
ESSAYS ON THE EFFICIENT INTEGRATION
OF RENEWABLE ENERGIES

INTO ELECTRICITY MARKETS

Inauguraldissertation

zur

Erlangung des Doktorgrades

der

Wirtschafts- und Sozialwissenschaftlichen Fakultät

der

Universität zu Köln

2017

vorgelegt

von

Dipl.-Math. Frank Obermüller

aus

Köln





Referent Prof. Dr. Felix Höffler

Korreferent Prof. Dr. Marc-Oliver Bettzüge

Tag der Promotion 09.01.2018



Acknowledgment

First of all, I thank Prof. Dr. Felix Höffler as my mentor and supervisor during my

doctoral studies. His fruitful comments and constructive critics strengthened my

research as well as my academic career. I would also like to express my gratitude

to Prof. Dr. Marc-Oliver Bettzüge for helpful academic feedback as well as enriching

personal discussions.

Many thanks goes to my ewi/EWI family which supported me during the exciting

time with joyful talks, relaxing lunch breaks, challenging projects, great vacation

and working trips, and especially wonderful beer happenings. Each of you became

unforgettable to me. I express my gratitude to Andreas Knaut, Florian Weiser and

Philipp Henckes as the co-authors of my research papers.

Financial support is gratefully acknowledged by the Emerging Group on Energy

Transition and Climate Change (ET-CC) funded by the DFG Zukunftskonzept (ZUK

81/1) and the Energy Storage Initiative funded through grant 03ESP239 by the Ger-

man Federal Ministry for Economic Affairs and Energy (BMWi) and the German Fed-

eral Ministry of Education and Research (BMBF).

Finally, I thank my wonderful wife Nina and my son, my family and all my friends

for the wonderful time in my life. You give me the strength and the motivation on

the pursuit of happiness!

Frank Obermüller Cologne, September 2017

iv



Contents

1 Introduction 1

1.1 Methodology overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Extended Abstracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 How to Sell Renewable Electricity - Strategic Interaction in Sequential

Markets 13

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Background and literature . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.2 Literature overview . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Cournot Competition of Renewable Producers . . . . . . . . . . . . . . 23

2.4.1 Renewable Producer Monopoly . . . . . . . . . . . . . . . . . . . 23

2.4.2 Renewable Producer Monopoly in the Context of a Strict Con-

vex Marginal Cost Function . . . . . . . . . . . . . . . . . . . . . 26

2.4.3 Renewable Producer Oligopoly . . . . . . . . . . . . . . . . . . . 28

2.5 Flexibility and its Role in Short-term Markets . . . . . . . . . . . . . . . 30

2.6 Incentives of Renewable Producers to Withhold Production . . . . . . 32

2.7 Prices, Welfare, Producer Surplus and Consumer Surplus . . . . . . . . 34

2.7.1 Prices and the Role of Arbitrageurs . . . . . . . . . . . . . . . . . 34

2.7.2 Producer Surplus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.7.3 Consumer Surplus . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.7.4 Welfare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.8 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.9 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.9.1 Proof of Proposition 2.3 . . . . . . . . . . . . . . . . . . . . . . . . 42

2.9.2 Proof of Proposition 2.4 . . . . . . . . . . . . . . . . . . . . . . . . 43

2.9.3 Proof of Proposition 2.6 . . . . . . . . . . . . . . . . . . . . . . . . 44

v



3 Explaining Electricity Forward Premiums - Evidence for the Weather

Uncertainty Effect 47

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.1 Theoretical model . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.2 Empirical evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.3 Weather classification . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4 Empirical evidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4.2 Effect of the weather types on the mean forward premium

level (Hypothesis A) . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4.3 Weather classifications as a distinction of wind and solar fore-

cast uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.4.4 Forward price premiums rise with wind and solar production

uncertainty (Hypothesis B) . . . . . . . . . . . . . . . . . . . . . . 72

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.6.1 On the order of the German electricity supply curve . . . . . . 79

3.6.2 Proof of Proposition 3.1 . . . . . . . . . . . . . . . . . . . . . . . . 80

3.6.3 Statistics on the data . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.6.4 The wind and solar production level gives insufficient infor-

mation on forecast errors . . . . . . . . . . . . . . . . . . . . . . . 87

3.6.5 Effect coding results for cyclonality at 500 hPa . . . . . . . . . 88

3.6.6 Wind and solar uncertainty translates to price uncertainty . . 89

3.6.7 Requirement checks for the regression analysis . . . . . . . . . 93

4 Tender Frequency and Market Concentration in Balancing Power Markets 97

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.2.1 On the Functioning of the Balancing Power Market . . . . . . . 100

4.2.2 Market Concentration . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.3.1 Modeling Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.3.2 Input Data and Assumptions . . . . . . . . . . . . . . . . . . . . . 111

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.4.1 System Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

vi



4.4.2 Provision of Balancing Power . . . . . . . . . . . . . . . . . . . . 117

4.4.3 Market Concentration . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.4.4 Influence of additional Demand Response on the Market Con-

centration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.6.1 Input Data for Modeling . . . . . . . . . . . . . . . . . . . . . . . 126

4.6.2 Robustness Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.6.3 RSI concentration index for secondary balancing power . . . . 129

5 The Benefit of Long-term High Resolution Wind Data for Electricity

System Analysis 131

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.2.1 A model for high resolution wind power production . . . . . . 133

5.2.2 Application of REOM: A European long-term dataset . . . . . . 134

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.3.1 Evaluation of the underlying reanalysis dataset . . . . . . . . . 136

5.3.2 Evaluation of the REOM model . . . . . . . . . . . . . . . . . . . 138

5.3.3 Long-term variability of wind power production . . . . . . . . . 140

5.3.4 Balancing potentials in Europe and Germany . . . . . . . . . . 143

5.3.5 Balancing potentials within Germany . . . . . . . . . . . . . . . 145

5.4 Conclusions and implications . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.5 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.5.1 Distribution of installed wind capacity . . . . . . . . . . . . . . . 148

5.5.2 Completeness of the wind park dataset . . . . . . . . . . . . . . 149

5.5.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6 Build Wind Capacities at Windy Locations? Assessment of System Op-

timal Wind Locations 153

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.2.1 General model description . . . . . . . . . . . . . . . . . . . . . . 158

6.2.2 Fundamental equations . . . . . . . . . . . . . . . . . . . . . . . . 159

6.2.3 Input Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.2.4 Model limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.2.5 Revenues of wind . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

6.2.6 Value of wind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

vii



6.2.7 Description of wind data . . . . . . . . . . . . . . . . . . . . . . . 164

6.2.8 Description of pv data . . . . . . . . . . . . . . . . . . . . . . . . . 165

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

6.3.1 Wind revenues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

6.3.2 Value factor of wind . . . . . . . . . . . . . . . . . . . . . . . . . . 172

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

6.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

6.6.1 Load Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

6.6.2 Statistics of the wind revenues per node under nodal pricing

and zonal pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

6.6.3 Statistics of the market value factor of wind per node under

nodal pricing and zonal pricing . . . . . . . . . . . . . . . . . . . 180

Bibliography 183

viii



1 Introduction

The anthropogenic climate change involves the danger to be one major challenge

for the world in the next century. The 2015 UN Climate Change Conference nego-

tiated the Paris Agreement to tackle climate change, e.g. by the restriction of global

warming to a maximum of 2◦C . These targets translate to CO2-reduction efforts,

especially for the carbon-dioxide intense electricity sectors. The German effort is

subsumed under the term Energiewende (engl. Energy Transition) which contains

the transition from carbon-dioxide intense conventional or nuclear power plants to

sustainable energies like wind, solar or hydro power.1 The promotion of renew-

able energies seems promising to achieve the Energy Transition targets and reduce

Germany’s CO2-emissions.

The promotion of renewable energies led to a significant renewable production

share of 29% at the total German gross electricity production in 2016 (AG Energiebi-

lanzen, 2017). However, renewable energies differ in production characteristics

from conventional electricity production. Renewable energies like wind and solar

power have almost zero marginal costs and strong production volatilities due to

weather-dependence. Nevertheless, wind and solar power are two main technolo-

gies to promote renewable energies, especially in Germany. The different charac-

teristics of renewable energies is still challenging for pure market integration. The

impacts on market efficiency and strategic behavior are ex-ante not clear within the

complexity of multiple sequential and regional electricity markets. This thesis sheds

light on different aspects of electricity market efficiency which could strongly be in-

fluenced by renewable energies and their different characteristics. The efficiency can

be separated to temporal and regional efficiency questions. The temporal efficiency

is subject to the Chapters 2, 3 and 4. The regional aspect is subject to Chapter 5 and

Chapter 6.

The sequential electricity market design serves as an excellent example for tempo-

ral efficiency. The concept of sequential market design should, among others, allow

forward trading with the possibility of risk hedging. In electricity markets, where

1In fact, the German Energy Transition reaches further back and obtained greater visibility after the
Fukushima nuclear accident in 2011.
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1 Introduction

the good is typically non-storable2, this is even more important than for other goods.

The day-ahead forward market serves typically as the reference market where most

contracts are settled. Deviations from the day-ahead expectations can be traded in

adjustment markets called real-time markets (PJM, ISO New England) or intraday-

markets (Europe). This market setting works well for diversified competitive conven-

tional producer portfolios which have limited incentive to deviate from their profit

optimal marginal bidding strategy. However, this does not necessarily hold for re-

newable producers with zero marginal costs and uncertain production. Chapter 2

examines the optimal bidding of renewable producers with zero-marginal costs and

production uncertainty within an oligopoly. More precisely, the research question is

investigated if oligopolistic renewable producers have an incentive to act strategi-

cally and withhold production in the forward market to increase prices and to sell

the withheld production in the intraday-market. The assumption of an oligopolis-

tic partitioning of the renewable producer seems counterintuitive under the fact that

renewable energies are typically small-scale distributed generation like roof-top pho-

tovoltaic or regionally split wind parks. In fact, as a particular result of the electricity

market liberalization, renewable aggregators entered the electricity market. The ag-

gregators combine small-scale (private) renewable production within big (virtual)

operators. The aggregation allows for effects of scale within different parts of the

value chain, e.g. trading at different sequential markets. Thus, the aggregation leads

to possible price influencing behavior and the danger of strategical bidding. This

needs to be investigated and understand to ensure market efficiency under high

shares of integrated renewable production.

The interaction between the day-ahead- and intraday-markets is also subject of

Chapter 3. This chapter examines the forward premiums of renewable uncertainty.

Forward premiums are price differences for a good between the forward market and

a later (e.g. spot) market. They can occur due to risk hedging and price expec-

tations. However, the reasons for forward premiums within sequential electricity

markets are not fully understood and subject to current research. Typical research

work investigates the effects of load uncertainty to forward premium effects. The

temporal disaggregation such as seasonal or hourly differentiated forward premiums

is examined as well in the literature. Chapter 3 extends the classical research litera-

ture by the effects of renewable uncertainty. With the increasing production share of

renewable energies, this aspect becomes more relevant. To capture the renewable

uncertainty effects, weather types are applied. This emphasizes the meteorological

2To a limited degree electricity storage is possible by batteries or physical transformation (pump
storage, methanation) but not yet competitive in large scales.
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weather implications to the current and future electricity markets.

Another view on the temporal market efficiency is examined in Chapter 4 which

focuses on the balancing market design. For Germany and several other European

countries, the balancing markets serve as power provision for possible short-term

deviations of supply and demand.3 The purpose of the balancing markets is the

stabilization of the transmission grid by short-run (seconds to minutes) production

adjustments in case of unplanned deviations. In recent years, the balancing markets

were dominated by conventional capacities. With the increasing share of renewables

and the proceeding Energy Transition, those balancing markets should be opened

to new players, e.g. renewable producers, batteries or demand side management.

To reduce the entry barrier and further increase efficiency, the shortening of the

weekly provision duration to shorter periods is politically discussed. Some research

studies show the theoretical efficiency increase by shortened provision duration. On

the other side, balancing markets could be subject to market concentration due to

the limited participation possibility (technical operation prerequisites need to be

fulfilled). The effect of a provision shortening on the market concentration is not

yet well investigated. This is the focus of Chapter 4 which quantifies the efficiency

gain and the market concentration effects.

Apart from the temporal efficiency aspects of the aforementioned chapters, the

understanding of the regional implications of renewable energies is highly relevant

within electricity markets. New challenges occurred with increasing renewable ca-

pacities. High wind situations could lead to grid congestion. This is the case for

windy situations in Germany where northern wind production needs to be trans-

ferred to southern load centers. Additionally, transmission lines to neighboring

countries have limited capacities. Windy hours could therefore lead to low electric-

ity prices without the possibility of suitable exchange. On the other side, situations

could arise where exceptional low wind is produced within one country. The situa-

tion in neighboring countries could be different due to the weather patterns. Thus,

exchange would contribute to the level of secured capacity. Transmission extensions

would allow lifting regional efficiency effects between countries as well as within

countries. This extension is subject to current grid enforcement plans on national

and European scale. However, the quantification of optimal transmission extension

3Note that the term balancing market is not consistently defined on an international level. Within
this thesis, balancing markets denote the tender design to provide ex-ante reactions before or in
the moment of physical delivery. These balancing markets are also known as (control) reserve
markets. Sometimes balancing market refers to the ex-post market in which regional operators
trade imbalance deviations after the physical delivery to reduce deviation penalties; these market
are not focus of the analysis.
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1 Introduction

is a challenging task. One reason is the volatility of renewable production on hourly,

seasonal or annual time scales.4 These timescales need to be considered to estimate

the welfare optimal electricity system extension. Chapter 5 provides a temporal and

regional high-resolution 20-year wind power dataset for total Europe to contribute

an extensive dataset for this research field. The wind volatility of 20-years with its

extreme values (high and low wind situations) as well as the average wind produc-

tion is compared. Additionally, simultaneity of wind production across European

countries is subject to the analysis. The focus lies on balancing effects in critical low

wind situations.

Apart from the above mentioned wind balancing effects on a European scale,

inner-country grid congestion could arise and distort the electricity market efficient

outcome. The zonal market design in European countries, and especially in Ger-

many, typically reimburses electricity production independent of the exact location

within a country.5 For the typical high northern wind production in congestion sit-

uations this implies that wind production regionally before the congested line has

no additional value for the electricity system. In the German zonal market design,

those northern wind production receives the same market prices as wind produc-

tion regionally behind the congestion (assumed a fully market integration without

a subsidy compensation).6 This leads to a discrepancy between the market rev-

enues (or the market value) of wind energy in comparison to its real contribution to

the electricity system. One challenge of future renewable regulation is to design a

subsidy scheme which incentivizes the optimal wind locations from the systems per-

spective (i.e. the electricity market with internalized grid congestions). Chapter 6

contributes to solve this challenging task. It examines the regional incentives for

wind production under a zonal pricing and under a nodal pricing regime. The zonal

pricing is the current day-ahead market regime within Germany which does not in-

ternalize grid congestions in the wholesale market. The contrasting nodal pricing

regime can be considered as the economic efficient benchmark market design since

grid congestions would be internalized. The analysis sheds light on the question

whether optimal wind locations under the current zonal pricing regime differ to

4Under the climate change, even longer investigation horizons are necessary covering up to 100 years
or more.

5Regulatory price components could be implemented which is not the case for the exemplary German
wholesale market. Ex-post adjustments like re-dispatch could be implemented with static efficiency
but lack the market component in the current designs.

6A fully market integration without subsidies represents the goal of a future regulation regime. Re-
newables would face all market incentives and compete among each other for the most economical
solution. But fully market integration becomes relevant right now. German subsidy schemes for
wind and PV are designed to lasts for 20 years which implies that a certain part of the renewables
fleet faces full market integration without subsidies.
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1.1 Methodology overview

optimal wind locations under the efficient nodal pricing. The implications support

decision makers on efficient subsidy scheme towards a fully market integration of

renewable energies.

The remaining structure of the introduction contains the methodology overview

as well as the outline of each chapter. Each chapter represents a single research

paper.

• Chapter 2: How to Sell Renewable Electricity - Strategic Interaction in Sequen-

tial Markets (based on Knaut and Obermüller (2016))

• Chapter 3: Explaining Electricity Forward Premiums - Evidence for the Weather

Uncertainty Effect (based on Obermüller (2017b))

• Chapter 4: Tender Frequency and Market Concentration in Balancing Power

Markets (based on Knaut et al. (2017))

• Chapter 5: The Benefit of Long-term High Resolution Wind Data for Electricity

System Analysis (based on Henckes et al. (2018))

• Chapter 6: Build Wind Capacities at Windy Locations? Assessment of System

Optimal Wind Locations (based on Obermüller (2017a))

If a research paper is conducted by more than one author, each author contributed

equally to the research paper.

1.1 Methodology overview

The thesis investigates different efficiency aspects of renewable energy integration to

electricity markets. Therefore different methodologies are required which address

the research questions in the best suitable way. Concluding, the thesis relies on

analytical equilibrium models, fundamental electricity market optimization models,

empirical methods as well as statistical assessments.

Analytical models are applied in Chapter 2 and Chapter 3 for the profit optimal bid-

ding strategy of renewable producers. In Chapter 2 the monopolistic or oligopolistic

market equilibrium is subject to the investigation focus whereas Chapter 3 exam-

ines model results under perfect competition. Both analytical models optimize for

traded quantities under renewable production uncertainty but with different focuses

and assumptions, e.g. on the merit order shape.

Fundamental electricity market optimization models are applied in Chapter 4 and

5



1 Introduction

Chapter 6. The objective function (total system cost minimization) is subject to typ-

ical electricity market constraints and assumptions. Chapter 4 extends the classical

day-ahead market model for the European electricity markets by a representation

of the German balancing markets. Here, the temporal provision duration is of high

interest and will be varied to conduct new insight on efficiency gains and market

concentration under a shortened provision duration. Chapter 6 focuses on the day-

ahead market but examines inner-country locational incentives. Thus, the zonal

electricity market model is extended to a nodal representation which also incorpo-

rates physical grid characteristics of direct current load-flow.

Empirical methods are necessary to analyze the forward premium effects within

Chapter 3. The theoretical analysis is empirically tested based on time-series data

(price, wind and solar production, load) in combination with weather type clas-

sifications. The cores are ordinary least square estimation which account for het-

eroscedastic and autocorrelation robust standard errors.

Statistical comparisons are mainly used in Chapter 5 to examine regional and

temporal simultaneity effects of wind production between different countries across

Europe.

1.2 Extended Abstracts

Chapter 2: How to Sell Renewable Electricity - Strategic Interaction in

Sequential Markets

Chapter 2 examines the question if renewable producers with uncertain production

and zero marginal costs have an incentive to strategically bid within the sequen-

tial day-ahead and intraday market design. The question becomes relevant for high

shares of renewables which participate in electricity markets. This represents, for in-

stance, electricity markets with (particular) market integrated renewable production

(i.e. without fixed feed-in tariffs or after the subsidized period).

The research question is analyzed with an analytic two-stage profit optimization

model. The model can be associated with the day-ahead market and subsequent

intraday-market (which is similar to real-time markets). Conventional and renew-

able producers compete in order to satisfy the demand of consumers. In the day-

ahead market, renewable producers face uncertainty about their production realiza-

tion. The uncertainty resolves in the intraday-market. The model assumes conven-

6



1.2 Extended Abstracts

tional producers to act perfectly competitive. Renewable producers are assumed to

act monopolistic or oligopolistic since market aggregators virtually combine small-

scale renewable production.

The main result shows that renewable producers have an incentive to withhold

production in the day-ahead market to increase prices and sell the withheld produc-

tion in the intraday market. The analysis varies relevant aspects of the model as for

instance the merit order shape, the level of renewables’ competition, and the rela-

tion of the day-ahead to intraday merit order steepness. The main result holds true

under each of these variations. The uncertainty has no impact to optimal bidding

under a linear merit order curve but becomes relevant under a quadratic convex

merit order shape. Nevertheless, welfare analyses are performed which prove that

uncertainty has relevant distributional effects between conventional and renewable

producers as well as consumers. Higher uncertainty decreases overall welfare. For

an increasing number of renewable players, the withholding effect diminishes and

the consumer surplus increases. Thus, implications for electricity markets under

high shares of integrated renewables are the following. First, the regulator should

pay attention that competition among renewable producers (and its aggregators) is

high. This reduces the potential renewable production withholding in the day-ahead

market. Second, reduced uncertainty has positive welfare effects. The uncertainty

can be reduced by improved renewable production forecast quality or a day-ahead

gate closure shift closer to physical realization. The latter needs to be investigated

carefully, since further electricity market aspects (such as risk hedging, grid stability,

etc.) are closely related.

Chapter 3: Explaining Electricity Forward Premiums - Evidence for the

Weather Uncertainty Effect

This chapter sheds light on forward premium effects between the day-ahead- and

intraday-market which could arise due to renewable production uncertainty. The

research hypothesis states that positive forward premium effects are expected by

higher renewable uncertainty. The analysis is motivated by an analytical model and

examined with empirical hypothesis tests.

The analytical model is oriented at the model of Chapter 2 but extended to fo-

cus on a quadratic convex merit order function and perfect competition among all

producers. The convexity of the merit order function leads to profit-optimal bidding

strategies which sell less production to the day-ahead market than expected. The ra-
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tionale is that potential overselling induces higher losses than potential underselling

due to the merit order convexity.

This effect is examined empirically. Therefore, time-series data of the German

electricity market is analyzed. The electricity market data is completed by weather

type data from the German Weather Service. It is shown that weather type data

could have significant influence on the forward premium level. Weather criteria like

wind advection direction, cyclonality and humidity are identified as relevant indi-

cators for forward premium effects. More important, the uncertainty of renewable

forecasts can be clustered as to weather types. This allows estimating the forward

premium effects of renewable forecast errors and renewable forecast uncertainty.

The significant positive effect of both factors is quantified. That means that a higher

renewable uncertainty leads to higher forward premiums as previously shown ana-

lytical. Hence, this finding extends the classical forward premium literature of load

uncertainty, seasonal or hourly forward premium effects as well as scarcity effects

on forward premiums by the effect of weather uncertainty.

The findings connect weather dependent renewable forecast uncertainty to for-

ward premiums and support the consideration of weather types in price forecasting

models. Therefore, results are highly-relevant for electricity market participants to

understand interdependencies and accurately predict price effects.

Chapter 4: Tender Frequency and Market Concentration in Balancing Power

Markets

Chapter 4 examines the market concentration effects of a shortened provision dura-

tion in German balancing power markets. The main question is whether a provision

duration shortening increases unfavorable market concentration effects in contrast

to the expected favorable efficiency gains.

The research question is of high relevance due to the current political discussion

of a provision duration shortening to enable the participation of new technologies

and to increase market efficiency. In the old-fashioned electricity systems, balancing

markets were dominated by conventional producers. The current provision dura-

tion lasts for a whole week for primary and secondary balancing power (split into

peak and off-peak products). To fulfill provision criteria, power plants are required

to operate for the total provision duration. The possibility of pooling allows a suit-

able utilization of generation capacity within the power plant pool of an operator.

This is beneficial for big portfolios by lower provision costs. Small providers face

8
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disadvantages.

The shift in electricity markets towards renewable producers by the Energy Tran-

sition requires opening balancing markets for new technologies like renewables, de-

mand side management, or batteries. These technologies could provide balancing

power for a certain time period but a weekly provision with its production and de-

mand uncertainties seems too challenging. Therefore a provision duration shorten-

ing is discussed which is expected to increase efficiency simultaneously. However,

the implications on market concentration by a shortening are ex-ante not clear. Due

to the operator structure and the pooling possibility, a provision shortening could

drastically impact market concentration. This trade-off is examined within this chap-

ter.

To analyze the research question, a fundamental electricity market optimization

model is applied and extended to consider balancing power markets as well as op-

erator structures for Germany. The results indicate that shorter provision durations

could reduce balancing costs by 15%. On the other side, market concentration is

effected ambiguously. Specific situations lead to a relevant increase in market con-

centrations. Provision duration adjustments should therefore be performed with

caution and market concentration should be monitored carefully.

Chapter 5: The Benefit of Long-term High Resolution Wind Data for Electricity

System Analysis

Chapter 5 examines wind balancing effects with a novel high-resolution 20-year

wind production dataset. The incorporation of such datasets becomes more impor-

tant for electricity markets due to the increased share of weather-dependent renew-

able production. An understanding of production characteristics is essential for the

functioning of future electricity systems. Critical low wind situations may endanger

the security of supply. So far, historical observations of wind power production are

limited to few recent historical years and may not suffice to quantify the expected

overall wind contribution, its variability, and its regional balancing effects for future

electricity systems.

To examine the wind characteristics and international balancing effects, statistical

evaluations are performed. The results indicate three findings. First, the high-quality

of the dataset is proven by comparisons to other wind datasets and real-world data.

Second, the variation properties of annual wind production are investigated. Ex-

treme situations (like high- and low-wind) as well as average wind productions have
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no obvious correlation and could strongly vary per year. A conclusion on a represen-

tative wind year cannot be drawn. Third, the potential beneficial balancing effects

between countries are analyzed. Germany could highly benefit from neighboring

countries in low-wind situations. The probability of simultaneous critical low-wind

situations in multiple neighboring countries is comparable low.

The dataset and the results serve as input for further analyses (e.g. in Chapter 6). It

supports evaluation of grid expansion discussions. Electricity market models benefit

from a better comparison of wind input data.

Chapter 6: Build Wind Capacities at Windy Locations? Assessment of System

Optimal Wind Locations

Chapter 6 examines the question of optimal wind locations under nodal and zonal

pricing regimes. The installed wind capacities have steadily been increasing. How-

ever, the wind locations extensions have only limited incentive to consider grid con-

gestions or market situations. The zonal pricing system in Germany favors wind

production at windy locations (especially in combination with fixed feed-in tariffs or

similar remuneration schemes). This led to high wind capacities at locations which

could increase grid congestions and hence be system-unfriendly.

This chapter aims on identifying system optimal wind locations. Therefore a nodal

electricity market model for Germany is applied (with connection to neighboring

countries). The nodal market outcome is compared to the zonal market outcome.

The analysis focuses on a pure market integration of wind production without dis-

torting subsidy schemes. In a first step, wind revenues per node are compared be-

tween the nodal and zonal pricing regime. The focus on revenues is reasonable

under assuming zero marginal costs and identical location costs across Germany. In

a second step, the investigation was extended to the widely-used wind value factor,

which represents the average market price that can be expected by wind producers.

The results identify optimal wind locations under efficient nodal pricing. The

optimal wind locations under zonal pricing deviate from its comparable nodal pric-

ing results. Thus, the zonal pricing optimal wind locations can be identified as in-

efficient since they do not consider grid congestion within its remuneration. The

regional market values of wind production do not reflect the revenue-optimal loca-

tions. Thus, the value factor is not suitable as a detailed indicator and should only

be considered for rough estimations and not for detailed analyses. Furthermore, the

market value factor under zonal pricing overestimates windy locations in contrast

10
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to the nodal pricing regime.

The results contribute to a better understanding of optimal wind locations under

zonal or nodal market design. Moreover, it is highly relevant for designing adequate

wind production subsidy schemes which incentivize market optimal locations with

consideration of grid congestion.
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2 How to Sell Renewable Electricity - Strategic
Interaction in Sequential Markets

Uncertainty about renewable production increases the importance of sequential short-

term trading in electricity markets. We consider a two-stage market where con-

ventional and renewable producers compete in order to satisfy the demand of con-

sumers. The trading in the first stage takes place under uncertainty about production

levels of renewable producers, which can be associated with trading in the day-ahead

market. In the second stage, which we consider as the intraday market, uncertainty

about the production levels is resolved. Our model is able to capture different lev-

els of flexibility for conventional producers as well as different levels of competi-

tion for renewable producers. We find that it is optimal for renewable producers to

sell less than the expected production in the day-ahead market. In situations with

high renewable production it is even profitable for renewable producers to withhold

quantities in the intraday market. However, for an increasing number of renewable

producers, the optimal quantity tends towards the expected production level. More

competition as well as a more flexible power plant fleet lead to an increase in over-

all welfare, which can even be further increased by delaying the gate-closure of the

day-ahead market or by improving the quality of renewable production forecasts.

2.1 Introduction

A broad range of current electricity markets face an rapid increase in renewable

energies to decrease carbon-dioxide emissions. These technologies were highly sub-

sidized in the past and therefore not well integrated into the market. However,

subsidies will run out and it is high on the European Union’s policy agenda to inte-

grate renewable generation into the market (EU Comission (2009), EU Comission

(2013)). This means in the future, renewable producers are expected to sell their

entire production at the existing sequential wholesale electricity markets, e.g. the

day-ahead and the intraday market.1

1The long-term forward market is currently not a relevant market for volatile renewables due to the
uncertain production in the long run.
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The specific problem is that it is unclear how renewable energies sell their pro-

duction between forward markets (like day-ahead) and real time markets (intraday).

Most electricity markets are organized with a sequential structure in which compe-

tition in quantities á la Cournot is assumed. The fundamental work of Allaz and

Vila (1993) shows that forward trading is beneficial for Cournot competitive pro-

ducers. Additionally, the sequential structure allows for risk hedging in uncertain

production or prices. This is relevant for renewable energies which face uncertainty

of their realized production. Thus, their optimal quantity bidding behavior between

short-term forward markets like the day-ahead market and real-time markets (e.g.

the intraday market) are ex-ante unclear.

To analyze the research question, an analytic profit maximizing model is applied.

This model allows insights into optimal bidding for the monopoly and the oligopoly

case. One major investigation aspect is the effect of renewables’ production uncer-

tainty on optimal bids. The model results account for a linear merit order as well

as a more realistic convex merit order. Additionally, the model allows quantifying

distribution effects between producer surpluses and consumer surpluses as well as

effects on the overall welfare.

Previous fundamental work on optimal Cournot bidding in sequential markets is

given by Allaz (1992) and Allaz and Vila (1993). Within a sequential market frame-

work, they show the existence of incentives for forward bidding to increase profits.

They focus on the duopoly case under a linear merit order and abstract from uncer-

tainty. The model was extended to electricity markets by Ito and Reguant (2016)

which is probably the closest work to our research. They investigate strategic bid-

ding behavior for a Cournot monopoly in a two-stage sequential market framework.2

They assume a linear merit order function (i.e. supply curve) and perfect foresight.

Ito and Reguant (2016) focus on the impact of arbitrage that participates between

the two stages.

Although, the basic analytical model is quite similar, we extend the findings of

Ito and Reguant (2016) in several ways. First, we derive our results for competitive

oligopolies since this is a more realistic assumption in electricity markets. Arbitrage

is thus handled as additional producers (for a discussion of this see Section 2.7.1).

Second, our investigation focus is production uncertainty which is not considered in

Allaz and Vila (1993) or Ito and Reguant (2016). Third, we emphasize the case of a

supply function increases from day-ahead market to intraday-market as motivated

2Note that the model of Ito and Reguant (2016) additionally incorporates a competitive fringe which
results in downward sloping inverse demand function for the monopoly player.
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and investigated by Knaut and Paschmann (2017b) or Kiesel and Paraschiv (2017). A

major distinction is our additional analysis of distribution effects and welfare derived

from the equilibrium results.

The latter of the paper is organized as followed: In Section 2.3 we develop the

basic model framework. Section 2.4 analyzes the Cournot competition and the ba-

sic model is applied to the monopolistic as well as the oligpolistic case. Section 2.5

focuses on the impact of flexibility constraints for conventional power technologies.

Section 2.6 sheds light onto the incentives of renewable producers to withhold capac-

ity in the intraday market. In Section 2.7 we show the effects on welfare, producer

and consumer surplus. In Section 2.8 we conclude our results and discuss possible

policy implications.

2.2 Background and literature

This section gives detailed information about the background on electricity markets

as well as relevant literature.

2.2.1 Background

In electricity markets, demand and supply need to be balanced at all times. There-

fore it is essential for all market participants to announce their foreseeable produc-

tion and consumption in advance. The largest share of electricity is currently traded

in the day-ahead market, which can be considered as a kind of forward market.

Trading commonly takes place at noon one day before physical delivery. This is

necessary to signal the regional supply and demand situations to the transmission

system operators in advance, such that they can guarantee grid stability. In contrast,

the intraday market provides the opportunity to trade electricity down to 30 minutes

before physical delivery. Hence, adjustments to the day-ahead market clearing result

can be traded which may occur due to (uncertain) short term deviations in electric-

ity systems (e.g. demand forecast errors, renewable forecast errors, and unforeseen

power plant shortages).

The characteristics of renewable electricity generation have increased the impor-

tance of sequential short-term trading and are affecting the competition in electric-

ity markets. Renewable energy technologies differ in two important aspects from

classic conventional technologies. First, renewables produce electricity at short run
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marginal costs of zero whereas conventional technologies have short run marginal

costs greater than zero. Second, renewable electricity production depends on weather

conditions that can only be predicted to a certain level. The uncertainty diminishes

with a shorter time duration to the physical delivery. Thus, volatile renewable pro-

ducers have a higher uncertainty if they trade in the day-ahead market. Therefore,

the optimal bidding strategy for renewable energy producers in the intraday and

day-ahead market under uncertainty is not clear and in the focus of the following

investigations.

Electricity markets are known to be especially vulnerable to the potential abuse of

market power (Borenstein et al., 2002, Green and Newbery, 1992). The demand can

be regarded as very price inelastic in the short-run and therefore participants could

be able to increase prices above the competitive level. While this has been an issue

of large conventional generators in the past, we also can expect large renewable

producers as being able to act strategically in sequential electricity markets. The

size of renewable aggregators who aggregate renewable generation plants and sell

the production in the market is steadily increasing especially because they are able

to lift significant scale effects by increasing their renewable portfolio (e.g. reduction

in costs of trading and reduction of forecast uncertainty).

In this paper, we analyze the competition between conventional and renewable

producers that interact in two sequential stages by using an analytic model. The

first stage is considered as the day-ahead and the second as the intraday market.

The electricity production of the renewable producer is uncertain in the first stage

and is realized in the second stage. In particular, this affects renewable producers in

choosing the optimal quantity to trade in both stages. Furthermore, we account for

flexibility constraints of conventional power producing technologies, because not all

conventional technologies are flexible enough to change their production schedules

in short time intervals (e.g. 30 minutes before physical delivery). These flexibility

constraints are included in our model to measure effects on profit maximizing quan-

tities and prices. We analyze the results based on different levels of competition for

the renewable producers, ranging from a monopoly to oligopolies under a flexible

and less flexible power plant fleet.

2.2.2 Literature overview

Our investigation is strongly related to the branch of two-stage Cournot games as

well as the literature of optimal bidding strategies for renewable producers. A gen-
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eral overview of existing literature as to optimal bidding approaches and competition

in electricity markets is given by von der Fehr and Harbord (1998). Concerning two-

stage Cournot games, fundamental work is given by Allaz (1992) and Allaz and Vila

(1993) who investigate Cournot competition of a duopoly in sequential markets.

Their subject of investigation is the forward market which, however, can be trans-

ferred to our idea of a day-ahead auction before the market is finally cleared in an

intraday auction. The setting differs to our model with respect to the type of players.

In Allaz and Vila (1993) both players have increasing marginal costs of production

and no uncertainty associated with their level of production. In Allaz (1992), uncer-

tainty is incorporated in the two-stage model such that risk hedging influences the

optimal production. However, Allaz (1992) and Allaz and Vila (1993) assume im-

plicitly infinite production possibility, which is not true for our renewable producer.

Similar to Allaz and Vila (1993), Saloner (1987) developed an extension of the clas-

sical Cournot one-shot duopoly to a model with two production stages in which the

market clears only once after the second stage. In this framework Saloner showed

the existence of a unique Nash-Cournot equilibrium under the possibility of a second

stage response action. Nevertheless, the model does not account for different player

types or uncertainty of production. Bushnell (2007) extents the general Cournot

duopoly of Allaz and Vila (1993) to oligopoly competition which is similar to our

Section 2.4.3 but without consideration of renewable producers or production un-

certainty. Bushnell (2007) support their analytical finding of production withholding

under imperfect competition with empirical results for US electricity markets (PJM,

New England and California). Similar to Allaz and Vila (1993), they assume no-

arbitrage behavior between sequential markets such that forward and spot prices are

identical. Twomey and Neuhoff (2010) transfer the general theoretical findings to

the case of electricity markets in which renewable producers and conventional pro-

ducers are competing. They analyze the case when conventional players use market

power to increase prices. With their model they are able to show that renewable

producers are worse off in settings with market power of conventional producers.

