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Zusammenfassung 

Morbus Dupuytren (DD) ist eine Fibromatose des palmaren Bindegewebes, die zu 

Flexionskontrakturen der Finger führt.  DD hat eine starke genetische Komponente mit einer 

geschätzten Erblichkeit von etwa 80%. Eine frühere kollaborative genom-weite Assoziationsstudie 

(GWAS) identifizierte 9 Suszeptibilitäts-Loci, die zu einem erhöhten Risiko für DD beitragen. Allerdings 

können diese Loci zusammen nur einen Bruchteil der Erblichkeit erklären. Die spezifischen Gene und 

funktionellen Varianten für DD blieben hier unklar. 

Ziel der vorliegenden Forschungsarbeit ist es daher, die zugrunde liegende genetische Architektur von 

DD auf verschiedenen Ebenen systematisch zu untersuchen: i) Identifizierung von funktionellen 

Varianten, die zu einem starken GWAS-Assoziationssignal an einem DD-Risiko-Locus führen, ii) 

Priorisierung von Genen mit seltenen Varianten, die mit dem DD-Phänotyp funktionell in Verbindung 

gebracht werden können, und iii) Charakterisierung der transkriptionellen Deregulation in DD. 

Ein Intervall auf Chromosom 7, am 7p14.1, in dem sich der Einzelnukleotid-Polymorphismus (SNP) 

rs16879765 (G>A) mit der stärksten signifikanten Assoziation mit DD in der genannten GWAS 

befindet, wurde als DD-Suszeptibilitäts-Locus identifiziert. Zuerst haben wir daher eine gezielte 

Anreicherungsstrategie mit anschließender NGS sequenzierung mittels (targeted NGS) verfolgt, um 

eine Region von 500 kb an dem Locus auf 7p14.1 zu untersuchen. Eine seltene aminosäure-ändernde 

Variante, rs149095633 (p.P121L, auf Haplotypen durch das rs16879765*A Risiko-Allel markiert), und 

ein häufiger eQTL-Kandidat, rs2044831 (in mäßigem Kopplungsungleichgewicht (LD) mit 

rs16879765), wurden in EPDR1 identifiziert, einem funktionellen Kandidatengen, das am kontraktilen 

Phänotyp der DD-Primärzellen beteiligt ist. 

Zweitens führten wir eine Pilotstudie zur Exomsequenzierung (WES) bei 50 DD-Patienten mit 

mutmaßlich ausgeprägter genetischer Prädisposition durch und priorisierten Kandidatengene mit 

seltenen Varianten. 3919 seltene kodierende Varianten wurden als nachteilig vorhergesagt. 1774 

Gene mit mehr als 2 Varianten wurden mit „Human Phenotype Ontology“ und „Gene Intolerance 

Score EvolTol“ nach geeigneten Phänotyp-Kategorien und palmarer Expression gefiltert. Als Ergebnis 

wurden 12 Gene als DD-Kandidatengene mit potenziell pathogenen seltenen Varianten priorisiert. 

Insbesondere wurden 6 davon als funktionell wichtige Gene für die DD-Entwicklung eingestuft. 

Drittens führten wir eine umfassende Transkriptomstudie durch RNA-Sequenzierung in 50 DD-

/Kontroll-Biopsieproben durch. Unter Verwendung von Genexpressionsprofilen wurde durch eine 

Perturbationsanalyse der Hippo-Signalweg als ein Schlüsselmechanotransduktionsweg 

vorgeschlagen, der die profibrotische Mikroumgebung in DD vorbereitet. Der TGFβ-Signalweg und 

ECM-Rezeptor-Wechselwirkungen wurden als essenziell für die Gewebefibrose vorhergesagt. 

Darüber hinaus wurden durch die Analyse von alternativem Splicing (AS) charakteristische 

Isoformprofile und Isoformverwendungen in DD-Gewebe gefunden. Diese Isoformen könnten an 
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einem Mechanismus beteiligt sein, mit dem sich Zellen in betroffenem Gewebe an Fibrose anpassen 

und die Fibroseprogression weiter fördern. 

Zusammengefasst charakterisiert diese Studie erstmals einen GWAS-Risikolocus für DD und bietet 

einen Ansatz für die Identifizierung funktioneller Varianten für DD im Post-GWAS-Zeitalter. Die 

explorative Priorisierung von DD-assoziierten Kandidatengenen unterstützt die Annahme, dass 

seltene Varianten einen Beitrag zur Entwicklung der Krankheit leisten, und benennt Kandidatengene 

für Folgestudien. Zudem liefert diese Studie neue Anhaltspunkte für einen Zusammenhang zwischen 

wichtigen physiologischen Pfaden und der transkriptionellen Regulation von DD und bietet einen 

ersten Einblick in spezifisches AS in betroffenem Gewebe und die damit verbundenen AS-

Regulationsmechanismen. Unsere Studie stellt einen ersten Schritt zur Integration versoliedener 

genomischer Ansätze mit dem Ziel dar, um die mechanistischen Verbindungen zwischen der 

genetischer Prädisposition und der Ausprägung von DD aufzuklären. 
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Abstract 

Dupuytren's Disease (DD) is a fibromatosis in the palmar connective tissue that leads to flexion 

contractures of fingers. DD has a strong genetic component with an estimated heritability of about 

80%. A previous collaborative genome-wide association study (GWAS) has mapped 9 susceptibility 

loci that were shown to contribute to the increased risk of DD. However, these loci together can only 

explain a small fraction of heritability. Moreover, the respective genes and functional variants 

underlying DD remained unclear. 

Therefore, the present study aims to systematically investigate the genetic architecture of DD at 

different levels by: i) identifying functional variants contributing to a strong GWAS association signal at 

a DD risk locus, ii) prioritizing DD phenotype-related genes with rare variant burdens, and iii) 

characterizing the transcriptional deregulation in DD.  

An intervall on chromosome 7, 7p14.1, tagged by rs16879765 (G>A), which was most significantly 

associated with DD in the previous GWAS, has been identified as a DD susceptibility locus. Therefore, 

we first used a target-enrichment strategy coupled with next generation sequencing (targeted NGS) to 

assess a 500kb region at 7p14.1. A rare non-synonymous variant, rs149095633 (p.P121L, on 

haplotypes tagged by the rs16879765*A risk allele), and a common eQTL candidate, rs2044831 (in 

moderate linkage disequilibrium with rs16879765), were identified in EPDR1, a functional candidate 

gene contributing to the contractile phenotype of DD primary cells.  

Second, we performed a pilot whole exome sequencing (WES) study in 50 DD patients with suspected 

high genetic predisposition and prioritized candidate genes with rare variant burden. 3919 rare coding 

variants were predicted to be deleterious. 1774 genes with gene burden greater than 2 were filtered 

for suitable phenotype classes and palmar expression according to Human Phenotype Ontology and 

the gene intolerance score EvolTol. As a result, 12 genes were prioritized as DD candidate genes with 

potentially pathogenic rare variants. In particular, 6 of these genes were suggested as functionally 

important for DD development.  

Third, we carried out an elaborate transcriptome study in 50 DD/control biopsy samples by RNAseq. 

By pathway perturbation analysis using gene expression profiles, the Hippo signaling pathway was 

suggested as a key mechanotransdution pathway to prepare the profibrotic microenvironment in DD. 

The TGFβ pathway and ECM-receptor interactions were predicted as pathways essential for tissue 

fibrosis. Moreover, by alternative splicing (AS) analysis, DD tissue was suggested to harbor distinctive 

isoform profiles and isoform usage, which might provide a mechanism for cells in disease tissue to 

adapt to fibrosis and further promote fibrosis progression. 

In summary, this study characterized for the first time a GWAS risk locus for DD and provided an 

approach for identifying functional variants for DD in the post-GWAS era. The exploratory prioritization 
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of DD-related candidate genes supported the assumption that rare variants can contribute to the 

development of the disease and nominated candidate genes for follow-up studies. Furthermore, this 

study proposed key physiological pathways involved in transcriptional regulation of DD and gave a first 

insight into disease tissue-specific AS and possible AS regulation mechanisms. Overall, our study 

represents a first step in integrating various genomic approaches to elucidate the mechanistic links 

between the genetic predisposition and the development of DD.  
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Chapter 1 Introduction  

1.1 Dupuytren's disease (DD) — a complex fibrosis disorder 

Most common diseases, such as cancer, diabetes, Alzheimer disease and epilepsy, have a complex 

etiology. Unlike rare Mendelian disorders characterized by single-gene mutations, complex disorders 

are caused by a combination of genetic and environmental factors (e.g. aging, nutrition and life style). 

Aging is a major risk factor for many chronic diseases, yet, the basic mechanisms that drive aging 

remained largely unknown due to several reasons such as the complexity of the aging process at 

molecular, cellular and organ level and the considerable heterogeneity among individuals1. 

Dupuytren’s Disease (DD) is a common connective tissue fibrosis disorder with a prevalence of 2.5% 

in Germany2. The worldwide prevalence of DD is related to geographic location with highest 

prevalence in Scandinavia, UK, Ireland, Australia and North America 3-5.  Other factors including 

trauma and exposure to vibrating machinery are also suggested to increase the danger of developing 

DD6. The manifestation rate of DD is positively correlated with increased age peaking in the sixth and 

seventh decade of life in men and women, respectively7. However, unlike many multifocal aging-

associated diseases, DD is specially localized in the hands.  

DD patients commonly first display benign nodules in the palms (Figure 1-1). These nodules are 

characterized by a high amount of proliferating fibroblasts and their differentiation towards 

myofibroblasts followed by progressive formation of cords consisting mostly of extracellular matrix 

(ECM) proteins8. The maturation of cords is accompanied by fibrosis and ultimately leads to digital 

contractures resulting in hand deformity and impaired hand function in daily life6. The treatment of DD 

consists largely of surgical removal of the contracted tissue, which is unfortunately accompanied with 

a high risk of neurovascular injury and DD recurrence (8% — 66%)9,10. However, the availability of 

affected tissues as well as the unifocal feature of DD enables us to use this disease as a unique 

model for studying the molecular mechanisms of aging-related disorders in connective tissue.  
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Figure 1-1 The clinical presentation of DD 

(A) Benign nodules commonly first displayed in the palms of DD patients (Grade 1). The nodules are 
characterized by a high amount of proliferating fibroblasts and their differentiation towards 
myofibroblasts, followed by the progressive formation of cords consisting mostly of extracellular matrix 
proteins (Grade 2). The maturation of cords ultimately leads to digital contractures resulting in the hand 
deformity (Grade 3). The figure was adapted from http://www.chennaiplasticsurgery.in/ 
Dupuytren's%20contracture.html. 

(B) Treatment of DD consists largely of surgical removal of the contracted tissue, named as DD tissue. 
The figure was adapted from Shil et.al. 6 
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1.1.1 Major cell types in DD — activated fibroblasts and myofibroblasts 

In normal connective tissues, the resident fibroblasts, which are embedded in loosely arranged ECM, 

maintain tissue homeostasis not only by synthesizing ECM proteins including interstitial collagens, 

proteoglycans and adhesive non-collagenous proteins, but also by exerting mild contractile force on 

this ECM11. Very low levels of growth factors, cytokines and blood plasma proteins percolate through 

this microenvironment, which maintains fibroblasts in a 'quiescent' state11.  

During normal tissue repair such as wound healing, fibroblasts become activated and a set of cellular 

and extracellular events take place to repair the damage including four sequential yet overlapping 

phases: inflammation, proliferation, contraction and remodeling11. The cellular contraction accounts for 

a key phase in normal wound healing as it enables wound closure, however, if contraction is 

abnormally persistent, it can lead to tissue fibrosis6, for example, DD. 

The digital contracture phenotype of DD is mainly caused by an increased amount of activated 

fibroblasts and their differentiated myofibroblasts in the palmar fascia. The myofibroblasts, which 

display molecular and cellular phenotypes between fibroblasts and smooth muscle cells, are 

characterized by a flattened spindle shape, excessive ECM deposition and expression of α-smooth 

muscle actin (α-SMA, an early differentiation marker of vascular smooth muscle cells)12,13. The 

expression of α-SMA is a molecular hallmark to distinguish myofibroblasts from 'quiescent' fibroblasts. 

Upon tissue injury, the resident 'quiescent' fibroblasts are activated by both cytokine signaling and 

mechanical change of microenvironment and differentiate into a myofibroblast phenotype11.  

Then, the differentiated myofibroblasts incorporate α-SMA in stress fibers and develop adhesion 

complexes with ECM termed 'fibronexus' in vivo or 'super mature focal adhesions' in vitro. The 

adhesion complexes bridge the myofibroblasts' internal microfilaments with ECM and thus enable 

these cells to generate contractile forces surrounding the ECM. In pathological situations, the 

contractile activity in myofibroblasts is abnormally maintained over time and enhanced by the 

deposition of excessive ECM in their surrounding niche14,15. 

The origins of activated fibroblasts and myofibroblasts in fibrotic tissues still remain unclear. Recent 

studies on some fibrosis disorders and cancer have suggested a heterogeneous origin of activated 

fibroblasts and myofibroblasts in tissue fibrosis. Proposed major contributors include bone marrow-

derived fibroblasts, adipocytes, epithelial cells and endothelial cells (Figure 1-2)11,16. However, the 

molecular mechanisms by which this differentiation occurs in DD remain not well understood. 
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Figure 1-2 Possible origins of myofibroblasts 

In some fibrosis disorders and cancer, myofibroblasts are suggested to originate directly or indirectly 
from various cells such as resident fibroblasts, adipocytes, bone marrow derived mesenchymal stem 
cells, epithelial cells (through epithelial mesenchymal transition: EMT) and endothelial cells (through 
endothelial mesenchymal transition: endMT) etc. The figure was adapted from Shiga et al.16 

 

1.1.2 DD — associated with low BMI and type 2 diabetes 

DD appears to be associated with other complex traits17. In the Reykjavik Study including 1297 men, 

elevated fasting blood glucose low body mass index (BMI, a marker for adiposity), were significantly 

correlated with the presence of DD18. The association between DD and low adiposity suggests 

common genes or pathways involved in diseases susceptibility.  
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1.2 The genetic background of DD 

Compelling evidence, including frequent familial clustering and high Caucasian prevalence compared 

to other ethnic groups5,18, consistently suggests genetic factors to contribute to the onset of DD.  

In order to identify genetic risk loci associated with Dupuytren´s disease, a collaborative genome-wide 

association study (GWAS) including 2,325 DD cases and 11,562 controls was conducted by groups in 

Groningen (the Netherlands), Oxford (UK) and our group (Germany) to identify associations between 

the disease and common genetic markers. As a result, 11 single nucleotide polymorphisms (SNPs) in 

9 different loci were found to be significantly associated (p<5.0x10–8) with DD, implicating a genetic 

susceptibility to DD.  

The top GWAS SNP, ranked by the lowest p-value was found in the intronic region of EPDR1/SFRP4 

(rs16879765, p=5.6×10−39; odds ratio, 1.98). Five further loci were found to harbor genes encoding 

proteins of the WNT/β-catenin signaling pathway19, which are WNT4 (rs7524102, p=2.8×10−9; odds 

ratio, 1.28), WNT2 (rs4730775, p=3.0×10−8; odds ratio, 0.83), RSPO2 (rs611744, p=7.9×10−15; odds 

ratio, 0.75), WNT7B (rs6519955, p=3.2×10−33; odds ratio, 1.54) and SULF1 (rs2912522, p=2.0×10−13; 

odds ratio, 0.72), suggesting that variants in genes involved in the WNT/β-catenin signaling pathway 

may cause a predisposition to DD.  

In total, the 9 risk loci identified in this GWAS could explain about 1% of the heritability of DD.  

Moreover, all the 9 loci were further validated in a study20 combining three imputed GWAS data sets 

including 1580 cases and 4480 controls from the Netherlands (the previous Groningen study)19, 

Switzerland and Germany. Six of these loci reached genome-wide significance (p<5x10-8). In sum, 

these GWAS results provided the first solid piece of evidence, which greatly improved our 

understanding of the genetic basis of DD.  
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1.3 The unclear genetic architecture of DD 

1.3.1 The missing genetic causes of GWAS loci  

A more recent association study, involving 30,330 Danish monozygotic and heterozygotic twins, was 

conducted to assess the relative contribution of genes and environment in the etiology of DD21. A high 

heritability (80%) was estimated for DD occurrence suggesting a major role of genetic factors in the 

development of DD21. Thus, a large portion of the genetic heritability was not explained by 

previous GWAS leading to the arising question of how the 'missing heritability' of DD can be 

explained.   

One explanation refers back to the initial basis of conducting GWAS, the 'common disease–common 

variant' hypothesis, which states that most of the genetic risks for common diseases are due to loci 

where common functional variants (minor allele frequency [MAF] > 5%) exist at each locus22. 

Therefore, GWAS applies an indirect association approach to identify tag SNPs associated with the 

disease phenotype. However, the GWAS tag SNPs are not necessarily biologically meaningful, but 

strongly correlated with the underlying functional variants22. This correlation is known as linkage 

disequilibrium (LD), the non-random combination between alleles at linked loci along a chromosome, 

which in part, reflects their proximity and the correspondingly low probability of recombination breaking 

the haplotype on which they are found.23 

Recently, the fast development of next generation sequencing (NGS) has created the opportunity to 

directly map the variants. In particular, by target enrichment and NGS (Targeted NGS) of a GWAS-

associated locus, the variability of the entire locus can be exhaustively identified, including coding and 

noncoding regions comprising all common and rare variants. Rare genetic variants affecting protein 

coding were recently identified to have a strong effect on the susceptibility of complex diseases, for 

example, Alzheimer's disease24. In addition, common variants associated with gene expression are 

increasingly shown to harbor regulatory roles by manifesting themselves as cause of gene expression 

differences25. Mapping of expression quantitative trait loci (eQTL) is one way to identify regulatory 

variants affecting gene expression. Several comprehensive projects including Genotype-Tissue 

Expression (GTEx), have established as a resource databases to search for eQTL in human normal 

tissues25,26. Combining eQTL data with disease associated genetic variants provides an opportunity to 

identify common regulatory variants influencing gene expression at GWAS loci.  

Given that consistent evidence of several susceptibility loci linked to DD, fine mapping of GWAS-

associated loci should be performed to identify functional rare and common variations represented by 

GWAS association signals. 

1.3.2 The contribution of rare variants and candidate genes to DD 

Over the past several years, the 'common disease–common variant' hypothesis was increasingly 
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challenged by the 'common disease–rare variant' hypothesis, as a growing body of evidence suggests 

that rare variants with a MAF of less than 5% also play an important role in complex trait etiology27. 

Currently, the widely accepted model for the genetic architecture of common diseases is the 'broad 

sense heritability' model, which refers to not only genetic components (which includes a large number 

of rare variants with a large-effect size and common variants with a small-effect size), but also the 

interactions between genetic components and environmental factors22.  

For DD, common variants tagging genetic risk loci have been captured by GWAS, however, all of 

them are in the non-coding regions of the genome and many of them are in intergenic regions. This 

makes it hard to address their functional consequences and identify candidate genes contributing to 

the DD phenotype. On the hand, the impact of rare variants on DD phenotype remains unanswered 

since the low-frequency variants cannot be completely represented by GWAS using genotyping 

arrays.  

In the past few years, whole exome sequencing (WES) of all protein-coding regions has been 

considered a powerful tool to discover genes underlying unsolved Mendelian disorders28. More 

recently, WES was also used to prioritize candidate genes29,30 and evaluate the contribution of rare 

variants to genetic heritability in complex diseases31,32. To date, no published WES studies on rare 

genetic variants have been reported in DD.  

1.3.3 Transcriptome characterization of DD   

Identifying genes carrying genetic variants is only one part of genetic studies. The ultimate goal is to 

understand the functional relevance of these candidates and the underlying disease biology. Whole 

transcriptome analysis of disease tissues/cells can provide the foundation for the understanding of the 

contribution of genetic variants, gene function and pathogenic mechanisms involved in diseases. 

1.3.3.1 Findings and problems in previous gene expression profiling studies in DD  

Global gene expression in DD has been studied in DD tissue biopsies or patient-derived cells using 

microarrays in several groups8,33. These studies have provided important insights for deregulated 

genes and pathways involved in DD.  

