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Abstract

Biologische Membranen sind dünne, flüssige Filme, die aus Lipidmolekülen,
Proteinen, und Zuckern aufgebaut sind. Vesikelbildung ist wichtig für den
Materialtransport zwischen den Organellen und der Plasmamembran in biolo-
gischen Zellen. Nanopartikel sind eine spezielle Art von Material, das mit kon-
trollierter Struktur, Zusammensetzung und physikochemikalischen Oberfläch-
eneigenschaften hergestellt werden kann. Nanoteilchen können über Membra-
nen durch Endozytose und Exozytose transportiert werden. Die genauen mech-
anischen Mechanismen hierbei sind jedoch noch nicht komplett verstanden.
In der Literatur ist bekannt, dass das Einwickeln von Nanoteilchen durch
Lipidmembranen durch Größe, Form und den Oberlflächeneingenschaften der
Teilchen, sowie durch die biophysikalischen Eigenschaften der Membran bes-
timmt wird. Für gekrümmte Membranstrukturen, z. B. Vesikel und Röhren,
wird das Einwickeln auch stark durch die Membrankrümmung vor der Wech-
selwirkung mit dem Teilchen beeinflußt. In ähnlicher Weise beeinflußt die
Membrandeformation durch teilweise eingewickelte Teilchen in der Nähe das
Einwickeln eines Nanoteiclhens. Desweiteren ist in der Literatur bekannt, dass
teilweise eingewickelte Nanoteilchen sich, durch die Membrandeformation ver-
mittelt, gegenseitig anziehen.

In dieser Arbeit wird die Membran durch eine mathematische Fläche besch-
rieben, deren krümmungselastische Eigenschaften mit Hilfe des Helfrich-Modells
berechnet werden. Die Biegesteifigkeit, das Gauß’sche Biegemodul, und die
spontane Membrankrümmung sind die Materialparameter der Membran. Das
Modell kann Membranen auf Mikrometerskalen beschreiben, auf denen die
molekularen Eigenschaften der Lipidmoleküle nicht mehr direkt berücksichtigt
werden müssen. In dieser Arbeit wird die Deformationsenergie numerisch
mit Hilfe von triangulierten Flächen berechnet, auf der Grundlage der beiden
Hauptkrümmungen in jedem Punkt der Fläche.

Für Nanoteilchen an nicht kugelförmigen Vesikeln wurde die Rolle der
Teilchen-größe, der Vesikelgröße, der Vesikelform, und der spontanen Krümmung
der Membran für das Einwickeln der Teilchen und die Vesikelform systema-
tisch untersucht. Für die Stomatozyten, Oblaten und Prolaten ist nicht nur die
lokale Membran-krümmung an dem Punkt wichtig an dem das Teilchen bindet,
sondern auch die Krümmungsenergie der freien Membran. Bei gegebenem
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Vesikelvolumen und Membranfläche, wird komplexes Einwickelverhalten, bei
dem das Einwickeln der Teilchen und die Form der Vesikel sich gegenseitig bein-
flussen, beobachtet. Insbesondere stabilisieren teilweise eingewickelte Teilchen
oblate und stomatozyte Vesikelformen für Teilchen, die von außen an die Mem-
bran binden, und prolate und stomatozyte Formen für Teilchen, die von innen
an die Membran binden. Wenn sich das Vesikelvolumen während des Ein-
wickeln von Teilchen verändern kann, führt das Vorhandensein von gelösten
Stoffen sowohl im innern als auch außerhalb des Vesikel zu einem Kompres-
sionsenergiebeitrag zur Vesikeldeformationsenergie. Die Kompressionsenergie
stabilisiert teilweise eingewickelte Teilchenzustände, sowohl für Nanoteilchen
innerhalb als auch außerhalb der Vesikel. Bei hohen Konzentrationen der
Lösungen wride der Übergang zwischen dem teilweise und dem vollständig
eigewickeltem Zustand diskontinuerlich. Abschließend werden Systeme mit
Teilchen und Membranröhren untersucht. In diesem Fall werden sowohl die
Einwickel-Übergänge, als auch die membran-vermittelte Wechselwirkung zwis-
chen zwei teilweise eingewickelten Teilchen berechnet. Im Gegensatz zur Lit-
eratur wird sowohl eine anziehende als auch eine abstoßende Wechselwirkung
zwischen den Teilchen gefunden, abhängig vom Teilchenabstand und von der
Adhäsionsstärke zwischen den Teilchen und der Membran.

Die Ergebnisse dieser Arbeit tragen zum besseren Verständnis der mech-
anischen Mechanismen beim Einwickeln von Nanoteilchen durch Lipidmem-
branen bei. Insbesondere wurden die Einwickelübergänge der Teilchen, die
Formveränderungen der Vesikel und membran-vermittelte Wechselwirkungen
zwischen Teilchen für stark gekrümmte Membranen berechnet. Solche Struk-
turen sind inzwischen durch verbesserte Mikroskopietechniken experimentell
beobachtbar und wurden in verschiedenen Bereichen biologischer Zellen ge-
funden.
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Abstract

Biological membranes are fluid thin films composed of lipids, proteins and
sugars. They participate in cargo trafficking between membrane-bounded or-
ganelles and the plasma membrane via budding and vesicle formation. Nanopar-
ticles are one specific nano-scale cargo that can be engineered with controlled
structure, composition, and physicochemical surface properties. They can be
transported across a membrane by endocytosis and exocytosis. However, the
mechanical mechanisms for nanoparticle-membrane interactions are still de-
bated. Previous studies show that nanoparticle wrapping by membranes de-
pends on nanoparticle size, shape, and surface functionalisation, as well as the
membranes’ biophysical properties. For highly-curved membrane structures,
such as vesicles and tethers, nanoparticle wrapping is strongly dependent on
the membrane curvature prior to wrapping. Similarly, wrapping is affected by
the membrane deformations due to nearby partial-wrapped nanoparticles, and
partial-wrapped nanoparticles have been reported to mutually attract each
other via membrane deformation.

The membrane is described as a mathematical surface and use the contin-
uum membrane model based on the Helfrich Hamiltonian to characterize its
mechanical properties. Here, the curvature-elastic properties of the membrane
are characterized using three material parameters, the bending rigidity, the
spontaneous curvature, and the Gaussian saddle-splay modulus. The model
can describe membranes on large scales up to micrometers, where molecular
details can be neglected. In this thesis, the membrane deformation energy for
nanoparticle-wrapping is calculated numerically using triangulated membranes
based on the principal curvatures of the surface at every point.

For the interaction of nanoparticles with non-spherical vesicles, the role of
particle size, vesicle size and shape, and membrane spontaneous curvature on
both nanoparticle wrapping and vesicle shape is studied. For non-spherical
vesicle shapes, such as stomatocytes, oblates, and prolates, not only the lo-
cal curvature at the point where the particle attaches but also the deforma-
tion energy of the free membrane is important. For fixed vesicle volume and
membrane area, complex wrapping behavior, where particle wrapping tran-
sitions and vesicle shape transitions can be coupled, is found. Furthermore,
partial-wrapped membrane-bound particles impose boundary conditions for
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the free membrane that stabilize oblates and stomatocytes for particle entry,
and prolates and stomatocytes for particle exit. If the vesicle volume can vary
upon nanoparticle wrapping, the presence of solute inside the vesicle gives
rise to a compression energy contribution to the vesicle deformation energy.
For the first time, an osmotic pressure contribution is taken into account for
nanoparticle-wrapping calculations. The deformation-induced osmotic pres-
sure difference stabilizes partial-wrapped states for both nanoparticles enter-
ing and exiting vesicles. For high solute concentrations, the transition between
the partial-wrapped and the complete-wrapped state becomes discontinuous.
Finally, wrapping of nanoparticles at membrane tubes is investigated. Here,
both wrapping transitions and membrane-mediated particle-particle interac-
tions are studied. Contrary to the literature, both mutual attraction and
repulsion between nanoparticles are observed, depending on their separation
and on the adhesion strength between the nanoparticle and the membrane.

The results presented in this thesis contribute to the understanding of me-
chanical mechanisms for membranes wrapping nanoparticles. In particular,
wrapping transitions, shape transitions, and membrane-mediated iterations
between partial-wrapped nanoparticles are predicted for highly-curved mem-
brane structures. Such structures recently became experimentally observable
due to improved microscopy techniques, and have been found to be abundant
in biological cells.
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Chapter 1

Introduction

1.1 Motivation

Nanoparticles are colloidal particles with sizes on the nanometer scale. They
are ubiquitous in both natural and artificial environments. A lot of familiar
examples of nanoparticles are found around us, including viruses and proteins
[1], inorganic nanoparticles (e.g., titanium dioxide (TiO2)) in sunscreens and
paints [2], and silica nanoparticles used as solid lubricants [2]. In many cases,
the shapes or structures are single crystals with platonic shapes (cubes, octa-
hedra, and spheres), and spherical or ellipsoidal. They also have more compli-
cated architectures, including the so-called “lamellar twinned particles” (LTPs)
or “Multiply-Twinned Particles” (MTPs) containing two, five or twenty single
crystal units, and icosahedral, decahedral, and more complex “polyparticles”
with polyicosahedral structures [3]. In addition to different components, sizes,
and shapes, specific physicochemical properties of nanoparticles including op-
tical, electronic, mechanical and surface properties play an important role in
their applications [4].

With their well-controlled properties, engineered nanoparticles can be used
for diagnostic and therapeutic applications, for example, they are candidates
for drug delivery systems, as well as for tumor-cell targeting [4–6]. The first
essential step for nanoparticles function in human bodies is the interactions of
nanoparticles with the membranes of vesicles and cells. Biological membranes
are very fluid films with thicknesses of 4− 5 nm. For cellular membranes, such
fluid films are composed of amphipathic lipid molecules, various proteins, and
carbohydrates. These components assemble according to the so-called “Fluid-
Mosaic Membrane Model (F-MMM)” [7] for plasma membranes, in which the
proteins are either embedded in or floated on the amphipathic lipid bilayer,
and carbohydrates facilitate the connections of lipids and proteins to cellular
matrix and cytoskeleton. Biological membranes display specific mechanical
properties, such as bending, stretching, and shape elasticity [8]. The important
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Introduction

Figure 1.1: Spherical nanoparticles (red) entering and exiting vesicles (gray) via endocytosis
and exocytosis. The shapes for the vesicles from left to right are stomatocyte, oblate,
stomatocyte, and prolate.

functions for biological membranes are to separate different environment and
to control the cargo trafficking across the membranes to maintain the balance
of cellular environments. In general, cargoes like drug-loaded nanoparticles
can translate through membranes via endocytosis and exocytosis [9, 10], see
Fig. 1.1. These processes in biological cells are usually very complicated, and
can be affected by a large numbers of factors including active processes.

For large nanoparticles with sizes above 15 nm, a thorough investigation of
nanoparticle translocation by wrapping is required for understanding membrane-
associated nanoparticle transport. A large amount of theoretical [11–13], com-
putational [14–16], and experimental [17, 18] studies have focused on this chal-
lenging topic, but the mechanical mechanisms are still not well understood, as
wrapping and adhesion of nanoparticles at membrane depend on a multitude
parameters, such as components and the structure of the membrane, as well
as on the solutions properties. Here we use the continuum model based on the
Helfrich Hamiltonian [19, 20] to investigate the engulfment of nanoparticles by
membranes, for which a large number of biophysical details can be ignored. We
consider the elastic energies and deformation shapes associated with nanopar-
ticle uptake by membranes, in order to reveal the mechanical mechanisms for
nanoparticle-membrane interactions. We aim at providing some meaningful
predictions for more efficient and less toxic nanoparticle transport via mem-
brane budding.

2



1.2 Membranes

1.2 Membranes

Biological membranes are extremely fascinating soft matter systems. Different
from the rigid surfaces, they are fluid and can form specific structures, such
as enclosed vesicles with different shapes, see Fig. 1.1. The shapes result from
the biochemical components of the membrane and properties of its environ-
ment. For membrane formation, lipid molecules aggregate spontaneously into
“leaflets” where the molecules are jointed together by the weak non-covalent
forces. These bilayers are able to extend in the lateral dimensions of up to
10 micrometers, which is considerably larger than the thickness of the mem-
brane of only a few nanometers [7, 21, 22]. The big variation in the length scale
allows us to regard the biological membrane as two-dimensional surface embed-
ded in three-dimensional space. Here, detailed biophysical characteristics are
negligible. These flexible membranes are controlled by their properties on the
mesoscale; we particularly focus on their elastic properties for the membrane
deformations, such as thickness change, shearing, stretching, bending. Other
important physical aspects regarding the geometric shapes of the membranes
are also introduced briefly.

1.2.1 Composition

Biological membranes are composed of lipids and proteins [7, 23]. The lipids
are amphiphilic molecules that consist of a polar hydrophilic head group and a
non-polar hydrophobic tail. In cell membranes, different lipids are found, such
as phospholipids, glycolipids, and other sterols. Depending on the types of
cells and organelles, the fractions of each lipid can be varied. The most abun-
dant lipid constituents are phospholipids in most biological membranes. The
phospholipids in a cell include phosphatidic acid (phosphatidate) (PA), phos-
phatidylcholine (lecithin) (PC), phosphatidylethanolamine (cephalin) (PE),
phosphatidylserine (PS), phosphatidylinositol (PI), sphingomyelin (SM), car-
diolipin (CL) [23, 24], see Tab. 1.1.

The phospholipids are different from each other relying upon the hydrocar-
bon tail length, i.e., the number of carbon atoms in tails, and the saturation,
i.e., the presence of carbon-carbon double bonds [25]. PC is a lipid with a
cylindrical shape, for which the volumes for the head and the tail groups are
approximately the same. For PE, the tail part area is larger compared to
the head part, therefore the lipid displays a conical shape. PA has an inverse
conical shape as the lipids have large tail and small head moieties.

Furthermore, phospholipids with different head groups are able to influence
the chemical properties of the leaflet surface, and to execute various functions
in the cells [23–25]. For instance, PC is a key component for membrane-
mediated cell signaling and molecule transport; PE plays an important role
in membrane fusion, as well as in regulating the membrane curvature. PA
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Table 1.1: A summary of lipid compositions of various organelles, plasma membranes, and
cells. Reprinted from Ref. [23].

is important for both membrane signaling and regulating curvature. Similar
to the heads, hydrocarbon tails with different structures can also change the
membrane properties. One example is unsaturated lipids that increase the
fluidity of lipid bilayers [26].

In addition to lipid molecules, biological membranes contain a variety of
proteins. Around 20−30% of the biological genes encode such membrane pro-
teins [27, 28]. The considerable advancements in the experimental methodol-
ogy for structural biology, such as X-ray diffraction, solution nuclear magnetic
resonance (NMR), and, more recently, single-particle cryo-electron microscopy
(cryo-EM), or electron cryomicroscopy, lead to high-resolution structures of the
membrane proteins [29, 30]. There are over 2, 500 protein structures stored in
the protein data base (PDB), and they are divided into over 700 different
protein species [30].

One important species of the membrane proteins are those that gener-
ate and regulate membrane curvature, and they are therefore involved in the
changes of membrane shapes and even in topological changes like creation of
the pores [31, 32]. These proteins can be classified into two different groups;
one group can change the lipid composition of the two leaflets to induce
the asymmetry of the membrane, such as the phospholipid flippase and the
lipid modifying enzymes [31, 33]. The other group generates and sustains the
membrane curvature by the mechanical interactions between the proteins and
membrane monolayer [31]. Relying on the diverse qualitative features, the
curvature-associated mechanisms [31, 32, 34], which are not mutually exclu-
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1.2 Membranes

sive, include:

(a) protein scaffolding [35]: the protein domain, the protein monomer or
oligomer, and even multiple proteins with an intrinsic curvature aggregate on
the membrane and bend the underlying membrane surfaces facing them;

(b) hydrophobic insertion [36]: the protein stabilizes the membrane cur-
vature by virtue of the insertion of the hydrophobic residues into the local
domains in amphipathic lipid molecules. The insertion process of the proteins
are also known as “wedging”;

(c) oligomerization [35, 36]: specific proteins, instead of generating and
regulating the membrane curvature individually, can oligomerize to form the
polymerized coat proteins linked to the outer monolayer. The cooperativity
of the oligomerized proteins can amplify curvature sorting on membranes with
different curvatures.

(d) steric effects [37]: the steric protein-protein interactions are found for
proteins which have no intrinsic curvature effects, such as scaffolding effects,
membrane-inserting domains, and ligomerization properties. They are crowed
in the local membrane and induce the curvature by mutual steric interactions.

A large variety of membrane curvature-associated proteins are found exper-
imentally. The most-widely studied proteins are Bin-Amphiphysin-RVs (BAR)
domain-containing proteins [35–37]. BAR domains have banana shapes and
bind to the membrane through the concave surface of the lipid-binding regions.
They are found to induce the cylindrical curvature. The BAR protein family
is further subclassified into classical BAR, N-BAR, F-BAR, and other BAR
proteins relying upon the detailed structures. N-BAR proteins contribute to
the membrane-curvature via the scaffolding mechanism, while F-BAR pro-
teins are characterized by the hydrophobic insertion region and can induce
membrane tubulation upon binding. Classical BAR proteins, such as arfaptin,
can also form the highly-curved tubular membrane without hydrophobic inser-
tion. Furthermore, both N-BAR and F-BAR domain proteins can oligomerize
on curved membranes and result in the striated, attice-like protein coats on
the bilayers. For crowding eripheral proteins, they can sence and regulate
membrane bending via the nonspecific steric interactions. Other membrane-
curvature associated proteins include coat protein complex I (COPI) and II
(COPII), epsin N-terminal homology (ENTH) and AP180 N-terminal homol-
ogy (ANTH) domain-containing proteins, small G proteins such as Arf1, and
C2 domain proteins [35–37].

In addition to the mechanisms mentioned above, the interactions between
membrane and specific lipids, the “packing defects” in curved lipid bilayers [38],
the demixing of lipid molecules with various spontaneous membrane curvatures
[39], and cytoskeletal polymerization and motor proteins pulled tubules are
suggested to explain the formation and stability of the membrane curvatures
[36]. Despite the various studies and theories on membrane curvature, the
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relative significance of the potential contributions from different mechanisms
is still hotly debated.

A third important component is the carbohydrates. Membrane carbohy-
drates contribute 5 − 10% to the membrane mass. Most of them are located
on the the extracellular side of the cell membrane and bind to the lipids and
proteins via glycosylation [40]. Glycosylation is a common chemical reaction in
cell in which a carbohydrate is covalently linked to the functional group of the
membrane molecules. After such a chemical modification, the resulting com-
ponents are called glycoconjugate, including oligosaccharides, proteoglycans,
glycolipids and glycoproteins [41]. The neutral sugars in cells are glucose,
galactose, mannose, fucose, as well as N-acetyl galactosamine, and they are
abundant in the glycoconjugates [41, 42].

1.2.2 Structure

After the comprehensive understanding in the membrane components, a nat-
ural question is what a whole structure these different component can arrange
into. The structure must be capable to explain the existing research data, such
as fluidity and dynamics of the membrane, and to predict the outcomes for
future experiments. In 1972, S. J. Singer and G. L. Nicolson first introduced
the Fluid-Mosaic Membrane Model (F-MMM) of biological membrane struc-
ture [7]. The basic micro-structure of the F-MMM was based on the concept
of hydrophobic interaction and its effect on the thermodynamics of the protein
structures. Hydrophobic interaction is the tendency of hydrophobic moieties
of molecules to self-aggregate to exclude water molecules, and the tendency of
hydrophilic moiety to associate with the aqueous solution. The lipid molecules,
the most important constituent of the biological membrane, are amphiphilic
substances. They assemble to lipid bilayers driven by the hydrophobic effect as
well as van der Waals forces in aqueous environment. For membrane proteins,
their attachment or insertion into lipid bilayers also result from the hydropho-
bic effect between the hydrophobic tail groups of lipids and the hydrophilic
acid residues of proteins. Meanwhile, the hydrophilic groups of the proteins
protrude into the aqueous environment around the lipid bilayers 1.

Based on the consideration on the hydrophobic interactions between lipids
and proteins, the F-MMM model states that the cell membrane is a completely
fluid two-dimensional lipid bilayer that contains globular integral proteins and
specific integral protein complexes which are indiscriminately scattered in the
membrane. In 1976, the original F-MMM was improved by reflecting the con-
straints from extracellular and intracellular substances on the lateral spreading
and moving of membrane constituents, in particular integral proteins, glyco-

1This claim for the protein-lipid arrangement holds true only for some membrane proteins,
including integral or intrinsic proteins.
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1.2 Membranes

Figure 1.2: Updated Fluid-Mosaic Membrane Model contains lipid bilayers, proteins, gloy-
coproteins, cytoskeletal and extracellular matrix. Different molecules are labeled by different
colors. Reprinted from Ref. [7].

proteins, and protein complexes [43]. Some restricted and semi-restricted re-
gions are from the specific interactions of lipid-lipid, and lipid-protein on the
membrane, which can advance the development of protein complex and lipid
rafts. The reduced mobility of the integral transmembrane glycoproteins and
protein complexes are related to link of the cell membrane with the cytoskele-
ton filaments as well as the extracellular matrix.

Many other important descriptions for the thermodynamics associated with
the membrane structure were introduced since the F-MMM has been proposed
in 1970s. One special characteristic are the deformation of the membrane. For
instance, the elastic modulus depends on the weak energies of lipid tilting and
splaying [21, 22]. How the deformation energy result in different membrane
structures on large length scales will be discussed further in the subsequent
Chapter “Methods”. In addition, the plasma membrane is, often, asymmetric
with thousands of different lipid molecules or proteins heterogeneously dis-
tributed in the two monolayers. For example, PC is abundant in the extracel-
lular monolayer, whereas PE and PS are exclusively localized in the intracel-
lular monolayer [7, 23]. The generation and maintenance of the asymmetry of
the lipid bilayers can be mediated with the passive transbilayer motion (flip-
flop) and active energy-consuming bilayer scrambling [44]. The transbilayer
motion, or flip-flop, occurs when single lipid molecules spontaneously flip be-
tween the monolayers of the bilayer. Bilayer scrambling refers to the behavior
of a bundle of lipid molecules, and translocations are less frequent as large free
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energy change is required. As a result, a perfectly symmetric structure of the
cell membrane is rarely found. A third critical consideration for refining the
F-MMM is taking into account “hydrophobic mismatch” [45]. The thickness
of the intermediate hydrophobic regions of the transmembrane proteins can
be (approximately) equal, longer, and shorter than the biological membranes’
thickness. In order to prevent the unfavorable contact of the hydrophobic re-
gions of lipids and proteins with the hydrophilic regions of lipids, proteins, or
the aqueous environment, the biological membranes can make a few adapta-
tions to the hydrophobic mismatch. The mattress model proposed by Mourit-
sen and Bloom in 1984 [46] was used to describe the phase diagrams of the
mixing of amphiphilic lipids and proteins in aqueous environment. The elastic
properties, and the indirect or direct interactions, such as van der Waals-like
interactions, for the cell membrane in included in the model. The mismatch
effect can influence the protein aggregation, local orientational changes, and
conformational adjustments of proteins and lipids in the membrane.

Biological membranes, such as the cell membrane, are made up of a large
number of different lipids and proteins (see the updated F-MMM presented in
the Fig. 1.2). Model lipid bilayer membranes consisting of lipid molecules only
are also found. Common examples are lipid bilayers, vesicles, and micelles [47,
48]. Lipid bilayers is the thin, flat, and fluid two-monolayer membrane, and
is the basic structure of cellular membranes. Vesicles are structures with an
encapsulating ‘bag’ shape, and are in biological systems naturally produced
for material-transport associated processes, e. g. exocytosis and endocytosis.
A variety of vesicles are present within a cell, including exosomes, microvesi-
cles, apoptotic blebs or vesicles, phagosomes, and COPI and COPII coated
vesicles. If vesicles are created artificially via lipid molecules, they are known
as liposomes. Liposomes that are enclosed by many phospholipid bilayer, are
multilamellar liposomes; with one layer only they are called unilamellar. Mi-
celles, or micellae, are aggregates of phospholipids in aqueous solutions. They
exist in equilibrium with spherical shapes. For non-polar solvents, the hy-
drophobic tail groups of lipids are pointing to the external solvent, while the
hydrophilic head groups are gathered in the core. In this case, the structures
are called inverse or reverse micelles. Some typical lipid structures are shown
in Fig. 1.3.

