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Abstract

In the light of the Giroux correspondence of open books and contact structures, it is
natural to study Legendrian knots embedded in a page of a compatible open book of
a contact 3-manifold. Legendrian knots, as well as their classical invariants, provide
useful information on the ambient contact manifold. This thesis develops formulas
for deciding whether a given knot lying on a page of a compatible open book whose
monodromy is encoded as a concatenation of Dehn twists along non-isolating curves
is nullhomologous, and, if so, for computing its classical invariants. Similarly, we
show how to compute the Poincaré dual of the Euler class of the contact structure
and how to compute the d3-invariant of the contact structure in case the Euler class
is torsion. All invariants can directly be computed from data included in the open
book, namely via the intersection behaviour of the knot, an arc basis of the page
and the Dehn twist curves encoding the monodromy.
We then turn to higher-dimensional manifolds, for which the relation of open books
and contact structures remains partly intact. In particular, every contact structure
on a manifold is supported by a compatible open book.
First purely topologically and also in even dimensions, we study fibre connected
sums in the context of open book decompositions and introduce a new class of sub-
manifolds, called nested open books, which are particularly well adapted to this
setting. We show that the fibre connected sum of an open book along diffeomorphic
binding components – called the binding sum – admits a natural open book decom-
position provided the respective binding components admit open book structures
themselves, which is no restriction in odd dimensions.
Furthermore, we prove that in case the binding sum is performed in a contact open
book supporting a given contact structure on the manifold, the construction can
be adapted such that the resulting natural open book decomposition is compatible
with the contact structure obtained by the usual contact fibre connected sum along
contactomorphic binding components.



Zusammenfassung

Nullhomologe Legendre-Knoten und ihre klassischen Invarianten liefern viele Infor-
mationen über die ambiente dreidimensionale Kontaktmannigfaltigkeit. Im Hinblick
auf die Giroux-Korrespondenz von offenen Büchern und Kontaktstrukturen ist es
daher natürlich, Legendreknoten zu studieren, die in eine Seite eines kompatiblen of-
fenen Buchs einer dreidimensionalen Kontaktmannigfaltigkeit eingebettet sind. Die-
se Arbeit entwickelt Formeln, um zu entscheiden, ob ein gegebener, in einer Seite
eines offenen Buchs enthaltener Knoten nullhomolog ist und in diesem Fall auch
zur Berechnung seiner klassischen Invarianten. Dabei werden wir voraussetzen, dass
die Monodromie durch eine Verkettung von Dehn-Twists entlang nicht-isolierender
Kurven beschrieben wird. Außerdem wird aufgezeigt, wie das Poincaré-Duale der
Euler-Klasse der Kontaktstruktur und, vorausgesetzt die Euler-Klasse ist eine Tor-
sionsklasse, die d3-Invariante der Kontaktstruktur bestimmt werden können. Alle
Invarianten können direkt aus einer Beschreibung der Mannigfaltigkeit als abstrak-
tes offenes Buch, genauer, durch das Schnittverhalten des Knotens, einer Bogenbasis
der Seite und der Dehn-Twist-Kurven, berechnet werden.
Danach wenden wir uns höherdimensionalen Mannigfaltigkeiten zu, für welche
die Beziehung zwischen Kontaktstrukturen und offenen Büchern teilweise erhalten
bleibt; insbesondere wird jede Kontaktmannigfaltigkeit von einem kompatiblen of-
fenen Buch getragen. Wir untersuchen – vorerst rein topologisch und auch in gera-
den Dimensionen – Fasersummen im Kontext offener Bücher und führen eine neue
Klasse von Untermannigfaltigkeiten, die Daumenkinos, ein, welche gut an diese Si-
tuation angepasst sind. Wir beweisen, dass die faservebundene Summe eines offenen
Buchs entlang diffeomorpher Bindungskomponenten, genannt Bindungssumme, in
natürlicher Weise die Struktur eines offenen Buchs besitzt, wenn die Bindungskom-
ponenten selbst als offenes Buch beschrieben werden können. Diese Bedingung stellt
in ungeraden Dimensionen keine Einschränkung dar.
Darüberhinaus zeigen wir, dass im Falle der Kontaktbindungssumme, d.h. der Bin-
dungssumme entlang kontaktomorpher Bindungskomponenten eines kompatiblen of-
fenen Buchs einer Kontaktmannigfaltigkeit, die Konstruktion derart angepasst wer-
den kann, dass das resultierende offene Buch kompatibel zur Kontaktstruktur ist,
die durch die gewöhnliche kontaktgeometrische Version der faserverbundenen Sum-
me entsteht.
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Introduction

An open book decomposition of a manifold consists of a codimension two submanifold
and a fibration of its complement over the circle, which is of a standard form in a
neighbourhood of the submanifold. In 1923 Alexander [1] proved that every closed
oriented 3-manifold admits an open book decomposition. In fact, combining the
work of Winkelnkemper, Lawson and Quinn from the 1970s, this statement remains
true for odd-dimensional manifolds in general (see [75], [54], and [69] respectively).
The existence problem in even dimensions is also solved in these works but is more
involved.

In 1971 Thurston and Winkelnkemper [72] used open books to construct contact
structures on 3-manifolds. Furthermore, as was observed by Giroux [41] in 2002,
contact structures in dimension three are of purely topological nature: he established
a one-to-one correspondence between isotopy classes of contact structures and open
book decompositions up to positive stabilisation. This correlation remains partially
intact in higher dimensions. According to Giroux and Mohsen [43] any contact
structure on a closed manifold of dimension at least three admits a compatible open
book decomposition.

A contact structure on a manifold is a maximally non-integrable tangential hy-
perplane field. This means that contact structures are distributions which are as
far from being integrable, i.e. defining a foliation, as possible. In particular, there
are no surfaces tangent to the contact planes in a 3-dimensional contact manifold.
Knots, however, can be everywhere tangent to the contact planes; these are called
Legendrian. Together with the other natural class of knots, the transverse knots,
which are everywhere transverse to the contact structure, Legendrian knots encode
a lot of the geometry of a contact 3-manifold. This information is partly preserved
in the classical invariants – a basic, yet useful set of invariants of nullhomologous
Legendrian and transverse knots. For example, a contact structure is overtwisted
if and only if there exists a Legendrian unknot with vanishing Thurston–Bennequin
invariant.

The classical invariants of knots in the unique tight contact structure of the 3-
sphere can easily be computed from their front projections. A natural extension of
this to general manifolds is to consider knots in contact surgery diagrams and try
to compute the invariants from these representations. Pioneered by Lisca, Ozsváth,
Stipsicz and Szabó [57], this problem has been worked on by various people, e.g.
Geiges and Onaran [38], Conway [13] and Kegel [49]. A joint article [20] of Kegel
and the author on this topic can – for the sake of completeness – also be found in
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Appendix A, as its results are used in the main part of this thesis.
In the light of the Giroux correspondence of open books and contact structures

another natural way to present a Legendrian knot is to put it on the page of a com-
patible open book of the contact 3-manifold. Note that this imposes no restriction,
since every Legendrian knot can be realised on a page of a compatible open book.
On the other hand, a large class of simple closed curves on the page of an open
book, namely the non-isolating ones, represent Legendrian knots.

One part of this thesis develops formulas to decide if a knot on the page of an
open book is nullhomologous and if so, compute its classical invariants, as well as
the Poincaré dual to the Euler class of the contact structure and the d3-invariant,
an invariant of the contact structure considered as a plane field, provided the Euler
class is torsion. Previous results in this direction have been obtained by Etnyre and
Özbağcı [34], who gave a formula to compute the Euler class and the d3-invariant
of a contact open book using a different approach, and Li and Wang [55], who used
Etnyre and Özbağcı’s result to calculate the rotation number of a Legendrian knot
on the page of an open book in some cases. On the other hand, Gay and Licata [36]
studied Legendrian knots in open books which in general are not contained in a
page by a generalisation of the front projection, where it is possible to compute the
Thurston–Bennequin invariant as well.

In Chapter 3, we will first consider knots in a more general situation: knots sitting
on a Heegaard surface of a 3-manifold which has the additional property of being
convex in the sense of Giroux. The presentation of the first homology of the manifold
in terms of the homology of the surface provides a tool to decide whether a given
Legendrian knot is nullhomologous as well as to compute its Thurston–Bennequin
invariant. As a compatible open book always yields a Heegaard decomposition with
the required properties, this can then be used to solve the problem in open books
as well. The result is a formula to compute the Thurston–Bennequin invariant in
terms of the intersection behaviour of the knot, an arc basis of the surface and the
Dehn twist curves encoding the monodromy of the open book.

To compute the other classical invariant of a nullhomologous Legendrian knot,
the rotation number, this approach is bound to fail, since – in contrast with the
Thurston–Bennequin invariant – it is not purely homological. Therefore, our strat-
egy in Chapter 4 will be to transform the open book into a suitable contact surgery
diagram via an algorithm of Avdek [3] and combine this with the method of com-
puting invariants in surgery diagrams presented in Appendix A. This will enable us
to attain formulas – again in terms of the intersection behaviour of knot, Dehn twist
curves and an arc basis of the page – for the classical invariants of a nullhomologous
Legendrian knot and its transverse push-off and also for the Poincaré dual to the
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Euler class and d3-invariant of the contact structure.
In Chapter 5 we turn our attention to higher-dimensional open books, and we

investigate how the binding sum construction, i.e. the fibre connected sum of two
open books along diffeomorphic binding components, affects the underlying open
book structures. While the mere existence of an open book decomposition on the
binding sum immediately follows from the above mentioned work of Winkelnkemper,
Lawson and Quinn in odd dimensions (and can easily be shown also in even dimen-
sions (cf. Section 2.2)), these existence results give no relation of such an open book
to the open book structures of the original manifolds. We will show that – provided
the respective binding components admit open book decompositions themselves –
the binding sum can be performed such that the resulting open book structure is
natural in the sense that it can be described in terms of the original decomposi-
tions. Furthermore, we will show that in the case of the contact binding sum, i.e. a
binding sum of two contact manifolds with contact open book decompositions along
contactomorphic binding components, the construction can also be adapted to again
yield a compatible open book. This generalises the work of Klukas [53] to higher
dimensions. Note that the requirement of the binding components to admit open
books themselves is not a restriction in odd dimensions.

Along the way, we will introduce a new class of submanifolds, namely nested open
books, which are submanifolds inheriting an open book structure from the ambient
manifold and are thus a natural generalisation of a spinning as discussed in contact
topology by Mori [62] and Mart́ınez Torres [60]. Nested open books turn out to be
particularly useful when performing fibre connected sums. The idea of the binding
sum construction is not to form the sum along the binding components themselves
but along slightly isotoped copies, realising them as nested open books.

As an application, we explain how binding sums can be used to describe compat-
ible open book decompositions of fibrations over the circle whose fibres are convex
in the sense of Giroux, as well as of manifolds containing the higher-dimensional
analogue of Giroux torsion introduced by Massot, Niederkrüger and Wendl [59].
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Contact manifolds

This chapter contains a brief introduction to contact topology. We will focus on
terminology and results needed in later chapters of this thesis and mainly follow
[37] and the short overview given in [18] (which was partially published in [19]).
Parts of Section 1.4 are also based on the presentation in [50]. The first section,
however, introduces the required concepts from symplectic geometry. The results
in this chapter are classical and well-known with the exception of Section 1.5.1 and
the observations in Remarks 1.1.11 and 1.5.3, which will be needed in Chapter 5.
For a more comprehensive approach to the topic we refer the reader to [11, 37, 61].

1.1 Symplectic manifolds and symplectic vector bundles

Let V be an m-dimensional real vector space and Ω: V ×V → R a bilinear map. We
call Ω skew-symmetric if Ω(u, v) = −Ω(v, u) for all u, v ∈ V . A skew-symmetric
form Ω on a real vector space V is called symplectic if it is non-degenerate, i.e. if
the map Ω̃ : V → V ∗, defined by Ω̃(u)(v) = Ω(u, v), is bijective. In that case, (V,Ω)
is a symplectic vector space. Note that the dimension of a symplectic vector
space is even. For a subspace U of (V,Ω) we define the symplectic complement
to be

U⊥ := {v ∈ V : Ω(v, u) = 0 ∀u ∈ U}.

A subspace U of (V,Ω) is said to be symplectic if Ω|U is symplectic and isotropic
if Ω|U = 0. An isotropic subspace of dimension 1/2 · dim V is called Lagrangian.

Remark 1.1.1
If U ⊂ (V,Ω) is an isotropic subspace, then U⊥

/
U inherits a well-defined symplectic

structure. Indeed, if v, v′ ∈ U⊥ and u, u′ ∈ U , then Ω(v+ u, v′+ u′) = Ω(v, v′) since
U ⊂ U⊥, and if we have w0 ∈ U⊥ such that Ω(w0, w) = 0 for all w ∈ U⊥, then
w0 ∈

(
U⊥

)⊥
= U .

Now let W be a smooth manifold and ω a closed 2-form on W such that ωx is
symplectic on TxW for all x ∈ W . We call the pair (W,ω) a symplectic manifold.

Example 1.1.2 (Standard symplectic R2n)
Consider R2n with Cartesian coordinates (x1, . . . , xn, y1, . . . , yn). The closed and
non-degenerate, i.e. symplectic, form ω0 = ∑n

i=1 dxi ∧ dyi is the standard sym-
plectic form on R2n.
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The special types of subspaces of symplectic vector spaces can of course be
generalised to properties of submanifolds of symplectic manifolds. A submanifold X
of (W,ω) is said to be symplectic if ωx|TxX is symplectic for all x ∈ X and isotropic
if ωx|TxX = 0 for all x ∈ X. An isotropic submanifold of (W,ω) of dimension
1/2 · dimW is called Lagrangian.

A diffeomorphism ϕ : (W1, ω1) → (W2, ω2) between symplectic manifolds is a
symplectomorphism if ϕ∗ω2 = ω1.

Theorem 1.1.3 (Moser (relative version))
Let W be a manifold and X a compact submanifold. Let ω0, ω1 be symplectic forms
on W such that ω0|p = ω1|p for all p ∈ X. Then there are neighbourhoods U0, U1 of
X in W and a diffeomorphism ϕ : U0 → U1 such that ϕ|X = idX and ϕ∗ω1 = ω0.

The proof uses a relative version of the Poincaré Lemma, see [11] for details.
We will also need another type of Moser theorem in later applications. It can be
proved by choosing a metric on the manifold and applying Hodge theory to ensure
the smoothness of a family of 1-forms, which are the primitives of the t-derivative
of the family of symplectic forms.

Theorem 1.1.4 (Moser, cf. [61, Theorem 3.17])
Let W be a closed manifold and ωt a family of cohomologous symplectic forms on
W . Then there is an isotopy ψt (in particular, ψ0 = idW ) with ψ∗tωt = ω0.

Using the above relative Moser theorem, one can prove Darboux’s theorem, which
says that all symplectic manifolds of a given dimension are locally symplectomorphic.
In particular, there are no local invariants in symplectic geometry.

Theorem 1.1.5 (Darboux)
Let (W,ω) be a 2n-dimensional symplectic manifold and p ∈ W . Then there is a
coordinate system (U, x1, . . . , xn, y1, . . . , yn) about p such that ω|U = ∑n

i=1 dxi ∧ dyi.

Let (W,ω) be a symplectic manifold and H : W → R a smooth function. We
call H a Hamiltonian on W . A vector field X on (W,ω) is called symplectic if
LXω = 0 (i.e. the flow of X preserves ω). By Cartan’s formula, X is symplectic
if and only if iXω is closed. A vector field X on (W,ω) is called Hamiltonian if
iXω is exact. We define the (unique) Hamiltonian vector field XH of a Hamiltonian
function H by iXHω = −dH.1 A vector field Y on (W,ω) is called Liouville if
LY ω = ω. Note that the Lie derivative of the symplectic form in the direction of a
Hamiltonian vector field vanishes by Cartan’s formula. As a consequence, the sum
of a Liouville and a Hamiltonian vector field is Liouville.

1There are different sign conventions in the literature.
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Example 1.1.6
The radial vector field

Y = 1
2

n∑
i=1

(xi∂xi + yi∂yi)

is a Liouville vector field on the standard symplectic (R2n,
∑n
i=1 dxi ∧ dyi).

Example 1.1.7 (Cotangent bundles)
Let M be a manifold. Then the cotangent bundle T ∗M of M carries a canonical
symplectic structure. Indeed, there is a canonical 1-form, the so-called Liouville
form, λ on T ∗M :

λ(v) = ξ
(
dπ(v)

)
for v ∈ T(x,ξ)T

∗M . Choosing compatible local coordinate systems (x1, . . . , xn) on M
and (x1, . . . , xn, ξ1, . . . , ξn) on T ∗M , the Liouville form can be expressed as

λ =
n∑
i=1

ξidxi.

Its exterior derivative dλ =: ω is clearly a symplectic form with local expression

ω =
n∑
i=1

dξi ∧ dxi.

By non-degeneracy of the symplectic form, ω and λ can be used to define a Liouville
vector field ν by the condition iνω = λ, which, in our suitable local coordinates, is
just the radial vector field

ν =
n∑
i=1

ξi∂ξi .

A smooth vector bundle E → B over a manifold B equipped with a smoothly
varying symplectic form ωb on each fibre is called symplectic vector bundle. A
complex structure on a vector bundle E → B is a smooth section J of End(E)
such that (Jb)2 = −idEb for all b ∈ B. A complex structure J on a symplectic
vector bundle (E,ω) is called ω-compatible if J is fibre-wise compatible, i.e. if
ωb(Ju, Jv) = ωb(u, v) for all b ∈ B and u, v ∈ Eb and ωb(u, Ju) > 0 for all b ∈ B
and u ∈ Eb \ {0}. A complex structure on the tangent bundle TW of a smooth
manifold W is called almost complex structure on W . Note that the space J (ω)
of ω-compatible complex structures on a symplectic vetor bundle E is non-empty
and contractible (see [37, Proposition 2.4.5]).

Apart from Darboux’s theorem, there are also neighbourhood theorems for the
special types of submanifolds introduced above. We will only state the symplectic
neighbourhood theorem, which says that a neighbourhood of a symplectic subman-
ifold is determined by a symplectic vector bundle over the submanifold, the sym-
plectic normal bundle. The symplectic normal bundle SNW (X) of a symplectic
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submanifold X of a symplectic manifold (W,ω) is defined as the symplectic vector
bundle over X with fibre the symplectic complement of the tangent space of X, i.e.
SNW (X) := (TX)⊥.

Theorem 1.1.8 (Symplectic neighbourhood theorem)
Let (Wj, ωj) be symplectic manifolds with compact symplectic submanifolds Xj ⊂ Wj

(j = 0, 1). Suppose there exists an isomorphism Φ: SNW0(X0) → SNW1(X1) of the
symplectic normal bundles that covers a symplectomorphism

φ : (X0, ω0|TX0)→ (X1, ω1|TX1).

Then φ extends to a symplectomorphism ψ : N (X0) → N (X1) of neighbourhoods
such that Tψ induces Φ on SNW0(X0).

To prove the neighbourhood theorem, one uses the exponential map to trans-
form the bundle map into a map of neighbourhoods. Pulling back the symplectic
form leads to the situation of two symplectic forms agreeing along a symplectic
submanifold. The theorem then follows by using Theorem 1.1.3.

We will also need an extension theorem for symplectic isotopies.

Theorem 1.1.9 (Banyaga, cf. [61, Theorem 3.19])
Let (W,ω) be a compact symplectic manifold and X ⊂ W compact such that X is a
deformation retract of a neighbourhood of X. Assume that H2(W,X;R) = 0 and
suppose furthermore that φt : U → W is a symplectic isotopy of an open neighbour-
hood U of X in W . Then there exist a neighbourhood N ⊂ U of X and a symplectic
isotopy ψt : W → W such that ψt|N = φt|N .

Proof. Choose a neighbourhood N ⊂ U of X which retracts to X. Then we have
H∗(N , X;R) = 0 and thus also H2(W,N ;R) = 0 by the long exact sequence of the
triple (X,N ,W ). The restriction φt|N can be extended to W by diffeomorphisms ρt.
This defines a family of symplectic forms ωt := ρ∗tω and we can consider the deriva-
tive τt := d

dt
ωt, which is closed. As ρt extends φt, which is symplectic on N , the

restriction of τt to N vanishes. Therefore τt defines a class in H2(W,N ;R) = 0.
By Hodge theory, there are 1-forms σt satisfying σt|N = 0 and dσt = τt. These
determine a time-dependent vector field, whose flow pulls back ωt to ω and is the
identity on N . Composing the flow with the diffeomorphisms ρt yields the desired
symplectic isotopy.

The cohomological condition is essential in the above proof. However, if we
restrict to symplectic submanifolds, there is also a version of the theorem due to
Auroux omitting the requirement on cohomology. It is worth noting that Auroux’s
theorem does not extend an isotopy of symplectic submanifolds or even an isotopy of
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open neighbourhoods, but yields an isotopy with image a given family of symplectic
submanifolds. These in turn can always be assumed to arise by an isotopy by a
Moser argument.

Theorem 1.1.10 (Auroux [2, Proposition 4])
Let (Xt)t∈[0,1] be a family of symplectic submanifolds in a compact symplectic mani-
fold (W,ω). Then there exists an isotopy ψt : W → W satisfying ψt(X0) = Xt.

Proof. As mentioned above, the submanifolds Xt can be assumed to arise as the
image of an isotopy of symplectic submanifolds φt : X = X0 → Xt ⊂ W . Then the
symplectic neighbourhood theorem 1.1.8 provides a tool for extending this isotopy
to a tubular neighbourhood N of X. As in the proof of Banyaga’s extension theo-
rem 1.1.9, this can be extended to a family of diffeomorphisms ρt. Also as above,
we define ωt := ρ∗tω and observe that τt := d

dt
ωt defines the zero class in H2(W ;R)

since the ωt are cohomologous. Thus, there exist 1-forms σt on W with dσt = τt.
However, we cannot guarantee the existence of such σt that also vanish on N unless
τt also represents the zero class in the relative cohomology group H2(W,N ;R). This
means that if we use σt to define a vector field ξt via iξtω = −σt, the resulting flow
composed with ρt is a symplectomorphism but will in general not map X0 to Xt.
We now want to achieve this by using σt to find an appropriate antiderivative αt by
hand.

For the resulting isotopy ψt to be symplectic, we need dαt = τt. Furthermore, we
need that the flow of the corresponding vector field ξt preserves X0, i.e. ξt is tangent
to X0 for all t. In terms of the forms α, this translates into the condition that the
symplectic complement of the tangent space to X0 has to be contained in the kernel
of αt.

We have that dσt|N = τt|N = 0, i.e. σt defines a class in H1(N ;R). Also,
restricting σt to the tangent space of X0 yields closed 1-forms on X0. We can
identify the tubular neighbourhood N with a neighbourhood of the zero section of
the symplectic normal bundle SNW (X) and denote the bundle map by π. Then
γt := π∗(σt|TX0) defines a family of closed 1-forms on N containing the symplectic
normal spaces to X0 in its kernel. Furthermore, the classes induced by γt and σt|N
agree in H1(N ;R). Thus, there are functions ft : N → R such that γt = σt + dft. If
we extend the functions ft to all of W and denote the extension by gt, then the 1-
forms αt = σt+dgt are as desired. Indeed, on N they agree with γt and thus contain
the symplectic normal spaces to X0 in their kernel and we also have dαt = dσt = τt,
i.e. the flow of the vector field ξt induced by αt pulls back ωt to ω0 = ω.

Remark 1.1.11 (A special choice of isotopy for trivial normal bundle)
If X = X0 in the setting of Theorem 1.1.10 has trivial symplectic normal bundle,
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the resulting isotopy can be assumed to be of a special form. By the symplectic
neighbourhood theorem 1.1.8 we can identify a neighbourhood Xt with Xt × D2

ε

with symplectic form given as ω|TXt + dx ∧ dy. The first step in the proof of
Auroux’s theorem is to extend the isotopy of symplectic submanifolds φt to an open
neighbourhood and then extend this to diffeomorphisms ρt to the whole manifold.
In our setting, these extensions can be chosen such that the restriction of ρt to the
neighbourhood X × D2

ε of X is φt × idD2
ε
. Furthermore, observe that the vector

fields ξt induced by the 1-forms γt = π∗(σt|TX) are not only tangent to X but in
fact tangent to X × {p} ⊂ X × D2

ε for any p ∈ D2
ε . Thus, the resulting isotopy

is of the form φ̃t × idD2
ε

on the neighbourhood X × D2
ε , where φ̃t is a family of

symplectomorphisms on X.

1.2 Contact structures and elementary results

A contact structure on a smooth manifold M of dimension 2n+ 1 is a maximally
non-integrable hyperplane field ξ ⊂ TM . Locally, a tangential hyperplane field
can be written as the kernel of a 1-form α. Non-integrability then translates into
the condition α ∧ (dα)n 6= 0 for a defining 1-form α. There is a global expression
ξ = kerα if and only if the quotient bundle TM/ξ is trivial (see [37, Lemma 1.1.1]), in
which case we call ξ coorientable. In this thesis we will only consider coorientable
contact structures and refer to a defining 1-form on M as a contact form. The
pair (M, ξ) consisting of a manifold M and a contact structure ξ on M is called
contact manifold.

Remark 1.2.1
1. The condition α ∧ (dα)n 6= 0 is independent of the choice of α.
2. The 2-form dαp is non-degenerate on ξp for all p ∈M .
3. In dimension three, the contact condition α∧ dα 6= 0 is equivalent to the non-

existence of a surface tangent of order two to the plane field in any point (see
[37, Theorem 1.6.2]).

Example 1.2.2 (Standard contact structure on R2n+1)
Consider R2n+1 with Cartesian coordinates (x1, . . . , xn, y1, . . . , yn, z) and the 1-form

αst = dz +
n∑
i=1

xidyi.

Then αst defines a contact structure on R2n+1:

αst ∧ (dαst)n = n! · dz ∧ dx1 ∧ dy1 ∧ . . . ∧ dxn ∧ dyn 6= 0.

We call this the standard contact structure ξst on R2n+1.
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x

y

z

Figure 1.1: The standard contact structure on R3 (slightly modified version of
https://en.wikipedia.org/wiki/File:Standard_contact_structure.svg).

The above contact structure is the prototype of a contact structure in the sense
that any contact structure on any manifold of dimension 2n + 1 locally, i.e. in a
neighbourhood of a point, looks like the standard contact structure on R2n+1 (cf.
Theorem 1.2.9). To formulate results like these, it is reasonable to first define an
appropriate notion of equivalence, i.e. maps respecting contact structures. A diffeo-
morphism f : (M1, ξ1 = kerα1)→ (M2, ξ2 = kerα2) between two contact manifolds
is called contactomorphism if its differential Tf maps the contact structure ξ1 on
M1 to the contact structure ξ2 on M2, i.e. if there is a function λ : M1 → R \ {0}
with f ∗α2 = λα1. Two contact manifolds are said to be contactomorphic if there
exists a contactomorphism between them.

Fixing a contact form α on a manifold M yields a distinguished vector field
on M , the so-called Reeb vector field associated with the contact form α. It is
defined as the unique vector field Rα on M satisfying dα(Rα, ·) = 0 and α(Rα) ≡ 1.
Note that the Reeb vector field and its dynamics are not data that can be assigned
to a contact structure but only to contact forms. Changing the contact form or
applying a contactomorphism can drastically change the Reeb dynamics.

Example 1.2.3
The Reeb vector field of the standard contact form dz + ∑n

i=1 xidyi on R2n+1 as
introduced in Example 1.2.2 form is ∂z.

A vector field X on a contact manifold is said to be a contact vector field if
it satisfies

LXα = fα

https://en.wikipedia.org/wiki/File:Standard_contact_structure.svg
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for some function f : M → R. Contact vector fields on a manifold M are in one-
to-one correspondence with smooth functions on M (cf. [37, Theorem 2.3.1]). The
assignment requires fixing a contact form α and is given by

X 7→ α(X),
Xh ←[ h,

where Xh is the unique vector field satisfying

α(Xh) = h,

dα(Xh, ·) = dh(Rα)α− dh. (1.1)

Observe that Xh is indeed uniquely defined since dα restricts to a symplectic form on
ξ = kerα. We also call a function h a contact Hamiltonian and the corresponding
vector field Xh the contact Hamiltonian vector field associated with h.

Remark 1.2.4 (Rescaling the contact form)
Fix a contact form α on M and consider a positive function h on M . If we rescale
the contact form α to α̃ := (1/h) · α, the contact vector field Xh associated with h

becomes the Reeb vector field of the new contact form α̃. Indeed, the property of
being a contact vector field is independent of the choice of contact form, so by the
one-to-one correspondence of contact vector fields and functions discussed above,
we only have to verify α̃(Xh) = 1, which is clearly satisfied. This observation plays
an essential role in [39].

A Liouville vector field which is transverse to a hypersurface in a symplectic
manifold induces a contact structure on the hypersurface:

Lemma 1.2.5
Let (W,ω) be a (2n + 2)-dimensional symplectic manifold and Y a Liouville field
transverse to a hypersurface M in W . Then α := iY ω induces a contact form
on M .

Proof. We have

α ∧ (dα)n = iY ω ∧
(
d(iY ω)

)n
= iY ω ∧ ωn = 1

n+ 1 iY (ωn+1).

As Y is transverse to M , this expression does not vanish on M .

If the hypersurface with transverse Liouville field is furthermore given as the
level set of a function h, then the (symplectic) Hamiltonian vector field is tangent
and coincides, up to reparametrisation, with the Reeb field of the induced contact
form. The situation in the previous lemma is not exotic at all, as the following
example shows.
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Example 1.2.6 (Symplectisation)
Let (M, ξ = kerα) be a contact manifold. Define W := R × M and a 2-form
ω := d(etα) = et(dt ∧ α + dα), where t denotes a coordinate on the R-factor and α

is identified with its pull-back under the projection map π : R×M →M . One can
easily check that (W,ω) is a symplectic manifold and ∂t a Liouville vector field. We
call (W,ω) the symplectisation of (M, ξ = kerα).

Example 1.2.7 (The standard contact structure on S2n−1)
As seen in Example 1.1.6 the radial vector field Y on R2n is a Liouville vector field
for the standard symplectic form ω = ∑n

i=1 dxi ∧ dyi. Hence, it induces a contact
form α on the unit sphere by Lemma 1.2.5, the so-called standard contact form
on S2n−1. We have

α = iY ω = 1
2

n∑
i=1

(xidyi − yidxi).

Its Reeb vector field is equal to

Rα = 2
n∑
i=1

(xi∂yi − yi∂xi).

For S3, the Reeb orbits are exactly the fibres of the Hopf fibration

C2 ⊃ S3 → S2 = CP 1

(z1, z2) 7→ (z1 : z2)

(see [37, Lemma 1.4.9]).

The following theorem states that a contact structure on a closed manifold cannot
be deformed in a non-trivial way.

Theorem 1.2.8 (Gray stability theorem, cf. [37, Theorem 2.2.2])
Let M be a closed manifold and ξt, t ∈ [0, 1], a smooth family of contact structures
on M . Then there is an isotopy ψt (t ∈ [0, 1]) with Tψt(ξ0) = ξt.

Probably the easiest way to prove it is, in analogy to the proofs of the Moser
theorems stated in the previous subsection, via a so-called Moser trick. It is
assumed that the searched isotopy is the flow of a (time-dependant) vector field.
The requirements to the isotopy then translate into conditions on the vector field.
If a vector field meeting these conditions exists, the isotopy can be obtained by
integration (cf. [37, pp. 60–61]).

We are now going to state some basic neighbourhood theorems for certain types
of submanifolds of contact manifolds – the simplest being Darboux’s theorem, which
describes a standard neighbourhood of a point.
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Theorem 1.2.9 (Darboux’s theorem, cf. [37, Theorem 2.5.1])
Let M2n+1 be a contact manifold, α a contact form on M and let p ∈ M be a
point. Then there is a coordinate system (U, x1, . . . , xn, y1, . . . , yn, z) about p such
that α|U = dz +∑n

i=1 xi ∧ dyi.

To formulate more sophisticated theorems, we first have to define special types
of submanifolds and inspect their normal bundles. A submanifold L of a (2n + 1)-
dimensional contact manifold (M, ξ) is called isotropic if TpL ⊂ ξp for all p in N .
An isotropic submanifold of dimension n is called Legendrian. The (conformal)
symplectic normal bundle of an isotropic submanifold L of (M, ξ = kerα) is

CSNM (L) =
(
(TL)⊥

/
TL, dα

)
.

Notice that this is indeed a symplectic bundle by Remark 1.1.1. If we do not fix a
contact form, the induced structure is only a conformal symplectic structure.

Theorem 1.2.10 (Isotropic neighbourhood theorem, [37, Theorem 2.5.8])
Let (Mi, ξi), i = 0, 1, be contact manifolds with closed isotropic submanifolds Li.
Suppose there is an isomorphism of conformal symplectic normal bundles

Φ: CSNM0(L0)→ CSNM1(L1)

that covers a diffeomorphism φ : L0 → L1. Then this diffeomorphism φ extends to
a contactomorphism ψ : N (L0) → N (L1) of suitable neighbourhoods N (Li) of Li
such that the bundle maps Tψ|CSNM0 (L0) and Φ are bundle homotopic (as conformal
symplectic bundle isomorphisms).