An elevated level of β-catenin was detected in the DD tissues compared to patient-matched fat 

controls as well as in primary DD cells derived from DD tissues on collagen lattice34. No genetic 

variants were identified in CTNNB1, which encodes β-catenin, in DD patients by Sanger sequencing. 

Therefore, the altered expression of β-catenin may be explained by alterations of WNT/β-catenin 

pathway components or other pathway components, which modulate β-catenin stability34, for example, 

by transforming growth factor-beta (TGFβ) pathway components35-37. In accordance with virtually all 

other fibrosis disorders, the TGFβ pathway is considered as a master regulator in DD by regulating 

fibroblasts proliferation and their differentiation into myofibroblasts12,38. Additionally, the increased β-
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catenin expression observed in DD cells collagen lattice cultures suggests a potential role of ECM in 

modulating β-catenin levels in DD34.  

A number of microarray studies have been attempted to explore the abnormalities of ECM in DD. The 

high expression of various ECM components, such as COL1A133,39, COL3A133,39, COL4A239, 

COL5A139 and TNC33,39, was observed in DD nodules. Increased expression of MMP14 was also 

detected in DD nodules and associated with recurrence of nodules following surgical intervention in 

DD cases40. These studies provided important insights in the abnormal characteristics of the ECM in 

DD relevant tissues. However, the exact cause of the differential expression and the function of these 

components are still not clear, which may be due to several reasons.  

First, it is difficult to define the function of a candidate gene using pure expression profiling 

information, which, by its nature, only captures the mRNA activity in tissues at the disease state 

without knowing genetic or mechanistic dysfunction. Including genetic information, for example WES 

data of patients, should facilitate the prioritization of the functional genes involved in transcriptional 

regulation.  

Second, the controls used in previous expression profiling studies were insufficient. In some studies, 

the gene expression profiling for DD tissues (DDtis) was compared with internal controls, the 

unaffected palmar fat (DDfat) tissues from the same patients. While in other studies, the external 

controls  — palmar fat tissues from patients undergoing open surgical carpal tunnel release (CTtis) 

were used as healthy tissue controls, since the truly healthy palmar tissues from healthy people are 

not available due to practical issues. Very rarely, both internal and external tissue controls were 

included in expression analysis41. 

Third, the absence of appropriate animal models, owing to the unique anatomical and functional 

features of hands, makes it difficult to design reliable in vivo functional studies. So far, the culture of 

primary cells derived from DD tissues (DDcell) served as the in vitro experimental model for DD to 

study gene function. However, one of the significant differences of cultured cells compared to in vivo 

tissues is the lack of ECM structural support and growth factor secretion.  

In addition, although microarrays have enabled rapid and cost-effective analyses of gene expression 

profiling in DD tissues, there are still several weaknesses of this technique, such as the limited 

detection of low-abundance transcripts and identification of novel transcripts.  

In contrast, the recent development of RNA-seq offers a great power to analyze gene expression at a 

high resolution and investigate different layers of transcriptome complexity42. RNA-seq analyzes the 

complementary DNA (cDNA) by means of NGS and maps sequence reads onto the reference 

genome. The massive capacity of RNA-seq allows not only the measurement of low abundance 

transcripts, but also the identification of novel transcripts and alternative splicing patterns associated 

with traits, which may be crucial in disease pathogenesis. 
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1.3.3.2 The unknown role of alternative splicing (AS) in DD 

In humans, a gene has approximately 9 exons and 8 introns on average43. Genes need to be 

transcribed over their full length (including both introns and exons) to generate primary mRNAs or 

precursor mRNAs (pre-mRNAs). The introns are then removed from the pre-mRNAs and exons are 

joined together to form the functional mRNA. This process is catalyzed around splice sites at the ends 

of each intron by spliceosome, a highly dynamic ribonucleoprotein (RNP) complex comprised of five 

small nuclear ribonucleoproteins (U1, U2, U4/U6 and U5) and numerous other proteins44. From a 

given pre-mRNA to mature mRNAs, some constitutive exons are spliced into every mRNA produced, 

whereas many exons are alternatively spliced into various mRNA isoforms leading to the synthesis of 

different protein isoforms with diverse functions45. This process is defined as alternative splicing (AS). 

There are six common types of AS events (Figure 1-3), which include exon skipping/inclusion (ESI), 

intron skipping/inclusion (ISI), alterative 5' splice sites (A5), alternative 3' splice sites (A3), multiple 

exon skipping (MESI) and mutually exclusive exons (MEE) (Figure 1-3)46. ESI is known as the most 

common splicing phenomenon in eukaryotes, describing that an exon is spliced in or out of the 

transcript thereby leading to extended or shortened mRNA isoforms47. A5 and A3 events occur when 

two or more splice sites are recognized at one end of an exon/intron. They account for 7.9% and 

18.4% and of all AS events in higher eukaryotes, respectively47. The ISI event is defined by the 

retention of an intron in the mature mRNA transcript, accounting for less than 5% of known events in 

vertebrates and invertebrates47. MESI or MEE are complex AS events, which are subject to specific 

regulation48. 

In general, AS is tightly regulated in a tissue- or cell-specific manner. The splicing regulatory 

sequences and RNA-binding splicing factors, which recognize and bind to these sites, compose a 

common mechanism for setting up and maintaining AS patterns45. Tissue-specific splicing factors may 

activate or inhibit the use of splice sites or act in both ways depending on the sequence and position 

of the target site in the pre-mRNA.  
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Figure 1-3 A schematic representation of common alternative splicing events 

Six major splicing events were represented, which are exon skipping /inclusion (ESI), intron 
skipping/inclusion (ISI), alterative 5' splice sites (A5), alternative 3' splice sites (A3), multiple exon 
skipping (MESI) and mutually exclusive exons (MEE). The figure is modified from Vitting-Seerup et al.46 

 

 

Unraveling AS of genes at the molecular level is important for understanding not only gene 

expression, but also disease causation as aberrant pre-mRNA splicing is the basis of many complex 

diseases. Here are three examples: first, the imbalanced ratio of 4R/3R tau isoform ratio, due to 

inclusion/exclusion of exon 10, is linked to tau-related neurodegeneration, for example Alzheimer 

disease. Second, the lack of SMN1 isoform (survival of motor neuron), which is required for assembly 

of macromolecular splicing factors, causes spinal muscular atrophy. Additionally, the dysregulation of 

the splicing process is common in cancer. This may include deregulated genome-wide splicing events, 

differentially expressed splicing factor genes, and aberrantly spliced cancer-critical genes. All this may 

contribute to tumorigenesis and tumor severity. One well-documented example is the association 

between aberrantly spliced CD44 isoforms and metastasis49.  

So far, studies on the presence and regulation of AS in DD are completely lacking. Therefore, 

investigations of AS and their contribution to the DD phenotype is in great need and will broaden our 

understanding of the transcriptional misregulation in DD. 
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1.4 The aim of this project 

DD represents an ideal, however not well studied, disease model to study aging-related diseases with 

high genetic susceptibility. Investigations to unravel the genetic architecture and molecular etiology of 

DD may offer an opportunity to develop biomarkers for prognosis and the selection of non-operative 

treatment strategies. To date, the genetic architecture of DD is mostly unknown due to the complex 

interactions between genes and environmental factors. So far a few risk loci explaining only about 1% 

of the genetic heritability have been identified by previous GWAS studies, however, many more 

genetic components are expected to exist.  

Therefore, this thesis aimed to  

1) identify functional variants at a DD risk locus using targeted NGS 

2) prioritize DD phenotype-related genes carrying rare variants using WES 

3) characterize the transcriptional deregulation in DD tissues/cells using RNA-seq.  
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Chapter 2 Method  

2.1 Study design, subjects and ethical approval 

The study design of this project is shown in Figure 2-1. The samples from participants were collected 

after written informed consent according to the protocols approved by the participating institutions. All 

participants are of European origin. Patients with DD were recruited. DNA was extracted from 

peripheral blood samples for targeted NGS and WES. RNA was isolated from disease relevant 

tissues/cells of patients undergoing a standard fasciectomy. Control palmar connective tissue/cell 

samples were obtained from patients undergoing carpal tunnel (CT) release. The Ethics Commission 

of the Faculty of Medicine of the University of Cologne fully approved the study. 

            

              Figure 2-1 The study design of the project 
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2.2 Targeted NGS and data analysis  

2.2.1 Target NGS and variant calling  

Guided by LD structure (Figure 3-1), we selected a 500kb region (chr7: 37.77-38.27kb) containing the 

leading SNP rs16879765 on 7p14.1 for targeted sequencing. DNA was isolated from peripheral blood 

of 96 DD patients. The DD-associated locus was enriched using the SureSelect XT2 kit (Agilent). 

Libraries were prepared and labeled with barcodes for 100bp paired-end sequencing on the HiSeq 

2000 device (Illumina) at the Cologne Center for Genomics (CCG). Sequence reads in FastQ format 

were mapped to the hg19/GRC37 reference genome using Varbank pipeline 2.16 

(https://varbank.ccg.uni-koeln.de). Variant calling was performed using GATK v1.650 (in Varbank 2.16 

pipeline) and 91.5% bases were called with calling accuracy more than 99.99% (Phred quality score 

30). The mean target coverage was 77x. At 10x/30x coverage, 96%/91% of the region was covered. 

Annotation of variants was performed using Varbank 2.16 and Ensembl VEP 2.751. 

2.2.2 Validation and replication using Sanger sequencing  

Sanger sequencing was performed on the fifth exon of EPDR1 gene. For standard PCR reactions, A 

10 ul reaction was pipetted with 10 ng of genomic DNA, 0.25 ul BigDye terminator v3.1 (Applied 

Biosystems), 1.125 µM BigDye sequencing buffer and 0.25 µM primers (Eurofins). Cycling conditions 

were as follows: 96 °C for 10 seconds, 55 °C for 5s, 60 °C for 4 minutes, and the cycle was repeated 

32 times. The quality of the PCR product was examined on an electrophoresis gel and only high 

quality PCR products were further cleaned. For a 10 µl PCR product cleanup reaction, 3 U 

Exonuclease I (Neo Lab), 0.9 U SAP (Shrimps Phosphatase Alkali, Promega), 2-10 ng PCR product 

and H2O was mixed and incubated at 37˚C for 20 minutes and then at 85˚C for 15 minutes.  Samples 

were stored at 4 ˚C until needed.  
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2.2.3 Pyrosequencing 

Template DNA (6ng genomic DNA or external cDNA products) was amplified using HotStarTaq Plus 

DNA Polymerase kit (Qiagen) using stand reaction (2 U HotStarTaq Plus DNA polymerase, 1x PCR 

buffer, 200 µM of each dNTP and 0.1 µM of each primer) and amplification conditions (95 °C for 5 

minutes, 30 cycle of 3 step cycling including 94 °C for 30 seconds, 60 °C for 30 seconds and 72 °C for 

1 minute as well as final extension at 72 °C for 10 minutes). Reverse PCR primers were biotinylated 

for subsequent pyrosequencing analysis. Pyrosequencing reactions were carried on PSQ HS96A 

instrument and pyrosequencing SNP analysis software (PyroMarkTMQ96MD, Qiagen). 

Pyrosequencing signals for alternative alleles were normalized to signals for known reference alleles. 

Significant allele specific expression was normalized from experimental noise using T-test  (p<0.05).  

2.2.4 Protein model  

Gremlin global statistical model method52 was used to generate a multiple sequence alignment and 

construct the protein model for EPDR1. The EPDR1 protein sequence was searched against UniProt 

and the significant hits were added to an alignment, which was further searched against Uniprot. This 

procedure was repeated 4-8 times and a diverse alignment for the entire family of EPDR1 -like protein 

was identified. This alignment was then compared to a database of alignments (protein data bank, 

PDB) using HHsearh Jackhmmer (EBI). The alignment-to-alignment search eventually revealed the 

best hit to 3bmz in PDB database with 94% confidence that 3bmz shared the same folding with 

EPDR1. After threading and refining with co-evolution data and Rosetta v3.2, the best predicted model 

is shown in Figure 3-3A.  

2.2.5 Transcription factor binding sites 

We performed the prediction of transcription factor (TF) binding sites for rs149095633 using two 

bioinformatics tools: the Genomatix MatInspector53 and TRANSFAC databases54. Genomatix 

MatInspector is a software tool that utilizes a large library of matrix descriptions for transcription factor 

binding sites (also named as motif) to locate matches in DNA sequences54. It uses two scores 

including the matrix similarity score and core similarity score to measure the quality of a match 

between the sequences and the consensus TF binding site matrix, which ranges from 0 to 1 with 1 

denoting an exact match53. The core of each matrix is defined as the first five most conserved 

consecutive positions of a matrix53. Using TRANSFAC database, the consensus TF binding site matrix 

and the core of each matrix can be visualized in motif logos (for example, in Figure 3-4B), which 

scales each nucleotide by the total bits of information multiplied by the relative occurrence of the 

nucleotide at the position55.  
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2.3 Whole exome sequencing (WES) and data analysis 

2.3.1 Exome sequencing and variant calling 

Blood DNA was isolated from 40 DD patients. Library construction and exome capture were performed 

with the SeqCap EZ Human Exome Library v2.0 (NimbleGen). The prepared library was sequenced 

on Illumina HiSeq 2000 using paired-end 100bp sequencing at CCG. Variants were called using using 

GATK HaplotypeCaller50  under standard hard filtering parameter and variant quality score 

recalibration according to GATK Best Practices recommendations56,57. This allowed variant calling 

simultaneously using local de novo assembly and a Bayesian statistical model.  

In total, 3.48 billion sequencing reads were aligned to the human genome (hg19/GRC37), with a 

99.5% mean coverage across the exome region in 40 samples. In each sample, at least 20x/30x 

coverage of 95%/90% exome region of was achieved. A total of 4,214,948 loci in VCF file passed QC 

threshold, representing 3,933,980 SNPs and 301,509 indels/substitutions. Only high-confidence 

variants (99,323 variants with "High Qual") were further annotated by Annovar tool.  

 2.3.2 Annotation of variants by Annovar 

ANNOVAR (2016Feb01)58 was used to annotate high-confidence variants (99,323 High Qual variants) 

called from GATK. Variants were annotated and filtered for function priority (missense, nonsense and 

splice variants), conservation, rare variants (MAF ≤ 1% in large population database) and functional 

consequences (SIFT<0.05 applied, which predicts an amino acid substitution affects protein function 

based on the degree of conservation of the amino acid residues59) using annotate_variation.pl 

function. In total, 3919 variants in 3088 genes were considered as fictional rare variant candidates 

(Figure 3-6A). Variants were validated by read alignments visualization using Varbank 2.16 'Browse 

Reads' and IGV60.  

2.3.3 Phenotype-based gene prioritization 

The Phenolyzer (Phenotype Based Gene Analyzer)29 tool was used to prioritize genes based on DD 

related phenotypes, which includes 'flexion contracture of finger', 'connective tissue' and 'fibrosis'. In 

total, the three phenotypes and 3088 genes carrying rare variants (from Annovar) were used as input 

in the Phenolyzer. As a result, 88 genes were identified as highly related to three DD phenotypes 

(phenolyzer score ≥ 1). An overlapping list of 30 genes between 88 DD phenotype-related genes and 

1774 genes with gene burden greater than two were prioritized (Figure 3-7A). 

2.3.4 GESA of pathogenicity 

The WGPA-GSEA tool61,62 calculated if the genic intolerance scores EvolTol63 (genome-wide score in 

the palmar part of the hand) of a list of genes occupy higher positions in the ranked gene list than it 
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would be expected by chance. Gene set enrichment scores and significance level of the enrichment 

(FDR adjusted q-value) suggests the list of 30 genes from Figure 3-7A was significantly enriched for 

intolerant genes in the palm (Figure 3-7B), which included 12 genes predicted as the top 25% genes 

that are intolerant to mutations in  the palm tissue (Figure 3-7C, Table 3-5). 

2.3.5 GO and pathway analysis using Enrichr 

The gene ontology (GO)64 covers three domains: biological processes, cellular components and 

molecular functions. The Enrichr65 tool was used to detect GO features of 12 candidate genes 

(Table 3-5) beyond that which would be expected by chance (Fisher’s exact test, Bonferroni 

adjusted p-value ≤ 0.05 is applied) (Table 3-6). Enrichr pathway analysis was used to map genes to 

KEGG pathways66. The p-value denotes the significance of the pathway correlation (Bonferroni 

adjusted p-value ≤ 0.05 was applied) (Table 3-7).  
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2.4 RNA-seq and whole transcriptome analysis 

In this project, we propose that an appropriate transcriptome study design should involve not only the 

disease tissue, but also internal and external controls to interpret the origins of the observed changes 

in gene expression in disease tissues.  

By comparing DDtis (palmar nodule biopsy from DD patients) to external tissue controls CTtis (palmar 

fat from carpal tunnel patients, which are considered as CT healthy controls without DD), the general 

DD-related changes in gene expression could be unraveled, though, the changes represent a mix of 

differences including the difference in genetic background between DD patients and CT controls and 

the difference in tissue types between DDtis  (the nodule or cord tissues) and CTtis (mainly fat tissue). 

However, by comparing gene expression profiling between two fat controls, including internal control 

DDfat (perinodular fat from DD patients) and external fat control CTtis, the contribution of genetic 

components might be observed since both tissues are the same tissue type. Moreover, by comparing 

DDtis to DDfat  — the fat tissue adjacent to DDtis, disease specific features could be identified.  

In addition, by including DDcell (DDtis derived in vitro cells) and control CTcell (CTtis derived in vitro 

cells), an evaluation of the true in vivo relevance of the in vitro cell model could be conducted by 

comparing the gene expression profiling of DDtis/CTtis and DDcell/CTcell. 

A flowchart illustrating the different analyses of RNA-seq data performed in this project is provided in 

Figure 2-2. 
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Figure 2-2 A schematic representation of the RNA-seq pipeline   
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2.4.1 RNA isolation  

Using InviTrap Spin Universal RNA kit (Stratec Biomedical), total mRNA was extracted from DDtis 

(n=10), DDfat (n=9) and DDcell (n=10) from 11 DD patients as well as from CTtis (n=10) and CTcell 

(n=10) from 11 CT control people (Table 3-8). The RNA concentration was assessed via NanoDrop 

ND-8000 spectrophotometry (Thermo Scientific). The quality of the total RNA was evaluated using 

both agarose gel electrophoresis and Bioanalyzer 2100 (Agilent). 

2.4.2 Library preparation and sequencing 

For mRNA-seq sample preparation, the TruSeq stranded mRNA library prep kit (Illumina) was used. 

First, 1µg of each total RNA sample was used for polyA mRNA selection using streptavidin-coated 

magnetic beads. The polyA selected mRNA was fragmented and amplified for cDNA synthesis using 

reverse transcriptase and random hexamer priming. In addition, the amplified cDNA underwent double 

stranded cDNA conversion, end repair and adaptor ligation. The gel purification (2% agarose gel) was 

used for size selection and cDNA libraries ranging in size from 200–250 bp were generated. Finally, 

the libraries were amplified using PCR (15 cycles) and quantified using Bioanalyzer 2100 (Agilent). 

Each library was run at a concentration of 7pmol using paired-end 75 bp sequencing on a HiSeq 4000 

device (Illumina).  

2.4.3 RNA-seq read mapping, transcript assembly and abundance estimation  

In total, 32 billion reads were sequenced on HiSeq 4000 device. An average of 64 million reads (75bp 

paired-end) per sample were sequenced and aligned to the hg19/GRC37 (Ensembl 75) human 

genome using TopHat 2.1.1 (based on Bowtie)42, which truncated each read of the pair to 25nt and 

aligned each end of the pair separately under mammalian default parameters, leading to an average 

mapping of 92.8% with a standard deviation of 5.3%.  

The aligned reads were then assembled by Cufflinks package (including Cufflinks, Cuffmerge and 

Cuffcompare)42 to reveal novel transcripts and genes as well as low abundance transcripts. The 

relative abundance of each transcript was normalized to Fragments Per Kilobase of exon per Million 

fragments (FPKM)42.  

Cuffdiff program was used for differential analysis of each transcript and gene between two conditions. 

