
 

 

Genetic and molecular mechanisms controlling 

flowering time of Arabidopsis thaliana in response 

to diverse environmental cues  

 

 

Inaugural - Dissertation 

zur 

Erlangung des Doktorgrades 

der Mathematisch-Naturwissenschaftlichen Fakultät 

der Universität zu Köln 

 

 

vorgelegt von 

 

Virginia Laura Fernández 

 

aus Hughes, Santa Fe, Argentinien 

 

 

 

Köln, Januar 2018





 

 

Berichterstatter:  Prof. Dr. George Coupland 

 Prof. Dr. Ute Höcker 

Prüfungsvorsitz: Prof. Dr. Maria Albani 

 

Tag der Disputation: 17. Januar 2017 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Die vorliegende Arbeit wurde am Max-Planck-Institut  

für Pflanzenzüchtungsforschung in Köln in der Abteilung für 

Entwicklungsbiologie der Pflanzen (Direktor Prof. Dr. G. Coupland) 

angefertigt. 

   





 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abstract





Abstract 

III 
 

Abstract 

As sessile organisms, plants have acquired the capacity to perceive and integrate a wide 

range of seasonal and environmental cues, and to respond to these signals by modulating 

their developmental programs. Seasonal signals detected by plants include changes in day-

length (photoperiod) and ambient temperature. Plants also respond to changes in light 

quality, such as variations in red:far red (R:FR) light ratio characteristic of crowded canopies.  

Plants detect changes in photoperiod to induce seasonal patterns of flowering. The 

photoperiodic pathway accelerates flowering of Arabidopsis thaliana (A. thaliana) under long 

days (LDs), whereas it is inactive under short days (SDs) resulting in delayed flowering. This 

delay is overcome by exposure of plants to high temperature (27 °C) under SD (27°C-SD). 

Previously, high temperature flowering response was proposed to involve either the impaired 

activity of MADS-box transcription factor floral repressors or PHYTOCHROME-

INTERACTING FACTOR 4 (PIF4) transcription factor mediated activation of FLOWERING 

LOCUS T (FT), which encodes the output signal of the photoperiodic pathway. Here, these 

observations were integrated by studying several PIFs, the MADS-box transcription factor 

SHORT VEGETATIVE PHASE (SVP) and the photoperiodic pathway under 27°C-SD. The 

results presented show that the mRNAs of FT and its paralogue TWIN SISTER OF FT (TSF) 

are increased at dusk under 27°C-SD compared to 21°C-SD, and that this requires PIF4 and 

PIF5 as well as CONSTANS (CO), a transcription factor that promotes flowering under LDs. 

The CO and PIF4 proteins are present at dusk under 27°C-SD and they physically interact. 

Although Col-0 plants flower at similar times under 27°C-SD and 21°C-LD the expression 

level of FT is approximately 10-fold higher under 21°C-LD, suggesting that responsiveness 

to FT is also increased under 27°C-SD, perhaps due to reduced activity of SVP in the 

meristem. Accordingly, only svp ft tsf triple plant plants flowered at the same time under 21°C-
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SD and 27°C-SD. Taken together, these results suggest that under non-inductive SDs, 

elevated temperatures increase the activity and sensitize the response to the photoperiod 

pathway.   

In addition to their role in warm ambient temperature, PIF transcription factors are important 

components of light signalling pathways. In particular, PIFs participate in the developmental 

changes associated with the shade avoidance syndrome (SAS). Under R light conditions, the 

active form of Phytochrome (Phy) photoreceptors interact with PIFs targeting them for 

degradation. Under shade conditions, the R:FR ratio is reduced and Phys phototransform to 

the inactive form. This Phy form no longer interacts with PIFs allowing their accumulation and 

the direct activation of target genes involved in developmental processes. Plants lacking 

functional PhyB show a phenotype that resembles the SAS. One characteristic of the SAS is 

the induction of flowering. Here, the early-flowering phenotype of phyB mutants is shown to 

be suppressed by mutations in PIF4 and PIF5. Furthermore, phyB mutants require functional 

CO and FT TSF to promote flowering. Experiments performed under simulated shade, 

however, demonstrated that PIF4 and PIF5 as well as PIF1, PIF3 and PIF7 do not play a role 

in the promotion of flowering by shade. In addition, these experiments reveal that photoperiod 

pathway components, such as GI, CO, FT and TSF are required for the induction of flowering 

under shade. 

The study of diverse signals regulating flowering demonstrated a role of photoperiod pathway 

components not only in the modulation of flowering in response to seasonal changes in day 

length, but also in the adjustment of the timing of flowering mediated by temperature and light 

quality signals. Thus, this thesis places CO as a pivotal component in the crosstalk between 

distinct seasonal and environmental signals orchestrating the regulation of flowering. 
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Zusammenfassung 

Als sessile Lebewesen haben Pflanzen die Fähigkeit erworben, eine Vielzahl von jahreszeit- 

und umweltabhängigen Signalen wahrzunehmen und ihr Entwicklungsprogram daran 

anzupassen. Jahreszeitlich schwankende Signale, die von Pflanzen wahrgenommen werden 

sind zum Beispiel Änderungen der Tageslänge (Photoperiode) und Umgebungstemperatur. 

Pflanzen reagieren außerdem auf Änderungen des Lichtspektrums, wie beispielsweise 

Veränderungen des Verhältnis von rotem zu fernrotem Licht (R:FR) wie man es unter einer 

Blaumkrone findet. Pflanzen erkennen Änderungen in der Photoperiode um die Blühinduktion 

saisonal zu regulieren. Der Photoperioden-Signalweg fördert die Blühinduktion in 

Arabidopsis thaliana (A. thaliana) im Langtag, wohingegen der Signalweg im Kurztag inaktiv 

ist und somit die Blühinduktion verspätet wird. Diese Verspätung der Blühinduktion wird 

umgangen, wenn die Pflanzen im Kurztag hohen Temperaturen (27 °C) ausgesetzt sind. 

Bisher wurde dieser Temperatureffekt auf die Blühinduktion auf die Beeinträchtigung der 

Aktivität von MADS-box Trankriptionsfaktoren, welche die Blühinduktion unterdrücken, oder 

auf die Aktivierung von FLOWERING LOCUS T (FT), dem Ausgangsfaktor des 

Photoperioden-Signalwegs, durch den PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) 

Transkriptionsfaktor zurückgeführt. 

In dieser Arbeit wurden diese Beobachtungen zueinander in Beziehung gesetzt. Dafür 

wurden verschiedene PIFs, der MADS-box Transkriptionsfaktor SHORT VEGETATIVE 

PHASE (SVP) und der Photoperioden-Signalweg bei 27°C untersucht. Die vorgestellten 

Ergebnisse zeigen, dass die Transkripte von FT und seinem Paralog TWIN SISTER OF FT 

(TSF) am Abend bei 27°C im Vergleich zu 21°C erhöht sind. Dies benötigt PIF4, PIF5 und 

CONSTANS (CO), einen Transkriptionsfaktor, welcher die Blühinduktion im Langtag fördert. 

CO und PIF4 Proteine akkumulieren am Abend bei 27°C und binden aneinander. Obwohl 
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Col-0 Pflanzen bei 27°C im Kurztag zur gleichen Zeit blühen wie bei 21°C im Langtag, ist FT 

im Langtag circa 10 mal höher exprimiert, was darauf hindeutet, dass die Sensitivität 

gegenüber FT bei 27°C erhöht ist, möglicherweise durch eine verminderte Aktivität von SVP 

im Meristem. Dementsprechend blühten lediglich svp ft tsf  Tripelmutanten zur selben Zeit 

bei 21°C im Kurztag und bei 27°C im Kurztag. Zusammenfassend suggerieren diese 

Ergebnisse, dass erhöhte Temperaturen im Kurztag die Aktivität und Sensitivität des 

Photoperioden-Signalweges erhöhen. 

Neben ihrer Rolle unter erhöhten Umgebungstemperaturen sind PIF Transkriptionsfaktoren 

auch wichtige Komponenten von Lichtsignalwegen. Besonders wichtig sind PIFs für die 

Schattenvermeidungsantwort. In rotem Licht interagiert die aktive Form des Phytochrom 

(Phy) Lichtrezeptors mit den PIFs und markiert sie für die Degradierung. Im Schatten ist das 

R:FR Verhältnis vermindert und die Phys wechseln in ihre inaktive Form. Diese Form 

interagiert nicht mit den PIFs wodurch diese akkumulieren und Zielgene, welche in 

Entwicklungsprozesse involviert sind, aktivieren. Pflanzen, die keinen funktionalen PhyB 

Lichtrezeptor besitzen, haben einen ähnlichen Phänotyp, wie Pflanzen welche die 

Schattenvermeidungsantwort zeigen. Ein Aspekt dieses Phänotyps ist die Blühinduktion. 

Hier wird gezeigt, dass dieser Phänotyp von phyB Mutanten durch die Mutation von PIF4 und 

PIF5 unterdrückt wird. Desweiteren benötigen phyB Mutanten funktionales CO, sowie FT 

TSF um die Blüte zu induzieren. Experimente, welche unter simuliertem Schatten 

durchgeführt wurden zeigten jedoch, dass PIF4 und PIF5 sowie PIF1, PIF3 und PIF7 keine 

Rolle in der Blühinduktion im Schatten spielen. Außerdem zeigen diese Experimente, dass 

andere Komponenten des Photoperioden-Signalweges, wie GI, CO, FT und TSF für die 

Blühinduktion im Schatten benötigt werden. 

Unsere Studie diverser Signale in der Regulation der Blühinduktion zeigte eine wichtige Rolle 

von Komponenten des Photoperioden-Signalwegs nicht nur in der Anpassung der 
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Blühantwort an jahreszeitliche Änderungen der Tageslänge sondern außerdem in der 

Anpassung des Blühzeitpunktes and an Änderungen der Umgebungstemperatur und des 

Lichtspektrums. Somit postuliert diese Arbeit eine entscheidende Rolle für CO in der 

Interaktion zwischen jahreszeit- und umweltabhängigen Signalen in der Blühinduktion. 
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1.1 Preamble 

Plants are sessile organisms that must adapt to highly variable environments. This is 

achieved potentially through a high degree of developmental plasticity, so that they sense 

and predict changes in their environment and modify their developmental programs 

accordingly. These environmental responses are both trait and resource specific, and vary 

among genotypes, populations and species. The environmental changes to which plants are 

exposed through their life cycle are mainly seasonal and involve variations in factors such as 

day length, light quality and ambient temperature and are subjected to the latitude and 

altitude in which they grow. 

One of the most plastic developmental adaptations to changing environment is the timing of 

flowering, which is the transition from vegetative to reproductive development. This 

developmental process contributes to the perpetuation of the species and is especially critical 

for monocarpic plants, as they flower only once in their life cycle (Amasino 2009). In an 

agricultural context, flowering time is crucial in determining the production of seeds and fruits 

in crop plants. Early flowering is of great value in some aspects of agriculture, as it allows 

shortening of seed production time in plants such as cereals or oil-seed crops and thereby 

allows the range of latitudes at which they can be productively grown to be extended. Delayed 

flowering can also enhance yield in forage plants like alfalfa and root or leaf crops like sugar 

beet and spinach (Jung and Muller 2009, Pin et al. 2010). 

Flowering time is significantly affected by the environmental conditions, as for example 

ambient temperature. Thus, the global climate change is predicted to dramatically affect the 

World plant production. Understanding the molecular basis of flowering in response to 

seasonal and environmental changes provides the means to breed for flowering time, 
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increasing the potential for genetic improvement to boost the plant adaptation to global 

climate changes, and to meet the needs of a growing human population.  

In natural environments, temperature varies tremendously among seasons and latitudes, 

having a remarkable effect on flowering time. The effect of temperature on flowering time is 

very well described for many plants species that require prolonged periods of cold 

(vernalization) in order to allow floral transition to occur (Amasino 2004, Kim and Sung 2014). 

Moreover, slight ambient temperature variations of around 5 °C have also dramatic effects in 

the timing of flowering (Verhage et al. 2014, Capovilla et al. 2015). Besides the effect in floral 

transition, ambient temperatures influence fertility and fruit ripening of essential species in 

agriculture, such as rice and tomato, respectively (Satake and Yoshida 1978, Adams et al. 

2001). Records of over the last 150 years have detected yearly increments of the ambient 

temperatures (Ellwood et al. 2013). According to the Intergovernmental Panel on Climate 

Change (IPCC) fourth assessment report (Kumar 2007), global average surface temperature 

increased by 0.74 ± 0.18 °C in the last century and an increase of further 1.1 – 6.0 °C is 

projected to occur in this century. The impact of climate change on plant phenology has been 

described in recent decades, highlighting a hastening of flowering phenology in response to 

increasing winter and spring temperatures (Chmielewski and Rotzer 2001, Gordo and Sanz 

2005, Menzel et al. 2006, Primack et al. 2009, Xiao et al. 2016). Elevated temperatures are 

known to affect the physiology of flowering plants in a number of ways, resulting in altered 

production of flowers, nectar, and pollen (Petanidou and Smets 1996, Saavedra et al. 2003, 

Koti et al. 2005). In addition to advancing many phenological events, climate warming is 

altering the distributions of both, plant and animal species (Hughes 2000). These alterations 

might compromise the interactions with herbivores, pollinators, and other ecological 

associates and lead to ecological mismatches (Parmesan 2006, Durant et al. 2007, Post and 

Forchhammer 2008, Both et al. 2009, Forrest and Thomson 2011). 
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Figure 1.1. Control of flowering time in A. thaliana. Flowering time is regulated in A. thaliana by molecular 

mechanisms that operate in the leaf (bottom panel) and in the shoot apex (top panel). In the leaf, the photoperiodic 

pathway is articulated by the circadian clock and the light signalling, mainly affecting the activity of GI and CO. 

Under LDs, CO is activated by light at the end of the day, when it directly induces the expression of FT by binding 

on its promoter. This regulation occurs in the companion cells where FT is also transcriptionally activated by the 

plant hormone GA (GA pathway). The ambient temperature pathway is mainly controlled by the opposite function 

of the transcription factors PIF4 and SVP. PIF4 binds the promoter of FT and induces its expression at warm 

temperatures (at least under SDs). On the other hand, warm temperatures inhibit the floral repressor activity of 

SVP allowing FT mRNA to be induced. Long exposure to cold treatments (vernalization pathway) and the 

autonomous pathway contributes to the transcriptional silencing of FLC, which subsequently releases its 

repression on FT. SVP and FLC can act as a complex to inhibit the expression of FT in the leaf (bottom panel) 

and SOC1 in the SAM (top panel). In the age pathway, a gradual reduction on the miR156 levels leads to the 

upregulation of the SPLs and the miR172. Increased levels of miR172 trigger the down-regulation of the AP2-like 
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genes expression (not shown) and the induction of FT mRNA. FT protein is transported to the shoot apex (top 

panel) where it interacts with bZIP transcription factors (e.g. FD) to activate the expression of the floral integrator 

SOC1 and the floral meristem identity genes LFY and AP1. These genes are also transcriptionally activated by 

the GA and the age pathway in the SAM. The transcriptional activation of LFY and AP1 defines the initiation of a 

series of genetic changes that ultimately lead to the floral transition. Adapted from Bouché et al. (2015). 

 

Variations in day-length (usually termed “photoperiod”) due to seasonal changes, especially 

in temperate and cool-temperate zones, can be perceived by plants to trigger developmental 

responses. In the North hemisphere, day-length is shortened during winter and prolonged in 

summer. These photoperiod fluctuation enables plants to flower under favourable day-length 

conditions whereas it represses flowering under less favourable day-lengths (Garner and 

Allard 1920). Plants that flower when day-length becomes longer than a certain critical length 

(usually in summer), are termed “long-day plants”. This group of plants includes the model 

plant species Arabidopsis thaliana (A. thaliana) and some crop plants such as wheat, barley 

and sugar beet. By contrast, “short-day plants” flower when the day is shorter than a critical 

length (usually in autumn) and these plants include rice and maize. Plants that flower 

independently of photoperiod are day-neutral plants, many cultivars of tomato and potato are 

examples of this group of plants (Garner and Allard 1920, Andres and Coupland 2012, 

Nakamichi 2015). Photoperiodism plays and important role in the natural distribution of the 

plant species. In general, short-day plants have been originated at low latitudes where 

temperatures are usually warm, while long-day plants are usually from high and relatively 

cold latitudes (Rayner 1969). Therefore, the local adaptation of plants to different 

environments has influenced their developmental behaviour and gave rise to distinct patterns 

of flowering response to photoperiod and temperature (Izawa 2007, Nakamichi 2015). 

In addition to photoperiod and temperature, flowering time is also influenced by the 

microenvironment where pants grow. In natural and agricultural ecosystems, plants are 
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exposed to the influence of neighbouring plants. In highly dense vegetation, light intensity 

perceived by an individual is reduced and its quality affected as a result of absorption and 

reflection of determined wavelengths by other plants in the vicinity. In crowded environments, 

light available for photosynthesis is limited, causing important losses in crop production. In 

order to avoid shading from other plants, individuals growing below a canopy activate specific 

developmental programs aiming to avoid the degree not only of current but also of future 

shade by overtopping the competitors or inducing flowering to ensure seed production. These 

developmental changes, initiated by variations in the proportion of the far-red (FR) light 

perceived, are collectively called shade avoidance syndrome (SAS) (Casal 2012, Martinez-

Garcia et al. 2014). 

Solar irradiance, temperature and photoperiod changes influence many aspects of plants 

development causing a wide phenotypic variability across latitudes (Stinchcombe et al. 2004, 

Hopkins et al. 2008). Flowering time variation in response to these environmental factors is 

the result of the activity of different genetic networks controlling flowering time in plants 

(Figure 1.1). These genetic pathways have been widely studied in A. thaliana (Andres and 

Coupland 2012). Even though mostly of the previous studies have focused on the regulation 

of flowering time by a single environmental factor (i.e. light and temperature), a strong 

interaction between genetic pathways related to distinct factors is predicted to control plant 

development in natural environments. 

 

1.2 Arabidopsis thaliana as a model plant 

Most of the current knowledge on plant flowering and development originated from studies in 

the model plant A. thaliana. This species has been used as a model since the early 1900s, 

but it became widely used by the scientific community in the 1980s and 1990s (Meyerowitz 
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1989). A thaliana is a particularly suitable model for genetic, cellular and molecular biology 

for several reasons. It has a small, diploid genome, of approximately 135 megabase pairs 

(Mbp), which was fully sequenced in the year 2000 (Arabidopsis Genome 2000), and is one 

of the smallest among flowering plants. It is a small plant, which makes it easy to cultivate in 

reduced spaces, and has a rapid lifecycle, taking about six weeks from germination to mature 

seeds, which accelerates genetic approaches. It is easy to make transgenic lines by “floral-

dip”, a technique that involves dipping of the flowers in a solution of Agrobacterium 

tumefaciens (A. tumefaciens) (Clough and Bent 1998). This method contributed to elucidate 

the function of many genes in A. thaliana. Indeed, it facilitated the rapid generation of a vast 

collection of A. thaliana T-DNA insertion alleles that has extensively been used for reverse 

genetic studies (Alonso et al. 2003). Recently, these methods have been supplemented by 

new generation genome editing techniques, and especially those based on the 

CRISPR/Cas9 system (Jinek et al. 2012) have shown an extraordinary proliferation during 

the last years (Feng et al. 2013, Feng et al. 2014, Hyun et al. 2015). Moreover, a powerful 

Genome Wide Association (GWAS) platform is currently being generated and constantly 

improved by the 1001 Genomes Consortium. In this consortium, a database containing the 

genome sequence of over 1,000 A. thaliana accessions from a worldwide hierarchical 

collection is being created with the main motivation to provide insights into the genetic basis 

of natural variation (Genomes Consortium. Electronic address and Genomes 2016).  

Studies in A. thaliana have enabled many fundamental and technical advances in plant 

sciences (Provart et al. 2016). Also in areas such as flowering control that are important in 

crops, many efforts have also been made to transfer the basic knowledge acquired in the 

model plant to economically important crop species, where the study of this trait is frequently 

tedious. Partly thanks to the high degree of conservation between flowering plants in distinct 

plant species, the knowledge acquired in A. thaliana has been of great value to reveal the 
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mechanism controlling flowering time in herbaceous species such as rice, wheat, barley, 

maize, tomato and sugar beet as well as trees, such as, poplar, apple and citrus (Jung and 

Muller 2009, Andres and Coupland 2012, van Nocker and Gardiner 2014, Song et al. 2015).  

Thus, the use of A. thaliana in basic research not only has generated a broad knowledge 

about how flowering time is controlled in plants, but also has provided the means to better 

understand this process in non-model systems. 

 

1.3 Genetic bases of flowering time regulation in A. thaliana: a brief historical 

perspective 

Classic genetic studies performed in A. thaliana have resulted in the identification of several 

mutants displaying altered flowering time behaviour. These mutants were classified into 

distinct genetic groups depending on their response to light (photoperiod and quality), 

temperature and plat hormone treatments (Figure 1.1). In terms of photoperiod, flowering is 

promoted in A. thaliana under long days (LDs) of spring or summer whereas under short days 

(SDs) of autumn and winter it is repressed. Mutants impaired in the photoperiodic flowering 

response were first reported in 1962 (Redei 1962). Among them, the causal genes of three 

mutants showing late flowering under LDs were mapped at in the CONSTANS (CO) and 

GIGANTEA (GI) loci (Redei 1962). In 1991, these two loci were classified into the same 

epistatic group known as the photoperiodic flowering pathway, together with FLOWERING 

LOCUS T (FT) (Koornneef et al. 1991). In this pioneer large-scale genetic screen, Koornneef 

and collaborators (Koornneef et al. 1991) analysed over forty independently induced A. 

thaliana mutants showing late flowering under LDs. These mutants were found to represent 

mutations at eleven loci, which based on recombination of mutant at different loci and the 

differential response to environmental factors, were placed in three different epistatic groups 
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i.e. photoperiodic, vernalization and autonomous pathway (Koornneef et al. 1991). 

Vernalization and autonomous mutants were isolated because of their differential response 

to vernalization treatment (Martinez-Zapater and Somerville 1990, Koornneef et al. 1991, 

Chandler and Dean 1994). Mutants in the autonomous pathway, including luminidependens 

(ld), fca, fve, fy and fpa, flowered later than wild-type (WT) controls irrespective of the day-

length conditions (Martinez-Zapater and Somerville 1990, Koornneef et al. 1991). 

Characteristically, these mutants exhibited a very marked suppression of late flowering when 

subjected to vernalization (Martinez-Zapater and Somerville 1990, Koornneef et al. 1991). 

Genes involved in the vernalization pathway were first genetically identified by Napp-Zinn at 

the University of Cologne (Napp-Zinn 1957, Koornneef 2013). Later genetic analyses 

demonstrated that this pathway is mainly controlled by the interaction between the two major 

loci FRIGIDA (FRI) and FLOWERING LOCUS C (FLC) (Napp-Zinn 1979, Clarke and Dean 

1994, Koornneef et al. 1994). Importantly, allelic variation of these two genes was found to 

explain a large part of the natural variation in flowering time encounter in A. thaliana ecotypes 

(Clarke and Dean 1994, Levy and Dean 1998). 

Floral transition in A. thaliana is also regulated by endogenous factors including levels of the 

phytohormones gibberellins (GAs). Early studies showed that A. thaliana plants grown under 

SDs accelerate flowering upon GA treatment (Zeevaart 1983). Several other studies 

demonstrated that mutants affected in GA biosynthesis (eg. gai1-3) flower late under SDs, 

suggesting that GA levels are essential for flowering under non-inductive photoperiodic 

conditions (Wilson et al. 1992).  

Early genetic studies reported the identification of dozens of loci involved in flowering time. 

Physiological and epistatic analysis revealed the existence of at least three distinct flowering 

time pathways: photoperiod, vernalization-autonomous and gibberellin pathways (Koornneef 

et al. 1991, Reeves and Coupland 2001). More recently, genetic and molecular analyses of 
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mutants in response to ambient temperature (15°C - 27°C) suggested the existence of a 

thermosensory pathway, which in part is controlled by the autonomous pathway-related 

genes FCA and FVE (Blazquez et al. 2003). This information was complemented by 

molecular studies that pointed to the transcription factors SHORT VEGETATIVE PHASE 

(SVP) and PHYTOCHROME INTERACTING FACTOR 4 (PIF4) as main modulators of 

flowering time in response to warm temperatures (Lee et al. 2007, Kumar et al. 2012, Lee et 

al. 2013, Pose et al. 2013, Verhage et al. 2014, Capovilla et al. 2015). In addition, the 

existence of a pathway that ensures plants eventually flower under non-inductive conditions 

was recently identified (Schwab et al. 2005, Wu and Poethig 2006, Schwarz et al. 2008, 

Wang et al. 2009, Jung et al. 2011, Yamaguchi and Abe 2012, Zhou and Wang 2013). This 

pathway, named the “age” pathway, relies on the developmental decline of the micro-

RNA156 (miR156) and the control of its targets SQUAMOSA PROMOTER BINDING-LIKE 

(SPL) transcription factors, which mainly function as floral activators (Wu and Poethig 2006, 

Wang et al. 2009, Yamaguchi et al. 2009, Wang 2014). 

Thus, during the last decades, knowledge in plant development has increased tremendously 

thanks to the constant advances in new technologies and the concerted effort of plant 

scientist from different laboratories around the world. In particular, pathways governing 

flowering time regulation have been described in detail, although how they interact to 

modulate plant development in response to environmental changes still remain poorly 

explored. 

 

1.4 Regulation of flowering time in response to day-length 

Day length is one of the most widely used cues that regulate flowering time (Garner and 

Allard 1920). It provides precise seasonal information allowing plants to anticipate changes 
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in their environment and to distinguish between LDs of spring or summer and SDs of autumn 

or winter. A. thaliana flowers rapidly under LDs, when the ambient conditions are suitable for 

seed production, and late under SDs, when conditions are hostile for growth (Jung and Muller 

2009). Differences in day length are detected in the leaves and its effect is mediated by 

several proteins that together form the photoperiodic flowering pathway (Figure 1.2). At the 

core of this pathway is the transcription factor encoded by CO (Putterill et al. 1995). CO 

encodes for a 373 amino acids-long protein consisting of two zinc binding B-Box motifs and 

a CO, CO-like, TIMING OF CAB2 EXPRESSION 1 (TOC1) (CCT) domain, which contains 

nuclear localization signals and a DNA-binding motif (Putterill et al. 1995, Robson et al. 2001, 

Tiwari et al. 2010). Mutations in either the B-Box or CCT domains were shown to impair CO 

protein function, as these domains are essential for interaction with other proteins and binding 

to DNA (Robson et al. 2001). CO mRNA is expressed in the phloem companion cells of the 

leaves where it activates the transcription of FT and its closest homolog TWIN SISTER OF 

FT (TSF), two positive regulators of flowering (Putterill et al. 1995, Suarez-Lopez et al. 2001, 

An et al. 2004, Yamaguchi et al. 2005). FT encodes for a small protein of 20 kDa that shares 

homology with animal phosphatidylethanolamine-binding proteins, also called RAF kinase 

inhibitor proteins (Kardailsky et al. 1999, Kobayashi et al. 1999). In plants FT belongs to the 

CETS protein family, which is named after the three founding members CENTRORADIALIS 

(CEN), TERMINAL FLOWER 1 (TFL1) and FT (Pnueli et al. 2001). Once FT mRNA is 

expressed in the leaves, its small protein product moves though the phloem to the shoot 

apex, where it causes changes in genes expression that reprogram the shoot apical meristem 

(SAM) to form flowers instead of leaves (Corbesier et al. 2007, Jaeger and Wigge 2007, 

Mathieu et al. 2007, Tamaki et al. 2007). 

Thus, CO and FT are two positive regulators of flowering time in A. thaliana that have been 

place at the core of the photoperiodic pathway. In this pathway, they act subsequently to 



Introduction 

13 
 

decode and transmit seasonal signals that reprogram the SAM in order to determine precise 

flowering time. The proper coordination of this process is ensured in part through the 

transcriptional and post-translational regulation of CO (Suarez-Lopez et al. 2001, Valverde 

et al. 2004, Wigge et al. 2005, Corbesier et al. 2007, Torti et al. 2012). 

 

1.4.1 Transcriptional regulation of CO 

CO is transcriptionally regulated and this regulation is directed by the circadian clock (Suarez-

Lopez et al. 2001), the endogenous timer with a cycle time of approximately 24 h (Dunlap 

1998, McClung 2006, de Montaigu et al. 2010). A. thaliana as well as other species such as 

wheat, barley and rice, measure the differences in photoperiod by mechanisms that involve 

the interactions between circadian clock and light signalling (Fjellheim et al. 2014). These 

mechanisms have been explained by two models. The external coincidence model explains 

that photoperiodic responses are triggered when a circadian clock-regulated gene is 

expressed at certain level in the precise time window that favours the activation of its protein 

product by light (Pittendrigh 1964, Song et al. 2010, Andres and Coupland 2012, Song et al. 

2015). The internal coincidence model also explains the mechanism underlying 

photoperiodism. In this model, induction of a photoperiodic response occurs only when two 

(or more) regulators, which have differently entrained expression rhythms depending on day 

length, show the same phase (Pittendrigh 1960, Pittendrigh 1966, Sawa et al. 2008). Under 

constant conditions, CO mRNA levels oscillate with a period of 24 h (Suarez-Lopez et al. 

2001), but show different expression patterns under LDs and SDs. Under SDs CO mRNA 

accumulates only during the night. Under LDs, an additional peak of CO mRNA is detected 

during the day, around 12 – 16 h after dawn, when plants are still exposed to light (Figure 

1.2) (Suarez-Lopez et al. 2001). The expression of CO mRNA at this time of the day is 
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essential to ensure the light-activation of CO protein and the promotion of flowering under 

LDs (see below) (Valverde et al. 2004). This mechanism of photoperiodic control of flowering 

is well explained by the model of external coincidence (Imaizumi et al. 2003, Sawa et al. 

2007).  