In particular, diffeomorphic Legendrian submanifolds possess contactomorphic
neighbourhoods (cf. Example 1.4.1).

A submanifold M ′ of a contact manifold (M, ξ = kerα) is a contact subman-
ifold if ξ′ := TM ′ ∩ ξ|M ′ is a contact structure on M ′. We then have

TM |M ′ = TM ′ ⊕ (ξ′)⊥.

The symplectic complement (ξ′)⊥ of ξ′ in ξ can thus be identified with the nor-
mal bundle of M ′ in M . We define the conformal symplectic normal bundle
CSNM(M ′) of M ′ in M to be the bundle (ξ′)⊥ together with the conformal sym-
plectic structure induced by dα.

Theorem 1.2.11 (Contact neighbourhood theorem, [37, Theorem 2.5.15])
Let (Mi, ξi), i = 0, 1, be contact manifolds with closed contact submanifolds (M ′

i , ξ
′
i).

Suppose there is an isomorphism of conformal symplectic normal bundles

Φ: CSNM0(M ′
0)→ CSNM1(M ′

1)
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that covers a contactomorphism φ : (M ′
0, ξ
′
0) → (M ′

1, ξ
′
1). Then φ extends to a con-

tactomorphism ψ : N (M ′
0)→ N (M ′

1) of suitable neighbourhoods N (M ′
i) of M ′

i such
that the bundle maps Tψ|CSNM0 (M ′0) and Φ are bundle homotopic (as conformal sym-
plectic bundle isomorphisms).

Proof. As a first step, we want to construct contact forms αi on Mi and a bundle
map TM0|M ′0 → TM1|M ′1 inducing Φ that pulls back α1 to α0 and dα1 to dα0. Pick
a contact form α′1 for ξ′1 on M ′

1 and set α′0 = φ∗α′1. We denote the respective Reeb
vector fields by R′i and choose any contact form αi for ξi on Mi. We can scale αi such
that αi(R′i) = 1 along M ′

i . This means that αi coincides with α′i when restricted to
the tangent space of M ′

i . We then also have dαi|TM ′i = dα′i. Our aim is now to scale
αi again such that Ri = R′i on M ′

i , i.e. want to find smooth functions fi : Mi → R+

with fi|M ′i ≡ 1 and iR′id(fiαi) = 0 on TMi|M ′i . So in particular, we need

0 = iR′id(fiαi) = iR′i(dfi ∧ α + fidαi) = −dfi + iR′idαi.

Such functions fi exist since iR′idαi|TM ′i = iR′idα
′
i ≡ 0, i.e. we can choose fi ≡ 1 on

M ′
i and integrate. With these scaled forms α0 and α1, we can now scale Φ such that

it is a symplectic bundle isomorphism(
(ξ′0)⊥, dα0

)
→
(
(ξ′1)⊥, dα1

)
.

This yields a bundle map

Tφ⊕ Φ: TM0|M ′0 → TM1|M ′1 ,

which pulls back α1 to α0 and dα1 to dα0.
The second step of the proof is to use tubular maps and a stability argument to

construct the desired contactomorphism. So let τi : N(M ′
i) → Mi be tubular maps

and transform the above bundle map into a diffeomorphism

τ1 ◦ Φ ◦ τ−1
0 : N (M ′

0)→ N (M ′
1)

of neighbourhoods N (M ′
i) of M ′

i in Mi, which induces the bundle map. Thus, α0

and (τ1 ◦Φ ◦ τ−1
0 )∗α1 are contact forms on N (M ′

0) that agree on TM0|M ′0 and so do
their differentials. We define a family

βt = (1− t)α0 + t(τ1 ◦ Φ ◦ τ−1
0 )∗α1

for t ∈ [0, 1] and can, by the openness of the contact condition, assume that it is a
family of contact forms on a possibly smaller neighbourhood N (M ′

0). Note that we
have dβt ≡ dα0 on TM0|M ′0 . By the Gray stability (Theorem 1.2.8) there is an isotopy
ψt of the neighbourhood N (M ′

0) which fixes M ′
0 and such that ψ∗t βt = λtα0 for a

smooth family of smooth functions λt. Then τ1 ◦Φ ◦ τ−1
0 ◦ψ1 is a contactomorphism

as desired.
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Example 1.2.12
Observe that the groups SO(2) and U(1) coincide. That means that there is exactly
one conformal symplectic structure on an orientable rank two bundle. Thus, the
preceding theorem says that codimension two contact manifolds possess standard
neighbourhoods, which only depend on the topological bundle type of their normal
bundle, which is classified by its Euler number.

Let (M ′, ξ′ = kerα′) ⊂ (M, ξ) be a contact submanifold of codimension two
with trivial normal bundle. Then a neighbourhood of M ′ is contactomorphic to
(M ′ × D2, ker(α′ + r2dθ)), where (r, θ) are polar coordinates on D2.

More generally, if the normal bundle N of M ′ in M is not necessarily trivial, let
γ be a connection 1-form on the unit circle bundle of N , i.e. a normalised 1-form
invariant under the circle-action (cf. [37, Definition 7.2.3]). This also defines a 1-
form on the normal bundle with the zero-section removed via the pull-back under
the natural retraction R2 \ {0} → S1, which will still be denoted by γ. Denoting
the radial coordinate in the fibres of N by r, the form r2γ is a smooth 1-form on all
of N . Its exterior derivative d(r2γ) = 2rdr ∧ γ + r2dγ restricts to a volume form on
each fibre. Hence, α′ + r2γ is a contact form near M ′. So a neighbourhood of M ′

in (M, ξ) is contactomorphic to a neighbourhood of the zero-section of its normal
bundle with contact structure given by α′ + r2γ.

1.3 Hypersurfaces

Consider an oriented hypersurface S in a (2n + 1)-dimensional contact manifold
(M, ξ = kerα). The contact structure defines a singular 1-dimensional foliation on
the hypersurface S via the distribution

(TS ∩ ξ|S)⊥.

It is called the characteristic foliation of S. Note that if we choose a volume
form Ω on S, the characteristic foliation is given by the vector field X defined by
the condition iXΩ = β ∧ (dβ)n−1, where β is the restriction of the contact form α

to S (see [37, Lemma 2.5.20]). Giroux [40] proved that the characteristic foliation
of a surface in a 3-manifold determines the germ of the contact structure near the
surface (cf. [37, Theorem 2.5.22]).

This can be generalised to arbitrary dimension as follows:

Proposition 1.3.1 ([15, Proposition 6.4])
Let S be a closed hypersurface in a contact manifold (M, ξ = kerα). Then the germ
of ξ near S is determined by the 1-form α|TS. In particular, if ξ|S is transverse to S,
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then the germ of ξ near S is determined by the codimension 1 distribution TS ∩ ξ|S
on S.

A special type of surfaces in contact 3-manifolds are so-called convex surfaces,
which have the property that the contact structure is invariant in a transverse direc-
tion in a neighbourhood of the surface. Convex surfaces were introduced by Giroux
in his thesis [40] and are a powerful tool in 3-dimensional contact geometry. For in-
stance, they play an important part in the classification of tight contact structures
(cf. [37, Section 4.10]). We will only introduce some basic terminology here and
point the reader to [40, 29, 37] for more information.

A surface S in a 3-manifold is called convex if there is a contact vector field
defined near and transverse to S. It turns out that basically all contact geometric
information is encoded in a 1-dimensional submanifold of the surface, its dividing
set. The dividing set ΓS of a convex surface S ⊂ (M, ξ) with transverse contact
vector field Y is the set of points in S where Y is tangent to the contact planes ξ.

Example 1.3.2
Consider the 3-Torus T 3 with the contact form α = cos θdx− sin θdy. The 2-Torus
S = {y = y0} ⊂ T 3 is convex. Indeed, the vector field Y = ∂y is contact and
transverse to S. We have α(Y ) = − sin θ. Thus, the dividing set is

ΓS = {(x, y0, 0)} ∪ {(x, y0, π)}.

The transversality of the contact vector field of a convex surface S ⊂ M means
that there is an embedding ψ : S×R→M (with ψ|S×{0} the inclusion) inducing an
R-invariant contact structure on S × R, i.e. a convex surface S possesses a neigh-
bourhood S ×R in which the contact structure is R-invariant. Conversely, if such a
neighbourhood exists, the surface is convex, as the R-direction defines a transverse
contact vector field. Hence, in an R-invariant neighbourhood S × R, we can write
the contact form as α = β + udz, where β = α|S is a 1-form on S, u : S → R
a suitable function and z the coordinate of the R-factor. In this description, the
dividing set becomes ΓS = {u = 0} and can easily seen to be transverse to the char-
acteristic foliation Sξ (see [37, p. 230]). This motivates the general notion of a set
of circles dividing a singular 1-dimensional foliation – we say that a 1-dimensional
submanifold Γ divides a singular 1-dimensional foliation F on a closed surface S if
• Γ is transverse to F ,
• there is an area form Ω on S and a vector field X defining F with LXΩ|S\Γ 6= 0,
• S \Γ splits into components S± of positive and negative divergence of X with

respect to Ω and X points out of S+ along Γ.
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The property that the characteristic foliation of a convex surface is divided by
a collection of embedded circles is in fact equivalent to convexity. Furthermore, the
dividing set of a convex surface is determined up to isotopy via curves transverse to
Sξ by the characteristic foliation (cf. [37, Theorem 4.8.5]). On the other hand, any
singular foliation divided by the dividing set of a convex surface can be obtained
by a perturbation of the surface in an arbitrarily small neighbourhood (see [37,
Theorem 4.8.11]). Combined with the above mentioned fact that the characteristic
foliation of a surface determines the germ of the contact structure, this means that
all information of a contact structure in a neighbourhood of a convex surface is
contained in the dividing set of the surface. This is particularly useful for gluing
contact structures. Note also that any closed, orientable surface is C∞-close to a
convex surface (see [37, Proposition 4.8.8]).

1.4 Knots and contact 3-manifolds

In this section we restrict ourselves to 3-dimensional contact manifolds.
There are two special types of knots in contact manifolds, which are not only in-

teresting in their own right but also carry a lot geometric information of the ambient
contact manifold itself. A knot in a contact manifold (M, ξ) is called Legendrian if
it is a Legendrian submanifold of (M, ξ), i.e. if it is tangent to the contact structure.
A knot is said to be transverse if it is transverse to ξ, i.e. if it is a 1-dimensional
contact submanifold. Note that a transverse knot in a cooriented contact manifold
comes with a preferred orientation. If it is given some orientation, we call it posi-
tively or negatively transverse depending on whether the orientation coincides
with the one induced by the contact structure.

Legendrian knots possess a standard neighbourhood by Theorem 1.2.10 as do
transverse knots by Theorem 1.2.11.

Example 1.4.1
1. Consider the contact manifold (S1 × R2, ξn := ker(cos(nθ)dx − sin(nθ)dy)).

Then S1 × {0} is a Legendrian knot. In particular, any Legendrian knot in
any contact manifold has a tubular neighbourhood which is contactomorphic
to a neighbourhood of S1 × {0} in this model.

2. The knot S1×{0} ⊂ (S1×R2, ker(dθ+r2dϕ)) is transverse, and any transverse
knot has a tubular neighbourhood which is contactomorphic to a neighbour-
hood of S1 × {0} in this model (cf. Example 1.2.12).

Remark 1.4.2
The contact structures ξn on S1×R2 are all contactomorphic. A contactomorphism
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from (S1 × R2, ker(dx+ y dθ)) to (S1 × R2, ξn) is given by

fn(θ, x, y) :=
(
θ, x cos(nθ) + y

n
sin(nθ),−x sin(nθ) + y

n
cos(nθ)

)
.

Also, the map (θ, x, y) 7→ (θ, rx, ry) is a contactomorphism of (S1×R2, ξn) for every
r > 0. Thus, the standard neighbourhood of a Legendrian knot described above
can be chosen arbitrarily big. For transverse knots the situation is different. The
maximal size of a standard neighbourhood S1×Dε is an invariant of the transverse
knot (cf. [6, 13, 63]).

We now want to describe distinguished push-offs of a Legendrian knot. We
identify a Legendrian knot with S1×{0} ⊂ (S1×R2, ker(cos θdx−sin θdy)) as above.
Then the torus S = {x2 + y2 = δ}, which is contained in a tubular neighbourhood
for small δ, is convex since the contact vector field X = x∂x + y∂y is transverse to
S. The dividing set ΓS consists of the two curves

γ±(θ) = (θ,±δ sin θ,±δ cos θ).

We call γ+ (γ−) the positive (negative) transverse push-off of our Legendrian knot.
This makes sense indeed, as these curves arise by pushing the knot into the direction
of the vector field ±(sin θ∂x+cos θ∂y), which is tangent to the contact planes. Thus,
different choices of δ result in push-offs which are isotopic as transverse knots.

There are also two distinguished Legendrian curves on S:

γL(θ) = (θ,±δ cos θ,∓δ sin θ).

We call γL a Legendrian push-off. Varying the parameter δ shows that the original
knot and its Legendrian push-off are isotopic as Legendrian knots.

Note that by considering a standard neighbourhood of a transverse knot one
easily sees that a transverse knot possesses Legendrian push-offs. However, there
is no canonical choice and two Legendrian push-offs are not necessarily isotopic as
Legendrian knots.

1.4.1 The front projection

Consider a smooth curve γ : (a, b)→
(
R3, ξst = ker(xdy+dz)

)
with parametrisation

γ(t) = (x(t), y(t), z(t)). The front projection of γ is

γF (t) = (y(t), z(t)).

If γ is a Legendrian immersion, i.e. we have αst(γ̇(t)) = 0 and γ̇(t) 6= 0 for all
t ∈ (a, b), then the front projection γF does not have vertical tangencies. This is
because if ẏ vanishes, then so does ż by the Legendre condition

0 = αst(γ̇(t)) = ż(t) + x(t)ẏ(t).
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Instead of vertical tangencies, the front projection of a Legendrian curve has cusps,
which after a small perturbation can be assumed to be isolated and semi-cubical,
i.e. around a cusp in t = 0 the curve is given by

γ(t) = (t+ a, λt2 + b,−λ(2/3 · t3 + at2) + c)

(see [37, Lemma 3.2.3]). The Legendrian curve γ is uniquely determined by its front
projection γF , the x-coordinate of γ can be recovered as the negative slope −dz/dy
of γF . It follows that γ is embedded if and only if γF has transverse crossings only.
In this case, the crossing behaviour in a front projection is always of the following
form:

Furthermore, any regular curve in R2 with semi-cubical cusps and without vertical
tangencies is the front projection of a Legendrian (cf. [37, Lemma 3.2.3]). This has
the consequence that arbitrary knots in contact 3-manifolds can be C0-approximated
by Legendrian as well as transverse knots (cf. [37, Theorem 3.3.1]). To obtain a
Legendrian approximation, the knot is covered by finitely many Darboux charts.
In such a chart, one can consider the front projection and approximate this by a
zigzag-curve with semi-cubical cusps and no vertical tangencies. This curve then
lifts to a Legendrian curve approximating a segment of the original knot. To obtain
a transverse approximation of a knot, one can approximate first by a Legendrian
knot – the transverse push-off of a Legendrian approximation then yields the desired
transverse approximation of the original knot.

So far, we have only discussed front projections of Legendrian knots, but they
are also useful for studying transverse knots. Let γ(t) = (x(t), y(t), z(t)) ∈ (R3, ξst)
be a positively transverse parametrised curve, i.e. we have ż + xẏ > 0. Hence, the
following holds:
• if ẏ = 0, then ż > 0,
• if ẏ > 0, then x > −ż/ẏ,
• if ẏ < 0, then x < −ż/ẏ.
This means that the situations depicted in Figure 1.3 cannot occur in the front

projection of a positively transverse knot. In fact, these are the only restrictions
that have to be imposed on a diagram so that it lifts to a positively transverse
curve. However, in contrast to the front projection of a Legendrian knot, the front
projection diagram of a transverse knot only determines the knot up to transverse
isotopy (see [37, Section 3.2.2] for details).
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Figure 1.2: The front projections of a Legendrian unknot and trefoil.

Figure 1.3: Impossible front projections of a positively transverse curve.

1.4.2 The classical invariants

Legendrian or transverse knots in contact manifolds can have the same topological
knot type but may differ as Legendrian or transverse knots. This requires knot
invariants adapted to the contact setting. We will briefly introduce the so-called
classical invariants, a basic, yet useful set of invariants for nullhomologous Legen-
drian and transverse knots.

A nullhomologous Legendrian knot K has two distinguished longitudes. The
Seifert longitude λs obtained by pushing K into a Seifert surface, i.e. an oriented
connected surface bounded by K, and the contact longitude λc which is obtained
by pushing K into a direction transverse to the contact structure. In the standard
neighbourhood discussed above, the contact longitude is given by the Legendrian
push-off KL. We consider longitudes as curves on the boundary torus of a tubu-
lar neighbourhood νK and will usually identify them with the homology classes
they represent. Two longitudes differ by a multiple of the meridian of the torus.
The difference between contact and Seifert longitude is measured by the Thurston–
Bennequin invariant.

Definition 1.4.3
Let K be a nullhomologous Legendrian knot in a contact manifold (M, ξ), let λs
and λc denote its Seifert and contact longitude and µ its meridian. The Thurston–
Bennequin invariant tb(K) ∈ Z is defined by the equation

λc = tb(K)µ+ λs ∈ H1(∂νK,Z).
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Figure 1.4: Legendrian unknots with different Thurston–Bennequin invariants.

Remark 1.4.4
A priori, the definition requires K to be oriented. However, it is independent of
the choice of orientation. The longitudes are oriented as push-offs of K and the
meridian will always be assumed to be the positive meridian of K, i.e. an oriented
curve in ∂νK bounding a disc in νK such that the pair (µ, λ), with λ a longitude
of K, gives the orientation of ∂νK induced from νK.

If a Legendrian knot K is given in a front projection, the contact longitude
is given as a translation of K in the z-direction, as ∂z is transverse to the contact
planes. The Thurston–Bennequin invariant is equal to the linking number of K with
this translated knot K ′, i.e. it can be computed by counting signed crossings where
K runs over K ′ in the diagram. These crossings correspond exactly to self-crossings
and right cusps of the front projection of K. Using the fact that the number of left
and right cusps agree, one can compute the Thurston–Bennequin invariant of a knot
K ⊂ (R3, ξst) via its front projection as

tb(K) = −1
2c+ w,

where c denotes the total number of cusps and w the writhe of the diagram, i.e. the
signed count of self-crossings.

The pair of unknots depicted in Figure 1.4 can be distinguished by their Thurston–
Bennequin invariants, the ones in Figure 1.5 cannot. They are different, however,
as the second classical invariant for Legendrian knots will show.

Definition 1.4.5
Let K ⊂ (M, ξ) be a nullhomologous oriented Legendrian knot and Σ a Seifert
surface for K. The contact structure ξ can be trivialised over Σ, i.e. ξ|Σ = Σ× R2.
A regular parametrisation γ of the knot K then induces a map γ′ : S1 → R2 \ {0}.
The rotation number rot(K,Σ) of K with respect to the Seifert surface Σ is
defined to be the degree of the map γ′ : S1 → R2 \ {0}.
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Figure 1.5: Legendrian unknots with equal Thurston–Bennequin invariants.

Remark 1.4.6
Equivalently, the rotation number of a nullhomologous Legendrian knot K with
respect to a Seifert surface Σ can also be defined as

rot(K,Σ) = 〈e(ξ,K), [Σ]〉 = PD(e(ξ,K)) • [Σ],

where e(ξ,K) is the relative Euler class of the contact structure ξ relative to the
trivialisation given by a positive tangent vector field along the knot K, and [Σ] the
relative homology class represented by the surface Σ. This definition of the rotation
number is useful for calculations (see also [68]).

Clearly, the rotation number does only depend on the class of the chosen Seifert
surface, not on the particular choice of surface itself. Furthermore, it does not
depend on the particular choice of trivialisation (see [37, Lemma 3.5.14]). Note also
that the rotation number is independent of the class of the Seifert surface if the
Euler class e(ξ) of the contact structure vanishes (see [37, Proposition 3.5.15]).

As the standard contact structure on R3 admits a global trivialisation by ∂x and
∂y − x∂z, the rotation number of a Legendrian knot K in (R3, ξst) is given by the
signed count of crossings of the positive tangent vector of K over ∂x. These crossings
correspond to left cusps oriented downwards and right cusps oriented upwards in
the front projection of K. One can, of course, also count how often the tangent
vector of K crosses −∂x, which happens in right cusps oriented downwards and left
cusps oriented upwards. Averaging the resulting formulas of both methods yields

rot(K) = 1
2(c− − c+),

where c± is the number of cusps oriented upwards or downwards, respectively
(see [37, Proposition 3.5.19] for details).

The classical invariant for transverse knots is the self-linking number.
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Definition 1.4.7
Let K be an oriented nullhomologous transverse knot in a contact manifold (M, ξ)
and let Σ be a Seifert surface for K. The self-linking number sl(K,Σ) of K is
defined as the linking number of K and K ′ where K ′ is obtained by pushing K in
the direction of a non-vanishing section of ξ|Σ.

The self-linking number of a transverse knot is independent of its orientation
and does only depend on the homology class of the chosen Seifert surface (cf. [37,
Section 3.5.2]).

As with Legendrian knots, the front projection of a transverse knot in standard
R3 can be used to compute its self-linking number. If one chooses the section
required in Definition 1.4.7 to be the global section ∂x of ξst, it becomes clear that
the self-linking number of a transverse knot equals the writhe of its front projection
(cf. [37, Proposition 3.5.32]).

A natural question to ask is how the classical invariants of a nullhomologous
Legendrian knot and the self-linking number of its transverse push-off relate, which
is answered in the following proposition.

Proposition 1.4.8 ([37, Proposition 3.5.36])
Let K ⊂ (M, ξ) be an oriented nullhomologous Legendrian knot with Seifert sur-
face Σ and let K± denote its positive or negative, respectively, transverse push-off.
Then

sl(K±,Σ) = tb(K)∓ rot(K, [Σ]),

where we regard Σ as a Seifert surface also for K±, which is topologically isotopic
to K.

Figure 1.6: Stabilisations of Legendrian and transverse knots.

The Legendrian or transverse isotopy class of a Legendrian or transverse knot,
respectively, can be changed by stabilisations. These are the local operations
which, in the front projection, have the effect shown in Figure 1.6. The Thurston–
Bennequin invariant of a Legendrian knot decreases by 1 in a stabilisation. The
rotation number of the stabilised and the original Legendrian knot differ by 1. The
stabilisation is said to be positive or negative accordingly. The self-linking number
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of a transverse knot decreases by 2 in a stabilisation. In particular, we can realise
a given topological knot as a Legendrian or transverse knot with arbitrary small
classical invariants. However, the invariants of a knot in standard contact R3 are
bounded from above.

Theorem 1.4.9 (Bennequin inequality (version 1), [7])
Let K be a topological knot in R3. Then we have the following inequalities for every
Legendrian realisation L and every transverse realisation T of K in (R3, ξst):

sl(T ) ≤ 2g(K)− 1,
tb(L) + | rot(L)| ≤ 2g(K)− 1.

Here g(K) denotes the genus of the knot, i.e. the minimal genus of a Seifert surface
for K.

In the next section we will state a generalisation of the above theorem due to
Eliashberg [27], which can be used as a criterion for tightness (see Theorem 1.4.14).

It is reasonable to ask to what extent Legendrian and transverse knots are de-
termined by their classical invariants. It turns out, that unknots in the standard
contact R3 are completely classified by their classical invariants, as the next two
theorems will show.

Theorem 1.4.10 (Classification of Legendrian unknots, [28])
Every Legendrian unknot in (R3, ξst) can be obtained by stabilising the Legendrian
unknot in Figure 1.7. In particular, Legendrian unknots are classified by their clas-
sical invariants.

Theorem 1.4.11 (Classification of transverse unknots, [27])
Every positively transverse unknot in (R3, ξst) can be obtained by stabilising the trans-
verse unknot in Figure 1.7. In particular, transverse unknots are classified by their
self-linking number.

Figure 1.7: A Legendrian and a transverse unknot.

In general, the classical invariants are not sufficient to determine the Legen-
drian or transverse isotopy class of a knot, see e.g. [12] for examples of non-isotopic
Legendrians with the same classical invariants and [32] for the transverse case.
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1.4.3 Eliashberg’s dichotomy and classification results

We briefly introduce Eliashberg’s dichotomy of tight and overtwisted contact struc-
tures and state some classification results.

Example 1.4.12 (Standard overtwisted contact structure)
Consider the 1-form

αot = cos rdz + r sin rdθ = cos rdz + r2 sin r
r
dθ

on R3 with cylindrical coordinates (r, θ, z). Since the function sin(r)/r can be
smoothly extended by 1 for r = 0, this is indeed a smooth 1-form, and one computes

αot ∧ dαot =
(

1 + sin r
r

cos r
)
rdr ∧ dθ ∧ dz,

i.e. αot defines a contact structure ξot which we call the standard overtwisted
contact structure on R3. Consider the disc D := {(r, θ, 0) ∈ R3|r ≤ π, θ ∈ S1}.
The vector field ∂z is a contact vector field and transverse to D, so D is convex.
Observe that the contact planes are tangent to D along its boundary L := ∂D.
In particular, L is a Legendrian unknot whose contact and Seifert framing coincide,
i.e. it has vanishing Thurston–Bennequin invariant. The characteristic foliation Dξot

consists of the radial lines with the centre and all boundary points being singular (see
left part of Figure 1.8). By pushing the interior of D slightly into the z-direction,
the boundary is turned into a closed leaf of the foliation, which then looks like
depicted on the right hand side of Figure 1.8. The disc D is called the standard
overtwisted disc.

Figure 1.8: The unperturbed and the perturbed standard overtwisted disc.

Definition 1.4.13
An embedded disc D ⊂ (M, ξ) is called overtwisted disc if ∂D is Legendrian with
tb(∂D) = 0 and the characteristic foliation Dξ contains a unique singular point in
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the interior of D. A contact structure ξ on a manifold M is called overtwisted if
(M, ξ) contains an overtwisted disc. A contact structure is called tight if it is not
overtwisted.

By the Bennequin inequality (Theorem 1.4.9) there are no Legendrian unknots
with vanishing Thurston–Bennequin invariant in (R3, ξst). In particular, (R3, ξst)
is tight. The same argument shows that the standard contact structure on the 3-
sphere as introduced in Example 1.2.7 is tight because for every Legendrian knot in
S3, one can obtain a Legendrian in standard R3 with the same classical invariants
by removing a point in its complement.

In fact, we can characterise tightness by properties of Legendrian and transverse
knots.

Theorem 1.4.14 (Bennequin inequality (version 2), [27])
Let (M, ξ) be a contact 3-manifold. Then the following statements are equivalent.

1. (M, ξ) is tight.
2. For any nullhomologous transverse knot K ⊂ (M, ξ) and any Seifert surface

Σ of K we have
sl(K,Σ) ≤ 2g(K)− 1.

3. For any nullhomologous Legendrian knot K ⊂ (M, ξ) and any Seifert surface
Σ of K we have

tb(K) + | rot(K, [Σ])| ≤ 2g(K)− 1.

4. For any nullhomologous Legendrian knot K ⊂ (M, ξ) we have

tb(K) ≤ 2g(K)− 1.

5. There is no unknot in (M, ξ) with vanishing Thurston–Bennequin invariant.

Martinet was the first to prove that every closed, orientable 3-manifold can be
equipped with a contact structure.

Theorem 1.4.15 (Martinet, [58])
Every closed, orientable 3-manifold admits a contact structure.

The original proof constructs a contact structure via a surgery description from
S3. A consequence of the special kind of transverse surgery operation used in the
proof – the so-called Lutz twist – is that the resulting contact structures are always
overtwisted. We will describe a different proof based on open book decompositions in
the next chapter (see Theorem 2.3.1). But not only do 3-manifolds admit overtwisted
contact structures, overtwisted contact structures are in fact completely classified
by the topological data of the underlying plane field.
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Theorem 1.4.16 (Classification of overtwisted contact structures, [24])
Let M be a closed, orientable 3-manifold. Then there is exactly one (up to isotopy)
overtwisted contact structure in every homotopy class of tangential 2-plane fields.

The concept of overtwistedness has recently been generalised to higher dimen-
sions and a corresponding existence and classification result was proved.

Theorem 1.4.17 (Existence and classification of overtwisted contact structures in
all dimensions, [8])
Let M be a closed manifold. Then there is exactly one overtwisted contact structure
in every homotopy class of almost contact structures on M .

The classification of tight contact structures is only known in special cases.
Among those are S3, S2× S1 and R3, which admit a unique tight contact structure
– the standard contact structure (cf. [26] and [37, Section 4.10]), and the tight con-
tact structures on the solid torus S1 ×D2 (cf. [47]), which play an essential role in
Legendrian surgery constructions (cf. [37, Section 6.4]).

1.5 The contact fibre connected sum

We will briefly introduce the (topological) fibre connected sum, which is a method
to construct manifolds using embedded submanifolds, and then discuss its contact
version following [37, Section 7.4]. Let M ′ and M be closed oriented manifolds and
let j0 and j1 be embeddings of M ′ into M with disjoint images. Assume that there
exists a bundle isomorphism Ψ of the corresponding normal bundles N0 and N1 over
j1 ◦ j−1

0 |j0(M ′) that reverses the fibre orientation. Picking a bundle metric on N0 and
choosing the induced metric on N1 turns Ψ into a bundle isometry. We furthermore
identify open disjoint neighbourhoods of the ji(M ′) with the normal bundles Ni and
denote the bundle projections by πi : Ni → ji(M ′).

The fibre connected sum is the quotient manifold

#ΨM :=
(
M \

(
j0(M ′) ∪ j1(M ′)

))
/∼,

where v ∈ N0 with 0 < ‖v‖ < ε is identified with
√
ε2−‖v‖2
‖v‖ Ψ(v). A useful interpre-

tation of the fibre sum is the following: suppose we identify the boundaries of the
embedded normal bundles N0 and N1 with their induced sphere bundles. Then the
fibre connected sum is diffeomorphic to the quotient(

M \
(
N0 ∪N1

))
/∼,
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where we identify p ∈ ∂N0 with Ψ(p) ∈ ∂N1. Observe that (in both cases) the
identification is orientation preserving. If M is disconnected and ji maps M ′ into
Mi with M = M0 tM1, we also write M0#ΨM1 for #ΨM . In the case when M ′

is just a point the fibre connected sum coincides with the ordinary connected sum.
Note also that there is a cobordism from M to #ΨM , i.e. the fibre connected sum
can be obtained by a sequence of surgeries (cf. Section 2.2).

Remark 1.5.1
Note that the fibre connected sum can also be defined as a quotient of M with
tubular neighbourhoods of the ji(M ′) removed, i.e.

#ΨM =
(
M \

(
N

[0,ε/2]
0 ∪N [0,ε/2]

1

))
/∼,

where v ∈ N
(ε/2,

√
3ε/2)

0 is identified with
√
ε2−‖v‖2
‖v‖ Ψ(v) ∈ N

(ε/2,
√

3ε/2)
1 . Here N (a,b)

i

denotes the set of v ∈ Ni with a < ‖v‖ < b.

The following theorem explains how the construction can be adapted to work in
the contact setting if the dimensions of M and M ′ differ by two. It was first stated
as an exercise in [46] and proved in full generality in [37]. For a symplectic analogue
see Section 1.5.2.

Theorem 1.5.2 (Contact fibre connected sum, [46], [37, Theorem 7.4.3])
Let (M, ξ) and (M ′, ξ′) be contact manifolds of dimension dimM ′ = dimM − 2,
where the contact structures ξ, ξ′ are assumed to be cooriented; these cooriented
contact structures induce orientations of M and M ′. Let j0, j1 : (M ′, ξ′) → (M, ξ)
be disjoint contact embeddings that respect the coorientations, and such that there
exists a fibre-orientation-reversing bundle isomorphism Φ: N0 → N1 of the normal
bundles of j0(M ′) and j1(M ′). Then the fibre connected sum #ΦM admits a contact
structure that coincides with ξ outside tubular neighbourhoods of the submanifolds
j0(M ′) and j1(M ′).

Proof. We will use the description of the fibre connected sum given in Remark 1.5.1,
and we want to construct suitable contact forms such that the identification map is
a contactomorphism.