They assume a convex supply function of conventional producers which is similar to

hour assumption in Section 2.4.2. In contrast to our analysis they do not consider

the strategic behavior of renewable producers and abstract from uncertainty. The

work of de Frutos and Fabra (2012) focus on symmetric and asymmetric oligopolies

and the impact of different forward contract distributions among the producers to

their bidding behavior. They find, that a symmetric forward contract distribution

under symmetric firms decrease the forward prices and increase market efficiency.

This is relevant for our oligopoly investigation which assumes symmetric players and
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thus a symmetric forward contract distribution (i.e. forward contract bidding). In

our model setup, we confirm the price decreasing and efficiency increasing results of

de Frutos and Fabra (2012). Acemoglu et al. (2017) apply a Cournot model and dis-

tinct between Cournot competitive conventional producers and perfect-competitive

renewable producers. They deviate from classical models by the assumption of in-

complete information. However, in their model framework renewable producers do

not act competitive. This is one critical assumption as discussed previously which

we address in our theoretical model.

In parallel but independent work, which was just published while our paper was

about to be finalized, Ito and Reguant (2016) deal with a similar problem and come

to very similar conclusions. Our basic model setup is essentially identical to Ito and

Reguant (2016) and therefore also many of the theoretical insights coincide. Their

case of "no arbitrage" is similar to our monopolist case and the case of strategic

arbitrage is similar to the introduction of additional renewable players. Our work

nevertheless, adds some important insights to the topic that cannot be found in Ito

and Reguant (2016). We explicitly consider the role of uncertainty in our model.

While this has no effect (at least for linear marginal costs) on the optimal strategies,

we are able to quantify the effect of uncertainty on overall welfare and distribution

effects. We find that welfare is decreased if uncertainty about final production levels

is large. This signifies the importance of forecast uncertainty and market design for

the efficient functioning of electricity markets. In addition, we also consider the

effect of a convex marginal cost function and show that this increases the incentive

for strategic withholding of quantities. Furthermore, our analysis sheds light on the

role of strategic behavior in oligopolistic markets instead of focusing solely on the

monopolist case (as in Ito and Reguant (2016)). We are therefore able to illustrate

distributional and welfare effects for different numbers of strategic players, which

cannot be found in Ito and Reguant (2016). Besides providing additional intuitions

for the results of Ito and Reguant (2016), the paper is also able to shed light on some

important additional aspects.

The other branch of relevant literature covers optimal bidding strategies under

uncertain production of one single player. Many papers in this field analyze nu-

merical models from a price taker perspective and focus on wind power producers.

For instance, Botterud et al. (2010) numerically analyze the optimal bidding for a

wind power producer in a two-stage market (day-ahead and real time market) under

certain risk assumptions.3 They find that the optimal bid on the day-ahead market

3Here, real time market means the ancillary grid services for balancing supply and demand.
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depends on risk behavior and the respective market prices. Furthermore, it tends

towards the expected production as a deviation penalty between the day-ahead and

the real time market is introduced. Botterud et al. (2010) focus on one specific wind

power producer without considering the implications of adjusted bidding strategies

on the market equilibrium. Those effects can influence the optimal bidding strat-

egy as we will show in the investigated oligopoly cases. Further literature similar to

Botterud et al. (2010) can be found in Bathurst et al. (2002), Usaola and Angarita

(2007), Pinson et al. (2007), and Morales et al. (2010).

2.3 The Model

We consider two players that interact at two stages in the wholesale market for

electricity, namely, conventional producers (c) and renewable producers (r). The

consumers are assumed to behave completely price-inelastic in the short-run and

demand a quantity D. The demand of consumers is satisfied already in the first

stage, since we assume consumers as being myopic and risk-averse. On the supply

side, we distinguish between conventional producers and renewable producers.

Conventional producers in the model are represented as competitive fringe. They

are able to produce electricity at total costs of C(qc) where qc is the quantity pro-

duced. These quantities are sold into the market at a uniform price of the marginal

production costs. The conventional producers also act as market makers which

means they always satisfy the residual demand in both stages4.

Renewable producers produce electricity at zero marginal costs. Their final pro-

duction level Q is uncertain in the first stage with the probability density function

f (Q). The uncertainty about the production level resolves over time (from stage 1

to 2; cf. Figure 2.1).

Throughout our analysis we assume the probability function f (Q) as symmetric.

In our view this assumption is reasonable, since well-behaved forecasting models

should be able to produce a symmetric distribution.5

Conventional and renewable producers can trade electricity in the two stages (t =

4Conventional producers have a strong incentive to sell their production in a market as long as the
price is above their marginal production costs. This makes it seem to be a reasonable assumption
that conventional producers always satisfy the residual demand when prices are above or equal to
their marginal generation costs.

5Of course the distribution would not be symmetric in cases where production is expected to be ex-
treme in the sense of a very low (close to zero) or very high (close to the capacity limit) production.
Further information on wind forecasts and uncertainty can be found in Zhang et al. (2014).
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Stage 1 Stage 2

• Uncertainty of stage 2 parameters: 

Price p2 and produced renewable

quantitiy Q

• Trading q1 for price p1(q1)

• Perfect knowledge

• Trading q2 for price p2(q2)

Resolving of second stage

production uncertainty

Figure 2.1: Basic two-stage model

1 and t = 2). For the conventional producers quantities are denoted by qc t and for

the renewable producer by qr t . Here, we allow for qc t and qr t to be positive or

negative. This allows producers, e.g. to sell too much production in the first stage

and buy back quantities in the second stage. As already mentioned, we assume the

demand of consumers (D) to get satisfied in the first stage. In the second stage,

conventional and renewable producers can adjust their positions, e.g. conventional

producers buy quantities from the renewable producer in order to replace their more

expensive conventional production with renewable electricity. In this setting it is

unclear what quantity (q∗r1 and q∗r2) is optimal to trade in the first and second stage

for the renewable producer.

The market clearing conditions at both stages can be written as

Stage 1: D = qc1 + qr1 (2.1)

Stage 2: D = qc1 + qc2 + qr1 + qr2. (2.2)

The conventional producers produce electricity based on linear increasing marginal

cost functions in both stages. A linear marginal cost abstracts from real cost functions

in electricity markets in two important assumptions. The first model assumption is

the linearity. In reality, the cost function is usually a monotonic increasing func-

tion (with a mainly stepwise convex-similar shape). Therefore, in theory, a usual

simplifying assumption is a convex cost function. In contrast to this, we assume

linearity since it simplifies the theoretical analysis. Similar results can be obtained

with a convex cost function (e.g. arbitrary second order quadratic functions mono-

tonic increasing in R+). However, this increases the complexity without generating

significant further insights.

Second, in reality, marginal costs of production may change with time, which can

have multiple reasons. In electricity markets this may be due to technical constraints
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of power plants (start-up costs, minimum load restrictions or partload-efficiency

losses) or due to transaction costs of participants that do not engage in short-term

trading in short intervals before production. In the end, this may lead to a reduction

of electricity supply that is available on short notice.

We account for a change of the supply side by considering two different marginal

cost functions MC1(q) and MC2(q) with different inclinations a1 and a2. Since the

number of flexible power plants is lowered the closer we get to physical delivery (or

less power plant operators participate in the second market), a2 has to be greater

than a1. As explained before, the supply curve may change due to two reasons. First,

technical constraints of power plants which are not able to adjust their power output

in short intervals before production can lead to reduced supply. Second, there may

be transaction costs for power plant operators to participate in the intraday market

which is why supply is also reduced. This approach is similar to Henriot (2014)

and has been empirically verified for the German intraday market by Knaut and

Paschmann (2017b).

Q

p

D− qr1

MC1

MC2

p1

Figure 2.2: Marginal cost function in the first and second stage

For the analysis we have to define the properties of the marginal cost function in

the second stage. Besides the increase of the slope to a2, the whole curve needs to

cross the market clearing point from the first stage. Because if there are no adjust-

ments in quantities, the price of the first and second stage are identical. Thus the

marginal cost function for the second stage can be obtained by a rotation around

the market clearing point from stage 1 (cf. Figure 2.2). This means an increase in

production comes at additional costs and a decrease in production at fewer savings

of production costs. In combination with the market clearing conditions, this leads

to the following two equations for price formation in the two stages:
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p1(qr1) = a1 (D− qr1) + b1 (2.3)

E[p2(qr1, qr2)] = a2(D− qr1 − qr2) + b1 + (D− qr1) (a1 − a2) , (2.4)

where b1 is the offset, a1 the gradient in the first stage and a2 the gradient in the

second stage of the marginal cost function.

In a next step, we will derive the respective profit functions for the conventional

and renewable producer. The conventional producer’s profit function is defined as

Πc(qc1, qc2) = p1(qr1)qc1+ p2(qr1, qr2)qc2−C1(qc1)−C2(qc1+qc2)+C2(qc1). (2.5)

Revenues in both stages are the products of the respective prices and quantities.

Production costs depend on the power plants utilized for production. Since the

marginal costs of production may change with time, the costs consist of the sum of

quantities planned for production in each stage.

The profit function of the renewable producer

Πr(qr1, qr2) = p1(qr1)qr1 + p2(qr1, qr2)qr2 (2.6)

consists of the quantities traded at the respective prices in the first and second stage

without associated production costs.

We are able to show how competition between renewable producers and conven-

tional producers can be modeled by applying this framework to different settings.

In this paper, we will consider three cases:

• Competition in the first stage with identical cost functions: qr =Q, a1 = a2 = a

• Competition in the first stage with changing cost functions: qr =Q, a2 > a1

• Competition in the first and second stage with changing cost functions: qr ≤Q,

a2 > a1.
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2.4 Cournot Competition of Renewable Producers

Throughout this paper we focus on a linear marginal cost function which can be

regarded as the simplest case.6 In this section, we will first give an intuition for

the results of the model based on the simple case of identical cost functions and

a renewable monopolist who acts strategically in the first stage. For this part of

the analysis, we assume that the renewable producer sells the complete remaining

production in the second stage, meaning qr =Q.7 In a next step, we will extend the

analysis from the renewable monopoly to an oligopoly.

We can parametrize the linear marginal cost function MC(qc) = aqc+b by the gra-

dient a ∈ R>0 and an offset b ∈ R≥0 with variable qc ∈ R≥0 as the produced quantity

from conventional producers. Because demand is assumed to be price inelastic, we

can write the prices in both stages a function of renewable quantities:

p1(qr1) = a(D− qr1) + b (2.7)

and

p2(Q) = a(D−Q) + b. (2.8)

2.4.1 Renewable Producer Monopoly

First, we look at the simple case in which all renewable production is traded by

one firm. From economic literature it is well known that under the assumptions of

Cournot competition, the monopolist has incentives to deviate from welfare optimal

behavior in order to maximize its own profits. In our sequential market setting,

this can be observed as well. By Proposition 2.1 we show that the optimal bidding

strategy for a renewable producer under a monopoly is to bid half the expected

production in the first stage.

Proposition 2.1. The profit maximizing quantity for a renewable monopolist is q∗r1 =
µq
2 with µq the expected renewable production.

6The main results also hold for convex second-order cost functions. However, the exact results may
slightly deviate (i.e. it has a slightly shifting influence to the profit maximizing bidding strategy,
but comparable small impact on the main results).

7Note that we assume additionally Q ≤ D. If Q > D and renewable producers have to sell their whole
production in stage 2, we would force producers to bid negative prices. In such cases, we would
expect that renewable producers reduce their production to avoid too low prices, e.g. below 0. This
will be discussed in Section 2.6 in which we extend the model and allow for qr ≤Q.
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2 How to Sell Renewable Electricity - Strategic Interaction in Sequential Markets

Proof. The basic profit function of a renewable producer in our theoretical model

framework is described in (2.6). For identical marginal cost functions, we derive

the following expected profit function

E[Πr(qr1)] = qr1 (a(D− qr1) + b) +

∫

(Q− qr1) f (Q) (a (D−Q) + b) dQ. (2.9)

Where the first derivative results in

d
dqr1
E[Πr(qr1)] = a(D−qr1)+b−aqr1−Da

∫

f (Q) dQ+a

∫

Q f (Q) dQ−b

∫

f (Q) dQ.

(2.10)

Since f (Q) is symmetric and the marginal cost function is linear, we can further

simplify the expected profit function by the following substitutes:

Expected value for Q:

∫

Q f (Q) dQ = µq (2.11)

Distribution function has a total probability of 1:

∫

f (Q) dQ = 1 (2.12)

This leads to the simplified necessary condition for the profit maximizing quantity

q∗r1 as
d

dqr1
E[Πr(qr1)] = −Da+ aµq − aqr1 + a(D− qr1)

!
= 0. (2.13)

Now we can solve this equation for qr1 which results in the profit maximizing quan-

tity

q∗r1 =
µq

2
. (2.14)

In order for this being a maximum the second derivative has to be negative. This

can easily be checked by calculating

d2

dq2
r1

E[Πr(qr1)] = −2a. (2.15)

Since a is defined as the slope of the marginal cost function and is positive by defi-

nition, q∗r1 =
µq
2 indeed describes the profit maximizing quantity for the renewable

producer.

The motivation of the renewable producer to bid half her expected quantity in the

first stage becomes clear by analyzing Figure 2.3. Since we consider a linear marginal

cost function, we can abstract from the uncertainty in renewable production f (Q)
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2

p1
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(ii) Profit of the renewable producer from
the first and second stage

Figure 2.3: Optimal quantity of the renewable monopolist

and only consider the expected production µq. The profit of the renewable producer

can be split into two parts. One part stems from selling the expected production

into the market, as can be seen in Figure 2.3i (single hatched area). This part can

be considered as a lower bound to the profit of the renewable producer and does

not depend on the strategy of the renewable producer because she has to sell all

production to the market in the final stage. The resulting price in the second stage

is thus given by E[p2]. The second part of the renewable producer profit can be

obtained by selling a quantity forward in the first stage at a price p1. In order to

increase her profit, the quantity in the first stage needs to be between D − µq and

D to obtain a higher price compared to E[p2]. Since the marginal cost function is

linear and we have a monopolist selling forward, it is optimal to sell half her expected

production because it maximizes the additional profit in Figure 2.3ii (cross hatched

area).

Proposition 2.2. The optimal strategy of a renewable monopolist selling its renewable

production in sequential markets with multiple stages is to sell it in small quantities at

decreasing prices.

Proof. The triangle in Figure 2.3i can be considered as the maximum profit which

can be gained by selling the expected production of the renewable producer. When

the renewable producer is able to sell this production in multiple stages, it is optimal

to sell it little by little in order to maximize her profit. This means prices in multiple

sequential market stages would be declining until the price of E[p2] is reached in the

final stage. In this case, the renewable producer would be able to increase its profit

by the triangle in Figure 2.3i compared to selling the expected quantity already in

the first stage.
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2 How to Sell Renewable Electricity - Strategic Interaction in Sequential Markets

For the case of multiple market stages also conventional producers would be able

to increase their profit. In this case, they would be able to obtain a higher profit in

the first stage, where they can sell a larger quantity at a higher price. On the other

hand, consumer surplus would be lowered due to higher prices.

This leads us to the conclusion that with a renewable monopolist, different market

designs can have a large impact on distributional effects between producers and

consumers. Consumers loose if producers trade electricity in multiple stages. Thus,

continuous trading in short-term markets lowers consumer surplus. From the view

of consumers, a few separate auctions should be preferred to a continuous auction

since this limits strategic behavior of a renewable monopolist.

Strategic production withholding is commonly observed by market participants

at the margin (see, for instance, Fabra et al. (2006), Ausubel et al. (2014), Ito and

Reguant (2016)). The reason is that it is most profitable to reduce the production

at the margin if the corresponding price increase overcompensates the production

withholding.8 The production close to the margin has generally the lowest prof-

its and thus the profit for the whole production fleet can be increased. In contrast

to this, our results show that strategic production withholding may also occur for

infra-marginal production with our underlying model assumptions (two-stage trad-

ing possibility, zero marginal costs for the renewable producers, positive marginal

costs for the perfect competitive conventional producers). Unlike usual, it is not de-

pendent on a higher steepness of the cost function for extra-marginal production but

also holds for the basic case of a linear cost function. This spans a new dimension

of strategic behavior and could also be investigated in further research.

2.4.2 Renewable Producer Monopoly in the Context of a Strict Convex
Marginal Cost Function

The results, so far, stem from an analysis with a linear marginal cost function for

conventional producers. This has been mainly due to practical reasons, in order to

show first effects. In reality, however, the assumption of a linear marginal cost curve

may not be valid in every situation. The marginal cost curve in electricity markets

is generally assumed to be strict convex and monotonic increasing.9 Whereas the

8Additional to pure production withholding, strategic behavior at the margin can also be excerted
with bids above marginal costs to increase the market clearing price.

9This is due to the different cost structures of power plants. For example in high demand situations
gas turbines are needed to satisfy the demand with high variable costs. This leads to a steep increase
of the marginal cost function.
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2.4 Cournot Competition of Renewable Producers

parametrization of a linear function is straight forward, a strict convex and mono-

tonic increasing function can be parametrized in various ways. One way, for exam-

ple, can be using a quadratic second order function.

In this section we will analyze the general effects of a strict convex marginal cost

function on our results for the case of a renewable monopolist. By Bessembinder

and Lemmon (2002), we know that a convex marginal cost function could have

significant impacts to forward prices. They show, that for quadratic convex marginal

cost functions the forward price tends to be lower than the real-time price for a

limited demand uncertainty. Within our analysis, there are basically two important

differences between the case of a linear and a quadratic marginal cost function which

stem from the different shapes. One difference is that the expected price in the

second stage is greater than the price for the realization of the expected production

(E[p2(Q)] > p2(µq)). Whereas in the case of a linear marginal cost function both

were equal and we could abstract from the uncertainty in renewable production, this

is not the case for a different marginal cost shape. Realizations below the expected

production (µq) lead to a higher increase in the second stage price (p2), compared

to higher realization than the expected production. Therefore, the expected price

(E[p2]) in the strict convex case will be greater than the price for a realization of

the expected production. The second difference is that the shape has also an impact

on the optimal quantity (q∗r1). The optimal quantity will always be below the result

from the linear case (q∗r1 <
µq
2 ).

We will try to give the intuition for the second difference based on Figure 2.4.

In Figure 2.4i we plot the profit when the renewable producer bids the optimal

quantity from the linear case (
µq
2 ). This is compared to the case of optimal trading

in Figure 2.4ii in the first stage under a strict convex marginal cost function.

Q

p dC
dq

DD− µq
2

p1

[p2]

(i) Trading half the expected production

Q

p dC
dq

DD− q ∗r1

p1

[p2]

(ii) Optimal trading decision (dotted line is

former result of trading qr1 = µ/2)

Figure 2.4: Difference in trading for the renewable producer under a convex merit order
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The single hatched area represents the lower bound for the expected profit, as

explained in Section 2.4.1. This area is equal in both settings, regardless of the

traded quantity in the first stage.

The double hatched areas represent the additional profit that can be obtained from

trading a quantity in the first stage. In Figure 2.4i, µ2 is traded in the first stage which

is the result of the former optimal amount under a linear merit order.

Now, in the case of a convex merit order, the profit can further be increased by

trading even less than half the expected production µq/2 (as it can be seen in Figure

2.4ii). The double hatched area is greater than in Figure 2.4i). The magnitude of

the impact depends on the shape of the merit order, the demand, and the expected

renewable production as well as the uncertainty (standard deviation) of the renew-

able production. This reasoning can also be proofed for a strict convex polynomial

of second order and results in Proposition 2.3.

Proposition 2.3. For a quadratic merit order, the optimal first stage offer qr1 of a

renewable monopolist is strictly below µq/2.

Proof. See Appendix 2.9.1.

We show that a strict convex merit order leads to a stronger withholding of quan-

tities in the first stage compared to the linear case. This is in line with the results of

Bessembinder and Lemmon (2002) which focus on conventional producers within a

two-stage Cournot competition. Based on our results, the optimal quantities of the

renewable producers, which we derive for the linear marginal cost curve can be con-

sidered as an upper bound. For the sake of simplicity we will stick to the analysis of

a linear marginal cost curve in the following sections. But based on the results from

Figure 2.4 we have to keep in mind, that the results from this special case should be

considered as an upper bound to the optimal quantities of renewable producers.

2.4.3 Renewable Producer Oligopoly

In this section, we extend the monopoly case to the case of multiple symmetric re-

newable producers that form an oligopoly. The symmetry implies that the renewable

producers have perfectly correlated generation as well as forecast errors. The re-

maining approach and notation are similar to previous sections. As we learned from

before, the conventional producer reacts to the decision of the renewable producers
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2.4 Cournot Competition of Renewable Producers

and can be considered as a price taker. So we can focus on the optimal quanti-

ties of the renewable producers. We still consider a linear marginal cost function

MC(q) = aq+ b and define the players i = 1, ..., N with their corresponding quanti-

ties in stage 1 as qir1. Furthermore, we define the sum of the quantities of all players

but i as q−ir1 =
∑

j 6=i q jr1. We find that the optimal bid of a renewable producer in

the first stage is still driven by strategic behavior but tends towards the expected

production level as the number of producers increases.

Proposition 2.4. The optimal quantity traded in the first stage for each player is q∗ir1 =
1

N+1µq with µq the total expected renewable production of all players.

Proof. See Appendix 2.9.2.

As a direct implication from the optimal first stage bid we see that for the linear

marginal cost function, the optimal strategy is still independent of the gradient or

the uncertainty of production.

Corollary 2.1. The profit maximizing traded quantity in stage 1 of the above setting is

identical for all players. Furthermore, q∗ir1 is independent of the steepness a ∈ [0,∞)
of the marginal cost function, the offset b ∈ [0,∞) of the marginal cost function, and

the probability distribution function f (Q i).

According to Proposition 2.4 it is optimal for renewable producers to always trade

less than the expected production in the first stage since this maximizes their profits.

The overall quantity tends towards the overall expected quantity as the number of

players increases.10

In stage 1, this leads to an overall traded quantity of renewable production of

qr1 =
N
∑

j=1

q jr1 =
N

N + 1
µq (2.16)

with µq :=
∑N

j=1µ jq. In two sequential markets, renewable producers have an in-

centive to trade less than the total expected renewables production in the first stage.

The more players enter the market the stronger the competition and thus the traded

amount in the first stage tends towards the expected production. Our results of the

first stage show that, under the described setting, a renewable producer acts exactly

as predicted in a standard one-shot oligopolistic Cournot game.

10Note that, for the moment, we assumed a linear marginal cost function which does not change
between the first and the second stage.
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2.5 Flexibility and its Role in Short-term Markets

In this section we shed light on the implications of changing cost functions in short-

term markets. As mentioned before, this can happen for essentially two reasons.

One reason is that not all conventional power plants are flexible enough to adjust

their production capacity in stage 2 in the short run. The second reason is that there

can be transaction costs for power plant operators associated with the trading in the

intraday market.

The difference between the cost function of the first and second stage has implica-

tions for the optimal quantity of the renewable producers in the first stage, which we

analyze here in more detail. The nomenclature corresponds to the previous sections.

Proposition 2.5. The optimal quantity traded in the first stage for each renewable

player is q∗ir1 =
1

N+1µiq(N + 1− a1
a2
), with the ratio a1

a2
representing the degree of flexi-

bility of the supply side in both stages.11

Proof. In a first step we will derive the optimal quantity of a player i who competes

against N − 1 identical players12. According to the setup, the prices in the first and

second stage can be defined as:

p1(qir1, q−ir1) = a1(D− qir1)− q−ir1 + b1 (2.17)

p2(qir1, q−ir1) = a2 (D−Q iN) + b1 + (a1 − a2) (D− qir1 − q−ir1) . (2.18)

Again, we can define the expected profit function for player i, take the first derivative

and integrate over fi (which is assumed as being identical for all players). Setting

the first derivative equal to zero leads us to the necessary condition for an optimal

quantity:

− a1µiq + a2µiqN + a2µiq − a2q−ir1 − 2a2qir1
!
= 0 (2.19)

Under the assumption that all players are identical we can set q−ir1 = (N −1)qir1

and solve for qir1 which leads to:

q∗ir1 =
�

1−
1

N + 1
a1

a2

�

µiq. (2.20)

The second derivative of the expected profit function is negative, which proves

q∗ir1 being a maximum for the expected profit function.

11Small values of a1
a2

represent a very inflexible supply side in the second stage.
12The sum over all other players is still denoted by the quantity q−ir1 =

∑

j 6=i q jr1
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This means that all renewable producers together submit a quantity of

q∗r1 = µq −
1

N + 1
a1

a2
µq (2.21)

in the first stage (with a2 > a1).

From Equation (2.21) we can conclude the following: (1) q∗r1 increases if con-

ventional producers are less flexible (a2 � a1); (2) q∗r1 increases with an increas-

ing number of renewable producers N . For a perfectly competitive market (with

N −→∞) it is optimal for each player to trade its share of the total expected quan-

tity in the first stage.

Q

p

MC1

MC2

DD−µq

D− q ∗r1

p1

[p2]

Figure 2.5: Profit of a renewable monopolist facing a inflexible conventional producers

By looking at the example of a renewable monopolist in Figure 2.5, we can get a

deeper understanding of the motives for a renewable producer who faces a market

with inflexible conventional producers. As explained before, the marginal cost curve

for the second stage rotates around the market clearing point of the first stage. The

total production of the renewable producer that needs to be sold after both stages

however does not change. Thus, the renewable producer has to decide what quantity

to sell at a respective price in the first stage and sell the remaining quantity at a

lower price in the second stage. The price is lower in the second stage due to the

additional renewable quantities that are sold by the renewable producer. Basically,

in Figure 2.5, the sum of the cross hatched area and the single hatched area needs to

be maximized. The renewable producer is able to maximize both areas by a parallel

shift of the marginal cost function for stage 2 (green dotted line). This means, the

renewable producer has to optimize the quantity in the first stage in such a way that

the profit from both stages is maximized. Summarizing, a more flexible power plant

fleet shifts the total optimal first stage bidding quantity of a renewable producer
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2 How to Sell Renewable Electricity - Strategic Interaction in Sequential Markets

towards the expected production.

The described effects on the optimal quantity hold true for different numbers of

renewable producers and different degrees of flexibility. This is shown exemplarily

in Figure 2.6. Here, the optimal quantity converges more slowly to the expected

production in the perfectly flexible case ( a2
a1
= 1) compared to a highly inflexible

conventional power plant mix ( a2
a1
= 4). An increase in the number of renewable

producers leads to a similar effect of a higher overall renewable quantity in the first

stage.
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Figure 2.6: Optimal renewable quantity qr1 dependent on the number of players N and the
ratio a2/a1

2.6 Incentives of Renewable Producers to Withhold

Production

In this section we extend the analysis of strategic competition in the first stage by

investigating the case in which renewable producers are allowed to withhold pro-

duction in the second stage. Therefore, we relax the assumption that the renewable

producer needs to sell all her realized production in the second stage. This means

qr1 + qr2 ≤ Q instead of qr1 + qr2 = Q. We still assume that renewable producers

strictly avoid being short after stage 2, i.e. selling more production than they pro-

duce. The rational is that high financial penalties need to be payed in case of an

imbalance. All other model assumptions stay the same.

The motivation for the relaxation of the second stage restriction to sell the whole

production is threefold. First, we note that, in general, it is technically possible

to reduce production for renewable producers. This happens for photovoltaic in
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critical grid situation if the voltage level extends a critical value (automatic shut

down around 50.2 Hertz) or for wind turbines during storms. Second, a reduced

production could be economically profitable in specific situation. Especially if prices

are negative or, like in the investigated case, if market prices could be increased

profitably by withholding production. Third, market manipulation by a withhold

of renewable production is not easy to prove by the regulator. It is hard to detect

whether a wind turbine does not produce due to maintenance, local wind conditions

or strategic production withholding.

We extend the model with cost functions by replacing the constraint qr1+qr2 =Q

with qr1 + qr2 ≤Q. Based on this model we obtain the following results.

Proposition 2.6. If renewable producers are allowed to withhold production, they only

withhold production after the second stage if the expected production of all producers

is high compared to the demand D, i.e. if µq >
a2N(N+1)

a2(N+1)2−a1N
D + a2N(N+1)

a1(a2(N+1)2−a1N) b.

This means the expected renewable production needs to be at least D
2 . Otherwise, re-

newable producers sell the total realized production into the market (same result as of

Proposition 2.5).

Proof. We use the same model as in Section 2.5 (and corresponding Proposition 2.5).

The only difference is the relaxed constraint qr1 + qr2 = Q by qr1 + qr2 ≤ Q. This

allows the renewable producer to withhold production and to increase prices in

the second stage. Since we adjusted an equality constraint by an inequality con-

straint, we face now a convex optimization problem with inequalities and can use

the Karush-Kuhn-Tucker (KKT) conditions to solve it. The full proof can be found in

the appendix.

The main finding is that renewable producers have an incentive to withhold pro-

duction after the second stage only if the (expected) production exceeds a threshold

value which is at least D
2 (but dependent on a1, a2, b and N).13 The exact threshold

value is

Q threshold :=
a2N (N + 1)

a2 (N + 1)2 − a1N
D+

a2N (N + 1)

a1

�

a2 (N + 1)2 − a1N
� b. (2.22)

As long as the (expected) production is below this threshold, the renewable produc-

ers will sell their total realized production in the second stage. Nevertheless, the

13In stage 1, the expected production is the relevant quantity while in stage 2 the realized production
is the relevant quantity. If both, expected and realized production, deviate from each other, it is
possible that the renewable producers pursue a different strategy in each stage.
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production is split between first and second stage to increase profits. By analyzing

this threshold we find the following

• Q threshold is increasing in N : The more producers exist, the higher the thresh-

old. Therefore, more competition between renewable producers limits the

incentive for renewable producers to withhold quantities in the second stage.

• Q threshold is decreasing in a2 (with a1 fixed): The more inflexible the power

plant fleet, the lower is the threshold. Therefore, renewable producers start

to withhold production at a lower level of expected renewable production.

• Q threshold converges to N
N+1

�

D+ b
a1

�

for a2→∞ but is strictly above D
2 .

To sum up, renewable producers only have an incentive to withhold quantities in

situations with very high renewable generation compared to the demand. Additional

renewable producers as well as more flexible conventional producers increase the

threshold (Q threshold) to withhold production quantities.

2.7 Prices, Welfare, Producer Surplus and Consumer

Surplus

Trading in the day-ahead and intraday market has implications for overall welfare,

producer surplus and consumer surplus. So far, we focused on the quantities of

the renewable producers that maximize their respective profits. They determine the

quantities that are traded by the conventional producers and thereby the prices in

both stages. In order to disentangle the effects on overall welfare, producer and

consumer surplus, we will first analyze the effects on prices in the two stages.

Since we found in Section 2.6 that renewable players only withhold production at

very high production levels compared to demand D, we focus on the case in which

renewable producers sell all their production after stage 2 (the case qr1+qr2 =Q).14

2.7.1 Prices and the Role of Arbitrageurs

By plugging in the optimal quantity from Equation (2.20) into the price equations

for the case with flexibility constraints (Equation (2.3) and (2.4)) we obtain the

14For a realistic number of renewable players N > 5 and an arbitrary ratio of a2 to a1, the threshold
Q threshold is at least 0.85D.
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following prices:

p1 = Da1 + b1 −
a1

a2

µq

N + 1
(a2(N + 1)− a1) (2.23)

E[p2] = Da1 + b1 −
a1

a2

µq

N + 1
(a2(N + 2)− a1). (2.24)

From these two equations we can already see that the price in the first stage is

higher than in the second stage. This becomes obvious by taking the difference

between the two prices:

p1 −E[p2] =
a1µq

N + 1
. (2.25)

We can observe the following implications: First, the price difference between stage 1

and 2 is independent of the change in the slope of the marginal cost function (a2).

The renewable producers choose their quantity dependent on the slope (a2). This

has an effect on the absolute prices in the two stages but the price delta stays con-

stant. Second, with a higher overall expected production from renewables (µq) also

the price difference increases. The quantity that is withheld from trading in the

first stage increases with the expected production and, thereby, the price difference

increases. Third, the price difference decreases with an increasing number of re-

newable producers (N). In a perfectly competitive market (with N −→∞), prices

in both stages are equal. As we can observe in Figure 2.6, the quantity in the first

stage tends towards the overall expected quantity and hereby prices in both stages

converge.

Based on the price difference in both stages one could suspect arbitrageurs to be

entering the market. By obtaining a short position in the day-ahead market and

adjusting their position in the intraday market, they would be able to make a profit.

The optimal strategy of an arbitrageur is therefore identical with the strategy of

the renewable players. The only difference is that arbitrageurs do not necessarily

own production assets. Each additional arbitrageur that would enter the market

can nevertheless be regarded as an additional renewable player. This would in turn

decrease the price difference between the day-ahead and intraday market (cf. Figure

2.7).

Still, electricity markets have some unique features that may prevent arbitrageurs

from engaging in short-term electricity markets. First, the assets that are traded are

not only financial but physical obligations to produce and deliver electricity. There-

fore, some short-term market platforms restrict the participation to firms with phys-

ical production assets. This prevents for example banks from entering these mar-
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Figure 2.7: Prices in the two stages for an example with D = 70, µq = 20, σq = 5, b1 = 20
and a1 = 0.5

kets. Second, there may be information asymmetries between renewable producers

and arbitrageurs that may be hard to overcome. For example renewable producers

can be assumed as having better knowledge about the expected production level

of their assets. For the following discussions we will thus not focus on the case of

additional arbitrageurs entering the market. Nevertheless, the implications of arbi-

trageurs entering the market can be observed implicitly by considering an increase

in the number of renewable players (N).

In order to gain a deeper understanding of the effects from changing cost functions

and increased competition on prices, we plot this relationship in Figure 2.7 for an

exemplary case. The direction of the effects will stay the same for arbitrary a1, a2

with a2 ≥ a1 and arbitrary D, Q and b with (D−Q)a1 + b ≥ 0 (Q ∼N (µq,σq)).

In Figure 2.7, we chose the values such that one can easily find similarities to the

German electricity market. A demand D of 70 GW can be observed during peak

times, where also an expected renewable production µq of 20 GW is quite common.

Furthermore the parameters of the marginal cost function were chosen such that

they represent common price levels.15

We can see that the prices in stage 1 and 2 converge to the same value with an

increasing number of players. This benchmark is set by the perfectly flexible case

( a2
a1
= 1), where the price in the second stage stays constant. In the next sections we

will analyze the effects on producer surplus, consumer surplus and overall welfare.

15Of course a linear marginal cost function is a crude assumption in this case, but it allows us to show
the overall effects.
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2.7.2 Producer Surplus

The producer surplus is defined as the sum of the renewable producer surplus and the

conventional producer surplus. For the case with a changing marginal cost function,

the conventional producer surplus can be defined as

E[Πc(qr1)] = p1(D− qr1) + p2

∫

(qr1 −Q) f (Q)dQ− C1(qr1)−
∫

C2(qr1) f (Q)dQ.

(2.26)

It is the difference between the income from sold quantities in stage 1 and 2 and the

associated costs with the production of electricity.

The first stage costs C1 in our model depend on the quantities offered by the

renewable producers qr1. We can thus obtain the costs in the first stage by integrating

over the marginal cost function MC1

C1(qr1) =
1
2

a1(D− qr1)
2 + b1(D− qr1). (2.27)

The formulation is more complex for the costs that are associated with the second

stage of production. First, it depends on the quantity that is traded in the first stage

by the renewable producer qr1. Second, it depends on the realization of the final

renewable production Q. In the first stage, the conventional producers plan to pro-

duce a certain quantity D−qr1. In the second stage, this quantity has to be adjusted

to meet the total residual demand of D−Q. This means if the renewable production

turns out to be higher than the traded quantity in the first stage, the conventional

producers need to reduce their planned production and can buy back quantities at

a lower price. Meanwhile the slope of the cost function has changed from a1 to a2.

This leads us to the following expected cost function for the second stage:

E[C2(qr1)] =

∫ ∫ D−Q

qr1

(a2qc2 + (a1 − a2)(D− qr1) + b1)dqc2 f (Q)dQ (2.28)

= (Da1 − a1qr1 + b1)(µq − qr1) + a2qr1(µq −
qr1

2
)−

a2n2

2

�

µ2
iq +σ

2
iq

�

.

(2.29)

What is especially noticeable in this equation, is that for the first time in our analysis

also the standard deviation (σiq) of the expected renewable production plays a role.

The reason for this lies in the non-linear cost function of the conventional producers.

Here, deviations from the expected value are not multiplied by a linear curve and
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2 How to Sell Renewable Electricity - Strategic Interaction in Sequential Markets

weighted equally but weighted by the non-linear function. This is why the standard

deviation plays an important role. By inserting Equation (2.27) and (2.29) in (2.26),

we obtain the total conventional producer surplus.