1.2.3 Elastic properties

Biological and physical properties are important for membrane-mediated in-
teractions, deformations, and shape fluctuations [8, 21, 22], they include:

(a) thickness change: biological membranes contain many embedded pro-
teins and glycoproteins, which can be related to the compressibility of the
membrane. Furthermore, the heterogeneous compositions of membranes in-
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Figure 1.3: Representative structures for lipid bilayer and vesicles (liposome and micelle).
Taken from public domain: Wikipedia.

fluence their peristaltic motions, or thickness changes, of the lipid bilayers.
However, the fluctuations of the thickness are limited because of the small
compressibility of lipid membrane. The amplitude of the thickness change for
the lipid membrane is determined by the experiment, the value is as small as
4�A [49]. The thickness change is essential for many biological events, such as
the shape change for the erythrocytes with high flexibility.

(b) stretching: stretching the lipid bilayer can change the area per lipid,
which may lead to the exposure of the hydrophobic regions like the lipid chains
to the aqueous environment. The contacts for hydrophobic groups and water
molecules are energy unfavorable, thus stretching is sub-dominant to bending
for membrane deformations.

(c) shearing: the lipid bilayer is a fluid thin film, for which any types
of shear forces are ruled out in the lipid membrane. The deformation of the
shearing is likely to occur if the lipid membrane is linked to an external scaffold
structure, such as the lattice structure and the cytoskeleton.

(d) bending: for the shape fluctuations of the lipid membrane, bending is
the most important contribution to the deformation of the membrane. The
bending energy is associated with the bending rigidity and membrane curva-
tures. For some particular systems, other factors such as surface tension and
geometric contributions (van der Waals or Coulomb) are also significant for
the membrane deformation.

(e) compression: instead to describe the biological membrane as a perfect
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single sheet structure (for instance the midplane), we can add the microscopic
details regarding the membrane compression to the membrane structure. For
the lipid membranes which are bent, the physical properties of the two leaflet
are different. For the upper leaflet, the stretching dominants the membrane
changes; for the lower leaflet, the compression of the surface occurs. For incom-
pressible membranes, the equilibrium shapes have minimal bending energy; for
compressible membranes, the combined bending and stretching energy deter-
mine the stable states for the membrane.

(f) tilting: the lipid molecules are not necessarily perpendicular to the
neutral plane2 of the membrane. Experiments show that the angle of tilt of
the lipid molecule on the dipalmitoylphosphatidyl-choline (DPPC) bilayer can
be as large as 30◦ (degree) [50] with respect to the normal vector of the neutral
plane. Tilting of the lipid molecules is also found for the membranes in the
fluid lamellar phase via X-ray scattering. The lipid tilting is associated with
a variety of biological processes, including the membrane fusion and inverted
amphiphilic mesophases. For low temperatures, the lipid tilting is not relied
upon the membrane curvature. Thus it can be coupled into the description of
membrane shape as an independent degree of freedom with additional physics
implications.

The important structures of the biological membranes include lipid mono-
layer and bilayer with different biophysical properties. Both of them can be
mathematically represented as a thin two dimensional flat sheet embedding in
the space for large length scale, refer to the following Chapter “Methods” for
further discussions. For lipid bilayers, if the lipid molecules cannot exchange
from different leaflets. The lipid area difference for two monolayers is constant,
as a result, the associated large-scale bending dominant Hamiltonian is same
for both monolayer and bilayer structures. Figure 1.4 shows the four major
biophysical properties contributing to membrane deformation. The structures
and fluctuations of the lipid membranes are common in a cell, and play a key
role in various membrane functions.

1.2.4 Function

Biological membranes, e.g., cell membrane or plasma membrane, surrounds
the local spaces or compartments in which different chemical or biochemical
substances are contained. In the cytoplasm of a cell, membranes define spe-
cialized subunits that are individually enclosed by the lipid bilayers, so-called
“membrane-bound” organelles. The cellular transport of molecules and parti-
cles among different organelles and plasma membrane is essential for diverse
functions in a cell. Two fundamental biological processes for cellular trafficking

2A neutral plane is the unstrained surface in the middle of the bent lipid bilayers with a
constant area.
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Figure 1.4: Elastic properties contribute to membrane deformations: thickness change,
shearing, stretching and bending. Reprinted from Ref. [8].

are endocytosis and exocytosis [9, 10, 51]. In the following sections, we will
introduce the main pathways for endo- and exocytosis, and their underlying
roles for cell functions.

Endocytosis is a process through which molecules, proteins, and particles
are engulfed by the cell membrane [9, 10]. Usually, it is energy-consuming for
a cell to absorb and internalize biological substances. Three typical pathways
are found for endocytosis: classical endocytosis [52], kiss-and-run endocyto-
sis [53], and bulk endocytosis [54]. Classical endocytosis includes clathrin-
and caveolae-dependent and -independent pathways. Clathrin-dependent en-
docytosis is a receptor-mediated pathway, which is the predominant process in
most cells. Caveolae-dependent endocytosis is a common way of cells to up-
take small biomolecules, and the invaginations are flask shapes. The clathrin-
and caveolae-independent endocytosis have endocytic-like membrane interme-
diates, such as irregular depth inclusions, and coated or uncoated pits. Ex-
amples for this endocytosis are lipid raft and ARF6 (a small molecular weight
GTPase) associated pathways. In kiss-and-run endocytosis, a vesicle (e.g. a
synaptic vesicle) from extracellular environment contacts the plasma mem-
brane in a short time (kiss), and releases the contained biomolecules by the
small transiently-open fusion pores. The vesicle is not collapsed on the mem-
brane and can be retrieved from the plasma membrane after the fusion pore is
closed (run). For bulk endocytosis, large endosome-like structures or cisternae
are found in a cell, which are deep invaginations internalized from a large area
of plasma membrane. Multiple vesicles can bud off from the membranes of
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the large structures. Endocytosis plays a key role in mediating cell functions,
such as membrane curvature generation, vesicle formation and maintenance,
as well as cell movement and division.

Exocytosis, the counterpart of endocytosis, is an active energy-cost process
in which biological material is transported out the cell when a vesicle fuses with
the plasma membrane [9, 10]. Exocytosis includes three important pathways:
full-collapse fusion [55], kiss-and-run exocytosis [53], and compound exocytosis
[56]. Kiss-and-run exocytosis is similar to kiss-and-run endocytosis, the main
differences is in exocytosis, a domestic vesicle expels the biomolecules out of
the plasma membrane. Full-collapse fusion, different from the kiss-and-run
endocytosis where a vesicle is in contact, a vesicle completely fuses with the
plasma membrane, the whole vesicle disappears as the large fusion pore leads
to flattening into the plasma membrane. Compound exocytosis refers to the
fusion of small (20−50 nm) or large (300−2, 000 nm) [57] vesicles which come
from the fusion of multiple vesicles, or vesicles with preformed giant vesicles
with fused but not collapsed membranes. Exocytosis is important for synaptic
strength and plasticity, vesicle replenishment, and multivesicle release.

For cellular trafficking in both endocytosis and exocytosis, the membrane or
protein mediated budding from a donor membrane to an acceptor membrane is
generally the first important step [58]. For protein-driven membrane budding,
one most significant process is the creation of the coated vesicle-like structure.
Clathrin, an important protein in membrane budding, can generate different
types of basket-shape or lattice-shape coated vesicles with radii of 30− 50 nm
[59]. On plasma membranes, clathrin binds to the flat platform-shape adaptor
proteins and facilitates the budding of protein-attached membrane in clathrin-
dependent endocytosis. The coat protein complex I (COPI) and II (COPII)
[60, 61] are responsible for the membrane budding for the coated vesicle car-
rier from the endoplasmic reticulum (ER) to the Golgi apparatus. Similar to
clathrin, vesicle-like basket or lattice invaginations are formed, which are not
strongly dependent on the lipid composition.

While protein-dominant membrane budding is characterized by the forma-
tion of the coated vesicles, membrane-mediated budding is related to the phase
separation in heterogeneous lipid bilayers synthesized in micron length scale.
Depending on lipid composition and temperature, the lipid mixtures can exist
in either the liquid or the solid (“gel”) phase. At given temperature, both
liquid and solid phases can be coexistent for spatially separated different lipid
clusters [62]. Furthermore, the unsaturated lipids are abandon in liquid disor-
dered (Ld) phase, while the liquid ordered (Lo) phase contains more saturated
lipids [63]. As a result, the thickness of the lipid membrane in Lo phase is
larger than that in Ld phase. The energetically unfavorable hydrophobic con-
tacts between the amphipathic lipid molecules for the two liquid states lead to
line tension, which is the energy cost per length. In order to minimize the line

12



1.3 Nanoparticles

tension energy, the membrane domains tend to come together to from some
circular zones, which are known as “microdomains”. Most microdomains in
membrane budding are rich in sterol- and sphingolipid molecules, or the so-
called “lipid rafts” [58]. When the sizes of the microdomains are large enough
for which the line tension energies exceed the Helfrich deformation energies
(see the further introduction in Chaper “Methods”), the membrane will bud
out and form distorted vesicles to reduce the contact sizes, and the vesicles can
even detach from the membrane as the line tension energies are extremely high
[64]. For some viruses toxins, such as shiga toxin B [65], can give rise to the
arrangements of Lo microdomians, which leads to the formation of negative-
curvature favorable tubular vesicles.

1.3 Nanoparticles

Depending on the specific applications of nanoparticles, the definition and
viewpoint of them can vary. The meanings of nanoparticles and nanomateri-
als are different for different organizations [66]. The common characteristic of
nanoparticles is that they are materials (natural or artificial) in nanoscale (e.g.,
1 nm = 10−9 m). They have different components and shapes, see Figs. 1.5
and 1.6. Such small particles can enter the cells via endocytosis. After exert-
ing their functions, they can be expelled out by virtue of exocytosis. A large
effort has been devoted to the studies of the interactions between nanoparti-
cles and membranes, like the budding mechanism [67, 68], to understand how
nanoparticles are wrapped by the membranes. However, owing to the complex-
ity of biological membranes in structures, components and elastic properties,
the elucidations of specific mechanisms for nanoparticle wrapping are still big
challenges. For the following sections, we will introduce some typical types of
nanoparticles, as well as their important roles in different potential applica-
tions.

1.3.1 Types

Nanoparticles are made from a variety of materials including, but no limited to,
lipids (e.g. phospholipids and chelesterol), polymers and inorganic materials
(e.g. metals, composites, and ceramics), see Figs. 1.5 and 1.6. Nanoparti-
cles gained from these three types of materials is enormous; just list some
of them: liposomes, dendrimers, micelles, polymeric drug conjugates, carbon
based structures, and metallic nanoparticles [5, 6, 66]. In the following parts,
I will introduce one or two important nanoparticles from these three types, as
well as their potential applications.

(a) liposomes: the phospholipid molecules of liposomes can self-assemble
to closed vesicles in aqueous environments, which can be used to encapsu-
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late biotech drug molecules. Liposomes are a leading and most intelligent
drug delivery system for both active and passive membrane transport [69, 70].
Many liposome-based drug carriers used for clinical applications are already
in market, such as ambisome, daunoXome, inflexal V. Liposomes have enor-
mous advantages rendering them as suitable drug delivery systems. First,
liposomes are made of lipid molecules with good biocompatibility, which are
easily available for formulating and can display specific biological, chemical,
and mechanical aspects. Second, the amphiphilic character of liposomes allows
to capture both hydrophilic and hydrophobic agents in their structures. Last,
the modifications of the physicochemical properties (size, charge, and surface
ligands) of liposomes lead to more functionally favorable carriers. For instance,
the stealth liposomes with attached polyethylene glycol-units (PFG) are able
to survive longer in the body.

(b) micelles: in micelles, water-insoluble drugs can be linked covalently to
their hydrophobic inner cores shielded by amphiphilic groups of the component
molecules [4, 70]. Such spheroidal shapes of micelles can also be “core-shell”
structures with radii 5− 50 nm [5], see Fig. 1.3. A hydrophilic shell can protect
the micelles from phagocytosis by macrophages or uptake by reticuloendothe-
lial systems (RES), as the water-bound regions form “splayed” structures such
as “polymer brushes”. As a result, micelle drug delivery systems can have a
prolonged lifetime. Another good aspect of micelle drug-delivery systems is
their high efficiency in accumulation at target drug sites [6, 66]. One common
example is polymeric micelles, see Fig. 1.5.

Figure 1.5: Representative structures for polymeric nanoparticles for (a) oblate, disk shape,
(b) bullet shape, and (c) pill shape, and (d) dumbbell shape. Reprinted from Ref. [71].
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(c) silicon: silicon nanoparticles are engineered by the methods that are
used in semiconductors and micro-electromechanical systems (MEMS) [5].
Typical techniques are photolithography, etching, and deposition [72]. Pop-
ular silicon-based materials are porous silicon and silica, and silicon dioxide.
The structures include calcified nanopores, porous nanoparticles, and nanonee-
dles. By controlling the nanopore diameter and density, the substances (e.g.,
biomolecules and drugs) stored in pores can pass through the pores with a
specific rate. One of the important silicon-based materials is porous hollow
silica nanoparticles, which can deliver cargoes in cells.

(d) metal: metallic nanoparticles are fabricated from different metals, such
as gold (Au), silver (Ag), platinum (Pt), and palladium (Pd) [4, 5], see Fig. 1.6.
The metallic nanoparticles have been used for a long time. For example, in 4th
century AD, Lycurgus cups were fabricated with many small-sized (∼ 20 nm)
nanoparticles [66], which reflect special optical characteristics. Nowadays, one
important application of metallic nanoparticles is in biomedicine and biomem-
brane. Usually, metal covers a core material (e.g. a silica particle) and form
a very thin shell around the core. On these hollow metallic covers, a large
number of ligands, for instance, nucleic acids, lipid molecules, small proteins,
as well as sugars, can be easily anchored to the nanoparticles. The connections
between metallic nanoparticles and biological materials can be implicated by a
variety of conjugation means, such as bifunctional linkages, lipophilic interac-
tion, silanization (self-assembly with organofunctional alkoxysilane molecules),
electrostatic attraction, and nanobead interactions.

Figure 1.6: Representative structures for (a) cube-like and (b) rod-like gold nanoparticles,
(c) irregular silver nanoparticles, and (d) hematite nanospindles. Reprinted from Ref. [71].
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1.3.2 Mechanical properties

Nanoparticles have many distinct mechanical properties, which are associated
with interfacial forces, including hardness, elastic modulus, stress and strain,
adhesion and friction, and movement [4, 73]. An better understanding of these
properties of nanoparticles provides significant aids in nanotechnology, and the
evaluations for the functions of nanoparticles.

(a) hardness and elastic modulus: the hardness and elastic properties of
nanoparticles are tested by microindentation and nanoindentation techniques.
In particular, atomic force microscopy (AFM) is helpful to characterize the
deformability of nanoparticles. For nanoparticles with sizes smaller or ap-
proximate to hundreds of nanometers, the hardness and elastic modulus can
vary, depending on the components and shapes of nanoparticles. For instance,
for silicon nanoparticles, the elastic modulus increase with decreasing sizes of
nanoparticles. For metallic nanoparticles, the dislocations inside the nanopar-
ticles are found during deformations.

(b) adhesion and friction of nanoparticles: in addition to vertical deflection
of AFM cantilever, the torsional deflection of cantilever and colloidal-probe
techniques are used for investigating the adhesion and friction of nanoparticles
on the substance. Research shows that the adhesion force is linearly depen-
dent on the radii of nanoparticles, and the hydrophobic interfaces strongly
decrease the adhesion for particles and substances. Meanwhile, the friction
forces between nanoparticles and substances increase with particle radius, and
is proportional to the contact areas.

(c) movement: the movement of nanoparticles due to different forces such
as Brownian motion force, medium and environment is difficult to quantify.
Recently, two main methods are used to study the movements of nanoparti-
cles, one is particle tracking with the fluorescence technique, the other one is
dynamic light scattering (DLS) technique. Study shows that during move-
ment, the rotating speeds of nanoparticles is much slower than velocities.
Nanoparticles with sizes comparable to the length of liquid molecules tend
to self-assemble in the medium.

1.3.3 Applications and toxicological risks

Relying upon the components, sizes, shapes, and mechanical properties of
nanoparticles, they can be used in various fields, such as nanomedicine, food
sciences, chemical and cosmetics. Here we focus on the applications of nanopar-
ticles in the fields of biology, biochemistry, and medicine. We also discuss
potential negative side effects related to their applications, such as toxicities.

The most important function for nanoparticles in biological cell is they can
serve as delivery systems. As mentioned above, both liposomes [69, 70] and
polymeric micelles [5] are suitable drug delivery systems as they have specific
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lipid components, vesicular structures, and biochemical characteristics, which
guarantees unique advantages in drugs delivery. Among these drug-delivery
systems, the nanoparticle-based structures carrying drugs for brain or the cen-
tral nervous system (CNS) need more attention [5]. The difficulty for brain
drug delivery is due to the blood-brain barrier (BBB), an extremely compli-
cated structure composed of impermeable endothelial cells with tight junctions,
enzyme catalysis, and efficient efflux-transport. As a result, only a few small
molecules (ions and peptides) and a very limited number of macromolecules
are able to pass the barrier. It has been shown that poly(butylcyanoacrylate)
based nanoparticles can transport several agents, such as dalargin, hexapep-
tide, doxorubicin, into the brain. These drug-carrying agents are transported
across BBB by through of protein-mediated endocytosis [74, 75]. In addi-
tion to drugs, nanoparticle delivery systems for peptides, proteins, and genes
[76, 77] have been reported. For instance, polymer-based nanoparticles, such
as polymeric micelles, encapsulate insulin in the hydrophobic core and pre-
serve the activity of insulin from hydrolytic and enzymatic degradation [78].
Poly(DL-lactide-co-glycolide) (PLGA) nanoparticles are used to transport the
therapeutic genes for bone healing [79].

Another significant function for nanoparticles is efficient targeting [80, 81].
The special optical properties of nanoparticles, e.g. metallic nanoparticles, are
used as markers for distinct biological tissues and cells, as well as for photo-
targeting thermal therapy [82]. Nanoparticles can also be used for tumor
targeting, either by passive targeting or active targeting [5, 80]. In passive
targeting, an enhanced vascular permeability and retention (EPR) effect are
found in tumors, which result from aggregation of therapeutic agents in tu-
mor cells. The accurate targeting is possible due to the high selectivity for
agents and ligands that can be linked to nanoparticles. Nanoparticles with
sizes of 50− 500 nm, such as liposomes, micelles, and dendrimers, can deliver
drugs to tumor tissue in this way. In active targeting, the ligands (peptides,
growth factors, transferrin, antibodies and small compounds) of drug-loaded
nanoparticles are directly recognized by the receptors expressed on tumor cells,
which initiates the active ligand-receptor binding mediated endocytosis. For
example, folate, a small compound, is easily conjugated to the nanoparticles
and selectively bind to the carcinomas of the ovary, breast, lung, kidney and
brain. The accuracy and efficiency of nanoparticle targeting depends also on
their physiochemical properties, such as size, shape and surface charge.

In addition, nanoparticles have potential applications in stem cell therapy,
and stimulate immune response. However, besides the rapid developments
and wide applications of nanoparticles, toxicity and side effects of nanoparti-
cles are also found [4, 5]. It has been reported that they affect lungs, skin,
intestinal tract, and other organs. Adverse health risks of nanoparticles are as-
sociated with the binding and wrapping by both targeted and normal cells. For
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the nanoparticles in lungs, the poisonous biological outcomes depend strongly
on the size of the nanoparticles. Ultrafine nanoparticles, contrary to larger
nanoparticles, are able to induce more severe adverse effects, including the
development of inflammation and even tumors [83].
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Chapter 2

Methods

2.1 Membrane models for different length and

time scales

Biological membranes are very thin fluid layers which are composed of hun-
dreds of amphiphilic phospholipids and/or embedded proteins. The typical
thickness of a lipid-bilayer membrane is d ≈ 5 nm. This is by far smaller
compared to the lateral dimension of the membrane, which can be as large as
10µm. Also, the biophysical processes associated with lipid membranes vary
in time scale. For instance, small molecules (ions and water molecules) diffuse
across the membrane as rapid as a few nanoseconds [84], and membrane fusion
of giant lipid vesicles is shown to occur on a longer time-scale as microsecond
[85]. Thus a variety of membrane models covering a wide range of dimensions,
from nanometer to micronmeter, are required.

Depending on the question concerned, one can choose the most appropri-
ate computing models to describe the biological phenomena on different length
and time scales. Generally speaking, the details of the membrane structure
and molecular interactions are usually investigated on nanometer scale, while
the morphologies of biological vesicles and membrane self-assemblies are mi-
crometer scales. Membrane models corresponding to different scales from mi-
croscopic to be macroscopic are classified to quantum models, all-atom, coarse-
grained models, supra-coarse-grained models, and continuum models such as
triangulated membrane and mesh-less models [86–90], as shown in Fig. 2.1.
Quantum, atomistic and coarse-grained models, and the continuum models, in
particular the triangulated membrane model, will be introduced in the follow-
ing.

Quantum models
On the quantum mechanics level, electronic structure and atomic nuclei are

explicitly included in the theoretical models. It is feasible to obtain information
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(f)

Figure 2.1: Different length-scale representations for (a) all atom molecular dynamics sim-
ulation, (b) coarse-grained (CG) model in explicit solvent, (c) coarse-grained model (CG)
in implicit solvent, (d) meshless model, (e) triangulation of membrane. Reprinted from
Ref. [86], and (f) different length- and time-scale representations from small to large for
quantum mechanics, all-atom, coarse-grained, supra-coarse-grained simulations, and a cell.
Reprinted from Ref. [87].

about the interaction between electrons, charge transfer, chemical bonds, as
well as the band structure of materials with chemical accuracy [89, 91, 92].

The most accurate technique to calculate the electronic structure is wave
function-based calculations. However, the computational costs for dealing with
wave functions are huge for large molecules [91, 92]. Instead, for large-scale
biological systems, the quantum chemical properties can be obtained using
density functional theory (DFT) with high accuracy and lower computational
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costs [89, 91, 92]. The chemical information for small molecules, obtained using
quantum mechanical calculations, can help for atomistic molecular dynamic
simulations [87, 89, 91, 92].

All-atom models

A great number of biophysical processes can be understood at an atomistic
level, such as receptor-ligand binding [93, 94], protein-membrane interactions
[95, 96], protein-nucleic acid interactions [97, 98], as well as protein folding
[99]. Atomistic molecular dynamics simulations can be divided into two differ-
ent categories, depending on whether each atom is independently included in
the models [100, 101]. One category is all-atom simulations, where all atoms
are simulated in explicit-solvent systems. The other category is united-atom
simulations, where a few atoms are integrated into one united-atom, also called
pseudo-atom, which can approximately represent the chemical properties of a
group of atoms and which is only slightly larger than a single atom.

In molecular dynamic simulations, the dependence of the free energy of
the biological system on the coordinates of the molecules is often described by
potentials, usually referred to as force field [90, 92, 102]. The mathematical
parameters for the (inter-)atomic potential energy can be obtained from ab
initio or quasi-quantum mechanics calculations, or from experimental meth-
ods like X-ray diffraction, nuclear magnetic resonance (NMR), and neutron
spectroscopy. A typical empirical force field has two different energy contri-
butions, one component is the intramolecular or local energy including bond
stretching, dihedral angles, and angle bending; the other one is intermolecular
interactions, which can be hydrophobic repulsion and van der Waals interac-
tions.

Coarse-grained models

For coarse-grained molecular dynamics simulations, at least three heavy
atoms are integrated into one pseudo-atom [88]. A biological molecule in a
coarse-grained model can be represented by a hybrid of individual atoms and
pseudo-atoms, or by pseudo-atoms alone. As a result, a large number of atoms
“have vanished”, and the number of degrees of freedom for calculating in-
tramolecular, intermolecular interaction potentials is reduced. Because of the
high speed of the hydrogen bond vibrations, the simulated time step for all-
atom molecular dynamics simulation is limited to 1− 2 fs. For coarse-grained
molecular dynamics simulations, the time step is about 10− 1000 times longer
than than all-atom molecular dynamics simulations [103–106].

Generally speaking, there are two main philosophies to design coarse-grained
models for different molecular systems1: bottom-up and top-down approaches

1The other approaches are ‘knowledge-based’ model, which rely on experimentally deter-
mined structures.
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[107–109]. For bottom-up approaches, the molecular descriptions for the coarse-
grained models are obtained from a more detailed model, for instance, a clas-
sical, empirical atomistic model. For top-down approaches,the molecular de-
scriptions are based on experimental data, usually thermodynamic or macro-
scopic properties.