We start by choosing a connection 1-form γ1 on the unit circle bundle of N1. This
also defines a 1-form on N1 \ j1(M ′) via the pull-back under the natural retraction
R2 \ {0} → S1, which will still be denoted by γ1. The pull-back of γ1 under Φ then
defines a form on N0 \ j0(M ′). However, as Φ is fibre orientation reversing, we will
work with γ0 := −Φ∗γ1. If we write r for the radial coordinate in the fibres of Ni, r2γi

is a smooth 1-form on all of Ni. Its exterior derivative d(r2γi) = 2rdr ∧ γi + r2dγi

restricts to a volume form on each fibre. For α′ a contact form for ξ′ = kerα′



1.5. The contact fibre connected sum 29

on M ′ ≡ ji(M ′), we can write the contact form ξ as the kernel of π∗i α′ + r2γi on a
neighbourhoodN [0,2ε)

i of the zero section ji(M ′) ofNi as explained in Example 1.2.12.
We now want to adapt this contact form away from the zero section to make it
compatible with the quotient map of the fibre connected sum. Choose a smooth
function f : (ε/2, 2ε)→ R satisfying
• f ′(r) > 0,
• f(r) = r2 on an open interval containing [ε, 2ε),
• f(r) = r2 − ε2/2 on (ε/2,

√
3ε/2).

The 1-form π∗i α
′ + f(r)γi coincides with the contact form π∗i α

′ + r2γi on a neigh-
bourhood of N [ε,2ε)

i in N [0,2ε)
i and is itself a contact form on N [ε/2,2ε)

i by the first two
properties of the function f . By the third condition we have f(

√
ε2 − r2) = −f(r) on

the interval (ε/2,
√

3ε/2). Hence, since by definition we also have γ0 := −Φ∗γ1, the
identification map in the construction of the fibre connected sum as in Remark 1.5.1
is a contactomorphism. In particular, the contact form descends to a form on the
quotient #ΦM .

1.5.1 An alternative interpretation of the contact fibre con-
nected sum

As mentioned above, one can also form the fibre connected sum by identifying the
boundaries of closed tubular neighbourhoods of the submanifolds. In the following
we want to explain how this interpretation can be used in the contact geometric
setting provided the normal bundles are trivial.

Let M be a contact manifold and M ′ a codimension two contact submanifold
with trivial normal bundle. Then M ′ has a neighbourhood Nε in M which is contac-
tomorphic to M ′×D2

ε with contact form α = α′+r2dθ, where D2
ε is a disc of radius ε

with polar coordinates (r, θ) and α′ a contact form on M ′ (see Example 1.2.12).
The characteristic foliation of Sδ := M ′ × ∂D2

δ is defined by the vector field
X = −δ2Rα′ + ∂θ. Indeed,

X ∈ kerα′ ⊕ 〈X〉 = TSδ ∩ kerα|Sδ ,

and for v ∈ kerα′ we have dα(X, v) = 0, i.e.

X ∈
(
TSδ ∩ kerα|Sδ

)⊥
.

We now want to show that X also defines the characteristic foliation as an oriented
foliation if we orient Sδ such that the positive r-direction is outward normal. We
have

α ∧ (dα)n = 2nrdr ∧ dθ ∧ α′ ∧ (dα′)n−1,
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i.e. a volume form giving the desired orientation on Sδ is

Ω = dθ ∧ α′ ∧ (dα′)n−1.

Denoting the restriction of α to Sδ by β, we obtain

iXΩ = α′ ∧ (dα′)n−1 + δ2dθ ∧ (dα′)n−1 = (α′ + δ2dθ) ∧ (dα′)n−1 = β ∧ (dβ)n−1.

Hence, X also defines the characteristic foliation as an oriented foliation.
Now consider the manifold with boundary M ′ × S1 × [0, δ] equipped with the

contact form α′ + f(r)dθ, where f is a strictly monotone function with f(0) = 0,
f ′(0) = 1 and f equal to r2 near δ. Also here the characteristic foliation on

Sδ := M ′ × S1 × {δ}

is given by X = −δ2Rα′ + ∂θ and we have

TSδ ∩ kerα|Sδ = kerα′ ⊕ 〈X〉.

The characteristic foliation of Sδ is non-singular, i.e. the contact hyperplanes are
transverse to Sδ. Hence, by Proposition 1.3.1, the germ of the contact structure is
determined by the intersection TSδ ∩ kerα|Sδ . Since this coincides for both copies
of Sδ, we can glue M ′ × S1 × [0, δ] to M \ (M ′ × D2

δ) and denote the resulting
contact manifold by M̃ . Note that the characteristic foliation of the boundary
∂M̃ ∼= M ′ × S1 × {0} is given by ∂θ, which is non-vanishing, and that we have

T∂M̃ ∩ kerα|
∂M̃

= kerα′ ⊕ 〈∂θ〉.

We say that M̃ is obtained from M by blowing up the submanifold M ′.2

In the setting of the contact fibre connected sum, we have two contactomorphic
codimension two submanifolds M ′

0 and M ′
1 of a contact submanifold M . Assume

that both submanifolds have trivial normal bundle. An isomorphism of their nor-
mal bundles then corresponds to a choice of framing, i.e. a trivialisation of their
normal bundles. Blowing up M ′

0 and M ′
1 yields a manifold M̃ with two boundary

components M ′
i × S1. We can glue these together via the orientation-reversing map

M ′
0 × S1 → M ′

0 × S1

(x, θ) 7→ (x,−θ),

which respects the characteristic foliations as well as the codimension 1 distributions
given by the intersection with the contact structure. The resulting manifold is a fibre
connected sum of M along the framed submanifolds M ′

i .
2The terminology is chosen in analogy to the 3-dimensional case discussed in [51].
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1.5.2 The symplectic fibre connected sum

We will briefly show – following [61, Section 7.2] – how the fibre connected sum
construction can be performed in the symplectic setting.

Let (Wj, ωj) (j = 0, 1) be two symplectic manifolds of the same dimension 2n
and let (X, τ) be a compact symplectic manifold of dimension 2n− 2. Suppose that
ij : X → Wj are symplectic embeddings with trivial normal bundle. Then by the
symplectic neighbourhood theorem 1.1.8 there are embeddings fj : X×D2(ε)→ Wj

with f ∗j ωj = τ + dx ∧ dy and fj(x, 0) = ij(x) for x ∈ X. Let A be the annulus
A := A(δ, ε) = D2(ε)\int

(
D2(δ)

)
and φ : A→ A an area- and orientation-preserving

diffeomorphism interchanging the two boundary components.
We can now form the fibre connected sum

M0#M1 =
(
M0 \ f0(X ×B2(ε)

)
∪φ

(
M1 \ f1(X ×B2(ε)

)
,

where we identify f1(x, a) with f0(x, φ(a)) for x ∈ X and a ∈ A. Since the the
symplectic forms ωj agree on the overlap X×A, this carries a well-defined symplectic
form induced by the ωj.

Remark 1.5.3 (Relative symplectic fibre sum)
Note that the symplectic fibre sum can be adapted to work in a relative setting. Let
W be a symplectic manifold with contact type boundary and let X be a codimension
2 symplectic submanifold with trivial normal bundle and contact type boundary
which is a contact submanifold of ∂X. Let ∂W × (−ε, 0] be a collar neighbourhood
of ∂W given by a Liouville field transverse to ∂W and suppose that

X ∩
(
∂W × (−ε, 0]

)
= ∂X × (−ε, 0].

The symplectic fibre sum can then be performed in this setting with the effect on
the boundary being a contact fibre connected sum.
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Open books

In this chapter we will introduce open book decompositions and discuss some of their
relations to contact structures, while focusing on the results relevant in later chapters
of this thesis. Nice surveys on open books and their applications are Winkelnkem-
per’s appendix to Ranicki’s book [70] and Giroux [42]. More detailed material, in
particular on the relation of open books and contact structures can be found in
[30, 37, 73].

The presentation of the material in this chapter does not follow any particular
source – with the exception of the discussion of the Thurston–Winkelnkemper con-
struction in Section 2.3 which roughly follows [37, Section 7.3] and [23, Section 2.2].
Section 2.1.2 is a slight generalisation of the discussion of stabilisations of contact
open books in [73] to the general topological setting. Section 2.1.1 is inspired by
Lawson’s existence proof [54], whereas the content of Section 2.2 does not seem to
appear elsewhere in the literature.

2.1 Topological open books

An open book decomposition of an n-dimensional manifold M is a pair (B, π),
where B is a co-dimension 2 submanifold in M with trivial normal bundle, called
the binding of the open book, and π : M \ B → S1 is a (smooth) fibration such
that each fibre π−1(θ), θ ∈ S1, corresponds to the interior of a compact hypersurface
Σθ ⊂ M with ∂Σθ = B. The hypersurfaces Σθ, θ ∈ S1, are called the pages of the
open book.

Remark 2.1.1 (Alternative definitions)
We can also define an open book decomposition as a pair (B, π), where B is a co-
dimension 2 submanifold in M with trivial normal bundle and π : M \ B → S1

is a smooth fibration which in a neighbourhood B × D2 with coordinates (b, r, θ)
is given by the angular coordinate θ. These two definitions are clearly equivalent
and are used in most of the literature. Another alternative definition, which uses a
map globally defined on the manifold, can be found e.g. in [60]: the binding of the
standard open book of C = R2 is defined as the origin, the pages of the standard
decomposition are the half-lines. An open book decomposition of a manifold M

is then a map f : M → C which is transverse to the standard open book on C.
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The binding and pages are defined as the preimages of the binding and the pages,
respectively.

In some cases we are not interested in the exact position of the binding or the
pages of an open book decomposition inside the ambient space. Therefore, given an
open book decomposition (B, π) of an n-manifold M , we could ask for the relevant
data to remodel the ambient space M and its underlying open book structure (B, π),
say up to diffeomorphism. This leads us to the notion of abstract open books.

An abstract open book is a pair (Σ, φ), where Σ is a compact hypersurface
with non-empty boundary ∂Σ, called the page, and φ : Σ→ Σ is a diffeomorphism
equal to the identity near ∂Σ, called the monodromy of the open book. Let Σ(φ)
denote the mapping torus of φ, that is, the quotient space obtained from Σ×[0, 2π]
by identifying (x, 2π) with (φ(x), 0) for each x ∈ Σ. Then the pair (Σ, φ) determines
a closed manifold M(Σ,φ) defined by

M(Σ,φ) := Σ(φ) ∪id (∂Σ×D2), (2.1)

where we identify ∂Σ(φ) = ∂Σ × S1 with ∂(∂Σ ×D2) using the identity map. Let
B ⊂ M(Σ,φ) denote the embedded submanifold ∂Σ × {0}. Then we can define a
fibration π : M(Σ,φ) \B → S1 by

[x, θ]
[x′, reiθ]

 7→ [θ],

where we understand M(Σ,φ) \ B as decomposed as in (2.1) and [x, θ] ∈ Σ(φ) or
[x′, reiθ] ∈ ∂Σ×D2 ⊂ ∂Σ× C. Clearly, (B, π) defines an open book decomposition
of M(Σ,φ).

On the other hand, an open book decomposition (B, π) of some n-manifold M

defines an abstract open book as follows: identify a neighbourhood of B with B×D2

such that B = B × {0} and such that the fibration on this neighbourhood is given
by the angular coordinate, θ say, on the D2-factor. We can define a 1-form α on the
complement M \ (B×D2) by pulling back dθ under the fibration π, where this time
we understand θ as the coordinate on the target space of π. The vector field ∂θ on
∂
(
M \ (B×D2)

)
extends to a nowhere-vanishing vector field X which we normalise

by demanding it to satisfy α(X) = 1. Let φ denote the time-2π map of the flow of
X. Then the pair (Σ, φ), with Σ = π−1(0), defines an abstract open book such that
M(Σ,φ) is diffeomorphic to M .

Open books with isotopic monodromies are diffeomorphic:

Proposition 2.1.2
Let (Σ, φ0) and (Σ, φ1) be two abstract open books and assume that the monodromies
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φ0 and φ1 are isotopic. Then there is a diffeomorphism M(Σ,φ0) → M(Σ,φ1) which
respects the induced open book structures.

Proof. Let ψt be an isotopy from idΣ to φ−1
1 ◦ φ0 and let h : [0, 2π] → [0, 1] be a

smooth monotone function which is constantly 0 near 0 and constantly 1 near 2π.
The map

Σ× [0, 2π] → Σ× [0, 2π]
(x, θ) 7→ (ψh(θ)(x), θ)

descends to a diffeomorphism Σ(φ0) → Σ(φ1) on the mapping tori, which can be
extended via the identity to give rise to the desired diffeomorphism.

Remark 2.1.3 (Existence of open book decompositions)
In 1923 Alexander [1] proved that every closed oriented 3-manifold admits an open
book decomposition. Winkelnkemper [75] showed that a closed oriented simply-
connected manifold of dimension at least six can be given the structure of an open
book if and only if its signature vanishes. In particular, that is the case in odd
dimensions by definition. For odd-dimensional manifolds the hypothesis of simply-
connectedness can be dropped, as was shown by Lawson [54]. Quinn [69] extended
this to 5-manifolds and also discussed the even-dimensional case, where the obstruc-
tion is more involved than in the simply-connected case.

Example 2.1.4 (Classification of open books on surfaces)
A 2-dimensional open book has to have closed intervals as pages and thus trivial
monodromy (up to isotopy). Hence, the only closed, connected surface admitting
an open book decomposition is the sphere and the decomposition is unique up to
isotopy (see Figure 2.1).

Σ

B

Figure 2.1: The open book decomposition of the 2-sphere.
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Example 2.1.5
The 3-dimensional sphere S3 has an open book decomposition with page a disc and
trivial monodromy. This can be seen by realizing S3 as the one-point compactifi-
cation of R3 and extending the binding and pages in Figure 2.2 along the z-axis.
To be more precise, choosing polar coordinates (r, θ) on the xy-plane we define
B := {x = y = 0} ∪ {∞} and π : S3 \ B → S1 by sending (r, θ, z) to θ, where we
identify S3 ≡ R3 ∪ {∞}.

B

Σθ

π

θ

Figure 2.2: An open book for S3.

The same open book decomposition can be realised by rotating Figure 2.3 around
the vertical axis and again interpreting S3 as R3 with a point at infinity.

Example 2.1.6
Consider S3 as the unit sphere in C2 and denote the positive Hopf link by

B := {(z1, z2) ∈ S3 : z1z2 = 0}.

Then
π : S3 \B → S1 ⊂ C, (z1, z2) 7→ z1z2

|z1z2|

defines an open book decomposition with page an annulus and monodromy a positive
Dehn-twist (see Definition 2.3.9) along the core of the annulus.
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Figure 2.3: A second visualisation of the open book for S3 with page a disc.

2.1.1 Open books and handlebodies

An open book decomposition (B, π) yields a decomposition of the underlying man-
ifold M into two diffeomorphic solid handlebodies, where each corresponds to “one
half of the open book”:

M = π−1([0, π]) ∪ π−1([π, 2π]).

In particular, the handlebodies in this splitting are the quotient of the product of
the page Σ of the open book with the interval, where each {p}× [0, π] for p ∈ ∂Σ is
smashed to a point. In dimension three, the above splitting is a Heegaard splitting of
the manifold (cf. [71, Chapter 9]). Conversely, certain (but not all) decompositions
of a manifold as a double of a handlebody M = H1 ∪H2 give rise to an open book
structure: Assume that ∂Hi is given the structure of a cell complex and there exists
some embedded subcomplex K ⊂ ∂Hi such that the inclusions into Hi are homotopy
equivalences and such that Hi is diffeomorphic to the product of the interval I with
a regular neighbourhood V of K in ∂Hi. Then M has an open book decomposition
with page V .

Example 2.1.7
The open book decomposition of the 3-sphere described in Example 2.1.6 is induced
by a genus 1 Heegaard splitting. Clearly, starting from the open book we get a
decomposition of the sphere into two solid tori. For the converse, we need K on the
torus such that the inclusions into both solid tori in the Heegaard decomposition
are homotopy equivalences. This forces K to be a (1, 1)-torus knot. The page of
the induced open book is a regular neighbourhood of K on the Heegaard torus, i.e.
it is an annulus, and the induced monodromy is a Dehn twist.
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Remark 2.1.8
Note that it is not always possible to write a handlebody as a product of the special
form described above to give rise to an open book decomposition. Consider the
connected sum of two copies of CP 4. This has a handle decomposition consisting
of a single 0- and 8-handle and two handles of every even index in between. Thus,
we can write CP 4#CP 4 as the union of two diffeomorphic solid handlebodies, each
consisting of a single 0- and 4-handle and two 2-handles. However, CP 4#CP 4 has
non-vanishing signature, so it does not admit an open book decomposition by the
results mentioned in Remark 2.1.3.

2.1.2 Stabilisations

One way to alter an open book structure in odd dimensions is stabilisation, where the
page and the monodromy change in a compatible way. In terms of the handlebody
description from the previous section, the procedure will correspond to the intro-
duction of a cancelling pair of handles. More concretely, the monodromy changes
by a Dehn–Seidel twist, which we shortly present in the following paragraph.

Let Sn be the n-sphere embedded in some 2n-dimensional manifold W such
that the normal bundle is isomorphic to its cotangent bundle T ∗Sn. We identify a
neighbourhood νSn of Sn in W with T ∗Sn ⊂ Rn+1×Rn+1 with Cartesian coordinates
q and p, i.e. νSn is given by the equations q · q = 1 and q · p = 0. Let σt be the
diffeomorphism of νSn \ Sn given by

σt(q,p) =
 cos t |p|−1 sin t
−|p| sin t cos t

q
p


and set τ(q,p) = σg(|p|)(q,p), where g(r) is a smooth monotone function which
is equal to π near r = 0 and vanishes for large r. We can extend τ to all of
νSn by setting τ(q,0) = (−q,0). Then τ is a diffeomorphism of νSn, called a
(generalised) right-handed (or positive) Dehn twist or Dehn–Seidel twist.
Its inverse τ−1 is called a left-handed (or negative) Dehn twist. The Dehn–
Seidel twist is a natural generalisation of the usual Dehn twist on a surface, which we
will define in Definition 2.3.9. In the following, we are applying this in the situation
where the even-dimensional manifold W is the page of an open book.

We can now explain how the page of an open book changes under a stabilisation.
Let Dn ⊂ Σ2n be an n-dimensional disc embedded into the 2n-dimensional page
of an open book (Σ, φ) of an odd-dimensional manifold M such that Dn meets ∂Σ
transversely and exactly in its boundary ∂Dn and such that the normal bundle of
∂Dn in ∂Σ is trivial. Attach an n-handle H to Σ along ∂Dn in such a way that
the normal bundle of the sphere Sn+1 = Dn ∪ core(H) is isomorphic to T ∗Sn. Then
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the open book (Σ ∪H,φ ◦ τ) is called a stabilisation of (Σ, φ), where τ denotes a
right-handed Dehn twist along the sphere Sn+1. Observe that the original open book
(Σ, φ) and the stabilised open book (Σ ∪H,φ ◦ τ) give rise (up to diffeomorphism)
to the same manifold M . Indeed, the sphere ∂Dn ⊂ ∂Σ = B ⊂ (Σ, φ) is a sphere
with trivial normal bundle in M , since the binding B has trivial normal bundle by
definition. Attaching handles to each page is equivalent to a surgery along ∂Dn. The
manifold M ′ obtained by that surgery carries the open book structure (Σ ∪ H, φ).
Performing the Dehn twist τ along Sn+1 is equivalent to a surgery cancelling the
one corresponding to the handle attachment. For details the reader is referred to
[73]. Observe that we can also define a stabilisation using left-handed Dehn twists,
this corresponds to a change of orientation of the page.

Example 2.1.9
The open book decomposition of S3 with page an annulus described in Example 2.1.6
arises as a stabilisation of the open book with page a disc described in Example 2.1.5.

A natural question to ask is how the induced handlebody decomposition changes
by a stabilisation of an open book. The (2n)-dimensional page of an open book
changes by an n-handle attachment. Abstractly, this results in attaching an n-handle
to the solid handlebody. If we consider the handlebody decomposition H1 ∪ H2,
then adding an n-handle to H1 cuts out an (n+ 1)-handle in its complement, which
is a dualised n-handle. Combined, the two handles form a cancelling pair, i.e.
stabilising an open book is stabilising the handlebody splitting in the handlebody
sense. Unfortunately, this implies that stabilisation only works in odd dimensions,
an analogue in even dimensions is not known.

In dimension 3, a stabilisation of an open book corresponds to a Murasugi sum
of the open book with the open book of the sphere with annular pages from Exam-
ple 2.1.6 (see [30, Section 2] for details).

2.2 Open books and fibre sums

In this section we will briefly discuss which manifolds can be obtained by fibre
connected sums and how the existence of open book structures behaves under fibre
connected sums. We will also introduce a natural fibre connected sum of open books,
the so-called binding sum.

Proposition 2.2.1
Let M and N be two closed manifolds of the same dimension. Then N can be
obtained from the disjoint union of M and finitely many spheres by a sequence of
fibre connected sums if and only if M and N are cobordant.
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Proof. Let M ′ and M be closed oriented manifolds and let j0 and j1 be embeddings
of M ′ into M with disjoint images. Assume that there exists a bundle isomorphism Ψ
of the corresponding normal bundles N0 and N1 over j1 ◦ j−1

0 |j0(M ′) that reverses the
fibre orientation. Recall from Section 1.5 that the fibre connected sum ofM along the
submanifolds ji(M ′) is the manifold obtained by identifying open neighbourhoods
of j0(M ′) and j1(M ′) via Ψ.

Consider the product manifold [0, 1]×M and identify closed tubular neighbour-
hoods of {1} × j0(M ′) and {1} × j1(M ′) via Ψ. After smoothing corners, the upper
boundary is diffeomorphic to the fibre connected sum #ΨM , and the lower bound-
ary is M . Hence, M and #ΨM are cobordant and thus can also be obtained from
each other by a sequence of surgeries.

On the other hand, a surgery can be interpreted as a fibre connected sum with a
sphere. Let M be an n-dimensional manifold and S ⊂M a k-dimensional embedded
sphere with trivial normal bundle. Then performing surgery means cutting out a
neighbourhood S × Dn−k of S and gluing back in a copy of Dk+1 × Sn−k−1. The
resulting manifold can also be obtained by performing a fibre connected sum on
M t Sn along S and Sk if we interpret the sphere as

Sn = ∂Dn+1 = ∂(Dk+1 ×Dn−k) = (Sk ×Dn−k) ∪ (Dk+1 × Sn−k−1).

As mentioned in Remark 2.1.3, odd-dimensional closed oriented manifolds do
admit open book decompositions. In general, Quinn [69] found an obstruction,
which is invariant under cobordism. Hence, we have the following corollary.

Corollary 2.2.2
A fibre connected sum #ΨM on a manifold M admits an open book decomposition
if and only if the original manifold M does.

In the following, we want to describe a natural fibre connected sum in the open
book setting, called the binding sum.

Let M be a (not necessarily connected) smooth n-dimensional manifold with
open book decomposition (Σ, φ) whose binding B contains two diffeomorphic com-
ponents B0 and B1. Their normal bundles νB0 and νB1 admit trivialisations induced
by the pages of the open book decomposition of M . Let Ψ denote the fibre orien-
tation reversing diffeomorphism of B ×D2 ⊂ B × C sending (b, z) to (b, z̄). Hence,
we can perform the fibre connected sum along B0 and B1 with respect to the above
trivialisations of the normal bundles and the map induced by Ψ and denote the
result by

#B0,B1M.
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We call #B0,B1M the binding sum of M along B0 and B1.
Note that by the above corollary, the binding sum admits an open book structure.

However, the corollary does not provide any information on how such a structure is
related to the original open books. Chapter 5 of this thesis gives an explicit open
book decomposition which is natural in the sense that it coincides with the original
open books away from a submanifold isotopic to the binding.

2.3 Open books in contact topology

A positive contact structure ξ on an oriented manifold M is supported by an open
book structure (B, π) if it can be written as the kernel of a contact form α inducing
a positive contact structure on B and such that dα induces a positive symplectic
structure on the fibres of π. Such a contact form α is then called adapted to the
open book and the triple (B, π, α) is said to be a contact open book.

Note that a contact form is adapted to an open book (B, π), where the binding
B is a contact submanifold, if and only if its Reeb vector field is positively transverse
to the fibres of π and positively tangent to B (cf. [73, Lemma 2.13]).

Open books can be used to construct contact structures, as the next result shows.
We will roughly follow [37, Section 7.3] and [23, Section 2.2] in the discussion and
proof of the theorem.

Theorem 2.3.1 (Thurston–Winkelnkemper [72], Giroux [41])
Let M be a closed, odd-dimensional manifold with abstract open book decomposition
(Σ,Φ). Suppose furthermore that the following holds:
• the page Σ admits an exact symplectic form ω = dβ,
• the Liouville vector field Y defined by iY ω = β is transverse to the boundary ∂Σ

pointing outwards, and
• the monodromy φ is a symplectomorphism of the symplectic page (Σ, ω).

Then M admits a contact structure supported by the given open book decomposition.

The original statement by Thurston and Winkelnkemper [72] was restricted to
dimension three. Combined with Alexander’s existence result for open book decom-
positions of 3-manifolds, this proves Martinet’s theorem (Theorem 1.4.15), since the
hypotheses on the decomposition do not impose any restriction in three dimensions.
The more general version stated here is due to Giroux [41].

The idea of the proof is to construct a contact form on the mapping torus using
the symplectic structure of the page and extending this over a neighbourhood of the
binding in a suitable way using a contact form on the binding and a Lutz pair.
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Definition 2.3.2
A Lutz pair (h1, h2) consists of two of smooth functions h1 : [0, 1] → R+ and
h2 : [0, 1]→ R+

0 such that
• h1(0) = 1 and h2 vanishes like r2 at r = 0,
• h′1(r) < 0 and h′2(r) ≥ 0 for r > 0,
• all derivatives of h1 vanish at r = 0.

For a contact form αB on B and a Lutz pair (h1, h2) the 1-form

α = h1(r)αB + h2(r)dθ

is a contact form on B ×D2 with polar coordinates (r, θ) on the D2-factor, and its
derivative dα restricts to a symplectic form on the subsets with constant angle θ.
Indeed, we have

α ∧ (dα)n = hn−1
1 (h1h

′
2 − h2h

′
1)αB ∧ (dαB)n−1 ∧ dr ∧ dθ > 0

and
(dα|{θ=const.})n = nh′1h

n−1
1 dr ∧ αB ∧ (dαB)n−1 > 0,

as αB is contact on B and ∂r is transverse to the sets {θ = const.}.
The mapping torus used in the construction is in fact a generalised version of

the mapping torus defined in Section 2.1. For a manifold with boundary Σ, a
diffeomorphism φ of Σ and a positive function h on Σ which is constant near ∂Σ we
define the generalised mapping torus Σh(φ) as

Σh(φ) = {(x, θ) ∈ Σ× R : 0 ≤ θ ≤ h(x)}/(x,h(x))∼(φ(x),0).

From this, we can construct a closed manifold Mh
(Σ,φ) as the quotient(

Σh(φ) + ∂Σ×D2
)
/∼,

where (x, eiθ) ∈ ∂(∂Σ×D2) is identified with [x, cθ/2π] ∈ ∂Σh(φ). Here, c denotes
the value of h near ∂Σ. Observe that the manifold M(Σ,φ) constructed with the usual
mapping torus is diffeomorphic to the manifold Mh

(Σ,φ) obtained by the generalised
mapping torus. A diffeomorphism is given by extending the map

[x, θ] 7→
[
x,

θ

2πh(x)
]

on the mapping tori by the identity.
Furthermore, the monodromy has to be an exact symplectomorphism, which is

no real restriction, as the following lemma shows.



42 Open books

Lemma 2.3.3 ([37, Lemma 7.3.4])
Let φ be a symplectomorphism of an exact symplectic manifold (Σ, ω = dβ) with
boundary which is equal to the identity near the boundary. Then φ is isotopic to an
exact symplectomorphism φ1, i.e. φ∗1β − β is exact, via symplectomorphisms equal
to the identity near the boundary.

We can now give the proof of Giroux’s theorem.

Sketch of proof of Theorem 2.3.1. Open books with isotopic monodromies are dif-
feomorphic, so we can assume that the monodromy φ is exact symplectic by the
above lemma. Hence, we have φ∗β − β = dh for some function h on Σ. By the
compactness of Σ, we can assume that h is positive and that its minimum is equal
to 1. The 1-form

α = β + dθ

is a contact form on Σ× R. As it is invariant under the map

(x, θ) 7→
(
φ(x), θ − h(x)

)
,

it induces a contact form on the generalised mapping torus Σh(φ). The monodromy
φ is equal to the identity near ∂Σ and the function h is constant there, so we can
extend α over ∂Σ×D2 via

h1

h1(1)β|T∂Σ + h2dθ,

where (h1, h2) a Lutz pair with h2 equal to 1 near 1. One can now check that this
yields indeed a contact form as desired.

Remark 2.3.4
We call the construction in the proof of Theorem 2.3.1 a (generalised) Thurston–
Winkelnkemper construction and (Σ, φ, dβ) an abstract contact open book.

Conversely, contact structures are always supported by open books:

Theorem 2.3.5 (Giroux–Mohsen [43], cf. [60])
Every contact structure on a closed manifold admits a supporting open book decom-
position.

In dimension three, there even is a one-to-one correspondence under appropriate
assumptions (see Theorem 2.3.8 below).

Dörner showed that if a contact structure is supported by an open book decompo-
sition, it can in fact be assumed to arise as a generalised Thurston–Winkelnkemper
construction.
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Theorem 2.3.6 (Dörner, cf. [23, Theorem 3.1.22])
Every contact manifold supported by an open book (B, π) is contactomorphic to a
generalised Thurston–Winkelnkemper construction.

Definition 2.3.7
Let (M, ξ = kerα) be a contact manifold supported by an open book (B, π) and
denote the pull-back of dθ under π : M \ B → S1 also by dθ. A vector field X is
called monodromy vector field if
• it is transverse to the pages and satisfies dθ(X) = 1 on M \B,
• the restriction of LXdα to any page vanishes,
• it equals ∂θ on a neighbourhood B ×D2 ⊂M of the binding, where (r, θ) are

polar coordinates on the D2-factor, and the open book fibration is given by
the angular coordinate on D2.

Given a monodromy field we get an associated abstract open book descrip-
tion of (M, ξ), and in turn an identification of (M, ξ) as a generalised Thurston–
Winkelnkemper construction. In particular, such a vector field always exists if the
open book and contact structure comes from a generalised Thurston–Winkelnkemper
construction, i.e. we can always assume the existence of a monodromy vector field
by the previous theorem.

Note that the stabilisation procedure described in Section 2.1.2 also works in the
contact setting if one requires the disc to be Lagrangian in the page and intersecting
the binding in a Legendrian sphere (see [73, Section 4.3] for details). To ensure that
the stabilised open book yields the same contact manifold, one has to restrict oneself
to positive stabilisations in this setting.

2.3.1 Open books in dimension three

As mentioned above, in dimension three the relation between open books and contact
structures was shown to be even deeper:

Theorem 2.3.8 (Giroux [41])
Let M be a closed, orientable 3-manifold. Then there is a one-to-one correspon-
dence between isotopy classes of oriented contact structures on M and open book
decompositions up to positive stabilisations.

An accessible discussion of the theorem can be found in [30]. Note that the corre-
spondence is between contact structures and topological open book decompositions.
In fact, the concept of contact open books is not required in dimension three at all.
In particular, there is a Thurston–Winkelnkemper construction for any pair (Σ, φ)
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with Σ a surface with non-empty boundary and φ a diffeomorphism equal to the
identity near the boundary (see [37, Section 4.4.2] for details on the 3-dimensional
construction and [37, Section 7.3] for the relation of the 3-dimensional to the general
case).

In addition to that, orientation-preserving diffeomorphisms of a surface can be
decomposed into a sequence of maps, which are easy to understand and visualise.

Definition 2.3.9
Let γ be an embedded curve on an oriented surface S and identify an oriented
neighbourhood N of γ with S1 × [−1, 1] such that γ corresponds to S1 × {0}. A
right-handed (or positive) Dehn twist of S along γ is the homeomorphism of
S which is equal to the identity outside N and restricts to

S1 × [−1, 1] 3 (s, t) 7→
(
s+ π(1 + t), t

)
∈ S1 × [−1, 1]

on N . The inverse of this map is called a left-handed (or negative) Dehn twist
along γ.

Figure 2.4: A right-handed Dehn twist along the central curve.

Note that this does not depend on the orientation of the curve and that it
is possible to smoothen a Dehn twist (e.g. by constructing it as the flow of an
appropriate vector field) to turn it into a diffeomorphism.

The Dehn–Seidel twists described in Section 2.1.2 are a natural generalisation of
Dehn twists to higher dimension and coincide with ordinary Dehn twists in dimen-
sion two. In particular, a stabilisation of an abstract open book in dimension three
is obtained by attaching a 2-dimensional 1-handle to the page and precomposing
the monodromy with a Dehn twist along a curve which runs over the handle exactly
once.

The class of Dehn twists provides sufficiently many building blocks to construct
all diffeomorphisms of surfaces:
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Theorem 2.3.10 (Lickorish, cf. [56])
Any orientation-preserving diffeomorphism of a compact oriented surface (with pos-
sibly non-empty boundary) can be written as a composition of Dehn twists and dif-
feomorphisms isotopic to the identity.