In the same way, we can also derive the producer surplus for the renewable pro-

ducers.

E[Πr(qr1)] = p1qr1 +

∫

p2(Q− qr1) f (Q)dQ (2.30)

By plugging in the results from Equation (2.20) it is possible to quantify the re-

newable and conventional producer surplus. We plot this for an exemplary cases in

Figure 2.8.
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Figure 2.8: Expected producer surplus for an example with D = 70, µq = 20,σq = 5, b1 = 20
and a1 = 0.5.

As we could already see from Figure 2.7, prices in the first stage decrease with

an increase in competition or a less flexible supply curve. At the same time prices

in the second stage increase. This results in both, a dampening and an increasing

effect on producer surplus. From Figure 2.8 we can observe that the decreasing

effect of the first stage outweighs the increasing effect in the second stage. Overall,

we see that the producer surplus decreases with the number of renewable producers

N and with a less flexible power plant mix. Especially the decrease in conventional

producer surplus is noticeable. For renewable producers the decrease in surplus is

not as prominent, since they are able to reduce the effects by adjusting their optimal

quantity qr1. For example the overall quantity traded by renewable producers (q∗r1)

is increased when more renewable producers compete in the first stage. Also a less

flexible power plant mix leads to a higher optimal quantity for renewable producers

in the first stage (cf. Figure 2.6).
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2.7.3 Consumer Surplus

In our model, consumers are represented as being completely inelastic in their de-

mand behavior. In electricity markets it is common practice to assume consumers as

completely price inelastic and consuming electricity up to the point when the price

exceeds the value of lost load (VOLL). We therefore slightly adjust our assumptions

by introducing the price pVOLL which can be regarded as the upper limit for the

willingness-to-pay for electricity consumption.

As consumers are assumed to be risk-averse, demand is already satisfied in the

first stage at price p1, as long as p1 < pVOLL . The consumer surplus can therefore be

expressed as (pVOLL − p1)D. By plugging in the price formulation for the first stage

from Equation (2.3), we get

CS = D
�

pVOLL − Da1 − b1 +
a1

a2

µq

N + 1
(a2(N + 1)− a1)

�

. (2.31)

We can now compare the consumer surplus for the different combinations of N and

a2/a1. In order to circumvent an assumption for the upper price limit pVOLL , we

focus our analysis on changes in consumer surplus compared to a reference point.

We therefore choose the reference point where consumer surplus is the lowest. This

is the case for a renewable monopolist and perfectly flexible conventional producers

(a1 = a2).
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Figure 2.9: Delta in consumer surplus and expected overall welfare for an example with
D = 70, µq = 20, σq = 5, b1 = 20 and a1 = 0.5

As one could already expect from decrease in prices with an increasing number

of players in Figure 2.7, the consumer surplus increases with the number of play-

ers. What may be counter intuitive is that consumers can profit from a less flexible

power plant mix. The lower flexibility of conventional producers leads renewable
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2 How to Sell Renewable Electricity - Strategic Interaction in Sequential Markets

producers to adjust their quantity, which has a price dampening effect for the first

stage. Consumers can therefore profit from the lower prices in the first stage as it is

shown exemplarily in figure 2.9i.

2.7.4 Welfare

Combining the effects on producer and consumer surplus leads to changes in overall

welfare. As we can only analyze differences in consumer surplus this also holds for

the case of overall welfare. Again, we define the perfectly flexible case with a monop-

olistic renewable producer as a reference point for the analysis (cf. Section 2.7.3).

The difference in overall expected welfare to the monopolistic case can be defined

as

∆E[W(qr1)] = −∆E[C E(qr1)] +∆E[Πp(qr1)]. (2.32)

In Figure 2.9ii we can observe these effects on overall welfare. The overall welfare

stays constant for the case of a perfectly flexible power plant mix. In this case,

the demand is always satisfied at the same costs which do not lead to a change in

overall welfare. Negative effects on overall welfare occur only if the total production

costs for electricity increase, i.e. if conventional power producers are less flexible.

Especially if the power plant mix is highly inflexible, as in the case with a2
a1
= 4,

it will lead to a substantial decrease in overall welfare. Generally we can observe

two effects. First, the effect on welfare has a smaller magnitude than the isolated

effects on producer surplus or consumer surplus. The increase in consumer surplus

and decrease in producer surplus counteract each other and lead only to a slightly

reduced effect on overall welfare. Second, the welfare is generally decreased in a

setting with less flexible power plants.

In a last step, we analyze the effects of uncertainty on overall welfare. So far, we

assumed the production of the renewable producer in the final stage to be forecasted

with a standard deviation of σq = 5 in the numerical examples. Now, we assume

that if forecasts are improved or trading time is delayed, the standard deviation

decreases, as to Foley et al. (2012). A decrease in standard deviation could also be

accomplished by delaying trading of the first stage (e.g. by trading in the evening

of the day before physical delivery instead of at noon). We quantify the welfare

effects by comparing them to the case with no uncertainty (σq = 0) and a perfectly

competitive market (qr1 = µq). From Figure 2.10 we can observe that a larger

standard deviation results in welfare losses. From this we can conclude that it is
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desirable to increase the quality of forecasts or to change the timing of trading in

order to increase overall welfare.
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Figure 2.10: Delta in expected overall welfare for varying standard deviation of the forecast
σq (D = 70, µq = 20, b1 = 20, a1 = 0.5 and a2 = 1)

2.8 Concluding Remarks

We derive the optimal quantities for renewable producers that are strategically sell-

ing their production in a two-stage game with uncertainty about production in stage 1

and knowledge about the realization of their production in stage 2. It is profit max-

imizing for renewable producers to bid less than their expected total quantity in the

first stage, which we consider as the day-ahead market. Renewable producers are

able to increase their profits by selling only part of their expected production in the

first stage and thus raising the price in the first stage. The optimal quantity in the

first stage tends towards the overall expected quantity with an increasing number

of renewable producers. Conventional producers are considered as a competitive

fringe that satisfies the residual demand in both markets. If conventional power

producers are less flexible in their operation, renewable producers have a larger in-

centive to increase the traded quantity in the first stage. In general, prices in the first

stage (day-ahead) are higher compared to the second stage (intraday), but with an

increasing number of renewable producers or with arbitrageurs entering the market

this difference decreases. In situations with very high production levels, that are

at least able to serve half of the demand, renewable producers have an incentive

to withhold production in the second stage. This effect is decreased by an increas-

ing number of players but increases in a setting with low flexibility of conventional

producers.
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2 How to Sell Renewable Electricity - Strategic Interaction in Sequential Markets

A reduced forecast uncertainty leads to an increase in overall welfare. This leads

us to two conclusions. First, overall welfare can be increased by delaying the trade in

the day-ahead market closer to the time of physical delivery. For example by shifting

the auction from noon to the evening. Second, an increase in forecast quality has a

positive effect on overall welfare.

Based on the results it becomes obvious that in a future electricity system with

high shares of renewables, regulators need to pay attention to the possible abuse of

market power by large renewable producers. In situations with low liquidity and the

absence of arbitrageurs this could lead to significant distributional effects and even

welfare losses.

In our whole analysis, we assumed the generation of all renewable producers to be

perfectly correlated, as well as their forecast errors. This is not the case in reality and

could be further investigated. Additionally, it would be possible to quantify welfare

implications of improved forecast quality and alternative market designs at concrete

examples.

The role of uncertainty only plays a minor role in our analysis since we mainly

focus on the case of linear marginal cost functions and risk-neutrality. In reality,

however, participants may be acting more risk-averse which would increase the im-

portance of accounting for uncertainty. This could be especially interesting when the

analysis is extended to players with mixed portfolios of renewable and conventional

power production. The optimization within a generation portfolio (maybe in combi-

nation with risk-averse behavior) could lead to interesting insights on the potential

use of market power in electricity markets in a more realistic setting.

2.9 Appendix

2.9.1 Proof of Proposition 2.3

Proof. Let MC(q) = aq2 + bq + c with a > 0 and b, c ≥ 0 be a strictly monotonic

increasing convex (quadratic) marginal cost function. The optimal first stage trading

amount for a monopolistic renewable producer is

q∗r1 =
2
3

D+
1
3

b
a
−

2
3

√

√

√

�

D−
3
4
µq +

1
2

b
a

�2

+
3
16
µ2

q +
3
4
σq (2.33)
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(this can be derived analogously to the optimal amount of the linear case in Propo-

sition 2.1). Then the following holds:

q∗r1 =
2
3

D+
1
3

b
a
−

2
3

√

√

√

�

D−
3
4
µq +

1
2

b
a

�2

+
3
16
µ2

q +
3
4
σq

<
2
3

D+
1
3

b
a
−

2
3

√

√

√

�

D−
3
4
µq +

1
2

b
a

�2

=
1
2
µq.

(2.34)

The inequality is strict since the square root is a strict monotonic function on positive

numbers. Therefore, under a convex merit order, it holds that q∗r1 <
1
2µq. Note that

we assumed µq < D in the model setup.

2.9.2 Proof of Proposition 2.4

Proof. Because all players are symmetric we can denote the total traded renewable

production of all players in stage 1 by qr1 = qir1 + q−ir1 (where q−ir1 aggregates all

players but not player i), the realized production in stage 2 by Q = NQ i , and the

expected quantity by µq = Nµiq. With these definitions, Equation (2.7) and (2.8)

still hold for the oligopoly case.

The profit function of renewable producer i can be derived by plugging in those

values into

Πir(qir1) = p1(qr1)qir1 + p2(D−Q)qir2 (2.35)

so that the profit function results in

Πir(qir1) = (a(D− qir1 − q−ir1) + b)qir1 + (a(D− NQ i) + b)(Q ir − qir1). (2.36)

Remember that qir2 =Q i−qir1 and that we assume Q i to be uncertain. In order to

derive the expected profit function we have to integrate for Q i over the distribution

f (Q i), where f (Q i) is the probability density function for Q i . After taking the first

derivative, setting it equal to zero and replacing the expected values (analogous to

Equations (2.11) and (2.12)), we get the necessary conditions

d
dqir1
E[Πir(qir1)] = a(Nµq − 2qir1 − q−ir1)

!
= 0 (2.37)
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and the corresponding solution is

q∗ir1 =
1
2

Nµ jq −
1
2

q−ir1 (2.38)

for i = 1, ..., N .

In an equilibrium of identical players we have identical solutions which results in

q−ir1 = (N − 1)qir1. With this, we derive

q∗ir1 =
1
2

Nµiq −
1
2
(N − 1)q∗ir1 (2.39)

⇔ q∗ir1 =
1

N + 1
µq. (2.40)

Because the second derivative of Equation (2.36) is negative, we found the profit

maximizing quantity q∗ir1

2.9.3 Proof of Proposition 2.6

Proof. As before, we assume N identical (symmetric) renewable producers. Let us

define our inequality constraint for producer i by

g(qir1, qir2) := qir1 + qir2 −Q i ≤ 0 (2.41)

Then the Lagrange function is

L(qir1, qir2,λ) := qir1

�

a1

�

D− qir1 − q jr1 (N − 1)
�

+ b
�

+ (2.42)

qir2

�

a2

�

D− qir1 − qir2 − q jr1 (N − 1)− q jr2 (N − 1)
��

+

qir2

�

b+ (a1 − a2)
�

D− qir1 − q jr1 (N − 1)
��

∫

fi (Q i) dQ i+

λ (Q i − qir1 − qir2) ,

which is the corresponding profit function of the first and second stage minus the

function g. The conditions of the KKT which need to be fulfilled are

Stationarity:
∂ L
∂ qirk

= 0 , k = {1,2} (2.43)

Primal feasibility: qir1 + qir2 ≤Q i (2.44)

Dual feasibility: λ≥ 0 (2.45)

Complementary slackness: λ(qir1 + qir2 −Q i) = 0. (2.46)
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We need to consider two cases: λ = 0 or qir1 + qir2 = Q i (binding capacity con-

straint).

To case 1 (λ= 0):

From (2.43) we derive two equations which we can solve for qir1 and qir2. Since

we focus on symmetric probability distribution functions fi for the renewable pro-

duction, we can substitute
∫

fi (Q i) dQ i = 1. Furthermore, due to symmetric renew-

able producers, we can plug in qir1 = q jr1 and qir2 = q jr2 for all renewable producers

i and j. Therefore, the equilibrium solution aggregated for all identical renewable

producers are

q∗r1 =
a2N (N + 1)− a1N

a2 (N + 1)2 − a1N
D+

1
a1

a2N (N + 1)− a1N

a2 (N + 1)2 − a1N
b (2.47)

q∗r2 =
a1N

a2 (N + 1)2 − a1N
D+

N

a2 (N + 1)2 − a1N
b. (2.48)

Note that the individual quantities are qirk = qrk/N for k = {1, 2}.

Now, we can plug the optimal quantities into the equation of the investigated case,

i.e. into qr1+ qr2 <Q. This gives us the threshold value above which the renewable

producers start to withhold production to increase prices. The threshold is

Q threshold :=
a2N (N + 1)

a2 (N + 1)2 − a1N
D+

a2N (N + 1)

a1

�

a2 (N + 1)2 − a1N
� b. (2.49)

If the overall expected renewable production µq exceeds this threshold, the renew-

able producers withhold production. Otherwise, the sold quantities are constraint

and we are in case 2.

Note that the expected production has to reach a high level relative to the demand

such that renewable producers withhold production. µq has to be at least D
2 (for the

monopoly situation with a infinite inflexible power plant fleet) but increases with

increasing number of players or more flexible power plant fleet (for a duopoly it is

at least 2D
3 ).

To case 2 (qir1 + qir2 = Q i): This is the same case as shown in Proposition 2.5.

Therefore the optimal quantities for each individual renewable producer is

q∗ir1 =
1

N + 1

�

N + 1−
a1

a2

�

µiq (2.50)

q∗ir2 =
1

N + 1
a1

a2
µiq. (2.51)
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and for all renewable producers together are

q∗r1 = µq −
a1

a2(N + 1)
µq (2.52)

q∗r2 =
a1

a2(N + 1)
µq (2.53)

if µq ≤
a2N(N+1)

a2N(N+1)2−a1N
D + a2N(N+1)

a1(a2(N+1)2)−a1N
b. Remember that Nµqi = µq. This closes

the proof.
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3 Explaining Electricity Forward Premiums -
Evidence for the Weather Uncertainty Effect

With the increasing share of volatile renewable energies, weather prediction be-

comes more important to electricity markets. The weather-driven uncertainty of

renewable forecast errors could have price increasing impacts. This research sets up

an analytic model to show that the day-ahead optimal bidding under uncertain re-

newable production is below the expected production and thus price increasing. In

a second step, the price increasing effect on forward premiums by specific weather

types and their renewable production uncertainty is proved via empirical methods.

Weather types are identified in which renewable production is harder to predict. The

findings connect weather dependent renewable forecast uncertainty to forward pre-

miums and support the consideration of weather types in price forecasting models.

3.1 Introduction

Renewable energies like wind and solar are one major pillar in order to reach CO2-

emission targets in the electricity sector. The production of wind and solar energy is

weather dependent and hence volatile. This volatility induces uncertainty to whole-

sale electricity prices. In several countries, like Germany, renewable energies have

reached a significant capacity share which increases uncertainty in the electricity

markets to a relevant degree. It is thus highly relevant to have insights how electric-

ity prices are affected by wind and solar uncertainty.

Most electricity markets are organized as sequential markets, see for instance

Cameron and Cramton (1999) for PJM market or Viehmann (2017) and Knaut and

Paschmann (2017b) for Germany. The sequential market structure allows for risk

hedging by selling or buying electricity forward. Risk hedging becomes more im-

portant under a high share of volatile wind and solar production. This weather-

dependent wind and solar production can accurately be predicted to a limited time

horizon, e.g. 24 hours. Thus, the relevant markets are (1) the short-term forward

market, in this case the day-ahead market, and (2) the real-time market, also known

as intraday-market. However, planned production and demand in the (day-ahead)
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forward market can deviate from the final realization in the real-time market. As a

risk-neutral renewable producer, it is questionable if it is profit optimal to sell the

total expected production in the day-ahead forward market. Under a non-linear

convex merit order, strategic underselling could be optimal for producers to avoid

re-buying forward sold quantities. The (forward) production withholding would

lead to higher forward market prices. The specific problem in this paper is to iden-

tify if and to what extent wind and solar uncertainty lead to positive forward price

premiums.

This essay examines the research question both theoretical and empirical. The the-

oretical result is based on a two-stage profit-maximizing framework under perfect

competition. Renewable producers have zero marginal costs and uncertain produc-

tion realization. With uncertain production and a convex, quadratic merit order

curve, the optimal first-stage (i.e. forward) production is below the expected pro-

duction realization. The production withholding tends to increase first stage prices

and is dependent on the production’s standard deviation. The empirical evaluation

supports the theoretical findings within the German electricity market. The German

market is considered due to its high share of wind and solar production.1 Weather

type definitions of the German Weather Service are applied to determine the forward

premium effects. The weather types are also applied to classify the wind and solar

uncertainty. The empirical findings confirm that weather types can be utilized to

indicate forward price premiums and to classify production uncertainty. Thus, it is

highly recommended to incorporate wind and solar uncertainty in price forecasting

models. The results suggest that a potential classification is based on weather types.

The conducted research is based on fundamental work of Allaz (1992) as well

as Bessembinder and Lemmon (2002). Allaz (1992) shows analytical that there is

a general incentive within a Cournot oligopoly (with uncertain production) to sell

production in forward markets. Bessembinder and Lemmon (2002) derives similar

results for electricity producers under demand uncertainty. They find positive price

premiums for demand uncertainty within their theoretical model and empirical sup-

port. Their scope is on a monthly granularity which was extended by the work of

Longstaff and Wang (2004) to day-ahead and real-time markets. The underlying

research extends the theoretical work of Bessembinder and Lemmon (2002) and the

empirical analysis of Longstaff and Wang (2004) by the consideration of production

uncertainty of wind and solar energy. Additionally, the underlying research focuses

on perfect competition since today’s electricity markets have widely reached high

1Wind and solar production had a share of 18.3% of Germany’s gross electricity production in 2015
(cf. Bundesnetzagentur (2016)).
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supplier diversity.

The major distinction of this research to existing literature is the classification of

wind and solar uncertainty by weather types. To the best of my knowledge, the

underlying research is the first which applies weather type classifications to derive

insights on forward price premiums and price deviations. Thus, this research sup-

ports electricity market participants by new insights. First, market participants get

information on the general forward premium effects by each weather type, whereas

weather types can be predicted accurately several days before realization. Some

weather types indicate higher forward premiums than others. The information of

the weather type situation allows for an approximation of the (mean) forward pre-

mium level. Second, the increasing effect on forward premiums by wind and solar

uncertainty is quantified. A reduction in uncertainty would translate to reduced for-

ward premiums. Third, market participants can incorporate weather types in fore-

casting models to consider uncertainty and derive a more accurate range of their

price forecasts.

The remainder of this paper is structured as follows: Section 3.2 provides the

fundamental theoretical and empirical literature as well as background information

on the weather types. The theoretical analysis and findings are stated in Section 3.3.

It covers the analytical model settings and assumptions as well as the theoretical

finding of optimal production underselling under uncertainty. The empirical analysis

is presented in Section 3.4. This section is the core of the paper. It contains the

data, the empirical model setup and the results of the hypothesis tests. Section 3.5

concludes the present research.

3.2 Background

This section provides the background for the subsequent analysis. First, the literature

regarding the theory is outlined. Then, previous work on the empirical background

is briefly discussed. Afterwards, weather type classifications and their utilizations are

presented. Within this work, forward premiums are defined as the price difference

between the forward market and the real-time market, which corresponds to the

definitions of Bessembinder and Lemmon (2002) or Douglas and Popova (2008).
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3.2.1 Theoretical model

Fundamental analytic work on pricing and behavior in forward markets is given

by Allaz (1992) (general) and Bessembinder and Lemmon (2002) (for electricity

markets). Allaz (1992) sets up a two-stage Cournot oligopoly model with a homo-

geneous product. He considers uncertainty of the second stage price realization. He

derives his results of forward trading incentives under the assumption of oligopolis-

tic behavior as well as a linear inverse demand function and a linear cost function.

As it is shown by Knaut and Obermüller (2016) as well as Bessembinder and Lem-

mon (2002), a non-linear (convex) cost function is an essential prerequisite such

that uncertainty leads to forward premiums. Hence, this research assumes a convex

quadratic linear cost function (called merit order). The inverse demand function is

inelastic as widely assumed in short-run electricity market models. Additionally, the

underlying research extends the model of Allaz (1992) to perfect competition and

shows that the results still hold true.

Bessembinder and Lemmon (2002) analyzes a similar two-stage model as to Allaz

(1992) (forward and spot market). They show analytical and empirical evidence of

the demand uncertainty effect to forward premiums. However, their focus is demand

uncertainty on a monthly basis. The present research focuses on weather-dependent

wind and solar production uncertainty in the short-run (day-ahead to realization).

Additionally, this research focuses on perfect competition because the number of

actors in electricity markets has rapidly increased since the liberalization (cf. Jamasb

and Pollitt (2005) or Joskow and others (2008)). The work of Bessembinder and

Lemmon (2002) is widely accepted and the model is extended in several ways, e.g. to

consider gas storages (Douglas and Popova (2008), Bloys van Treslong and Huisman

(2010)) or capacity restrictions (Cartea and Villaplana, 2008).

The underlying theoretical model is oriented on the basic work of Ito and Reguant

(2016) and Knaut and Obermüller (2016). Ito and Reguant (2016) find evidence

for price premiums under imperfect competition (i.e. strategic behavior) and re-

stricted entry of arbitrage (or speculators). They set up a two-stage model and as-

sume perfect foresight, i.e. no uncertainty. In contrast to their model assumptions,

this research accounts for uncertainty under perfect competition. Evidence for price

premiums is shown. Thus, this work complements the results of Ito and Reguant

(2016) by the finding that uncertainty has influences on price premiums as well.

The work of Knaut and Obermüller (2016) was conducted parallel to Ito and

Reguant (2016) with a similar analytical two-stage strategic bidding model. They
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focus on renewable producers which have in general zero marginal costs but uncer-

tainty about their production realization. They find theoretical evidence for the in-

centive of strategic production withholding on the forward market to increase prices.

Additionally, they find that under a linear merit order function uncertainty has no

influence on the strategic bidding. Production uncertainty (e.g. of renewable pro-

ducers) becomes relevant with a higher order merit order function. Bessembinder

and Lemmon (2002) come to similar findings within their theoretical framework.

The present analytical model extends the model of Knaut and Obermüller (2016)

by (1) perfect competition and (2) a convex quadratic merit order function. Under

this model setting, uncertainty becomes a relevant price driver for profit maximiza-

tion. Based on that, theoretical insights on optimal bidding under uncertainty are

derived in Section 3.3.

3.2.2 Empirical evaluation

Herein before mentioned theory will be supported by empirical evidence of forward

premiums. This is in line with several papers which estimate risk premiums em-

pirically. Similar to the theoretical model of Bessembinder and Lemmon (2002),

Longstaff and Wang (2004) empirically analyzed forward premiums in the day-

ahead and real-time market of PJM. They find empirical evidence for forward pre-

miums dependent on demand uncertainty. Additionally, they show that the forward

premium might deviate by hour and season and could also be negative. Similar

findings are confirmed by Paraschiv et al. (2015) for the German electricity market.

Focus of Paraschiv et al. (2015) is on the time-varying structure of forward premi-

ums (hourly, weekday/weekend, season). They find that risk premiums are higher

during weekdays and in winter. In contrast to Paraschiv et al. (2015), the under-

lying research does not aim to identify or quantify hourly forward premiums. The

underlying research focuses on the uncertainty classification by weather types and

their effect on forward premiums.

Bunn and Chen (2013) provides an overview of different explanation approaches

for drivers of forward premiums. They do not consider weather types. They state

that results are to some extent ambiguous since they are strongly related on the

underlying markets, competition, as well as spatial and temporal resolution. An ex-

tensive overview of further literature on risk premiums is given by Ito and Reguant

(2016) and Furió and Meneu (2010). However, forward premiums are not fully ex-

plained by existing research. Recent work of Paschmann (2017) explains forward
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premiums to some extent by restricted possibility of trading in the real-time mar-

ket instead of purely rely on hedging incentives and the merit order convexity. This

indicates the necessity of further research in the field of forward premiums. Most

research is focused on demand uncertainty. The present work extends the classi-

cal approaches to consider renewable (i.e. wind and solar) production uncertainty.

The renewable production uncertainty becomes more relevant under the proceeding

energy transition towards volatile renewable energies. Thus, it is highly relevant

to consider the effects of weather-dependent uncertainty. This work incorporates

weather type classifications which are described subsequently.

Throughout this paper, the focus lies on ex-post forward premiums. Ex-post for-

ward premiums rely on observed price differences whereas ex-ante forward premi-

ums are based estimated price realization. For a detailed discussion on ex-post and

ex-ante forward premiums see Furió and Meneu (2010).

3.2.3 Weather classification

This research incorporates weather-dependent volatile wind and solar energies on

forward premium effects. An increase in zero marginal costs renewable production

has in general a price dampening effect. This effect is widely known as merit order

effect and analyzed for instance in Kiesel and Paraschiv (2017), Sensfuß et al. (2008)

or Hirth (2013). Besides the classical long-term merit order effect, short-term devi-

ations have influences on real-time prices (compared to day-ahead forward prices).

Positive production deviations, i.e. more production than estimated day-ahead, lead

to a decrease in real-time prices. This price decreasing effect is shown exemplarily

in Figure 3.1 for the German electricity market. The figure shows price forecasts

and realizations (upper graph) in comparison to wind and solar production fore-

casts and realizations (two lower graphs). A remarkable drop in real-time prices

can be observed at 12:00am on 09.08.2014 (horizontal center of the plot). The

underestimated production realization of wind energy and to some extent solar en-

ergy seem to be a driver for the extensive price drop from +20 EUR/MWh down to

-25 EUR/MWh.

For the underlying empirical analysis (Section 3.4), it is necessary to capture the

uncertainty of wind and solar production, e.g. by clustering situations of similar

uncertainty. This clustering is performed based on weather types. Other research

which applies weather type classifications are for instance Lange and Waldl (2001)

or Couto et al. (2015) for wind as well as Chen et al. (2011) or Shi et al. (2012)
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Figure 3.1: Forecasts and realizations for (a) electricity prices, (b) wind production and (c)
solar production in Germany from 08. Aug. 2014 to 11. Aug. 2014. It shows wind
and solar production forecasts and realizations in comparison to price forecasts
and realizations. Realized wind production at 12:00h, 09. Aug. (center of the
plot), is 16 GW and thus almost twice as high as forecasted. A simultaneous
price drop to -25 EUR/MWh in intraday-prices can be observed.

for solar. None of those research works focuses on forward price premiums. Couto

et al. (2015) propose a weather clustering approach to identify and characterize

weather types with high wind power ramps (i.e. strong increase in hourly wind dif-

ferences). They propose that large scale weather types are a suitable clustering

possibility for wind ramps. Lange and Waldl (2001) shows that the wind prediction

error differ with respect to weather types. Their research is limited to two wind sites

for two weather types. The applied weather type classification within this present

research considers 40 different weather types to account for Germany’s wind and

solar prediction errors (or uncertainty). Chen et al. (2011) shows that an artificial

neural network (ANN) to predict PV power production performs better if a weather

type separation is applied before. They categorize as to three weather types (sunny,

cloudy, rainy). Similar, Shi et al. (2012) shows that the PV power forecasting preci-

sion depends strongly on the weather type and can be improved by selection of the

adequate estimation model. They differentiate between four classes (sunny, cloudy,

foggy, rainy). The aforementioned research is limited to either wind or solar predic-

tion errors. In contrast to that research, the underlying work applies weather type

classifications to derive information about both wind and solar production uncer-

53



3 Forward Premium

tainty.

The weather types within the present research are clustered based on the 40 ob-

jective Weather Type Classifications of the German Weather Service (cf. Bissolli and

Dittmann (2001)). A similar number of weather types (29) is used in James (2007)

by a clustering of ERA40 re-analysis data. However, the focus of James (2007) is on

the comparison between his weather type classifications and the traditional classifi-

cation of Gerstengarbe et al. (2010) (which reaches back to the 1950s).

3.3 Theory

The theoretical findings are based on an analytical model similar to Ito and Reguant

(2016), Knaut and Obermüller (2016), and Zhang et al. (2015). The model setup

consists of two stages. Stage 1 is the day-ahead forward market. Stage 2 is the real-

time market (or intraday market). Three groups of players interact with each other,

renewable producers r, conventional producers c and the consumers:

• The renewable producers r have zero marginal costs of production. In stage 1,

they face uncertainty of their final electricity production in stage 2. In stage 2,

the uncertainty for the renewable producers resolves. The renewable players

form an oligopoly. They compete in order to maximize profits with respect

to production (similar to the Cournot competition). However, the focus is

on a competitive outcome, which corresponds to the solution for which the

number of renewable producers N tends to infinity. All renewable players are

assumed to be symmetric. Note that this assumption is a simplification and

can be relaxed similar to Knaut and Obermüller (2016).

• The conventional producers c act perfectly competitive. They have positive

marginal costs (> 0) and do not deviate from bidding their marginal costs.

An underbidding of their marginal costs would lead to losses whenever the

electricity price is below marginal costs and production was sold. An overbid-

ding is prohibited by the German Monopolies Commission which controls and

inspects significant bidding behavior above marginal costs (Bundeskartellamt,

2011).

• The consumers have an electricity demand D. The demand is assumed to be

inelastic in the short-run. This is a typical assumption for stylized short-run
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electricity market models (cf. Ito and Reguant (2016)).2

• All players are assumed to be risk-neutral.

The marginal cost function MC (or supply function) is assumed to be quadratic,

i.e. convex and strictly monotonic increasing: MC(q) = aq2+bq+c. In some analytic

electricity market models, a linear marginal costs function is assumed as simplifica-

tion (a = 0). This is a strong simplification. As shown by Knaut and Obermüller

(2016), under a linear merit order function, only the first momentum (expected

production) has an impact on optimal bids. Under a quadratic (convex) merit order,

the first and the second momentum (standard deviation) have an impact on optimal

bids. The standard deviation can be interpreted as a measure of uncertainty. In or-

der to capture the uncertainty effects, a more realistic quadratic merit order is used.

An empirical evaluation of the order of the merit order function can be found in

Appendix 3.6.1. It indicates that the German merit order function can be estimated

by a linear to quadratic function.

The first stage bid of the renewable producer i is denoted as qir1. For each renew-

able producer i, the combined first stage and second stage bids have to be equal to

the total realized production Q ir : qir1 + qir2 = Q ir The realized production Q ir of

player i in stage 2 is uncertain in stage 1 with a probability density function f (Q ir).

The uncertainty resolves in stage 2.

The aggregated first and second stage bids as well as the aggregated production

of all renewable producers are denoted as following: qr1 =
∑

i qir1, qr2 =
∑

i qir2,

Qr =
∑

i Q ir .

Each renewable player i = 1, . . . , N maximizes her profit function Πir under con-

sideration of the bids of the other (N−1) symmetric renewable players which results

in

Πir(qir1, qir2) = p1

�

qir1, (N − 1)q jr1

�

qir1 (3.1)

+ p2

�

qir1, (N − 1)q jr1, qir2, (N − 1)q jr2

�

qir2.

Within this model setup, the following proposition holds.

Proposition 3.1. Under above assumptions, the optimal amount of sold renewable

2Short-run inelastic demand is a simplifying assumption for the theoretical analysis. For the German
day-ahead market, Knaut and Paulus (2017) shows a demand elasticity of maximum −0.13 in
certain hours. Due to recent developments of (battery) storages and demand side management,
this effect is expected to grow.
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production in the first stage is

q∗r1 = D+
1
2

b
a
−

√

√

√

�

��

D+
1
2

b
a

�

−µ
�2

+σ2

�

. (3.2)

Proof. At this point, a brief outline of the approach is given. The detailed proof can

be found in Appendix 3.6.2. The profit equation for one producer i is maximized.

After taking the first derivative, setting it equal to zero and substituting the integrals

of the distribution functions by the expectation and standard deviation, the necessary

optimality conditions are derived. Then, the symmetry assumptions of the N firms

are applied to derive the joint equilibrium solution.

Equation (3.2) shows the competitive first stage renewables’ bid. It corresponds

with the expected outcome under perfect information.

Corollary 3.1. Without uncertainty, the optimal first stage bid of all renewable players

is q∗r1 = µ.

Proof. Without uncertainty, the production in the second stage is identic to the ex-

pected production in stage 1. Thus, no standard deviation exists. Set σ = 0 in the

Equation (3.2). The remaining optimal bid becomes q∗r1 = µ.

In the proof of Proposition 3.1, two production withholding effects can be en-

countered. First, the potential oligopolistic behavior and second the withholding

due to production uncertainty. Since the focus lies on the perfect competition case,

the oligopolistic production withholding cancels out while the number of producers

tends to infinity for the perfect competition case. However, Equation (3.20) in the

Appendix 3.6.2 shows that production uncertainty leads to production withholding

also for the oligopoly case. This can be found by the uncertainty-driven standard

deviation σ which influences optimal oligopolistic first stage production bids. Thus,

the findings can easily be transferred to oligopolies (which is not covered within this

research).

The optimal first stage bid q∗ir1 of Equation (3.2) is dependent on σ. With higher

standard deviation, the optimal bid is decreasing as stated in Proposition 3.2.

Proposition 3.2. Under above assumptions, an increased uncertainty decreases the

optimal production bid for renewable producers in the first stage.
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Proof. Take the first derivative of Equation (3.2) with respect to σ:

∂

∂ σ
qr1 = −σ

�

��

D+
1
2

b
a

�

−µ
�2

+σ2

�−1/2

︸ ︷︷ ︸

>0

< 0 , for σ 6= 0 (3.3)

which is strictly negative or equal to 0. It becomes zero if and only if σ = 0, i.e. no

uncertainty exists. Since the first derivative is negative, the function is decreasing in

σ.

Figure 3.2 visualizes the result of Proposition 3.2 with typical numbers inserted.

The figure shows that the increase in uncertainty (i.e. increasing σ) diminishes the
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q
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Figure 3.2: Impact on an increasing uncertainty via σ on the optimal first stage renewable
bid q∗r1 relative to the expected outcome E[qr1]. The parameter to derive the
figure were the aforementioned equations with D = 70, µ= 40, a = 0.01, b = 0.

optimal first stage bid. The slope of the curve is dependent on the merit order

parametrization as well as the demand intersection and expected renewables’ pro-

duction.

The rationale for Proposition 3.2 is the following: The representative renewables

supplier aggregates price-taking behavior of many, small renewables suppliers. Each

of these suppliers does not expect that her quantity choice will affect the second pe-

riod price. However, each renewable producer knows that if she produces relative

little energy in stage 2, also all other renewables producers will produce little as well

(assuming perfect correlation, for simplicity). Thus, she knows that whenever she is

overselling (i.e., more than the expected production), she will have to buy missing

quantities at a higher intraday price. Vice versa when underselling with lower intra-

day prices. Under a non-linear convex merit order, an overselling (i.e. selling more

day-ahead than intraday produced) is more expensive than an underselling.
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The behavior of conventional producers differ from the renewable producers’ be-

havior: The production ability of a conventional producer is independent of the

market situation, i.e. without weather-dependence and correlation effects. When-

ever the intraday market price is above her marginal costs, she will want to extend

her production by one additional (marginal) unit if remaining production capacity is

available. Whenever the intraday market price is below her marginal costs and she

has sold production forward for at least her marginal costs, she is willing to demand

one additional (marginal) unit electricity from the intraday market to fulfill her de-

livery responsibilities with lower costs. In all other situations (prices below marginal

costs in both markets; or sold day-ahead above marginal costs and intraday-price is

between marginal costs and day-ahead price), she has no incentive to deviate.

Note that the aforementioned behavior for renewable producers would not occur

with a linear merit order. With a linear merit order, positive and negative price de-

viations would compensate each other. This compensation requires that the merit

order in the forward market and in the real-time market is identic. Knaut and Ober-

müller (2016) shows, that a steeper real-time market merit order would result in a

stronger shift towards selling more production in the first stage (under a competi-

tive oligopoly). Knaut and Paschmann (2017b) shows that a steeper real-time merit

order can occur due to inflexible production capabilities. Overall, an optimal bid

under uncertainty is below the expected production to avoid cost-intense re-buying

of sold but non-realized production.