With multiple replicates, Cuffdiff learns how read counts vary for each gene across the replicates and 

uses the variance estimates to calculate the significance of observed changes in expression42. A t-test 

was used on ratio of log transformed FPKM between two condition, which approximately follows a 

normal distribution42. Limma (moderated t-statistic) was used to calculate p-values using empirical 

Bayes estimates for standard error and degrees of freedom42.  
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In each comparison, genes with minimum FPKM values of expression higher than 1 (minFPKM≥1) in 

either condition were first selected. Then, genes with |fold change| ≥ 1.5 (that is |log2 old change| ≥ 

0.6) and FDR adjusted p-value ≤ 0.05 after Benjamini-Hochberg correction for multiple-testing with 

significance level "yes" were considered as significantly DEGs . The gene expression volcano plots 

were derived from iPathwayGuide tool.  

2.4.4 GO overrepresentation and pathway perturbation  

The Cuffdiff results of differential gene expression analysis were uploaded to the iPathwayGuide tool 

(www.advaitabio.com/ipathwayguide.html)67,68. The DEGs were annotated for overrepresented GO 

features64 and perturbed KEGG pathways66 using iPathwayGuide. 

For the large DEG sets, to reduce the false positive rate caused by GO term 'inheritance problem'  — 

the higher level (more general) GO terms inherit annotations from the lower level (more specific) 

descendant terms, a minimum elim adjusted p value 0.05 was used a cuts-off to screen the GO term 

enrichment69. The elim (elimination gene) method first investigates the GO terms from bottom to — 

top, the more specific to more general and then removes the genes mapped to significant GO terms 

from higher level (the more general level)69.  The pathway perturbation was analyzed on DEG sets.  

The iPathwayGuide employs a third generation pathway topology (PT)-based pathway perturbation 

analysis68 by evaluating both pathway over-representation and accumulation. For over-representation 

analysis, the number of DEGs involved in a pathway was compared between two comparisons. For 

pathway accumulation analysis, the significance of a particular DEG to a pathway was considered in 

determining the overall impact on the pathway by examining all annotated functions/interactions of the 

gene in KEGG pathway databases66.  

The results are shown in scatter plots. For example, in Figure 3-11A, each round circle represents a 

pathway. The x-axis represents the significance of pathway overrepresentation (–log10OVA p-value). 

The y-axis represents the significance of pathway accumulation (–log10Acc p-value). The pathway 

perturbation was further calculated as an additive measurement of pathway overrepresentation and 

accumulation. The red circle indicates a pathway is significantly perturbed (Bonferroni adjusted p-

value ≤ 0.05), whereas the grey circle indicates non-significance.  

2.4.6 Alternative splicing analysis  

Using Cuffdiff, pair-wise comparisons of differentially expressed transcripts (isoforms) between three 

tissue types (DDfat/CTtis, DDtis/DDfat and DDtis/CTtis) were first conducted. The results were further 

used as input in R package SpliceR46, which enabled us to perform an elaborate genome-wide 

analysis of alternative splicing (AS) including two major aspects: 1) analysis of the AS events in 

disease tissues and controls; 2) identification of isoform switching in disease and controls. 
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First, for each gene annotated by Cufflinks, spliceR constructs the hypothetical pre-RNA based on the 

exon information from all transcripts originating from that gene. Subsequently, all transcripts are 

compared to this hypothetical pre-RNA in a pairwise manner, and AS events are classified and 

annotated.  

Second, for each significant differentially expressed isoform identified by Cuffdiff, spliceR calculates 

an isoform fraction (IF) value, which is calculated as (transcript FPKM/gene FPKM)% to represent the 

contribution of a transcript to the expression of the parent gene. The isoform fraction change dIF (dIF 

= IF condition A / IF condition B), which measures the ratio of IF values between two conditions, was also 

calculated. The isoform switch is defined by a large positive or negative dIF between two conditions 

(|dIf|≥1.5, the same as |log2 dIF| ≥0.6). 

However, to avoid overestimation of the number of functionally relevant isoform switching, the coding 

potential and nonsense mediated decay (NMD) sensitivity were also predicated for each isoform. 

Isoforms were marked NMD-sensitive if the stop codon falls more than 50 nt upstream of the final 

exon-exon junction indicating a pre-mature stop codon (PTC)46.  

Additionally, the IGV tool was used to visualize the exon coverage and splice junctions using the 

aligned reads from Tophat and Cufflinks package60. Alternative splicing events were observed on IGV 

Sashimi plot70. To filter out low-count splicing events, the minimum junction coverage was set to 30 

when Sashimi plots were generated unless elsewhere specified.  

Overall, to identify biologically relevant isoforms in DD pathogenesis, isoform switches in three tissue 

comparisons (DDtis/DDfat, DDtis/CTtis and DDfat/CTtis) were filtered by 5 steps: a) the minimal 

isoform expression cutoff: isoform expression ≥1 FPKM, which supports either tissue type in one 

comparison; b) a minimal threshold for isoform expression fold change:  |log2 (fold change)| ≥ 0.6; c) a 

minimal threshold for isoform fraction change: |log2 dIF| ≥0.6; d) the isoform is marked NMD-

insensitive; 5) the AS events of the isoform can be visualized (or validated) on IGV. 

2.4.7 Heatmap and dendrogram visualization  

For heatmap generation in R (Figure 3-9, 3.19 and 3.20B, 3.26), due to the variable levels of 

expression of individual genes, Z-score normalized gene expression was used71. The Z score was 

determined for any row n by the formula Z = (Sn− Smean)/SD, where Smean is the average signal 

intensity for the gene (across the row) and SD is the standard deviation. The row Z-score normalized 

gene expression was plotted in two color scale with the expression higher than average represented in 

red (Z > +1), the expression lower than average in blue (Z < −1), and average in orange or white (Z = 

0).  

The dendrograms added to the heatmaps were used to measure the hierarchy clustering of samples 

and gene expression profiles using one-minus Spearman's rank. Genes with similar expression or 
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samples with similar gene expression profiles were grouped together and connected by a short line 

between two gene nodes.  

For example, in Figure 3-9, the gene expression clustering of all DEGs in tissue groups is shown in a 

heatmap. Genes with significant expression change in at least one of the three tissue comparisons 

(DDtis/DDfat, DDfat/CTtis and DDtis/CTtis) were first selected. Then the Cufflinks normalized gene 

expression FPKM value for individual tissue sample was Z-score transformed. The Z score 

normalization expresses each gene expression profile as a deviation from the mean in standard-

deviation units and allows the comparison of gene expression patterns whose absolute expression 

levels may differ by orders of magnitude. In summary, this scaled row Z-score value was plotted in 

red–blue color scale with the expression higher than average represented in red (Z > +1), the 

expression lower than average in blue (Z < −1), and the average expression represented in orange (Z 

= 0) (Figure 3-9A).  
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Chapter 3 Results 

3.1 Identification of functional variants at the top GWAS locus at 7p14.1 

The strongest SNP associated with DD is rs16879765, which lies in an intron of EPDR1 and upstream 

of SFRP4 (p=5.6x10–39, Odds Ratio 1.98) at 7p14.1 locus19. In addition, the rs16879765 showed a 

stronger association in the subgroup of patients with a familial predisposition of DD (p=4.7x10–-5, Odds 

Ratio 2.08, n1 = 184) compared to the patients without known family history (n2 = 281) suggesting a 

pivotal role of this locus in the genetically caused pathogenesis of DD72.  

Therefore, we performed a fine mapping study of the 7p14.1 locus by targeted NGS to capture the 

unrecognized functional variants that are supposed to be in LD with the GWAS tag SNP rs16879765. 

The region for target enrichment included a 500 kb haploblock region containing the entire genes 

EPDR1, SFRP4, TXNDC3 and GPR141 as well as part of STARD3NL (Figure 3-1). To identify causal 

variants represented by GWAS SNP rs16879765, we adopted a 'risk haplotype block' guided strategy 

under the hypothesis that the causal variants lie in the risk haplotype tagged by the risk allele of 

rs16879765 (risk allele A, non-risk allele G). In the discovery set (Table 3-1), 96 cases from the 

aforementioned GWAS cohort (Germany and Switzerland)20 with available (or imputed) genotype data 

were selected, including 23 cases homozygous for the risk allele (AA), 51 cases heterozygous (AG) 

and 22 cases homozygous for the non-risk allele (GG).  

 

Table 3-1 The sample set for targeted NGS at 7p14.1 

  

No. of 
patients

AA AG GG
23 51 22

Validation set Sanger sequencing 280

Sample set Method

No. of DD blood DNA samples

Genotype for GWAS leading 
SNP rs16879765 (risk allele 

A; non-risk allele G)

Discovery set Targeted NGS 96
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Figure 3-1 Targeted NGS of a 500 kb region at 7p14.1 

The region for target enrichment included a 500 kb haploblock region containing the entire EPDR1, 
SFRP4, TXNDC3 and GPR141. The GWAS tag SNP rs16879765 is indicated in red diamond. The 
haplomap was constructed based on the pairwise r2 values from Hapmap data for CEU (Central 
European ancestry) population.  
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3.1.1 Targeted NGS and variant calling in the discovery dataset  

DNA was isolated from peripheral blood of 96 DD patients. A 500kb DD-associated locus (chr7: 37.77-

38.27kb) was enriched in these samples and further sequenced by NGS. In total, 41.7 million 

sequencing reads were aligned to the human genome (hg19/GRC37), providing a 77x mean coverage 

across the 500kb targeted region in 96 samples. Variant calling was performed using GATK v1.650 (in 

Varbank 2.16 pipeline) under standard hard filtering parameters and variant quality score recalibration 

according to GATK Best Practices recommendations 

As a result, 12,308 variants were called and 7,242 variants remained after quality control, which were 

then annotated to examine if variants overlapped with bioinformatic features using Varbank 2.16 and 

Ensembl VEP 2.751. The majority of variants were annotated as intronic variants (73%) in the target 

region (Figure 3-2A). Only less than 1% of all variants were coding variants. 
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Figure 3-2 Variant calling and annotation in the 500 kb region at 7p14.1  

(A) A total number of 12,038 variants were called by GATKv1.6 in Varbank pipeline 2.16. After quality 
control and Ensembl VEP 2.7 annotation, 7242 variants remained and were distributed in 7 genes, 28 
transcripts and 51 regulatory features. 

(B) Functional consequences of 7242 variants annotated by Ensembl VEP 2.7 based on Sequence 
Ontology (SO) consequence terms73. Coding variants were included in 'Others'. 

 

 

3.1.2 Functional rare coding variants at 7p1.4 

3.1.2.1 Identification of two rare coding variants on GWAS risk haplotype 

Of the coding variants identified in the discovery dataset, two rare nonsynonymous single nucleotide 

variants (SNVs) in EPDR1, defined as variants with MAF less than 1% in 1KG74 and ExAC75 large 

population database, were predicted to be damaging to protein function by multiple annotation tools, 

such as SIFT59, MutationTaster76, Fathmm77, CADD78 and DANN79 (Table 3-2).  
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Table 3-2 Nonsynonymous variants in EPDR1 identified by targeted NGS at 7p14.1  

 

In the discovery cohort including 96 cases, rs149095633 (C>T, p.P121L) was detected in 4 cases and 

rs37463317 (T>C, p.V102A) was identified in only 1 case. By Sanger sequencing, we successfully 

validated the presence of these two variants and further replicated the findings in a random and 

independent set containing 280 DD blood DNA samples, which were genotyped in a recently reported 

GWAS20. No extra case carrying rs37463317 (T>C, p.V102A) was identified. However, additional 4 

DD patients with the rare variant rs149095633 (C>T, p.P121L) were identified. In total, 8 out of 280 

DD cases carried the heterozygous T allele of rs149095633 (C>T, p.P121L), which leads to an 

enrichment of variant allele frequency in DD patients (n=280) compared to ancestry matched non-

Finnish European (NFE) population in ExAC database75 (n=33,368, Fisher's exact p-value= 2.63E-07, 

Odds Ratio 37.5) (Table 3-2). In addition, all the 9 patients in the validation set with either the 

rs149095633 or rs37463317 rare variant, carried the risk allele A of the GWAS tag SNP rs16879765 

(genotype AA or AG, the LD r2 between rs149095633) (Table 3-2). And both coding SNVs are within 

0.62 kb distance from the GWAS tag SNP rs16879765. 

Taken together, by targeted NGS of a 500kb region at the GWAS risk locus 7p14.1, we identified two 

rare coding variants related to the GWAS risk haplotype (tagged by rs16879765) in DD patients. Both 

coding variants were predicted to be deleterious. In particular, the SNV rs149095633 (P>L) was 

significantly enriched in the DD cohort (n=280).  

3.1.2.2 rs149095633 is a functional rare coding variant in DD 

The SNV rs149095633 (C>T) leads to an amino acid substitution from proline (CCC) to leucine (CTC) 

at position 121 (p.P121L, NP_060019 classical isoform). Leucine is substantially different from proline 

regarding its amino acid properties, for instance, leucine is more hydrophobic80 and polar81 than 

proline (Figure 3-3A). To further assess the in silico significance of the enriched rare variant 

rs149095633 (p.P121L) on EPDR1, we first built a 3-D structure model for the EPDR1 classical 

protein isoform (NP_060019, 224 amino acids) using Gremlin method52,82. The best-predicted 

Codon; Discovery 
set n=96

ExAC 
NFE 

n=33,368

Amino 
acid 

change
SIFT Mutation 

Taster
Fathm
mMKL CADD DANN  

GWAS SNP 
rs16879765 
genotype

GWAS SNP 
rs16879765 
genotype

MAF MAF p-value Odds 
ratio 95%CI

cCc>cTC

p.P121L

gTg>gCg

p.V102A

D: deleterious; T: tolerated
CADD score > 10: suggetes deleterious
DANN score (0-1): the closer to 1, the higher the probability of being deleterious

37.5 17.7-79.7

Fisher‘s exact test  
(Validation dataset vs. 

ExAC NFE)

6.6 0.8-49.71 case (AG) 0.03%0.17% 0.14
rs37463317

7
1 case (AG)T D D 22 0.91

4 cases (3AG, 
1AA)

1.40% 0.04% 2.6E-07

Validation dataset 
n=280

8 cases 
(7AG,  1AA)

rs14909563
3

dbSNP ID

 Variant annotation

D D D 31 0.78
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structural model with a high confidence score of 94% is shown in Figure 3-3B. Based on this model, 

the EPDR1 is suggested to be a monomer composed of two β-strands and a connective loop called β-

turn between them. The β-turn conformation is known to be crucial in protein structure by actively 

facilitating cooperative formation of β-strands83. Additionally, β-turns are mostly surface-exposed, 

which makes them well suited for ligand binding and protein-protein or protein-nucleic acid 

interactions, which in turn may modulate protein functions and intermolecular interactions83.  

 

Figure 3-3 The impact of rs149095633 (p.P121L) on EPDR1 protein  

(A) A comparison of the amino acid features between proline and leucine81. Leucine is more 
hydrophobic, and polar than proline. The residual volume of leucine is larger than proline. Leucine is 
commonly found in α-helix, whereas proline is commonly found in turns.  

(B) A 3-D structure model for EPDR1 classical protein isoform (NP_060019) using Gremlin method52,82 
with a high confidence score of 94%. According to this model, EPDR1 protein is suggested to be 
composed of two β strands and a connective loop called β-turn between them. The SNV rs149095633 
leads to an amino acid substitution from proline (CCC) to leucine (CTC) at position 121 (p.P121L) in the 
β-turn domain of EPDR1. 

 

Additionally, EPDR1 (NP_060019) is a 224 amino acid protein including one highly conserved 

Ependymin domain (PF00811) spanning residues 40-223 (http://www.ebi.ac.uk/interpro/protein/-

Q9UM22).  The molecular function of ependymins appears to be related to cell contact phenomena 

involving the extracellular matrix84. The SNV rs149095633 (p.P121L) lies in the Epedymin domain of 

EPDR1. Taken together, the rare coding variant rs149095633 (p.P121L) is likely to affect the protein 

structure and function of EPDR1.  
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Recently, studies suggested that about 15% of human codons are dual-use codons, which specify 

both amino acids and transcription factor (TF) recognition sites85. This suggests the potential for 

coding exons to accommodate regulatory code85.  

Therefore, using Genomatix MatInspector tool53 and TRANSFAC databases54, we examined the effect 

of the rs149095633 missense mutation on TF binding. The MatInspector analysis revealed that the 

minor allele T of rs149095633 (C>T) and DNA sequences around it created a perfect match to the 

core of consensus binding motif of AP-4 (with a high core similarity score 1 and matrix similarity score 

0.864) (Figure 3-4A)53. On the contrary, the same region containing the non-risk allele C of 

rs149095633 did not correspond to any known TF binding motif. The core of the AP-4 consensus 

binding motif (5‘-CAGCTG-3‘, the position of rs149095633*T is shown in bold) is represented in a 

motif logo (Figure 3-4B)54. AP-4 (activating enhancer-binding protein 4) is a highly conserved member 

of the basic helix-loop-helix-zipper family of TFs86. AP-4 has been identified as both a transcriptional 

activator87,88 as well as a transcriptional repressor of gene expression89,90. Therefore, it is possible that 

the allele-specific binding of AP-4 on EPDR1 due to rs149095633 may influence EPDR1 expression.  

To capture whether there is a direct cis-regulatory effect of rs149095633, we performed 

Pyrosequencing, a highly sensitive sequencing method using luminometric detection of released 

pyrophosphate during nucleotide incorporation91 which enables high-accuracy quantification of alleles 

at a position of interest in DNA or RNA samples. In brief, we isolated high quality RNA from available 

DD tissues (n=2) and DD cells (matched DD tissue-derived primary cells, n=2) from two patients 

heterozygous for rs149095633. Blood DNA samples from these two DD patients and four random DD 

patients were used as internal and external controls.  

The RNA from DD tissues and DD cells was further converted in cDNA, which was further used for 

Pyrosequencing. The luminometric signal intensity of allele T and C of rs149095633 in each cDNA (or 

blood DNA) sample was quantified and determined in allele percentage. On average, we observed an 

allelic imbalance at position rs149095633 with a 20% increased expression of risk allele T compared 

to the reference allele C in DD cells (n=2, Figure 3-4C), but not in DD tissues or control blood DNA 

samples. Thus, the rs149095633 missense variant is not only expressed in DD cells, but also appears 

to cause a suggestive allelic imbalance favoring the expression of the risk allele T in DD cells.  

In summary, the rare variant rs149095633 (C>T) in EPDR1 is enriched in the DD cohort (1.4%, 

n=280) compared to a large European population control (0.04%, ExAC NFE, n=33,368). It is 

annotated as a deleterious missense variant (p.P121L). Based on the predicted protein model, the 

substitution of leucine for proline is suggested to affect the EPDR1 protein structure, stability and 

function. Moreover, the cell-type specific allele expression was observed for rs149095633 with higher 

expression of the risk allele (T) compared to the non-risk allele (C), suggesting a contribution to higher 

expression of EPDR1. In addition, the allelic imbalance of rs149095633 may be relevant to the 

function of AP-4 since it creates a consensus-binding site for AP-4. In the future, studies to clarify 
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whether higher expression of rs149095633*T has a direct consequence on EPDR1 expression and 

function and whether AP-4 is a transcriptional activator of EPDR1 are required.  
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Figure 3-4 The allele specific expression of rs149095633  

(A) The SNV rs149095633 changes C to T. Based on Genomatix MatInspector prediction, the minor 
allele T and the DNA sequences around it creates a perfect match to the core of the AP-4 consensus 
binding motif with a high core similarity score (=1) and matrix similarity score (=0.864).  

(B) The core of the AP-4 motif (5‘-CAGCTG-3') is shown in a motif logo, which scales each nucleotide by 
the total bits of information multiplied by the relative occurrence of the nucleotide at the position. The T 
marked by * is the position of rs149095633 T*.  

(C) Left: An allelic imbalance at rs149095633 position was detected by Pyrosequencing, which displayed 
60% allele expression for risk allele T and 40% for the reference allele C in available DD cells (n=2). The 
allelic imbalance on rs149095633 was not observed in blood DNA control samples (n=6, 49% expression 
for allele T and 51% expression for allele C).  