We have already discussed that the Reeb field of a contact form adapted to an
open book is transverse to the fibres of the corresponding open book fibration. In
particular, the interior of a page of an open book supporting the contact structure
is a convex surface. However, more is true. As described in Section 2.1.1, an
open book decomposition (B, π) of a 3-manifold yields a Heegaard splitting. The
Heegaard surface S is the union of the two “opposite” pages π−1(0) and π−1(π)
along their common boundary B. If the open book supports the contact structure
and α is an adapted contact form, one can choose a volume form Ω on S which
defines the same orientation as dα on π−1(0) and the opposite one on π−1(π). The
characteristic foliation is given by the vector field X satisfying iXΩ = α|TS and is
divided by B (in the sense of Section 1.3). Hence, the surface S is a convex surface
(for details see [37, Example 4.8.4(4)]).

A Legendrian knot sitting on a page of an open book, or more general on a
convex surface S, possesses two natural framings. The framing given by the contact
planes and the framing given by the surface. Using an R-invariant neighbourhood
of S in which the contact form is given by α = β + udz as discussed in Section 1.3,
one can observe that the contact framing makes a negative half-twist relative to
the surface framing exactly when the knot crosses the dividing set. This yields the
following theorem (see [29, Theorem 2.30] for details).

Theorem 2.3.11 (cf. [29, Theorem 2.30])
Let L be a Legendrian knot on a convex surface S with dividing set Γ. Then the
framing induced by the contact structure ξ and the framing induced by the surface S
differ by

−1
2 |L ∩ Γ|.

In particular, the contact and surface framing coincide if L sits on the page of an
open book.

The situation of a Legendrian curve sitting on a convex surface is not exotic at
all. A large class of curves sitting on a convex surface can be realised as Legendrians,
as the next theorem shows.

Theorem 2.3.12 (Legendrian realisation principle, Honda [47, Theorem 3.7])
Let S be a convex surface with dividing set Γ and let γ be a properly embedded arc
or closed curve on S such that every component of S \ γ contains a component of
Γ \ γ. Then S can be isotoped through convex surfaces such that γ is Legendrian.
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We will call a simple closed curve L on a convex surface S with the above property
non-isolating, i.e. L is non-isolating if every component of S \ L has non-empty
intersection with the dividing set Γ of S. In fact, the converse holds as well, i.e.
Legendrian simple closed curves on convex surfaces are non-isolating.

Lemma 2.3.13
Let L be a Legendrian knot on a convex surface S. Then L is non-isolating.

Proof. Let L be not non-isolating, i.e. there is a component S0 of the complement of
L in S with S0∩∂S = ∅, and assume that L represents a Legendrian knot. Without
loss of generality, we have divΩ(X) > 0 on S0, where Ω is a volume form on S and
X the vector field defining the characteristic foliation. Hence,

0 <
∫
S0

divΩ(X) =
∫
S0
d(iXΩ) =

∫
L
iXΩ =

∫
L
α = 0,

where α denotes the contact form and the last equality holds because L is Legen-
drian.

Moreover, there is also an even stronger result in the opposite direction of The-
orem 2.3.12. If we fix a Legendrian knot, we can always realise it on the page of a
compatible open book decomposition.

Theorem 2.3.14 (cf. [30, Corollary 4.23])
Let L be a Legendrian link in a contact 3-manifold (M, ξ). Then there is an open
book decomposition of M supporting ξ such that the knot L sits on a page.

This is a corollary to the proof of the 3-dimensional version of Theorem 2.3.5,
namely, that every oriented contact structure on a closed 3-manifold admits a sup-
porting open book decomposition. The idea of the proof is as follows. The first
step is to construct a contact cell decomposition of the manifold, i.e. a finite cell
decomposition such that the 1-skeleton is Legendrian, for every 2-cell D the contact
structure makes exactly one negative twist along the boundary ∂D relative to D,
and the contact structure is tight on every 3-cell. This can be achieved by covering
M with finitely many Darboux balls and picking a cell decomposition such that
every 3-cell is contained in a Darboux ball. The 1-skeleton can then be made Legen-
drian, and the condition on the 2-cells can be obtained by subdividing the 2-cells by
Legendrian arcs in a suitable way. One can then explicitly construct an open book
fibration with fibres retracting to the 1-skeleton (cf. [30, 3]). A given Legendrian
knot can simply be included in the 1-skeleton of the cell decomposition and will thus
sit on a page of the resulting open book.
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Computing the Thurston–Bennequin invariant in
open books

This chapter presents explicit formulas for computing the Thurston–Bennequin in-
variant of a Legendrian knot sitting on a convex Heegaard surface or on the page
of an open book in terms of its intersection behaviour with the Heegaard curves or
in terms of the monodromy, respectively. The chapter is based on joint work with
Marc Kegel and Mirko Klukas, which was published in [21].

We first state and prove the formula for Heegaard surfaces in Section 3.1, which
we then adapt to the setting of open books in Section 3.2. First we compute the
homology of the knot exterior from the Heegaard diagram and then present contact
and Seifert framing in this homology. Comparing these two classes then yields the
Thurston–Bennequin invariant. We furthermore present some examples and appli-
cations in Section 3.3 and extend the obtained results to rationally nullhomologous
Legendrian knots in Section 3.4.

3.1 The Thurston–Bennequin invariant in Heegaard
diagrams

Let (M, ξ) be a closed 3-dimensional contact manifold. Fix a contact Heegaard
splitting M = V1 ∪ V2, i.e. a Heegaard splitting such that the Heegaard surface is
convex in the sense of Section 1.3. In particular, the handlebodies V1 and V2 are not
assumed to be standard contact handlebodies. Let K ⊂ M be a Legendrian knot
on ∂V1 = ∂V2 which is nullhomologous in M and intersects the dividing set Γ of the
convex Heegaard surface ∂V1 transversely. We denote the number of intersection
points by |K ∩ Γ|. Note that for a given knot in a contact manifold it is always
possible to find a contact Heegaard splitting such that the knot lies on the Heegaard
surface (by Theorem 2.3.14 the knot can even be realised on the page of an open
book).

We give a formula to calculate the Thurston–Bennequin invariant of K in this
setting. Let n denote the genus of the Heegaard surface. We may assume that
the solid handlebody V1 consists of a single 0-handle and n 1-handles and the solid
handlebody V2 consists of n 2-handles and a single 3-handle. Let gi, g∗i , i = 1, . . . , n,
be a set of generators of H1(∂V1;Z) such that the g∗i are trivial in H1(V1;Z) and
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gi • g∗j = δij, gi • gj = 0 = g∗i • g∗j , where • denotes the intersection product in
H1(∂V1;Z) (see Figures 3.1 and 3.2). For ease of notation we will not differenti-
ate between an oriented curve and the homology class it represents. Furthermore,
the Heegaard curves on ∂V1, i.e. the images of the attaching spheres ci of the 2-
handles, are called c′i. We fix orientations of K and of the ci. This is needed for the
calculations, but the results are independent of the particular choice.

c1
c2 c3

H2

H1

g1
g2 g3

g∗1 g∗2 g∗3

c′1

c′2
c′3

Figure 3.1: A Heegaard diagram of S1 × S2.

α

β

β

α

α • β = 1 α • β = −1

Figure 3.2: The intersection pairing in R2 with standard orientation.

Observe that H1(M ;Z) is generated by the gi and there is a relation for every
Heegaard curve c′j (whose expression in terms of the generators can be read off by
counting intersections of c′j with the g∗i , i.e. c′j = ∑(c′j • g∗i )gi, cf. [71, Chapter 9]).
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We will omit the coefficient group Z and all homology groups are understood to be
integral if not stated otherwise. So we have the presentation

H1(M) = 〈g1, . . . , gn | c′1, . . . , c′n〉.

A knot is nullhomologous in M if and only if its class is a linear combination of
the relations in H1(M) over the integers, i.e. as a class in H1(V1) we can write the
nullhomologous knot K as

K =
n∑
i=1

Eic
′
i

for appropriate integers Ei.

Theorem 3.1.1
The Thurston–Bennequin invariant of the Legendrian nullhomologous knot K lying
on a convex Heegaard surface, transversely intersecting its dividing set, computes as

tb(K) = −1
2 |K ∩ Γ|+

n∑
i=1

Ei · (K • c′i).

Proof. First we consider the case in which K does not intersect the dividing set Γ
of the convex Heegaard surface. Then the contact framing of K coincides with the
Heegaard framing, i.e. the framing induced by a parallel copy of K on the Heegaard
surface. We want to use the above presentation of H1(M) to construct a presentation
of H1(M \ νK), where νK denotes a tubular neighbourhood of K in M . To that
end, we slightly push the curves gi and c′i into the handlebody V1 in a neighbourhood
of the intersection points with K and denote the resulting curves by g̃i and c̃′i (see
Figure 3.3). Let µ be a positive meridian of K in M . Then H1(M \νK) is generated
by µ together with the g̃i and the relations are c̃′i − (K • c′i)µ, so

H1(M \ νK) = 〈g̃1, . . . , g̃n, µ | c̃′1 − (K • c′1)µ, . . . , c̃′n − (K • c′n)µ〉.

gi

K

g̃i

H1 H1 \ νK

νK

µ

Figure 3.3: The relation of the generators in M and M \ νK.
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Let λc denote the contact longitude and λs the Seifert longitude of K as defined
in Section 1.4.2. Then the Thurston–Bennequin invariant tb(K) is defined by the
equation

λc = tb(K) · µ+ λs

in H1(∂νK). The Seifert longitude is defined by the condition λs = 0 in H1(M \νK).
This yields the equation

− tb(K) · µ+ λc = 0 ∈ H1(M \ νK).

In our setting, the contact framing coincides with the Heegaard framing. Therefore
the contact longitude λc is given as a parallel copy of K on the Heegaard surface,
i.e. we have λc = K in H1(∂V1) and thus λc = ∑n

i=1Eic̃
′
i in H1(M \ νK). Inserting

this expression for the contact longitude into the above equation for the Thurston–
Bennequin invariant we get

− tb(K) · µ+
n∑
i=1

Eic̃
′
i = 0.

Using the relations in H1(M \ νK) this transforms to

tb(K)µ =
n∑
i=1

Eic̃
′
i =

n∑
i=1

Eic̃
′
i −

n∑
i=1

Ei
(
c̃′i − (K • c′i)µ

)
=

n∑
i=1

Ei · (K • c′i)µ.

As the meridian of a nullhomologous knot has infinite order in the knot complement
(see Appendix B), this proves the first case.

In the general case, when the intersection of K with the dividing set Γ is non-
empty the result follows from the fact that the contact framing and the framing
induced by the Heegaard surface differ by half the number of intersection points of
K with the dividing set (see Theorem 2.3.11).

Algorithm 3.1.2 (Computing the Thurston–Bennequin invariant)
Using the formula from Theorem 3.1.1 we can compute the Thurston–Bennequin
invariant of a Legendrian nullhomologous knot lying on a convex Heegaard surface
algorithmically. Define vectors

A := (K • g∗i )i=1,...,n

and
I := (K • c′i)i=1,...,n

and a matrix
C :=

(
c′j • g∗i

)
i,j=1,...,n

.
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Solve the equation
A = C · E

over the integers (such a solution exists exactly if K is nullhomologous). Then the
Thurston–Bennequin invariant is given by:

tb = −1
2 |K ∩ Γ|+ 〈E, I〉.

Remark 3.1.3
The last formula in the proof of Theorem 3.1.1 shows that the scalar product of a
vector B in the kernel of C with the vector I vanishes, i.e. the particular choice of
a solution E of the equation A = CE does not impact the result.

Example 3.1.4
We compute the first homology group of the manifold M given by Figure 3.1 as

H1(M) = 〈g1, g2, g3 | c′1, c′2, c′3〉 = 〈g1, g2, g3 | g1, g1, g2 + g3〉 ∼= Z,

where we use c′j = ∑(c′j • g∗i )gi. In fact, one can show that M is diffeomorphic to
S1 × S2.

g∗1 g∗2 g∗3

g∗1 g∗2 g∗3

K1

K2

Figure 3.4: Knots on a Heegaard surface of S1 × S2.

Now consider two knots K1 and K2 in M as shown in Figure 3.4. The matrix C
is equal to

C =
(
c′j • g∗i

)
i,j=1,...,3

=


1 1 0
0 0 1
0 0 1
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and the knots are encoded by

A1 = (K1 • g∗i )i=1,...,3 = (2, 1, 1)ᵀ

and
A2 = (K2 • g∗i )i=1,...,3 = (0, 2, 1)ᵀ.

The equation A1 = CE admits integral solutions, e.g. (1, 1, 1)ᵀ, which means K1 is
nullhomologous. However, A2 = CE is not solvable at all, so K2 is not nullhomolo-
gous.

3.2 The Thurston–Bennequin invariant in open books

In this section we use the result on Heegaard surfaces to give a computable formula
for the Thurston–Bennequin invariant of a nullhomologous Legendrian knot on the
page of an open book and furthermore a way to check whether a knot on a page
is nullhomologous. Note that by Theorem 2.3.14 it is always possible to find an
open book supporting the contact structure such that a given Legendrian knot lies
on a page. Let (S, φ = Tεl

l ◦ · · · ◦ Tε1
1 ) be a contact open book with monodromy φ

encoded by a concatenation of Dehn twists. Here Tεk
k denotes a Dehn twist along

the curve Tk with sign εk. Let (M, ξ) be the resulting contact manifold. Choose
an arc basis ai, i = 1, . . . , n, i.e. a system of arcs such that S becomes a disc when
cutting along them, in such a way that the arcs meet the curves Tk transversely.
Using the intersection product on S we define a matrix C via

cij :=
l∑

m=1

∑
1≤k1<...<km≤l

εk1 · · · εkm(Tkm • Tkm−1) · · · (Tk2 • Tk1)(Tk1 • aj)(Tkm • ai).

Theorem 3.2.1
Let (S, φ = Tεl

l ◦ · · · ◦ Tε1
1 ) be a contact open book with monodromy φ encoded by a

concatenation of Dehn twists and fixed arc basis ai, i = 1, . . . , n of S as above. Let
K be a Legendrian knot on S. Define a vector A by A = (K • ai)i=1,...,n .

1. K is nullhomologous if and only if there exists an integer solution E of

A = C · E.

2. If K is nullhomologous its Thurston–Bennequin invariant is equal to

tb(K) = −〈E,A〉.

Proof. By Theorem 2.3.11 the contact framing of the Legendrian knot K on S

coincides with the framing induced by the page S. With the chosen arc basis ai,
i = 1, . . . , n, we get that

(Σ := S1 ∪ S2, g
∗
i := (ai)1 ∪ (ai)2, c

′
i := (ai)1 ∪ (φ(ai))2)
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is a genus n = (2 ·genus(S)+r−1) Heegaard diagram for M , where r is the number
of boundary components of S (this is a slight variation of the classic approach
published in [48]). Here S1 and S2 are two copies of the page S, with the orientation
of S2 reversed, glued along their boundary, i.e. the Heegaard surface Σ is the double
of S, and (ai)j denotes a copy of ai on Sj (see Figure 3.5). Curves and arcs on S2

are always assumed to be oriented oppositely to their counterparts on S to give rise
to oriented curves on Σ. Furthermore, the curves g∗i and c′i are understood to be
slightly isotoped to only have transverse intersections. We identify S with S1, so
the knot K lies on S1.

g∗1

T−
T+

g∗2

c′1 c′2

a1 a2

S

Σ

Figure 3.5: From an open book decomposition to a Heegaard diagram.

Having transformed the open book into a Heegaard diagram, Theorem 3.1.1 gives
a formula for computing the Thurston–Bennequin invariant. In particular, we will
use Algorithm 3.1.2 and adapt it such that it only uses input data from the open
book, i.e. tb is computable without constructing a Heegaard diagram first. We have

A = (K • g∗i )i=1,...,n = (K • ((ai)1 ∪ (ai)2))i=1,...,n = (K • ai)i=1,...,n ,

where the last equality arises from restriction to S1 asK lies only on S1. Analogously,
the matrix C has entries

cij = c′j • g∗i = ((aj)1 ∪ (φ(aj))2) • ((ai)1 ∪ (ai)2) = φ(aj) • ai,

where the last term is again read in S2 and comes from restriction (we isotope the
curves such that there are no intersection points on the boundary and consider the
algebraic intersection number). Observe that in our current setting we have

I = (K • c′i)i=1,...,n = A
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by a similar argument.
As we have shown in Section 3.1 the knot K is nullhomologous if and only if the

equation
A = C · E

has an integral solution E, and in that case the Thurston–Bennequin invariant
computes as

tb = 〈E,A〉.

It remains to calculate the entries of the matrix C in terms of the Dehn twists
Tεl
l ◦ · · · ◦ Tε1

1 encoding the monodromy. Let α be any curve on a surface and T ε a
Dehn twist. Then the homology class of the image of α under T ε is

α + ε(T • α)T,

where we identify curves with their classes as usual. Repeatedly applying this to
the aj yields

φ(aj) = aj +
l∑

m=1

∑
1≤k1<...<km≤l

εk1 · · · εkm(Tkm • Tkm−1) · · · (Tk2 • Tk1)(Tk1 • aj)Tkm

and thus

cij =
l∑

m=1

∑
1≤k1<...<km≤l

εk1 · · · εkm(Tkm • Tkm−1) · · · (Tk2 • Tk1)(Tk1 • aj)(Tkm • ai),

where we use the intersection product on S2. In applications, however, we want
to consider intersections on the page S, which has the opposite orientation. This
provides for the negative sign in the formula to compute the Thurston–Bennequin
invariant in an open book, i.e. we have

tb = −〈E,A〉.

Remark 3.2.2
Note that in the case of disjoint Dehn twist curves Tk the expression of the matrix
entries cij reduces to

cij =
l∑

k=1
εk(Tk • aj)(Tk • ai).

In particular, C is symmetric.

Remark 3.2.3
It follows from Remark 3.1.3 that the particular choice of a solution E does not
impact the result. In case that the matrix C is symmetric, this is also immediate
since two different solutions differ by a vector B in the kernel of C and A is in the
image of C. Thus, the scalar product of A and B vanishes, see also Example 3.3.3.
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3.3 Applications and Examples

Example 3.3.1 (Unknot in the standard 3-sphere)
Consider the open book decomposition of (S3, ξst) with page S an annulus and the
monodromy given by a positive Dehn twist T+ along the central curve T and let K
be a Legendrian knot parallel to T on the page S. In this example an arc basis of
S consists of a single arc a only, which we choose to be a linear segment joining the
boundary components of the annulus.

g∗

aT+

K

K

c′

S Σ

Figure 3.6: The Legendrian unknot in (S3, ξst).

Choosing orientations as depicted in Figure 3.6 we get

A = K • a = −1

and
C = ε(T • a)2 = 1 · (−1)2 = 1.

The knot K is nullhomologous since the equation −1 = 1 · E has the solution
E = −1. This we knew before since any knot in S3 is nullhomologous, but we need
a particular solution E to calculate tb. We then compute the Thurston–Bennequin
invariant as

tb(K) = −〈E,A〉 = −1 · (−1) · (−1) = −1.

The Heegaard diagram on the right hand side of Figure 3.6 encodes the same situa-
tion. Here it becomes clear that K is the unknot. This particular Heegaard splitting
arises from the open book picture on the left by performing a Dehn twist.

Example 3.3.2 (Unknot in an overtwisted 3-sphere)
We change the monodromy in the previous example to be a negative Dehn twist T−

along T . As above, we then have A = −1, but C becomes

C = ε(T • a)2 = −1 · (−1)2 = −1

and E = 1 solves A = CE. So we get

tb(K) = −〈E,A〉 = −1 · 1 · (−1) = 1.
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Stabilising K once yields an overtwisted disc, so the contact structure is indeed
overtwisted.

a1 a2

T+

K

Figure 3.7: A nullhomologous knot K with non-unique E.

Example 3.3.3
Consider the open book for (S1 × S2, ξst) depicted in Figure 3.7. We have

A =
2

1


and

C =
4 2

2 1

 .
The equation A = CE is solvable over the integers, so K is nullhomologous. How-
ever, the solution is non-unique. Solutions are of the form

En =
2

1

+ n

 1
−2


for n ∈ Z. Then

tb(K) = −〈En, A〉 = −1 · (−1) · (−1) = −1,

i.e. the result is independent of the chosen solution En. This is always the case (see
Remark 3.2.3).
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Example 3.3.4 (Stabilisations)
Let K be a nullhomologous Legendrian knot on the page S of an open book (S, φ)
with φ = T εll ◦· · ·◦T

ε1
1 . We want to compute the Thurston–Bennequin invariant of the

stabilised knot Kstab in the stabilised open book (Sstab, φstab = T
εl+1
l+1 ◦T

εl
l ◦ · · · ◦T

ε1
1 ).

Let A,C,E be the data associated to the original open book and knot. With an
additional arc a and orientations chosen as in Figure 3.8, we have

Astab =
A

1


and

Cstab =
C 0

0 εl+1


since Tl+1 is disjoint from the other Dehn twists. The equation Astab = CstabEstab

is then solved by the integral vector

Estab =
 E

εl+1


and we compute tb to be

tb(Kstab) = −〈Estab, Astab〉 = −
〈 E

εl+1

 ,
A

1

〉 = −〈E,A〉 − εl+1 = tb(K)− εl+1.

K Kstab

S Sstab

T
εl+1
l+1

a

Figure 3.8: A stabilisation of K obtained by a positive stabilisation of the open
book.

3.4 Rationally nullhomologous knots

In this section we study rationally nullhomologous Legendrian knots as proposed
in Baker–Grigsby [5], Baker–Etnyre [4] and Geiges–Onaran [38]. In particular, we
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generalise Theorems 3.1.1 and 3.2.1 to rationally nullhomologous Legendrian knots.
Let K be a knot in M . We call K rationally nullhomologous if its homology
class is of finite order d > 0 in H1(M). Let νK be a tubular neighbourhood of K
and denote the meridian by µ ⊂ ∂νK.

Definition 3.4.1
A Seifert framing of a rationally nullhomologous knot K of order d is a class
r ∈ H1(∂νK) such that
• µ • r = d,
• r = 0 in H1(M \ νK).

It is obvious that every rationally nullhomologous knot has a Seifert framing;
uniqueness however is not obvious.

Lemma 3.4.2
The Seifert framing of a rationally nullhomologous knot is unique.

Proof. Let r1 and r2 be Seifert framings. Let µ, λ be an oriented basis of H1(∂νK),
where µ is represented by a meridian of K. Then we can write

ri = piµ+ qiλ.

As ri is a Seifert framing we have qi = d with d the order of K. The classes r1 and r2

are equal if considered in H1(M \νK). Therefore we have p1µ = p2µ in H1(M \νK).
But a meridian of K intersects a rational Seifert surface non-trivially, so µ cannot
be a torsion element. Hence p1 = p2, i.e. the framings coincide.

Existence and uniqueness of the Seifert framing enables us to define a ratio-
nal Thurston–Bennequin invariant, which coincides with the usual definition in the
nullhomologous case, and is well-defined in arbitrary contact 3-manifolds.

Definition 3.4.3
The rational Thurston–Bennequin invariant of a rationally nullhomologous
Legendrian knot K of order d is defined as

tbQ(K) = 1
d

(λc • r)

where λc denotes the contact longitude and r the Seifert framing, and the intersection
is taken in H1(∂νK).

Observe that this means that we have the equality

r = dλc − d tbQ(K)µ
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in H1(∂νK).
Now consider a Legendrian knot K on a convex Heegaard surface not intersecting

the dividing set. Using the notation from Section 3.1, such a knot is rationally
nullhomologous of order d in M if and only if the equation

dA = C · E

admits a solution E over the integers and d is the minimal natural number for which
a solution exists. In that case, fix a solution E. Analogously to the nullhomologous
case we then have

d tbQ(K)µ =
n∑
i=1

Eic̃
′
i =

n∑
i=1

Ei · (K • c′i)µ

in H1(M \ νK). Since µ has infinite order we thus proved the following theorem.

Theorem 3.4.4
The rational Thurston–Bennequin invariant of the Legendrian rationally nullhomol-
ogous knot K of order d lying on a convex Heegaard surface, transversely intersecting
its dividing set Γ, computes as

tbQ(K) = −1
2 |K ∩ Γ|+ 1

d

n∑
i=1

Ei · (K • c′i) = −1
2 |K ∩ Γ|+ 1

d
〈E, I〉.

Similarly, Theorem 3.2.1 generalises to the result stated below.

Theorem 3.4.5
Let (S, φ = Tεl

l ◦ · · · ◦ Tε1
1 ) be a contact open book with monodromy φ encoded by a

concatenation of Dehn twists and fixed arc basis ai, i = 1, . . . , n, of S. Let K be a
Legendrian knot on S. Define a vector A by A = (K • ai)i=1,...,n .

1. K is rationally nullhomologous of order d if and only if there exists an integer
solution E of

dA = C · E

and d is the minimal natural number for which a solution exists.
2. If K is rationally nullhomologous of order d its rational Thurston–Bennequin

invariant is equal to
tbQ(K) = −1

d
〈E,A〉.
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Computing the rotation number in open books

In this chapter we continue in the spirit of Chapter 3 and again consider a Legendrian
knot sitting on the page of a contact open book. We explain how to compute the
second classical invariant, the rotation number, in case the knot is nullhomologous.
In particular, we prove the following theorem:

Theorem 4.0.1
Let K be a knot sitting on the page of an open book (Σ, φ) with monodromy φ given
as a concatenation of Dehn twists along non-isolating curves. Then there exists an
arc basis of Σ such that the intersection behaviour of K and the Dehn twist curves
with the arcs give criteria and formulas to

(a) decide whether K is (rationally) nullhomologous,
(b1) compute the (rational) Thurston–Bennequin invariant of K if K is (rationally)

nullhomologous,
(b2) compute the (rational) rotation number of K if K is (rationally) nullhomolo-

gous,
(b3) compute the (rational) self-linking number of a transverse push-off of K if K

is (rationally) nullhomologous,
(c) compute the Poincaré dual of the Euler class of the contact structure,
(d) decide if the Euler class of the contact structure is torsion and if so, compute

its d3-invariant
(see Algorithm 4.4.1).

The chapter is based on joint work with Marc Kegel and is also going to be
published separately.

We will first generalise an example of [57] to compute the rotation number of
a Legendrian knot sitting on the page of a specific planar open book of (S3, ξst).
Afterwards we use the method of [3] to find embeddings of more general non-planar
abstract open books into (S3, ξst) and give formulas for computing the rotation
number in these cases. For the general case, we first use Avdek’s algorithm [3]
for transforming an open book into a contact surgery diagram along a Legendrian
link and then compute the invariants from the resulting surgery diagram via the
methods discussed in Appendix A. Section 4.4 presents an algorithm to actually
compute the invariants from Theorem 4.0.1 and also gives some examples. Finally,
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in Section 4.5 the results are applied to the binding number of Legendrian knots,
which we propose to study in analogy to the binding number of a contact manifold
as introduced in [34].

4.1 A special planar case

We begin by discussing a method to compute the rotation number in an easy planar
case which is based on the idea presented in [57, Lemma 4.1].

Suppose that Σ is planar, i.e. Σ is a disc with holes

Σ ∼= D2 \
(

k⊔
i=1

D2
i

)
,

and the monodromy is given by φ = β+1
k ◦ · · · ◦ β+1

1 , where β+1
i denotes a positive

Dehn twist along a curve βk parallel to the inner boundary ∂D2
i . We furthermore

assume that the curves βi are oriented consistently with the boundary orientation
induced by Σ (see Figure 4.1). In particular, by destabilising the open book, we see
that (Σ, φ) describes the standard contact 3-sphere (S3, ξst) and from this it also
follows that K is some Legendrian unknot.

β1 β2

β3β4

Figure 4.1: A planar open book decomposition of (S3, ξst).

Proposition 4.1.1
Let K be a Legendrian knot sitting on the page of a planar open book (Σ, φ) with φ
as described above. Then the following holds:

1. K = ∑k
i=1 biβi ∈ H1(Σ) such that either all bi ∈ {+1, 0} or all bi ∈ {−1, 0},
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2. the rotation number of L computes as

rot(K) =
k∑
i=1

bi − sign
(

k∑
i=1

bi

)
.

Proof. (1) First note, that a simple closed curve cannot have |bi| > 1 or it would
have self-intersections. With orientations chosen as above, one also observes that
all non-vanishing bi have to be equal.

(2) By the first statement, we can glue small oriented rectangular bands con-
necting the biβi with non-vanishing coefficients bi inside Σ in such a way that the
oriented boundary of the resulting region is isotopic to K in Σ (cf. Figure 4.2). The
orientation of these rectangles coincides with the orientation of the page Σ exactly
if the bi are positive.

Note that the βi are unknots with Thurston–Bennequin invariant −1 and vanish-
ing rotation number. Indeed, βi can be assumed to be parallel to a Dehn twist curve
arising by a stabilisation. These curves bound a disc in the complement and by the
Dehn twist, the Seifert framing differs by one from the contact framing given by the
page. So βi is a tb-(−1) unknot, i.e. the rotation number is zero. Furthermore, a
Seifert surface for L is given by the union of the discs bounded by the non-vanishing
biβi (in the complement of the page) and the attached bands in the page. The ro-
tation number computes as the sum of the indices of a vector field in the contact
structure extending the positive tangent of K over Σ. As rot(βi) = 0, an extension
without zeros is possible over the discs bounded by βi and we only have to study
the bands. As the contact framing and the page framing coincide, this reduces the
problem to extending the positive tangent vector field to the boundary of the bands
over the bands in Σ. This is ±1 for each band by Poincaré–Hopf, depending on
whether the orientation of the band agrees with the orientation of the page Σ or
not. Hence, the rotation number of L is a signed count of the number of bands, i.e.
rot(K) = ∑k

i=1 bi − sign
(∑k

i=1 bi
)
.

Remark 4.1.2
The formula from Proposition 4.1.1 can also be obtained by observing that a curve
enclosing k-holes is the result of (k − 1) times stabilising a curve running around a
single hole. The latter has Thurston–Bennequin invariant −1 and vanishing rotation
number.

Example 4.1.3
Consider the Legendrian L on the planar open book of (S3, ξst) as depicted in Fig-
ure 4.2. The class in the first homology group of Σ represented by L can be written
as

L =
4∑
i=1

biβi = β2 + β3 + β4.
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β1

β2

β3

β4

L
−

−

Figure 4.2: A Legendrian knot on the page of a planar open book of (S3, ξst).

By Proposition 4.1.1, the rotation number of L is

rot(L) =
4∑
i=1

bi − sign
(

k∑
i=1

bi

)
= 2.

This method is not known to generalise to non-planar open books. One reason
is that on surfaces of higher genus, the isotopy class of a curve is not determined by
its homology class.

4.2 Another special case

Next we consider knots on open books (Σ, φ) of the standard contact 3-sphere with
an arbitrary page but a special monodromy. Denote the genus of Σ by g and the
number of boundary components by h + 1. Suppose that the monodromy is given
by

φ = β+1
g+h ◦ · · · ◦ β+1

g+1β
+1
g ◦ α+1

g ◦ · · · ◦ β+1
1 ◦ α+1

1

as indicated in Figure 4.3. We also choose orientations of αi and βi as in the picture.
In particular, αi • βj = δij. Let ri, i = 1, . . . , g + h − 1, be the depicted reducing
arcs, which do not intersect the α- and β-curves, i.e. when cutting along them the
page Σ decomposes into a collection of tori with a disc removed and annuli. Let ai
and bi be arcs on the page Σ representing a basis of H1(Σ, ∂Σ) dual to {αi, βi} with
respect to the intersection product (oriented such that αi • ai = 1, βj • bj = 1).

The following algorithm will be applied to a word corresponding to the knot K in
Proposition 4.2.2. Note that the conventions presented below for labelling vertical
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α1 αg

β1 βg

c1 cg−1

r1 rg−1

βg+1 βg+h

rg rg+1 rg+h−1

cg cg+1
cg+h−1

Figure 4.3: A non-planar open book of (S3, ξst) with arbitrary many boundary
components.

tangencies in this setting by ρ+ and λ+ do not agree with those for counting cusps
of a Legendrian front projection as in [37, Proposition 3.5.19].

Algorithm 4.2.1
Let w be a word in 〈αi, βi | i = 1 . . . , k〉. Set λ+ to be the number of times a β−1 is
followed by an α−1 of the same index, also considering the step from the last to the
first letter, and similarly, set ρ+ equal to the number of times an α−1 is followed by
a β−1 of the same index.

Denote places where the index changes by ru (rd) if the index increases (de-
creases) – including the last position if the index of the last letter is not equal to
the index of the first letter. For instance, in the word

α1β2α2β
−1
4 α−1

3 β2

we have five positions of index changes:

α1ruβ2α2ruβ
−1
4 rdα

−1
3 rdβ2rd.

Now run through the index changes and increment λ+ and ρ+ according to the
following rule:
• increment λ+ by 1 for

– a β−1 followed by ru
– rd followed by an α−1

• increment ρ+ by 1 for
– an α−1 followed by rd
– a β followed by rd.