The quantity deviation in the first stage expected production (based on Propo-

sition 3.1) translates to a price deviation effect. The theoretical result is stated in

Proposition 3.3.

Proposition 3.3. Under the above assumptions and the optimal derived first stage

quantity q∗r1, the corresponding first stage equilibrium price is

p∗1 = a((D−µ)2 +σ2) + b(D−µ) + c. (3.4)

This optimal first stage wholesale price exceeds the price of trading the expected produc-

tion (without uncertainty) solely by the term aσ2.

Proof. Under the above assumptions, plug in the optimal quantity to the marginal

costs function. Thus, p∗1 = MC(D−q∗r1) = D2a−2Daµ+Db+ aµ2+ aσ2− bµ+ c =

a((D−µ)2+σ2)+ b(D−µ)+ c. Without uncertainty, the variance σ2 in the optimal

quantity equals 0. The price delta with and without uncertainty is aσ2 (which is

positive). Thus, uncertainty increases the first stage prices.
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Note that Equation (3.4) is the risk neutral equilibrium result. Thus, arbitrage be-

havior should not lead to converging day-ahead and intraday-prices. Proposition 3.3

shows the price increasing effect of uncertain production. Figure 3.3 visualizes the

findings.

Q

dC
dq

p
DD−E[qr]

p ∗ = [p]

(i) Optimal first stage bid and price with perfect

foresight.

Q

dC
dq

p
DD−E[qr] D− q ∗r

[p]

p ∗

f(qr)

(ii) Optimal first stage bid and price under un-

certainty.

Figure 3.3: Optimal day-ahead wholesale price and residual demand under (a) perfect fore-
sight and (b) uncertainty. D is the demand, qr the renewable production, f (qr) a
normal distribution of renewable production, p the price, dC/dq the first deriva-
tive of the cost function (i.e. the merit order). The parameter to derive the figure
were D = 70, µ = 40, σ = 30, a = 0.01, b = 0, c = 20. Note that neither the
normal distribution nor the standard deviation of σ = 30 are realistic; they are
chosen to simplify the illustration.

The uncertainty reduces the optimal first stage bid. This increases the residual

demand and thus prices. The profit optimal day-ahead price deviates from the ex-

pected day-ahead price. The plotted distribution in this figure is a normal distribu-

tion. However, the theoretical proof has no specific assumptions according to the

distribution function.

The subsequent section gives empirical evidence of this price increasing effect in

the German electricity markets (day-ahead to intraday). The uncertainty is mea-

sured via standard deviations within weather types.

3.4 Empirical evidence

This section examines the empirical evidence for the provided theoretical results of

Section 3.3. More precisely, two hypotheses are validated:

• Hypothesis A: The mean level of the forward premiums can be categorized by

weather types.
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• Hypothesis B: An increased wind and solar production uncertainty leads to an

increase in forward premiums.

Hypothesis A allows an ex-ante indication for higher forward premium levels in elec-

tricity markets. Simultaneously, Hypothesis A motivates the classification of uncer-

tainty with respect to weather types. This classification is utilized in Hypothesis B.

Both hypotheses are evaluated via regression models. The analysis focuses on the

German/Austrian electricity market due to its comparable high share of wind and

solar energy. Both electricity markets are organized as a fully coupled bidding zone.

In the subsequent, the underlying data is described firstly. Then, the effect of

weather types on the mean forward premiums is tested (Hypothesis A). Afterwards,

the motivation for the uncertainty classification by weather types is given which

uses the standard deviation as uncertainty measure.3 Finally, empirical tests are

performed to verify the impact of higher uncertainty on forward premium increases

(Hypothesis B).

3.4.1 Data

Four different sources provide the data for the empirical analysis. First, wind and so-

lar forecast and realization data is derived from the EEX Transparency platform. Sec-

ond, price data (day-ahead and intraday) is obtained from EPEX Spot. The ENTSO-E

Transparency platform provides the load data. Fourth, the weather type classifica-

tion dataset is derived from the German Weather Service (DWD). Detailed descrip-

tion can be found subsequently. An overview is given in Table 3.1. Descriptive

numbers are listed in 3.6.3. The analyzed timespan covers July 2015 to December

2016.

Wind and solar production data

The wind and solar production data is published by the EEX Transparency platform

(Transparency, 2017). The focus lies on the provided wind and solar data for Ger-

many and Austria due to the same bidding zone. The production data is provided by

the Transmission System Operators (TSOs). The data has a quarter-hourly resolu-

3As to the theory section, the standard deviation is the relevant measure. Thus, the subsequent
analysis focuses on the standard deviation as the indicator for forecast uncertainty. Other indicators
like the Root Mean Squared Error (RMSE) or the Mean Absolute Error (MAE) would be possible
as well but include similar information. Hence, they are redundant and the focus on the standard
deviation is preferred.
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Table 3.1: Overview of applied data. Regional focus is the joint German/Austrian bidding
zone. The timespan covers July 2015 to December 2016.

Data Source Used Resolution

Wind and Solar Production EEX Transparency Hourly
Day-ahead and Intraday Prices EPEX Spot Hourly
Load ENTSO-e Hourly
Weather Type Classifications DWD Daily

tion, which is aggregated within this analysis to hourly mean values for comparison

reasons. In the remaining paper, the forecast error is applied which is defined as

real izat ion − predic t ion according to Morales et al. (2013). For wind and so-

lar production, the forecast error is normalized by the monthly installed capacity

(real izat ion− predic t ion)/Instal ledCapaci t y . This accounts for the fact of con-

tinuously increasing capacity and ensures comparability over time. The capacity data

source is the German regulator Bundesnetzagentur (www.Bundesnetzagentur.

de). For the ease of readability, the forecast error is denoted with ∆ throughout

this paper. The (normalized) wind forecast error in hour h, for instance, is given by

∆Windh.

The reported data by the TSOs is not based on exact metering for each production

utility. They use extrapolations from specific metered utilities in combination with

weather data; see for instance 50Hertz (2017), Amprion (2017), Tennet (2017),

TransnetBW (2017) and APG (2017). The TSOs are responsible for grid stability

and coordinate the market participation for a certain share of wind and solar pro-

duction (especially household production). Additionally, they closely collaborate

with weather forecasting institutes. Thus, the TSOs’ forecasts and extrapolated re-

alizations are the best available wind and solar production data for Germany. Nev-

ertheless, minor biases could exist.

Price data

The price data is published by the EPEX Spot (EPEX SPOT, 2017). The data contains

the day-ahead electricity price and the intraday electricity price. The day-ahead price

can be considered as the price forecast. Additionally, the day-ahead price determines

the reference point for short-run price deviations of the expected information. The

price covers the joint bidding zone of the German/Austrian electricity market.

The intraday price data is the volume weighted average price of the last three
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hours, which is called ID3 at EPEX Spot. The ID3-price allows comparing the day-

ahead price to the final intraday price level. The average price is taken since the

last accepted intraday price in the continuous intraday market might be biased due

to market overreactions, open positions before gate closure and irrational trader

decisions. Thus, the last bid is not necessarily a valid indicator for the fundamental

price level of the intraday market. The following analysis focuses on the ID3-price.

The ID3-price index is available since July 2015 which restricts the total dataset

time-span.

EPEX denotes for the intraday prices that the "German and Austrian areas might

be disconnected temporarily due to necessary measures done by responsible TSOs.

Hence displayed values might not be common German/Austrian market data in all

cases but isolated German only or isolated Austrian only market data." (EPEX SPOT,

2017). Other countries cannot participate in the intraday auction. The disruptive ef-

fects of the intraday participant restriction are investigated in Knaut and Paschmann

(2017b), Knaut and Paschmann (2017a) and Paschmann (2017).

In some rare situations, price differences between the day-ahead and intraday

market become exceptional large. This cannot be explained fundamentally by wind,

solar or load deviations. Reasons could be for instance power plant outages or un-

balanced portfolios which cause high penalties in the balancing market and lead to

corresponding trader behavior. To avoid biased estimations by not fundamentally

driven price differences, those observations are handled as outliers and dropped

from the analysis. An observation is categorized as an outlier if the price difference

exceeds three times its standard deviation. Thus the remaining data covers 99.7% of

the observations. The threshold for price differences has a value of ±37 EUR/MWh

around the average day-ahead price level of 30.30 EUR/MWh in the observation

period.

Load data

Corresponding load data for the joint bidding zone of Germany and Austria is derived

by ENTSO-E. Both, a forecast and a realization value are published. The load values

do not incorporate exports or imports. The current market design does not allow

foreign production to participate in the intraday market (cf. Knaut and Paschmann

(2017b)). Thus, it is consistent within this analysis to neglect trade in the delta com-

parison. In order to derive prices, instead of price differences, the foreign production

needs to be considered within the day-ahead market. Since the latter analysis fo-
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cuses on price deltas, this is not necessary within this framework.

Weather type classification data

The weather type classification data is published by the German Weather Service

DWD (DWD, 2017). Current weather types are published daily including forecasts

for the next seven days. Detailed information as to the classification scheme can be

found in Bissolli and Dittmann (2001). The objective weather type classifications

are a daily categorization of the German weather situations. That means each day

is categorized to one weather type. The weather types are defined according to the

following criteria:

• Advection type (no prevailing direction, northwest, northeast, southwest, south-

east)

• Cyclonality in 950 hPa (cyclonic, anticyclonic)

• Cyclonality in 500 hPa (cyclonic, anticyclonic)

• Humidity of the atmosphere (wet, dry)

Note that 500 hPa and 950 hPa correspond to an approximate height of 5.5 km and

0.5 km above sea level, respectively. The advection type reflects the majority of

horizontal wind directions on the 750 hPa level. An advection direction is prevailing

if it covers at least two thirds of the measured (weighted) wind directions (cf. Bissolli

and Dittmann (2001)).

The above combinations result in 40 possible weather types. Statistics (e.g. fre-

quency) can be found in the 3.6.3. Data exists back to 1979. Due to price data

availability reasons, the focus of this research is on the timespan from July 2015 to

December 2016.

3.4.2 Effect of the weather types on the mean forward premium level
(Hypothesis A)

This section examines Hypothesis A. The question is answered if and to what extent

weather types have an effect on the mean forward premium levels. This question is

analyzed by an effect coding approach which is one specific type of contrast coding.

Here, the analysis provides the difference of each sub-groups’ mean to the grand

mean forward premium. The grand mean is defined as the mean of all observa-

tions. A general overview of contrast coding and effect coding can be found in Davis
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(2010) and McClendon (1994). The method dates back to former work of Overall

and Spiegel (1969). In a first step, the effect of the weather types on the mean level

of forward premiums is analyzed. In a second step, the criteria to define and distin-

guish the weather types (advection direction, cyclonality, humidity) are subject to

the effect coding analysis.

Forward premium effects by each weather type

The analyzed effect coding model reads as following

ForwardPremiumh = Intercept +
∑

i

βiWeatherT ypei,h + εh (3.5)

for each hourly observation h. Here, WeatherT ypei,h is a categorical dummy vari-

able with i the weather type index 1 to 40. The weather types are defined per day

and therefore matched to the corresponding hours h. For each hourly observation h,

at most one dummy variable WeatherT ypei can be equal to one whereas all other

dummies equal zero. If all dummy variables are equal to zero, the pure intercept

is estimated which represents the grand mean. The εh represents the hourly error

term, i.e. the difference between the estimated sub-groups’ mean forward premium

and the hourly observations.

The results of the effect coding how the group mean deviates from the grand

mean can be found in Table 3.2. The overall mean is highly-significant but slightly

negative over the observation period with a value of −0.14 EUR/MWh. This indi-

cates on average lower day-ahead prices than intraday-prices. Based on the results

of the theory section, this seems counterintuitive since positive day-ahead forward

prices are expected. In fact, other forward premium effects could influence the over-

all forward premium mean. Further effects are for instance restricted participation

which leads to steeper intraday merit order curves and thus higher intraday-prices

(cf. Paschmann (2017)), hourly forward price deviations which could be negative

(investigated by Longstaff and Wang (2004) and Viehmann (2011)), seasonal for-

ward premium effects (Bessembinder and Lemmon, 2002), scarcity effects (low re-

serve margins) which could be price influencing (Bunn and Chen, 2013). If other

effects outweigh the forward premium effect of production uncertainty, the overall

forward premium can become negative.

The reported values of Table 3.2 are the deviations of the groups’ mean value to

the grand mean. For instance, the weather type 1 has a 1.02 EUR/MWh higher mean
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Table 3.2: Differences of each weather types’ mean to the grand mean estimated by the effect
coding approach ForwardPremiumh = Intercept +

∑

i βiWeatherT ypei,h+εh.
Number of observations is 13040 hourly values from July 2015 to December 2016.
Significance levels denoted by * p<.1, ** p<.05, ***p<.01. Significance and es-
timations of the grand mean indicates the difference to a zero mean value. Note
that five weather classes are omitted due to too less observations in the investi-
gated time horizon.

Weather Wind direction Cyclonalitity Cyclonalitity Humid- Difference
Type in 950 hPa in 500 hPa ity to grand mean

Grand −0.140***
mean

1 no direction anticyclonic anticyclonic dry 1.015***
2 northeast anticyclonic anticyclonic dry 0.391
3 southeast anticyclonic anticyclonic dry 1.347**
4 southwest anticyclonic anticyclonic dry 0.802***
5 northwest anticyclonic anticyclonic dry −0.942***
6 no direction anticyclonic anticyclonic wet 0.664**
9 southwest anticyclonic anticyclonic wet 0.488***

10 northwest anticyclonic anticyclonic wet 0.366**
11 no direction anticyclonic cyclonic dry 1.461***
12 northeast anticyclonic cyclonic dry 0.207
14 southwest anticyclonic cyclonic dry 0.904***
15 northwest anticyclonic cyclonic dry −0.024
16 no direction anticyclonic cyclonic wet 2.072*
17 northeast anticyclonic cyclonic wet −3.773***
19 southwest anticyclonic cyclonic wet −0.737**
20 northwest anticyclonic cyclonic wet −0.046
21 no direction cyclonic anticyclonic dry −0.375
23 southeast cyclonic anticyclonic dry 1.032**
24 southwest cyclonic anticyclonic dry −0.740
25 northwest cyclonic anticyclonic dry 0.413
26 no direction cyclonic anticyclonic wet −5.076***
27 northeast cyclonic anticyclonic wet 1.182
28 southeast cyclonic anticyclonic wet −1.383***
29 southwest cyclonic anticyclonic wet −1.102***
30 northwest cyclonic anticyclonic wet 1.759**
31 no direction cyclonic cyclonic dry −0.170
32 northeast cyclonic cyclonic dry −0.256
33 southeast cyclonic cyclonic dry 2.607***
34 southwest cyclonic cyclonic dry 0.419
35 northwest cyclonic cyclonic dry 1.163**
36 no direction cyclonic cyclonic wet −3.792***
37 northeast cyclonic cyclonic wet −0.312
38 southeast cyclonic cyclonic wet −1.907***
39 southwest cyclonic cyclonic wet 0.718***
40 northwest cyclonic cyclonic wet −0.080
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than the grand mean and this deviation is highly significant for the observations. The

absolute mean forward premium of the Weather Type #1 is thus 0.88 EUR/MWh,

derived as the delta of both aforementioned values.

In total, the mean forward premiums of 22 weather types are significantly different

from the grand mean; among them 14 weather types with a significance level of

1% or below and seven weather types with a significance level between 1% and

5%. Overall, 14 of the 22 significantly deviating means of the weather types are

positive whereas eight are negative deviating. Some weather types as for instance

Weather Type #26 or #33 have remarkable high deviations from the grand mean of

−5.07 EUR/MWh or +2.61 EUR/MWh, respectively. However, there is no weather

type criteria such as advection direction, cyclonality or humidity which has only

significant positive or negative mean deviations. Thus, no exact causality can be

derived but trends of the criteria could exist. Dry weather, for instance, seems to

have more often a positive significant effect whereas wet weather seems to have

more often a negative significant effect. The independent effects of the separated

weather type criteria are analyzed in the subsequent section.

Foward premium effects by the weather types’ separated criteria

This section puts emphasis on the separated weather type criteria (a) advection di-

rection, (b) cyclonality (at 950 hPa and 500 hPa) and (c) humidity. The same effect

coding approach as in Equation (3.5) is performed in which the categorical variables

are the clustered weather types’ sub-criteria.

(a) Advection direction Table 3.3 reports the mean differences of the advection

directions to the grand mean. The separated wind directions have only two sig-

nificant coefficients: Southwest wind and no prevailing wind direction. Both coef-

ficients deviate from the grand mean on a 10% significance level. For southwest

wind, the mean forward premium is 0.19 EUR/MWh higher than the grand mean of

−0.14 EUR/MWh. Without a prevailing wind direction, the forward premium mean

is 0.25 EUR/MWh lower than the overall mean. Based on these statistics and the fact

that all other wind directions show no significant contribution, the wind direction

indicates limited implications on the mean forward premium.
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Table 3.3: Results of the effects coding approach for the weather types’ criteria
advection direction for the model ForwardPremiumh = Intercept +
∑

i βiAdvect ionDirect ioni,h + εh. The estimated values indicate the difference
of the criterias’ mean value to the grand mean. Number of observations is 13040
hourly values from July 2015 to December 2016. Significance levels denoted by
* p<.1, ** p<.05, ***p<.01. Significance and estimations of the grand mean
indicates the difference to a zero mean value. Note that five weather classes are
omitted due to too less observations in the investigated time horizon.

Advection Difference to grand mean

Grand Mean −0.140***

Northeast 0.108

Northwest −0.116

Southeast 0.105

Southwest 0.191*

No prevailing direction −0.249*

(b) Cyclonality on 950 hPa Table 3.4 indicates high relevance of the cyclonality

on 950 hPa on the mean forward premium levels. Anticyclonic weather types in-

crease the mean forward premium by a mean of 0.27 EUR/MWh whereas cyclonic

weather types have a decreasing effect of −0.53 EUR/MWh. Both effects are highly

significant at the 1% level.

Table 3.4: Results of the effects coding approach for the weather types’ criteria cy-
clonality on 950 hPa for the model ForwardPremiumh = Intercept +
∑

i βiC yclonali t y950hPai,h + εh. The estimated values indicate the difference
of the criterias’ mean value to the grand mean. Number of observations is 13040
hourly values from July 2015 to December 2016. Significance levels denoted by
* p<.1, ** p<.05, ***p<.01. Significance and estimations of the grand mean
indicates the difference to a zero mean value. Note that five weather classes are
omitted due to too less observations in the investigated time horizon.

Cyclonality on 950 hPa Difference to grand mean

Grand Mean −0.140***

Anticyclonic 0.270***

Cyclonic −0.526***

The cyclonality on 500 hPa (approximately 5.5 km above sea level) has no signifi-
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cant coefficients. Therefore, the higher level cyclonality cannot be confirmed to have

relevant effects on the forward premium. The corresponding results can be found

in Appendix 3.6.5. As a reason for the non-significance, the relationship between

the forward premium and the near-surface renewable production can be expected.

Higher level weather conditions seem to have reduced impact for the electricity mar-

kets.

(c) Humidity The effect of the weather type criteria humidity on the mean for-

ward premium level is reported in Table 3.5. Both, Dry and Wet, have a signifi-

cantly deviating forward premium mean compared to the grand mean. Dry has a

0.25 EUR/MWh higher mean forward premium whereas Wet has a−0.27 EUR/MWh

reduced mean forward premium.

Table 3.5: Results of the effects coding approach for the weather types’ criteria humidity for
the model ForwardPremiumh = Intercept +

∑

i βiHumidit yi,h + εh. The es-
timated values indicate the difference of the criterias’ mean value to the grand
mean. Number of observations is 13040 hourly values from July 2015 to Decem-
ber 2016. Significance levels denoted by * p<.1, ** p<.05, ***p<.01. Signifi-
cance and estimations of the grand mean indicates the difference to a zero mean
value. Note that five weather classes are omitted due to too less observations in
the investigated time horizon.

Difference to grand mean

Grand mean -0.140***

Dry 0.254***

Wet -0.271***

Discussion of the mean deviating effects of weather types on the forward

premiums

The above analyses show distinguishable effects of the weather types and its sub-

groups to the mean level of the forward premiums. The analysis of the separated

weather type criteria (advection direction, cyclonality and humidity) allow insights

on the weather-related driver of the mean forward premium. Several criteria could

be identified with a significant impact on mean deviations of the forward premium.

A general positive forward premium effect can be associated with southwest wind,

anticyclonic weather patterns on 950 hPa, or dry weather. In contrast to this, a

negative effect on forward premiums is estimated for no prevailing wind direction,
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cyclonic weather patterns on 950 hPa, or wet weather. However, even if these effects

are significant, they do not necessarily lead to higher/lower forward premiums in

each hour. Based on this analysis, the impact of weather type criteria on forward

premiums can only be used as a rule of thumb. The dominating effect by a combi-

nation of sub-groups is ex-ante not clear (e.g. what is the mean forward premium

effect under positive-expected anticyclonic and negative-expected wet weather?).

The detailed information on each combination (i.e. each weather type) with its cri-

teria is estimated in Table 3.2. In these results, the different effects of each weather

type on the mean forward premiums become obvious. Several weather types have

significant positive and negative implications to the mean of the forward premiums.

The results can be applied by market participants such as traders to approximate the

mean level of forward premiums additional to typical effects by production deltas.

To derive statements for price forecasting, further investigations are necessary which

could require applications in price forecasting models. However, this is not the scope

of this paper and remains for further research.

The different forward premium effects by the weather types motivate the subse-

quent uncertainty categorization as basis for the empirical analysis in Section 3.4.4.

3.4.3 Weather classifications as a distinction of wind and solar forecast
uncertainty

This subsection provides information about the wind and solar uncertainty catego-

rization which is applied to examine Hypothesis B (forward premium increase by

wind and solar uncertainty) in Section 3.4.4.

Wind and solar production levels are no sufficiently distinguishable indicators

for uncertainty

For the subsequent regression analysis, the uncertainty should properly be consid-

ered. An intuitive classification could be the production level of wind and solar

power. A classification based on the production level underlies the assumption of

heteroscedastic errors with respect to the production level. However, the produc-

tion level classification indicates low differentiation possibility. This is discussed in

3.6.4. Thus, the production level classification seems not to be suitable for an ade-

quate forecast error distinction.
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Weather classes have deviating statistical characteristics

A potential classification scheme could be defined on weather types. This is moti-

vated by the aforementioned analysis that weather types have distinguishable effects

on forward premiums. Thus, the DWD objective weather type classifications are an-

alyzed for potential uncertainty categorization. Details as to the weather type defi-

nitions can be found in Table 3.8 whereas statistical numbers are listed in Table 3.9

in the Appendix.

Certain weather types correlate with specific wind and solar forecast situations.

As an example, assume anticyclonic weather constellations which are also known

as high-pressure situations. Such high-pressure situations are more likely to have

fewer clouds. Solar production is thus better predictable compared to changeable

weather types. Therefore, solar production uncertainty should be lower.

Figure 3.4 compares the 40 objective weather type classifications with respect to

the aggregated wind and solar production deviations. The production deviations are

defined as the realized value minus the forecast normalized by the monthly capacity.

The normalization ensures comparability of the forecast errors over the time horizon.

The delta is positive if more electricity is produced than expected. It becomes obvious
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Figure 3.4: Aggregated wind and solar forecast errors (realization minus forecast) of each
objective weather class. Production deltas are relative to the monthly installed
capacity. Data covers July 2015 to December 2016.

that the median, quartiles and outliers might deviate strongly between the individual

classes. The distinction possibility is also true for the standard deviation as one

indicator for the spread of the forecast errors. Additionally, note that weather classes

have different frequencies.

70



3.4 Empirical evidence

Focus on the weather type’s standard deviations

Based on the weather type classifications, the standard deviation can be calculated

per weather type and be used as an indicator for expected uncertainty. Several

weather types have a lower standard deviation than the average whereas some have

remarkable higher standard deviations. A higher standard deviation of wind and

solar forecast errors indicates that exact wind and solar production is harder to pre-

dict. Figure 3.5 compares the relative standard deviations of capacity-normalized

wind and solar deltas for each weather type (ascending ordered). The standard

deviations per weather type are relative to the grand standard deviation, i.e. of all

observations. Several weather classes show a relative standard deviation below the
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Figure 3.5: Relative standard deviations of the wind and solar forecast errors per weather
type. The wind and solar forecasts errors are normalized by the monthly capacity.
The standard deviation per weather class is relative to the standard deviation
over all data (which is a forecast error of 2.06 %). Data covers July 2015 to
December 2016.

average down to a minimum of 40% (i.e. absolute standard deviation of 0.82% fore-

cast error4). On the other hand, weather class #35 has an exceptional high standard

deviation of approximately 200% compared to the average. Class #35 defines dry

cyclonic northwest wind situations which has an almost average number of occur-

rences. Most standard deviations are in the range between 60% and 130%. It is

expected, that a higher uncertainty of the wind and solar production leads to an

higher uncertainty of the forward premiums. This hypothesis is examined and sup-

ported in Appendix 3.6.6. The subsequent analysis goes one step beyond. The focus

is on the increasing forward price level by uncertainty instead of a solely increased
4Note that the wind and solar forecast error is the difference between realization and forecast nor-

malized by the monthly capacity, which results as a percentage.

71



3 Forward Premium

(obvious) price uncertainty.

3.4.4 Forward price premiums rise with wind and solar production
uncertainty (Hypothesis B)

This section examines empirically the Hypothesis B that an increased wind and so-

lar production uncertainty leads to an increase in forward price premiums. Thus,

empirical support is given for the price increasing effect shown analytical in Sec-

tion 3.3. To identify the effects, three OLS regression analyses are performed de-

noted by Model B1, Model B2 and Model B3. The dependent variable is the forward

price premium defined as the delta between the day-ahead price to the intraday

price. The results allow detecting the overall forward premium effect. An increase

in the forward premium can result by either an increased day-ahead price, a de-

creased intraday price or both effects simultaneously. The analysis is not suitable

to determine which effect influences the forward premium. A discussion of this is

provided in the latter.

Model description

The estimated models can be expressed as

Model B1: ForwardPremiumh = α+ β1∆(Wind&Solar)h

+ β2StdDev(Wind&Solar)h + εh

(3.6)

Model B2: ForwardPremiumh = α+ β1∆Loadh + β2StdDev(Load)h

+ β3∆(Wind&Solar)h

+ β4StdDev(Wind&Solar)h + εh

(3.7)

Model B3: ForwardPremiumh = α+ β1∆Windh + β2StdDev(∆Wind)h

+1solar,h(αSolar + β3∆Solarh

+ β4StdDev(∆Solar)h) + εh

(3.8)

where h denotes the hourly observations for the investigated timeframe from July

2015 to December 2016. Model B1 (Equation (3.6)) is the basic model. It estimates

the price deviations dependent on the wind and solar production delta as well as

the wind and solar uncertainty. The production delta is defined as realization mi-

nus forecast. Note that the uncertainty is defined as the standard deviation of the

observations that belong to the same weather type. Since each weather type last
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for a complete day, the values are matched to the hourly observations. Model B2

(Equation (3.7)) extends the basic model by the consideration of the load deltas

and the load uncertainty. An impact of load deltas to the forward price deviation can

be expected (cf. Bessembinder and Lemmon (2002)). Model B3 (Equation (3.8)) is

similar to the Basic Model B1 except that wind and solar are independent regressors.

Since hours at night with 0 MWh solar forecast and solar production would bias the

estimates for solar, a dummy variable is applied. The dummy variable (or indicator

function) is denoted as 1 and equals 1 if not both solar forecast and production are

equal to 0 MWh.

The models estimate timeseries data. Thus, it is relevant to test for stationarity,

homoscedasticity and non-autocorrelation. Additionally, multi-collinearity between

the variables is helpful to verify the model specification.

Requirements check

Low multicollinearity No relevant high correlation occurs within the regressor

variables of each analysis. The relevant correlation values between the regressors

are in the range between −0.06 and 0.11. Higher correlation could occur between

variables which are not simultaneously used in the same regression (e.g. a correla-

tion of 0.86 between wind deltas as well as wind and solar deltas). The dependent

variable forward premiums could have higher correlation to the regressors which is

not critical (e.g. 0.43 to wind and solar deltas). Correlation values can be found in

Appendix 3.6.7.

Stationarity: Unit root test via Augmented Dickey-Fuller test An Augmented

Dickey Fuller test is performed as a unit root test to check for stationarity. Detailed

numbers are listed in the Appendix 3.6.7. The test statistics show that the null hy-

pothesis of unit roots can be rejected. Thus, the timeseries is stationary or, in other

words, does not have a time-dependent trend.

Heteroscedasticity and autocorrelation White’s Lagrange Multiplier Test for Het-

eroscedasticity rejects the null hypothesis of homoscedasticity. Additionally, the

Durbin-Watson test with a value of 0.45 rejects the null hypothesis of no autocor-

relation.5 To address heteroscedasticity and autocorrelation, heteroscedastic and

5No autocorrelation would require a Durbin-Watson test statistic approximately at the value of 2.
Values of 0 or 4 denote perfect positive or negative auto-correlation.
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autocorrelation robust Newey-West standard errors are applied (Newey and West

(1987)).

Regression results

Table 3.6 shows the estimated coefficients for Model B1, Model B2 and Model B3.

For Model B1, both regressors are significant. The capacity-normalized delta in wind

and solar production is significant at the 1% level whereas the standard deviation

for wind and solar deltas per weather type is significant at the 5% level. The high

significance of the wind and solar delta is expected since a lower wind and solar

production than expected should lead to higher prices. This effect is also stated in

other literature as for instance Kiesel and Paraschiv (2017), Sensfuß et al. (2008)

or Hirth (2013). The interesting finding is the significant effect of wind and solar

uncertainty on forward prices. A higher standard deviation of the wind and solar

production delta per weather type leads to higher forward premiums. That indicates,

in general, that the ex-ante known uncertainty is hedged to forward premiums.

Model B2 shows significant coefficients for the three regressors (a) load delta, (b)

the capacity-normalized wind and solar delta and (c) the standard deviation of the

capacity-normalized wind and solar delta. The standard deviation of the load delta

is not significant. The non-significance of the load uncertainty is not surprising since

the weather types are defined on meteorological conditions and do not necessarily

reflect relevant load characteristics. Note that this does not imply, that the standard

deviations of load deltas are not relevant in general. Another aggregation (e.g. load

deltas dependent on season, hour or load level) may lead to significant load results,

as mentioned by Bessembinder and Lemmon (2002) or Longstaff and Wang (2004).

However, the load uncertainty is not the focus of this investigation and an investi-

gation of different load uncertainty aggregations is thus neglected. The findings of

the Model B2 are the following:

• An increase in the load delta (i.e. more realized load than expected) decreases

the forward premium. Per GWh increased load, the price delta is estimated to

decrease by 0.19 EUR/MWh.

• An increase in the capacity-normalized wind and solar delta (i.e. more real-

ized volatile renewable production than expected) increases the forward pre-

mium. Each percent-point increased utilization of wind and solar production

increases the forward price delta by 1.22 EUR/MWh. Note that the production

delta is normalized by the installed capacity to account for capacity extensions.

74



3.4 Empirical evidence

Table 3.6: Regression results on the dependent variable Forward Premium with hourly ob-
servations. The standard deviations are calculated for each weather types and
then matched to the corresponding hours. Model B1 is the basic model which
considers capacity-normalized wind and solar production deltas and uncertainty.
Model B2 extents Model B1 by consideration of load deltas and the load uncer-
tainty. Model B3 separates the wind and solar data. 1solar,h is a dummy variable
for solar production. Wind and solar production as well as the standard devia-
tions are calculated with production deltas which are normalized by the monthly
installed capacity to account for capacity extensions over time. Data covers July
2015 to December 2016. Standard Errors are heteroscedasticity and autocorrela-
tion robust (HAC). Standard errors in parentheses. * p<.1, ** p<.05, ***p<.01

FowardPremiumh Model B1 Model B2 Model B3

Intercept −0.132 −0.357 −0.075
(0.305) (0.377) (0.255)

∆Loadh −0.193***
(0.032)

Std.Dev(∆Load)h 0.177
(0.134)

∆Wind&Solarh 1.220*** 1.208***
(0.037) (0.036)

Std.Dev(∆Wind&Solar)h 0.393** 0.376**
(0.158) (0.158)

∆Windh 0.542***
(0.020)

Std.Dev(∆Wind)h 0.124*
(0.070)

1solar,h 0.110
(0.441)

∆Solarh 0.937***
(0.041)

Std.Dev(∆Solar)h 0.170
(0.221)

N 13040 13040 13038
Adj. R2 0.166 0.171 0.174
F-statistic 557 290 269
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• A higher standard deviation of the delta in wind and solar production (i.e.

more uncertainty of the wind and solar forecast error) has a significant positive

effect on the forward premium. It is significant at the 5% level. An increased

standard deviation by 1 percent-point leads to a 0.39 EUR/MWh increase in

forward premiums.

For Model B3, the combined regressors for wind and solar are disentangled. The

general results of Model B1 hold true for Model B3. The separation allows additional

insights on the origin of the price premium effects. A difference between the normal-

ized wind and the solar deltas can be observed. The capacity-normalized solar deltas

have a higher coefficient. This means that forward premiums are stronger increased

by an unexpected additional percent-point of solar production than wind production.

This finding is in line with common research for European and especially the Ger-

man electricity markets. The high correlation of peak-load at noon with general high

solar feed-in has a strong price reducing potential. See for instance Hirth (2013),

Jägemann (2015) and Cludius et al. (2014). As to the uncertainty, only the standard

deviation of wind deltas are significant (at a 10% level). The solar uncertainty is not

significant at all. The positive effect of the disentangled wind uncertainty on the

forward premium is 0.30 EUR/MWh. A schematic plot how uncertainty affects the

forward premiums is visualized in Figure 3.6.
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Figure 3.6: Schematic effect of uncertainty on the forward premium. The left figure (a)
visualizes a situation without uncertainty (perfect foresight). Day-ahead and
intraday prices are equal. Figure (b) shows the schematic impact of wind and
solar production uncertainty. The forward premium is in general increased under
uncertainty. p denotes prices and D denotes the demand for the day-ahead (DA)
and intraday (ID) market.

The regression analysis explains effects on the forward premium whereas the for-

ward premium is defined as the price delta. Thus, for an (absolute) increased for-
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ward premium, it is not clear whether the day-ahead price is increased, the intraday

price is decreased or both effects occur. Following seems rational (even if the analy-

sis is not suitable to provide statistical evidence): The deviations in load or wind and

solar production can be assumed to be ex-ante unknown random processes in the

short-run. All available ex-ante information is incorporated in the day-ahead price.

Thus, short-term deviations are traded in the intraday-market which has no price

effect on the earlier closed day-ahead market. These deviations should therefore in-

fluence only the intraday prices. On the other hand, the degree of uncertainty could

be known ex-ante. A higher ex-ante known uncertainty level could be incorporated

in the day-ahead market as well as in the intraday-market. The market selection is

based on the traders’ decision at which time they internalize the uncertainty. Inter-

nalization of the uncertainty in the day-ahead market would be rational in the sense

of risk hedging. However, a final determination is not possible solely on these regres-

sion results. The theoretical results in Section 3.3 suggest to internalize uncertainty

in the day-ahead forward markets. Note that these results are not differentiated as

to seasons or hours. This differentiation remains for further research.

Overall, Hypothesis B of an increasing forward premium effect by increased pro-

duction volatility can thus be confirmed based on the regression results. These

findings give new insights and contribute to existing literature on forward premi-

ums. It supports the analytic finding in Section 3.3 that weather-dependent produc-

tion uncertainty increases the forward premium. Thus, it extends the fundamental

literature which focuses on forward premium effects by demand uncertainty (e.g.

Bessembinder and Lemmon (2002), Longstaff and Wang (2004)) and which iden-

tifies forward premiums with respect to different temporal resolutions (Viehmann

(2011), Kiesel and Paraschiv (2017) or Furió and Meneu (2010)). The novel aspect

in this research is that the weather types are almost fully decoupled of the current

observation due to the long time horizon. Classical literature (e.g. Contreras et al.

(2003),Conejo et al. (2005),Weron (2007)) often apply autoregressive timeseries

models which predict uncertainty-based price forecasts on limited past observations.

Thus, the forward premium prediction is derived out of the current situation. The

analysis within this paper applies a long-lasting time horizon to classify uncertainty.