Right: A cartoon representation of allelic imbalance at rs149095633 in DD cells and allelic balance in 
blood DNA controls.  
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3.1.3 A functional common variant in EPDR1 at 7p14.1 

To test whether common variants in LD with GWAS tag SNP are associated with gene expression, we 

manually searched whether SNPs, which are in LD (r2 ≥ 0.2) with rs16879765 in Hapmap CEU 

population23,92, are eQTLs in GTEx database. In eight tissue types (subcutaneous adipose, lung, 

stomach, pancreas, thyroid etc) in GTEx, rs2044831, a common synonymous variant for EPDR1 

(Table 3-3), was identified as a significant eQTL for EPDR1 expression. The allele C of rs2044831 is 

related to increased expression of EPDR1 in all the 8 tissue types (an example of rs2044831 as an 

eQTL for EPDR1 in subcutaneous adipose tissue is shown in Figure 3-5A).  

The common variant rs2044831 is in moderate LD with the GWAS tag SNP rs16879765 in DD 

(r2=0.38 in Hapmap European population)23,92. To test whether rs2044831 is an eQTL for EPDR1 

expression in DD tissues/cells by expression analysis, a large sample size of 200 is required based on 

statistical power analysis25. However, such a sample size of DD tissues/cells was not available in this 

project.  

Therefore, we adopted another method  — Pyrosequencing, which allowed us to determine and 

measure the cis effect of rs2044831 by analyzing the allelic expression using a small sample size of 

DD cells. The RNA of DD cells (n=17) from DD patients heterozygous for rs2044831 (genotype CT) 

was converted in cDNA and used for Pyrosequencing. As shown in Figure 3-5B, a significantly higher 

expression of the DD-risk allele C (54%) was detected compared to non-risk allele T (47%), 

suggesting rs2044831 is a cis-eQTL for EPDR1 expression in DD cells. The risk allele C is likely 

related to increased EPDR1 expression.  

 

Table 3-3 A common regulatory variant identified at 7p14.1 

      

Consequence CADD GTEx
Discovery 
set (n=96)

ExAC NFE 
(n=33,368)

Synonymous

p.I=

CADD score > 10: suggests deleterious

LD r2 with GWAS 
tag SNP 

rs16879765  

0.38         
(Hapmap CEU)

dbSNP ID Uniprot
Risk 

allele in 
DD

Non risk 
allele in 

DD

rs2044831 EPDR1 C T Cis-eQTL in 8 
tissue types 30% 20%

Allele frequency for risk 
allele C in DDVariant annotation

18.8
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Figure 3-5 rs2044831 is an eQTL candidate for EPDR1 in DD cells 

(A) rs2044831 is a an eQTL for EPDR1 in subcutaneous adipose in GTEx database. The rs2044831*C 
allele is associated with increased expression of EPDR1 compared to the rs2044831*T allele in 
subcutaneous adipose as well as other 7 tissue types. 

 (B) Using Pyrosequencing, a significant allelic imbalance was observed for rs2044831 in DDcells (n=17, 
student’s t-test p-value=1.08E-05, normality was tested by Shapiro-Wilk test). Higher expression of DD-
risk allele C (54%) was detected compared to non-risk allele T  (47%). 
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3.2 Prioritization of candidate genes carrying rare variants in DD  

To test whether genome-wide rare variants contribute to the high genetic predisposition of DD, we 

performed whole exome sequencing (WES) of DD patients in a pilot study.  

Low-frequency coding variants have long been known to contribute to family-based complex diseases 

including early-onset forms93 or Mendelian forms94 of complex diseases. Family-based WES of 

affected individuals and their unaffected family members has become a crucial tool to evaluate the 

contribution of rare variants to the disease trait in the family and unravel new candidate genes and 

pathways with relevance to molecular pathogenesis of common disorders95. Such study design is 

powerful and cost-effective but challenging to be implemented for DD. Because most of the DD cases 

are late-onset and consequently multi-generation pedigrees for DD were hardly available. 

This leaves us to choose another strategy — the population-based strategy for which non-related 

cases were sequenced to identify rare variants in DD with effect on population level. However, the 

statistical power of rare variant association tests is usually very low unless the sample size or variant 

effect size are very large96. Moreover, like many complex disorders, DD susceptibility is likely to be 

associated with the effects of multiple variants and gene-gene interactions in contrast to monogenic 

disorders. 

Therefore, in this small-size WES pilot study, instead of purely prioritizing variants based on their 

variant score (frequency and deleteriousness), I used a phenotype-driven method to prioritize 

functional candidate genes using a combination of disease phenotype ontology, gene intolerance 

scores and variant scores. In total, 12 candidate genes carrying rare deleterious variants were 

identified in DD patients.   

3.2.1 Characteristics of WES study cohort 

Two major criteria were used to select DD patients for WES. The first criterion was to select DD 

patients with an early age of first operation. The second was to select patients with a known family 

history of DD (at least one family member affected within two generations).  

Accordingly, 40 DD patients were selected with high genetic predisposition possibilities (Table 3-4). 

The average age of these 40 patients is 44 years, which is much lower than the typical manifestation 

age 55-64 years97. Moreover, 39 patients have a family history of DD and 30 patients have both hands 

affected. Blood DNA was isolated from 40 DD patients and sequenced on Illumina HiSeq 2000.  
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Table 3-4 The DD cohort for WES 

      

   

Patient ID Gender Age at 1st DD 
operation Family history Hand affected Country of origin

DDpatient1 m 46 both parental lines both DE

DDpatient2 f 40 fatherside related both DE

DDpatient3 m 44 fatherside related both DE

DDpatient4 m 48 fatherside related both DE

DDpatient5 f 68 motherside related both DE

DDpatient6 m 41 motherside related both DE

DDpatient7 m 42 motherside related both DE

DDpatient8 m 47 motherside related both DE

DDpatient9 m 48 motherside related both DE

DDpatient10 m 45 positive both DE

DDpatient11 m 41 uncle both DE

DDpatient12 m 37 father both DE

DDpatient13 m 44 father both DE

DDpatient14 f 48 father both DE

DDpatient15 m 44 father both DE

DDpatient16 m 44 father left DE

DDpatient17 m 49 father right DE

DDpatient18 m 50 father both DE

DDpatient19 m 51 father, brother right DE

DDpatient20 m 43 father, brother, sister both DE

Continued on the next page
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Patient ID Gender 1st Operation  age Family history Hand affected Country of origin

DDpatient21 m 45 father, grandmother both DE

DDpatient22 f 47 father, mother left DE

DDpatient23 m 35 father, mother, brother, 
uncle (fatherside)

both DE

DDpatient24 m 30 father, mother, sister both DE

DDpatient25 m 43 fatherside related both DE

DDpatient26 m 44 grandfather (fatherside) both DE

DDpatient27 m 47 grandfather (fatherside) right DE

DDpatient28 f 41 grandfather (motherside) left DE

DDpatient29 m 45 grandfather (motherside) both DE

DDpatient30 m 48 grandmother both DE

DDpatient31 m 40 granduncle left DE

DDpatient32 f 34 mother both DE

DDpatient33 m 50 mother both DE

DDpatient34 f 48 mother, brother left DE

DDpatient35 m 48 mother, grandfather 
(motherside) 

both DE

DDpatient36 m 34 motherside related both DE

DDpatient37 m 39 positive both DE

DDpatient38 m 51 positive both DE

DDpatient39 m 44 uncle (motherside) right DE/PL

DDpatient40 m 28 not reported right DE
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3.2.2 Functional annotation of variants in WES data 

A two-step integrative approach was applied to annotate variants and prioritize disease-causing 

candidate genes (see Figure 3-6 and Figure 3-7).  

The high-confidence variants (n=99,323) called by GATK were annotated using Annovar 

(2016Feb01)58. Variants were classified based on their functional consequences. Missense, 

nonsense, and splicing variants were selected among the identified variants and further filtered for 

conservation using conservation information in 46 vertebrate species98. To reduce the false-discovery 

rate, only variants not in segmental duplication regions were selected since reads mapped to these 

regions can match to other regions of the genome99. 

Of the remained 20,750 variants, 9263 variants were identified as rare variants, which were defined as 

MAF less than 1% in both 1KG and large population databases including ExAC121K75 and NHLBI-

ESP6500 (http://evs.gs.washington.edu/EVS). 

The functional effect of rare variants was further assessed by SIFT prediction score59. In total, 3919 

rare variants (42%) in 3088 genes were considered as deleterious variants according to their SIFT 

scores (SIFT < 0.05) (Figure 3-6A). As shown in Figure 3-6B, 94% deleterious variants were 

nonsynonymous variants. About 86% of deleterious variants were found only once (Allele count =1) in 

40 samples (Figure 3-6C), suggesting not only that they were heterozygous variants, but also the 

difficulty to associate a single genetic variant with DD. 
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Figure 3-6 Annotation of functional variants in WES data of 40 DD patients 

(A) Variant annotation steps using Annovar (2016Feb01). 

(B) The distribution of 9263 rare variants based on functional consequences or (C) allele counts. 
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3.2.3 Identification of genes related to the DD phenotype  

Though the genes that contribute to DD etiology are largely unknown, DD patients display a similar 

and well-defined phenotype with progressive fibrosis in the palmar connective tissue, which further 

leads to finger contracture. 

Therefore, here I applied a phenotype-based strategy to identify candidate genes for DD using 

Phenolyzer29, which involves computation tools for three key steps 1) associate the input human 

phenotypic ontology (HPO) terms100 with known human diseases; 2) associate genes causing (or 

predicted as disease-causing) known diseases with the HPO terms; 3) integrate multiple features to 

score and prioritize all candidate genes.  

Here, three HPO terms were used to represent the DD phenotype, which are 'flexion contracture of 

finger', 'connective tissue', and 'fibrosis'. Only 88 genes predicated as highly related to three DD 

phenotype terms (defined as a raw Phenolyzer score ≥ 1) were considered in the following analysis. 

Then the set of 1774 genes with gene burden greater than 2 (carrying at least 2 deleterious rare 

variants or variant allele accounts appeared more than 2 times) was compared with 88 genes related 

to DD phenotype. As a result, an overlapping set of 30 genes was considered as DD phenotype-

related genes carrying rare genetic variants (Figure 3-7A). 

3.2.4 Identification of genes intolerant to mutations in the palmar tissue 

To assess whether there is an enrichment of genes predicted to be involved in DD pathogenesis, gene 

set enrichment analysis (GESA) on gene intolerance was applied to the above 30 genes using the 

gene intolerance score EvoTol63, which identifies an intolerant gene as a gene containing an 

excess of mutations that, on the protein space, are not favored by evolution compared to other 

genes with the same number of mutations. To faithfully evaluate the tissue-specific impact, the 

intolerance ranking was limited to genes expressed in the palmar part of hand — the tissue affected 

by DD. Accordingly, an enrichment of pathogenicity in palmar tissue was determined (FDR q-value 

<0.001) by WGPA-GSEA tool61,62, suggesting the overrepresented pathogenicity of the 30 genes 

(Figure 3-7B) in palmar part of hands. The class of pathogenic genes includes 12 genes, which were 

identified as the top 25% intolerant genes in the palm, suggesting a functional role of these genes in 

the hand palm (Figure 3-7C). 

In conclusion, in the DD cohort for WES, 12 genes carrying rare deleterious variants were suggested 

as DD phenotype-related candidate genes (Table 3-5). Mutations in these genes may contribute to the 

pathogenicity in hand palmar part. Of note, this WES pilot study was an exploratory study. Functional 

effects of the candidate genes in DD pathogenesis should be tested systematically in the future. 
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Figure 3-7 The prioritization of pathogenic candidate genes related to DD phenotypes  

(A) 1774 genes with gene burden more than 2 were compared with 88 genes highly related to DD 
phenotype (Phenolyzer score ≥ 1). An overlapping set of 30 genes was identified.  

(B) An enrichment of pathogenicity in palmar tissue for the above 30 genes was determined by WGPA-
GSEA tool. 

(C) Among 30 DD phenotype-related genes, 12 genes were predicted as the top 25% genes, which are 
intolerant to mutations in hand palmar part based on EvolTol score. 
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Table 3-5 12 candidate genes related to the DD phenotype 

   

Gene EvoTol

Phenolyzer 
score *  
(0.0001 - 
5.7)

Gene 
burden

dbSNP138 Start End Ref Alt
Allele 
count 

. 48608296 48608296 G A 1

rs139434755 48629340 48629340 G A 1

rs35623035 48630252 48630252 G A 2

rs139064549 103354135 103354135 G C 2

rs141978499 103544374 103544374 C G 1

rs41306397 137591755 137591755 C T 1

rs199735010 137694750 137694750 C T 1

rs368305377 137702117 137702117 C T 1

rs61739195 137708884 137708884 C T 1

. 94055143 94055143 G A 1

. 94057101 94057101 A C 1

9 ROR2 9.28% 1.2 3 rs35852786 94487187 94487187 C T 3

rs114260147 149359938 149359938 C G 1

rs104893915 149359991 149359991 C T 1

. 58141747 58141747 T C 1

rs116826041 58145348 58145348 T C 1

rs149638325 58148895 58148895 C T 1

rs373336251 55240795 55240795 G A 1

rs201830126 55268023 55268023 G A 1

rs61756429 111608216 111608216 T A 1

rs115287852 111612783 111612783 T C 1

rs1801166 112175240 112175240 G C 1

rs141010008 112178781 112178781 C T 1

5 FGF1 21.06% 1.2 2 rs17223632 141993631 141993631 C T 2

. 37879585 37879585 A C 1

rs55943169 37884176 37884176 C A 1

* Phenolyzer score: the higher, the more evidence for the association between a candiate gene and a phenotype

Gene annotation

4

5.58%

11

17

1.2

1.3

1.4

1.2

3.6

1.4

COL1A2 

COL5A1

PPP2R1B

ERBB2

COL11A1

1.2

1.0

7

7

9

SLC26A2

EGFR

FLNB

0.32%

0.86%

0.04%

0.24%5

5

COL7A1

APC

3

4

3

2

2

2

Exome data

Chr

2

2

0.27%

3.48%

20.26%

15.02%

1.4

1.4

Rare variant annotation

1

3

3

2

10.76%
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3.2.5 Pathway overrepresentation analysis of candidate genes 

To interpret the biological signatures of the above 12 candidate genes, gene ontology (GO)101 and 

pathway overrepresentation was analyzed by Enrichr tool65.  

The GO is a structured, controlled vocabulary of terms providing computational or experimental 

knowledge on gene product properties. For the set of 12 candidate genes, three main GO categories 

were analyzed including overrepresented biological process, cellular component 

and molecular function. 101 

GO analysis revealed that the top overrepresented term ranked by lowest p-value in the cellular 

components is 'fibrillar collagen trimmer'. The affected molecular functions were mostly involved in 

'growth factor binding' and 'cell-extracellular matrix (ECM) interactions' (including 'ECM structural 

constituent', 'cell adhesion molecule binding', 'glycoprotein binding' and 'integrin binding'). The 

significantly affected biological processes were related to metabolic catabolic processes of 

macromolecules, including collagen, and the regulation of epithelial cell proliferation (Table 3-6).  

Using the KEGG pathway resource66, 18 significantly overrepresented pathways (Bonferroni adjusted 

p-value ≤ 0.05) were identified. The top 10 pathways include the 'Hippo signaling network' (including 

the child Hippo pathway, Wnt/ß-catenin pathway and TGFß pathway), the 'PI3K-Akt pathway', 'Focal 

Adhesion', 'Regulation of Actin Cytoskeleton', 'Protein Digestion and Absorption’ and 'Pathways in 

Cancer' etc (Table 3-7).  
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Table 3-6 Overrepresented GO terms for 12 candidate genes  

 

 

Index GO Molecular Function 2015 Overlap* Adjusted 
p-value Z-score Combined 

score

1 growth factor binding 4 2.0E-04 -2.4 20.2

2 platelet-derived growth factor 
binding 2 6.1E-04 -2.4 17.9

3 receptor signaling protein tyrosine 
kinase activity 2 6.1E-04 -2.3 17.2

4 transmembrane receptor protein 
kinase activity 3 6.1E-04 -2.2 16.4

5 extracellular matrix structural 
constituent 3 6.1E-04 -2.2 16.2

6 transmembrane receptor protein 
tyrosine kinase activity 3 6.1E-04 -2.2 16.1

7 protein tyrosine kinase activity 3 2.2E-03 -2.3 14.0

8 cell adhesion molecule binding 3 3.2E-03 -2.3 13.1

9 glycoprotein binding 2 1.7E-02 -2.2 9.0

10 integrin binding 2 2.2E-02 -2.2 8.4

Index GO Biological Process 2015 Overlap Adjusted 
p-value Z-score Combined 

score

1 multicellular organismal 
macromolecule metabolic process 4 1.2E-04 -2.2 19.8

2 collagen metabolic process 4 1.2E-04 -2.2 19.7

3 collagen catabolic process 4 1.2E-04 -2.2 19.7

4 multicellular organismal catabolic 
process 4 1.2E-04 -2.2 19.6

5 multicellular organismal metabolic 
process 4 1.2E-04 -2.2 19.6

6 collagen fibril organization 3 4.7E-04 -2.5 19.3

7 extracellular matrix disassembly 4 2.2E-04 -2.2 18.3

8 cellular component disassembly 5 4.7E-04 -2.3 17.9

9 regulation of epithelial cell 
proliferation 4 2.9E-03 -2.4 14.3

10 Fc-epsilon receptor signaling 
pathway 3 2.4E-02 -3.8 14.0

Index GO Cellular Component 2015 Overlap Adjusted 
p-value Z-score Combined 

score

1 fibrillar collagen trimer 4 5.7E-08 -2.5 42.0

2 collagen trimer 4 3.7E-05 -2.2 22.2

3 extracellular matrix part 4 8.9E-05 -2.1 19.7

4 endoplasmic reticulum lumen 4 1.4E-04 -2.2 19.2

5 extracellular matrix 4 2.6E-03 -2.2 13.0

6 basement membrane 2 2.3E-02 -2.2 8.2

7 extracellular region 5 5.1E-02 -2.5 7.3

8 adherens junction 3 4.5E-02 -2.3 7.0

9 anchoring junction 3 4.5E-02 -2.2 6.9

10 basolateral plasma membrane 2 4.8E-02 -2.0 6.1

* Overlap: Number of genes overlapped between 12 candidate genes and genes in a GO term
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Table 3-7 Overrepresented pathways for 12 candidate genes  

 

  

Index KEGG pathway 2016 Overlap* Adjusted 
p-value Z-score Combined 

score

1 Protein digestion and absorption 4 3.3E-04 -1.7 13.8

2 Endometrial cancer 3 1.4E-03 -2.0 12.8

3 Focal adhesion 4 2.4E-03 -1.9 11.3

4 PI3K-Akt signaling pathway 4 1.3E-02 -2.0 8.7

5 Pathways in cancer 5 1.3E-02 -2.0 8.5

6 Proteoglycans in cancer 3 1.6E-02 -1.8 7.5

7 Non-small cell lung cancer 2 1.6E-02 -1.8 7.3

8 Bladder cancer 2 1.3E-02 -1.7 7.2

9 Hippo signaling pathway 3 1.3E-02 -1.6 7.2

10 Regulation of actin cytoskeleton 3 1.6E-02 -1.7 7.0

* Overlap: Number of genes overlapped between 12 candidate genes and genes in a KEGG pathway
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3.3. Global gene expression profiling in DD  

3.3.1 Study subjects and sampling for RNA-seq 

To obtain an in-depth understanding of the transcriptional regulation in DD, we performed a 

comprehensive transcriptomic analysis using DD biopsy samples from 11 DD patients in the WES 

cohort (described in session 3.2.1).  

Two types of tissue samples were collected from a single DD patient including the affected palmar 

nodule tissue (DDtis) and the matched perinodular fat (DDfat). Additionally, the primary cells derived 

from DDtis were also collected and used as the in vitro cell model for DD (DDcell). 

The control samples were obtained from 11 patients affected with carpal tunnel (CT) syndrome. The 

CT syndrome is a peripheral neuropathy due to compression of the median nerve as it travels through 

the wrist at the CT. All 11 CT patients involved in this study have no diagnosis of DD and no reported 

familial history of DD, therefore, are considered as healthy controls without DD. Palmar connective 

tissues (CTtis), mainly composed of fat, were collected during carpal release and used as external 

healthy tissue control for DDtis. The cells collected from CTtis (CTcell) were used as external healthy 

cell control for DDcell.  