 

Figure1.2. Photoperiodic regulation of flowering in A. thaliana. CCA1 and PRR5 mRNA abundance oscillate 

throughout the day, both under LDs and SDs. CCA1 mRNA is high in the early morning (top panel). Its protein 

product and LHY, its homolog, bind to promoters of PPR5, GI and FKF1 to repress their expression during the 

morning. PRR5 protein regulates the transcription of CCA1 to constitute a feedback loop between morning and 

evening clock components. CDF1 expression is induced in the morning by CCA1 and LHY. In the afternoon, CDF 
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transcription is repressed by PRRs. Under LDs the protein expression profiles of GI and FKF1 synchronize in the 

afternoon (right panel). Blue light-mediated activation of FKF1 enables the formation of the FKF1-GI ubiquitin 

ligase complex. This complex recognizes and mediates the degradation of CDFs proteins. This degradation 

alleviates the repression of CO transcription by CDFs. Once this repression is relieved, it allows the binding of 

FBH proteins to the CO promoter and the activation of its transcription. In contrast, under SD conditions the FKF1 

and GI protein expression are out-of-phase and the formation of the FKF1-GI complex is significantly reduced 

(left panel). Under these conditions, CO mRNA remains low during the day and only peaks at night. CO protein 

is accumulated only in the late afternoon and its stability is regulated by several factors (central cartoon). COP1-

SPA ubiquitin ligase and HOS1 directly bind to and degrade the protein. PhyB is also involved in the degradation 

of CO. The function of PhyB in this regulation is counteracted by PHL, which interacts with both CO and PhyB 

under red light. During the night under both LDs and SDs CO is actively degraded by the COP1-SPA complex. 

By contrast, the photoreceptors PhyA, CRY2 and FKF1 stabilize CO during the day. Blue light-stimulated CRY2 

interacts with COP1 and SPAs leading to the accumulation of CO protein by suppression of the COP1-SPA 

complex activity. Blue-light activated FKF1 interacts with CO and promotes the stabilization of the protein in the 

late afternoon under LDs. FT transcription is regulated by several factors throughout the day. In the morning FT 

transcription is directly repressed by CDFs. CO directly regulated FT transcription at dusk by binding to the CORE 

element in its promoter as well as by interactions with other FT regulators, such as NF-Y. NF-Ys bind to CCAAT-

box regions located approximately at 2 kb and 5.3 kb of the transcription start site (TSS) of the FT gene. These 

interactions promote the formation of a DNA loop whose timing shows diurnal oscillations under LDs. CIB proteins, 

which interact with CRY2 under blue light, also bind to E-box located near the TSS in the FT promoter, participating 

in the regulation of FT transcription. Thus, the strong activation of FT transcription at dusk under LDs promotes 

de transition from vegetative to reproductive development. Arrows and block lines denote activation and 

repression respectively. Clock symbol indicates circadian clock regulation. Blue, red and dark red flashes denote 

blue, red and far red light. Adapted from Song et al. (2015). 

 

The restriction of CO activity to the late afternoon under LDs to ensure proper FT induction 

is achieved by both circadian clock regulation of CO transcription and photoreceptor 

regulation of CO protein abundance (Figure 1.2). The transcriptional pattern of CO is 

conferred by genes that act upstream in the photoperiodic pathway and include CYCLING 

DOF FACTORs (CDFs), GI, FLAVIN-BINDING, KELCH REPEAT, F-BOX 1 (FKF1) and its 

homologs ZEITLUPE (ZTL) and LOV KELCH PROTEIN 2 (LKP2). The transcriptional 

patterns of several of these genes are also regulated by the circadian clock (Fowler et al. 

1999, Park et al. 1999, Imaizumi et al. 2003, Imaizumi et al. 2005, Fornara et al. 2009, Baudry 
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et al. 2010). GI mRNA encodes for a plant specific protein of unknown function that 

accumulates during the day under LDs with highest abundance 12 h after dawn (David et al. 

2006). GI activates CO transcription by interacting with and stabilizing the F-box ubiquitin 

ligase FKF1 (Imaizumi et al. 2005). FKF1 protein has a similar temporal expression pattern 

to GI, peaking 12 h after dawn under LDs. The interaction between GI and FKF1 only occurs 

in the presence of blue (B) light, when FKF1 protein is activated. Thus, the GI-FKF1 complex 

formation is maximized by the internal coincidence of their protein peaks under LDs and the 

activation of FKF1 by B light (external coincidence). Once activated, together with GI, FKF1 

recognizes CDF protein family members and mediates their ubiquitin-dependent 

degradation. This degradation releases the repression of the CO promoter by CDF 

transcription factors (Imaizumi et al. 2005, Sawa et al. 2007), leading to the upregulation of 

CO mRNA around 12 h after dawn only under LDs (Suarez-Lopez et al. 2001, Song et al. 

2015). ZTL and LKP2, which are closely related proteins to FKF1, also interact with GI and 

contribute to the removal of CO transcriptional repression (Kim et al. 2007, Fornara et al. 

2009). Thus, the transcriptional repression of CO occurs in the morning when CDFs are 

expressed, but is relieved by the degradation of CDFs towards the late afternoon under LDs, 

when plants are exposed to light. The small ubiquitin-related modifier (SUMO)–targeted 

ubiquitin ligase (STUbL) also plays a role in CDF degradation by targeting SUMOylated CDF 

for degradation (Budhiraja et al. 2009, Elrouby et al. 2013). Under SDs, FKF1 is mainly 

expressed at night and GI and FKF1 proteins are out of phase. Therefore the formation of 

the GI-FKF1 complex is reduced, disfavouring the degradation of CDFs and de-repression of 

CO mRNA (Sawa et al. 2007). As a consequence, CO mRNA expression remains low during 

the day and increases during the night under SDs. Another group of transcription factors 

belonging to the basic helix-loop-helix (bHLH) family called FLOWERING BHLH (FBH) and 

composed by four members (FBH1-4) were recently reported to regulate the amplitude of 
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daily CO mRNA oscillation (Ito et al. 2012). Hence, the daily pattern of CO mRNA is tightly 

regulated by several transcription factors that are mostly under control of the circadian clock. 

In this context, the modulation of the CO expression by the FKF1-GI complex-mediated 

control of CDFs transcription factors is another example of a regulatory mechanism nicely 

explained by the external and internal coincidence models. 

 

1.4.2 Post translational regulation of CO 

CO protein is subjected to posttranslational regulation and interacts with many proteins during 

a period of 24 h which shape the daily pattern of CO accumulation and ultimately define the 

outcome of the photoperiodic regulation of flowering (Figure 1.2). During the night, CO mRNA 

expression is high under LDs and SDs, however CO protein accumulation is prevented at 

this time by the action of a complex containing CONSTITUTIVE PHOTOMORPHOGENIC 1 

(COP1) and SUPPRESSOR OF PHYTOCHROME A (SPA) (Hoecker et al. 1999, Hoecker 

and Quail 2001, Valverde et al. 2004, Laubinger et al. 2006, Jang et al. 2008, Liu et al. 2008b, 

Zuo et al. 2011). COP1 is a single-copy gene, while SPA proteins are encoded by a family of 

four partially redundant genes (SPA1–SPA4) (Laubinger et al. 2004, Laubinger et al. 2006). 

The COP1/SPA complex is a Cullin4-based E3 ubiquitin ligase that catalyses the 

ubiquitination of CO protein and facilitates its degradation by the 26S proteasome (Laubinger 

et al. 2006, Jang et al. 2008, Liu et al. 2008b). Additionally, CO protein is subjected to 

phosphorylation and concomitant degradation, preferentially during the dark, in a COP1-

dependent manner (Sarid-Krebs et al. 2015). This dark-dependent degradation of CO is 

particularly important for preventing flowering under SDs.  

Exposure to light inactivates the COP1/SPA complex (Balcerowicz et al. 2011), thus only the 

peak of CO mRNA that occurs in the light at the end of a LD leads to CO protein accumulation 
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(Valverde et al. 2004). The stabilization of CO protein at the end of the LD relies on the direct 

interaction of COP1 and SPA with CRYPTOCHROME 2 (CRY2), a B light photoreceptor that 

inactivates the COP1/SPA complex (Liu et al. 2008b, Lian et al. 2011, Liu et al. 2011, Zuo et 

al. 2011). This complex is also inhibited by activated PHYTOCHROME A (PhyA), a red 

(R)/FR light photoreceptor (Sheerin et al. 2015). The exclusive stability of CO protein during 

the late afternoon under LDs cannot be explained only by the effect of CRY2 and PhyA as 

they are expressed throughout the day. In presence of B light, the FKF1 protein, which has 

a diurnal rhythm of abundance in LDs similar to that of CO, interacts with CO protein through 

its LOV (light, oxygen, or voltage) domain increasing its stability in the long-day afternoon 

(Imaizumi et al. 2003, Valverde et al. 2004, Song et al. 2012b).  

The E3 ubiquitin ligase, HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE 1 

(HOS1) and PhyB, a R/FR light photoreceptor, promote the COP1-independent CO protein 

degradation early in the morning (Valverde et al. 2004, Lazaro et al. 2012). HOS1 interacts 

directly with CO and contributes to the control of CO protein abundance, promoting the 

degradation of CO in a proteasome-dependent manner (Lazaro et al. 2012). The molecular 

mechanism by which PhyB destabilizes CO protein remains unclear. Recent evidence show 

that PhyB-dependent degradation of CO is counteracted in the afternoon by direct interaction 

of PHYTOCHROME-DEPENDENT LATE-FLOWERING (PHL) with both PhyB and CO, 

presumably contributing to the accumulation of CO protein at this time of the day (Endo et al. 

2013).  

In summary, two layers of regulation are acting simultaneously in the leaves in order to 

modulate the abundance and activity of CO protein. As a result of this complex transcriptional 

and posttranslational regulation, CO protein accumulates only under LDs, activating FT 

mRNA expression in the leaves (Figure 1.2) (Suarez-Lopez et al. 2001, Valverde et al. 2004, 

Song et al. 2015). Subsequently, FT protein acts as a signalling molecule that is transported 
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through the phloem to the SAM where it activates flowering (Figure 1.1) (Corbesier et al. 

2007, Jaeger and Wigge 2007, Mathieu et al. 2007, Tamaki et al. 2007).  

 

1.4.3 Photoperiodic regulation of flowering induction in the SAM 

Under LD conditions, when CO protein is stabilized by light, it directly binds to the CO-

responsive element (CORE) in the FT promoter through its CCT domain and activates its 

transcription (Kobayashi et al. 1999, Samach et al. 2000, Wigge et al. 2005, Tiwari et al. 

2010, Song et al. 2012b, Zhang et al. 2015). The recruitment of CO to CORE elements 

proximal to the transcriptional start site of the FT promoter is assisted by NUCLEAR FACTOR 

Y (NF-Y) complexes which bind to CCAAT box in the distal enhancer element of the promoter 

(Figure 1.2) (Wenkel et al. 2006, Adrian et al. 2010, Cao et al. 2014). The transcriptional 

activation of FT in the phloem companion cells of leaves is followed by transport of its protein 

to the shoot apex (Yamaguchi et al. 2005, Corbesier et al. 2007, Jaeger and Wigge 2007, 

Mathieu et al. 2007). Upon arrival of FT protein to the meristem, it is believed to interact with 

14-3-3 proteins and the bZIP transcription factors FD and FD PARALOG (FDP) (Abe et al. 

2005, Wigge et al. 2005, Taoka et al. 2011) causing transcriptional reprogramming of the 

shoot meristem and activation of downstream genes such as SUPPRESSOR OF 

OVEREXPRESSION OF CONSTANS 1 (SOC1), FRUITFULL (FUL), APETALA 1 (AP1) and 

LEAFY (LFY) (Figure 1.1) (Schmid et al. 2003b, Abe et al. 2005, Wigge et al. 2005, Yoo et 

al. 2005, Searle et al. 2006, Torti et al. 2012). Activation of these genes leads to the formation 

of an inflorescence meristem and to the production of flowers. Thus, a suggested role for FT 

is to form part of molecular complexes that activate floral promoter genes in the SAM (Wigge 

et al. 2005, Andres and Coupland 2012). Additionally, the function of FT has been related to 

lipids. FT specifically binds in vitro to phosphatidylcholine (PC), a phospholipid that promotes 
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flowering when it is highly accumulated in the SAM (Nakamura et al. 2014). Therefore, the 

binding of FT to PC, and in particular to PC species that are more abundant during the day, 

might constitute a novel molecular mechanism of flowering control in the SAM mediated by 

the FT-signalling pathway (Nakamura et al. 2014, Romera-Branchat et al. 2014). 

SOC1 encodes for a MADS-box transcription factor expressed early during floral induction in 

the shoot apical meristem (Borner et al. 2000, Lee et al. 2000, Samach et al. 2000). Loss of 

function mutants of SOC1 strongly delay flowering under LDs and SDs, indicating that SOC1 

is not only involved in the regulation of flowering mediated by photoperiod, but it also 

participates in other genetic pathways (Borner et al. 2000, Lee et al. 2000, Samach et al. 

2000, Lee and Lee 2010). FUL encodes for another MADS-box transcription factor whose 

transcriptional activation also depends on FT and is genetically redundant with SOC1 

(Schmid et al. 2003b, Teper-Bamnolker and Samach 2005). Loss of function mutations of 

FUL slightly delay flowering under LDs, however, when combined with soc1 mutation, these 

plants flower later than each single mutant and present a strongly attenuated response to FT 

overexpression (Ferrandiz et al. 2000, Melzer et al. 2008, Torti et al. 2012). The late flowering 

phenotype observed in the soc1 ful double mutant demonstrates that these two genes are 

essential components of the photoperiodic pathway. Once expressed in the meristem, SOC1 

forms heterodimers with AGAMOUS-LIKE 24 (AGL24), another MADS-Box transcription 

factor and floral regulator, and promotes the transcriptional activation of LFY (Michaels et al. 

2003, Lee et al. 2008). LFY, together with AP1, another MADS-Box transcription factor, are 

the main meristem identity regulators and link floral induction with floral development (Yu et 

al. 2002, Michaels et al. 2003, Lee et al. 2008, Siriwardana and Lamb 2012). Thus, this 

photoperiod activation of SOC1 and FUL transcription in the SAM is one of the earliest steps 

of a series of signalling cascades that trigger the flowering initiation in A. thaliana. 
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The LD-promotion of flowering is also modulated by a set of floral repressors that regulate 

the transcription of floral integrators in the leaf and in the SAM. Among them, the two MADS-

Box transcription factors encoded by SVP and FLOWERING LOCUS C (FLC) play a crucial 

role in this process (Michaels and Amasino 1999, Sheldon et al. 1999, Hartmann et al. 2000). 

Genetic and genome-wide analyses of these two genes revealed that they control flowering 

time and reproductive development through the repression of multiple genes and genetic 

pathways. Recent studies demonstrated that SVP modulates the transcriptional expression 

of genes involved in the photoperiodic pathway. Interestingly, this modulation occurs at 

different plant positions as SVP directly represses the transcription of FT in the leaf and SOC1 

in the shoot apex (Lee et al. 2007, Li et al. 2008, Jang et al. 2009). A more recent study 

showed that SVP also regulates the floral transition by reducing GA levels at the shoot apex 

through repression of GA20ox2 transcription, a gene encoding a key enzyme required for GA 

biosynthesis (Andres et al. 2014). TSF transcription is also negatively regulated in the phloem 

by SVP, but there is no evidence so far of a direct regulation (Hepworth et al. 2002, Searle 

et al. 2006, Lee et al. 2007, Li et al. 2008, Jang et al. 2009). Thus, SVP was postulated to 

regulate flowering by acting on the photoperiod pathway and GA levels (Lee et al. 2007, Li et 

al. 2008, Jang et al. 2009, Andres et al. 2014). As shown for SVP, FLC directly binds to FT 

and SOC1 and represses their transcription. The repression of these two genes by FLC 

strongly supresses flowering before the plant undergoes vernalization (Hepworth et al. 2002, 

Helliwell et al. 2006, Searle et al. 2006, Lee et al. 2007). When plants are exposed to low 

temperatures during winter, FLC mRNA levels are reduced, releasing the repression on FT 

and SOC1 and promoting flowering (Michaels and Amasino 1999, Sheldon et al. 1999).  

Characteristically, MADS-box transcription factors act in homodimers/heterodimers and 

quaternary complexes that bind to genomic regions containing a specific motif called CArG-

box (Theissen and Saedler 2001, de Folter et al. 2005). SVP and FLC form a heterodimeric 



Introduction 

22 
 

complex that bind to a large number of target genes predominantly repressing their 

transcription (de Folter et al. 2005, Li et al. 2008). Comparative genome-wide studies of direct 

targets of SVP and FLC demonstrated that these two proteins function together as a complex 

that regulate genetic networks to confer seasonal patterns of flowering (Deng et al. 2011, 

Tao et al. 2012, Gregis et al. 2013, Mateos et al. 2015).  

Thus, the photoperiodic flowering is promoted in the SAM by FT and inhibited through the 

activity of several floral repressors. This balance between repressors and activators results 

in a complex regulatory network where different signals converge to modulate seasonal 

flowering responses (Figure 1.1). These signals are not only produced by fluctuations in day-

length, but also by changes in other factors such as temperature and light quality that typically 

coexist in natural environments. 

 

1.5 Regulation of flowering time by light quality 

The spectrum and intensity of sun light varies depending on conditions such as time of day, 

altitude and local environment. For example, in dense vegetation, the daylight spectrum is 

dramatically altered compared to open environments (Figure 1.3). Photosynthetic pigments, 

chlorophylls and carotenoids, absorb light over most of the visible spectrum, such as B and 

R light and some of the green light is reflected or transmitted. FR light radiation is poorly 

absorbed by plants, and consequently, the light that is transmitted through or reflected from 

dense canopies is increased in FR, reducing the R:FR ratio (Franklin and Shinkle 2008, Casal 

2012). This ratio is a comparison of photon irradiance in the R spectrum (between 655 and 

665 nm), to that in the FR spectrum (between 725 and 735 nm) (Franklin and Whitelam 2005). 

Underneath vegetational canopies the ration of R:FR decreases from 1.15 to values typically 

in the range 0.05 - 0.8 (Smith 1982). The extent of this reduction in the R:FR ratio is 
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quantitatively related to the density and proximity of neighbouring vegetation (Smith and 

Whitelam 1997). The R:FR ratio is therefore a useful parameter to describe the natural light 

environment and for plants to detect the presence of competing neighbours. Such reductions 

in R:FR can be detected by plants as a change in the relative proportions of the R vs. the FR-

absorbing forms of Phys (Pr and Pfr, respectively) indicating that potential competitors are 

nearby.  

 

Figure1.3 Model for the control of the shade avoidance through PhyB mediated by PIF4 and PIF5 stability. 

Upper panel: the spectral energy distribution of incident solar radiation on a clear day under the following 

conditions. Upper curve = light spectrum at midday; middle curve = midday sun light spectrum filtered through a 

canopy of mustard seedlings; lower curve = dusk. Lower panel: model for the control of shade regulated genes 

mediated by PIFs. In sun light conditions (left) PhyB is mainly in the Pfr from (absorption maximum approx. 730 

nm). The Pfr form of PhyB accumulates in the nucleus where it interacts with PIFs through the active phytochrome 

binding domain. This interaction targets PIFs transcription factors for degradation by the 26S proteasome, leading 
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to deactivation of genes induced by shade. Under a canopy (right), light filtered or reflected by the neighbouring 

vegetation is enriched in FR light. Under these conditions, Pfr form of PhyB is photoconverted to Pr form 

(absorption maximum approx. 660 nm). Pr form of PhyB no longer interacts with PIFs, allowing the rapid 

accumulation of these transcription factors. Under shade conditions, PIFs directly bind to and promote the 

expression of shade-induced genes involved in cell expansion and hypocotyl growth. Adapted from Franklin and 

Shinkle (2008) and Lorrain et al. (2008). 

 

Four major classes of photoreceptors have been identified in plants. The first ones identified 

were the Phy photoreceptors (Butler et al. 1959) that predominantly absorb the R and FR 

wavelengths (600–750 nm). Three types of photoreceptors perceive the B and ultraviolet-A 

(UV-A) wavelengths (320–500 nm). They are cryptochromes (Yu et al. 2010), phototropins 

(Huala et al. 1997, Christie et al. 1998), and the LOV/F-box/Kelch-repeat proteins ZTL, FKF1, 

and LKP2 (Zoltowski and Imaizumi 2014). Additionally, the UV-B (282–320 nm) region of the 

spectrum is perceived by UV RESISTANCE LOCUS 8 (UVR8) photoreceptor (Jiao et al. 

2007, Li et al. 2011, Rizzini et al. 2011). These photoreceptors transduce the light signals via 

different signalling pathways, to modulate light regulated gene expression and ultimately 

diverse developmental processes, including seed germination, seedling photo-

morphogenesis, phototropism, gravitropism, chloroplast movement, shade avoidance, 

circadian rhythms and flowering induction (Kami et al. 2010). 

 

1.5.1 Photoreceptors involved in the regulation of the shade avoidance response 

1.5.1.1 Phytochromes  

Phy photoreceptors are a family of soluble chromoproteins that can monitor changes in the 

R:FR light ratio and transduce intracellular signals during light-regulated plant development 

(Sharrock and Clack 2002, Jiao et al. 2007). They exist as homodimers of two independently 

reversible subunits. Each subunit consists of a polypeptide covalently linked through its N-
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terminal domain to a light-absorbing linear tetrapyrrole chromophore, phytochromobilin, via 

a thioether linkage (Furuya and Song 1994, Fankhauser 2001). The C-terminal part of PHY 

is required for dimerization and interaction with signalling partners as well as light-dependent 

nuclear localization (Fankhauser 2001, Jiao et al. 2007). In the dark, Phy is synthesized in 

the inactive R light-absorbing (Pr) form and it is activated upon photo-conversion to the FR 

light-absorbing (Pfr) form (Quail 2002). Under almost all irradiation conditions, Phy exists as 

an equilibrium mixture of the two forms (Franklin and Whitelam 2005, Casal 2012). The 

perception of changes in amounts of R and FR light is accomplished by changes in the 

equilibrium of Pr and Pfr forms (Figure 1.3). A low R:FR ratio, characteristic of the presence 

of neighboring vegetation, alters the equilibrium, leading to low levels of Pfr (Franklin and 

Whitelam 2005). In response to low R:FR ratio signals, many plants display a set of 

physiological responses characterized by a reallocation of resources to elongation-growth 

responses in order for the plant to reach unfiltered sunlight (Smith 2000, Franklin and 

Whitelam 2004, Vandenbussche et al. 2005). These responses include the rapid and 

pronounced increase in the elongation growth rate of stems and petioles, furthermore, 

reduced chlorophyll content and reduction in leaf thickness is often observed in plants 

receiving low R:FR ratio signals (McLaren and SMITH 1978). Under shade, plants also 

develop elevated leaf angles (hyponasty) and an increase in apical dominance leading to 

reduced branching (Casal et al. 1986). These responses are collectively known as the SAS 

and provide a survival strategy in rapidly growing populations (Franklin and Whitelam 2005). 

A reduction in the R:FR ration is sensed before plants are actually being shaded, thus the 

plants can initiate the escape programme before they suffer from competition (Ballare et al. 

1990). If reduced R:FR ratio persists, and the plant is unable to outgrow the competing 

vegetation, then flowering is accelerated enhancing the probability of reproductive success 

(Halliday et al. 1994, Smith and Whitelam 1997).  



Introduction 

26 
 

Higher plants contain at least two different forms of Phy (Hillman 1967, Abe et al. 1985, 

Shimazaki and Pratt 1985, Tokuhisa et al. 1985). These are referred to as type I or “light-

labile” Phy, which predominate in etiolated tissue, and type II or “light-stable” Phy, which 

predominate in light-grown tissue (Furuya 1993). 

In A. thaliana there are five isoforms of Phy photoreceptors, PhyA - PhyE (Sharrock and Quail 

1989, Clack et al. 1994). PHYA encodes for a light-labile, type I Phy. It is most abundant in 

dark-grown (etiolated) seedlings, whereas its level drops rapidly, up to 100-fold, upon 

exposure to R or WL (Clough and Vierstra 1997, Hennig et al. 1999, Sharrock and Clack 

2002). PhyB to PhyE are light-stable, type II Phys. Among these, PhyB and PhyC have 

intermediate light stability compared with the most light-stable PhyD and PhyE forms 

(Sharrock and Clack 2002). PhyB is the most abundant Phy, whereas PhyC - PhyE are less 

abundant (Clack et al. 1994, Hirschfeld et al. 1998, Sharrock and Clack 2002).  

Plants mutated in PHYB display a constitutive shade avoidance phenotype, typically 

presenting elongated stems and petioles, reduced leaf size, decreased chlorophyll content 

and early flowering (Somers et al. 1991, Reed et al. 1993). These observations therefore, 

indicated that PhyB plays a predominant function in the shade avoidance response (Franklin 

and Whitelam 2005). However, PhyB is not the only Phy involved in this response since phyB 

mutants retain a response to low R:FR irradiation (Whitelam and Smith 1991). Indeed, 

genetic and physiological studies have indicated that PhyD and PhyE act redundantly with 

PhyB in the control of some aspects of the SAS-driven development (Devlin et al. 1998, 

Devlin et al. 1999, Franklin 2008, Martínez-García et al. 2010).  

 



Introduction 

27 
 

1.5.1.2 Cryptochromes 

Cryptochromes are photolyase-like B light photoreceptors that regulate light responses in 

plants. Arabidopsis has two of these photoreceptors, CRY1 and CRY2, which also participate 

in shade avoidance responses (Keller et al. 2011, Casal 2012). Under a canopy, besides 

changes in the R:FR ratio, the total irradiance is reduced and there is variation in B light 

caused by absorption of visible wavelengths by photosynthetic pigments (Ballaré et al. 1991). 

CRY1 and CRY2 mediate B light suppression of hypocotyl elongation and photoperiodic 

responses of flowering time (Ahmad and Cashmore 1993, Guo et al. 1998, Lin et al. 1998). 

The activity of cryptochromes is directly proportional to the intensity of B light, therefore, 

CRY1 and CRY2 act as sensors of irradiance levels (Sellaro et al. 2010), and their activity is 

reduced in shaded conditions. 

 

1.5.2 Acceleration of flowering under enriched FR light 

Plants have evolved the ability to detect differences in day-length and light quality, allowing 

them to adjust their development in anticipation of seasonal and environmental changes. 

Environments like dense canopies trigger the SAS, which includes physiological and 

developmental changes in plant architecture. One of the most prominent of these responses 

is the acceleration of flowering (Smith and Whitelam 1997). Information provided by the 

circadian clock, day-length and light quality regulates CO mRNA and CO protein stability to 

influence flowering time (Suarez-Lopez et al. 2001, Yanovsky and Kay 2002, Valverde et al. 

2004). Changes in the R:FR ratio affect the stability of CO protein. Activation of PhyB by R 

light promotes the degradation of CO protein early in the day, delaying flowering. Under 

shaded conditions, when the R:FR ratio is low, the inactive Pr form of PhyB predominates 

impeding the degradation of CO protein during the morning hours, facilitating the promotion 
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of flowering (Valverde et al. 2004, Kim et al. 2008). Promotion of flowering mediated by 

stabilization of CO protein is also achieved by photoexcited PhyA and CRY2-interaction with 

SPA1 which supress the activity of COP1 during the late afternoon (Valverde et al. 2004, 

Laubinger et al. 2006, Endo et al. 2007, Jang et al. 2008, Liu et al. 2008b, Balcerowicz et al. 

2011, Zuo et al. 2011). Therefore, the induction of flowering by shade is highly dependent on 

photoperiod pathway components, explaining why low R:FR ratios have little effect in this 

process under SDs (Wollenberg et al. 2008).  

phyB mutants flower early compared to WT under LDs and SDs, as part of their constitutive 

SAS, and this phenotype is temperature-dependent (Reed et al. 1993, Halliday et al. 1994, 

Halliday et al. 2003). Conversely, phyD and phyE single mutant plants do not display a 

constitutive SAS. However, in both cases double mutants with phyB show a stronger 

flowering and hypocotyl length phenotype than phyB single mutants (Aukerman et al. 1997, 

Devlin et al. 1998). Similarly, phyB phyD phyE triple mutants flower earlier than wild type 

under LDs and SDs (Wollenberg et al. 2008). These facts reflect a high degree of functional 

redundancy between these three Phys. Shade avoidance responses can be triggered not 

only by changes in the R:FR ratio, but also by end-of-day (EOD) FR pulses (Devlin et al. 

1996). PhyB, PhyD and PhyE are involved in the regulation of flowering in response to shade 

(Devlin et al. 1998, Devlin et al. 1999, Franklin et al. 2003a, Franklin and Whitelam 2005). 

The phyB mutant retains a response to shade flowering early under both LDs and SDs 

(Whitelam and Smith 1991, Reed et al. 1993, Halliday et al. 1994, Devlin et al. 1999, 

Wollenberg et al. 2008). The phyB phyD and phyB phyE double mutants also respond to 

enriched FR and EOD-FR by inducing flowering (Devlin et al. 1999, Franklin et al. 2003a). 

However, this response is suppressed in phyB phyD phyE triple as well as phyA phyB phyD 

phyE quadruple mutant, indicating that PhyA has little or no effect in the regulation of 

flowering under shade (Franklin et al. 2003a, Wollenberg et al. 2008). A role of PhyC in 
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flowering time under different photoperiod has been shown (Monte et al. 2003), but its 

function in the regulation of flowering mediated by shade remains unclear.  

Plants grown under enriched FR light accumulate higher levels of CO mRNA during the early 

hours of the day than plants grown under WL (Kim et al. 2008). Furthermore, under these 

conditions the accumulation of CO protein is higher (Kim et al. 2008). Conversely, co and gi 

mutants, plants with absence or very low levels of CO mRNA transcripts, are relatively 

insensitive to enriched FR light in terms of flowering time (Suarez-Lopez et al. 2001, Kim et 

al. 2008). Thus, CO plays a crucial role in the promotion of flowering under enriched FR light 

(David et al. 2006, Kim et al. 2008). However, not all the effect on flowering mediated by the 

Phys can be accounted for by changes in the stability of CO as phyA phyB phyE co quadruple 

mutant plants flower earlier than phyA phyB co triple mutants (Devlin et al. 1998). 

Furthermore, the action of PHYTOCHROME AND FLOWERING TIME 1 (PFT1) downstream 

of PhyB was also proposed to regulate flowering time in response to changes in light quality 

through the transcriptional activation of FT, in a CO-independent manner (Cerdán and Chory 

2002). 

Plants growing at high dense vegetation have adapted their developmental programs to avoid 

the negative effects caused by the light interception from the neighbouring vegetation. 