Hence, it can be interpreted as a classification which does not rely on the current sit-

uation. Additionally, the analysis shows that weather types are a suitable clustering

method to consider wind and solar uncertainty. The effects on the forward premium

are expected to increase under a higher merit order convexity as well as under a

higher wind and solar production standard deviation.
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Approximation of the economic implications

The economic implication for Germany suggests a relevant reduction in total costs

if the forward premium due to wind an solar uncertainty could be reduced by 1%-

point. Costs savings can be derived based on a rough approximation. For 2016, the

total costs for electricity production on the day-ahead market amounts to EUR 6.625bn.

This is the summation of the hourly day-ahead prices multiplied with its corre-

sponding day-ahead volumes. The source is the EPEX Spot Market. Based on the

Model B2 results, a 1%-point decrease in the wind and solar uncertainty translates to

0.376 EUR/MWh reduced forward premiums. The overall costs for 2016 with a 1%-

points improved wind and solar standard deviation are EUR 6.536 bn. Therefore,

the potential cost saving estimates to EUR 88m per year. The slightly higher for-

ward premium reduction effect of Model B1 with a value of 0.393 EUR/MWh would

result in total cost savings of EUR 92 million. The approximation indicates the high

relevance of an forecast quality increase to reduces total system costs. Under the

assumption of an inelastic consumer demand function, this represents the welfare

gain of an improved forecast quality. Note that the rough approximation neglects

rebound effects or interdependencies between markets (effects on intraday-markets

or long-run forward markets). Additionally, the approximation assumes an equal

forward premium reduction effect for each hour, which is on average true but could

be higher or lower in certain situations.

3.5 Conclusion

Weather-dependent wind and solar production are facing an increasing share in elec-

tricity systems. This increasing share induces higher production uncertainty due to

volatile characteristics by wind and solar production. This essay contributes to clos-

ing the research gap how wind and solar production uncertainty affects forward

price premiums. First, theoretical evidence of an increasing forward price effect by

increased uncertainty is identified. The theoretical findings show an increase in for-

ward prices dependent on the merit order convexity and the production’s standard

deviation. In a second step, the theoretical findings are connected to weather type

definitions and supported by empirical evidence for the German day-ahead and in-

traday market. The weather types have relevant impact to the forward premium

levels. Additionally, the production uncertainty per weather type has an increasing

effect on the forward premiums. Thus, this research contributes to understand short-
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term forward price premiums within electricity markets. As to the best of my knowl-

edge, this is the first work on weather-dependent price premiums. Results support

that weather types are a suitable measure for wind and solar production uncertainty.

Thus, weather types should be incorporated in price forecasting methods to increase

quality. An improved wind and solar forecast quality by 1%-point could additionally

result in welfare gains of approximately EUR 88 million for Germany. Therefore,

emphasize should be put on further weather forecast quality improvements.

3.6 Appendix

3.6.1 On the order of the German electricity supply curve

Bessembinder and Lemmon (2002) performs his theoretical analysis with different

orders of the supply curve. Note that the order reflects the highest exponent and that

the supply curve is synonym with the merit order. Note additionally, that the supply

curve is the first derivative of the total production costs function. Dependent on the

supply curve order, the influence of the mean and skewness of the price distributions

might have different effects. For instance, for higher orders (i.e. >2) of the supply

curve, the forward price premium might become negative with very high standard

deviations. In contrast, for linear or quadratic supply curves, the forward premium is

always positive. Within the empirical evaluation, Bessembinder and Lemmon (2002)

estimates the order of the supply curve via

Pricet = a (Demandt)
c̃ (3.9)

⇔ ln(Pricet) = a+ c̃ ln (Demandt) + εt , (3.10)

where Pricet , is the daily average on-peak spot price, Demandt is the daily average

load and a and c̃ the parameters to be estimated. The analysis is performed with data

from PJM and CALPX electricity markets for approximately 1998 to 2000. They find

empirical evidence for an average merit order convexity with a coefficient c̃ = 3.8

for PJM and c̃ = 4.81 for CALPX. This shows a high convexity of the merit order

function. Note that Bessembinder and Lemmon (2002) estimates the order c of the

Total Costs Function which first derivative reflects the order of the Marginal Cost

Function c̃.

The estimated function in this section is similar to Equation (3.10) but with data

for the German electricity market on hourly data from July 2015 to December 2016.
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The residual demand is applied, which is defined as total demand subtracted by wind

and solar production. The estimated value for c̃ is 1.32 and statistical significant at

a 1% level with an Ad j.R2 of 0.49. Different months suggest a slight deviation of

the merit order function. The convexity is highest in January and December with a

significant c̃ of 1.45 or 1.6, respectively. This effect can be explained by -in general-

higher demand which utilizes power plants in the steeper right sight of the merit or-

der. However, the estimated c̃ suggest a convexity between the linear and quadratic

merit order function for the German electricity market for 2015 and 2016. This sup-

ports the assumption that the theoretical investigation in Section 3.3 is limited to

the quadratic merit order function.

However, situations might occur which have higher merit order convexities, e.g.

under high residual load and scarcity situations. The identification and analysis of

these situations remain to further research.

3.6.2 Proof of Proposition 3.1

Proof. Assume the model definition as to Section 3.3. Assume that the expected

production µ is smaller than the total demand.6 Because all renewable producers

are symmetric, the total traded renewable production of all players in stage 1 can

be denoted by qr1 := qir1+(N −1)q jr1 (where q jr1 is another symmetric renewable

producer). Additionally, denote the realized production in stage 2 by Q := NQ i , the

expected quantity by µ := Nµiq and the standard deviation by σ := Nσi .

The basic profit function of a renewable producer i in the present theoretical model

framework is described in Equation (3.1). The following expected profit function is

6If µ > D, then the total demand can be fulfilled by renewable production such that prices close to
zero or below are expected and renewable production curtailment could occur.
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derived by plugging in the above formulas:

E[Πir(qir1, (N − 1)q jr1)] = −D2aqir1

∫

f (Q i) dQ i + D2a

∫

Q i f (Q i) dQ i

+ 2DNaqir1

∫

Q i f (Q i) dQ i − 2DNa

∫

Q2
i f (Q i) dQ i

− Dbqir1

∫

f (Q i) dQ i + Db

∫

Q i f (Q i) dQ i

− N2aqir1

∫

Q2
i f (Q i) dQ i + N2a

∫

Q3
i f (Q i) dQ i

+ N bqir1

∫

Q i f (Q i) dQ i − N b

∫

Q2
i f (Q i) dQ i

− cqir1

∫

f (Q i) dQ i + c

∫

Q i f (Q i) dQ i + qir1

�

a
�

D

− qir1 − q jr1 (N − 1)
�2
+ b

�

D− qir1 − q jr1 (N − 1)
�

+ c
�

.

(3.11)

The first derivative with respect to qir1 is

d
dqir1
E[Πir(qir1, (N − 1)q jr1)] = −D2a

∫

f (Q i) dQ i + 2DNa

∫

Q i f (Q i) dQ i

− Db

∫

f (Q i) dQ i − N2a

∫

Q2
i f (Q i) dQ i

+ N b

∫

Q i f (Q i) dQ i + a
�

D− qir1 − q jr1 (N −

1)
�2
+ b

�

D− qir1

− q jr1 (N − 1)
�

− c

∫

f (Q i) dQ i + c + qir1

�

a
�

−2D+ 2qir1 + 2q jr1 (N − 1)
�

− b
�

.
(3.12)

This can be simplified by the following substitutes for the probability density function
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f (Q):

Distribution function has a total probability of 1:

∫

f (Q i) dQ i = 1 (3.13)

Expected value for Q i:

∫

Q i f (Q i) dQ i = µi

(3.14)

The second moment (re-ordered):

∫

Q2
i f (Q i) dQ i = µ

2
i +σ

2
i

(3.15)

This leads to the simplified necessary condition for the profit maximizing quantity

q∗ir1 as

d
dqir1
E[Πir(qir1, (N − 1)q jr1)] =−D2a+2DNaµi−Db−N2a

�

µ2
i +σ

2
i

�

+N bµi+a
�

D

− qir1 − q jr1 (N − 1)
�2
+ b

�

D− qir1 − q jr1 (N −
1)
�

+ qir1

�

a
�

−2D+ 2qir1 + 2q jr1 (N − 1)
�

− b
�

!
= 0.

(3.16)

Now this equation can be solved for qir1 which results in the profit maximizing quan-

tity

q∗ir1 =
1

3a

�

2Da− 2Naq jr1 + 2aq jr1 + b+
�

4D2a2

− 6DNa2µi − 2DNa2q jr1 + 2Da2q jr1 + 4Dab+ 3N2a2µ2
i + N2a2q2

jr1 +

3N2a2σ2
i − 2Na2q2

jr1 − 3Nabµi − Nabq jr1 + a2q2
jr1 + abq jr1 + b2

�1/2
�

(3.17)

for producers i = 1, ..., N . Note the square root for the square brackets. The second

derivative becomes zero if and only if qir1 =
1

2N+1(2D + b
a ) which can only be the

case for qir1 = 0 for perfect competition (whereas the case of perfect competition is

the investigation focus).

In an equilibrium of identical players, the solutions qir1 are identical as well. Thus,
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qir1 = q jr1 holds and can be replaced. Following is derived:

(3.18)
qir1 =

1
3a

�

2Da− 2Naqir1 + 2aqir1 + b±
�

4D2a2

− 6DNa2µi − 2DNa2qir1 + 2Da2qir1 + 4Dab+ 3N2a2µ2
i + N2a2q2

ir1 +

3N2a2σ2
i − 2Na2q2

ir1 − 3Nabµi − Nabqir1 + a2q2
ir1 + abqir1 + b2

�1/2�

This can be solved with respect to qir1 which gives

q∗ir1 =
1

2Na (N + 2)

�

(N + 1) (2Da+ b) +
�

4D2N2a2 + 8D2Na2 + 4D2a2 − 8DN3a2µi

− 16DN2a2µi + 4DN2ab+ 8DNab+ 4Dab+ 4N4a2µ2
i + 4N4a2σ2

i

+ 8N3a2µ2
i + 8N3a2σ2

i − 4N3abµi − 8N2abµi + N2 b2 + 2N b2 + b2
�1/2�

(3.19)

Note that another possible profit optimal solution exists. This solution would have a

negative bid. Thus, it is not in the feasible range of solutions and neglected. Equa-

tion (3.18) is the profit maximizing quantity q∗ir1 of one symmetric player i in a

price-competitive oligopoly.

The optimal joint bid of all renewable producers’ becomes

q∗r1 =
N
∑

i=1

q∗ir1

= Nq∗ir1

=
1

2a (N + 2)

�

(N + 1) (2Da+ b)−
�

4D2N2a2 + 8D2Na2 + 4D2a2 − 8DN2a2µ

+ 4DN2ab− 16DNa2µ+ 8DNab+ 4Dab+ 4N2a2µ2 + 4N2a2σ2 −

4N2abµ+ N2 b2 + 8Na2µ2 + 8Na2σ2 − 8Nabµ+ 2N b2 + b2
�1/2�

,

(3.20)

where µ = Nµi and σ = Nσi since all renewable producers are assumed to be

symmetric.

The focus lies on the solution under perfect competition. This is reflected via

N →∞. For N →∞, Equation (3.20) becomes

(3.21)q∗r1 = D+
1
2

b
a
−

√

√

√

�

��

D+
1
2

b
a

�

−µ
�2

+σ2

�
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To derive Equation (3.21) from Equation (3.20), terms with N in the denominator

goes to 0 for N → ∞. Additionally, if there are multiple exponents for N in one

term, only the highest exponent of N is dominant for N →∞. Equation (3.21) is

the optimal first stage total renewables’ bid under uncertainty and the solution of

the proposition.

3.6.3 Statistics on the data

Statistics on the wind, solar, price forecasts

Table 3.7 shows statistics for the price, wind and solar deviation dataset.

Table 3.7: Statistics on the price and wind/solar deviation dataset. Data covers July 2015
to December 2016.

Mean Std.dev. Min Max

Price forecast deviation [EUR/MWh] 0.5 12.4 -138.8 253.4

Wind forecast error [GWh] -0.4 1.5 -8.4 11.5

Solar forecast error [GWh] -0.1 0.9 -5.8 4.7

A structural deviation of the mean value for the wind and solar forecast erros can

be observed. A reason for the structural deviations could be the extrapolation meth-

ods of the TSOs (cf. 50Hertz (2017), Amprion (2017), Tennet (2017), TransnetBW

(2017) and APG (2017)). Additionally, structural forecast overestimation could ex-

ist due to reduced efficiency (old PV modules/wind turbines), surface roughness,

aerosols and air pollution and similar effects. The standard deviation of wind fore-

cast errors is higher than for solar forecast errors.

Objective Weather Type Classification

Table 3.8 shows characteristics for the forty DWD Objective Weather Type Classifi-

cations. Each combination of wind speed, cyclonality on 950 hPA, cyclonality on

500 hPa and humidity exists. Additionally, the frequency is shown. Table 3.9 gives

statistical numbers for combined wind and solar forecast errors per weather type.
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Table 3.8: Objective Weather Type Classification by the German Weather Service (DWD) de-
fined by Bissolli and Dittmann (2001). Frequency counted by daily occurrences
from 1979 to 2016.

No. Wind direction Cyclonalitity Cyclonalitity Humidity Frequency

in 950 hPa in 500 hPa (from 1979 to 2016)

1 no direction anticyclonic anticyclonic dry 751

2 northeast anticyclonic anticyclonic dry 498

3 southeast anticyclonic anticyclonic dry 120

4 southwest anticyclonic anticyclonic dry 640

5 northwest anticyclonic anticyclonic dry 1204

6 no direction anticyclonic anticyclonic wet 401

7 northeast anticyclonic anticyclonic wet 80

8 southeast anticyclonic anticyclonic wet 45

9 southwest anticyclonic anticyclonic wet 1262

10 northwest anticyclonic anticyclonic wet 1058

11 no direction anticyclonic cyclonic dry 331

12 northeast anticyclonic cyclonic dry 351

13 southeast anticyclonic cyclonic dry 48

14 southwest anticyclonic cyclonic dry 582

15 northwest anticyclonic cyclonic dry 1241

16 no direction anticyclonic cyclonic wet 103

17 northeast anticyclonic cyclonic wet 20

18 southeast anticyclonic cyclonic wet 9

19 southwest anticyclonic cyclonic wet 439

20 northwest anticyclonic cyclonic wet 178

21 no direction cyclonic anticyclonic dry 148

22 northeast cyclonic anticyclonic dry 16

23 southeast cyclonic anticyclonic dry 128

24 southwest cyclonic anticyclonic dry 159

25 northwest cyclonic anticyclonic dry 32

26 no direction cyclonic anticyclonic wet 223

27 northeast cyclonic anticyclonic wet 9

28 southeast cyclonic anticyclonic wet 207

29 southwest cyclonic anticyclonic wet 975

30 northwest cyclonic anticyclonic wet 109

31 no direction cyclonic cyclonic dry 372

32 northeast cyclonic cyclonic dry 55

33 southeast cyclonic cyclonic dry 111

34 southwest cyclonic cyclonic dry 276

35 northwest cyclonic cyclonic dry 304

36 no direction cyclonic cyclonic wet 251

37 northeast cyclonic cyclonic wet 22

38 southeast cyclonic cyclonic wet 143

39 southwest cyclonic cyclonic wet 745

40 northwest cyclonic cyclonic wet 173

85



3 Forward Premium

Table 3.9: Statistics on the (combined) wind & solar forecast errors for the objective weather
type classifications. Observations cover July 2015 to December 2016 in hourly res-
olution. Units are in GWh (except for count). std denotes the standard deviation
which is incorporated as the uncertainty measure for the empirical analysis. The
standard deviations deviate between 0.66 and 3.35.

count mean std min 25% 50% 75% max RMSE MAE

Weather type

1 623 -0.09 1.21 -6.48 -0.68 0.01 0.58 3.45 1.22 0.88

2 264 0.09 0.96 -5.25 -0.39 0.05 0.65 2.13 0.96 0.69

3 96 0.00 1.13 -3.06 -0.84 0.24 0.74 1.92 1.12 0.90

4 648 -0.83 1.59 -4.57 -1.94 -0.63 0.08 10.62 1.79 1.31

5 1248 -0.74 1.31 -6.70 -1.41 -0.57 0.04 7.97 1.50 1.09

6 480 -0.16 1.46 -6.16 -0.88 -0.20 0.45 5.96 1.47 1.00

9 1176 -0.18 1.62 -7.00 -0.91 -0.05 0.61 9.96 1.62 1.12

10 1296 -0.61 1.94 -8.43 -1.44 -0.43 0.42 11.13 2.03 1.40

11 336 -0.13 1.12 -3.38 -0.82 -0.24 0.54 3.38 1.13 0.88

12 360 -0.22 1.07 -4.31 -0.81 -0.15 0.37 3.19 1.09 0.81

14 576 -0.52 1.66 -7.09 -1.26 -0.20 0.45 3.73 1.74 1.19

15 1008 -0.81 1.79 -7.82 -1.71 -0.74 0.15 6.54 1.97 1.47

16 24 0.33 0.66 -0.66 -0.40 0.67 0.89 1.21 0.73 0.67

17 24 -1.19 1.06 -2.68 -1.93 -1.28 -0.36 0.81 1.58 1.35

19 336 -1.02 1.33 -5.91 -1.70 -0.91 -0.16 2.35 1.67 1.30

20 216 -1.42 2.09 -6.79 -2.58 -0.60 0.12 1.94 2.52 1.71

21 120 -0.92 2.08 -6.48 -1.63 -0.45 0.66 1.87 2.27 1.61

23 144 -0.47 1.89 -4.80 -1.49 -0.60 0.93 3.99 1.94 1.56

24 168 0.15 1.19 -2.39 -0.72 -0.02 0.78 3.68 1.20 0.93

25 48 -1.67 1.53 -5.30 -2.74 -1.87 -0.18 0.41 2.25 1.76

26 168 -0.77 1.74 -4.94 -1.61 -0.45 0.42 3.10 1.89 1.39

27 24 0.04 1.36 -1.86 -1.01 -0.25 0.81 2.80 1.33 1.08

28 168 -0.30 1.27 -3.55 -1.14 -0.31 0.63 2.87 1.31 1.06

29 960 -0.49 1.70 -5.81 -1.52 -0.42 0.47 5.18 1.77 1.35

30 48 -1.04 1.56 -7.23 -1.85 -1.12 0.08 1.41 1.86 1.38

31 528 -0.65 1.52 -6.52 -1.48 -0.38 0.32 4.13 1.65 1.20

32 72 -0.06 1.17 -1.65 -0.77 -0.32 0.29 3.48 1.17 0.85

33 96 -0.19 1.62 -4.67 -0.86 0.04 0.72 2.69 1.63 1.17

34 312 -0.34 1.67 -4.81 -1.19 -0.21 0.82 3.58 1.70 1.30

35 144 0.42 3.35 -4.93 -1.21 -0.09 0.50 11.55 3.36 2.13

36 312 -1.68 1.74 -7.37 -2.34 -1.11 -0.53 1.51 2.41 1.73

37 48 -0.44 0.72 -1.98 -0.80 -0.36 0.08 0.93 0.84 0.65

38 120 -0.74 1.42 -3.93 -1.62 -0.77 -0.02 3.26 1.60 1.27

39 912 -0.33 1.84 -6.16 -1.28 -0.33 0.59 9.28 1.87 1.35

40 96 -0.87 2.01 -4.29 -2.33 -0.82 0.34 4.75 2.18 1.75

Total Data 13199 -0.52 1.67 -8.43 -1.33 -0.37 0.38 11.55 1.75 1.24
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3.6.4 The wind and solar production level gives insufficient
information on forecast errors

Figure 3.7 addresses the question whether the wind and solar production level would

be a suitable classification for forecast errors. One would expect that higher renew-

able production results in higher renewable forecast errors. The both upper plots of

Figure 3.7 show the forecast errors per hourly observation. The observations do not

indicate a sufficient heteroscedastic behavior. That means, the forecast errors are

not sufficiently increasing with the production level. The lower plots show the stan-

dard deviations per production level aggregated to 1 GWh clusters. It is obvious,

that in a broad range of the production levels, the standard deviations have only

minor gradients. The small gradients mean, that these observations have only slight

differences to the surrounding classes and thus limited distinction possibility. Thus,

the level of wind or solar production can be expected as no adequate estimator for

forecast errors. Note that a longer dataset time period would smooth the error but

incorporates a bias effect due to different capacity levels. Lange and Heinemann

(2002) report a similar finding that the production level has only limited distinction

possibility.
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(i) Wind realization vs. wind forecast (ii) Solar realization vs. solar forecast
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Figure 3.7: Forecast errors for wind and solar dependent on forecast levels. The black dotted
lines in the upper plots displays the diagonal line. Data covers July 2015 to
December 2016.

3.6.5 Effect coding results for cyclonality at 500 hPa

Table 3.10 reports the results of the effect coding with respect to cyclonality on

500 hPa. The effect coding estimates the deviation in the group means to the grand

means. The groups are cyclonic and anticyclonic weather patterns at 500 hPa. The

estimates are not significant which means, that they do not significantly deviate from

the overall mean forward premium.
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Table 3.10: Results of the effects coding approach for the weather types’ criteria cy-
clonality on 500 hPa for the model ForwardPremiumh = Intercept +
∑

i βiC yclonali t y500hPai,h + εh. The estimated values indicate the difference
of the criterias’ mean value to the grand mean. Number of observations is 13040
hourly values from July 2015 to December 2016. Significance levels denoted by
* p<.1, ** p<.05, ***p<.01. Significance and estimations of the grand mean
indicates the difference to a zero mean value. Note that five weather classes are
omitted due to too less observations in the investigated time horizon.

Cyclonality on 500 hPa Difference to grand mean

Grand mean -0.140***

Anticyclonic -0.057

Cyclonic 0.078

3.6.6 Wind and solar uncertainty translates to price uncertainty

General price decreasing effect of positive production deviations

Several studies analyze the effect of an increase in renewable production on the day-

ahead to intraday price differences. In general, more renewable production than

forecasted would decrease the realized prices (compared to the price forecast). This

is in line with the expectation (cf. Hirth (2013)). A similar trend can be observed

within this dataset. It is not the focus of this research, but the dataset used shows a

typical decreasing trend. The trend can be observed in Figure 3.8.
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Figure 3.8: Price effect of an increase in renewable production compared to forecasts (delta
= realization - forecast). Price realizations are the volume weighted prices of the
last three hours (ID3-prices). Observations cover July 2015 to December 2016.

An increase in wind and solar production delta (realization minus forecast) tend to

an decrease in price delta (intraday minus day-ahead). A linear regression shows a

price decrease of 2.22 EUR/MWh per additional GWh wind or solar production in the

intraday-market. Former years (back to 2010) have higher price reduction effects

than latter years. This trend can be explained by adjustment processes, learning and

saturation effects.

However, in this simple linear OLS regression, several drivers are not considered.

For instance, one relevant factor is the shape of the merit order, which covers e.g.

information about the actual power plant fleet and outages. Another relevant factor

is the residual demand level, which determines the intersection on the merit order

shape and serves e.g. as an indicator for scarcity situations. Thus, the fit of the linear

regression is strongly limited and has an Adj. R-squared value of 0.09.

Weather type production volatility implies forward price volatility

In this supplementary section, the hypothesis is stated that an increased production

uncertainty leads to an increase in the price uncertainty. The price uncertainty is

the standard deviation of the forward premiums within each weather type. The

uncertainty of wind production, solar production and load is defined analogous.

Note that wind and solar production are capacity-normalized to account for capacity

extension over the time horizon.

Figure 3.9 compares the standard deviations of the capacity-normalized wind and
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solar deltas (wind and solar uncertainty) to the standard deviations of the forward

premiums (price uncertainty); categorized as to the weather types.
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Figure 3.9: Relative standard deviations of capacity-normalized wind and solar deviations
as well as price deviations per weather type w. Descending sorted w.r.t. weather
types’ standard deviation of wind and solar deviation. Data is additionally nor-
malized to the sample mean. Observations cover July 2015 to December 2016.
The Forward premium is calculated as the delta between the day-ahead price
and the volume weighted intraday price of the last three hours (ID3).

Both standard deviations have a Pearson correlation factor of 0.48, which indicates

a medium correlation. Since the wind and solar uncertainty should be independent

of the price forecasts, the relationship can be interpreted as a causality. Thus, it indi-

cates that a reduction in weather uncertainty leads in general to a certain reduction

in price uncertainty.

To examine the impact of load, wind and solar uncertainty on the the forward

premium uncertainty, two regression estimations are performed. In Model C1, the

standard deviations of the forward premiums are explained by the standard devi-

ations of the load deviation and the standard deviation of the combined wind and

solar deviations (per weather type). Model C1 can be expressed as Equation (3.22).

In Model C2 the standard deviations of the forward premiums are explained by the

separated standard deviations of the (capacity-normalized) wind and the solar deltas
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as denoted in Equation (3.23):

Model C1: Std.Dev(F P)w =α+ β1Std.Dev(∆Load)w

+ β2Std.Dev(∆Wind&Solar)w + εw

(3.22)

Model C2: Std.Dev(F P)w =α+ β1Std.Dev(∆Wind)w

+ β2Std.Dev(∆Solar)w + εw

(3.23)

where w states the weather type. Due to low observations (limited amount of

weather types), the number of regressors need to be restricted. Thus, in Model A1,

the general effect of load and volatile renewable production (i.e. combined wind

and solar) are estimated. Whereas Model A2 disentangles the effect within wind

and solar production and neglects load.

Table 3.11 shows the regression results of the Weighted Least Squares estimation.

The estimation weights are the corresponding number of observation per weather

type. Note that not every weather type is represented due to occurrence in the

estimated time range.

Table 3.11: Weighted Least Squares estimation. Hourly data is aggregated to weather types.
Weights are the number of observations per weather type. Note that not ev-
ery weather type is represented due to occurrence in the estimated time range.
Standard errors in parentheses. * p<.1, ** p<.05, ***p<.01

Std.Dev(F P)w Model C1 Model C2

Intercept 2.190** 3.043***

(0.873) (1.033)

∆Loadh 0.749**

(0.301)

∆Wind&Solarh 1.132***

(0.343)

∆Windh 0.556***

(0.167)

∆Solarh 0.468

(0.413)

N 32 32

Adj. R2 0.357 0.247

The estimation of Model C1 shows significant coefficients for both regressors.

92



3.6 Appendix

However, the coefficient of the standard deviation for wind and solar deviations

is significant at a 1% level whereas the standard deviation of the load deviations has

a broader significance level of 5%. The lowered significance level is somehow ex-

pected, since the classification is based on weather data which has limited influence

on load data. The coefficient for the standard deviation of the capacity-normalized

wind and solar deviations is 1.1%; the coefficient for the standard deviation of load

is 0.75 GWh. Among the wind and solar deviations, the wind deviations have a

significant effect whereas the solar deviations have not. This becomes obvious by

the results of Model C2. Overall, the stronger the deviations with respect to wind

and solar or load, the stronger fluctuates the forward premium, i.e. the day-ahead

to intraday price delta. The hypothesis of an increased price volatility by increased

production volatility can thus be confirmed.

3.6.7 Requirement checks for the regression analysis

No relevant correlation of regression variables

Figure 3.10 shows the correlation matrix within a heatmap. No relevant high cor-

relation occurs. The relevant correlation values between the regressors are in the

range between −0.06 and 0.11. Higher correlation could occur between variables

which are not simultaneously used in the same regression (e.g. a correlation of 0.86

between wind deltas as well as wind and solar deltas). The dependent variable for-

ward premiums could have higher correlation to the regressors which is not critical

(e.g. 0.43 to wind and solar deltas).
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Figure 3.10: Pearson correlation of the regression variables. Data covers July 2015 to De-
cember 2016.

Time series data is stationary

Table 3.12 shows the statistics of the Augmented Dickey Fuller test. The null hypoth-

esis of non-stationarity can be rejected. Thus, the data have no statistical significant

time-dependent structure like a trend or seasonal effect. The time series OLS pre-

requisite of stationarity is fulfilled.
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Table 3.12: Test statistics for the Augmented Dickey Fuller test for unit roots (cf. Dickey and
Fuller (1979)). The null hypothesis of a unit root in the respective period of
observation is rejected. The test uses the Akaike Information Criterion (AIC)
in order to determine the optimal lag lengths. Additional to the standard Aug-
mented Dickey Fuller test which controls for a constant effect, the Augmented
Dickey Fuller test is performed with a linear trend as well as with a linear and
quadratic trend (trend and drift). Both additional tests indicate the same result,
i.e. to reject the non-stationarity hypothesis at a 1% significance threshold. The
model residuals refer to the estimation results for Equation (3.8).

Test Statistic p-value # lags

∆Prices -22.96 0.00 14

∆Load -13.71 0.00 37

∆Wind -10.02 0.00 41

∆Solar -12.84 0.00 27

∆Wind&Solar -10.50 0.00 41

StdDev(∆Wind) -11.82 0.00 24

StdDev(∆Solar) -12.22 0.00 24

Model residuals -18.88 0.00 17

95





4 Tender Frequency and Market Concentration in
Balancing Power Markets

Balancing power markets ensure the short-term balance of supply and demand in

electricity markets and their importance may increase with a higher share of fluctu-

ating renewable electricity production. While it is clear that shorter tender frequen-

cies, e.g. daily or hourly, are able to increase the efficiency compared to a weekly

procurement, it remains unclear in which respect market concentration will be af-

fected. Against this background, we develop a numerical electricity market model

for Germany to quantify the possible effects of shorter tender frequencies on costs

and market concentration. We find that shorter time spans of procurement are able

to lower the costs by up to 15%. While market concentration decreases in many mar-

kets, we – surprisingly – identify cases in which shorter time spans lead to higher

concentration.

4.1 Introduction

In electricity markets supply and demand need to be equal at all times and com-

monly transmission system operators (TSOs) are in charge of balancing supply and

demand. Due to unbundling policies TSOs are not allowed to own generation assets

and need to procure short-term flexibility from operators of power plants. These

power plants need to be able to adjust their production on short notice to balance

supply and demand. In Germany, balancing power (which is one kind of ancillary

services) is currently procured on a weekly basis for the fastest two load balancing

services of primary and secondary balancing power.1 Operators that offer for ex-

ample positive balancing power therefore need to withhold production capacities

over the time span of a whole week and cannot sell their full capacity into the spot

market. The costs that arise from balancing power provision are thus based on the

opportunity costs with respect to selling the capacity in the spot market, namely the

foregone profits from spot market operation.

1The ancillary services primary and secondary balancing power are also known as Frequency Control
Reserve (FCR) and automated Frequency Restoration Reserve (aFRR), respectively.

97



4 Tender Frequency and Market Concentration in Balancing Power Markets

In this paper, we take a closer look at the German balancing power markets with

a special focus on two problems that may arise from the current (weekly) market

design. First, the weekly procurement leads to inefficiencies as operators need to

withhold capacities for a whole week and cannot fully participate in the hourly spot

market. There is a missing market for hourly balancing power products that could

be solved by an hourly procurement of balancing power. Secondly, we observe that

large players with a broad portfolio of power plants are able to provide balancing

power at lower costs, especially in a weekly auction. These economies of scale for

large players may lead to highly concentrated markets and the possible abuse of

market power.

Whereas in theory it is well understood that shorter time spans lower costs and

might change market concentration, the magnitude of a change in market design to-

wards shorter time spans remains unclear. In order to assess the possible impact, we

develop a numerical model that accounts for the operator structure in the balancing

power market and considers different time spans for balancing power procurement.

Based on the model we are able to quantify the effects of different market designs

(weekly, daily, hourly) on system costs and market concentration.

The modeling of balancing power markets is complex, as it is driven by the oppor-

tunity costs of operators. Just and Weber (2008) started to write down this problem

analytically and solved the simplified model numerically. Later the methodology

was again applied by Just (2011) to analyze the implications of different tender fre-

quency on the procurement costs but without considering the operator structure.

Richter (2012) bases his analysis on the model developed by Just and Weber (2008)

and is able to show the existence of a competitive simultaneous equilibrium in spot

and balancing power markets that is unique and efficient. He finds out that the

bids of the capacity providers form a u-shaped bidding function around the spot de-

mand. This work shows that the integrated modeling of spot and balancing power

markets in a fundamental model as it is done in the analysis at hand yields mean-

ingful results. In addition, the equilibrium of the spot and balancing power market

was further analyzed by Müsgens et al. (2014) in the context of the German market

design. They present an analytical expression of the balancing opportunity costs as

well, which is used in our latter analysis. The procurement of balancing power is

commonly organized via auctions. A special characteristic of the balancing power

procurement process is that the cost structure of participants can be divided into

two parts. One part is fixed for a period and stems from withholding capacity for

balancing purposes. The second part are variable costs for the supply of energy
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in the case of being called during operation. Bushnell and Oren (1994) were the

first to analyze the auction design of balancing power markets. Their work was

later extended by Chao and Wilson (2002) in order to design incentive compatible

scoring and settlement rules. They found that incentive compatible auctions can be

designed by considering only the capacity bid for scoring in a uniform price auction.

Nevertheless many of the implemented auction designs in Europe differ from their

proposals.

The auction design of balancing markets was also studied by Müsgens et al., who

analyzed the importance of timing and feedback (Müsgens and Ockenfels, 2011,

Müsgens et al., 2012). The development in the tertiary reserve market and the

change in rules was analyzed by Haucap et al. (2012). They find that the cooperation

of the four TSOs in Germany decreased costs for the procurement of tertiary reserve.

Whereas previous literature focuses on the efficient design, high market concen-

trations are an additional issue in balancing power markets with few big operators.

In 2010, Growitsch et al. (2010) analyzed the operator structure in the tertiary bal-

ancing power market. They find high market concentration in certain situations of

the tertiary balancing power market. Heim and Götz (2013) looked at the market

outcomes in the German secondary reserve market based on exclusive data provided

by the BNetzA and find that the price increase in 2010 can be traced back to the bid-

ding behavior of the two largest firms.

While the general effects of a design change towards shorter spans is well un-

derstood, the empirical importance is less clear. To contribute to filling this gap,

we simulate one design change for the German balancing market. We compare

simulation results for the current market design to simulation results for shorter

time spans. Besides the changed provision duration, all other assumptions are held

constant to focus solely on the effect of a shortened provision duration. From the

comparison of the results, we derive a difference of 15% balancing cost in favor of

shorter time spans. With respect to concentration, our model results indicate that

an hourly market design for balancing power leads to certain periods with higher

market concentration. This means that in some hours market concentration could

increase by a change of market design from weekly to hourly and policy makers

should be aware of this. The regulatory implication of this finding is a trade-off be-

tween a moderate level of market power over a weekly provision or a potentially

high market power in certain periods of shorter provision durations. To the best of

our knowledge, there are no sufficient regulatory mechanisms to mitigate market

concentration or market power in occasional situations with high mark-ups. A po-
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tential price-sensitive demand function might decrease market power but with the

drawback of a reduced security of supply (which would need to consider the value

of lost load as well as statistical probabilities). These designs are not considered

in the current European balancing market harmonization approach (cf. European

Commission (2017)). Whereas the analysis at hand is limited to market concentra-

tion, it is left for further research to determine the mark-ups that can be realized

in concentrated situations and to establish a regulatory mechanism that is able to

mitigate this potential market power.

The paper is organized as follows: In Section 4.2 we focus on the background

information which include, among others, the general electricity market structure,

bidding behavior for balancing power and the concepts of market concentration in-

dices. Section 4.3 introduces the methodology, namely a unit-commitment model for

electricity markets and the model specifications to account for the balancing power

markets. Section 4.4 presents the modeling results as to the system costs and the

market concentration indices. Section 4.5 concludes.

4.2 Background

4.2.1 On the Functioning of the Balancing Power Market

The balancing power market is an additional market for electricity generators, be-

sides the classic spot markets like the day-ahead and intraday market. In the bal-

ancing power market, system operators procure spare production capacity that is

called upon in case of imbalances. It is usually divided into products depending on

the urgency and the direction of power provision. In Germany, the markets are di-

vided into primary, secondary and tertiary balancing power provision which differ

mainly in reaction time. In the primary balancing power market, power plants need

to be able to adjust their output in both directions (upward and downward). Sec-

ondary and tertiary balancing power markets are divided into products for positive

and negative balancing power. The secondary balancing power market is further

divided into a peak and off-peak product. Additional information on the current

German market design can also be found in Hirth and Ziegenhagen (2015).