In the example sequence above, we have λ+ = 1 and ρ+ = 2.
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Proposition 4.2.2
Let K be an oriented non-isolating knot on the abstract open book (Σ, φ) of (S3, ξst)
specified above. Choose a starting point on K and write K as a word in the αi and
βi by noting intersections with ai and bi when traversing along K. Then the rotation
number of K is

rot(K) = ρ+ − λ+

with ρ+ and λ+ calculated from the presentation of K as described in Algorithm 4.2.1.

Proof. First note that without loss of generality, we can assume that the page Σ
has only a single boundary component by stabilising the open book along arcs not
intersecting the ri connecting a hole to the outer boundary component. Then the
open book (Σ, φ) can be embedded into (S3, ξst) with the front projection shown in
Figure 4.4 (in lightly shaded regions the orientation of Σ agrees with the blackboard
orientation, in darkly shaded regions the orientations disagree) – the embedded
page Σ is the ribbon of the Legendrian graph displayed in the upper half of Figure 4.4
(see [3] for details). Note that in particular, the contact vector field ∂z is transverse
to the embedded page. Furthermore, after rescaling the embedding can be assumed
to be such that in R3 ⊂ S3 we have

[−1, 1]× Σ→
(
R3, ξst = ker(xdy + dz)

)
, (t, p) 7→ p+ (0, 0, t),

i.e. we can relate to a specific page by its shift in the z-direction.

α1 α2 αg

β1 β2 βg

c1
c2

cg−1

Figure 4.4: An embedding into (S3, ξst) of the (stabilised) abstract open book from
Figure 4.3 and the Legendrian graph shown in the front projection.
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The rotation number of a nullhomologous Legendrian knot with respect to a
Seifert surface S is given by the rotation of its tangent vector with respect to a
fixed trivialisation of the contact planes over S. If the contact structure is glob-
ally trivialisable, one can instead fix a global trivialisation. The standard contact
structure ξst on R3 ⊂ (S3, ξst) can be trivialised globally by ∂x and ∂y − x∂z. As
the contact vector field ∂z is transverse to the embedded page Σ of the open book,
this trivialisation also induces a trivialisation of the tangent planes to Σ. Then the
rotation number of the Legendrian realisation of a curve sitting on the page agrees
with the rotation of its projection, i.e. the original curve, to the original page with
respect to the induced trivialisation.

The projection of ∂x to Σ along ∂z lies in the xz-plane. Observe that the ∂z-
component changes sign when passing from a lightly shaded region to a darkly
shaded region and vice-versa. To compute the rotation of a curve on the embedded
page which is non-singular in the front projection diagram, we thus have to count
vertical tangencies in the front projection according to the rule described in Fig-
ure 4.5. The rotation then equals ρ+− λ+. Alternatively, we can also compute it as
λ− − ρ−.

λ−λ+ ρ− ρ+ λ− λ+ ρ−ρ+

Figure 4.5: The labelling of the vertical tangencies.

In fact, we do not even have to count all vertical tangencies, but we can ignore
those cancelling each other. To this end, we write K as a word in the αi and βi by
noting intersections with ai and bi when traversing along K. Observe that the α-
and β-curves have vanishing rotation, as they have two vertical tangencies cancelling
each other. Changing from αi to βi accounts for a λ−, changing from βi to αi for
a ρ−. Likewise, the change from α−1

i to β−1
i gives a ρ+, the one from β−1

i to α−1
i

a λ+. It is easily verified that all other changes with fixed index do not introduce
vertical tangencies. In particular, a knot not intersecting any of the reducing arcs
has vanishing rotation number, since it has λ+ = ρ+. It thus remains to inspect
those tangencies occurring before or after an intersection with a reducing arc. These
intersections happen when the index of the letters change. The vertical tangencies
occurring in these cases are summarised in Table 4.1.
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leaving to the right from count
α λ−

α−1 –
β –
β−1 λ+

coming from the left to count
α ρ−

α−1 –
β –
β−1 ρ+

leaving to the left from count
α –
α−1 ρ+

β ρ+

β−1 –
coming from the right to count

α –
α−1 λ+

β λ−

β−1 –

Table 4.1: Occurrence of vertical tangencies.

Hence, the rotation number can be computed from the word according to the
rule given in Algorithm 4.2.1.

Example 4.2.3
Consider the knot on the embedded page of the open book of (S3, ξst) given in Fig-
ure 4.6. The knot corresponds to the word α1β2α2α

−1
3 β3β2. The vertical tangencies

corresponding to the α- and β-curves which immediately cancel are marked in green.
The remaining vertical tangencies are marked blue and labelled. We have ρ+ = 2,
λ+ = 0, ρ− = 1, λ− = 3, i.e. the rotation number of the Legendrian knot represented
by K is

rot(K) = ρ+ − λ+ = λ− − ρ− = 2.

We will now apply Algorithm 4.2.1 on the word α1β2α2α
−1
3 β3β2. As neither a β−1

is followed by an α−1 of the same index, nor an α−1 by a β−1, we set λ+ = 0 = ρ+.
Next, we consider the index changes:

α1ruβ2α2ruα
−1
3 β3rdβ2rd.
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λ− ρ− λ−

ρ+

λ−
ρ+

Figure 4.6: A knot on an embedded page in (S3, ξst). Vertical tangencies cancelling
each other are marked green, other vertical tangencies are marked blue and labelled.

The positions β3rd and β2rd both increase ρ+ by one, all other positions leave the
counts unchanged. Hence, also the algorithm yields

rot(K) = ρ+ − λ+ = 2.

Note that we could also adapt the rules specified in the algorithm to consider ρ−
and λ− instead using the proof of the preceding proposition.

4.3 The general case

Now we are prepared to deal with a Legendrian knot in a general open book. The
idea is to change the open book to the special case discussed in the previous section
by a sequence of surgeries, then compute the rotation number in (S3, ξst) as above
and finally use the results presented in Appendix A with the inverse surgeries to get
the rotation number of the Legendrian in the original open book. The result will be
presented in a formula that can be directly computed with the data of the original
open book.

In the following remark, we will briefly recall how to compute the rotation number
in contact surgery diagrams.

Remark 4.3.1 (Computing rot in a surgery diagram (see Appendix A))
For an oriented Legendrian link L = L1 t . . . t Lk in (S3, ξst) let (M, ξ) be the
contact manifold obtained from (S3, ξst) by contact (1/ni)-surgeries (ni ∈ Z) along
Li. Denote the topological surgery coefficients by pi/qi, i.e.

pi
qi

= ni tb(Li) + 1
ni

.

Let L0 be an oriented Legendrian knot in the complement of L and define the vector l
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with components li = l0i and the generalised linking matrix

Q =


p1 q2l12 · · · qnl1k

q1l21 p2
... . . .

q1lk1 pk

 ,

where lij := lk(Li, Lj). The knot L0 is (rationally) nullhomologous in M if and only
if there is an integral (rational) solution a of the equation l = Qa, in which case its
(rational) rotation number in (M, ξ) with respect to the Seifert class Σ̂ constructed
in Theorem A.2.2 is equal to

rotM(L0, Σ̂) = rotS3(L0)−
k∑
i=1

aini rotS3(Li).

Proof of Theorem 4.0.1. Let K ⊂ (M, ξ) be a Legendrian knot sitting on the page
of a compatible open book

(Σ, φ = T±nll ◦ · · · ◦ T±n1
1 )

with monodromy encoded in a concatenation of Dehn twists, where T±n denotes
n positive (resp. negative) Dehn twists along the non-isolating oriented curve T

(n ∈ N). We denote the genus of Σ by g and the number of boundary components
by h+ 1.

In the following, we want to choose a special arc basis of Σ to exactly mimic
the setting from Proposition 4.2.2 (also see Remark 4.3.2). Together with a suitable
monodromy yielding (S3, ξst), this will enable us to use the proposition to compute
the invariants first in (S3, ξst) and then to apply the surgery formulas to obtain the
desired result.

Choose reducing arcs r1, . . . , rg+h−1 such that when cutting along ri
• Σ decomposes into a surface Σi of genus i with one boundary component con-

taining r1, . . . , ri−1 and a surface of genus g−i with h+1 boundary components
for i = 1, . . . , g,
• Σ decomposes into a surface Σi of genus g with i + 1 boundary components

containing r1, . . . , ri−1 and a disk with h− i holes for i = g + 1, . . . , g + h− 1.
Then choose an arc basis of Σi \ Σi−1, label it by ai, bi and orient it such that

when travelling along the oriented boundary of Σ from
• r1 to r1

– first a1 is met pointing outwards, then b1 is met pointing inwards if g ≥ 1
– b1 is met and pointing outwards if g = 0
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• ri−1 to ri only bi is met and pointing outwards (i = 2, . . . , g + h− 2)
• rg+h−1 to rg+h−1

– first bg is met pointing outwards, then ag is met pointing outwards if
h = 0

– bg+h is met and pointing outwards if h > 0.
Choose non-trivial oriented simple closed curves αi, βi representing a basis of

H1(Σ) dual to the arcs with respect to the intersection product on Σ oriented such
that αi • ai = 1, βj • bj = 1 and αi • βi = 1 (i.e. the situation is as in Figure 4.3).

Remark 4.3.2
Note that the arc basis cannot be chosen arbitrarily, as we will use it to write the
knot as a word in αi, βi as above and use the formula from Proposition 4.2.2 to
compute the rotation from this word. For this to work with the given formula, we
have to ensure that the word we get in the abstract setting is the same as the word
we get in the embedded case, which coincides with the specific abstract open book
depicted in Figure 4.3. In particular, the word obtained from the oriented boundary
of the page is

α−1
1 β1α1β

−1
1 β−1

2 · · · β−1
g+hα

−1
g βgαg · · ·α−1

2 β2α2.

A different arc basis would require a different formula to compute the rotation
number from the word, see also Example 4.4.4.

This is only important for calculating the rotation number in (S3, ξst) which is
not determined by the class of the knot in the homology of the page – the linking
information required to compute the rotation number via the surgery formula is
purely homological and does not depend on the specific ordering. In particular, we
can use an arbitrary arc basis in a planar open book if we use Proposition 4.1.1 to
compute the rotation number of the involved curves in (S3, ξst).

Observe that we can get from the open book

(Σ, φS3 = β+1
g+h ◦ · · · ◦ β+1

g+1 ◦ β+1
g ◦ α+1

g ◦ · · · ◦ β+1
1 ◦ α+1

1 )

to the open book (Σ, φ) by a sequence of contact surgeries along Legendrian knots
corresponding to the Dehn twist curves.

By the algorithm presented in [3], the surgery link is as follows: every component
corresponding to a Dehn twist sits on a page of the embedded open book, the shift
in z-direction of the respective page relates to the position of the Dehn twists in the
monodromy factorisation – the later the Dehn twist is performed, the higher the
level of the page. Using Avdek’s convention, we will denote a knot K sitting on the
page with level t by K(t).
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Observe that the αi(s), βi(s) are unknots with rotation number zero and Thurston–
Bennequin invariant −1 and that for t 6= s we have

lk
(
αi(t), βj(s)

)
=

0, if i 6= j or t > s,

−1, if i = j and t < s,

lk
(
αi(t), αj(s)

)
=

0, if i 6= j,

−1, if i = j,

lk
(
βi(t), βj(s)

)
=

0, if i 6= j,

−1, if i = j.

If s = t, the curves form a Legendrian graph on a single page with α and β joined
by a single transverse intersection point.

The first homology class represented by a knot K on Σ can then be written as

K =
g+h∑
i=1

(
(K • ai)αi + (K • bi)βi)

)
and hence

K(t) =
g+h∑
i=1

(
(K • ai)αi(t) + (K • bi)βi(t)

)
,

where (K •ai) is defined to be zero for k > g. The linking number of two knots K1(t)
and K2(s) behaves linearly and distributively with respect to this decomposition,
i.e. the linking number is easily computable with the linking behaviour of the α and
β curves specified above.

According to Avdek’s algorithm, the surgery link in S3 to obtain (Σ, φ) is the
link L = L1t. . .tL2g+h+l as specified in Table 4.2. To compute the rotation number
of a knot on a page of (Σ, φ) using the method explained in Remark 4.3.1, we need
the generalised linking matrix Q – which requires us to know tb for deducing the
topological surgery coefficient from the contact one as well as all linking numbers –
and the rotation numbers in (S3, ξst).

For a knot K(t), we have

tbS3

(
K(t)

)
= lk

(
K(t), K(t+ ε)

)
and hence, for i = 1, . . . , l,

tbS3(L2g+h+i) = −
g+h∑
k=1

(
(Ti • ak)2 + (Ti • ak)(Ti • bk) + (Ti • bk)2

)
.

Therefore, the topological surgery coefficient of L2g+h+i is

p2g+h+i

q2g+h+i
= ni tbS3(Ti)∓ 1

ni
.



72 Computing the rotation number in open books

name knot contact surgery coefficient
L1 β1(−1) +1
... ... ...

Lg+h βg+h(−1) +1
Lg+h+1 α1(0) +1

... ... ...
L2g+h αg(0) +1
L2g+h+1 T1(1/l) ∓1/n1

... ... ...
L2g+h+l Tl(l/l) ∓1/nl

Table 4.2: The surgery link for (Σ, φ).

Furthermore, the linking behaviour with Lj = βj, j = 1, . . . , g + h is

lk(L2g+h+i, Lj) = −(Ti • bj)

and similarly, for Lg+h+j = αj, j = 1, . . . , g

lk(L2g+h+i, Lg+h+j) = −
(
(Ti • aj) + (Ti • bj)

)
.

The linking number of two surgery knots L2g+h+i and L2g+h+j with i < j can be
computed to be

lk(L2g+h+i, L2g+h+j) = −
g+h∑
k=1

(
(Ti •ak)(Tj •ak) + (Ti •ak)(Tj • bk) + (Ti • bk)(Tj • bk)

)
.

Note that the knot K can be put on the page with the lowest as well as the
highest level. Depending on which is chosen, the class of Seifert surface with respect
to which the rotation number is given in Remark 4.3.1 might change, and hence the
rotation numbers may differ. However, if the Euler class of ξ vanishes, the rotation
number of a nullhomologous Legendrian knot is independent of the Seifert surface.
If we choose the knot L0 = K(low) to sit on a lower page than the surgery link, we
get the following linking numbers

lk(L0, Lj) = −
(
(K • aj) + (K • bj)

)
, j = 1, . . . , g + h,

lk(L0, Lg+h+j) = −(K • aj), j = 1, . . . , g,

lk(L0, L2g+h+j) = −
g+h∑
k=1

(
(K • ak)(Tj • ak) + (K • ak)(Tj • bk)

+(K • bk)(Tj • bk)
)
, j = 1, . . . , l.
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If on the other hand L0 = K(high) is assumed to sit on a page with the highest
level, we get

lk(L0, Lj) = −(K • bj), j = 1, . . . , g + h,

lk(L0, Lg+h+j) = −
(
(K • aj) + (K • bj)

)
, j = 1, . . . , g,

lk(L0, L2g+h+j) = −
g+h∑
k=1

(
(K • ak)(Tj • ak) + (K • bk)(Tj • ak)

+(K • bk)(Tj • bk)
)
, j = 1, . . . , l.

The only data that is left to compute are the rotation numbers in S3 of the
Li, but this can be done as in Proposition 4.2.2. Observe that using the formula
from [49] also allows us to calculate the Thurston–Bennequin invariant, which is
an alternative to the method presented in Chapter 3. Similarly, one can directly
calculate the Poicaré-dual of the Euler class and the d3-invariant of the contact
structure (see Theorem A.5.1).

Thus, we have proved Theorem 4.0.1.

4.4 Algorithm and examples

We summarise the process and all required formulas in the following algorithm
and illustrate them by giving examples. This section is meant as a self-contained
guideline to do actual computations and can be used independently.

Algorithm 4.4.1
The setting.
Given is a non-isolating curve K on the page of an open book

(Σg,h+1, φ = T±nll ◦ · · · ◦ T±n1
1 )

with ni ∈ N and Σg,h+1 a surface of genus g with h + 1 boundary components.
The monodromy is given as a sequence of Dehn twists along non-isolating oriented
curves Ti.

The choices.
Choose reducing arcs r1, . . . , rg+h−1 such that when cutting along ri
• Σ decomposes into a surface Σi of genus i with one boundary component con-

taining r1, . . . , ri−1 and a surface of genus g−i with h+1 boundary components
for i = 1, . . . , g,
• Σ decomposes into a surface Σi of genus g with i + 1 boundary components

containing r1, . . . , ri−1 and a disk with h− i holes for i = g + 1, . . . , g + h− 1.
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Then choose an arc basis of Σi \ Σi−1 and label it by ai, bi and orient it such that
when travelling along the oriented boundary of Σ from
• r1 to r1

– first a1 is met pointing outwards, then b1 is met pointing inwards if g ≥ 1
– b1 is met and pointing outwards if g = 0

• ri−1 to ri only bi is met and pointing outwards (i = 2, . . . , g + h− 2)
• rg+h−1 to rg+h−1

– first bg is met pointing outwards, then ag is met pointing outwards if
h = 0

– bg+h is met and pointing outwards if h > 0.
Choose non-trivial oriented simple closed curves αi, βi representing a basis of H1(Σ)
dual to the arcs with respect to the intersection product on Σ oriented such that
αi • ai = 1, βj • bj = 1 and αi • βi = 1 (i.e. the situation is as in Figure 4.3).

The definitions.
Define an integral vector l ∈ Z2g+h+l with entries:

lj = −(K • bj),

for j = 1, . . . , g + h,

lg+h+j = −
(
(K • aj) + (K • bj)

)
,

for j = 1, . . . , g,

l2g+h+j = −
g+h∑
k=1

(
(K • ak)(Tj • ak) + (K • bk)(Tj • ak)

+(K • bk)(Tj • bk)
)
,

for j = 1, . . . , l,

Define an integral (2g + h+ l)× (2g + h+ l)-matrix Q with entries:

Qi,j = 0,

for i 6= (j − g − h), j 6= (i− g − h), i, j = 1, . . . , 2g + h,

Qi,i+g+h = −1 = Qj,j−g−h,

for i = 1, . . . , g, j = g + h+ 1, . . . , 2g + h,

Q2g+h+i,2g+h+i = ∓1− ni
g+h∑
k=1

(
(Ti • ak)2 + (Ti • ak)(Ti • bk) + (Ti • bk)2

)
,

for i = 1, . . . , l,
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Q2g+h+i,j = −(Ti • bj),

for i = 1, . . . , l, j = 1, . . . , g + h,

Q2g+h+i,j = −
(
(Ti • aj) + (Ti • bj)

)
,

for i = 1, . . . , l, j = g + h+ 1, . . . , 2g + h,

Qi,2g+h+j = −nj(Tj • bi),

for i = 1, . . . , g + h, j = 1, . . . , l,

Qg+h+i,2g+h+j = −nj
(
(Tj • ai) + (Tj • bi)

)
,

for i = 1, . . . , g, j = 1, . . . , l,

Q2g+h+i,2g+h+j = −nj
g+h∑
k=1

(
(Ti • ak)(Tj • ak) + (Ti • ak)(Tj • bk)

+(Ti • bk)(Tj • bk)
)
,

for i < j, i, j = 1, . . . , l,

Q2g+h+i,2g+h+j = −ni
g+h∑
k=1

(
(Ti • ak)(Tj • ak) + (Ti • bk)(Tj • ak)

+(Ti • bk)(Tj • bk)
)
,

for i > j, i, j = 1, . . . , l.

For an oriented non-isolating curve L we define the quantity r(L) as follows: choose
a starting point on L and write L as a word in the αi and βi by noting intersections
with ai and bi when traversing along L. Set λ+ to be the number of times a β−1 is
followed by an α−1 of the same index also considering the step from the last to the
first letter, and similarly, set ρ+ equal to the number of times an α−1 is followed by
a β−1 of the same index. Denote places where the index changes by ru (rd) if the
index increases (decreases) – including the last position if the index of the last letter
is not equal to the index of the first letter. Now run through the index changes and
increment λ+ and ρ+ according to the following rule:

• increment λ+ by 1 for
– a β−1 followed by ru
– rd followed by an α−1

• increment ρ+ by 1 for
– an α−1 followed by rd
– a β followed by rd.
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Then define
r(L) := ρ+ − λ+.

The results.
Then the following holds:

(a) K is nullhomologous if and only if there is an integral solution a of the equation
l = Qa.

(a’) K is rationally nullhomologous in the manifold if and only if there is a rational
solution a of the equation l = Qa.

(b1) If K is (rationally) nullhomologous, the (rational) Thurston–Bennequin invari-
ant of K is

tb(K) =−
g+h∑
k=1

(
(K • ak)2 + (K • ak)(K • bk) + (K • bk)2

)

−
2g+h∑
j=1

ajlj −
l∑

j=1
a2g+h+jnjl2g+h+j.

(b2) If K is (rationally) nullhomologous, the (rational) rotation number with re-
spect to some special Seifert surface S of K is

rot(K,S) = r(K)−
l∑

j=1
a2g+h+jnjr(Tj).

(b3) Denote by K± the positive (resp. negative) transverse push-off of a (rationally)
nullhomologous Legendrian K. Then its (rational) self-linking number with
respect to the Seifert surface S from (b2) is

sl(K±, S) = tb(K)∓ rot(K,S).

(c) The Poicaré-dual of the Euler class is given by

PD
(
e(ξ)

)
=

l∑
i=1

nir(Ti)µTi ∈ H1(M).

The first homology group H1(M) of M is generated by the meridians µ of
the αi, βi and Ti and the relations are given by the generalized linking matrix
Qµ = 0.

(d) The Euler class e(ξ) is torsion if and only if there exists a rational solution b
of Qb = r with ri = 0 for i = 1, . . . , 2g+h and r2g+h+i = r(Ti) for i = 1, . . . , l.
In this case, the d3-invariant of ξ computes as

d3(ξ) = g + h

2 + 1
4

(
l∑

i=1
nib2g+h+ir(Ti)− (3− ni) signi

)
− 3

4σ(Q)− 1
2 ,

where signi denotes the sign of the power of the Dehn twist T±nii .
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Remark 4.4.2
In the algorithm above, we implicitly assumed that the knot K sits on the page with
a higher level than the monodromy curves. As described in Section 4.3, K could
also be assumed to sit on the lowest level, which would change the formulas defining
the vector l. Note that in general, if e(ξ) 6= 0, the resulting rotation number might
differ, as it is computed with respect to a different class of Seifert surface. However,
if the open book is planar or e(ξ) = 0, we get the same values for both cases.

Remark 4.4.3
In the planar case, the formulas simplify to

lj = −(K • bj), for j = 1, . . . , h,

lh+j = −
h∑
k=1

(K • bk)(Tj • bk), for j = 1, . . . , l,

Qi,j = 0, for i, j = 1, . . . , h,

Qh+i,h+i = ∓1− ni
h∑
k=1

(Ti • bk)2, for i = 1, . . . , l,

Qh+i,j = −(Ti • bj), for i = 1, . . . , l, j = 1, . . . , h,

Qi,h+j = −nj(Tj • bi), for i = 1, . . . , h, j = 1, . . . , l,

Qh+i,h+j = −nj
h∑
k=1

(Ti • bk)(Tj • bk), for i 6= j, i, j = 1, . . . , l.

If furthermore all ni = 1, we have that

Q =
Q1 Q2

Q3 Q4


with Q1 = 0h×h the zero (h× h)-matrix,

Q2 = Qᵀ
3 = −

(
Tj • bi

)
i=1,...,h, j=1,...,l

and
Q4 = Q3Q2 − diag

(
sign(T1), . . . , sign(Tl)

)
.

Example 4.4.4
In this example we want to reconsider the planar open book of (S3, ξst) discussed
in Example 4.1.3, where we calculated the rotation number to be 2 using Proposi-
tion 4.1.1. If we choose the arc basis as described above, the knot is encoded by the
word β2β4β3. This yields λ+ = 0 and ρ+ = 2, i.e. rot = 2 as expected.

Note that if we choose a different arc basis, e.g. such that the word is β2β3β4,
then the formula does not give the desired result, as the knot would be represented
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by a different word. In fact, the word β2β3β4 does not even encode a simple closed
curve on the embedded page.

β1 β4

L

β2

T1

T2

T3

T4

b1

b2 b3

b4

β3

Figure 4.7: The open book (Σ, φ = T+1
3 ◦ T+1

2 ◦ T+1
1 ) of (S3, ξst).

Example 4.4.5
Consider the open book (Σ, φ = T+1

3 ◦ T+1
2 ◦ T+1

1 ) and knot K as specified in Fig-
ure 4.7. This is an example of a non-destabilisable planar open book of (S3, ξst)
taken from [33].

By the formulas to compute rot in the special planar case, it follows directly that

r = (0, 0, 0, 0, 2, 1, 1, 0)ᵀ

and r(K) = 1.
Using the simplified formulas for planar open books given in Remark 4.4.3, we

obtain
l = (0,−1, 0,−1,−1, 0,−1,−1)ᵀ

and

Q2 = −


1 1 1 0
1 0 1 0
1 1 0 0
0 0 0 1

 .

As the manifold is S3, it follows that Q is invertible and thus the equation l = Qa
admits a unique solution, which is easily computed to be

a = (2,−2,−1,−1, 1,−1, 0, 1)ᵀ
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(in particular, the calculation shows that K is nullhomologous). The Thurston–
Bennequin invariant of K then computes to be

tb(K) = −
4∑

k=1
(K • bk)2 − 〈a, l〉 = −3

and the rotation number is

rot(K) = r(K)− 〈a, r〉 = 0.

The self-linking number of both the positive and the negative transverse push-off of
K is −3.

Since Q is invertible, we have H1 = 0, i.e. the Poincaré dual to the Euler class
of the contact structure ξ vanishes. As expected, our formula then returns

d3(ξ) = −1
2 .

4.5 Application to the binding number of Legendrian knots

Let K be a Legendrian knot. Then the support genus sg(K) is defined to be the
minimal genus of the page of a contact open book decomposition in which K is
contained in a single page, i.e.

sg(K) = min
{
g(Σ) | K ⊂ Σ

}
,

where g(Σ) is the genus of the surface Σ (see [64]).
In analogy to the binding number of a contact manifold as introduced in [34], we

propose to define the binding number bn of K to be the minimal number of boundary
components of the pages of contact open book decompositions with minimal genus
containing K in a page, i.e.

bn(K) := min
{
|∂Σ| : K ⊂ Σ with g(Σ) = sg(K)

}
.

Corollary 4.5.1
Let K be a Legendrian knot with non-vanishing rotation number and support genus
sg(K) = 1. Then the binding number of K is at least two.

Proof. Suppose that K has support genus and binding number both equal to one,
then one can easily check using Theorem 4.0.1 or via the explicit formulas given in
Algorithm 4.4.1 that the rotation number of K vanishes.

Example 4.5.2
Every knot in (S3, ξst) (or more generally, in a weakly fillable contact manifold) with
Thurston–Bennequin invariant at least one and non-vanishing rotation number has
support genus equal to one (see [64]) and thus binding number at least two.



5
Nested open books and the binding sum

In the present chapter we investigate how the binding sum construction, i.e. the fi-
bre connected sum of two open books along diffeomorphic binding components (see
Section 2.2) affects the underlying open book structures. We have already seen in
Corollary 2.2.2 that the binding sum admits some open book decomposition. This
existence result however, gives no relation of this open book to the open book struc-
tures of the original manifolds. We will show that – provided the respective binding
components admit open book decompositions themselves – the binding sum can be
performed such that the resulting open book structure is natural in the sense that it
can be described in terms of the original decompositions (see Theorem 5.3.1). Fur-
thermore, we will show that in the case of the contact binding sum, i.e. a binding
sum of two contact manifolds with contact open book decompositions along con-
tactomorphic binding components, the construction can also be adapted to again
yield a compatible open book (see Theorem 5.4.1). This generalises the work of
Klukas [53] to higher dimensions. The results in this chapter were obtained under
the supervision of Mirko Klukas and are also published in a joint paper [22].

We will introduce the notion of a nested open book in Section 5.1, which is a
submanifold inheriting an open book structure from the ambient manifold. These
submanifolds turn out to be particularly useful in the context of fibre connected
sums. The idea of the binding sum construction is then to not form the sum along the
binding components themselves but along slightly isotoped copies, realising them as
nested open books. These isotoped copies are called push-offs and will be discussed
in detail in Section 5.2. The main result in the topological setting is stated and
proved in Section 5.3. Finally, in Section 5.4, we turn our attention to the adaptation
of the constructions to contact topology.

5.1 Nested open books

In this section we engage in a special class of submanifolds and introduce the notion
of a nested open book, i.e. a submanifold carrying an open book structure compat-
ible with the open book structure of the ambient manifold. We also discuss fibre
connected sums in this context.

Let M be an n-dimensional manifold supported by an open book decomposi-
tion (B, π). Let M ′ ⊂ M be a k-dimensional submanifold on its part supported by
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an open book decomposition (B′, π′) such that

π|M ′\B′ = π′.

Note that B′ necessarily defines a (k − 2)-dimensional submanifold in B. We will
always assume that M ′ intersects the binding B transversely. We refer to M ′, as
well as to (B′, π′), as a nested open book of (B, π).

Remark 5.1.1
A nested open book can be compared to the images in a flip-book: every page of the
ambient open book contains a nested page, and these nested pages “move” like the
drawings in a flip-book when flipping through its pages.

Remark 5.1.2
Nested open books are a natural generalisation of spun knots or more general spin-
nings. A nice survey on topological spinnings is [35]. In contact topology, spinnings
were used by Mori [62] and Mart́ınez Torres [60] to construct contact immersions
and embeddings of contact manifolds into higher-dimensional standard spheres.

Let (Σ, φ) be an abstract open book and Σ′ ⊂ Σ a properly embedded subman-
ifold with boundary ∂Σ′ ⊂ ∂Σ. We call (Σ′, φ|Σ′) an abstract nested open book
if Σ′ is invariant under the monodromy φ. The equivalence of the two definitions
follows analogously to the equivalence of abstract and non-abstract open books. If
not indicated otherwise, we will assume the normal bundle of any nested open book
to be trivial.

Example 5.1.3
Consider a k-disc Dk ⊂ Dn inside an n-disc Dn coming from the natural inclusion
Rk ⊂ Rn. This realises Sk+1 ∼= (Dk, id) as a nested open book of Sn+1 ∼= (Dn, id).
The case k = 1 and n = 2 is depicted in Figure 5.1. For k = n− 2, the nested Sn−1

is a push-off, as will be defined in Section 5.2, of the binding of (Dn, id); cf. also
Example 5.3.2, where we discuss the binding sum of two copies of (D3, id).

5.1.1 Fibre sums along nested open books

For the remainder of the section, assume the co-dimension of the nested open books
to be two. The question whether the resulting manifold of a fibre connected sum
operation of two open books carries an open book structure can be answered pos-
itively in the case when the sum is performed along nested open books. The page
of the resulting open book is a fibre connected sum of the pages (along the page
of the nested book), the binding is a fibre connected sum of the bindings (along
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B

B′ Σθ

Σ′θ

π

θ

Figure 5.1: Schematic picture of an open book. A single page of a nested open book
and its nested binding is indicated.

the nested binding), and the monodromies glue together. In Section 5.2 we will
consider a special case in detail and discuss an explicit open book structure of the
sum, namely, the case of the nested open book being a push-off of the binding. Not
only is it possible to describe the monodromy in terms of the old monodromies, but
we also obtain a description of the page via generalised handle attachments. This
description of the new page is not always possible in the case of arbitrary nested
open books, since the nested page can be entangled, i.e. cannot be isotoped to the
boundary, inside the ambient page. Let us first study the situation of fibre sums
along nested open books in general.

Let M ′ be an (n− 2)-dimensional manifold supported by an open book (π′, B′),
and let j0, j1 : M ′ ↪→ M be two disjoint embeddings defining nested open books
of M such that their images admit isomorphic normal bundles Ni. We denote by
M ′

i := ji(M ′) the embedded copies of the nested open book M ′ and by B′i := ji(B′)
their respective bindings. Finally let π′i := π′ ◦ j−1

i denote the induced open book
structure on M ′

i \B′i and let (Σ′i)θ denote their pages.

Given an orientation reversing bundle isomorphism Ψ of the normal bundles νM ′
i ,

we can perform the fibre connected sum #ΨM . We only have to ensure that the
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fibres of the normal bundles of M ′
0 and M ′

1 lie within the pages of (π,B). In partic-
ular, we require the fibres over the nested bindings to lie within the binding of M .
Moreover, we require the isomorphism Ψ of the normal bundle to respect the open
book structure of M (which implies that it is compatible with the nested open book
structures of M ′

0 and M ′
1 as well), i.e. Ψ to satisfies π ◦Ψ = π. Now, an open book

structure of #ΨM is given as follows.

Lemma 5.1.4
The original fibration π : M \B → S1 descends to a fibration

Π: #ΨM \#Ψ|νB′0
B → S1.

