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ABSTRACT 

Hox genes encode transcription factors responsible for the determination of axial patterning of 

all bilaterian embryos. However, insect Hox3 orthologues, named zerknüllt (zen), have 

changed their function multiple times, which led to the abandonment of the canonical Hox 

function, and subsequent switch of their functional domain from embryonic to 

extraembryonic tissue. To date, in fact, all described zen genes play role in extraembryonic 

membranes (EEMs). The EEMs protect the embryos from the insults of the outer environment 

and their formation allowed insects to oviposit in various niches, ultimately allowing them to 

colonize land. The evolution of the EEMs is tightly linked to the evolution of Hox3/zen. 

Concurrently with the origin of EEMs, Hox3 has gradually switched from embryonic role to 

zen´s function in the EEMs. However, it is only within winged insect that the complete 

transition from Hox3 to zen and complete EEMs are observed. Further, besides switching to 

extraembryonic tissue, in this new domain, zen genes have also acquired two different 

functions: one in early tissue specification and the other in late morphogenesis. However, 

little is known about the causes triggering the switch from Hox3 to zen, and the subsequent 

functional divergence of zen. Here, in order to get insight into what has triggered the 

functional divergence of zen, I focused on the holometabolous beetle Tribolium castaneum, as 

two functionally diverged paralogues were described: one with the function during early 

embryogenesis (Tc-zen1) and the second one with the function during late embryogenesis (Tc-

zen2).  

In order to decipher how the two diverged functions of Tc-zen1 and Tc-zen2 were 

acquired, I investigated transcriptional and translation regulation of both Tc-zen genes during 

early and late embryogenesis. I showed that, although the early function was described only 

for Tc-zen1, both paralogues reach their expression peak during early embryogenesis. To 

reveal the degree of divergence in transcriptional targets between the paralogues during early 

development, I knocked down (via parental RNA interference, pRNAi) the Tc-zen genes and 

performed RNA-sequencing (RNA-seq). Differential expression (DE) analysis and the 

subsequent comparative analysis of the identified targets of Tc-zen1 and Tc-zen2 suggest that 

the paralogues do not share substantial number of transcriptional targets during early 

embryogenesis. Additionally, principal component analysis revealed that despite the early 

expression of both paralogues, the impact of Tc-zen2 knockdown on early transcriptional 

control was significantly lower than for Tc-zen1, which is consistent with Tc-zen2 having a 

late function. Nonetheless, the analysis of expression levels of each zen gene in knockdown 

samples of its paralogue revealed a subtle regulatory function of Tc-zen2 during early 

embryogenesis, particularly in repression of Tc-zen1. 

To further investigate transcriptional regulation by Tc-zen2 during late embryogenesis, I 

have first showed that after the Tc-zen2 expression peak is reached during early 

embryogenesis, the low transcript expression persists until the late development. Consistent 

with the timing of the transcript expression, I showed that Tc-Zen2 protein is present until the 

late developmental stage, where its function takes place. To identify transcriptional targets of 

Tc-zen2 during late embryogenesis, I performed the second RNA-seq after pRNAi 

experiment. DE analysis revealed much higher impact of Tc-zen2 on transcriptional control 
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during late embryogenesis than during early embryogenesis. The functional profile of 

candidate target genes of Tc-zen2 during late embryogenesis was obtained by thorough gene 

ontology (GO) term analysis. Consistent with the phenotypic manifestation of the 

morphogenesis function of Tc-zen2 during late embryogenesis, many of the identified 

candidate targets were assigned to GO terms with function in epithelial morphogenesis.  

In conclusion, the results obtained within the presented project suggest that acquirement 

of the two distinct functions of Tc-zen paralogues might be partially explained by two 

different transcriptional signatures they attained. While the function of Tc-zen1 temporally 

correlates with its expression peak and transcriptional regulation of its downstream targets, 

Tc-zen2, although expressed early, has very low impact on the downstream transcriptional 

regulation during early embryogenesis. Moreover, the fact that Tc-zen paralogues share very 

few targets during early embryogenesis suggests only subtle early regulatory roles of Tc-zen2 

and separation of its morphogenesis function to late embryogenesis. This result was further 

endorsed by observation of Tc-zen2 transcript and protein expression throughout 

embryogenesis until the Tc-zen2 late function takes place. In addition, I identified a much 

higher number of Tc-zen2 candidate transcriptional targets during late embryogenesis, of 

which many likely play roles in epithelial morphogenesis. These diverse lines of evidence 

suggest that the diverged functions of Tc-zen1 and Tc-zen2 might have been acquired by 

regulation of different downstream transcriptional targets, which could have ultimately allow 

for separation of Tc-zen paralogues functions to early and late development. 
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1  INTRODUCTION 

1.1 The evolution and origin of zen 

Evolutionary developmental studies of vertebrates and invertebrates indicate that the same 

genetic toolkit is used repeatedly for the construction of diverse animal body plans. During 

evolution, the genes are recycled and their regulation is altered to an extent that new 

developmental roles are acquired. But how is it possible that a gene loses an important 

developmental role without drastically altering embryogenesis?  

The most common textbook example of a conserved genetic toolkit is the example of 

homeobox (Hox) genes. Hox genes have emerged as master regulators of development as they 

encode transcription factors responsible for the determination of the diverse body plans of all 

developing bilaterian embryos. Hox genes are organized on chromosomes into clusters and 

are expressed in a colinear fashion, which means that their position on the chromosome 

corresponds to segment identity within the embryo along the anterior-posterior axis (Lewis, 

1978). Hox genes have been highly conserved throughout evolution. Not only do they share 

high sequence similarity, but Hox transcription factors also share the same protein features: 

e.g. each of the Hox genes possesses a 180 bp long homeobox, which encodes a 60 amino 

acid long homeodomain forming three α-helices, through which the Hox transcription factors 

bind DNA (Scott et al., 1989). The common organization of Hox genes on chromosome, their 

colinear expression, the sequence conservation and the same protein features suggest that the 

rise of Hox gene classes and the distinct subclasses dates back before the insect and vertebrate 

lineages split. This assumption is well supported by the functional equivalence studies, which 

show that some of the human (McGinnis et al., 1990) and mouse (Malicki et al., 1990; Zhao 

et al., 1993) Hox genes are able to functionally substitute the Hox cognates in Drosophila. 

Nonetheless, despite the high conservation of developmental role in axial patterning, 

class 3 Hox genes have evolved so dramatically during insect evolution that they lost the 

canonical function, and, during embryogenesis, they show neither embryonic nor colinear 

expression. Instead, insect Hox3 orthologues, known as zerknüllt (zen), have acquired new 

functional domain in extraembryonic tissue, specifically in extraembryonic membranes 

(EEMs) (Hughes and Kaufman, 2002b). What exactly triggered the change of such a 

conserved function and when exactly did this switch occur? 

 

1.1.1 Changes during the switch from Hox3 (embryonic) to Zen (extraembryonic) 

Like canonical Hox genes, the insect Hox3 orthologue zen possesses the homeobox, which 

encodes the homeodomain responsible for binding to the DNA. The position that zen occupies 

within the Hox cluster (Hox3 locus) serves as evidence that, although zen diverged in 

function, it indeed derived from Hox3 gene. Despite this fact, the alignment of the Hox3 and 

Zen protein sequences of different bilaterian species is not possible outside of their 

homeodomain. Even the alignment outside of the homeodomain of Zen proteins themselves 

does not show well conserved sequence motifs (Panfilio and Akam, 2007).  
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During insect evolution, zen has undergone multiple rounds of independent lineage 

specific duplications generating two or more copies of zen genes. In the Drosophila lineage, 

zen has undergone two rounds of duplication, resulting in additional two Hox3 orthologues: 

zen2 and bicoid (Rushlow et al., 1987). Nonetheless, even protein sequences of the duplicates 

of Drosophila melanogaster are not aligneable outside of the homeodomain (Panfilio et al., 

2006). The only exception so far described is the one of Tribolium castaneum Zen paralogues, 

where a high level of amino acid sequence conservation outside of the homeodomain is 

observed. This is due to the fact that T. castaneum zen paralogues derived from a recent 

tandem duplication (Panfilio et al., 2006).  

Moreover, even within the homeodomain itself, the sequences of Hox3/Zen proteins are 

not strongly conserved. The alignment of amino acid sequence of the homeodomains across 

bilaterian species shows that the insect Zen homeodomain sequences differ from one another 

considerably more than the Hox3 homeodomain sequences among vertebrates (Fig. 1.1) 

(Falciani et al., 1996; Panfilio et al., 2006; Panfilio and Akam, 2007).  
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Figure 1.1. Alignment of amino acid sequences of class 3 Hox transcription factors 

homeodomains. Genes are grouped based on expression data (Hox3 - embryonic vs. zen - 

extraembryonic) and according to the taxonomy order; gene types are assumed for Strigamia maritima 

and unknown for Folsomia candida. Question marks in the amino acid sequences indicate no data 

availability for the particular species. Amino acids, which differ from the Mus musculus homeodomain 

sequence, are highlighted in colors. Amino acids, which correspond to the Mus musculus 

homeodomain sequence, are represented by grey color. The homeodomain sequences of insect Zen 

proteins differ from one another more than those of deuterostome (Deut.) species: Mm - Mus 

musculus, Dr - Danio rerio, Bf - Branchiostoma floridae, Ci - Ciona intestinalis, Sk - Saccoglossus 

kowalevskii. Lophotrochozoa (Loph.): Chaetopterus variopedatus, Av - Alita virens, Es - Euprymna 

scolopes, Ha - Haliotis asinina. Chelicerata: Al - Archegozetes longisetosus, Cs - Cupiennius salei. 

Myriapoda (Myr.): Gm - Glomeris marginata, La - Lithobius atkinsoni, Sm - Strigamia maritima. 

Crustacea (Cru.): Cm - Carcinus maenas, Dp - Daphnia pulex, Ph - Parhyale hawaiensis. Hexapoda: 

Fc - Folsomia candida, Td - Thermobia domestica, Sg - Schistocerca gregaria, Of - Oncopletus 

fasciatus, Tc - Tribolium castaneum, Am - Apis mellifera, Ag - Anopheles gambiae, Ca - Clogmia 

albipunctata, Hp - Haematopota pluvialis, El - Empis livida, Ds - Drosophila subobscura, Ma - 

Megaselia abdita, Dm - Drosophila melanogaster (modified from Panfilio and Akam, 2007). 
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Apart from the changes within the protein sequence of Hox3/Zen, several changes in 

protein features were described. One feature, common for most of the Hox transcription 

factors, is the presence of a hexapeptide -YPWM- motif (with four strictly conserved amino 

acids) upstream of the homeodomain, through which Hox transcription factors bind 

Extradenticle, a TALE (three amino acid loop extension) family homeodomain cofactor 

(Passner et al., 1999; Rieden et al., 2004). This hexapeptide motif seems to be lost in Zen 

proteins. Moreover, the presence or absence of the hexapeptide motif correlates with an 

embryonic (Hox3-like) or an extraembryonic (zen-like) expression, respectively (Falciani et 

al., 1996; Panfilio et al., 2006; Panfilio and Akam, 2007). Further, Zen proteins are noticeably 

smaller and their homeodomains are positioned closer to the N-terminus, which correlates 

with the loss of the hexapeptide motif (Panfilio and Akam, 2007).  

In addition, changes in the gene structure between Hox3 and zen have been observed as 

well. It seems that possessing two introns is a common feature for zen genes and that Hox3 

genes rather have only one intron (Fig. 1.2) (Panfilio and Akam, 2007). 

 

 

Figure 1.2. Comparison of complete proteins of Hox3/Zen/Bcd orthologues. The size and the 

position of the protein (light green), hexapeptide (purple), homeodomain (Zen-blue, Bcd-green) and 

intron position (black bar) are indicated. Zen proteins are noticeably shorter than Hox3 proteins and 

they lost the hexapeptide motif. Acquisition of extra intron seems to be a feature of Zen proteins. 

When no genomic DNA data were available, mRNA sequence was considered. For species underlined 

with blue no expression data are available and their canonical Hox3 function is inferred from the 

presence of the hexapeptide and/or the position within phylogeny. Taxonomic abbreviations are listed 

in the figure legend of the Fig. 1.1 (reproduced from Panfilio and Akam, 2007). Arthr.-Arthropoda, 

Loph.-Lophotrochozoa, Deut.-Deuterostomia. 
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1.1.2 When did the switch from Hox3 (embryonic) to Zen (extraembryonic) occur? 

Based on the information about protein and gene structure changes between Hox3 to Zen 

available in the species described above, the following progression of the changes during 

arthropod evolution was proposed by Panfilio and Akam, 2007: (1) the second intron, N-

terminal to the hexapeptide motif, was already acquired in crustaceans; (2) loss of the 

hexapeptide motif, shift of the homeodomain towards N-terminus and overall shortening of 

the size happened in neopterans (winged insects); (3) one of the introns was lost in dipterans 

(true flies); and (4) acquisition of various introns and change in protein size during the 

divergence of bcd from zen occurred within dipterans (true flies). 

 In summary, expression data available from species of the arthropod subphyla 

Chelicerata, Myriapoda and Crustacea suggest that these species express Hox3 gene in typical 

Hox-like expression pattern in the embryo, whereas in the last arthropod subphylum Insecta, 

extraembryonic (EE) expression is observed (references cited in Panfilio et al., 2006; Papillon 

and Telford, 2007). A fingerprint of Hox3/zen evolution was left in the basal wingless insect, 

the firebrat Thermobia domestica (Hexapoda). During early embryogenesis, in the firebrat, 

Hox3-like expression is observed in the mouthparts of the embryo, but later on, the expression 

is apparent in the layer of cells partially covering embryo on the posterior side. This cell layer 

is in fact mature amnion, one of the EEMs. Thus, T. domestica expresses its Hox3/zen gene in 

both embryonic and EE tissue, representing a transition stage from Hox3 to Zen (Hughes et 

al., 2004). Consistent with the proposed progression of changes during evolution, the change 

from Hox3 to Zen must have at least partially occurred in insect lineage before the divergence 

of winged insect species (Fig. 1.3) (Hughes et al., 2004; Panfilio and Akam, 2007). 
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Figure 1.3. Changes in the functions of Hox3/zen/bcd during arthropod evolution. The figure 

illustrates the model of the evolution of Hox3/zen/bcd based on available expression data from 

different arthropod species. Hox3 gene of the mite, the spider (Chelicerata), the centipede (Myriapoda) 

and Daphnia (Crustacea) display canonical Hox3 gene expression in the embryo during development 

(Damen and Tautz, 1998; Telford and Thomas, 1998b; Hughes and Kaufman, 2002a; Papillon and 

Telford, 2007). The basal wingless insect firebrat (Thermobia) shows both embryonic and EE 

expression, which is considered to be a transition stage between canonical Hox3 and insect zen 

(Hughes et al., 2004). The grasshopper, the bug and the beetle show only EE expression of zen gene 

(Falciani et al., 1996; Dearden et al., 2000; van der Zee et al., 2005; Panfilio et al., 2006). In non-

cyclorrhaphan flies, like Clogmia, the expression of a single gene has both zen- and bcd-like character 

(Stauber et al., 2002). In Drosophila the expression of zen is in EE tissue, while bcd displays again 

embryonic expression (Rushlow and Levine, 1990; Stauber et al., 1999) (modified from Hughes et al., 

2004). 

 

1.2 Extraembryonic membranes: evolution and function  

EEMs are present in numerous arthropod eggs. However, during insect evolution, EEMs 

became more complex and in species within the winged insect lineage, complete EEMs have 

evolved. Most winged insect species possess two separate EEMs: amnion and serosa. The 

amnion covers the embryo on the ventral side, forming a yolk-free cavity, which is filled with 

fluid. The serosa lines the vitelline membrane and in this way covers embryo, amnion and 

yolk (Fig. 1.4, “most insects” schematic) (references cited in Panfilio, 2008).  

Cells of the EEMs do not form parts of the embryonic tissues. Given the facts that we 

find EEMs in most insect species and that they do not contribute to the embryo itself raises 

the question regarding the significance of their temporary existence. As the EEMs surround 

the embryo, the most apparent function is in protecting the embryo from the impacts of the 

outer environment. Since serosa secrets a chitin based cuticle (Panfilio, 2008), it provides 

mechanical support of the egg as well as protection against mechanical damage (Panfilio et 

al., 2013; Farnesi et al., 2015). Moreover, serosal cuticle of the flour beetle (Jacobs et al., 

2013) and tropical mosquito (Rezende et al., 2008) has been shown to protect the embryo also 
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from desiccation. Apart from the protective function of the serosal cuticle, serosa itself 

provides the embryo with innate immunity and protects the embryo from pathogen infection 

(Chen et al., 2000; Jacobs et al., 2014).  

Determination of the amniotic function is more complicated. The fluid-filled amniotic 

cavity could evolve to potentially serve as mechanical protection, but the fact that amnion has 

been reduced during insect evolution leading to the dipteran lineage, to only cover the most 

dorsal part of the yolk (Fig. 1.4, “reduction of amnion” schematic), suggests that amnion, 

most likely, has other functions as well. 

The formation of EEMs ultimately contributed to the eminent evolutionary success of 

insects (Grimaldi and Engel, 2005). Due to the protective function of EEMs and the secreted 

cuticle, insects acquired the ability to oviposit in dry environment and became one of the 

earliest land animals (Zeh et al., 1989). Thus, the acquisition of EEMs enabled winged insects 

to lay their eggs in new ecological niches and to colonize land.  

 However, EEMs did not evolve only to serve the protective function of the embryo. In 

addition, morphogenetic movements of these simple squamous epithelia are essential for the 

progression of proper embryonic development. In fact, the precise morphogenetic movements 

of the EEMs in bug and beetle species have been described in detail (e.g.: Panfilio and Roth, 

2010; Panfilio et al., 2013; Hilbrant et al., 2016). In simplicity, the EEMs have first to form, 

later rupture, contract and evert, and eventually undergo apoptosis in order to accompany and 

guide the embryo through correct progression of its development. EE development of T. 

castaneum and morphogenetic movements of the EEMs will be described in detail in the 

section 1.6.1. 

 

Figure 1.4. Correlation of Zen functions and the anatomical innovation (EEMs). Diamonds are 

representing zen gene and its either early specification function (sp - orange), or late morphogenesis 

function (mo - green) in the context of phylogenetic positions of hemimetabolous (incomplete 

metamorphosis) and holometabolous (complete metamorphosis) insect species. Schematic cartoons 

show evolution of the EEMs; blue text and stars highlight their secondary reduction (adopted and 

modified from Horn et al., 2015; Panfilio, K.A., Nakamura, T., Mito, T., and Noji, S., unpublished 

data). 



INTRODUCTION 

16 

 

1.2.1 Functions of zen in the extraembryonic membranes 

The evolution of EEMs is tightly linked to the evolution of Hox3/zen. Zen has undergone 

multiple rounds of functional divergence, which resulted in two distinct functions of Zen in 

EEMs: early specification of serosal tissue identity and morphogenesis of matured EEMs 

during late developmental stages in the process of membrane rupture (Fig. 1.4) (reviewed in 

Panfilio, 2008; Horn et al., 2015).  

The morphogenesis function of zen was described for basally branching 

hemimetabolous species (insects with incomplete metamorphosis) (Fig. 1.4). In cricket 

(Gryllus bimaculatus) (Panfilio, K.A., Nakamura, T., Mito, T., and Noji, S., unpublished 

data), robust and successful EEM withdrawal is either blocked or partially impaired in the 

absence of zen function. In bug (Oncopeltus fasciatus) (Panfilio, 2009), silencing zen function 

through parental RNA interference (pRNAi) causes failure of the rupture of EEMs, whereas 

establishment of the serosal tissue identity was not affected and no structural defects of the 

serosa were observed.  

As previously mentioned, during the winged insect evolution, zen has undergone 

lineage specific duplications. In the beetle T. castaneum, the tandem duplication generated 

two copies of zen gene (Tc-zen1 and Tc-zen2) each fulfilling one of the functions described 

for zen. After pRNAi of Tc-zen1, serosal tissue identity is completely lost, and after pRNAi of 

Tc-zen2 EEMs either fail to withdraw, or the direction of the withdrawal is altered (van der 

Zee et al., 2005). 

In flies, only the specification function of zen was described so far (Fig. 1.4). This 

includes lower cyclorrhaphan flies (Megaselia abdida and Episyrphus balteatus), where 

knockdown of zen led to the loss of the serosal tissue (Rafiqi et al., 2008). In D. 

melanogaster, zen has been shown to fulfill specification function, when the knockout of this 

gene led to the loss of the EE tissue and ultimately to a lethal phenotype (Wakimoto et al., 

1984). However, in D. melanogaster, zen has undergone two rounds of duplication. While the 

first round of duplication generated zen2 copy, which has been shown not to be essential 

during embryonic development (Pultz et al., 1988; Rushlow and Levine, 1990), the second 

round of duplication generated functionally divergent bicoid (bcd) (Stauber et al., 1999). Bcd 

is maternally localized to the anterior pole of the embryo and the translation of its mRNA 

results in anterior-posterior concentration gradient essential for the head and thorax 

development (St Johnston et al., 1989; Rushlow and Levine, 1990; Dearden and Akam, 1999). 

Hox3/zen/bcd evolution represents an interesting case where a single gene has changed its 

developmental role at least twice during evolution. 

Duplications in insects Hox3 locus are not so rare. The recent genomic sequencing of 

five lepidopteran species revealed that zen has undergone multiple rounds of duplications in 

Dytrisia clade, generating four additional genes besides zen (special homeobox genes A-D, 

shxA-D). In one particular case of silkworm Bombyx mori, 15 copies of different shx genes 

were discovered in its Hox3 locus. According to the molecular modeling, these shx genes 

have potential to encode the homeodomain and their expression pattern has been described 

during early oogenesis in the cells of presumptive serosa before the onset of bona fide zen 
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expression (Ferguson et al., 2014). Although functional experiments were not performed, 

based on these expression data authors suggest that shx genes retained an ancestral association 

with the specification of EEM, while zen function might have diverged again. 

 

1.3 Two possible evolutionary scenarios lying behind diversification of zen 

functions 

On one hand, the fact that morphogenesis function was described for basally branching 

species implies that morphogenesis function represents the ancestral and original role of zen. 

In this case zen must have undergone two changes: the first from Hox3 canonical axial 

patterning function to morphogenesis function in hemimetabolous insects, and the second 

change back to specification function in holometabolous species, however with the change of 

the functional domain from embryonic to EE. Since the specification function in EEMs is 

taking place in the new functional domain, zen has acquired new function and therefore, neo-

functionalization hypothesis is considered.  

On the other hand, in T. castaneum two copies of zen gene with two distinct functions 

were described (van der Zee et al., 2005). The morphogenesis function of Tc-zen2 is more 

similar to the zen function in hemimetabolous species, while the specification function of Tc-

zen1 is more similar to the zen function in dipterans. Therefore, we could assume that both of 

the functions (specification and morphogenesis) are ancestral and the fact that only the 

morphogenesis function was described for hemimetabolous species suggests that the 

specification function was simply lost in basally branching species. In this case, the 

morphogenesis function would have to be lost in dipteran species, and the two zen gene 

copies, each carrying one of the functions, could represent a case of sub-functionalization 

(Force et al., 1999). Deciphering, which of the evolutionary scenarios (neo- or sub-

functionalization) lies behind the changes of zen function is one of the underlying motivations 

for the project presented in this thesis.  

 

1.4 Functional diversification of paralogues during insect evolution  

The case of zen is not the only example of a gene undergoing duplication with subsequent 

functional divergence of the paralogues, which occurred during insect evolution. Several 

intriguing cases of this process have been described. One of the examples is the case of insect 

β-Catenin orthologue armadillo (arm). β-Catenin is a scaffolding protein playing multiple 

important roles in Wnt signaling, cell adhesion and centrosome separation. In the 

holometabolous beetle T. castaneum and the hemimetabolous pea aphid Acyrthosiphon pisum, 

arm has undergone independent lineage specific duplications. For both species two copies of 

arm gene have been described (Bao et al., 2012). Detailed sequence analysis of the arm 

paralogues of both species revealed that the second copy of arm gene lost α-Catenin binding 

domain and exceeded the rate of amino acid substitutions of singleton arm homologues. The 

severe sequence alteration might have triggered genetic split of the functions described for β-

Catenin. In fact, RNAi experiments in T. castaneum have confirmed that the functions have 

split between the sister paralogues with Tc-arm1 functioning in cell adhesion and Tc-arm2 
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functioning in centrosome separation. Interestingly, both paralogues retained the function in 

Wnt signaling, and the absence of one of the paralogue is phenotypically rescued by the other. 

Therefore, the case of arm paralogues in T. castaneum is a remarkable example of partial sub-

functionalization and partial redundant conservation of an ancestral function (Bao et al., 

2012).  

Another interesting case of gene duplication and subsequent partial sub-

functionalization is an example of engrailed-family genes. Engrailed is thought to be a 

“selector” gene, which by transcriptional regulation of its downstream targets confers 

posterior compartment identity on the group of cells derived from the same lineage. Engrailed 

genes have duplicated on numerous occasion during metazoan evolution (Gilbert, 2002). In D. 

melanogaster, the subsequent functional divergence obscured the two paralogues with two 

separate roles in wing patterning. While the invected gene is responsible for the determination 

of anterior cell fate polarities in the wing, engrailed plays crucial role in determining the 

posterior cell fates. However, the removal of engrailed causes only incomplete morphological 

transformation from posterior to anterior fate in the wing and the complete transformation can 

only be achieved by simultaneous elimination of both engrailed and invected. This 

observation suggests that although the cell fate polarity determination function was split 

between the paralogues, invected partially retained posterior fate specification function 

(Coleman et al., 1987; Hidalgo, 1994; Guillen et al., 1995; Simmonds et al., 1995; Gustavson 

et al., 1996). Therefore, the case of engrailed/invected paralogues is yet another example of 

partial sub-functionalization. 

The paralogues engrailed and invected display a particular genomic organization, which 

seems to be conserved within holometabolous species: they are positioned next to each other 

and oriented in “tail-to-tail” position with 3´ end in close proximity and with no interposed 

transcription units between them (Peel et al., 2006). Duplicated engrailed-family genes have 

been observed across insect species. The fact that at least two copies of engrailed (one of 

them carrying RS-motif typical of invected) were reported in basally branching insect species 

like cockroach (Marie and Bacon, 2000), bug and firebrat (Peterson et al., 1998), locust and 

even in springtail (Peel et al., 2006) suggest that the duplication, which gave rise to engrailed 

and invected paralogues might have predated the radiation of insects.  

 

1.5 Correlation of extraembryonic membranes evolution with the evolution of 

zen 

EEMs became less complex during dipteran evolution. Most insect species possess complete 

serosa and amnion, however the current state of art suggests that amnion underwent two 

rounds of reduction during the evolution of cyclorrhaphan flies. The embryos of the 

holometabolous beetle T. castaneum are covered by the amnion on the ventral side, which 

represents the ancestral state of EEMs (Fig. 1.5, “Tribolium” schematics). This amniotic 

topology was described for the embryos of flies from dipteran suborder Brachycera (e.g.: 

horse fly and dance fly) (Schmidt-Ott, 2000). However, the ventral amnion formation was 

suppressed at the stem lineage of cyclorrhaphan flies. In well studied lower cyclorrhaphan fly 

species M. abdida and E. balteatus, the amnion covers only the dorsal part of the yolk, while 
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the serosa expands as it covers the egg and afterwards closes ventrally (Fig. 1.5, “Megaselia” 

schematic) (Rafiqi et al., 2008; Rafiqi et al., 2010). Finally, in higher cyclorrhaphan flies 

(e.g.: D. melanogaster and Themira biloba), the serosa underwent severe reduction as well, 

but in addition fused with the amnion to form a single homogenate tissue covering the dorsal 

side of the yolk - the amnioserosa (Fig. 1.5, “Drosophila” schematic) (Rafiqi et al., 2008). In 

this section I will present a current opinion about the reduction of amnion and the origin of 

amnioserosa and the changes in zen expression that accompanied it, based on the zen 

expression profiles from M. abdida, E. balteatus and D. melanogaster (Rafiqi et al., 2008; 

Rafiqi et al., 2010; Schmidt-Ott et al., 2010). Since the expression patterns of Ma-zen and Eb-

zen are the same, for simplicity only comparison between D. melanogaster and M. abdida will 

be described. 

 

 

Figure 1.5. Reduction of extraembryonic membranes during dipteran evolution. Schematic 

overview shows the topology of EEMs in three holometabolous species (beetle T. castaneum and flies 

M. abdida and D. melanogaster). In T. castaneum, the amnion covers the embryo on the ventral side 

and forms the amniotic cavity, while the serosa covers the embryo, amnion and yolk. In M. abdida the 

amnion is reduced and covers the embryo only dorsally, while the serosa retained its topology and 

encompasses the egg. In D. melanogaster, also the serosa became reduced and moreover fused with 

the amnion forming a uniform tissue - the amnioserosa. The amnion is depicted in orange, the serosa 

in blue, the amnioserosa in orange-blue and the embryo in grey (modified from Rafiqi et al., 2008). 
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Although the EE tissue morphology differs between the compared species, the 

progression of the embryonic development is similar. Ma-zen is not expressed during the 

blastoderm formation stage before cellularization (Fig. 1.6A). The expression starts during the 

cellularization when Ma-zen is expressed in dorsal blastoderm (Fig. 1.6B). The expression 

becomes restricted to a dorsal stripe once the serosa forms and eventually, at the beginning of 

gastrulation, Ma-zen is expressed only in the serosa (Fig. 1.6C). On the other hand, the 

expression of Dm-zen starts before the blastoderm cellularization stage (Fig. 1.6F) and the 

expression in the dorsal part of the embryo is much broader than the expression domain of 

Ma-zen. During the cellularization of the blastoderm, Dm-zen expression is confined to the 

dorsal region, where the amnioserosa anlage, but also the future embryonic region 

(presumptive head region, eventually Dm-zen is expressed in optic lobes) are localized (Fig. 

1.6G). While during the gastrulation of the embryo Dm-zen is expressed in proctodeum 

(depression of ectoderm of anal region) (Fig. 1.6I, arrow), Ma-zen expression remains only in 

the serosa (Fig. 1.6D). Finally, the difference between the Ma-zen and Dm-zen expression is 

temporal. Unlike in D. melanogaster, in M. 

abdida, zen´s expression continues also 

after gastrulation (Fig. 1.6E, J). In M. 

abdida, the amnion and the serosa derive 

from the amnioserosal fold. The 

postgastrular expression of zen drives the 

expansion of the serosa and consequently 

serosa disjoins from the amnion, and 

covers the whole egg until it closes 

ventrally. Dorsal amnion stays connected 

to the embryo.  

 The differences in zen expression 

between D. melanogaster and M. abdida 

suggest that the loss of postgastrular zen 

expression (like described for D. 

melanogaster) led to the reduction of 

serosa, which ultimately gave rise to the 

amnioserosa. RNAi experiments in M. 

abdida showed that while silencing zen 

before gastrulation leads to expansion of 

the amniotic domain and loss of serosal 

tissue identity, the knockdown of Ma-zen 

during germband retraction leads to the 

differentiation of serosal tissue, but the 

disjunction from the amnion does not 

occur. This result further supported the 

hypothesis that the postgastrular zen 

expression is necessary for the serosal 

expansion and that its suppression may 



INTRODUCTION 

21 

 

have triggered the origin of the amnioserosa (Rafiqi et al., 2008; Rafiqi et al., 2010; Schmidt-

Ott et al., 2010). 

 

1.6 Insect model organism Tribolium castaneum  

For the last two decades T. castaneum has been emerging as the second insect model 

organism, leading away from the D. melanogaster centric research in insects. During this 

time, the methodological toolkit was growing and by today there are several sophisticated 

possibilities how to visualize or alter the embryonic development of T. castaneum.  

The growth of the methodological toolkit would have not been possible without the 

sequencing of the genome (Richards et al., 2008). Transgenesis have been successfully 

established (Berghammer et al., 1999; Berghammer et al., 2009) and recently complemented 

with the possibility of performing targeted genome editing using CRISPR/Cas9 method 

(Gilles et al., 2015). Silencing of gene expression by pRNAi (Bucher et al., 2002) became a 

routinely performed method especially in the field of evo-devo (evolution of development). 