Additionally, in order to minimize the cofounding bias between case and control, 11 DD patients and 

11 CT controls were carefully selected by matched age at sample collection (mean age: 60 and 61 

separately) and country of origin (Germany) (Table 3-8). In total, we analyzed 50 transcriptomes using 

high quality RNA isolated from DD relevant samples (DDtis, DDfat and DDcell) and control samples 

(CTtis and CTcell).  

Table 3-8 Study subjects and samples for RNA-seq 

   

Subjects

Family 
histroy of 

DD

Age at 1st 
DD 

operation

Hands 
affected 
with DD

Primary 
cells

Mean age 
at sample 
collection

Country of 
origin Gender

9 male

 2 female

11 male

0 female

10 CTtis 11 CTcell 61 DE11 CT 
Controls

not 
reported negative - -

11 DD 
Cases

Matched cofounding factors  

Exome 
data

Genetic susceptibility to DD

Tissues

No. of samples collected for 
RNAseq

9 DDfat 10 DDtis 10 DDcell 60 DEyes 46 both yes
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3.3.2 Differentially expressed genes (DEGs) in DD related tissues 

We first conducted pair-wise comparisons of differentially expressed genes (DEGs) between three 

tissue types, including DDfat compared to CTtis (abbreviated as DDfat/CTtis), DDtis vs. DDfat 

(DDtis/DDfat) and DDtis vs. CTtis (DDtis/CTtis).  

To determine significantly DEGs, the following filtering approach was applied (Figure 3-8A). On a 

global scale, a) 769 significant DEGs were identified in DDfat/CTtis; b) 2777 significant DEGs in 

DDtis/DDfat; c) 3597 significant DEGs in DDtis/CTtis. These DEG sets were used for downstream GO 

features and pathway analyses. The distribution of gene expression fold change in each comparison is 

shown in a volcano plot (expression fold change vs. p-values) in Figure 3-8B.  

The gene expression clustering of all DEGs is shown in a heatmap in Figure 3-9A. Overall, more 

genes were significantly upregulated in DDtis compared to two controls (DDfat and CTtis). 

Additionally, the gene expression profiling in DDtis classified the DD samples into two subgroups: one 

subgroup of DDtis samples from 4 patients and the other subgroup of DDtis from 6 patients.  
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Figure 3-8 The identification of DEGs between tissue groups  

(A) Filters applied on gene expression data in 3 comparisons: (a) DDfat vs CTtis; (b) DDtis vs. DDfat; (c) 
DDtis vs CTtis.  

(B) Volcano plots of distribution of DEGs in each comparison, where log2 fold change (x-axis) is plotted 
against −log10 FDRadjusted q-value (y-axis). Significant DEGs are colored in red, while the rest are 
colored in black.  

 

 



 54 

 

Figure 3-9 A heatmap representation of DEGs in tissue groups 

(A) Gene expression profilings of DDtis, DDfat and CTtis. Each row represents a gene that is significant 
differentially expressed in any of the 3 comparisons (DDtis/DDfat, DDtis/CTtis and DDfat/CTtis). Each 
column represents an individual tissue sample.  

The expression of each gene (FPKM value) was normalized by the Z-score to gain insight into the gene 
expression patterns in three tissue groups (DDtis, DDfat and CTtis). This scaled row Z-score value is 
plotted in red–blue color scale with expression higher than average represented in red (Z > +1), 
expression lower than average in blue (Z < −1), and average in orange (Z = 0).  

(B) A zoom in to the gene expression profiling of DDfat and CTtis. The gene expression (FPKM value) 
higher than average is represented in red (Z > +1), expression lower than average in blue (Z < −1), and 
average in white (Z = 0).  
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3.3.3 Gene Ontology enrichment of DEGs in DD related tissues 

To interpret the function of the DEGs, we first queried enriched GO terms101 using iPathwayGuide in 

three tissue comparisons: a) DDfat/CTtis; b) DDtis/DDfat and c) DDtis/CTtis.  The common enriched 

GO terms among three comparisons are shown in Venn diagrams (Figure 3-10).  

For example, in GO category biological processes, there were 265 GO terms only shared between 

DDtis/DDfat and DDtis/CTtis, which are likely related to distinctive biological processes in DDtis 

(Figure 3-10A). The GO biological processes shared in both DDtis/CTtis and DDtis/DDfat were ranked 

by GO p-values in DDtis/CTtis (from low to high). The top-10 GO terms represented in a heatmap, 

which reveals significant involvement of ECM in DD, e.g. 'ECM organization', 'ECM disassembly', 

'collagen catabolic processes', and 'collagen fibril organization' (Figure 3-10A and Table 3-9).  

The same analysis was performed on GO molecular function and GO cellular components (Figure 3-

10B and C, Table 3-9). A remarkable feature in the GO molecular function analysis was that the 9 top 

GO terms in both DDtis/CTtis and DDtis/DDfat (ranked by GO p-values in DDtis/CTtis from low to 

high) were involved in either extracellular structural constituent or molecule binding (including 

'collagen binding', 'integrin binding', 'actin binding', 'actin filament binding',  'calcium ion binding', 

'heparin binding', 'growth factor binding', and 'phosphatidylserine binding'). With respect to GO cellular 

component, the most significant GO term in both DDtis/CTtis and DDtis/DDfat was 'extracellular 

space' supporting the pivotal involvement of ECM in DD pathogenesis.  

Taken together, this GO term analysis in all three comparisons (DDfat/CTtis, DDtis/DDfat and 

DDtis/CTtis) reveals significant functional alterations of genes involved in ECM components, dynamics 

and function in DDtis, which is in line with the important role of ECM in connective tissue.  
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Figure 3-10 Overrepresented GO terms for DEGs in tissue comparisons 

The Venn diagrams highlight the common enriched GO terms among three comparisons. The most 
significant 10 GO terms only shared between DDtis/DDfat and DDtis/CTtis were represented in heatmaps 
(ranked by the –log10pvalue in DDtis/CTtis, the most significant on top). Each row represents a GO term. 
Each column represents a comparison (DDfat/CTtis, DDtis/DDfat and DDtis/CTtis). The intensity of the 
shading indicates the significance of the GO term. Each blue box has a p-value of ≤0.05; white box has a 
p-value >0.05 and is not significantly altered. See details in Table 3-9.   
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Table 3-9 Overrepresented GO terms for DEGs in tissue comparisons 

 

#genes 
(DE/All)  p-value #genes 

(DE/All)  p-value #genes 
(DE/All)  p-value

1 ECM organization 162/298 4.20E-14 186/301 1.10E-15 47/284 1.20E-05

2 ECM disassembly 55/96 1.80E-11 64/97 1.40E-11 13/87 3.20E-02

3 Cell adhesion 348/927 2.60E-11 454/937 8.60E-11 135/908 1.00E-03

4 Collagen catabolic 
process

38/56 5.10E-12 40/57 6.80E-10 7/49 5.00E-02

5 Platelet degranulation 33/67 6.70E-06 43/66 5.80E-09 15/66 2.90E-04

6 Signal transduction 1028/3482 2.30E-02 1331/3501 4.00E-08 327/3407 1.00E-02

7 Positive regulation of 
cell migration

114/298 8.50E-05 155/303 1.10E-07 32/291 .

8 Collagen fibril 
organization

24/34 1.30E-08 25/34 2.70E-07 2/30

9 Negative regulation of 
cell proliferation

161/472 8.00E-05 209/476 3.60E-07 68/459 1.90E-05

10 Chondrocyte 
development

16/22 2.00E-04 18/22 9.20E-07 4/22 .

Continued on the next page

DDtis/DDfat DDtis/CTtis DDfat/CTtis

GO term Biological 
Processes
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#genes 
(DE/All)  p-value #genes 

(DE/All)  p-value #genes 
(DE/All)  p-value

1 Calcium ion binding 140/371 4.20E-10 177/377 2.40E-12 62/372 6.50E-12

2 Heparin binding 55/105 1.50E-10 67/107 3.30E-12 29/98 2.60E-12

3 Growth factor activity 40/81 3.80E-07 52/84 1.60E-09 14/74 2.90E-04

4 Integrin binding 42/81 3.20E-08 50/81 3.80E-09 10/79 3.40E-02

5 Actin binding 119/280 1.70E-07 146/284 3.70E-08 27/277 .

6 ECM structural 
constituent 30/45 6.30E-08 31/46 2.00E-07 7/41 1.70E-02

7 Cytokine activity 37/88 9.60E-05 50/89 2.80E-07 17/78 6.00E-03

8 Actin filament binding 38/82 5.20E-06 47/83 4.60E-07 10/82 4.30E-02

9 Phosphatidylserine 
binding 14/22 7.30E-05 17/20 5.80E-07 5/22 1.30E-02

10 Collagen binding 34/57 5.30E-08 36/59 8.70E-07 13/57 6.50E-04

#genes 
(DE/All)  p-value #genes 

(DE/All)  p-value #genes 
(DE/All)  p-value

1 Extracellular space 295/698 1.00E-24 378/709 1.00E-24 136/678 4.10E-23

2 Integral component of 
membrane 881/2696 1.80E-16 1132/2737 2.30E-22 265/2634 5.50E-04

3 Integral component of 
plasma membrane 284/763 3.40E-13 370/772 1.80E-20 110/739 2.70E-13

4 Proteinaceous ECM 155/260 1.00E-24 165/262 1.80E-20 52/237 1.50E-10

5 Plasma membrane 874/2580 1.20E-12 1116/2613 9.50E-18 304/2529 7.90E-10

6 Extracellular exosome 571/1900 6.20E-11 730/1919 6.20E-15 187/1903 3.40E-08

7 Extracellular region 908/2669 4.30E-10 1144/2704 5.70E-14 316/2623 2.30E-06

8 Cell surface 162/445 5.20E-07 227/451 3.80E-13 77/439 4.40E-08

9 Endoplasmic reticulum 
lumen 76/137 4.70E-14 81/136 1.90E-12 12/130 .

10 Platelet alpha granule 
lumen 20/35 3.00E-05 27/35 1.70E-08 10/34 6.20E-05

DDtis/DDfat DDtis/CTtis DDfat/CTtis

DDtis/DDfat DDtis/CTtis DDfat/CTtis
GO Molecular 

Function

GO Cellular 
Components
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3.3.4 Pathway perturbation analysis using DEGs in DD related tissues 

To study the specific pathways associated with DD, a third generation pathway topology (PT)-based 

pathway perturbation analysis68 via a combination of over-representation analysis and pathway 

accumulation was performed using iPathwayGuide on aforementioned DEG sets (Figure 3-11). For 

over-representation analysis, the number of DEGs involved in a pathway was compared between two 

tissue groups. For pathway accumulation analysis, the significance of a particular DEG to a pathway 

was considered in determining the overall impact on the pathway by examining all annotated 

functions/interactions of the gene in KEGG pathway databases66. The calculated pathway perturbation 

is an additive measurement of pathway overrepresentation and accumulation. Bonferroni adjusted p-

value 0.05 on pathway perturbation was used as a cut-off to identify significantly perturbed pathways.  

Figure 3-11 Perturbed pathways in tissue comparisons 

The scatter plots represent the pathways (in red) significantly perturbed in three comparisons: (A) 
DDfat/CTtis; (B) DDtis/DDfat; (C) DDtis/CTtis. The pathway perturbation is an additive measurement of 
pathway overrepresentation and accumulation. The x-axis represents the significance of pathway 
overrepresentation (–log10OVA p-value). The y-axis represents the significance of pathway 
accumulation (–log10Acc p-value). Bonferroni adjusted p-value 0.05 on pathway overrepresentation and 
accumulation was used as a cut-off for identifying significant perturbed pathways. (Continued on the next 
page) 
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The bootstrap diagram shows the distribution (mean=0, stdev=1) of expected accumulated perturbation 
values based on the observed data for the selected pathway. The red line indicates where the actual 
observed values lie in the distribution of expected results. The further away from the mean, the less likely 
the observed values are due to random chance.  

 

3.3.4.1 Perturbation of the Hippo signaling pathway in DDfat/CTtis 

In the comparison DDfat/CTtis, the most significantly perturbed pathway (with the lowest p-value for 

pathway overrepresentation and accumulation) was the Hippo network (Figure 3-11A, x- and y-axis 

represent the significance of overrepresentation and accumulation separately). A bootstrap diagram 

was also shown separately, which displays the distribution (mean=0, stdev=1) of expected 

accumulation values based on the observed data. 2,000 iterations were used to construct the 

distribution. The red line indicates where the actual observed values lie in the distribution of expected 

results. The further away from the mean, the more likely the observed value is not due to random 

chance.  

Of note, the KEGG Hippo network is designated as a 'parent' network composed of the 'child' Hippo 

signaling pathway (also named as the YAP/TAZ pathway since YAP/TAZ are the major effectors of the 

Hippo signaling pathway) and two interactive pathways  — the Wnt/ß-catenin signaling pathway and 

TGFß pathway (shown in Figure 3-12B).  

In DDfat/CTtis, four genes (LLGL2, RASSF6, WWC1 and INADL) involved in the 'child' Hippo pathway 

were downregulated (Figure 3-12A), suggesting an inactivation of the 'child' Hippo pathway. Inhibition 

of downstream transcriptional activators, YAP/TAZ, is the major target of the 'child' Hippo signaling 

pathway. Therefore, the downregulation of these four genes may activate YAP/TAZ, as suggested by 

iPahtwayGuide perturbation computation, which represents the propagation of the effect of upstream 

gene expression change by considering interactions between different genes (Figure 3-12B, genes in 

red indicates activation or increased expression, while genes in blue indicates inhibition or decreased 

expression. 
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Figure 3-12 The Hippo network is the most significantly perturbed pathway in DDfat/CTtis 

(A) The expression fold change of DEGs in the KEGG Hippo network in DDfat/CTtis. 

(B) The perturbation on genes involved in the KEGG Hippo network due to DEGs in DDfat/CTtis. Genes 
in red indicates activation or increased expression, while genes in blue indicates inhibition or decreased 
expression. The darker color indicates the stronger perturbation. 
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Moreover, the expression four Wnt ligand genes (WNT6, WNT10A, WNT10B and WNT9A), two 

Frizzled receptor genes (FZD1 and FZD2) involved in the upstream of the Wnt signaling pathway was 

also increased in DDfat compared to CTtis (Figure 3-12A), leading to perturbation on the downstream 

effector ß-catenin and transcription factors TCF/LEF (Figure 3-12B).  

In addition, the expression of three genes in the Bone Morphogenetic Protein (BMP) family and a BMP 

receptor (BMP7, BMP4, GDF6 and BMP1B) was increased, while, the expression BMP5 was 

decreased in DDfat compared to CTtis. The increased expression of BMPs, which are upstream 

regulators to the TGFβ, is likely to induce the TGFβ pathway. 

In summary, though the DDfat and CTtis were considered as non-disease adipose tissue for DD in the 

past, significant DEGs in DDfat/CTtis were identified and suggested to be involved in three interactive 

pathways (including the YAP/TAZ signaling pathway, the Wnt/ß-catenin signaling pathway and the 

TGFß pathways). By pathway perturbation analysis on all DEGs in the DDfat/CTtis comparison, the 

KEGG parent network  — the Hippo network was identified as the most perturbed pathway with the 

lowest p-value (Bonferroni adjusted p-value = 0.001). These findings reveal, for the first time, 

perturbation on pathways in perinodule fat tissue (DDfat) and the potential role of the Hippo network in 

DD pathogenesis.  
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3.3.4.2 Perturbation of the ECM-receptor interactions in DDtis 

The pathway perturbation analysis was also conducted using DEGs in DDtis/DDfat and DDtis/CTtis. 

The ECM-receptor interaction was identified as the most significant perturbed pathway in both 

comparisons (Figure 3-11B and C).  

About 80% of DEGs involved in the ECM-receptor interactions pathway showed increased expression 

in DDtis compared to either internal control (DDfat) or external control (CTtis) (Figure 3-13A and 

3.14A). The common upregulated DEGs in the ECM-receptor interactions included genes encoding 

the ECM structural and functional macromolecules (COL1A1, COL1A2, COL6A1, COL6A2, COL6A3, 

FN1 and THBS2 etc., which maintain cell/tissue structure and function), transmembrane integrins 

(ITGB1, ITGA8, ITGA10 etc, which function as mechanoreceptors and provide force-transmitting 

physical links between the ECM and cells) as well as the cytoskeleton proteoglycans (such as SDC2 

and SV2A) and other cell-surface-associated components (for instance, CD44). The increased 

expression of these genes can strongly influence interactions between cells and ECM, 

directly/indirectly leading to cellular activities such as adhesion, migration, differentiation, proliferation, 

and apoptosis66.  

The most significant downregulated DEG in both comparisons (DDtis/DDfat and DDtis/CTtis) is CD36 

(log2FC value -3.4 and -3.6 separately). Recent studies have revealed a causative role of CD36 

downregulation in suppressing the ECM deposition and in promoting the protumorigenic phenotypes 

of tumor stromal microenvironment102. Therefore, the reduced expression of CD36 in DDtis (vs. DDfat 

or CTtis) opens up the question whether there is also an influence of the DDtis on its 

microenvironment — DDfat, the adipose tissue adjacent to DDtis.  

Overall, these results suggest the ECM-receptors interactions pathway is strongly related to the 

biochemical and functional characteristics of DD nodules. 
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Figure 3-13 The ECM-receptor interactions pathway is the most significantly perturbed pathway in 
DDtis/DDfat  

(A) The gene expression fold change of DEGs in the KEGG ECM-receptor interactions pathway 

(B) The perturbation calculation on genes involved in the KEGG ECM-receptor interactions pathway due 
to DEGs in DDtis/DDfat. Genes in red indicates activation or increased expression, while genes in blue 
indicates inhibition or decreased expression. The darker color indicates the stronger perturbation. 
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Figure 3-14 The ECM-receptor interactions pathway is the most significantly perturbed pathway in 
DDtis/CTtis 

(A) The gene expression fold change of DEGs in the KEGG ECM-receptor interactions pathway 

(B) The perturbation calculation on genes involved in the KEGG ECM-receptor interactions pathway due 
DEGs in DDtis/CTtis. Genes in red indicates activation or increased expression, while genes in blue 
indicates inhibition or decreased expression. The darker color indicates the stronger perturbation. 
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3.3.4.3 Summary of all overrepresented KEGG pathways in three tissue comparisons 

As shown in Figure 3-11, besides the perturbed pathways (both significantly overrepresented and 

accumulated), a few pathways are only strongly overrepresented (represented by the red dots, with 

high -log10pvalue on x-axis). In Table 3-10 and Figure 3-15, all significant overrepresented pathways 

(without regard to accumulated or not) in three comparisons (DDfat/CTtis, DDtis/DDfat and 

DDtis/CTtis) were listed.  

Two common overrepresented pathways in DDfat/CTtis and DDtis/CTtis are the Hippo network and 

the Cell adhesion molecules (CAM). Seven pathways were significantly overrepresented in both 

DDtis/DDfat and DDtis/CTtis including the 'Focal Adhesion', 'Pathways in Cancer', 'Protein Digestion 

and Absorption' and three myopathies (Hypertrophic Cardiomyopathy, Dilated Cardiomyopathy and 

Arrhythmogenic Right Ventricular Cardiomyopathy).  