Acceleration of flowering is one of the usual responses that plants employ to optimize their 

survival opportunities under shade conditions. For this purpose, plants recognise the reduced 

R:FR ratio indicative of shade conditions by making use of the Phys, which through 

conformational changes initiate a series of molecular cascades to induce flowering. This 

signalling process involves the regulation of components of the photoperiodic pathway, such 

as CO and FT genes. However, the detailed mechanism by which R:FR signalling regulate 

flowering is still largely unknown. 
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1.5.3 Role of PIFs in light responses and development 

PIF proteins belong to a fifteen-member family of bHLH transcription factors (Toledo-Ortiz et 

al. 2003). Originally identified during a yeast-two-hybrid screen for PhyB interactors, PIF3 is 

the founding member of this family (Ni et al. 1998). Seven members of the family have been 

reported to interact with Pfr-PhyB (PIF1/PIF3-LIKE 5 [PIL5], PIF3, PIF4, PIF5/PIL6, 

PIF6/PIL2, PIF7 and PIF8), while two of them (PIF1/PIL5, PIF3) also bind PhyA (Huq et al. 

2004, Khanna et al. 2004, Shen et al. 2008, Lucas and Prat 2014). All PIF proteins contain a 

conserved N-terminal sequence, called the Active Phytochrome B-binding (APB) motif which 

is necessary and sufficient for PhyB-specific binding (Khanna et al. 2004). PIF1 and PIF3 

also contain a separate domain, called the Active Phytochrome A-binding (APA), necessary 

for PhyA binding (Al-Sady et al. 2006, Shen et al. 2008). 

Upon perception of light by Phys, photoconversion from the inactive Pr form into the active 

Pfr form takes place. Once activated they rapidly translocate from the cytosol to the nucleus 

where they bind directly to APB or APA interaction sites in PIFs, colocalizing in nuclear 

speckles (Duek and Fankhauser 2005, Al-Sady et al. 2006, Castillon et al. 2007, Shen et al. 

2008, Quail 2010). As a result of the interaction, Phys induce rapid phosphorylation of PIFs 

and this leads to ubiquitination and degradation by the proteasome (Park et al. 2004, Shen 

et al. 2005, Al-Sady et al. 2006, Oh et al. 2006, Al-Sady et al. 2008, Lorrain et al. 2008). The 

light-mediated degradation of PIFs does not lead to complete disappearance of the protein, 

but rather to a low steady state level (Nozue et al. 2007, Lorrain et al. 2008). Upon removal 

of Pfr by exposing plants to darkness or shade conditions, PIF degradation ceases and the 

proteins can accumulate (Figure 1.3) (Shen et al. 2005, Nozue et al. 2007, Lorrain et al. 2008, 

Soy et al. 2012).  
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PIF transcription factors regulate gene expression by binding to G-box (CACGTG) and PIF-

binding E-box (PBE-box) (CACATG) motifs, two variants of the canonical E-box motif 

(CANNTG) (Figure 1.3) (Hornitschek et al. 2012, Zhang et al. 2013). RNA sequencing (RNA-

Seq) and Chromatin immunoprecipitation followed by deep sequencing (ChIP-Seq) analyses 

showed that PIFs regulate the expression of a large number of target genes related to 

different developmental processes (Hornitschek et al. 2012, Zhang et al. 2013, Pfeiffer et al. 

2014). For example, PIFs play a central role in light signalling during A. thaliana 

photomorphogenesis (Leivar et al. 2008b, Leivar and Quail 2011), they regulate growth (Duek 

and Fankhauser 2005), chloroplast differentiation (Stephenson et al. 2009), seed germination 

(Oh et al. 2004, Oh et al. 2006, Oh et al. 2007), the phototropic response (Sun et al. 2013) 

and flowering (Kumar et al. 2012), as well as many aspects of the SAS (Lorrain et al. 2008, 

Li et al. 2012a), and the circadian clock (Nusinow et al. 2011). Changes in R:FR light 

occurring under shade condition allow the accumulation of PIF4 and PIF5, which then bind 

to target genes with roles in cell expansion and hypocotyl growth, such as ARABIDOPSIS 

THALIANA HOMEOBOX PROTEIN 2 (ATHB2), PIF3-LIKE 1 (PIL1), LONG HYPOCOTYL IN 

FAR-RED 1 (HFR1), XYLOGLUCAN ENDOTRANSGLYCOSYLASE 7 (XTR7) and 

PHYTOCHROME RAPIDLY REGULATED1 (PAR1) (de Lucas et al. 2008, Lorrain et al. 

2008, Hornitschek et al. 2009, Leivar and Quail 2011, Hao et al. 2012). Two of these genes, 

HFR1 and PAR1, encode for bHLH transcription factors that participate in a negative 

feedback loop avoiding exaggerated shade avoidance response. After a long term exposure 

to shade HFR1 and PAR1 accumulate, heterodimerize with PIF4 and PIF5 limiting their 

capacity to bind DNA and to promote shade induced gene expression (Hornitschek et al. 

2009, Hao et al. 2012). Further regulation of the prolonged shade response is performed by 

the post transcriptional modulation of PhyB abundance mediated by PIF3, PIF4 and PIF7, 

thereby altering the sensitivity to incoming light signals (Leivar et al. 2008a). 
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In addition to the R:FR ratio, B light is also reduced under canopies. B light induces shade 

avoidance responses, including stem and hypocotyl elongation (Ballaré et al. 1991, Pierik et 

al. 2004, Djakovic‐Petrovic et al. 2007, Franklin and Shinkle 2008, Sasidharan et al. 2008, 

Keller et al. 2011). CRY1 and CRY2 perceive B light changes and respond by directly 

interacting with PIF4 and PIF5. The bHLH transcription factors and CRYs bind overlapping 

regions on gene promoters, indicating that B light regulates plant growth by modulating PIF4 

and PIF5 activities (Pedmale et al. 2016). In contrast to reduced B light intensity, under high 

B light, CRY1 directly interacts with PIF4 reducing its activity without affecting DNA-binding 

ability, thus regulating the expression of PIF4 targets and also high temperature-promoted 

hypocotyl elongation (Ma et al. 2016). CRY2 interacts with CRYPTOCHROME-

INTERACTING BASIC-HELIX-LOOP-HELIX (CIB1) protein in a B light–specific manner. The 

expression of the CIB protein is regulated specifically by B light. CIB1 together with additional 

CIB1-related proteins promote CRY2-dependent floral initiation by inducing FT mRNA 

expression (Liu et al. 2008a, Liu et al. 2013).  

 

1.5.3.1 PIFs mediate the crosstalk between light and hormone signalling  

PIFs play important roles in the integration of hormonal signals, such as GA, auxin and 

brassinosteroids (BRs) that regulate light-mediated hypocotyl growth.(Jaillais and Chory 

2010, Lau and Deng 2010, Depuydt and Hardtke 2011, Franklin et al. 2011a, Hornitschek et 

al. 2012, Li et al. 2012a, Li et al. 2012b, Oh et al. 2012, Sun et al. 2012). Hypocotyl elongation 

is promoted by degradation of DELLA proteins triggered by GA. DELLA proteins in A. thaliana 

are encoded by five genes: REPRESSOR OF ga1-3 (RGA), GIBBERELLIC ACID 

INSENSITIVE (GAI) and RGA-LIKE 1-3 (RGL1-3) (Schwechheimer 2008, Hauvermale et al. 

2012). DELLAs interact with and sequester PIFs impairing their ability to bind DNA (de Lucas 
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et al. 2008, Feng et al. 2008, Alabadí and Blázquez 2009). Upon perception of GA, the 

ubiquitination and degradation of DELLAs is triggered, releasing the PIF transcription factors 

and inducing the expression of cell elongation genes (Willige et al. 2007, Gao et al. 2011, 

Sun 2011). 

BRs play a role in light-grown hypocotyl elongation. They act independently of, but 

cooperatively with, GAs and auxin (Tanaka et al. 2003). BR-activated transcription factor 

BRASSINAZOLE-RESISTANT 1 (BZR1) and PIF4 interact and synergistically regulate many 

common target genes, including transcription factors required for promoting cell elongation. 

Both, BZR1 and PIF4 also control a large number of unique targets, allowing differential 

regulation of various processes by BRs and environmental signals (Oh et al. 2012). 

In plants growing under dense canopies, auxin contributes to the shade avoidance response. 

PIF4, PIF5 and PIF7 have been shown to bind the promoters and activate the transcription 

of TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS 1 (TAA1)/ SHADE 

AVOIDANCE 3 (SAV3) and YUCCA 8 (YUC8), genes encoding enzymes involved in the 

synthesis of Indole-3-acetic acid (IAA) (Franklin et al. 2011a, Sun 2011, Hornitschek et al. 

2012, Li et al. 2012a, Li et al. 2012b). The expression of INDOLE-3-ACETIC ACID 

INDUCIBLE 19 (IAA19) and IAA29, involved in auxin-mediated hypocotyl phototropic growth, 

is also regulated by PIF4 and PIF5 (Kunihiro et al. 2011, Sun et al. 2013). In high R:FR light 

the expression of these genes is reduced in pif4 pif5 double mutant, however it is still induced 

under shade (Hornitschek et al. 2009). Thus, the auxin synthesized through a PIF-regulated 

pathway links directly the perception of a light quality signal to a rapid growth response. 

However, PIF4 and PIF5 are not essential to regulate the transcriptional activation of auxin-

mediated hypocotyl growth genes IAA19 and IAA29 under shade conditions. 

PIF4 and PIF5 also regulate dark-induced leaf senescence mainly mediated by the 

antagonistic interaction between cytokinins and ethylene, two plant hormones. Ethylene 
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biosynthesis and signalling are positively regulated by PIF4 (Sakuraba et al. 2014, Song et 

al. 2014). PIF5 is also likely to regulate ethylene biosynthesis since ethylene production is 

significantly increased in transgenic plants overexpressing this gene (Khanna et al. 2007). 

PIF transcription factors are key regulators of plant development that act as central hubs in 

the perception and integration of environmental and internal signals. They modulate light 

signalling cascades by direct interaction with Phy photoreceptors. Moreover, PIFs play an 

important role in the crosstalk between light and hormone signalling and directly regulate 

downstream genes involved in numerous developmental processes. These facts highlight 

the importance of PIFs in plant fitness and adaptation to the environment in Phys- and 

hormone- mediated signalling cascades among others. 

  

1.5.3.2 Circadian clock regulation of PIF genes transcription 

PIF4 and PIF5 are not only light-regulated but also circadian-controlled genes (Yamashino 

et al. 2003, Nozue et al. 2007). Under continuous light, they oscillate robustly with a period 

of about 24 h showing a peak after dawn (Yamashino et al. 2003). The diurnal pattern of PIF4 

and PIF5 expression is modulated by the action of circadian clock genes, such as 

CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1), a MYB-related transcription factor, and 

PSEUDO-RESPONSE REGULATOR 9 (PRR9), PRR7, PRR5 and TOC1, members of a 

group of atypical variants of two-component signal transducers (Schaffer et al. 1998, Wang 

and Tobin 1998, Makino et al. 2000, Matsushika et al. 2000, Strayer et al. 2000, Mizoguchi 

et al. 2002, Niwa et al. 2009). The expression of PIF4 and PIF5 is repressed at dusk by the 

evening complex, composed of the proteins encoded by EARLY FLOWERING 3 (ELF3), 

ELF4 and LUXARRHYTHMO (LUX; also known as PHYTOCLOCK 1) (Zagotta et al. 1996, 

Hicks et al. 2001, Doyle et al. 2002, Hazen et al. 2005, Onai and Ishiura 2005, Nusinow et 
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al. 2011). As PIF4 and PIF5 function as a positive regulators of the hypocotyl elongation, the 

repression of PIF4 and PIF5 transcription at dusk leads to the repression of hypocotyl growth. 

This process combined with light regulated turnover of PIF4 and PIF5 proteins allows 

maximum hypocotyl growth at dawn (Nozue et al. 2007, Lorrain et al. 2008, Nusinow et al. 

2011). The accumulation of PIF4 and PIF5 transcripts at dawn under SDs combined with 

longer night periods in which the protein products are stably accumulated, lead to SD-specific 

elongation of hypocotyls (Nomoto et al. 2012, Yamashino et al. 2013a). Specific hypocotyl 

growth at dawn under SDs is well explained by the coincident accumulation of the active PIF4 

and PIF5 proteins during night-time (Nozue et al. 2007, Nomoto et al. 2012, Yamashino et 

al. 2013a). Thus, the regulation of hypocotyl growth mediated by PIF4 and PIF5 is another 

example of an external coincidence mechanism, which involves photoperiodic and clock 

signals. 

PIFs act as molecular hubs by interacting with light and hormone signalling cascades to 

modulate developmental processes. In this context, as clock-regulated proteins, PIFs 

contribute to the integration of different environmental signals to generate rhythmic patterns 

of growth. Furthermore, PIFs are involved in flowering time regulation (see below) (Brock et 

al. 2010, Kumar et al. 2012). However, whether PIFs act as integrators of distinct 

environmental signals to modulate flowering requires further studies. 

 

1.6 Regulation of flowering by ambient temperature 

During the last few years the effect of ambient temperature in flowering time control has been 

extensively studied. In particular, much emphasis has been given to the effect of warm 

ambient temperature. This is thought to be significant in terms of climate change, and its 

effect on the ecology of natural plant populations as well as on agriculture. Ambient 
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temperature affects many aspects of plant growth and development, such as clock 

entrainment, growth, disease resistance and flowering (Gray et al. 1998, Stavang et al. 2009, 

Alcázar and Parker 2011, Boikoglou et al. 2011, Franklin et al. 2011a, Sun et al. 2012). In A. 

thaliana, within the range of 12 °C and 27 °C these changes on growth, development and 

flowering time occur without significant induction of stress responses (Samach and Wigge 

2005, Balasubramanian et al. 2006, Kumar and Wigge 2010). In terms of flowering, ambient 

temperatures around 12 - 16 °C delay flowering time (Blazquez et al. 2003, Kumar et al. 

2012) whereas temperatures around 27 °C accelerate flowering even under non-inductive 

SD conditions (Lee et al. 2007, Kumar and Wigge 2010, Kumar et al. 2012, Lee et al. 2013, 

Pose et al. 2013, Galvao et al. 2015). These variations in flowering time are influenced by 

the action of several molecular factors. These factors involve changes in the expression, 

activity or stability of floral activators and repressors, such as PIF4, SVP and FLOWERING 

LOCUS M (FLM), as well as changes in the DNA structure (Figure 1.4) (Balasubramanian et 

al. 2006, Lee et al. 2007, Kumar and Wigge 2010, Kumar et al. 2012, Lee et al. 2013, Pose 

et al. 2013). In addition, genes of the autonomous pathway, which regulate flowering by 

downregulating the floral repressor FLC (Simpson 2004) are involved in mediating the effects 

of ambient temperature (Blazquez et al. 2003). Collectively, these changes ultimately affect 

the regulation of the floral integrator FT modulating the timing of flowering (Blazquez et al. 

2003, Halliday et al. 2003, Balasubramanian et al. 2006, Lee et al. 2007, Kumar and Wigge 

2010, Kumar et al. 2012, Lee et al. 2013, Pose et al. 2013).  

 

1.6.1 PIF4-mediated regulation of flowering time at warm ambient temperature 

Incorporation of different histones into chromatin can influence transcription (Verhage et al. 

2014, Weber and Henikoff 2014). H2A.Z is a histone variant that can be incorporated into 
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chromatin as a replacement of the canonical histone H2A. The deposition of H2A.Z in A. 

thaliana is carried out by the SWR1 complex (Krogan et al. 2003, Kobor et al. 2004, Mizuguchi 

et al. 2004, March-Díaz and Reyes 2009). Three subunits of the SWR1 complex have been 

identified and characterized, PHOTOPERIOD-INDEPENDENT EARLY FLOWERING1 

(PIE1), ACTIN-RELATED PROTEIN6 (ARP6), and SWR1 COMPLEX6 (SWC6) (Choi et al. 

2005, Deal et al. 2005, Choi et al. 2007, Deal et al. 2007, Lazaro et al. 2008, March-Diaz and 

Reyes 2009). Both PIE1 and ARP6 are required for the incorporation of H2A.Z throughout 

the genome (Deal et al. 2007). Kumar and Wigge (2010) isolated in a genetic screen two 

mutant alleles of ARP6 that display constitutive developmental and architectural phenotypes 

of warm grown plants. Mutations in ARP6 had previously been identified as early flowering 

mutants (Choi et al. 2005, Deal et al. 2005, Martin-Trillo et al. 2006). On exposure to high 

temperatures, H2A.Z histone-containing nucleosomes are removed from temperature 

sensitive promoters, including that of FT (Kumar and Wigge 2010, Kumar et al. 2012), 

suggesting that the early flowering of arp6 mutant could be explained by increased FT 

transcription through this mechanism. Removal of H2A.Z histone-containing nucleosomes 

from these promoters make them more accessible to specific transcription factors that 

increase the expression of the cognate genes (Kumar and Wigge 2010). For example, PIF4 

transcription factor binds to the FT promoter more strongly when plants are growing under 

SDs at 27 °C (hereafter 27°C-SD) compared to 12 °C (Kumar et al. 2012). Consistent with 

this observation, the pif4 null mutant of A. thaliana is later flowering than wild-type under 

27°C-SD and flowers with the same number of leaves under 27°C-SD and 22°C-SD, 

indicating a crucial role for this transcription factor in the thermosensory induction of flowering 

under these conditions (Kumar et al. 2012). The role of PIF4 in warm temperature promotion 

of flowering is also evident in photoperiods of 12 h light and 12 h dark (Thines et al. 2014). 

By contrast, the pif4 null mutant was recently described to flower at times similar to Col-0 
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plants under 27°C-SD (Galvao et al. 2015). Similar results were observed under LDs at high 

temperature, where PIF4 was not required for early flowering (Koini et al. 2009).  

 

Figure 1.4. Regulation of flowering time by ambient temperature. Distinct mechanisms of regulation of 

flowering by ambient temperature have been described. At low temperature (left panel), complexes by the MADS-

box transcription factors SVP, FLM splicing isoform β (FLM-β) and MAF2 splicing isoform var1 (MAF2-1) are 

formed (upper part). Under these conditions, the splicing forms FLM-β and MAF2-1 are the most predominant 

ones and interact with SVP to repress FT expression. When the temperature increases (right panel, upper part), 

different processes inactivating the SVP/FLM-β and SVP/ MAF2-1 complexes have been proposed. One model 

suggests that SVP is degraded via the 26S proteasome. Alternative models argue that the FLM-β activity is 

reduced either by degradation of FLM-β at the RNA level or by a dominant-negative version of the FLM protein, 

FLM-δ, that is predominant at warm temperature and poisons the repressive MADS-domain transcription factor 

complex. MAF2-1 is also reduced at warm temperatures in favour of the MAF2-2, a non-functional splicing isoform. 

Inhibition of the MADS-box transcription factor complexes by any of these mechanisms leads to the induction of 

the FT expression and flowering. Under SDs, warm temperature promotes the removal of H2A.Z-containing 

nucleosomes from the DNA, enabling the binding of PIF4 to the promoter and the induction of FT (right panel, 

lower part). Arrows and block lines denote activation and repression, respectively. Intensity of colours indicate 

protein abundance. Adapted from Capovilla et al. (2015), Airoldi et al. (2015) and Sureshkumar et al. (2016).  

 

The early flowering phenotype mediated by the transcriptional induction of FT in the arp6 

mutant was proposed to be due to higher accessibility of PIF4 to the FT promoter (Kumar 

and Wigge 2010, Kumar et al. 2012). Therefore, mutations in PIF4 should strongly delay 

flowering of arp6 mutants. Galvao et al. (2015), however, showed that the delay of flowering 

of pif4 arp6 double mutants compared to arp6 is very subtle under LDs at 23 °C, and so is 

the reduction of FT mRNA induction detected in pif4 arp6 mutants under SDs at 23 °C 
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compared to arp6. Furthermore, at 27 °C arp6 mutants flower earlier than WT (Kumar and 

Wigge 2010). Therefore, besides the removal of H2A.Z from the temperature sensitive 

promoters and the role of PIF4 in the activation of FT mRNA, there are other factors 

responsible for the early flowering of arp6 and the H2A.Z-dependent induction of flowering 

under warm temperatures (Kumar and Wigge 2010, Verhage et al. 2014).  

GA signalling acts through DELLA proteins, which interact with and regulate a diverse set of 

transcription factors. In the presence of GA, DELLA proteins are degraded (Hauvermale et 

al. 2012, Claeys et al. 2014). DELLA accumulation strongly suppresses flowering both 

upstream and downstream of FT in leaves and at the SAM, respectively (Galvão et al. 2012, 

Porri et al. 2012). PIF4 is sequestered by DELLA though a direct interaction and is one of the 

transcription factors regulated by these proteins (de Lucas et al. 2008). It has been proposed 

that the DELLA-mediated repression of PIF4 activity, at least partially, represses flowering 

under low ambient temperatures (12 °C). Indeed, mutant plants impaired in DELLAs function 

flower early than WT plants at 12 °C (Kumar et al. 2012). However, the model that proposes 

the decrease in occupancy of FT promoter by H2A.Z at warm ambient temperatures does 

not fully explain these results. Under cool ambient temperatures (below 21 °C) the occupancy 

of the FT promoter by H2A.Z is proposed to be high, thus impeding PIF4 binding to FT 

promoter and its transcriptional activation (Kumar and Wigge 2010). In agreement with the 

repressive role of DELLAs in this process, low GA levels delay the early flowering and repress 

the FT mRNA expression of arp6 mutants at 23 °C (Galvao et al. 2015). However, it is unlikely 

that the delay of flowering and the reduction of FT expression in arp6 mutants is caused by 

a DELLA-mediated repression of PIF4 activity since the double mutant pif4 arp6 is not later 

than arp6 single mutant (Galvao et al. 2015). Therefore, there might exist a still unidentified 

PIF4-independent role of DELLA controlling flowering under warm ambient temperatures, as 

previously proposed (Galvao et al. 2015). 
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Several factors shape the flowering response to ambient temperatures. The accessibility to 

DNA, especially at the FT locus, of PIF4 transcription factor seems to be the most critical. 

Consequently, the activity of PIF4 controlled by DELLAs (and thereby by GA) also has a great 

contribution in this regulation. However, the function of PIF4 as well as the DNA occupancy 

by H2A.Z are not the solely regulators of the flowering response to ambient temperature.  

 

1.6.2 Role of floral repressors in warm temperature induction of flowering 

Several MADS-box transcription factors that act as floral repressors are also implicated in 

the thermosensory flowering pathway. One of these repressors, SVP, delays flowering by 

reducing transcription of FT and TSF in leaves and of SOC1 in the shoot meristem (Hartmann 

et al. 2000, Lee et al. 2007, Li et al. 2008, Jang et al. 2009). The svp mutants are early 

flowering and insensitive to changes in ambient temperature under LDs, flowering at the 

same time when exposed to 16 °C, 23 °C or 27 °C (Lee et al. 2007, Lee et al. 2013, Pose et 

al. 2013). Moreover, the stability of the SVP protein is reduced at high temperatures, 

suggesting that reduction in SVP protein levels at 27 °C contributes to early flowering of WT 

plants under these conditions (Lee et al. 2013). However, under SDs the svp mutant retains 

some responsiveness to warm temperature, suggesting other proteins must contribute to this 

response (Galvao et al. 2015). Indeed, two other MADS-box transcription factors that delay 

flowering, FLM and MADS AFFECTING FLOWERING 2 (MAF2), were also shown to 

contribute to the thermosensory pathway (Figure 1.4) (Balasubramanian and Weigel 2006, 

Pose et al. 2013, Airoldi et al. 2015, Sureshkumar et al. 2016). The mRNA of FLM is 

alternatively spliced producing two protein varieties, FLM- and FLM-δ. The FLM- mRNA is 

the more abundant form at 16 °C, the temperature at which FLM represses flowering, 

whereas at 27 °C its level is decreased (Pose et al. 2013). Both protein forms interact with 
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SVP in yeast and in vitro to produce the heterodimers SVP-FLM- and SVP-FLM-δ, however, 

their activities differ such that SVP-FLM- binds DNA and represses flowering, whereas SVP-

FLM-δ does not bind DNA. This led to a model whereby alternative splicing of FLM mRNA at 

27 °C increases the ratio of FLM-δ to FLM-, inhibiting SVP activity and causing earlier 

flowering (Pose et al. 2013). Alternative models have also been considered since under warm 

temperatures plants present the same amount of FLM-δ and FLM- transcripts and both 

proteins have similar affinity to SVP. In this context, reduced stability of SVP protein was 

proposed to be the main determinant of the promotion of flowering under warm temperatures 

(Hwan Lee et al. 2014). Furthermore, the existence of a predominant FLM- splicing variant 

at warm temperatures has been questioned by recent publications. Sureshkumar et al. (2016) 

proposed that the formation of the SVP-FLM repressive complex is compromised at warm 

temperatures by reduced levels of FLM mRNA through alternative splicing coupled with 

nonsense-mediated mRNA decay (AS-NMD). Thus, the formation of the SVP-FLM-δ 

repressive complex was proposed not to be formed under warm temperatures, but reduction 

of FLM- levels was suggested to be the key factor. MAF2 mRNA is also alternatively spliced 

at different temperatures and the form of the protein produced at low temperature also 

interacts with SVP, whereas the one formed at high temperature does not (Airoldi et al. 2015). 

Thus, these different mechanisms involving differential protein stability and splicing are 

proposed to lead to reduced activity of SVP at elevated temperatures and to accelerated 

flowering under these conditions. 

 

1.6.3 Regulation of flowering time by cool temperatures 

Low temperatures also affect flowering time. Exposure to cold in nature can occur for long 

periods during winter or for shorter times, such as during the night in spring or autumn. The 
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long-term exposure response is called vernalization and typically requires several weeks of 

exposure to cold. Vernalization accelerates flowering by suppressing transcription of the floral 

repressor, FLC (Michaels and Amasino 1999). The requirement for a long cold period 

ensures that the plant does not flower only after a few days of cold, but rather only flowers 

after winter. The duration of the cold period required for vernalization varies between 

accessions of A. thaliana (Shindo et al. 2006). FLC transcription is promoted by FRI, and in 

natural populations extensive genetic variation at FLC and FRI has been described. 

(Johanson et al. 2000, Le Corre et al. 2002).  

Short-term exposure to low temperatures exerts the opposite effect to extended cold by 

delaying flowering time. These short-term exposures can be due to temperature fluctuations 

during local weather conditions or to diurnal fluctuations. Intermittent cold treatments (4 °C) 

trigger the HOS1-mediated degradation of CO in a COP1 and FLC-independent manner 

(Jung et al. 2012b). In hos1 mutants, FT mRNA is misexpressed in the middle of the day 

under LDs. Thus, under cold temperatures HOS1 is proposed to regulate the timing of FT 

expression by regulating the abundance of CO protein (Jung et al. 2012b, Lazaro et al. 2012). 

Hence, the HOS1-CO module contributes to the fine tuning of photoperiodic flowering under-

short term temperature fluctuations. This module is proposed to monitor short-term changes 

in ambient temperature and delay flowering until the appropriate spring season (Jung et al. 

2012b). HOS1 also controls flowering time in response to ambient temperatures (16 °C and 

23 °C) and it appears to do so by interacting with FVE and FLK, proteins that act in the 

autonomous pathway (Lee et al. 2012b). Under 16 °C, COP1 is stabilized and regulates 

temperature sensitivity by controlling the degradation of GI mediated by the 26S proteasome. 

GI directly binds to the FT promoter to induce flowering in a CO-independent manner (Sawa 

and Kay 2011). Under cool ambient temperatures the direct binding of GI to the FT promoter 

is reduced and flowering is delayed (Jang et al. 2015). The ambient temperature regulation 
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of flowering is largely dependent on FT, rather than FLC, indicating that the temperature-

dependent flowering is distinct from vernalization (Blazquez et al. 2003). However, a FT, TSF 

and PIF independent pathway also contributes to the flowering regulation under cool ambient 

temperatures mediated by GA, as GA treatments promote flowering at least partially 

independently of these genes (Galvao et al. 2015).  

Variations in temperatures between day and night also affect flowering time. Under standard 

day temperature conditions (22 °C) and cooler nights (12 °C) the expression of CO mRNA at 

night time is increased through a mechanism dependent on FBH, altering the FT expression 

profile. A recent study showed that FT mRNA is increased at the end of cooler nights and 

reduced at dusk in an SVP dependent manner, delaying flowering time (Kinmonth-Schultz et 

al. 2016). This and another previous work (Thines et al. 2014) demonstrated how plants 

adjust their flowering response to different day and night temperatures. This differential 

response might contribute to the distinction between typical fluctuations (warmer day vs 

colder night) and variations associated with seasonal changes (warmer day vs colder day). 

In addition to these factors, several miRNAs are also involved in the temperature-mediated 

regulation of flowering (Jung et al. 2012a, Kim et al. 2012a). miR156 and miR172 reduce the 

expression levels of transcription factors that affect flowering, but they have opposite effect 

on this process (Jung et al. 2012a, Kim et al. 2012a). At 16 °C, miR156 accumulates to higher 

levels compared to 23 °C downregulating SPL3 mRNA. This downregulation of SPL3 reduces 

FT mRNA levels in leaves, which in turn delays flowering (Kim et al. 2012b). Thus, the 

miR156–SPL3 module plays an important role not only during development (Wu and Poethig 

2006), but also in response to ambient temperature (Kim et al. 2012b). Ambient temperature 

regulates miR172 biogenesis primarily at the pri-miR172 processing step, causing miR172 

abundance to be elevated at 23 °C but not at 16 °C (Jung et al. 2012a). Therefore, at 16 °C 

the APETALA2-LIKE transcription factors, TARGET OF EAT 1 (TOE1), TOE2, and 



Introduction 

44 
 

SCHLAFMÜTZE (SMZ), potent repressors of flowering whose mRNA are regulated by 

miR172, are increased in expression delaying flowering (Aukerman and Sakai 2003, Schmid 

et al. 2003a, Lee et al. 2010).  

Both warm and cold temperatures have strong effects on flowering time. The impact of 

temperature changes in plant development is evidenced by the numerous factors involved in 

the complex regulatory network that drives the transition from vegetative to reproductive 

stage under different ambient temperatures. This intricate regulation ensures that plants 

flower at the time when the environment is optimal to maximize their reproductive success 

and plant fitness. The crosstalk between PIF4, SVP and photoperiod related genes might be 

relevant for regulation of flowering in response to ambient temperature. Thus understanding 

the molecular and genetic relationship between these genes could shed light on the 

concerted regulation of flowering time in response to seasonal cues.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Aims of the study





Aims 

47 
 

Plants are extremely sensitive to changes in their environment. During evolution mechanisms 

have arisen that rapidly adapt the developmental programs of plants to changing 

environmental conditions and improve fitness in the context of their sessile life cycle. In 

particular, the timing of flowering is strongly influenced by environmental factors such as 

photoperiod, light quality and temperature. These factors are highly variable across different 

latitudes and seasons, thus plants exhibit an enormous variety of flowering behaviors 

associated with local adaptation to natural and agronomical ecosystems. However, 

adaptation to local environments is challenged by rapid changes in ambient temperature 

caused by global warming. In this context, global climate change is also predicted to 

dramatically affect crop yield. Therefore, understanding how plants perceive and integrate 

seasonal and local environmental factors to adjust the timing of flowering to their local 

environment is necessary to ensure the sustainability of agriculture. Distinct genetic 

pathways regulate flowering in response to environmental cues. The control of flowering by 

day length has been extensively studied and detailed information on the function and 

regulation of the major components of this pathway, such as CO and its main transcriptional 

target FT have been deciphered. However, information on how temperature and light quality 

regulate flowering is less detailed. Furthermore, the interplay between these flowering 

regulatory pathways has not been thoroughly explored at the molecular level. 