This method was subsequently exploited for a screen (iBeetle screen) (Schmitt-Engel et al., 

2015), which has been performed for high number of T. castaneum genes and resulted in the 

resourceful database (iBeetle-Base) (Donitz et al., 2015). Heat shock-mediated misexpression 

of genes, as well as GAL4/UAS system, have been demonstrated on a proof-of-principle basis 

as well (Schinko et al., 2010; Schinko et al., 2012).  

A large scale insertional mutagenesis screen fundamentally contributed to the 

possibilities of embryonic development visualization by generating over 500 enhancer trap 

lines (Trauner et al., 2009). Several of the enhancer trap lines with the enhanced green 

fluorescent protein (EGFP) expression in the EEMs have been thoroughly described by our 

group (Koelzer et al., 2014; Hilbrant et al., 2016). Apart from that, one of the enhancer lines is 

expressing GFP in all nuclei of developing T. castaneum embryo (Sarrazin et al., 2012) and 

rapidly became an important tool for the live imagining of developmental processes. In 

addition, visualization of T. castaneum embryogenesis is nowadays possible also due to the 

established transient fluorescent labeling technique (Benton et al., 2013).  

Finally, a successful RNA-sequencing (RNA-seq) approach to identify transcriptional 

regulation in T. castaneum has been published recently (Stappert et al., 2016). The described 

methodological toolkit available for research of T. castaneum development along with the 

ease of laboratory culture handling, serves as evidence that T. castaneum is a suitable model 

organism for investigation of embryonic and EE development.  

 

1.6.1 Extraembryonic development during embryogenesis of Tribolium castaneum 

T. castaneum was the sole model organism used for the experiments in this project, therefore, 

in this section, I will introduce its EE development and different developmental stages. In the 

first hours after egg lay, the undifferentiated blastoderm undergoes twelve synchronized cell 

proliferation cycles, resulting in the uniform blastoderm (Fig. 1.7A) (Handel et al., 2000). Cell 
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fates in T. castaneum embryo are determined during blastoderm differentiation. The most 

anterior region acquires serosal tissue identity with the typical morphology of large and 

widely spaced squamous cells. The cells in the posterior part of the blastoderm form germ 

rudiment, which gives rise to both amnion and the embryo proper (germband) (Fig. 1.7B, C). 

During the blastoderm differentiation the most posterior cells flatten and shift into the yolk, 

forming a primitive pit (Fig. 1.7B, C). As the serosa expands towards the posterior pole, 

primitive pit is overgrown and shifted ventrally by the posterior amniotic fold (Fig. 1.7D, D´) 

(Handel et al., 2000).  

Afterwards, the germ rudiment invaginates dorsal-posteriorly towards anterior and at 

the same time the amnion extends from posterior to anterior as it starts to cover the embryo on 

the ventral and lateral sides. In the meantime, the serosa extends from posterior to ventral side 

and now covers both the amnion and the germ rudiment (Fig. 1.7E, E´). When the serosa 

border reaches about half of the ventral side of the embryo, it forms a small opening, through 

which the germband is visible. This stage is called the serosal window stage (Fig. 1.7F, F´). 

While the serosal window is closing, the circumference of the window is actually formed by 

amniotic cells. During the final steps of the serosal window closure, the amnion and the serosa 

separate from each other and for the first time form two discrete tissues (Panfilio, 2008; 

Hilbrant et al., 2016). After the serosal window closes and serosa encompasses the entire egg, 

the germband starts to extend posteriorly. Stages from the uniform blastoderm formation until 

the serosal window closure represent early embryogenesis (Fig. 1.7A-F´, red rectangle).  

After the extension of germband is fully reached (Fig. 1.7G), germband retraction is 

initiated. During the retraction process the embryo shortens in anterior-posterior direction and 

thickens in dorsal-ventral direction (Fig. 1.7H). The complete embryo retraction is reached 

once the embryo reaches the same length as the anterior-posterior axis. During the whole 

process of the embryo extension and retraction, the amnion and the serosa retains the topology 

formed after the serosal window closure (two separate membranes) (Hilbrant et al., 2016).  

After the embryo retraction is reached, membrane rupture occurs at the anterior-ventral 

side, where the membranes are apposed to each other and form a bilayer (Fig. 1.7H, asterisk). 

While no precise place of the rupture was described for the serosa, the amnion ruptures in the 

specialized cells of the rupture competence zone (amniotic cap) (Hilbrant et al., 2016). While 

the amnion initiates the rupture, the serosa drives the withdrawal of both of the membranes by 

contracting. The amnion and the serosa withdraw simultaneously towards posterior, 

subsequently they snap over the abdomen and retract towards dorsal side (Fig. 1.7I), where 

they form dorsal organ. At the same time, the dorsal epidermis of the embryo expands 

dorsally following the retraction of the membranes (Strobl and Stelzer, 2014).  

The dorsal organ undergoes apoptosis and sinks into the yolk while facilitating the 

dorsal closure of embryo (Panfilio et al., 2013). Once the embryo closes dorsally, the EE 

development is complete. The embryonic development continues for another approx. 12 h, 

before the larva hatches. The developmental stages investigated within the presented project 

did not exceed the post-rupture stage, therefore, pre- and post-rupture stages will be, hereafter, 

referred to as stages of late embryogenesis (Fig. 1.7H-I, blue rectangle).  
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Figure 1.7. Developmental stages of Tribolium castaneum during early and late embryogenesis. 

Nuclear staining of T. castaneum embryos of different developmental stages: uniform blastoderm (A), 

early differentiated blastoderm (B), late differentiated blastoderm (C), posterior amniotic fold (D, D´), 

early serosal window (E, E´), late serosal window (F, F´), extended germband (G), retracted 

germband (pre-rupture) (H) and post-rupture stage (I). Note that in the extended and the retracted 

germband stages (G and H), the germband, amnion and yolk are covered by serosa, however due to the 

dense nuclear signal from embryo, the serosa and the amnion are not visible. PP-primitive pit, Am-

amnion, S-serosa. The rim of the serosal window is highlighted by the dashed line. The position of the 

membrane rupture is depicted by the asterisk. Unless stated otherwise, the views are lateral with 

anterior left (with an exception for A, where view cannot be determined). (Micrograph I was 

reproduced from Koelzer et al., 2014) 
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1.7 Aims of the study 

Insect Hox3 orthologues, known as zerknüllt (zen), represent a particular case of Hox genes, 

which have lost the canonical function in axial patterning of the embryo and rather acquired a 

novel function in EE domain. Concomitantly with the switch from Hox3 embryonic to EE 

function of zen, complex EEMs arose during insect evolution. Two distinct roles of zen genes 

in EEMs have been described: early specification function and late morphogenesis function. 

In the holometabolous beetle T. castaneum, zen has undergone lineage specific tandem 

duplication, which generated two fully functional copies (Tc-zen1 and Tc-zen2) each carrying 

one of the functions: Tc-zen1 specifies serosal tissue identity during early embryogenesis and 

Tc-zen2 is responsible for morphogenesis of matured EEMs during late embryogenesis. 

The ultimate aim of this project is to decipher how the two T. castaneum paralogues 

acquired two distinct functions. Our first approach is to pinpoint the differences between 

transcriptional and translational regulations of Tc-zen genes by describing in detail their 

transcript and protein expression profiles during early and late embryogenesis. With the 

second approach, we identify downstream transcriptional targets of both Tc-zen genes during 

early embryogenesis by performing RNA-seq after pRNAi followed by differential expression 

(DE) analysis. The subsequent comparative analysis of identified targets should provide 

insight into whether the neo- or sub-functionalization hypothesis applies to the case of T. 

castaneum paralogues. Finally, with the third approach, we identify transcriptional target 

genes of Tc-zen2 during important developmental events of late embryogenesis: before and 

after the rupture of the EEMs, when Tc-zen2 function takes place. The candidate targets are 

identified by RNA-seq after pRNAi experiment and the subsequent DE analysis. The 

functional profile of identified Tc-zen2 targets is retrieved by gene ontology (GO) term 

analysis. Ultimately the results from all the three approaches should elucidate the specific 

changes that occurred on the transcriptional and translational level, and which might have 

triggered the functional divergence of T. castaneum paralogues.  
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2 MATERIAL AND METHODS 

2.1 Tribolium castaneum stock maintenance 

2.1.1 Tribolium castaneum husbandry 

For all experiments Tribolium castaneum San Bernardino (SB) strain (Brown et al., 2009) was 

used as the wild type (WT) reference. Beetles were kept in the dark at 30 °C with the relative 

humidity between 40-60%. Cohorts of beetles were maintained in plastic boxes with mesh 

windows for aeration. Plastic boxes were half-filled with the flour mixture consisting of wheat 

flour “Extra Type 405” (Diamant) and dark wheat flour “Type 1050” (Diamant) (in 2:1 ratio) 

supplemented with 0.33 g/kg Fumagilin-B (Medivet Pharmaceuticals Ltd.) for protection 

against pathogens. The flour mixture was enriched in nutrition by adding 18.75 g of yeast per 

1 kg of the flour mixture (collectively hereafter referred to as stock flour). For general stock 

keeping, approximately 22 g of beetles were kept on 900 g of the stock flour. Since females 

lay the highest amount of eggs within the first months of their life, a new population of 

beetles was established every third month. Smaller populations of beetles (eg.: after RNAi 

experiment) were kept in plastic vials half-filled with the stock flour and closed with a foam 

lid.  

 

2.1.2 Egg collection 

In order to collect the eggs, the beetles were first set on pre-sieved egg lay flour “Instant Type 

405” (Diamant). After desired collection interval, the adults were separated from the flour 

containing eggs with a test sieve with 710 µm mesh size (Retsch). Afterwards, the eggs were 

separated from the egg lay flour with a test sieve with 300 µm mesh size (Retsch). The eggs 

were either directly processed further, or incubated for a defined time (incubation period) in 

order to reach the developmental stage of interest. During the incubation period the eggs were 

stored in a collection basket (mesh size ≤ 180 µm) on the egg lay flour at 30 °C with relative 

humidity between 40-60%. The reached developmental stage of the eggs was calculated in 

hours after egg lay (h AEL). The minimal age of the eggs corresponds to the incubation 

period and the maximum age corresponds to the incubation period plus the collection interval. 

 

2.1.3 Egg dechorionation 

To clean the collected eggs from remaining flour and yeast, the eggs were first rinsed with tap 

water. Next, to remove the chorion, the collection basket with eggs was placed in a petri dish 

fully filled with bleach (“DanKlorix Hygienereiniger”, Colgate-Palmolive) containing 4-5% 

sodium carbonate and 1-4% sodium hypochlorite, to digest the chorion. The eggs were 

swirled in the bleach for 5 min. Finally, to remove the bleach, the eggs were rinsed again with 

tap water and placed in a clean petri dish fully filled with tap water. Dechorionated eggs were 

collected from the water surface with a brush and the excess water was removed by placing 

the brush on Whatman gel blot paper (Whatman International Ltd.).  



MATERIAL AND  METHODS 

26 

 

2.1.4 Fast freeze of eggs 

In order to minimalize the delay in the developmental stage caused during dechorionation 

procedure, the eggs were rapidly frozen. Dechorionated dried eggs were transferred on the 

brush to an Eppendorf tube, which was immediately placed in liquid nitrogen. The amount of 

eggs in one Eppendorf tube corresponded to the volume of 25-50 µl of water. The eggs were 

stored until further processing (mRNA and protein extraction) at -80 °C. 

 

2.1.5 Fixation and devitellination 

Due to the fact that serosa secrets the serosal cuticle (Panfilio, 2008) devitellinization by 

methanol shock after fixation is only possible in eggs younger than 16 h AEL. The serosal 

cuticle sticks to vitelline membrane preventing it from bursting. The eggs possessing the 

vitelline membrane cannot be used for antibody (AB) or in situ hybridization (ISH) staining in 

whole mount form, because the membrane is not permeable for any AB or ISH probe. 

Dechorionated T. castaneum eggs were transferred to a glass vial containing fixation 

solution consisting of 2 ml phosphate-buffered saline (PBS), 2 ml of 10% methanol-free 

formaldehyde and 4 ml of heptane. The eggs were fixed for 20 min (AB staining) or for 1.5 h 

(ISH) on the rocker. Next, the lower aqueous phase (PBS + formaldehyde) was removed and 

replaced with approx. 3 ml of ice cold 100% methanol. Subsequently, the vial was thoroughly 

shaken for 20 s. The methanol shock caused burst of vitelline membrane and allowed the eggs 

to sink from the interface between heptane and methanol to the bottom of the vial. The 

devitellinated eggs were transferred from the vial to a new Eppendorf tube and were 

subsequently washed 3-5 times with 100% methanol. The eggs were stored in 100% methanol 

at -20 °C until further processing. 

 

2.2 Basic molecular methods 

2.2.1 RNA extraction  

RNA was isolated according to Stappert et al., 2016 and the TRIzol Reagent protocol 

(Ambion, Life Technologies). Eggs stored at -80 °C were thawed on ice for approx. 5-10 min. 

Eggs were first homogenized in 100 µl of the TRIzol. The homogenate was centrifuged at 

12000 g and 4 °C for 10 min. The supernatant was transferred to a new Eppendorf tube and 

400 µl of TRIzol were added. Samples were incubated for 5 min at room temperature (RT). 

Next, 100 µl of chloroform were added and the tubes were shaken thoroughly by hand for 15 

s. The samples were incubated at RT for 2-3 min, followed by centrifugation at 12000 g and 4 

°C for 15 min. The aqueous phase containing RNA was transferred to a new Eppendorf tube. 

For RNA precipitation, 250 µl of isopropanol were added and the samples were incubated for 

10 min at RT. Afterwards, the samples were centrifuged at 12000 g and 4 °C for 10 min. The 

supernatant was removed and the pellet was washed twice with 500 µl of 70% ethanol. The 

washing was followed by short centrifugation at 12000 g and 4 °C for 5 min. After the second 

washing step, the ethanol was carefully removed and the pellet was air dried in the open 
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Eppendorf tubes at RT for 10 min. The pellet was resuspended in nuclease-free water 

(Ambion, Life Technologies) (10-20 µl depending on the further use) in heating block at 900 

rpm and 60 °C for 10 min. The concentration of RNA was measured on a spectrophotometer 

(NanoDrop 2000c, Thermo Scientific). The isolated RNA was stored at -80 °C until further 

use. 

 

2.2.2 cDNA synthesis 

Complementary DNA (cDNA) was synthesized by reverse transcription of RNA using the 

SuperScript VILO cDNA synthesis kit (Invitrogen, Life Technologies) according to the 

manufacture´s protocol. The input amount of RNA to the reaction was 2 µg. Synthetized 

cDNA was stored at -80 °C until further use. 

 

2.2.3 Primer design 

The online interface Primer3 version 4.0.0 (Untergasser et al., 2012) was used for primer 

design. The full or partial sequence of the gene of interest was pasted to the interface and, 

depending on the intended use, the size of the final PCR product was set to 600-800 bp (ISH 

probe and dsRNA) or to 100-150 bp (RT-qPCR). The primer pair with the best 

thermodynamic parameters scores with respect to GC content (approx. 50%), self and partner 

complementarity (low), melting temperature (approx. 60 °C) and primer size (20-22 bp) was 

chosen. To avoid any unspecific amplification, the primers were blasted against the T. 

castaneum genome. Only primer pairs without any sequence identity to regions other than the 

gene of interest, and/or with sequence identity only to intergenic regions, were used. To 

further enable ISH probe and dsRNA synthesis, the primers were equipped with linker 

sequence at the 5´ end: GGCCGCGG for forward primer and CCCGGGGC for reverse 

primer. Primers were synthetized by Sigma-Aldrich. All primer sequences used in this project 

are listed in Table 2.1. 

 

Table 2.1. List of all primer sequences used for different purposes of this project. 

TC gene identifier and 

primer orientation 
sequence 

amplicon size 

[bp] 

ISH probes 

TC000921 (Tc-zen1) / F ggccgcggTCCCAATTTGAAAACCAAGC 
688 

TC000921 (Tc-zen1) / R cccggggcCGTTCCACCCTTCCTGATAA 

TC000922 (Tc-zen2) / F ggccgcggAACGCCCCAGTTTTCAACAA 
546 

TC000922 (Tc-zen2) / R cccggggcCTCATCCTTCACCACCACCT 

dsRNA 

TC000921 (Tc-zen1) / F ggccgcggTTTGAAAACCAAGCCGTTCT 203            
(short fragment) TC000921 (Tc-zen1) / R cccggggcCGTTGGGGTTGAGTTTCTTG 

TC000921 (Tc-zen1) / F ggccgcggTTTGAAAACCAAGCCGTTCT 682              
(long fragment) TC000921 (Tc-zen1) / R cccggggcCGTTCCACCCTTCCTGATAA 
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TC000922 (Tc-zen2) / F ggccgcggCAATGTCGCCGCAATCGACG 
250 

TC000922 (Tc-zen2) / R cccggggcACACAATTCTTCCCTTGGTA 

RT-qPCR 

TC000921 (Tc-zen1) / F TCCACCTTCTGATTGGAACTG 
101 

TC000921 (Tc-zen1) / R CGTTGGGGTTGAGTTTCTTG 

TC000922 (Tc-zen2) / F TCGAAGTGTCCCTCTCAGAAA 
101 

TC000922 (Tc-zen2) / R GGAGGAGGTGTACGCAGTTC 

TC008261 (Tc-RpS3) / F ACCGTCGTATTCGTGAATTGAC 
186 

TC008261 (Tc-RpS3) / R ACCTCAAAACACCATAGCAAGC 

Tc-zen1 candidate target genes (miniscreen#1) both ISH probes and dsRNA 

TC000107 / F ggccgcggCTTACACCATGGGCGAGATT 
555 

TC000107 / R cccggggcCAGCAGCGTCAAACATGACT 

TC007258 / F ggccgcggGGAACTCCTTTCGGACAACA 
552 

TC007258 / R cccggggcGACCTCAGCAGCGTAACTCC 

TC006727 / F ggccgcggCAGTTGAAGACGCGAATGAA 
548 

TC006727 / R cccggggcAGGTTTAGGTGCCTCGGTTT 

TC015108 / F ggccgcggCCAAATTGTGTGGCGTAATG 
580 

TC015108 / R cccggggcTGTGGAATGCAGGGTAATGA 

TC013480 / F ggccgcggAGGCTGGCCTTATTCCATTT 
521 

TC013480 / R cccggggcCAGGACCACTTCCTCCGTTA 

TC015555 / F ggccgcggGCACAAACTGAACGGGTTTT 
503 

TC015555 / R cccggggcAAAAATCCTCAATGCGAGGTC 

TC008400 / F ggccgcggGCAGTTTTGCTCGTTTTGGT 
313 

TC008400 / R cccggggcGCAAAAGCGTATTGCTCACA 

TC011141 / F ggccgcggGTTCCAAAGGCGAATACGAA 
528 

TC011141 / R cccggggcTCGGATCATCACAGGTGAAA 

TC031198 / F ggccgcggCGGTTACTTGTGGCCTTGTT 
582 

TC031198 / R cccggggcGAGGAACGCTCTTCTTGCAC 

TC011283 / F ggccgcggCAGGACCGGACTTTATTGGA 
761 

TC011283 / R cccggggcAAAAGCACCCGAATTTTGTG 

TC013404 / F ggccgcggTTTTGCAACGATTCTGTGCT 
745 

TC013404 / R cccggggcCCAAAGATCAGTCGGCATTT 

TC014502 / F ggccgcggTGTGATACTTGCCGTTGCTC 
760 

TC014502 / R cccggggcTCTGTTATTTTTCCGGTGCTG 

TC013320 / F ggccgcggCTGATTAAGCGGGGCAATAA 
772 

TC013320 / R cccggggcAATCGGAAAACACCATCTCG 

TC016348 / F ggccgcggGATGATGGAACCACCAAACC 
457 

TC016348 / R cccggggcCAGGACACATCTGTCGCACT 

TC034701 / F ggccgcggGAGGAATTACTCCCGGCTTC 
584 

TC034701 / R cccggggcTCAGATTCATCCTGCACTCG 

TC012744 / F ggccgcggCGTTTTTCCATCGTTTCGTT 
540 

TC012744 / R cccggggcGGCGGAATTATCCCAAAACT 

Tc-zen2 candidate target genes (miniscreen#1) both ISH probes and dsRNA 

TC007326 / F ggccgcggCCTGATGGCAAGTGCTACAA 
615 

TC007326 / R cccggggcCGGGTGCAGTTGGTAGTTTT 

TC011068 / F ggccgcggACCAAACAAGACCCTCAACG 
606 

TC011068 / R cccggggcGAGTCTTGGTGGTTCGGTGT 

TC000511 / F ggccgcggCTCACCGAAGCAACAGATCA 
640 

TC000511 / R cccggggcTGACTTCAGACGTGGACGAG 

 



MATERIAL AND  METHODS 

29 

 

TC000853 / F ggccgcggTTTATCTTCGCCACGCTCAT 
359 

TC000853 / R cccggggcGCGGGTCTCGGAATAACC 

TC002837 / F ggccgcggAGTTTTTCACCCCACCACAG 
651 

TC002837 / R cccggggcATCATGGGCGGTGTATTCAT 

TC011635 / F ggccgcggTATTTGCAACACCGGAACAA 
653 

TC011635 / R cccggggcGCTGAACGTGAATTGGAGGT 

TC008204-RB / F ggccgcggCACCGAGAAGTTCGAAAAGC 
799 

TC008204-RB / R cccggggcAAGCACAAACACCAAGCAAA 

TC033464-RA / F ggccgcggCAGAAACCAAAGCAATTTCCA 
689 

TC033464-RA / R cccggggcGCAAAAATCTGTCCGAAAGC 

TC011724-RA / F ggccgcggCCAAGAACCTGGACCAAGAA 
802 

TC011724-RA / R cccggggcGAGTTGATTTCGACGGTGGT 

TC000446-RA / F ggccgcggACCAACGGGCTAAAAAGCTC 
789 

TC000446-RA / R ggccgcggACCAACGGGCTAAAAAGCTC 

TC015615 / F ggccgcggCCGAAACTACCCCACTTGAA 
629 

TC015615 / R cccggggcTTGCCATGAAATCCCAAAAT 

TC002092 / F ggccgcggAGTGGTGTTTTTGCCCTTTG 
632 

TC002092 / R cccggggcACACCAGTAACGCAACCACA 

TC002831 / F ggccgcggGCCTTCATGAAATACATCTTCG 
203 

TC002831 / R cccggggcTGTGGCTCTTCATGGACGTA 

TC008236 / F ggccgcggCAACAGCCCAAGTATGTCCA 
626 

TC008236 / R cccggggcCTGATTTGCGTCGGTCTGTA 

TC014361 / F ggccgcggGGCCCTGTATACCTCCCAAT 
658 

TC014361 / R cccggggcCCGCCAGAAAGAACAGAAAG 

TC001119 / F ggccgcggAATACGGCTACGTGGACGAC 
688 

TC001119 / R cccggggcCCACCTTGGGGTAGAGCATA 

TC013146 / F ggccgcggCTGCAAGGGCTTCTTCAAAC 
630 

TC013146 / R cccggggcAAGCTGCTGCAGAACTCCAT 

TC000546 / F ggccgcggATCCGCGAAAGGACACATAG 
628 

TC000546 / R cccggggcTTGGACGACATTCGGTAACA 

TC002942 / F ggccgcggAAAACAATCACCGCCAAGTC 
638 

TC002942 / R cccggggcGCCCCAAACATGTACCAAAC 

Tc-zen2 candidate target genes (miniscreen#2) RT-qPCR 

TC010840-RA / F TGCGCCTCTCTTCAGTACCT 
127 

TC010840-RA / R CGCCAGGTAAAGGCATACAC 

TC011665-RA / F AAGACGCAGCTTTGACCAAT 
142 

TC011665-RA / R ATCATCATACCGCCCATCAT 

TC005982-RA / F GTATTGTGTACGCGGGGACT 
117 

TC005982-RA / R TTGTTGAAAACCCACCCTCT 

TC006575-RA / F TTACCATTTGTCCCGAGTCC 
144 

TC006575-RA / R CGAACTTCGTGTCGCAAATA 

TC014041-RA / F TATGGCAGCCACAAGAAGC 
150 

TC014041-RA / R GTTGGGGTGGTGTCGTAGAT 

TC014143-RA / F CGAAGACGATAAAGAGGGCTA 
123 

TC014143-RA / R TTCATGGCACTATACTGGTTCG 

TC014497-RA / F GCTCTTCGTTTCACTTGTGG 
137 

TC014497-RA / R TGCCGTCACTGGTCTCATAC 

TC007162-RA / F CGTCGCAACCTGTAAGTCTG 
148 

TC007162-RA / R TCGTTCATCAGCGTGAAGTC 

TC008606-RA / F CAAGCTGGCCTCGTCACTAT 
134 

TC008606-RA / R ATGCAGTCGCACATCACATT 

 



MATERIAL AND  METHODS 

30 

 

TC011349-RA / F ACCATCGTTACCCTCATTGC 
122 

TC011349-RA / R TCCCTGCATTCGATATAGCC 

TC031481-RA / F GCACCCCGATAACGGATTA 
114 

TC031481-RA / R GGGATTTCACCATTTACTGGA 

TC033856-RA / F GAAGAGGCCGAAAACTACGA 
150 

TC033856-RA / R GCCCCTTTACCACCGACTAT 

Universal primers for T7 polymerase 

5´ universal GAGAATTCTAATACGACTCACTATAGggccgcgg 
NA 

3´ universal AGGGATCCTAATACGACTCACTATAGGGcccggggc 

 

2.2.4 Polymerase chain reaction 

Polymerase chain reaction (PCR) was used for amplification of specific fragments of the 

genes of interest. Two consecutive PCR reactions were performed in order to amplify gene 

fragment for either ISH probe or dsRNA synthesis. For both, the reaction setup and the 

thermal cycling conditions of the first and the second PCR reaction were the same: 

 

PCR mix (20 µl) Thermal cycling conditions 

1 µl    cDNA (100 ng) 1)     94 °C     5 min 

1 µl   forward primer (10 µM) 2)     94 °C     30 s 

1 µl   reverse primer (10 µM) 3)     57 °C     30 s 

10 µl  REDTaq ReadyMix (Sigma-Aldrich) 4)     72 °C     1 min 

7 µl    nuclease-free H20 5)     34 times to step 2 

 6)     72 °C     10 min 

 

In the second PCR reaction mix, 1 µl of the first PCR reaction was always used as a 

template. Therefore, the amplified fragment always contains at the 5´ and 3´ ends the linker 

sequences for the 5´ and 3´ universal primers, which contain promoter sequence for T7 

polymerase. The choice of the universal primers depends on whether the amplified fragment 

will be further used for ISH probe or dsRNA synthesis. If the antisense ISH probe was 

synthetized, forward specific primer and the 3´ universal primer were used in the second PCR 

reaction. If the control sense ISH probe was synthetized, the 5´ universal primer and specific 

reverse primer were used in the second PCR reaction. If the dsRNA was synthesized, both 5´ 

and 3´ universal primers were used in the second PCR reaction.  

To confirm the presence of correct PCR product, 5 μl of the reaction were analyzed on a 

1% agarose gel. The gel was run in TRIS-Acetat-EDTA-Buffer at 135 V. The size of the PCR 

product was determined by comparison with Smart Ladder MW 1700-10 (Eurogentec). 
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2.2.5 TA cloning 

To minimize the background of the Tc-zen1 and Tc-zen2 ISH staining, the probes were cloned 

into a vector using TA cloning system (Invitrogen). The same cloning system was also used in 

the case when the second PCR reaction did not yield PCR product of a desired size or yielded 

more than one PCR product. The unpurified fresh PCR product of the first PCR reaction (5 

µl) was mixed together with 2 µl of pCRII vector, 1 µl of ExpressLinkT4 DNA ligase (5 

units) and 2 µl of ExpressLinkT4 DNA ligase buffer. The ligation reaction was incubated for 

15 min at RT and subsequently used for One Shot chemical transformation: 2 µl of the 

ligation reaction were gently mixed with One Shot TOP10 chemically competent Escherichia 

coli cells (Invitrogen) and incubated on ice for 30 min. The heat shock was performed at 42 

°C for 30 s and was followed by cold shock by placing the reaction tube back on ice. The cells 

were recovered by incubation in 200 µl of Super Optimal Catabolite medium (SOC, 

Invitrogen) at 37 °C for 1 h on the rotor. The cell suspension was plated on the lysogeny broth 

(LB) medium plates supplemented with 0.01% ampicillin (Sigma) and 0.004% x-Gal (Sigma), 

and incubated overnight (O/N) at 37 °C. 

To confirm the successful insertion of PCR fragment, 8 colonies were picked from the 

plate using a pipette tip and dipped into 8 µl of nuclease-free water. The tip was first left in 

the water for 10 min to allow for cells detachment and afterwards stored for the later use. The 

suspension was subsequently used as a template for “colony” PCR. The size of the PCR 

product was analyzed by gel electrophoresis. If the desired PCR product was obtained, the tip 

with the remaining cells containing the vector with the insert was used for inoculation of 2 ml 

LB medium supplemented with 0.01% ampicillin. The cells were incubated O/N at 37 °C on 

the rotor.  

The cell culture was harvested and the vector was isolated using ZR Plasmid Miniprep 

kit (Zymo research) according to the manufacturer´s protocol. Finally the isolated vector with 

the cloned PCR fragment of the gene of interest was used as a template for the first PCR 

described in the section 2.2.4. 

 

2.3 Quantitative reverse transcription PCR 

Quantitative reverse transcription PCR (RT-qPCR) was employed to quantify the presence of 

transcript of the gene of interest in various developmental stages and to evaluate the strength 

of knockdown (KD) in the RNA-seq after RNAi experiments. Libraries of cDNA (preparation 

described in the section 2.2.2) were used as template for the reaction. The expression of the 

gene of interest was normalized to the ribosomal protein S3 (Tc-RpS3). Two different master 

mixes were used in this project: SYBR Green PCR Master Mix (Applied Biosystems, Life 

Technologies) and GoTaq® qPCR Master Mix (Promega). For all RT-qPCR runs, 7500 Fast 

Real-time PCR cycler (Applied Biosystems) was used. Note that in order to investigate 

expression levels of Tc-zen2 it is necessary to use SYBR Green master mix, which usage, 

particularly in the case of Tc-zen2, has been proven to obtain more consistent results.  
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RT-qPCR mix (20 µl) Thermal cycling conditions 

5 µl    cDNA (20 ng) 1)     95 °C     2 min 

0.8 µl   forward primer (10 µM) 2)     95 °C     3 s 

0.8 µl   reverse primer (10 µM) 3)     60 °C     30 s 

10 µl  Master Mix (SYBR Green/GoTaq) 4)     39 times to step 2 

3.4 µl    nuclease-free H20 5)     95 °C     15 s 

6)     60 °C - 95 °C  

(1% temperature increase after 

each measurement - melting 

curve reading) 

  7)     60 °C     15 s 

 

The RT-qPCR experiments were performed in three (KD strength evaluation) or four 

(expression profile of Tc-zen1 and Tc-zen2) biological replicates (BRs), each of three 

technical replicates (three same reactions within one plate). Note that technical replicate in the 

result section in the tables 4.1 and 4.3 refers to several different cDNA samples prepared from 

eggs collected after different number of days after injection (DAI) within one BR. The 

number of cDNA samples in each of three BRs was different, because the mRNA was not 

successfully extracted from every egg collection. The KD strength was then measured for 

each cDNA sample (technical replicate) individually. Therefore, in all three BRs in the above 

mentioned tables, the KD strength is represented as a range. 

 

2.3.1 RT-qPCR data analysis 

Raw RT-qPCR data were exported from 7500 software version 2.3 (Applied Biosystems). 