In particular, the new binding is given by the fibre connected sum #Ψ|νB′0
B of the

binding along the nested bindings (with respect to the isomorphism of νB′i ⊂ TB

induced by Ψ), and the pages of the open book are given by the (relative) fibre
sum of the original page along the nested pages (with respect to the isomorphism
of νπ′i

−1(θ) ⊂ Tπ−1(θ) induced by Ψ), i.e. Π−1(θ) = #Ψ|ν(Σ′0)θ
Σθ.

In the following we are going to extract the remaining information to express
#ΨM in terms of an abstract open book, that is we describe a recipe to find the
monodromy. Let us take a closer look at the nested open books within the ambient
manifold. Let X be a vector field transverse to the interior of the ambient pages,
vanishing on the binding, and normalised by π∗dθ(X) = 1. Recall from Section 2.1
that the time-2π map φ of the flow of X yields the monodromy of the ambient open
book. Furthermore, if we assume that X is tangent to the submanifolds M ′

i , we
obtain abstract nested open book descriptions (Σi, φi) of M ′

i within the abstract
ambient open book (Σ, φ). Moreover, by adapting the vector field if necessary,
we can choose embeddings of the normal bundles of M ′

i such that the fibres are
preserved under the flow of X. The normal bundles of M ′

0 and M ′
1 being isomorphic

translates into the condition that the normal bundles νΣ′i of the induced (abstract)
nested pages in the ambient (abstract) page Σ are φ-equivariantly isomorphic. Note
that we have not specified such an isomorphism yet. A natural choice seems to
be the isomorphism induced by Ψ, to be more precise, the restriction Ψ0 of the
isomorphism Ψ to N0 ∩ Σθ=0. However we will see below that this is not the right
choice in general, i.e. the abstract description of the open book in Lemma 5.1.4 does
not equal (#Ψ0Σ, φ) in general. It turns out we have to adapt the monodromy and
add the corresponding twist map, which will be described in the following.

For the remaining part of the section we identify νM ′
i with the quotient

(
νΣ′i × [0, 2π]

)
/ ∼φ .
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Now let Ψ0 be the φ-equivariant fibre-orientation reversing isomorphism of νΣ′i
within TΣ induced by the restriction of Ψ. Moreover, we define

Ψt := Ψ|νΣ′0×{t}.

Note that each Ψt is isotopic to Ψ0, the whole family {Ψt}t however defines an (a
priori) non-trivial loop of maps νΣ′0 → νΣ′1 based at Ψ0. By choosing suitable
bundle metrics, this loop yields an (a priori) non-trivial loop {Dt}t of maps Σ′ → S1

based at the identity via
Dt(x) ·Ψ0(q) := Ψt(q),

for x ∈ Σ′ and q 6= 0 a non-trivial point in the normal-fibre over x. With this
in hand we can define a monodromy-like map of νΣ′1 which is the identity in a
neighbourhood of the zero section and outside the unit-disc bundle by

D(q) := Dr(x) · q,

where r is a radial cut-off function in the fibre which is 1 on the zero section and
vanishes away from it. We call it the twist map induced by φ and Ψ. Given this
map we can now give an abstract description of the open book in Lemma 5.1.4.
Recall that we already identified the page as the fibre sum of the original page along
the nested pages.

Lemma 5.1.5
Let Ψ0, φ and D be the maps described in the above paragraph (i.e. φ is the mon-
odromy of M = (B, π) adapted to the nested open books, D is the derived twist-map,
and Ψ0 is the restriction of Ψ to the normal bundle of the subpage at angle zero).
Then the monodromy of the open book in Lemma 5.1.4 is given by φ ◦ D, and the
page is #Ψ0Σ.

5.2 The push-off

In this section we describe a push-off of the binding of an open book which realises
it as a nested open book. The push-off construction will enable us to describe a
natural open book structure on the fibre connected sum of two open books along
their diffeomorphic bindings. The notion push-off may be a bit misleading, as the
result of our construction is not a push-off in the ordinary sense but only close to it.
In particular, the binding and its push-off will intersect. We will first describe how
the binding is being pushed away from itself and then introduce a natural framing
of the pushed-off copy in Subsection 5.2.1, which will be equivalent to the canonical



5.2. The push-off 85

r = c

Σθ

B

B+ ∩ Σθ

Σ′θ ⊂ B

Figure 5.2: The page Σ′θ pushed into Σθ.

page framing of the binding. In Subsection 5.2.2 we show that the push-off can be
realised as an abstract nested open book.

Let M be a manifold with open book decomposition (Σ, φ) and binding B which
also admits an open book decomposition (Σ′, φ′). We denote the fibration maps by
π : M \B → S1 and π′ : B \B′ → S1, respectively. Our aim is to define a push-off
B+ of the binding B in such a way that each page Σ′θ of the binding open book is
pushed into Σθ, the page corresponding to the same angle θ in the ambient open
book. As all our constructions are local in a neighbourhood of the binding B, we
can assume, without loss of generality, that φ is the identity.

Identify a neighbourhood of the binding B′ ⊂ B of the open book of the bind-
ing B with B′×D2 with coordinates (b′, r′, θ′) such that (r′, θ′) are polar coordinates
on the D2-factor and θ′ corresponds to the fibration π′ – these are standard coordi-
nates for a neighbourhood of a binding of an open book. We will also use Cartesian
coordinates x′, y′ on the D2-factor. Analogously, we have coordinates (b, r, θ) in a
neighbourhood of B ⊂ M with the corresponding properties. Combining these, we
get two sets of coordinates on (B′ ×D2)×D2 ⊂M :

(b′, r′, θ′, r, θ) and (b′, x′, y′, x, y).

First, we will describe the geometric idea of the push-off by considering just a single
page Σθ of the open book before defining it rigorously afterwards, see Figure 5.2. The
page Σ′ of the binding open book is pushed into the page Σ. The push-off depends
on the radial direction r′ only and is invariant in the B′-component. In particular,
the boundary of the page Σ′ stays fixed. We divide the collar neighbourhood in Σ′

into four parts by the collar parameter r′. The outermost one consisting of points
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in Σ′ with r′ ≤ ε1 is mapped to run straight into the r-direction of the ambient page
Σ. The innermost part consisting of points with r′ ≥ ε3 is translated by a constant
c into the r-direction. This translation is extended over the whole of Σ′. On the rest
of the collar the push-off is an interpolation between these innermost and outermost
parts. This is done such that points with ε1 ≤ r′ ≤ ε2 are used to interpolate in
r-direction and points with ε2 ≤ r′ ≤ ε3 in r′-direction.

Let f, h : R+
0 → R be the smooth functions described in Figure 5.3. Recall that

B can be decomposed as (B′ × D2) ∪ Σ′(φ′). Let g : B → B × D2 ⊂ M be the
embedding defined by

g(b) =


(
(b′, f(r′) · eiθ′), h(r′) · eiθ′

)
for b = (b′, r′eiθ′) ∈ B′ ×D2(

[x′, θ′], c · eiθ′
)

for b = [x′, θ′] ∈ Σ′(φ′).

Observe that g is well-defined and a smooth embedding.

Definition 5.2.1
We define the push-off B+ of B as the image of the embedding g defined above,
i.e. we define

B+ := g(B).

Observe that we can easily obtain an isotopy between the binding B and the push-
off B+ by parametrising f and h.

ε1 ε2 ε3 ε2

f h

c

Figure 5.3: The functions f and h.

Remark 5.2.2
We call the submanifold B+ a push-off of B although it is not a push-off in the usual
sense since B and B+ are not disjoint. However, it generalizes the notion of a push-
off of a transverse knot in a contact manifold. Note that B+∩Σθ∩{r = c} is a copy
of the interior of the page Σ′θ of the binding and B+∩Σθ∩{r = r0 < c} ∼= B′×{r0}.
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5.2.1 Framings of the push-off

The fibre connected sum explained in Section 1.5 requires the submanifolds to have
isomorphic normal bundles and explicitly uses a given bundle isomorphism. The
binding of an open book has trivial normal bundle. Hence it is sufficient to specify a
framing to be able to perform a fibre connected sum along the binding. In this section
we will discuss a natural framing of the binding of an open book and introduce a
corresponding framing for its push-off.

Let N ⊂ M be a submanifold with trivial normal bundle. A framing of N is
a trivialisation of its normal bundle. If the codimension of N in M equals two, we
can consider the normal bundle as a complex line bundle, which can be trivialised
by a nowhere-vanishing section. Thus, a framing of a codimension two submanifold
with trivial normal bundle can be given by specifying a push-off, or equivalently a
non-zero vector field along the submanifold that is nowhere tangent. We call two
framed submanifolds equivalent if they are isotopic through framed submanifolds.
Note that a framing of the binding B can also be specified by a homotopy class
of maps from B to S1. If B is simply-connected, such a map lifts to the universal
cover R and thus is null-homotopic, i.e. the framing is unique.

A natural framing of the binding B ⊂M of an open book is the page framing
obtained by pushing B into one fixed page of the open book. We denote the page
framing given by ∂x by F0, i.e.

F0 := ∂x.

Next we are going to define a framing for the push-off B+. Let ũ : M → R be a
smooth function such that
• ũ ≡ 0 near B and on B′ × {r′ ≤ ε} ×D2

c−ε,
• ũ ≡ 1 on B′ × {r′ ≥ ε} × {r = c} and outside {r ≤ c+ ε},
• ũ is monotone in r′- and r-direction.

With this in hand we define a framing of the push-off B+ by

F1 := −(1− ũ)∂x′ − ũ · (sin2 θ∂x′ − cos θ∂r).

One easily checks that this is indeed nowhere tangent to B+. We now show that
the push-off B+ with the framing F1 is equivalent to the binding B with its natural
page framing F0.

Lemma 5.2.3
The framed submanifolds (B,F0) and (B+, F1) are isotopic.

Proof. The strategy of the proof is as follows. We use an intermediate push-off B̃

which is smooth outside a singular set and consider the framings F0 and F1 as
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framings on this intermediate push-off. Here, framing means an honest framing on
the smooth part that extends continuously. We then describe a homotopy of the
framings over B̃ which has the property that it still defines a framing when the
intermediate push-off is smoothened (cf. Definition und Notiz (13.12) in [10]). This
then yields the desired isotopy of the framed submanifolds (B,F0) and (B+, F1).

Let c be the constant as in the definition of the push-off B+. Then we define the
intermediate push-off B̃ as the image of g̃ : B → B ×D2 ⊂M defined by

g̃(b) :=


(
b, r′(b), π′(b)

)
for r′ ≤ c,(

b, c, π′(b)
)

for r′ ≥ c.

Note that the intermediate push-off has singular points in r′ = c. On the interme-
diate push-off the framings (which we continue to denote by F0 and F1 and leave
out the base point for ease of notation) are as follows: The page framing is given by
F0 = ∂x or, written in polar coordinates,

F0 = cos θ∂r −
1
r

sin θ∂θ,

with θ = π
(
g̃(b)

)
. Writing the framing F1 of the push-off B+ in polar coordinates

gives
F1 = −(1− ũ+ ũ sin2 θ)(cos θ′∂r′ −

1
r′

sin θ′∂θ′) + ũ cos θ∂r.

This is isotopic to the intermediate push-off with framing

F1 = −(1− t+ t sin2 θ)(cos θ′∂r′ −
1
r′

sin θ′∂θ′) + t cos θ∂r.

Here t = t(b) is a function interpolating between 0 and 1 such that
• t only depends on the r′-direction,
• t = 0 for r′ ≤ c− ε,
• t = 1

2 for r′ = c,
• t = 1 for r′ ≥ c+ ε.

We define
Fh := (1− h)F0 + hF1

and show that Fh defines a framing for every h ∈ [0, 1]. The remainder of the proof
is a mere calculation. The tangent space of B̃ is defined outside of the set {r = c}
and is spanned by TB′ and, depending on the value of t, the vectors
• ∂r + ∂r′ and ∂θ + ∂θ′ , where t < 1

2 , or
• ∂r′ and ∂θ + ∂θ′ , where t > 1

2 .
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Omitting the B′-direction and using vector notation in the ordered basis ∂r, ∂r′ , ∂θ,
∂θ′ , we have

Fh =


(1− h+ ht) cos θ

−(1− t+ t sin2 θ)h cos θ
−(1− h)1

r
sin θ

(1− t+ t sin2 θ − t)h 1
r′

sin θ

 ,

where we use that we have θ = θ′ on the push-off.
We consider the cases t ≥ 1

2 and t ≤ 1
2 separately.

Case 1: t ≥ 1
2 . In the chosen basis the tangent space to B̃ consists of vectors of

the form (
0, a, b, b

)ᵀ
with a, b ∈ R.

Assume that cos θ = 0 and thus sin θ = ±1. Then the framing Fh becomes(
0, 0, −(1/r)(1− h) sin θ, (1/r′)h sin θ′

)ᵀ
.

Since (1/r)(1 − h) + (1/r′)h > 0, this vector can never be of the form (0, a, b, b)ᵀ,
i.e. it is not contained in the tangent space to B̃.

Otherwise, i.e. if cos θ 6= 0, the tangency condition yields (1 − h + ht) = 0, but
this equation does not have a solution for t ≥ 1

2 .
Case 2: t ≤ 1

2 . Here the tangent space to B̃ consists of vectors of the form(
a, a, b, b

)ᵀ
with a, b ∈ R. By the argument above we can rule out the case sin θ 6= 0. For
sin θ = 0, we have cos θ = ±1 and Fh equal to(

cos θ(1− h+ ht), − cos θh(1 + t sin2 θ′ − t), 0, 0
)ᵀ
.

Thus the tangency condition leads to 1 = −h+ ht+ h− ht = 0, a contradiction.
To summarise, this means that Fh is never of the form(

(1− t)a, a, b, b
)ᵀ

and hence does indeed define a framing on a smoothened intermediate push-off. It
follows that (B,F0), (B̃, F0), (B̃, F1) and (B+, F1) are isotopic.

5.2.2 The push-off as an abstract nested open book

The push-off B+ is clearly an embedded nested open book of M = (B, π). The
aim of this section is to obtain a description of the push-off as an abstract nested
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open book, and ultimately as a framed abstract nested open book by altering the
monodromy of the abstract open book (Σ, φ). To this end, the monodromy of the
binding is used to define a vector field X ′ on B\B′, which can then be extended to a
neighbourhood of B in M . By cutting off this vector field appropriately, we alter the
vector field X on M \B corresponding to the monodromy φ to get a new monodromy
of the form φ ◦ ψ. This will realise the push-off as an abstract nested open book.
Finally, the monodromy of the ambient open book is changed again in such a way
that the framing of a page of the push-off is independent of the ambient page. This
means that the framed push-off can then be regarded as a framed abstract nested
open book.

Identify a neighbourhood of B′ ⊂ B with B′ × D2 as above, i.e. the pages are
defined by the angular coordinate θ′. Also denoting the coordinate on S1 by θ′, we
can define a non-vanishing 1-form onB\B′ by the pull–back of dθ′ under the fibration
map π′ : B\B′ → S1. With the help of this 1-form we can extend the vector field ∂θ′
to a vector field X ′ on B by prescribing the condition (π′)∗dθ′(X ′) = 1. The vector
field X ′ can furthermore be extended trivially to a neighbourhood B ×D2 of B in
M . We obtain an abstract open book description of M by regarding the time-2π
map of a certain vector field on M \B which satisfies conditions analogue to the ones
used in the construction of X ′ above. Let X denote the vector field that recovers
the abstract open book (Σ, φ). Let u : R+

0 → R be the smooth function depicted in
Figure 5.4 with c as in the definition of the push-off B+. Then X̃ := X + u(r)X ′

defines a vector field on M \B.

c

u

1

Figure 5.4: The function u.

We claim that X̃ realises the push-off B+ as an abstract nested open book of an
abstract open book description of M . Observe that, as X ′ is tangent to the pages
of (B, π), the condition π∗dθ(X̃) = 1 is satisfied and that X̃ and X coincide near
the binding B. Thus, the vector field X̃ does indeed yield an abstract open book
description of M . Furthermore, the vector field X̃ is tangent to the push-off B+,
which means that it realises B+ as an abstract nested open book of the abstract
ambient open book. The monodromy is given by the time-2π flow of X̃. However,
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we want to give a description that better encodes the change of the monodromy φ of
the ambient open book we started with in terms of the monodromy of the binding.

We denote the flow of X ′ on B by φ′t and use it to define diffeomorphisms ψt of
a neighbourhood B ×D2 of B in M :

ψt(b, r, θ) = (φ′t(b), r, θ).

Definition 5.2.4
Define a diffeomorphism ψ : M → M via ψ := ψ2πu(r) and refer to it as Chinese
burn1 along B. By abuse of notation, its restriction to a single page Σθ is also
denoted by ψ.

ψ−→

Figure 5.5: A Chinese burn along a boundary component.

Observe that the monodromy of the abstract open book obtained from the vector
field X̃ is φ ◦ ψ, i.e. the push-off B+ yields an an abstract nested open book of
(Σ, φ ◦ ψ). We thus proved the following statement.

Lemma 5.2.5
The push-off B+ induces an abstract nested open book of (Σ, φ ◦ψ) with page diffeo-
morphic to Σ′ (more concretely, the page is g|Σ′0(Σ′0) ∼= Σ′), where ψ is a Chinese
burn along B.

We constructed the push-off B+ inside the manifold M(Σ, φ) and equipped it
with a natural framing F1 corresponding to the page framing. In particular, the
push-off is a framed nested open book, i.e. a nested open book with a specified
framing. The previous lemma shows that the push-off also defines an abstract nested
open book of (Σ, φ ◦ ψ). However, the framing F1 does a priori not give a framing

1In common speech, a Chinese burn is the “act of placing both hands on a person’s arm and
then twisting it to produce a burning sensation” (cf. www.oed.com).
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in the abstract setting since it is not invariant under the monodromy. We call an
abstract nested open book with a framing which is invariant under the monodromy
a framed abstract nested open book.

Remark 5.2.6
Given two diffeomorphic framed nested open books with pages Σ′0,Σ′1 ⊂ (Σ, φ) and
isomorphic normal bundles, it is easy to obtain an open book structure of their fibre
connected sum. The new page is

Σ̃ :=
(
Σ \ (νΣ′0 ∪ νΣ′1)

)
/ ∼

with the identification induced by the given framings, and the old monodromy φ

restricts to the new monodromy.

A natural framing of the push-off in the abstract setting is the following: We
define the constant framing F2 as

F2 : ũ∂r − (1− ũ)∂x′ ,

where ũ is the restriction of the function ũ : M → R defined in Section 5.2.1 to a
page Σ, i.e. it is smooth with the following properties:
• ũ ≡ 0 near B and on B′ × {r′ ≤ ε} ×D2

c−ε,
• ũ ≡ 1 on B′ × {r′ ≥ ε} × {r = c} and outside {r ≤ c+ ε},
• ũ is monotone in r′- and r-direction.
To realise the push-off as a framed abstract nested open book with framing F2,

we have to alter the monodromy of the ambient abstract open book. We will change
the monodromy by a certain diffeomorphism of the page fixing the push-off, the
so-called twist map. Let σ : R→ R be a cut-off function with σ(0) = 0 and σ(ε) = 1
and

τ
σ(r)
± : D2 → D2

a smoothened Dehn twist of the disc. That is, a diffeomorphism with the qualitative
behaviour of

(s, θ) 7→ (s, θ ± 2πσ(r)(1− s)),

smoothened near the boundary and the origin, such that the origin is an isolated
fixed point and a neighbourhood of the boundary is fixed. This can be achieved by
constructing it as the flow of an appropriate vector field. Recall that, by construc-
tion, the intersection of the push-off of the binding B with a single page Σ of the
ambient open book is a copy of a page Σ′ of the open book of the binding. In partic-
ular, we can identify a tubular neighbourhood of B+ ∩ Σ0 in Σ0 with Σ′ ×D2 ⊂ Σ.



5.2. The push-off 93

Observe that the r-coordinate can be regarded as a collar parameter on Σ′. We
define a diffeomorphism of a neighbourhood of the collar by

∂Σ′ × [0, ε]×D2 → ∂Σ′ × [0, ε]×D2

(b′, r, p) 7→ (b′, r, τσ(r)
− (p)).

We can extend this to a diffeomorphism Σ′ × D2 → Σ′ × D2 of the whole tubular
neighbourhood of Σ′ via idΣ′ ×τ 1

−. Furthermore, this map can be extended to a
self-diffeomorphism D : Σ→ Σ of the page Σ via the identity.

Definition 5.2.7
The diffeomorphism D : Σ→ Σ is called twist map.

The twist map D is isotopic to the identity, so we have M(Σ,φ◦ψ) ∼= M(Σ,φ◦ψ◦D).

Lemma 5.2.8
The push-off B+ with its induced framing F1 corresponds to the framed abstract
nested open book of (Σ, φ ◦ ψ ◦ D) with page g|Σ′0(Σ′0) ∼= Σ′ framed by the natural
framing F2.

Proof. The push-off B+ was constructed in M(Σ,φ). To prove the lemma, we will
mostly work in M(Σ,φ◦ψ). We begin by describing the push-off B+ seen in this
manifold. A diffeomorphism between M(Σ,φ) and M(Σ,φ◦ψ) is given by the map
Θ: M(Σ,φ) →M(Σ,φ◦ψ) defined by

Θ(p) = ψ−π(p)u(r(p))(p),

where r : Σ→ R is a function that coincides with the collar parameter r near B and
is constantly extended to all of Σ. In particular, it preserves the pages Σθ and the r-
direction, and is induced by the inverse of the time-θ map of the binding monodromy
on the {r = c}-slice in Σθ. We denote the image of B+ under the diffeomorphism Θ
by B1. The diffeomorphism Θ also transports the framing F1 of B+ to a framing
of B1, that we also denote by F1.

On the other hand, the embedded nested open book B1 induces the abstract
nested open book from Lemma 5.2.5. Hence, as the twist map D fixes its pages,
the framing F2 also induces a framing of B1 by considering the diffeomorphism from
M(Σ,φ◦ψ◦D) to M(Σ,φ◦ψ) coming from the twist map D (cf. Figure 5.6).

It remains to show the equivalence of the two framings of B1. Note that

Θ: M(Σ,φ) →M(Σ,φ◦ψ)
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leaves the ∂r-direction of the framing unchanged and is a rotation in theB-directions.
More concretely, we have

∂x′ 7→ cos(−θ′u(hs(r′)))∂x′ + sin(−θ′u(hs(r′)))∂y′ .

Thus, the framing F1 of B1 obtained through the diffeomorphism is

b 7→
(
b̃, ũ

(
− sin2 θ′ (λ1∂x′ + λ2∂y′) + cos θ′∂r

)
+ (1− ũ) (−λ1∂x′ + λ2∂y′)

)
with

b̃ = ψ−θ·u(r(gs(b))) (gs(b))

and
λ1 = cos(−θ′u(hs(r′))), λ2 = sin(−θ′u(hs(r′))).

The framing F2 of B1 in M(Σ,φ◦ψ◦D) is mapped to

ũ(cos θ′∂r + sin θ′∂y′) + (1− ũ) · (−1) · (cos(−θ′d(r))∂x′ + sin(−θ′d(r))∂y′)

under the diffeomorphism induced by the twist map D from M(Σ,φ◦ψ◦D) to M(Σ,φ◦ψ).
We can choose d(r) = u(cs) in the definition of D and simply interpolate between
D(F2) and F1, where a little care is needed only for θ = π

2 and θ = 3π
2 .

D−→
Σ′

F2 D(F2)

Figure 5.6: The framing F2 and the twist D.

5.3 An open book of the binding sum

We are now able to give an explicit open book decomposition for the binding sum
operation and thus prove our main result, or, more concretely, the following theorem.
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Theorem 5.3.1
Let M be a (not necessarily connected) smooth manifold with open book decompo-
sition (Σ, φ) whose binding B contains two diffeomorphic components B1, B2 with
diffeomorphic open book decompositions (Σ′, φ′). Then the fibre connected sum of M
performed along B1 and B2 with respect to the page framings admits an open book
decomposition naturally adapted to the construction. The new page can be can be
obtained from Σ by two consecutive generalised 1-handle attachments whose type de-
pends on the pages Σ′ of the binding components. The new binding is given by a fibre
connected sum of B1 and B2 along their respective bindings B′ = ∂Σ. Away from
the handle attachments the monodromy remains unchanged, and over the remaining
part it restricts to ψ ◦D, where ψ is a Chinese burn along Bi (see Definition 5.2.4)
and D the twist map (see Definition 5.2.7).

The proof is divided into two parts. First, we show the existence of a natural open
book decomposition of the binding sum and specify its monodromy in the abstract
setting. In the second part we prove that the resulting page can be obtained from
the original pages by two consecutive generalised 1-handle attachments (for details
regarding generalised 1-handles see Appendix C).

Proof of Theorem 5.3.1 I: Existence and identifying the monodromy.
Let M be a manifold with open book fibration (B, π) two of whose binding compo-
nents, denoted by B0 and B1, admit diffeomorphic open books. By Lemma 5.2.3 B0

and B1 are isotopic to their respective push-offs B+
i . Hence, the binding sum along

the Bi (with respect to the page framing) can be replaced by the fibre connect sum
along the push-offs B+

i with the framing F1. Since the push-offs are nested open
books (B+

i , πi := π|B+
i

) of (B, π), the fibre connected sum carries a natural open
book structure coinciding with the original open book fibration away from the push-
offs by Lemma 5.1.4. A fibre of this new open book fibration is the fibre connected
sum of the corresponding original fibres along the fibres of the nested open books.

In the abstract setting we have M = M(Σ,φ) and the binding components B0

and B1 admit an abstract open book decomposition (Σ′, φ′). By Lemma 5.2.8,
the push-offs B+

i induce framed nested open books of (Σ, φ ◦ ψ ◦ D), and we have
M = M(Σ,φ) ∼= M(Σ,φ◦ψ◦D). Here, ψ denotes the Chinese burn along the relevant
binding components Bi (see Definition 5.2.4) andD the corresponding twist map (see
Definition 5.2.7). As described in Remark 5.2.6, the abstract open book description
of the fibre connected sum follows easily because the framing of a framed nested
open book is compatible with the ambient monodromy. The new page is

Σ̃ :=
(
Σ \ (νΣ′0 ∪ νΣ′1)

)
/ ∼
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with the identification induced by the given framings, i.e. it is the fibre connected
sum of the original page Σ along the framed nested pages Σ′i of the framed nested
open books of (Σ, φ◦ψ ◦D) corresponding to the Bi, and the monodromy is induced
by φ ◦ ψ ◦ D.

In the following we explain how the binding connected sum of two open books
with diffeomorphic bindings can be regarded as two consecutive generalised 1-handle
attachments.

Proof of Theorem 5.3.1 II: Handle interpretation of the page.
Let Σ be the ambient page, i.e. Σ ∼= π−1(0) with (B, π) the open book, and let
B0, B1 ⊂ B = ∂Σ be two diffeomorphic binding components with common open
book. We already discussed what the open book for the binding sum looks like. For
ease of notation, let Σ′i denote the subpage of the push-off B+

i of Bi as well as the
page of Bi corresponding to a fixed angle, zero say, for i = 0, 1. Let νΣ′i ⊂ Σ be
their embedded normal bundles. Then the new page is given by

Σ̃ := Π−1(0) = #Ψ|νΣ′0
Σ.

Equivalently, in the abstract setting, we can identify νΣ′i with Σ′i × intD2 ⊂ Σ′i ×C
via the constant framing of the constant push-offs and obtain

Σ̃ := Π−1(0) =
(

Σ \
(
νΣ′0 ∪ νΣ′1

))
/(x, z) ∼ (x, z̄).

Note that Σ′i × {1} ⊂ νΣ′0 is isotopic in Σ \ νΣ′0 to the corresponding page Σ′i ⊂
Bi ⊂ ∂Σ of the respective binding component Bi. Let Σ′ × [−1, 0] and Σ′ × [0, 1]
denote the traces of the obvious isotopies fixing ∂Σ′×{1}. Observe furthermore that
these two isotopies glue together in Π−1(0) to an isotopy whose image we denote by
Σ′ × [−1, 1] (cf. Figure 5.7), which clearly is the co-core of a generalised 1-handle
H

(2)
Σ′ .

If we cut open the new page Σ̃ along the co-core of this handle and consider
the effect in the original page Σ, the areas Σ′i× ∂D2 of identification become diffeo-
morphic to Σ′i × [0, 2π] since Σ′i × {1} is removed. Hence, we end up with a single
embedded copy of Σ′ × [0, 2π] in the quotient Σ̃. This is the co-core of another
generalised 1-handle H(1)

Σ′ . Cutting along H(1)
Σ′ then gives back the original page Σ

(cf. Figure 5.7). Thus, we have

Π−1(0) =
(

Σ tH(1)
Σ′ tH

(2)
Σ′

)
/ ∼,

where we attach the first handle H(1)
Σ′ along two copies of Σ′, i.e. along one page of

each of the two binding components B0 and B1. The second handle H(2)
Σ′ is then

attached to D1 × Σ× S0 ⊂ ∂H
(1)
Σ′ (see Figure 5.8).
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Σ′0 × [−1, 0]

Σ′1 × [0, 1]

Σ′0 × ∂D2

Σ′1 × ∂D2

Figure 5.7: The dark grey region on each side is the neighbourhood of a single page
of the push-off of binding components. The light grey region defines the co-core of
a generalised 1-handle H(2)

Σ′ . After cutting along the co-core of H(2)
Σ′ , the dark grey

region descends to the co-core of another generalized 1-handle H(1)
Σ′ .

We conclude the section with an example.

Example 5.3.2
Let M = M0tM1 with Mi the four-dimensional sphere S4 with open book decompo-
sition (Σi = D3, id). Then the binding has two components Bi, both a 2-sphere with
the unique open book decomposition (Σ′i = D1, id). We have Mi = D3×S1∪S2×D2,
so performing the binding sum on M along the Bi yields S3×S1. By Theorem 5.3.1,
this has a natural open book decomposition obtained by forming the sum along the
push-off of the binding.

Pushing a page Σ′i = D1 of the binding open book into the page Σi = D3 and
then removing a neighbourhood of Σ′i, turns Σi into a solid tours S1 ×D2. Hence,
the page in the resulting open book decomposition of the binding sum consists of
two solid tori glued together along a neighbourhood of S1 × {∗} ⊂ S1 × ∂D2, i.e. it
is a solid torus. Note that we do not have to specify a framing since S2 is simply-
connected and thus possesses a unique framing.

Recall that the Chinese burn ψ is non-trivial only in a collar neighbourhood of
the binding. To identify the new monodromy it is helpful to imagine the collar as
split into two parts. The Chinese burn twists the outer part of the collar and then
twists back on the inner part. Now observe that the new monodromy is isotopic to
the identity. Indeed, the twist map D on the new page cancels with the Chinese
burn on the outer part and the Chinese burn restricted to the inner part is isotopic
to the identity also on the new page (see also the 3-dimensional case sketched at the
end of this example).
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core of H(1)
Σ′

core of H(2)
Σ′

B0 B1

Figure 5.8: The dark and light grey region define cores of generalized 1-handles H(1)
Σ′

and H(2)
Σ′ respectively. Note that, in the particular case we pictured here, the 2-fold

handle attachment yields a solid torus S1 ×D2.

Alternatively, we can also construct the new page by two consecutive generalised
1-handle attachments. In the present situation a generalised 1-handle HΣ′ is just
D1×D1×D1. The first handle attachment described above turns Σ = D3tD3 into
a single ball, the second handle attachment results in a solid torus (see Figure 5.8).

It is also worth comparing this with the situation in one dimension lower as dis-
cussed in [53], i.e. the binding sum of two copies of (D2, id) with page framing (here,
a framing has to be specified). Then the new page is an annulus and the monodromy
is isotopic to the identity: the Chinese burn part of the monodromy are two trivial
negative Dehn twists and two non-trivial positive Dehn twists which cancel with the
two negative Dehn twists forming the twist map (see [53, Theorem 3]).

5.4 The contact binding sum

In this section we want to show that the binding sum of contact open books yields
an open book and a contact structure that again fit nicely together.

Theorem 5.4.1
The binding sum construction can be made compatible with the underlying contact
structures, i.e. the contact structure obtained by the contact fibre connected sum
along contactomorphic binding components is supported by the natural open book
structure resulting from the sum along the push-offs of the respective binding com-
ponents.

We will now define nested open books in the contact world.
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Definition 5.4.2
Let (Σ, dλ, φ) be a contact open book and Σ′ ⊂ Σ a symplectic submanifold with
boundary ∂Σ′ ⊂ ∂Σ such that in a collar neighbourhood ∂Σ×(−ε, 0] of ∂Σ given by
an outward-pointing Liouville vector field we have Σ′∩

(
∂Σ×(−ε, 0]

)
= ∂Σ′×(−ε, 0].

Suppose furthermore that φ(Σ′) = Σ′, i.e. the monodromy leaves Σ′ invariant (not
necessarily pointwise). Then Σ′ is a contact abstract nested open book of the
contact open book (Σ, dλ, φ).