Recent studies on the regulation of flowering time under warm ambient temperature in A. 

thaliana highlighted the essential role of two transcription factors in this process. On the one 

hand, the ability of PIF4 to bind DNA at the FT locus is increased under warm ambient 

temperatures. On the other hand, the repressive function of SVP is impaired under these 

conditions. As a result, FT transcription is activated and flowering is induced. The activity of 

these two transcription factors partially explains the acceleration of flowering observed in A. 

thaliana plants exposed to warm temperatures, but how they are integrated in the wider 
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regulatory networks controlling flowering is unknown. One aim of this thesis is to integrate 

PIF4 and SVP into a single model of temperature regulation of flowering. In addition, as plants 

integrate multiple environmental signals to regulate flowering, the interactions between the 

thermosensory and the photoperiodic flowering pathways will be investigated. To achieve 

these objectives, the genetic bases of flowering control by temperature will be studied through 

the analysis of the flowering phenotypes of different A. thaliana mutants, including those 

related to the photoperiodic pathway. The molecular mechanisms that trigger flowering under 

warm ambient temperature in A. thaliana will also be investigated. 

In addition to the role in the thermosensory pathway, PIFs are central hubs in the light 

signalling pathway mediated by Phys. As part of this pathway, they facilitate the promotion of 

the SAS, typical in environments of high dense vegetation. One characteristic of the SAS is 

the acceleration of flowering. However, no data on the function of PIFs in the induction of 

flowering as part of the SAS has been reported. Thus, another main objective of this thesis 

is to explore the role of PIFs in the promotion of flowering mediated by shade. To accomplish 

this objective, a detailed phenotypic and molecular study of mutants affected in flowering time 

and light signalling responses will be performed. Furthermore, interactions between the light 

signalling pathway mediated by PhyB and PIFs with photoperiodic pathway components will 

be explored. 
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3.1 Plant material 

All mutant lines are in the Columbia background (Col-0), except co-2 which is in the 

Landsberg erecta background (Ler-0, (Koornneef et al. 1991, Putterill et al. 1995). 

Mutant lines in Col-0 background used were:  ft-10 (Yoo et al. 2005), tsf-1 (Yamaguchi 

et al. 2005), ft-10 tsf-1 (Jang et al. 2009), co-10 (Laubinger et al. 2006), pif4-101 (Lorrain 

et al. 2008), pif4-2 (Leivar et al. 2008a), pif5-3/pil6-1 (Fujimori et al. 2004), pif4-2 pif5-3 

(Leivar et al. 2012), pif1-1 pif3-3 pif4-2 pif5-3 (Leivar et al. 2008b, Shin et al. 2009b), svp-

41 (Hartmann et al. 2000), svp-41 co-10, ft-10 tsf-1 svp-41 (Jang et al. 2009), gi-2 (Rèdei 

1962), pPIF4:PIF4-citrine-3HA pif4-101 (Hornitschek et al. 2012), pSVP::SVP:GFP svp-

41 flc-3 FRI (Mateos et al. 2015), pKNAT1::SVP svp-41 (Andres et al. 2014), pFT1.8 

kb::GUS lines # 1.6 and # 2.2, pFT1.8 kb::GUS (Adrian et al. 2010), pCO::HA:CO co-10 

(Sarid-Krebs et al. 2015), p35S::PIF4:HA, p35S::PIF5:HA (Lorrain et al. 2008), pif7-1, 

pif7-2, pif7-1phyB-9 (Leivar et al. 2008a), p35S::PIF7:Flash (9xMyc-6xHis-3xFlag) pif7-

2 (Li et al. 2012a), phyB-9 (Reed et al. 1993), svp-41 pif4-101 double mutant was 

generated by crossing svp-41 with pif4-101, svp-41 co-10 pif4-101 was generated by 

crossing svp-41 pif4-101 with svp-41 co-10. Several of the lines used in this work were 

previously generated in our lab, i.e. pFT1.8 kb::GUS # 1.6 p35S::PIF4:HA, pFT1.8 kb::GUS 

# 2.2 p35S::PIF4:HA, pFT1.8 kb::GUS # 1.6 p35S::PIF5:HA and pFT1.8 kb::GUS # 2.2 

p35S::PIF5:HA were obtained by crossing pFT1.8 kb::GUS # 1.6 or pFT1.8 kb::GUS # 2.2 

with p35S::PIF4:HA or p35S::PIF5:HA, co-10 pif4-2, co-10 pif4-2 pif5-3 mutants were 

generated by crossing co-10 with pif4-2 pif5-3 double mutant , pSUC2::PIF4 line was 

previously generated in the lab with PIF4 cDNA obtained from the REGIA collection in 

GATEWAY compatible vectors (Paz-Ares and Regia 2002), pSUC2::PIF4 co-10 line was 

generated by crossing pSUC2::PIF4 with co-10, phyB-9 pif4-2, phyB-9 pif5-3, phyB-9 

pif4-2 pif5-3 were generated by crossing phyB-9 with pif4-2 pif5-3, phyB-9 co-10, phyB-

9 ft-10 tsf-1 were generated by crossing phyB-9 with co-10 and ft-10 tsf-1, respectively, 
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pSUC2::CO, pSUC2::CO pif4-2, pSUC2::CO pif5-3, pSUC2::CO pif4-2 pif5-3 lines were 

generated by crossing pSUC2::CO with pif4-2, with pif5-3 and with pif4-2 pif5-3, 

respectively.  

Primers used to genotype the mutants are listed in Table 3.1. 

 

Table 3.1 Primers for genotyping 

 

 

 

 

Allele Name Sequence (5´ - 3´) 
Annealing 

temperature 
Comment 

co-10 

CO-1-121-R 
GTGGTGAGTAGTGGTCA

TGGAGC 

55 °C 

WT allele: CO-1-

121-F - CO-1-121-R  

Mutant allele: CO-1-

121-F - SAIL-LB3 

 

CO-1-121-F 
ATGTTGAAACAAGAGAGT

AACG 

SAIL-LB3 
TAGCATCTGAATTTCATA

ACCAATCTCGATACAC 

pif4-101 

VF11 CTCGATTTCCGGTTATGG

55 °C 

WT allele: VF11-

VF12 

Mutant allele: VF12-

VF13 

VF12 
CAGACGGTTGATCATCT

G 

VF13 
GCATCTGAATTTCATAAC

CAATC 

svp-41 

SVP-41 F 
TGTGGGTACCATAACAT

GAGGA 

60 °C 

Digestion with NIaIV 

after amplification. 

WT allele: 1 band.  

Mutant allele: 2 

bands. 
SVP-41 R 

AAAGCTCAACTCTCTACA

CAGGA 
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Table 3.1 Primers for genotyping (continuation) 

 

3.2 Growth conditions 

Before starting every experiments, seeds were stratified on soil or petri dished at 4 °C 

for 3 days in dark. 

For warm temperature experiments, plants were grown on soil under controlled SD 

conditions (8 h light/16 h dark) at 21 °C or 27 °C, or under LDs (16 h light/8 h dark). For 

GUS staining experiments, plants were grown on Murashige and Skoog media. The 

photosynthetically active radiation (PAR) was 100 - 150 µmol·m-2s-1 in all conditions.  

For shade avoidance experiments, growth cabinets with LED technology (Snijder) were 

used. Plants were grown on soil under controlled LD conditions (16 h light/8 h dark), 

under SD conditions (8 h light/16 h dark) or under intermediate photoperiods (12 h 

light/12 h dark) at 21 °C. The PAR provided by fluorescent light tubes was 85 - 100 

Allele Name Sequence (5´ - 3´) 
Annealing 

temperature 
Comment 

pif4-2 

PIF4-2 F 
CAGATCATCTCCGACCG

GTTT 

58 °C 

WT allele: PIF4-2 F 

- PIF4-2 R 

Mutant allele: SAIL-

LB3 - PIF4-2 R 

PIF4-2 R 
CGACGGTTGTTGACTTT

GCTG 

SAIL-LB3 
TAGCATCTGAATTTCAT

AACCAATCTCGATACAC 

pif5-3/pil6 

PIL6-RP 
ATCTTCCATCCATTCAG

AGGC 

58 °C 

WT allele: PIL6-RP 

- PIL6-LP 

Mutant allele: 

SALK-LBb1 - PIL6-

RP 

PIL6-LP 
TGTTCCTTCCATAGCTG

CAACC 

SALK-LBb1 
GCGTGGACCGCTTGCT

GCAACT 
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µmol·m-2s-1 for experiments performed under 100 % of the growth chamber capacity. For 

experiments performed under 65 % of the growth chamber capacity, light measurements 

rendered values around 40 µmol·m-2s-1. For the enriched FR condition, the white light 

(WL) was supplemented with FR light from LED technology. WL, R and FR light 

intensities were measured using SpectraSuit® Spectrometer from Ocean Optics. R light 

was measured between 650 and 680 nm and FR light between 720 and 750 nm. Table 

3.2 provides information of the different ratios between R and FR light used through this 

work. 

 

Table 3.2 R:FR light ratios 

WL / FR R:FR ratio 

100% / 100% 0.06 

100% / 65% 0.12 

65% / 100% 0.03 

65% / 65% 0.05 

 

3.3 Molecular cloning 

To generate p35S::PIF4:CFP vector to perform FRET assays, PIF4 cDNA was amplified 

from A. thaliana cDNA with overhangs compatible for GATEWAY cloning using primers 

listed in Table 3.3. Amplified PIF4 cDNA was subcloned by a BP reaction into pDONR201 

(Invitrogen), according to manufacturer’s instructions. After confirmation by Sanger 

sequencing, PIF4 cDNA was recombined into the destination vector p35S::GW:CFP by 

an LR reaction, according to manufacturer’s instructions. 

To generate p35S::PIF4:HA vector used for co-immunoprecipitation experiments, PIF4 

cDNA was recombined by LR reaction into p35S::GW:HA destination vector.  

The binary vectors were transformed into A. tumefaciens GV3101 by electroporation. 
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p35S::CO:YFP construct used for Co-IP and FRET experiments was previously 

generated in the laboratory. 

The constructs for the Y2H experiments were previously generated in the laboratory by 

Yasuyuki Takahashi. 

 

Table 3.3 Primers for cloning 

Gene Name Sequence (5´ - 3´) 

PIF4 

V03-PIF4-GW-FW 
GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGG

AACACCAAGGTTGGAG 

V04-PIF4-GW-RE-C-term 
GGGGACCACTTTGTACAAGAAAGCTGGGTGTGGTC

CAAACGAGAACCGTC 

 

3.4 DNA extraction and genotyping 

In order to genotype the crosses between plants of different genetic background, the F2 

generation was grown in trays of 96 pots, leaf material harvested in 96-well plates, 

grinded in presence of RLT buffer and DNA extracted using Biosprint 96 (QIAGEN) 

according to manufacturer’s instructions. 

Polymerase Chain Reactions (PCR) for genotyping were performed in 96-well plates, 

according to standard lab protocols using Taq DNA Polymerase (Invitrogen). The 

annealing temperature for each primer pair is indicated in Table 3.1. 

 

3.5 Flowering time analysis 

Flowering time was determined by counting the number of rosette leaves (at bolting time) 

and cauline leaves on the main stem for the number of plants indicated for each 

experiment (Total leaf number = Rosette leaves + Cauline leaves). For most flowering 

time plots of the warm temperature experiments the displayed values were generated by 

combining the flowering time scoring of several independent experiments. For flowering 
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time plots of the shade avoidance experiments the graphs shown were performed with 

data obtained from a single experiment. Statistical analyses were performed with the 

same pool of data used for flowering time graphs. The software used for the analysis 

was SigmaStat 3.5. 

 

3.6 Hypocotyl length measurements  

Seedlings were grown for 10 days on soil and then transferred to MS-agar plates to 

perform the measurements. The seedlings were placed horizontally lying on the media 

and pictures of the plates were taken to perform the measurements using ImageJ. 

Millimeter paper included on the picture was use as reference. Measurements were done 

from the junction between the root and the hypocotyl until the point where the cotyledons 

are placed. 

 

3.7 Analysis of gene expression levels (Quantitative Real-Time PCR) 

For gene expression analysis, at least 20 whole seedlings per sample were harvested in 

1.5 µL Eppendorf tubes and frozen in liquid N2. Frozen samples were ground using 

TissueLyser (Qiagen). Total RNA was extracted using RNAeasy extraction Kit (Qiagen) 

following the manufacturer’s instructions. Isolated RNA was quantified using NanoDrop 

(Thermo Scientific) and treated with DNA-free DNase (Ambion) to remove residual 

genomic DNA following the manufacturer’s instructions. Approximately 2 and 4 µg of total 

RNA were used for cDNA synthesis of samples harvested under shade and under 21°C-

SD and 27°C-SD, respectively. Oligo-dT primer and SuperScript II or III (Invitrogen) were 

used for reverse transcription. SuperScript III was used for samples harvested under 

21°C-SD and 27°C-SD conditions, as the expression of some of the genes of interest 

was very low and it has a higher efficiency than SuperScript II and SuperScript II was 
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used for samples harvested under shade. cDNA was diluted to 200 µL and to 150 µL 

with water for samples under shade and warm temperature, respectively and 3 µL were 

used as template for qRT-PCR. iQ SYBR Green Supermix (BIO-RAD) was used for warm 

temperature samples and Taq DNA Polymerase (Invitrogen) and EvaGreen were used 

for samples harvested under shade. Transcript levels were quantified by in a LightCycler 

480 instrument (Roche). The PCR program used for all the measurements was as 

follows: 

 

95°C  5 min 

95°C  20 s 

60°C  20 s  x 45 

72°C  20 s 

 

In order to convert the florescence intensity measurements in gene expression values, 

calibration curves were used. Aliquots of random RNA samples of the working set were 

collected in a single Eppendorf tube after DNase treatment and cDNA was synthesized. 

A dilution series of this cDNA was used to build the standard curve and obtain a PCR 

efficiency for each primer pair. Calibration against the standard curve resulted in arbitrary 

concentration values. Relative expression values were obtained by using 

PHOSPHATASE 2A (PP2AA3) (AT1G13320) as reference gene (Czechowski et al. 

2005). For every warm temperature experiment, normalization of each expression value 

to one expression value in the same experiment (usually the highest) was performed. 

Final plots were obtained by determining the average of the normalized values from 

several biological replicates. SEs were calculated from averaged values. For shade 

avoidance experiments, the result of individual experiments is shown. 

Primers used for Quantitative Real-Time PCR in this study are listed in Table 3.4. 
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Table 3.4 Primers for Quantitative Real-Time PCR 

Gene Name Sequence (5´ - 3´) 

CO 
CO-qRT-F TAAGGATGCCAAGGAGGTTG 

CO-qRT-R CCCTGAGGAGCCATATTTGA 

FT 
FT-qRT-F CGAGTAACGAACGGTGATGA 

FT-qRT-R CGCATCACACACTATATAAGTAAAACA 

TSF 
TSF-qRT-F CTCGGGAATTCATCGTATTG 

TSF-qRT-R CCCTCTGGCAGTTGAAGTAA 

PIF4 
qRT-PIF4-1F CGGAGTTCAACCTCAGCAGT 

qRT-PIF4-1R ACCGGGATTGTTCTGAATTG 

PP2AA3 
PP2AA3-F CAGCAACGAATTGTGTTTGG 

PP2AA3-R AAATACGCCCAACGAACAAA 

SOC1 
qRT-SOC1_F1 TGATGAAGAGAGTAGCCCAAG 

qRT-SOC1_R1 TGAGAGAGAGAGAGTGAGAGAGAAA 

IAA29 
qRT-IAA29-F CCGAATATGAAGATTGCGACA 

qRT-IAA29-R TGCACACGGTCGATCTCTAA 

PIF7 
V16-PIF7 qRT-PCR TGGCCACAGCGTCACTGCAA 

V17-PIF7 qRT-PCR TGCTCGTCCCCGTCGTCCAT 

AP1 
Y28 ATGAGAGGTACTCTTACGCCGA 

Y29 CAAGTCTTCCCCAAGATAATGC 

FUL 
FUL-F TGCTCCAACTCTTCTTCAGTTCTTC 

FUL-R TGGAGGAGGTTACGCAGTATTGA 

  

3.8 GUS histochemical analysis 

GUS staining was performed as previously described (Adrian et al. 2010). Seedlings 

were harvested and fixed on ice with 90 % acetone for 30 min, then vacuum infiltrated 

with GUS staining buffer and incubated until detection of signal at 37°C in the same 
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buffer. GUS staining buffer composition: X-Gluc, 0.5 mg/mL; Triton X100, 0.1 %; 

ferricianate solution (K3Fe(CN)6.3H2O, 4.22 % and K3Fe(CN)6.3H2O, 3.92 %), 0.5 mM; 

phosphate buffer (Na2HPO4, 57.7 mM and NaH2PO4, 42.3 mM), 50 mM. Clearing was 

performed in ethanol (30 % 1 hour and 70 % until clearance of leaves). Samples were 

preserved in 70 % ethanol.  

 

3.9 Western blot analysis and nuclear protein quantification 

Nuclear proteins were isolated from around 30 seedlings per time point. Samples were 

ground inside a 1.5 ml tube using a TissueLyser (Qiagen) and frozen adaptors. The 

ground tissue was resuspended in Nuclear Protein Isolation Buffer (NPIB: Tris pH 6.8, 

0.02 M; Sucrose, 50 g·L-1; Glycerol, 40 %; Triton X100, 0.8 % v/v; MgCl2, 0.02 M; 2-

Mercaptoethanol, 0.08 %; Protease Inhibitor Cocktail (PIC); Dithiothreitol (DTT), 1 mM; 

Phenylmethylsulfonylfluorid (PMSF), 1.34 mM) pre-cooled at 4 °C. After low speed 

centrifugation at 4 °C, the pellet was washed 5 times with the NPIB or until the 

supernatant became clear. Pellets were resuspended in 2X Laemmli buffer (Tris-HCl pH 

6.8, 0.125 M; 2-Mercaptoethanol, 10 %; Sodium dodecyl sulfate (SDS), 4 %; Sucrose, 

10 %; Bromophenol blue, 0.015 %) and boiled for 10 min at 96 °C. Extracted proteins 

were resolved in 10 % SDS-PAGE and transferred overnight (ON) at 50 mV in Transfer 

Buffer (190 mM Glycine; 0.25 mM Tris; 0.05 % SDS; 20 % Methanol) to a PVDF 

membrane (Merck Millipore). The membrane was washed 2 times for 10 min with TBS 

(20 mM Tris-HCl pH 7.5; 150 mM NaCl) containing sodium azide (0.01 % w/v sodium 

azide). It was blocked for 1 h with TBS milk (TBS; 5 % w/v skim milk). The membrane 

was then incubated for 2 h with TBS milk and sodium azide containing the primary 

antibody. Immunodetection of 3HA:CO and PIF4:3HA was done with anti-HA monoclonal 

antibody, 1:2000 dilution, from rat (Roche, 11867423001); SVP-GFP was detected with 

anti-GFP monoclonal antibody, 1:2000 dilution, from mouse (Roche, 11814460001) and 
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H3 histone was detected with anti-histone H3 polyclonal antibody, 1:30000 dilution, from 

rabbit (Abcam, ab1791). The membrane was washed 4 times for 15 minutes with TBST 

(TBS; 0.1 % Tween 20) and incubated for 1 h with TBST containing the secondary 

antibody. Secondary antibodies used were Horseradish peroxidase conjugates: anti-rat 

HRP from goat, 1:5000 dilution (Sigma, 9037), anti-rabbit HRP in donkey, 1:20000 

dilution, (Abcam ab97064). After washing the membrane 4 times for 15 minutes with 

TBST, chemiluminescence detection of the proteins was done by using SuperSignal 

West Femto and SuperSignal West Dura kits (Thermo Scientific) in a LAS-4000 imaging 

system (Fuji). Technical replicates were loaded on two independent gels. Protein 

quantification was done with ImageJ Software using the images captured with the lowest 

possible exposure to avoid saturation. Each time point was normalized to the 

corresponding histone counterpart. Values were normalized against the highest value in 

each technical replicate. The averages of 2 technical replicates for each of 2 biological 

replicates were combined to describe the biological average and variation. SEs were 

calculated from averaged values. 

 

3.10 Co-Immunoprecipitation assays 

For protein interaction analysis, 4 weeks-old transiently transformed Nicotiana 

benthamiana (N. benthamiana) leaves were used. 50 mL liquid culture of A. tumefaciens 

harboring p35S::CO:YFP or p35S::PIF4:HA were grown ON, centrifuged and the cell 

pellet resuspended in an infiltration buffer (MES-KOH pH 5.6, 10 mM; MgCl2, 10 mM) to 

final optical density (OD) of 1. Cell suspension supplemented with 1:1000 of 

Acetosyringone 150 mM was incubated for 1 h at room temperature (RT). Leaves of N. 

benthamiana were infiltrated with a 1 mL syringe. After infiltration, plants were incubated 

for 3 days at RT and leaf material was collected and frozen in liquid N2. 
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For co-immunoprecipitation assay, approximately 400 mg of grinded material were 

resuspended in cooled Nuclear Extraction Buffer (NEB: Tris-HCl pH 7.4, 0.05 M; MgCl2, 

0.02 M; Sucrose, 5 g·L-1; Glycerol, 40 %; NP40, 0.5 % v/v; PIC; DTT, 1 mM; PMSF, 2 

mM; MG132, 0.05 mM). After centrifugation the pellet was washed 4 times with NEB and 

resuspended in Sonication Buffer (SB: Tris-HCl pH 7.4, 0.05 M; NaCl, 0.05 M, NP40, 0.5 

% v/v; PIC; DTT, 1 mM; PMSF, 2 mM; MG132, 0.05 mM). Samples were sonicated for 5 

min on intervals of 15 s sonication with 15 s of break. Samples were diluted 3 times with 

SB supplemented with NaCl 0.1 M and incubated for 15 min at 4 °C. After centrifugation 

at maximum speed, 20 % of the sample was concentrated in centrifugal filter unit 30 K 

(Amicon ultra) and mixed with 2X Laemmli Buffer to use as input. The rest of the sample 

was incubated with anti-GFP monoclonal antibody from mouse (Roche, 11814460001) 

at 4 °C for 1 h in circular rotor. Protein G sepharose 4 Fast Flow (GE Healthcare) were 

equilibrated with SB, added to the samples and incubated for 3 h at 4 °C in circular rotor. 

Samples were centrifuged at low speed for 30 s and the beads washed 5 times with 

Washing Buffer (WB: Tris-HCl pH 7.4, 0.05 M; NaCl, 0,15 M, NP40, 0.5 % v/v). Beads 

were resuspended in 2X Laemmli Buffer and boiled at 96°C for 10 min. 

Input and immunoprecipitated samples were loaded in duplicate and resolved in 10 % 

SDS-PAGE. Transference to a PVDF membrane (Merck Millipore) and western blot 

analysis were performed as described above. Immunoprecipitated CO:YFP protein was 

detected with anti-GFP monoclonal antibody from mouse (Roche, 11814460001) and co-

immunoprecipitated PIF4:HA was detected with anti-HA monoclonal antibody from rat 

(Roche, 11867423001). Secondary antibodies used were Horseradish peroxidase 

conjugates: anti-rat HRP from goat, 1:5000 dilution (Sigma, 9037) and anti-mouse HRP 

from goat, 1:10000 dilution (Abcam, AB97265). Chemiluminescence detection of the 

proteins was done by using SuperSignal West Femto and SuperSignal West Dura kits 

(Thermo Scientific) in a LAS-4000 imaging system (Fuji). 
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3.11 Yeast two Hybrid assay (Y2H) 

For every Y2H assay, newly prepared competent yeast cells were used (yeast strain 

PJ694). 2 mL of freshly grown yeast was inoculated into 100 mL YPAD media 

(Bactopeptone, 20 g/L; Yeast extract, 10 g/L; Glucose, 20 g/L; Adenine-hemisulfate, 0.01 

%; Agar, 16 g/L) and incubated for 5 – 6 h at 28 °C until OD = 1. The yeast culture was 

equality divided into 4 falcon tubes and centrifuged at 4000 rpm for 5 min. The cell pellet 

was washed with water and centrifuged at 4000 rpm for 5 min. The cells were 

resuspended in 1 mL LiAc (100 mM, pH 7.5), transferred to 1.5 mL Eppendorf tubes and 

centrifuged at 6000 rpm for 5 min. Cells were then resuspended in 500 µL LiAc (100 mM, 

pH 7.5). After a new centrifugation at 6000 rpm for 5 min cells were resuspended in 1 mL 

of transformation mix (40 % PEG 4000; 0.1 M LiAc; TE buffer pH 7.5 - 10 mM Tris, 1 mM 

EDTA -). 20 µL of salmon sperm DNA (10 mg/mL) was added. 100 µL of this mix was 

added to a previously prepared plasmid mix. The plasmid mix contained a pair of vectors 

expressing the proteins to be tested as well as pairs with the plasmids expressing the 

proteins of interest and the corresponding empty vectors (Table 3.5). The plasmid mix 

and the transformation mix were incubated 25 min at 30 °C and then 25 min at 42 °C. 1 

mL sterile water was added to the tube and centrifuged 5 min at 6.000 rpm. The pellet 

was resuspended in 200 µL of sterile water and transformed cells plated in drop out 

medium (N2 Base 6.7 g/L; Glucose 20 g/L; Drop out mix [-Leucine (-Leu), - Tryptophan 

(-Trp)] or Drop out mix [-Leu, -Trp, - Histidine (-His)]; Agar, 20 g/L) (-Leu, -Trp) to select 

transformed cells. Plates were incubated for 3 – 4 days at 30 °C until colonies were 

visible. A mix of grown colonies in the same plate was done in water and serial dilution 

of the cell mix performed. The dilutions were then plated in drop out medium -Leu, -Trp; 

-Leu, -Trp, -His and -Leu, -Trp, -His plus 5 mM 3AT. Plates were incubated for 3 – 4 days 
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at 30 °C until colonies were visible and colonies growth in plates -Leu, -Trp, -His and -

Leu, -Trp, -His plus 5 mM 3AT traduced into protein interaction information.  

The DNA fragments cloned into pDEST22 and pDEST32 generate fusion proteins fused 

to an activation domain (pray) and a DNA binding domain (bait), respectively. 

 

Table 3.5 Construct combinations for Y2H experiments 

 
AD clone # BD clone # AD BD 

1 368 382 CO full length/pDEST22 PIF4 full length/pDEST32 

2 374 376 PIF4 full length/pDEST22 CO full length/pDEST32 

3 368 pDEST32 CO full length/pDEST22 pDEST32 

4 374 pDEST32 PIF4 full length/pDEST22 pDEST32 

5 pDEST22 376 pDEST22 CO full length/pDEST32 

6 pDEST22 382 pDEST22 PIF4 full length/pDEST32 

 

3.12 Förster resonance energy transfer-acceptor photo bleaching assay (FRET-

A.PB) 

N. benthamiana leaves were infiltrated with A. tumefaciens containing p35S::PIF4:CFP 

or p35S::CO:YFP as described before for co-Immunoprecipitation assays. Three days 

after infiltration protein-protein interaction was assayed by FRET - acceptor 

photobleaching (APB). Transiently transformed N. benthamiana cell nuclei were imaged 

with LSM 780 (Carl Zeiss). After photobleaching of the acceptor (CO:YFP) the change in 

fluorescence intensity of the donor (PIF4:CFP) was analysed. Pre and post-bleaching 

images were compared. 

 





 

 

 

 

 

 

 

 

 

 

 

 

4. Regulation of flowering time by 

warm ambient temperatures in A. 
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Ambient temperature is one of the environmental factors that are detected by plants as 

indicator of the changing seasons. In addition, ambient temperature varies on diurnal basis, 

particularly between day and night. Therefore it is important that plants can adapt and 

respond to these temperature changes. In A. thaliana, variations in ambient temperature 

affect several aspects of plant development, such as germination, growth rate, and flowering 

time (Strand et al. 1999, Schmuths et al. 2006, Lee et al. 2007, Toh et al. 2008, Koini et al. 

2009, Kumar et al. 2012). Warm ambient temperatures greatly accelerate flowering, even 

under non-inductive photoperiods (Balasubramanian et al. 2006, Lee et al. 2007, Kumar and 

Wigge 2010, Kumar et al. 2012, Lee et al. 2013, Pose et al. 2013, Galvao et al. 2015). The 

regulation of flowering by the photoperiod and thermosensory pathways converge on the 

transcriptional regulation of the floral integrator FT, but the interactions between these two 

pathways are poorly understood. Here, the intersection between the photoperiodic and 

ambient temperature pathways are analysed, and the relative contributions in controlling 

flowering at high temperatures of the transcription factors involved in this response evaluated. 

 

4.1 Timing and amplitude of FT transcription under 27C-SDs  

Transcriptional activation of FT in warm temperatures accelerates flowering under SDs 

(Balasubramanian et al. 2006, Kumar et al. 2012). Under LDs FT activation occurs in the light 

12-16 h after dawn (Suarez-Lopez et al. 2001). To describe the diurnal pattern of FT 

transcription under warm SDs in Col-0 wild-type plants, FT mRNA was analysed through a 

24 h time course in plants grown at 21 °C or 27 °C under SDs of 8 h light. FT mRNA levels 

peaked 8 h after dawn (Zeitgeber 8 [ZT8]) in the 27°C-SD time course, whereas only very 

low FT mRNA levels were detected in seedlings grown under 21°C-SD (Figure 4.1a). The 

contribution of FT to flowering under 27°C-SD was then assessed using the null ft-10 allele. 
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Col-0 plants grown under 27°C-SD flowered much earlier than those grown under 21°C-SD, 

producing on average 26 and 65 leaves, respectively (Figure 4.1b). In comparison to Col-0, 

ft-10 mutants were strongly delayed in flowering at 27 °C although they were still earlier 

flowering than Col-0 at 21 °C (Figure 4.1b). These results support the idea that FT is required 

for full acceleration of flowering under these conditions, as previously shown 

(Balasubramanian et al. 2006, Kumar et al. 2012). By contrast, a null mutant of TSF (tsf-1) 

did not show any delay in flowering compared to Col-0 under 27°C-SD (Figure 4.1b). 