Coarse-grained molecular dynamics simulations have been used to investi-
gate the biophysical processes on a larger scales, such as the protein aggregation
mediated by lipid molecules [110, 111], membrane fusion and fission [112, 113],
and protein-protein interactions [114]. In addition, the information obtained
using coarse-grained models can help to bridge the gap between micro- and
macroscopic descriptions.

Supra coarse-grained models

In ‘supra’ coarse-grained models, also referred to as ‘highly’, ‘ultra’, and
‘shaped-based’ coarse-grained models, much more atoms, molecules, and even
some parts of proteins and membranes are integrated into a single pseudo-
molecule [115, 116]. Therefore, they are even more coarse models compared
to coarse-grained models. Supra coarse-grained systems can be combined with
particle-based hydrodynamic methods, such as multiparticle collision (MPC),
dissipative particle dynamics (DPD), and Brownian dynamics (BD) [86, 87,
117, 118]. Therefore, supra coarse-grained models can treat large of biological
molecules in implicit-solvent simulations with increased speed, but decreased
accuracy. Examples are large-scale membrane-mediated Bin-Amphiphysin-
Rvs proteins (BAR) interactions [119, 120], and aggregated amyloid fibrils
in Alzheimer’s disease [121, 122].

Triangulated-membrane models

A mesh model made up of several polygon meshes (vertices, edges, and
faces) and is typically used to describe the geometric surface and membrane
modeling [123–125], a common example is the dynamics triangulated mem-
brane model, which is based on the continuum model for which detailed de-
scriptions can be found in the following Sec. 2.2.

Meshless membrane models

The meshless membrane model is also dependent on the continuum model.
For such model, the potential interactions, instead of the meshes, control the
assembly of the particles for the fluid membranes. There are three main types
of potentials, including soft-core repulsion, anisotropic attractions, and hy-
drophobic muti-body interactions [126]. Most of the meshless models are sim-
ulated in solvent-free environment, and are used to study the bending defor-
mation of membranes [86, 127], as well as the membrane dynamics in flows
[128, 129].
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2.2 Continuum model

From the previous introduction, we know that lipid-bilayer can laterally extend
up to the micrometer length scale, which is significantly larger than the bi-
layer thickness. Therefore, lipid-bilayer membranes can be described as a two-
dimensional fluid surface embedded in the three-dimensional space. We first
look back to important concepts and definitions of differential geometry that
are used to describe the curves and surfaces for the membranes parametrized
in Monge gauge, and extend the geometric description to the implicit model.
Subsequently, we will introduce and discuss the Helfrich Hamiltonian in some
depth, followed by the Gauss-Bonnet theorem that is usually exploited to deal
with the integral over the Gaussian curvatures. Finally, we will discuss the
methods used for energy minimization.

2.2.1 Monge gauge

We start to consider the membrane as an one-sheet model where the lipid
bilayers is regarded as a mathematical surface [21, 22]. In Monge gauge, the
surface can be described using a height function h(x, y) in a three-dimensional
Cartesian coordinate system. A simple case is the spherical surface shape, it
can be parametrised in Monge gauge as

z = ±h(x, y) = ±
√
R2 − x2 − y2 , (2.1)

where the radius of the sphere is R. The plane {x, y} is the reference surface,
and z = h(x, y) is the height function. The sign ± refers to the upper (positive)
and below (negative) half of the sphere.

Figure 2.2: A surface parametrized in by Monge gauge. The membrane is defined mathe-
matically as {x, y, z} such that z = h(x, y). Reprinted from Ref. [130].

23



Methods

For each point on the reference plane, we can find a specific height function
h(x, y), which maps each pair of the reference coordinates {x, y} to a point in
the embedding three-dimensional space, see Fig. 2.2. For a specific geometric
surface parametrized by Monge gauge,

r(x, y) =

 x
y

h(x, y)

 , (2.2)

where the coordinate pairs (x, y) ∈ R2, and r refers to a vector for the point
in R3.

Followed by the parametrized surface, the tangent vectors along the coor-
dinate system axes can be obtained by

ex =

 1
0
hx

 , ey =

 0
1
hy

 , (2.3)

where the partial derivatives of the height field in the x and y directions are
hx = ∂h/∂x and hy = ∂h/∂y, respectively. The vector set {ex, ey} are tangent
to the geometric surface, and the directions of these two vectors are along the
axes of the coordinate system. Both vectors, ex and ey, span a local tangent
surface space for every point of the surface.

The two vectors ex and ey are tangent to the surface represented by the
Monge gauge parameterization, but they are not always perpendicular to each
other. We use the “metric tensor” or “metric” of the surface to reflect if they
are orthogonal in the embedding space,

gxy = ex · ey =

(
1 + h2x hxhy
hxhy 1 + h2y

)
. (2.4)

Here, the metric tensor gxy is not a 2×2 matrix, but a twofold covariant vector,
and if it contracts with the corresponding contravariant vector gxy, gives rise
to the unit matrix. The gxy is found to be

gxy =
1

1 + h2x + h2y

(
1 + h2y −hxhy
−hxhy 1 + h2x

)
. (2.5)

The tensor gxy is also referred as the first fundamental form of the surface.
As the two vectors, exdx and eydy, describe an immeasurably small local

tangent part of to the surface, the area element in Monge gauge is

dA = |exdx× eydy| =
√

e2
xe

2
y − (ex · ey)2 dxdy

=
√
|gxy|dxdy ,

(2.6)
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2.2 Continuum model

where |gxy| is the determinant of the metric tensor gxy,

|gxy| = 1 + h2x + h2y = 1 +∇2h, (2.7)

with Laplace operator ∇2 = (∂2x, ∂
2
y).

From the two tangent vectors, ex and ey, we can define the surface normal
vector as

n =
ex × ey

|ex × ey|
=

ex × ey√
|gxy|

=
1√

1 + (∇h)2

−hx−hy
1

 (2.8)

to get a local three-dimensional coordinate system. The normal vector n is
normalized to unit length. The second fundamental form Kxy of the surface is
obtained from the normal vector n as 2

Kxy = −ey · ∂xn = n · ∂xey = n · ∂xyr

=
1

1 + (∇h)2

(
hxx hxy
hxy hyy

)
.

(2.9)

The tensor Kxy is also known as the “extrinsic” curvature tensor, as it requires
the normal vector, which can embed the surface into a higher-dimensional
space. According to the definition, the extrinsic tensor Kxy essentially mea-
sures the changes of the local curvature when the normal vector walks along
the surface.

The curvature tensor Kxy is a quadratic form, two nonzero eigenvalues and
eigenvectors can be found. In fact, two eigenvectors are known as the principle
directions and point into the directions along which the minimal and maximal
curvatures of the surface are found. The corresponding eigenvalues are called
as principle curvatures, denoted as c1 and c2, see Fig. 2.3. The trace of the
curvature tensor Kxy is a constant scalar variable, which gives rise to the mean
curvature H of the surface,

H =
gxyKxy

2
=
c1 + c2

2

= ∇ ·
(

∇h√
1 + (∇h)2

)

=
(1 + h2x)hyy + (1 + h2y)hxx − 2hxhyhxy

2(1 + h2x + h2y)
3/2

.

(2.10)

2Here, the curvature of the surface is positive if the normal vector points outward, oth-
erwise it is negative. The mathematical books tend to define the curvature oppositely.
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Figure 2.3: Illustrations of the normal vectors, principle directions and principle curvatures.
The unit eigenvectors X1 and X2 along which the minimal and maximal curvatures of the
surface, c1 and c2, are found. The reciprocals of the principle curvatures, 1/c1 and 1/c2,
denote the radii of the osculating circles, the normal vector n is perpendicular to the principle
vectors. Reprinted from Ref. [131].

The other important constant scalar associated with the curvature tensor
is called the Gaussian curvature, K, and it is obtained by the determinant of
the tensor,

K = det(Ky
x) = c1c2

=
det[∂2h]

(1 + (∇h)2)2

=
hxxhyy − h2xy

(1 + h2x + h2y)
2
,

(2.11)

with the Hessian ∂2h of the height function h(x, y).
The principle curvatures, c1 and c2, determine the local geometry of the

surface [131]. The special cases are the zero-curvature surfaces. For instance,
the surface with zero Gaussian curvature, K = 0, is a piece of flat plane, or
a curved cylinder. This surface is known as “developable surface” owning to
the “developed” or extended characteristics in the plane. The mean curvature
surface with H = 0 is called “minimal surface” for which the minimal area is
achieved. Such surfaces always have local, saddle-like shape deformations. If
both local curvatures are positive, the surface is a convex semi-sphere, and the
surface is a concave semi-sphere for negative curvatures (figure not shown), see
Fig. 2.4.

2.2.2 Implicit model

In Monge gauge, a surface is mathematically described as an one-sheet surface
in the parametric form, r(x, y), in a three-dimensional Cartesian coordinate
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2.2 Continuum model

Figure 2.4: Representative shapes for a “developable surface” (curved cylinder) with Gaus-
sian curvature K = 0, a “minimal surface” (saddle-like) with mean curvature H = 0, and a
convex hemisphere with principle curvatures c1 > 0 and c2 > 0. Reprinted from Ref. [131].

system, as shown in Eq. (2.2). For a small patch of planar membrane for
which there are no overhangs, the Monge gauge parameterization is always
applicable. For a more general surface model of the fluid membrane, the
geometric function for the shape can be given in the implicit form, F (r) = 0,
where r = r(x, y, z) ∈ R3. For instance, the geometric surface can be written
as F (r) = h(x, y) − z = 0 in a Cartesian coordinate system. The subsequent
discussion of the implicit model is based on the Ref. [132].

Any two tangent vectors can form a basis for the local tangent plane of
the surface. Suppose x and y are on the reference plane, the tangent vectors
respective to x and y are

ex =
∂r

∂x
, ey =

∂r

∂y
, (2.12)

for which the normal vector at each point of the surface is given by

n =
∇F
|∇F | =

ex × ey

|ex × ey|
, (2.13)

where the direction of the gradient of F is the direction of the normal vector
n. The curvature tensor, C, describes the change of the normal vector n,

dn = C · dr , (2.14)

when it walks along the surface. For Cartesian coordinate system,dnx

dny

dnz

 =

∂nx/∂x ∂nx/∂y ∂nx/∂z
∂ny/∂x ∂ny/∂y ∂ny/∂z
∂nz/∂x ∂nz/∂y ∂nz/∂z

dx
dy
dz

 , (2.15)

and

C =
1

|∇F |(Fi,j +
Fi|∇F |j
|∇F | ) , (2.16)

for i, j ∈ {x, y, z}.
From the 3 × 3 matrix C, in general, up to three linearly independent

eigenvalues and eigenvectors can be determined. However, the surface model
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for the membrane in the implicit form is a function of only two independent
parameters, e.g. x and y. Therefore, the two eigenvalues, c1 and c2, and the
corresponding eigenvectors of the tensor C are those of the extrinsic curvature
tensor Kxy.

Two invariants of the curvature tensor are the mean curvature, H =
(c1 + c2)/2, and the Gaussian curvature, K = c1c2, which can be obtained
by the trace and the determinant of the curvature tensor, respectively 3. In a
Cartesian coordinate system, the mean curvature and the Gaussian curvature
are expressed as

H =
1

2|∇F |3 (Fxx(F 2
y + F 2

z )− 2FxFyFxy + Perm) , (2.17)

and

K =
1

|∇F |4 (FxxFyyF
2
z − F 2

xyF
2
z + 2FxzFx(FyFyz − FzFyy) + Perm) , (2.18)

respectively, where Perm stands for permutations of the previous terms.
For surface shapes represented by Monge gauge parameterization, the mean

curvature, H, and the Gaussian curvature, K, are specific cases in the implicit
model, see Eqs. (2.10) and (2.11), respectively. If we now suppose the lipid
membrane is almost planar, for which only weak enough deviations from the
reference plane can be found, such that hx � 1 and hy � 1, the expressions
for the mean curvature H and the Gaussian curvature K can be simplified to

H ≈ Tr[∂2h]

2
=
∇2h

2
=
hxx + hyy

2
, (2.19)

and
K ≈ det[∂2h] = hxxhyy − h2xy, (2.20)

respectively. The reduced form is known as “linearized Monge gauge”, and it
has been widely employed in a good many of theoretical and analytical models
for fluid membranes.

2.2.3 Helfrich Hamiltonian

If we consider a patch of a lipid-bilayer membrane that is sufficiently small
in atomistic dimensions, hundreds of thousands of degrees of freedom for
molecules have to be taken into account in the theoretical models. However,
many important biophysical events happen on large scales. Quantum and
atomistic models are not applicable to study the membrane on these scales.
A large number of analytical and numerical methods have been developed to

3The third invariant scalar for the curvature tensor is, det(C) = 0.
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2.2 Continuum model

focus on the physical aspects of the lipid membrane on an adequately large
length scale. In particular, the separation of the length scales for the membrane
thickness and the lateral dimension enables us to investigate the system on the
mesoscopic scale. The material parameters such membrane Hamiltonian are
connected with the curvature tensors, and independent of the local, atomistic
details. In other words, on large length scale, the primary soft mode is the
curvature deformation. The seminal works on this geometric Hamiltonian for
the lipid membrane from the 1970s are from Canham [20], Helfrich [19] and
Evans [133].

To study the biconcave shapes of erythrocytes [20], Canham found that
the summation of the squares of the principal curvatures of the local surfaces
determines the bending energy density of the plasma membrane. The stable
geometries and the lowest bending energies deviated from the expression can
well describe the representative shape profiles of red blood cells. Helfrich
proposed that for the non-spherical shapes of enclosed vesicles, the curvature
elasticity is the key parameter for the deformation of the lipid bilayers; and an
asymmetry of the lipid bilayers, represented by the spontaneous curvature, can
influence the elastic rigidity of the membrane [19]. Evans suggested that even
small changes of the interfacial chemical free energy densities, or the surface
tension, can significantly affect the the membrane curvature [133].

On the mesoscopic length scale, the Helfrich Hamiltonian is found to be
only associated with the geometric curvatures of the plasma membrane [19, 20,
133, 134]. The energy density at each point of an almost planar membrane,
with weak enough deviations from the reference plane, can be expanded to
quadratic order in the principle curvatures, c1 and c2, as

Eb =

∫
dA {α1 + α2c1 + α3c2 + α4c

2
1 + α5c

2
2 + α6c1c2 +O[c3] } , (2.21)

where the integral is calculated over the entire membrane area. In fact, only
four independent expansion parameters are found for the curvatures up to
quadratic order, as the fluid membrane has no special directions, such that
α2 = α3 and α4 = α5. The equations in Eq. (2.21) can thus be altered to the
famous form of “Helfrich Hamiltonian”,

Eb =

∫
dA { 2κ(

c1 + c2
2
− c0)2 + κ̄c1c2 + σ +O[c3] }

=

∫
dA

{
2κ(H − c0)2 + κ̄K + σ +O[c3]

}
,

(2.22)

with the elastic parameters σ, c0, κ and κ̄.
Before introducing the physical meaning of these four different parameters,

we first look at the mathematical properties of the energy function. It is
obvious that all different components in the Helfrich Hamiltonian are Galileo-
invariant, as only curvatures enter the expression. This indicates that the
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bending energy is constant for the translated and rotated membranes. In
addition, the energy functional is independent of the parametrized coordinate
system, for both the trace and the determinant of curvature tensor, the mean
curvature, H, and the Gaussian curvature, G, are invariants.

The coefficients associated with the Helfrich Hamiltonian have direct phys-
ical meanings [21, 22]:

• Membrane tension σ. The independent thermodynamic variable, σ, is
always considered as an elastic constant, and the associated energy term
σA is proportional to the total (or projected) area A of the membrane.
The coefficient σ can also be used as Lagrange multiplier to fix the mem-
brane area when minimizing the deformation energy of the membrane.

• Spontaneous curvature c0. The preferred curvature c0 reflects the “lack of
symmetry” of a lipid-bilayer. The two monolayers of the lipid membrane
are not symmetric for spontaneous curvature c0 6= 0. This can, for
example, result from the differences in the kinds and the components of
the lipid molecules and proteins.

• Curvature modulus κ. The elastic coefficient κ is the “bending modu-
lus” or “bending rigidity”, the energy needed to bend the planar mem-
brane. The bending rigidity κ can be measured via finer-scale theories
of the membrane and experimental methods, and the typical value is
κ ∼ 20kBT [135, 136]. The bending rigidity κ will be discussed in detail
for the following chapters.

• Curvature modulus κ̄. The constant κ̄ is the “Gaussian curvature mod-
ulus” or “saddle-splay modulus”. The two constants κ and κ̄ are of the
same order of magnitude. The value of κ̄ is difficult to find as the mem-
brane shape is irresponsible to this modulus, and it only matters for topo-
logical changes, such as fission and fusion. The role of the saddle-splay
modulus κ̄ is further discussed in the subsequent section “Gausss-Bonnet
theorem”.

We can see from the introduction above that for deformations of a lipid-
bilayer membrane, the elastic bending rigidity κ is the most important param-
eter to calculate the lowest bending energy shapes. The surface tension σ are
often neglected for amphiphilic membranes, as the area of the membrane is
fixed by the number of lipid molecules. If the lipid membrane is symmetric,
the spontaneous curvature is c0 = 0. Finally, the integral over the Gaussian
curvature keeps constant for a system without topological changes.
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2.2.4 Gauss-Bonnet theorem

The Gaussian energy term in the Helfrich Hamiltonian, Eq. (2.21), is the
integral of the Gaussian curvature K over the total membrane area A,

Ek = κ̄

∫
dAK , (2.23)

with the constant Gaussian saddle-splay κ̄. The Gauss-Bonnet theorem relates
the value of this integral to the topology of the membrane [137, 138]. In
particular, for a closed surface, the integral over the Gaussian curvature K is∫

dAK = 2πχA , (2.24)

where χA is Euler characteristic of the geometric surface. This shows that the
Gaussian saddle-splay modulus κ̄ dose not contribute to energy deformations
for geometric shape of the surface. The characteristic Euler for a polyhedral
surface is

χA = V − E + F , (2.25)

with the vertices V , edges E, and facets F of the polyhedra. The Euler
characteristic χA can also be obtained from

χA = 2(n− g) , (2.26)

where n and g are the numbers of objects and handles, respectively. Figure 2.5
shows some typical systems to illustrate the Euler characteristic χA. For ex-
ample, for a sphere, χA = 2 given by Eq. (2.26); for a cube, according to
(2.25), V = 8, E = 12, F = 6, and χA = 2. Both the sphere and the cube
have the same Euler characteristic, they are, in fact, topological equivalents
with different geometric shapes. For a torus, n = 1, g = 1, and χA = 0, see
Eq. (2.26). Similarly, one planar membrane has Euler characteristic χA = 0,
and two connected planar membranes have χA = −2.

Figure 2.5: The Euler characteristic for the sphere, the cube, and the torus are χA = 2,
2, and 0, respectively. The sphere and the cube are topological equivalents with the same
Euler characteristic. Reprinted from Ref. [131].
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For different vesicles with different areas, volumes and spontaneous cur-
vatures, their shapes can be spheres, stomatocytes, oblates, and prolates, the
Gaussian energy term Ek is identical as long as the Gaussian saddle-splay
modulus κ̄ is identical. Similarly, for red blood cells, the different shape fluc-
tuations are not related to the the Gaussian energies Ek, as there is no topolog-
ical changes in red blood cells. Furthermore, Ek is independent of the thermal
fluctuations of the membrane.

2.3 Energy minimization

There are three different kinds of methods which are used to determine stable
shapes with the lowest deformation energies for membranes [16, 137].

First of all, one can directly try to solve the Euler-Lagrange equations, also
referred to as shape equation. For those axisymmetric shapes, the Euler-
Lagrange equation is changed to a set of one-dimensional non-linear ordi-
nary differential equations up to second order, and the optimal shapes can
be obtained by solving the partial differential equations. Here, the arc-length
parametrization is used to describe the axisymmetric shapes, and the numeri-
cal solutions can be obtained with constraints for membrane area, and vesicle
volumes. This method works provides high degree of efficiency and accuracy.
It has therefore been used for a large number of studies. For instance, the
wrapping of spherical particles by the fluid membranes [139–141], and shape
deformations of lipid bilayers that wrap the infinitely long cylinders have been
calculated using shape equations [139, 142]. But this method cannot be taken
into account for the non-axisymmetric shapes.

The second approach is the so-called variational method, which is based on
the Gibbs-Bogoliubov-Feynman inequality. The aim of the variational method
is to find a reference system, for which the energy can be calculated using a
model Hamiltonian with free parameters that can be optimized. If membrane
curvature energy for both the reference Hamiltonian and Hamiltonian of in-
terest are equal, the free energy of the system of interest is not larger than
of the reference system, according to the Gibbs-Bogoliubov-Feynman inequal-
ity. By choosing optimal parameter values, we can obtain an upper bound to
the energy of the system of interest. Examples of this method include em-
ploying Cassini ovals [20], spherical harmonics [143], and Fourier functions to
parametrize the membrane shapes [144].

The last brute-force method is to use triangulated membranes to minimize
the deformation energy [16, 124, 145]. The membranes are constructed using
triangulations of the surfaces. The positions of the vertices are used to calculate
the discretized expression form of the mean curvatures integrals. Triangulated
membranes give rise to a large amount of parameter freedoms to calculate
deformation and energies, for which the required computing time and memory
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for minimization can be extensive. However, the triangulated membrane model
provides a high degree of flexibility, and it can be used to calculate integrals
for non-axisymmetric systems. We use the freely available software “Surface
Evolver” [146] to investigate the nanoparticle-membrane interaction. In brief,
this package employs a finite-element code to predict the stable shapes of
surfaces which are initially defined as a simplicial complex.

Continuum membrane models and energy minimisation have been success-
fully applied to predict interactions of membranes with particles of different
shapes and sizes. A spherical nanoparticle at an infinitely large membrane,
for example, is non-wrapped for small adhesion strengths; wrapping occurs if
the adhesion-energy gain overcomes the bending-energy cost [16, 140]. Sta-
ble partial-wrapped states are found for spherical particles that interact with
patches of planar membranes which have finite surface tensions [140, 147], for
non-spherical particles [15, 16], for particles at curved membranes [14], and
for particles or membranes with spontaneous curvature [13, 71]. For spherical
vesicles and for out-to-in wrapping (e.g. endocytosis), the membrane is bent in
the opposite direction as the curvature prior to wrapping, and the transition
from the non-wrapped to the complete-wrapped state is discontinuous with
an energy barrier. For in-to-out wrapping (e.g. exocytosis), partial-wrapped
states are found over a wide range of particle-membrane adhesion strengths.
Partial-wrapped particles move on pre-wrapping membrane curvature gradi-
ents towards places where the membrane is curved most in the direction of the
particle [148], similar to aggregation and cooperative budding of spherical-cap
inclusions [149–151].
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Chapter 3

Nanoparticle wrapping by
non-spherical vesicles

The biological membranes are natural barriers to nanoparticles when they
are wrapped by living organisms. For nanoparticles getting into and out of
vesicles and cells, they interact with the lipid bilayer membranes, membra-
nous organelles, such as the endoplasmic reticulum and the Golgi apparatus,
the nucleus, and intracellular and extracellular vesicles, such as autophago-
somes, lysosomes, and exosomes. Extracellular vesicles have lead to an in-
creasing interest in scientific study, as they are functionally involved in the
transmission of biological signals, and as intrinsic regulators for physiologi-
cal and pathological processes; they are also able to be applied as potential
targeted-drug-delivery systems that work accurately and efficiently. Exosomes,
small vesicles containing proteins, mRNA, and miRNA, that are released by
cells into the extracellular environment have been suggested to participate
in tumor metastasis. The interactions between nanoparticle and membrane
have been shown to rely upon particle shape, size, orientation, surface func-
tionalization, membrane curvature-elastic properties, and particle-membrane
adhesion. We systematically characterize the wrapping behaviors of nanopar-
ticles that enter and exit vesicles, taking into account particle size, vesicle
size, reduced volume, and membrane spontaneous curvature. We find compli-
cated wrapping diagrams where nanoparticle wrapping transitions and vesicle
shape transitions are coupled. In particular, for large particle-to-vesicle size
ratios the shape changes of the free membrane contribute significantly to the
deformation energy upon wrapping. Furthermore, partial-wrapped membrane-
bound particles impose boundary conditions on the membrane that affect vesi-
cle shapes and stabilise oblates and stomatocytes for particle entry, and pro-
lates and stomatocytes for particle exit. Our calculations provides an insight
into the wrapping mechanisms for nanoparticle-vesicle interactions, and the
results suggest that nanoparticles may stimulate autophagocytic engulfment,
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(a) (c)

(b)

Figure 3.1: Representative snapshots for (a) stomatocyte, (b) oblate, and (c) prolate vesi-
cles and spherical nanoparticles with wrapping fractions Aad/Ap = 0.12, 0.95 and 0.99
for particle-to-vesicle size ratio Rp/Rv = 0.25, reduced volume v = 0.6515, and sponta-
neous curvature-to-particle curvature ratio c0/cp = − 0.032 (for the right subfigure in (b)
Aad/Ap = 0.98 and c0/cp = − 0.063). Ap is the area of the particle, Aad is the adhered mem-
brane, colored in red. The free membrane of the vesicle is colored in white. Membrane area
and vesicle volume are constant. All left subfigures show out-to-in wrapping (endocytosis),
all right subfigures show in-to-out wrapping (exocytosis).

which would facilitate transport of the nanoparticles into lysosomes and would
lead to subsequent degradation of nanoparticle-attached proteins.