An ongoing harmonization process of European energy and balancing markets

leads to similar designs for instance in the International Grid Control Cooperation
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(IGCC).2 Typical design characteristics are an inelastic demand as well as a day-

ahead or week-ahead procurement of balancing power. An up to date comparison

of European balancing markets is given in Ocker et al. (2016). The European Com-

mission gives suggestions on an EU-wide balancing market, which aims at a harmo-

nization of regulations as it is done already within the IGCC (European Commission,

2017). In contrast to the European day-ahead or week-ahead balancing markets, real-

time balancing markets are implemented for instance by the regional transmission

operators of PJM, MISO (formerly Midwest ISO) and ISO New England in the US

(Vlachos and Biskas (2013), PJM (2017), MISO (2016), ISO New England (2011)).

Here, the balancing amount and corresponding prices are calculated in real-time,

e.g. 5 minutes before delivery. In the subsequent paper, we focus on the implica-

tions of shorter tender frequencies in the German balancing power market for two

reasons. First, the German market is the largest balancing market within Europe

with similar characteristics as in other European countries. Second, shortening of

the week-ahead provision duration to an hourly provision duration could be con-

sidered as a reasonable step towards real-time balancing markets. Depending on

the market design, this could have impacts on efficiency and market concentration.

However, the scope of the paper is not to find an optimal market design for balanc-

ing markets (i.e. with consideration of the value of lost load and optimal demand

response), but to isolate the possible economic effects of a regulatory change by a

shortened provision duration.3

Because the balancing of imbalances has to occur in very short time periods before

physical delivery, providers of balancing power have to reserve capacity for balancing

purposes. This means for example that an operator for positive balancing power

cannot sell all her production capacity into the spot market and needs to operate

power plants below the maximum capacity level. When being called for the supply

of balancing power, the power plant needs to increase its output. For the case of

negative balancing power provision, operators need to run their plants above their

minimum production capacity and when negative balancing power is called, these

plants have to be able to decrease their electricity production.

The cost structure of participants in the balancing power market is thus different

compared to the spot market. The marginal costs of generation and the opportu-

nity costs for balancing power provision are exemplary shown for positive balancing

2IGCC aims for an increased cooperation of balancing power procurement and utilization. Participat-
ing countries in 2017 are AT, BE, CH, CZ, DE, DK, FR, NL.

3For analyses of the optimal design of balancing market see for instance Chao and Wilson (2002) or
Vandezande et al. (2010).
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power in Figure 4.1. If no balancing power is procured it would be optimal that

all power plants sell their full generation capacity in the spot market based on their

marginal generation costs (blue dashed curve) until demand is satisfied. In the case

that positive balancing power is procured, power plants need to withhold produc-

tion capacity from the spot market for being able to satisfy the demand for balancing

capacity. Since power plants need to operate at a minimum production level and can

only offer a fraction of their generation for balancing purposes, some power plants

could face a trade-off between not running and running at minimum production to

offer balancing power. Two different types of opportunity costs are therefore pos-

sible, which can either be inframarginal or extramarginal. Based on Müsgens et al.

(2014), they can be expressed for positive balancing power as

Capaci t yCostsreserve =







(V C − priceDA) , if V C ≤ priceDA

(V C − priceDA)
Capmin

Capreserve
, if V C > priceDA.

(4.1)

Here, V C are the variable costs of generation, Capreserve and Capmin are the reserve

capacity provision and the minimal load capacity, respectively. Inframarginal power

plants have generation costs lower than the spot price and would be running in the

spot market also without the existence of a balancing power market. The oppor-

tunity costs therefore just result in the difference between the spot price and their

variable costs. Extramarginal power plants have generation costs higher than the

spot price, but are nevertheless selling their electricity in the spot market if the loss

is compensated by a high balancing price.

For example, a power plant that has marginal generation costs a bit lower than

the spot market price, has very low opportunity costs for positive balancing power

provision (red dash-dotted curve). If this power plant decreases its spot market

production in order to offer positive balancing power, the income from the spot

market is only slightly lowered. The opportunity costs for the provision of positive

balancing power are thus close to zero, as can be seen for power plants close to the

spot market demand of 60 GW in Figure 4.1. In contrast to this, if the power plant has

very low marginal costs of production compared to the spot price, the opportunity

costs for positive balancing power provision are very high, as the forgone spot market

profits are very high. Opportunity costs are even higher for extramarginal power

plants with high variable costs that would incur a large loss when selling electricity

in the spot market.

The spot demand of electricity depends mainly on the time of consumption and
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Figure 4.1: Capacity bidding behavior for balancing power markets is theoretically based on
an opportunity cost strategy to the spot market (here: positive balancing power)

fluctuates throughout the day. Therefore prices fluctuate as well. This means oppor-

tunity costs of single power plants are constantly changing and providers of balanc-

ing power need to take this into account. For the case of operators owning multiple

power plants with a well-diversified portfolio this effect is not as severe because in

the best case they are always operating a power plant with marginal costs close to

the spot price that has very low opportunity costs. This makes it obvious that big-

ger power plant portfolios may have significant cost advantages compared to small

players.

In order to illustrate the effect of the portfolio on the opportunity costs, we con-

sider the following example which is visualized schematically in Figure 4.2: Let us

assume that there are three power plants A, B, and C with the same capacity but

different marginal costs of 10, 20 and 30 EUR/MWh. With an ordering according

to the marginal costs, we derive the simplified spot market merit order. The spot

market clearing price is thus the intersection of the demand function with the merit

order. We calculate the opportunity costs based on Equation (4.1) above. Note that,

for this stylized example, we assume the minimum load capacity and the balancing

capacity provision to be equally sized (e.g. both 50% of the total capacity). Then,

both terms cancel out each other for the extramarginal case in Equation (4.1) which

simplifies the example. In the modeling approach, detailed technical characteristics

as to minimum load as well as capacity provision are considered.

Now, let us consider two demand situations: A low and a high spot market demand
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situation. In the low demand situation, the demand is lower than the total capacity

of plant A. Hence, the cheapest power plant A can satisfy the total spot market

demand resulting in a spot market clearing price of 10 EUR/MWh. This leads to

opportunity costs of 0, 10 and 20 EUR/MWh for A, B and C respectively4 (shown

in Figure 4.2 on the lower y-axis part). In the high demand situation, the demand

exceeds the joint capacity of plant A and B. Therefore, plant C determines the spot

price of 30 EUR/MWh, which results in opportunity costs of 20, 10 and 0 EUR/MWh

for A, B and C respectively. If we assume that power plants need to provide the
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Figure 4.2: Schematic situation of the portfolio effect

positive balancing power for both situations, the opportunity costs in each situation

sum up for each power plant:

TotalOppor tunit yCosts(p) =
∑

i=low,high

Oppor tunit yCostsi(p) , ∀p ∈ {A, B, C}

(4.2)

This results in total opportunity costs of 20 EUR/MWh for each power plant. A coali-

tion of two power plants could reduce the joint opportunity costs. Power plants A

and B could cooperate, e.g. belong to the same operator. Then, in each situation

the operator can provide balancing power by her power plant with the lowest op-

portunity costs. She would use plant A in the low demand situation, and plant B in

the high demand situation. The joint opportunity costs for power plant A and B for

both situations is 10 EUR/MWh, which is lower than the individuals’ 20 EUR/MWh.

For the negative balancing power, this portfolio effect does not hold in general. The

opportunity costs are 0 for inframarginal power plants and usually monotonically

increasing for extramarginal power plants. This leads to monotonically increasing

4We assume that power plants need to run in order to provide positive balancing power (e.g. due to
minimum load or ramping constraints). If plants B and C would not need to run, their opportunity
costs would be 0 EUR/MWh.
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opportunity costs in each demand situation. The sum of monotonically increasing

functions is still monotonically increasing. Thus, the cheapest power plants to pro-

vide negative balancing power are always in the left segment of the merit order and

there is no possibility to get better off in a portfolio.

Note that we made some simplifying assumptions in this stylized example, e.g. we

neglected part load efficiency decreases and attrition costs. We assumed the capacity

provision and the minimum load capacity to be equal such that it cancels out for

the calculation of the extramarginal opportunity costs. Furthermore, we assumed

the balancing power demand to be comparably small such that the marginal power

plant can fully provide the balancing power demand. All simplifying assumptions

are relaxed and accounted for in the detailed optimization model.

The portfolio effect only occurs if balancing power is procured over a long time

horizon that differs from the hourly spot market tender frequency. Here, large play-

ers may have significant cost advantages because they can provide balancing power

at lower costs from their portfolio. For shorter time periods of balancing power

procurement, the portfolio effect is reduced.

In Figure 4.3, an exemplary merit-order for Germany divided into the main oper-

ators is shown. Power plants that do not belong to the largest five companies are

considered as power plants of a fringe.5

As previously explained, opportunity costs in the balancing power market do

strongly depend on the intersection of supply and demand in the spot market. There-

fore, to investigate market concentration, we need to consider the power plant port-

folio of all operators in the merit order (cf. Figure 4.3). Fuel costs as well as ca-

pacities are based on the year 2014. Detailed numbers can be found in Table 4.4 in

the appendix. We can see that several ranges are covered by only a few operators.

Especially, in the left part of the merit order, there are only two to three operators

covering a range of up to several Gigawatts. These are operators owning nuclear

and lignite power plants with high investment costs and low marginal costs.6 Those

ranges with few operators tend to favor market concentration. By incorporating the

operators and their power plant portfolio into our modeling, we are able to show

the effect of different provision duration on market concentration.

5Throughout the paper we use the following abbreviation for the operators: RWE (RWE), E.ON
(EON), Vattenfall (VAT), STEAG (STE), EnBW (ENB), fringe (FRI).

6Note that the fringe at the right of the merit order does not cause higher market concentration,
because those plants do not belong to a single firm.
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Figure 4.3: Merit Order in Germany colored as to the operators (capacity and cost data cor-
responds to the year 2014 and can be found in Appendix 4.6.1)

4.2.2 Market Concentration

In order to compare different levels of market concentration, we apply typical market

concentration indices from the economic literature. Those indices are the Herfindahl-

Hirschmann-Index (HHI, Hirschman (1964)) and the residual supplier index (RSI).7

The HHI uses the market shares of operators as an indicator for market concen-

tration. It is defined as

HHI :=
n
∑

i=1

MSi
2 (4.3)

where MSi is the market share of operator i in % and n the total number of op-

erators.8 Note, that we use the decimal representation of the market shares (50%

= 0.5). Therefore, our HHI index is in the range between 0 and 1. Comparable

high market shares have a higher impact to the HHI due to the squared functional

representation. If we would have only five operators in the electricity market, the

7We do not focus on the pivotal supplier index (PSI), since the non-binary RSI is a refinement of the
binary PSI. Furthermore, we do not investigate market concentration indices which involve prices,
e.g. Lerner-Index (Elzinga and Mills, 2011). Since we apply a mixed-integer model, prices cannot
be easily derived from the results due to the convexity problem (cf. (Bjørndal and Jörnsten, 2008,
Ruiz et al., 2012)). Technical restrictions like minimum load or start-up costs in mixed-integer
problems lead to non-convexities. Therefore, the marginal of the supply-demand-equilibrium can-
not directly be interpreted as an estimator for electricity prices. Power plant specific variable costs
can be above the system marginal costs of mixed-integer problems.

8The HHI is broadly applied in energy economics, see for instance Hogan (1997) and Twomey et al.
(2006). A general discussion on concentration indices can be found in Green et al. (2006).
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HHI could not be lower than 0.2 which would be the case of equally shared capacity.

Since we also consider a fringe in our numerical analysis, these lower bounds are

not necessarily holding. Based on the described indices we are able to compare the

effects of different market designs on market concentration.

The RSI for operator x measures the remaining capacity without supplier x ’s ca-

pacity to fulfill the demand. It is defined as

RSI(x) :=
TotalCapacity−Capacityx

demand
, (4.4)

where Capacityx is the capacity of operator x (cf. Twomey et al. (2006)). In our

analysis, we account only for active capacity which means capacity that is already

operating. Non-operating capacities cannot provide balancing power in time or have

additional start-up costs which make the opportunity costs not competitive. That

means, if a power plant provides balancing power, it has to be operating (such that

the production adjustment can be achieved) during the total provision duration. If

pooling is allowed, this constraint is relaxed. In this case, the operator may shift

the capacity within her power plant portfolio and hence is not dependent on the

operation of a single power plant. The capacity of the operator in a weekly balancing

power provision is defined by the minimum capacity of the operator’s portfolio in the

hours of the week. Note that HT and NT differentiation may apply. For comparison

reasons, we focus on the inverse value, i.e. RSI−1. Thus, similar to HHI, a higher

value indicates higher market concentration

The HHI represents a market concentration index based on the market share while

the RSI represents a market concentration index based on the residual supply (re-

maining capacity). Both measures therefore give different insights on the level of

market concentration.

4.3 Methodology

In this section, details of the basic modeling approach as well as data and assump-

tions are presented.
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4.3.1 Modeling Approach

The analysis is performed with a unit-commitment model for the German power mar-

ket.9 The basic model formulation is based on the work by Ostrowski et al. (2012)

and Morales-España et al. (2013) and is extended for the modeling of balancing

power provision.

In this article, we explain the general modeling approach for unit-commitment

models but abstract from the detailed formulation that can be found in the literature

on unit-commitment models (e.g. Ostrowski et al. (2012) and Morales-España et al.

(2013)). The focus is set on the introduction of additional equations that account

for the characteristics of balancing power markets.

The overall goal of the unit-commitment model is to derive the cost minimal pro-

duction schedule of power plants to satisfy the demand for electricity. Power plants

are modeled blockwise on an hourly time resolution. Power plant blocks are de-

noted by index p and hourly timesteps by index t. The objective function of the

unit-commitment model is to minimize the total costs of electricity production and

can be expressed as

min TotalCosts =
∑

t,p

(VarCosts(t, p) + Star tU pCosts(t, p)) . (4.5)

StartUpCosts arise if a power plant is not producing in time step t but produces elec-

tricity in time step t +1. The actual StartUpCosts are dependent on the power plant

p as well as on the non-production duration (time steps since last time operating).

Power plants produce electricity to satisfy the demand. This essential constraint is

represented as

∀sm :
∑

psm

product ion(psm)+ impor t(sm)−ex por t(sm) = demand(sm) (4.6)

and holds for every time step t and every spot market sm. Here, psm are the power

plants in spot market sm, import considers the electricity flow from other countries

(spot markets) to the respective one and vice versa for exports.10 The exogenous

9The model builds on the modelling framework MORE (Market Optimization for Elec-
tricity with Redispatch in Europe) that was developed at ewi Energy Research and
Scenarios gGmbH and is written in GAMS (further information can be found at
http://www.ewi.research-scenarios.de/en/models/more/).

10In the analysis at hand, only the German spot market is considered. Imports and exports are given
exogenously as explained later.
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demand is assumed to be perfectly inelastic.11

Technical characteristics of power plants are modeled via different constraints.

An important modeling aspect of unit-commitment models is that it accounts for

different states of power plants that can be incorporated by using binary variables.

This makes the model a mixed-integer model. For example, each power plant has a

range of feasible production which can be described by

product ion(p) = 0 or (4.7)

minload(p)≤ product ion(p)≤ capaci t y(p). (4.8)

Additional technical constraints of power plant blocks are also incorporated, such

as part load efficiency losses, load change rates, combined heat and power operation

and start up times. Part load efficiency is modeled via a convex function between the

minimum load level and the full load level (according to Swider and Weber (2007)).

This increases relative costs at reduced load levels due to part load losses compared

to operation at full load operation. Load change rates determine technology specific

ramping constraints which only allow for a certain adjustment of the power plants’

production from one timestep to the next. Those constraints apply for ramp-up and

ramp-down operations. We assume that the minimum load level corresponds to the

grid synchronization. Thus, as soon as the power plant operates at the minimum

load level, it feeds the production into the grid. This approach includes no-load

costs implicitly.

The basic model is extended to account for the unique characteristics of balancing

power markets. These characteristics are essentially given by (i) different provision

intervals and (ii) operator structures. We therefore need to map the hourly timesteps

to the balancing provision intervals as well as the different power plant blocks to

operators.

Table 4.1 gives an overview of the sets, parameters and variables used for the

modeling of balancing power. In the following, the equations of the model will be

discussed.

The total demand for balancing power during a provision interval must be satisfied

11If this assumption would be relaxed, we expect a similar outcome with respect to balancing power
provision, since the intersection point of demand and supply curve at the spot market, and hence
the relevant opportunity costs would not change.
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Table 4.1: Overview of sets, parameters and variables

Set

BPi interval for balancing power provision, e.g. week, day or hour
op operator

t hour
p powerplant

t_BPi set of hours in the balancing power provision interval
p_OP set of plants that belong to respective operator

FRI Fringe operators

Parameters

D(BPi) balancing power demand in interval

Variables

BP_O(BPi, op) balancing power provision by operator in interval
BP(t, p) balancing power provision by plant and hour

BP_F(BPi, p) balancing power provided by fringe operators in the interval

by the sum of the provision of all operators:

∀ BPi :
∑

op

BP_O(BPi, op) = D(BPi). (4.9)

The balancing power provision of all operators during a provision interval is con-

stituted by the provision of the plants of the operators in each hour:

∀ BPi, t ∈ t_BPi, op :
∑

p∈p_OP

BP(t, p) = BP_O(BPi, op). (4.10)

The balancing power provision of the fringe during the provision interval is con-

stituted by the fringe power plants without the option to pool:

∀ BPi :
∑

p∈p_OP(“FRI”)

BPF (BPi, p) = BP_O(BPi, “FRI”). (4.11)

The power plant specific balancing power provision of fringe power plants is fixed

in each hour of the provision interval:

∀ BPi, t ∈ t_BPi, p ∈ p_OP(“FRI”) : BPF (BPi, p) = BP(t, p). (4.12)

Thus, the model allows the fundamental modeling of power plants that provide
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balancing power accounting for the operator structure. However, calls of balancing

power are not modeled. Model outputs are the hourly production per power plant,

as well as, balancing power provision by operator and power plant. In combination

with the operator structure, we can evaluate market concentration indices in an ex-

post analysis.

4.3.2 Input Data and Assumptions

We model two representative weeks in 2014, i.e. a winter week and a summer week.

Figure 4.4i shows the demand, residual demand, solar feed-in and wind feed-in

during the winter week. This winter week represents a typical situation of high

demand in the early evening hours combined with no or very few solar radiation

during the day. Especially at the beginning of the week, the wind production is low

as well. As a result, there are situations with a residual demand of up to 71.2 GW in

which the conventional power plant fleet (nuclear and fossil power plants, pumped

storage plants) is utilized up to 69.3%. In the last three days of the week, the residual

demand is low due to low demand during the weekend and high wind feed-in. In

such a situation of low residual demand, the base load power plants supply a large

share of the spot market demand. Since the base load plants are owned by the large

operators, situations with low demand may show a high market concentration in the

spot market. This has implications for the market concentration on the balancing

power markets as well.

Figure 4.4ii shows the demand, residual demand and renewable feed-in in the

summer week. It can be seen that there is a contrast to the conditions of the winter

week. The demand in summer is typically low and there is high solar radiation

during the day. This combination leads to a reduced utilization of the power plant

fleet and therefore to lower prices. Here, even base load and mid load German power

plants (lignite and hard coal power plants) reduce their production. Wind feed-in

is on a relatively low level (below 10 GW in every hour), but increases during the

weekend when the demand is already especially low. This leads to a low residual

demand of only 24.3 GW on the Sunday.

Typical weeks during spring and autumn can be interpreted as a combination of

the situations in those weeks. The varying demand and renewable feed-in in every

single hour of those weeks cover a broad range of situations and therefore reflect

also average situation with medium demand and/or renewable feed-in.

The assumptions on power plant capacities are based on Bundesnetzagentur (2014).
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(i) Winter Week (Monday-Sunday) (ii) Summer Week (Monday-Sunday)

Figure 4.4: Demand, Residual Demand, Solar Feed-In and Wind Feed-In

Only German power plants are modeled. Imports and exports are exogenously given

based on ENTSO-E data. Fuel costs and CO2 prices are based on historical data. In-

stalled capacities, fuel costs and techno-economic parameters of power plants can

be found in the Appendix.

Power plants are also constrained in their balancing power provision. We consider

primary and secondary balancing power in our model, but abstract from tertiary

balancing power provision.12

We assume that all running plants can provide a certain share of their capacity

as balancing power. For the fossil and nuclear power plants, this share is derived

by information about the ramping speeds multiplied by the time duration until the

power adjustment needs to be realized. The ramping speed deviates by the year of

construction of the technology. Furthermore, we assume that the capacity (share)

for positive balancing power is the same as for negative balancing power. Table 4.2

shows the maximum allowed share of the capacity to provide balancing power for

different power plant technologies.13 We assume that power plants that are not run-

ning have high starting costs, e.g. due to attrition and fuel consumption, and thus are

12We do not consider tertiary balancing power since (i) technical restrictions are lower for the tertiary
market and it tends to be compensated by the intraday-market (30 min before physical delivery),
(ii) the current market design of tertiary balancing power has already a high tender frequency
(provision duration of four hours), and (iii) there are many competitors in the tertiary market
which reduces the risk of market power. Therefore, primary and secondary balancing power are in
the focus of our analysis.

13Pumped storage plants have a high ramping speed. Therefore, they have a high technical potential
to provide balancing power (up to 30 % of the capacity for the primary balancing power, and up
to 45% for the secondary balancing power for a single plant). However, due to multiple bidding
strategies and prequalification requirements, we assume that not all pumped storage plants are
bidding their total technical potential into the balancing power markets.
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Table 4.2: Share of total capacity that can be used for balancing power provision

primary balancing power secondary balancing power

CCGT 2.5 - 4% 25 - 40%
Coal 1 - 2.5% 5 - 12.5%

Lignite 1 - 2.5% 5 - 12.5%
Nuclear 2 - 2.5% 10%

OCGT 5 - 12.5% 50 - 60%
Oil 2% 20%

Pumped Storage 10% 15%

not competitive in offering balancing power.14 We do not consider balancing power

provision by renewables and demand side management, because those technologies

were not important for the balancing power market in 2014 (Dena, 2014).

There is only one product that is procured for primary balancing power. How-

ever, in the case of secondary balancing power, we consider a positive and negative

product for peak and off-peak times, respectively. Additionally we investigate the

cases of shorter tendering times, namely daily and hourly. In the case of a weekly

provision, the peak time are working days between 8 am and 8 pm. All other hours

(night and weekends) are off-peak time. In the case of a daily provision, the peak

time is the time between 8 am and 8 pm on every day (including weekends). In an

hourly auction, the distinction between of peak and off-peak products disappears.

We map the information about the ownership to each power plant. We consider

the German power plant operators E.ON, RWE, EnBW, Vattenfall and STEAG in our

model. All other power plants are mapped to the fringe. We obtain information

about ownership of plants from a list of the German regulator Bundesnetzagentur.15

E.ON, RWE, EnBW, Vattenfall and STEAG can use pooling to provide balancing

power over a time period, e.g. they can offer a certain volume of balancing power

during the provision period and use different power plants within their pool to fulfill

their commitment. The fringe is not allowed to pool meaning that each power plant

of the fringe has to provide the balancing power of the whole provision period. This

is the most restrictive assumption for the pooling of the fringe. Indeed, there are sev-

14Start-up costs for a cold start can be up to 60.000 Euro for e.g. a 500 MW CCGT or OCGT power
plant with 2010 cost data (Schill, 2016). These costs would have to be reimbursed by the revenue
in the balancing power markets. Additionally, a faster start-up than usually increases the attrition
and has a higher consumption of equivalent operating hours (EOH).

15Each power plant is mapped to only one owner. This corresponds to the assumption that even if
several owners have shares in one plant, only one owner is responsible for marketing balancing
power.
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eral pooling companies which aggregate smaller producers to a virtual power plant

and therefore allow for pooling for subsets of the fringe. However, if we allow that

the whole fringe may use pooling effects, the fringe would operate as an additional

big producer. Therefore, we expect that the general results for market concentration

hold and only the absolute level of market concentration deviates.16

4.4 Results

In this section, we present the model results for a weekly, daily and hourly provision

duration. The weekly provision duration represents the status quo which is cur-

rently in operation in Germany. Daily and hourly provision duration are currently

discussed as alternative market designs for the German balancing power market. We

analyze the balancing power provision in three dimensions. First, we focus on the

efficiency gains by a shortened provision duration which are captured in the total

system costs. Second, we analyze the balancing power provision by technology and

operator which enables us to shed light onto the level of market concentration for

the different provision duration using the indices HHI and RSI−1.17

4.4.1 System Costs

Power system costs of different model configurations are a benchmark for the effi-

ciency of the market design. In order to assess the costs of balancing power provi-

sion, we additionally model the electricity system without balancing power provi-

sion. The difference between this baseline run and the model runs with balancing

power provision can thus be considered as the extra costs of balancing power provi-

sion.18

Table 4.3 gives an overview of the total system costs in the simulated summer and

winter week with different designs of the balancing power markets. Irrespective of

if and how balancing power is provided, it can be seen that the system cost in the

winter is more than EUR 50m higher than in the summer.

As outlined above, the major power plant operators are allowed to pool their port-

16Furthermore, fringe power plants are typically gas fired power plants. Therefore, the effect on
market concentration affects only situation with high residual demand as to the opportunity cost
bidding strategy and the merit order.

17Note that we use RSI−1 instead of RSI. Thus, a higher value of RSI−1 indicates higher market con-
centration, similar to the interpretation of HHI.

18When referred to balancing power in this section, primary and secondary balancing power is meant.
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Table 4.3: Total System Cost in Reference Scenario in Million Euros

in mio. Euro no provision hourly daily weekly weekly (no pooling)

Winter 175.6 176.7 176.8 177.0 178.0
Summer 124.6 125.1 125.2 125.2 125.6

folio in order to provide balancing power. In order to quantify the efficiency gain

resulting from pooling, a sensitivity with weekly balancing power provision in which

pooling is not allowed is simulated additionally to a weekly configuration with pool-

ing and hence included in Table 4.3.

The difference between the system costs without balancing power provision and

the system costs of a configuration with hourly / daily / weekly balancing power

provision can be understood as the respective costs of balancing power provision.

Figure 4.5 illustrates those costs. It can be seen that not only the total modeled

system costs are higher in winter, but also the costs of balancing power provision.

This is expected given the higher residual demand levels in the winter.

If pooling would not be allowed, the cost of balancing power provision would be

EUR 2.361m in the winter week and EUR 0.995m in the summer week. The modeled

costs of the current weekly market design (with pooling of major operators) amount

to EUR 1.328m in the winter week, and EUR 0.677m in the summer week. The cost

difference between the weekly configuration with pooling and without pooling, that

can be interpreted as the efficiency gain of pooling, is EUR 1.033m in the winter and

EUR 0.319m in the summer.19
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Figure 4.5: Costs of primary and secondary balancing power (compared to no provision)

The difference between the system costs of a configuration with weekly balancing

19An additional sensitivity analysis not included in figure 4.5 in which pooling of all fringe operators
in one common fringe pool would be allowed shows no significant further efficiency gain.
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power provision and a configuration with hourly balancing power provision (from

now on we only consider configurations with pooling) can be interpreted as the max-

imum efficiency gain from shortening the provision duration. This cost difference is

EUR 222k in the winter week, and EUR 96k in the summer week.20 The system costs

of the daily balancing power provision are between the system costs for the hourly

and weekly balancing power provision. Compared to the efficiency gain from pool-

ing, this further efficiency gain by a shortened provision duration is small.

The level of renewable feed-in can influence those results. Therefore, we consider

a sensitivity in which we double the values of the historically observed renewable

feed-in in the simulated weeks. The detailed results are shown in Appendix 4.6.2.

A higher renewable feed-in leads to higher costs of balancing power provision espe-

cially in the summer week compared to the configuration with less renewables. For

instance, in the case of weekly provision in the summer, the balancing power costs

increase by EUR 559k if the renewable feed-in doubles. Due to the lower residual

demand, more power plants have to be operational only in order to provide balanc-

ing power. The order of magnitude of the efficiency gain from pooling, however,

remains unchanged by doubling the renewable feed-in.

The German expenses for the provision of primary and secondary balancing power

was EUR 331m in 2014 (Bundesnetzagentur, 2016) corresponding to average ex-

penses of EUR 6.37m per week.21 This means that the average real expenses were

higher than the simulated costs for the balancing power market with the weekly mar-

ket design (EUR 1.328m in the winter and EUR 0.677m in the summer). Our model

calculates total costs for power plants to provide balancing power under perfect com-

petition and foresight. Those can be interpreted as a lower bound for producers’

costs for the balancing power provision. The Bundesnetzagentur publishes the total

expenditures for the balancing power provision. These expenditures also include pro-

ducers’ surplus. If every operator would bid their real costs in the pay-as-bid auction

(under perfect foresight and perfect information), both results should be the same.

However, since it is profit maximizing for the operators to estimate and bid the sys-

tem marginal costs instead of own marginal costs (see for instance Müsgens et al.

(2014)), the real expenditures are higher than the modeled costs for provision. Fur-

thermore, the exercise of market power (e.g. withholding of volumes) could even

lead to higher system marginal costs and hence higher producers’ surplus. Effects

20Due to solver inaccuracies (difference between current best integer solution and optimal value of
LP relaxation), we cannot resolve the exact effect. However, we can be sure about the order of
magnitude of the effect.

21This figure is calculated based on capacity bids, not energy bids. This is consistent with our modeling
approach in which we consider only provision and not calling of balancing power.
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like strategic bidding between capacity and electricity bid or sub-optimal behavior

due to information asymmetries could further increase the cost difference between

real expenditures and the model results. Additionally, uncertainty for e.g. residual

demand, prices, and power plant shortages of the next week are included in the

bids which increase costs. These aspects are not considered by the cost minimizing

model under perfect foresight. Therefore, we would expect our results to be a lower

bound for the possible cost reductions.

4.4.2 Provision of Balancing Power

Balancing power is provided by different types of power plants within the portfo-

lio of operators. Depending on the portfolio of operators and the pooling within

the portfolio, the balancing power provision by technology changes from hour to

hour. This effect can be observed in the graphs in Figure 4.6i for different provision

durations at the example of positive secondary balancing power in the winter week.

For the weekly provision, we see a strong hourly fluctuation within the technolo-

gies although operators are restricted to a weekly provision duration. This indicates

that the operators make significant use of the pooling option. The operators can

freely select the power plants that shall provide balancing power in certain hours

of the week. Therefore, the operators choose those power plants in their portfo-

lio which have the lowest opportunity costs with respect to the spot market. Here,

obviously, operators with a large portfolio have an advantage compared to small op-

erators. For primary balancing power as well as for the case of the summer week, the

fluctuation of balancing power providing technologies are similar to the Figure 4.6i.

If we take a look at the provision by technology for daily or hourly provision du-

ration, we find a surprisingly similar structure to the weekly provision duration.

However, small differences in the diagrams can be identified. CCGT, for instance,

have a more important role in peak hours with the hourly provision compared to

the outcomes with longer provision duration. In the daily configuration, coal power

plants provide more often balancing power compared to the other configurations.

The hourly provision duration can be expected to be the efficient benchmark where

the owner structure of power plants does not matter. This means that the most

cost efficient power plants in each hour provide balancing power. Since the capac-

ity provision by technology of the weekly and daily cases are similar to the hourly

benchmark, we conclude that the pooling possibilities allow a provision pattern that

is close to the most efficient outcome. Even with a weekly provision duration, al-
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most the same cost efficient technologies provide balancing power as in the case

with an hourly provision. Except from the shown technology classes in Figure 4.6i,

no other modeled technologies provide balancing power.22 This interpretation is

in line with the results presented in Section 4.4.1 where the efficiency gain from

pooling was quantified to be EUR 1.382m in the winter week whereas the respective

efficiency gain from shortening the provision duration from a weekly to an hourly

market design was found to be EUR 0.222m.
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Figure 4.6: Comparison of the technologies (left) and operators (right) providing positive
secondary balancing power for the weekly, daily and hourly provision duration
in the winter week (model results)

Figure 4.6ii shows the modeled capacity provision by operator for positive sec-

ondary balancing power for a weekly, daily and hourly provision duration. Com-

pared to the modeled provision by technology, the modeled provision by operators

differs more significantly for the three market designs. The fluctuation of market

shares becomes higher with a shorter provision duration.

The capacity provision by operator can be considered as a first indicator for the

market concentration indices. Therefore, we expect stronger fluctuation of the mar-

22This result does not only hold for the case of positive secondary balancing power, but also for the
other investigated products.
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ket concentration indices for shorter provision duration. Drivers for this are:

• the absolute residual demand level at a given time point in the time frame,

• the volatility of the residual demand level in the provided time frame,

• the steepness of the marginal cost function of the power plants and therefore

the steepness of the opportunity cost function,

• the operator structure of the opportunity cost function, i.e. whether operators’

capacities are in blocks or spread in the opportunity costs merit order.

Thus, the capacity provision by operator is typically dependent on the specific mar-

ket circumstances, e.g. the product definition, the annual season, and the provision

duration. Hence, we investigate the different market designs based on market con-

centration indices in detail to derive further insights.

4.4.3 Market Concentration

Based on the balancing power provision by operator observed in Figure 4.6ii we

compute market indices for the three balancing power products, primary, secondary

positive and secondary negative balancing power. The indices vary depending on

the market design and provision duration. In order to assess the different ranges

of market concentration indices, we analyze the model results in histograms for the

HHI (cf. Figures 4.7, 4.9 and 4.10). Those diagrams show the HHI values in the

weekly market design as a red line. In the case of secondary balancing power, two

red lines are present due to the two contract durations (HT and NT, as described in

Section 4.2). For the hourly provision duration, 168 different products are defined

and hence 168 HHI values. The histograms show the distribution of those hourly

HHI values. Similar histograms for the RSI−1 are evaluated (cf. Figures 4.8, 4.12

and 4.13).23

For the interpretation of the results, we also add dotted lines into the histograms

which indicate threshold values for high market concentration. For the HHI, a strong

market concentration exists at a value of 25% according to US Department of Justice,

Federal Trade Commission (2010, §5.3) and at 20 % (with further restrictions) as

to EUR-lex (2004, 19. and 20.). In the case of the RSI−1 we consider a threshold

23Additionally, an analysis for the concentration ratio CR1 and CR3 was conducted. The CR for m
firms is defined as CR(m) :=

∑m
i=1 MSi where MSi is the market share of operator i in % for the m

largest firms. The analysis for CR1 and CR3 did not lead to different conclusions compared to the
analysis based on HHI and RSI−1. Furthermore, the CR as an market share concentration index is
similar to the HHI and thus to some extent redundant.
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value of 1.11 (which corresponds to a threshold value of 0.9 for the original RSI

definition).

The indices are no absolute measures in which one index would be sufficient to

indicate market concentration. Nevertheless, high market concentration is more

likely if both discussed indices point to a critical level.

Market Concentration for Primary Balancing Power Provision

For the modeled provision of primary balancing power, the HHI values are displayed

in Figure 4.7. We observe that the summer seems to be slightly more concentrated

in balancing power provision than the winter. The reason for this lies in the dif-

ferent demand profiles and the increasing production of solar generation (cf. Fig-

ure 4.4i). In the summer, a lower electricity demand and higher solar generation

lead to less demand of generation from conventional power plants and therefore

there are less power plants available (i.e. running) that are able to provide primary

balancing power. This is also indicated by high values of the RSI−1 that can be seen

in figure 4.8.
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Figure 4.7: Histogram of the hourly HHI values for primary balancing power in winter week
(left) and summer week (right)

Based on the model results we can infer that the primary balancing power market

is prone to high market concentration. When the market design is changed from

weekly provision to hourly provision we observe that the indices take on a broader

range of values. This means there are hours in which market concentration is in-

creased and hours when market concentration is lowered. An increase in market

concentration may occur if the level of demand is at a level where only few operators
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are close to the marginal production level. As previously explained in Section 4.2

and shown in Figure 4.3, there are intervals in the merit order where only some op-

erators own power plants. This is for example the case for lignite power plants that

are owned by Vattenfall and RWE. When demand is low and lignite power plants are

marginal in their production, they can provide balancing power at lowest cost. Since

this effect only depends on one single demand period in the hourly provision case

instead of multiple demand periods in the weekly design, the modeled market con-

centration increases in some hours. In addition, market concentration is higher in

the summer because of lower demand levels and therefore less conventional power

plants that are operating. These baseload power plants which are still operating are

owned by fewer operators, which increases market concentration.