Although TSF mRNA abundance was increased at 27°C-SD (Figure 4.1c), the genetic data 

suggest that FT could compensate for loss of TSF activity under these conditions. However, 

the double mutant ft-10 tsf-1 flowered moderately later than ft-10 under 27°C-SD (Figure 

4.1b), indicating that TSF plays a significant role under these conditions in the absence of 

functional FT, as previously observed in plants grown under LDs (Yamaguchi et al. 2005, 

Jang et al. 2009). Nevertheless, even the double mutant ft-10 tsf-1 flowered slightly earlier 

under 27°C-SD than 21°C-SD, suggesting that these plants retained some responsiveness 

to 27 °C. In summary, the acceleration of flowering time of Col-0 plants under 27°C-SD largely 

depends on FT and TSF, and FT mRNA exhibits a diurnal pattern of expression with a peak 

at ZT8. 

Col-0 plants growing under 21°C-LD flowered with a similar number of leaves to those 

growing under 27°C-SD (Figure 4.1d). Therefore, the levels of FT mRNA were directly 

compared in plants exposed to SDs and high temperatures with those exposed to LDs (Figure 

4.1e). As expected, the maximum accumulation of FT mRNA in Col-0 seedlings growing 

under 21°C-LD and 27°C-SD occurred at ZT16 and ZT8, respectively (Figure 4.1a and 4.1e). 

However, under 21°C-LD the peak level of FT mRNA (ZT16) was at least 10 fold higher than 

under 27°C-SD (ZT8) (Figure 4.1e). Therefore, although under these two conditions flowering 

time was similar, the absolute levels of FT mRNA differed tremendously. This suggests that, 
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although FT is required for early flowering under 27°C-SD, its transcriptional activation alone 

might not be sufficient to explain the extreme early flowering observed. 

 

Figure 4.1 Role of FT on the flowering response to warm temperature under SDs. (a) FT mRNA expression 

time course in 14-day-old Col-0 seedlings grown under 21°C-SD and 27°C-SD. (b) Flowering time of plants grown 

under 21°C-SD and 27°C-SD. (c) TSF mRNA expression at ZT8 in 14-day-old Col-0 seedlings grown under 21°C-

SD and 27°C-SD. (d) Flowering time of Col-0 plants grown under 21°C-SD, 27°C-SD and 21°C-LD. (e) FT mRNA 

expression profile in 14 and 10-day-old Col-0 seedlings grown under 27°C-SD and 21°C-LD, respectively. At this 

stage seedlings in both conditions were at the same developmental stage. In (a) and (e), seedlings were harvested 

every 4 h for 24 h and FT mRNA expression was measured by qRT-PCR; error bars are standard errors (SEs) of 

three and two (27°C-SD ZT16, 27°C-SD ZT24, 21°C-SD ZT16) independent biological replicates in (a) and two 

independent biological replicates in (e). For time points 21°C-SD ZT24 in (a) and 27°C-SD ZT24 in (e) n = 1. Data 

point 27°C-SD ZT20 in (e) was not determined. In (c) error bars are SEs of eight independent biological replicates. 

In (b) and (d), letters indicate statistical groups determined with a two-way analysis of variance (ANOVA) and 

multiple comparisons with the Holm–Sidak method. Multiple comparisons were performed within temperatures 

and within genotypes. Groups were considered statistically different when P ≤ 0.05. 
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4.2 PIF4 weakly promotes flowering under 27°C-SD through the transcriptional 

activation of FT in the vascular tissue 

Under 27°C-SD, PIF4 induce flowering by binding to the FT promoter and activating 

transcription, while plants homozygous for the pif4-101 allele growing in the same 

environment were strongly delayed in flowering compared to Col-0 (Kumar et al. 2012). Under 

our 27°C-SD and 21°C-SD conditions, the flowering times of pif4-101 and pif4-2 mutants 

were measured in several experiments that included large numbers of plants of each 

genotype (Figure 4.2a). Both mutants were significantly later flowering than Col-0 controls 

under 27°C-SD (Figure 4.2a and 4.2b), but flowered much earlier than Col-0 or the pif4 

mutants grown under 21°C-SD (Figure 4.2a). Because of the variability of the flowering 

response under 27°C-SD, occasional pif4 mutants flowered within the range of Col-0 under 

21°C-SD (Figure 4.2a). However, under our conditions neither pif4-101 nor pif4-2 mutants 

showed as strong a suppression of the early-flowering response under 27°C-SD as 

previously described (Figure 4.2a) (Kumar et al. 2012). The effect on flowering time of the 

loss of function of other members of the PIF family was tested, because of their potential 

functional redundancy with PIF4. Interestingly, the pif5-3 single mutant flowered at a similar 

time to pif4 mutants, whereas the double mutant pif4-2 pif5-3 flowered later than the single 

pif4-2 (Figure 4.2a), suggesting that PIF5 also has a role in the promotion of flowering under 

warm SD. By contrast, PIF1 and PIF3, two other members of the family, did not seem to play 

a role in flowering regulation under SDs at warm temperature, because flowering of the 

quadruple mutant pif1-1 pif3-3 pif4-2 pif5-3  was not significantly delayed compared to pif4-2 

pif5-3 (Figure 4.2a).  
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Figure 4.2 Mutations in PIFs affect flowering time and FT and TSF expression under 27°C-SD. (a) Flowering 

time of plants grown under 21°C-SD and 27°C-SD. (b) Pictures of representative plants of each genotype grown 

under 21°C-SD and 27°C-SD. (c) FT mRNA expression in seedlings grown under 21°C-SD and 27°C-SD. (d) TSF 

mRNA expression in seedlings grown under 21°C-SD and 27°C-SD. (e) GUS staining of two independent 

transgenic lines harboring the pFT::GUS fusion construct (1.6 and 2.2) in Col-0, p35S::PIF4:HA or p35S::PIF5:HA 

backgrounds. Plants were grown for 10 days under LDs or SDs and harvested at ZT16 and ZT4, respectively, 

before GUS staining (7 h staining time) (the GUS-staining experiment pictures shown were taken by Yasuyuki 

Takahashi). In (c) and (d), seedlings were grown for 14 days and harvested 8 h after dawn (Zeitgeber 8, ZT8). FT 

and TSF mRNA expression was measured by qRT-PCR; error bars are SEs of at least six and five independent 

biological replicates, respectively. Statistical analysis as described in Figure 4.1. 

 

Whether the flowering behaviour of these single and higher order pif mutants is correlated 

with changes in FT mRNA level was examined by quantifying the abundance of FT mRNA at 

ZT8, when the maximum peak in mRNA expression is observed, in seedlings grown under 

21°C-SD and 27°C-SD (Figure 4.2c). As expected, a significant reduction in FT mRNA level 

at ZT8 was observed in pif4-2 and pif4-101 single mutants compared to Col-0 at 27 °C but 

not 21 °C. Although pif5-3 mutants were late flowering, no reduction in FT mRNA levels was 

detected in single mutants, suggesting that PIF5 might mainly affect FT mRNA at other 

stages of development or that it affects flowering by another route. However, the reduction in 

FT mRNA observed in pif4-2 was enhanced in seedlings of the double mutant pif4-2 pif5-3 

(Figure 4.2c) and was enhanced slightly further in the quadruple mutant pif1-1 pif3-3 pif4-2 

pif5-3 (Figure 4.2c), although this reduction was apparently not sufficient to cause a 

significant difference in flowering time (Figure 4.2a).  

TSF mRNA was expressed in a similar pattern to FT mRNA, and the peak observed in Col-

0 plants was suppressed in pif4-101 and pif4-2 single mutants (Figure 4.2d). TSF mRNA 

levels were also suppressed in pif4-2 pif5-3 double mutants as well as pif1-1 pif3-3 pif4-2 

pif5-3, where it was present at similar levels to those observed in pif4 single mutants. Similar 

to FT, the levels of TSF mRNA expression were not reduced in pif5-3 mutants compared to 
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Col-0 (Figure 4.2d), supporting the idea that the expression of FT and TSF could be affected 

by PIF5 at other stages of development or that PIF5 affects flowering by another route. 

In order to define the effect of PIF4 overexpression on the spatial pattern of FT expression, 

a construct that facilitates misexpression of PIF4 from the constitutive Cauliflower mosaic 

virus 35S promoter (p35S; p35S::PIF4:HA) (Lorrain et al. 2008) was introduced into plants 

harbouring pFT1.8 kb::GUS (Adrian et al. 2010) (p35S::PIF4:HA; pFT::GUS). Under SDs and 

LDs, GUS expression was detected only in the vascular tissue (Figure 4.2e).A similar GUS 

expression pattern was observed in PIF5 over-expressing lines (p35S::PIF5:HA) (Lorrain et 

al. 2008) under LDs (Figure 4.2e). These results indicated that although PIF4 is broadly 

expressed in leaves of wild-type plants (Kumar et al. 2012) and presumably p35S::PIF4:HA 

transgenics, its effect on FT mRNA induction occurs only in the vascular tissue, where FT is 

normally expressed. The effects of warm temperature on FT mRNA induction and the spatial 

pattern of expression were also evaluated. Seedlings containing pFT1.8 kb::GUS and grown 

under 27°C-SD and 21°C-SD were used. However, no GUS expression was detected under 

either condition (data not shown). As the qPCR analysis indicated (Figure 4.1e), the levels of 

expression of FT under 27°C-SD are very low, therefore, the GUS staining was probably not 

sensitive enough to detect pFT1.8 kb::GUS expression under these conditions.  

 

4.3 CO is required for full activation of FT transcription and promotion of flowering 

under 27°C-SD 

The data presented above suggested that, besides PIF4 and PIF5, there must be other 

factors promoting early flowering and FT transcription under 27°C-SD. CO induces FT 

transcription specifically in the vascular tissue under LDs (An et al. 2004, Adrian et al. 2010), 

as was observed for p35S::PIF4:HA (Figure 4.2e). Therefore, the contribution of CO to FT 
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mRNA expression under 27°C-SD was tested. To this end, the flowering times of co-10 

mutant plants and Col-0 growing under 27°C-SDs were compared (Figure 4.3a).  

 

Figure 4.3 Mutations in CO affect flowering time and FT and TSF mRNA expression under 27°C-SD. (a) 

Flowering time of Col-0 and co-10 plants grown under 21°C-SD and 27°C-SD. (b) FT mRNA expression in Col-0 

and co-10 seedlings grown under 21°C-SD and 27°C-SD. (c) TSF mRNA expression in Col-0 and co-10 seedlings 

grown under 21°C-SD and 27°C-SD. (d) Flowering time of Ler and co-2 plants grown under 21°C-SD and 27°C-

SD. (e) FT mRNA expression in Ler and co-2 seedlings grown under 21°C-SD and 27°C-SD.In (b), (c) and (e), 

seedlings were grown for 14 days and harvested at ZT8. FT and TSF mRNA expression was measured by qRT-

PCR; error bars are SEs of at least six independent biological replicates in (b) an (c) and two independent 

biological replicates in (e). Statistical analysis as described in Figure 4.1. 

 

A significant delay in flowering of the co-10 mutants was observed, although they still 

flowered much earlier than plants of the same genotype grown under 21°C-SDs. Therefore, 
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as observed for two pif4 mutant alleles, pif5-3 and pif4-2 pif5-3, the co-10 mutation partially 

reduced the flowering response to 27°C-SD. Similarly, FT mRNA levels in co-10 mutants 

were significantly reduced compared to Col-0 under 27°C-SD at ZT8, but not under 21°C-SD 

(Figure 4.3b). A similar result was observed for TSF mRNA levels (Figure 4.3c). To 

demonstrate that the results obtained using co-10 mutants were independent of the allele or 

the ecotype used, a second co mutant allele (co-2) in Landsberg erecta (Ler) background 

was studied. The co-2 mutant plants showed late flowering and a strong suppression of FT 

mRNA expression compared to Ler at warm ambient temperature (Figure 4.3d and 4.3e), 

confirming the effect of CO on flowering time and FT mRNA expression under 27°C-SD. 

Therefore, CO contributes to the activation of FT and TSF mRNA expression during the 

thermosensory induction of flowering under SDs.  

 

4.4 Simultaneous accumulation of CO and PIF4 proteins overlap with the peak in FT 

transcription at ZT8 under 27°C-SD 

Our data support the idea that both CO and PIF4 are required for full induction of flowering 

at warm temperature under SD. Therefore, the timing of expression of these proteins was 

tested under 27°C-SD and compared to the timing of the peak in FT transcription. Transgenic 

pCO::HA:CO co-10 seedlings were used (Sarid-Krebs et al. 2015) and HA:CO protein 

abundance followed through 24 h time courses. A diurnal peak of CO protein accumulation 

was observed at ZT8, both at 21 °C and 27 °C (Figure 4.4a), although this is of much lower 

amplitude than under LDs (Sarid-Krebs et al. 2015). Quantification of CO protein revealed 

that it is slightly more abundant (less than 2 fold) at 27 °C compared to 21 °C (Figure 4.4b), 

suggesting that warm temperature might favour the accumulation of CO protein at ZT8. The 
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analysis of CO mRNA indicated that this increase in CO protein at ZT8 might be due to the 

presence of more CO mRNA at this time under 27 °C compared to 21 °C (Figure 4.4c). 

 

Figure 4.4 High levels of CO and PIF4 protein overlap ZT8. (a) Western blot from nuclear protein extracts of 

pCO::HA:CO co-10 plants. Time course showing HA:CO protein accumulation over 24 h. (b) HA:CO protein 
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quantification. (c) CO mRNA expression in Col-0 seedlings grown under 21°C-SD and 27°C-SD. (d) Western blot 

from nuclear protein extracts of pPIF4::PIF4:HA pif4-101 plants. Time course showing PIF4:HA protein 

accumulation over 24 h. (e) PIF4:HA protein quantification. (f) PIF4 mRNA expression in Col-0 seedlings grown 

under 21°C-SD and 27°C-SD. (g) FT and (h) TSF mRNA expression in Col-0 seedlings grown under 21°C-SD, 

27°C-SD or 21°C-SD and shifted to 27°C-SD. (i) In vivo co-immunoprecipitation of PIF4:HA protein with CO:YFP. 

CO:YFP was precipitated with anti-GFP antibody and co-precipitation of PIF4:HA was detected by western blot 

using anti-HA antibody. In (a) and (d), nuclear proteins were extracted from seedlings grown for 14 days under 

21°C-SD or 10 days under 21°C-SD, and shifted to 27°C-SD for 4 days. The western blot images shown are 

representative results from three (a) and (d) two independent biological replicates. In (b) and (e), error bars are 

SEs of two independent biological replicates. In (c) and (f), 14-day-old seedlings were harvested every 4 h for 24 

h. CO and PIF4 mRNA expression was measured by qRT-PCR; error bars are SEs of three independent biological 

replicates for all time points, except for: 27°C-SD ZT20 and 21°C-SD ZT24 in (c) and 27°C-SD ZT20 and 21°C-

SD ZT20 in (f), where two independent biological replicates were performed. For time point 21°C-SD ZT20 in (c) 

n =1. In (g) and (h) seedlings where grown for 14 days under 21°C-SD, 27°C-SD or for 10 days under 21°C-SD 

and transferred to 27°C-SD for 4 days. FT and TSF mRNA expression was measured by qRT-PCR; error bars = 

SE of 2 independent biological replicates. 

 

To test accumulation of PIF4 protein under 21°C-SD and 27°C-SD, pPIF4::PIF4:HA pif4-101 

seedlings were used (Hornitschek et al. 2012). Figure 4.4d and 4.4e show that PIF4:HA was 

present during the day in a relatively unchanged and similar level at both temperatures, 

whereas it rapidly disappeared in darkness. At the end of the night, PIF4 protein levels 

increased, reaching higher levels at 27 °C compared to 21 °C. Analysis of PIF4 mRNA 

showed that differences in the protein expression pattern between these temperatures 

correlated with changes in mRNA expression (Figure 4.4f). Both protein time courses were 

performed using seedlings grown for 14 days under 21°C-SD, for the 21 °C samples, or 10 

days under 21°C-SD and shifted to 27°C-SD for 4 days, for the 27 °C samples. This strategy 

was chosen because the very long hypocotyls of the pPIF4::PIF4:HA pif4-101 transgenic 

lines prevented proper development of the seedlings if grown continuously under 27°C-SD. 

The effect of the shift to high temperature and the accumulated CO and PIF4 proteins on FT 

and TSF mRNA expression was verified. Figure 4.4g and 4.4h show that four days of 
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exposure to warm temperature after 10 days of growth in non-inductive SD conditions are 

enough to trigger increased expression of FT and TSF mRNA. The results presented above 

showed that CO and PIF4 proteins accumulate at the same time as the peak of FT mRNA 

under 27°C-SD. Moreover, CO and PIF4 directly bind to proximal regions of the FT promoter 

(Tiwari et al. 2010, Kumar et al. 2012, Song et al. 2012b, Zhang et al. 2015). Thus, a possible 

hypothesis is that CO and PIF4 proteins might physically interact as a part of the mechanism 

promoting FT induction under warm SDs. In order to test this possibility, several molecular 

techniques were used. Given the technical simplicity and the availability of material, Yeast 

Two Hybrid (Y2H) assays were the first choice. PIF4 and CO full length (FL) open reading 

frames cloned into Gateway pDEST22 and pDEST23 vectors were used. Open reading 

frames of both genes cloned in each vector were used, therefore, the interaction between 

CO and PIF4 proteins could be tested in both directions. As shown in Annex a.1, a positive 

interaction demonstrated by yeast growth in the absence of Histidine (-His) was observed in 

both cases. However, the presence of auto activation in the controls expressing only one of 

the proteins made it difficult to properly interpret the results. A second attempt to study the 

CO/PIF4 interaction was done by making use of confocal imaging in transient assays in N. 

benthamiana. CO and PIF4 were fused to YFP and CFP fluorescent proteins, respectively. 

A. tumefaciens transformed with vectors containing the fusion constructs were co-infiltrated 

in N. benthamiana leaves. Three days after infiltration FRET-A.PB was performed. Positive 

FRET-A.PB signals were detected, suggesting an interaction between CO:YFP and 

PIF4:CFP fusion proteins (Annex A.2). However, the detection of false positive FRET-A.PB 

signal in control experiments using CO:YFP and an empty vector expressing CFP prevented 

positive conclusions on the existence of an interaction between CO and PIF4 proteins (Annex 

A.2). Finally, co-immunoprecipitation (Co-IP) assays were carried out in N. benthamiana 

leaves. A. tumefaciens carrying CO:YFP or PIF4:HA constructs were co-infiltrated in leaves. 
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After three days of incubation to allow protein synthesis, leaf proteins were extracted. 

Immunoprecipitation of CO:YFP protein from leaf extracts using anti-GFP antibody allowed 

the co-immunoprecipitation of PIF4:HA protein (Figure 4.4i). This experiment demonstrated 

the existence of a physical interaction between CO and PIF4 that might be important for the 

activation of FT transcription under 27°C-SD.  

Thus, CO and PIF4 proteins are both present at ZT8 (Figure 4.4a and 4.4d) when the peak 

of FT mRNA under 27°C-SD was observed (Figure 4.1a) and both are required for full 

induction of FT mRNA expression (Figure 4.2c and 4.3b). In addition, CO and PIF4 proteins 

physically interact (Figure 4.4i). These results suggest that the presence of both proteins at 

ZT8 allows each of them to contribute in activating FT and probably TSF transcription and 

thereby accelerating flowering at warm ambient temperature under SD. 

 

4.5 Genetic analysis demonstrates additivity of CO and PIF4 in promoting flowering 

under 27C-SD 

CO and PIF4 bind to the FT promoter, both are co-expressed when FT is transcribed at peak 

levels under 27°C-SD and the two proteins physically interact. The significance of these 

observations was tested genetically by making use of the co-10 pif4-2 and co-10 pif4-2 pif5-

3 double and triple mutants. Under 27°C-SD, co-10 pif4-2 and co-10 pif4-2 pif5-3 plants 

flowered later than the corresponding single mutants, so that the triple mutant flowered after 

producing on average 24 leaves more than Col-0 (Figure 4.5a). Whether the genetic 

interaction between co-10 and the pif mutations was additive or whether there was a 

synergistic effect was then tested. Three-Way ANOVA (p < 0.5) of the flowering-time data of 

single mutants and combinations indicated that there is not a synergistic interaction between 

the co-10, pif4-2 and pif5-3 mutations, but rather that the later-flowering phenotype of the 
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triple mutant can be explained by an additive effect. Therefore, the co-10 pif4-2 pif5-3 triple 

mutant is strongly impaired in its responsiveness to 27°C-SD, although it still flowered earlier 

under 27°C-SD than under 21°C-SD (Figure 4.5a). 

 

Figure 4.5 CO and PIF4 have an additive effect on flowering time under 27°C-SD. (a) Flowering time of plants 

grown under 21°C-SD and 27°C-SD. (b) FT and (c) TSF mRNA expression of plants grown under 21°C-SD and 

27°C-SD. (d) Pearson correlation analysis between normalized FT mRNA expression values and averaged 

flowering time data of plants grown under 27°C-SD. In (b) and (c) seedlings were grown for 14 days and harvested 

at ZT8. FT and TSF mRNA expression was measured by qRT-PCR; error bars are SEs of at least four 

independent biological replicates. Statistical analysis as described in Figure 4.1. In (d) correlation was performed 

with data presented in figures 4.2, 4.3 and 4.5, P = 0.01. 
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FT mRNA levels were then tested in the co-10 pif4-2 and co-10 pif4-2 pif5-3 backgrounds at 

ZT8 under 27°C-SD. The abundance of FT mRNA was strongly reduced in the co-10 pif4-2 

and co-10 pif4-2 pif5-3 mutant plants compared to Col-0, and was similar to that observed in 

Col-0 growing under 21°C-SD (Figure 4.5b). This result indicates that the increased FT 

expression under 27°C-SD is almost entirely explained by the activity of CO, PIF4 and PIF5. 

Similar results were obtained for TSF mRNA levels in double and single mutants (Figure 

4.5c). These observations were supported by a significant correlation (R2 = 0.6; P = 0.01) 

between flowering time and the levels of FT mRNA of plants mutated in CO or the PIF genes 

and the corresponding double and triple mutants (Figure 4.5d). 

 

4.6 Misexpression of PIF4 in the companion cells accelerates flowering and activates 

transcription of FT  

PIF4 and CO act as positive regulators of flowering by inducing the transcriptional activation 

of FT under 27°C-SD. In agreement with this, transgenic plants misexpressing PIF4 from a 

companion cell-specific promoter (pSUC2) were very early flowering under 21°C-SD as well 

as 27°C-SD (Figure 4.6a). In pSUC2::PIF4 plants FT mRNA levels were much higher than in 

Col-0 (Figure 4.6b), and this increase was stronger under 27°C-SD. Similarly, TSF mRNA 

levels were also induced in pSUC2::PIF4 plants compared to Col-0 (Figure 4.6c). The higher 

levels of FT and TSF mRNA under 27°C-SD were associated with earlier flowering of 

pSUC2::PIF4 plants under these conditions. This acceleration of flowering was observed 

despite the very high levels of FT and TSF mRNA present in pSUC2::PIF4 plants under 21°C-

SD. In addition, pSUC2::PIF4 overexpression strongly accelerated flowering of co-10 mutant 

plants (Figure 4.6a). This acceleration again correlated with a strong induction of FT mRNA 

levels under both 21°C-SD and 27°C-SD (Figure 4.6b). By contrast, the induction of TSF 
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mRNA expression in pSUC2::PIF4 plants was suppressed by the co-10 mutation (Figure 

4.6c). However, the lack of TSF mRNA induction does not affect the flowering time of 

pSUC2::PIF4 co-10 plants, presumably because of the high levels of FT mRNA present. 

Thus, PIF4 overexpression in the vasculature can overcome the requirement for CO in the 

induction of flowering under 27°C-SD. 

Similarly, requirement for PIF4 for the induction of flowering under 27°C-SD was overcame 

by over-expression of CO driven by pSUC2. pSUC2::CO construct was able to accelerate 

flowering regardless of pif4-2, pif5-3 and pif4-2 pif5-3 mutants under 27°C-SD (Figure 4.6d). 

The early flowering response of pSUC2::CO pif4-2, pSUC2::CO pif5-3 and pSUC2::CO pif4-

2 pif5-3 lines to warm ambient temperature was not significantly different to the response of 

pSUC2::CO (Figure 4.6d). These observations suggest that, the requirement of PIF4 and 

PIF5 for the promotion of flowering under 27°C-SD becomes negligible when high levels of 

CO are present. In addition, the induction of flowering by pSUC2::CO transgene was 

statistically similar under SDs compared to LDs and no delay in flowering time due to 

mutations in PIF4 and PIF5 was caused under either photoperiod (Figure 4.6e). 

 

4.7 SVP, FT and TSF are essential for thermosensory induction of flowering under SD  

At 27 °C, the stability of SVP protein is reduced compared to 21 °C (Lee et al. 2013). To test 

the abundance of SVP protein under our growing conditions, SVP:GFP protein levels in 

pSVP::SVP:GFP svp-41 flc-3 FRI seedlings (Mateos et al. 2015) through 24 h time course 

under 21°C-SD and 27°C-SD were monitored. SVP:GFP protein level decreased under 27°C-

SD compared to 21°C-SD, however the protein was not absent at high temperature and 

SVP:GFP was still detected at all time points (Figure 4.7a and 4.7b).  
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Figure 4.6 Misexpression of PIF4 and CO in the companion cells can overcome the requirement of CO 

and PIF4, respectively, for the acceleration of flowering. (a) Flowering time of plants grown under 21°C-SD 

and 27°C-SD. (b) FT and (c) TSF mRNA expression of plants grown under 21°C-SD and 27°C-SD. (d) Flowering 

time of plants grown under 21°C-SD and 27°C-SD. (e) Flowering time of plants grown under 21°C-SD and 21°C-

LD. In (b) and (c) seedlings were grown for 10 days and harvested at ZT8 and ZT24; error bars are SEs of two 

independent biological replicates. Statistical analysis as described in Figure 4.1. 

 

Figure 4.7 SVP protein stability decreases under 27°C-SD. (a) Western blot from nuclear protein extracts of 

pSVP::SVP:GFP svp-41 flc-3 FRI plants showing SVP:GFP protein accumulation over 24 hours. (b) SVP:GFP 

protein quantification. Nuclear proteins were extracted from seedlings grown for 14 days at 21°C-SD or 10 days 

at 21°C-SD and shifted to 27°C-SD for 4 days. The western blot image shown in (a) is a representative result from 

two independent biological replicates. In (b), error bars are SEs of two independent biological replicates. For time 

point 21°C-SD ZT12, n = 1. 

 

Under LDs, svp mutants are insensitive to warm ambient temperature (Lee et al. 2007, Lee 

et al. 2013, Pose et al. 2013). By contrast under 27°C-SD svp-41 flowered with around 6 

leaves fewer than under 21°C-SD (Figure 4.8a). The svp-41 mutant also shows increased 

expression of FT and TSF mRNA at ZT8 under 27°C-SD compared to 21°C-SD, as observed 

in Col-0 (Figure 4.8b and 4.8c). To test for a genetic interaction between the SVP-dependent 

and the CO and PIF-dependent thermosensory flowering pathways, the svp-41 pif4-101 line 
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was generated and the flowering times of svp-41 pif4-101 and svp-41 co-10 double mutants 

were determined. Mutations in SVP strongly reduced the delay in flowering of co-10 and pif4-

101 mutants grown under 27°C-SD (Figure 4.8a). To further study the effect on flowering 

time of svp-41 mutant plants under warm ambient temperatures in the absence of floral 

promoters, the triple mutant svp-41 co-10 pif4-101 was generated. The svp-41 co-10 pif4-

101 plants were significantly later flowering than the double mutants svp-41 co-10 and svp-

41 pif4-101 (Figure 4.8a), although they retained a flowering response to 27°C-SD. Mutations 

in CO and PIF4 also reduced the expression of FT mRNA in the svp-41 mutant at 27°C-SD 

(Figure 4.8b). 

CO and PIF4 promote transcription of FT and TSF under 27°C-SD, therefore the flowering 

response of the svp-41 ft-10 tsf-1 mutant to warm ambient temperatures was also tested. In 

contrast to svp-41 co-10 pif4-101, the svp-41 ft-10 tsf-1 triple mutant showed no flowering 

response to warm temperatures under SD, and was the only genotype tested that did not 

flower earlier under these conditions (Figure 4.8d). Additionally, svp-41 co-10 pif4-101 and 

svp-41 ft-10 tsf-1 flowered at similar times under 21°C-SD but svp-41 co-10 pif4-101 flowered 

earlier under 27°C-SD, suggesting that in svp-41 co-10 pif4-101 plants FT TSF transcription 

still responds to higher temperature, perhaps through PIF5 (Figure 4.8d). Taken together, 

these results demonstrate that the thermosensory induction of flowering occurs in the leaves 

through the promotion of FT and TSF transcription by CO and PIF4 PIF5 as well as the 

inactivation of the repressor SVP, while reduction of SVP activity has an additional effect in 

the ft-10 tsf-1 double mutant that likely occurs in the meristem. Additional evidence of the role 

of SVP in the thermosensory flowering response in the meristem was obtained using 

pKNAT1::SVP svp-41 plants (Andres et al. 2014), which showed delayed flowering under 

27°C-SDs compared to svp-41 mutants  (Figure 4.8d). Nevertheless, pKNAT1::SVP svp-41 
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plants showed a greater response to temperature than the svp-41 mutants, probably due to 

impairment of the function of the SVP in the SAM caused by the warm temperatures  

 

 

Figure 4.8 Convergent function of SVP, CO and PIF4 in the regulation of FT and the relevance of SVP in 

the meristem on the flowering response to warm temperatures under SDs. (a) Flowering time of plants grown 

under 21°C-SD and 27°C-SD. (b) FT and (c) TSF mRNA expression in seedlings grown under 21°C-SD and 27°C-

SD. (d) Flowering time of plants grown under 21°C-SD and 27°C-SD. In (b) and (c) seedlings were grown for 14 

days and harvested at ZT8. FT and TSF mRNA expression was measured by qRT-PCR; error bars are SEs of at 

least two and three independent biological replicates, respectively. Statistical analysis as described in Figure 4.1. 
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Figure 4.9 SOC1, FUL and AP1 transcript levels are not increased by warm temperature under SDs. (a) 

SOC1, (b) FUL and (c) AP1 mRNA expression in apices of plants grown under 21°C-LD, 21°C-SD and 27°C-SD. 