3.1 Introduction

The adhesion and wrapping of nanoparticles by lipid-bilayer membranes of
biological cells are the first essential steps for their application in biophysics,
medicine, nanotechnology and other aspects. Nanoparticles have been used
as targeted drug delivery [152, 153], as heat sources for cancer therapy [154],
as markers for imaging [155], and as ”glue” for wound healing [156] because
they are extremely small in size. There is no doubt that nanoparticles are a
kind of materials which are widely used for our daily lives, therefore a system-
atic and comprehensive understanding of their interactions with cellular mem-
branes is considerably important to assess potential nanotoxicological risks
and biosafety problems exerted by the nanoparticles. A large variety of en-
gineered nano- and microparticles can nowadays be fabricated from various
materials, for example, small polymers, dendrimers, silica and gold. Also a
wide range of shapes of nanoparticles including spherical, cylindrical, discoidal,
nanoworm and nanorod (elongated cylindrical) structures are designed for spe-
cific functions. In biological systems, analogies from parasites and viruses to
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non-spherical particles can be drawn. Viruses have sizes of about 100 nm and
can have bullet-like or filamentous shapes [67, 157, 158]. Malaria parasites,
also called merozoites, can be modeled as egg-shaped microparticles [159].

Different small vesicles, whose sizes that can be comparable to those of
nanoparticles, have very important functions for signaling, material transport,
and degradation occur in biological systems. For instance, synaptic vesicles (or
neurotransmitter vesicles) are essential for propagating chemical messengers
and biological signals between neurons. Exosomes, small vesicles released di-
rectly from the cytoplasmic membranes and indirectly from the cells, function
as important messengers for genetic contents as well as specific targets for pre-
venting cancer metastasis. Similar to many other biological vesicles, they can
have heterogeneous morphologies (round, elongated, and tubular shapes) [160,
161] in extracellular environment. Mammalian autophagosomes with spherical
structures digest material from inside the cell, and lysosomes are involved in
a large number of processes including degradation. Finally, engineered small
vesicles can be used as delivery systems, for example for targeted drug delivery
[162–164] with a high degree of accuracy and efficiency.

In addition to the principle curvature of the particle surface, also the cur-
vature of the membrane prior to wrapping has to be taken into account for the
description of particle wrapping. For spherical particles that interact with vesi-
cles with constant membrane areas and freely adjustable volumes, numerical
calculations show that for out-to-in wrapping, where the particles are initially
located outside the vesicles, an energy barrier separating the non-wrapped from
the complete-wrapped state is found; for in-to-out wrapping, where the par-
ticles are initially located inside the vesicle, partial-wrapped states are stable
over a wide range of particle-membrane adhesion strengths [14].

A theoretical model for budding and wrapping of elastic particles shows
that the ranges of adhesion strength and particle-to-vesicle size ratios, for
which stable partial-wrapped states are found, increase with increasing particle
deformability [165]. For vesicles with non-spherical shapes, partial-wrapped
particles move on pre-wrapping membrane curvature gradients towards places
where the membrane is curved most in the direction of the particle [148], similar
to aggregation and cooperative budding of spherical-cap inclusions [149–151].

A third curvature-related parameter that affects particle wrapping is the
spontaneous curvature of the membrane. The spontaneous curvature is a pre-
ferred curvature provided by the lipid asymmetry between the two monolayers
of the lipid bilayer. The hydrophobic mismatch of various lipid constituents
and integral proteins attributes to the asymmetry of the membrane. Also the
different chemical structures of lipid molecules induce the plasma membrane to
exhibit slightly positive and negative curvatures. Scientific research shows that
spontaneous curvatures of single lipids are typically in the range (0.1−1) nm−1

[166–168], such that differences in the mole fractions of lipids between the
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monolayers of few percent can induce spontaneous membrane curvatures in
the range −10−3 nm−1 ≤ c0 ≤ 10−3 nm−1. Stable partial-wrapped states are
found for spontaneous curvatures opposite to the curvature of the particle
surface, while energy barriers between the non-wrapped and the complete-
wrapped states are predicted for spontaneous curvatures towards the particles
[13]. Spontaneous membrane curvature may serve as explanation for the exper-
imentally observed size selectivity for nanoparticle wrapping [13, 169], which
is an alternative approach to receptor diffusion-based selectivity [170, 171].

In this chapter, we systematically investigate the interaction of spherical
particles with vesicles with different reduced volumes v. In addition to the
ratios of the vesicle curvature cv to the particle curvature cp, the reduced
particle size R̃p = cv/cp = Rp/Rv, and of the spontaneous curvature c0 of
the membrane to the particle curvature, the reduced spontaneous curvature
c̃0 = c0/cp, we also consider different reduced volumes of the vesicles. The
reduced volume is the actual volume of the vesicle divided by the maximal
volume that can be enclosed with the same membrane area. Vesicles with
c0 = 0 have prolate shapes for reduced volumes v > 0.6515, oblate shapes
for reduced volumes 0.5915 < v < 0.6515, and stomatocyte shapes for reduced
volumes v < 0.5915 [172]. In addition to the wrapping transitions between non-
wrapped, partial-wrapped, and complete-wrapped states of the particles, also
shape transitions for the vesicles between stomatocytes, oblates, and prolates
are observed. Figure 3.1 shows some examples of particle-vesicle systems for
stomatocytes, oblates and prolates. Our main results show that both wrapping
and shape transitions occur during nanoparticle-wrapping of vesicles and that
both transitions can be coupled.

3.2 Model and calculation technique

3.2.1 Calculating deformation and adhesion energies

Determined by the different lengths of the research systems in interest, a vari-
ety of simulated models and calculations techniques have to be used. For in-
stance, to study the nanoparticles with sizes that are comparable to or smaller
than the membrane thickness (d ≈ 5 nm) and nanoparticle aggregates with
very irregular shapes, coarse-grained molecular dynamics simulations or other
particle-based techniques that account for the finite thickness of the lipid bi-
layer can be apply[51, 173–176]. For particles with radii of 10 − 20 nm and
above, continuum models where lipid bilayers are described as elastic mathe-
matical surfaces with curvature-elastic parameters are often the most powerful
choice for systematic studies [172, 177–180].

Membranes are described as mathematical surfaces in continuum models,
and the mechanical deformation energies are predicted by curvature-elastic
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Ẽ

Aad/Ap

out-to-in

w̃ = 0
W1 (w̃1 = 0.35)
S11 (w̃11 = 0.21)
S12 (w̃12 = 0.53)

Wso (w̃so = 0.51)
W2 (w̃2 = 1.07)
S21 (w̃21 = 0.17)
S22 (w̃22 = 1.27)

∆Ẽ1

NW & PW & CW

PW & NW & CW

∆Ẽso
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Figure 3.2: Reduced wrapping energies Ẽ as function of the wrapping fraction Aad/Ap for (a)

out-to-in and (b) in-to-out wrapping. The reduced particle size is R̃p = 0.25, the reduced
volume is v = 0.6515, and the reduced spontaneous curvature is c̃0 = − 0.032. Different
reduced adhesion strengths w̃ associated with wrapping or shape transitions are shown.
The open squares, circles and triangles are numerical results for stomatocyte, oblate and
prolate vesicles wrapping spherical particles, respectively. The black lines are fit functions.
The labels for non-wrapped (NW), partial-wrapped (PW) and complete-wrapped (CW)
states are underlined if the states are stable and not underlined if they are metastable. W1

is the binding transition, W2 is the envelopment transition, and Wso is the shape transition
between stomatocytes and oblates. S11 and S12, S21 and S22 are spinodals associated
with W1 and W2, respectively. ∆Ẽ1 and ∆Ẽ2 are energy barriers between NW and PW
for W1, PW and CW for W2, respectively; ∆Ẽso is the energy barrier between two PW
states. For the transition W1 / W2, the partial-wrapped state that corresponds to the non-
wrapped/complete-wrapped state is indicated by p1 ( ) / p5 ( ) and the energy barrier
by p2 ( ) / p6 ( ). The energy barrier vanishes at p3 ( ) / p7 ( ) for spontaneous
wrapping, and at p4 ( ) / p8 ( ) for spontaneous unwrapping. The two partial-wrapped
states between that the shape transition takes place are indicated by and the energy
barrier inbetween by .

properties. The bending energy is calculated using the Helfrich Hamiltonian
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[19, 20]

Eb =

∫
A

dS
[
2κ(H − c0)2 + κ̄K

]
, (3.1)

as integral over the entire membrane area A. The elastic parameters are the
bending rigidity κ, the spontaneous curvature c0, and the Gaussian saddle-
splay modulus κ̄. Finite spontaneous curvatures originate from an asymmetry
of the membrane or its environment, e.g. from different shapes or kinds of lipid
molecules in the monolayers that form the bilayer [181]. The mean curvature
H = (c1 + c2)/2 and the Gaussian curvature K = c1c2 describe the local shape
of the membrane, where c1 and c2 are the membrane’s principle curvatures.

The total energy for particle wrapping is

E = 2κ

∫
A

dS (H − c0)2 + pV + γA− w
∫
Aad

dS , (3.2)

where the deformation-energy cost for the lipid bilayer has to be overcome by
the adhesion-energy gain for contact of membrane and particle. The adhesion
strength w contributes over the area Aad, where the membrane is adhered
to the particle. Here, we neglect the final step of pinching off the neck of
a complete-wrapped particle when the topology of the system would change.
According to the Gauss-Bonnet theorem, the contribution of the saddle-splay
modulus is constant if the topology does not change and can therefore be
neglected for the energy calculations. Equation (3.2) models the energy of
a closed vesicle, where pressure p and membrane tension γ are the Lagrange
multipliers that fix the volume V and the membrane area A of the vesicle. We
use dimensionless parameters Ẽ = E/(8πκ), w̃ = wR2

p/(2κ), c̃0 = c0/cp, and

R̃p = Rp/Rv for energy, adhesion strength, spontaneous curvature, and the
reduced particle radius 1, respectively.

3.2.2 Calculating and characterizing wrapping and shape
transitions

The vesicle shapes including stomatocyte, oblate and prolate are axisymmet-
ric in our models, we calculate membrane bending energies as function of the
wrapping fraction Aad/Ap for particles, where Ap is the total surface area
of the particle; the initial contact points of the spherical particles with the
membrane are the high-symmetry poles of the vesicles. Using triangulated
membranes [12, 123, 145], we numerically obtain deformation energies for con-
stant wrapping fractions of the particles with the help of the freely available

1We vary the reduced particle radius by changing the vesicle radius radius Rv.
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software package “Surface Evolver” [182]. Figure 3.2 shows the total ener-
gies and the wrapping fractions for different adhesion strengths. Which vesicle
shapes are stable depends on the wrapping fraction; we plot the energies for the
shapes with the lowest energies. For example, in our calculations for out-to-in
wrapping, see Fig. 3.2(a), oblates (open circles) are stable at small wrapping
fractions, followed by stomatocytes (open squares), again oblates, and prolates
(open triangles) with increasing wrapping fraction. For in-to-out wrapping, see
Fig. 3.2(b), we find a shape sequence of stable oblates, stomatocytes, and pro-
lates with increasing wrapping fraction.

The piecewise functions are used to fit the reduced deformation energies
Ẽ(Aad/Ap), the different pieces correspond to the different vesicle shapes. In
each region, the fit functions are polynomials with degree six,

f

(
Aad

Ap

)
=

6∑
i=0

ai

(
Aad

Ap

)i

, (3.3)

with fit parameters a0, ..., a6. The total reduced energy at finite reduced
adhesion strength w̃ is

Ẽ = f

(
Aad

Ap

)
− w̃Aad

Ap

. (3.4)

The analysis of the extrema and the saddle points of the fit functions for
various adhesion strengths generates stable states, energy barriers, wrapping
and shape transitions, and spinodals.

For both out-to-in and in-to-out wrapping, the bending energies increase
with increasing wrapping fraction, see Fig. 3.2. A globally stable non-wrapped
state exists for small adhesion strengths. Partial-wrapped and complete-wrapped
states are determined as usual [15, 16, 147]. For finite homogeneous adhe-
sion strengths, the adhesion-energy gain increases linearly with the wrapping
fraction. It is added to the numerically calculated deformation-energy costs.
Subsequently, the global minimum of the total energy is determined. The
binding transitions W1 to a partial-wrapped state occur at a reduced adhesion
strength w̃1, where the deformation energies of the non-wrapped state and a
partial-wrapped state are equal. Increasing the adhesion strength further, we
find an envelopment transition W2 between a partial-wrapped state and the
complete-wrapped state at a reduced adhesion strength w̃2. For w̃ < w̃1 the
non-wrapped state is stable, for w̃1 < w̃ < w̃2 a partial-wrapped state is stable,
and for w̃ > w̃2 the complete-wrapped state is stable.

Besides the wrapping transitions between non-wrapped, partial-wrapped
and complete-wrapped states, non-spherical vesicles can have different stable
shapes. The shapes of vesicles without attached particles are completely deter-
mined by both the reduced volume [11, 183] of the vesicle and the spontaneous
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3.2 Model and calculation technique

curvature c0 of the membrane. Here, V0 = 2
√
πA3/2/3 is the maximal volume

that can be enclosed by the membrane area A. Particles effectively change the
reduced volume and partial-wrapped particles in addition provide boundary
conditions for the slope of the free membrane and therefore also stabilize cer-
tain vesicle shapes. Different stable shapes are separated by energy barriers,
as indicated by the various symbols in Fig. 3.2.

v =
V

V0
≤ 1 (3.5)

For adhesion strength w̃1, where the partial-wrapped state indicated by p1
has the same energy as the non-wrapped state, the energy barrier ∆Ẽ1 for the
binding transition is obtained by subtracting the energy at the minimum p1
from the energy at the maximum p2. The saddle points p3 and p4 correspond
to the spinodals S11 and S12, respectively, for the adhesion strengths w̃11 and
w̃12 where the energy barrier vanishes. Analogously, for adhesion strength w̃2

the partial-wrapped state is indicated by p5 and the energy maximum that
corresponds to ∆Ẽ2 by p6. The wrapping factions indicated by p7 and p8 are
the saddle points for the spinodals S22 and S21 at adhesion strengths w̃21 and
w̃22, respectively.

For out-to-in wrapping and reduced particle size R̃p = 0.25, reduced vol-
ume v = 0.6515 and reduced spontaneous curvature c̃0 = − 0.032, as shown
in Fig. 3.2(a), both binding and envelopment transitions W1 and W2 are dis-
continuous with energy barriers ∆Ẽ1 = 0.01 and ∆Ẽ2 = 0.03, respectively. A
discontinuous shape transition between a stomatocyte and an oblate is found
for w̃ = w̃so between two partial-wrapped states. A small energy barrier
∆Ẽso = 0.005 is associated with this shape transition Wso. For in-to-out
wrapping, as shown in Fig. 3.2(b), the binding transition W1 between the non-
wrapped state and a partial-wrapped state is discontinuous and is character-
ized by an energy barrier ∆Ẽ1 = 0.03, whereas the envelopment transition W2

between a partial-wrapped state and the complete-wrapped state is continuous
without an energy barrier.

For adhesion strengths w̃11 < w̃ < w̃1, a metastable partial-wrapped state
coexists with the stable non-wrapped state. For adhesion strengths w̃1 <
w̃ < w̃12, the metastable non-wrapped state coexists with a stable partial-
wrapped state. An energy barrier ∆Ẽ2 between a partial-wrapped state and
the complete-wrapped state indicates that the envelopment transition W2 is
discontinuous. S21 and S22 are spinodals; for adhesion strengths w̃21 < w̃ <
w̃2, a stable non-wrapped or partial-wrapped state coexists with a metastable
complete-wrapped state, for adhesion strengths w̃2 < w̃ < w̃22 the stable
complete-wrapped state coexists with a metastable partial-wrapped state.
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3.3 Results

3.3.1 Wrapping diagrams
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Figure 3.3: Reduced adhesion strengths w̃ for reduced particle size R̃p = 0.2, (a, b) for
v = 0.7 as function of the reduced spontaneous curvature c̃0, (c, d) for c̃0 = −0.063 as
function of the reduced volume v for out-to-in and in-to-out wrapping. The continuous and
discontinuous wrapping transitions W1 and W2 without and with energy barriers are shown
by open and solid diamonds, respectively. The stable stomatocyte, oblate, and prolate
shapes are indicated by sky-blue, orange, and green background colors, respectively. The
shape transitions Wso between stomatocytes and the oblates, and Wsp between stomatocytes
and prolates are colored by cyan and red diamonds, respectively. The other labels are chosen
analogously to Fig. 3.2; the non-wrapped (NW) state is stable below the W1 transition, the
partial-wrapped state (PW) between the W1 and the W2 transitions, and the complete-
wrapped state (CW) above both transitions.

We first analyze the reduced adhesion strengths w̃ associated with wrapping
and shape transitions for various reduced spontaneous curvatures and reduced
volumes. Wrapping and shape transitions for reduced particle size R̃p = 0.2,
reduced volume v = 0.7, and various values for reduced spontaneous curvatures
c̃0, as well as for c̃0 = − 0.0632 and various values of v are shown in Fig. 3.3
for both out-to-in and in-to-out wrapping. The transitions can be continuous,
indicated by open diamonds, or discontinuous, indicated by solid diamonds.
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For out-to-in wrapping, stable partial-wrapped states are found for c̃0 ≤ 0,
see Fig. 3.3(a). The adhesion strengths w̃1 associated with the binding or
the binding-envelopment transition W1 between the non-wrapped and a stable
partial-wrapped or the complete-wrapped state increase with increasing c̃0,
while the values of w̃2 for the envelopment transition W2 between a stable
partial-wrapped and the complete-wrapped state decrease with increasing c̃0.
For stable partial-wrapped states, the vesicle shapes are either stomatocytes or
oblates. At c̃0 = − 0.063, the shape transition Wso takes place at w̃so = 0.92;
stomatocytes are stable for more negative c̃0, while oblates are stable for more
positive c̃0. The shape transitions for both the non-wrapped and the complete-
wrapped states can be predicted based on Ref. [172], which we discuss in
the subsection on shape transitions. Discontinuous binding and envelopment
transitions, W1 and W2, are found for c̃0 = − 0.032 and c̃0 = 0; the energy
barriers mostly result from shape transitions. Also the combined binding-
envelopment transitions W1 between prolates are discontinuous.

Qualitatively the transitions depend in a similar way on the reduced vol-
ume v as on c̃0, see Fig. 3.3(c). In the partial-wrapped state the vesicles are
stomatocytes and oblates, and the wrapping transitions get closer to each other
with increasing v. Discontinuous transitions are found for v = 0.75 and 0.85,
which are mostly associated with shape transitions.

For in-to-out wrapping, partial-wrapped states are found for all values of
c̃0, see Fig. 3.3(b). The adhesion strengths w̃1 for the binding transitions, and
w̃2 for the envelopment transitions are non-monotonic with c̃0, which reflects
shape transitions. The binding transition W1 is discontinuous at c̃0 = − 0.032,
and the envelopment transition W2 is discontinuous at c̃0 = − 0.063; both are
associated with shape transitions. For c̃0 = − 0.063, the shape transition Wsp

between stomatocytes and prolates takes place at w̃sp = 0.86 between two
partial-wrapped states. Stomatocytes are stable for more negative c̃0, while
prolates are stable for more positive c̃0.

As shown in Fig. 3.3(d), the dependence of the adhesion strengths for the
wrapping transitions on the reduced volume v is similar to that on c̃0: both
w̃1 and w̃2 are non-monotonic. For the partial-wrapped states, stomatocytes
are stable for small v, and oblates are stable for large v. The discontinuous
transitions coincide with shape transitions.

3.3.2 Wrapping transitions

Wrapping and shape transitions can be both continuous and discontinuous.
The systems for R̃p = 0.2 and v = 0.7, marked by boxes in Fig. 3.4, have
been discussed in detail in Fig. 3.3. The reduced adhesion strength w̃1 for the
binding transition W1 increases both with increasing c̃0 and with increasing
reduced volume v for out-to-in wrapping and is non-monotonic for in-to-out
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Figure 3.4: Reduced adhesion strengths w̃1 and w̃2 for the wrapping transitions W1 and W2,
respectively. Data is shown for out-to-in and in-to-out wrapping and for various reduced
particle sizes R̃p, reduced volumes v, and reduced spontaneous curvatures c̃0. Complete-
wrapped states are not accessible in the grey-shaded areas due to lack of membrane area. The
wrapping transitions for R̃p = 0.2 and v = 0.7 shown in Figs. 3.3(a, b), and for c̃0 = − 0.063
shown in Figs. 3.3(c, d) are marked.
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Figure 3.5: Energy barriers ∆Ẽ1 and ∆Ẽ2 for the wrapping transitions W1 and W2, respec-
tively. Data is shown for out-to-in and in-to-out wrapping and for various reduced particle
sizes R̃p, reduced volumes v, and reduced spontaneous curvatures c̃0. Complete-wrapped
states are not accessible in the grey-shaded areas due to lack of membrane area. The wrap-
ping transitions for R̃p = 0.2 and v = 0.7 shown in Figs. 3.3(a, b), and for c̃0 = − 0.063
shown in Figs. 3.3(c, d) are marked.
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wrapping. The reduced adhesion strength w̃2 for the envelopment transition
W2 decreases with increasing c̃0 for out-to-in wrapping and is non-monotonic
with increasing c̃0 and v in the other cases. Wrapping transitions without
energy barriers are shown by open diamonds in Fig. 3.3, those with barriers by
full diamonds. Figure 3.4 shows an overview over the wrapping transitions w̃1

and w̃2 for wide ranges of parameters: 0.05 ≤ R̃p ≤ 0.33, 0.5915 ≤ v ≤ 0.95,
and − 0.095 ≤ c̃0 ≤ 0.095.

We first consider out-to-in wrapping. For large reduced particle sizes R̃p,
small reduced volumes v, and small or negative spontaneous curvatures c̃0, the
reduced adhesion strengths w̃1 for the binding transition W1 are small; this
indicates that the onset of wrapping is easy. A separate envelopment transition
W2 exists for large reduced particle sizes, small reduced volumes, and small
or negative spontaneous curvatures. For small reduced particle sizes, large
reduced volumes, and high spontaneous curvatures, we find a discontinuous,
direct transition from the non-wrapped to the complete-wrapped state. The
adhesion strength w̃1 for combined binding-envelopment transition is higher
than for transition from the non-wrapped to a partial-wrapped state.

For in-to-out wrapping, individual binding and envelopment transitions
and stable partial-wrapped states exist for nearly all systems. For large R̃p,
small v, and mostly small and positive c̃0, the adhesion strength for the binding
transition W1 is small. High adhesion strengths for the envelopment transition
W2 are found in particular for large R̃p, small v, and small or negative c̃0.

Energy barriers for out-to-in wrapping transitions are shown in Fig. 3.5.
The binding transition W1 is continuous for small reduced volumes v and for
small or negative spontaneous curvatures c̃0. The energy barrier for the binding
transition is high for large R̃p, small and intermediate v, and positive c̃0. The
envelopment transition W2 is continuous without an energy barrier for small
v and for small c̃0. The energy barrier for the envelopment transition is high
in particular for small reduced volumes v. A higher energy barrier is found for
R̃p = 1/3 or for very small v and very positive c̃0.

For in-to-out wrapping, energy barriers are only found along lines in the
c̃0-v-plane that correspond to the boundaries where shape changes of vesicles
occur, see Fig. 3.5. These energy barriers are only about 1/4 as high as those
for out-to-in wrapping.