The baseline correlation and Cp values determination was performed using LinRegPCR 

version 12.16 (Ruijter et al., 2009; Tuomi et al., 2010). The final expression ratio (R) was 

calculated in Excel 2010 (Microsoft) according to the following formula: 

 

where Etarget and Eref.g. refer to the mean PCR efficiency of the target gene of interest and of 

the reference gene (Tc-RpS3), and Δ Cptarget and Δ Cpref.g. refer to the difference between mean 

Cp value of the target gene of interest and of the reference gene. The Δ Cp is calculated as 

subtraction of the Cp value of the reference gene (ref.g.) from the Cp value of reference 

sample (ref.s.). The reference sample is a pool of all cDNA samples used for the entire 

experiment (in all BRs). The Cp value represents the cycle number, at which the amplicon 

reaches the threshold of fluorescence (the lower the Cp value, the higher the expression of the 

gene of interest). 
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2.4 In situ hybridization 

2.4.1 Probe synthesis 

Antisense digoxigenin (dig) labeled single stranded RNA (ssRNA) ISH probes were 

synthesized in the transcription reaction containing diluted second PCR reaction outcome (1:1 

dilution with nuclease-free water), performed with 5´ specific and the 3´ universal primers 

according to the section 2.2.4, as a template. The reaction mix contained 6 µl of template, 2 µl 

of dig-coupled uridine triphosphate labelling mix (Roche), 2 µl of T7 RNA-polymerase (40 

U) (Roche), 2 µl of transcription buffer (Roche), 1 µl of RNase inhibitor (Roche) and 7 µl of 

nuclease-free water. The reaction was incubated at 37 °C for 4 h. The transcription reaction 

was terminated by adding 30 µl of nuclease-free water and 50 µl of stop solution containing 

0.2 M sodium acetate (pH 6.0). Afterwards, 5 µl of tRNA and 10 µl of lithium chloride were 

added and the RNA was precipitated in 300 µl of 100% ethanol at -20 °C for 30 min. Next, 

samples were centrifuged at 20000 g and 4 °C for 15 min. The supernatant was discarded and 

the RNA pellet was washed twice with 70% ethanol. After the second wash, the samples were 

shortly centrifuged at 12000 g and 4 °C for 5 min. Finally, the ethanol was removed and the 

pellet air dried at RT in the open Eppendorf tube for 10 min. The pellet was resuspended in 

100 µl of probe solution containing 50% formamide in 2x saline-sodium citrate (SSC). Probes 

were stored at -20 °C until further use. 

 

2.4.2 Probe hybridization 

ISH was performed using both WT and KD embryos. Dechorionated and fixed eggs were first 

rehydrated by gradual transfer from 100% methanol to 0.1% PBT (0.1% Tween-20 in PBS). 

Eggs were first brought to 30% PBT in methanol, then 70% PBT in methanol and finally to 

pure PBT. To ensure no residual methanol was present, the eggs were washed 3 times with 

PBT for 5 min. After the last wash, PBT was removed and the eggs were incubated with 1:1 

solution of PBT: hybridization solution I (Hyb I, 50% formamide, 25% SSC and 0.1% 

Heparin in Milli-Q water) for 10 min at RT on the rotating wheel. Next, the eggs were 

incubated in pure Hyb I for 10 min at RT on the rotating wheel. The Hyb I was replaced with 

Hyb II (Hyb I containing 0.1% salmon sperm) and the eggs were incubated at 55 °C for 1 h in 

the heating block. After the pre-hybridization, the Hyb II was removed and the eggs were 

covered with 100 µl of Hyb II containing 2 µl of dig-labeled ssRNA probe. The samples were 

incubated at 55 °C O/N on rotating wheel in hybridization oven. The following day, the 

samples were first washed 3 times for 5 min and afterwards 4 times for 30 min with warm (55 

°C) Hyb I. Next, the eggs were first washed with 2:1 and afterwards 1:2 solution of Hyb 

I:PBT at 55 °C for 10 min. Finally, the eggs were washed 4 times with PBT for 10 min at RT. 

All the washing steps were performed on rocker. 

 

2.4.3 Digoxigenin antibody incubation 

The samples were blocked in blocking solution containing 1% bovine serum albumin (BSA) 

and 0.5% normal goat serum (NGS) twice for 30 min at RT on the rocker. Next, the first AB 
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was diluted in the fresh blocking solution (anti-dig AB, Roche, 1:5000). The eggs were 

incubated with the first AB at 4 °C O/N on the rocker. The following day, the eggs were first 

washed 3 times for 5 min and afterwards 3 times for 15 min with PBT at RT. 

 

2.4.4 Colorimetric detection 

In order to allow for colorimetric detection of the anti-dig AB, the samples were incubated in 

alkaline phosphatase (AP) buffer containing 100 mM Tris (pH 9.5), 50 mM MgCl, 100 mM 

NaCl and 0.2% Tween-20 in Milli-Q water. The eggs were incubated in the AP-buffer twice 

for 5 min at RT. The colorimetric reaction was performed with staining solution containing 

18.75 mg/ml nitro blue tetrazolium chloride (NBT) and 9.4 mg/ml 5-bromo-4-chloro-3-

indonyl phosphate (BCIP) in 67% dimethyl sulfoxide (DMSO), which was diluted with the 

AP-buffer (1:500). To prevent photobleaching, the samples were kept in the dark during the 

staining procedure. When specific expression pattern was observed, the staining reaction was 

stopped with PBT: the eggs were washed 6 times with PBT for 5 min at RT on the rotating 

wheel. In order to reduce background, the eggs were gradually dehydrated and rehydrated 

with ethanol diluted in PBT. The eggs were incubated in 50% and 75% ethanol in PBT for 5 

min, in 100% ethanol for 10 min and subsequently rehydrated with 50% and 25% ethanol in 

PBT. Finally, the eggs were washed 3 times with PBT for 5 min at RT. After the final wash, 

PBT was removed and the eggs were covered in mounting medium containing 4´,6-diamidin-

2-phenylindol (DAPI) (Vectashield, Vector laboratories).  

In general, in order to investigate expression profile of the unknown gene, staining 

experiment was performed at least twice with parallel positive (probe of gene with well-

known expression pattern) and negative (sense probe) control staining experiments. Note that 

in order to quantify gene expression strength difference between the KD and WT embryos, 

both WT and KD samples were incubated in the staining solution for the exactly same time 

period. The staining reaction was stopped as soon as the well-known expression pattern of the 

gene was observed in the WT samples. In order to confirm the result, the experiment was 

repeated 3 times.  

 

2.5 Gene expression silencing 

2.5.1 Double stranded RNA synthesis 

Double stranded RNA (dsRNA) was synthetized using MEGAscript T7 kit (Ambion, Life 

Technologies). Diluted second PCR reaction outcome (1:1 dilution with nuclease-free water) 

performed with the 5´ and the 3´ universal primers according to the section 2.2.4 was used as 

a template. The reaction contained 8 µl of the template, 2 µl of all four dNTPs, 2 µl of T7 

polymerase, 2 µl of reaction buffer and 6 µl of nuclease-free water. The reaction was 

incubated at 37 °C O/N in the heating block. The following day, the transcription reaction was 

stopped by adding 115 µl of nuclease-free water and 15 µl of 5 M ammonium acetate solution 

in 100 mM EDTA. For purification, 150 µl of phenol-chloroform solution (Roth) were added 

and the suspension was vortexed for 30 s. The samples were centrifuged at 5000 g and RT for 
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5 min. The upper aqueous phase was transferred to a new Eppendorf tube. The dsRNA was 

precipitated in 150 µl of isopropanol at -20 °C for 1 h. The samples were centrifuged at 20000 

g and 4 °C for 15 min. The supernatant was discarded and the pellet was washed twice with 

300 µl of 70% ethanol. After the last wash, the samples were centrifuged at 12000 g and 4 °C 

for 5 min and ethanol was completely removed. The pellet was air dried for 5 min at RT in the 

open Eppendorf tube. The pellet was resuspended in 16 µl of nuclease-free water. The dsRNA 

concentration was measured with a spectrophotometer. The samples were diluted to the 

concentration of 1 µg/µl and distributed to 10 µl aliquots. Isolated dsRNA was stored at -20 

°C until further use. 

 

2.5.2 Parental RNA interference 

Parental RNA interference (pRNAi) was used to transiently silence the expression of the 

genes of interest. Virgin T. castaneum females were injected with dsRNA of the gene of 

interest in the pupal stage. The injection was performed with fine needles produced from glass 

capillaries (Hilgenberg). The glass capillaries were pulled apart with a laser needle puller P-

2000 (Sutter Instrument Co.) with the following settings: heat 400, filament 4, velocity 60, 

delay 225, pull 150. To create a sharp tip, the needles were opened by cutting the tip in 45° 

angle with a razor blade. 

Female pupae were stuck with the dorsal side of their most posterior segments to the 

double sided tape (Doppelband Fotostrip, Transparent, TESA), which was stuck with the 

other side to the microscope slide. Pupae were injected with the needle containing dsRNA 

from the lateral side between the 3rd and the 4th abdominal segment until the pupae stretched 

from the injected volume. For the small scale RNAi experiments (miniscreen) approx. 50 

pupae were injected with dsRNA of one gene. However, for the large scale RNAi experiments 

(RNA-seq after RNAi) about 350 pupae for one collection interval and per one BR were 

injected with dsRNA of one gene (either Tc-zen1 or Tc-zen2). On average, 10 µl of dsRNA 

was necessary to inject approx. 35-40 female pupae. After the injection, pupae were gently 

removed from the double sided tape and placed on the stock flour in the plastic vials. Always 

1 male per 4 females was added to the cohort. Approx. 4-5 DAI the pupae eclosed. After 7 

DAI the first egg lays were collected. 

 

2.6 Phenotypic scoring after RNA interference 

2.6.1 Nuclear staining 

Phenotype after pRNAi was investigated on different T. castaneum developmental stages. 

Possible embryonic defects were investigated in the stages from the uniform blastoderm to the 

retracting germband stage using nuclear staining. The fixed embryos were washed 3 times 

with 0.5% PBT (0.5% Tween-20 in PBS). After the last wash, the eggs were covered with 

mounting medium containing DAPI (Vectashield, Vector Laboratories).  
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2.6.2 Cuticle preparation 

Larval cuticle preparations were used to determine defects during the embryonic 

development. First, the larvae or eggs (in case of developmental defects due to the KD) were 

dechorionated as described in the section 2.1.3. Next, the larvae and eggs were transferred 

from water surface onto a microscope slide with brush. The larvae and eggs were separated 

one by one and equally distributed on the slide. Afterwards, the specimens were covered with 

100 µl of Hoyer´s solution containing 0.6% gum Arabic, 1.2 M chloral hydrate and 217 mM 

glycerol (diluted 1:1 with lactic acid). The larvae and eggs in the Hoyer´s solution were 

covered by a cover slide. To allow for complete tissue digestion, the samples were incubated 

at 60 °C O/N. 

 

2.6.3 Serosal cuticle integrity determination 

As previously mentioned, serosa secrets chitin cuticle (Panfilio, 2008), therefore the 

phenotype after RNAi of the gene responsible for the serosa tissue specification (Tc-zen1) or 

genes, which might play role in the serosa maintenance (Tc-zen1 targets), can be scored by 

observing the presence, absence or integrity of the serosal cuticle. Fixed embryos were 

transferred directly from the heptane-PFA interface onto a small piece (1x0.5 cm) of 

Whatman gel blot paper. The eggs were subsequently transferred onto a double sided tape, 

which was stuck from the other side to a petri dish. The eggs were covered by PBS and the 

cuticle was observed under the dissecting microscope (Zeiss). The integrity of the serosal 

cuticle was investigated with a sharp needle by evaluation of the cuticle resistance. The KD 

samples were compared with WT samples in parallel. 

 

2.7 Protein expression 

2.7.1 Protein extraction 

Dechorionated eggs stored at -80 °C were first thawed on ice for approx. 5-10 min. Eggs were 

homogenized in 200 µl of RIPA buffer (Sigma-Aldrich) and the homogenate was incubated 

on ice for 30 min. Samples were centrifuged at 20000 g and 4 °C for 20 min. After the 

centrifugation the debris was collected at the bottom of an Eppendorf tube in a form of pellet, 

but the residual debris was also found on the top of the supernatant in a form of a white foam 

layer. Roughly 170 µl of supernatant were transferred to a new Eppendorf tube. Since it is not 

possible to completely avoid the white foam layer, the supernatant was additionally 

centrifuged at 20000 g and 4 °C for 5 min. Precisely 153µl of supernatant were transferred to 

a new Eppendorf tube. In order to measure the protein concentration of the sample, 3 µl of the 

supernatant were set aside for the Bradford assay (described below). To the remaining 150 µl 

of supernatant, 150 µl of 2x sample buffer containing 120 mM Tris (pH 6.8), 12.8% glycerol, 

4% SDS, 0.1% bromphenol blue and 0.2 M DTT were added. Samples were boiled at 100 °C 

for 3 min in heating block and afterwards stored at -20 °C until further use. 
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2.7.2 Protein concentration measurement 

Protein concentration of the samples was measured using Bradford reagent (Sigma-Aldrich), 

which contains Brilliant Blue G dye. After the protein in the sample binds to the dye, the dye-

protein complex causes a shift in the absorption maximum of the dye. The amount of 

absorption is proportional to the protein present in the sample. In order to calculate the 

unknown protein concentration in the samples, first the concentration of protein standard 

samples (predefined protein concentration of BSA) has to be measured. Protein standard 

solution (2 mg/µl, Sigma-Aldrich) was diluted with nuclease-free water to the following BSA 

concentrations: 250, 500, 750 and 1000 µg/µl.  

Always 300 µl of Bradford reagent were mixed either with 10 µl of the standard 

samples or 1 µl of the samples of unknown protein concentration. Bradford reagent was 

supplemented with 1 µl of RIPA buffer when mixed with the standard samples and with 10 µl 

of nuclease-free water when mixed with the samples of unknown protein concentration. The 

blank sample was supplemented with both 1 µl of RIPA buffer and 10 µl of nuclease-free 

water. Samples were measured in three technical replicates. 

The standard curve was created from the absorbance values of the standard samples and 

the predefined BSA concentration values in the standard samples. The unknown protein 

concentration of the samples was afterwards calculated based on the linear regression data 

distribution model of the BSA absorbance values of the standard samples.  

 

2.7.3 SDS-PAGE 

Protein extracts from T. castaneum eggs in different developmental stages were run on 

sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Always 50 µg of 

total protein were loaded into each well. Both collection (3%) and separation (12%) gel were 

run at 200 V. The gel was run for 2.5 h allowing for broad distribution of proteins of size 

between 40 and 55 kDa. Pre-stained protein ladder (PageRuler, Thermo Fisher Scientific) was 

used as size standard. 

 

3% collection gel  12% separation gel 

1.2 ml   90% Mix 3 ml     60% Mix 

0.2 ml   30% Acrylamide 2 ml     30% Acrylamide 

5 µl      40% APS 10 µl   40% APS 

5 µl      TEMED 10 µl   TEMED 
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90% Mix 60% Mix 

31 ml  Upper Tris 200 ml  Lower Tris 

80 ml  Milli-Q water 160 ml  Glycerol 

 120 ml Milli-Q water 

  

Upper Tris (pH 6.7) Lower Tris (pH 8.8) 

6.1 g  Tris 18.2 g  Tris 

3 ml  10% SDS 4 ml  10% SDS 

fill up to 100 ml with Milli-Q water fill up to 100 ml with Milli-Q water 

 

5x running buffer Transfer buffer 

30 g  Tris 29 g  Tris 

10 g  SDS 14.6 g  Glycine 

144 g  Glycine 1 l  Methanol 

fill up to 2 l with Milli-Q water 1.875 g  SDS 

 fill up to 5 l with Milli-Q water 

           

2.7.4 Western blotting 

Separated proteins were transferred from the gel onto a nitrocellulose membrane (Thermo 

Fisher Scientific) at 100 V for 1 h. The success of transfer was tested by Ponceau staining 

(Ponceau S solution, Sigma-Aldrich). The membrane was submerged in the Ponceau solution 

for 5 min. After the protein visualization the lanes and the correct orientation of the 

membrane were marked. The Ponceau stain was removed by incubation of the membrane in 

0.1 M NaOH for 1 min. The NaOH was removed and the membrane was washed with Milli-Q 

water 3 times for 5 min. 

Membrane was blocked for 1 h with TBST blocking solution containing 0.1 M Tris (pH 

7.5), 150 nM NaCl, 0.1% Tween-20 and 3% milk powder (Bebivita). After the blocking, the 

membrane was incubated with the first AB diluted in the fresh blocking solution (Tc-Zen1 

and Tc-Zen2 AB, 1:1000, Tub AB, 1:10000) O/N at 4 °C. Following day, the first AB was 

removed and the membrane was washed 3 times with the TBST blocking solution for 10 min. 

Next, the membrane was incubated with the secondary AB diluted in the fresh TBST blocking 

solution (anti-rabbit and anti-mouse HRP ABs, Novex, 1:10000) for 1 h at RT. The secondary 

AB was removed and the membrane was washed with the TBST blocking solution 3 times for 

10 min.  

After the last wash, the membrane was dried gently with the paper towel. Next, the 

membrane was incubated in ECL substrate (WesternSure® ECL Substrate, LI-COR) for 5 

min. Digital detection was performed on western blot developing machine (C-DIGIT, LI-

COR). Signal was measured for 12 min with high sensitivity settings. The software (Image 

Studio, LI-COR) collects six pictures with six different signal intensities and exposure 
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settings in order to allow for a sensitive data collection (cumulative signal integration of 

multiple time points of the blot).  

 

2.7.5 Cryo-sectioning  

Eggs older than 16 h AEL cannot be devitellinated by methanol shock (see section 2.1.5). 

Therefore, in order to perform AB staining of the embryos older than 16 h AEL, the embryos 

had to be sectioned.  

Dechorionated and fixed embryos were brought from methanol to 0.1% PBT solution as 

described in section 2.4.2. Eggs were washed twice with PBT for 5 min. Afterwards, the eggs 

were embedded in warm liquid sucrose-agarose embedding medium containing 15% sucrose 

and 2% agarose in PBS. After the medium became solid, small blocks containing one embryo 

each, were cut out with scalpel blade. The blocks were stored in the 30% sucrose solution 

O/N at 4 °C. Next day the blocks were embedded in Tissue freezing medium (Leica 

Biosystems) on metal block holder and fast frozen in ice cold isopenten (2-methylbutan, 

Roth). The frozen embryos were sectioned with a cryostat (CM1850, Leica Biosystems) at -20 

°C to 20 µm (longitudinal) or 30 µm (cross) sections. The cryo-sectioned material was 

collected on the specialized microscope slides (SuperFrost® Ultra Plus, Menzel Gläser, 

VWR) and dried O/N at RT. 

 

2.7.6 Antibody staining 

The following protocol was used for both AB staining of whole mounts and cryo-sectioned 

material. Unless stated otherwise, the steps were performed at RT. In the case of whole 

mounts, embryos were first brought from methanol to 0.1% PBT as described in section 2.4.2. 

The embryos or cryo-sectioned material were washed twice with PBT for 5 min. Afterwards, 

the samples were blocked with blocking solution containing 2% BSA and 1% NGS in PBT. 

The first AB was diluted in the fresh blocking solution (Tc-Zen1 and Tc-Zen2 AB, 1:1000). 

Samples were incubated with the first AB in light-proof boxes O/N at 4 °C on rocker. 

Following day, the first AB was removed and the samples were washed with PBT 6 times for 

10 min. Next, the samples were blocked with the blocking solution for 1 h. The secondary AB 

was diluted in the fresh blocking solution (Alexa488, Invitrogen, 1:400).The samples were 

incubated with the secondary AB for 3 h. Afterwards, the secondary AB was removed and the 

samples were washed with PBT 6 times for 10 min. Finally, PBT was removed and the 

samples were covered with mounting medium containing DAPI (Vectashield, Vector 

Laboratories) and mounted on microscope slides either with two (whole mounts) or with one 

(cryo-sectioned material) spacer. 
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2.8 Visualization of specimens 

2.8.1 Sample mounting for microscopy 

The eggs were transferred from Eppendorf tube onto microscope slide, which was equipped 

with two spacers (2 halves of cover slip on top of each other glued with commercially 

available nail polish) at both edges. Long cover slip (24x50 mm) was placed on top of the 

spacers, to which it was connected with 2 drops of glycerol. The cover slip was gently 

touching the surface of the eggs. This mounting method enables gentle rotation of the eggs 

during microscopy and therefore, orientation of the embryos to various views is possible.  

 

2.8.2 Microscopy and picture processing 

Specimens prepared according to different protocols (ISH or AB staining) were visualized 

with different microscopes. Pictures of ISH staining with corresponding DAPI staining were 

taken with AxioPlan 2 microscope (Zeiss). The same microscope was used for obtaining the 

pictures of cuticle preparations, but dark field was applied. For each specimen, series of 

pictures in the consecutive focal planes were taken with AxioVision software (Zeiss). Later, 

the series of pictures was combined to a projection with Helicon Focus 6 software. 

Fluorescent AB staining of both whole mount and sectioned specimens were visualized 

with Axio Imager 2 equipped with ApoTome 2 (Zeiss). First, the Z stacks for each color were 

taken. Afterwards, the Z stacks were combined to maximum intensity projection (MPI) with 

ZEN blue software (Zeiss). 

The high magnification pictures of AB staining of cryo-sectioned specimens were 

obtained with confocal microscope LSM 700 with M2 Imager (Zeiss). First, the Z stacks for 

each color were taken. Afterwards, the Z stacks were combined to MPI with ZEN 2 black 

software (Zeiss). 

All the pictures were later processed in Photoshop (CS5.1, Adobe). Any changes 

(contrast, brightness, color) were applied to whole picture. Micrographs were combined to 

panels with Illustrator (CS5, Adobe). 

 

2.9 In silico analysis 

2.9.1 Sequence alignment 

Pairwise alignment of Tc-zen1 and Tc-zen2 coding sequences (CDS) was performed in 

ClustalX version 2.1 (Larkin et al., 2007). The sequence alignment was edited in BioEdit 

sequence alignment editor (Hall, 1999). 
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2.9.2 Identification of conserved non-coding regions 

Hox3 loci of four closely related Tribolium species were compared: T. castaneum (Brown et 

al., 2009), T. freemani (Hinton, 1948), T. madens (von Charpentier, 1825) and T. confusum 

(Du Val, 1863). Genomic sequences in the format of assembled scaffolds of T. freemani, T. 

madens, and T. confusum were obtained in FASTA-formatted files (version 26 March 2013 

for each species’ file) from the BeetleBase.org FTP site at Kansas State University 

(ftp://ftp.bioinformatics.ksu.edu/pub/BeetleBase/). The Hox3 locus sequence of T. freemani, 

T. madens, and T. confusum was obtained by blastn search of zen1 and zen2 genomic DNA 

sequence of these three species in their respective complete genome sequences using a 

standalone installation BLAST+ (version 2.2.30 (Altschul et al., 1997; Camacho et al., 

2009)). Subsequently, 5 kb long region upstream of zen1 and downstream of zen2 sequence 

was extracted with “Fetch Alignments/Sequences” tool with “Extract genomic DNA” 

function on the web-based platform Galaxy (https://usegalaxy.org/). 

In order to identify conserved non-coding regions among Hox3 loci of four Tribolium 

species, two different programs were used: standalone program Multiple Species Sequence 

Analysis version 1.1.0 (MUSSA, California Institute of Technology) 

(http://mussa.caltech.edu/mussa) and online based mVista tool (Mayor et al., 2000; Frazer et 

al., 2004). Both programs required submission of Hox3 locus genomic sequences in FASTA 

format and the corresponding annotation text file, in which the position of zen genes was 

annotated. 

First, MUSSA performed all possible pairwise alignment comparisons between the four 

Hox3 loci sequences. In the second step, multiple sequence alignment comparison of all four 

queries was performed and regions with the same sequence in all four Hox3 loci sequences 

were visualized with connecting red or blue lines regardless of the region´s position. The 

comparison was performed with default setting of 30 nt sliding window and the threshold was 

manually changed from 90% to 100% of sequence identity.  

The second program, mVista, investigates conserved domains by recursively finding 

strong anchors from the collection of maximal matches in the sequences. The default 

parameters, with which the analysis was run, were 70% sequence identity within 100 nt long 

sliding window. Both programs were also used for pairwise comparison of Tc-zen1 and Tc-

zen2 genomic sequences. 

 

2.10 RNA-sequencing after RNA interference 

2.10.1 RNA-sequencing 

In order to identify genes that are differentially expressed after RNAi of Tc-zen1 and Tc-zen2, 

the transcriptomes of KD and corresponding WT samples were sequenced. For this purpose 

RNA-sequencing (RNA-seq) after RNAi was employed. The most common technique used 

for RNA-seq is sequencing by synthesis (Illumina). The samples are sequenced on a glass 

slide with 8 lanes called a flow cell.  
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In the first step, the quality of RNA samples (prepared as described in the section 2.2.1) 

was examined by capillary electrophoresis. Since the RNA samples quality was high, the 

cDNA libraries were created according to TrueSeq protocol (Illumina). In this procedure, the 

cDNA is fragmented and each fragment is tagged at both ends with adaptor sequences. The 

adaptor sequences consist of three different regions: sequencing primer binding sites, indices 

and regions complementary to the oligo present on the flow cell. Fragments of cDNA in one 

sample are tagged with the same index region in order to allow for multiplexing of several 

samples on one lane.  

Next, the fragmented cDNA is bound to the flow cell through complementary sequences 

of adaptors and is subsequently clonally amplified through bridge amplification process, 

which generates clusters. This process is repeated multiple times and occurs simultaneously 

for millions of clusters across the flow cell resulting in clonal amplification of all the 

fragments. For the sequencing by synthesis, DNA polymerase and 4 fluorescently tagged 

dNTPs are added. During each sequencing cycle, all four single labeled dNTPs are competing 

for addition to the growing chain, but only one is successfully incorporated based on the 

sequence of the template. The fluorescent label serves as reversible terminator for 

polymerization, because the next dNTP cannot be incorporated unless the label is 

enzymatically cleaved.  

After the addition of each nucleotide (after every single cycle), the clusters are excited 

by a light source and a characteristic fluorescent signal is emitted. The emission wavelength 

along with the signal intensity determine the base call. The cDNA fragments were sequenced 

from both ends in a pair-end sequencing process. Hundreds of millions of clusters are 

sequenced in a massively parallel process (Wang et al., 2009; Wilhelm and Landry, 2009; 

Illumina ©Inc, 2010).  

 

2.10.2 Sample preparation for RNA-sequencing experiments 

Two separate RNA-seq experiments have been performed in this project. First, the Tc-

zen1
RNAi 

and Tc-zen2
RNAi 

samples from early developmental stages were prepared. The eggs of 

the injected females were staged to 6-10 h AEL (Tc-zen1
RNAi

) and 10-14 h AEL (Tc-zen2
RNAi

). 

WT samples in the respective time points were collected in parallel. KD efficiency was 

evaluated by RT-qPCR (both Tc-zen1
RNAi

 and Tc-zen2
RNAi

) and phenotypic penetrance was 

scored by serosa integrity determination (Tc-zen1
RNAi

) and cuticle preparations (Tc-zen2
RNAi

). 

The eggs were collected in three biological replicates (BRs).  

For the second RNA-seq experiment, Tc-zen2
RNAi 

samples from two different late 

developmental stages were prepared. The eggs of the injected females were staged to 48-52 h 

AEL (pre-rupture stage) and to 52-56 h AEL (post-rupture stage). Respective WT samples 

were collected in parallel. KD strength was confirmed by RT-qPCR and phenotypic 

penetrance was scored by cuticle preparations. The eggs were collected in three BRs. 
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The RNA was isolated according to the protocol described in the section 2.2.1. Samples 

of isolated RNA were sent to Cologne Centre for Genomics (CCG), where RNA-seq was 

performed. Samples of each RNA-seq experiment were multiplexed on two lanes (Table 2.2). 

 

Table 2.2A. Tc-zen1 KD (blue) and corresponding WT1 samples (orange), Tc-zen2 KD (purple) and 

corresponding WT2 samples (green) from early developmental stages were multiplexed on 2 lanes 

according to the following scheme: 

 lane sample 

1 BR1_zen1 BR2_zen1 BR1_WT1 BR2_WT1 BR3_zen2 BR3_WT2 

2 BR1_zen2 BR2_zen2 BR1_WT2 BR2_WT2 BR3_zen1 BR3_WT1 

 

Table 2.2B. Tc-zen2 KD samples from the pre-rupture stage (48-52 h AEL, blue) and the 

corresponding WT samples (48-52 h AEL, red), Tc-zen2 KD samples from the post-rupture stage (52-

56 h AEL, purple) and the corresponding WT samples (52-56 h AEL, green) were multiplexed on 2 

lanes according to the following scheme: 

lane sample 

1 
BR1_WT 

48-52 

BR2_WT 

48-52 

BR1_KD 

48-52 

BR2_KD 

48-52 

BR3_WT 

52-56 

BR3_KD 

52-56 

BR4_WT 

48-52 

BR4_KD 

48-52 

2 
BR3_WT 

48-52 

BR3_KD 

48-52 

BR1_WT 

52-56 

BR2_WT 

52-56 

BR1_KD 

52-56 

BR2_KD 

52-56 

BR4_WT 

52-56 

BR4_KD 

52-56 

 

Note that, BR for RNA-seq experiment was defined as the RNA sample isolated from 

the eggs, which were laid by females from only one cohort. Three different cohorts were used 

for both RNA-seq experiments in order to obtain three BRs. However, in order to make the 

results from the second RNA-seq experiment (from late developmental stages) statistically 

more robust, we sequenced two samples (two technical replicates) from the second BR. 

Because it is highly unlikely that the eggs collected in different days from one cohort are laid 

by the same females, we decided to consider the second sample from the BR2 as the fourth 

BR. 

 

2.11 Generating pipeline for RNA-sequencing data analysis 

2.11.1 Joining the files 

To compare the list of genes in the output files of the differential expression (DE) analysis 

performed with two different programs, the files were joined (merged) according to the 

column, in which the content shared by both files (name of genes) is present. The merging 

was performed with “Join, Subtract and Group” tool with “Join two Datasets” function on the 

web-based platform Galaxy (https://usegalaxy.org/). The data from merged files were 

transferred to Excel, where subsequently the calculation of overlapping genes was performed. 
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2.11.2 Ranking test 

To compare fold change (FC) values assigned to the same differentially expressed genes 

identified by two different programs, the Bland Altman Leh ranking test (Bland and Altman, 

1986) was employed. The test was performed with “BlandAltmanLeh” package (Lehnert, 

2015) in R Studio (R Core Team, 2016). The test assigns ranks to FC values of the same gene 

in both datasets and evaluates agreement between two methods, by calculating the mean and 

the difference between the ranks. Based on the data distribution model the test calculates the 

critical value, until which the results from the two different methods can be considered the 

same. 

 

2.12 RNA-sequencing data analysis 

2.12.1 Quality control 

Prior to any further data analysis, the quality of the raw sequencing reads obtained after RNA-

seq has to be examined. Quality control allows for detection of sequencing errors, PCR 

artifacts and contaminations (e.g.: overrepresented sequences of ribosomal or mitochondrial 

RNA, bacterial contamination). The quality control of the Illumina reads obtained in this 

project was examined with FastQC (Andrews, 2014), which provides an overview of 

sequence quality, GC content, the presence of adaptors, overrepresented k-mers and 

duplicated reads. Acceptable levels of k-mers, duplications and the GC-content are organism- 

and experiment-specific, but these values have to be homogenous for samples within one 

experiment. 

 

2.12.2 Trimming 

The first step of the RNA-seq data analysis is trimming. In general, quality of the read 

sequence decreases towards the 3´end of the read. However, because of adaptor sequences the 

quality might also be reduced at the 5´ end. If the quality of the 5 ´end is not sufficient, it is 

better to remove the low-quality 5´ part of the read to increase the quality of mapping. Reads 

obtained in this project were trimmed with the Trimmomatic (version 0.36) (Bolger et al., 

2014) with the following command: 

java -jar trimmomatic-0.36.jar PE -phred33  -threads 16 -trimlog <logfile name> <input file 

names> -baseout <prefix  for output file names> ILLUMINACLIP: 

adapters/Adapter_indices_TcasRNA-seq-PE.fa:2:30:10:6:TRUE LEADING:40 

SLIDINGWINDOW:4:20 MINLEN:36 

The low quality bases at the 5´ end were removed using “LEADING:40” function, 

which trimmed all the bases from the 5´ end with the quality score lower than 40. Adaptor 

sequences were discarded with “ILLUMINACLIP” function, with which all the predefined 

TrueSeq adaptor sequences were trimmed. To remove poor quality bases in the read, 

“SLIDINGWINDOW:4:20” function was used to remove any base with quality score lower 

than 20 in the region of 4 bases. Finally, any read shorter than 36 bases was automatically 
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discarded with the “MINLEN:36” function. Quality control of the reads was again examined 

after the trimming procedure with FastQC. 