Recall that the fibre connected sum construction can be adapted to the contact
setting (see Theorem 1.5.2).

The binding of a contact open book decomposition is a contact submanifold
and hence admits an open book structure itself. Furthermore, it has trivial normal
bundle. Given two contact open books with contactomorphic bindings, we can thus
perform the contact fibre connected sum along their bindings, and, topologically,
also along the push-offs B+

i of the bindings. We want to show that this topological
construction can be adapted to the contact scenario.

In fact, the push-off is a contact submanifold contact isotopic to the binding.
Thus, we can form the contact fibre connected sum along the push-off rather than
along the binding itself when performing the contact binding sum.

Proposition 5.4.3
The push-off B+ of the binding B of a contact open book (B, π) is a contact sub-
manifold contact isotopic to the binding.

Proof. We first show that the push-off B+ of the binding B is a contact submanifold
of (M, ξ). The binding B is a contact submanifold, so in a neighbourhood B ×D2

(as described in Section 5.2) we can assume our contact form α to be

α = h1αB + h2dθ,

where αB is a contact form on B and (h1(r), h2(r)) a Lutz pair (see Definition 2.3.2).
To prove that the push-off B+, which arises as the image of the embedding

g : B →M

(see Definition 5.2.1), is a contact submanifold of M , we have to show that g∗α is a
contact form on B. We will first verify this condition away from the binding B′ of
B. Here, g sends an element [x′, θ′] in the mapping torus part of the open book of
B to ([x′, θ′], c, θ′) ∈ B ×D2 for constant c > 0. So we have

g∗α = h1(c)αB + h2(c)dθ′
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and dg∗α = h1(c)dαB. Hence,

g∗α ∧ (dg∗α)n−1 =
(
h1(c)

)n
αB ∧ (dαB)n−1 +

(
h1(c)

)n−1
h2(c)dθ′ ∧ (dαB)n−1.

Observe that (h1(c))n−1h2(c) > 0. Furthermore, since dθ′(RαB) > 0, the forms
αB ∧ (dαB)n−1 and

(
h1(c)

)n−1
h2(c)dθ′ ∧ (dαB)n−1 induce the same orientation, i.e.

g∗α is indeed a contact form away from the binding.
Now we inspect the situation near the binding B′ of B, i.e. we can work in a

neighbourhood B′×D2×D2 (as described in Section 5.2). The contact form αB of
the binding can be assumed to be of the form

αB = g1αB′ + g2dθ
′,

where αB′ is a contact form on B′ and
(
g1(r′), g2(r′)

)
a Lutz pair. Thus, we have

α = h1g1αB′ + h1g2dθ
′ + h2dθ.

Recall that the defining embedding g for the push-off is given by

g(b′, r′, θ′) =
(
b′, f(r′), θ′, h(r′), θ′

)
in this neighbourhood.

We compute
g∗α = λαB′ + µdθ′

with
λ(r′) = (h1 ◦ h)(g1 ◦ f)(r′)

and
µ(r′) =

(
(h1 ◦ h)(g2 ◦ f) + h2 ◦ h

)
(r′).

So we have
g∗α = λ′αB′ + λdαB′ + µ′dθ′,

(dg∗α)n−1 = (n− 1)λn−2(dαB′)n−2 ∧ (λ′dr′ ∧ αB′ + µ′dr′ ∧ dθ′)

and

(g∗α) ∧ (dg∗α)n−1 = 1
r′

(n− 1)λn−2(λµ′ − λ′µ)
(
αB′ ∧ (dαB′)n−2 ∧ r′dr′ ∧ dθ′

)
.

It remains to show that the term λµ′ − λ′µ is positive. A calculation shows

λµ′ − λ′µ = (h1 ◦ h)2
(
(g1 ◦ f)(g2 ◦ f)′ − (g1 ◦ f)′(g2 ◦ f)

)
︸ ︷︷ ︸

=:A

+ (h1 ◦ h)
(
(h2 ◦ h)′(g1 ◦ f)− (g1 ◦ f)′(h2 ◦ h)

)
︸ ︷︷ ︸

=:B

+
(
− (h1 ◦ h)′(g1 ◦ f)(h2 ◦ h)

)
︸ ︷︷ ︸

=:C

.
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Observe that all three summands A, B, and C are non-negative. It thus suffices to
show that at least one of them is positive. Assume C = 0. Then either r′ = 0 or
h′ = 0. We will first deal with the case h′ = 0. This happens exactly where h ≡ c.
But on this set, both f and its derivative f ′ are positive and therefore

A =
(
h1 ◦ h(c)

)2
f ′
(
(g1g

′
2 − g′1g2) ◦ f

)
> 0,

because (g1, g2) is a Lutz pair, i.e. in particular (g1g
′
2 − g′1g2) > 0. Now consider

r′ = 0. For small r′ we have f ≡ 0 and thus g1◦f ≡ 1 and g2◦f ≡ 0. Then λµ′−λ′µ
reduces to

(h1 ◦ h)(h2 ◦ h)′ − (h1 ◦ h)′(h2 ◦ h) = h′
(
(h1h

′
2 − h′1h2) ◦ h

)
.

As h′ is positive for small r′ and (h1, h2) is a Lutz pair, this is positive. Hence,
(g∗α)∧ (dg∗α)n−1 is a volume form and so (g∗α) a contact form, i.e. the push-off B+

is indeed a contact submanifold.
A similar calculation using the parametrised versions of the functions f and h

used in the definition of the push-off shows that the push-off B+ is furthermore
contact isotopic to the binding B.

A first step of showing that the topological binding sum construction along the
push-off can be made compatible with the underlying contact structures is to show
that the push-off can be realised as a suitable abstract nested open book. To this
end, we first show that there exists a monodromy vector field tangent to the push-off.

Proposition 5.4.4
There exists a monodromy vector field tangent to the push-off.

Proof. Without loss of generality, we can assume that the ambient contact man-
ifold (M, kerα) with contact open book (B, π) arises from an abstract open book
(Σ, dλ, φ) by a generalised Thurston–Winkelnkemper construction. The push-off B+

of the binding B is contained in a trivial neighbourhood B×D2, on which the mon-
odromy φ restricts to the identity and the contact form α is given by α = h1αB+h2dθ,
where (h1, h2) is a Lutz pair and αB a contact form on B with the induced contact
structure. Hence, we can furthermore assume that φ = idΣ, which implies that ∂θ
is a monodromy vector field.

By construction, the intersection of the push-off B+ with the fibres of π is a
cylinder over the binding B′ of the compatible open book decomposition with page Σ′

used in the construction of the push-off, i.e. for some small constant k > 0, we have

B+ ∩ π−1(θ) ∩ {r ≤ ε} = B′ × (0, k] ⊂ B ×D2.
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We will now work in M \ (B × D2
ε) ∼= Σ × S1 with ε < k (i.e. we will work in a

trivial mapping torus).
Observe that B+ ∩

(
Σ × {θ}

)
is a codimension 2 symplectic submanifold with

trivial normal bundle of (Σ × {θ}, dα|Σ×{θ}). Also, the symplectic structure on
Σ × {θ} induced by dα is independent of θ. Thus, we get a fibre-wise symplectic
projection

p : Σ× S1 → Σ.

This defines a family of symplectic submanifolds

Σ′t := p
(
B+ ∩ (Σ× {t})

)
of Σ which all coincide near the boundary.

Auroux’s version of Banyaga’s isotopy extension theorem (see Theorem 1.1.10)
for symplectic submanifolds then yields a symplectic isotopy

φt : Σ→ Σ

with φt(Σ′0) = Σ′t in such a way that it is equal to the identity in a neighbourhood
U1 of ∂Σ and outside a bigger neighbourhood U2 of the boundary.

Differentiating φt yields a time-dependent vector field Xt on Σ, which can be
assumed to coincide for t = 0 and t = 2π (it extends a vector field along the
submanifold Σ′ with that property). Thus, Xt lifts to a vector field X on Σ × S1

with dθ(X) = 1, whose projection to each fibre Σ×{θ} is symplectic. Furthermore,
the vector field X is equal to ∂θ inside U1 × S1 and outside U2 × S1. To simplify
notation, we set V := (U2 \ U1)× S1.

Now given any monodromy vector field Y which is equal to ∂θ on U2 × S1, we
can replace Y by X over V to get a vector field Ỹ , which is tangent to the push-off
by construction. We claim that Ỹ is a monodromy vector field.

Indeed, we have dθ(Ỹ ) = 1 and near the binding Ỹ equals ∂θ. Furthermore, the
Lie derivative of dα with respect to Ỹ coincides with LY dα outside of V and with
LXdα on V . Hence, as Y is a monodromy vector field and X is symplectic on pages,
the restriction of L

Ỹ
dα to any page vanishes, which means that Ỹ is a monodromy

vector field tangent to the push-off B+.

Remark 5.4.5
By the symplectic neighbourhood theorem 1.1.8 a neighbourhood of Σ′ in Σ can
be written as Σ′ × D2 with split symplectic form. A smooth family of symplectic
submanifolds can be assumed to arise as the image of an isotopy. The first step in
proving Auroux’s theorem 1.1.10 is to extend this isotopy to an open neighbourhood.
In our case, the symplectic neighbourhood theorem allows us to do this in a trivial
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way. Applying Auroux’s construction to this trivial extension yields an isotopy
which is invariant in fibre direction, i.e. the time-2π map of the resulting isotopy
restricts to a map of the form φ|Σ′×D2 = φ′ × idD2 on the neighbourhood of Σ′.
Hence, we have the following corollary.

Corollary 5.4.6
The push-off is an abstract nested open book of an abstract open book description
with page Σ and monodromy φ, where φ restricts to

φ|Σ′×D2 = φ′ × idD2

for a symplectomorphism φ′ : Σ′ → Σ′ in a neighbourhood Σ′ × D2 of Σ′ given by
the symplectic normal bundle.

Remark 5.4.7
Observe that by requiring the monodromy to be trivial in fibre direction, the result-
ing abstract nested open book is also a framed nested abstract open book in the
sense of Section 5.2.2. The monodromy does not correspond to the Chinese burn Ψ
but to the concatenation D ◦ Ψ with the twist map D, which was used to turn a
nested open book into a framed nested open book in the topological setting and
exactly ensured triviality in fibre direction.

Having described the push-off as an abstract nested open book, it is natural to
perform a fibre sum construction of the ambient abstract open books. This will then
yield a contact structure adapted to the resulting natural open book decomposition.
However, it is a priori unclear whether this contact structure is indeed the contact
structure resulting from the contact fibre connected sum.

We will first show that the symplectic fibre connected sum (see Section 1.5.2)
of exact symplectic manifolds is exact under suitable conditions. The following
technical lemma will be useful to interpolate between Liouville forms which agree
on a symplectic submanifold.

Lemma 5.4.8
Let M be a manifold and let λ0 and λ1 be two 1-forms on M×D2 such that dλ0 = dλ1

and λ0|T (M×{0}) = λ1|T (M×{0}). Then λ1 − λ0 is exact.

Proof. The proof is just an application of Poincaré’s lemma to this particular setting.
Without loss of generality, we can assume that M is connected. Define η := λ1−λ0.
Then η is a closed 1-form on M × D2 with η|T (M×{0}) = 0. Let p0 be in M . For
(p, q) ∈ M × D2 let γ(p,q) be a path of the form γ1 ∗ γ2, where γ1 is a path from
(p0, 0) to (p, 0) with trace in M × {0} and γ2 the linear path connecting (p, 0) and
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(p, q). We then define a function h : M ×D2 → R by

h(p, q) :=
∫
γ(p,q)

η.

This is well-defined because η vanishes on M × {0} and smooth because η is a
smooth 1-form and γ a piecewise smooth path. As η vanishes on M × {0}, we can
use closedness to show dh = η exactly as in the proof of the Poincaré lemma.

Proposition 5.4.9
Let (Wi, ωi = dλi), i = 0, 1, be exact symplectic manifolds with symplectomorphic
submanifolds Xi ⊂ Wi of codimension 2 and trivial normal bundle. Assume further-
more that the restriction λ|TXi of the Liouville forms to these submanifolds coincide.
Then the symplectic fibre sum of the Wi along the Xi is again exact symplectic.

Proof. We will drop the indices in the first part of the proof and work in W0 and
W1 separately. The submanifold X ⊂ W is symplectic with symplectic form

ω′ := ω|TX = (dλ)|TX = d(λ|TX),

i.e. X is exact symplectic and a Liouville form is given by λ′ := λ|TX . As X

is of codimension 2 and has trivial normal bundle, the symplectic neighbourhood
theorem 1.1.8 allows us to write a neighbourhood of X in W as X × D2 with
symplectic form given as ω = ω′+ sds∧ dϑ, where s and ϑ are polar coordinates on
the D2-factor. In these coordinates one (local) primitive of ω is given by λ′+1/2s2dϑ.
Hence, by Lemma 5.4.8, we have

λ|X×D2 = λ′ + 1
2s

2dϑ+ dh

for an appropriate function h.
Now by assumption, the restriction of the Liouville forms to the symplectic

submanifolds Xi agree, so in the coordinates adapted to the symplectic normal
bundle as above they are λi = λ′ + 1/2s2dϑ+ dhi.

It follows that the symplectic fibre sum along the symplectic submanifolds Xi

is again exact symplectic. The Liouville form can be chosen to coincide with the
original ones outside the area of identification and is given by

λ′ + 1
2s

2dϑ+ d
(
(1− g)h0 + gh1

)
on the annulus of identification. Here g is a function on the annulus equal to 1 near
one boundary and equal to 0 near the other boundary component.

We can now apply the proposition to the setting of abstract open books, which
gives a contact version of the topological fibre sum of nested open books described
in Remark 5.2.6.
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Corollary 5.4.10
Let Σ′i ⊂ (Σi, dλi, φi), i = 0, 1, be two contact abstract nested open books with trivial
normal bundle. Let ψ : ν(Σ′0) → ν(Σ′1) be a symplectomorphism of neighbourhoods
with ψ(Σ′0) = Σ′1 satisfying ψ ◦ φ0 = φ1 ◦ ψ and (ψ∗λ1)|TΣ′0 = λ0|TΣ′0. Then the fibre
connected sum of the Σi along the Σ′i with respect to ψ yields again an abstract open
book.

In particular, the symplectic fibre sum of two abstract open books along the push-
offs of their contactomorphic bindings yields again an abstract open book. Hence,
the topological binding sum along two contactomorphic binding components carries
a contact structure which is adapted to the natural open book structure and coincides
with the original structures outside a neighbourhood of the push-offs of the respective
binding components.

Proof. We have to show that the symplectic fibre sum is again an exact symplectic
manifold with a Liouville vector field pointing outwards at the boundary and that
the original monodromies give rise to a monodromy on the fibre sum. The latter
is ensured by the condition ψ ◦ φ0 = φ1 ◦ ψ. Exactness follows almost immediately
from the preceding proposition. Observe that Σ′i being contact abstract nested open
books (cf. Definition 5.4.2) allows us to perform a relative version of the symplectic
fibre connected sum as described in Remark 1.5.3. So by the proposition the fibre
sum yields an exact symplectic manifold with boundary with Liouville field still
pointing outwards.

Note that the description of the push-off as an abstract open book as in Corol-
lary 5.4.6 fulfils the hypothesis of the first part of this corollary (the Liouville forms
can be assumed to agree as the push-offs live in trivial neighbourhoods of contacto-
morphic binding components). Performing a generalised Thurston–Winkelnkemper
construction on the resulting abstract open book then yields the second part of this
corollary.

5.4.1 Naturality of the contact structure

The preceding corollary ensures the existence of a contact structure adapted to the
resulting open book structure on the fibre sum. It does not tell us however, that
the contact structure from the contact fibre connected sum is adapted to this open
book. This is what we want to show in the following. The problem is that the fibres
of the symplectic normal bundle to the push-off B+ are not tangent to the pages,
i.e. the operation of the contact fibre connected sum, which uses these fibres, does
not fit nicely to the open book structure. We are going to manipulate the abstract
open book (without changing the underlying contact manifold) in such a way that



106 Nested open books and the binding sum

the symplectic normal fibres of the push-off are tangent to the pages of the open
book and thus guaranteeing compatibility of open book structure and fibre sum.

Lemma 5.4.11
Let X be a codimension 2 symplectic submanifold of an exact symplectic manifold
(W,ω = dλ) and suppose that the normal bundle of X is trivial. Then there is a
Liouville form λ̃ such that the corresponding Liouville vector field is tangent to X.

Proof. The submanifold X ⊂ W is symplectic with symplectic form

ω′ := ω|TX = (dλ)|TX = d(λ|TX),

i.e. X is exact symplectic and a Liouville form is given by λ′ := λ|TX . As X

is of codimension 2 and has trivial normal bundle, the symplectic neighbourhood
theorem 1.1.8 allows us to write a neighbourhood of X in W as X × D2 with
symplectic form given as ω = ω′+ sds∧ dϑ, where s and ϑ are polar coordinates on
the D2-factor. In these coordinates one (local) primitive of ω is given by

λ̃ := λ′ + 1/2s2dϑ.

Observe that the restriction of both λ and λ̃ to X equals λ′. Hence, by Lemma 5.4.8,
we have

λ|X×D2 = λ̃+ dh

for an appropriate function h. Consider a function h̃ on W which is equal to h near
X and vanishes outside a neighbourhood of X, and denote its Hamilton vector field
by Xh. If Y is the Liouville vector field corresponding to the Liouville form λ, then
the sum Y +Xh is again Liouville. The associated Liouville form restricts to λ̃ near
X. In particular, the Liouville vector field is tangent to X.

Remark 5.4.12
Also note that the contact structures on the open book obtained by the generalised
Thurston–Winkelnkemper construction performed with two Liouville forms λ and
λ + dh coinciding near the boundary are isotopic. Indeed, a family of contact
structures is given by using λ + d(sh) for s ∈ [0, 1] and Gray stability can be
applied.

Proposition 5.4.13
Let (W,ω) be an exact symplectic manifold and X ⊂ W a symplectic submanifold
of codimension 2 with trivial symplectic normal bundle. Let λt, t ∈ R, be a smooth
family of Liouville forms such that the corresponding Liouville vector fields Yt are
tangent to X and such that the 1-form d

dt
λt vanishes on the fibres of the symplectic

normal bundle of X.
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Then the fibres of the conformal symplectic normal bundle of the contact sub-
manifold X × R ⊂ (W × R, α = λt + dt) are tangent to the fibres W × {t}.

Proof. Note that it is sufficient to work over a symplectic neighbourhood X × D2

of X and denote the restriction of ω to the tangent bundle of X by ω′. As the
submanifold X of W is symplectic, we can (e.g. by choosing a suitable family of
compatible almost complex structures) fix vector fields Xt tangent to X such that
ω(Xt, Yt) = 1. For p ∈ X we then have

TpX = 〈Xt, Yt〉 ⊕
(
〈Xt, Yt〉

)ω′
and

TpW = 〈Xt, Yt〉 ⊕
(
〈Xt, Yt〉

)ω′
⊕ SNp(X),

where SN(X) denotes the symplectic normal bundle to X. The symplectic comple-
ment to Yt in such points is given by(

〈Yt〉
)ω

= 〈Yt〉 ⊕
(
〈Xt, Yt〉

)ω′
⊕ SNp(X).

Now on W × R with contact form α = λt + dt = iYtω + dt we have

kerα =
(
〈Yt〉

)ω
⊕ 〈∂t +Xt〉

and
dα = dλt +

(
d

dt
λt

)
∧ dt = ω +

(
d

dt
λt

)
∧ dt.

The intersection of the tangent space to X ×R with the kernel of α in a point (p, t)
computes as

T(p,t)(X × R) ∩ kerα = 〈Yt〉 ⊕
(
〈Xt, Yt〉

)ω′
⊕ 〈∂t +Xt〉.

The symplectic normal bundle to X × {t} in W × {t} is contained in the kernel
of α and the 1-form d

dt
λt vanishes on its fibres. Hence, the fibres of the conformal

symplectic normal bundle of the contact submanifold X × R (which are calculated
with respect to dα) coincide with the fibres of the symplectic normal bundle of
X × {t} in W × {t} (calculated with respect to ω). In particular, they are tangent
to the slices W × {t}.

We will only need the proposition in a special case during a generalised Thurston–
Winkelnkemper construction. However, note that it also holds for a family

λt =
(
1− µ(t)

)
λ+ µ(t)λ̃

interpolating two Liouville forms with tangent Liouville vector field provided that
their difference is exact with a primitive function only depending on Σ′-directions.
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This can then be used when working with Giroux domains instead of the Thurston–
Winkelnkemper construction.

We can now show that the binding sum construction can be made compatible
with the underlying contact structures and thus prove Theorem 5.4.1.

Proof of Theorem 5.4.1. By Corollary 5.4.6 the push-off is an abstract nested open
book of an abstract open book description with page Σ and monodromy φ, where
φ restricts to

φ|Σ′×D2 = φ′ × idD2

for a symplectomorphism φ′ : Σ′ → Σ′ in a neighbourhood Σ′ × D2 of Σ′ given by
the symplectic normal bundle. Furthermore, we can assume that the Liouville form
restricts to λ = λ′ + 1/2s2dϑ in this neighbourhood by Lemma 5.4.11 and its proof
and Remark 5.4.12.

Note that the monodromy φ will not necessarily be exact symplectic but accord-
ing to Lemma 2.3.3 it is isotopic through symplectomorphisms equal to the identity
near the boundary to an exact symplectomorphism. The idea of the proof is to
define a vector field X on Σ by the condition iXω = λ − φ∗λ and checking that
precomposing φ with the time-1 flow of X is an exact symplectomorphism with the
desired properties. Now in our situation, observe that the vector field X is tangent
to Σ′, and moreover, projects to zero under the natural projection Σ′ × D2 → D2

also in a neighbourhood Σ′ ×D2 as above. As a consequence, the restriction of the
resulting monodromy (still denoted by φ by abuse of notation) will still be of the
form

φ|Σ′×D2 = φ′ × idD2

but now for an exact symplectomorphism φ′ : Σ′ → Σ′. In particular, we have
φ∗λ− λ = dh for a function h which only depends on the Σ′-directions on Σ′ ×D2.

If we form the generalised mapping torus Σh(φ) and equip it with the contact
form λ + dt, Proposition 5.4.13 tells us that the fibres of the conformal symplectic
normal bundle of the push-off are tangent to the slices Σ × {t} and are given by
the D2-direction of Σ′ × D2 ⊂ Σ. We now want to show that the fibres of the
conformal symplectic normal bundle are then also tangent to the pages in the genuine
mapping torus. For this, it is enough to observe that the diffeomorphism between the
generalised and the genuine mapping tori maps a point (p, t) to a point (p, t̃), where
t̃ only depends on t and the value of the function h at p. Thus, as in a symplectic
neighbourhood Σ′ × D2 the function h only depends on Σ′, we have that for a
point p′ ∈ Σ′ and fixed t the point (p′, s, ϑ, t) is mapped to (p′, s, ϑ, t̃) independently
of (s, ϑ). Hence, the fibres of the conformal symplectic normal bundle are tangent
to the pages. Also, the resulting Reeb vector field is tangent to the push-off, as it is
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a multiple of the monodromy vector field outside a neighbourhood of the binding.
Furthermore, by construction it is adapted to the open book structure, i.e. it is
transverse to the pages. Thus, denoting the restriction of the contact form α to the
push-off B+ by αB+ , the 1-form α restricts to αB+ +s2dϑ on a tubular neighbourhood
B+ ×D2 (with polar coordinates (s, ϑ)) given by the conformal symplectic normal
bundle of B+. The fibres of the symplectic normal bundle being tangent to the
pages means that the contact fibre connected sum along B+ has a natural open book
structure. The contact form for the resulting contact structure used in the contact
fibre connected sum construction is of the form α̃ = αB+ +f(s)dϑ for an appropriate
function f and coincides with α near B+ × ∂D2 (see proof of Theorem 1.5.2). In
particular, the Reeb vector field of α̃ is still transverse to the fibres of the open book
fibration. Hence, the resulting contact structure in the contact fibre connected sum
is adapted to the resulting open book structure.

5.4.2 Examples in the contact setting

We conclude the chapter with some applications and examples of the binding sum
construction in the contact setting.

An open book of S4 × S1

Let M = M0 tM1 with Mi the five-dimensional sphere S5 with standard contact
structure and compatible open book decomposition (Σi = D4, id). Then the binding
has two components Bi, both a standard 3-sphere that we can equip with the com-
patible open book decomposition (Σ′i = D2, id). We have Mi = D4 × S1 ∪ S3 ×D2,
so performing the binding sum on M along the Bi yields S4 × S1. Note that the
framing of the binding is unique up to homotopy because B is simply-connected.
By Theorem 5.3.1, the binding sum S4×S1 has a natural open book decomposition
obtained by forming the sum along the push-off of the binding.

Pushing a page Σ′i = D2 of the binding open book into the page Σi = D4 and
then removing a neighbourhood of Σ′i topologically turns Σi into a copy of D3×S1.
The resulting page is then obtained by identifying two copies of D3 × S1 along
a neighbourhood of {∗} × S1 ⊂ ∂D3 × S1, i.e. it is D3 × S1 as well. The new
binding is the contact binding sum of the Bi with respect to the specified open book
decomposition. Hence, the new binding has an open book decomposition with page
an annulus and – applying the formula from [53] for the page framing – monodromy
isotopic to the identity. This means that the resulting binding is S2 × S1 with
standard contact structure. This has a unique symplectic filling up to blow-up
and symplectic equivalence (cf. [66, Theorem 4.2]), so the resulting page is indeed
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symplectomorphic to D3 × S1 arising as the 4-ball with a 1-handle attached.
An explicit description of the monodromy is hard to obtain, as the symplectic

isotopy extension theorem is used in the construction. In the following, we show
that the resulting monodromy is isotopic to the identity. To this end, we equip
Σi = D4 with a pair of polar coordinates by considering it as the unit ball in C2

with standard Liouville structure, i.e.

Σi =
{

(r1, θ1, r2, θ2) | r2
1 + r2

2 ≤ 1
}
.

The binding component Bi = ∂Σi is thus given by

Bi =
{

(r1, θ1, r2, θ2) | r2
1 + r2

2 = 1
}

with contact form αBi = r2
1dθ1 + r2

2dθ2. The compatible open book structure on B′

with disc pages is then given by

Σ′θ =
{

(r1, θ1, r2, θ) | r2
1 + r2

2 = 1
}

with B′i =
{

(1, θ1, 0, θ2)
}

.
The intersection of the push-off B+

i with the page Σθ coincides with{
(r1, θ1, 0, θ) | 1− c ≤ r2

1 ≤ 1
}

near the boundary ∂Σθ and with{
(r1, θ1, r2, θ) | r2

1 + r2
2 = 1− c

}
away from it. The monodromy vector field of the binding is given by ∂θ2 , so an
isotopy of the page Σ′ inside a fixed page Σi is a rotation in θ2-direction near

r =
√
r2

1 + r2
2 = 1− c

cut-off in radial direction, i.e. it is of the form

(r1, θ1, r2, θ2) 7→
(
r1, θ1, r2, θ2 + tf(r1, r2)

)
for a suitable cut-off function f . Note that in general this isotopy is not symplectic,
which is why the monodromy in Corollary 5.4.6 was not constructed directly but by
using the symplectic isotopy extension theorem.

Open books and contact structures on M × T 2

Suppose that M is a contact manifold such that M × I admits a Stein structure.
Then we get an open book decomposition and a contact structure on M × T 2 by
performing the binding sum of two copies of the open book (M × I, id). Note that
the requirement for M × I to admit a Stein structure is a huge restriction (cf. [59])
and that a T 2-invariant contact structure on M ×T 2 for general M was constructed
by Bourgeois [9].
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Open books with Giroux torsion

Let M be a closed oriented manifold admitting a Liouville pair (α+, α−), i.e. a pair
consisting of a positive contact form α+ and a negative contact form α− such that
e−sα−+ esα+ is a positively oriented Liouville form on R×M (with s denoting the
coordinate on the R-factor). Then the 1-form

λGT = 1 + cos s
2 α+ + 1− cos s

2 α− + sin sdt

defines a positive contact structure on R × S1 ×M (s and t denote the respective
coordinates on the first two factors) (see [59, Proposition 8.1]). With this model,
Massot, Niederkrüger and Wendl [59] define a Giroux 2kπ-torsion domain as
([0, 2kπ]×S1×M,λGT ). Just as in the 3-dimensional setting this higher-dimensional
version of Giroux torsion is a filling obstruction in the sense that a contact manifold
admitting a contact embedding of a Giroux 2π-torsion domain is not strongly fillable
(see [59, Corollary 8.2]). Observe that a Giroux 2π-torsion domain with boundary
blown down (cf. [59, Section 4]) is the binding sum of two copies of the open book
with page ([0, π]×M,β) and trivial monodromy, where

β = 1
2(e−sα− + esα+)

along {π} ×M . Given any contact open book (Σ, φ) with Σ having two boundary
components contactomorphic to M , Theorem 5.4.1 yields an open book decomposi-
tion of the binding sum (Σ, φ) # ([0, π]×M, id) # ([0, π]×M, id), which is a manifold
admitting an embedding of a Giroux 2π-torsion domain modelled on M .

Fibrations over the circle

Theorems 5.3.1 and 5.4.1 yield a contact open book decomposition of certain bundles
over the circle with fibres being convex hypersurfaces.

Recall that an oriented hypersurface S in a contact manifold is called convex
(in the sense of Giroux [40]) if there is a contact vector field transverse to S. A
neighbourhood of the hypersurface can then be identified with S ×R such that the
contact structure is R-invariant, i.e. there is a contact form of type β + udt with
β a 1-form on S and u : S → R a function such that (dβ)n−1 ∧ (udβ + nβ ∧ du)
is a volume form on S (here 2n is the dimension of S). Conversely, given a triple
(S, β, u) consisting of a (2n)-dimensional closed manifold S, a 1-form β on S and a
function u : S → R satisfying the above conditions, the 1-form β + udt defines an
R- or S1-invariant contact form on S × R or S × S1, respectively. Observe that S
with the zero set of u removed is an exact symplectic manifold with Liouville form
β/u.
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Now given a triple (S, β, u) as above and a diffeomorphism φ of S restricting
to the identity near Γ := {u = 0} and to symplectomorphisms φ± on the interior
of S± := {±u ≥ 0}, the S-bundle M over S1 with monodromy φ carries a natural
contact structure, such that each fibre defines a convex surface modelled by (S, β, u).
In particular, the fibration admits a contact vector field transverse to the fibres,
which is tangent to the contact structure exactly over Γ. Observe that M is equal
to the binding sum of the open books (S+, φ+) and (S−, φ−). Thus, Theorem 5.3.1
yields an open book description of M , which is adapted to the contact structure by
Theorem 5.4.1.



A

Computing rotation and self-linking numbers in
contact surgery diagrams

This first chapter of the appendix contains the article Computing rotation and self-
linking numbers in contact surgery diagrams, which is joint work with Marc Kegel
and was published in [20]. Some references have been changed to refer to the corre-
sponding parts of this thesis.

A.1 Introduction

A lot of the geometry of a 3-dimensional contact manifold is encoded in its Legen-
drian knots, i.e. smooth knots tangent to the contact structure, and in its transverse
knots, i.e. smooth knots transverse to the contact structure. Therefore a main topic
in 3-dimensional contact geometry is the study of these knots. In particular, it is a
challenge to distinguish knots within these classes. For nullhomologous knots this is
mostly done by the so-called classical invariants, the Thurston–Bennequin invari-
ant and the rotation number for Legendrian knots and the self-linking number for
transverse knots. In the unique tight contact structure of the 3-sphere there are easy
formulas to compute the classical invariants from a front projection of the knot. For
this and other basic notions in contact geometry we refer the reader to [37].

A natural extension is to consider Legendrian or transverse knots in contact
surgery diagrams along Legendrian links and to compute their classical invariants
in the surgered manifold. Starting with the work of Lisca, Ozsváth, Stipsicz and
Szabó [57, Lemma 6.6] several results were obtained in that setting by Geiges and
Onaran [38, Lemma 2], Conway [13, Lemma 6.4] and Kegel [49, Section 8].

In Theorem A.2.2 we combine the results mentioned above to obtain a condi-
tion when a Legendrian knot is nullhomologous in the surgered manifold and give
a formula computing its rotation number. In Section A.3 we explain how to rep-
resent a transverse knot in a contact surgery diagram along Legendrian knots and
then compute its self-linking number in the surgered contact manifold. Finally, in
Section A.4 we extend these results to rationally nullhomologous knots. On the way
we present plenty of examples on how to use these formulas.

A further closely related topic is the computation of the d3-invariant of the
resulting contact structure in a surgery diagram. By translating contact (1/n)-
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surgeries into (±1)-surgeries, we generalise the formula by Ding–Geiges–Stipsicz [17]
in Section A.5.