3.3.3 Shape transitions

The shapes of vesicles before and after particle wrapping are determined by
the old and new reduced volumes and by membrane spontaneous curvature.
In Fig. 3.6, we plot the reduced volumes of vesicles after complete wrapping
for various initial reduced volumes and reduced particle sizes, see supporting
information. For large reduced particle sizes and high reduced volumes, not
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(a) (b)

Figure 3.6: Reduced vesicle volumes v2 after complete wrapping for (a) out-to-in and (b)
in-to-out wrapping for various reduced particle sizes R̃p and reduced volumes v prior to
wrapping. The black line indicates the parameters for that the reduced volume remains
unchanged upon wrapping. Complete-wrapped states are not accessible in the grey-shaded
areas due to lack of membrane area; the particle cannot be placed inside the vesicle in the
white area.

enough membrane area is available to completely wrap the nanoparticle. The
particle will therefore at most attach to the membrane and never reach the
complete-wrapped state. For in-to-out wrapping, vesicles with reduced vol-
umes for which the particle volume is larger than the vesicle volume do not
exist.

For out-to-in wrapping, the vesicle volume increases by the particle volume,
while its membrane area decreases by the particle surface area. Therefore, the
vesicles’ reduced volumes after complete wrapping are larger than prior to
wrapping. For in-to-out wrapping, both the vesicle volume as well as the
vesicle area decrease. Here, the reduced volume after wrapping increases in
most cases, but decreases if a particle initially occupies a large fraction of the
vesicles’ volume.

Figure 3.7 shows vesicle shape diagrams for R̃p = 0.2 and various v and
c̃0 for all wrapping states of the particle: non-wrapped, partial-wrapped, and
complete-wrapped. The vesicle shapes prior to wrapping are taken from Ref. [172],
the shapes after complete wrapping are calculated based on Fig. 3.6 and
Ref. [172]. For the non-wrapped and the complete-wrapped states, the tran-
sitions between prolates, oblates, and stomatocytes, as well as the transi-
tions between stomatocytes and inside vesiculation are indicated by lines, see
Figs. 3.7(a) and (b). For both out-to-in and in-to-out wrapping, the parameter
regions for stomatocytes, oblates, and prolates shift to smaller reduced volumes
after complete wrapping. For example, for c̃0 = − 0.063 prior to wrapping
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Figure 3.7: Vesicle shapes for R̃p = 0.2 for out-to-in and in-to-out wrapping. (a, b) The
prolate-oblate (green), the oblate-stomatocyte (blue), and the inside-vesiculation (black)
transitions are indicated. The transitions prior to wrapping are indicated by dark colors
[172], transitions after complete wrapping by light colors (calculated based on Ref. [172] and
Fig. 3.6). Snapshots of stomatocytes, oblates, and prolates prior to wrapping are shown
for c̃0 = − 0.063, and v = 0.7, 0.75 and 0.85. (c, d) The points indicate the stable shapes
for partial-wrapped states: skyblue represents stomatocytes, orange oblates, green prolates,
cyan stomatocytes and oblates, and red stomatocytes and prolates. From left to right, the
wrapping fractions are Aad/Ap = 0.54, 0.55, 0.71 and 0.71 for the snapshots shown in (c),
and 0.21, 0.21, 0.5, and 0.5 for the snapshots shown in (d).

stomatocytes are stable for v < 0.7, oblates for 0.7 < v < 0.8, and prolates
for v > 0.8 [172]. After complete out-to-in wrapping, oblates are stable for
0.65 < v < 0.75, and after complete in-to-out wrapping for 0.67 < v < 0.76.

The vesicle shapes for the partial-wrapped states are indicated by the col-
ors of the points, see Figs. 3.7(c) and (d). For partial-wrapped particles,
not only reduced volume and spontaneous curvature determine the vesicle
shape, but also the boundary conditions at the particle. For out-to-in wrap-
ping, partial-wrapped particles stabilize oblate shapes; for in-to-out wrapping,
partial-wrapped particles stabilize prolate shapes. We find direct transitions
between stomatocytes and oblates for out-to-in wrapping and between stoma-
tocytes and prolates for in-to-out wrapping. As shown in Fig. 3.3, upon wrap-
ping vesicles may also experience discontinuous shape transitions between two
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Figure 3.8: Vesicle shapes for different reduced particle sizes R̃p, reduced volumes v, and
reduced spontaneous curvatures c̃0. Analogously to Fig. 3.7, shape transitions for non-
wrapped and complete-wrapped states are indicated by lines, partial-wrapped states by
points. Fission and pear transitions for the non-wrapped and the complete-wrapped states
are indicated by the black and grey lines, respectively. The stable shapes shown in Figs. 3.3
and 3.7 are marked.
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partial-wrapped states.
For out-to-in wrapping, below the transition, c̃0 ≈ 0.4 − 0.65 v, stomato-

cytes are stable; above the transition oblates are stable. For in-to-out wrap-
ping, below the transition, c̃0 ≈ 0.25− 0.45 v, stomatocytes are stable; above
the transition prolates are stable. Stable shapes for specific values for v and
c̃0 are shown.

Results of similar calculations of the shapes for wide ranges of the vesicle
parameters, 0.05 ≤ R̃p ≤ 0.33, 0.5915 ≤ v ≤ 0.95, and − 0.95 ≤ c̃0 ≤ 0.95, are
summarized in Fig. 3.8, where the data shown in Figs. 3.3 and 3.7 are marked.
In addition to stomatocytes, oblates and prolates, we calculate shapes in pa-
rameters regimes with inside-vesiculation, fission, and pears. In these regimes,
partial-wrapped states may not be stable and are therefore only shown in some
cases. The presence of partial-wrapped states at small R̃p, high v, and high c̃0
shows the competition between the actual membrane curvature and the sponta-
neous membrane curvature. For out-to-in wrapping and vanishing spontaneous
curvature, partial-wrapped states are suppressed by the membrane curvature
[14], while positive spontaneous curvatures favor partial-wrapped states [13].
For reduced volumes v = 0.5915, small R̃p, and high c̃0, attachment of parti-
cles induces vesicle fission. Therefore, vesicle shapes are not indicated in this
parameter regime.

3.4 Discussion

Minimising the energy for fixed reduced vesicle volume and spontaneous mem-
brane curvature at the same time, brings a new dimension to the study of
nanoparticle interactions with biovesicles. In addition to the deformation en-
ergy for the membrane wrapping of a nanoparticle, vesicle shapes and shape
changes are key to understanding nanoparticle-vesicle interactions. For membrane-
bound nanoparticles at planar membranes, the free membrane can assume
catenoidal or catenoid-like shapes with only small bending-energy costs; the
deformation energy of the free membrane before and after wrapping is un-
changed [16]. In contrast, for systems where the vesicle radius is comparable
to the radius of the nanoparticle, the free membrane contributes substantially
to the energy changes upon wrapping [184]. The deformation energy of the
free membrane before and after wrapping are solely determined by the old and
new reduced volumes of the vesicles. For example, for c0 = 0, if the effective
reduced volume after wrapping has increased, the vesicle shape is closer to the
optimal spherical shape, which reduces the deformation energy [172, 183].

The direct binding-envelopment transition without an energy barrier, which
is observed for spherical nanoparticles at planar membranes, disappears for
membranes that are curved prior to particle attachment [14]. While for out-
to-in wrapping of a particle at a tensionless vesicle the combined binding-
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envelopment transition becomes discontinuous, for in-to-out wrapping both
the binding and the envelopment transitions are continuous. In the latter
case, for all wrapping fractions 0 < Aad/Ap < 1, stable partial-wrapped states
exist.

Not only the membrane curvature prior to wrapping at the place where the
nanoparticle attaches, but also a spontaneous curvature of the lipid-bilayer
membrane is an important parameter for nanoparticle wrapping. For almost
planar membranes, the total energy for the complete-wrapped state is reduced
compared with c0 = 0 if the sign of the spontaneous curvature coincides with
the curvature of the nanoparticle surface. The combined binding-envelopment
transition is discontinuous with an energy barrier [13]. However, if the sign
of the spontaneous curvature is opposite to the sign of the particle surface
curvature, the energy of the complete-wrapped state increases compared with
the c0 = 0 case; both the binding and the envelopment transition are continu-
ous and separated by partial-wrapped states. In agreement with Ref. [13], we
find continuous binding transitions at comparatively small adhesion strengths
if the spontaneous curvature and the particle surface curvature have the same
signs. The binding transitions in these cases occur at higher adhesion strengths
than in cases where spontaneous curvature and particle surface curvature have
opposite signs.

The distribution of half-adhesive nanoparticles on non-spherical vesicles has
been investigated in Ref. [148]. For small R̃p = 0.01 and reduced volumes in
the range 0.4 < v < 0.8, the deformation-energy differences between different
binding locations have been found to be of the order of 0.1κ, which drives
relocation of partial-wrapped nanoparticles on curved membranes. Contrary
to the small values R̃p studied in Ref. [148] where the vesicles shape changes
upon nanoparticle binding are small, for the systems with high R̃p studied in
this paper transitions to axisymmetric shapes can be expected to occur during
wrapping. The stable oblates that we observe can therefore be expected for
out-to-in wrapping in the regime where bare vesicles are prolates, and stable
prolates or stomatocytes in the regime where bare vesicles are oblates.

A clear correlation is observed between the adhesion strengths for the tran-
sitions, the energy barriers, and the vesicle shapes, see Figs. 3.4, 3.5 and 3.8,
respectively, as well as Fig. S2 in the supporting information. For out-to-in
wrapping, the binding transition for stomatocytes occurs already at small ad-
hesion strengths w̃1, because the membrane is strongly curved towards the
particle; intermediate values of w̃1 are found for oblates and high values for
prolates. Partial-wrapped states are particularly stable for stomatocytes and a
direct binding-envelopment transition occurs for prolates. For in-to-out wrap-
ping, the adhesion strength for the binding transition is comparatively high
for oblates and stomatocytes at small particle-to-vesicle size ratios, while high
adhesion strengths for the envelopment transition are found both for stomato-
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cytes and for prolates at large particle-to-vesicle size ratios. Furthermore, for
out-to-in wrapping, a high energy barrier has to be overcome for binding for
prolate vesicles in the non-wrapped state, see Fig. 3.5. Similarly, a high energy
barrier has to be overcome for envelopment for vesicles with small reduced vol-
umes. For in-to-out wrapping, energy barriers only occur for parameter values
close to shape transitions.

We have calculated wrapping transitions for a large variety of axisymmetric
nanoparticle-vesicle systems. However, because of the inhomogeneous mem-
brane curvatures for prolates, oblates, and stomatocytes, the optimal position
for nanoparticle attachment is not always a position of highest symmetry [185].
In the case of small reduced volumes v, for out-to-in wrapping the nanoparti-
cle is expected to attach in the position of smallest curvature, where we also
attach the particles for stomatocytes and oblates in our calculations. However,
for prolates the lowest deformation energy costs for small wrapping fractions
are expected for an attachment at the side of a vesicle, while we calculate the
deformation energy for the highly-curved tip position. Similarly, for in-to-out-
wrapping and prolates, the point of highest symmetry at the tip of the vesicle
is the lowest-energy position where we place the nanoparticle for our calcula-
tions. For oblates, and perhaps also for stomatocytes, the ideal positions are
expected to be close to the rim. Thus our axisymmetric calculations describe
the system well in most regions of the parameter space.

3.5 Conclusions

Nanoparticles that have an attractive nanoparticle-membrane interaction and
that are larger than the thickness of the lipid bilayer can experience pas-
sive endocytosis and get wrapped. Nanoparticle attachment and envelop-
ment at small vesicles is affected by vesicle shape and can vice versa af-
fect vesicle shape transitions. We have systematically investigated the in-
teraction of spherical nanoparticles with vesicles for reduced particle sizes
in the range 0.05 ≤ R̃p ≤ 0.33, for various reduced volumes in the range
0.5915 ≤ v ≤ 0.95, and for reduced spontaneous membrane curvatures in the
range − 0.095 ≤ c̃0 ≤ 0.095. As for spherical vesicles, the adhesion strength
for the binding transition is reduced if the membrane is curved towards the
nanoparticle, while the adhesion strength for the envelopment transition is in-
creased; if the membrane curves away from the nanoparticle, an energy barrier
for wrapping occurs [14]. All boundaries in the vesicle shape diagram shift ac-
cording to the new reduced volume and the new value of c0Rv after complete
wrapping. For partial-wrapped states, in addition the boundary conditions at
the membrane that are locally imposed by the nanoparticles affect the vesi-
cle shape: partial-wrapped particles stabilize oblates and stomatocytes for
out-to-in wrapping and prolates for in-to-out wrapping. Finite spontaneous
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membrane curvatures with a sign that is opposite to the particle curvature in-
duce partial-wrapped states, whereas the same sign of spontaneous and particle
curvature indicates an energy barrier [13]. The energy difference between the
complete-wrapped and the non-wrapped state decreases for alike curvatures
and increases for opposite curvatures.

For our non-spherical vesicles with various spontaneous curvatures, sev-
eral continuous and discontinuous transitions may occur during wrapping and
may also be coupled to vesicle shape transitions. Our calculations show that
small reduced volumes facilitate the out-to-in binding transition — in par-
ticular for negative spontaneous curvatures. Furthermore, even for large R̃p,
envelopment transitions still occur at small adhesion strengths.A biological
mechanism where this might be exploited is autophagy, a main degradation
system within cells that helps to balance synthesis and degradation of proteins
[186]. Autophagosomes, vesicles with small reduced volumes, encapsulate part
of the cytoplasm and then fuse with lysosomes where the encapsulated mate-
rial is degraded. Although for very small reduced volumes formation of the
double-membrane autophagosomes occurs spontaneously, the presence of an
adhered nanoparticle or any other aggregate within the autophagosome can
help to overcome the energy barrier between the open, oblate and the almost
closed, stomatocyte state [187].

A second process, where a small reduced volume is important, is the in-
vasion of the malaria parasite into human erythrocytes [159, 188]. Typical
reduced volumes are v ≈ 0.6 and the reduced particle size is R̃p ≈ 0.3 [189].
Although the shear modulus induced by the cortical spectrin cytoskeleton and
active processes during parasite invasion might reduce the importance of the
deformation energy of the membrane, also in this case a small enough reduced
volume is of crucial importance to allow particle entry.

Finally, extracellular vesicles have been suggested to play not only key
roles in normal physiological processes, such as stem cell maintenance, tissue
repair, immune surveillance, and blood coagulation, but also in the pathology
of diseases, such as tumorgenesis, and the spread of viruses, amyloid-β-derived
peptides, α-synuclein, and the abnormal cell surface prion protein PrPC [190].
Therefore, extracellular vesicles may be targeted to inhibit their effect in dis-
ease propagation, and can be exploited for drug delivery. Size and shape of
extracellullar vesicles and potential clustering are debated. Recent advances in
superresolution microscopy provide new tools to analyse both small and large
vesicles [191]. Nanovesicles with sizes of about 100 nm have recently been
systematically characterized experimentally; the studies suggest that the me-
chanics is pressure dominated and cannot be explained by bending alone. How
cytosolic constituents are recruited into extracellular vesicles is still unclear
[192]. To this end, our work provides systematic predictions on the interaction
of vesicles with particles, which could also be considered as models for protein
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aggregates — accounting for a solute concentration/osmotic pressure-induced
preferred volume of the vesicles.
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Chapter 4

Osmotic pressure matters for
nanoparticle-vesicle interactions

Under physiological conditions, high solute concentrations induce high osmotic
pressure differences between between biological cells and their environment al-
ready for small volume changes. In many cases, the volume of a vesicle or a
biological cell is therefore considered fixed. The interaction of nanoparticles
with lipid-bilayer membranes can trigger passive endocytosis. In particular
for vesicles where the membrane area is fixed, wrapping of the nanoparti-
cle reduces the volume of the vesicle. Therefore in addition to membrane
deformation and the particle-membrane adhesion that are usually studied,
also osmotic pressures have to be included in the energy minimization. We
calculate wrapping energies for spherical nanoparticles that enter and exit
spherical vesicles for various initial solute concentrations, particle sizes, and
vesicle sizes. The particle-vesicle binding transition is continuous and indepen-
dent of osmotic pressure. The envelopment transition is discontinuous and is
characterized by an energy barrier that increases with both particle-to-vesicle
size ratio and osmotic pressure. Finite osmotic pressures therefore increases
the stability of partial-wrapped, membrane-bound states of the particle for
both entry and exit. The direct transition between the non-wrapped and the
complete-wrapped state for particles that enter vesicles is replaced by transi-
tions via partial-wrapped states. Furthermore, the osmotic-pressure difference
introduces membrane tension, which can lead to lysis of the vesicles. Ex-
perimentally also lysis of bacteria and red blood cells upon interaction with
nanostructured surfaces has been observed. Our calculations shed light on the
conditions for tension-induced antibacterial membrane-lytic processes.
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(a)

(b)

Figure 4.1: Representative shapes of vesicles and spherical nanoparticles with wrapping
fractions 0.41 for (a) out-to-in and (b) in-to-out wrapping. The ratio of the radii of particles
and spherical vesicles is Rp/Rv = 0.3. The osmotic constants are ñv = 16, 1.6 × 104 and
1.6× 105 from left to right. The membrane area is fixed. The adhered membrane is colored
red and the free membrane white.

4.1 Introduction

Osmotic pressure is key for vesicular internalization. For instance, the endo-
cytotic internalization rate of cells has been found to decrease linearly with
increasing solute concentration in the external medium, and endocytosis is in-
hibited above a threshold pressure difference [193]. Endocytosis is recovered if
a spontaneous curvature is generated by adding lipids to the outside monolay-
ers that assist wrapping. For bovine adrenal medullary cells, hypotonic and
hypertonic extracellular solutions lead to an increase and decrease of vesicu-
lar secretion, respectively [194]. For plant cells, an increased turgor pressure
suppresses endocytosis [195]. For formation of supported lipid bilayers from
vesicles, high external salt concentrations promote the formation of the sup-
ported lipid bilayer [196, 197]. A recent study, where nanovesicles with sizes of
about 100 nm have been deformed using the tip of an atomic force microscope,
shows that under physiological conditions the stiffness of adherent vesicles is
dominated by osmotic pressure [198]. These experimental studies indicate that
the osmotic pressure can be used to control shape, deformability, and stability
of vesicles.

Nanoparticles and nanostructures have antibacterial properties. Not in all
cases the reason for the toxic effect on bacteria is known and there is certainly
more than one possible mechanism. However, antibacterial properties have
been demonstrated both for engineered surfaces, as well as for the nanostruc-
tured wings of the dragonfly [199–201]. In these cases, the the adhesion to
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the nanostructures induces an increased membrane tension that subsequently
leads to membrane rupture. For this mechanism, all three contributions, mem-
brane shape and elasticity, nanostructure-membrane adhesion, as well as os-
motic pressure, are essential to generate the lytic tension based on the minute
volume changes by wrapping by wrapping.

In this chapter, we investigate the interaction of spherical particles with
vesicles whose shapes are spherical prior to wrapping, see Fig. 4.1. In addition
to the ratio of vesicle curvature to particle curvature, we study in particular
the role of osmotic pressure and predict wrapping transitions between non-
wrapped, partial-wrapped and complete-wrapped states of the particles. The
overall shapes of the vesicles with partial-wrapped particles are more sphere-
like for higher osmotic pressures, while the ”neck” regions around the nanopar-
ticles are more catenoid-like for lower osmotic pressures. We interpret our data
in terms of a membrane tension and predict that for the same particle-to-vesicle
size ratio and particle-membrane adhesion strength, larger vesicles burst eas-
ier. Furthermore, we observe transitions between narrow-neck and wide-neck
states for particle entry and large particle-to-vesicle size ratios that have not
been reported previously, both with and without osmotic pressure.

In Sec. 4.2, we introduce the model and the numerical calculation tech-
nique. In Sec. 4.3, we discuss the total wrapping-energy costs as function of
the wrapping fraction for both particle entry and exit. In Sec. 4.3.2, we present
both wrapping transitions and wide neck-narrow neck shape transitions. In
Sec. 4.3.3 we discuss the energy barriers for the discontinuous transitions, and
in Sec. 4.3.4 we discuss the osmotic pressure-induced membrane tension and
lysis induced by particle wrapping. We compare our results for both wrapping
and shape transitions with the literature and provide an conclusion in Sec. 4.4.

4.2 Model and calculation technique

4.2.1 Membrane deformation and osmotic pressure en-
ergies

We calculate the bending energy based on Eq. (3.1), we assume the bilayer
and its environment to be symmetric and use c0 = 0. The energy for a particle
that interacts with a vesicle,

E = 2κ

∫
A

dS H2 + Ep + γA− w
∫
Aad

dS , (4.1)

where w is the adhesion strength that contributes to the energy over the area
Aad where the membrane is adhered to the particle. A rough estimate for
complete wrapping to occur is that the adhesion energy gain has to overcome

57



Osmotic pressure matters for nanoparticle-vesicle interactions

the bending energy costs. If there are stable partial-wrapped states, higher
adhesion strengths are required than those that balance the deformation energy
costs to allow the particle to exit a partial-wrapped state. In addition, we take
an osmotic pressure term Ep and a term that fixes the total membrane A of
the vesicle into account, with the membrane tension γ as Lagrange multiplier.

The osmotic pressure difference between the buffer and the solution within
the vesicle is determined by the difference in the osmotic concentrations for
two solutions separated by a semi-permeable membrane. Using the van’t Hoff
law [202], we find the osmotic pressure difference

∆Π = (cb − cv)NA kBT , (4.2)

for the osmolalities cb and cv of the solution within and outside the vesicle,
respectively; NA = 6.02 × 1023 mol−1 is the Avogadro constant. We assume
an initially spherical vesicle with volume V0 = (4/3) π R3

v and radius Rv, sus-
pended in a buffer with volume Vb � V0. The number of (dissociated) solute
molecules within the vesicle and in the buffer are nv = cv V0 and nb = cb Vb,
respectively. The solute concentrations in the solutions are chosen to be equal
prior to wrapping.

For a particle entering a vesicle, the energy cost due to the volume change
is

Eout2in
p =

∫ V

V0

dVv

(
nb

Vb
− nv

Vv

)
NA kBT

= [ñb(v − 1)− ñv ln(v)] kBT

= ñv[v − ln(v)− 1] kBT,

(4.3)

where ñb = nbNA V0 /Vb, ñv = nvNA, and v = V/V0. For the initially spheri-
cal vesicle at Eout2in

p (1) = 0, such that ñb = ñv.
Similarly, for a particle exiting a vesicle, the energy cost due to the volume

change is

Ein2out
p =

∫ V−Vp

V0−Vp

dVv

(
nb

Vb
− nv

Vv

)
NA kBT

= [ñ∗
b(v∗ − 1)− ñv ln(v∗)] kBT

= ñv[v∗ − ln(v∗)− 1] kBT,

(4.4)

where Vp is the particle volume, ñ∗
b = nbNA (V0 − Vp) /Vb and v∗ = (V −

Vp)/(V0−Vp). For the initial spherical vesicle Ein2out
p (1) = 0, such that ñ∗

b = ñv.

In the following, we use the reduced energy Ẽ = E/(8πκ), the reduced
adhesion strength w̃ = wR2

p/(2κ), and the particle-to-vesicle size ratio R̃p =
Rp/Rv. Experimental values reported in the literature span a broad range
0 < ñv < 1013 [196, 197, 203]. Normal saline with 9 g of salt per litre and
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an osmolality of 308 mOsm/l is almost isotonic. Therefore, under these almost
physiological conditions ñv ≈ 104 for a small vesicle with Rv = 50 nm, ñv ≈ 107

for a vesicle with Rv = 500 nm, and ñv ≈ 1010 for a vesicle with Rv = 5µm.
For our calculations, we use values in the range 16 < ñv < 1.6× 108.

4.2.2 Triangulated membranes

Using triangulated membranes [12, 123, 145], we calculate vesicle deformation
energy contributions due to membrane deformation and volume change for
several wrapping fractions Aad/Ap. The optimal vesicle shape and the mini-
mal energy for fixed membrane area are obtained with the help of the freely
available software package “Surface Evolver” [182].

4.2.3 Energy contributions for wrapping at low and high
osmotic pressures

Figure 4.2 shows reduced bending energies, compression energies, and total
energies as function of the wrapping fraction for R̃p = 0.3, and ñv = 16 and
1.6 × 104. Furthermore, we plot the change of the reduced volume of the
vesicles during wrapping.