 

2.12.3 Filtering overrepresented sequences of ribosomal and mitochondrial RNA  

The quality control of the raw sequencing reads reported overrepresented sequences of T. 

castaneum ribosomal and mitochondrial RNA. In general contamination with these RNA 

sequences can lower the mapping efficiency. Therefore RNA reads containing these 

sequences were filtered out by mapping with Bowtie2 (Langmead and Salzberg, 2012). First, 

a database of all the T. castaneum ribosomal and mitochondrial RNA was created by 

searching the NCBI gene database with the query “'tribolium [organism] AND (ribosomal OR 

mitochondrial OR mitochondrion) NOT (whole genome shotgun) NOT (Karroochloa 

purpurea)”. FASTA-formatted sequences of all these genes were downloaded and a database 

compatible with Bowtie2 was created using “bowtie2-built” function. Subsequently, RNA 

reads were mapped to this database and only those reads that did not map were kept and 

extracted to a separate file. Quality control of the reads was again examined with FastQC after 

the filtering procedure and no overrepresented sequences of ribosomal and mitochondrial 

RNAs were detected. 

 

2.12.4 Mapping 

Mapping efficiency represents the percentage of mapped sequencing reads and it highly 

depends on the quality of the reference genome used. Since the annotation of the T. 

castaneum genome is in continuous process, several automated gene prediction sets, three 

final assembly versions and two official gene sets (OGS) versions are currently available 

(summarized in Table 2.3).  

 

Table 2.3. Overview of currently available versions of different Tribolium castaneum gene 

predictions, corresponding assemblies and corresponding official gene sets (OGS). 

Gene prediction Corresponding assembly version Corresponding OGS 

augustus 2 ----- ----- 

augustus 3 Tcas 3.0 OGS2 

augustus 4 Tcas 4.0 ----- 

augustus 5 Tcas 5.2 OGS3 

 

2.12.4.1 Mapping to official gene set 

Trimmed and filtered sequencing reads were mapped to T. castaneum OGS3. A major 

complication in quantifying the transcript abundancies is the fact that reads do not always 
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map uniquely, but rather map to several locations (multi-mapping reads). For this reason 

RSEM (RNA-seq by Expectation Maximization) (Li and Dewey, 2011) was employed for 

mapping. RSEM implements an expectation maximization algorithm, which assigns multi-

mapping reads partially to different locations and afterwards it computes maximum likelihood 

transcript abundance estimates. With this application the raw read count values are presented 

as non-integers. RSEM uses Bowtie2 as a default aligner for the mapping. For mapping to the 

OGS3 “Tcas5.2_GenBank.corrected_v5.renamed.mrna.fa” file was used (available in iBeetle 

Genome Browser - http://bioinf.uni-greifswald.de/tcas/genes/tcas5_annotation/). The 

transcript abundance estimation was calculated with “rsem-calculate-expression” and “calc-

ci” functions. A diagnostic file containing statistics on mapping efficiency was obtained with 

“rsem-plot-model” function. 

 

2.12.4.2 Mapping to the genome 

Trimmed and filtered sequencing reads were mapped to the T. castaneum genome (Tcas 5.2 

assembly version) with STAR aligner (Dobin et al., 2013). For mapping to the genome 

“GCA_000002335.3_Tcas5.2_genomic.fna” file containing complete genome sequence and 

“GCA_000002335.3_Tcas5.2_genomic.gtf” file containing annotations of all genes were 

used. These files were obtained from NCBI genome database 

(ftp://ftp.ncbi.nih.gov/genomes/all). The mapping with STAR was performed with both strict 

and relaxed parameters. With strict parameters (“outFilterMultimapNmax 1”; 

“outFilterMismatchNmax 1”) one read could be mapped to maximum 10 locations and only 1 

mismatch was allowed. With the relaxed parameters (“outFilterMultimapNmax 100”; 

“outFilterMismatchNmax 10”) the multimapping allowance was set to 100 locations and the 

number of mismatches was set to 10. Statistics on mapping efficiency were obtained in the 

output file using the “Within” function. 

 

2.12.5 Feature counting 

Before any biological interpretation can take place, read mapping results have to be 

summarized in terms of read coverage for genomic features of interest. For RNA-seq data, the 

strategy taken is to count the number of reads (read summarization) that fall into annotated 

genes (by mapping to the reference genome). In principle, counting reads that map to a 

catalogue of features is straightforward. However, one has to consider the problem of 

counting reads that fall into an intronic region or beyond an annotated region. Therefore 

establishment of a catalogue of features in the counting software is necessary. In this project 

the features (exons) were summarized in the annotation file used for mapping to the genome 

(GCA_000002335.3_Tcas5.2_genomic.gtf). With featureCounts (available in SourceForge 

Subread, version 1.5.1) (Liao et al., 2013, 2014) raw read counts from the STAR output 

mapping files were extracted based on the annotation file.  
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2.12.6 Filtering out genes with low read count 

Raw read counts data were transferred from both RSEM and feautureCounts output files to 

Excel file. The count data were organized in a table (count table) which reports, for each 

sample of all conditions, the number of reads that have been mapped to each gene. Measuring 

a large fraction of the genes with low read counts can produce a dataset that is biased towards 

identifying differentially expressed genes with low read counts, since these genes are 

measured with higher noise (Busby et al., 2013). Therefore, all the genes, which had less than 

10 reads assigned in both KD and corresponding WT samples, were filtered out using “count 

if” function in Excel.  

 

2.12.7 Differential expression analysis 

A basic task in the analysis of count data derived from RNA-seq is the detection of 

differentially expressed genes. In this project, two programs for DE analysis were used: 

DESeq2 (Love et al., 2014) and EBSeq (Leng et al., 2013). Both of the programs implement 

negative binomial data distribution model. DE analysis was performed with default settings of 

both programs. The programs reported the log2 FC values of gene expression between the 

conditions. Genes with log2 FC values higher than ±1 (at least two times higher/lower 

expression compared to WT) were considered differentially expressed. 

 

 

2.12.8 Principal component analysis 

Difference between the sequenced samples was evaluated by principal component analysis 

(PCA). PCA is a statistical procedure that converts possibly correlated variables into a set of 

values of linearly uncorrelated variables (principal components). According to the 

transformation definition, the first PC has the largest possible variance, which means that it 

accounts for as much variability in the dataset as possible. Raw read count datasets were used 

as input files for PCA, performed with the DESeq2 package in R Studio. 

 

2.12.9 Analysis of shared targets 

To identify the number of target genes that Tc-zen1 and Tc-zen2 share during early 

embryogenesis, comparative analysis of differentially expressed genes after Tc-zen1
RNAi

 and 

Tc-zen2
RNAi

 was performed. Due to the fact that WT and KD samples of two different time 

points (described in the section 2.10.2) (WT1 and Tc-zen1 KD samples: 6-10 h AEL and WT2 

and Tc-zen2 KD samples: 10-14 h AEL, hereafter referred to as WT shift) were sequenced, 

the expression change of the genes during the WT shift was taken into account. Therefore, 

three groups of isoforms were created according to the following procedure: first, raw read 

count data from WT1 and WT2 samples were filtered in order to discard all the isoforms that 

were assigned less than 10 reads (as described in the section 2.12.6). Next, DE analysis of 

filtered datasets was performed with the DESeq2. Resulting group of isoforms with Padj value 
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≤0.1 was divided into three groups based on the FC values: non-differentially expressed 

isoforms (-2>FC<2), strongly upregulated isoforms (FC≥2) and strongly downregulated 

isoforms (FC≤-2). These three groups of isoforms were used as the input datasets for the 

further analyses. 

The group of non-differentially expressed isoforms within the WT shift was first 

compared to all strongly differentially expressed isoforms after Tc-zen1
RNAi 

(-2≥FC≥2, 

Padj≤0.1). The group of isoforms overlapping between these two datasets was afterwards 

compared with all strongly differentially expressed isoforms after Tc-zen2
RNAi 

(-2≥FC≥2, 

Padj≤0.1). The genes overlapping between these two datasets were marked as shared by Tc-

zen1 and Tc-zen2. In the second step of the comparative analysis, the group of isoforms not 

differentially expressed within WT shift and strongly differentially expressed after Tc-

zen1
RNAi 

was compared with all weakly differentially expressed isoforms after Tc-zen2
RNAi

     

(-1<FC<1, Padj≤0.1). The genes identified after the second comparison were marked as shared 

by Tc-zen1 and Tc-zen2, but with the lower threshold by Tc-zen2.  

Similarly to the previous comparison, the isoforms that were strongly up- and 

downregulated within the WT shift were first compared with all strongly differentially 

expressed isoforms after Tc-zen1
RNAi 

(-2≥FC≥2, Padj≤0.1). The group of overlapping isoforms 

was subsequently compared first with all strongly differentially expressed isoforms after Tc-

zen2
RNAi

 (-2≥FC≥2, Padj≤0.1) and afterwards with all weakly differentially expressed isoforms 

after Tc-zen2
RNAi 

(-1<FC<1, Padj≤0.1). Based on these comparisons, genes that are activated 

and repressed by Tc-zen1 and at the same time shared with Tc-zen2 (on both high and lower 

thresholds) were identified. 

To identify genes that are either activated, or repressed by Tc-zen2 (both with high and 

lower thresholds) and at the same time shared with Tc-zen1, the isoforms that were strongly 

up- and downregulated within the WT shift were first compared with all strongly 

differentially expressed isoforms after Tc-zen2
RNAi 

(-2≥FC≥2, Padj≤0.1). The group of 

overlapping isoforms was subsequently compared with all strongly differentially expressed 

isoforms after Tc-zen1
RNAi

 (-2≥FC≥2, Padj≤0.1). In the second step, the isoforms that were 

strongly up- and downregulated within the WT shift were compared with all weakly 

differentially expressed isoforms after Tc-zen2
RNAi

 (-1<FC<1, Padj≤0.1). The group of 

overlapping isoforms was subsequently compared to all strongly differentially expressed 

isoforms after Tc-zen1
RNAi 

(-2≥FC≥2, Padj≤0.1). All the datasets were compared by joining 

(merging) as described in the section 2.11.1. 

 

2.12.10 Gene ontology term analysis  

To retrieve a functional profile of differentially expressed genes identified after the RNA-seq 

during late embryogenesis, gene ontology (GO) term analysis was performed with Blast2GO 

(Conesa et al., 2005). Four datasets of differentially expressed genes were used as input files 

for the GO term analysis: differentially expressed genes after Tc-zen2
RNAi 

in the pre-rupture 

stage (48-52 h AEL), differentially expressed genes after Tc-zen2
RNAi 

in the post-rupture stage 

(52-56 h AEL), differentially expressed genes after the WT shift from the pre- to post-rupture 
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stage (WT 48-52 vs 52-56 h AEL) and differentially expressed genes after Tc-zen2
RNAi

 after 

the shift from the pre- to post-rupture stage (Tc-z2KD 48-52 vs 52-56 h AEL). The datasets 

were blasted against two different databases available in NCBI: “nr” database (non-redundant, 

GenBank CDS translations + PDB + SwissProt + PIR + PRF excluding environmental 

samples from WGS projects, version 9 July 2017) and “Drosophila” database (Drosophila 

melanogaster gene database, version 9 June 2017). Blasting was performed using insect 

taxonomy filter. 

GO term analysis consists of three steps: 

1)  BLAST: gene description is assigned to the gene of interest based on the sequence 

homology  

2)   MAPPING: GO terms are assigned to the blast results 

3)   ANNOTATION: the information obtained from blast and mapping steps is evaluated  

 

Only genes that passed all the three steps were considered in the further analysis: 51-

54% of genes (when blasted against the Drosophila database) and 61-63% of genes (when 

blasted against the nr database). The functional profile of datasets was retrieved with the 

“Make Combined Graph” function. T. castaneum gene sequences were assigned to each GO 

term, which were divided into the groups according to the level of GO term. Only GO terms 

of the level 5 were used for the further analysis. In the next step, GO terms falling into 

categories of interest were grouped according to similarity in function (summarized in Table 

2.4). Afterwards a unique count of T. castaneum gene sequences was calculated per each 

category of interest and the percentage was compared to the rest of the GO terms in the level 

5 for each GO type. 

 

Table 2.4. List of GO terms assigned to each category of interest in each GO type. 

Category of interest GO type: Biological process 

Stress  

response to endoplasmic reticulum stress 

cellular response to oxidative stress 

regulation of translation in response to stress 

regulation of response to osmotic stress 

stress-activated protein kinase signaling cascade 

positive regulation of stress fiber assembly 

age-dependent response to oxidative stress 

regulation of stress fiber assembly 

Cuticle  

chitin-based cuticle development 

molting cycle, chitin-based cuticle 

cuticle pigmentation 

chitin-based cuticle sclerotization 

ecdysis, chitin-based cuticle 

regulation of adult chitin-containing cuticle pigmentation 

regulation of chitin-based cuticle tanning 

cuticle pattern formation 
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Cytoskeleton 

cytoskeleton organization 

actin cytoskeleton organization 

actin filament organization 

actin filament bundle assembly 

cytoskeleton-dependent cytokinesis 

actin filament-based movement 

regulation of actin cytoskeleton organization 

establishment or maintenance of cytoskeleton polarity 

cytoskeleton-dependent intracellular transport 

microtubule cytoskeleton organization involved in mitosis 

cytoskeletal anchoring at plasma membrane 

oocyte microtubule cytoskeleton organization 

establishment or maintenance of microtubule cytoskeleton 

polarity 

regulation of actin filament length 

Epithelium and 

morphogenesis 

epithelium development 

morphogenesis of an epithelium 

epithelial tube morphogenesis 

cell morphogenesis 

cell part morphogenesis 

cell projection morphogenesis 

imaginal disc morphogenesis 

post-embryonic animal organ morphogenesis 

imaginal disc-derived appendage morphogenesis 

post-embryonic appendage morphogenesis 

cell morphogenesis involved in differentiation 

sensory organ morphogenesis 

epithelial cell development 

gland morphogenesis 

digestive tract morphogenesis 

epithelium migration 

regulation of organ morphogenesis 

Malpighian tubule morphogenesis 

dendrite morphogenesis 

morphogenesis of embryonic epithelium 

embryonic hindgut morphogenesis 

regulation of cell morphogenesis 

regulation of morphogenesis of an epithelium 

antennal morphogenesis 

trachea morphogenesis 

epithelial cell proliferation involved in renal tubule 

morphogenesis 

epithelial tube formation 

mesoderm morphogenesis 

transepithelial transport 

spermathecum morphogenesis 

heart morphogenesis 

branching morphogenesis of an epithelial tube 
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Epithelium and 

morphogenesis 

negative regulation of cell morphogenesis involved in 

differentiation 

morphogenesis of a branching epithelium 

chaeta morphogenesis 

regulation of cell proliferation involved in imaginal disc-

derived wing morphogenesis 

male genitalia morphogenesis 

imaginal disc-derived leg joint morphogenesis 

intestinal epithelial cell differentiation 

positive regulation of cell morphogenesis involved in 

differentiation 

post-embryonic genitalia morphogenesis 

cell elongation involved in imaginal disc-derived wing 

morphogenesis 

Wing disc and pupal and 

metamorphosis 

instar larval or pupal development 

wing disc development 

instar larval or pupal morphogenesis 

metamorphosis 

ECM and adhesion 

cell-matrix adhesion 

extracellular matrix organization 

negative regulation of cell-cell adhesion 

Regulation of gene expression 

gene expression 

regulation of gene expression 

negative regulation of gene expression 

positive regulation of gene expression 

regulation of translational initiation 

chromatin silencing 

negative regulation of chromatin silencing 

regulation of chromatin silencing 

Transmembrane transport 

transmembrane transport 

regulation of transmembrane transport 

regulation of transmembrane transporter activity 

positive regulation of ion transmembrane transporter activity 

positive regulation of ion transmembrane transport 

Category of interest GO type: Molecular function 

Regulation of gene expression 

DNA binding 

transcription factor activity, RNA polymerase II distal 

enhancer sequence-specific binding 

transcription factor activity, RNA polymerase II core 

promoter proximal region sequence-specific binding 

transcriptional activator activity, RNA polymerase II 

transcription regulatory region sequence-specific binding 

transcriptional repressor activity, RNA polymerase II 

transcription regulatory region sequence-specific binding 

flavin adenine dinucleotide binding 

purine ribonucleotide binding 

purine nucleoside binding 

purine nucleotide binding 
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Regulation of gene expression 

ribonucleoside binding 

purine ribonucleoside triphosphate binding 

RNA binding 

repressing transcription factor binding 

regulatory region nucleic acid binding 

chromatin insulator sequence binding 

Cuticle  
structural constituent of chitin-based larval cuticle 

chitin deacetylase activity 

Cytoskeleton  

myosin binding 

actin binding 

actinin binding 

actin filament binding 

Transmembrane transport 

ion transmembrane transporter activity 

secondary active transmembrane transporter activity 

primary active transmembrane transporter activity 

organic acid transmembrane transporter activity 

sulfate transmembrane transporter activity 

active ion transmembrane transporter activity 

monoamine transmembrane transporter activity 

taurine transmembrane transporter activity 

phosphate ion transmembrane transporter activity 

serotonin transmembrane transporter activity 

Category of interest GO type: Cellular component 

Regulation of gene expression 

nucleus 

chromatin 

nuclear chromosome part 

nuclear chromosome 

chromosomal region 

nuclear transcription factor complex 

Cytoskeleton  

cytoskeleton 

contractile fiber 

unconventional myosin complex 

polymeric cytoskeletal fiber 

cell cortex region 

cell cortex part 

myosin II complex 

ECM and adhesion focal adhesion 
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3 METHOD DEVELOPMENT 

3.1 Generating a pipeline for RNA-sequencing and differential expression data 

analysis 

In this project I performed two RNA-sequencing (RNA-seq) experiments: in the first one, Tc-

zen1
RNAi

 and Tc-zen2
RNAi

 samples, and corresponding wild type (WT) samples in the stages of 

the expression peaks of Tc-zen genes (WT1: 6-10 h AEL and WT2: 10-14 h AEL, 

respectively; hereafter referred to as early stages) were sequenced. In the second RNA-seq 

experiment, Tc-zen2
RNAi

 and corresponding WT samples of the pre-rupture and the post-

rupture stages (48-52 h AEL and 52-56 h AEL, respectively; hereafter referred to as late 

stages) were sequenced.  

Data obtained after the RNA-seq of the early stages were first analyzed by quickNGS 

pipeline (Wagle et al., 2015). Unfortunately, this pipeline did not include the crucial step of 

filtering out the genes with low read counts (≤10). Not including this step in the pipeline 

caused generation of high number of genes that were falsely designated as differentially 

expressed (false positive). In addition, the RNA-seq of the late stages samples was planned to 

be run on new Illumina machines producing reads with the length of 75 bp, while the “early 

stages” RNA-seq raw datasets had 100 bp long reads. Thus, we decided to reanalyze the 

“early stages” RNA-seq datasets and simultaneously generate a pipeline that would be used 

for the “late stages” RNA-seq data analysis as well.  

I compared the output results of several bioinformatic tools in order to choose the ones 

that most accurately reflect the underlying biological events and processes. To describe the 

consequences of the different read lengths, we produced a 75 bp dataset by trimming the 

original 100 bp long reads from their 3´ region. Afterwards, I ran the entire comparative 

analysis for both 100 bp and 75 bp datasets in parallel (Fig. 3.1).  

 

3.1.1 Quality control, trimming and filtering 

I first performed quality control assessment (per base sequence quality, per sequence GC 

content, sequence length distribution, overrepresented sequences, adaptor content, etc.) of the 

raw sequencing data using FastQC (Andrews, 2014) (Fig. 3.1A). Next, the adaptor sequences 

and the base pairs with quality score lower than 40 were trimmed from the 5´ region of the 

reads with Trimmomatic (Bolger et al., 2014) (Fig. 3.1B). Afterwards, quality control was 

performed again and overrepresented sequences of mitochondrial and ribosomal RNA were 

identified. The overrepresented RNA sequences were filtered out by mapping to the database 

of these sequences (see Methods section 2.12.3) using Bowtie2 (Langmead and Salzberg, 

2012) (Fig. 3.1C). Approx. 9 million reads mapping to the database were filtered out from 

each file. Finally, the trimmed and filtered datasets were run through the last quality control 

and passed all the check points. 
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Figure 3.1. Pipeline for RNA-sequencing and differential expression data analysis. Several 

bioinformatic tools were used for particular steps (A-G) of RNA-seq data analysis. The results from 

these programs were subsequently compared in order to establish the final pipeline. Tools highlighted 

by grey color were not used, due to the fact that FeatureCounts outputs did not report sufficient 

information for further analysis. 

 

3.1.2 Mapping RNA-sequencing data to the genome and to the official gene set 

The trimmed and filtered reads were mapped to both Tribolium castaneum genome (assembly 

version Tcas 5.2) using STAR (Dobin et al., 2013) and the official gene set 3 (OGS3, 18536 

isoforms) using RSEM (Li and Dewey, 2011) (Fig. 3.1D). Next, depending on whether the 

reads were mapped with STAR or RSEM, the raw read counts were extracted either with 

FeatureCounts (mapping with STAR) or directly obtained from the RSEM output files (Fig. 

3.1E). Subsequently, the genes with less than or equal to 10 reads in both WT and knockdown 

(KD) samples were filtered out in Excel, using the “count if” function (Fig. 3.1F). Approx. 

7300-7500 genes were filtered out from the datasets obtained from RNA-seq of early 

developmental stages. 

Unfortunately, the FeatureCounts output did not contain standard T. castaneum gene 

identifiers (TC IDs), but instead it reported RNA IDs, chromosome coordinates for each exon 

and DNA strand direction. In general, gene identifiers should be present in the annotation file 

(gff), which is required for mapping to the genome. However, T. castaneum gff file does not 

contain TC IDs and therefore, they could not have been reported in the raw read count output 

of FeatureCounts. Thus, we tried to extract TC IDs based on the RNA IDs from another gff 

file available for T. castaneum genome. However, the RNA IDs between the two gff files did 
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not correspond. Therefore, we decided not to pursue differential expression (DE) analysis 

with the genome mapping results obtained from STAR (Fig. 3.1, grey text). DE analysis was 

performed only with the raw read count datasets, which were obtained from the mapping to 

the OGS3 by RSEM. 

 

3.1.3 Differential expression analysis 

I performed DE analysis using two different programs based on the same data distribution 

models (negative binomial), but different DE tests (Padj-value calculations): DESeq2 (Love et 

al., 2014) and EBSeq (Leng et al., 2013) (Fig. 3.1G). Although the programs use the same 

underlying data distribution model, they did not generate lists with the same genes. Thus, the 

DE analysis results from both programs were further compared in detail. Ultimately, I 

investigated the influence of both the read length (75 bp and 100 bp) and the programs used 

(DESeq2 and EBSeq) on the DE analysis results. 

 

3.1.3.1 Influence of the read length 

To begin with, I evaluated the impact of the read length on the number of genes identified by 

both DESeq2 and EBSeq. Both programs identified more genes by analysis of the 75 bp 

dataset than the 100 bp dataset (100 more genes with DESeq2 and 40 more genes with 

EBSeq). These 140 genes comprised both differentially expressed and non-differentially 

expressed genes. Although the DE analysis of the 100 bp dataset identified a lower number of 

genes, it also identified genes that were omitted by the analysis of the 75 bp dataset. 

Therefore, in order to investigate whether by choosing the 75 bp dataset over the 100 bp 

dataset for DE analysis I lose potential candidate target genes, I evaluated fold change (FC) 

values of these genes. The genes that were exclusively identified by the DE analysis of the 

100 bp dataset had FC values lower than two (considered not strongly differentially 

expressed). Therefore, by considering the 75 bp dataset as input dataset to the pipeline, I 

would not lose genes that could potentially be designated as relevant Tc-zen1 or Tc-zen2 

candidate targets in early embryogenesis. 

Next, I compared the mapping efficiency statistics (percentage of mapped reads). 

Besides the raw read count information, it is also possible to retrieve mapping efficiency 

statistics from the so called “Diagnostic file”. In this file the alignment statistics describe the 

proportion of uniquely mapping reads and multi-mapping reads (reads mapping to several 

genes) to those that were not mapped at all (Fig. 3.2). I compared the mapping efficiency of 

the shorter 75 bp reads to the mapping efficiency of the longer 100 bp reads. On average, 8-

15% more reads mapped uniquely, when their length was 75 bp. Further, only 3-4% more 

reads mapped to multiple genes when their length was shorter (75 bp). These results suggest 

that by shortening the read length we gained higher mapping efficiency, while the number of 

multi-mapping reads did not increase drastically (percentages summarized in Table 3.1). 

Moreover, this result is consistent with the identification of higher number of genes after DE 

analysis of the shorter reads (75 bp dataset). Since by analyzing the 75 bp datasets we were 
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able to achieve higher mapping efficiency and, therefore, identify more genes, I decided not to 

consider the 100 bp dataset for the further comparative analysis. 
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Table 3.1. Comparison of the alignment statistics of all the sequenced samples from early stages. 

Information about mapping efficiency was retrieved from the RSEM output diagnostic files. The 

comparison of the mapping efficiency of the same samples mapped as 75 bp long reads and 100 bp 

long reads is shown. The samples mapped as 75 bp long reads have higher mapping efficiency, 

gaining 8-15% of uniquely mapping reads and only 3-4% of multi-mapping reads. Overall alignment 

rate represents the sum of uniquely mapping and multi-mapping reads. BR-biological replicate. 

Sample name 

Unique-mapping 

[%] 

Multi-mapping 

[%] 

Overall alignment 

rate [%] 

100 bp 75 bp 100 bp 75 bp 100 bp 75 bp 

Tc-zen1KD_BR1 55 68 14 17 69 85 

Tc-zen1KD_BR2 55 69 13 17 68 86 

Tc-zen1KD_BR3 54 64 15 19 69 83 

WT1_BR1 51 66 14 18 65 84 

WT1_BR2 54 68 14 17 68 85 

WT1_BR3 56 67 14 17 70 84 

Tc-zen2KD_BR1 57 68 14 17 71 85 

Tc-zen2KD_BR2 58 68 14 17 72 85 

Tc-zen2KD_BR3 57 68 14 17 71 85 

WT2_BR1 56 64 15 18 71 82 

WT2_BR2 58 67 14 17 72 84 

WT2_BR3 55 66 14 17 69 83 

range 51-58 64-69 13-15 17-19 65-72 82-86 

difference 8-15 3-4 11-19 

 
 

3.1.3.2 Influence of the program used for the differential expression analysis 

Finally, I compared the datasets of differentially expressed genes identified by EBSeq to those 

identified by DESeq2. The two programs did not identify the same number of genes: with the 

same considerations and criteria (both differentially expressed and non-differentially 

expressed genes, Padj≤0.1), DESeq2 identified 1904 genes and EBSeq 1496 genes. Out of 
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these, only 1243 genes were identified by both programs. This means that 661 genes were 

exclusively identified by DESeq2 and 253 genes exclusively by EBSeq.  

In order to evaluate, whether the genes identified by both DESeq2 and EBSeq (1243 

genes) are designated as either differentially expressed or non-differentially expressed with 

similar pattern, I compared the FC values of all the 1243 genes between the two datasets. For 

this comparison I chose the Bland-Altman-Leh ranking test (Bland and Altman, 1986) that 

assigns a rank to the FC value of each gene in both datasets and afterwards plots the mean of 

these ranks against their difference. Next, based on the data distribution, the algorithm 

calculates the critical value. This analysis showed that Tc-zen1 targets identified by both 

programs were assigned comparable log2 FC values within the range of ±1.2719, but beyond 

this critical range the Tc-zen1 target genes were assigned significantly different FC values by 

the two programs (Fig. 3.3A). In conclusion, the datasets generated by DESeq2 and EBSeq 

are showing different results for the Tc-zen1 targets.  

Similar pattern was observed for the log2 FC values of Tc-zen2 targets: the two 

programs assigned comparable results to the genes with the FC values within the range of 

±1.7853, but beyond this critical range the two programs generated significantly different 

results (Fig. 3.3B). Overall, the Bland-Altman-Leh test showed that the datasets generated by 

DESeq2 and EBseq do not provide the same DE analysis results.  

Nonetheless, it has been previously reported that EBSeq does perform more accurately 

when working with larger number of biological replicates (BRs) (≥10), while DESeq2 

performs very well even with smaller number of BRs (≤3). Moreover, DESeq2 is in general 

more strict than EBSeq, which calculates Padj values more liberally (e.g.: where DESeq2 

would assign higher Padj value, EBSeq would assign a lower one and this gene would pass the 

chosen cut-off criteria) (Seyednasrollah et al., 2015). Therefore, I finalized the pipeline in the 

following order:  

 

A) The quality control of the 75 bp long reads is assessed by FastQC. 

B) The reads are trimmed with Trimmomatic. 

C) The overrepresented sequences of mitochondrial and ribosomal RNA are filtered out 

with Bowtie2. 

D) The trimmed and filtered reads are mapped to the OGS3 with RSEM. 

E) The raw read count information is directly obtained from the RSEM output files. 

F) The genes with low expression levels (≤10 reads in each WT and KD sample) are 

filtered out in Excel. 

G) The final DE analysis is performed with DESeq2. 
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4 RESULTS 

4.1 Hox3 locus sequence conservation 

4.1.1 Investigation of conserved non-coding regions between Tc-zen1 and Tc-zen2 

It has been previously reported that, although Tc-zen genes derived from recent tandem 

duplication, they acquired distinct functions (van der Zee et al., 2005). Tc-zen genes are 

located in Hox3 locus and are separated by only 172 bp. Therefore, we assumed that in order 

for them to perform distinct functions in two different developmental stages, a fine-tuned 

transcriptional regulation, comprising enhancers and insulators, is most likely involved.  

In order to investigate whether the transcriptional regulation operates through the same 

regulatory regions on both Tc-zen genes, I compared the complete genomic DNA sequences 

of Tc-zen1 and Tc-zen2, including 5´ and 3´ UTRs, and their promoter regions: 200 bp 

upstream of Tc-zen1 5´ UTR and 172 bp (the intergenic region) upstream of Tc-zen2 5´ UTR. 

To make the in silico analysis results more robust, I used two different programs: online based 

mVista tool (Mayor et al., 2000; Frazer et al., 2004) and standalone Mussa analyzer 

(http://mussa.caltech.edu/mussa). 

With the mVista tool a conserved non-coding region was not identified (Fig. 4.1). The 

only conserved region was identified between the coding sequence of the third exons and it 

describes conservation levels of the homeobox region (Fig. 4.1, grey rectangle). On the other 

hand, with the Mussa analyzer, two conserved non-coding regions were identified (Fig. 4.2). 