There is no clear trend observable to conclude whether shorter provision duration

structurally mitigates or favors market concentration. The RSI−1, however, that can

be seen in Figure 4.8, decreases in average with shorter provision duration especially

in the winter week. This means that the average market concentration is reduced

because there is more active capacity that could provide balancing power. Neverthe-

less, there are some hours when the RSI−1 indicates a slightly higher concentration

compared to the weekly provision. The number of hours with critically high values

can be significantly reduced if the market design is changed to an hourly balancing

power provision. In the winter this leads to RSI−1 values below the threshold. In

the summer, however, the RSI−1 can only be decreased below the threshold in some

hours. Based on the model results, the primary balancing power market seems to be

highly concentrated such that even in the case with an hourly balancing power pro-

vision the average market concentration in the summer is still modeled as critically

high.
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Figure 4.8: Histogram of the hourly concentration index RSI−1 for primary balancing power
in winter week (left) and summer week (right)

Market Concentration for Positive Secondary Balancing Power Provision

Whereas primary balancing power is mostly provided by baseload power plants that

are able to increase and decrease their generation, secondary balancing power is

divided into positive and negative balancing power. In the case of positive balanc-

ing power, power plants provide the ability to increase their generation when being

called. For the winter we see the respective technology and operator mix in Fig-

ure 4.6. The result for the summer week is similar, which is the reason why it is

not shown additionally. The main difference is that more lignite power plants are

providing balancing power instead of CCGTs than in the winter week. Especially the

high provision of balancing power from lignite power plants leads to a high market

share by RWE and Vattenfall.

The market concentration indices in Figure 4.9 show a high market concentra-

tion based on the HHI. Here, again, concentration seems to be higher in the sum-

mer compared to the winter. Nevertheless, the story is a bit different compared to

the provision of primary balancing power because in the case of positive secondary

balancing power there is a larger proportion of active power plants that could po-

tentially provide balancing power. The respective RSI−1 indicates that the market is

not too concentrated because the providing power plants could be replaced by the

provision from power plants that are currently not delivering balancing power (the

histogram for the RSI−1 can be found in the Appendix). Therefore the market can be

considered as not as concentrated compared to the primary balancing power mar-

ket. When the provision duration is lowered to an hourly level, the average modeled
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market concentration based on the RSI−1 is further reduced. In the case of the HHI,

there is, however, no clear evidence for a reduction in average market concentration

by reducing provision durations. There are single hours with very high modeled

market concentrations in the hourly case.
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Figure 4.9: Histogram of the hourly HHI values for positive secondary balancing power in
winter week (left) and summer week (right)

Market Concentration for Secondary Negative Balancing Power Provision

The HHI values for secondary negative balancing power that can be seen in Fig-

ure 4.10 have similar characteristics as the values for the positive secondary bal-

ancing power. Nevertheless, in the negative secondary balancing power market, we

would expect no abuse of market power even with a high market concentration. The

rationale for this is as follows: As to Section 4.2, the costs for capacity bids for bal-

ancing power are driven by opportunity cost compared to the spot market. Thus, for

one hour, all operating power plants have zero costs for offering negative balancing

power. For a longer provision duration, the costs would increase if the power plant

would not be inframarginal all the time. However, due to pooling effects, operators

can choose power plants which are operating in a specific situation. Therefore, the

opportunity costs for each provider can be assumed to be (almost) zero. Many fringe

operators can potentially participate in the auction, since e.g. wind producers could

also provide negative balancing power. This means that the resulting supply curve

for negative balancing power is very flat. If operators would try to withhold quanti-

ties in an attempt to increase prices, fringe operators with similar small costs would

provide the balancing power. Hence, prices of (almost) zero for negative balancing
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4 Tender Frequency and Market Concentration in Balancing Power Markets

power should be the consequence. Note that in reality, there is uncertainty (e.g.

power plant outages) which leads to slightly positive capacity bids. With our model,

we can find the cost minimal provision of balancing power but we would expect

fierce competition. Therefore, even high shares of market concentration that can

be observed in the model results should not lead to the abuse of market power be-

cause all providers face the same low level of opportunity costs. This argumentation

is supported by the results on the RSI concentration index for negative balancing

power (cf. Appendix 4.6.3, Figure 4.13), where most situations point to sufficient

available active capacities to mitigate market concentration.
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Figure 4.10: Histogram of the hourly HHI values for negative secondary balancing power in
winter week (left) and summer week (right)

4.4.4 Influence of additional Demand Response on the Market
Concentration

A shortened provision duration relaxes the provision duration constraint and poten-

tially leads to dynamic market entries, e.g. by demand response technologies. The

participation of demand response in US real-time balancing markets is well inves-

tigated, see for instance Heffner (2008), Vlachos and Biskas (2013) or Wang et al.

(2015). In order to gain insights into the role of additional demand response tech-

nologies in our case, we model a sensitivity with additional 2.000 MW of pump

storage. In the model rationale, pump storage capacity has the same features as

flexible demand response processes or local storage applications. We model the

capacity belonging to the fringe operators which reflects the assumption of compet-

itively acting small operators. As expected, the average market concentration in the

hourly market design is reduced in the sensitivity compared to the corresponding
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case without the additional capacity. However, the main observation of the market

concentration analysis is found in the sensitivity as well, i.e. that there are hours with

higher market concentration in the hourly market design compared to the weekly

market design. This holds true for primary balancing power as well as for secondary

balancing power.

4.5 Conclusion

Currently, the German primary and secondary balancing power markets have a weekly

tender frequency. In a weekly market design, large power plant operators make use

of pooling within their portfolio in order to provide balancing power. Fringe opera-

tors, however, do not have pooling options and need to withhold the capacity of their

plants from the spot market for a whole week to provide balancing power which can

lead to inefficiencies. Hence, fringe operators could potentially benefit from a short-

ened provision duration. The analysis at hand focuses on (1) efficiency gains from a

shorter provision duration in primary and secondary balancing power markets, and

(2) market concentration in market designs with different provision duration. Since

it is known from the literature that simultaneous equilibria in spot and balancing

power markets are efficient and unique (Richter, 2012), our methodology is based

on a cost minimizing unit-commitment model for the electricity market in which we

account for the ownership of power plants.

We quantify the efficiency gain from allowing pooling in a weekly market design

to be EUR 1.033m in a winter week and EUR 0.139m in a summer week. Compared

to this, the further efficiency gains that can be realized by shortening the provision

duration from a week to an hour are small. An hourly market design would lower

the costs of balancing power provision by EUR 222k in a winter week and EUR 96k

in a summer week. Relative to the total simulated cost of balancing power provision

in the weekly market design with pooling, the efficiency gain is 17% in the winter

week, and 14% in the summer week.

Besides the efficiency gains, we identify effects on the market concentration. Here,

we investigate the HHI and RSI−1 indices which are based on the market share and

the residual supply, respectively. According to the model results, we see the poten-

tial for high market concentration in the primary balancing power market due to

the technical requirements power plants need to fulfill in order to participate in this

market. In the market for positive secondary balancing power, the model results

indicate less concentration because there is more available capacity that could po-
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tentially replace the providing power plants. For the negative secondary balancing

power, our results are quantitatively similar to the other products. However, we con-

sider concentration in the market for negative balancing power not to be an issue

due to the low opportunity costs for providing negative balancing power. Based on

the model results, we find a higher market concentration in the summer than in the

winter in all considered markets. The higher market concentration in the summer is

driven by a lower level of demand, which reduces the number of active power plants

and also the number of operators that are providing balancing power.

Our results reveal a tendency towards decreasing average market concentration by

shortening the provision duration. However, the market concentration indices take

on a broader range of values in the case of a shorter provision duration depending

on the residual demand level and its volatility. There are single provision periods

with a very high market concentration in the hourly and daily market design that

could favor the potential for market power abuse.

Although market concentration can be an indicator for market power, it does not

necessarily identify market power. The characteristics of the supply curve for balanc-

ing power determine the potential for market power abuse. If high market concen-

tration is found in a flat segment of the supply curve, prices cannot be raised signifi-

cantly. The goal of further research should be to comprehensively understand market

imperfections in balancing power markets which is a prerequisite for conducting a

comprehensive cost-benefit analysis for changes in market design like shortening of

provision periods. Besides market concentration, aspects like e.g. strategic bidding

between capacity and energy bid and uncertainty about the renewable feed-in or

demand should be considered.

As a policy implication, we recommend to monitor market concentration and price

levels carefully after a change of the market design in the balancing power market.

In specific situations, single operators may have a cost advantage compared to their

competitors.

4.6 Appendix

4.6.1 Input Data for Modeling

Since we model the year 2014, we are able to use realistic data according to publicly

available sources. Assumptions that are made are in line with typical assumptions
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for modeling the electricity generation sector in Germany. The installed power plant

capacities of different fuel types are shown in Table 4.4 and are based on Bundesnet-

zagentur (2014).24 Additionally, Table 4.4 shows the assumed fuel costs and the CO2

emission coefficients by fuel. We assume those costs to be static over the whole year.

The CO2 emission certificates are assumed to be 6.2 EUR/t CO2. The fuel costs of

pumped storage are based on opportunity costs.

Table 4.4: Model Inputs: Installed capacity in Germany for 2014, fuel costs, costs for CO2
emissions certificates, and CO2 emission coefficients

Capacity Fuel Costs CO2 Emission Coefficient

[GW] [EUR/MWhtherm] [EUR/t CO2]

Nuclear 12.1 3.6 0

Lignite 21.3 1.5 0.404

Coal 25.5 13.2 0.399

Gas 26.9 22.8 0.202

Oil 2.4 49.4 0.281

Pumped Storage 6.4 (opportunity costs) 0

Others 1 22.8 0.202

PV 32.7 0 0

Wind onshore 31.4 0 0

Wind offshore 0.4 0 0

Biomasse 7.5 31.8 0

Hydro 4.4 0 0

Table 4.5 shows the assumed technical power plant parameters (particularly de-

pendent on the year of construction).

24The actual input of installed capacities is further separated as to the year of construction: This gives
further technical characteristics and parameters like full load and part load efficiency. The newer
a power plant, the better are its technical parameters.
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Table 4.5: Techno-economic parameters for conventional power plants

Net efficiency

full-load
FOM-costs Availability

Start-up

time

Minimum

part-load

[%] [EUR/kW/a] [%] [h] [%]

Coal 37 - 46 36 - 54 84 4 - 7 27 -40

Lignite 32 - 47 43 - 65 86 7 - 11 30 - 60

CCGT 40 - 60 28 86 2 - 3 40 - 70

OCGT 28 - 40 17 86 0.25 40 - 50

Nuclear 33 97 92 24 45

Biomass 30 165 85 1 30

4.6.2 Robustness Checks

As a robustness check, a model run is considered in which the values of renewable

feed-in is doubled. Table 4.6 gives an overview of the total system costs, and Fig-

ure 4.11 illustrated the costs for providing primary and secondary balancing power

compared to a model run without balancing power provision.

Table 4.6: Total system cost in scenario with doubled renewable feed-in in million Euros

in mio. Euro no provision hourly daily weekly weekly (no pooling)

Winter 131.6 132.8 132.9 133.0 134.1
Summer 102.4 103.5 103.5 103.6 104.3

weekly (no 
 pooling allowed)

weekly daily hourly
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Figure 4.11: Costs of primary and secondary balancing power (compared to no provision)
in scenario with doubled renewable feed-in
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4.6.3 RSI concentration index for secondary balancing power

Figure 4.12 and 4.13 show the RSI−1 market concentration indices for secondary

balancing power (positive and negative, respectively). Values above the threshold

of 1.1 point to high market concentration situations in which one supplier might

be pivotal. It becomes obvious that in most situations, enough (active) capacity is

available. The situation is more critical in the modeled summer than winter week.
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Figure 4.12: Histogram of the hourly concentration index RSI−1 for positive secondary bal-
ancing power in winter week (left) and summer week (right)
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Figure 4.13: Histogram of the hourly concentration index RSI−1 for negative secondary bal-
ancing power in winter week (left) and summer week (right)
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Wind Data for Electricity System Analysis

Future energy systems rely increasingly on the wind power supply. Understanding

its characteristics is essential for the functioning of future electricity systems. Critical

low wind situations may endanger the security of supply. So far, historical observa-

tions of wind power production are limited to few recent historical years and may

not suffice to quantify the expected overall wind contribution, its variability, and its

regional balancing effects for future electricity systems. With a novel long-term high-

resolution wind power production dataset (hourly on a 6x6 km grid for 20 years)

we derive new insights. First, we find advantages of our high-resolution dataset

compared to previous studies. Second, we find a strong variation in annual wind

production (variation of up to 14% for Germany). And third, we find a potential

benefit from electricity exchange with neighboring countries in low wind conditions

(for Germany in 81% of the low wind situations). The results are highly relevant for

further investigation on the level of secured capacity or to identify optimal power

transmission capacities within energy market modeling.

5.1 Introduction

Weather dependent renewable energies, in particular wind energy, has recently gained

an increasing importance for energy systems all over the world. For instance, the

European wind capacity share raised from 6% (41 GW) in 2005 to 16.7% (154 GW)

in 2016 (WindEurope, 2017). Thus, for understanding future energy systems, the

overall wind power contribution, its short- and long-term variability as well as its

regional balancing effects are crucial. Especially regarding energy system reliability

the unique characteristics of wind power production, such as low wind situations,

play an important role.

This encounters at least two major challenges. First, available historical wind

power production data is insufficient for future predictions. Due to the rapid ex-

pansion of wind employment, extensive long-term observations are scarce. There-

fore, simulations of wind power time series using current and expected future wind
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park fleets are required. However, this is leading to the second issue - the lack of

meteorological observations with sufficiently high spatio-temporal resolution at the

long-term scale, matching with operation sites to perform such simulations.

Recently a number of studies are making use of wind datasets from various re-

analysis products in order to deal with these issues (Cosseron et al., 2013, Gunturu

and Schlosser, 2012, Hallgren et al., 2014, Ritter and Deckert, 2017, Staffell and

Pfenninger, 2016). However, most of these studies are limited in the sense of spatial

coverage (single countries), coarse spatial resolutions or the level of details concern-

ing the conversion from wind energy to electricity generation. For instance, Staffell

and Pfenninger (2016) apply NASA’s Modern-Era Retrospective Analysis (MERRA)

in combination with a country based calibration to European wind parks calculating

long-term wind power time series. Although the temporal resolution (hourly) of the

MERRA reanalysis is sufficient for most energy related applications, the accuracy of

the wind dataset might suffer from its coarse horizontal grid spacing (approximately

50 km in Europe) since important local effects happen at sub-grid scales.

In this article, we face these challenges by applying a novel wind power model to a

unique high resolution wind dataset. The hourly and 0.055◦x0.055◦ (approximately

6x6 km in Germany) resolution dataset is obtained from the brand-new reanalysis

product of the Consortium for Small-scale Modeling (COSMO-REA6). In combina-

tion with a location specific European wind park portfolio of 2014, we generate

a high resolution wind power database on an advanced level of details. Since the

COSMO reanalysis contains long-term time series of 20 years, we are able to capture

the broad range of variations, in particular the long-term variability of wind speed

and hence electricity generation. In addition we apply a country based calibration

to our model results using bias corrections triggered by historical time series.

We focus on three main insights from this approach. First, we have a closer look

at advantages of our higher spatial resolution compared to other previous studies

which rely on coarser reanalysis products. Second, by using long-term data we are

able to analyze the variability and occurrence frequency of extreme events in the

wind power sector. This leads to the question whether it is reasonable to define

representative years as it is common in many energy studies. Third, we investigate

regional balancing effects induced by wind power generation, on a European scale,

as well as on a national scale (Germany). This highlights once more the advan-

tages from extending electricity grids to reap the benefits from balancing effects.

The dataset can be applied in further high-detailed energy market models and cost-

benefit analyses.
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5.2 Methodology

The paper is structured as follows: In Section 5.2 we develop and apply the model

to simulate wind power time series. The modeling results are further analyzed in

Section 5.3 with respect to annual variation and balancing effects. We finally con-

clude in Section 5.4.

5.2 Methodology

In this section, the methodology is presented. Due to the high-resolution in time

and space, the model has the potential to outperform existing wind datasets with a

coarser resolution. Since wind speeds are highly dependent on regional effects (sur-

face roughness, landmass, etc.) a high resolution is crucial to derive detailed data

which is necessary for follow-up analysis in e.g. electricity dispatch and investment

models, transmission grid expansions, as well as security of supply analysis.

5.2.1 A model for high resolution wind power production

We develop a method to accurately estimate spatially and temporally high resolution

wind power production time series for given installed wind park capacities in a cer-

tain domain. The method is implemented in the Renewable Energy Output Model

(REOM). To calculate the power output Pout of a single wind turbine at a known loca-

tion for given instantaneous wind speeds at hub height vhub the following equation,

also called power curve, is used:

Pout =



























0 vhub < vin

1
2
πR2cpρhub · v3

hub vin <= vhub < vr

C vr <= vhub < vout

0 vhub => vout

(5.1)

The rotor diameter R, efficiency cp, capacity C , cut-in wind speed vin, cut-out wind

speed vout as well as rated wind speed vr are determined by the specific turbine

type. The cut-in wind speed is the speed, where a turbine starts to generate power

output. At rated wind speeds it produces at maximum (capacity) level and for wind

speeds above the cut-out it stops due to technical limitations and security issues.

The wind speed vhub and air density ρhub from equation (5.1) need to be known at

the turbine’s hub height, since both quantities vary substantially with height.
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Due to the cubic dependency of the power output by the wind speed at hub height

in equation (5.1), it is crucial to have highly accurate wind input data. The wind

input data is obtained from reanalysis data on a pre-defined grid. Two steps are

necessary to get the wind speed at the specific turbine location and hub height.

First of all, wind speeds are horizontally interpolated from adjacent grid points to

the exact specific wind park location using the inverse distance weighting method.

Second, wind speeds need to be vertically interpolated, respectively extrapolated

to the adjacent hub height. Reproducing the vertical wind profile is a challenging

task due to the complexity of atmospheric stability conditions (Kaimal and Finnigan,

1994, Motta et al., 2005, Stull, 1988). In this paper, we use a vertical interpolation

between the first six model layers obtained from the reanalysis data by a 3rd order

fit.

5.2.2 Application of REOM: A European long-term dataset

A wind park dataset is necessary to provide information about geographical coordi-

nates, commission dates (production start dates), hub height, rotor diameter as well

as the specific power curve characteristics (cut-in, cut-out, rated speed and capacity)

for every single wind park in Europe. We use an extract of the worldwide database

for wind turbines and power parks from The Wind Power1 The Wind Power (2016),

last updated in April 2016. In order to be able to compare different years of weather

and hence wind power production, we use the European wind power park fleet of

the end of 2014 as the basis for our long-term wind power production simulations.

After filtering out parks without a detailed location, production status or commis-

sion date information, 15 400 European parks contributing to an overall installed

capacity of 119.85 GW for 2014 are left. However, some parameters are still lacking

to different extents. For instance, for more than half of all parks in Europe the rotor

diameter is unknown and for roughly 40% the exact hub height is lacking. In these

cases default values are set, obtained by the mean of the particular parameter and

country. In the appendix, Figure 5.7 and Figure 5.8 show the distribution of installed

capacity in Europe for 2014 and Table 5.3 summarizes the parameter availability.

Imprecise wind input, due to the cubic dependency in equation (5.1), results in

highly inaccurate wind energy outputs. Since wind speed is highly variable in time

and space it is desired to use temporal and spatially high resolution wind input data.

Reanalysis products are an approach to solve the lack of high resolution and homo-

1www.thewindpower.net
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geneously distributed data. They are systematic approaches to generate long-term

datasets on a defined homogeneous grid for climate research by combining an as-

similation scheme for historical observations with a certain atmospheric circulation

model. Several reanalysis datasets are available for different historical periods, spa-

tial domains and resolutions. However most of these products have a coarse horizon-

tal resolution (Staffell and Pfenninger, 2016), e.g. ERA-Interim with approximately

80 km in Europe, due to their global coverage and computational limits. This might

be a problem especially in mountainous regions, where the meteorological model

is not able to reproduce the underlying terrain and capture wind speed variations

adequately (Kaiser-Weiss et al., 2015). To reduce these inaccuracies we use the

novel high resolution reanalysis dataset COSMO-REA6 from the Climate Monitoring

Branch of the Hans Ertel Centre for Weather Research (HErZ-TB4) funded by the

German Weather Service (DWD). It provides hourly wind data between 1995 and

2014 in Europe on a 0.055◦ (approximately 6 km) horizontal grid spacing with 40

different vertical layers. For more details about the reanalysis model and dataset see

Bollmeyer et al. (2015).

Staffell and Pfenninger (2016) point out that a key factor for previous wind power

production studies using reanalysis products is "the need for calibration, or bias cor-

rection, to bring simulated capacity factors in line with reality". They find signifi-

cantly varying bias correction factors for different European countries showing the

site dependency of such corrections. We follow the simple and promising bias cor-

rection method of Staffell and Pfenninger (2016) by using the bias of the simulated

wind power output instead of directly taking reanalysis wind speeds.

To correct our new simulated time series by the capacity factor bias in every coun-

try we use the wind power production database from the European Network of Trans-

mission System Operators for Electricity (ENTSO-E) as a basis for comparison. The

database contains monthly wind power capacity factors (CF) between 2010 and

2014 for all European countries. Similar to Staffell and Pfenninger (2016) the re-

sulting bias factors show significant regional dependencies. Country-wise correction

factors can then be applied to calculate new wind speeds at the specific hub heights

yielding bias corrected wind power production time series for all European wind

power parks. We need to mention here, that specific single wind park sites might

face significant errors due to the usage of country averaged production data from

ENTSO-E.

With the wind park and reanalysis dataset we are able to calculate hourly time

series for all wind turbine locations in 30 countries, including 28 countries of the
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European Union (EU-28) complemented by Norway and Switzerland (from now on

defined as Europe), for a time period of 20 years between 1995 and 2014.

This dataset is very useful in the field of energy meteorology and energy economics

because of two distinct characteristics. First, we derive hourly wind production

time series for each wind turbine location. Our high-resolution data (hourly time-

resolution on 6x6 km) provides superior accuracy compared to classical European-

scale wind datasets (e.g. 6-hourly temporal resolution for ERA-Interim and 50x50 km

horizontal grid as for MERRA-2). Second, we can gain additional insights on long

term energy output of wind turbines over a time span of 20 years that could not have

been measured historically. By providing these insights, we can especially contribute

to energy systems planning. Here, time series over a time span of 20 years lead to

much more robust results and insights compared to the historical measurements.

5.3 Results

5.3.1 Evaluation of the underlying reanalysis dataset

First of all we have a closer look at the reanalysis wind speed input dataset. Yet there

are only few studies dealing with the performance of the COSMO reanalysis product

due to the recency of the dataset. Kaiser-Weiss et al. (2015) compare statistical

properties of wind speeds observed at 210 meteorological stations over Germany

with near-surface fields of the COSMO-REA6, ERA-Interim and ERA-20C reanalysis

products for recent years. With respect to monthly correlations, they find for 96%

of all stations a correlation coefficient R ≥ 0.8 and for 80% of the stations R ≥ 0.9

in the case of COMSO-REA6, in contrast to 82% and 47% for ERA-20C as well as

89% and 66% for ERA-Interim. They state that the improved correlation of COSMO-

REA6 is "valid for daily, monthly and seasonal scale" and add that regional reanalysis

"improves monthly correlations [...] in areas with more complex topography".

To further assess the wind speed quality of data produced by reanalysis we com-

pare COSMO-REA6 (6 km grid), ERA-Interim (80 km grid) and MERRA-2 (50 km

grid) wind speeds to observations. The data used here are the synoptical obser-

vations (SYNOP) provided by the DWD with a temporal resolution of 10 minutes

(averages). In order to compare only with independent observations, SYNOP sta-

tions lower than 100 m above sea surface are omitted since these observations are

used for the COSMO assimilation procedure. The observations are compared to the

nearest grid point of the respective reanalysis. As the observations are compared
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to 10 m wind reanalysis data only observations with measurement height between

8 and 12 m are taken into account. The DWD provides for every SYNOP observa-

tion site a spatial representativeness value. To avoid comparisons with observations

influenced by local obstacles, sites with representative values greater than 500 m

are considered only. Thus, 59 different SYNOP stations remain with 10 minute ob-

servations. Table 5.1 shows the bias, standard deviation and Pearson correlation

coefficient of COSMO-REA6, MERRA-2 and ERA-Interim compared to SYNOP ob-

servations.

Table 5.1: Bias, standard deviation (STD) and Pearson correlation coefficient (R) of COSMO-
REA6, MERRA-2 and ERA-Interim compared to 59 SYNOP observation sites in
Germany for 2014.

Bias [ms−1] STD [ms−1] R

REA6 -0.14 1.44 0.74

MERRA 0.53 1.76 0.67

ERA-I 0.17 1.65 0.67

The time period of investigation are hourly values in the year 2014. COSMO-

REA6 represents the mean absolute wind speeds best with a slight underestimation

of -0.14 ms−1. The other two reanalysis slightly overestimate the wind speeds. In

addition to the smallest systematic error, COSMO-REA6 shows the lowest standard

deviation and highest linear correlation coefficient. Thus, COSMO-REA6 performs

best in representing absolute values of observations.

There are various processes on different spatiotemporal scales determining the

atmospheric wind field. To get an insight on how well the processes at the different

temporal scales are simulated (and therefore produce realistic spatial wind variabil-

ity) a method suggested by Cannon et al. (2015) is used. We compare the observed

(OBS) and reanalyzed (R) wind speed differences (δv) between different observa-

tion sites i, j:

δvR = vR,i − vR, j (5.2)

δvOBS = vOBS,i − vOBS, j (5.3)

Figure 5.1 shows the linear correlation coefficients between the observed and syn-

thetic wind speed differences for COSMO-REA6, MERRA-2 and ERA-Interim. The
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correlations increase from small to large distances, because large scale processes are

in general better represented than small scale processes. COSMO-REA6 shows sig-

nificant higher correlations to observations, followed by MERRA-2 and ERA-Interim.

As COSMO-REA6 shows highest correlations for all distances, COSMO-REA6 outper-

forms the other two reanalysis not only in representing small scales processes but

also large scales processes.
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Figure 5.1: Linear correlation of observed wind speed differences (site to site) and reana-
lyzed wind speed differences as a function of site distance. Solid lines show the
moving average in a window of ±25 km. The standard deviation of the moving
average is shadowed.

5.3.2 Evaluation of the REOM model

As a next step we compare the ENTSO-E time series on a monthly basis to bias

corrected control data containing REOM wind power simulations between 2010 and

2014. To estimate the performance of the REOM model only countries with reliable

installed capacity data in the considered time span are taken into account, leaving

21 European countries. The average European CF of 22.85% in ENTSO-E is slightly

underestimated by our model (22.01%), yielding a difference of 3.6%. The good fit

throughout the time period can be seen in Figure 5.2i.
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Figure 5.2: Monthly means of capacity factors between 2010 and 2014. In a) for REOM
(blue, solid) and ENTSO-E (red, dashed) averaged over all European countries.
In addition the 10 and 90% percentiles are shaded. In b) only for Germany. In
addition the uncorrected REOM (blue, dashed) is shown.

However, it is evident that the spreads between the 10 and 90% percentiles vary

significantly between REOM and ENTSO-E due to over- and underestimations in

certain countries. The same can be observed on an intra-annual scale - the monthly

averaged CF across Europe are showing very good agreement in spring and summer

months but also some bias in autumn and winter (cf. Figure 5.2ii).

Considering output reductions of 5% in all ENTSO-E data due to transmission and

distribution losses, as suggested by Staffell and Pfenninger (2016), would result in

an even closer match. The simulations show high correlations for almost all countries

in Europe. They range between 0.98 for Germany and 0.71 for Bulgaria leading to

an average correlation coefficient of 0.88 for entire Europe. As an example, Figure

5.2ii illustrates the German CF between 2010 and 2014 for the historical data, the

bias corrected and uncorrected REOM data. It is evident that the model is able to

capture the general trends. The bias correction shifts the data towards the ENTSO-E

values, yielding comparable capacity factors. Looking at errors, the model shows

root mean square errors between 1.45% (Germany) and 6.78% (Bulgaria), while

3.97% are estimated in average for Europe.

To evaluate the performance of the REOM model in combination with the COSMO-

REA6 dataset on an hourly basis, the modelled wind production is compared to pub-

lished hourly means of wind production data by EEX for the reference years between

2010 and 2014 in Germany. The hourly time series are as well highly correlated

(R= 0.97) and the German average CF is underestimated by 3.9%, with 17.08% CF

for REOM and 17.88% CF for EEX. An investigation of the diurnal cycle averaged

over the 5 years shows that REOM is in good agreement with EEX and only slightly
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underestimates the CF during night times and vice versa during midday (cf. Figure

5.9 in Appendix 5.5.3). The occurrence frequencies of capacity factors (cf. Figure

5.10, Appendix 5.5.3) show that the REOM underestimates the lowest range of CF

(<10%) and slightly overestimates CF between 10 and 30% compared to EEX.

Besides these minor differences between our simulation results, ENTSO-E and EEX

our model performs well on annual, seasonal, daily as well as hourly time scales.

It is able to reproduce the general trend in wind power generation as well as its

magnitude on the European and country based scale. However a country based bias

correction is applied to our simulations, the performance quality still differs between

countries significantly.

5.3.3 Long-term variability of wind power production

By making use of 20 historical weather years, we are able to simulate the wind power

production over a comparably long time span with high resolution. We model the

wind power generation in Europe for the installed capacities that existed in 2014.

With this approach we are able to analyze the variation of wind power generation

over a long time span which enables us to compare the characteristics of different

weather years regarding annual average generation, high and low wind conditions.

Note that the research focus is on the analysis of the wind variability and its char-

acteristics. We explicitly do not perform a cost-benefit analysis of wind production

sites nor an economic viability analysis. Thus, economic characteristics as renew-

able subsidies, electricity demand and supply, or market values are not relevant for

this investigation. However, the underlying high resolution dataset can be applied

to improve existing research as for instance applied in the high resolution market

value estimation of Obermüller (2017a).

The distribution of hourly simulated wind generation over the time span of 20

years is plotted for Europe and Germany in Figure 5.3i and 5.3ii. In Europe, the

capacity factor takes on values between 0% and 68%. For Germany, higher CF can

also be observed that take on values as high as 88%. Generally, we find that the Ger-

man distribution of CF inhibits more extreme conditions with high or low capacity

factors. In Europe as a whole these extreme low and high values cannot be observed

because there are balancing effects between countries.
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Figure 5.3: Distribution of the hourly capacity factors in Europe (a) and Germany (b) be-
tween 1995 and 2014, red dashed lines illustrate the 1% and 99% percentiles
and red solid lines the median. The annual moving average (c) and occurrence
of extreme events (d) in Germany are shown for the same period.

This leads on the one hand to a low probability of very low CF and on the other

hand to a very low probability of very high CF. In this paper, we define low wind

situations as situations below the 1% percentile threshold of the wind production

distributions and, vice versa, high wind situations above the 99% percentile of the

wind production distributions (exemplary plotted for Europe and Germany in Figure

5.3i and 5.3ii as red dotted lines). These are relative thresholds with respect to the

different capacity and production levels. This means the absolute threshold for a

German low wind condition is different from the European absolute threshold. The

absolute threshold for the German low wind situations is at a CF of 2.27% or a pro-

duction level of 0.8 h, whereas the European threshold is a CF of 7.13% or 8.54 GWh

(high wind in Germany 69.83% or 24.57 GWh, Europe 50.31% or 60.29 GWh).

Figures 5.3iii and 5.3iv show the average annual CF for Germany and the occur-

rences of low and high wind situations for the whole time period. We see that the

average CF can have huge variations between different historical years. For example

between 1996 and 1998 the difference amounts to 4.6%-points in CF which means

that in 1998 wind was able to generate 14.04 TWh more compared to 1996. In rel-
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ative terms, the wind power production in 1996 would have been only 78% of the

wind power production in 1998. The maximum deviation to the 20-year-average

annual CF is 14.4% (see Table 5.2).

Table 5.2: Statistics of the simulated annual capacity factors for Germany between 1995 and
2014.

Capacity Factor [%] Deviation to mean [%]

min 16.1 -11.0

25% 17.2 -4.9

mean 18.1 -

75% 19.0 5.0

max 20.7 14.4

One relevant point is wind degradation, i. e. the wind power adjustment pro-

cess which could occur due to climate change. By Figure 3c no annual degradation

process is obvious. A corresponding OLS estimation shows no significant trend in

annual wind capacity factor degradation. Small-scale regional effects could occur

but have limited relevance for our national-level investigation focus.

The variation between different years is not only large in average terms but also

with respect to the extreme high and low wind conditions. In Figure 5.3iv we can

see that there is a large variation in the occurrence of low and high wind conditions

in Germany. Based on the observations there is no clear link between the frequency

of extreme wind conditions and the annual wind power production. For instance,

2011 was an average year in terms of annual wind power production with an excep-

tionally high number of low wind conditions and a comparably low number of high

wind conditions. It is therefore not sufficient to define a representative year which

covers characteristics of the whole time horizon that can, for example, be used for

energy system modeling purposes. Especially in order to capture extreme events that

may determine the reliability of future electricity systems, it is essential to consider

observations from a long historical time span.
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5.3.4 Balancing potentials in Europe and Germany

Balancing effects between different European countries can occur as long as there

is enough transmission capacity available between countries. In this paper we will

abstract from the limitations of transmission capacity and shed light on the theo-

retical potential of balancing effects assuming sufficient availability of transmission

capacity. We are aware of the fact, that the underlying data by itself has limited po-

tential to quantify the correct amount of transmission extensions. To quantify this, a

dynamic energy dispatch and investment model would be necessary which accounts

for physical power flows. However, the underlying data can serve as high-detailed

input for further investigations in energy market models (e.g. Bertsch et al. (2016))

and is thus highly relevant. The work of Hagspiel et al. (2017) applies our wind

dataset to evaluate the regional cooperation benefits on firm capacity under security

of supply aspects.

For the analysis of balancing effects we distinguish two situations that are relevant

with respect to the electricity system. First, balancing effects are beneficial when

electricity generation of two locations are uncorrelated. We will refer to this case as

average balancing effects. In this case both countries can benefit from the exchange

of electricity because generation may be higher in one country when generation is

low in the other. Second, we will analyze the case of balancing effects during low

wind conditions in Germany. For both balancing effects, average and low wind, we

will focus on Germany within the European electricity system.

Figure 5.4 shows the correlation of wind power production for each country to

the German power production over the whole time span from 1995 to 2014.
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Figure 5.4: Correlation of German and European wind power production between 1995 and
2014.

All countries are positively correlated with the German wind power production

and as expected more distant countries are less correlated by trend. This is in line

with the results of Monforti et al. (2016), although they focus on the correlation

compared to Europe instead of Germany (based on a time span 1961-2050 in daily

resolution from a data ensemble of 12 regional climate models). For Germany, it

is beneficial to be connected to countries with low correlations with their national

wind power supply. This may for example be the case for Norway or Austria, which

are close by but rather uncorrelated in terms of wind power production. Whereas

Germany has already very high transmission capacity to Austria, the connection to-

wards Norway is so far only able via Denmark and a direct connection is currently

being built (NORD.LINK). By trading electricity with countries of low correlation,

Germany and the respective counter party are both able to benefit during average

conditions. When we take a closer look at low wind conditions, this may not neces-

sarily be the case.

During low wind conditions, balancing effects may be lifted when there is still

power production available within Europe and especially in neighboring countries.

As previously defined, we use a threshold of 2.27% CF which identifies the lower

1% percentile. Figure 5.5 shows the histogram of the production in Europe and

neighboring countries, when Germany is experiencing low wind conditions.
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Figure 5.5: Hourly capacity factor distribution for Europe (a) and neighboring countries (b)
during low wind conditions in Germany between 1995 and 2014.

In most cases, the production in Europe and the neighboring countries are also

low compared to their 20-year median production (cf. Figure 5.3). Nevertheless,

the power production is only in some cases a critically low wind situation as to the

1%-percentile threshold for the CF. Within Europe, the capacity factor in 9% of the

cases is also below the 1% percentile. For neighboring countries, this probability

increases to 19%, which would occur with a joint probability of 0.19%. In all other

low wind cases we can expect balancing between countries to take place. This means

not all countries are experiencing extreme low wind conditions at the same time.

5.3.5 Balancing potentials within Germany

Balancing effects can also occur on geographical scopes within countries. Due to

the high spatial data resolution of our dataset, the above methodology can easily be

extended to analyze inner-country effects. The subsequent focus is Germany. High

Northern (i.e. coastal) wind speeds and a corresponding subsidy scheme have caused

higher installed wind capacities to be located in the Northern regions. The North

German plain is located in this area, which shows low surface roughness enhancing

the occurrence of strong winds in near-surface layers. South-German topography

consists of mid- and highlands with a higher surface roughness. This leads to signif-

icant differences in regional wind locations within the country.