For out-to-in wrapping, the total energy increases monotonically with in-
creasing wrapping fraction, see Fig. 4.2(a). For ñv = 16 it is dominated by
the bending energy, the compression energy contribution is negligible for all
wrapping fractions. Upon out-to-in wrapping, the reduced volume v first de-
creases from 1 to 0.82 if the wrapping fraction increases from Aad/Ap = 0 to
0.7, and subsequently increases to 0.84 until complete wrapping. The minimal
total energy prior to wrapping is Ẽ = 1, the deformation energy for forming
a spherical vesicle from an initially planar membrane. Once the particle gets
wrapped by the vesicle and deforms it, its volume decreases. The osmolality
of the interior solution increases with decreasing vesicle volume, because due
to the barrier function of the lipid-bilayer membrane the amount of enclosed
solute remains constant. This increases the osmotic pressure difference be-
tween the interior and the exterior, such that compression energy costs occur
upon further compression. For such a low osmotic pressure the dominance of
the bending energy leads to a catenoid-like deformation in the vicinity of the
particle, see Fig. 4.1(a).

For in-to-out wrapping the bending energy costs are lower compared with
out-to-in wrapping for all wrapping fractions 0 < Aad/A < 1, because the
catenoidal deformation in the vicinity of the particle extends over a larger
membrane area, see Figs. 4.2(b) and 4.1(b). Also the change of the reduced
volume during wrapping in the range between 0.88 . v∗ ≤ 1 is smaller than
for out-to-in wrapping.
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Figure 4.2: Reduced wrapping energies Ẽ and reduced vesicle volumes v for particles at-
tached to vesicles as function of the wrapping fraction Aad/Ap for out-to-in and in-to-out

wrapping. The reduced particle size is R̃p = 0.3, and the reduced osmotic constants are (a,

b) ñv = 16 and (c, d) ñv = 1.6 × 104. Ẽ is the reduced total energy, Ẽb is the reduced
bending energy, and Ẽp is the reduced pressure energy. The reduced volume v = V/V0 and
v∗ = (V − Vp)/(V0 − Vp), where V0 and Vp are volume for spherical vesicles and particles
with initial radii Rv and Rp, respectively. The numerically calculated data are represented
by solid points and the corresponding fit functions are solid lines.

For higher solute concentrations or larger vesicles, ñv = 1.6 × 104, both
bending energy and compression energy increase weakly for small wrapping
fractions, see Figs. 4.2(c) and (d). However, the compression energy signifi-
cantly exceeds the bending energy for wrapping fractions Aad/Ap & 0.55 and
for Aad/Ap & 0.71 for out-to-in and in-to-out wrapping, respectively. In both
cases, total energy and compression energy increase monotonically with in-
creasing wrapping fraction Aad/Ap. The bending energy increases upon fur-
ther wrapping for Aad/Ap . 0.9, and decreases for Aad/Ap & 0.9. The re-
duced volume decreases monotonically upon wrapping for Aad/Ap . 0.98.
For higher wrapping fractions up to complete wrapping, the reduced volume
and all energy contributions remain almost constant for wrapping fractions
Aad/Ap & 0.98. The vesicle shapes are more spherical and the membrane
deforms strongly within a small area around the particles, see Fig. 4.1; the
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4.2 Model and calculation technique

membrane deformation in the immediate vicinity becomes even stronger and
restricted to an even smaller area in the vicinity of the particle upon further
increase of the osmolalities.

4.2.4 Wrapping transitions

The reduced deformation energies Ẽ(Aad/Ap) are fit using piecewise functions;
the different pieces correspond to different wrapping-fraction regions. In each
region, the fit functions are sixth-order polynomials,

f

(
Aad

Ap

)
=

6∑
i=0

ai

(
Aad

Ap

)i

, (4.5)

with the fit parameters a0, a1, ..., a6 and the wrapping fraction fw = Aad/Ap.
For homogeneous adhesion strengths, the total reduced energy at finite reduced
adhesion strength w̃ is

Ẽ = f

(
Aad

Ap

)
− w̃Aad

Ap

. (4.6)

The wrapping states are determined analogously to the literature [15, 16, 140,
147]. The analysis of extrema and saddle points of the fit functions for various
adhesion strengths gives stable states, energy barriers, wrapping transitions,
and spinodals.

For all systems that we studied, the sum of deformation and compres-
sion energy initially increases with increasing wrapping fraction. Above a
threshold value for the wrapping fraction, the sum of both energies stays ap-
proximately constant. Therefore, a globally stable non-wrapped state exists
for small adhesion strengths. For out-to-in wrapping and small osmolarity,
ñv = 16, a combined binding-envelopment transition between the non-wrapped
and the complete-wrapped state occurs at reduced adhesion strength w̃1, see
Fig. 4.3(a). For w̃ < w̃1 the non-wrapped state (NW) is stable, for w̃ > w̃1 the
complete-wrapped state (CW) is stable. For in-to-out wrapping, the binding
and the envelopment transition occur separately and stable partial-wrapped
states (PW) are found for w̃1 < w̃ < w̃2, see Fig. 4.3(b). For w̃ < w̃1 the
non-wrapped state is stable, for w̃ > w̃2 the complete-wrapped state is stable.
For high osmolalities, ñv = 1.6× 104 , where compression energy contribution
is significant, stable partial-wrapped states are found for both, out-to-in wrap-
ping and in-to-out wrapping, see Figs. 4.3(c) and (d). Furthermore, for high
osmolalities the envelopment transition is discontinuous.

Special points for the energy as function of the wrapping fraction are in-
dicated for several wrapping strengths in Fig. 4.3. For the combined binding-
envelopment transitionW1 at adhesion strength w1, where the complete-wrapped
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Ẽ

fw

out-to-in

w̃ = 0
W1 (w̃1 = 1.02)
S11 (w̃11 = 0.27)
S12 (w̃12 = 1.71)

(a)

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

0 0.2 0.4 0.6 0.8 1

NW

PW

CW

Ẽ
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Figure 4.3: Reduced wrapping energies Ẽ as function of the wrapping fraction fw for different
reduced adhesion strengths w̃ for out-to-in and in-to-out wrapping. The reduced particle size
is R̃p = 0.3, and the reduced osmotic constants are (a, b) ñv = 16 and (c, d) ñv = 1.6×104.
The open circles are numerical results for spherical vesicles wrapping particles. The black
lines are fit functions. NW, PW and CW with or without underlines are stable or metastable
non-wrapped, partial-wrapped and complete-wrapped states. W1 is the binding-envelopment
transition between NW and CW states (a) or binding transition between NW and PW states
(b)-(d), and W2 is the envelopment transition between PW and CW states; S11 and S12,
S21 and S22 are spinodals associated with W1 and W2. ∆Ẽ1 and ∆Ẽ2 are energy barriers
between NW and CW for W1, PW and CW for W2, respectively. For the transition W1 /
W2, the non-wrapped / partial-wrapped state that corresponds with the complete-wrapped
state is indicated by p1 ( ) / p5 ( ) and the energy barrier by p2 ( ) / p6 ( ). The
energy barrier vanishes at p3 ( ) / p7 ( ) for spontaneous wrapping, and at p4 ( ) /
p8 ( ) for spontaneous unwrapping.

state at p1 = 1 has the same energy as the non-wrapped state, the energy bar-
rier ∆Ẽ1 is measured at p2. The saddle points p3 for adhesion strength w12 and
p4 for adhesion strength w11 correspond to the spinodals S12 and S11 where
the energy barrier vanishes, respectively. Analogously, for a transition W2

at adhesion strength w2, where a partial-wrapped state has the same energy
as the complete-wrapped state is indicated by p5. The corresponding energy
maximum ∆Ẽ2 is found at p6. The points p7 for adhesion strength w22 and p8
for adhesion strength w21 are the saddle points for the spinodals S22 and S21,
respectively, for which the energy barrier vanishes.
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4.3 Results

4.3.1 Wrapping energies

Wrapping energies have been calculated for fixed particle size and various
vesicle sizes, and therefore for various reduced particle sizes R̃p. Figure 4.4
show the sum of membrane deformation and compression energy as function
of the wrapping fraction.

For ñv = 16 and out-to-in wrapping, see Fig. 4.4(a), the sum of the energies
is larger than Ẽ = 2 for a bending-only system, which reflects the compression
energy contribution. For R̃p = 0.4 and 0.5, we find for complete wrapping Ẽ =
2.07 and 2.22, respectively. These values are comparable to the energies for the
partial-wrapped states with fw > 0.63 (R̃p = 0.4) and fw > 0.53 (R̃p = 0.5).
We found a shape transition between the regimes where the energy increases
with increasing wrapping fraction and where it remains approximately constant
that we find also for bending-only systems at high values of R̃p. As shown by
the snapshots in Fig. 4.4(a), for R̃p = 0.4, the vesicle ”neck” around the particle
is wider for fw = 0.629 and narrower for fw = 0.646. Furthermore, the energy
for a fixed wrapping fraction increases with increasing reduced particle size if
the vesicles wrap a particle to the same wrapping fraction fw > 0.

For in-to-out wrapping, see Fig. 4.4(b), finite solute concentrations lead to
a qualitatively different dependence for the sum of bending and compression
energy on R̃p for low and high wrapping fractions. For low osmolalities, nv =
164, the energy decreases with increasing R̃p for 0 < fw < 0.88, but increases
with increasing R̃p for fw > 0.98. It is important to note that all lines do
not intersect in the same point; for example, the lines with R̃p = 0.2 and 0.25
cross at fw = 0.98, while the lines with R̃p = 0.4 and 0.5 cross at fw = 0.88.
This implies that at finite solute concentrations also for in-to-out wrapping
the energy increase with increasing particle size at high wrapping fractions is
higher.

For high osmolalities, ñv = 1.6 × 104, the total energies increase strongly
with increasing wrapping fraction for both out-to-in and in-to-out wrapping.
For R̃p = 0.4 and 0.5, adhesion strengths w̃ > 100 would be required to
completely wrap a particle outside the vesicle, see Fig. 4.4(c). For w̃ = 100 the
wrapping fractions with lowest energies are fw = 0.67 and 0.39 for R̃p = 0.4
and 0.5, respectively. Therefore, in experiments we expect the particle to
stick to a partial-wrapped state. For in-to-out wrapping, see Fig. 4.4(d), the
crossing points between the wrapping energies for different R̃p are shifted to
smaller wrapping fractions. Although all lines do not cross in a single point,
all intersections are found within a narrow range of ’small’ wrapping fractions,
0.21 . fw . 0.27.

As for low osmolalities, we find a stable partial-wrapped state–with wrap-
ping fraction fw = 0.79–for R̃p = 0.5 and w̃ = 100. All systems with smaller
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Figure 4.4: Reduced wrapping energies Ẽ as a function of the wrapping fraction fw for (a, b)
reduced osmotic constant ñv = 16, and (c, d) ñv = 1.6× 104, and different reduced particle
sizes R̃p, and (e, f) reduced particle size R̃p = 0.3 and different reduced osmotic constants
ñv. Parameters are same as that in Fig. 4.2. The snapshots for the shape transitions between
open and narrow ”necks” around the particles are shown. The wrapping fractions fw from
left to right for (a) are 0.629 and 0.646, for (b) 0.629 and 0.655, for (c) 0.976 and 0.978, and
for (d) 0.976 and 0.981.

R̃p that we simulated are complete wrapped for w̃ = 100. Furthermore, we
find a regime where the vesicle deformation energy is almost independent of
the wrapping fraction, but also for smaller particle-to-vesicle size rations. Also
in these cases a shape transition between the wide and narrow ”necks” are
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found, e.g. for wrapping fractions fw ≈ 0.97 for R̃p = 0.3, see Fig. 4.4(c).
Similarly, for R̃p = 0.3 the vesicle neck is ”wide” for fw = 0.976, and ”narrow”
for fw = 0.981.

A systematic comparison of the vesicle deformation energies as function
of the wrapping fraction for R̃p = 0.3 is shown in Fig. 4.4(e) and (f). The
total energies increase with increasing osmolality. For nv & 1.6× 105, we find
that a nanoparticle cannot be completely wrapped for w̃ = 100. The particles
remain attached to the vesicle in a partial-wrapped state with–for out-to-in
wrapping–fw = 0.45, 0.19, 0.09 and 0.04 for ñv = 1.6× 105, 1.6× 106, 1.6× 107

and 1.6 × 108, respectively. For in-to-out wrapping, where the deformation
energies are smaller than that for out-to-in wrapping, we find higher wrapping
fractions for the same adhesion strength: fw = 0.71, 0.36, 0.18 and 0.09.

4.3.2 Wrapping and shape transitions

Particle wrapping is best characterized by wrapping diagrams based on cal-
culations for various adhesion strengths and osmolalities. Figure 4.5 shows
the wrapping transitions W1 and W2 between non-wrapped, partial-wrapped,
and complete-wrapped states. For out-to-in wrapping, we find for low solute
concentrations a direct binding-envelopment transition from the non-wrapped
state to the complete-wrapped state, and for high solute concentrations a con-
tinuous binding transition and a separate, discontinuous envelopment transi-
tion. For in-to-out wrapping, binding transition and envelopment transition
are separate for all osmolalities. The binding transition is always continuous.
The envelopment transition is continuous and essentially independent on the
adhesion strength for small osmolalities, and it becomes discontinuous and
strongly dependent on the adhesion strength for high osmolalities.

We study wrapping for various values of R̃p and find that the wrapping
diagrams differ only quantitatively. However, the shifts of the transitions in
the phase diagram for different are qualitatively different for out-to-in and in-
to-out wrapping. For out-to-in wrapping both the binding transition and the
envelopment transition shift to higher adhesion strengths for increasing R̃p.
For in-to-out wrapping, particle binding occurs at lower adhesion strengths
for larger R̃p, while the envelopment transition is shifted to higher adhesion
strengths. This increase of the regime with partial-wrapped states, which has
already been been reported in the literature for the bending-only case, is even
larger for the regime where the envelopment transition is discontinuous at high
osmolalities than for the regime where it is continuous at low osmolalities.

The continuous transitions and the combined binding-envelopment tran-
sition can be predicted analytically, see appendix B. We can therefore also
analytically predict the minimal osmolality for that a partial-wrapped state
occurs for out-to-in wrapping, which is the intersection point of the direct
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Figure 4.5: Wrapping states for spherical particles with reduced adhesion strengths w̃, and
different reduced osmotic constants ñv and reduced particle sizes R̃p for (a) out-to-in and
(b) in-to-out wrapping. Stable non-wrapped states (NW), partial-wrapped states (PW)
and complete-wrapped states (CW) are found. W1 is the binding-envelopment transition
separating the stable NW and CW states, or the binding transition separating the stable
NW and PW states, W2 is the envelopment transition separating the stable PW and CW
states. The solid straight lines are the analytical data given by the Eq. (B1) for (a) out-to-in
wrapping,and Eqs. (B2) and (B3) for (b) in-to-out wrapping in the Appendix cited from Ref.
[13]. The solid curved lines are the analytical data given by Eq. (B5) in the appendix. The
dashed lines are the numerical data from our calculations. For (a) out-to-in wrapping, the
solid and dashed lines meet at black points that separate the binding-envelopment, binding
and envelopment transitions.

binding-envelopment transition and the continuous binding transition. For
out-to-in wrapping, the combined binding-envelopment transition W1 occurs
for w̃ = ñv (v−ln v−1)/(8πκ)+1, and the continuous binding transition occurs
for w̃ = (1 +Rp/Rv)2 [13, 14]. For in-to-out wrapping, the continuous binding
transition occurs for smaller adhesion strengths compared with out-to-in wrap-
ping at w̃ = (1−Rp/Rv)2 [13, 14]. The continuous envelopment transition at
low solvent concentrations occurs at w̃ = (1 + Rp/(Rv(1− R2

p/R
2
v)1/2))2. Our

numerical calculations show excellent agreement with these analytical predic-
tions.

In Fig. 4.6, the wrapping fractions fw for the intersections between the
deformation energy for wide necks at small wrapping fractions and the de-
formation energy for narrow necks at large wrapping fractions are plotted as
function of the osmolalities. The threshold wrapping fractions for low osmolal-
ity systems–that also occur without solute–are disconnected from the thresh-
old wrapping fractions for high osmolalities, see also Figs. 4.4(a), (c) and (d).
Whereas the former occur for wrapping fractions 0.5 . fw . 0.7, the latter
are mostly found for wrapping fractions fw > 0.8. Furthermore, the values of
fw shift to higher wrapping fractions for higher osmolalities and for larger R̃p.
All shape changes are accompanied by discontinuous wrapping transitions.

66



4.3 Results

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12

na
rr
ow

ne
ck
s

wi
de
ne
ck
sf w

ln ñv
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Figure 4.6: Wrapping fractions fw as a function of the osmotic constant ñv for different
reduced particle sizes R̃p for (a) out-to-in and (b) in-to-out wrapping. The shape transitions
between wide and narrow necks for the binding-envelopment transition W1 are disconnected
from those for the envelopment transitions W2 for reduced particle sizes R̃p = 0.3, 0.4 and
0.5 in (a); the critical osmotic constants separating W1 and W2 indicated by the black points
in Fig 4.5(a). Wide necks occur at footnotesize wrapping fractions while narrow necks occur
at large wrapping fractions; examples for wide and narrow necks are shown in Figs. 4.4(a),
(c) and (d).

4.3.3 Energy barriers

Figure 4.7 shows the energy barriers for the discontinuous wrapping transi-
tions. The energy barriers monotonically increase with increasing osmolality.
For out-to-in wrapping, the values of the energy barriers ∆Ẽ1 for the com-
bined binding-envelopment transition smoothly connect to those for the energy
barriers ∆Ẽ2 for the envelopment transition at higher osmolalities when the
binding transition becomes continuous. Whereas the dependence of the height
of the energy barrier on the osmolality is weak for the binding-envelopment
transition, it strongly increases with increasing osmolality for the envelopment
transition. Both energy barriers, ∆Ẽ1 and ∆Ẽ2, increase with increasing re-
duced particle size R̃p. This implies that for particles of given size, the required
activation energies to overcome the energy barriers are higher the smaller the
vesicle is. An analogous dependence of the energy barrier on osmolality and
particle size is found for the envelopment transitions for in-to-out wrapping, see
Fig. 4.5(b). However, the energy barriers for in-to-out wrapping are generally
smaller than for out-to-in wrapping. Furthermore, the envelopment transition
for in-to-out wrapping is continuous for small osmolalities and for small R̃p,
e.g. for R̃p = 0.2 for ñv < 2324.56 (ln ñv < 7.75).

The wrapping fractions of specific points that are related to the wrapping
transitions are plotted in Fig. 4.8: the partial-wrapped state to that the sys-
tem transitions from the non-wrapped state or the complete-wrapped state,
the maximal height of the energy barriers, and the points where the energy
vanishes. These points are marked in Ẽ(fw) plots in Fig. 4.3 for four exemplary
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Figure 4.7: Energy barriers ∆Ẽ as function of the reduced osmotic constant ñv for different
reduced particle sizes R̃p for (a) out-to-in and (b) in-to-out wrapping. ∆Ẽ1 is the barrier for
the binding-envelopment transition W1 between the non-wrapped and the complete-wrapped
state, ∆Ẽ2 is the barrier for the envelopment transition W2 between the partial-wrapped
and the complete-wrapped state. The solid lines connect the numerical data from our
calculations.

systems.

Figure 4.8(a) shows that for out-to-in wrapping, the wrapping fractions for
the energy maxima, for the spinodals, and for the partial-wrapped state that
has the same energy as the complete-wrapped state increase with increasing
osmolality. The wrapping fraction for the partial-wrapped state for the W2

transition increases monotonically from fw = 0 to high wrapping fractions.
For in-to-out-wrapping, see Fig. 4.8(b), we find the partial-wrapped state for
W2 only for wrapping fractions fw > 0.6.

For fixed osmolality, ñ = 8×103, all specific points that are connected with
the envelopment transition W2 increase with increasing R̃p, see Figs. 4.8(c)-
(d). All specific points connected with the binding transition W1, however, are
almost independent of R̃p.

4.3.4 Membrane tension and vesicle lysis

With the help of the Laplace pressure,

∆Π = Πv − Πb = 2γH (4.7)

the osmotic pressure difference between interior and exterior of a vesicle is
connected with the membrane tension γ. Assuming that the area of the vesicle
does not change upon wrapping, the reduced osmotic pressure for out-to-in
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Figure 4.8: Wrapping fractions fw for special points p1 − p8 labeled on the wrapping-
energy functions in Fig. 4.3 for (a, b) reduced particle size R̃p = 0.3 and different osmotic
constants ñv, and (c, d) reduced osmotic constant ñv = 8 × 103 and (e) ñv = 16, and
different reduced particle sizes R̃p. At adhesion strength w1, the complete-wrapped state
is found at wrapping faction p1 and the energy maximum at wrapping faction p2 for the
binding-envelopment transition W1, the energy barrier between the non-wrapped and the
complete-wrapped states vanishes at wrapping factions p3 and p4 for spinodals S12 and S11,
respectively. At adhesion strength w2, the partial-wrapped state is found at p5 and the
energy maximum at p6 for the envelopment transition W2, the energy barrier between the
partial-wrapped and the complete-wrapped states vanishes at p7 and p8 for spinodals S22

and S21, respectively.
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wrapping is

∆Π̃ =
∆ΠR3

v

kBT

=

(
nv

Vv
− nb

Vb

)
NAR

3
v

=
3

4π

(
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v
− 1

)
ñv .

(4.8)

Therefore, we find for the reduced, pressure-induced tension

γ̃ =
γR2

v

kBT
=

∆ΠR3
v

2 kBT
=

1

2
∆Π̃ , (4.9)

here, we suppose the radius of vesicle during wrapping is same as the initial
radius of spherical vesicle Rv. Analogously, for in-to-out wrapping

∆Π̃∗ =
∆Π

(
R3

v −R3
p

)
kBT
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(
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− nb
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)
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v −R3
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4π

(
1

v∗
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)
ñv ,

(4.10)

and

γ̃∗ =
γ
(
R3

v −R3
p

)
Rv kBT

=
∆Π

(
R3

v −R3
p

)
2 kBT

=
1

2
∆Π̃∗ . (4.11)

For the constant osmotic pressure difference ñv, the vesicle raptures if the
maximal membrane tension γ is larger than the lytic tension γ`: γ & γ` , from
which and Eq. (4.9), we can define a vesicle radius Rv|ñv associated with lysis
for out-to-in wrapping as

Rv .

√
γ̃kBT

γ`
,

.

√
3 (1− v) ñv kBT

8πv γ`
:= Rv|ñv .

(4.12)

Similarly, for in-to-out wrapping, according to γ & γ` and Eq. (4.11), the
vesicle radius R∗

v|ñv for lysis is

Rv .

√√√√ γ̃∗kBT(
1− R̃3

p

)
γ`
,

.

√√√√ 3 (1− v∗) ñv kBT

8π
(

1− R̃3
p

)
v∗ γ`

:= R∗
v|ñv .

(4.13)
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Figure 4.9: Reduced osmotic pressure difference ∆Π̃ and ∆Π̃∗, and membrane tension γ̃ and
γ̃∗ as a function of wrapping fraction fw for out-to-in and in-to-out wrapping, respectively.
The reduced particle size is R̃p = 0.3, and the reduced osmotic constant is (a) ñv = 16, and
(b) ñv = 1.6× 104.

We now discuss exemplarily membrane tension and vesicle lysis for a system
with R̃p = 0.3 for both out-to-in and in-to-out wrapping. For constant ñv = 16,
see Fig. 4.9(a), the maximal membrane tension γmax ≈ 0.425 and γ∗max ≈ 0.25
for out-to-in and in-to-out wrapping, respectively. The membrane lytic tension
is γ` = 2.5 kBT/nm2 [204], according to Eqs. (4.12) and (4.13), the vesicle radii
for lysis are Rv|ñv = 0.41 nm and R∗

v|ñv = 0.32 nm. For constant ñv = 1.6×104,
see Fig. 4.9(b), the vesicle lyses if Rv . 12 nm and Rv . 9.62 nm for out-to-in
and in-to-out wrapping, respectively.

4.4 Conclusions

The first essential step for large nanoparticles to accomplish a beneficial or
toxic function in cells is adsorption of the particles to the plasma membrane,
which is followed by the wrapping of the particles by the membrane.

We systematically investigated the roles of the reduced particle size R̃p and
osmotic constants ñv on the wrapping of spherical particles by vesicles. The
vesicle shapes prior to wrapping are spheres as there are no osmotic pressure
differences. Depending on the initial positions of particles, we studied two dis-
tinct wrapping processes, out-to-in and in-to-out wrapping: particles initially
located outside or inside the vesicles enter or exit the vesicles, respectively.