One big advantage of the Mussa analyzer is that it considers conserved regions regardless of 

their position or direction on DNA strand. In fact, by setting the threshold of conservation to 

21/30 identities/nt (sliding window), the first conserved region was identified in the reverse-

complement direction between the promoter sequence of Tc-zen1 and the second intron of Tc-

zen2 (Fig. 4.2A, blue line). With the same threshold of conservation, the second conserved 

non-coding region was identified between the second intron of Tc-zen1 and the first intron of 

Tc-zen2 (Fig. 4.2A, thin red line). Identification of the two conserved non-coding regions was 

rather surprising and potential transcriptional factor binding sites (TFBS) within these regions 

should be investigated in the future. However, by increasing the threshold of conservation 

(from 73% to 100%) only conserved coding region identified is localized within the third 

exon of both Tc-zen genes and spans the homeobox sequence (Fig. 4.2B-F). Absence of 

highly conserved non-coding regions between the promoter sequences of Tc-zen genes 

implies selective transcriptional regulation of Tc-zen1 and Tc-zen2 genes, which could 

explain, to a certain degree, acquirement of two different functions.  
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Figure 4.1. Tc-zen1 and Tc-zen2 mVista alignment. Using mVista tool, conserved non-coding regions between Tc-zen1 and Tc-zen2 genomic DNA were not 

identified. The only identified conserved region falls into the coding region of the third exon (purple) and shows conservation levels of the homeobox sequences 

(grey rectangle). The conservation level reaches 75%.  
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Figure 4.2. Tc-zen1 and Tc-zen2 Mussa alignment. Conserved sequences in the same and opposite 

strand directions between Tc-zen1 and Tc-zen2 are displayed with red and blue connecting lines, 

respectively. Sliding threshold window is defined within each analysis window. Exons of Tc-zen1 and 

Tc-zen2 genes are represented by yellow and green rectangles, respectively. 5´ and 3´ UTRs are 

represented by light blue rectangles. The promoter region is represented with a black line located 

before the 5´ UTR of both Tc-zen genes. With a 21/30 similarity threshold, two conserved non-coding 

regions were found: one between the promoter region of Tc-zen1 and the second intron of Tc-zen2 and 

the other between the second Tc-zen1 intron and the first Tc-zen2 intron (blue and thin red line, 

respectively) (A). However, by increasing the similarity threshold, no highly conserved non-coding 

regions were identified (B-F). High conservation levels with lower thresholds were only identified in 

the coding region between the third exons of Tc-zen genes in the homeobox sequence (A-E). 

 

4.1.2 Investigation of conserved non-coding regions in Hox3 locus of four closely related 

Tribolium species 

To identify potential regulatory regions of Tc-zen1 and Tc-zen2 located further away from zen 

genes, I performed a large scale comparative in silico analysis. I took advantage of the fact 

that the genomes of four closely related Tribolium species (T. castaneum, T. freemani, T. 

madens and T. confusum) are sequenced and compared the regions 5 kb upstream and 5 kb 

downstream of zen genes in the Hox3 loci of all the four species. The in silico analysis was 

again performed with both mVista tool and Mussa analyzer. 
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Using the mVista tool, I performed comparison of approx. 10-12 kb long regions in 

Hox3 loci (Fig. 4.3). I identified five conserved non-coding regions: two short regions 

immediately upstream of the 5´ UTR of both zen1 and zen2 genes (Fig. 4.3, black rectangles), 

one upstream in the close proximity of the 5´ UTRs of zen1 gene (Fig. 4.3, green rectangle), 

one downstream and adjacent to the 3´ UTRs of zen2 genes (Fig. 4.3, yellow rectangle) and 

the last one located approx. 4 kb downstream of zen genes (Fig. 4.3, blue rectangle). 

Using the Mussa analyzer, I compared the exact same regions in Hox3 loci of Tribolium 

species as described above. By setting four different thresholds of conservation from 27/30 to 

30/30 identities/nt (sliding window), I identified three highly conserved non-coding regions 

(100% conserved): one upstream of the zen1 5´ UTR, one downstream of the zen2 3´ UTR 

and one approx. 4 kb downstream of zen genes (Fig. 4.4D). Additionally, with the lower 

threshold (90-97% conserved), two further non-coding regions were identified: one 

immediately upstream of the 5´ UTR of zen1 genes and one in the intergenic region between 

zen1 and zen2 genes (Fig. 4.4A-C, arrows). All the regions identified by Mussa (both highly 

and less conserved) overlap with the regions identified by mVista tool. Assuming that what is 

conserved is of functional relevance, regions responsible for transcriptional regulation of Tc-

zen1 and Tc-zen2 might be located within these identified non-coding sequences. As 

previously mentioned, a further analysis of TFBS predictions, within the conserved non-

coding regions, should be pursued in the future. 
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Figure 4.3. Conserved non-coding regions in Hox3 loci of four Tribolium species identified by mVista tool. The tree is representing the phylogenetic 

relationship among the four closely related Tribolium species used in the analysis (Tcas - T. castaneum, Tfre - T. freemani, Tmad - T. madens and Tcon - T. 

confusum). Tcas sequence represents the reference sequence, to which the three other species are compared. The conserved non-coding regions are highlighted in 

pink, the conserved coding regions in purple and conserved UTRs in light blue peaks. Five conserved non-coding regions were identified: two immediately 

upstream of the 5´ UTRs of both zen genes (black rectangles), one slightly more upstream of the 5´ UTR of zen1 genes (green rectangle), one slightly more 

downstream of the 3´ UTRs of zen2 genes (yellow rectangle) and one approx. 4 kb downstream of zen genes (blue rectangle). Homeobox sequences of both zen 

genes are highlighted in grey rectangles. 
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Figure 4.4. Conserved non-coding regions in Hox3 loci of four Tribolium species identified by 

Mussa analyzer. Conserved sequences across the four Tribolium species are displayed with red 

connecting lines. Sliding threshold windows are represented by the black rectangles with the threshold 

defined inside in white. Exons of zen1 and zen2 genes are represented by yellow and green rectangles, 

respectively. The grey rectangle in the T. freemani (Tfre) sequence represents stretch of Ns. With the 

lower threshold of conservation (90-97%), two conserved non-coding regions were identified 

immediately upstream of the 5´ UTR of zen1 genes and in the intergenic region between zen1 and zen2 

(A-C, arrows). By increasing the similarity threshold, three different highly conserved non-coding 

regions were identified: 1 in close proximity to the 5´ UTRs of zen1 genes, 1 in close proximity to the 

3´ UTRs of zen2 genes and 1 approx. 4 kb downstream of zen genes (D).  
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4.2 Tc-zen1 and Tc-zen2 wild type expression dynamics 

4.2.1 Expression domains of Tc-zen1 and Tc-zen2 during early embryogenesis 

I characterized Tc-zen1 and Tc-zen2 expression patterns in wild type (WT) embryos by 

performing in situ hybridization. Carefully staged WT eggs were collected in order that all the 

important developmental stages were represented. Consistent with their roles in 

extraembryonic development, both Tc-zen1 and Tc-zen2 were exclusively expressed in the 

serosa, except for a small transient embryonic expression domain of Tc-zen1 with unknown 

function (Fig. 4.5 and 4.6).  

In the uniform blastoderm stage, Tc-zen1 is broadly expressed in the anterior half of the 

embryo with the gradient expression pattern increasing towards the anterior, where serosal 

tissue identity will be established (Fig. 4.5A). From the differentiated blastoderm stage to the 

stage of the early posterior amniotic fold, Tc-zen1 expression pattern is ubiquitous in the 

serosa (Fig. 4.5B-D). During the developmental process when serosa is expanding towards the 

posterior, Tc-zen1 expression is no longer ubiquitous, but rather becomes patchy across the 

serosa (Fig. 4.5E-F´´). In the early serosal window stage, the patchy expression starts to 

retract to the rim of the serosa, but remains uniform at the anterior pole (Fig. 4.5G-H´´). In the 

late serosal window stage, the expression is retracted to the border of the serosal window and 

only a handful of cells surrounding the serosal window in the ventral serosa are still 

expressing Tc-zen1 (Fig. 4.5I-I´´). Additionally, I repeatedly observed a dot-shaped 

expression domain in embryo visible through the serosal window (Fig. 4.5G-I´´). 

Likewise, Tc-zen2 is only expressed in the serosa, however with a slightly different 

pattern compared to Tc-zen1. Tc-zen2 expression is not observed in the uniform blastoderm 

stage (Fig. 4.6A) and does not start before the blastoderm becomes differentiated (Fig. 4.6B). 

Moreover, while Tc-zen1 is ubiquitously expressed in the serosa only until the stage of the 

early posterior amniotic fold, Tc-zen2 retains its ubiquitous expression in the whole serosa 

through the late serosal window stage (Fig. 4.6B-G´´).  

It has been previously reported, that, apart from the serosal expression, Tc-zen2 is 

expressed also in the anterior-ventral part of the amnion during the extending germband stage 

(van der Zee et al., 2005). However, no amniotic Tc-zen2 expression was observed in the 

extending germband stages in this project (Fig. 4.6H-I). 
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4.2.2 Expression profile of Tc-zen1 and Tc-zen2 transcript during early embryogenesis 

To identify developmental stage of Tc-zen1 and Tc-zen2 peak expression, I investigated their 

transcript expression levels throughout early embryogenesis by performing RT-qPCR. To 

begin with, I investigated the expression in developmental stages from egg lay until the 

serosal window closure (0-16 h AEL) with 4 h collection intervals. Tc-zen1 and Tc-zen2 share 

overlapping time windows with the expression peak between the end of the uniform and the 

differentiated blastoderm stages (8-12 h AEL). No maternal expression was observed for 

either zen genes (0-4 h AEL) (Fig. 4.7A).  

To describe Tc-zen1 and Tc-zen2 expression profile in more detail, I investigated their 

expression using carefully staged embryos with 2 h collection intervals spanning 

developmental events from the blastoderm formation to the germband extension (4-20 h 

AEL). Tc-zen1 expression starts during the blastoderm formation stage (4-6 h AEL) and peaks 

in the primitive pit stage (6-10 h AEL). Later on, during developmental processes like 

blastoderm differentiation, germ anlage condensation, the onset of gastrulation and the serosal 

window closure (10-16 h AEL), the expression of Tc-zen1 slowly decreases and abruptly 

switches off after the serosal window closure (after 16 h AEL) (Fig. 4.7B). 

Consistent with its expression pattern in the embryo described above, Tc-zen2 

expression does not start before the primitive pit stage. The peak expression of Tc-zen2 is 

during the time window, when numerous important developmental events take place: the 

germ band condenses, the gastrulation starts and later on, during the germband extension, the 

serosal window closes (10-14 h AEL). After the serosal window closure, Tc-zen2 expression 

gradually wanes (Fig. 4.7B). 
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Figure 4.7. Expression profile of Tc-zen1 and Tc-zen2 throughout early embryogenesis. 

Transcript abundance across early embryonic development normalized to the reference gene Tc-RpS3. 

Neither Tc-zen1 nor Tc-zen2 are expressed maternally (0-4 h AEL) and they share the expression peak 

during the differentiated blastoderm stage (8-12 h AEL) (A). Exclusive Tc-zen1 expression peak 

occurs in the primitive pit stage (6-10 h AEL) and the expression switches off abruptly after the 

serosal window stage (16 h AEL). Tc-zen2 expression peaks between the differentiated blastoderm and 

the serosal window stage (10-14 h AEL) and wanes gradually (B). Bars indicate mean values; error 

bars (standard deviation) represent variance across four biological replicates. 
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4.2.3 Expression profile of Tc-zen1 and Tc-zen2 transcript during late embryogenesis 

The morphogenesis function of Tc-zen2 does not manifest before the membrane rupture stage 

(described later), which takes place 42 h after its expression reaches peak during early 

embryogenesis (52-56 h AEL). Thus, I investigated Tc-zen2 transcript expression during late 

embryogenesis until the membrane rupture stage. For comparison and more reliable 

interpretation of results, I performed RT-qPCR using the samples from early and late 

developmental stages.  

On one hand, Tc-zen1 expression is not observed during the late stages. On the other 

hand, Tc-zen2 is expressed, but with very low expression levels during the pre-rupture stages 

(Fig. 4.8, pre-R). This result suggests that after the expression peak during early 

embryogenesis, Tc-zen2 retains minimal transcript expression, which persists at least until the 

membrane rupture stage.  

 

 
Figure 4.8. Comparison of Tc-zen1 and Tc-zen2 expression profile during early and late 

embryogenesis. Transcript abundance across early and late embryonic development normalized to the 

reference gene Tc-RpS3. During early embryogenesis, the highest Tc-zen1 expression is in the 

blastoderm formation and primitive pit stages (6-10 h AEL). Afterwards, the expression decreases and 

switches off after the serosal window stage. Tc-zen1 is not expressed during late embryogenesis in the 

pre-rupture and the membrane rupture stages (42-52 h AEL). Tc-zen2 expression starts in the 

blastoderm formation stage and peaks in the differentiated blastoderm and the serosal window stages 

(10-14 h AEL). Tc-zen2 expression levels are very low before the membrane rupture stage. Bars 

indicate mean values; error bars (standard deviation) represent variance across four biological 

replicates. BF-blastoderm formation; PP-primitive pit; DB-differentiated blastoderm; SW-serosal 

window; pre-R-pre-rupture; MR-membrane rupture. 
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4.2.4 Spatial and temporal protein expression profiles of Tc-Zen1 and Tc-Zen2 

Apart from the transcript expression profiles, I also investigated Tc-Zen1 and Tc-Zen2 protein 

expression. Spatial and temporal protein expression was explored by two methods: the 

expression during early embryogenesis was examined by whole-mount immunostaining of 

embryos, while the temporal expression was examined by western blots on embryo lysates.  

Tc-Zen1 is expressed in the serosa with the same pattern as its mRNA: the expression 

starts in the undifferentiated blastoderm stage (Fig. 4.9A, E) and the ubiquitous expression 

pattern in the serosa is retained until the differentiated blastoderm stage (Fig. 4.9B-C, F-G). 

Later, in the late serosal window stage, Tc-Zen1 expression retracts to the border of the 

serosal window. Embryonic expression of Tc-Zen1 is not observed, despite the ventral-medial 

embryonic domain of transcript expression (Fig. 4.9D, H). Neither Tc-zen2 mRNA nor 

protein is expressed in the undifferentiated blastoderm stage (Fig. 4. 9I, M). Their expression 

starts from the differentiated blastoderm stage (Fig. 4.9J-K, N-O) and the ubiquitous 

expression pattern is retained through the serosal window closure (Fig. 4.9L, P).  
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Figure 4.9. Comparison of Tc-zen1 and Tc-zen2 mRNA and protein spatial expression patterns. 

Tc-Zen1 copies its mRNA expression patterns in the serosa, however no protein expression is 

observed in the embryo (A-H). On the other hand, Tc-Zen2 is entirely copying its ubiquitous mRNA 

expression pattern in the serosa (I-P). The slight offset between Tc-zen1 and Tc-zen2 expression with 

Tc-zen2 coming on later is observed also in the protein expression patterns (compare A, E to I, M). 

Unless stated otherwise, the views are lateral with anterior left (with an exception for A, E, B, F, I and 

M, where view cannot be determined). Images with the same letter are of a single embryo. Scale bar in 

A and E represents 100 µm and applies to the ISH (A) and IHC (E) images and their respective DAPI 

images. 
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In later embryonic stages (after the serosal window stage) the vitelline membrane is 

stuck to the serosal cuticle and prevents the antibody penetration. Hence, I investigated 

temporal expression of Tc-Zen1 and Tc-Zen2 by western blotting, whereas spatial expression 

during late development was investigated using cryo-sectioned material (see sections 4.2.5 

and 4.2.6). Embryonic lysates of the stages spanning from the undifferentiated blastoderm to 

the membrane rupture stages (4-54 h AEL) were used.  

The time course of Tc-Zen1 expression corresponds to the timing of its mRNA 

expression with a slight temporal shift of two hours (compare Fig. 4.10A with RT-qPCR data 

in the Fig. 4.7B). Tc-Zen1 protein expression is observed only until the serosal window 

closure stage (12-14 h AEL). On the other hand, Tc-Zen2 protein expression persists until the 

membrane rupture stage (Fig. 4.10B-D). Moreover, fluctuations in the Tc-Zen2 expression 

levels are detected throughout the embryogenesis (from 32-34 to 34-36 h AEL and from 40-

42 to 48-50 h AEL), despite the minimal and decreasing Tc-zen2 mRNA expression after 42 h 

AEL (compare Fig. 4.10B-D with RT-qPCR data in the Fig. 4.8). 

 

  



RESULTS 

75 

 

 

Figure 4.10. Comparison of Tc-Zen1 and Tc-Zen2 temporal expression profiles. Western blots show the temporal expression profiles of Tc-Zen1 (A) and Tc-

Zen2 (B-D) from early to late embryogenesis (4-54 h AEL). Tc-Zen1 is expressed only from 6-8 h AEL until 12-14 h AEL (A, black arrow). Tc-Zen2 is 

expressed from 10-12 h AEL until 54 h AEL, although its expression drops after 52 h AEL (B, black arrow), but it is detectable on higher intensity image (D, red 

arrow). From 32-34 h AEL to 34-36 h AEL and from 40-42 h AEL to 48-50 h AEL Tc-Zen2 is expressed with fluctuating expression pattern (B, C). White arrow 

indicates internal loading control (Tc-Tub) present in each well of all western blots. B-blastoderm; PP-primitive pit; DB-differentiated blastoderm; SW-serosal 

window; GE-germband extension; GR-germband retraction; pre-R-pre-rupture; MR-membrane rupture stage. L-ladder; temporal stages are represented in h AEL. 
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4.2.5 Cellular localization of Tc-Zen2 transcription factor  

As mentioned before (and described later), silencing Tc-zen2 does not have phenotypic 

consequences before membrane rupture takes place. However, I have observed Tc-Zen2 

protein expression throughout the entire early and late development until this stage (Fig. 

4.10B-D). Furthermore, nuclear localization of orthologues of this transcription factor has 

been shown to be dynamic during embryogenesis in other species, with stages when Zen is 

cytoplasmic and excluded from the nucleus (Dearden et al., 2000). Therefore, to explore 

whether Tc-Zen2 changes the localization from cytoplasm to nucleus before its function takes 

place, I examined the cellular localization of Tc-Zen2 throughout the development until the 

membrane rupture stage.  

From the differentiated blastoderm stage to the serosal window stage, the expression of 

Tc-Zen2 is specifically localized to the nucleus (Fig. 4.9N-P). Since the vitelline membrane is 

not permeable to the antibody, localization of Tc-Zen2 in stages after the serosal window 

stage was investigated on cryo-sectioned material. Because the germband retracts for a rather 

long period of the developmental time (almost one whole day, approx. 33% of development), 

5 different embryos were staged in the consecutive collection intervals (every 4 h) and 

sectioned in order to cover this long developmental event. Nonetheless, the expression of Tc-

Zen2 is only localized to the nucleus also after the serosal window stage and the nuclear 

localization persists until the pre-rupture stage (Fig. 4.11A-P´´). Persistent nuclear localization 

of Tc-Zen2 might indicate other, so far undescribed functions, taking place from the serosal 

window closure until the pre-rupture stage.  
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Figure 4.11. Tc-Zen2 expression in cross-sections throughout the embryonic development. Tc-

Zen2 antibody staining in the most anterior/posterior and medial cross-sections. Two rows of 

micrographs represent one embryo. Tc-Zen2 is expressed only in the serosal cells from the germband 

extension until the pre-rupture stage (A-P´´). The expression is localized to the nucleus only. Images 

with the same letter are of a single embryo. GE-germband extension; GR-germband retraction; pre-R-

pre-rupture. Scale bar in A represents 50 µm and applies to all images. 

 

4.2.6 Extraembryonic Tc-Zen2 protein expression  

It has been previously suggested that Tc-Zen2 has a function in the amnion during the 

membrane rupture stage (van der Zee et al., 2005). Therefore, I investigated possible Tc-Zen2 

protein expression in the amnion by performing immunostaining on cryo-sectioned material. 

Since I have shown that Tc-Zen2 expression persists throughout the embryogenesis until the 

membrane rupture, but it is not clear when exactly its morphogenetic function starts, I 

explored Tc-Zen2 expression pattern with focus on amnion during several developmental 

events. 

To begin with, I investigated the extended germband stage, where the transcript 

expression in the anterior-ventral part of the amnion had been previously reported (van der 
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Zee et al., 2005). On the contrary, Tc-Zen2 is not expressed in any amniotic cell during this 

stage (Fig. 4.12A-C´). This result is consistent with the one, where no Tc-zen2 transcript 

expression has been observed in the amnion during extended germband stages (Fig. 4.6H-I). 

Next, I performed antibody staining in the germband retraction stage and focused on both the 

anterior and the posterior part of the amnion. Tc-Zen2 is not expressed in the amnion in this 

stage either (Fig. 4.12D-F´´). Finally, during the pre-rupture stage, I focused on the anterior-

ventral part of the amnion, where the membrane rupture takes place. No expression of Tc-

Zen2 is observed in this region of the amnion as well as in the posterior one (Fig. 4.12G-I´´). 

This result suggests that Tc-Zen2 expression is exclusive to the serosa throughout the entire 

lifespan of extraembryonic membranes (EEMs).  
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Figure 4.12. Tc-Zen2 is not expressed in the amnion during embryonic development. Tc-Zen2 is 

expressed only in the serosal cells. Tc-Zen2 is not expressed in the amnion during the extended 

germband stage (A-C´; A´-C´, dashed line). During the germband retraction stage, Tc-Zen2 is not 

expressed in the anterior (D´- F´; F´, arrows), or in the posterior (D´´-F´´; F´´, arrows) part of the 

amnion. In the pre-rupture stage, Tc-Zen2 is not expressed in the anterior (G´-I´; I´, arrows), or in the 

posterior (G´´-I´´; I´´, arrows) part of the amnion. Green channel represents Tc-Zen2 antibody signal 

and magenta represents DAPI nuclear signal. GE-germband extension; GR-germband retraction; pre-

R-pre-rupture. Scale bar in A, D and G represents 100 µm and applies to A-C, D-F and G-I, 

respectively. Scale bar in A´, G´ and G´´ represents 50 µm and applies to A´-C´, G´-I´ and G´´-I´´, 

respectively. Scale bar in D´ and D´´ represents 20 µm and applies to D´-F´ and D´´-F´´, respectively.  
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4.3 Characterization of Tc-zen1 and Tc-zen2 phenotypes after parental RNA 

interference 

4.3.1 Detailed characterization of Tc-zen1 knockdown 

After parental RNA interference (pRNAi), 

embryos lacking Tc-Zen1 lose completely 

serosal tissue identity and only small 

number of cells at the most anterior pole 

remains widely spaced. However, this 

remaining tissue is part of the terminal 

region and despite its morphology (widely 

spread cells) it is not specified as mature 

serosal tissue. The rest of the anterior 

blastoderm cells acquire embryonic fate and 

contribute to the head region of the embryo 

proper (van der Zee et al., 2005). 

Consequently, embryos have considerably 

bigger head regions compared to the WT 

embryos (Fig. 4.13A-B). On the other hand, 

the posterior blastoderm cells contribute to 

the amniotic tissue, which results in an 

increased amniotic domain. Due to the fact 

that the serosa tissue identity is not 

established, the embryo does not undergo 

the serosal window closure. The 

morphogenetic movements are rather taken 

over by the enlarged amniotic domain. At 

the posterior pole, amnion performs folding 

movements similar to those performed by 

serosa in the WT condition. Nonetheless, 

the ventral window closure is not reached, 

since the posterior amniotic fold moves 

back dorsally as the germband extension 

continues (Panfilio et al., 2013). Despite the 

enlarged head region and altered 

morphogenetic movements, the embryonic 

development is successfully completed. 

Under laboratory conditions, larvae hatch 

and their cuticles do not show any altered phenotype (Fig. 4.13C-D). Since serosa is secreting 

the serosal cuticle, dechorionated knockdown (KD) embryos are only covered by the vitelline 

membrane (which along with the chorion in the WT condition, forms a barrier between the 

embryo and the surrounding environment). Therefore, KD eggs are shiny with a very smooth 

surface (Fig. 4.13E-F).  
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4.3.2 Knockdown strength and phenotypic penetrance after Tc-zen1
RNAi

  

In order to describe the KD strength after 

Tc-zen1
RNAi

, I investigated Tc-zen1 KD 

efficiency by RT-qPCR and by scoring the 

phenotypic penetrance. In order to make the 

analysis results more robust, the samples 

were evaluated in three biological 

replicates. 

 The KD efficiency investigation by 

RT-qPCR was performed with Tc-zen1
RNAi

 

and corresponding WT samples in the 

stages of the expression peak of Tc-zen1 (6-

10 h AEL, Fig. 4.7B). The KD of Tc-zen1 is 

very strong as well as persistent. Across the 

three biological replicates, each consisting of several technical replicates, the expression of 

Tc-zen1 was reduced to 7-20% of its WT expression (Table 4.1).  

As previously mentioned Tc-zen1 is 

responsible for the serosa tissue identity 

determination (van der Zee et al., 2005). 

Since after Tc-zen1 KD serosal tissue is not 

specified, serosal cuticle is not secreted. 

Therefore, the phenotypic penetrance of Tc-

zen1 was scored on the basis of the embryo 

being covered by the serosal cuticle or 

lacking the serosal cuticle (Fig. 4.13E-F). I 

scored the phenotypic penetrance in three 

biological replicates. In each replicate, 

several scoring rounds were performed after 

different number of days after injection 

(DAI). No serosal cuticle was observed in 

Tc-zen1 KD embryos, therefore the 

phenotypic penetrance was almost 100% in all the three biological replicates (Table 4.2, Fig. 

4.14). 
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Figure 4.14. Phenotypic penetrance after Tc-zen1 knockdown. Phenotypic penetrance after Tc-

zen1
RNAi 

was scored on the basis of the presence or the absence of the serosal cuticle. The scoring was 

performed after different number of DAI. In all three biological replicates almost 100% of Tc-zen1
RNAi 

embryos are lacking serosal cuticle (see also Table 4.2). n represents sample size of each egg 

collection. 

 

4.3.3 Detailed characterization of Tc-zen2 knockdown 

Tc-zen2 KD does not have any overt phenotypic consequences before the membrane rupture 

stage. After Tc-zen2
RNAi

, the rupture of EEMs is either completely blocked, or ectopic (van der 

Zee et al., 2005; Hilbrant et al., 2016), resulting in diverse cuticle defects. Depending on the 

position of the ectopic rupture, the EEMs withdrawal morphogenetic movements are altered 

and embryo, or part of the embryo, ends up being inside-out. If the rupture is completely 

blocked, the whole embryo undergoes ventral closure and folds itself inside-out. 

Consequently, body structures like bristles, legs and urogomphi are all pointing inwards (Fig. 

4.15B).  
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If the ectopic rupture occurs at the posterior side, the anterior part of the embryo ends 

up being inside-out, whereas the posterior part remains in the correct orientation (Fig. 4.15C). 

On the other hand, after the ectopic rupture occurs at the anterior side, the posterior of the 

embryo folds itself inside-out, whereas the anterior of the embryo remains unfolded (Fig. 

4.15D). If the ectopic rupture occurs simultaneously at both the anterior and the posterior side, 

the embryo does not fold inwards, but rather continues the development in the correct 

orientation. However, the ectopically ruptured EEMs form a “belt”, which surrounds the 

embryo (Hilbrant et al., 2016). Therefore, the embryo cannot undergo proper dorsal closure 

and its dorsal part remains open (Fig. 4.15E). Sometimes the ectopic rupture might occur in 

different locations. Although the embryo struggles and tries to continue proper development, 

due to the lack of required morphogenetic movements, it is constrained. Ultimately, after the 

cuticle preparations, the body structures are difficult to distinguish and identify, and therefore 

this phenotype is marked as cuticle crumbs (Fig. 4.15F, G).  

As the embryonic development after the KD of most of the genes is slowed down, some 

of the embryos hatch, but the process itself is delayed (Fig. 4.15H). Since the strength of KD 

is variable across embryos, several embryos are not ostensibly affected by RNAi and the 

larvae look like WT (Fig. 4.15I). Some of the embryos die during the very early stages, which 

results in empty egg cuticle phenotype (Fig. 4.15J). The last three categories occur with low 

frequency after the KD of many genes as well as in WT, and therefore are not regarded as 

gene-specific phenotypic categories. 
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Figure 4.15. Tc-zen2 knockdown cuticle phenotypic categories. Phenotypic categories based on the 

cuticle preparations after Tc-zen2
RNAi

: cuticle of the WT hatched larva (A); inside-out phenotype (B); 

anterior inside-out (C); posterior inside-out (D); in the dorsal open phenotype larvae show dorsal hole 

(E, dashed line); cuticle crumbs (F, G); unhatched (H); WT-like (I); empty egg (J). a-antenna, l-leg, t-

tail. Scale bars represent 100 µm. 
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4.3.4 Knockdown strength and phenotypic penetrance after Tc-zen2
RNAi

 

I investigated the KD efficiency of Tc-zen2
RNAi

 by RT-qPCR and phenotypic penetrance 

scoring. In order to make results of the analysis more robust, the samples were evaluated in 

three biological replicates. In addition, the reduction of Tc-Zen2 protein expression after Tc-

zen2
RNAi

 was evaluated by western blots. 

The KD efficiency investigation by 

RT-qPCR was performed with Tc-

zen2
RNAi

 and corresponding WT samples 

in the early embryonic stages, in which 

the expression of Tc-zen2 was detected 

(8-24 h AEL, Fig. 4.7B). Compared to 

the Tc-zen1 KD strength, Tc-zen2 KD is 

less efficient. Across the three biological 

replicates, each consisting of several 

technical replicates, Tc-zen2 expression 

was reduced to 12-57% of its WT 

expression (Table 4.3).  

Phenotypic penetrance of Tc-

zen2
RNAi

 was scored on the basis of the cuticle phenotypes (Fig. 4.15). Similarly to the Tc-

zen1 phenotypic penetrance scoring procedure, I scored the cuticle phenotypes after different 

number of DAI. For simplicity, only the data from two to three DAI per biological replicate 

are shown. Out of all the cuticle phenotypes observed, 74-92% falls into the gene-specific 

cuticle phenotypic categories (Fig. 4.16). Data from the 24th DAI in the first biological 

replicate were excluded from the overall calculation, since after three weeks after pRNAi, the 

phenotypic penetrance significantly decreases. The data from this day are only shown as an 

example of this phenomenon. The most abundant gene-specific KD phenotypic categories 

represented are the anterior inside-out and the complete inside-out (Fig. 4.16, Table 4.4).  
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Figure 4.16. Phenotypic penetrance after Tc-zen2 knockdown. Phenotypic penetrance was scored 

on the basis of the cuticle phenotypes described in Figure 4.15. The scoring was performed after 

different number of DAI. The most abundant gene specific phenotypic category is the anterior inside-

out, which represents at least 20-48% of all the phenotypes. The most abundant gene non-specific 

phenotypic category is unhatched, which reached up to 13% (see also Table 4.4). n represents sample 

size of each collection. 
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Table 4.4. Phenotypic penetrance after Tc-zen2 knockdown. Phenotypic penetrance after Tc-zen2
RNAi

 was scored on the basis of the cuticle preparations of the 

KD embryos described in the Figure 4.15. Table summarizes the occurrence and the percentages of different phenotypic categories in three biological replicates 

(BRs). The categories inside-out, anterior inside-out, posterior inside-out, dorsal open and cuticle crumbs are gene-specific phenotypes and collectively represent 

KD penetrance. The categories, empty egg, unhatched and WT-like are gene non-specific categories and occur with small frequency also in WT samples. Ranges 

represent differences between scoring on different DAI (see also Fig. 4.16). 

# BR WT [%] 

Tc-zen2KD [%] 

inside-out anterior 

inside-out 

posterior 

inside-out 

dorsal 

open 

cuticle 

crumbs 

empty egg unhatched WT-like 

1 100 5-26 20-34 3-19 5-10 3-12 1-11 1-6 11-43 

2 94-97 15-29 31-48 2-6 7-13 2-5 2-9 2-13 2-10 

3 93-96 17-23 23-26 12-13 9-13 3-12 6-9 5-8 7-8 

 

 

 

 

  



RESULTS 

90 

 

Tc-zen2 morphogenesis function manifests before the membrane rupture stage, which 

takes place two days after Tc-zen2 reaches its expression peak during early embryogenesis. 

Due to the fact that Tc-zen2 transcript levels during the late developmental stage, where the 

morphogenesis function takes place (48-56 h AEL), are very low (Fig. 4.8), it is not possible 

to evaluate KD efficiency during the late development by RT-qPCR. Therefore, I decided to 

investigate the presence of Tc-Zen2 protein after Tc-zen2
RNAi 

during the late developmental 

stages by western blots. Tc-Zen2 expression is successfully reduced in early developmental 

stages, in which the transcript is expressed (8-24 h AEL, see also Fig. 4.7B) and the silencing 

effect persists also after one day (48-52 and 52-56 h AEL) (Fig. 4.17).  