Table 3-10 Overrepresented pathways for DEGs in tissue comparisons 

 

Pathway name DDfat/CTtis DDtis/DDfat DDtis/CTtis
Cell adhesion molecules (CAMs) 0.000 0.000
Salivary secretion 0.000 0.003
Staphylococcus aureus infection 0.001 0.015
Hippo signaling pathway 0.001 0.022
Complement and coagulation cascades 0.001
Basal cell carcinoma 0.001
Neuroactive ligand-receptor interaction 0.005 0.004 0.001
Cytokine-cytokine receptor interaction 0.008 0.003 0.000
Asthma 0.012
Pancreatic secretion 0.043
Intestinal immune network for IgA production 0.044
Aldosterone-regulated sodium reabsorption 0.047
Protein digestion and absorption 0.000 0.000
cAMP signaling pathway 0.012
ECM-receptor interaction 0.000 0.000
Hypertrophic cardiomyopathy (HCM) 0.000 0.000
Dilated cardiomyopathy 0.000 0.000
PI3K-Akt signaling pathway 0.004 0.000
Focal adhesion 0.000 0.001
Pathways in cancer 0.002 0.002
Arrhythmogenic right ventricular cardiomyopathy 0.001 0.003
Axon guidance 0.004
cGMP-PKG signaling pathway 0.015 0.007
Regulation of lipolysis in adipocytes 0.003 0.029
Starch and sucrose metabolism 0.047
PPAR signaling pathway 0.012
Morphine addiction 0.010
Rap1 signaling pathway 0.008
GABAergic synapse 0.020

Combined Bonferroni p-value
 Overrepresented pathways (KEGG)
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 Figure 3-15 Summary of overrepresented KEGG pathways in three tissue comparisons  

(A) A clustering of overrepresented pathways in 3 comparisons (DDfat/CTtis, DDtis/DDfat and 
DDtis/CTtis). The intensity of the shading indicates the significance of the pathway overrepresentation. 
All blue boxes have a Bonferroni adjusted p-value of ≤0.05, white boxes have a p-value of >0.05. The –
log10(Bonferroni p-value) was used in the heatmap.  

(B) The Venn diagram depicts the number of overrepresented pathways in three comparisons. 
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3.3.5 Pathway overrepresentation analysis using DEGs in DD cells 

3.3.5.1 DEGs in DD cells 

DDcells cultured from DDtis are often used as in vitro cell models to study cellular mechanisms 

involved in DD. To gain an in depth understanding on the gene expression profiling and pathway 

perturbation of DDcells, analysis of DEGs was first conducted in three comparisons DDtis/CTtis, 

DDcell/CTcell and DDtis/DDcell (Figure 3-16A). These filtered DEGs were used for pathway analysis. 

The distribution of gene expression fold change in each comparison is shown in volcano plots in 

Figure 3-16B.  

3.3.5.2 Enrichment of perturbed KEGG pathways in DD cells 

Pathway perturbation analysis combining pathway overrepresentation and pathway accumulation was 

performed using DEGs in DDtis/CTtis, DDcell/CTcell and DDtis/DDcell. In DDtis/DDcell, the most 

significantly perturbed pathway is the 'Cytokine-cytokine receptor interactions pathway' (see Figure 3-

17A), which is likely to be the main molecular difference between DD tissue and cell models. In 

DDcell/CTcell, no candidate pathway was predicted to obtain strong accumulation due to the DEGs 

(see Figure 3-17A).  

The significantly overrepresented pathways among three comparisons (DDtis/CTtis, DDcell/CTcell and 

DDtis/DDcell) were also compared. The Venn diagram in Figure 3-17B illustrates the number of 

common and individual pathways among three comparisons. By comparing the similarities between 

DDcell/CTcell and the DDtis/CTtis, common pathways contributing to DD pathogenesis in both tissue 

and cell models might be identified if the tissue-cell difference is removed (represented by 

DDtis/DDcell). Therefore, as highlighted in the Venn diagram, 5 overrepresented pathways were 

uniquely shared between DDtis/CTtis and DDcell/CTcell, which include the 'Focal Adhesion', three 

myopathies, and 'Straphylococcus aureus Infection' which is related to inflammation66.  
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Figure 3-16 Volcano plots for DEGs in in vitro cell models 

(A) Filters applied on gene expression change under 3 conditions: (a) DDtis vs CTtis; (b) DDcell vs. 
CTcell; (c) DDtis vs DDcell.  

(B) Volcano plots of distribution of DEGs in each comparison, where log2 fold change (x-axis) is plotted 
against −log10 FDRadjusted q-value (y-axis). Significant DEGs are colored in red, while the rest are 
colored in black.  
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Figure 3-17 Perturbed pathways in in vitro cell models 

(A) The most significantly perturbed pathways in DDtis vs CTtis, DDcell vs. CTcell and DDtis vs DDcell. 
Bonferroni adjusted p-value ≤ 0.05 was applied to select significantly perturbed pathways.  

(B) The left Venn diagram depicts the overrepresented pathways uniquely shared in DDtis/CTtis and 
DDcell/CTcell. The 5 pathways and their p-values are listed in the right table. 
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3.4 Characterization of alternative splicing (AS) in DD  

3.4.1 Comparison of the AS classes in disease tissues and controls 

To explore the extent of AS between disease and control tissues, we first classified the differential AS 

events for each gene using spliceR46. SpliceR first constructs the hypothetical pre-RNA based on the 

exon information from all transcripts originating from that gene46. Subsequently, all transcripts are 

compared to this hypothetical pre-RNA in a pairwise manner, and AS events are classified and 

annotated46.  

Here, six common types of gene splicing events were considered including the exon skipping/inclusion 

(ESI), intron skipping/inclusion (ISI), alterative 5' splice sites (A5), alternative 3' splice sites (A3), 

multiple exon skipping (MESI) and mutually exclusive exons (MEE)46. In all 3 comparisons 

(DDfat/CTtis, DDtis/DDfat and DDtis/CTtis), different classes of AS vary in relative abundance but 

maintain constant relative ratios among all AS events (Figure 3-18). The most frequent AS class was 

ESI in all comparisons (>30%), followed by A3 and A5 (in total  ~50%), MESI (~10%) and ISI (~9%). 

The most rare AS form was MEE.  

 

Figure 3-18 The classification of AS events in tissue comparisons 

The relative abundance of individual AS event in each tissue comparison: DDfat/CTtis, DDtis/DDfat and 
DDtis/CTtis. Six major splicing events were analyzed including exon skipping /inclusion (ESI), intron 
skipping/inclusion (ISI), alterative 5' splice sites (A5), alternative 3' splice sites (A3), multiple exon 
skipping (MESI) and mutually exclusive exons (MEE). 
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Notably, a large difference in the number of AS events was observed in DDtis compared to DDfat or 

CTtis (Figure 3-18), whereas in DDfat compared to CTtis, only 375 AS events were detected. The 

same holds true for each of the AS event type (ESI, AD, A5, MESI and IR). The high number of 

differential AS events suggests a distinct set of transcripts exist in DD tissue, which may contribute to 

the DD nodule disease phenotype. Moreover, a DD tissue-specific mechanism regulating AS might 

underline the observed AS difference. 

3.4.2 Characterization of isoform switching in DDtis  

To understand the impact of AS on individual isoforms, we focused on isoform switching with in a 

gene in DDtis compared to DDfat or CTtis (described in Method 2.4.6). 

Using spliceR46, a set of 30 high confidence isoform switches, defined by a large change of isoform 

fraction (IF) between two conditions, was identified between tissue comparisons. In DDtis/CTtis, 21 

isoform switches were identified. Similarly, in DDtis/DDfat, 17 isoform switches were identified (Table 

3-11). Between DDtis/CTtis and DDtis/DDfat, common isoform switches were identified, which were 

isoforms for 7 genes including PLOD2, TPM1, SPON2, MYO1D, GOLT1B, FAM198B and ACSL1. In 

DDfat/CTtis, only 4 isoform switches remained after the first four filters, however, by checking junction 

reads on IGV, none of them can be validated. 

The IF value for each of the 30 isoforms in each sample was plotted in a heatmap in Figure 3-19. The 

majority of isoform switches displayed a higher IF in DDtis compared to both DDfat and CTtis. 

Interestingly, in DDfat, a high value of IF for isoforms in some genes (such as CD44, ITGA7 and 

ACTN1) was also observed (in more than 5 out of 9 DDfat samples). However, the IF change (dIF 

value) did not meet the minimal threshold for dIF (Method 2.4.6) if mean IF was compared across 

pooled samples. This suggests isoform switches identified in DDtis may be also present in DDfat, 

although not statistically significant. In sum, we identified isoforms switches in DDtis compared to 

either internal control DDfat or external control CTtis. This suggests these isoforms may have specific 

functions contributing to the development of disease tissues.   
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Table 3-11 Isoform switches in tissue groups 

 

 

 

Group Isoform 
Name

Ensembl 
Transcript ID

Cufflinks 
Transcript

Cod
e

Start 
Exon

Stop 
Exon

Exon 
No. ESI MESI ISI A5 A3

log2 
Isoform 
dIF

log2 
Isoform 
FC

log2 
Gene 
FC

Gene

ACSL1-201 ENST00000437665 TCONS_00245614 j 2 21 19 2 0 0 1 1 -0.8 -3.9 -3.1 ACSL1

ACTN1-001 ENST00000193403 TCONS_00095839 = 1 21 21 5 1 0 2 3 1.0 1.7 0.8 ACTN1

ATRN-001 ENST00000446916 TCONS_00194582 = 1 25 25 1 0 0 0 0 0.6 1.8 1.1 ATRN

BMP1-010 ENST00000306349 TCONS_00293516 = 1 16 16 2 1 0 0 4 1.2 3.2 1.8 BMP1

CD44-003 ENST00000263398 TCONS_00045757 = 1 9 9 1 1 0 2 3 1.0 2.0 1.1 CD44

COL16A1-001 ENST00000373672 TCONS_00018932 = 2 71 70 6 1 0 5 5 1.0 3.2 2.2 COL16A1

DNAJB11-201 ENST00000265028 TCONS_00221564 = 1 10 10 0 0 0 1 1 0.7 1.1 0.4 DNAJB11

FAM198B-004 ENST00000296530 TCONS_00244905 = 2 5 3 1 0 0 0 0 1.1 2.6 1.4 FAM198B

FBLN2-002 ENST00000295760 TCONS_00213535 = 2 17 16 2 0 2 0 1 1.0 1.8 0.7 FBLN2

FOS-001 ENST00000303562 TCONS_00090589 = 1 4 4 1 0 0 1 1 -0.7 1.5 2.3 FOS

GOLT1B-001 ENST00000229314 TCONS_00064583 = 1 5 4 0 1 0 0 0 0.9 2.2 1.2 GOLT1B

ITGA7-002 ENST00000553804 TCONS_00076251 = 1 25 25 0 1 1 0 1 0.7 -2.2 -2.9 ITGA7

KIF1B-003 ENST00000377093 TCONS_00001027 = 2 21 20 2 0 0 0 1 0.9 1.7 0.8 KIF1B

LEPRE1-001 ENST00000296388 TCONS_00020151 = 1 15 15 1 0 0 2 5 0.7 2.7 2.0 LEPRE1

MYO1D-004* TCONS_00138059 j 2 22 20 3 1 0 0 1 0.7 3.5 3.0 MYO1D

PALMD-001 ENST00000263174 TCONS_00007250 = 1 8 8 0 1 0 2 2 0.6 -1.3 -1.9 PALMD

PLOD2-001* TCONS_00229911 j 2 20 18 2 0 0 1 4 0.6 2.2 1.5 PLOD2

PLXDC1-008 ENST00000444911 TCONS_00138773 = 1 13 13 0 2 0 1 1 0.7 3.1 2.2 PLXDC1

SPON2-002 ENST00000290902 TCONS_00239444 = 2 6 4 1 0 0 2 1 0.8 4.0 3.2 SPON2

SSC5D-005 ENST00000594321 TCONS_00159739 = 1 3 3 0 0 0 0 0 0.6 3.7 2.9 SSC5D

TPM1-028 ENST00000559556 TCONS_00101180 = 1 9 8 3 1 2 3 2 2.0 3.7 1.8 TPM1

ACSL1-201 ENST00000437665 TCONS_00245614 j 2 21 19 2 0 0 1 1 -0.7 -3.6 -2.9 ACSL1

COL1A2-001* TCONS_00280877 j 2 53 52 0 0 0 4 7 -0.6 3.4 3.9 COL1A2

COL3A1-001 ENST00000304636 TCONS_00178764 = 1 51 51 1 0 0 2 1 -1.1 3.9 5.0 COL3A1

FAM198B-004 ENST00000296530 TCONS_00244905 = 2 5 3 1 0 0 0 0 0.6 2.0 1.4 FAM198B

GOLT1B-001 ENST00000229314 TCONS_00064583 = 1 5 4 0 1 0 0 0 1.0 2.2 1.2 GOLT1B

MYO1D-004* TCONS_00138059 j 2 22 20 3 1 0 0 1 0.7 3.6 2.8 MYO1D

PALLD-002* TCONS_00238553 j 3 11 9 1 1 0 0 2 1.1 3.2 2.1 PALLD

PFKFB3-002 ENST00000379775 TCONS_00031452 = 1 15 15 2 0 0 1 2 -0.6 -3.3 -2.6 PFKFB3

PLOD2-001* TCONS_00229911 j 2 20 18 2 0 0 1 4 0.7 2.5 1.8 PLOD2

PYGL-001 ENST00000216392 TCONS_00094963 = 1 20 20 1 0 0 2 1 -0.7 -2.3 -1.6 PYGL

RBPMS-003 ENST00000339877 TCONS_00294164 = 1 7 7 2 1 0 1 0 -0.8 -1.7 -0.8 RBPMS

RCN1-003 ENST00000381132 TCONS_00204262 = 1 4 4 1 0 0 1 1 0.7 2.4 1.8 RCN1

SEC23A-001* TCONS_00094550 j 3 21 19 2 1 0 1 1 0.9 2.3 1.4 SEC23A

SLC39A6-002* ENST00000269187 TCONS_00149029 j 2 10 9 0 0 0 1 0 0.9 2.0 1.1 SLC39A6

SPON2-002 ENST00000290902 TCONS_00239444 = 2 6 4 1 0 0 2 1 0.7 3.7 3.0 SPON2

TPM1-028 ENST00000559556 TCONS_00101180 = 1 9 8 3 1 2 3 2 1.5 3.0 1.5 TPM1

Code j: represents "novel" isoforms not found in Ensembl b75

Code =: represents known isoforms in Ensembl b75

DDtis/CTtis

DDtis/DDfat
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Figure 3-19 A heatmap representation of IF of 30 isoforms in individual tissue groups 

In any of the 3 comparisons (DDtis/DDfat, DDtis/CTtis and DDfat/CTtis), transcripts defined as isoform 
switches were selected. Each box (in row) represents the calculated IF value for a given gene in each 
sample. The Z-score normalized IF of each isoform was used in the heatmap, in which the red color 
indicates the high expression, whereas blue indicates the low expression. Spearman’s rank correlation 
was applied. The symbol * represents isoforms identified as novel isoforms. 
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3.4.3 Altered expression of five splicing factors in DDtis 

An emerging concept proposes that tissue-specific splicing factors can coordinate AS involving 

isoforms encoding proteins to function in biologically coherent pathways and contribute to tissue 

specification103. Therefore, to understand the cause of the observed pattern of isoform usage in DD 

relevant tissues, I analyzed the expression change of 71 known splicing factors104 using Cuffdiff 

results. In total, five splicing factors showed significant gene expression change in DDtis compared to 

CTtis. RBFOX2 (RNA Binding Protein, Fox-1 Homolog 2) and PTBP2 (Polypyrimidine Tract Binding 

Protein 2) were significantly increased in DDtis, whereas NOVA1 (Neuro-Oncological Ventral Antigen 

1), ESRP1 (Epithelial Splicing Regulatory Protein 1) and ESRP2  (Epithelial Splicing Regulatory 

Protein 2) were significantly decreased in DDtis (Figure 3-20A). The expression of these splicing 

factors in individual samples was shown in a heatmap in Figure 3-20B.  

To test whether there is any correlation among the co-expressed splicing factors, Spearman's rank 

correlation test was performed using all 50 tissue samples (DDtis, DDfat and CTtis). As shown by the 

dendrogram (Figure 3-20B), a positive correlation was identified between RBFOX2 and PTBP2 

expression (Spearman ρ=0.61, Bonferroni adjusted p-value < 0.05). Additionally, a strong positive 

correlation was observed between ESRP1 and ESRP2 gene expression (ρ=0.93, Bonferroni adjusted 

p-value < 0.05). In summary, the gene expression of five splicing factors was significantly altered in 

DDtis and it may represent one of the many expression profiles that characterize the intrinsic 

properties of DD tissues and their tissue-specific regulation of AS.  



 76 

  

Figure 3-20 The significant gene expression change of 5 splicing factors in DDtis/CTtis 

(A) Box plots of 5 splicing factors. Compared to CTtis, RBFOX2 and PTBP2 were significantly increased, 
whereas NOVA1, ESRP1 and ESRP2 were significantly decreased in DDtis. The y-axis is the FPKM of of 
a gene from Cuffdiff result. FDR adjusted q-value was applied. (*q ≤0.05, **q-value≤0.01, ***q-value 
≤0.001). 

(B) A heatmap representation of Z-score normalized expression of five splicing factors in individual tissue 
samples. The distance measure for hierarchy clustering of samples and gene expression was one-minus 
Spearman’s rank correlation. A positive correlation was observed between RBFOX2 and PTBP2 gene 
expression (Spearman’s rank correlation coefficient ρ=0.61, p-value < 0.001). A strong positive 
correlation was also observed between ESRP1 and ESRP2 gene expression (ρ=0.93, p-value < 0.001).   
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3.4.4 Specific correlation patterns between isoform switches and splicing factors in 

DD 

To test whether there is a tissue-specific association between isoform switches and the gene 

expression of splicing factors, I took each isoform exhibited isoform switching (30 isoforms in Figure 3-

19) and calculated the correlation coefficient between the IF of each isoform and the gene expression 

of each of the 5 splicing factors in each tissue type (DDtis, DDfat and CTtis). Spearman’s rank 

correlation coefficient was used to assess the association and Bonferroni adjustment was applied.  

In DDtis, positive correlations between RBFOX2 expression and IF of two isoforms were observed 

(Figure3-21A). RBFOX2 expression was strongly associated with the IF of PLOD2-001* (Spearman’s 

rank correlation coefficient ρ= 0.92, Bonferroni adjusted p-value < 0.05) in DDtis, in contrast to no 

correlation in DDfat and CTtis. Similarly, a gain-of correlation was observed between RBFOX2 

expression and IF of SPON2-002 (ρ= 0.72, Bonferroni adjusted p-value < 0.05) in DDtis.  

In DDtis compared to both DDfat and CTtis, RBFOX2 was significantly increased as shown in Figure 

3-20A. This suggests increased RBFOX2 expression may be causal for the increased isoform usage 

of PLOD2-001* and SPON2-002. RBFOX was known to regulate AS of PLOD2 (procollagen-lysine, 2-

oxoglutarate 5-dioxygenase 2)105, which encodes a regulator of collagen stiffness106. Enhanced 

inclusion of the last exon of PLOD2 by RBFOX2 can lead to elevated expression of PLOD2-001, 

which is associated with TGF β-induced fibrosis106,107. However the PLOD2-001* is a 'novel' isoform 

which is not in the Ensembl transcript database, though it is only different from PLOD2-001 in A3 and 

A5 sites. Therefore, the presence of PLOD2-001* isoform needs to validated and the regulatory 

association between PLOD2-001* and RBFOX2 needs to be tested in vitro.  

In contrary to RBFOX2, ESRP1/2 expression was significantly decreased in DDtis compared to 

healthy control CTtis. In CTtis, ESRP1/2 expression was negatively correlated with CD44-003 (ρ = -

0.95, -0.93 separately, p-values < 0.05). However this correlation was lost in DDtis as well as in DDfat 

(Figure3-21B). CD44 isoform switching represents a very conserved splicing event regulated by 

ESRP1/2 in EMT and malignant cancer progression49, which is used as an example for reduced AS 

usage in DDtis in the next session.  
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Figure 3-21 The tissue specific correlation between gene expression of splicing factors and IF of 
isoforms 

The Spearman’s rank correlation coefficient ρ for gene expression of 5 splicing factors and IF of 30 
candidate isoforms in each tissue type were calculated. Bonferroni adjusted p-value ≤ 0.05 was applied. 
In total, significant correlation was identified in 4 pairs, including 2 isoforms (PLOD2-001* and SPON2-
002) correlated with RBFOX2 (A). and one isoform CD44-003 correlated with ESRP1 and ESRP2. 
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3.4.5 Examples of tissue-specific AS in DDtis 

 3.4.5.1 Example 1: reduced CD44 AS usage in DDtis and DDfat 

As illustrated in Figure 3-22A, human CD44 has 19 expressed exons, of which 10 exons are 

constitutive exons (C1-C10), whereas 9 exons are variant exons (V2-V9). The standard isoform 

CD44s, is composed of constitutive exons C1-C5 at the 5' end and C6-C10 at the 3' end. Between 

exon C5 and C6, there are nine variable exons (V2-V10) which are alternatively spliced to produce a 

plethora of isoforms108. CD44s and CD44v protein isoforms are all transmembrane proteins that 

function primarily to maintain tissue structure by mediating cell–cell and cell–matrix adhesion109 

(Figure 3-22B). Inclusion of the variable exons lengthens the extracellular membrane-proximal region 

by forming a heavily glycosylated stalk-like structure that provides interaction sites for additional 

molecules. 