The reduced bending and osmotic energy of the membrane is calculated as
a function of the wrapping fraction. We found three stable wrapping regimes
including non-wrapped, partial-wrapped and complete-wrapped states for dif-
ferent reduced adhesion strengths. If a stable partial-wrapped state is found,
the binding transition refers a transition between a stable non-wrapped and
partial-wrapped state, while the envelopment transition is a transition be-
tween a stable partial-wrapped and complete-wrapped state. There is also a
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direct binding-envelopment transition from the non-wrapped to the complete-
wrapped state. Whereas a continuous wrapping transition does not need to
overcome an energy barrier, a discontinuous transition is characterized by an
energy barrier.

Our numerical calculations indicate that for out-to-in wrapping, for lower
osmotic constants ñv, the binding-envelopment transition between the non-
wrapped and the complete-wrapped state is characterized by an energy bar-
rier, which increases with increasing R̃p and ñv. This means that it is easier
for a large particle to attach to the membrane and to reach the complete-
wrapped state. For higher osmotic constants ñv, a continuous binding tran-
sition between the non-wrapped to a stable partial-wrapped state without
an energy barrier is found, but the envelopment transition between a stable
partial-wrapped state and the complete-wrapped state is discontinuous with
an energy barrier, which increases with both increasing R̃p and ñv.

For in-to-out wrapping, the reduced adhesion strength decreases with in-
creasing R̃p for the binding transition, but increases with increasing R̃p for the
envelopment transition. It demonstrates that the onset of wrapping is easier
for a small vesicle, but meanwhile it is more difficult to completely wrap the
entire particle. Furthermore, a low ñv helps to lower the adhesion strength for
the envelopment transition. Both continuous binding transition and envelop-
ment transition which have no energy barriers are like to occur at vesicles with
low ñv and small R̃p.

To gain better understanding of nanoparticle wrapping by vesicles, the
surface tension and the line tension can be taken into account. Furthermore,
non-spherical particles such as ellipsoidal, rod-like and cube-like particles are
needed to integrate into the next calculations. As the membrane is a fluid
and dynamic structure, it is important to consider the deformation energy
for a non-symmetric vesicle wrapping a nanoparticle. Our calculation might
provide some meaningful predictions of the bending and osmotic energy for
such vesicles in nanoparticle uptake.
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Chapter 5

Tether-mediated nanoparticle
interaction

Membrane tethers are essential for cargo trafficking in endoplasmic reticulum,
Golgi apparatus, endosome and plasma membrane. Biological substances, such
as proteins, macromolecules and viruses, and engineered materials, such as par-
ticles, can adhere to membrane tethers and trigger physiological and patholog-
ical processes in living cells. We study membrane-mediated interactions be-
tween spherical nanoparticles that are initially located outside or inside tethers.
Depending on particle-to-tether radii ratio, particle separation distance, mem-
brane bending rigidity, and membrane tension, both attractive and repulsive
interactions between nanoparticles mediated by tether deformations are found
for inside particles. Instead of forming compact linear aggregates along the lon-
gitudinal axis of tethers, the nanoparticles stay at their lowest-energy positions
with finite distances from each other. Energy barriers have to be overcome for
outside particles to transition from non-wrapped to complete-wrapped states.
Our results suggest that membrane-mediated nanoparticle interactions can
alter the wrapping transitions between non-wrapped, partial-wrapped, and
complete-wrapped states. Above a threshold distance, the adhesion strengths
for these transitions do not strongly depend on the particle separation dis-
tances. Deformation of the contact lines where the unbound detach from the
particles can be used to characterize the influence of the curved membrane;
they can also be a measure for the influence of the neighboring particles on
the wrapping. The largest deformations of the contact lines between adhered
membrane and free membrane are always found for small particle distances.

5.1 Introduction

Membrane tethers, highly-curved tubular structures, can be extracted from
synthetic vesicles (giant uniamellar vesicles) or living cells (e.g. red blood cells

73



Tether-mediated nanoparticle interaction

and neuronal growth cones) using micropipettes [205, 206], optical tweezers
[207, 208], or fluid drag [209, 210] in vitro. Tethers are used to measure elastic
properties of membranes like bending rigidity and membrane tension, as well
as the adhesion strength between membrane and cytoskeleton [211, 212]. For
the networks of endoplasmic reticulum, Golgi apparatus, endosome and plasma
membrane in vivo, the tethers are formed by the application of a force exerted
on a membrane. In vivo, this force can be generated by clusters of attached
motor proteins that walk along the microtubules of cytoskeleton [213–215].
Polymerizing forces created by the membrane cytoskeleton alone are also able
to draw the tethers out [216, 217]. Many biological processes are involved in
formation and deformation of membrane tethers, such as intracellular trans-
port during endocytosis and exocytosis, intercellular trafficking between the
organelles, endosome fusion, and neurotransmitter release in synapses [212,
218, 219]. Previous studies show that the radii of tethers are determined by
the bending rigidity κ and tension σ of the membrane [211, 220], which gives
Rt =

√
κ/(2σ) . They fall into the range 5 − 50 nm [221, 222] and remain

constant during extraction [223].

The functions of membrane tethers require a panoply of proteins that can
efficiently interact with the highly-curved membranes and induce local defor-
mations of the lipid bilayers [224]. An example of these proteins are Bin-
Amphiphysin-Rvs (BAR) domain proteins with N-terminal amphipathic he-
lices (N-BAR). A recent study shows that membrane-mediated protein inter-
actions influence the localization of proteins and scaffolds on membrane tubes
[225]. Another experiment reveals that the coupling of the amphiphysin (N-
BAR protein) with membranes depends on the density of the proteins [226].

Membrane-mediated interactions and aggregations of nanoparticles adhered
to tethers are important for the application of nanoparticles in nanotechnology,
which, for instance, can facilitate the transport of the drug-loaded nanoparti-
cle delivery systems. Furthermore, nanoparticle-tether interactions play a key
role in biological and chemical sensors [227, 228], as catalysts for biochemical
reactions [229, 230], as well as potential hybrid materials in living cells [231,
232]. Therefore a good characterization of adsorption, wrapping, and other en-
gulfment processes that enable us to measure the role of geometric and elastic
parameters on nanoparticle-tether interactions is required. Among these pro-
cesses endocytosis and exocytosis for nanoparticle-tether interactions have to
be studied [10, 233]: endocytosis is responsible for high targeting efficiency of a
designed nanoparticle, while exocytosis is important for removal and clearance
of nanoparticles to reduce cellular toxicity [10].

In addition to proteins, also particles and the macromolecules experience
membrane-mediated interactions due to local elastic deformations. For planar
membranes, cooperative interactions between particles and macromolecules
adhering to the membrane drive stable clustering and self-organization in lin-
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(a)

(b)

Figure 5.1: Representative shapes of membrane tethers and spherical nanoparticles for (a)
out-to-in and (b) in-to-out wrapping. The ratio of the radii of particles and tethers is
Rp/Rt = 0.3, the ratio of the distance of the particle centers and particle radio is D/Rp =
7.5. The adhered membrane Aad is colored red and the free membrane gray, separated by
the contact line. The wrapping fraction is Aad/Ap = 0.41, where Ap is the surface area of
the particle.

ear or tubular aggregates [234–238]. For curved membranes, multiple spheri-
cal particles always attract each other and form ring-like structures along the
maximal curvature direction [234, 235, 239]. The interactions between two
ring-shaped and rod-shaped inclusions can be attractive or repulsive depend-
ing on the separation distances, while many point-like inclusions tend to form
linear aggregates [240]. Spherical nanoparticles self assemble into minimal-
energy linear configurations adhering to membrane tubes. The transition from
the linearly-aggregated state to the state where the particles are completely
wrapped by membrane, is easier for increased of tube radius and particle con-
centration, and for decreased bending rigidity of the membrane [241]. Rings or
helical structures are found for spherical nanoparticles attached to the outer
tube membrane [242].

The interplay of nanoparticles wrapping and membrane-mediated interac-
tions between particles adhered to membrane tethers is not well understood.
In this chapter, we investigate the interactions between spherical particles and
membrane tethers with periodic boundary conditions along the longitudinal
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axis direction. In addition to the ratio of tether curvature to particle curva-
ture, ct/cp = Rp/Rt, we also consider the role of the distanceD of the centers of
two adjacent particles. Wrapping transitions between non-wrapped, partial-
wrapped and complete-wrapped states of the particles are predicted by our
calculations. Furthermore, we find both attractive and repulsive interactions
for nanoparticle wrapping, depending on particle-to-tether radii ratio, parti-
cle separation distance, and adhesion strength. Figure 5.1 displays membrane
tether shapes for partial-wrapped particles for Rp/Rt = 0.3 and D/Rp = 7.5
for out-to-in and in-to-out wrapping.

In Sec. 5.2, we discuss exemplary the bending energy as function of the
wrapping fraction for out-to-in and in-to-out wrapping. In Sec. 5.3.1, the
adhesion strengths for the wrapping transitions between non-wrapped, partial-
wrapped and complete-wrapped states, and shallow-deep transitions with small
and large wrapping fractions between two stable partial-wrapped states are
presented. The dependence of adhesion strengths on particle-to-tether radii
ratio and particle separation distance are discussed. The energy barriers
associated with discontinuous wrapping transitions are shown in Sec. 5.3.2.
Membrane-mediated nanoparticle interaction as well as the wrapping fractions
for stable partial-wrapped states are analyzed in Sec. 5.3.3 for particles initially
located inside the tethers. In Sec. 5.3.4, we study the heights of the deformed
contact lines for different wrapping fractions. We compare our results for both
wrapping transitions and particle interactions with the literature and provide
conclusions in Sec. 5.4.

5.2 Model and calculation technique

5.2.1 Energy contributions

For particle wrapping, the bending energy is calculated based on Eq. (3.1), and
in particular the membrane tension σ is considered in the deformation energy
costs for the symmetric lipid bilayer,

E =

∫
A

dS
(
2κH2 + σ

)
− w

∫
Aad

dS . (5.1)

To investigate the interactions between nanoparticles, we use different dis-
tances D of the centers of two adjacent nanoparticles in periodic boundary
conditions. For an infinitely long membrane tether wrapping infinitely many
nanoparticles, the distances D between two adjacent particles are fixed. Fig-
ure 5.1 shows the snapshots of membrane tethers and particles for R̃p = 0.3
and D̃ = 7.5 for (a) out-to-in and (b) in-to-out wrapping.
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In the following, we use dimensionless parameters Ẽ = E/(8πκ), w̃ =
wR2

p/(2κ), R̃p = Rp/Rt, and D̃ = D/Rp for energy, adhesion strength, re-
duced particle radius, and reduced distance, respectively. We also calculate the
wrapping energy for a single particle wrapped by a single vesicle with radius
Rv = 2Rt, the reduced particle size for vesicle-particle system is R̃p = Rp/Rv;
the membrane area A of a vesicle is fixed in our simulations.

The reduced total energies of the membrane relative to the unwrapped
state are denoted by ∆Ẽ(Aad/Ap), and the reduced deformation energies are
fit with sixth order polynomials,

f

(
Aad

Ap

)
=

6∑
i=0

ai

(
Aad

Ap

)i

, (5.2)

using the fit parameters a0, a1, ..., a6. The total reduced energy at finite
reduced adhesion strength w̃ is

∆Ẽ = f

(
Aad

Ap

)
− w̃Aad

Ap

. (5.3)

The analysis of extreme and saddle points of the fit functions for various ad-
hesion strengths gives stable states, energy barriers, wrapping transitions, and
spinodals. For simplicity, we use the symbol fw to represent the wrapping
fraction Aad/Ap.

For both out-to-in wrapping and in-to-out wrapping, the total energies in-
crease with increasing wrapping fraction. For homogeneous adhesion strengths,
the adhesion energy is proportional to the wrapping fraction. Wrapping states
are determined analogously to the literature [15, 16, 140, 147]. A globally
stable non-wrapped state exists for small adhesion strengths. For out-to-in
wrapping with reduced particle size R̃p = 0.1 and reduced distance D̃ = 2.5,
see Fig. 5.2(a), binding-envelopment transitions W1 between non-wrapped and
complete-wrapped states occur at reduced adhesion strength w̃1, for which the
total energy of the non-wrapped state is equal to that of the complete-wrapped
state. For w̃ < w̃1 the non-wrapped state (NW) is stable, for w̃ > w̃1 the
complete-wrapped state (CW) is stable. For in-to-out wrapping with same
reduced particle size and distance, see Fig. 5.2(b), a stable partial-wrapped
state (PW) is found for w̃1 < w̃ < w̃2. For w̃ < w̃1 the non-wrapped state is
stable, for w̃ > w̃2 the complete-wrapped state is stable. For w̃ = w̃1, binding
transitions W1 exist where the total energies of the non-wrapped and a partial-
wrapped states are equal; for w̃ = w̃2 envelopment transitions W2 are found
for which the total energies of the complete-wrapped and a partial-wrapped
states are equal. For w̃1 < w̃ < w̃2, shallow-deep transitions W3 between two
stable partial-wrapped states are found.

As shown in Fig. 5.2, for adhesion strength w1, where the complete-wrapped
(see Fig. 5.2(a)) or a partial-wrapped state (see Fig. 5.2(b)) at wrapping frac-
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Figure 5.2: Reduced wrapping energies ∆Ẽ as function of the wrapping fraction fw for (a)
out-to-in and (b) in-to-out wrapping. The reduced particle size is R̃p = 0.1, and the reduced

distance is D̃ = 2.5. Different reduced adhesion strengths w̃ associated with wrapping
transitions are shown. The open circles are numerical results for membrane tethers wrapping
particles. The black lines are fit functions. NW, PW and CW with underlines are globally
stable non-wrapped, partial-wrapped and complete-wrapped states. W1 is the binding-
envelopment transition between NW and CW states in (a), or the binding transition between
NW and PW states in (b), W2 is the envelopment transition between PW and CW states,
and W3 is the wrapping transition between two PW states; S11 and S12, S21 and S22, S31

and S32 are spinodals associated with W1, W2 and W3, respectively. ∆Ẽb1, ∆Ẽb2, and ∆Ẽb3

are energy barriers between NW and CW or PW for W1, PW and CW for W2, and two PW
for W3, respectively. For the transition W1 / W2 / W3, the non-wrapped / partial-wrapped
/ partial-wrapped state that corresponds with the complete-wrapped or partial-wrapped
state is indicated by p1 ( ) / p5 ( ) / p9 ( ) and p10 ( ), and the energy barrier
by p2 ( ) / p6 ( ) / p11 ( ). The energy barrier vanishes at p3 ( ) / p7 ( ) / p12
( ) for spontaneous wrapping, and at p4 ( ) / p8 ( ) / p13 ( ) for spontaneous
unwrapping.

tion p1 = 1 have the same energy as the non-wrapped state, the energy bar-
rier ∆Ẽb1 is measured at wrapping fraction p2. The saddle points p3 and p4
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Figure 5.3: Reduced wrapping energies ∆Ẽ as a function of the wrapping fraction fw for
different reduced distances D̃ for (a, c) out-to-in and (b, d) in-to-out wrapping. The reduced
particle size is R̃p = 0.1 and 0.6 for (a, b) and (c, d), respectively. Parameters are same as
that in Fig. 5.2.

correspond to the spinodals S12 and S11 where the energy barrier vanishes,
respectively. Analogously, for adhesion strength w2 the partial-wrapped state
at point p5 (see Fig. 5.2(b)) has an equal energy as the complete-wrapped
state. The corresponding energy maximum ∆Ẽb2 is found at the point p6. At
the saddle points p7 and p8 for the spinodals S22 and S21, the energy barrier
vanishes. Therefore, for adhesion strength w3 two partial-wrapped states (see
Fig. 5.2(b)) with same energies are indicated by the points p9 and p10, the
corresponding energy maximum ∆Ẽb3 is found at the point p11. The saddle
points are p12 and p13, where the energy barrier vanishes for the spinodals S32

and S31.

For out-to-in wrapping, as shown in Fig. 5.2(a), the binding-envelopment
transition W1 is discontinuous with an energy barrier ∆Ẽb1. For in-to-out
wrapping, as shown in Fig. 5.2(b), both the binding transition W1 and en-
velopment transition W2 are discontinuous and characterized by the energy
barriers ∆Ẽb1 and ∆Ẽb2, respectively. For the shallow-deep transition W3, the
two stable partial-wrapped states are separated by energy barriers ∆Ẽb3.

An energy barrier ∆Ẽb1 between the non-wrapped and the complete-wrapped
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or a partial-wrapped state indicates that the binding-envelopment or the bind-
ing transition W1 is discontinuous. Decreasing or increasing the adhesion
strength further, the energy barrier ∆Ẽb1 vanishes at adhesion strengths w11

and w12 for the spinodals S11 or S12, respectively. For adhesion strengths
w11 < w̃ < w̃1, a metastable complete-wrapped (CW) or partial-wrapped
(PW) coexists with the stable non-wrapped (NW) state. For adhesion strength
w̃1 < w̃ < w12, the metastable non-wrapped state coexists with a stable
complete-wrapped or partial-wrapped state. Similarly, an energy barrier ∆Ẽb2

between a stable partial-wrapped and the complete-wrapped state indicates
that the envelopment transition W2 is discontinuous. S21 and S22 are spin-
odals; for adhesion strengths w21 < w̃ < w̃2, a stable partial-wrapped state
coexists with a metastable complete-wrapped state, for adhesion strengths
w̃2 < w̃ < w22, the stable complete-wrapped state coexists with a metastable
partial-wrapped state. Also, the shallow-deep transition W3 is discontinuous
and S31 and S32 are spinodals for which energy barriers ∆Ẽb3 vanish.

Wrapping energies relative to the non-wrapped states ∆Ẽ have been cal-
culated for fixed reduced particle size R̃p and various reduced distances D̃.
Figures 5.3(a) and (b) show membrane deformation energies as function of the
wrapping fraction fw for R̃p = 0.1. For out-to-in wrapping, at the complete-
wrapped state, fw = 1, the lines with different distances D̃ focus on a point
that is slightly larger than ∆Ẽ = 1, as the reduced bending energies relative
to the non-wrapped states are 1, and the reduced tension energies relative to
the non-wrapped states are R̃2

p / 4, which are smaller than the reduced bend-

ing energies. For distance D̃ = 2.5, the deformation energies are largest for
wrapping fractions 0.2 < fw < 0.8 . For in-to-out wrapping, the deforma-
tion energies are smaller than that for out-to-in wrapping for same wrapping
fractions 0 < fw < 1. The largest energies are also found for D̃ = 2.5 for
0.2 < fw < 0.8.

For R̃p = 0.6, as shown in Figs. 5.3(c) and (d), the deformation energies
at the complete-wrapped states are ∆Ẽ = 1.09. For out-to-in wrapping, the
energies increase sharply for 0 < fw < 0.8, and increase slowly for 0.8 < fw < 1.
The smallest energies for 0.3 < fw < 0.8 are found for D̃ = 3.75, which
indicates an optimal distance for particle wrapping. For in-to-out wrapping,
the deformation energies are smaller than that for out-to-in wrapping. The
energies for 0.3 < fw < 0.8 are larger for D̃ = 2.5 than that for other distances.

5.3 Results

5.3.1 Wrapping transitions

We focus on the adhesion strengths for the wrapping transitions W1 and W2,
see Fig. 5.4. Three regimes with different combination of stable non-wrapped,
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Figure 5.4: Wrapping states for particles with reduced adhesion strengths w̃, reduced dis-
tances D̃, and reduced particle sizes R̃p for (a) out-to-in and (b, c) in-to-out wrapping. W1

is the binding-envelopment transition separating stable NW and CW states, or the binding
transition separating the stable NW and PW states, W2 is the envelopment transition sep-
arating stable PW and CW states, and W3 is the wrapping transition separating the two
stable PW states. S31 and S32 are spinodals for which energy barriers vanish.

partial-wrapped, and complete-wrapped states can be identified. For out-to-in
wrapping, see Fig. 5.4(a), a direct transition between the non-wrapped and the
complete-wrapped states takes place at adhesion strength w̃1. The values of
w̃1 increase linearly with R̃2

p and are independent of D̃: w̃1 = 1 + R̃2
p / 4. Our

numerical results are consistent with the analytical values (data for analytical
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Figure 5.5: Reduced adhesion strengths w̃ as function of the reduced particle size R̃p for
(a) out-to-in and (b, c) in-to-out wrapping. The black points are numerical results for a
spherical vesicle wrapping a spherical nanoparticle; the ratio of the radii of the particle and
the vesicle is R̃p = Rp/Rv, where Rv = 2Rt. The lines are polynomial fit functions with
degree 1 for (a) and 2 for (b, c).

results are not shown). This indicates that complete-wrapping is easier for
small R̃p. For in-to-out wrapping, a stable partial-wrapped state is found for
all different R̃p and D̃, see Fig. 5.4(b). The adhesion strengths w̃1 for the
binding transitions W1 are smaller compared with out-to-in wrapping. The
values of w̃1 decrease with increasing reduced distance for D̃ ≤ 5 and are
independent of the reduced distance for D̃ > 5. The values of w̃2 for the
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envelopment transitions W2 are also independent of D̃.

Shallow-deep transitions W3 between two stable partial-wrapped states
with small and large wrapping fractions are found for D̃ = 2.5 and in-to-
out wrapping, see Fig. 5.4(c). The values of w̃3, associated with W3, increase
with increasing reduced particle size R̃p. The adhesion strengths for spinodals
S31 and S32, for which the energy barriers vanish, increase and decrease with
increasing R̃p.

The adhesion strengths w̃1 and w̃2, for a single spherical vesicle wrapping a
single spherical nanoparticle, are shown in Fig. 5.5. For out-to-in wrapping, the
adhesion strengths for the binding-envelopment transitions W1 are w̃1 = 1 for
various vesicle-particle radii ratios R̃p = Rp/Rv where Rv = 2Rt, see the black
points in Fig. 5.5(a). This is different from the linear relationship for mem-
brane tethers and particles. For in-to-out wrapping, the binding transition W1

between the non-wrapped and a partial-wrapped state occurs at the adhesion
strength w̃1 that is almost independent on the reduced distance D̃ > 2.5. For
D̃ = 2.5, w̃1 shifts to larger values. For increasing R̃p = Rp/Rv, the onset of
wrapping occurs for decreasing adhesion strength [14], which indicates that a
small vesicle facilitates the attachment of the particle to the membrane, see
the black points in Fig. 5.5(b). The values of w̃1 for membrane tethers with
reduced particle sizes R̃p > 0.3 are larger than that for vesicles. For R̃p = 0,
the binding transition occurs at w̃1 ≈ 1 as expected for a planar membrane.
The adhesion strength w̃2, associated with the envelopment transitions W2,
increases with increasing R̃p, and is also not strongly dependent on D̃. For
reduced particle sizes R̃p > 0.3, w̃2 is smaller for tether-particle systems com-
pared with vesicle-particle systems, see Fig. 5.5(c). Again, as expected for
a spherical particle at a planar membrane, the adhesion strengths occurs at
w̃2 ≈ 1 for R̃p = 0.

5.3.2 Energy barriers

Figure 5.6 shows energy barriers for both out-to-in and in-to-out wrapping.
The binding-envelopment transitions W1 for out-to-in wrapping are discon-
tinuous, characterized by energy barriers ∆Ẽb1, see Fig. 5.6(a). For a given
reduced particle size R̃p, the maximal heights of ∆Ẽb1 are found for D̃ = 2.5.
For D̃ 6= 2.5, the heights of energy barriers are independent of reduced distance
D̃ for R̃p = 0.1, 0.2 and 0.3; For R̃p = 0.4, 0.5 and 0.6, the heights of energy
barriers increase with increasing D̃. This indicates that there is an optimal
distance for particle wrapping. Also, tethers with larger R̃p have larger energy
barriers ∆Ẽb1. For in-to-out wrapping, as shown in Fig. 5.6(b), energy barrier
∆Ẽb1 for the binding transitions W1 is only found for small reduced distance
D̃ = 2.5, no matter how large the reduced particle sizes R̃p are. Continu-
ous envelopment transitions W2 without energy barriers ∆Ẽb2 are found for
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∆Ẽb2

0.2
∆Ẽb1
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Figure 5.6: Energy barriers ∆Ẽ as function of the reduced distance D̃, and the reduced
particle size R̃p for (a) out-to-in wrapping and (b, c) in-to-out wrapping. ∆Ẽ1 is the
barrier for the binding-envelopment or the binding transition W1 between the non-wrapped
and the complete-wrapped state or the partial-wrapped state; ∆Ẽ2 is the barrier for the
envelopment transition W2 between the partial-wrapped and the complete-wrapped state;
∆Ẽ3 is the barrier for the shallow-deep transition W3 between two partial-wrapped states.

