an
intrinsic property of a material but arises because of material differences between
the substrate and the studied layer on top of it.
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2. Skyrmions

Skyrmions have the prospect of becoming a key ingredient in future computer
technology. Their topological structure leads to an emergent electrodynamics
which can be used to couple them very efficiently to currents. Due to their
incommensurability and large extent compared to the atomic lattice, skyrmion
lattices can be moved by currents a million times smaller than needed to move
ordinary magnetic domain walls [11, 75]. Novel ideas about applying single
skyrmions range from racetrack memories [10, 76, 77| to entire logic elements.
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——— THEORETICAL DESCRIPTION ——

The magnetic structure in bulk chiral magnets can be described by several methods.
In this thesis we primarily choose a description via a Ginzburg-Landau theory
which we introduce in this chapter. In part III we also employ a description
via a non-linear ¢ model, which restricts the magnetization to be normalized.
Before turning to the description of the theoretical model we introduce necessary
quantities.

3.1. CONVENTIONS

In the following chapters we compare our models to data obtained by different
experimental methods: ferromagnetic resonance and neutron scattering experi-
ments. The first applies an oscillating external magnetic field, which enters the
relevant equations, while the latter method focuses on much shorter length scales
which makes it convenient to use the internal magnetic field in the describing
equations. At this point we establish a connection between these quantities and
define notation.

External quantities will be indicated by the index “ext” and internal quantities
by an index “int”. Magnetic fields and inductions are therefore denoted by H¢**
and H'™™ respectively B** and B™. While vectors are written in bold letters,
their norms will mostly be denoted by normal font and omitted absolute value
bars.

Magnetic moments are indicated by pu and magnetization, which has units of
magnetic moment over volume, by a capital M. When encountering spatially ho-
mogeneous quantities, they will carry an index “07, i.e., My or Hy. Furthermore,
(static) mean-field solutions carry an index “mf” like M™,

In the vacuum, the two magnetic fields B and H are just scaled versions of
each other related by the permeability of free space po = 47 x 107 N/A2:
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3. Theoretical Description

Inside a magnetic solid, their relation is more complex and the general relationship
is given by
B = /Jo(H—f—M) (32)

with magnetization M, which is defined as the magnetic moment per unit volume
and therefore usually considered in the continuum limit and seen as a smooth
vector field. In the special case that the magnetization is linearly dependent on
H | one can write

M =M+ xH (3.3)

where x a dimensionless quantity and called magnetic susceptibility. The term
M’ stands for a spontaneous magnetization in the absence of an applied field.
The linear relation of (3.3) also keeps the relation between H and B linear:

B = po(1+x)H = popr-H (3.4)

where p, = (1 + x) is called the relative permeability and is the ratio of the
permeability of a specific medium to the permeability of free space: p, = .
When dealing with the description of magnetizable media, one needs to be cautious
to define those fields, as they can differ significantly inside and outside of the
media. In free space, it is simple and

Bext — MOHext (3_5)

holds. The field inside a sample, that enters the above fields, is changed via a
demagnetization field H9*™ (more information in section 3.3):

Hint _ Hext + Hdem (3 6)
Note that a magnetized sample also influences the magnetic field around it.
For para- or diamagnetic samples of ellipsoidal shape this can be neglected as
stray-fields cancel each other. The internal magnetic induction then reads

Bint — ,lLO(Hint + M) — Bext +,LL0(Hdem + M) (37)

Fourier transformations are performed with the following convention:

_ 1 ik-r _ —ik-r
M(r)—ygmke mk—/dTM(T)@ (3.8)
M(r) = /dr 5(r—r")M(r") my = Z Ok, 1/ M/ (3.9)

14 k/
S(r—v) =L > etelr=r) Okl = l/dr DT (3.10)
v A ' v

where v is the integration volume.
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3.2. Ginzburg-Landau Theory
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Figure 3.1: Temperature dependence of order parameter M at first order (a) and second
order (b) phase transitions. Designs taken from [19]. Panel (c) shows the behavior of
the free energy around a second order phase transition at T.. Above and at T. the
order parameter M vanishes. For T > T, a finite magnetization arises.

3.2. GINZBURG-LANDAU THEORY

Originally formulated as a model for superconductivity, Ginzburg-Landau theory
is now widely used throughout solid state physics to describe phase transitions.
It is based on Lev Landau’s phenomenological mean-field theory to describe
second order phase transitions, which is based on a power series expansion of the
free energy in terms of spatially uniform order parameters for the transition of
interest [19, 78]. The series expansion is motivated, because the order parameter
is small around the phase transition. For example, the textbook free energy of
Landau-theory, sometimes simply called Landau function, of ferromagnetism, is
given by [79]

F(M) = Fy+ a(T)M? + bM*. (3.11)

Because states up and down are energetically the same due to time reversal
symmetry, only even powers occur. While a(T") is temperature dependent, Fj and
b are constants with b > 0 assumed. Second order phase transitions are charac-
terized by a continuous change in the order parameter at a critical temperature
T. from zero in the disordered phase (T > T¢) to a finite value in the ordered
phase (T < T¢), cf. figure 3.1(b). In Landau-theory, the quantity with such a
behavior is the minimum position or mean-field M™f of the free energy (3.11).
The parameter a(T') is constructed proportional to (T — T¢), so that a(T) > 0
corresponds to T' > T, and a(T) < 0 to T' < T,. Those two cases are shown in
figure 3.1(c). Note that Landau-theory is a mean-field theory, which means, that
all spins “feel” the same averaged field generated by all their neighbors, here
proportional to the magnetization.