 

 

Figure 4.17. Tc-Zen2 expression in wild type and Tc-zen2 knockdown samples. The silencing 

effect of Tc-zen2
RNAi 

verified in the late stages by western blot. The expression of Tc-Zen2 is silenced 

after the Tc-zen2
RNAi 

in the stages from 8-24 h AEL and the silencing effect persists until the pre-

rupture (48-52 h AEL) and the rupture/post-rupture (52-56 h AEL) stages (A, black arrow). Tc-Zen2 

expression in the WT post-rupture stage (52-56 h AEL) is only detectable with the higher intensities 

(B, black arrow). White arrow indicates internal loading control (Tc-Tub) present in each well of the 

western blot. Temporal stages are represented in h AEL. 

 

4.3.5 Potential regulatory interactions between Tc-zen1 and Tc-zen2  

To get insight into the possible regulatory interactions between Tc-zen1 and Tc-zen2, I 

examined the expression levels of Tc-zen genes in the KD samples of its respective paralogue 

by RT-qPCR (Tc-zen1 KD samples: 6-10 h AEL, Tc-zen2 KD samples 10-14 h AEL). After 

KD of Tc-zen1, the expression of Tc-zen2 decreases 4-fold compared to its WT expression 

(Fig. 4.18A), consistent with loss of the presumptive serosal tissue domain. On the other 

hand, after Tc-zen2 KD, the expression of Tc-zen1 increases on average 2-fold of its WT 

expression (Fig. 4.18B). These results suggest that both genes are mutual downstream targets.  
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 To further investigate the latter regulatory interactions, I have examined the expression 

pattern of Tc-zen1 in Tc-zen2
RNAi

 embryos. In the early and the late differentiated blastoderm 

stages, Tc-zen1 is ubiquitously expressed in the serosa, however the expression levels appear 

to be much higher after Tc-zen2 KD than in the WT embryos (Fig. 4.19, compare A and D, 

and B and E). Furthermore, in the late serosal window stage, Tc-zen1 expression domain 

expands. The expression is no longer retracted to the border of the serosal window, but 

remains throughout the whole serosa (Fig. 4.19, compare C and F). This pattern resembles the 

expression pattern of Tc-zen2 at the same embryonic stage (Fig. 4.6G´´). This result 

implicates that Tc-zen2 ubiquitous expression in the serosal window stage represses Tc-zen1 

expression and restricts its expression only to the serosal window border. 
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Figure 4.19. Comparison of Tc-zen1 expression in the wild type and Tc-zen2
RNAi

 embryos. Tc-

zen1 expression in the WT embryos is ubiquitous in the serosa in the early differentiated blastoderm 

stage (A). In the late differentiated blastoderm stage, the expression becomes patchy across the serosa 

(B). In the late serosal window stage, Tc-zen1 expression retracts to the border of the serosal window 

(C). During the early and the late differentiated blastoderm stages, Tc-zen1 expression levels in Tc-

zen2
RNAi

 embryos appear to be much higher compared to WT (D-E). In the late serosal window stage, 

the expression of Tc-zen1 remains in the whole serosa (F). Unless stated otherwise, the views are 

lateral with anterior left. Images with the same letter are of a single embryo. Scale bar in A represents 

100 µm and applies to all images. 

 

4.3.6 Possible off target knockdown effects of Tc-zen1 long dsRNA fragment on Tc-zen2 

expression 

Tc-zen1 and Tc-zen2 are the result of a recent gene duplication and share, already on a 

nucleotide level, a highly conserved region within the coding sequence (Fig. 4.20). Therefore, 

I investigated the possible off target effect of the long Tc-zen1 dsRNA fragment, which spans 

this conserved region (Fig. 4.20, yellow arrows: FW-REV-long), on Tc-zen2 expression by 

RT-qPCR. It has been previously reported that, in T. castaneum, the length of dsRNA 

fragment could affect the KD efficiency of the gene, as the usage of longer dsRNA fragment 

of several genes resulted in stronger KD phenotypes (Wang et al., 2013). Therefore, in order 

to exclude that Tc-zen2 expression levels could decrease after Tc-zen1
RNAi

 performed with the 

long Tc-zen1 dsRNA fragment due to the higher Tc-zen1
 
KD efficiency, I additionally 

compared Tc-zen1 KD efficiency after RNAi performed with both short (Fig. 4.20, yellow 

arrows: FW-REV-short) and the long dsRNA fragment. Expression levels of Tc-zen1 and Tc-

zen2 were compared between the Tc-zen1 WT expression peak (6-10 h AEL) and Tc-zen1
RNAi

 

samples in three biological replicates after the RNAi with both the short and the long Tc-zen1 

dsRNA fragments. Each biological replicate contained several technical replicates and the 

mean value was calculated. The percentage representation of KD efficiency is shown (Fig. 

4.21). 
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Figure 4.20. Tc-zen1 long dsRNA fragment spans highly conserved region between Tc-zen1 and Tc-zen2. Tc-zen1 and Tc-zen2 dsRNA primer position in 

regards to the sequence conservation between Tc-zen genes is shown. Tc-zen1 and Tc-zen2 share highly conserved homeobox region (black rectangle). Two 

primer pairs were designed for Tc-zen1 dsRNA synthesis – short and long version (orange). The long version is spanning the highly conserved region. Only the 

short fragment avoiding the highly conserved region was designed for Tc-zen2 dsRNA synthesis (green). 
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After Tc-zen1
RNAi

 is performed with the short dsRNA fragment, Tc-zen1 expression 

decreases on average to 11% of its WT expression. When Tc-zen1
RNAi 

is performed with the 

long dsRNA fragment, the expression of Tc-zen1 decreases on average to 10% of its WT 

expression (Fig. 4.21). This 1% decrease of Tc-zen1 expression level after Tc-zen1
RNAi

 

performed with the long dsRNA fragment suggests that the Tc-zen1 KD efficiency is not 

affected by the length of Tc-zen1 dsRNA. 

On the other hand, when Tc-zen1 KD is performed with the short dsRNA fragment, the 

expression of Tc-zen2 decreases on average to 35% of its WT expression, while after usage of 

the long dsRNA fragment, the expression of Tc-zen2 decreases on average to 19% (Fig. 4.21). 

This result suggests that the long Tc-zen1 dsRNA fragment causes an off target effect on Tc-

zen2 expression and decreases its expression levels by 26%. Other than that, no 

morphological changes resembling Tc-zen2 phenotype were observed in Tc-zen1
RNAi

 embryos.  

 
 

 
 
Figure 4.21. Tc-zen1 long dsRNA fragment causes decrease in the Tc-zen2 expression. The 

expression of Tc-zen1 decreases to 11% and 10% of its WT expression, when Tc-zen1
RNAi

 is performed 

with the short and the long dsRNA fragment, respectively. The expression of Tc-zen2 decreases to 

35% of its WT expression in the Tc-zen1
RNAi

 samples when Tc-zen1
RNAi

 is performed with the short Tc-

zen1 dsRNA fragment, but when Tc-zen1
RNAi

 is performed with the long dsRNA fragment, the 

expression levels of Tc-zen2 decrease to 19% of its WT expression. WT expression of Tc-zen1 and Tc-

zen2 is considered to be 100%. Bars indicate mean values; error bars (standard deviation) represent 

variance across three biological replicates.  
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4.4 Global evaluation of Tc-zen genes´ targets by RNA-sequencing after RNA 

interference 

4.4.1 Variance between wild type and knockdown samples of early developmental stages 

To identify and subsequently compare Tc-zen1 and Tc-zen2 candidate target genes during 

early embryogenesis, I performed RNA-seq after RNAi. Tc-zen1 and Tc-zen2 KD and 

corresponding WT samples in the stages of Tc-zen genes´ expression peaks (WT1: 6-10 h 

AEL and WT2: 10-14 h AEL, respectively; Fig. 4.7B) were sequenced. To exclude any 

possibility of the off target effect, Tc-zen1
RNAi 

was performed only with the short Tc-zen1 

dsRNA fragment. 

The degree of difference between the sequenced samples was first explored by principal 

component analysis (PCA) that clusters samples together according to their similarity. The 

first principal component clearly separates Tc-zen1 KD samples and the corresponding WT1 

samples from Tc-zen2 KD samples and the corresponding WT2 samples. On the other hand, 

while the second principal component separates Tc-zen1 KD samples from its corresponding 

WT1 samples, it fails to clearly separate Tc-zen2 KD samples from its corresponding WT2 

samples, which are grouped in close proximity to each other. This indicates little to no 

difference between Tc-zen2 KD and WT2 samples obtained during early embryogenesis. 

Additionally, PCA revealed large difference between WT1 and WT2 samples, underlying the 

fact that the large number of developmental events is taking place within these embryonic 

stages (Fig. 4.22). 
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4.4.2 Identification of candidate target genes of Tc-zen1 and Tc-zen2 during early 

embryogenesis 

I analyzed the RNA-seq data from the early developmental stages by using the pipeline, 

which has been developed within this project (see section 3). The final differential expression 

(DE) analysis generated lists of Tc-zen1 and Tc-zen2 candidate target genes. Using the lowest 

cut-off criteria regarding fold change (FC) and P adjusted values (FC≥[2], Padj≤0.1), 341 

genes were identified as differentially expressed after Tc-zen1 KD, whereas after KD of Tc-

zen2, only 26 genes were differentially expressed (Table 4.5). Overall, 13-times more 

differentially expressed genes were identified after Tc-zen1 KD. This result is consistent with 

those obtained from the PCA, which showed clear separation of the WT1 and Tc-zen1 KD 

samples, but poor separation of the WT2 and Tc-zen2 KD samples. Further, the low number 

of differentially expressed genes after Tc-zen2 KD suggests that during early embryogenesis 

Tc-zen2 has subtle functions. 

 

 

 

4.4.3 Evaluation of potential target genes of Tc-zen1 and Tc-zen2 

To get insight into the functions of the potential targets of Tc-zen1 and Tc-zen2, I performed a 

miniscreen of the chosen candidates. Initial choice of the candidate target genes was based on 

the results from DE analysis performed by quickNGS pipeline (Wagle et al., 2015), in which 

43 Tc-zen1 candidate targets had FC values higher than ±10. From these 43 genes I prioritized 

16 based on their FC values (the highest/lowest was prioritized), direction of the DE (if 
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possible upregulated genes were prioritized due to the possible function in amnion; see 

section 4.3.1) and gene ontology (GO) terms (e.g.: potential function in cuticle 

structure/synthesis, genes with DNA binding domains). Only 16 genes were identified as 

differentially expressed with FC values higher than ±10 after Tc-zen2 KD. Therefore, I 

decided to evaluate all of them and no prioritizing was necessary for Tc-zen2 candidate 

targets. 

In the miniscreen I first investigated the expression pattern of all 32 candidate target 

genes by in situ hybridization. To investigate the function of some of these candidate targets, I 

performed pRNAi. Phenotypes were afterwards scored using three different methods: cuticle 

preparations, nuclear staining and serosal cuticle integrity determination. Drosophila 

melanogaster orthologues and the closest homologues of the candidate target genes were 

searched for in the Flybase (Gramates et al., 2017). Hints about the possible function of the 

candidate targets were looked for in the iBeetle-Base (Donitz et al., 2015). 

 

4.4.4 Tc-zen1 candidate target genes 

Among the 16 prioritized Tc-zen1 candidate targets, nine genes were downregulated and had 

the lowest negative FC values, three were designated by GO terms as structural components 

of cuticle (serosa secrets chitin cuticle) and four genes were upregulated and had the highest 

positive FC values at the same time. To sum up, out of the 16 candidate target genes, 10 

showed specific serosal expression pattern (Fig. 4.23). One gene showed embryonic 

expression pattern (TC031198), however the staining looked rather unspecific. I silenced 

expression of these 11 genes via pRNAi. KD of only one of the 11 genes caused a phenotype: 

after TC015555
RNAi

 I observed empty egg phenotype by performing all the three phenotype 

scoring methods mentioned above. Therefore, in order to describe the morphological defects, 

I first lowered the concentration to the half (0.5 µg/µl) and to the tenth (0.1 µg/µl) of the 

standard dsRNA concentration. Nonetheless, I again observed either the same empty egg 

phenotype (0.5 µg/µl), or no altered phenotype at all (0.1 µg/µl). After KD of the other 10 

genes, the cuticles (larval and serosal) and the embryonic morphology were comparable with 

WT (Fig. 4.23). No defects in the serosal cuticle integrity were observed either (data not 

shown). 

The other five genes showed unspecific staining and were marked as false positives (see 

section 3.1), hence KD was not pursued. The overview of the expression patterns, KD cuticle 

phenotypes, nuclear staining of the KD embryos and possible functions of the candidate 

targets is shown in the Fig. 4.23. 
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Figure 4.23. Miniscreen 1 - Tc-zen1 candidate target genes. Summary of the Tc-zen1 candidate target genes screened after the RNA-seq experiment in early 

embryogenesis. Candidate target genes were screened by in situ hybridization for their expression domain and by cuticle preparations and nuclear staining 

(DAPI) for the morphological defects of the KD embryos. Possible function of the target genes was inferred from Drosophila melanogaster (Dm) orthologues 

and the closest homologues and from the information available in the iBeetle database. Scale bar in the first TC000107 in situ hybridization image represents 100 

µm and applies to all the in situ hybridization and DAPI images. Scale bar in the TC000107 cuticle preparation image represents 100 µm and applies to all the 

cuticle preparation images. 
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4.4.5 Tc-zen2 candidate target genes 

16 Tc-zen2 candidate target genes were screened. These genes were designated as both up- 

and downregulated in the dataset obtained from the quickNGS pipeline. However, only one of 

the genes showed specific expression pattern in the serosa (TC000511) (Fig. 4.24). The other 

15 genes showed either no, or unspecific staining. Nine of these 15 candidate target genes 

were marked as false positives (see section 3.1) and their KD was not pursued. The staining of 

the other six genes was simply unsuccessful, considering their expression (based on raw read 

count) in the sequenced samples was detectable by in situ hybridization (approx. 100 reads 

per gene per biological replicate, personal observation). Due to the fact, that I only identified 

one expression pattern as specific (TC000511), I added four new Tc-zen2 candidate targets to 

the miniscreen. The new candidates were chosen from the datasets generated by custom 

pipeline we developed in this project (see section 3). Two of these genes showed specific 

serosal pattern (TC008204-RB and TC0033464-RA) and the other two (TC011724-RA and 

TC000446-RA) showed ubiquitous unspecific staining within the first five minutes of the 

staining reaction, suggesting unsuccessful staining (Fig. 4.24).   

To sum up, I knocked down only genes that were not marked as false positives (10 

genes in total), despite the fact that not all of them showed specific expression pattern. I did 

not observe any embryonic phenotypes, as the cuticle preparations and nuclear staining of KD 

embryos were comparable with WT. No defects in the serosal cuticle integrity were observed 

either (data not shown). The only phenotype was observed for the TC011068 gene, which 

caused 100% pupal lethality after injection. This result was consistent with the information 

retrieved from the iBeetle screen database. The overview of the expression patterns, KD 

cuticle phenotypes, nuclear staining of the KD embryos and the possible functions of the Tc-

zen2 candidate targets is shown in the Fig. 4.24. 
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Figure 4.24. Miniscreen 1 - Tc-zen2 candidate target genes. Summary of the Tc-zen2 candidate target genes screened after the RNA-seq experiment in early 

embryogenesis. Candidate target genes were screened by in situ hybridization for their expression domain and by cuticle preparations and nuclear staining 

(DAPI) for the morphological defects of the KD embryos. Possible function of the target genes was inferred from Drosophila melanogaster (Dm) orthologues 

and the closest homologues and from the information available in the iBeetle database. Scale bar in the first TC007326 in situ hybridization image represents 100 

µm and applies to all in situ hybridization and DAPI images. Scale bar in the TC007326 cuticle preparation image represents 100 µm and applies to all the cuticle 

preparation images. 
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4.4.6 Does Tc-zen2 copy Tc-zen1 function during early embryogenesis? 

Due to the fact that Tc-zen2 reaches expression peak during early embryogenesis, while its 

morphogenesis function takes place during the late developmental stage, we assumed that Tc-

zen2 could potentially have early function as well. Within this project I have already 

identified early Tc-zen2 role in Tc-zen1 repression (Fig. 4.18, 4.19). In addition, we 

hypothesize that due to the fact that Tc-zen genes arose from a recent gene duplication, Tc-

zen2 might copy function of Tc-zen1 during early embryogenesis, possibly with the lower 

threshold, because, based on the RNA-seq results, the early Tc-zen2 regulatory function seems 

to be subtle. In order to investigate this hypothesis, I decided to identify number of target 

genes, which are shared by both Tc-zen genes during early embryogenesis. 

To identify the number of target genes that Tc-zen1 and Tc-zen2 share, I performed 

comparative analyses of differentially expressed genes. Due to the fact that samples were 

sequenced in two different time points (WT1 and Tc-zen1 KD samples: 6-10 h AEL and WT2 

and Tc-zen2 KD samples: 10-14 h AEL, hereafter referred to as WT shift), during which 

many important developmental events take place, I based all data comparisons on the group of 

differentially expressed and non-differentially expressed genes within the WT shift. Out of 

18536 isoforms (15222 gene models in OGS3) 7391 isoforms were filtered out prior to the 

DE analysis between WT1 and WT2 datasets, because they did not fulfil the requirement of 

minimum ten reads per gene (see section 3.1). Out of the remaining 11145 isoforms, only 

those with Padj value less or equal to 0.1 (6844 isoforms) were considered for the further 

analysis of shared target genes. I have divided these 6844 isoforms into three groups: not 

strongly differentially expressed (-2>FC<2) within the WT shift (4275), strongly upregulated 

(FC≥2) (1205), and strongly downregulated isoforms (FC≤-2) (1364). Due to the facts that 

under WT conditions Tc-zen1 expression decreases and Tc-zen2 expression increases within 

the WT shift, all the downregulated genes within the WT shift are potentially genes that Tc-

zen1 activates and Tc-zen2 represses. On the other hand, all the upregulated genes within the 

WT shift are potentially repressed by Tc-zen1 and activated by Tc-zen2. 

At first, I investigated how many genes that were not differentially expressed within the 

WT shift, Tc-zen1 and Tc-zen2 share. Out of 4275 isoforms, 88 are strongly differentially 

expressed after Tc-zen1 KD and zero after Tc-zen2 KD. When lowering the DE threshold for 

Tc-zen2 targets (from ≥[2] to >[1]), 12 genes are shared by both Tc-zen genes (Fig. 4.25A). 

Next, of 1364 strongly downregulated isoforms within the WT shift, 62 are strongly 

differentially expressed after Tc-zen1 KD and zero after Tc-zen2 KD. After lowering the DE 

threshold for Tc-zen2 targets, only one gene is shared between Tc-zen1 and Tc-zen2 (Fig. 

4.25B).  

Further, out of all the strongly upregulated isoforms within the WT shift (1205), 16 are 

strongly differentially expressed after Tc-zen2 KD and one of them is also strongly 

differentially expressed after Tc-zen1 KD. However, this one shared gene is Tc-zen2. 

Nonetheless, after lowering the DE threshold for Tc-zen2 differentially expressed isoforms, 

192 isoforms are differentially expressed after Tc-zen2 KD and 34 of these are also targets of 

Tc-zen1 (Fig. 4.25C). Interestingly, 29 out of these 34 shared genes, changed the direction of 
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DE from being downregulated after Tc-zen1 KD to being upregulated after Tc-zen2 KD, 

although with the lower FC values.  

Next, out of all the strongly upregulated isoforms within the WT shift (1205), only one 

gene is differentially expressed after Tc-zen1 KD and none after Tc-zen2 KD. With the lower 

DE threshold for Tc-zen2 targets, still no genes are shared between Tc-zen1 and Tc-zen2 (Fig. 

4.25D).  

Finally, out of 1364 strongly downregulated isoforms within the WT shift, zero are 

differentially expressed after the KD of both Tc-zen genes. With the lower DE threshold for 

Tc-zen2 targets, 57 isoforms are differentially expressed and one of them is shared with Tc-

zen1 (Fig. 4.25E).  

Collectively, after the removal of duplicates and isoforms, and with the lower threshold 

criteria for Tc-zen2 targets, Tc-zen1 and Tc-zen2 share 45 genes (Table S1). For 14 genes (out 

of these 45) either no homologue in D. melanogaster exists, or only CG identification 

number, without any GO term assigned, is available. These 14 genes were either not screened 

within the iBeetle screen, or no further information after the screen is provided. For the 

remaining 31 genes, information about GO terms of homologues from D. melanogaster is 

available, however these GO terms represent various functions. Out of these 31 genes, 13 

were screened within iBeetle screen, but KD of only one gene caused, among others, partial 

inside-out phenotype. Altogether, these results suggest that Tc-zen2 does not regulate 

substantial amount of Tc-zen1 targets, even on the lower threshold levels, and those genes that 

are shared between paralogues are possibly involved in many different functions. 
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Figure 4.25. Shared candidate target genes between Tc-zen1 and Tc-zen2. Overlap of differentially 

expressed candidate target genes after Tc-zen1 and Tc-zen2 KD. Out of 4275 isoforms that are not 

strongly differentially expressed within the WT shift, 88 are strongly differentially expressed after Tc-

zen1 KD and 0 genes are strongly differentially expressed after Tc-zen2 KD. After lowering the cut-off 

for Tc-zen2 targets, 12 genes are shared by Tc-zen1 and Tc-zen2 (A). Out of 1364 strongly 

downregulated isoforms within the WT shift, 62 are strongly differentially expressed after Tc-zen1 

KD. Out of these 62 isoforms, 0 genes are strongly differentially expressed after Tc-zen2 KD. With the 

lower cut-off for Tc-zen2 targets, 1 gene is shared by Tc-zen1 and Tc-zen2 (B). Out of 1205 strongly 

upregulated isoforms within the WT shift, 16 are strongly differentially expressed after Tc-zen2 KD. 

Out of these 16 isoforms, 1 gene is strongly differentially expressed after Tc-zen1 KD and shared with 

Tc-zen2. With the lower cut-off for Tc-zen2 targets, 192 genes are differentially expressed and out of 

these 34 are shared with Tc-zen1 (C). Out of 1205 strongly upregulated genes within the WT shift, 1 is 

strongly differentially expressed after Tc-zen1 KD and this gene in not strongly differentially 

expressed after Tc-zen2 KD. After lowering the cut-off for Tc-zen2 targets, 0 genes are shared by Tc-

zen1 and Tc-zen2 (D). Out of 1364 strongly downregulated isoforms within the WT shift, 0 genes are 

strongly differentially expressed after Tc-zen2 KD. With the lower cut-off for Tc-zen2 targets, 57 

isoforms are differentially expressed and out of these 1 is shared with Tc-zen1 (E). 0* represents 0 

genes by definition based on the analysis; dashed line represents the fact that data were compared to 

this dataset in the second step of the particular analysis (see Methods, section 2.12.9 for details). 
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4.4.7 Variance between wild type and knockdown samples of late developmental stages 

To identify downstream genes, which Tc-zen2 effects during its late morphogenesis function, 

which takes place during the membrane rupture stage, I performed the second RNA-seq after 

RNAi experiment. In this case, Tc-zen2 KD and WT samples right before the rupture (pre-

rupture, 48-52 h AEL) and during, as well as, right after the rupture (post-rupture, 52-56 h 

AEL) were sequenced.  

To reveal the degree of difference between the Tc-zen2 KD and the WT samples 

collected before and after the membrane rupture, I performed PCA. The first principal 

component clearly separates Tc-zen2 KD and the WT samples in the respective pre- and post-

rupture stages (Fig. 4.26). This separation suggests that the stages I have examined are indeed 

relevant for detecting the transcriptional underpinnings of Tc-zen2’s morphogenesis function. 

In addition, the first principal component clusters in the close proximity Tc-zen2 KD samples 

of the post-rupture stage (purple) (biological replicate 1, 2 and 4) and the WT samples of the 

pre-rupture stage (red) (Fig. 4.26). This result may reflect a delay in the development after Tc-

zen2 KD caused by the stress from the ectopic membrane rupture. 
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4.4.8 Identification of Tc-zen2 candidate target genes during late embryogenesis 

I analyzed the RNA-seq data from the 

late developmental stages by using the 

pipeline, which we developed within 

this project (see section 3). In order to 

identify potential target genes of Tc-

zen2 during late development, I 

performed DE analysis and generated 

the list of differentially expressed 

genes after Tc-zen2 KD during the late 

development. With our low-stringency 

cut-off criteria (FC≥[2], Padj≤0.1), 481 

genes differentially expressed after Tc-

zen2 KD in the pre-rupture stage and 

431 genes differentially expressed 

after the Tc-zen2 KD in the post-

rupture stage (Table 4.6) were 

identified. This high number of 

differentially expressed genes is 

consistent with the PCA results (Fig. 

4.26), which show clear separation of 

the WT and the Tc-zen2 KD samples 

in the respective pre- and post-rupture 

stages.  

 

4.4.9 Functional profile of Tc-zen2 candidate target genes of late development 

In order to verify that the differentially expressed genes identified after Tc-zen2 KD in the late 

developmental stages play roles in extraembryonic development and not in embryonic 

development, I performed a large-scale GO term analysis. Using the Blast2GO program 

(Conesa et al., 2005) four datasets of differentially expressed genes were used as input for the 

analysis: genes differentially expressed in the pre-rupture stage (48-52 h AEL), genes 

differentially expressed in the post-rupture stage (52-56 h AEL), genes differentially 

expressed between the WT pre- and post-rupture stages and differentially expressed genes 

between Tc-zen2 KD pre- and post-rupture stages. These datasets were blasted against two 

different blast databases available in NCBI: Drosophila and non-redundant (nr) databases. It 

is important to note that only differentially expressed genes with successful mapping and 

annotation were assigned GO terms (see Methods, section 2.12.10). On average, 51-54% of 

the differentially expressed genes were considered for the further GO term analysis when 

blasted against the Drosophila and 61-63% when blasted against the nr databases. 

After I blasted the four above mentioned datasets against the two databases, I searched 

the results for the specific GO names that could represent the ongoing processes in the 
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extraembryonic tissues. I looked specifically for the GO terms that fell into the following 

categories: “stress”, “cuticle”, “cytoskeleton”, “morphogenesis and epithelium”, “wing disc 

and pupal and metamorphosis”, “extracellular matrix (ECM) and adhesion”, “regulation of 

gene expression” and “transmembrane transport” (for a detailed list of GO terms grouped to 

the categories of interest see Methods, Table 2.4) (Fig. 4.27).  

The four datasets were first blasted against the nr database. 20-31% of all the sequences 

fall into the categories of interest within the biological process GO type. Within the molecular 

function GO type, 20-29% of the sequences fall into the categories of interest. Due to the 

small number of the sequences generally falling into the cellular component GO type, large 

percent representation of sequences falls into the categories of interest: 42-73% (Fig. 4.27A, 

Table 4.7A). 

Since, after blasting against the nr database, the number of sequences falling into the 

categories of interests within biological process and the molecular function GO type was 

rather low, we decided to perform the second GO term analysis by blasting the four datasets 

against the Drosophila database. 57-62% of all the sequences fall into the categories of 

interest within the biological process GO type. Within the molecular function GO type, 34-

41% of all the sequences fall into the categories of interest and within the cellular component 

GO type, 43-58% of all the sequences represent the categories of interest (Fig. 4.27B, Table 

4.7B). The results from the two GO term analyses with two different databases suggest that 

the choice of the database can drastically influence the result of the GO term analysis and 

therefore, the conclusions about the datasets of differentially expressed genes and ultimately 

the interpretation of underlying biological events.  

Nonetheless, with the focus on the biological process GO type of the latter analyses, the 

most abundant categories of interest are “morphogenesis and epithelium” and “wing disc and 

pupal and metamorphosis” with percent representation of 16-17% and 13-15% of all the 

sequences, respectively (Table 4.7B). The highest percent representation in these two 

categories was rather expected, as Tc-zen2 has morphogenesis function in the epithelial tissue 

(EEMs), and the tissues during metamorphosis and wing disc formation are of epithelial 

character (Aldaz et al., 2010; Hilbrant et al., 2016). Only 5-7% of all the sequences fell into 

the category “regulation of gene expression”, which might reflect that during late 

development, as a result of Tc-zen2 KD, we observe a morphogenesis phenotype 

manifestation, rather than a transcriptional effect in terms of altered transcriptional regulation. 

Overall, after blasting the four datasets against the Drosophila database, on average only 

about 50% of sequences were assigned GO terms from the categories of interest. However, 

complete information about the differentially expressed genes, which functional profile was 

not retrieved using Blast2GO program, is missing and altogether represents 40% of the 

dataset. In order to retrieve full information about the four datasets, a further comparative 

analysis is required. Employment of a functional analysis of the Tc-zen2 candidate target 

genes would certainly be necessary in the future. 
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Figure 4.27. Percentage of the sequences in the GO term categories of interest. Approximately 

25% of the total number of sequences fall into the categories of interest in the biological process and 

molecular function GO type, while in the cellular component GO type it is up to 73% of the sequences 

(mind the low sample size), when blasted against the nr database (A). After blasting against the 

Drosophila database, 60% of the total sequence number falls into the categories of interest into the 

biological process GO type, 30-40% of sequences fall into the molecular function GO type and 50% 

into the cellular component GO type (B) (see also Table 4.7). n represents sample size of T. castaneum 

gene sequences. DE-differentially expressed.  
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Table 4.7A. Sequence percent representation in the categories of interest after blasting against the nr database. DE-differentially expressed. 

DE genes blasted against the “nr“ blast database 

 Biological process [%] Molecular function [%] Cellular component [%] 

GO Name 
Pre-

rupture 
Post- 

rupture 

WT 
48-52 

vs   
52-56 

Tc-
zen2KD 
48-52    

vs         
52-56 

Pre-
rupture 

Post- 
rupture 

WT 
48-52 

vs   
52-56 

Tc-
zen2KD 
48-52     

vs       
52-56 

Pre-
rupture 

Post- 
rupture 

WT 
48-52 

vs    
52-56 

Tc-
zen2KD 
48-52     

vs        
52-56 

stress 0.54 0.65 0.78 NA NA NA NA NA NA NA NA NA 

cuticle 1.61 0.65 1.56 3.45 1.88 1.12 2.67 1.47 NA NA NA NA 

cytoskeleton 1.08 3.9 3.91 1.72 1.88 2.79 2 NA 20 27.78 18.18 14.29 

morphogenesis 
and epithelium 

0.54 0.65 0.78 1.72 NA NA NA NA NA NA NA NA 

wing disc and 
pupal and 

metamorphosis 
0.54 NA NA 1.72 NA NA NA NA NA NA NA NA 

ECM and adhesion 1.08 NA NA 1.72 NA NA NA NA NA NA NA NA 

regulation of gene 
expression 

6.99 4.55 4.69 5.17 15.49 13.97 11.33 16.18 53.33 33.33 45.45 28.57 

transmembrane 
transport 

16.67 21.43 16.41 5.17 8.92 11.73 11.33 2.94 NA NA NA NA 

others 70.97 68.18 71.88 79.31 71.83 70.39 72.67 79.41 26.67 38.89 36.36 57.14 
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Table 4.7B. Sequence percent representation in the categories of interest after blasting against the Drosophila database. DE-differentially expressed. 