Apices of 10 and 14 days old where harvested at ZT16 and ZT8 and SOC1, FUL and AP1 mRNA expression 

measured by qRT-PCR; error bars are SEs of two independent biological replicates.     

 

An alternative possibility to reduced SVP activity at the meristem is that floral promoter genes, 

such as SOC1, FUL and AP1 might respond directly to warm temperatures in the meristem. 

To test this, the expression of these genes was measured in apices of plants grown under 

different photoperiodic and temperature conditions. As expected, under 21°C-LD increased 

expression of SOC1, FUL and AP1 mRNA was detected as plants proceeded to flowering, 

so plants of 14 days old showed higher expression levels than plants of 10 days old (Figure 

49a, 49b and 49c). Furthermore, in apices of svp-41 mutant plants the increase in SOC1, 

FUL and AP1 mRNA expression was larger, suggesting the apex was in a more advanced 

floral stage. High expression levels of SOC1, FUL and AP1 mRNA were observed in plants 

grown under 21°C-LD and were suppressed by ft-10 tsf-1 mutations. However, analysis of 

SOC1, FUL and AP1 mRNA under 21°C-SD and 27°C-SD detected no increase at the higher 

temperature in any genotype or time point tested (Figure 4.9a, 4.9b and 4.9c). Furthermore, 

even although in plants of 14 days old the induction of FT and TSF mRNA in leaves can be 

detected, no changes on SOC1, FUL and AP1 mRNA were found in apices. Given that the 

role of FT and TSF is crucial under 27°C-SD, it can be speculated that the induction of the 

expression of genes expressed at the apex would be evident later in development. Therefore, 

reduction of SVP activity in the meristem under 27°C-SD, and not a direct effect of 

temperature on the expression of floral integrator genes, is proposed to increase sensitivity 

to the low level of FT and TSF expressed under these conditions. 
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4.8 Concluding remarks  

Several transcription factors contributing to the photoperiod and thermosensory flowering 

pathways converge on the transcriptional regulation of the floral integrator FT (Figure 1.1), 

but the interactions between them and their relative contributions in controlling flowering at 

high temperatures are poorly understood.  

The results presented in this work show that although CO is stabilized by LDs and promotes 

flowering in response to photoperiod, it is required under 27°C-SD for the activation of FT. 

Genetic analyses indicated that the response to 27°C-SD in the leaves depends on the 

coordinate functions of CO, PIF4 and PIF5 as well as SVP, and that loss of function of the 

PIF4 PIF5 genes alone has a weak and variable effect on flowering. Furthermore, the 

activation of FT mRNA in the leaves occurs at much lower levels under 27°C-SD than under 

21°C-LD. Thus, the removal of repressors from the meristem at 27 °C would be also 

necessary for responsiveness to such low levels of FT expression. In support of this, genetic 

analysis shows that svp-41 ft-10 tsf-1 triple mutants are insensitive to increased temperature 

under SDs. These data provide a genetic and molecular framework for interaction between 

the photoperiod and thermosensory pathways. 





 

 

 

 

 

 

 

 

 

 

 

 

 

5. Regulation of flowering time by 

enriched FR light in A. thaliana 
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Light is not only the primary source of energy for plants, but also one of the most important 

environmental signals that control plant growth and development (Li et al. 2011). Plants 

monitor several aspects of light, such as duration, intensity and quality, by means of a number 

of photoreceptors. In A. thaliana, a family of five photoreceptors (PhyA - PhyE) function as 

sensors of R and FR light (Casal et al. 2003). One of the functions of the Phy photoreceptors 

is to act as the first line of perception of neighboring plants in a crowded environment. Under 

a dense canopy, light quality differs greatly from the unfiltered light to which plants are 

exposed in open environments (Figure 1.3). The spectrum is strongly shifted to FR in a 

crowded environment and varies according to the nature of the vegetation and the density of 

the canopy. The green leaves of the surrounding plants absorb R and B light, whereas FR 

light is transmitted or reflected. Phys detect these changes in light quality by modifying the 

ratio between the inactive Pr form and the active Pfr form (Franklin and Whitelam 2005). 

When the environment is enriched in FR light, the Phy equilibrium is shifted towards the 

inactive Pr form. One Phy isoform, PhyB is the principal sensor of these R:FR ratio changes, 

however PhyD and PhyE also play important roles (Devlin et al. 1998, Devlin et al. 1999, 

Franklin et al. 2003a, Franklin and Whitelam 2005). This decrease in the R:FR ratio and 

concomitant inactivation of Phys triggers important developmental changes collectively 

named as the SAS. These changes involve elongation of the hypocotyl, petioles and stems 

to reach more open areas in the canopy enhancing the light capturing capacity and if the 

shade persists, acceleration of flowering (Smith 2000, Franklin and Whitelam 2004, 

Vandenbussche et al. 2005). phyB mutants display a constitutive shade avoidance response, 

including hypocotyl and petiole elongation, reduced chlorophyll content and acceleration of 

flowering (Somers et al. 1991, Devlin et al. 1992, Franklin et al. 2003b). As previously 

mentioned (see Introduction), some of these responses depend on the transcriptional 

activation of growth-promoting genes by PIFs, predominantly PIF4, PIF5 and PIF7 (Franklin 
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et al. 2011b, Hornitschek et al. 2012, Li et al. 2012a, Zhang et al. 2013, Lucas and Prat 2014). 

Here, we analysed the early-flowering phenotype of phyB mutants and inquired whether this 

response is mediated by PIFs. Furthermore, we study the early-flowering phenotype of plants 

grown under simulated shade and examine the roles of PIFs in this response. 

 

5.1 Early-flowering phenotype of phyB-9 mutant requires CO, FT and TSF 

Plants with mutations in phyB show a constitutive SAS, and early flowering is one of the most 

notable phenotypes of these plants (Somers et al. 1991, Reed et al. 1993, Smith and 

Whitelam 1997).  
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Figure 5.1 The phyB-9 mutant displays phenotypic traits characteristics of the shade avoidance 

syndrome. (a) Picture of Col-0 and phyB-9 mutant grown under LDs in WL. (b) Chlorophyll content in leaves of 

Col-0 and phyB-9 mutant plants grown under LDs in WL.  (c) Hypocotyl length of 10 days-old Col-0 and phyB-9 

mutant seedlings grown under LDs in WL. Flowering time of Col-0 and phyB-9 mutant plants grown under (d) LDs 

and (e) SDs in WL. (f) FT mRNA expression profile in 12-day-old Col-0 and phyB-9 mutant seedlings grown under 

LDs in WL. Seedlings were harvested every 4 h for 24 h and FT mRNA expression was measured by qRT-PCR; 

error bars are standard deviation (StD) of three technical replicates. In (b), (c), (d) and (e) letters indicate statistical 

groups determined with a Student’s t-test. Groups were considered statistically different when P ≤ 0.05. Error bars 

are StD. In (b) n = 5, in (c) n = 20, in (d) n = 10-11, in (e) n = 6-10. 

 

Some of the characteristic phenotypes displayed by phyB were validated using the phyB-9 

mutant plants (Figure 5.1a - 5.1f). As part of the constitutive SAS, under LD conditions, these 

mutants showed lower chlorophyll content (Figure 5.1b) and longer hypocotyls compared to 

Col-0 (Figure 5.1c). Also, phyB-9 mutants flowered earlier than Col-0 under LDs and SDs 

(Figure 5.1d and 5.1e). Twelve day old phyB-9 mutants showed an increase in FT mRNA 

level compared to Col-0 under LDs (Figure 5.1f and Annex A.3a). Previous experiments 

performed in our laboratory also showed that similar to FT, TSF mRNA level in phyB-9 

mutants is higher than in Col-0 under LDs (Annex A.3b). Under SDs, the levels of FT and 

TSF mRNA also correlated with the observed flowering phenotypes, showing phyB-9 mutants 

higher expression of these floral integrators than Col-0 (Annex A.3d and A.3e). These results 

indicate that phyB negatively regulates the expression of FT and TSF mRNA, both under LDs 

and SDs conditions, consistent with previous reports (Cerdán and Chory 2002, Halliday et al. 

2003, Endo et al. 2005, Yamaguchi et al. 2005).  

To genetically confirm that the early flowering of the phyB-9 mutant depends on FT and TSF, 

the flowering time of phyB-9 ft-10 tsf-1 triple mutants were tested under LDs and SDs. The 

phyB-9 ft-10 tsf-1 triple mutant flowered as late as the ft-10 tsf-1 double mutant under both 

photoperiods suggesting that phyB-9 mutant plants require functional FT and TSF to display 

the early-flowering phenotype (Figure 5.2a and Annex A.4). PhyB regulates CO protein 
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stability by promoting its degradation early in the day, just after dawn (Valverde et al. 2004). 

Under LDs, when CO protein is stable in the afternoon, it promotes the expression of FT and 

TSF mRNA and consequently flowering is accelerated (Suarez-Lopez et al. 2001). Therefore, 

the promotion of flowering observed in phyB-9 mutants might be due to an effect on FT and 

TSF transcription that is dependent on CO. To test the role of CO in the early flowering of 

phyB-9 mutants, the flowering time of phyB-9 co-10 double mutants was determined. Plants 

carrying mutations in CO are late flowering under LDs (Figure 5.2a) (Putterill et al. 1995).  

 

Figure 5.2 CO, FT and TSF are required for the early flowering of phyB-9 mutant. (a) Flowering time of plants 

grown under LDs in WL. (b) Picture of co-10 and phyB-9 co-10 mutants (upper panel) and of ft-10 tsf-1 and ft-10 

tsf-1 phyB-9 mutants (lower panel) grown under LDs in WL. In (a) letters indicate statistical groups determined 

with a Student’s t-test. Groups were considered statistically different when P ≤ 0.05. N = 17-21. 

 

Double mutants phyB-9 co-10 flower as late as co-10 single mutants under LDs and SDs 

(Figure 5.2a and Annex A.4), indicating that CO is essential for the early flowering phenotype 

of phyB-9 mutants. Taken together, these results indicate that phyB-9 mutants require CO, 

FT and TSF to accelerate flowering under LDs and SDs. These photoperiod pathway 
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components seem not to be required, however, for the petiole elongation of the phyB-9 

mutant (Figure 5.2b). CO mRNA expression measurements revealed only slight changes 

under both photoperiods (Annex A.3c and A.3f), suggesting that the dependence on CO for 

the early flowering time of phyB mutant does not depend on transcriptional changes of this 

gene.  

 

5.2 PIF4 and PIF5 are required for the early flowering of phyB-9 mutant 

PIF family members are central regulators in the Phy-mediated light signalling pathway 

(Lorrain et al. 2008). Although they are crucial regulators of growth and germination (Lucas 

and Prat 2014), several members of the family (PIF1, PIF3, PIF4 and PIF5) appear not to 

have a role in flowering under LDs and SDs at standard growth temperatures (21 °C) (Figure 

5.3a, 5.3b and 5.3c) (Shin et al. 2009a). PIF4 and PIF5 act downstream of PhyB in the 

regulation of hypocotyl elongation, as the elongated hypocotyl phenotype of phyB mutants is 

suppressed by pif4 and pif5 mutations (Lorrain et al. 2008). Therefore, given the central role 

played by the PIF transcription factors in Phy-mediated regulation of growth, their 

requirement for the early flowering of phyB-9 was tested. Analysis of flowering time under 

LDs showed that the early flowering of phyB-9 mutants is suppressed in phyB-9 pif4-2 pif5-3 

triple mutants but not in phyB pif4 or phyB pif5 double mutants (Figure 5.3c). The suppression 

of the early flowering of phyB-9 mutants by pif4-2 pif5-3 is also observed under SDs (Annex 

A.4). Other features of the SAS constitutively displayed by phyB mutants, such as elongation 

of petioles, seem to be also suppressed by the pif4 pif5 mutations (Figure 5.3d). These results 

suggest that PIF4 and PIF5 are required for the early flowering phenotype of phyB mutant 

plants as well as for other phenotypes also associated with the SAS. Nevertheless, PIF4 and 

PIF5 seem to play redundant roles in conferring flowering acceleration in phyB-9 mutants, as 
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neither phyB-9 pif4 nor phyB-9 pif5 double mutants flowered later than phyB-9 single mutant 

(Figure 5.3c). 
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Figure 5.3 PIF4 and PIF5 are required for the early flowering of phyB-9 mutant. Flowering time of plants 

grown under LDs (a) and (c), and SDs (b) in WL. (d) Picture of Col-0, phyB-9, pif4-2 pif5-3 and phyB-9 pif4-2 pif5-

3 mutant plants grown under LDs in WL. In (a), (b) and (c) letters indicate statistical groups determined with a 

one-way ANOVA. Groups were considered statistically different when P ≤ 0.05. Error bars are StD. In (a) n = 10-

11, in (b) n = 8-10, in (c) n = 5-12. 

 

5.3 Enriched FR light triggers the SAS in Col-0 and phyB-9 mutants  

PhyB activity is reduced by enriched FR light characteristic of vegetative shade and under 

these conditions shade avoidance responses are triggered (Rockwell and Lagarias 2006, 

Jiao et al. 2007, Martinez-Garcia et al. 2014). Similarly, reduction of PhyB activity in phyB 

mutants causes a phenotype that resembles the SAS (Figure 5.1a – 1f) (Somers et al. 1991, 

Reed et al. 1993, Smith and Whitelam 1997).  

To analyze the flowering-time response of plants growing under shade and to compare it with 

the phenotype of phyB mutant plants, shade conditions were simulated by supplementing the 

standard white light (WL) growth conditions with FR light (and therefore named as enriched 

FR light). This condition resembles the vegetative shade encountered by plants that grow 

under a canopy. Indeed, light spectra measurements under these experimental conditions 

showed an increase of the light intensity at wavelengths between 700 and 750 nm compared 

to WL control conditions (Figure 5.4a and 5.4b). 

In order to set up the experimental shade conditions several light intensities were assessed, 

including changes in WL and FR light intensities and the response of Col-0 plants was 

evaluated. Two WL conditions were used (100% and 65% of the maximum WL light intensity) 

and combined with two FR light intensities (100% and 65% of the maximum FR intensity) 

(Figure 5.4a and 5.4b; Materials and methods). Thus, four different enriched FR light 

conditions were tested and two WL control conditions were used. Col-0 plants responded in 

similar ways to each simulated shade condition tested. They all showed similar acceleration 



Results 
 

100 
 

of flowering, to around 50% of the flowering time under control conditions (Figure 5.5a and 

5.5b). Furthermore, plants grown under enriched FR light developed typical characteristics 

of the SAS, such as elongation of hypocotyls and petioles (Figure 5.5c, 5.5d and 5.5e).  

 

Figure 5.4 Establishment and measurements of the different simulated shade conditions used in this 

work. (a) Growth cabinet with 100 % WL and 0 %, 65 % and 100 % FR light (left); light spectrum in every condition 

under 100 % WL (right). (b) Growth cabinet with 65 % WL and 0 %, 65 % and 100 % FR light (left); light spectrum 

in every condition under 65 % WL (right).  

 

These observations indicate that every condition tested can trigger the SAS in Col-0 plants. 

In addition, phyB-9 mutant plants responded to enriched FR light as much as Col-0 (Figure 

5.6a, 5.6b and 5.6c), suggesting that under these conditions there might be functional 
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redundancy among PhyB, PhyD and PhyE for this response. Therefore, accelerated 

flowering under enriched FR light might be promoted by PhyD and PhyE when PhyB is not 

functional. Consistent with this idea, in every light condition tested, Col-0 under enriched FR 

light flowered earlier than phyB mutants under WL (Figure 5.5a, 5.5b, 5.6a and 5.6b). These 

results suggest that under enriched FR light not only the function of PhyB is affected but also 

PhyD and PhyE functions.  

 

Figure 5.5 All simulated shade conditions used can trigger the shade avoidance syndrome in Col-0 plants. 

Flowering time of Col-0 plants grown under simulated shade (100 % and 65 % of FR light enrichment) with (a) 

100 % WL and (b) 65 % WL under LDs. Hypocotyl length of 10-day-old Col-0 seedlings grown under simulated 

shade (100 % and 65 % of FR light enrichment) with (c) 100 % WL and (d) 65 % WL under LDs. (e) Picture of 
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Col-0 plants grown under LDs in simulated shade (100 % and 65 % of FR light enrichment) with 100 % WL (left) 

and 65 % WL (right). In (a), (b), (c) and (d) letters indicate statistical groups determined with a Student’s t-test. 

Groups were considered statistically different when P ≤ 0.05. Error bars are StD. In (a) n = 5, in (b) n = 5-6, in (c) 

n = 21-22, in (d) n = 20. In (c) and (d), color code as in (a) and (b). 

 

Figure 5.6 All simulated shade conditions used can accelerate flowering in phyB-9 mutant plants. 

Flowering time of phyB-9 mutant plants grown under simulated shade (100 % and 65 % of FR light enrichment) 

with (a) 100 % WL and (b) 65 % WL under LDs. (c) Picture of Col-0 and phyB-9 mutant plants grown under LDs 

in simulated shade (100 % FR light enrichment) with 100 % WL. In (a) and (b) letters indicate statistical groups 

determined with a Student’s t-test. Groups were considered statistically different when P ≤ 0.05. Error bars are 

StD. In (a) and (b) n = 5. 

 

5.4 Enriched FR light stabilizes PIF4 protein 

PIF4 and PIF5 are part of the PhyB signalling pathway that promotes, at least, part of the 

shade avoidance response (Huq and Quail 2002, Lorrain et al. 2008). PIF proteins stability 

is light regulated (Nozue et al. 2007, Lorrain et al. 2008). Under high R:FR light ratio, PhyB 

is active and translocates to the nucleus where it binds PIF4 and targets the transcription 

factor for degradation by the 26S proteasome. Under low R:FR light ratio, PhyB becomes 

predominantly inactive, allowing the stabilization of PIF proteins and to bind to the promoters 

of shade induced genes (Lorrain et al. 2008). To test if the simulated shade conditions 

affected PIF protein stability, the abundance of PIF4 through a 24 h time course under WL 
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and enriched FR light was evaluated. To perform this experiment pPIF4::PIF4:HA pif4-101 

transgenic plants were used (Hornitschek et al. 2012). Given the similarities in the flowering 

responses of Col-0 to all the conditions tested, the PIF4 abundance was tested in only one 

of the simulated shade conditions (100% of the WL intensity and 65% of FR light). After 

growing 12 days on soil under WL or enriched FR light conditions, seedlings were harvested 

every 4 h. Figure 5.7a and Annex A.5 show that early in the day there is no difference in PIF4 

protein accumulation under enriched FR light compared to WL. However, at ZT12 and ZT16 

PIF4 protein increases in abundance under shade compared to WL condition.  

 

Figure 5.7 PIF4 protein is stabilized under enriched FR light. (a) Western blot from nuclear protein extracts of 

pPIF4::PIF4:HA pif4-101 seedlings. Time course showing PIF4:HA protein accumulation over 24 h under WL and 

enriched FR. (b) PIF4 mRNA expression in Col-0 and pPIF4::PIF4:HA pif4-101 seedlings grown under WL and 

enriched FR. In (a), nuclear proteins were extracted from seedlings grown for 12 days under WL or enriched FR. 

In (b), 12-day-old seedlings were harvested every 4 h for 24 h. PIF4 mRNA expression was measured by qRT-

PCR; error bars are StD of three technical replicates.  
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Analysis of PIF4 mRNA expression in Col-0 and pPIF4::PIF4:HA pif4-101 plants under WL 

and shade showed that under enriched FR light the expression of PIF4 mRNA in both 

genotypes is slightly higher than under WL at ZT12 and ZT16 (Figure 5.7b). The increase in 

PIF4 mRNA expression coincides with the increase in PIF4 protein (Figure 5.7a), but at ZT12 

and ZT16 the small difference in mRNA abundance is probably not sufficient to explain the 

difference in protein level.   

 

5.5 Flowering induction under enriched FR light conditions does not require PIF1, 

PIF3, PIF4, PIF5 and PIF7 

Early flowering and other aspects of the constitutive shade avoidance response displayed by 

phyB mutants are suppressed by mutations in PIF4 and PIF5 (Figure 5.3c and 5.3d, Annex 

A.4). Also, PIF4 protein accumulation is higher under enriched FR light conditions compared 

to WL (Figure 5.7a). The accumulation of PIF4 protein under simulated shade conditions 

might be due to FR light inactivation of PhyB (Lorrain et al. 2008). Taken together, these 

observations suggest that PIF4 and PIF5 might also play a role downstream of PhyB in the 

shade-dependent acceleration of flowering. To test this hypothesis, the flowering time of 

single and higher order pif mutants was scored under enriched FR light conditions and 

compared to plants growing under WL. For this experiment, 100% WL plus 100% FR light 

was used to simulate the shade condition. Two single mutant alleles of PIF4, pif4-101 and 

pif4-2, as well as pif4-2 pif5-3 and pif1-1 pif3-3 pif4-2 pif5-3 double and quadruple mutants, 

respectively, were tested. The single and higher order pif mutants did not show any delay of 

flowering compared to Col-0 in simulated shade conditions under LDs and SDs (Figure 5.8a, 

5.8b and 5.8c).  
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Figure 5.8 PIF1, PIF3, PIF4 and PIF5 are not required for the acceleration of flowering by simulated shade 

under LDs and SDs. (a) and (b) Flowering time of plants grown under LDs in WL or enriched FR light. (c) 

Flowering time of plants grown under SDs in WL or enriched FR light. In (a), (b) and (c) letters indicate statistical 

groups determined with a two-way ANOVA and multiple comparisons with the Holm–Sidak method. Multiple 

comparisons were performed within conditions and within genotypes. Groups were considered statistically 

different when P ≤ 0.05. Error bars are StD. In (a) n = 7-10, in (b) n = 10-11, in (c) n = 6-10. 

 

To exclude the possibility that under different shade conditions the early-flowering response 

to shade of the pif mutants differs from the response of Col-0, a study of the flowering time 

responses of pif4-2 pif5-3 and pif1-1 pif3-3 pif4-2 pif5-3 mutants under the four previously 

tested shade conditions was performed (Figure 5.9a and 5.9b).  
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Figure 5.9 All simulated shade conditions tested can accelerate flowering of pif4-2 pif5-3 double pif1-1 

pif3-3 pif4-2 pif5-3 quadruple mutants. (a) and (b) Flowering time of plants grown under simulated shade (100 

% and 65 % of FR light enrichment) with (a) 100 % WL and (b) 65 % WL under LDs. (c) Picture of Col-0, pif4-2 

pif5-3 and pif1-1 pif3-3 pif4-2 pif5-3 mutant plants grown under LDs in simulated shade (100 % and 65 % of FR 

light enrichment) with 100 % WL (left) and 65 % WL (right). In (a) and (b) letters indicate statistical groups 

determined with a Student’s t-test within genotypes and within conditions. Groups were considered statistically 

different when P ≤ 0.05. Error bars are StD. In (a) and (b) n = 5-6. 

 

Similar to the previous experiment (Figure 5.8a and 5.8b), no differences in the early-

flowering response of pif mutants under enriched FR light compared to Col-0 were detected. 

These results suggest that the higher abundance of PIF4 protein detected at ZT12 and ZT16 

under enriched FR light does not have an effect on flowering time under the tested conditions.  

Furthermore, pif mutants developed some of the characteristics of the SAS under enriched 

FR conditions, such as elongated petioles (Figure 5.9c). These responses to simulated shade 

indicate that PIF1, PIF3, PIF4 and PIF5 are not essential for the promotion of certain 

phenotypic traits associated to the SAS. This idea was also corroborated at the molecular 

level. In pif4-2 pif5-3 and pif1-1 pif3-3 pif4-2 pif5-3 mutants, the expression of IAA29 mRNA, 

a direct target of PIF4 and PIF5 (Hornitschek et al. 2012) is lower than in Col-0 under WL, 

however, its expression is induced under enriched FR light conditions to levels similar to the 

ones observed for Col-0 (Figure 5.10). Taken together, these results support the idea that 

PIF1, PIF3, PIF4 and PIF5 are not essential for the flowering response to shade as well as 

other SAS-related traits. 

Mutations in PIF4 and PIF5 suppress the acceleration of flowering of phyB-9 mutants (Figure 

5.3c). To test whether pif4-2 pif5-3 mutations affect the response to simulated shade in a 

phyB-9 mutant background compared to Col-0, the flowering time of phyB-9 pif4-2 pif5-3 

triple mutant was evaluated in WL and simulated shade conditions under LDs. Triple mutant 

phyB-9 pif4-2 pif5-3 induced flowering to similar levels as Col-0 plants in simulated shade 
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(Figure 5.11). These results support previous observations suggesting that when PhyB is not 

functional, flowering might be promoted by PhyD and PhyE under enriched FR light. 

Furthermore, this promotion of flowering probably mediated by PhyD and PhyE seems to be 

independent of PIF4 and PIF5. 

 

Figure 5.10 Expression of IAA29 mRNA is induced in pif4-2 pif5-3 and pif1-1 pif3-3 pif4-2 pif5-3 mutant 

seedlings grown under enriched FR light. IAA29 mRNA expression in Col-0, pif4-2 pif5-3 and pif1-1 pif3-3 pif4-

2 pif5-3 mutant seedlings grown under WL and enriched FR. Twelve-day-old seedlings were harvested every 4 h 

for 24 h. IAA29 mRNA expression was measured by qRT-PCR; error bars are StD of three technical replicates. 

 

The pPIF4::PIF4:HA transgene caused an exaggerated SAS, showing the plants extremely 

long hypocotyls (Yamashino et al. 2013a) compared to Col-0. The flowering time of the 

pPIF4::PIF4:HA pif4-101 transgenic plants under enriched FR light was, therefore, also 

assessed. No early flowering was displayed by these plants in WL under LDs and SDs 

(Figure 5.12a and 5.12b). Furthermore, under enriched FR light, where the PIF4:HA protein 

was more abundant than under WL at ZT12 and ZT16 in LDs, the shade mediated induction 

of flowering observed was similar to the flowering response to shade of Col-0 in both 

photoperiods (Figure 5.12a and 5.12b). Taken together, pif mutant plants as well as pif4-101 
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plants harboring pPIF4::PIF4:HA construct, which trigger a constitutive SAS phenotype 

(Yamashino et al. 2013a), do not show a flowering time phenotype WL or enriched FR light.  

 

Figure 5.11 Mutations in PIF4 and PIF5 do not affect the flowering response to shade of phyB-9 mutant 

plants. Flowering time of plants grown under SDs in WL and enriched FR light. Letters indicate statistical groups 

determined with a two-way ANOVA and multiple comparisons with the Holm–Sidak method. Multiple comparisons 

were performed within conditions and within genotypes. Groups were considered statistically different when P ≤ 

0.05. Error bars are StD, n = 9-10. 

 

Figure 5.12 The flowering response to enriched FR is not modified by the pPIF4::PIF4:HA transgene. 

Flowering time of plants grown under LDs (a) and SDs (b) in WL and enriched FR light. Letters indicate statistical 

groups determined with a two-way ANOVA and all pairwise multiple comparisons within genotypes and within 

conditions with the Holm–Sidak method. Groups were considered statistically different when P ≤ 0.05. Error bars 

are StD. In (a) n = 8-10 and in (b) n = 4-10. 
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As shown above, there is functional redundancy among PIF transcription factors in conferring 

the shade avoidance response. PIF7 is also implicated in the response to shade conditions. 

Mutants in PIF7 suppress the elongation of hypocotyls promoted by enriched FR light and by 

the absence of PhyB (Li et al. 2012a). Thus, the role for PIF7 in flowering induction under 

enriched FR light was tested. Two different alleles of pif7 mutants were tested (pif7-1 and 

pif7-2) as well as the double mutant phyB-9 pif7-1 and a transgenic line overexpressing 

PIF7::FLASH under the 35S promoter. Under enriched FR conditions, pif7 mutants flowered 

with the same leaf number as Col-0 plants (Figure 5.13a, 5.13b and 5.13c). Furthermore, 

phyB-9 pif7-1 double mutants also showed a suppression of the early flowering time of phyB 

single mutants in WL and responded like Col-0 to enriched FR light in terms of flowering time 

(Figure 5.13a, 5.13b and 5.13c). Thus PIF7 does not affect shade-induced early flowering, in 

contrast to its effect on shade-induced hypocotyl elongation (Li et al. 2012a). Transgenic 

plants harboring the p35S:PIF7::FLASH construct have a stronger response to shade than 

Col-0, producing longer hypocotyls than Col-0 (Li et al. 2012a). However, the flowering time 

of the p35S:PIF7::FLASH transgenic plants was not different from Col-0 under WL and 

enriched FR light (Figure 5.13a). PIF7 mRNA expression analysis in a 24 h time course under 

WL and enriched FR light showed similar PIF7 mRNA expression under enriched FR 

compared to WL (Figure 5.13d). Taken together, all these results suggest that PIF1, PIF3, 

PIF4, PIF5 and PIF7 transcription factors do not play a role in the regulation of flowering in 

response to shade, although to exclude redundancy between these factors analysis of a 

quintuple mutant (pif1 pif3 pif4 pif5 pif7) would be required. Also, PIF4, PIF5 and PIF7 appear 

to promote early flowering of phyB mutants, identifying a difference to the simulated shade. 
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Figure 5.13 PIF7 is not required for the acceleration of flowering under enriched FR light. (a) and (b) 

Flowering time of plants grown under LDs in WL and enriched FR light. (c) Picture of plants grown under LDs in 
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WL and enriched FR light. (d) PIF7 mRNA expression in Col-0 seedlings grown under WL and enriched FR under 

LDs. Twelve-day-old seedlings were harvested every 4 h for 24 h. PIF7 mRNA expression was measured by qRT-

PCR; error bars are StD of three technical replicates. In (a) and (b) letters indicate statistical groups determined 

with a two-way ANOVA and all pairwise multiple comparisons within genotypes and within conditions with the 

Holm–Sidak method. Groups were considered statistically different when P ≤ 0.05. Error bars are StD. In (a) n = 

3-10 and in (b) n = 4-10. 

 

5.6 Enriched FR light induces increased FT and TSF mRNA expression 

Plants carrying mutations in PHYB mimic the SAS and display higher mRNA levels of FT and 

TSF compared to Col-0 (Figure 5.1f, Annex A.3a, A.3b, A.3b and A.3d). To evaluate the 

response of FT and TSF mRNA expression to enriched FR light conditions, the expression 

of these floral integrators in Col-0 plants grown under shade conditions was analysed in LDs 

through a 24 h time course. FT and TSF mRNA levels showed an increase in response to 

enriched FR light (Figure 5.14a and 5.14b).  