A.2 The rotation number in surgery diagrams

Let L = L1 t . . . t Lk ⊂ S3 be an oriented link in S3 and let M = S3
L(r) be the

manifold obtained by surgery along L with coefficients pi/qi (for basic notions of
Dehn surgery see [71]). We denote the corresponding surgery slopes by

ri = piµi + qiλi ∈ H1(∂νLi),

where µi is represented by a positive meridian of Li and λi is the Seifert longitude of
Li. If no coefficient group is specified, homology groups are understood to be over
the integers. Let L0 ⊂ S3 \ L be an oriented knot in the complement of L.

Define lij := lk(Li, Lj) and let l be the vector with components li = l0i and Q

the generalised linking matrix:

Q =


p1 q2l12 · · · qnl1k

q1l21 p2
... . . .

q1lk1 pk

 .

The knot L0 is nullhomologous in M if and only if there is an integral solution a of
the equation l = Qa (see [49]).

Definition A.2.1
Let K ⊂ (M, ξ) be a nullhomologous oriented Legendrian knot and Σ a Seifert
surface for K. The rotation number of K with respect to the Seifert surface Σ is
equal to

rot(K,Σ) = 〈e(ξ,K), [Σ]〉 = PD(e(ξ,K)) • [Σ],

where e(ξ,K) is the relative Euler class of the contact structure ξ relative to the
trivialisation given by a positive tangent vector field along the knot K, and [Σ] the
relative homology class represented by the surface Σ.

This definition of the rotation number is useful for calculations (see also [68]).
For an alternative equivalent definition see [37]. Clearly, the rotation number does
only depend on the class of the chosen Seifert surface, not on the particular choice
of surface itself. Note also that the rotation number is independent of the class
of the Seifert surface if the Euler class e(ξ) of the contact structure vanishes (see
Proposition 3.5.15 in [37]).
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Theorem A.2.2
Let L = L1 t . . .tLk be an oriented Legendrian link in (S3, ξst) and L0 an oriented
Legendrian knot in its complement. Let (M, ξ) be the contact manifold obtained from
S3 by contact (1/ni)-surgeries (ni ∈ Z) along L. Then L0 is nullhomologous in M

if and only if there is an integral vector a solving l = Qa as above, in which case
its rotation number in (M, ξ) with respect to a special Seifert class Σ̂ constructed in
the proof is equal to

rotM(L0, Σ̂) = rotS3(L0)−
k∑
i=1

aini rotS3(Li).

The proof proceeds in two steps. First, following [13], we construct the class of
a Seifert surface for L0 in M . We then use the description of the rotation number
in terms of relative Euler classes to compute rot.

Remark A.2.3
1. Notice that the matrix Q is formed using the topological surgery coefficients
pi/qi, not the contact surgery coefficients. The topological surgery coefficient
equals the sum of the contact surgery coefficient and the Thurston–Bennequin
invariant of the surgery knot. Therefore, we always have qi = ni.

2. Observe that for any contact surgery coefficient r 6= 0 there exists a tight
contact structure on the glued in solid torus compatible with the surgery. This
tight contact structure on the solid torus is unique if and only if the surgery
coefficient is of the form 1/n for n ∈ Z. Therefore, contact (1/n)-surgery is
well-defined (see [16, Proposition 7]).
For a general contact r-surgery, there is an algorithm transforming the surgery
into contact (1/n)-surgeries. The procedure is not unique, however, the algo-
rithm provides all possible choices of contact structures that are tight on the
surgery torus (cf. [14, 17]). In contrast to the Thurston–Bennequin invariant,
the rotation number in the surgered manifold does indeed depend on the choice
of contact structure on the surgery tori, cf. Example A.2.6.

3. In [14] it is shown that one can get any contact 3-manifold by a sequence of
contact (1/n)-surgeries starting from the standard tight 3-sphere. Moreover,
it is easy to show that any Legendrian knot in the resulting contact manifold
can be represented by a Legendrian knot in the complement of the surgery
link.

Proof. Assume that L0 is nullhomologous in M and fix Seifert surfaces Σ0, . . . ,Σk

for L0, . . . , Lk in S3, such that intersections of surfaces and link components are
transverse. Our aim is to use these surfaces to construct the class of a Seifert surface
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for L0 in the surgered manifold M . By abuse of notation, we will identify Σi with its
class in H2(S3 \νLi, ∂νLi) and will denote the class in H2(S3 \ (L0tνL), ∂L0t∂νL)
induced by restriction again by Σi.

The idea is to construct a class of the form

Σ = Σ0 +
k∑
i=1

kiΣi

such that its image under the boundary homomorphism ∂ in the long exact sequence
of the pair (S3\(L0tνL), ∂L0t∂νL) is a linear combination of the surgery slopes ri
and a longitude of L0, i.e. we want

∂Σ = tµ0 + λ0 +
k∑
i=1

miri = tµ0 + λ0 +
k∑
i=1

mi(piµi + qiλi).

So our aim is to solve this equation for k and mi. We will first describe the boundary
homomorphism ∂ in more detail and then compare coefficients. The surgery slopes ri
bound discs in the surgered manifold M , so Σ can be extended to give rise to a
class in H2(M \ νL0, ∂νL0), which we denote by Σ̂. Geometrically, the boundary
homomorphism sends Σ to its intersection with the boundary of the link complement.
So we have:

∂ : Σj 7−→ λj −
∑
i 6=j

lijµi,

and thus

∂ : Σ 7−→
k∑
i=0

kiλi −
k∑
j=0

∑
i 6=j

kjlijµi

=−
k∑
j=1

kjl0jµ0 + λ0 +
k∑
i=1

kiλi −
k∑
i=1

l0iµi −
k∑
i=1

∑
j 6=i

kjlijµi,

where we set k0 = 1. Note that the minus sign stems from the induced boundary
orientation of Σ (see Figure A.1). Setting ki = −aiqi and using that L is nullhomol-
ogous, we obtain

∂ : Σj 7−→
k∑
j=1

ajqjl0jµ0 + λ0 −
k∑
i=1

aiqiλi −
k∑
i=1

l0iµi +
k∑
i=1

∑
j 6=i

ajqjlijµi

=
k∑
j=1

ajqjljµ0 + λ0 −
k∑
i=1

aiqiλi −
k∑
i=1

liµi +
k∑
i=1

∑
j 6=i

ajQijµi

=
k∑
j=1

ajqjljµ0 + λ0 −
k∑
i=1

aiqiλi −
k∑
i=1

liµi +
k∑
i=1

(li − aipi)µi

=
k∑
j=1

ajqjljµ0 + λ0 −
k∑
i=1

aiqiλi −
k∑
i=1

(aipi)µi,

which is of the desired form with mi = −ai and t = ∑k
j=1 ajqjlj.
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Li

Lj

µj

Σi

−µj
2

1

Figure A.1: Orientation of the meridian induced by the intersection.

Remark A.2.4
Observe that we can also directly obtain an embedded surface representing the
capped-off class Σ̂ by resolving self-intersections in Σ. In particular, t is the negative
change of the Thurston–Bennequin number of L0 in the surgery (cf. [13], [49]), i.e.
we get

tbM(L0) = tbS3(L0)−
k∑
j=1

ajnjlj.

Now consider L and L0 to be Legendrian in (S3, ξst) and the surgeries to be
contact ( 1

n
)-surgeries. We claim that the rotation number of L0 in the surgered

contact manifold (M, ξ) with respect to Σ̂ is equal to

rotM(L0, Σ̂) = rotS3(L0)−
k∑
i=1

aini rotS3(Li).

In complete analogy to [57], [38] and [13] we have the following lemma.

Lemma A.2.5
The homomorphism H1(S3 \ (L0 t L)) → H1(M \ L0) induced by inclusion maps
PD(e(ξst, L0 t L)) to PD(e(ξ, L0)).

The proof is completely analogous to the ones in [57, 38], where one uses the
Legendrian rulings of the surgery tori induced by ( 1

n
)-surgery instead of (±1)-surgery.
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We thus have (cf. [13])

rotM(L0, Σ̂) = PD
(
e(ξ, L0)

)
• Σ̂

= PD
(
e(ξst, L0 t L)

)
• Σ

=
(

k∑
i=0

rotS3(Li)µi
)
• Σ

=
(

k∑
i=0

rotS3(Li)µi
)
•

Σ0 +
k∑
j=1

(−ajnj)Σj


= rotS3(L0)−

k∑
i=1

aini rotS3(Li),

which proves the theorem.

If the contact surgeries are not unique, i.e. for contact surgery coefficients not
of the form 1/n (see Remark A.2.3), the rotation number is – in contrast to the
Thurston–Bennequin invariant – not independent of the chosen contact structures
on the solid tori, as the following example illustrates.

L

L0

−3
4

Figure A.2: Non-unique contact surgery yielding a homology sphere.

Example A.2.6
Consider the diagram depicted in Figure A.2, where L is a Legendrian trefoil with
contact surgery coefficient 3/4 and L0 a Legendrian unknot in its complement. We
have tb(L) = 1, so the topological surgery coefficient is 1

4 . Thus, the surgered
manifold M is a homology sphere and the rotation number of L0 independent of
the choice of Seifert surface. The contact surgery coefficient −3

4 has a continued
fraction expansion 1−2− 1

−4 , which means that there are three distinct tight contact
structures on the solid torus compatible with the surgery resulting in the contact
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manifolds which are shown in Figure A.3 (see [17]). Topologically, these are the
same, i.e. for all three diagrams we have

Q =
0 1

1 −2

 and l =
1

1

 ,
and hence a = (3, 1). Furthermore, we have rotS3(L0) = 0, rotS3(L1) = 0 and
rotS3(L2) ∈ {−2, 0, 2}. This yields

rotM(L0) = rotS3(L0)− 3 rotS3(L1)− rotS3(L2) ∈ {−2, 0, 2},

depending on the chosen contact structure and orientations.

L1

L0

L2

−1
−1

L1

L0

L2

−1
−1

L1

L0

L2

−1
−1

Figure A.3: Three unique contact surgeries corresponding to Figure A.2.

Example A.2.7
We consider the case of L a one component link with contact surgery coefficient ± 1

n
,

so the topological surgery coefficient is (n tb(L)±1)
n

. We then have Q = p = n tb(L)±1
and L0 is nullhomologous in the surgered manifold if and only the linking number of
L0 and L is divisible by n tb(L)± 1, in which case a is the quotient lk(L0,L)

n tb(L)±1 . Then
the rotation number of L0 in the surgered manifold is

rotM(L0, Σ̂) = rotS3(L0)− n lk(L0, L)
n tb(L)± 1 rotS3(L),

and its Thurston–Bennequin invariant is

tbM(L0) = tbS3(L0)− n lk2(L0, L)
n tb(L)± 1 .

Observe that if n tb(L) ± 1 is non-zero, the knot L0 is rationally nullhomologous.
Then the computed numbers represent the rational invariants (cf. Section A.4).

Example A.2.8
Figure A.4 shows a stabilisation of a knot L0. Topologically, the surgery along
the meridian L of L0 again yields S3, and there are two choices of tight contact
structures on the solid torus compatible with the surgery. Here, in both cases, the
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resulting S3 is tight. The topological knot type L0 stays unchanged in M , but L0

is either stabilised positively or negatively, depending on the particular choice of
contact structure in the surgery torus.

The topological data in the diagrams with a unique choice is

Q =
 0 −1
−1 3

 and l =
1

1

 ,
and hence a = (2,−1). So the Thurston–Bennequin invariant of L0 in M is

tbM(L0) = tbS3(L0)−
〈 2
−1

 ,
1

1

〉 = tbS3(L0)− 1

in both cases. The rotation number of L1 vanishes in both cases, the rotation number
of L2 is either +1 or −1. We thus have

rotM(L0) = rotS3(L0)−
〈 2
−1

 ,
 0
±1

〉 = rotS3(L0)∓ 1.

In fact, one can show that it is a stabilised copy of L0 (see [49, Section 10]).

L0

L

L0

L0 L0

L1

L2

L1

L2

∼=

∼=

+2

+1
−1

+1
−1

L0

Figure A.4: Stabilisation via surgery.

A.3 The self-linking number of transverse knots

Let T be an oriented nullhomologous transverse knot in a contact manifold (M, ξ)
and let Σ be a Seifert surface for T . The self-linking number sl(T,Σ) of T is
defined as the linking number of T and T ′ where T ′ is obtained by pushing T in the
direction of a non-vanishing section of ξ|Σ.
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Remark A.3.1
We consider transverse knots with arbitrary orientations. If the given orientation
coincides with the orientation induced by the contact planes, we call the knot pos-
itively transverse, and else negatively transverse. The self-linking number of
a transverse knot is independent of its orientation and does only depend on the
homology class of the chosen Seifert surface (cf. Section 3.5.2 in [37]).

Corollary A.3.2
Let L = L1 t . . . t Lk be an oriented Legendrian link in (S3, ξst) and T0 an oriented
transverse knot in its complement. Let (M, ξ) be the contact manifold obtained from
S3 by contact (1/ni)-surgeries (ni ∈ Z) along L. Then T0 is nullhomologous in M

if and only if there is an integral vector a solving l = Qa as above, in which case its
self-linking number in (M, ξ) (with respect to the special Seifert class Σ̂ as before) is
equal to

slM(T0, Σ̂) = slS3(T0)−
k∑
i=1

aini
(
li ∓ rotS3(Li)

)
,

where the sign is − when T0 is positively transverse and + when T0 is negatively
transverse.

Remark A.3.3
An oriented transverse knot T is either positively or negatively transverse. If we pick
a Legendrian knot L such that T is a transverse push-off, we orient L accordingly.
Then the class of an oriented Seifert surface of T is also the class of an oriented Seifert
surface of L and vice-versa. With these orientations, T is a positive (negative) push-
off of L if T is positively (negatively) transverse. In particular, the topological data
used in the formula in Corollary A.3.2 coincides for the two knots.

Proof. Any transverse knot is a transverse push-off of a Legendrian knot (cf. the
paragraph before Theorem 2.23 in [31]), so it is enough to consider those. Now
for L±0 the positive or negative push-off of the Legendrian knot L0 and Σ a Seifert
surface we have

sl(L±0 , [Σ]) = tb(L0)∓ rot(L0, [Σ])

in any contact manifold (see Proposition 1.4.8). Hence,

slM(L±0 , Σ̂) = tbM(L0)∓ rotM(L0, Σ̂)

=
(

tbS3(L0)−
k∑
j=1

ajnjlj

)
∓
(

rotS3(L0)−
k∑
i=1

aini rotS3(Li)
)

= slS3(L0)−
k∑
i=1

aini

(
li ∓ rotS3(Li)

)
.
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Remark A.3.4
A front-projection that contains Legendrian as well as transverse knots has four pos-
sible types of crossings between a Legendrian and a transverse knot (see Figure A.5).
Depending on whether the transverse knot is positively or negatively transverse, two
of the four types of crossings have a unique crossing behaviour determined by the
contact condition, in the other cases both possibilities can occur.

? ?

L L L L

LL

T T T T

TT

(1) (2) (3) (4)

L LT T
? ?+

−

Figure A.5: Crossings between Legendrian and transverse knots. The transverse
knots in the middle row are positive, the ones in the bottom row negative.

Example A.3.5 1. The left diagram in Figure A.6 shows a positive transverse
knot T0 in an overtwisted 3-sphere M . We have l = −1, Q = p = −1 and thus
a = 1. The rotation number of L is 1, so we have

slM(T0) = slS3(T0)− a1q1(l1 − rotS3(L)) = −1− (−1− 1) = 1.

Therefore, T0 violates the Bennequin-inequality in M , i.e. the contact structure
is indeed overtwisted.
Alternatively, we can consider a Legendrian unknot L0 such that T0 is its
positive push-off, as shown on the right in Figure A.6. Its Thurston–Bennequin
invariant in M is equal to −1 + 1 = 0 and its rotation number is 0− 1 = −1,
i.e. it bounds an overtwisted disc.

2. We can also consider T0 as a negative transverse knot by reversing its orien-
tation. Then l = 1, Q = p = −1 and a = −1, so

slM(T0) = slS3(T0)− a1q1
(
l1 − rotS3(L)

)
= −1− (1 + 1) = 1,
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L

+1

T0

L

+1

L0

Figure A.6: Computing the self-linking number.

as expected, since the self-linking number is independent of the chosen orien-
tation. We can again consider the corresponding Legendrian knot, which then
has vanishing Thurston–Bennequin invariant and rotation number 1. As T0 is
now its negative push-off, we also get

slM(T0) = tbM + rotM = 1.

A.4 Rationally nullhomologous knots

The study of rationally nullhomologous knots in contact 3-manifolds has been pro-
posed in Baker-Grigsby [5], Baker-Etnyre [4] and Geiges-Onaran [38]. In this section
we generalise Theorem A.2.2 to rationally nullhomologous Legendrian knots and
Corollary A.3.2 to rationally nullhomologous transverse knots. Let K be a knot in
M . We call K rationally nullhomologous if its homology class is of finite order
d > 0 in H1(M), i.e. it vanishes in H1(M ;Q). Let νK be a tubular neighbourhood
of K and denote the meridian by µ ⊂ ∂νK.

Definition A.4.1
A Seifert framing of an oriented rationally nullhomologous knot K of order d is a
class r ∈ H1(∂νK) such that
• µ • r = d,
• r = 0 in H1(M \ νK).

A rational Seifert surface for an oriented rationally nullhomologous knot K is a
surface with boundary in the complement of K whose boundary represents a Seifert
framing of K.

It is obvious that every rationally nullhomologous knot has a Seifert framing.
Moreover, the Seifert framing is unique (see Lemma 3.4.2).
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Definition A.4.2
The rational rotation number of an oriented rationally nullhomologous Legen-
drian knot K of order d with respect to the rational Seifert surface Σ is equal to

rotQ(K,Σ) = 1
d
〈e(ξ,K), [Σ]〉 = 1

d
PD(e(ξ,K)) • [Σ],

where e(ξ,K) is the relative Euler class of the contact structure ξ relative to the
knot K and [Σ] the relative homology class represented by the surface Σ and the
intersection is taken in H1(∂νK).

Let L0 ⊂ S3 \ L be an oriented knot in the complement of an oriented surgery
link L. Using the notation from Section A.2, we see that L0 is rationally nullhomol-
ogous of order d in M = S3

L(r) if and only if there is an integral solution a of the
equation dl = Qa and d is the minimal natural number for which a solution exists
(see [49]).

Now assume that L and L0 are Legendrian and L0 is rationally nullhomologous
of order d in M and fix Seifert surfaces Σ0, . . . ,Σk for L0, . . . , Lk in S3 such that in-
tersections of surfaces and link components are transverse, as in the nullhomologous
case. Again following [13], we want to construct a class of the form

Σ = dΣ0 +
k∑
i=1

kiΣi

such that its image under the boundary homomorphism ∂ in the long exact sequence
of the pair (S3\(L0tνL), ∂L0t∂νL) is a linear combination of the surgery slopes ri
and a rational longitude of L0. Setting ki = −aiqi, we obtain

∂ : Σj 7−→
k∑
j=1

dajqjl0jµ0 + dλ0 −
k∑
i=1

aiqiλi −
k∑
i=1

dl0iµi +
k∑
i=1

∑
j 6=i

ajqjlijµi

=
k∑
j=1

dajqjljµ0 + dλ0 −
k∑
i=1

aiqiλi −
k∑
i=1

dliµi +
k∑
i=1

(dli − aipi)µi

=
k∑
j=1

dajqjljµ0 + dλ0 −
k∑
i=1

aiqiλi −
k∑
i=1

(aipi)µi.

In complete analogy to the the nullhomologous case we then have

rotQ,M(L0, Σ̂) =1
d

PD
(
e(ξ, L0)

)
• Σ̂

= rotS3(L0)− 1
d

k∑
i=1

aini rotS3(Li).

Thus, Theorem A.2.2 generalises as follows.
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Theorem A.4.3
In the situation of Theorem A.2.2 the knot L0 is rationally nullhomologous of order d
in M if and only if there is an integral vector a solving dl = Qa as above with d

the minimal natural number for which a solution exists, in which case its rational
rotation number in (M, ξ) with respect to a special (rational) Seifert class Σ̂ is equal
to

rotQ,M(L0, Σ̂) = rotS3(L0)− 1
d

k∑
i=1

aini rotS3(Li).

The definition of the self-linking number of a transverse knot generalises to the
setting of rationally nullhomologous knots by choosing a rational Seifert surface.
Furthermore, the rational invariants of a Legendrian and the rational self-linking of
a transverse push-off are, as in the nullhomologous case, related by

slQ(L±0 , [Σ]) = tbQ(L0)∓ rotQ(L0, [Σ])

(see Lemma 1.2 in [4]). Hence, we have the following corollary.

Corollary A.4.4
In the situation of Corollary A.3.2 the knot T0 is rationally nullhomologous of order d
in M if and only if there is an integral vector a solving dl = Qa as above, in which
case its rational self-linking number in (M, ξ) with respect to a special (rational)
Seifert class Σ̂ is equal to

slQ,M(T0, Σ̂) = slS3(T0)− 1
d

k∑
i=1

aini(li ∓ rotS3(Li)).

Remark A.4.5
Observe that the formulas for rationally nullhomologous knots coincide with the
ones for nullhomologous knots presented in previous sections if one allows rational
coefficients.

A.5 The d3-invariant in surgery diagrams

The so-called d3-invariant is a homotopical invariant of a tangential 2-plane field
on a 3-manifold, which is defined if the Euler class (or first Chern class) of the
2-plane field is torsion, see [45, Definition 11.3.3]. Many contact structures can be
distinguished by computing the d3-invariants of the underlying topological 2-plane
fields. In [17, Corollary 3.6] Ding, Geiges and Stipsicz present a formula to compute
first the Euler class and then the d3-invariant of a contact structure given by a (±1)-
contact surgery diagram building up on the work of Gompf [44]. Both invariants
are closely related to the rotation number of the surgery links.
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By expressing an arbitrary (1/n)-contact surgery diagram as a (±1)-contact
surgery diagram and then using the result of Ding–Geiges–Stipsicz we obtain a
similar result for arbitrary (1/n)-contact surgery diagrams, which often simplifies
computations a lot.

First we recall some results from [17]: For L = L1t. . .tLk an oriented Legendrian
link in (S3, ξst) and (M, ξ) the contact manifold obtained from S3 by contact (±1)-
surgeries along L, the Poicaré-dual of the Euler class is given by

PD
(
e(ξ)

)
=

k∑
i=1

roti µi ∈ H1(M).

The meridians µi generate the first homology H1(M) and the relations are given by
Qµ = 0. Observe that he generalized linking matrix Q coincides with the ordinary
linking matrix, since we only have integer surgeries here. Then e(ξ) is torsion if and
only if there exists a rational solution b ∈ Qk of Qb = rot. If this is the case, then
the d3-invariant computes as

d3 = 1
4
(
〈b, rot〉 − 3σ(Q)− 2k

)
− 1

2 + q,

where σ(Q) denotes the signature of Q (i.e. the number of positive eigenvalues minus
the number of negative ones) and q is the number of Legendrian knots in L with
(+1)-contact surgery coefficient.

With the help of these results we can now state and prove a corresponding
theorem for arbitrary (1/n)-contact surgeries.

Theorem A.5.1
Let L = L1 t . . . t Lk be an oriented Legendrian link in (S3, ξst) and denote by
(M, ξ) the contact manifold obtained from S3 by contact (±1/ni)-surgeries along L
(ni ∈ N).

1. The Poicaré-dual of the Euler class is given by

PD
(
e(ξ)

)
=

k∑
i=1

ni roti µi ∈ H1(M).

The first homology group H1(M) of M is generated by the meridians µi and
the relations are given by the generalized linking matrix Qµ = 0.

2. The Euler class e(ξ) is torsion if and only if there exists a rational solution
b ∈ Qk of Qb = rot. In this case, the d3-invariant computes as

d3 = 1
4

(
k∑
i=1

nibi roti +(3− ni) signi
)
− 3

4σ(Q)− 1
2 ,

where signi denotes the sign of the contact surgery coefficient of Li.
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Remark A.5.2
In the proof we will show that all eigenvalues of Q are real. Therefore, it makes
sense to speak of the signature, even if Q is not symmetric.

Proof. The replacement lemma of Ding and Geiges [16, Proposition 8] states that
a contact (±1/n)-surgery along a Legendrian knot L is equivalent to n contact
(±1)-surgeries along Legendrian push-offs of L. Using this, we translate the contact
(±1/ni)-surgeries along L to contact (±1)-surgeries along a new Legendrian link L′

and compute the invariants there.
Denote by Lji (j = 1, . . . , ni) the Legendrian push-offs of Li in the new Legendrian

link L′. Write µi for the meridian of Li (i = 1, . . . , k) and µji for the meridian of Lji
(i = 1, . . . , k, j = 1, . . . , ni). We now have two surgery descriptions of the manifold
M – one in terms of L and one in terms of L′ – and hence two presentations of its
first homology:

H1(M) =〈µi|Qµ = 0〉 for the surgery presentation along L,
H1(M) =〈µji |Q′µ′ = 0〉 for the surgery presentation along L′.

An isomorphism between these two presentations is given by µji 7→ µi for all i, j,
and hence, as rotji = roti,

PD
(
e(ξ)

)
=

k∑
i=1

nj∑
j=1

rotji µ
j
i 7−→

k∑
i=1

ni roti µi.

The numbers k and q compute easily as

k =
k∑
i=1

ni, q =
k∑
i=1

1
2 (1 + signi)ni.

For reasons of readability we will assume k = 3 in the following. The general case
works exactly the same. Write 1n for the vector (1, . . . , 1)T ∈ Qn.

Let b ∈ Q3 a solution of Qb = rot, i.e

Qb =


±1 + n1 tb1 n2l12 n3l13

n1l12 ±1 + n2 tb2 n3l23

n1l13 n2l23 ±1 + n3 tb3



b1

b2

b3

 =


rot1

rot2

rot3

 = rot

Then for b′ := (b1, . . . , b1, b2, . . . , b2, b3, . . . , b3)T ∈ Qn1+n2+n3 we have

Q′b′ =


±En1 + tb1 1n11Tn1 l121n11Tn2 l131n21Tn3

l121n21Tn1 ±En1 + tb2 1n21Tn2 l231n21Tn3

l131n31Tn1 l231n21Tn3 ±En3 + tb3 1n31Tn3

b′

=


rot1 1n1

rot2 1n2

rot3 1n3

 = rot′
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(conversely, every solution of Q′b′ = rot′ is of this form and thus yields a solution
of Qb = rot). And therefore,

〈b′, rot′〉 =
3∑
i=1

nibi roti .

It remains to compute the signature σ(Q′) out of σ(Q). Let λ be an eigenvalue
of Q with eigenvector v. Similar as above, one computes

Q′v′ = λv′

for v′ := (v1, . . . , v1, v2, . . . , v2, v3, . . . , v3)T ∈ Qn1+n2+n3 . Thus, every eigenvalue of
Q is also an eigenvalue of Q′. In particular, all eigenvalues of Q are real. Now we
only have to find the other ∑3

i=1(ni − 1) eigenvectors of Q′. To that end, consider
the vector v1 ∈ 1⊥n1 and write v′1 := (v1, 0, . . . , 0, 0, . . . , 0)T ∈ Qn1+n2+n3 . Then, as
before, one computes

Q′v′1 = sign1 v′1.

An analogue equation holds for all i if we define vi and v′i accordingly. Therefore
we have

σ(Q′) = σ(Q) +
k∑
i=1

(ni − 1) signi .

Example A.5.3
Consider a contact (1/n)-surgery (n ∈ Z) along a Legendrian unknot with tb = −1
and rot = 0. Then the Euler class is zero because the rotation number vanishes.
Hence, the d3-invariant is defined. For n = 1, the signature of Q vanishes. If n 6= 1,
the signature of Q equals −1. Thus we have

d3 =


n
4 −

1
2 , n < 1,

0, n = 1,
1− n

4 , n > 1.



B
Homology of a knot complement

For the sake of completeness, we will compute the first homology of the complement
of a nullhomologous knot in a 3-manifold.

Lemma B.0.1
Let K be a nullhomologous knot in a 3-manifold M . Then

H1(M \K) ∼= H1(M)⊕ Z,

where the Z-summand is generated by a meridian of K.

Proof. Consider the Mayer-Vietoris sequence of the decomposition of the manifold
M = (M \ νK) ∪ νK. Observe that

H1(∂νK) ∼= H1(T 2) ∼= Z⊕ Z,

generated by a meridian µ and any longitude λ of K. Furthermore, we have

H1(νK) ∼= H1(K) ∼= Z.

Since we can assume M to be connected we get a long exact sequence

· · · → H2(M) ∆→ Zµ ⊕ Zλ
α→ H1(M \K)⊕ Z→ H1(M)→ 0.

We can represent any generator f of H2(M) by an embedded surface F transverse
to K. The boundary homomorphism ∆ thus takes f to a multiple of the meridian:

∆(f) = [F ∩ ∂νK] = kfµ.

Hence, the image of ∆ is of the form kµ⊕ 0 for some k ∈ Z. By exactness (kµ, 0) is
in the kernel of α. But K is nullhomologous, so it bounds a surface Σ. The meridian
µ intersects Σ in exactly one point, i.e. it cannot be a torsion element in H1(M \K).
Therefore k = 0 and we get a short exact sequence

0→ Zµ ⊕ Zλ
α→ H1(M \K)⊕ Z→ H1(M)→ 0.

Furthermore, we can choose the longitude λ to be the Seifert longitude. We then
have α(λ) = (0, 1) and as µ is trivial in H1(νK), we can reduce the sequence to

0→ Zµ → H1(M \K)→ H1(M)→ 0.

The claim follows because the sequence splits. Indeed, the intersection pairing with
the class of the Seifert surface yields the desired homomorphism from H1(M \ K)
to Zµ.



C
Generalised 1-handles

We will briefly introduce generalised 1-handles in the sense of [52] and their attach-
ment. Recall that an ordinary n-dimensional 1-handle is of the form D1 × Dn−1,
and note that we may understand the (n − 1)-dimensional disc as a thickened disc
of dimension n− 2. We are now simply going to replace this disc by an appropriate
manifold with boundary.

Let Σ be an (n − 2)-dimensional manifold with boundary. An n-dimensional
generalised 1-handle is given by

HΣ := D1 × (Σ×D1).

Its boundary decomposes into two parts, namely

∂−HΣ = S0 × (Σ×D1) and ∂+HΣ = D1 × ∂(Σ×D1).

In analogy to a regular 1-handle we define the core of HΣ to be D1 × (Σ × {0})
and its co-core to be {0} × (Σ×D1). We attach a generalised 1-handle HΣ to an
n-dimensional manifold M with boundary ∂M via an embedding f : ∂−Hk → ∂M

to obtain a manifold M ′ = M ∪f HΣ. Corners are understood to be smoothened
(see Definition und Notiz (13.12) in [10]).

Attaching generalised handles with isotopic maps f0 and f1 results in diffeomor-
phic manifolds M0 = M ∪f0 HΣ and M1 = M ∪f1 HΣ. An isotopy of the attaching
maps defines a time-dependent vector field on its image that can be extended to
the whole manifold. The corresponding time-1 map is the desired diffeomorphism.
Observe that to define a generalised handle attachment it is sufficient to specify the
image of the boundary S0 × Σ× {0} of the core of the handle under the attaching
map.

It is worth noting that, in case Σ can be endowed with an appropriate exact
symplectic form, the above construction can be adapted to the contact setting, and
naturally extends the symplectic handle constructions due to Eliashberg [25] and
Weinstein [74].
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[39] H. Geiges, N. Röttgen and K. Zehmisch, Trapped Reeb orbits do not
imply periodic ones, Invent. Math. 198 (2014), 211–217.
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[41] E. Giroux, Géométrie de contact: de la dimension trois vers les dimensions
supérieures, Proceedings of the International Congress of Mathematicians Vol.
II (Beijing ,2002), Higher Education Press, Beijing (2002), 405–414.

[42] E. Giroux, What is... an open book?, Notices Amer. Math. Soc. 52 (2005).

http://people.math.gatech.edu/~etnyre/preprints/papers/surfaces.pdf
http://people.math.gatech.edu/~etnyre/preprints/papers/surfaces.pdf


Bibliography 135

[43] E. Giroux and J.-P. Mohsen, Structures de contact et fibrations symplec-
tiques au-dessus du cercle, in preparation.

[44] R. E. Gompf, Handlebody construction of Stein surfaces, Ann. of Math. (2)
148 (1998), 619–693.

[45] R. E. Gompf and A. Stipsicz, 4-Manifolds and Kirby Calculus, American
Mathematical Society, Providence (1999).

[46] M. Gromov, Partial Differential Relations, Ergeb. Math. Grenzgeb. (3) 9,
Springer-Verlag, Berlin (1986).

[47] K. Honda, On the classification of tight contact structures I, Geom. Topol. 4
(2000), 309–368; erratum: Factoring nonrotative T 2× I layers, Geom. Topol. 5
(2001), 925–938.

[48] K. Honda, W. Kazez and G. Matić, On the contact class in Heegaard
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Universität zur Prüfung vorgelegen hat; dass sie – abgesehen von unten angegebe-
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