DE genes blasted against the “Drosophila“ blast database 

 Biological process [%] Molecular function [%] Cellular component [%] 

GO Name 
Pre-

rupture 
Post- 

rupture 

WT 
48-52 

vs   
52-56 

Tc-
zen2KD 
48-52    

vs         
52-56 

Pre-
rupture 

Post- 
rupture 

WT 
48-52 

vs   
52-56 

Tc-
zen2KD 
48-52     

vs       
52-56 

Pre-
rupture 

Post- 
rupture 

WT 
48-52 

vs    
52-56 

Tc-
zen2KD 
48-52     

vs        
52-56 

stress 2.05 3.09 2.63 2.96 NA NA NA NA NA NA NA NA 

cuticle 6.62 7.28 8.85 7.69 9.52 9.36 11.19 7.69 NA NA NA NA 

cytoskeleton 8.45 8.39 7.66 8.28 5.95 8.19 9.79 7.69 19.57 24.77 21.28 22.58 

morphogenesis 
and epithelium 

16.44 17.66 17.7 17.75 NA NA NA NA NA NA NA NA 

wing disc and 
pupal and 

metamorphosis 
13.93 13.69 15.31 15.38 NA NA NA NA NA NA NA NA 

ECM and adhesion 1.14 1.32 1.44 1.78 NA NA NA NA 1.09 NA NA 3.23 

regulation of gene 
expression 

6.16 5.74 5.5 7.69 10.12 8.19 9.79 15.38 22.83 21.1 23.4 32.26 

transmembrane 
transport 

2.97 3.31 2.39 1.18 11.9 15.79 11.19 3.85 NA NA NA NA 

others 42.24 39.51 38.52 37.28 62.5 58.48 58.04 65.38 56.52 54.13 55.32 41.94 



RESULTS 

118 

 

Besides searching for the GO terms that represent events ongoing in the extraembryonic 

tissues, I also looked for the terms that most differentially expressed genes were assigned to in 

all the three GO types after blasting against both databases. When blasted against the nr 

database, in all the four datasets blasted, the highest number of sequences is assigned to 

proteolysis, ion transport and aminosugar metabolic process GO term within the biological 

process GO type. Within the molecular function GO type the highest number of sequences is 

assigned to metal ion binding and peptidase activity GO term. Finally, within the cellular 

component GO type, the highest number of sequences is assigned to mitochondrion, 

spliceosome and centrosome complex GO term (Table 4.8A). 

On the other hand, when blasted against the Drosophila database, the highest number of 

sequences is assigned to cell differentiation and nervous system development GO term. This 

is true for all the four datasets for the biological process GO type. Next, within the molecular 

function GO type, similarly to the results obtained after the blasting against the nr database, 

the highest number of sequences is assigned to metal ion binding, peptidase activity and 

channel activity GO term. Lastly, in the cellular component GO type, the highest number of 

sequences is assigned to lipid particle, nuclear lumen and cytosol GO term (Table 4.8B).  
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Table 4.8A. The first two sequence most rich GO terms assigned in each GO type in 4 different datasets after blasting against the nr database. DE-

differentially expressed. 

DE genes blasted against the “nr“ blast database 

GO type Pre-rupture Post-rupture 
WT                               

(48-52 vs 52-56) 
Tc-zen2KD                                 

(48-52 vs 52-56) 

Biological process 

proteolysis proteolysis proteolysis proteolysis 

aminosugar metabolic 
process 

ion transport 
aminoglycan metabolic 
process 

aminoglycan metabolic 
process 

Molecular function 

metal ion binding metal ion binding metal ion binding metal ion binding 

peptidase activity,             
acting on L-amino acid 
peptides 

peptidase activity,             
acting on L-amino acid 
peptides 

peptidase activity,             
acting on L-amino acid 
peptides 

peptidase activity,             
acting on L-amino acid 
peptides 

Cellular component 

mitochondrion mitochondrion mitochondrion mitochondrion 

splicesome complex vacuole 
mitochondrial outer 
membrane 

centrosome 
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Table 4.8B. The first two sequence most rich GO terms assigned in each GO type in 4 different datasets after blasting against the Drosophila database. 

DE-differentially expressed. 

DE genes blasted against the “Drosophila“ blast database 

GO type Pre-rupture Post-rupture 
WT                                  

(48-52 vs 52-56) 
Tc-zen2KD                                 

(48-52 vs 52-56) 

Biological process 

cell differentiation cell differentiation cell differentiation cell differentiation 

nervous system 
development 

nervous system 
development 

nervous system 
development 

nervous system 
development 

Molecular function 

peptidase activity,             
acting on L-amino acid 
peptides 

metal ion binding metal ion binding hydrolase activity 

serine peptidase activity channel activity 
peptidase activity,             
acting on L-amino acid 
peptides 

metal ion binding 

Cellular component 
cytosol lipid particle nuclear lumen nuclear lumen 

lipid particle nuclear lumen lipid particle cytoplasmic vesicle 
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4.4.10 Evaluating differential expression of Tc-zen2 candidate targets in late 

development 

As previously mentioned, it is not possible to investigate expression pattern of genes by in 

situ hybridization in the stages of late development due to the serosal cuticle, which is not 

permeable for hybridization probes. Therefore, I validated transcriptomic data results by a 

RT-qPCR miniscreen. I tested, whether the genes in general are differentially expressed, and 

whether the direction of the DE corresponds to the results from the RNA-seq data analysis.  

Based on the GO term analysis results obtained after the blasting against the Drosophila 

database, I chose several genes for miniscreen. The choice of the genes was based on the GO 

term category, FC values and the direction of DE. I chose seven genes from each pre-rupture 

stage and the post-rupture stage. Two of these 14 genes were chosen on the basis that they are 

differentially expressed in both pre- and post-rupture stages and the direction of the DE 

changed between the stages (Table 4.9). The DE itself as well as the direction of DE of the 

chosen genes was confirmed by the RT-qPCR miniscreen (Fig. 4.28). 
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Table 4.9. Summary of all the genes screened after RNA-sequencing in late embryogenesis. 

Listed genes were screened in the RT-qPCR miniscreen after the RNA-seq during the pre- and post-

rupture stages. Dmel-Drosophila melanogaster. 

TC ID 
pre-/post-
rupture 

GO Descriptor Dmel homologue FC 

TC010840 
pre-rupture 

no information 
available 

no homologue 
-2.16 

post-rupture 2.56 

TC011665 
pre-rupture 

morphogenesis and 
epithelia 

Orisis 
-2.76 

post-rupture 2.03 

TC005982 pre-rupture cytosol 
Major facilitator 
superfamily 
transporter 3 

4.22 

TC006575 pre-rupture 
transmembrane 
transport 

Pickpocket 26 12.68 

TC014041 pre-rupture cell differentiation 
Z band 
alternatively 
spliced PDZ-motif  

-4.74 

TC014143 pre-rupture stress 
Protein kinase, 
cAMP-dependent, 
catalytic subunit 3 

-2.36 

TC014497 pre-rupture cuticle 
Cuticular protein 
65Av 

-5.25 

TC007162 post-rupture 
morphogenesis and 
epithelia 

Ribbon 2.37 

TC031481 post-rupture 
regulation of gene 
expression 

Nuclear factor 
interleukin-3-
regulated protein-
like protein 

2.90 

TC033856 post-rupture cytoskeleton CG8213 2.54 

TC008606 post-rupture 
transmembrane 
transport 

Excitatory amino 
acid transporter       
3-like protein 

-2.89 

TC011349 post-rupture cuticle 
Chondroitin 
proteoglycan         
2-like protein 

-3.32 
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Figure 4.28. Miniscreen 2 - Tc-zen2 candidate target genes during late embryogenesis. RT-qPCR 

miniscreen of 14 genes after the RNA-seq of the samples in late stages. Seven genes were chosen from 

each pre-rupture (A) and post-rupture (B) stage. Two genes are differentially expressed in both stages 

(red TC IDs) and have opposite directions of DE in each stage. DE itself, as well as the DE direction 

of all the screened genes, correspond to the transcriptomic datasets (see also Table 4.9). Bars indicate 

mean values; error bars (standard deviation) represent variance across three biological replicates. 
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5 DISCUSSION 

5.1 Conservation levels of non-coding regions between zen genes 

5.1.1 Promoters of Tc-zen1 and Tc-zen2 differ in sequence 

In T. castaneum, Tc-zen1 and Tc-zen2 arose from lineage specific tandem duplication. The 

Tc-zen paralogues are located in Hox3 locus and are separated from each other only by 172 

bp. Nevertheless, they perform two distinct functions during two developmental stages, 

separated from each other by two days. Therefore, we assume that their expression is 

regulated through different regulatory regions, or the restriction of regulatory crosstalk is 

required in order to allow for a fine-tuned expression of both Tc-zen genes.  

By investigation of conservation levels between genomic DNA sequences of Tc-zen1 

and Tc-zen2, I have identified highly conserved regions only within the coding sequence, 

particularly in the homeobox region (Fig. 4.1 and 4.2). Highly conserved non-coding regions 

were not identified between the core promoters of Tc-zen paralogues, suggesting that the gene 

expression of Tc-zen1 and Tc-zen2 is controlled from different proximal regulatory regions. 

Change of regulatory regions followed by alteration of upstream transcription factors could 

explain, to a certain degree, paralogue´s acquirement of distinct functions (True and Carroll, 

2002) and their subsequent separation to two different developmental stages. 

However, with lower threshold of conservation I identified two conserved non-coding 

regions. One of them is positioned between the promoter sequence of Tc-zen1 and the second 

intron of Tc-zen2 (Fig. 4.2A). This region is only conserved when DNA strands of Tc-zen1 

and Tc-zen2 are in opposite direction. The change of the direction of the functional conserved 

regulatory region is rather atypical, but nonetheless occurs (Bradley et al., 2010).   

The other conserved non-coding region was identified between the second intron of Tc-

zen1 and the first intron of Tc-zen2 (Fig. 4.2A). Regulatory regions within introns have been 

described in diverse species ranging from protozoans, plants to vertebrates, although usually 

they are present within the first intron of the gene (Mack and Owens, 1999; Kim et al., 2002; 

Calderwood et al., 2003). What is rather intriguing is the position of the identified conserved 

regions. The change in the position of regulatory regions between orthologues in respect to 

the first exon is possible, but it usually occurs within distal promoter region (the first 500 bp 

upstream of transcriptional start site) (Davidson, 2001; Stone and Wray, 2001). A jump of 

regulatory regions between different exons of orthologues has not been reported, thus the 

identified conserved non-coding regions are most likely not relevant.  

However, before any conclusions can be made, the functional relevance of these two 

conserved non-coding regions needs to be investigated further. The most obvious necessity is 

a search for transcription factor binding sites (TFBS) within the identified conserved non-

coding regions. Both of these regions are 70% conserved within 30 nt long sequence (21 nt 

identical), which is rather a short conserved region. On the other hand, TFBS are indeed very 

short (4-8 nt), especially those involved in transcriptional regulation of tissue specific genes, 
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as they are controlled through focused transcription initiation (Juven-Gershon and Kadonaga, 

2010).  

 

5.1.2 Several conserved non-coding regions between four Tribolium species were 

identified 

Investigation of conserved non-coding regions between the promoters of Tc-zen1 and Tc-zen2 

could enlighten the conservation level of only cis-regulatory regions. In order to identify 

regulatory regions potentially responsible for long-distance transcriptional regulation of the 

Tc-zen paralogues, I performed comparative analysis of Hox3 loci of four closely related 

Tribolium species. Several conserved non-coding regions were identified among four species 

(both up- and downstream of zen genes, as well as in their intergenic region) (Fig. 4.3 and 

4.4). In order to evaluate the significance of these conserved non-coding regions, further 

analysis of TFBS is necessary. Since the identified conserved regions could potentially play 

role in regulating expression of both Tc-zen1 and Tc-zen2, a search for chromatin insulator 

binding sites might be of high relevance. Particularly investigation of insulator CTCF 

(CCCTC-binding factor) binding site should be performed, since CTCF regulates colinear 

expression within the Hox cluster of D. melanogaster. This Hox-CTCF interaction has been 

shown to provide mechanism for body patterning and has been conserved across Bilateria 

(Heger et al., 2012). Therefore, it might be possible that CTCF is involved in selective 

regulation of the fine-tuned expression of the Tc-zen genes. 

 

5.2 Transcriptional and translational regulation differ between the Tc-zen 

paralogues 

5.2.1 Tc-zen1 is transiently expressed in embryo 

Consistent with their function in extraembryonic (EE) development, Tc-zen1 and Tc-zen2 are 

expressed in the serosa (Fig. 4.5 and 4.6). However, transient expression of Tc-zen1 was 

repeatedly observed in the embryo during the serosal window stage (Fig. 4.5G-I´´ and 5.1A). 

Since zen has derived from canonical Hox3 gene, whose function is in axial patterning, it 

might be possible that the observed small transient Tc-zen1 embryonic expression domain is a 

residue of its ancestral Hox3 expression. The expression domain of Tc-zen1 in embryo is 

localized within the expression domain of Tc-Hox4 gene, Deformed (Dfd) (Fig. 5.1, compare 

A and B). One of the hypotheses of the insect Hox3 gene ability to abandon the canonical 

function without deleteriously affecting embryonic development suggests that the loss was 

possible due to its redundancy, which arose as a consequence of the overlapping expression 

domains with the neighboring Hox genes (Hox2 and Hox4) (Telford and Thomas, 1998a, b). 

Therefore, the observation that Tc-zen1 is expressed in embryo within the domain of Tc-Dfd 

could suggest the reduced ancestral expression of Tc-Hox3.  
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On the other hand, embryonic zen 

expression has not been observed in any 

basally branching (more ancestral) insect 

species studied so far, which is in contrast to 

the speculations about the ancestral residual 

embryonic Hox3 expression of Tc-zen1. 

Another possible simple reason for the 

observed embryonic Tc-zen1 expression 

could be explained by cross-reactivity of 

Tc-zen1 hybridization probe with Tc-Dfd 

due to the high level of sequence homology 

between Hox genes. The probe designed 

within this project spans almost the entire 

mRNA sequence of Tc-zen1 and therefore 

raises the chance of cross-reaction. On the 

other hand, even zen and Hox3 genes do not 

share highly conserved region within full 

mRNA sequences or even within the homeodomain itself (Fig. 1.1) (Panfilio et al., 2006; 

Panfilio and Akam, 2007), therefore it is not likely that the probe would cross-react with Tc-

Hox4 (Dfd). The question about transient embryonic expression of Tc-zen1 remains opened 

and further investigations are necessary. To start, one could perform sequence pairwise 

alignment of Tc-zen1 and Tc-Dfd in order to identify potential cross-reacting regions and 

afterwards exploit expression patterns with different hybridization probes (different in length) 

avoiding potential conserved regions.  

 

5.2.2 Tc-zen1 and Tc-zen2 are not maternally supplied 

In order to decipher how did the two distinct roles of Tc-zen1 and Tc-zen2 arise, I investigated 

differences in their transcriptional and translational regulation. Particularly, I described 

transcript and protein expression profiles of both Tc-zen genes.  

It has been previously reported that Tc-zen1 is maternally expressed (van der Zee et al., 

2005). However, expression of Tc-zen1 and Tc-zen2 during early developmental stages (from 

egg lay until 4 h AEL) was not detected (Fig. 4.7A). Maternal determination of zen varies 

among studied species. While no maternal supply of zen was described for bug O. fasciatus 

(Panfilio et al., 2006) or flies M. abdida, E. balteatus and D. melanogaster (Rafiqi et al., 

2008), in locust S. gregaria zen is maternally determined. Moreover, expression of zen in S. 

gregaria oocyte is localized to cytoplasm and suggestions about specific control of zen´s 

exclusion from nucleus have been proposed (Dearden et al., 2000).  

Yet another remarkable case of maternal supply of zen is represented by butterfly 

Pararge aegeria. In this species four extra copies of zen genes have been recently discovered 

in Hox3 locus (Ferguson et al., 2014). The four zen copies have been termed Special homebox 

A-D (ShxA-D) genes and their expression has been detected in extraembryonic membranes 
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(EEMs). However, only two of the Shx genes (C and D) are maternally supplied, while the 

other two Shx genes and bona fide zen are supplied zygotically. It seems that whether zen is 

maternally supplied or not is rather a species specific characteristic and no correlation 

between maternal determination of zen and any of the two functions described for zen has 

been proposed.  

 

5.2.3 Tc-zen1 and Tc-zen2 expression peak is only during early embryogenesis 

Investigation of transcript expression profiles of Tc-zen1 and Tc-zen2 revealed the highest 

expression of both Tc-zen genes only during early embryogenesis (Fig. 4.7B and 4.8). Tc-zen1 

expression peak is reached during the uniform blastoderm and the primitive pit stages. Later, 

during the differentiation of blastoderm and gastrulation its expression decreases and abruptly 

switches off after the serosal window closure (Fig. 4.7B). Although Tc-zen2 morphogenesis 

role takes place during late development, its expression peak was observed already during 

early embryogenesis. Tc-zen2 expression starts later than Tc-zen1, in the differentiated 

blastoderm stage, peaks during gastrulation and the serosal window closure stage, and 

gradually wanes of during germband extension (Fig. 4.7B). Since the expression of Tc-zen2 

has only been detected in the serosa, the slight offset in Tc-zen2´s expression could be 

explained by the necessity of its expression domain establishment by Tc-zen1. Further, the 

early Tc-zen2 expression suggests that Tc-zen2 is functionally relevant also during early 

development (discussed later). 

 

5.2.4 Minimal Tc-zen2 expression is sufficient for protein turnover through late 

embryogenesis 

Due to the fact that Tc-zen2 function was described during late development (van der Zee et 

al., 2005), I investigated the expression of Tc-zen2 before its function in membrane rupture 

takes place. Minimal and decreasing expression of Tc-zen2 was observed at least 10 h before 

the membrane rupture occurs (Fig. 4.8). Further, the expression of Tc-Zen2 protein was 

detected throughout the whole embryogenesis until the late developmental stages (Fig. 

4.10B). These results suggest that, although Tc-zen2 expression peak occurs during early 

embryogenesis, the minimal expression of Tc-zen2 continues and, moreover, is sufficient for 

the maintenance of protein expression until the time point when its function is required (42 h 

later). However, what is still unknown is the function of Tc-zen2 during those 42 hours. 

 

5.2.5 Tc-Zen2 is localized only to nucleus during early and late embryogenesis 

Since Tc-Zen2 function takes place during late development, but its expression was detected 

throughout early and late embryogenesis, we wondered whether the initial trigger of Tc-zen2 

function could occur earlier then right before the membrane rupture. We hypothesized that the 

initial trigger could be detected by possible change of the cellular localization of Tc-Zen2 

from cytoplasm to nucleus. Exclusion from nucleus and cytoplasmic localization has been 
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previously reported for Zen orthologue of locust S. gregaria (Dearden et al., 2000). However, 

cytoplasmic localization of Tc-Zen2 was not observed either during early, or during late 

embryogenesis (Fig. 4.9M-P and 4.11).  

Another possibility for detection of potential trigger of late Tc-zen2 function could be to 

investigate Tc-Zen2 protein modification changes during the entire developmental time, in 

which presence of Tc-Zen2 has been detected. Further, when exactly Tc-zen2 expression 

needs to be silenced in order to induce inside-out phenotype could be examined by embryonic 

injections of Tc-zen2 dsRNA in different consecutive developmental embryonic stages. 

 

5.2.6 Tc-Zen2 is expressed exclusively in the serosa during entire lifespan of 

extraembryonic membranes 

It has been previously reported that Tc-zen2 plays role specifically in the amnion during the 

membrane rupture. Its amniotic expression was observed during the extended germband stage 

and its role in the fusion of EEMs before the rupture was proposed (van der Zee et al., 2005). 

Nonetheless, within this project, no amniotic expression was observed for the transcript (Fig. 

4.6H-I), or for Tc-Zen2 protein (Fig. 4.9M-P, 4.11 and 4.12). Tc-zen2 expression was solely 

observed in the serosa. Moreover, it was recently reported that the serosa and the amnion do 

not fuse before rupture, but rather form a bilayer and rupture independently from each other, 

although the role of the amnion in the rupture initiation was proposed (Hilbrant et al., 2016). 

However, since Tc-zen2 expression was not observed in the amniotic cap (rupture competence 

zone of the amnion) (Fig. 4.12I, I´), another, yet unknown factor must be involved in the 

rupture of the amnion. Further, Tc-Zen2 expression was observed only in the serosa during 

the entire lifespan of EEMs, which suggests that the potential function of Tc-zen2 during 42 

h-long time period of its expression could be either in the serosal cuticle maintenance or 

innate immunity. 

 

5.3 Knockdowns of the Tc-zen paralogues differ in strength and cause different 

phenotypes  

5.3.1 Tc-zen1 and Tc-zen2 knockdowns result in two distinct phenotypes 

Following up on the previous work (van der Zee et al., 2005), I characterized in detail 

knockdown (KD) phenotypes of the Tc-zen genes. Consistent with the two distinct functions 

Tc-zen genes acquired, two different phenotypes after KD were observed. In the case of Tc-

zen1 KD, the phenotype is unambiguous as the serosal tissue does not differentiate from the 

blastoderm cells (Fig. 4.13, 4.14), since Tc-zen1 role is in the specification of serosal tissue 

identity. What is rather intriguing is the fact that although one complete EEM is missing, the 

embryonic development is not compromised. It has been shown that in T. castaneum serosa 

provides innate immunity and protection against pathogen and desiccation (through secretion 

of the serosal cuticle) and that indeed the embryogenesis is disrupted after Tc-zen1 KD unless 

relatively clean and humid environment is provided (Jacobs et al., 2013; Jacobs and van der 

Zee, 2013; Jacobs et al., 2014). Nonetheless, although the “save” environment is provided, 
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due to the missing EEM the morphogenetic movements required for proper progression 

through embryogenesis are altered. After Tc-zen1 KD, the blastoderm cells, which would 

have under wildtype (WT) conditions acquire serosal fate, are re-specified to embryonic and 

amniotic cells. The expansion of amnion is indeed what “saves” the embryo from dying, 

because by performing dorsal closure it allows the embryo to withdraw the lateral flanks and 

close dorsally. Therefore, what in the end enables Tc-zen1 KD embryos to survive, is the 

ability of the expanded amnion to compensate for the loss of serosa (Horn et al., 2015).  

On the other hand, KD of Tc-zen2 results in several cuticle phenotypes. Tc-zen2 late 

function is in morphogenesis of mature EEMs and it plays major role during the membrane 

rupture stage (van der Zee et al., 2005; Hilbrant et al., 2016). After Tc-zen2 KD, the 

membranes either do not rupture, or they rupture ectopically. When no rupture occurs, the 

embryo closes ventrally and fully folds itself inside-out. Partial inside-out phenotypes are 

observed as well, due to the ectopic rupture in different locations of membranes (Fig. 4.15).  

Although Tc-zen2 expression starts and peaks during early embryogenesis, the 

phenotypic manifestation in a form of blocked or ectopic rupture does not occur until late 

embryogenesis. Until the membrane rupture stage, the progression of embryonic development 

resembles the one of WT embryo (Thorsten Horn and Kristen Panfilio, personal 

communication). 

 

5.3.2 Knockdown strength of Tc-zen1
RNAi

 is higher than the one of Tc-zen2
RNAi

 

Validation of KD strength after RNAi of Tc-zen1 and Tc-zen2 by RT-qPCR showed that KD 

of Tc-zen1 is stronger than KD of Tc-zen2. After Tc-zen1 KD the expression of Tc-zen1 was 

downregulated across three biological replicates (BRs) (each of several technical replicates) to 

7-20% of its WT expression (Table 4.1), whereas the Tc-zen2 expression after Tc-zen2 KD 

was downregulated only to 14-57% (Table 4.3). KD strength depends on several factors (e.g.: 

length of dsRNA (Wang et al., 2013)), and therefore, it is not rare that KD strength of two 

different genes is not the same. However, KD of Tc-zen1 is very strong and persistent, which 

might be explained by the fact that Tc-zen1 is specifying its own expression domain. 

Therefore, if from the beginning of the embryogenesis serosa is not specified, although Tc-

zen1´s expression is only silenced, its expression domain is completely missing and it cannot 

be expressed. The only option for expression of Tc-zen1 after its KD would be to change the 

expression domain, which has not been observed. In fact, the expression of Tc-zen2, which is 

exclusively expressed in serosa, is downregulated 3.5-fold after Tc-zen1 KD, while after KD 

of Tc-zen2, the expression is downregulated only 2.2-fold (data not shown). 

Although in some cases the expression of Tc-zen2 transcript went down only to 40-57% 

(Table 4.3), phenotypic scoring revealed that among three BRs investigated, 74-92% of the 

cuticle phenotypes investigated fell into the gene-specific phenotypic categories (Fig. 4.16 

and Table 4.4). Moreover, after Tc-zen2 KD, the expression of Tc-Zen2 protein was not 

observed in early, or in late embryogenesis (Fig. 4.17), which suggests that the KD strength of 

Tc-zen2, although not as strong as Tc-zen1, is sufficient for successful silencing of the protein 

expression.  
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5.3.3 Tc-zen paralogues are mutual downstream targets 

Investigation of expression levels of Tc-zen1 and Tc-zen2 in the KD samples of its paralogue 

revealed rather surprising regulatory interactions between the Tc-zen genes. Although 

downregulation of Tc-zen2 after Tc-zen1 KD (Fig. 4.18A) was anticipated due to the missing 

serosa phenotype, the incomplete loss of Tc-zen2 expression was unexpected. Despite the 

absence of its expression domain, Tc-zen2 expression was downregulated only to 35% of its 

WT expression after Tc-zen1 KD (Fig. 4.21). As mentioned above, in Tc-zen1 KD samples, 

Tc-zen2 expression level drops more than in Tc-zen2 KD samples. Therefore, the remaining 

expression is intriguing, given the fact that the Tc-zen2 expression domain (serosa) is 

completely missing. The pattern of the remaining Tc-zen2 expression was investigated by in 

situ hybridization, but did not reveal any alternative expression domains, as no Tc-zen2 

expression pattern in Tc-zen1
RNAi

 embryos was observed (data not shown), probably due to 

undetectable levels. Therefore, the remaining expression of Tc-zen2 without presence of its 

only expression domain remains still unclear. 

The upregulation of Tc-zen1 after Tc-zen2 KD revealed unknown potential regulatory 

role of Tc-zen2 during early embryogenesis. The expression of Tc-zen1 is upregulated almost 

3-fold after KD of its paralogue (Fig. 4.18B). Tc-zen1 upregulated expression was 

investigated in the Tc-zen2KD embryos and showed that not only its expression levels are 

higher than in WT embryos, but its expression domain expands to the whole serosa during the 

serosal window stage (Fig. 4.19F). These results suggest that Tc-zen2 is repressing Tc-zen1 

during early embryogenesis. Additionally, the repression of Tc-zen1 by Tc-zen2 explains the 

abrupt switching off of Tc-zen1 expression during early embryogenesis (Fig. 4.7B). This 

surprising result suggests that during evolution Tc-zen1 might have recruited Tc-zen2 for its 

own repression. 

 

5.4 Tc-zens´ functions are separated to early and late development 

5.4.1 Knockdown of Tc-zen2 in early stages does not have a robust transcriptional effect  

Both Tc-zen genes reach the expression peak during early embryogenesis, but only Tc-zen1 

has early function, while Tc-zen2 function takes place 42 h later. In order to identify 

transcriptional targets of the Tc-zen paralogues during developmental stages, when their 

expression is the highest, I performed RNA-sequencing (RNA-seq) after KD of both 

paralogues. Subsequent principal component and differential expression analyses (PCA and 

DE) revealed that KD of Tc-zen1 has a profound effect on its downstream transcriptional 

control, what is consistent with Tc-zen1 having early function. The separation between the 

KD and WT samples was clear (Fig. 4.22) and consistent with high number of identified 

candidate target genes (Table 4.5).  

On the other hand, KD of Tc-zen2 during early stages had very little impact on its 

downstream transcriptional control. According to the PCA, both the first and the second 

principal components failed to separate the Tc-zen2 KD and WT samples (Fig. 4.22), 

suggesting little to no effect of Tc-zen2
RNAi

. Further, low number of identified transcriptional 
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targets (13 times less than for Tc-zen1) (Table 4.5) is consistent with PCA results and 

ultimately with Tc-zen2 having function during late embryogenesis. 

 

5.4.2 Tc-zen2 has subtle early regulatory role 

The RNA-seq after RNAi results from stages of early embryogenesis showed that while 

Tc-zen1 function takes place during the time its expression is the highest, time points of Tc-

zen2´s highest expression and function do not coincide. This fact raises the question about Tc-

zen2 function during early embryogenesis. As previously discussed, I have observed a 

negative regulatory feedback loop between Tc-zen1 and Tc-zen2 when upon Tc-zen2 KD the 

expression of Tc-zen1 was upregulated almost 3-fold compared to its WT expression (Fig. 

4.18B). Therefore, one possible reason for necessity to express Tc-zen2 early could be 

explained by subtle early regulatory role it plays in the repression of Tc-zen1. 

In addition, an early Tc-Zen2 function was described by Schoppmeier et al., 2009. It 

was reported that Tc-Zen2 together with Tc-Mex3 are repressing Tc-Caudal in the anterior of 

T. castaneum embryos during the establishment of the anterior-posterior axis: Tc-Mex3 in 

embryonic cells and Tc-Zen2 in EE cells (in the serosa). The stage, during which the 

translational repression function of Tc-Zen2 was described, corresponds to the stage of Tc-

zen2 expression peak. However, morphological defects along anterior-posterior axis after Tc-

zen2 KD during early embryogenesis were not described.  

Nonetheless, discovery of the translational repression function of Tc-Zen2 has an 

exciting implication for the evolution of zen genes in general. As previously mentioned, 

bicoid (bcd) gene has evolved through two rounds of duplication of an ancestral Hox3/zen 

orthologue (reviewed in McGregor, 2005). In D. melanogaster, bcd mRNA is maternally 

supplied and the protein plays important role in axis patterning through repression of Caudal 

in the anterior of the embryo (Stauber et al., 1999). Interestingly, D. melanogaster Bcd is able 

to repress T. castaneum orthologue of Caudal (Wolff et al., 1998). This combined evidence 

suggests that the translational repression function of Tc-Zen2 and Dm-Bcd could have been a 

feature of Hox3/Zen homeodomain and preceded the divergence of Bcd (Schoppmeier et al., 

2009). 

 

5.4.3 Defects in extraembryonic development were not observed after knockdown of Tc-

zen1 and Tc-zen2 candidate targets of early embryogenesis 

In order to confirm that the genes designated by RNA-seq after RNAi with subsequent DE 

analysis approach, are indeed targets of either Tc-zen1, or Tc-zen2, I investigated their 

expression patterns and potential function. The list of the first investigated 32 candidates was 

based on the results from quickNGS pipeline, which generated high number of genes falsely 

designated as differentially expressed (false positives). Therefore, in the first round of the 

miniscreen, out of 32 chosen candidates, only 17 had the potential to be target genes of either 

Tc-zen1, or Tc-zen2. Out of these 17 genes, 11 showed expression pattern in the serosa, 
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suggesting that these genes are actual downstream target genes of Tc-zen1 (10 genes) and Tc-

zen2 (1 gene) (Fig. 4.23 and 4.24).  

Since the specific expression pattern of only one of the 6 potential Tc-zen2 targets was 

observed in the serosa, I decided to add four genes to the list of investigated candidate targets. 

In order to avoid any complications with false positive results, selection of these four genes 

was based on the results obtained from the custom pipeline developed within this project (see 

section 3). Nonetheless, only two genes showed specific expression pattern in the serosa. 

Altogether, specific serosal expression patterns were observed for 13 (out of 21) candidate 

target genes of the Tc-zen paralogues. The rather low success rate might have been caused by 

non-functional hybridization probes. Many of these probes were redesigned, but usually the 

synthesis of the second probe failed already due to non-working primer pairs and design of 

the third primer pair was not pursued. 

Nonetheless, the potential target genes´ function was further investigated by RNAi. 

Unfortunately, out of the 21 genes investigated, only one showed phenotype (empty egg) and 

one caused 100% post-injection lethality of pupae (Fig. 4.23 and 4.24). I did not observe any 

phenotype connected with the defects in EE development, since all the KD larvae resembled 

WT morphology. However, the morphology of WT larvae was observed also after Tc-zen1 

KD, even though one of the EEMs is completely missing. Therefore, to further investigate 

detailed embryonic and EE development after KD of identified targets of Tc-zen1 and Tc-

zen2, live imaging should be employed in the future.  

Another option why KD of potential target genes did not result in any phenotype could 

be explained by the nature of the candidate target genes. By definition (target of Tc-zen1 and 

Tc-zen2), these genes can function only in serosa, therefore presumably in its maintenance, or 

in the maintenance of the serosal cuticle, or in the defense against pathogens. However, many 

of the genes responsible for chitin cuticle synthesis have been shown to cooperate between 

each other, and therefore, their individual KD does not result in any phenotype (T. Horn, 

personal communication). Whether Tc-zen1 and Tc-zen2 candidate target genes are playing 

important roles in protecting the embryo from outer environment should be investigated in the 

future, preferably by exposing the KD embryos in a septic arid environment. 