Here, the CD44 AS events in DDtis were first visualized in Sashimi plot (Figure 3-22C). In both DDtis 

(n=9, out of 10) and DDfat (n=9), reduced junctions between exon C5 and exon C6 were observed 

suggesting less use of CD44 variant exons compared to CTtis. Moreover, increased expression of the 

standard isoform CD44s was detected in DDtis compared to either DDfat or CTtis (Figure 3-22D). The 

gene expression of CD44, which represents the sum of all CD44 isoforms, was also increased in 

DDtis compared to either DDfat or CTtis (Figure 3-22E). This suggests CD44s is the dominant isoform 

in DDtis, which contributes to the most of CD44 expression observed in DDtis. In addition, in both 

DDtis and DDfat, a loss of correlation between ESRP1/2 and CD44s isoform fraction was observed 

(Figure 3-21B).  

Taken together, the reduced CD44 AS and its loss-of-correlation by ESRP1/2 were not only observed 

in DDtis but also in DDfat, suggesting the altered CD44 AS and ESRP1/2 expression may modulate 

both disease tissue (DDtis) and its niche (DDfat). 
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Figure 3-22 The significant increased IF of CD44s and CD44 gene expression in DDtis  

(A) CD44 gene structure consists of 10 constitutive exons (C1-C10) and 9 variant exons (V2-V10) in 
human, The standard isoform CD44s is transcribed from constitutive exons only (C1-C10). 

(B) The CD44s isoform has basic transmembrane domains, whereas CD44v has additional longer stems, 
which contains the variant exon(s). The figure was adapted from atlasgeneticsoncology.org/-
Genes/CD44ID980CH11p13.html. 

(C) Loss of alterative spliced CD44 isoforms in DDtis and DDfat compared to CTtis. 

(D) CD44s isoform expression, and (E) CD44 gene expression were increased in DDtis compared to 
both DDfat and CTtis. FDR-adjusted p-value was calculated (***p-value ≤0.001).   
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3.4.5.2 Example 2: an imbalance of FBLN2 isoform ratio in DDtis 

Another interesting candidate is an isoform of Fibulin-2 (FBLN2). FBLN2 gene contains 18 exons and 

encodes an ECM glycoprotein110 (Figure 3-23A). The exon 9 can be alternative spliced and exclusion 

of exon 9 leads to a short protein isoform FBLN2-002, which is also named as FBLN2-Δexon9110.  

In line with the increased IF of FBLN2-Δexon9 detected by splice R (Figure 3-19), reduced expression 

of exon 9 was observed on Sashimi plot in 50% DDtis compared to DDfat or CTtis (Figure 3-23B). The 

overall FBLN2-Δexon9 isoform expression was clearly increased in DDtis compared to either DDfat or 

CTtis (Figure 3-23C, FDR q-value < 0.01), but the overall gene expression was not changed, leading 

to increased IF of FBLN2-Δexon9 in DDtis, suggesting a differential regulation of FBLN2-Δexon9 

compared to other FBLN2 isoforms.  
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Figure 3-23 The significantly increased isoform fraction of FBLN2-Δexon9 in DDtis  

A) The gene structure of FBLN2. Figure was adapted from Timl et. al 110. 

(B) The exon 9 of FBLN2 in DDtis has reduced coverage corresponding to reduced expression. 
Increased Exon 9 skipping was observed in DDtis, as indicated by the higher number above the junction 
spanning exon9. 

 (C) Significantly increased isoform fraction of FBLN2-Δexon9 was detected in DDtis and DDfat 
compared to CTtis (FDR adjusted q-value <0.01). However the gene expression of FBLN2 was not 
significantly increased. 
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3.4.5.3 Example 3: Increased COL1A2 AS usage as a feature in DDtis 

As observed in Figure 3-19, a few isoforms displayed a lower IF in DDtis compared to either DDfat or 

CTtis, including two collagen isoforms (COL1A2-001* and COL3A1-001). However the expression of 

both isoforms and their gene expression were significantly increased in DDtis compared to two 

controls. Therefore, the likely explanation is that the number of isoforms in DDtis is increased.  

As shown in Figure 3-24, Sashimi plot was used to visualize all the isoforms in COL1A2 in DDtis. 

Increased number of reads were mapped across exon-exon junctions in 9 DDtis compared to DDfat 

and CTtis suggesting increased AS of COL1A2. Therefore, although the isoform expression of 

COL1A2-001* was increased in DDtis, its contribution to COL1A2 gene expression (measured by IF in 

Figure 3-19) was reduced due to a larger number of alternatively spliced COL1A2 isoforms. This 

indicates a specific set of COL1A2 isoforms were produced in most of DDtis, which might be a general 

feature of DD affected tissues.  
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Figure 3-24 The increased use of AS of COL1A2 in DDtis  

Increased alterative spliced COL1A2 isoforms in 9 out of 10 DDtis compared to a representative sample 
for both DDfat and CTtis. 
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3.4.5.4 Example 4:  Extensive COL3A1 AS usage as a subgroup feature of DDtis  

In accordance to COL1A2, increased use of AS of COL3A1 was also observed in the majority of DDtis 

(70%, shown in Figure 3-25), compared to both DDfat and CTtis. However, a remarkable variance 

within DDtis samples was noted. Extensive AS usage indicated by a large number of splicing junctions 

was observed in 4 DDtis samples (DDtis 1, 6, 7 and 5), which were referred as DD subgroup 1. In 

DDtis 3, COL3A1 also exhibited elevated AS but to a lesser extent compared to DDtis samples in DD 

subgroup 1.  

This variance with in DDtis was also observed in RBFOX2 expression (Figure 3-20B). RBFOX2 

expression was about 2-fold higher in DD subgroup 1 compared to the rest of DDtis (Welch's t-test 

p=0.01). However, RBFOX2 expression was not correlated with COL3A1-001 IF (Spearman's rank 

correlation test, p-value > 0.05). So it is likely the COL3A1 AS is regulated by other regulatory 

mechanisms instead of by RBFOX2. 

Collectively, a larger number of COL3A1 isoforms was observed in the majority of DDtis compared to 

either DDfat or CTtis. Particularly, a massive increase in COL3A1 AS was observed in a subset of 

DDtis (4 samples in DD subgroup 1), which might represent a differential clinical profile of the patients 

or molecular mechanism of pathogenesis. 
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Figure 3-25 Extensive AS of COL3A1 in a subset of DDtis 

Increased use of AS for COL3A1 in 6 out of 10 DD tissues compared to a representative DDfat was 
observed in the Sashimi plot. A circle above an arc indicates the number of reads that span an exon–
exon junction (minimal number of 40 mapped reads). The blue transcript at the bottom represents the 
longest transcript of COL3A1 in Refseq.  
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3.4.6 Characterization of two subgroups in DD based on COL3A1 and gene expression 

profiling 

DD is considered as a progressive fibromatosis disease that may be heterogeneous in many aspects 

including the severity and clinical appearance111, treatment effect and recurrence rates (27% to 

66%)112. These may arise from differential mechanisms of pathogenesis. Identification of biomarkers, 

which show homogeneity within one subgroup but difference in other subgroups, may help identifying 

subgroups of patients and reveal pathophysiological insights. 

DDtis samples can be divided into two subgroups based on substantial or limited AS of COL3A1, as 

shown in Figure 3-25. To quantify the difference of the effect on gene level, the total expression of all 

isoforms, which means COL3A1 gene expression, was examined. In DD subgroup 1 (DDtis 1, 6, 7 and 

5) with extensive AS, expression of COL3A1 was more than 10-fold higher than DD subgroup 2 

(10960 FPKM vs. 925 FPKM) (Figure 3-26A).  

The same classification of these two subgroups was determined using unsupervised hierarchical 

clustering of gene expression profiling, as previously showed in Figure 3-9A, suggesting a consistent 

molecular difference between subgroup 1 and 2. To capture the fundamental differences between two 

subgroups, I used Cuffdiff results to identify differentially expressed genes (DEGs) between two 

subgroups (defined as 1.5 fold change of gene expression, FDR adjusted q-value ≤ 0.05) (Figure 3-

26A).  
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Figure 3-26 The stratification of two subgroups of DD patients  

(A) COL3A1 expression was significantly increased in DD subgroup 1 compared to subgroup 2. 
Subgroup 1 was referred to 4 DDtis samples exhibited extensive COL3A1 AS 

(B) Gene expression profiles in DD subgroup 1, DD subgroup 2 and DDfat. 
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Then GO terms and pathway overrepresentation analysis using significant DEGs (478 genes) were 

conduced using Enrichr tool65. As shown in Table 3-12, the most significant overrepresented GO 

terms were the 'ECM organization', 'ECM structure organization and disassembly' and 'collagen fibril 

organization'. The majority of these genes exhibited higher expression in DD subgroup 1 compared to 

subgroup 2, suggesting increased ECM accumulation and enhanced ECM stiffness in DDtis samples 

in subgroup 1.  

Using Enrichr KEGG pathway analysis66, four pathways were overrepresented (Table 3-13) including 

'ECM-receptor interactions' (12 DEGs) and 'PI3-Akt Signaling pathway' (22DEGs). The 24 DEGs 

overlapped with 'Pathways in Cancer' include genes encoding protein in the TGFβ pathway (TGFβ2, 

TGFβ3 and LAMB1), Wnt pathway (WNT11, LEF1 and FZD4), transcription factors (CEBPA and 

RUNX1), cytokines (CDKN1 and CDKN2A), and fibroblast growth factors (FGF2 and FGF16). The 

'Protein Digestion and Abortion' pathway was only considered as associated but not functional in 

DDtis since all the 13 overlapped DEGs with this pathway are genes encoding ECM.  
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Table 3-12 Overrepresented GO biological processes in DD subgroup 1/subgroup 2 

 

 

Table 3-13 Overrepresented pathways in DD subgroup 1/subgroup 2 

  

GO  Biological Process Adjusted p-
value Z-score Combined 

score

1 extracellular matrix organization 1.0E-13 -2.4 71.2

2 extracellular structure organization 1.0E-13 -2.4 71.2

3 extracellular matrix disassembly 6.2E-09 -2.2 41.3

4 collagen fibril organization 5.2E-07 -2.5 36.6

5 multicellular organismal metabolic process 1.8E-06 -2.2 28.6

6 collagen metabolic process 2.0E-06 -2.2 28.4

7 multicellular organismal macromolecule metabolic process 4.1E-06 -2.2 27.1

8 collagen catabolic process 1.7E-05 -2.2 23.6

9 response to wounding 9.1E-05 -2.4 22.0

10 multicellular organismal catabolic process 3.6E-05 -2.2 22.0

KEGG pathway 2016 Overlap Adjusted p-value Z-score Combined score

Protein digestion and absorption 13 0.000 -1.72 14

ECM-receptor interactions 12 0.000 -1.68 14

Pathways in cancer 24 0.004 -2.03 11

PI3K-Akt signaling pathway 22 0.004 -2.02 11
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3.5 Integrative analysis combining exome and RNA-seq data 

3.5.1 The overlapping cohort for WES and RNA-seq design 

The 11 patients in RNA-seq cohort were also included in the WES study. RNA-seq on a larger sample 

size, for example RNA-seq for DDtis from the rest of 39 patients in WES study, was not conducted 

mainly owing to our stringent case-control sample collection criteria, such as a) matched age between 

case and control when samples were collected, b) the availability and the high quality of RNA from 

tissue samples and cells. Although the cohorts for RNA-seq and WES studies do not completely 

match, a comparison of both studies may provide insight to the true candidate genes and pathways.  

3.5.2 Functional candidate genes with genetic predisposition  

In the whole exome study, 12 genes carrying rare variants were identified as DD phenotype-related 

genes. To assess whether these genes have transcriptomic consequences, I examined the gene 

expression of these 12 genes in the RNA-seq gene expression data. As shown in Table 3-14, 8 of the 

12 candidate genes displayed significantly differential expression in at least one comparison group in 

tissue comparison (DDfat/CTtis, DDtis/DDfat and DDtis/CTtis) or cell comparison (DDcell/CTcell). The 

expression of 6 genes was significantly changed in more than two comparisons, suggesting functional 

roles of these genes in transcriptome. They are genes encoding collagen (COL7A1, COL11A1, 

COL5A1 and COL1A2), ROR2 (receptor tyrosine kinase-like orphan receptor 2  — a single-span 

transmembrane receptor regulating both canonical113,114 and noncanonical Wnt signaling 

pathway115,116), and FLNB (Filamin B). Besides increased gene expression, increased AS usage for 

COL1A2 was also identified in DDtis (Figure 3-24), suggesting COL1A2 as a functional candidate for 

DD.  

In summary, combining exome and RNA-seq data, 6 candidate genes carrying rare variants were 

suggested to play a functional role in DD transcriptome. These candidate genes are COL7A1, 

COL11A1, COL5A1, COL1A2, ROR2 and FLNB. 
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Table 3-14 Functional candidate genes with genetic predisposition   

 

  

Allternative	
splicing

Ch
r EvoTol

Phenolyze
r  (0.0001 -
5.7)

Gene 
burde
n

dbSNP138 Start End Ref Alt
Allele 
count Gene

DDfat
/CTtis

DDtis
/DDfa
t

DDtis
/CTtis

DDcell/
CTcell

9 9.28% 1.2 3 rs35852786 94487187 94487187 C T 3 ROR2 up up up
. 48608296 48608296 G A 1
rs139434755 48629340 48629340 G A 1
rs35623035 48630252 48630252 G A 2
rs139064549 103354135 103354135 G C 2
rs141978499 103544374 103544374 C G 1
. 94055143 94055143 G A 1
. 94057101 94057101 A C 1
rs41306397 137591755 137591755 C T 1
rs199735010 137694750 137694750 C T 1
rs368305377 137702117 137702117 C T 1
rs61739195 137708884 137708884 C T 1
. 58141747 58141747 T C 1
rs116826041 58145348 58145348 T C 1
rs149638325 58148895 58148895 C T 1
rs114260147 149359938 149359938 C G 1
rs104893915 149359991 149359991 C T 1
rs373336251 55240795 55240795 G A 1
rs201830126 55268023 55268023 G A 1
rs61756429 111608216 111608216 T A 1
rs115287852 111612783 111612783 T C 1
rs1801166 112175240 112175240 G C 1
rs141010008 112178781 112178781 C T 1

5 21.06% 1.2 2 rs17223632 141993631 141993631 C T 2 FGF1
. 37879585 37879585 A C 1
rs55943169 37884176 37884176 C A 1

17 15.02% 1.4 2

5 0.24% 1.2 2

ERBB2

APC

down

11 20.26% 1.4 2

7 10.76% 1.4 2

PPP2R1B

EGFR

down down down

up

3 0.04% 1.4 3

5 5.58% 3.6 2

FLNB

SLC26A2

COL7A1

7 0.27% 1.2 2 increase

9 3.48% 1.0 4

COL1A2 up up

up upCOL5A1

Gene annotation

Exome data RNAseq data

Rare variant annotation RNAseq Gene expression

1 0.32% 1.2 3

3 0.86% 1.3 4

COL11A1 up up up

up up up
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3.5.3 Shared overrepresented pathways in the exome and transcriptome data 

To further define the pathogenic contribution of the genetic-relevant pathways identified in the exome 

study, I compared the overrepresented pathways in the exome and transcriptome analysis. The 

common pathways were shown in Figure 3-27 with Bonferroni adjusted p-value (-log10 transformed) 

plotted (The blue boxes represent the significant pathway overrepresentation). 

Among the overlapped 5 pathways, the KEGG Hippo network was overrepresented in exome analysis 

(using 12 candidate genes) and transcriptome analysis of DD/DDfat and DDtis/CTtis. This suggests 

the genetic perturbation of this pathway might have a high penetrance leading to disturbed activity of 

this pathway in the development of disease tissue and its niche. 

Pathways specifically related to DDtis were also identified, which include the 'Focal Adhesion' and 

'PI3-Akt pathway'. Similarly, the 'Pathways in Cancer' was also associated with DDtis, which might 

suggest some common features shared by tumor and the localized benign tumor of DD (DD nodule 

tissue). However this pathway designated by KEGG involves more than ten pathways including the 

'Wnt signaling pathway', 'PI3K-Akt pathway' and 'ECM-receptor interactions' etc 

(http://www.kegg.jp/keggbin/highlight_pathway?scale=1.0&map=map05200&keyword=pathways%20i

n%20cancer). Therefore, the 'Pathways in Cancer' cannot be attributed as a specific functional 

candidate pathway in DD. In addition, genes overlapped with the 'Protein Digestion and Absorption 

pathway' are all ECM genes, which suggest this pathway is only relevant instead of functional.  

In sum, three pathways were suggested to be genetically and functionally overrepresented in DD, 

including the 'Hippo network' contributing to the niche environment, the 'Focal Adhesion' and the 'PI3-

Akt pathway' contributing to the DD phenotype development.  
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Figure 3-27 Overrepresented pathways shared in exome and transcriptome data 

A summary of common pathways overrepresented by exome candidate genes (12 genes) and DEGs in 
transcriptome data from 5 comparisons is shown. The DD subgroup feature represents the pathways 
enriched using DEGs between DD subgroup1 and DD subgroup 2. The intensity of the shading indicates 
the significance of the KEGG pathway overrepresentation using Enrichr analysis. All blue boxes have a 
Bonferroni p-value of <0.05, white boxes have a p-value of >0.05. The negative log10(Bonferroni p-
value) was used in the heatmap.  
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Chapter 4 Discussion   

DD is an aging-related common disease with a high degree of genetic predisposition. Identifying 

genetic components contributing to the disease etiology could greatly improve the pre-symptomatic 

diagnosis and treatment of the disease. Therefore, in this study, I designed three sets of experiments 

to identify genetic components in DD including: 

1) identification of functional variants contributing to a strong GWAS association signal using targeted 

NGS 

2) prioritization of DD phenotype-related genes carrying a mutational burden as revealed by whole 

exome sequencing (WES)  

3) characterization of the transcriptional deregulation in disease tissues/cells using RNA-seq.  

4.1 A candidate gene carries functional variants at the 7p14.1 GWAS locus 

In this study, we applied a 'risk haplotype block' strategy in which the risk allele of the top GWAS 

association lead (ranked by lowest p-value) haplotype block at 7p14.1 was determined by 

interrogating the tagging SNP rs16879765. Using targeted NGS in a discovery cohort (n=96) selected 

according to the 'risk haplotype block' information, we identified a rare deleterious coding variant, 

rs149095633 (C>T, p.P121L), and a common regulatory variant, rs2044831, both situated in EPDR1 

at 7p14.1. 

In the subsequent randomly selected, independent validation cohort, the rs149095633 minor allele T 

was 35-fold enriched compared to large European control populations, suggesting an association 

between the rare allele of rs149095633 and DD.  

The SNV rs149095633 (C>T) leads to an amino acid substitution from proline (CCC) to leucine (CTC) 

at position 121 (p.P121L) in the β-turn domain of EPDR1. Proline is a unique amino acid where the 

side chain is cyclized onto the backbone twice, forming a five-membered ring81. This unique feature 

makes proline unable to occupy many of the main-chain conformations which are easily adopted by all 

other amino acids81. Instead, proline is statistically preferred in β-turns because its cyclic structure is 

ideally suited for the tight β-turns, making it so-called β-proline117. Despite being aliphatic and 

preferred for β-turn structures, prolines are also found on the protein surface117. In contrast, leucine 

prefers to be buried in protein hydrophobic cores and it plays an important role in stabilizing α-

helices81. Therefore, it is likely that this P121L substitution disturbs the local β-turn structure, which 

might lead to a change of EPDR1 function or its intermolecular interactions.  
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Moreover, allele specific expression (ASE) analysis in DD cells suggests that the risk allele T of 

rs149095633 might lead to an increased expression of EPDR1. A higher expression of the DD risk 

allele C of rs2044831 was also observed in DD cells suggesting rs2044831 to be an eQTL for EPDR1. 