R̃p = 0.3, 0.4, and 0.5. For R̃p = 0.2, only a small energy barrier ∆Ẽb2 is
found for D̃ = 2.5; for R̃p = 0.1, the values of ∆Ẽb2 increase with increasing
D̃ ≥ 7.5. Compared to out-to-in wrapping, the heights of energy barriers are
only about 1/100 of the energy barriers for in-to-out wrapping.

Energies barriers ∆Ẽb3 associated with shallow-deep transitions W3 are
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found for D̃ = 2.5 and in-to-out-wrapping, see Fig. 5.6(c). The values of ∆Ẽb3

increase with increasing R̃p and are much smaller than those for out-to-in
wrapping.

5.3.3 Membrane-mediated nanoparticle interactions

As discussed in Sec. 5.3.1, stable partial-wrapped states are found for all
tether-particle systems for in-to-out wrapping, despite the diverse values of
reduced particle size R̃p and reduced distance D̃. To investigate the membrane-
mediated particle interactions for different sizes of tethers, we choose the ad-
hesion strengths 0.933 ≤ w̃ ≤ 1.083 for which the particles are found in stable
partial-wrapped states, see Fig. 5.4(b). For reduced particle size R̃p = 0.1, as
shown in Fig. 5.7(a), the minimal reduced total energies ∆Ẽ are non-monotonic
with reduced distances D̃. For 0.933 ≤ w̃ ≤ 1.008, ∆Ẽ decreases with increas-
ing D̃. The mutual repulsion of the nanoparticles increases with decreasing
separation D̃. For 1.033 ≤ w̃ ≤ 1.058, the interaction of neighboring particles
is weakly attractive for 2.5 ≤ D̃ ≤ 5. If D̃ increases, the particle interaction
becomes slightly repulsive. For w̃ = 1.083, the membrane-mediated interaction
for nanoparticles is attractive for all D̃. An attractions that leads to linear
rod-like aggregation along the cylinder axis, has been reported in both experi-
mental and theoretical studies [234–242]. For R̃p = 0.3, as shown in Fig. 5.7(b),
in the short reduced-distance range, ∆Ẽ decreases rapidly with increasing re-
duced distance D̃, and increases slightly with long-distance range. The lowest
energy ∆Ẽ is found for reduced distance D̃ = 7.5; representative snapshots
are shown in Fig. 5.1(b). For R̃p = 0.6, see Fig. 5.7(c), the dependence of the
reduced total energy ∆Ẽ on the distance D̃ is quantitatively similar to that
for R̃p = 0.3; strong short-distance repulsive and weak long-distance attrac-
tive interactions. Instead of forming a compact linear aggregation along axis
direction, we predict an optimal reduced separation D̃ = 5.

Wrapping fractions fw for stable partial-wrapped states are shown in Figs. 5.7
(d) - (f) and in Fig. S1 of the supporting information. For fixed adhesion
strength, the wrapping fractions can be non-monotonic with increasing re-
duced distances D̃ for small reduced particle size R̃p = 0.1, see Fig. 5.7(d).
For 0.933 ≤ w̃ ≤ 0.983, fw increases with increasing D̃. However, the wrap-
ping fractions fw for the stable partial-wrapped states are always well below
0.4. For 1.008 ≤ w̃ ≤ 1.083, fw decreases with increasing D̃, and the wrapping
fractions fw lie in a wider regime 0.6 ≤ fw ≤ 0.9. Similarly, for R̃p = 0.3
and short reduced distances D̃ ≤ 5, the wrapping fraction fw increases rapidly
with increasing distance D̃ when the reduced adhesion strengths are small
0.933 ≤ w̃ ≤ 1.033. For large adhesion strengths 1.058 ≤ w̃ ≤ 1.083, the
wrapping fractions fw decrease with increasing D̃. For long reduced distances
D̃ > 5, the wrapping fractions fw are not strongly dependent on the reduced
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Figure 5.7: Reduced wrapping energies ∆Ẽ and wrapping fractions fw as functions of re-
duced distance D̃ for (a, d) R̃p = 0.1, (b, e) R̃p = 0.3, and (c, f) R̃p = .6 for in-to-out
wrapping.

distance D̃. For R̃p = 0.6, the wrapping fractions fw for stable partial-wrapped
states are more similar for the various reduced adhesion strengths w̃ than for
the other systems that we studied. For reduced distance D̃ = 2.5, the lowest
energies are found for wrapping fractions fw ≈ 0.2; for distance D̃ > 2.5, the
wrapping fractions for lowest energies are 0.3 < fw < 0.5.
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5.3.4 Contact-line deformations

In this chapter, we study for the first time a system that is not cylindrically
symmetric. Therefore the contact line where the membrane detaches from the
particles is not circular. We therefore characterize nanoparticle wrapping mem-
brane tether, in addition, by using the difference of the maximal and minimal
height along the contact line at the particle, ∆h, see Fig. C2 in the appendix
C. Figure 5.8 shows the variation of ∆h̃ = ∆h/Rp with fw for membrane teth-
ers with various R̃p and D̃. For out-to-in wrapping and R̃p = 0.1, as shown in
Fig. 5.8(a), ∆h̃ grows non-linearly from zero with increasing wrapping fraction,
attains a peak value, and finally vanishes for fw = 1. For reduced distance
D̃ = 2.5, the peak occurs at wrapping fraction fw ≈ 0.4, and the height of
the peak is ∆h̃ ≈ 0.4. For increasing D̃, the peak shifts to larger fw ≈ 0.5 for
D̃ = 3.75 and 5 to smaller fw ≈ 0.2 for 3.75 ≤ D̃ ≤ 15. Here, the height of the
peak, which in the range of 0.05 < ∆h̃ < 0.1, depends non-monotonically on
D̃. For in-to-out wrapping, see Fig. 5.8(b), the position of the peak is fw ≈ 0.4
and its height decreases from ∆h̃ ≈ 0.45 for D̃ = 2.5 to ∆h̃ ≈ 0.05 for D̃ = 15.

For out-to-in wrapping and R̃p = 0.3, as shown in Fig. 5.8(c), both position
and height of the peak are not linearly dependent on the reduced distance D̃.
The maximal height ∆h̃ ≈ 0.3 is found for wrapping fraction fw ≈ 0.4 where
D̃ = 2.5; while the minimal height ∆h̃ ≈ 0.05 is found for fw ≈ 0.2, where
D̃ = 3.75. For in-to-out wrapping, see Fig. 5.8(d), the peak height decreases
monotonically with increasing reduced distance D̃. It is slightly larger than in
Fig. 5.8(b) for fixed D̃. The positions are in the range 0.3 < fw < 0.4.

Figure 5.8(e) shows that for out-to-in wrapping and R̃p = 0.6, the peak
heights for different reduced distances D̃ are similar. It is 0.1 < ∆h̃ < 0.2,
while the wrapping factions varies also in a small range 0.3 < fw < 0.4.
Intriguingly, three local maximal height differences ∆h̃ are found for reduced
distance D̃ = 2.5. For in-to-out wrapping as shown in Fig. 5.8(f), the peak
heights for R̃p = 0.6 are larger than that for R̃p = 0.1 and 0.3 for same reduced
distances D̃. The maximal height ∆h̃ ≈ 0.6 is found for fw ≈ 0.4 at reduced
distance D̃ = 2.5.

5.4 Conclusions

We can see from Fig. 5.4(a) that for out-to-in wrapping, the reduced adhesion
strength w̃1 for the binding-envelopment transition W1 increases linearly with
the reduced particle size R̃p. It is independent of the reduced distance D̃.
For in-to-out wrapping, see Fig. 5.4(b), the value of the adhesion strength w̃1

associated with the binding transition W1 is shifted to larger values for short
distances D̃, and remains constant for long distances. For the envelopment
transition W2, the reduced adhesion strength w̃2 increases with increasing R̃p,
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Figure 5.8: Reduced maximal height differences ∆h̃ along the contact lines as function of
wrapping fraction fw for (a, c, e) out-to-in and (b, d, f) in-to-out wrapping. The solid lines
are Gaussian or Lognormal Gaussian fit functions. For D̃ = 2.5 in subfigure (e), the fit
function is piece-wise polynomial with degree 3.

which is in contrast to the change of the adhesion strength w̃1 with R̃p. There-
fore, the range of adhesion strengths for which a stable partial-wrapped state
exists increases with increasing R̃p. Furthermore, w̃2 is independent of the dis-
tance D̃. For the shallow wrapped-deep wrapped transitions W3 in Fig. 5.4(c),
the transition between two partial-wrapped states at adhesion strength w̃3 is
only found for short distance D̃ = 2.5 and for in-to-out wrapping. Tethers
with large R̃p have large values of w̃3.
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Compared to the adhesion strengths for a single spherical vesicle wrap-
ping a particle, for out-to-in wrapping, as shown in Fig. 5.5(a), the binding-
envelopment transition occurs at w̃1 = 1 for different reduced particle size
R̃p. For in-to-out wrapping, as shown in Figs. 5.5(b) and (c), the values of w̃1

are larger and w̃2 are smaller for particle-tether than particle-vesicle systems,
especially for large reduced particle size R̃p.

Figures 5.4 and 5.6 characterize the discontinuous binding-envelopment
transitions W1 between the non-wrapped and complete-wrapped state. Most
of the binding transitions W1 between the non-wrapped and a stable partial-
wrapped, and the envelopment transitionsW2 between a stable partial-wrapped
and the complete-wrapped states are continuous. The energy barriers ∆Ẽb1

associated with binding-envelopment transitions are non-monotonic with the
reduced distance D̃, the minimum is found for D̃ = 5. For a given distance D̃,
the tethers with small R̃p have small energy barriers. Regarding the shallow-
deep transitions W3 between two stable partial-wrapped states, the heights of
the energy barriers decrease with increasing R̃p.

Previous studies in Refs. [234–242] show that for both planar membranes
and curved membranes, particles always attract. Linear aggregates, such as
ring, rod and helical shapes on the membrane are found. In our numerical
simulations of highly-curved tethers where the particles are initially located
inside the tethers, see Fig. 5.7, we find complex interaction behavior: particles
attract or repel each other, depending on the values of reduced particle size
R̃p, the reduced distance D̃, and the reduced adhesion strength w̃.

We also discussed maximal height differences of the contact lines for the
tethers that wrap particles. As shown in Fig. 5.8, the maximal heights are
found for D̃ = 2.5 where the wrapping fraction is fw ≈ 0.4. The heights and
the positions of the maximal peaks are non-monotonic with both R̃p and D̃
for out-to-in wrapping, while the heights of peaks decrease with decreasing R̃p

and increasing D̃, and the wrapping fractions of peaks are in a small range
0.3 ≤ fw ≤ 0.4 for in-to-out wrapping.

We investigated the roles of the reduced particle size R̃p and the reduced
distance D̃ on the wrapping of spherical particles by highly curved tethers. The
tethers prior to wrapping are cylinders with constant radii Rt =

√
κ/(2σ). De-

pending on the initial positions of particles, we studied two distinct wrapping
processes which are respectively named as out-to-in and in-to-out wrapping:
particles initially located outside or inside the tethers enter or exit the tethers,
respectively.

For in-to-out wrapping, the reduced adhesion strength decreases with in-
creasing R̃p for the binding transition, but increases with increasing R̃p for the
envelopment transition. It demonstrates that the onset of wrapping is easier
for a small tube, but more difficult to completely wrap the entire particle. Con-
tinuous binding and envelopment transition without energy barriers are found
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for large R̃p and large D̃. A rich mixture of attractive and repulsive interac-
tions between nanoparticles is found to be related to the geometric and elastic
parameters, such as R̃p, D̃ and w̃, for membrane-mediated local deformations.
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Chapter 6

Conclusions

Components, structures, types, and mechanical and physicochemical proper-
ties for nanoparticle-membrane systems have been discussed and studied in
detail. A thorough understanding of nanoparticle-membrane interactions is
important for at least two reasons. One one hand, the information obtained
from nanoparticle-membrane interactions helps to develop new generations of
nanomaterials. For instance, efficient drug delivery systems can be engineered
by tuning the adhesion and wrapping properties of the nanoparticles that are
used as delivery vector. On the other hand, nanoparticle-membrane interac-
tions are key to understand mechanisms how biological cells control nano-scale
cargoes entering and exiting, in order to regulate the balance of material in-
side the cell. My research focused on the roles of biophysical parameters (e.g.
size, shape, and elastic curvature) of both nanoparticle and vesicles for wrap-
ping and provides hints how to control nanoparticle-transport processes across
membranes,such as endocytosis and exocytosis.

Computer simulations are versatile tools to study the interactions between
nanoparticles and membranes. Depending on the system of interest, a variety
of models accounting for different length and time scales have been developed.
Popular approaches include quantum models, all-atom or coarse-grained mod-
els, and continuum membrane models. Here, a continuum membrane model
based on Helfrich Hamiltonian has been used to study membrane deforma-
tion energies and stable states for nanoparticle wrapping at vesicles and mem-
brane tethers. Three stable wrapping states are found: the non-wrapped, the
partial-wrapped, and the complete-wrapped state. Furthermore, vesicle shape
transitions have been calculated depending on the wrapping state of the parti-
cle. If stable partial-wrapped states are found, separate binding and envelop-
ment transitions exist, otherwise a combined binding-envelopment transition
is found. The transitions can be continuous without an energy barrier or dis-
continuous with an energy barrier.

For nanoparticle uptake by vesicles, complex wrapping have been system-
atically calculated for various particle sizes, vesicle sizes and shapes, reduced
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vesicle volumes, membrane spontaneous curvatures, as well as for out-to-in
and in-to-out particle wrapping. Nanoparticle wrapping transitions are found
to be coupled to vesicle shape transitions. Stable partial-wrapped states for
nanoparticle wrapping induce vesicle shapes that can be different from the
stable shapes without particles for the same vesicle sizes and reduced volumes,
and membrane spontaneous curvatures. Shape transitions are always found to
be discontinuous. For vesicles with variable volume under physiological con-
ditions, an important factor that affects the wrapping behavior of vesicles is
an osmotic pressure difference between the interior and the exterior. Osmotic
pressure leads to a new type of shape transitions between “wide necks” and
“narrow necks” around the particles that is otherwise only reported for large
particle size to vesicle size ratios. For high solute concentrations, stable partial-
wrapped states are found both for nanoparticles entering into and exiting from
vesicle. This is different from wrapping without solute at spherical vesicles,
where stable partial-wrapped states are only found for in-to-out wrapping. The
energy barrier for the discontinuous envelopment transition increases with in-
creasing solute concentration. For nanoparticles interacting with membrane
tethers, the calculations for nanoparticle wrapping by the highly-curved cylin-
drical membranes predict both attractive and repulsive membrane-mediated
interactions between nanoparticles, which depend on the distance between the
particles, the ratio of particle radius and tube radius, as well as on the particle-
membrane adhesion strength. The deformation of the contact lines between
the adhered and the free vesicle membrane can be used to characterize the in-
fluence of neighboring nanoparticles on the wrapping state of the nanoparticle
under consideration.

The calculations in this thesis provide systematic studies and reveal quali-
tatively new aspects for passive nanoparticle-membrane interactions. Further
studies may include also active, and assisting biological processes, which can
extend this work for model systems to nanoparticles at biological cells.
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Appendix A

Nanoparticle wrapping by
non-spherical vesicles

This appendix provides supplementary materials for Chapter 3 “Nanoparticle
wrapping by non-spherical vesicles”, and it contains calculational details for the
energy minimisation including volume and area constraints, and the equations
for calculating reduced volumes prior to and after wrapping. We plot spinodals
for out-to-in and in-to-out wrapping for reduced particle size R̃p = 0.2, reduced
volume v = 0.7, and reduced spontaneous curvature c̃0 = −0.063.

A.1 Volume and area constraints

Both vesicle volume and total membrane area have target values during the
energy minimisation. For each minimization step, Surface Evolver attempts to
achieve these values by additional vertex moves. The procedure works analo-
gously for both volume and area constraints and is described in the following
exemplarily for a volume constraint [182].

As part of the energy minimization, a first step corrects for the deviation of
the actual volume from the target volume. Assuming that the actual volume
V of the vesicle deviates from the target volume by δV =| V − Vtar |, the
vertices are moved by

Ri = cV gVi for each vertex i , (A1)

where gVi is the gradient of the volume for the coordinates of each vertex
i of the triangular membrane. Here, the desired volume correction δV =

−∑
i

(cV gVi) · gVtar,i
determines

cV = − δV∑
i

gVi · gVtar,i

. (A2)
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In a second step, the positions of the vertices are optimised in while pre-
serving the vesicle volume. For a total force Fi on the vertex i, the projection
of this force on the subspace of volume-preserving motions is

Fi,proj = Fi −
∑
i

pgVi for each vertex i . (A3)

The condition
∑
i

Fi,proj · gVi = 0 is used to determine the excess pressure

p =

∑
i

Fi,proj · gVi∑
i

gVi · gVtari

. (A4)

in the vesicle at equilibrium.

A.2 Reduced volumes after complete wrapping

For a vesicle prior to wrapping a particle, the reduced volume is given by
Eq. (3.5). When a particle enters the vesicle completely, the vesicle volume
V = 4/3πR3

v effectively increases by the particle volume Vp while its membrane
area A decreases by the surface area of the particle Ap. The effective reduced
volume after wrapping,

v2 =
6
√
π (V + Vp)

(A− Ap)3/2
=

v + (Rp/Rv)3

[1− (Rp/Rv)2]3/2
, (A5)

has therefore increased compared with the reduced volume prior to wrapping.
When a particle exits a vesicle completely, the reduced volume after wrapping,

v2 =
6
√
π (V − Vp)

(A− Ap)3/2
=

v − (Rp/Rv)3

[1− (Rp/Rv)2]3/2
, (A6)

can both decrease and increase, see Fig. 3.6.

A.3 Spinodals for wrapping transitions

Figure A1 shows, in addition to the data shown in Fig. 3.3 in the main text,
regimes for metastable non-wrapped, partial-wrapped, and complete-wrapped
states. For discontinuous transitions spinodals indicate the adhesion strengths
at that wrapping and unwrapping transitions take place spontaneously. For
R̃p = 0.2, v = 0.7, and out-to-in wrapping, see Fig. A1(a), for negative c̃0
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Figure A1: Reduced adhesion strengths w̃ for reduced particle size R̃p = 0.2, (a, b) for
v = 0.7, as function of the reduced spontaneous curvature c̃0, (c, d) for c̃0 = −0.063 as
function of the reduced volume v for out-to-in and in-to-out wrapping. In addition to
the adhesion strengths for the transitions shown in Fig. 3.3 of the main text, also the
spinodals S11 and S12 for W1 and S21 and S22 for W2 are shown. S11 and S21 denote
unwrapping spinodals, S12 and S22 wrapping spinodals. Complete-wrapped (CW), partial-
wrapped (PW), and non-wrapped (NW) states are indicated. Globally stable states are
underlined in order to distinguish them from metastable states.

continuous binding and envelopment transitions occur, followed by discontin-
uous binding and envelopment transitions, and finally discontinuous combined
binding-envelopment transitions with increasing c̃0. For R̃p = 0.2, v = 0.7,
and in-to-out wrapping, see Fig. A1(b), separate binding and envelopment
transitions occur for all values of c̃0; they are discontinuous only for combined
wrapping and shape transitions. Also for R̃p = 0.2 and c̃0 = −0.063, see
Figs. A1(c, d), we find separate binding and envelopment transitions for all
reduced volumes that are only discontinuous if they are combined with shape
transitions.
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Appendix B

Osmotic pressure matters for
nanoparticle-vesicle interaction

This appendix provides supplementary materials for Chapter 4 “Osmotic pres-
sure matters for nanoparticle-vesicle interactions”, and it contains calculational
details for the adhesion strengths of individual binding and envelopment tran-
sitions, and the relationship between the osmotic constant ñv and the reduced
adhesion strength w̃ for the combined binding-envelopment transition.

B.1 Binding and envelopment transitions

The continuous binding transition between the non-wrapped and a stable
partial-wrapped state is independent of the osmotic pressure, the reduced ad-
hesion strength w̃ associated with the binding transition is expressed as a
function of the particle-vesicle radii ratio R̃p [13],

w̃ = (1 +Rp/Rv)2 (B1)

for out-to-in wrapping, and

w̃ = (1−Rp/Rv)2 (B2)

for in-to-out wrapping.
Similarly, the reduced adhesion strength for the continuous envelopment

transition between a stable partial-wrapped state and the complete-wrapped
state is expressed as

w̃ =

1 +
Rp/Rv√

1− (Rp/Rv)2

2

(B3)

for in-to-out wrapping.
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B.2 Binding-envelopment transition

B.2 Binding-envelopment transition

For the non-wrapped state, the spherical vesicle has a membrane area A and
the outside nanoparticle has an area Ap. The bending energy of the vesicle is
8πκ and the osmotic pressure is zero as the reduced volume v = 1. For the
complete-wrapped state, the nanoparticle is connected to the vesicle with a
patch of infinitely small catenoid-like membrane of vanishing bending energy
cost, both the adhered membrane and the free membrane form sphere defor-
mations, which gives the bending energy 16πκ. The osmotic energy can be
calculated by substituting the following equation into Eq. (4.3),

v =
4

3
π

[(
A− Ap

4π

)3/2

−R3
p

]
/

[
4

3
π

(
A

4π

)3/2
]

=
[
1− (Rp/Rv)2

]3/2 − (Rp/Rv)3 ,

(B4)

where Rp =
√
Ap/(4π) and Rv =

√
A/(4π) .

Suppose the total energy for the non-wrapped state is equal to the complete-
wrapped state, we can get the relationship between the osmotic constant ñv

and the reduced adhesion strength w̃ for the binding-envelopment transition,

ñv =
(w̃ − 1) · 8πκ
v − ln v − 1

(B5)

as we combine the Eq. (B4) with Eq. (4.1).
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Appendix C

Tether-mediated nanoparticle
interaction

This appendix provides supplementary materials for Chapter 5 “Tether-mediated
nanoparticle interaction”. It shows the minimal reduced energies ∆Ẽ and
wrapping fractions fw for different reduced adhesion strengths 0.933 ≤ w̃ ≤
1.083 for in-to-out wrapping, as well as the deformation of the contact line
on a spherical particle that is partially wrapped by the membrane of tether
for out-to-in and in-to-out wrapping for reduced particle size R̃p = 0.3 and
reduced distance D̃ = 7.5.

C.1 Minimal energies and wrapping fractions

for specific adhesion strengths

For in-to-out wrapping, stable partial-wrapped states are found for adhesion
strengths 0.933 ≤ w̃ ≤ 1.083. The minimal reduced energies ∆Ẽ as a function
of the wrapping fraction fw for different adhesion strengths w̃ are shown for
R̃p = 0.3 and D̃ = 7.5 in Fig. C1. Figure 5.7 in Chapter 5 shows an overview
over the reduced energies ∆Ẽ and wrapping fractions fw for a variety of R̃p

and D̃.

C.2 Contact line deformations for nanoparti-

cles

Figure C2 shows the deformation of the contact line on a spherical nanopar-
ticle wrapped by the membrane of tether, see Fig. 5.1 for the representative
snapshots. The contact line is pulled up along y-axis (the longitudinal axis of
tethers), and is pulled down along the x-axis. The difference of the highest
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Figure C1: Reduced wrapping energies ∆Ẽ for reduced particle size R̃p = 0.3 and reduced

distance D̃ = 7.5 as function of wrapping fraction for in-to-out wrapping. For subfigure (a),
the numerical results for deformation energies with adhesion strength w̃ = 0 are shown as
open circle points, and solid black line is the fit function; the minimal reduced energies are
marked by the solid gray points for adhesion strengths 0.933 ≤ w̃ ≤ 1.083. For subfigure
(b), only the minimal total energies ∆Ẽ for stable partial-wrapped states with adhesion
strengths 0.933 ≤ w̃ ≤ 1.083 are shown.

(half-above filled circle) and lowest (half-below filled circle) points along the
contactline, normalized by the radius of the particle, ∆h̃ = ∆h/Rp, charac-
terizes the membrane deformation of the tether around the nanoparticle. The
reduced height ∆h̃ along the contact line is shown as a function of wrapping
fraction fw in Fig. 5.8 in Chapter 5.
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Figure C2: Contact-line deformations for a spherical particle of reduced particle size R̃p =

0.3 and reduced distance D̃ = 7.5 at a membrane tether with wrapping fraction fw = 0.41
for both out-to-in (purple points) and in-to-out (green points) wrapping. The highest and
lowest positions are indicated by circles that are half-above and half-below filled.
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