 

5.4.4 Tc-zen2 does not copy Tc-zen1´s function during early embryogenesis 

In order to evaluate, whether the early expression of Tc-zen2 might also be necessary due to 

its involvement in the same functions as Tc-zen1 has, I examined, to which degree the target 

genes of Tc-zen1 and Tc-zen2 are shared between the paralogues. Since Tc-zen2 has late 

function and its KD did not have robust impact on its transcriptional control during early 

embryogenesis, I considered the option that Tc-zen2 might copy Tc-zen1´s function, but on 

the lower levels. Therefore, I have investigated the overlap of differentially expressed genes 

between Tc-zen1 and Tc-zen2 with different cut-off criteria for Tc-zen2 candidate targets (Fig. 

4.25). Moreover, precautions due to the fact that two neighboring developmental stages were 

sequenced, had to be taken into account. All the genes, compared between Tc-zen1 and Tc-
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zen2, were either upregulated, downregulated or non-differentially expressed between the two 

sequenced stages (WT shift) with the Padj values less than 0.1.  

Comparative analysis showed that Tc-zen1 and Tc-zen2 do not share any strongly 

differentially expressed genes, which are upregulated, downregulated or not differentially 

expressed within the WT shift (Fig. 4.25). The only gene, which is strongly differentially 

expressed after KDs of both Tc-zen1 and Tc-zen2, is in fact Tc-zen2, due to the silencing of 

Tc-zen2 by Tc-zen2
RNAi

 and due to the absence of its expression domain (serosa) after Tc-

zen1
RNAi

 (Fig. 4.18A). With the lower threshold criteria for Tc-zen2 targets, 45 genes were 

designated as shared between the paralogues (Table S1). Retrieving functional profile about 

the shared genes was possible only for 31 genes, which homologues with assigned gene 

ontology (GO) terms exist in D. melanogaster. Nonetheless, based on the information about 

these GO terms, the 31 shared genes have potential function in various biological processes. 

GO terms that were assigned at least to two D. melanogaster homologues of the shared genes 

suggest that some of these genes are involved in transporter processes, have potential to bind 

ions and play role in chitin synthesis and oxidase/reductase events. These results suggest that 

Tc-zen1 and Tc-zen2 share only very small number of genes during early embryogenesis and 

that most likely Tc-zen2 is not extensively involved in the same biological functions as Tc-

zen1, but has rather acquired functions independent from its paralogue. 

 

5.4.5 Functional profile of Tc-zen2 candidate target genes of late development was 

retrieved 

To identify transcriptional targets of Tc-zen2 during late development, when its 

morphogenesis function takes place, I performed RNA-seq of WT and Tc-zen2 KD samples 

collected before and during the membrane rupture stage. The subsequent DE analysis revealed 

high number of candidate target genes of Tc-zen2 during late development (Table 4.6). In fact 

the number of differentially expressed genes in late developmental stages after Tc-zen2 KD 

was 18 times higher than the number of differentially expressed genes in early developmental 

stages (Table 4.5). This result supports the separation of Tc-zen2 morphogenesis function to 

late embryogenesis.  

However, before and during the membrane rupture stage, the number of embryonic cells 

is considerably higher than the number of EE cells. Therefore, before it was possible to make 

any final conclusions, the functional profile of identified differentially expressed genes had to 

be obtained. GO term analysis of differentially expressed genes before and during the 

membrane rupture was performed by blasting against two different databases: non-redundant 

(nr) and Drosophila (Fig. 4.27 and Table 4.7). Unfortunately, it was not possible to retrieve 

functional profile of all the identified differentially expressed genes, because not all of them 

have their respective orthologues or homologues described and annotated in the blast 

databases, which were used. In fact, retrieving GO term information of almost 40% (blast 

against the nr database) and 50% (blast against the Drosophila database) of differentially 

expressed genes was not possible, which indeed represents a substantial information loss. 

Reason, why low percentage of blast hits were obtained when blasting against the Drosophila 
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database, might be explained by the fact that D. melanogaster genes are in general much 

longer, and therefore, the overall sequence homology to Tribolium genes is much lower. 

Nonetheless, the functional profile of the differentially expressed genes, whose 

orthologues and homologues do exist in other insect species or D. melanogaster, was 

obtained. Under the assumption that after Tc-zen2 KD genes with function in EE development 

were designated as differentially expressed, representation of certain GO terms was expected. 

Based on the observations of altered development undergoing after KD of Tc-zen2, GO terms 

describing biological processes corresponding to response to stress, cuticle formation, 

cytoskeleton reorganization, morphogenesis of epithelium, cell adhesion, regulation of gene 

expression and transmembrane transport were expected to be assigned to the identified 

differentially expressed genes. These GO terms were specifically searched for in the output 

results of GO term analysis. When blasted against the nr database, approx. 20-30% of the 

differentially expressed genes were assigned GO terms falling into the above mentioned 

categories of interest. On the other hand, when blasted against the Drosophila database, 

almost 60% of the differentially expressed genes fell into the categories of interest.  

Speculations, about why higher percentage of the differentially expressed genes falls 

into the categories of interest, when blasted against the Drosophila database, are rather 

inconclusive. One possibility is that, in D. melanogaster, higher number of orthologues or 

homologues has potential EE roles, which reflects the fact that D. melanogaster possesses the 

amnioserosa. However, compared to T. castaneum, the amnioserosa represents only a reduced 

form of EEMs. Nonetheless, although “insect taxonomy filter” was applied during GO term 

analysis performed with the nr database, we cannot ensure that insect species, against which 

Tribolium genes were blasted, possess any kind of EE tissue. 

So far, it was not possible to retrieve functional profile of complete datasets of the 

differentially expressed genes and, moreover, overt differences between results obtained by 

blasting against two different blast databases were observed. Nonetheless, based on the results 

from blasting against the Drosophila database, it is possible to conclude that, after Tc-zen2 

KD, almost one quarter of the differentially expressed genes reflects altered EE development.  

In addition, identification of GO terms, to which most of the differentially expressed 

genes were assigned to by blasting against both databases (Table 4.8), revealed that many GO 

terms that were not grouped to the categories of interest might still represent the altered EE 

development. For example, many of the differentially expressed genes were assigned to GO 

terms describing metal ion binding and transport, or channel activity, which might reflect 

altered transmembrane transport through EEMs between embryo and outer environment, 

either due to the ectopic rupture or delayed embryonic development. Many genes were also 

assigned to GO terms with serine peptidase activity, which are known to be part of signaling 

pathways playing important roles in embryonic development, immune system or wound 

healing of arthropods (references cited in Veillard et al., 2016). Lastly, many genes were 

assigned to GO terms describing nervous system development and cell differentiation. Before 

and during the membrane rupture stage, the nervous system development is an ongoing 

process in the embryo, which could potentially involve higher levels of cell differentiation. 
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The reason, why these genes are differentially expresses, could be due to the delay in 

development caused by the stress from the ectopic rupture after Tc-zen2 KD.  

To conclude, it is possible that with the future detailed analysis of GO terms, which did 

not fall into the categories of interest, we might identify much more than one quarter of genes 

with potential role in EE development. Therefore, it is fair to assume that the genes, which 

were designated as differentially expressed after Tc-zen2 KD, are indeed potential target 

genes of Tc-zen2 during late development. Nonetheless, in order to draw any final 

conclusions, future analysis of function of the identified differentially expressed genes is 

necessary. 

 

5.4.6  RT-qPCR miniscreen confirmed results obtained from differential expression 

analysis 

Several Tc-zen2 candidate target genes from the pre- and the post-rupture developmental 

stages, which were assigned to any of the GO terms from the categories of interest, were 

selected for further miniscreen. Due to the presence of the serosal cuticle, which blocks 

penetration of any hybridization probes in late developmental stages, it was not possible to 

describe expression domains of the selected Tc-zen2 candidate target genes. In order to 

evaluate the obtained DE analysis data, I performed RT-qPCR miniscreen. Results from the 

miniscreen confirmed that chosen candidates are indeed differentially expressed and the 

obtained expression levels were consistent with the direction of DE assigned to the candidate 

targets during DE analysis. Particularly intriguing cases of two genes, which were 

downregulated in the pre-rupture stage and upregulated in the post-rupture stage, suggest that 

in the future it is important to investigate Tc-zen2 late candidate target genes´ function.  

 

5.5 Distinct Tribolium zen functions most likely arose through sub-

functionalization  

Results obtained within this project suggest that two distinct functions of Tc-zen1 and Tc-zen2 

might have arisen through the process of sub-functionalization. Besides the fact that KD of 

each of the paralogues results in distinct phenotype, the observation that only small number of 

genes is regulated by both Tc-zen paralogues during early embryogenesis suggest division of 

their functions during early development.  

Sub-functionalization hypothesis assumes that duplication in the Hox3 locus preceded 

the split of functions and that subsequently one gene copy retained specification function 

along the anterior-posterior axis (although now in EE tissue, Tc-zen1) and the second copy 

acquired late morphogenesis function (Tc-zen2). This hypothesis further assumes that 

specification role was lost in basally branching species, while the morphogenesis function was 

lost in higher holometabolous species (Fig. 1.4).  

Consistent with the hypothesis, in basally branching species (Hemiptera), which possess 

only one copy of zen gene, early expression of zen was observed, despite its late 
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morphogenesis function (Dearden et al., 2000; Panfilio, 2009). This observation implies that 

in basally branching species specification function was lost, but the early ancestral expression 

has been retained. Further, the loss of late morphogenesis function in higher holometabolous 

species (Diptera) could be explained by its redundancy due to the reduced EEMs. Since D. 

melanogaster possesses reduced form of EE tissue, the amnioserosa, which covers only the 

dorsal part of the yolk, the late morphogenesis function during membrane rupture is not 

required, simply, because no rupture occurs.  

What remains still unclear is the extent of the sub-functionalization, in a sense, how 

disconnected the functions of Tc-zen paralogues are and to which extent can they substitute 

each other’s functions. Based on the results from Tc-zen1 KD, it is clear that Tc-zen2 is not 

able to take over the specification function, because no serosal tissue was observed in Tc-

zen1
RNAi

 embryos. This might stem from the fact, that Tc-zen2 is expressed only in the serosa 

and unlike Tc-zen1, it is not able to specify its own expression domain. Double KD 

experiments of both Tc-zen1 and Tc-zen2 resulted in the phenotype indistinguishable from the 

one obtained after Tc-zen1 KD alone (van der Zee et al., 2005), because of the re-specification 

of blastoderm to embryonic and amniotic cells and subsequent alteration of morphogenetic 

movements.  

On the other hand, it is still necessary to further investigate Tc-zen2´s function 

dependency on Tc-zen1. The discovery of surprising regulatory feedback loop between the 

Tc-zen paralogues implies that the transcriptional regulation of Tc-zen genes during early 

embryogenesis is connected. Since I showed that Tc-zen2 represses Tc-zen1 expression, it 

would be of high interest to investigate potential effects of ectopically overexpressed Tc-zen1. 

If the excess of Tc-zen1 mRNA shows the ability to drive the inside-out phenotype, then the 

Tc-zen2 function could be considered dependent on Tc-zen1 and would, to a certain degree, 

explain necessity of early expression of both Tc-zen paralogues.  

 

5.6 Changes in protein sequence and features enabled switch from Hox3 to Zen  

Based on the results obtained from the research in the evo-devo field in the last four decades, 

it is fair to assume that what drives the gene function change, and ultimately evolution of 

morphological diversity, are the changes in transcriptional regulation through alteration of cis-

regulatory regions (Carroll, 2000; Tautz, 2000; Davidson, 2001). Therefore, it is also fair to 

assume that what partially drove the switch from canonical embryonic Hox3 to insect EE zen 

and the subsequent functional divergence of the paralogues, were the changes in regulatory 

regions of Hox3 genes.  

However, in the case of the switch of Hox3 to zen, it is necessary to consider the role of 

coding sequence divergence as well. Even subtle changes in protein sequences can have 

strong impact on the function of the protein, especially if the protein is involved in 

transcriptional regulation (Hsia and McGinnis, 2003). The changes in the sequence could 

severely affect the binding potential of transcription factors and thus alter their downstream 

targets. An example of rather small deletion in the protein sequence, which caused strong 

effect on limb development, is the example of Ultrabithorax in hexapod Drosophila and 
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multi-limbed crustacean Artemia. In Drosophila, Ultrabithorax is responsible (together with 

Abdominal-A) for repression of limb development. It is believed that the loss of threonines 

and serines from C-terminus of Ultrabithorax proteins, during the transition from Artemia-like 

ancestor to insects, contributed to the macroevolutionary change in limb number between 

hexapods and multi-limbed Arthropods. By losing two main amino acids, which possess 

phosphorylation sites, hexapods altered the ancestral function of Ultrabithorax, which can 

now repress the limb formation (Averof and Akam, 1995; Ronshaugen et al., 2002). The 

example of Ultrabithorax represents case of modest divergence in function after the change of 

protein sequence. 

The example of complete functional divergence after sequence alteration is in fact the 

example of Hox3, Zen and Bcd. Together with the alteration of regulatory regions, substantial 

changes in the amino acid sequence of these transcription factors (Fig. 1.1) contributed to the 

possibility of switching developmental roles. The change of the sequence resulted in loss of 

the hexapeptide motif, typical of Hox genes, through which binding of cofactor Extradenticle 

is possible and whose loss correlates with EE expression of zen (Falciani et al., 1996; Panfilio 

and Akam, 2007). Interestingly, the sequence of Bcd diverged even more than Zen (Fig. 1.1) 

and acquired yet another function, now back in the specification of anterior-posterior axis 

(Stauber et al., 1999), however only in higher Diptera.  

It is understandable that the change in regulatory regions together with protein sequence 

alteration is able to drive the switch of developmental functions, but what is rather intriguing 

is the fact that loss of a canonical Hox function did not cause a deleterious phenotype, but 

became advantageous, got fixed during evolution of winged insects and allowed them to 

colonize land. A proposed hypothesis of possibility to lose one of the most important genes 

functioning in body patterning without drastically altering embryonic development assumes 

that this function must have been redundant (Telford and Thomas, 1998a). The redundancy in 

function can be explained by overlapping expression domains with neighboring Hox genes in 

species with canonical Hox3 function. In fact, it has been shown that expression domain of 

Hox3 gene in mite Archegozetes longisetosus overlaps with that of Hox2 (Proboscipedia) 

(Telford and Thomas, 1998a) and Hox4 (Deformed) (Telford and Thomas, 1998b). This 

overlapping expression of domains could have resulted in Hox3 functional redundancy and 

might have triggered new function emergence. 
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5.7 Conclusion 

Detailed analyses of transcriptional and translation regulation of the Tc-zen paralogues 

presented in this thesis revealed several differences in regulation of Tc-zen1 and Tc-zen2 

expression. Although, there is only a slight offset in the expression of the Tc-zen paralogues, 

with Tc-zen1 being expressed first, after the peak expression of both Tc-zen genes, Tc-zen1 

switches off its expression abruptly, while Tc-zen2´s expression gradually wanes. Moreover, 

Tc-Zen2 protein profiles throughout embryogenesis imply that this waning transcript 

expression is persistent and sufficient for retention of the protein expression until the stage, 

when its function takes place. Differences in the timing and character of Tc-zen1 and Tc-zen2 

expression suggest that the Tc-zen paralogues are regulated by different regulatory inputs. 

This was further confirmed by in silico analysis of their promoter sequences, which showed 

no conservation of these regions. Therefore, it seems that the changes on upstream level, in 

the regulation of Tc-zen genes´ transcription, contributed to the acquirement of paralogues´ 

distinct functions, through alteration of the regulation of their spatial-temporal expression. 

Identification of downstream transcriptional targets of Tc-zen1 and Tc-zen2 during early 

embryogenesis revealed strong difference in impact of transcriptional control by the 

paralogues during early embryonic development. Substantially higher number of target genes 

was identified after KD of Tc-zen1 than after KD of Tc-zen2, what is consistent with the 

separation of their functions to early (Tc-zen1) and late (Tc-zen2) development. The results 

from subsequent analysis of level of overlap between Tc-zen genes´ identified targets suggest 

that the paralogues do not share profound number of target genes during early embryonic 

development. Further, identification of high number of candidate target genes of Tc-zen2 

during late development is consistent with its late function, which was separated from its early 

expression. The GO term analysis suggests that many of these identified candidate targets 

play roles in EE development. The high impact on transcriptional control of Tc-zen1 during 

early embryogenesis and of Tc-zen2 during late development implies that the distinct 

functions of Tc-zen paralogues were separated to two different developmental stages. These 

results support the sub-functionalization hypothesis, however the level of dependency of Tc-

zen2´s function on Tc-zen1´s expression needs to be investigated further. Nonetheless, the 

difference in the downstream transcriptional targets of Tc-zen1 and Tc-zen2 suggests that 

alterations on downstream levels contributed to the acquirement of paralogues´ distinct 

functions, as they regulate expression of different genes in two developmental stages. 

Protein sequence alignment clearly shows that Tc-Zen1 and Tc-Zen2 diverged in their 

sequence, which might have affected their binding specificity and ultimately possibility of 

regulating the same downstream targets. Therefore, the changes in the sequence of paralogues 

could have as well contributed to their acquirement of two distinct functions.  

In conclusion, these diverse lines of evidence suggest that acquirement of the two 

distinct roles of the Tc-zen paralogues was most likely possible due to the combination of 

changes that occurred on three different levels: the changes in upstream regulation of Tc-zen 

genes expression, in regulation of downstream transcriptional targets and the changes within 

the paralogues themselves collectively contributed to the functional divergence of Tc-zen1 

and Tc-zen2. 
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6 OUTLOOK 

Results obtained within the presented project provide a ground foundation for future 

comparative studies of Hox3 insect orthologues and their transcriptional targets. But first, it 

would be of high relevance to continue investigations in T. castaneum. Particularly, 

description of function of genes, which were identified as potential targets of Tc-zen2 during 

late embryogenesis, will enable possible discovery of factors playing roles during membrane 

rupture. Although detailed description of membrane rupture process was recently reported 

(Hilbrant et al., 2016), it is not yet known, which genes are involved in this important 

developmental event. 

Further, investigation of functional relevance of identified conserved non-coding 

regions between the Hox3 loci of three closely related congenerics of T. castaneum would 

permit to assess, which fine-tuned transcriptional regulation of Tc-zen1 and Tc-zen2 could be 

responsible for the acquirement of the Tc-zen paralogues´ diverse functions, which were 

separated to two developmental stages. Recent establishment of T. castaneum immortalized 

cell lines (Silver et al., 2014) would provide a homologues system for functional tests of the 

identified regulatory regions. It has been reported that these cell lines were established from 

epidermal tissues, which express genes involved in chitin synthesis as well as genes involved 

in immunity. Serosa expresses the same type of genes along with the Tc-zen paralogues, 

therefore it would be meaningful to explore whether the transcriptional apparatus regulating 

Tc-zen genes is potentially present in these cell lines. If so, new possibilities of functional 

testing of regulatory regions could be explored. 

To place the presented study in evolutionary perspective, comparisons with other 

species will be necessary. Fortunately, direct comparison with O. fasciatus is possible on 

many different levels, mainly due to the extensive knowledge about its EE development and 

Of-zen orthologue, which has been already obtained (eg.: Panfilio et al., 2006; Panfilio, 2008, 

2009; Panfilio and Roth, 2010). One immediate possibility is to investigate behavior of O. 

fasciatus orthologues of Tc-zen1 and Tc-zen2 target genes. Nowadays it is fairly easy to 

obtain orthologue information due to the well-established OrthoDB protein orthology 

database (Waterhouse et al., 2013). Moreover, vast amount of transcriptome information from 

several developmental stages of O. fasciatus was recently obtained by our lab. The custom 

pipeline developed within this project is transferable to O. fasciatus data. Therefore, based on 

the availability of the above mentioned resources, it should be straight forward to obtain 

information about developmental stages, in which O. fasciatus orthologues of Tc-zen genes´ 

targets are expressed.  

Besides the bioinformatic approach, obtaining transcript and protein expression profiles 

of Of-zen would enable a direct comparison with expression profiles of the Tc-zen genes, 

which were generated within the presented project. RT-qPCR in O. fasciatus has been 

recently established through my joined efforts with other colleagues and preliminary RT-

qPCR runs have been performed, suggesting successful method establishment. Therefore, 

obtaining transcript expression profile of Of-zen during early and late development should be 

straight forward. Due to the fact that Of-zen function was described in late morphogenesis, but 
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it´s expression was observed during early embryogenesis (like for Tc-zen2) (Panfilio et al., 

2006; Panfilio, 2009), a determination of exact start of Of-zen expression could provide 

insights to whether early expression of zen is of ancestral origin. Attempts to raise the Of-Zen 

antibody have been performed within this project, however the preliminary tests showed 

rather unspecific signal (data not shown) and further investigations of immune sera still need 

to be performed.  

Another potential experimental idea would offer an insight into the functional 

interchangeability of Of-zen orthologue. One could KD the endogenous Tc-zen1 via pRNAi 

and investigate whether the specification function of Tc-zen1 could be rescued by Of-zen after 

the ectopic embryonic injection of its capped mRNAs. 

In order to further conceptually place the presented study in larger evolutionary 

perspective, it would be necessary to perform orthology inference of Tc-zen1 and Tc-zen2 

target genes across the gene sets of hemipteran species, which show no evidence of Hox3 

duplication. In the next step, this analysis can be extended to other species, whose genomes 

were recently sequenced within the i5K project (i5K Consortium, 2013) and are currently of 

draft-quality. OrthoDB (Waterhouse et al., 2013) provides protein orthology information for 

more than 100 species and serves as a resourceful platform for multi-species comparisons. 

Ultimately, results from this large-scale comparative analysis should provide insights into the 

functional divergence of targets of transcription factors encoded by Hox3 loci. 
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8 SUPPLEMENT 

Table S1. List of candidate target genes, which are shared by Tc-zen1 and Tc-zen2 during early 

embryogenesis. Dm-Drosophila melanogaster. 

TC ID Dm orthologue/closest homologue Beetle-Base phenotype 

TC003982 none existing not screened 

TC012208 none existing not screened 

TC015555 none existing not screened 

TC032847 none existing not screened 

TC033185 none existing not screened 

TC033543 none existing not screened 

TC033623 none existing not screened 

TC008005 none existing screened, but no information 

TC009377 CG34115   - no further information not screened 

TC014634 Kvk - Krotzkopf verkehrt - chitin synthase not screened 

TC003371 CG13510   - no further information screened, but no information 

TC014345 CG3777     - no further information screened, but no information 

TC015598 CG14439   - no further information screened, but no information 

TC034364 CG5928     - no further information screened, but no information 

TC003085 
A10 - Antennal protein 10, insect odorant-
binding protein 

not screened 

TC003708 CG4115 - lectin like domain predicted not screened 

TC006727 Pwn - Pawn - Ca binding domain not screened 

TC010653 Knk - knickknopf-chitin organization protein screened, but no information 

TC010675 Skeletor screened, but no information 

TC010825 
Exp - expansion - contains SMAD domain, 
involved in trachea development 

screened, but no information 
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TC011140 Obst-A - Obstructor-A - chitin binding domain not screened 

TC011141 Obst-A - Obstructor-A - chitin binding domain not screened 

TC013464 CG5958 - transporter activity not screened 

TC014517 CG4089 - Tubuline-tyrosine ligase screened, but no information 

TC015554 
CG9360 - Short-chain 
dehydrogenase/reductase (SDR) 

screened, but no information 

TC015721 
CG9503 - Glucose-methanol-choline 
oxidoreductase 

screened, but no information 

TC031718 CG14205 - Acyltransferase 3 screened, but no information 

TC031823 CG7330 - no further information  not screened 

TC032053 
Kaz1-ORFB - Kazal domain (potential serine 
protease inhibitor) 

not screened 

TC033053 Ndae1 - Na+-driven anion exchanger 1 screened, but no information 

TC033106 
CG15497 - Haemolymph juvenile hormone 
binding 

screened, but no information 

TC033244 
Mthl15 - Methuselah-like 15; GPCR, family 
2, secretin-like 

not screened 

TC034444 CG9990 - ABC-2 transporter screened, but no information 

TC000520 Spz - Spaetzle 
muscle pattern potentially 
obscured by segmentation 
defect 

TC004438 Tl - Toll 
Tube-like phenotype, fate 
shift 

TC010864 CG3246 - lipid binding domain mature eggs not present 

TC011791 AnxB11 - Annexin B11 - actin/Ca ion binding pupal molt delayed 

TC012027 CG7675 - oxidoreductase activity 
muscle pattern potentially 
obscured by segmentation 
defect 

TC014100 Serp - Serpentine 
muscle pattern potentially 
obscured by segmentation 
defect; cuticle crumbs 

TC014346 
Cyp6a23 - heme/Fe ion binding; 
oxidoreductase activity; Cytochrome P450 

severe defects during 
embryogenesis - multiple 
cuticle phenotypes including 
partial inside-out 

TC015481 Cht7 - Chitininase 7 - chitin binding 
larva dorsally bent, muscle 
pattern irregular 
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TC015712 
CG9503 - Glucose-methanol-choline 
oxidoreductase 

antennal flagellum size 
decreased, urogomphi 
orientation irregular 

TC033746 
CG9514 - Glucose-methanol-choline 
oxidoreductase 

mature egg deposition 
blocked number, ovariole 
decreased 

TC034834 
Ade-3 - Adenosine-3 - 
Phosphoribosylglycinamide synthetase 

eclosion not fulfilled, 
empty egg phenotype 

TC034861 
Pmp70 - Peroxisomal Membrane Protein 
70 kDa - ABC transporter-like 

severe defects during 
embryogenesis - multiple 
cuticle phenotypes 
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ZUSAMMENFASSUNG 

Hox-Gene kodieren für Transkriptionsfaktoren, die für die Determination der axialen Muster 

der Embryonen von bilaterialen Lebewesen verantwortlich sind. Die Insekten-Orthologe des 

Hox3-Gens, genannt zerknüllt (zen), haben jedoch ihre Funktion mehrmals gewandelt. Das hat 

zum Verlust der kanonischen Hox-Funktion geführt und zu einer Verschiebung ihrer 

funktionalen Domäne von embryonalem Gewebe zu extraembryonalem Gewebe. Alle bis 

heute beschrieben zen-Gene haben eine Rolle in extraembryonalen Membranen (EEM). Diese 

Membranen schützen den Embryo vor äußeren Einflüssen und erlauben Insekten, in 

verschiedenen Nischen Eier abzulegen. Das hat ihnen letztendlich erlaubt auch das Land zu 

kolonisieren. Die Evolution von der EEMs ist mit der Evolution von Hox3/zen eng verknüpft. 

Gleichzeitig mit der Entstehung der EEMs hat sich die Rolle von Hox3 in der Entwicklung 

des Embryos allmählich zu der Funktion von zen in extraembryonalen Membranen gewandelt.  

Nur in geflügelten Insekten ist diese Transition vollständig und vollständige EEMs können 

beobachtet werden. Neben der Verlagerung der Funktion von zen haben diese Gene in ihrer 

neuen Expressionsdomäne zwei neue Rollen übernommen: eine in der frühen 

Gewebespezifiaktion sowie eine in der späten Morphogenese. Bisher ist jedoch wenig über 

die Gründe für die Wandlung von Hox3 zu zen bekannt, genauso wenig wie über die 

funktionelle Divergenz von zen. Um die Auslöser für die funktionelle Wandlung des Hox3-

Gens zu untersuchen, habe ich mich bei meinen Untersuchungen auf den holometabolen 

Käfer Tribolium castaneum konzentriert, in dem zwei funktionell divergente Paraloge von zen 

beschrieben sind: eines mit einer Funktion in der frühen Embryogenese (Tc-zen1) und das 

zweite mit einer Funktion in der späten Embryogenese (Tc-zen2).  

Um zu erforschen, wie die zwei divergenten Funktionen von Tc-zen1 und Tc-zen2 

erworben wurden, habe ich die Expressions- und Translationsregulation durch beide Gene 

während der frühen und späten Embryogenese untersucht. Ich konnte zeigen, dass beide 

Paraloge höchste Expression in der frühen Embryogenese zeigen, obwohl bisher nur für Tc-

zen1 eine frühe Funktion beschrieben ist. Um den Grad der Divergenz von Zielgenen 

zwischen beiden Paralogen in der frühen Embryonalentwicklung zu zeigen, habe ich die 

Translation der Tc-zen-Gene mittels parentaler RNAi unterdrückt und RNA-

Expressionsanalyse in den Nachkommen durchgeführt. Die Analyse der differentiellen 

Expression und nachfolgende vergleichende Analysen der identifizierten, potentiellen 

Zielgene von Tc-zen1 und Tc-zen2 deuten darauf hin, dass beide Paraloge keine wesentliche 

Menge von Zielgenen in der frühen Embryonalentwicklung teilen. Außerdem deckte eine 

Hauptkomponentenanalyse auf, dass trotz der frühen Expression beider Gene, der Knockdown 

von Tc-zen2 wesentlich weniger Auswirkungen auf die frühe Transkriptionskotrolle hat, als 

der Knockdown von Tc-zen1. Dieses Ergebnis stimmt mit der beschriebenen, späten Funktion 

von Tc-zen2 überein. Die Untersuchung der Expressionsniveaus beider Tc-zen-Gene in RNAi-

Embryonen des jeweiligen Paralogs zeigte jedoch eine subtile regulatorische Funktion von 

Tc-zen2, vor allem in der Repression von Tc-zen1. 

Weitere Analysen der Expressionsregulation von Tc-zen2 zeigten, dass eine niedrige 

Expression des Transkripts bis in die späte Embryonalentwicklung bestehen bleibt, obwohl 

die höchste Expression von Tc-zen2 bereits in der frühen Entwicklung vorherrscht. Passend zu 
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der Expression von Tc-zen2-mRNA ist auch das Tc-Zen2-Protein bis in die späte 

Embryonalentwicklung präsent, wo dessen bisher einzige Fiktion beschrieben war. Um 

Zielgene von Tc-zen2 zu identifizieren habe ich eine weitere RNA-Expressionsanalyse 

durchgeführt. Ein Ergebnis dieser Analyse war, dass Tc-zen2 eine viele höhere Wichtigkeit 

bei der Transkriptionskontrolle in der späten als in der frühen Embryonalentwicklung hat. 

Durch gründliche Gen-Ontologie-Analysen wurde ein Funktionsprofil potentieller Zielgene 

von Tc-zen2 in der späten Embryonalentwicklung angefertigt. Passend zu der bereits 

beschriebenen Funktion von Tc-zen2 in der späten Embryogenese, konnten vielen der 

identifizierten Kandidaten Gen-Ontologien zugewiesen werden, die eine Funktion in 

epithelialer Morphogenese aufweisen.  

Zusammenfassend für Ergebnisse dieses Projekts kann also gesagt werden, dass die 

unterschiedlichen Funktionen der Tc-zen-Paraloge durch die unterschiedlichen 

transkritionalen Signaturen begründet werden können. Während die Funktion von Tc-zen1 mit 

dessen höchster Expression und dessen transkriptioneller Regulation seiner Zielgene 

korreliert, hat Tc-zen2 nur eine vergleichsweise geringeren Einfluss auf die transkritionale 

Regulation in der frühen Embryogenese. Da außerdem beide Tc-zen-Paraloge wenige 

Zielgene teilen und die regulatorische Funktion von Tc-zen2 in der Frühentwicklung gering 

ist, kann eine Unterscheidung der Rollen von Tc-zen1 und Tc-zen2 in die frühe und späte 

Embryonalentwicklung angenommen werden. Diese Annahme wird durch den Nachweis von 

Tc-Zen2 während der gesamten Embryonalentwicklung bis zu dessen beschriebener Funktion 

unterstützt. Außerdem konnte ich eine viel größere Anzahl an potentiellen Zielgenen für Tc-

zen2 während der späten Embryogenese identifizieren wovon viele eine mögliche Rolle in der 

Morphogenese von Epithelien haben könnten. Diese unterschiedlichen Ergebnisse deuten 

darauf hin, dass die divergenten Funktionen der Tc-zen-Paraloge zunächst durch die 

Regulation unterschiedlicher Zielgene entstanden sein könnten und dann dadurch in 

unterschiedliche Funktionen in der frühen und späten Embryonalentwicklung unterschieden 

wurden.  
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