Notably, both variants were identified in the EPDR1 gene and related to EPDR1 expression, 

suggesting that EPDR1 is the right candidate gene at the risk locus 7p14.1 associated with DD. 

EPDR1 encodes Ependymin Related 1 Protein. An ortholog of EPDR1 was first identified in reticular 

shaped fibroblasts in brain extracellular fluid in zebrafish and reported to play a role in cell 

adhesion118. The DNA and protein sequence of EPDR1 is highly conserved among vertebrates119. Yet 

the precise function of human EPDR1 is unknown. Higher expression of EPDR1 was observed in 

colon cancer a long time ago hence EPDR1 is also known as UCC1 (Upregulated In Colorectal 

Cancer Gene 1)120. The high expression of EPDR1 was particularly linked to the stemness phenotype 

of colon cancer121 and high-risk myeloma122.  

A recent in vitro knockdown study revealed that decreased EPDR1 expression is associated to 

decreased cellular contractility of DD cells123. This suggests EPDR1 is involved in cell-matrix 

interactions in DD cells and expression of EPDR1 might regulate cellular contractility. Thus, abnormal 

EPDR1 overexpression is likely to increase the cellular contractile activity, which is a hallmark of DD 

cells. If EPDR1 indeed contributes to both cancer and DD etiology, a different or weaker effect of 

EPDR1 is expected in DD, as DD is defined as an aging related benign disease. In our data, the 

changes in ASE of both genetic variants (rs149095633 and rs2044831) observed in vitro may 

translate approximately into an increase of total EPDR1 expression of 1.1-fold in DD cells. Given that 

a 3 fold change in EPDR1 expression was sufficient to affect the contractile phenotype in vitro123, our 

data supports the notion that a modest life-long increase of EPDR1 expression may represent the 

molecular basis of an increased risk to develop DD. In vitro functional studies of the effect on EPDR1 

expression of both variants are to corroborate this hypothesis.  
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4.2 Functional candidate genes contributing to the DD phenotype 

Over the past few years, advances in NGS and its affordable pricing have accelerated genomic 

studies in complex diseases to systematically investigate genetic variants and involved genes using 

WES. RNA-seq data are helpful to reasonably interpret the functional elements of the genome and 

reveal the molecular mechanisms. Here we analyzed whole exomes of 50 DD patients using WES and 

whole transcriptomes in 11 of these patients using RNA-seq.  

Using a phenotype-driven strategy, 12 genes with rare variants were identified as DD phenotype-

related candidate genes. By EvolTol prediction, mutations in these genes are likely to be pathogenic in 

the palmar part of the hand. By incorporating RNA-seq data, 6 of the 12 candidate genes exhibited 

significant differential expression in more than two comparisons involving disease relevant 

tissues/cells (Table 3-14).  

Three genes exhibited a signature related to DDtis or DDcell, of which COL1A2 and COL5A1 showed 

increased expression in DDtis compared to either its matched DDfat or external control CTtis. A 

further gene, FLNB, displayed decreased expression in DDtis and DDcell compared to CTtis and 

CTcell, respectively. Another three genes (ROR2, COL7A1 and COL11A1) exhibited an upregulation 

in a pattern DDtis >DDfat >CTtis. This suggests not only a change of gene expression in the disease 

tissue (DDtis) but also in the niche of the disease tissue (DDfat) compared to healthy CTtis.  

Among the investigated four collagen genes, three (COL1A2, COL5A1 and COL11A1) encode fibril-

forming collagens (type I, V and XI), which function as the principal source of tensile strength in 

tissues124. COL7A1 encodes type VII collagen, the major component of the anchoring fibrils beneath 

the basal lamina which functions as an important adhesion molecule at the dermal-epidermal 

junction125. Overexpression of these collagen genes has been linked to various TGFβ-mediated 

fibrosis conditions126-131.  

Additionally, the altered expression of the other two genes, FLNB and ROR2, was also associated to 

tissue fibrosis. FLNB is an actin-binding protein, which regulates cytoskeleton-dependent cell 

proliferation, differentiation and migration132. A recent study has linked the absence of FLNB to 

increased activity of TGFβ signaling both in vitro and in vivo133. ROR2, a transmembrane protein134 

has been identified as an upregulated cell surface marker for human mesenchymal progenitor cells 

and it is suggested to play a role in cell proliferation and migration135.  Moreover, ROR2 

overexpression was also identified to result in a partially activated state for the Wnt/β-catenin signaling 

and an enhancement of downstream target genes following Wnt3a stimulation in renal cell carcinoma 

cells and HEK293T cells136. Therefore, in the DDfat/CTtis comparison, the increased expression of 

both ROR2 and 6 other genes, which are acting upstream of the Wnt/β-catenin signaling pathway136 

(shown in Figure 3-12A, described in session 3.3.4.1), suggests that the niche of disease tissue 

(DDfat) harbors a partially activated state of the canonical Wnt signaling pathway, which might be 

necessary for TGFβ-mediated fibrosis137 in DDtis. 
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Overall, two clusters of DD candidate genes seem to be related to either disease tissue or its niche. 

Deleterious variants in these genes are likely to affect their functions and to contribute to fibrosis in the 

palm.  
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4.3 The mechanisms involved in DD pathogenesis  

With the goal of finding genetic causes, linkage analysis in a pedigree138 and GWAS studies in DD 

cases and controls19,20 have been performed. As a result, we begin to better understand the genetic 

basis of DD. However, the contributions to DD of particular genetic variants and functional candidate 

genes are still elusive, which might be due to genetic heterogeneity. By GWAS analysis, six DD-

associated loci were identified which harbor genes involved in the Wnt pathway, suggesting that 

genetic variants of these genes belonging to this common pathway are responsible for DD. Recently, 

the development of RNA-seq transcriptome analysis provides an effective way to link genes and their 

products into functional pathways. Therefore, integrating the pathways overrepresented by genes 

carrying genetic variants with pathways affected in transcriptome analysis may help to identify the key 

mechanisms contributing to DD.  

In exome and transcriptome analyses, three common pathways (Hippo network, PI3K-Akt pathway 

and Focal Adhesion) were overrepresented (Figure 3-27), which supports the hypothesis that the 

genetic variants in critical functional pathways may affect pathogenesis in this disease.  

4.3.1 The Hippo network and the altered niche 

The role of adipose tissue around DD tissue had been largely ignored for a long time. In our DD study 

cohort, we constantly observed DD patients having a lean phenotype. This association was also 

independently observed in an epidemiology study of DD in an Icelandic population97, which supports a 

significant low adiposity association with male DD patients. Therefore, it is important to include the 

matched unaffected adipose tissue from DD patients (DDfat) and characterize the possible changes in 

gene expression and function.   

By comparing DDfat with healthy adipose tissue (CTtis), the KEGG Hippo network was suggested to 

be the most significantly perturbed pathway (Figure 3-12B). It represents a 'parent' network including 

the 'child' Hippo signaling pathway (also named as the YAP/TAZ pathway), the Wnt/ß-catenin 

signaling pathway and TGFß pathway (shown in Figure 3-12B). 

By perturbation analysis, YAP/TAZ and Mst1/2, the major effectors of the Hippo signaling pathway139, 

were predicted as accumulated and permanently activated. Recent studies have shown that YAP/TAZ 

can serve as important mechanosensors140 between cells and their microenvironment. 

Under in vivo conditions, cells are exposed to a signaling microenvironment including specific ECM, 

secreted proteins, growth factors and ions, resulting in a soft, topographically featured substrate. This 

microenvironment does not only control the biochemistry of the substrate, but also maintain the 

mechanical properties generated by the substrate. By definition, the mechanical properties indicate 

the elastic or inelastic behavior of a substrate under force, such as the stiffness (resistance to 

deformation), elongation and tensile strength141. The mechanical properties are critical for tissue 
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morphology and function but vary, depending on tissue types. For instance, adipose tissue has a 

stiffness of 2 kPasal (kPa)142 and muscles have more than 12 kPa143. During fibrosis, the tissue 

stiffness is highly increased. For example, during bleomycin-related lung injuries, the localized 

stiffness was increased 5-fold (from 3kPa to 15kPa)144.  

In the DD exome study, genetic rare variants were identified in two collagen genes (COL7A1, a 

anchoring fibril collagen gene and COL11A1, a fibril-forming collagen124 gene), which form fibril 

structures that increase ECM stiffness. In the following whole-transcriptome gene expression profiling 

studies, the expression of both genes was increased not only in DDtis/CTtis, but also in DDfat/CTtis 

comparisons (Table 3-12). This suggests that the tissue stiffness of both disease tissue (DDtis) and its 

niche (DDfat) is increased compared to healthy adipose tissue (CTtis). Recently, a significant 

correlation between increased adipose tissue stiffness and lower BMI was observed145. Taken 

together, we propose a first hypothesis according to which the stiffness of DD palmar fasia (DDfat) is 

likely to increase due to loss of subcutaneous fat (low BMI as a marker). 

Multiple studies have revealed that the increased stiffness of substrate can inhibit the Hippo signaling 

pathway and induce YAP/TAZ activity146.  Furthermore, the stiffness of substrate has been recently 

reported to promote adipocyte progenitors (with low cellular stiffness) to differentiate into fibroblasts 

(higher cellular stiffness), which positively feedback to further increase tissue stiffness147. This leads to 

a second hypothesis, which suggests an extensive source of fibroblasts in the early stage of DD.  

As RNA-seq only captures the transcriptome at a given time point, it is difficult to interpret whether the 

inactivation of the Hippo pathway and an increased YAP/TAZ activity is causal or a functional 

consequence. However, in the exome study, the KEGG Hippo network was one of the 

overrepresented pathways based on 12 candidate genes. This suggests a third hypothesis, according 

to which the genetic predisposition in the Hippo network component may lead to the altered YAP/TAZ 

activity in the niche adjacent to DD.   

Overall, in DDfat (the palmar adipose tissue surrounding DDtis), the Hippo pathway is suggested to be 

inactive, which leads to activation of YAP/TAZ effectors. Moreover, the increased expression of fibrillar 

collagen genes in DDfat may increase tissue stiffness, which further activate the YAP/TAZ pathway 

and might lead to adipocyte-fibroblast transition. In addition, a genetic burden on the Hippo network or 

collagen genes may enhance the activity of the YAP/TAZ pathway. 

4.3.2 Fibrosis signatures of DD 

The activation of YAP/TAZ is known to promote TGFβ production148,149. In the gene expression 

profiling analysis, TGFβ expression was highly increased in DDtis compared to DDfat or CTtis, which 

is in accordance with previous findings. TGFβ release induces fibroblast proliferation and 

myofibroblast transition12. Transition to myofibroblasts is characterized by α-SMA expression, high 

contractile activity and enhanced ECM deposition14. The extensive deposition of ECM increases the 
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tissue stiffness, which further amplifies the activity of the TGFβ pathway and eventually leads to 

fibrosis141.  

In this study, several signatures related to DD tissues were characterized including prominent ECM-

receptor interactions and fibrosis tissue-specific splicing. The enhanced ECM-receptor interactions are 

general features of fibrosis and have been associated with DD in other expression profiling studies33. 

However, we here provided for the first time a basic understanding of fibrosis-specific splicing 

signatures in DDtis.  

Alternative splicing (AS) is often regulated in a tissue-specific manner103. As a result, a gene 

undergoing AS can encode distinct protein isoforms involved in different biological processes in 

specific tissues150. The changes in AS have been linked to translation of aberrant proteins that can 

contribute to many diseases, such as Alzheimer's disease151,152, Parkinson's disease153, cystic 

fibrosis154 and cancer155,156. The effect of AS in DD has not yet been addressed. Therefore, taking 

advantage of RNA-seq's potential to detect AS, I adopted an isoform-fraction (IF) guided strategy to 

identify changes of AS in DDtis. 

First, DDtis displayed the highest use of AS compared to its matched internal control DDfat and CTtis. 

As a result, we found most of the genes to show AS, generating a large amount of differentially 

expressed isoforms between DDtis and two control tissue (DDfat or CTtis) in the Cuffdiff result.  

Second, a small set of 30 isoforms displayed isoform-switching events in DDtis (compared to either 

DDfat or CTtis), suggesting potential differential functions of the isoforms from the same gene or an 

altered regulation mechanism of AS. Genes exhibiting isoform switching in DDtis were found to be 

associated with fibrosis progression, such as acquired mesenchymal features (CD44v to CD44s157), 

cellular abnormalities (Increased isoform ratio of FBLN2-Δexon9158,159), and contraction and 

organization of stress fibers (increased TPM1-028160). 

Third, among all collagen genes, only COL1A2 and COL3A1 displayed extensive increase in the 

number of isoforms, the majority of which were generated by exon-skipping events. Both COL1A2 and 

COL3A1 are fibrillar proteins161, which provide tensile strength and stiffness to the ECM161. Distinct 

COL1A2/COL3A1 isoforms may lead to expression of protein isoforms with different structural and 

functional properties. Recently, AS of COL1A2 was associated with the malignancy of colon cancer 

progression162, in which ECM stiffness clearly plays a causative role to tumor formation and 

progression. Therefore, it is likely that increased AS and expression of the fibrillar collagen genes, 

COL1A2 and COL3A1 can contribute to the enhanced ECM stiffness and cellular growth in DDtis.   

Thus, the observed fibrosis tissue specific AS may not only represent a consequence of 

cellular/extracellular abnormalities in DDtis, but also underline the acquisition of a myofibroblast 

phenotype and contractile function163,164. 
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Moreover, in the expression profiling study, the GO term 'collagen fibril formation' and KEGG 'PI3K-Akt 

pathway' was constantly overrepresented when DDtis was compared to controls (DDfat and CTtis), 

suggesting increased ECM stiffness and activated PI3K-Akt as two specific features related to DDtis. 

Recent studies proposed that the PI3K-Akt pathway is a key regulator linking the ECM stiffness and 

AS changes165. Future experiments on possible effects of both ECM stiffness and the PI3K-AKT 

pathway on DD-specific AS are needed. 

Taken together, this study provides a first insight into altered AS and the possible physiological 

pathways involved in AS regulation in DD tissues.  
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4.4 Therapeutic potential  

The expression profiling study suggests an activation of the YAP/TAZ mechanotransduction pathway 

in DDfat and DDtis compared to CTtis, which is likely to contribute to the activation of adipo-

fibrogenesis and continuous induction of the TGFβ fibrosis pathway. YAP/TAZ pathway is considered 

as a reader of ECM stiffness. Recently Dupont et al. have proposed a promising strategy to inactivate 

YAP/TAZ activity by culturing cells on soft matrices, which limited YAP/TAZ activity in cells and 

reduced growth140. Therefore, targeting the YAP/TAZ pathway represents a promising mechano-

interference strategy to block the link between ECM stiffness and pro-fibro induction and prevent 

fibrosis progression. 

The AS analysis suggests a fibrosis-specific feature related to DD tissue. This immediately incites to 

explore the potential to target AS in DD tissues. Therapeutic strategies can be designed to target the 

DD specific isoforms (for example, the dominant CD44s isoform expressed in DDtis and DDfat), the 

splicing factor expression or to use antisense-mediated splicing modulation166.  

In addition, the distinct AS usage of COL3A1 and distinct expression profiling within DD samples 

supports the presence of DD subgroups (DD subgroup 1 and 2) in the DD cohort used for RNA-seq. 

Stratification of patients into more homogeneous subgroups, for example using COL3A1 AS pattern, 

are likely to improve therapeutic efficacy of certain pharmaceutical agents. For example, DD tissues in 

DD subgroup 1 exhibited enhanced COL3A1 AS usage. By GO term and pathway overrepresentation 

analysis on DEGs in DDtis from subgroup 1 compared to subgroup 2, increased ECM stiffness and 

overrepresented PI3-Akt signaling pathway were suggested. A recent study suggested that in the 

presence of cell contractility, the ECM stiffness could regulate AS via PI3K-AKT pathway165. If this 

mechanism proves to be true in DDtis, modulating PI3K-Akt activity using small molecules might 

represent an effective treatment of DD for DD subgroup 1 patients.   
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4.5 Concluding remarks and a model of DD development 

DD is a common complex disease with a major genetic component (~ 80%). Large pedigrees even 

suggest the existence of monogenic forms with an autosomal dominant mode of inheritance21. DD is 

typically observed in adults with a manifestation age of 55-6497. It is rarely seen in adolescents. The 

late-onset manifestation of DD suggests that the effects of genetic predispositions develop over 

time or interact with enviormental factors167. Consequently, it is difficult to ascertain the causal 

variants contributing to DD. Additionally, variant identification captures only one layer of the genomic 

features of DD. Thus there is a need to integrate genomic approaches to fully characterize the multi-

layered genomic features of the DD-associated traits. 

This study investigated the genetic architecture and molecular basis of DD at different levels 

including a GWAS locus, genome wide rare variants and candidate genes, gene expression and 

alternative splicing as well as pathways.  

First, as a follow-up of GWAS, targeted NGS of the most significant locus at 7p14.1 revealed two 

GWAS risk haplotype-related variants, a rare coding SNV and a common eQTL candidate, both 

in EPDR1. This suggests the observed association on the short arm of chromosome 7 may 

represent both rare and common variants in EPDR1, a verified functional candidate gene 

involved in ECM-receptor interactions, which contributes to the contractile phenotype of DD 

primary cells123. 

Second, by whole exome sequencing in combination with expression analysis, 6 functional 

candidate genes carrying rare variants were prioritized and they may represent genes underlying 

the genetic vunerability to develop DD.  

Third, by whole transcriptome analysis, the potential key mechanisms in DD pathogenesis were 

revealed, which included mechanotransdution pathways (in particular the Hippo signaling 

pathway) that provide a profibrotic microenvironment, followed by induction of major fibrogenic 

mediators (enhanced ECM-receptor interactions and alternative splicing) that induce fibroblasts to 

acquire a fibrotic phenotype and promote DD progression. In addition, common pathways were 

shared among different levels suggesting a genetic network involving interactions among the 

Hippo network (including the YAP/TAZ pathway, WNT/β-catenin pathway, TGFβ pathway), the 

PI3K-Akt pathway and ECM-receptor interactions.  

Taken together, here I proposed a preliminary model of DD development. The myofibroblasts in 

DDtis are potentially derived from the palmar fat tissue (DDfat). The adipocyte-fibroblast 

differentiation is first induced by the Hippo network to establish a profibrotic niche. The niche 

components further induce fibrotic factors (including enhanced ECM-receptor interactions and 

alternative splicing etc.) to mediate the fibroblast-myofibroblast transformation. The deregulated 

activity of myofibroblasts increases the ECM stiffness and and exert contractile forces on the 
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ECM. A mechano-feedback response between myofibroblasts and their stiff ECM is continuously 

mediated by increased ECM-receptor interactions, the YAP/TAZ pathway and PI3K-Akt pathway. 

Moreover, a genetic burden on the Hippo network or ECM genes can potentially increase the risk 

to develop DD. Overall, this study sheds light on likely mechanistic links between the genetic 

predisposition and the development of DD.  
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Figure 4-1 A preliminary model of DD development 

In the palmar adipose tissue, the Hippo network first activates the adipocyte-fibroblast differentiation to 
establish a profibrotic niche. Factors released by the niche further induce fibrotic mediators (enhanced 
ECM-receptor interactions and alternative splicing etc.), which lead to transformation of fibroblasts into 
myofibroblasts with prodigious fibrillar ECM accumulation and excessive cell contraction. A mechano-
feedback response between cells and their stiff ECM is mediated by enhanced ECM-receptor 
interactions, the YAP/TAZ pathway and PI3K-Akt pathway. A genetic predisposition in the Hippo network 
or ECM genes can increase the risk of developing DD.  
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