In studying fluctuations, which we will see later play a significant role in
stabilizing the skyrmion lattice, the more general case of spatially dependent local
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3. Theoretical Description

order parameters needs to be addressed, i.e., M (r) in this case. Following and
using notations of [7, 80], the free energy G can generally be described by the
partition function Z via

Z=e%= /DM e FIM], (3.12)

F [M] is called the free energy functional and respects the fundamental symmetries
of the system. The free energy depends on magnetic field and temperature, and
the state that minimizes G is the one taken by the system in thermal equilibrium.
The mean-field approximation is then obtained by applying the stationary-phase
approximation to (3.12), leading to

e C ~ efp[Mmf]

G ~ min F[M]=F [M™]. 3.13
i [M] [ ] (3.13)

where the stationary solution M™! satisfies the mean-field equation

OF [M]

— =0. 3.14
aM ’Mmf ( )

Going beyond mean-field means to include corrections in terms of thermal fluctu-
ations. The leading order correction is given by Gaussian fluctuations and the
free energy takes the form

G~ F [M™] + Lndes (21 (3.15)
2 SMEM )|y '

The formulation with a now spatially dependent order parameter M (r) leads
to the difference between Landau- and Ginzburg-Landau theory, namely non
vanishing gradient terms in the free energy functional. The admissibility of
their order and kind depends on the symmetries of the system of interest. The
Ginzburg-Landau free energy functional of a ferromagnet analogous to (3.11)
reads

F[M(r)] = /dr (roM(r)? + J(VM(r))> + UM (r)* — BM(r))  (3.16)

where M (r)* = (M () - M (r))? and the gradient term is written in a shorthand
notation for (VM (r))? = 9,,M;(r)d,,M;(r). Note, that the gradient term
corresponds to the exchange term (1.2) already mentioned in section 1.1. Again,
the pre-factor U of the highest power of M needs to be chosen positive to
obtain a stable system. B is the magnetic field which makes —BM (r) the well
known Zeeman-term. As already mentioned in the summary of section 1.3, in
real systems everything depends somewhat on temperature and so do all these
pre-factors. As we are interested in the vicinity of the phase transition, one can

26



3.3. Dipolar Interactions

linearize all temperature dependencies around the critical temperature. In this
phenomenological theory, only a linear temperature dependence of rg remains,
ie., o x (T — T¢) like a(T") was in (3.11). Because of this linearization and even
negligence of smaller temperature dependences, the mean-field critical temperature
varies slightly compared to the true experimental critical temperature.

At zero magnetic field, (3.16) possesses symmetries with respect to M (r) —
—M (r) and is translationally and rotationally invariant with an O(3)-symmetry.
An applied magnetic field reduces that symmetry to O(2), leaving only rotations
around the axis defined by B. Also, only a combined symmetry transformation
of M(r) - —M(r) and B — —B is allowed. An emphasis should be put on
spatial symmetries, that are not only translation and rotation symmetries, but
especially inversion symmetry » — —r. This is the key symmetry that is broken
in chiral magnets.

Before we write down the full Ginzburg-Landau free energy functional for
chiral magnets including the aforementioned Dzyaloshinskii-Moriya interaction
equation (1.4), two additional types of contributions to the free energy functional
are first presented and discussed in more detail: dipolar interactions and crystal
anisotropies

3.3. DIPOLAR INTERACTIONS

In contrast to the exchange and Dzyaloshinskii-Moriya interactions, dipolar
interaction has a long-range nature generally resulting in the need for a more
elaborate effort in calculations and especially simulations. Their ramifications,
however, have significant consequences. In this thesis, we find them in particular
responsible for the splitting of resonance peaks in the conical phase which otherwise
would be degenerate. But already on the mean-field level, their influences are
quite noticeable, especially when dealing with skyrmions, whose magnetic profile
changes due to them. The space in the phase diagram taken by skyrmions in thin
films increases with increasing dipole-dipole strength [81].

For the discussions in this text, their influences on magnons and in particular
ferromagnetic resonances is important. Already in 1947, Charles Kittel studied
their influence in a ferromagnet [82]. In that paper, he commented on experiments
conducted by J. H. E. Griffiths in the 1940s which showed unexpected values of
resonance frequencies, that were two to six times larger than the Larmor frequency,
cf. equation (4.13) later in the text. Kittel became aware that magnetization was
large and a differentiation between internal and external fields had to be made.
The former is strongly influenced by the sample geometry. Before giving a more
detailed account of this revelation, we first provide a more general introduction
to magnetic dipoles and dipolar interaction.

Microscopic magnetic dipoles can be introduced in two different, but equivalent
ways [83]. One option is to see a dipole as a circular current loop whose radius
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3. Theoretical Description

is decreased while simultaneously increasing the current strength keeping the
magnetic dipole moment constant. The second possibility is to consider two
magnetic monopoles’ which approach each other 