 

Figure 5.14 FT and TSF mRNA expression are induced in response to enriched FR light. FT (a) and TSF 

(b) mRNA expression in Col-0, pif4-2 pif5-3, pif1-1 pif3-3 pif4-2 pif5-3 and phyB-9 mutant seedlings grown under 
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WL and enriched FR light. In (a) and (b) 12-day-old seedlings were harvested every 4 h for 24 h. FT and TFS 

mRNA expression were measured by qRT-PCR; error bars are StD of three technical replicates. 

 

The peak of mRNA expression of FT and TSF (albeit to a lesser extent) at ZT16 is higher in 

plants grown under enriched FR light compared to plants grown under WL. Furthermore, an 

additional peak of FT and TSF mRNA level is observed at ZT4 in plants exposed to simulated 

shade (Figure 5.14a and 5.14b). This increase in the expression of FT and TSF mRNA under 

enriched FR light is displayed not only by Col-0 plants but also by phyB mutants, pif4-2 pif5-

3 double mutants and pif1-1 pif3-3 pif4-2 pif5-3 quadruple mutants (Figure 5.14a and 5.14b). 

The similarities in the expression changes of the floral integrators observed in the mutants 

compared to Col-0, are consistent with the flowering phenotypes of phyB-9, pif4-2 pif5-3 and 

pif1-1 pif3-3 pif4-2 pif5-3 mutants observed under the same conditions. The flowering 

responses of these mutants to enriched FR light were similar to those of Col-0 (Figure 5.8a 

and 5.8b). Thus, these results show that the expression of FT and TSF mRNA is higher under 

enriched FR light conditions compared to WL, showing peaks of expression at ZT4 and ZT16 

(Figure 5.14a and 5.14b). Therefore, the induction of flowering observed in plants growing 

under enriched FR light is driven at least partly by increased expression of FT and TSF 

mRNA. Furthermore, phyB mutants as well as pif mutants respond to shade in a similar 

manner to Col-0, inducing FT and TSF mRNA expression and causing comparable 

acceleration of flowering. 
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5.7 Photoperiod pathway components are required for the shade induction of 

flowering 

Col-0 plants are highly sensitive to enriched FR light conditions, flowering with around half 

the number of leaves of plants under WL (Figure 5.5a and 5.5b). This early-flowering 

response is mediated, at least partly, by FT and TSF (Figure 5.14a and 5.14b). Results 

obtained with phyB mutants, together with previous reports (Figure 5.2a) (Kim et al. 2008, 

Wollenberg et al. 2008), suggest that photoperiodic pathway components play fundamental 

roles in the promotion of flowering by enriched FR light and are regulated by the PhyB 

signalling pathway. Therefore, the contribution of GI, CO, FT and TSF to the acceleration of 

flowering under simulated shade conditions was assessed. Mutants in GI or CO and double 

mutants in FT TSF were highly insensitive to enriched FR light conditions, flowering with a 

similar leaf number under WL compared to simulated shade (Figure 5.15). Under simulated 

shade, ft-10 single mutant plants flowered later than tsf-1 single mutants, as they do in WL 

under LDs. However, the response of ft-10 or tsf-1 single mutants to enriched FR light 

compared to WL is the same as Col-0 (all genotypes produce under FR light half the number 

of leaves as under WL). In terms of absolute number of leaves tsf-1 mutant plants flower 

under both WL and enriched FR light at the same time as Col-0. Therefore, TSF is not 

essential for the flowering response to shade of Col-0, probably because FT is able to 

compensate for the lack of TSF. In ft-10 mutant plants flowering is delayed compared to Col-

0, both under WL and enriched FR light conditions. However the response to simulated shade 

conditions compared to WL is the same as in Col-0 and tsf-1 mutants (Figure 5.15). These 

data indicate that, although FT seems to play a more important role in defining the time of 

flowering of plants under WL or enriched FR light than TSF, the early flowering response to 

the enriched FR light can be driven equally by the two genes.  
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Taken together, the results presented above indicate that the photoperiod pathway 

components CO and GI as well as FT, TSF play a redundant role and are essential for the 

early-flowering response to enriched FR light. 

 

Figure 5.15 Photoperiodic pathway components are required for the promotion of flowering by enriched 

FR light. Flowering time of plants grown under LDs in WL and enriched FR light conditions. Letters indicate 

statistical groups determined with a two-way ANOVA and all pairwise multiple comparisons within genotypes and 

within conditions with the Holm–Sidak method. Groups were considered statistically different when P ≤ 0.05. Error 

bars are StD, n = 7-11. 

 

5.8 CO activity does not mask the response to shade in plants lacking PIF4 and PIF5 

CO plays an important role in inducing flowering under enriched FR light, because the 

flowering time of co-10 mutant plants is strongly delayed under these conditions (Figure 

5.15). In order to test whether PIFs have an effect on flowering under enriched FR light that 

could be masked by the strong effect of CO, we studied the flowering time of co-10 pif4-2 

pif5-3 triple mutants. In the triple mutant the early-flowering response to shade is strongly 

suppressed, similar to the effect observed in co-10 single mutants. More importantly, there is 

no significant difference between the flowering time of co-10 and co-10 pif4-2 pif5-3 under 

WL or simulated shade (Figure 5.16a). FT and TSF mRNA levels were not increased in co-

10 mutants under simulated shade (Figure 5.16b and 5.16c).  
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Figure 5.16 PIF4 and PIF5 do not have effect on the flowering response to shade in absence of CO. (a) 

Flowering time of plants grown under LDs in WL and enriched FR light conditions. FT (b) and TSF (c) mRNA 

expression in Col-0, co-10, pif4-2 pif5-3 and pif1-1 pif3-3 pif4-2 pif5-3 mutant seedlings grown under WL and 

enriched FR light. In (b) and (c) 12-day-old seedlings were harvested every 4 h for 24 h. FT and TFS mRNA 

expression were measured by qRT-PCR; error bars are StD of three technical replicates. In (a) letters indicate 

statistical groups determined with a two-way ANOVA and all pairwise multiple comparisons within genotypes and 

within conditions with the Holm–Sidak method. Groups were considered statistically different when P ≤ 0.05. Error 

bars are StD, n = 14-17. 
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Thus, both co-10 and co-10 pif4-2 pif5-3 mutants showed strongly reduced expression of FT 

and TSF mRNAs under WL or enriched FR light. By contrast pif4-2 pif5-3 double mutants 

retained a strong increase in FT and TSF mRNA levels under simulated shade (Figure 5.16b 

and 5.16c). In agreement with previous results, these experiments support the conclusion 

that PIF4 and PIF5 as well as PIF1, PIF3 and PIF7 do not play a role in the induction of 

flowering mediated by enriched FR light.  

 

Figure 5.17 Reduction in the photosynthetic active radiation (PAR) does not affect the response of pif4-2 

pif5-3 mutants to shade. Flowering time of plants grown under reduced WL (reduced PAR) and enriched FR 

light conditions. Letters indicate statistical groups determined with a two-way ANOVA and all pairwise multiple 

comparisons within genotypes and within conditions with the Holm–Sidak method. Groups were considered 

statistically different when P ≤ 0.05. Error bars are StD, n = 10. 

 

Given that light induces the degradation of PIF proteins, the stability of these proteins and 

their potential role in flowering under shade, might be increased under low light intensities. 

Therefore, pif4-2 pif5-3, co-10 and co-10 pif4-2 pif5-3 mutants were grown under low WL (65 

%) and low WL plus FR light (65 % WL, 65 % FR, see Methods) and their flowering time 

measured. pif4-2 pif5-3 double mutant plants flowered with a similar number of leaves as 

Col-0, both under low WL and low WL plus FR light (Figure 5.17). Furthermore, no delay in 
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flowering time was detected for co-10 pif4-2 pif5-3 compared to co-10. Thus, even under 

these low PAR conditions, PIF4 PIF5 had no detectable effect on flowering. 

PIF4 protein interacts with CO perhaps to facilitate binding to DNA and activation of gene 

expression (Chapter 4). This interaction could be relevant for an induction of flowering under 

shade conditions. In order to detect possible effects of this interaction on flowering response 

to shade, conditions in which CO activity is reduced compared to LDs were used. To achieve 

this, plants were grown under photoperiods of 12 h light with 12 h dark (12:12). Under this 

condition, CO protein stability would be reduced, since the peak of CO mRNA expression 

detected in the evening that facilitates accumulation of the protein at this time would overlap 

for longer with darkness, and CO would be targeted for degradation by the COP1/SPA 

complex. Col-0 plants grown under 12 h photoperiods flower with around 30 leaves, about 

10 leaves more than Col-0 plants grown under 16 h photoperiods (Figure 5.18). From these 

results, a reduction of the FT and TSF mRNA expression levels would be expected under 

12:12 photoperiods, however, these changes in expression remain to be tested. Flowering 

time experiments performed with WL and enriched FR light under a 12:12 photoperiod show 

an induction of flowering time of Col-0 under FR light compared to WL (Figure 5.18). The 

pif4-2 and pif4-2 pif5-3 mutants flowered at similar times to Col-0 under both light conditions. 

The co-10 mutants flower very late under WL and the induction of flowering under FR is 

strongly suppressed. The same suppression of the early flowering under enriched FR is 

observed for co-10 pif4-2 and co-10 pif4-2 pif5-3. These two genotypes flower as late as co-

10 mutant under WL. Taken together, these results support that even in conditions where the 

activity of CO is impaired, PIF4 and PIF5 are not able to flowering under enriched FR light. 
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Figure 5.18 pif4-2 pif5-3 mutations do not affect the flowering phenotype of Col-0 or co-10 plants under 

shade in shorter photoperiods. Flowering time of plants grown under 12:12 photoperiods and enriched FR light 

conditions. Letters indicate statistical groups determined with a two-way ANOVA and all pairwise multiple 

comparisons within genotypes and within conditions with the Holm–Sidak method. Groups were considered 

statistically different when P ≤ 0.05. Error bars are StD, n = 6-11. 

 

5.9 Concluding remarks 

Light quality plays a very important role in the regulation of flowering time. The FR light 

enrichment encountered in crowded canopies accelerates flowering as part of the shade 

avoidance response. Light quality changes are perceived by Phy photoreceptors that transmit 

the signals ultimately regulating the timing of flowering.  

This work shows that the early flowering of phyB mutant requires components of the 

photoperiodic pathway, such as CO and FT TSF as well as transcription factors involved in 

light signalling pathways, such as PIF4 and PIF5. Furthermore, this work demonstrates that 

the promotion of flowering by simulated shade is dependent on CO, FT TSF and GI, but does 

not depend on PIFs transcription factors. However, as the PIF family has a very high degree 

of functional redundancy between members, it cannot be ruled out the possibility that 

additional PIFs play a role in the flowering response to shade. 
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In this thesis, the genetic and molecular mechanism that control flowering of A. thaliana in 

response to ambient temperature changes and differences in light quality were examined. In 

particular, common molecular mechanisms in the regulation of flowering time by the 

photoperiodic, ambient temperature and light quality pathways were defined. 

 

6.1 Flowering time is promoted by warm ambient temperatures under SDs 

In A. thaliana the photoperiodic pathway promotes flowering specifically under LDs, so that 

flowering occurs much more rapidly under these conditions than under SDs. However, 

surprisingly, this delay under SDs can be overcome by growing plants at high temperatures, 

so that they flower with similar numbers of leaves under 27°C-SD and 21°C-LD. Therefore, 

the effect of high temperature on the activity of the photoperiodic pathway under SDs was 

examined. Consistent with previous data (Balasubramanian et al. 2006), this work shows that 

FT and TSF, the output genes of the photoperiodic pathway (Kardailsky et al. 1999, 

Kobayashi et al. 1999, Valverde et al. 2004, Yamaguchi et al. 2005, Sun et al. 2012), are 

essential for extreme early flowering under 27°C-SD and that the abundance of their 

transcripts is increased under these conditions compared to 21°C-SD. Also, under 27°C-SD, 

CO, a central component of the photoperiodic pathway (Putterill et al. 1995, Suarez-Lopez et 

al. 2001, Valverde et al. 2004), contributes additively with PIFs to increase expression of FT 

mRNA. Nevertheless, although plants flower at similar times under 27°C-SD and 21°C-LD, 

even the additive effect of CO and PIFs on FT mRNA under 27°C-SD causes it to accumulate 

to much lower levels than in plants exposed to 21°C-LD. Thus there must be additional factors 

that contribute to the early flowering under 27°C-SD. Reduced activity of floral repressors 

such as SVP in the shoot meristem of plants grown at 27 °C (Lee et al. 2013, Pose et al. 

2013) might cause greater responsiveness to the FT signal and thereby contribute to the 
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early flowering under 27°C-SD. Consistent with this idea, svp-41 ft-10 tsf-1 triple mutants 

exhibited no earlier flowering response to 27°C-SD compared to 21°C-SD, and indeed this 

was the only genotype tested that did not flower earlier when exposed to these conditions. 

Taken together, these data indicate that under higher temperatures the threshold level of 

photoperiodic pathway components required to activate FT TSF transcription is lowered so 

that the genes are expressed under non-inductive photoperiods, and that the amount of FT 

TSF required to induce flowering is reduced.  

 

6.2 Low levels of FT mRNA under 27°C-SD are sufficient to promote early flowering 

Compared to plants grown under 21°C-SD, exposure of plants to 21°C-LD or to high 

temperatures under SDs causes a dramatic acceleration of flowering, by approximately 43 

and 39 leaves respectively (Figure 4.1d). FT strongly contributes to both responses 

(Kardailsky et al. 1999, Kobayashi et al. 1999, Samach et al. 2000, Suarez-Lopez et al. 2001, 

Balasubramanian et al. 2006, Kumar et al. 2012, Galvao et al. 2015), but the level of 

transcriptional activation of FT under 27°C-SD or 21°C-LD is not proportional to the degree 

of acceleration of flowering time under these conditions, as FT mRNA is over 10 fold more 

abundant under 21°C-LD than under 27°C-SD (Figure 4.1e). This discrepancy might be 

explained if similar amounts of FT protein accumulate under each condition despite the 

differences in the levels of FT mRNA. To test this possibility, A. thaliana seedlings expressing 

tagged version of FT (Corbesier et al. 2007) could be used to compare the levels of FT protein 

by western blot analysis under both conditions.  

The exacerbated response to low FT levels might be more evident in genetic backgrounds 

impaired in flowering pathways independent of FT and TSF. spl15 mutants flower very late 

under SDs. However, under LDs the flowering-time of this mutant is indistinguishable from 
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that of the WT plants, indicating that the FT-signalling pathway can overcome the lack of 

SPL15 function (Hyun et al. 2016). It is therefore predicted that the increased response to FT 

at warm temperatures would bypass the requirements of SPL15 under SDs. In such a 

scenario, the very late-flowering of slp15 mutants under SDs would be strongly suppressed 

under warm temperatures, showing even a stronger response compared to WT plants. 

On the other hand, exposure to high temperatures reduces the activity of floral repressors 

(Lee et al. 2013, Pose et al. 2013, Airoldi et al. 2015, Sureshkumar et al. 2016), suggesting 

that floral induction might be more sensitive to lower amounts of FT under 27°C-SD. An 

alternative hypothesis is that floral integrators expressed in the meristem are induced directly 

by high temperature. To test this possibility, the expression of SOC1, FUL and AP1 mRNA 

at 21°C-SD and 27°C-SD was measured. No changes in expression of these genes mediated 

by warm ambient temperature were detected (Figure 4.9a, 4.9b and 4.9c). By contrast, the 

activity of the MADS box transcription factors SVP, FLM and MAF2 is reduced at high 

temperature. The role of these repressors has been compared between 16 °C and 23 °C 

(Lee et al. 2007, Gu et al. 2013), a different temperature range than used here, and usually 

under LDs (Lee et al. 2007, Gu et al. 2013, Lee et al. 2013, Pose et al. 2013). Although some 

studies have tested the function of these proteins under 27°C-LD (Lee et al. 2013, Pose et 

al. 2013, Airoldi et al. 2015) their activity under 27°C-SD has rarely been examined 

(Balasubramanian et al. 2006, Kumar et al. 2012, Galvao et al. 2015). Differential splicing of 

FLM and MAF2 mRNAs at high temperature leads to reduction in the activity of floral 

repressive complexes involving SVP (Balasubramanian et al. 2006, Pose et al. 2013, 

Rosloski et al. 2013, Airoldi et al. 2015). The stability of SVP is also reduced at higher 

temperature, although the protein is not completely depleted (Figure 4.7a and 4.7b) (Lee et 

al. 2013). This is in agreement with the flowering phenotype of pKNAT1::SVP svp-41 plants, 

which responded to temperature by inducing flowering, but showed a strong delay under 
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27°C-SD compared to svp-41 mutants (Figure 4.8d). These combined results suggest that 

floral repression by SVP is, at least partially, impaired at higher temperatures. In the leaves, 

SVP acts to repress FT and TSF transcription, while in the meristem it represses the 

transcription of SOC1 and the accumulation of GAs (Lee et al. 2007, Li et al. 2008, Jang et 

al. 2009, Andres et al. 2014). Therefore, reduced activity of SVP and MAF repressors at high 

temperature under SDs likely contributes to the capacity of low levels of CO to activate 

transcription of FT in the leaves as well as to allowing the meristem to respond when FT 

mRNA is expressed only at low levels. The importance of the role of SVP in the meristem 

was supported by analysis of the svp-41 ft-10 tsf-1 triple mutant, where svp-41 prevented the 

residual flowering response to 27°C-SD detected in ft-10 tsf-1 double mutants. That high 

temperature increases sensitivity of the meristem to FT signalling might be more directly 

testable using recently described FT inducible systems (Krzymuski et al. 2015). However, 

the proposed increased sensitivity of the meristem under 27°C-SD is detected when FT 

mRNA is expressed at very low levels, and whether the inducible system can be tuned to 

express FT at such levels remains to be established. 

Alterations in FT chromatin structure at higher temperatures may also contribute to the 

increased activation of transcription by low levels of CO, and particularly removal of H2A.Z 

under 27°C-SD has been proposed to increase binding of PIF4 to the FT promoter and 

thereby the transcriptional activation of the gene (Kumar and Wigge 2010, Kumar et al. 2012). 

In support of the importance of FT, TSF and SVP for a flowering response under 27°C-SD, 

the svp-41 ft-10 tsf-1 triple mutant, but not svp-41 or ft-10 tsf-1 double mutants, flowered at 

the same time under 21°C-SD and 27°C-SD. This differs from LDs, where the svp mutation 

alone is sufficient to cause insensitivity to ambient temperatures (Lee et al. 2007, Pose et al. 

2013), presumably because compared to SDs the photoperiodic pathway is much more 
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active under LDs, and therefore quantitative modulation of its activity is less likely to cause 

phenotypic changes under these conditions. 

 

6.3 Roles of CO and PIFs in activation of FT under SD at high temperature 

Early flowering under 27°C-SD depends on FT activity, and increased transcription of FT 

under 27°C-SD compared to 21°C-SD is conferred by CO and PIFs. Analysis of co-10 pif4-2 

double mutants as well as the respective single mutants demonstrated that CO and PIF4 act 

additively to promote FT transcription and flowering under 27°C-SD (Figure 4.5a and 4.5b). 

Furthermore, both PIF4 and PIF5 contribute to this process, because mutations in either gene 

delayed flowering under 27°C-SD. Also, the double mutant pif4-2 pif5-3 was later flowering 

than the pif4-2 single mutant, indicating some genetic redundancy. PIF4 was studied as 

representative of their activity because of the availability of tools to assay the protein when 

expressed from its own promoter.  

Both CO and PIF4 bind to similar regions of the FT promoter (Kumar et al. 2012, Song et al. 

2012b, Zhang et al. 2015), and a physical interaction between them was detected. The 

importance of the CO-PIF4 interaction for FT activation under 27°C-SD is uncertain, as the 

two proteins can activate FT transcription independently of each other when expressed at 

high levels. Overexpression of PIF4 caused earlier flowering of co-10 mutants (Figure 4.6a), 

while when CO was accumulated at high levels in Col-0 under LDs, PIF4 was not required 

for FT transcription and flowering (Figure 4.6e, 5.14 and 5.16). Similarly, mutations in PIF4 

and PIF5 did not delay flowering of pSUC2::CO plants under 27°C-SD (figure 4.6d). 

Moreover, under 27°C-SD, the co-10 and pif4 single mutants expressed FT mRNA at higher 

levels than the double mutant (Figure 4.5b), suggesting that each protein can act 

independently of the other in FT activation. This capacity to act independently presumably 
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explains why an additive rather than an epistatic genetic interaction was detected between 

pif4 and co, and might be explained by genetic redundancy both for CO and PIF4. However, 

the diurnal pattern of PIF4 accumulation under 27°C-SD suggests that it can only activate FT 

transcription at times when CO is expressed (Figure 4.4e and 4.4d). PIF4 protein was present 

from before dawn, when the expression of many of its target genes such as ATHB2 and 

IAA29 occurs (Yamashino et al. 2013b), throughout the photoperiod until dusk. However, no 

peak in FT mRNA was reproducibly detected until both CO and PIF4 were expressed at dusk. 

Therefore, the physical interaction between the proteins might contribute to the activation of 

FT transcription at dusk under 27°C-SD. 

The effect of temperature on CO and PIF4 activity is striking, because in wild-type plants 

neither activates FT transcription at 21°C-SD, but they do at 27°C-SD. No increase in PIF4 

levels was detected at dusk, when FT is expressed, under 27°C-SD compared to 21°C-SD, 

suggesting that changes in PIF4 levels at high temperature do not contribute to the early-

flowering phenotype. By contrast CO was slightly, less than 2 fold, more abundant under 

27°C-SD than 21°C-SD, so that an increase in its level might contribute to higher FT induction 

under 27°C-SD. This appears to differ under LDs where no difference in CO abundance was 

observed between 27 °C and 22 °C (Seaton et al. 2015). The much higher levels of CO 

protein present under LDs compared to SDs might prevent exposure to high temperature 

from causing a further increase. Modulation of CO protein levels by cold is mediated by the 

E3 Ubiquitin ligase HOS1, which promotes degradation of CO in response to short periods 

of cold (Jung et al. 2012b, Lee et al. 2012a, Joon Seo et al. 2013). Similarly, Blazquez et al. 

(2003) showed that at 23 °C, p35S::CO induces flowering as dramatically as p35S::FT, 

whereas at 16 °C, p35S::CO plants flower later than p35S::FT, supporting the idea that the 

capacity of CO to activate FT is regulated by temperature at the post-transcriptional level. If 

the range of temperatures in which this system operates extends to 27 °C, then reduction in 
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HOS1 activity could contribute to the increased level of CO under 27°C-SD compared to 

21°C-SD. Alternatively, one of the other mechanisms that influence CO protein stability might 

be affected by high temperatures (Jang et al. 2008, Liu et al. 2008b, Song et al. 2012b).  

The activation of FT by CO and PIF4 under 27°C-SD but not 21°C-SD might also depend on 

other aspects of FT regulation. For example, SVP, FLM and MAF2 are negative regulators 

of FT transcription, so impairment of their activities at high temperature might allow low levels 

of CO and PIF4 to additively activate FT. However, under 27°C-SD, the svp-41 mutant did 

not show more FT transcript than Col-0 at dusk (Figure 4.8b), suggesting that under these 

conditions the early flowering of svp-41 mutants might mainly be conferred by impairment of 

its role in the meristem. A similar conclusion can be drawn from the observation that the 

residual flowering response to 27°C-SD in ft-10 tsf-1 mutants was abolished in svp-41 ft-10 

tsf-1 (Figure 4.1b and 4.8d), which is likely due to removing SVP activity in the meristem as 

ft-10 tsf-1 already blocks the leaf response. Alternatively, the svp-41 mutation might cause 

increases in FT transcript at other times, or alteration of FT chromatin, for example by 

removal of H2A.Z, might be critical in allowing CO and PIF4 to activate FT under 27°C-SD. 

In conclusion, the delay in flowering normally observed under SDs is overcome by exposing 

plants to high temperatures. This depends on photoperiodic flowering pathway components, 

CO and FT TSF. The present study demonstrates that the levels of these components that 

induce flowering under 27°C-SD are much reduced compared to inductive LDs. The early 

flowering response under 27°C-SD therefore likely depends on a shift in the threshold of CO 

and FT proteins required to activate flowering. The conclusion that the flowering response 

under 27°C-SD depends on threshold levels of photoperiodic flowering components can also 

explain the greater variability in flowering time observed under these conditions compared to 

inductive LDs. Such a threshold effect might be expected to be more sensitive to natural 

genetic variation among accessions, as observed in other signalling pathways (Polaczyk et 
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al. 1998) and in gene expression responses to high temperature in other systems (Chen et 

al. 2015). In this sense, models that predict flowering-time in crops growing in their normal 

growing season have been developed. These models (i.e. Decision Support System for 

Agrotechnology Transfer [DSSAT] and Agricultural Production Systems sIMulator [APSIM]) 

assume that photoperiod only affects rate of development at and below a certain temperature 

(T0), above T0, the rate is affected only by temperature (Craufurd and Wheeler 2009). In A. 

thaliana, T0 seem to be just below 27 °C and the effect of temperature in flowering time might 

be determined by increments in the levels of FT beyond a molecular threshold. 

The flowering response to temperature varies widely between species. For example, 

flowering has been shown to be delayed at 25 °C compared to 18 °C in Boechera stricta, a 

perennial relative of A. thaliana (Anderson et al. 2011). Interestingly, Anderson and 

collaborators (Anderson et al. 2011) found that CO was near a QTL associated to the 

temperature response and not to photoperiod, since the QTL was significant in plants grown 

under cool but not under elevated temperatures. Similarly, Fragaria vesca flowers at low 

temperatures irrespective of photoperiod (Heide 1977). In Chrysanthemum morifolium 

flowering is delayed at temperatures warmer than 20 °C, and this is due to a delay in the 

expression of the FT homologue FT-like 3 (FTL3) (Oda et al. 2012, Nakano et al. 2013). In 

Narcissus tazetta the FT homologue (NtFT) is induced at 25 °C promoting flowering. At 12 

°C, NtFT levels remain basal and florogenesis is suppressed (Noy-Porat et al. 2009, Noy-

Porat et al. 2013). In wheat and barley, the reproductive development is controlled by an 

interaction between temperature and day-length. Under LDs, warm ambient temperatures 

induce reproductive development in these two cereals, while under SDs warm temperatures 

have the opposite effect on early reproductive development. Unlike in A. thaliana, transcript 

levels of the barley orthologue of FT (HvFT1) are not influenced by temperature. Furthermore, 

no evidence that any other known regulators of the LD flowering response are temperature 



Discussion 

131 
 

sensitive, at least at the transcript level (Hemming et al. 2012). These examples highlight the 

variety of mechanisms governing the regulation of flowering time by ambient temperature in 

nature. Interestingly, there is some degree of conservation in the thermosensory flowering 

pathway between A. thaliana and several other species, as FT-like genes have been 

identified as integrators in this response. However, the gene regulatory networks that control 

the expression of FT-like genes in many plant species have not been characterized in detail 

(Capovilla et al. 2015).  

 

6.4 Photoperiod components are necessary for the induction of flowering under 

shade 

In dense vegetation, plants sense the presence of neighbours by monitoring changes in light 

quality. These light quality changes are perceived by phytochrome photoreceptors (Figure 

1.3). Underneath dense canopies, the R:FR ratio decreases from 1.15 to values typically in 

the range 0.05 - 0.8 (Smith 1982) and the phytochromes phototransform into the inactive 

form. This triggers phenotypical changes that together are called the SAS (Smith 1982, 

Ballaré 1999, Franklin and Whitelam 2005, Franklin 2008, Casal 2012). In A. thaliana, PhyB 

has a predominant function regulating these responses, although PhyD and PhyE also 

contribute. The results presented here as well as other reports demonstrated that mutations 

in PHYB cause a constitutive shade avoidance phenotype, including long hypocotyl, apical 

dominance, long petioles and early flowering (Somers et al. 1991, Reed et al. 1993, Smith 

and Whitelam 1997). This study shows that CO, FT and TSF, components of the photoperiod 

pathway, are important contributors to the early flowering phenotype of phyB mutants (Figure 

5.2a), because mutations in any of these genes significantly supress this phenotype. Similar 

results were obtained in previous reports (Putterill et al. 1995, Endo et al. 2005). In support 
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of this requirement, FT and TSF mRNA levels were higher in phyB mutants compared to Col-

0 (Figure 5.1f, Annex A.3a and A.3b (Cerdán and Chory 2002, Endo et al. 2005). The 

increment on FT levels in the phyB mutants was shown to depend, at least in part, on the 

activity of a nuclear protein called PFT1 (Cerdán and Chory 2002). Vegetational shade and 

the characteristic phenotypic responses triggered by this condition were successfully 

reproduced by supplementing the WL growth condition of the growth chambers with FR light 

(enriched FR light). Col-0 plants grown in the simulated shade conditions displayed a shade 

avoidance phenotype, including long hypocotyls and acceleration of flowering (Figure 5.5a – 

5.5e). This acceleration of flowering of Col-0 was due ultimately to increases in the 

expression of FT and TSF mRNA, typically at ZT16 under LDs compared to Col-0 (Figure 

5.14a, 5.14b, 5.16b and 5.16c). Under enriched FR light the expression of these floral-

integrator genes was also increased at ZT4, causing a peak in mRNA level characteristic of 

this condition (Figure 5.14a, 5.14b, 5.16b and 5.16c). The expression peak of FT at ZT4 

under enriched FR has been previously described (Kim et al. 2008, Wollenberg et al. 2008) 

and is likely due to an increase in CO mRNA transcription during the early hours of the day. 

Consistent with the conclusion that early flowering under enriched FR is dependent on FT 

and TSF, ft-10 tsf-1 double mutants were almost insensitive to simulated shade. However, 

the presence of either functional FT or TSF is sufficient to trigger a flowering response of 

approximately the same intensity, causing plants to flower with about 50% of the leaves 

displayed in WL (Figure 5.15) (Kim et al. 2008).  

The residual sensitivity of ft-10 tsf-1 plants to shade is at least partly due to a flowering 

response driven by SOC1 (Kim et al. 2008). Also, the levels of DELLA proteins are reduced 

under shade in hypocotyls and petioles and some phenotypic responses to this condition, 

such as elongation of hypocotyl and petiole, require GA (Djakovic‐Petrovic et al. 2007). As 

SOC1 transcription is induced by GA, the slightly early flowering time of ft tsf double mutants 
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under shade conditions could be influenced by changes in the levels of this hormone (Moon 

et al. 2003, Kim et al. 2008). Alternatively, SOC1 expression could be induced by reduced 

levels of floral repressors, such as SVP.  

Consistent with the above information, plants without a functional CO allele were also highly 

insensitive to enriched FR light conditions, supporting the idea that CO contributes to the 

early flowering phenotype under shade by activating FT TSF (Figure 5.15) (Kim et al. 2008). 

CO is a key transcription factor in the regulation of flowering time under LDs. A PhyB-

mediated stabilization of CO protein is postulated to promote the acceleration of flowering 

under enriched FR light conditions (Valverde et al. 2004, Kim et al. 2008). Under these 

conditions, PhyB is predominantly in its inactive form preventing the degradation of CO 

protein and allowing its accumulation (Kim et al. 2008). Increases in CO mRNA level are also 

promoted by enriched FR light as well as by the absence of PhyB (Cerdán and Chory 2002, 

Kim et al. 2008). Thus, the acceleration of flowering mediated by enriched FR light greatly 

depends on the transcriptional and post translational regulation of CO. The requirement for 

CO in the promotion of flowering by shade has also been observed in shorter photoperiods. 

Under 12:12, CO was essential for floral induction mediated by enriched FR light (Figure 

5.18). Under these conditions, co mutant plants flowered much later than Col-0. However, 

under SDs CO did not have an effect on flowering under shade as its protein is absent or 

almost undetectable under such short photoperiods (Valverde et al. 2004). GI is also a key 

player in the induction of flowering under enriched FR as gi-2 mutant plants presented a 

strong insensitivity to these light conditions (Figure 5.15), supporting the idea that enriched 

FR light accelerates flowering trough the photoperiod pathway. Alternatively, part of the 

shade-induced acceleration of flowering could be mediated by PFT1 though the activation of 

FT mRNA in a CO-independent manner. However the lack of FT expression in co-10 mutants 

growing under shade conditions (Figure 5.16b) does not support this hypothesis. Taken 
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together, these results show that the induction of flowering by shade is highly dependent on 

photoperiod pathway components. These results are in agreement with previous reports (Kim 

et al. 2008, Wollenberg et al. 2008) that showed the attenuated flowering response to low 

R:FR light ratio of photoperiodic pathways mutants. Consequently, under non-inductive SD 

photoperiods, enriched FR light did not accelerate flowering (Figure 5.8c) (Kim et al. 2008, 

Wollenberg et al. 2008).  

Many aspects of the shade avoidance response are conserved in different plant species. The 

promotion of stem elongation in response low R:FR light ratio is the most conspicuous 

response. For example, low R:FR and/or EODFR has been demonstrated to promote stem 

elongation in many crop species including beans (Downs et al. 1957), mustard (Sinapis alba) 

(Morgan et al. 1980), tobacco (Nicotiana tabacum) (Kasperbauer 1971), sunflower 

(Helianthus annus) (Libenson et al. 2002) and tomato (Solanum lycopersicon) (Selman and 

Ahmed 1962). The acceleration of flowering in response to shade has also been reported in 

several A. thaliana accessions (Botto and Smith 2002) as well as in other species. In barley, 

for example, flowering is accelerated by enriched FR light in a phytochrome dependent-

manner (Deitzer et al. 1979). However, flowering acceleration seems to be less widely 

conserved than other shade avoidance responses among species (Casal 2012). In this 

sense, domestication of crops over the years could have affected the conservation of 

flowering responses to shade, as early flowering might not have been always an advantage 

for high production in the crowded and therefore, shaded fields. 

 

6.5 PIFs do not play a role in the induction of flowering under shade conditions 

PIFs play an important role in elongation growth. PIF4 and PIF5 are positive regulators of 

these responses, they directly activate the expression of YUC and IAA/AUX, genes that are 
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important for auxin biosynthesis and signalling, respectively, thereby controlling auxin-

mediated growth (Lorrain et al. 2008, Hornitschek et al. 2012). Under shade conditions, PIF4 

and PIF5 directly activate shade-induced genes, such as YUC8, IAA29, CKX5, FHL as well 

as PIL1 and ATHB2 (Lorrain et al. 2008, Kunihiro et al. 2011, Hornitschek et al. 2012). The 

induction of some of these genes under shade, for instance PIL1, ATHB2, YUC8 and YUC9 

is also controlled by PIF7 (Li et al. 2012a). Indeed, the control of YUC8 and YUC9 by PIF7 is 

through direct binding to G-box elements in their promoters (Li et al. 2012a). The present 

study shows that under enriched FR light, PIF4 protein accumulates to higher levels during 

the evening (ZT12 – ZT16) of LDs compared to WL (Figure 5.7a). This accumulation might 

be the result of an increase in the levels of PIF4 mRNA detected in the evening under 

simulated shade conditions compared to WL (Figure 5.7b). Nonetheless, the increase in the 

expression levels of PIF4 mRNA must be accompanied by a reduction in the turnover rate of 

PIF4 protein, because low levels of expression of PIF4 mRNA in the evening under shade 

produced comparable quantities of protein made by high PIF4 mRNA expression earlier in 

the day. The increase in PIF4 protein under enriched FR light might directly promote the 

expression of shade-induced genes, such as IAA29 (Figure 5.10) as well as FHL, CKX5, 

PIL1, ATHB2, XTR7, YUC8 (Lorrain et al. 2008, Hornitschek et al. 2009, Hornitschek et al. 

2012) . Although the expression of several of these genes is reduced in the pif4 pif5 double 

mutant under high R:FR, the expression levels of FHL, CKX5, IAA29, PIL1, ATHB2, XTR7, 

YUC8  are still induced by shade in this genetic background (Figure 5.10) (Lorrain et al. 2008, 

Hornitschek et al. 2009, Hornitschek et al. 2012). This suggests that another transcriptional 

regulator controls the expression of these genes under shade. Other members of the PIF 

family are candidates for such a function since they can bind similar DNA sequences and can 

act additively (Martı́nez-Garcı́a et al. 2000, Huq and Quail 2002, Huq et al. 2004, Shin et al. 

2009b, Hornitschek et al. 2012).  Even after the simultaneous removal of PIF1, PIF3, PIF4 
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and PIF5 the quadruple mutant plants can still respond to shade showing high levels of IAA29 

mRNA (Figure 5.8b and 5.10). These observations indicate that PIF1 and PIF3 are either not 

implicated in this regulation or that their function can be taken over by other PIFs, at least for 

the control of IAA29 expression. These results are consistent with previous reports that higher 

order pif mutants still respond to enriched FR light through hypocotyl elongation (Leivar et al. 

2012). 

The hypocotyl elongation displayed by phyB mutants, characteristic of the constitutive shade 

avoidance phenotype, as well as the induction of shade marker genes, such as PIL1, HFR1 

and ATHB2, are partially suppressed by mutations in PIF4 and PIF5 (Lorrain et al. 2008). 

Consistent with these observations, the early flowering phenotype of phyB-9 mutants was 

suppressed by pif4-2 pif5-3 mutations (Figure 5.3c), supporting the idea of a possible role of 

PIFs in the PhyB-mediated early flowering and consequently in the early-flowering promoted 

by shade. However, neither phyB-9 nor pif4-2 pif5-3 mutants displayed a reduced flowering-

response under shade conditions, perhaps because of functional redundancy with other Phys 

and PIFs. PIF4 and PIF5 interact with PhyB, but no binding to PhyD and PhyE has been 

reported to date (Leivar and Quail 2011). Thus, the interaction between PhyB and PIF4 PIF5 

might be relevant for the PhyB-mediated acceleration of flowering, but not for a more general 

Phytochrome-mediated flowering response to shade. The effect of PIF4 and PIF5 in flowering 

of phyB mutants might be exerted by increasing the expression of FT and TSF. However, the 

expression levels of FT and TSF mRNA in phyB mutant increase around the second half of 

the day under LDs, when at least PIF4 protein is not present (Figure 5.1f, Annex A.3a and 

A.3d). Nevertheless, previous publications show that there is some increase of FT mRNA 

compared to Col-0 earlier in the morning (Cerdán and Chory 2002) when PIF4 protein can 

be detected. Measurements of the expression levels of FT and TSF in the phyB-9 pif4-2 pif5-

3 triple mutant would more clearly determine the role of PIF4 and PIF5 in the phyB mutant. 



Discussion 

137 
 

Alternatively, PIF4 and its interaction with CO might be relevant for the stabilization of CO 

protein in the phyB mutant, explaining why PIF4 and PIF5 are required for the induction of 

flowering of this mutant. The lack of a flowering phenotype of the pif4-2 pif5-3 double mutant 

and higher order pif mutants under LDs suggest, however, that PIFs are not required for the 

regulation of CO protein stability and flowering time in the presence of functional PhyB. CO 

protein stability assays in phyB, phyB pif4 and phyB pif4 pif5 mutant backgrounds would 

further test the roles of PIFs in determining CO protein stability in phyB mutants.  

Flowering-time experiments performed under enriched FR light demonstrated that mutations 

in single PIF genes (PIF1, PIF3, PIF4, PIF5 and PIF7) as well as higher order mutations did 

not suppress the early flowering promoted by enriched FR light (Figure 5.8a, 5.8b, 5.9a 5.9b, 

5.13a and 5.13b). These results suggest that PIFs do not play a role in flowering under 

simulated shade conditions. Accordingly, the FT and TSF mRNA levels of pif mutants did no 

differ from those observed for Col-0 plants under enriched FR, both at ZT4 and ZT16 (Figure 

5.14a and 5.14b). Although PhyB is the principal photoreceptor involved in the shade 

avoidance response, it is not the sole mediator of this process because phyB mutant plants 

retain flowering and elongation responses to enriched FR light (Figure 5.6a, 5.6b and 5.6c) 

(Goto et al. 1991, Somers et al. 1991, Whitelam and Smith 1991, Reed et al. 1993, Halliday 

et al. 1994, Devlin et al. 1996, Smith and Whitelam 1997). PhyD and PhyE are also implicated 

in this response, so that triple mutant plants phyB phyD phyE are insensitive to low R:FR 

irradiation, excluding role for PhyC in the shade avoidance response (Aukerman et al. 1997, 

Devlin et al. 1999, Franklin et al. 2003b). The effect of the PIFs under enriched FR light could 

be masked by the role of PhyD and PhyE in this response, which might act independently of 

PIF4 and PIF5 (Leivar and Quail 2011). PhyD and PhyE could therefore induce early 

flowering in shade through other mechanisms by modulating the function of other floral 

regulators. Generation and further experiments with phyD phyE pif4 pif5 quadruple, phyB 
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phyD phyE pif4 pif5 quintuple and higher order pif mutants would help to elucidate the role of 

PIFs in flowering time. On the other hand, given the similarity between the PIF-like genes, a 

high level of redundancy between these genes could also explain why a role for PIFs in 

flowering under shade cannot be demonstrated genetically. Even though high order mutants 

were tested, a genotype with complete loss of PIFs function has not yet been generated and 

tested for flowering. Flowering-time analysis of such a PIFs loss of function genotype would 

be conclusive in determining their function in this process. 

 

6.6 The role of CO in the induction of flowering by shade 

CO plays a central role in the promotion of flowering under LDs. Upon CO protein stabilization 

in long photoperiods, it strongly activates FT and TSF expression and promotes flowering 

(Putterill et al. 1995, Suarez-Lopez et al. 2001, Valverde et al. 2004, Michaels et al. 2005, 

Yamaguchi et al. 2005). The results presented here show that CO is essential for A. thaliana 

to respond to enriched FR light conditions, as in co-10 mutant plants the response to shade 

is highly suppressed. This suppression is most likely caused by the strong reduction of FT 

and TSF expression in co-10 mutants under shade (Figure 5.16b and 5.16c) (Kim et al. 2008, 

Wollenberg et al. 2008). The role of CO, PIF4 and PIF5 is also important for the early 

flowering of phyB (Figure 5.2a and 5.3c). This suggests that the interaction between CO and 

PIF4 is relevant for the promotion of flowering in phyB mutants. Hence, given the phenotypic 

and molecular similarities between the phyB mutant and the shade avoidance of Col-0 plants, 

the CO-PIF4 interaction could play a role in the induction of flowering under shade conditions. 

Single and higher order mutations in PIFs, however, had no effect on flowering time under 

enriched FR light. One reason for the absence of a flowering phenotype in these mutants 

under shade could be the strong effect that CO has on flowering. The strong promotion of 
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flowering by CO could mask any effect that PIFs might have in flowering time under shade. 

Therefore, quantitatively reducing rather than abolishing the activity of CO might reveal a role 

for PIFs and the CO-PIF4 interaction in the induction of flowering by shade. To achieve this 

situation, experiments under shorter LD-photoperiods, for example 12:12, were performed. 

Using 12:12 photoperiods failed to demonstrate a role for PIF4 and PIF5 in the induction of 

flowering under shade, as pif4-2 pif5-3 double mutants did not flower later than Col-0 under 

shade (Figure 5.18). Thus, mutations in PIF4 and PIF5 do not cause changes in shade 

response even in environmental and genetic contexts of reduced CO activity. These data 

suggest that the interaction between PIF4 and CO might not be relevant for the control of 

flowering under enriched FR conditions and therefore the biological significance of this 

interaction under these conditions remains unclear. 

The expression of direct target genes of PIF4 and PIF5 involved in auxin biosynthesis and 

signalling, such as, YUC8 and IAA29, are directly regulated by PIF4 and PIF5 under high 

R:FR in low PAR and their expression increases in low compared to high PAR (Hornitschek 

et al. 2012). Furthermore, differences in traits such as hypocotyl length between Col-0 and 

the pif single and higher order mutants are larger in low compared to high PAR (Hornitschek 

et al. 2012). Under several simulated shade conditions, mutations in PIF1, PIF3, PIF4 and 

PIF5 genes do not show a flowering phenotype, however preliminary results under low PAR 

show a delay in flowering time of co-10 pif4-2 pif5-3 compared to co-10 (Figure 5.17). This 

suggests that PIF4 and PIF5 could have a role in promoting flowering under low PAR. 

However, this should be investigated more thoroughly since pif4-2 pif5-3 double mutants did 

not show a flowering phenotype under low PAR. Under these conditions and as postulated 

previously, the strong induction of flowering mediated by CO might mask any effect that PIFs 

have on flowering. These results enable a possible scenario where the interaction between 
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PIF4 (and maybe other PIFs) and CO could play a regulatory role in flowering time under low 

PAR. 

 

6.7 Conclusion 

Striking similarities exist among the phenotypic responses that A. thaliana develops to 

escape from high ambient temperature, such as, leaf hyponasty, hypocotyl elongation and 

early flowering with those triggered by vegetational shade. The results showed here and 

several other previous reports describe the existence of common regulatory components in 

the pathways that regulate these developmental responses (Proveniers and van Zanten 

2013). This thesis aimed to increase our understanding on the interaction between 

environmental signals affecting flowering time. The most remarkable contribution of this study 

is the finding that CO is not only a key component of the photoperiodic flowering pathway 

under LDs, but also an essential player in the induction of flowering mediated by warm 

ambient temperatures under SDs, as well as a central regulator of the promotion of flowering 

under enriched FR light. CO is thus a molecular hub in the interplay between ambient 

temperature, light quality and day length contributing to the proper interpretation of 

environmental signals and rendering therefore the optimal timing of flowering. In addition to 

CO, other CO-like proteins (COL) have been isolated and their functions related to light 

signalling, flowering and circadian clock regulation described (Ledger et al. 2001, Cheng and 

Wang 2005, Datta et al. 2006). This suggests that during evolution, COL proteins have been 

recruited to distinct genetic pathways controlling flowering and other processes. In this sense, 

the A. thaliana CO might be an example of a master regulator whose function has diverged 

to contribute to the responses to several environmental signals and mediate the activation of 

FT and TSF (Simon et al. 2015). However, this hub function of CO seems not to be conserved 
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in other species. For example in rice, the orthologue of CO (Hd1) regulates flowering in the 

photoperiod pathway, but it has been suggested that it does not participate in flowering 

acceleration dependent on temperature (Song et al. 2012a) In A. thaliana, the central role of 

CO in the interpretation of distinct environmental signals is accomplished by its interaction 

with PIFs, more importantly PIF4. The interaction between these two proteins serves 

probably as an extra layer of regulation for the proper timing of flowering. 

In an ecological context, the ability of plants to regulate flowering in response to temperature 

changes irrespective of photoperiod might be more important in latitudes near the Equator, 

where the day-length is approximately constant during the year, than in more extreme 

northern or southern latitudes, where the changes in photoperiod are more abrupt throughout 

the year. A. thaliana is found in nature in rather northern latitudes where the difference 

between day-length in winter and summer is usually big. Therefore it has developed a very 

specialized mechanism to sense the changes in day-length and this has become the 

predominant signal that drives the timing of flowering. In this sense, the exposure of young 

A. thaliana seedlings to a few days of long photoperiods is enough for the plant to interpret 

this signal as a seasonal change and activate the developmental programs that will promote 

flowering (Torti et al. 2012).  

Changes in temperature highly influence the decision to flower, triggering the reproductive 

development even under non-inductive photoperiods. However, it is not surprising that these 

events require long and sustained exposures to warm temperatures (Galvao et al. 2015), 

taking double the amount of time to flower under warm temperatures in non-inductive 

photoperiods than under LDs. One possible reason for this behaviour is that A. thaliana plants 

consider fluctuations in photoperiod as the most robust indicator of seasonal changes and 

interpret the warm temperatures under SDs as a sporadic event in nature. Nevertheless, it is 

common in nature to find intermediates photoperiods in a growing season. Therefore it seems 
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reasonable that an additive combination of stimuli of photoperiod and temperature determine 

the timing of flowering (Craufurd and Wheeler 2009). The ability to accelerate flowering under 

warm temperatures and sub-optimal photoperiods might serve as a strategy to rapidly 

colonize ecological niches during years of warm transitions from winter to spring. 

Furthermore, being able to flower rapidly in late winter or early spring might give A. thaliana 

the chance to complete more than one life cycle in those years when the climate is 

permissive. These mechanisms might allow A. thaliana plants to adapt to exceptional 

environments in which the day-length is short but temperatures are already high. This type 

of rare environmental situations could be achieved more often in future years when the effect 

of the global warming is predicted to be more notorious. Thus, the findings obtained in this 

thesis on the molecular mechanisms controlling flowering under warm temperature and SDs 

in A. thaliana are instrumental to breed crops for a better adaptation to the future climate 

conditions. 

The information on light quality changes that a plant perceives allows it to interpret the 

environment by which it is surrounded. However, light quality changes give very little or no 

information about seasonal changes. Therefore, plants can distinguish between “robust” 

environmental changes and perturbations in the micro-environment that surround them. It 

seems relevant for plants to prioritize the responses driven by seasonal changes (robust 

ambient changes) over fluctuations in the micro-environment surrounding them. For example, 

A. thaliana does not accelerate flowering under shade conditions unless the photoperiod is 

sufficiently prolonged. This is probably explained by the fact that plants, including A. thaliana, 

have developed multiple other strategies in order to escape from the shade produced by 

neighbouring individuals. In agreement with this, a previous report showed that distinct shade 

avoidance responses are controlled by independent molecular mechanisms (Kim et al. 2008). 

In this thesis, it has been shown that PIFs, which are involved in several shade avoidance 
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responses, are not related to the flowering acceleration observed as part of the SAS. Instead, 

under shade and optimal day-length conditions, key components of the photoperiod pathway 

are recruited to regulate flowering time. Similar results were previously described by other 

groups (Kim et al. 2008, Wollenberg et al. 2008). 

In summary, the genetic networks that govern the regulation of plant development, and in 

particular, flowering time, are highly influenced by seasonal and environmental factors. In 

nature, plants are simultaneously exposed to a combination these factors whose degree of 

intensity and duration are characteristic of particular seasons. In A. thaliana these factors are 

perceived by distinct genetic pathways and integrated into regulatory networks to modulate 

flowering time. In the core of these networks CO is a molecular hub which regulates the 

transcription of FT and flowering in response to photoperiod, temperature and light quality 

changes. The fact that a single transcription factor, with a function that is well conserved 

among species, integrates and regulates multiple genetic pathways has an extraordinary 

potential in order to manipulate flowering time in cultivated plant species. This could be 

especially useful in the context of the global climate change that is expected to have a 

dramatic effect on plant phenology
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Figure A.1 Y2H experiment to test the interaction between CO and PIF4 proteins. Yeast growth in the first 

two lines in -Leu -Trp -His and -Leu -Trp -His + 3AT media suggest interaction between CO and PIF4 proteins. 

Auto activation controls in rows 3 and 4 using CO full length (FL) and PIF4 FL fused to the activation domain show 

no yeast growth in -Leu -Trp -His and -Leu -Trp -His + 3AT media. Auto activation controls in rows 5 and 6 using 

CO full length (FL) and PIF4 FL fused to the DNA binding domain show yeast growth in -Leu -Trp -His and -Leu -

Trp -His + 3AT media.  
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Figure A.2 FRET-A.PB experiment to test the interaction between CO and PIF4 proteins. (a) After 

photobleaching of the acceptor (CO-YFP) the fluorescence intensity of the PIF4-CFP increase, suggesting 

interaction between CO and PIF4. (b) PIF4-CFP fluorescence intensity does not increase after photobleaching of 

YFP fluorescence protein. (c) CFP fluorescence intensity slightly increase after photobleaching of CO-YFP. In (a), 

(b) and (c), upper panel: image before photobleaching; lower panel: image after photobleaching 
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Figure A.3 The phyB-9 mutant displays higher levels of FT and TSF mRNA compared to Col-0 under LDs 

and SDs. (a) and (d) FT, (b) and (e) TSF and (c) and (f) CO mRNA expression profile in 10-day-old Col-0 and 

phyB-9 mutant seedlings grown in WL under LDs (a), (b) and (c) and SDs (d), (e) and (f). Seedlings were 
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harvested every 4 h for 24 h and FT, TSF and CO mRNA expression was measured by qRT-PCR; error bars are 

StD of three technical replicates. Results provided by Yasuyuki Takahashi. 

 

 

 

Figure A.4 PIF4 PIF5, CO and FT TSF are required for the early flowering phenotype of phyB-9 mutants 

under SDs. Flowering time of plants grown under SDs in WL. Letters indicate statistical groups determined with 

a one-way ANOVA and all pairwise multiple comparisons with the Holm–Sidak method. Groups were considered 

statistically different when P ≤ 0.05. Error bars are StD, n = 6. Results provided by Yasuyuki Takahashi. 

 

 

 

Figure A.5 PIF4 protein is stabilized under enriched FR light. Western blot from nuclear protein extracts of 

pPIF4::PIF4:HA pif4-101 seedlings. Time course showing PIF4:HA protein accumulation under WL and enriched 

FR. Nuclear proteins were extracted from seedlings grown for 12 days under WL or enriched FR. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

9. Abbreviations
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General 

 

%   percentage 

°C   degree Celsius 

µ   micro 

12:12   photoperiod of 12 h light and 12 h dark 

21°C-SD  21 ºC and short days 

27°C-SD  27 ºC and short days 

3AT   3-amino-1,2,4-triazole 

A. thaliana  Arabidopsis thaliana  

A.PB   acceptor photobleaching 

ANOVA  analysis of variance 

APA active Phytochrome A-binding 

APB active Phytochrome B-binding 

APSIM                      agricultural production systems simulator 

AS-NMD alternative splicing coupled with nonsense-mediated mRNA decay 

B blue (light) 

bHLH basic helix-loop-helix 

bp   base pairs 

BRs brassinosteroids 

CaMV   Cauliflower mosaic virus 

Cas9 CRISPR-associated protein-9 nuclease 

cDNA   complementary DNA 

CETS   CENTRORADIALIS (CEN), TERMINAL FLOWER 1 (TFL1) and FT 

CFP   cyan fluorescent protein 

ChIP Chromatin immunoprecipitation 

ChIP-seq ChIP sequencing 

Col-0   Columbia 

CORE CO-responsive element 

CRISPR clustered regularly interspaced short palindromic repeats 

cry cryptochrome 

DNA   deoxyribonucleic acid 

DSSAT  decision support system for agrotechnology transfer 
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DTT   dithiothreitol 

EDTA   ethylenediaminetetraacetic acid 

EOD end-of-day 

Flash   9xMyc-6xHis-3xFlag 

FR far-red (light) 

FRET   fluorescence resonance energy transfer 

g   gram 

GA gibberellin 

GFP   green fluorescent protein 

GUS   β-glucuronidase 

GW   gateway 

GWAS genome wide association 

h hour 

HA   hemagglutinin 

His   histidine 

HRP   horseradish peroxidase 

IAA indole-3-acetic acid 

IPCC    intergovernmental panel on climate change 

kb   kilobase pair 

kDa kilodalton 

L   litre 

LDs long days 

LED   light-emitting diode 

Ler   Landsberg erecta 

Leu   Leucine 

LOV light, oxygen, or voltage (domain) 

m   meter 

MADS-box MCM1 AGAMOUS DEFICIENS SRF-box 

Mbp    megabase pairs 

MES   2-(N-morpholino)ethanesulfonic acid 

miR   MicroRNA 

mol   mole 

mRNA messenger RNA 
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MS   Murashige and Skoog (medium) 

MYB myeloblastosis (transcription factors) 

N. benthamiana Nicotiana benthamiana 

N2   nitrogen 

nm nanometre 

NP-40   nonyl phenoxypolyethoxylethanol 

NPIB   nuclear protein isolation buffer 

O/N   over night 

OD   optical density 

PAR   photosynthetically active radiation 

PBE-box PIF-binding E-box 

PC phosphatidylcholine 

pCO   promoter of CONSTANS 

PCR   polymerase chain reaction 

PEG   polyethylene glycol 

Pfr Phy- chromoprotein inactive form 

phot phototropin 

phy phytochrome 

PIC   protease inhibitor cocktail 

PMSF   phenylmethylsulfonylfluorid 

Pr Phy- chromoprotein active form 

PVDF   polyvinylidene fluoride 

qRT   quantitative reverse transcription 

QTL   quantitative trait locus 

R red (light) 

RAF rapidly accelerated fibrosarcoma 

RNA ribonucleic acid 

RNA-seq RNA sequencing 

rpm   revolutions per minute 

RT   room temperature 

s   second 

SAM shoot apical meristem 

SAS   shade avoidance syndrome 
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SB   sonication buffer 

SDS   sodium dodecyl sulfate 

SDs short days 

SDS-PAGE  sodium dodecyl sulfate polyacrylamide gel electrophoresis 

SE   standard error 

StD   standard deviation 

STUbL SUMO–targeted ubiquitin ligase 

SUMO small ubiquitin-related modifier 

Taq   Thermus aquaticus 

TBS   tris-buffered saline 

TBST   tris-buffered saline tween 20 

T-DNA   transferred DNA 

Tris   tris(hidroximetil)aminometano 

Trp   Tryptophan 

UV-B ultraviolet (light) B 

V   volts 

w/v   weight/volume 

WB   washing buffer 

WL   white light 

WT wild-type 

Y2H   yeast-two-hybrid 

YPAD   yeast extract-peptone-adenine-dextrose (medium) 

ZT   Zeitgeber time 

Gene names 

 

AP1   APETALA 1 

AP2-Like  APETALA2-LIKE 

ARP6   ACTIN-RELATED PROTEIN6 

ATBH2     ARABIDOPSIS THALIANA HOMEOBOX PROTEIN 2 

BRZ1   BRASSINAZOLE-RESISTANT 1 

CCA1   CIRCADIAN CLOCK-ASSOCIATED 1 

CCT    CO-like, TIMING OF CAB2 EXPRESSION 1 (TOC1) 
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CDF   CYCLING DOF FACTOR 

CIB1   CRYPTOCHROME-INTERACTING BASIC-HELIX-LOOP-HELIX 

CO   CONSTANS 

COL   CO-like 

COP1   CONSTITUTIVE PHOTOMORPHOGENIC 1 

CRY(1,2)     CRYPTOCHROME (1,2) 

ELF (3,4)  EARLY FLOWERING (3,4) 

FBH       FLOWERING BHLH 

FDP   FD PARALOG 

FKF1   FLAVIN-BINDING, KELCH REPEAT, F-BOX 1 

FLC   FLOWERING LOCUS C 

FLM   FLOWERING LOCUS M 

FRI   FRIGIDA 

FT   FLOWERING LOCUS T 

FUL    FRUITFULL 

GA20OX2  GIBBERELLIN 20 OXIDASE 2 

GAI   GIBBERELLIC ACID INSENSITIVE 

GI   GIGANTEA 

H2A.Z   HISTONE H2A.Z 

Hd1   Heading date1 

HFR1 LONG HYPOCOTYL IN FAR-RED 1 

HOS1   HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE 1 

HvFT1   Hordeum vulgare FT 

IAA (19,29)  INDOLE-3-ACETIC ACID INDUCIBLE (19,29) 

LFY   LEAFY 

LKP2   LOV KELCH PROTEIN 2 

LUX   LUXARRHYTHMO 

NF-Y   NUCLEAR FACTOR Y 

NtFT   Narcissus tazetta FT 

PAR1   HYTOCHROME RAPIDLY REGULATED1 

PFT1   PHYTOCHROME AND FLOWERING TIME 1 

PHL   PHYTOCHROME-DEPENDENT LATE-FLOWERING 

PHYA   PHYTOCHROME A 
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PHYB   PHYTOCHROME B 

PHYC   PHYTOCHROME C 

PHYD   PHYTOCHROME D 

PHYE   PHYTOCHROME E 

PIE1   PHOTOPERIOD-INDEPENDENT EARLY FLOWERING1 

PIF (1,3,4,5,7,8) PHYTOCHROME INTERACTING FACTOR (1,3,4,5,7,8) 

PIL   PIF-like 

PP2AA3  PHOSPHATASE 2A  

PRR (5,7,9)  PSEUDO-RESPONSE REGULATOR (5,7,9) 

RGA   REPRESSOR OF ga1-3 

RGA-LIKE 1-3  RGL1-3 

SAV3   SHADE AVOIDANCE 3 (TAA1) 

SMZ   SCHLAFMÜTZE 

SOC1   SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1  

SPA (1-4)  SUPPRESSOR OF PHYTOCHROME A (1-4) 

SUC2   SUCROSE TRANSPORTER 2 

SVP   SHORT VEGETATIVE PHASE 

SWC6   SWR1 COMPLEX6 

TAA1   TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS 1  

TOC1   TIMING OF CAB EXPRESSION 1 

TOE1(1,2)  TARGET OF EAT (1,2) 

TSF   TWIN SISTER OF FT 

XTR7   XYLOGLUCAN ENDOTRANSGLYCOSYLASE 7  

YUC8   YUCCA 8 

ZTL   ZEITLUPE  
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