Figure 5.6 shows the distribution of capacities (5.6i), average CF (5.6ii) and cor-

relations of CF time series to the total German wind production time series (5.6iii)

in Germany.
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Figure 5.6: Wind production in Germany a) sum of installed capacity within each hexagon,
b) average capacity factor of wind turbines in each hexagon, and c) correlation
of energy production in each hexagon with the total German wind energy pro-
duction

The value of each hexagon is obtained by an aggregation of the individual wind

turbine values in that area. The capacity is the sum over all capacities within the

area. The CF is defined as the average total wind production divided by the total

capacity. The correlation is calculated based on the production in each hexagon

compared to the total German wind power production. Darker colors point to higher

capacities, capacity factors or correlation values.

Wind power capacities are mainly located in the northern part of Germany. The

highest concentration of capacities can be found in the north-eastern part. Higher

CF are located at the Northern coast. The main reasons are higher wind speeds

which evolve over the sea and the North German plain due to more northwest wind

situations in central Europe.

The highest correlations of wind power production can be found in the North

German plain. Here, high installed wind capacities lead to an implicit weighting of

the correlation time series. The aggregated correlations of the hexagons are up to

0.9 in this area compared to the total German wind production. Wind locations (i.e.

the corresponding aggregated values per hexagon) in the Southern regions can be

weakly correlated as 0.3. This difference is driven by different wind speeds (e.g. due

to the alps and the country-side) as well as less installed wind capacities.

With the same motivation as of the European analysis, which stated that favor-

able wind locations should have high capacity factors but should be less correlated,

we find the following: to achieve highest wind production per installed MW wind

capacity, wind locations are favorable in Northern windy areas. However, due to the
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high correlation in the North German plain, coastal regions would be more favor-

able compared to areas in the center of the North German plain. Lowest correlation

values can be achieved in the Southern regions, i.e. close to the Alps. In this region,

however, capacity factors are very low.

5.4 Conclusions and implications

In this paper, we present a temporal (hourly) and spatial (wind park level) high-

resolution wind production model. We apply the model to the 20-year high res-

olution COSMO-REA6 reanalysis dataset for the EU-28 region (plus Norway and

Switzerland). The focus is on the characteristics and the variability of wind power

production over 20 years. This dataset and the corresponding analysis allow us to

contribute to existing research in three aspects.

First, we show that our wind input dataset, the COSMO reanalysis product, out-

performs the widely used ERA-Interim and MERRA time series. Taking this as a

basis, we create a novel time series dataset for wind production with our new model

and the unique COSMO-REA6 wind speed data. It covers a time span from 1995-

2014 with an hourly resolution for each European wind park. Our model can easily

account for higher temporal or spatial resolution and is only restricted by available

input data.

Secondly, we identify the annual variability as well as the frequency of high and

low wind situations in Germany for the 20 years of simulation. This analysis indi-

cates that there is no single representative wind year which inhibits characteristics

of average production as well as extreme situations. Thus, input weather years need

to be carefully chosen and a longer time span could lead to more robust results in

energy system modeling.

Thirdly, we find that Germany and European countries have significant balancing

effects and can benefit from electricity transmission. On the one hand, we find evi-

dence for average balancing effects based on correlation values. On the other hand,

we identify that only a share of low wind situations in Germany are facing low wind

situations in neighboring countries or in entire Europe at the same time.

Finally, the scalable REOM as well as the derived new wind production dataset

allow further detailed analyses due to their high resolution applicability. The results

should be considered in transmission extension analyses as this is strongly depen-

dent on statistical balancing effects of wind production. Our 20-year time-horizon
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can be assumed to incorporate all relevant occurrences of wind situations. The gen-

eral investigation can be extended to analyze local balancing effects which has a high

relevance for countries with strong regional concentration of wind parks at windy

locations, e. g. Germany. The high resolution wind production dataset can increase

the accuracy of electricity system modeling to evaluate security of supply under bal-

ancing effects as well as the regional market value of wind in a nodal pricing model.

Further improvements of the input wind park dataset would contribute to a higher

accuracy of the wind energy model.

5.5 Appendix

5.5.1 Distribution of installed wind capacity

The underlying wind park dataset (i.e. installed capacities) varies across Europe.

The regional distribution is shown in Figure 5.7, which indicates an accumulation

at coastal areas: Northern Germany, coasts of Spain as well as Italy.
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Figure 5.7: Distribution of the regional wind capacity [MW] within Europe (aggregated to
local hexagons)

The absolute installed capacity of wind power per country (cf. Figure 5.8), which

is used for simulations, shows a highest installed capacities in Germany, Spain and

Great Britain, followed by France and Italy.
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Figure 5.8: Installed wind power capacities [GW] in European countries.

The installed capacity (in combination with the regional wind speeds has influence

on the correlation, capacity factors as well as balancing effects.

5.5.2 Completeness of the wind park dataset

The underlying wind park dataset contains relevant information for the technical

characteristics of the installed European wind parks. However, not all information

are contained for each wind park or turbine. Table 5.3 provides statistics as to the

completeness of each technical characteristic as well as the used default parameter,

in the case of missing values.
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Table 5.3: Parameter availability for all wind parks in Europe for the database of The Wind
Power and their default value averaged over all countries.

Parameter Availability (%) Default value

Location 100 -

Commission date 100 -

Number of turbines 100 -

Hub height 60.6 90 m

Rotor diameter 37.5 66.7 m

Cut-in 66.8 3.5 ms−1

Cut-out 66.8 25 ms−1

Rated speed 66.8 12 ms−1

5.5.3 Evaluation

Subsequently, we evaluate the modeled wind production data and data provided

by the EEX transparency platform. The model is not calibrated to this data since

the EEX data is an approximation itself. In addition the EEX dataset only covers

Germany and similar informations are scarce concerning all European countries.

Figure 5.9 compares the diurnal cycle of both time series. Our simulations show

only slight differences with higher values during daytime and lower values in the

night.
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Figure 5.9: Moving average of the diurnal cycle of capacity factors between 2010 and 2014
in Germany for REOM (blue, solid), EEX (black, solid) and their residual (blue,
dashed).

Figure 5.10 shows the high correlation of the modeled CF to the calculated factor

based on the EEX data. For very low CF, our simulations are higher than for EEX

while this behavior turns around for CF ranging between 10% and 30%.
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Figure 5.10: Occurrence frequency of hourly capacity factors for REOM (blue, solid), EEX
(black, solid) and their residual (blue, dashed) in Germany between 2010 and
2014
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6 Build Wind Capacities at Windy Locations?
Assessment of System Optimal Wind Locations

In recent years, the installed capacities of renewable energies have steadily been

increasing. This raises the question for optimal locations of renewables. Ideally, the

market prices induce efficient locations. Distorting effects, i.e. non incorporation of

the physical grid situations, could lead to sub-optimal regional incentives compared

to a system optimal perspective. In this paper, the wind production revenues under

nodal and zonal pricing are investigated. The analysis is extended to the widely

used wind value factor. The analysis identifies the zonal pricing wind revenues as

inefficient location signals. Location signals need to consider the grid situations.

Wind revenues could face an average increase of 21% and more than 200% for

certain locations. This is highly relevant to design efficient subsidy schemes or to

identify regional grid and capacity extension necessities.

6.1 Introduction

The energy transition promotes huge extensions of renewable capacities. This was

mainly achieved by subsidy schemes. Several common subsidy schemes are (to some

extent) decoupled from market price signals as for instance the fixed feed-in tariff

(see Couture and Gagnon (2010)). The IEA strongly encourages the market in-

tegration of renewable energies (IEA, 2016) in the long-run. This transfers market

incentives to the renewable operators and should increase efficient locational invest-

ments and production decisions. Especially volatile renewables need to consider re-

gional simultaneity effects in production (also known as regional correlation or self-

cannibalization effects (Hirth and Müller, 2016, Kreuz and Müsgens, 2017)). Thus,

the market situations with their timely varying electricity prices (dependent mainly

on demand, supply and nowadays weather) have an increased importance to choose

optimal renewable locations. From an operator’s perspective, optimal locations aim

for a maximization of the renewables’ profits which transfers to a maximization of

revenues due to almost zero marginal costs of wind production.

However, the market revenues under zonal pricing might incentivize sub-optimal
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system locations. In markets with zonal pricing, physical grid situations and conges-

tion are not necessarily internalized in the market prices within the bidding zones.

This holds true for instance for the European electricity markets. Thus, a discrep-

ancy could occur between the optimal locations under zonal pricing (i.e. without

internalized transmission situations) and the optimal locations under nodal pricing

(i.e. with internalized transmission situation). Despite the revenues, the market

value factor is widely used as an indicator to assess the contribution to the electric-

ity market especially for renewables. The market value factor is the relation between

the production-weighted revenues per MWh and the average market price. Based

on regional market value analyses, insights on beneficial locations could be derived

as well. However, the market value as an aggregated indicator is lacking essen-

tial information like total production levels and the corresponding time structures.

Therefore, it is questionable if the market value factor is suitable to assess regional

production signals.

In this paper, two relevant questions are answered to identify optimal renewable

locations: (1) Are the revenues under nodal pricing the preferable indicator to assess

optimal renewable locations compared to the revenues under zonal pricing? And (2),

are the value factors of renewables sufficient to evaluate optimal locations? Both

findings are highly relevant for the design of subsidy schemes as well as capacity

and grid extension processes and of course for the adequate evaluation of wind pro-

duction.

The analysis is performed on the case of wind production in Germany due to sev-

eral reasons. Wind capacities contribute significantly to the German electricity pro-

duction. As to AG Energiebilanzen (2017), wind production has a share of 12.1%

of the total German gross electricity production in 2016. Wind production is a main

technology to achieve the energy transition to a highly renewable-based energy sys-

tem in the long run. Germany has built a dominant share of its wind capacities at

northern windy locations favored by an implemented feed-in tariff.1 This implies

challenges to the transmission grid in some situations. Primarily in situations with

strong wind (and low demand), the grid is not capable to transfer the wind pro-

duction to the load centers (Kunz, 2013). Therefore, strong deviations between the

optimal wind locations under zonal or nodal pricing can be expected.

1An early version of the renewable feed-in tariff was implemented in 1991 (see Bundesregierung
(1991) which was adjusted in between and lasts until 2012. In 2012, the feed-in tariff was changed
to a feed-in premium (Bundesregierung, 2012) and adjusted in 2014 (Bundesregierung, 2014) and
2017 (Bundesregierung, 2017). However, the design of the feed-in premium is still very similar to
a feed-in tariff and might favor the similar locations.
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The underlying research is based on two literature fields: The optimal wind lo-

cations from an operator’s perspective as well as the market value factor. Existing

research on optimal wind locations cover mainly the electricity systems (or markets)

perspective in order to reduce integration costs or smooth the production profiles.

This is the case for instance in Roques et al. (2010) who identify risk-minimal or

volatility-minimal wind locations on a country level (DE, AT, FR, DK, ES) under co-

operation. In contrast to this, the operators’ potential revenues are identified since

this should be the economical main objective for new wind capacities. Addition-

ally, the focus lies on inner-country effects as in Grothe and Schnieders (2011). In

contrast to the underlying research, they aim at smoothed production instead of

operators’ optimal locations. Burke and O’Malley (2008) and Burke and O’Malley

(2011) focus on optimal wind locations under a revenue maximizing perspective.

They identify optimal locations in nodal pricing test networks with consideration of

physical transmission characteristics. However, they do not consider high-resolution

real world data (as it is done for Germany) and they do not compare the the nodal

pricing revenues to the typical zonal pricing revenues. Pechan (2015) is very close to

the underlying research in that way that she compares (among others) the spatial dis-

tribution effects on wind capacity under a nodal and under a zonal market premium

subsidy scheme. In contrast to the present research, she uses a strongly simplified

model with six nodes and eight lines. Furthermore, she assumes additional subsidy

schemes (fixed feed-in tariff or market premium under nodal and under uniform)

instead of a pure market integration. The subsidy schemes may distort the optimal

wind locations by its additional income stream (cf. Wagner (2016)).

The second branch of literature focuses on the market value of intermittent pro-

duction technologies applied for instance in Joskow (2011), Fripp and Wiser (2008)

and Hirth (2013). The market value widely serves as an indicator for the contributed

value of renewables to the electricity markets. Hirth (2013) focuses on the estima-

tion of the decreasing market value of wind (and solar) under a higher market share

with empirically and numerically methods for different countries. This investiga-

tion is extended in Hirth (2016) (to account for hydro-electric storage potentials).

Both analysis consider a country-wise investigation in contrast to the underlying

regional, i.e. inner-country focus. Grothe and Müsgens (2013) extends the market

value definition of Hirth (2013) and uses locational wind generation. They compare

37 exemplary wind parks within Germany and find that the locational profits of a

wind turbine are affected (dependent on the subsidy scheme). Similar results are

found by Elberg and Hagspiel (2015) who use a regional copula based methodology

to estimated regional expected market values of wind in Germany. Both, Grothe and
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Müsgens (2013) and Elberg and Hagspiel (2015) focus only on wholesale electric-

ity market prices and neglect the influence of the transmission grid to the market

value. As mentioned in Hirth et al. (2015) and as we see in the analytical analysis

of Wagner (2016), the transmission situation might have strong impacts on capacity

locations. Due to inner-German grid congestion, the values as well as the revenues

are expected to deviate strongly with and without consideration of the transmission

situation. This research considers, identifies and compares these distorting effects.

To achieve new insights, the underlying research is based on a nodal electricity

market model with a DC load flow grid representation for Germany. This allows to

consider the physical transmission situations, necessary for the assessment of the

optimal wind locations. The main advantage of the underlying modeling method-

ology is the possibility to consider one electricity system with two different pricing

regimes (zonal pricing and nodal pricing). Such a comparison is not possible with

classic empirical methods since zonal and nodal pricing data do not exist simultane-

ously. Additionally, the endogeneity between wind production and electricity prices

is represented in the present model which could be hard to include within empirical

models (especially for future situations). The underlying methodology is applied for

the modeled year 2014. However, the methodology is easily extendable to consider

future years (regarding grid and capacity situations).

The present results are distinguished between the nodal pricing perspective, which

internalizes physical transmission situations, and the zonal pricing perspective, which

abstracts from electricity transmission. The zonal pricing regime represents the cur-

rent design of most European electricity markets (among them Germany). The nodal

pricing regime is applied for instance in the US electricity markets of PJM or ISO New

England (Joskow (2005) or Litvinov (2010)). It can be considered as an economic

benchmark compared to the zonal pricing, since costs for transmission and conges-

tion are internalized Hogan (1999). For the nodal and zonal perspective, the wind

revenues as well as the wind value factors are analyzed and compared.

The paper is organized as follows: Section 6.2 describes the methodology of the

(nodal) electricity dispatch optimization model. Based on this, relevant data is de-

rived to evaluate the revenues and value factors of wind. Section 6.3 compares

the results under nodal pricing to the results under zonal pricing. The analysis is

applied, first for the revenues and afterwards for the value factors. Section 6.4 dis-

cusses the results and shows the significance for locational signals as well as the

design of subsidy schemes. Section 6.5 concludes and identifies further research.
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6.2 Methodology

To identify optimal wind locations, high-resolution fundamental electricity market

optimization model is applied (description in 6.2.1). A nodal model representation

of Germany which respects inner-German transmission situations gives information

about the optimal wind locations. In line with economic literature, the nodal model

definition can be considered as the economic efficient benchmark due to internalized

transmission costs (see for instance Schweppe et al. (1988) and later discussed in

Hogan (1999), Chao et al. (2000), Green (2007), Leuthold et al. (2008), Burstedde

(2012)).

In contrast to the theoretical efficient nodal representation, Germany and most

other European countries have implemented a zonal (i.e. country-wise) market de-

sign with uniform pricing and neglect inner-country transmission situations in the

wholesale market prices.

In zonal electricity markets, re-dispatch is a possible congestion management

mechanism. As soon as the market-driven dispatch, i.e. the planned power plant uti-

lization, leads to critical transmission line utilizations, an adjustment is performed.

The responsible TSO instructs producers (regionally) before the grid congestion to

reduce their production. In the same time, producers (regionally) behind the grid

congestion are instructed to increase production. This production shift reduces the

electrical power flow on the congested lines. A financial compensation for the shift-

ing producers is payed which does not affect wholesale market prices. Especially

the extension of wind and PV production have increased the problem of (weather-

driven) grid congestion. In 2010, 1588 hours of re-dispatch were necessary. This

number steadily increased in the subsequent years to 5030 hours in 2011, 7160

hours in 2012, 7965 hours in 2013 to 8453 hours in 2014 (see Bundesnetzagentur

(2016)). As one main driver, the strong increase in northern wind production is

mentioned.

In contrast to a zonal model with re-dispatch, a nodal model accounts implic-

itly for grid congestion and leads to market price deviations. These price deviations

would direct give monetary incentives for electricity production, especially for north-

ern wind producers. Thus, it is highly-relevant to analyze the market revenues for

wind producers under a realistic nodal electricity valuation (which includes grid con-

gestion externalities) instead of observing the artificial zonal wind valuation (with

re-dispatch). To analyze the differences in wind valuation, the optimization model is

applied with a nodal pricing configuration as well as a country-wise uniform (zonal)
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pricing configuration.

6.2.1 General model description

The applied fundamental electricity market model is a partial equilibrium model.

Costs of electricity production are minimized under a inelastic demand function and

subject to typical electricity market model restrictions (see next section). The model

framework is PyPSA, which is an open source energy modeling framework.2 The re-

gional focus of the model is Germany with a nodal resolution. Neighboring countries

are modeled simplified as one node without inner-country grid restrictions. Overall,

the model incorporates 575 nodes and 854 connecting lines. The temporal focus is

the year 2014 with an hourly resolution (8760 h). The model optimization assumes

perfect foresight and neglects uncertainty for the corresponding timeframe. The

considered network topology is shown in figure 6.1 and based on SciGRID (Matke

et al., 2016, www.scigrid.de).
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CH

BE

DK SE

Figure 6.1: Network topology of the optimization model. The focus is a nodal resolution
in Germany with its surrounding neighbor countries. Each dot represents one
node, which are connected via transmission lines (220 kV and 380 kV).

2http://pypsa.org/, PyPSA Version 0.4.2, release date 17 Jun 2016
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6.2.2 Fundamental equations

The model minimizes short run total system costs of the electricity production, which

are the sum of the short run marginal generation costs times the generation over all

nodes n, supply technologies s and timesteps t:

min Totalcosts =
∑

n,s,t

mar ginalCostsn,s,t ∗ genn,s,t (6.1)

This is subject to following main restrictions:

• Nodal power balances: The electricity supply needs to equal the demand for

each node n and each timestep t. Electricity supply can be provided by nodal

generation genn,s,t as well as electricity flow from connected nodes f lowl,t :

∀n, t :
∑

s

genn,s,t +
∑

l

Kn,l f lowl,t = demandn,t (6.2)

Here, Kn,l denotes the incidence matrix which determines the connection of

each line l to the corresponding nodes n. The generation genn,s,t reflects pro-

duction of conventional power plants, renewable power plants and storage

units. Note that production by storage units and electricity flow can be nega-

tive in the case of storage uptake or power outflow, respectively.

• Generation constraints: Each generators’ production (conventionals, renew-

ables and storages) for each timestep t is restricted by its total capacity ad-

justed by the time-dependent availability:

∀n, s, t : 0≤ genn,s,t ≤ availabil i t yn,s,t capaci t yn,s. (6.3)

The availability for renewable energies (i.e. wind and solar) is restricted to the

exogenous capacity factors.

• Storage constraints: Each storage unit (e.g. pumped-hydro storage) is bounded

by maximum and minimum storage levels (similar to equation (6.3)) as well

as storage uptake and storage dispatch speeds and efficiencies. Storage inflow

and losses may apply, dependent on the exact storage technology. Uncertainty

is neglected, which generally tends to underestimate the value of storages (and

flexible power plants).

• Power flow: Electricity transmission between nodes is only possible if a line

exists. It is subject to line resistance and voltage magnitudes at the nodes. Note
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that the model is applied with a DC grid representation on voltage magnitudes.

For a line l which is defined from node n to node m, the following equation

holds:

∀l, t : f lowl,t =
δVn,t −δVm,t

resistancel
(6.4)

in which δVn,t represents the voltage magnitude. For details, see for instance

Gabriel et al. (2012, Appendix C). For the zonal pricing electricity model,

inner-German line restrictions are neglected, which is consistent with the Ger-

man electricity market design.

Further typical electricity market modeling restrictions apply which can be found

at pypsa.org; among them efficiency losses or ramping constraints. The applied

model is configured to not allow for capacity extensions of generators or lines.

6.2.3 Input Data

For conventional generation in Germany, the power plant list of the German regula-

tor Bundesnetzagentur is used.3 The power plants are matched to the nodes by its

smallest distance. Neighboring countries are based on public available sources, e.g.

Eurostat. Marginal costs of conventional generations are assumed as to Table 6.1

and have no regional differentiation.

Table 6.1: Model input: Marginal costs of production

Fuel Marginal Costs [EUR/MWh]

Nuclear 8
Lignite 10

Hard coal 25
Gas 50
Oil 100

The demand time series is the hourly national demand from the ENTSO-e trans-

parency platform for 2014. The German demand is distributed to the nodes via the

share of the regional GDP and the regional population. A detailed description can be

found in Appendix 6.6.1. The distribution accounts for annual values and neglects

hourly demand variations.

3https://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/
Sachgebiete/Energie/Unternehmen_Institutionen/Versorgungssicherheit/
Erzeugungskapazitaeten/Kraftwerksliste/Kraftwerksliste_2016.xlsx. Version of
03. Mar 2016, filtered for end of 2014 running power plants
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The production profile of wind energy is based on a high-resolution meteorologi-

cal weather model in combination with a wind park database and described in detail

in Section 6.2.7. The production profile of solar energy is modeled based on the Ger-

man solar production data of EEX in combination with a regionalization approach.

This is described in Section 6.2.8

The transmission grid (i.e. 220 kV to 380 kV voltage levels) is based on the Sci-

GRID dataset4. The distribution grid (i.e. voltage levels below 220 kV) cannot be

considered due to insufficient data availability. Neighboring countries are consid-

ered as one node, such that no inner-country grid information is required. However,

connections between neighboring countries are restricted by ENTSO-e transmission

capacity data. Grid connections between neighboring countries and Germany are

connected to the correspondent nodes in Germany and the typical grid characteris-

tics (resistance, voltage magnitude) based on SciGRID.

The dispatch model is applied with two configurations which will be compared

to each other in the latter analysis. First, the dispatch model will be applied with

a nodal pricing configuration of Germany. The inner-German transmission restric-

tions must not be violated which results in different nodal prices. Second, the zonal

pricing configuration is applied which means that no inner-German transmission re-

strictions hold. This is similar to the current German market design with one whole-

sale electricity price. In the real market, re-dispatch is applied to ensure network

stability. In this modeled zonal pricing system, the consideration of re-dispatch is

not necessary since the focus is on the market revenues and not on the technical fea-

sibility of the load flows. Thus, the costs of re-dispatch (which increase total system

costs but not the market revenues e.g. of wind production) are out of the scope of

the investigation.

6.2.4 Model limitations

The model underlies some simplifications to make it tractable in reasonable com-

putational time. The model is a linear optimization model and does not incorpo-

rate minimum load constraints as applied in unit commitment models (mixed inte-

ger linear programming, see e.g. Carrion and Arroyo (2006)). In contrast to unit

commitment models, linear models have the relevant advantage that the dual vari-

able of the electricity-balance equation can be interpreted as (perfectly competitive)

marginal prices which is not possible in classical mixed integer models due to non-

4www.scigrid.de, release date 18. July 2016, Matke et al. (2016)
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convexities (Bjørndal and Jörnsten, 2008, Ruiz et al., 2012). The model focuses on

the short-term dispatch situations such that long-term effects as investments and ca-

pacity extensions are not included (as e.g. in Bertsch et al. (2016)). This reduces

the model size and allows for a high number of inner-country nodes (>500 nodes

and >800 lines) instead of a country-wise representation. The model has perfect in-

formation over each optimization interval and does not include e.g. stochasticity (as

described for instance in Wallace and Fleten (2003) or Birge and Louveaux (1997)),

which reduces model complexity. Heat production is neglected which implies that

we overestimate in the model the cost of combined heat and power.

6.2.5 Revenues of wind

In the results chapter, we investigate and compare the revenues of wind turbines

as these are the relevant criteria for the regional investment decisions of operators.

Marginal costs of wind production are almost zero and thus profit maximization

translates to revenue maximization. Regional site costs are assumed to not deviate

across the nodes and are thus neglected. The wind revenues Rn,wind at a given node

n from the electricity market (without subsidies) can be expressed via:

Rn,wind =
∑

t∈T

pt genn,wind,t (6.5)

R̃n,wind =
∑

t∈T

pn,t genn,wind,t (6.6)

where T is the total time span (here: 8760 hours of the year 2014), pt is the electric-

ity price [EUR/MWh] in hour t, and genn,wind,t is the generation in [MWh] at bus

n for supply tech wind in hour t normed to 1 MW (for comparison reasons). Note

that the difference between the revenues is the electricity price which is uniform in

the first case and node-differentiated in the second case. Thus, R reflects the rev-

enues under zonal pricing whereas R̃ reflects the revenues under nodal pricing and

consideration of internal physical transmission situations. Note that the modeled

revenues in general do not incorporate any subsidy payments. Figure 6.2 illustrates

the difference between the zonal and nodal revenues with a simplified two-nodes

example. In case of a grid congestion, the market prices are nevertheless identical

in the zonal pricing regime, whereas price deviation could occur in the nodal pricing

regime. Under identical wind production at both nodes, the revenues are identical

under zonal pricing whereas the prices deviate under nodal pricing. Note that for the

German case, typically, the northern wind production is higher due to higher wind
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Figure 6.2: Simplified two-node illustration of the difference between the revenues under
zonal pricing (left) and nodal pricing (right). Assume that we have two nodes
which are connected by one transmission line. In the case where the transmission
line is congested, we still face the same prices for Node A and Node B in the zonal
pricing regime. The same situation could lead to price differences under nodal
pricing. For identical wind production at both nodes, the revenues are identical
in the zonal pricing regime (independent of the grid situation) and deviating in
the nodal pricing regime.

speeds and higher wind power capacities. In windy situations, this leads to potential

grid congestion from north to south. However, under zonal pricing, one MWh north-

ern wind production is remunerated equally to one MWh southern wind production

even in the case of grid congestion. Under nodal pricing, equally remuneration of

one unit wind production is not necessarily the case. Thus, wind production recives

the regional market price of energy.

6.2.6 Value of wind

We calculate the market value factor of wind according to the definition of Joskow

(2011) and Hirth (2013). Thus, the market value factor of wind can be interpreted

as the relation between the production-weighted wind revenues and the average

market price.5 It is defined as

∀ n : vn :=
pT gn

pT 1
=

�
∑

t pt genn,wind,t
∑

t genn,wind,t

�

� 1
n

∑

t pt

� (6.7)

where p is the vector of market prices (modeled system marginal costs), upper T de-

notes the transposition, gn is the generation weights vector at node n, t denotes the

5The value factor is more suitable for later comparison since it is denominated by the base price and
shows the relative value drop instead of the absolute value drop.
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hours, and 1 is a vector of ones of corresponding length. The denominator of the

average market price transforms the market value from EUR/MWh to a percental

factor for comparability. A market value factor of 90% indicates that a producer is

able to derive 90% of the average market price with its (volatile) production com-

pared to a permanent operating producer. That could be the case, if the (volatile)

production has a market price reducing effect, as it is the case of zero-marginal-cost

renewable production like wind and PV. A market value factor of above 100% is pos-

sible, for instance if production is available in peak price situations. Due to different

regional wind production profiles at each node, we derive different market value

factors of wind even under a zonal pricing regime.

Since the market value factor of wind does not internalize inner-German grid sit-

uations, we define the nodal market value factor of wind which considers regional

prices by:

∀ n : ṽn :=
pT

n gn

pT
n 1
=

�
∑

t pn,t genn,wind,t
∑

t genn,wind,t

�

� 1
n

∑

t pn,t

� . (6.8)

6.2.7 Description of wind data

Since this research focuses on the wind revenues and wind values, much empha-

size is put on accurate wind production data. The data is based on Henckes et al.

(2018). Here, the novel meteorological weather model COMSO-REA6 is applied,

which calculates among others, high-resolution wind speeds for the analyzed year

on a 6km × 6km grid and several vertical layers. Henckes et al. (2018) uses the

derived wind speed data in combination with a European wind park dataset, which

includes locations (latitude, longitude), installed capacity, hub-height, turbine data

(incl. cut-in and cut-off wind speeds) to calculate the correspondent power curves).

A horizontal linear interpolation from the grid coordinates to the exact wind park

location is used. On the vertical level, a logarithmic interpolation between the grid

layers and the real hub-height of the wind turbines is performed. Overall, this en-

ables to estimate high-detailed wind production per wind park in Germany (and

Europe). Figure 6.3 visualizes the capacity distribution, the capacity factors as well

as the regional production correlations (aggregated to hexagons) for Germany (cf.

Henckes et al. (2018)). The hexagon’s production correlation is compared to the

total German production timeseries. The wind production per wind turbine is allo-

cated to the nodes by the smallest distance in the electricity market model approach.

The wind data of 2014 is chosen for this investigation from the total dataset (cov-
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Figure 6.3: Wind data for Germany aggregated to hexagons: a) Sum of installed capac-
ity within each hexagon, b) average capacity factor of wind turbines in each
hexagon, and c) correlation of energy production in each hexagon with the total
German wind energy production. Data from Henckes et al. (2018).

ering each year from 1995-2014 in hourly resolution). First reason is consistency

to the demand and solar production year. The second reason is an almost average

occurrence of extreme situations (low wind and high wind situations) as well as ca-

pacity factor in 2014 compared to the 20-year average (cf. Henckes et al. (2018)).

The modeled wind production from Henckes et al. (2018) is equally scaled to the

reported production of AG Energiebilanzen (2016), to compensate for the annual

production difference.

6.2.8 Description of pv data

The PV production at each node is derived from the German ex-post PV production

timeseries of the power exchange EEX in 2014. The total production was distributed

via the regional installed capacities to the nodes. The regional installed PV capacities

were taken from the EEG Anlagestammdaten Register, a register for all subsidized

renewable production facilities in Germany. The register covers a total PV capacity

of 35.19 GW in 2014 which corresponds to 92% of the total installed PV capacity

(38.23 GW) in 2014. This regionalization approach has two drawbacks: (1) For

whole Germany, the regional solar radiation is assumed to be the same and (2) the

distribution of the installed capacities by the register is assumed to be fixed when

the available installed PV capacity data is scaled to Germany’s installed PV capacity.

The first assumption of a regional invariant PV capacity factor is a rather strong

assumption, since the solar radiation in the south of Germany is higher than in the

north (see, for instance, the Global Atlas for Renewable Energies from IRENA http:
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6 Wind locations

//irena.masdar.ac.ae/). However, solar radiation can not (yet) be derived by

the used COSMO-REA6 model due to, e.g., instantaneous clouds, fogs or snow on

the PV panels. Thus, in this approach, real production data is used but with the

drawback of a unified capacity factor. The second assumption of a fixed distribution

in the scaling process to Germany’s total PV capacity is rather uncritical since the

register covers 92 % of the total installed PV data.

6.3 Results

The results focus on two major indicators for the assessment of wind production.

First, the regional wind revenues are analyzed. Afterwards, the wind value factors

are analyzed.

6.3.1 Wind revenues

To assess regional wind location incentives, the wind revenues are analyzed. The

(efficient) nodal revenues of wind are identified and compared to the zonal revenues

of wind (current implemented design). Note that both revenues do not consider

any subsidy payments and are based purely on market prices, i.e. a 100% market

integration of wind energy.

The nodal revenues: Efficient benchmark with consideration of the

transmission grid

Figure 6.4 shows the modeled wind revenues under nodal pricing, i.e. with consider-

ation of the physical transmission characteristics. The revenues are in relative terms

to the capacity weighted average German wind revenue.

Following aspects become obvious:

• Highest relative revenues are concentrated in the north-western area. The

nodal revenues in the north-western area are mainly in the range between

100% and 200% (or higher) of the average German wind revenues and with

peak-revenues up to 350%. However, the strongest wind speeds are typically

located at the northern coast (cf. Henckes et al. (2018)). Due to the German

transmission situation with mainly north-south congestion, the revenues in

the north-western area are higher than the northern coast. The north-western
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Figure 6.4: Wind revenues per node within Germany under nodal pricing. (a) Different rev-
enues at each node, (b) at nodes with revenues above 150%, (c) at nodes with
revenues below 50%. All nodal revenues in percent compared to the capacity
weighted average German revenue. Darker nodes represent higher percental
revenues. The size of the nodes indicates the installed wind capacity per node.
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wind locations are located slightly behind the mainly congested lines, which

are also identified in Bundesnetzagentur (2016).

• Most of the low revenues are concentrated in the southern area but a few are

located at the northern coast. In these northern nodes, typically high wind

situations occur. Nevertheless, several revenues are below 50% of the capac-

ity weighted German average revenues. This can be explained via the before

mentioned grid situation. Additionally high installed capacities lead to simul-

taneity production and thus strongly reduce electricity prices. These effects are

also denoted as cannibalization effects and may further decrease revenues.

• The eastern area with highest installed wind capacities (cf. Figure 6.3) has

mostly revenues below 100%, but no extreme high or low revenues. Those

effects are mainly driven by the cannibalization effects.

The modeled revenues under nodal pricing can be considered as efficient bench-

mark with internalization of the power flow characteristics. Under this assumption,

regional advantageous and disadvantageous locations are identified.

The market revenues: Today’s market situation in Germany (without

subsidies)

Figure 6.5 performs the same calculation like before but considers zonal pricing

which is the current applied market pricing regime in Germany and does not consider

physical transmission flow characteristics. The modeled revenues are relative to the

capacity weighted average German wind revenues.

The scale is identical to the former results to guarantee comparability, although

the maximum and minimum market revenues have a smaller range and lower devi-

ations. The main findings of the market revenues are the following.

• The concentration of the highest relative revenues are at the northern coastal

area with few representatives in the western area. Only few revenues exceed

150% of the capacity weighted average German wind revenue.

• Almost all of the lowest values are in the southern area.

• Many nodes show only slight deviations (between 50% and 150%) to the Ger-

man average revenue. Locations with a high concentration of the installed

capacity (i.e. the eastern-central area) are not below 50% and thus not shown

in Figure 6.5iii.
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Figure 6.5: Wind revenues per node within Germany under zonal pricing. (a) Different rev-
enues at each node, (b) at nodes with revenues above 150%, (c) at nodes with
revenues below 50%. All revenues in percent to the capacity weighted average
German revenue. Darker nodes represent higher percental revenues. The size
of the nodes indicates the installed wind capacity per node.
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Comparison of the revenues under nodal pricing to the revenues under zonal

pricing: Zonal revenues might incentivize inefficient wind locations

Figure 6.6 compares the revenues under zonal pricing to the revenues under zonal

pricing (zonal pricing revenues minus nodal pricing revenues). The revenues are

relative to the capacity-weighted German average wind revenue per MW (both for

nodal and zonal pricing, respectively). The modeled relative nodal pricing revenues

deviate strongly from the modeled relative zonal pricing revenues. The capacity-

weighted average nodal pricing revenue is 21% higher than the capacity-weighted

average zonal pricing revenue (107% compared to 86%). Differences between the

zonal pricing revenues and the nodal pricing revenues can be up to ±200%-points.

Additionally, the nodal pricing revenues have a broader range (standard deviation of

56%) compared to the zonal pricing revenues (standard deviation of 35%). Detailed

statistics can be found in 6.2 in the Appendix 6.6.2. The regional differences deviate

regionally. The nodal pricing revenues tend to be higher in the western and south-

ern area and lower at the northern coastal area than the zonal pricing revenues.

Cannibalization effects (which have a strong impact on the nodal pricing revenues)

are mainly smoothed across Germany, since no transmission congestion restrict the

inner-German exchange.

Implications of the revenues

The regional differences between the nodal pricing revenues and the zonal pricing

revenues are driven by the regional deviating electricity situation in combination

with the transmission characteristics. The well-known German north-south trans-

mission congestion leads to price differences in several (i.e. windy) situations. The

electricity price differences induce a differentiation in the wind revenues. Addi-

tionally, the cannibalization effects decrease the revenues of certain locations which

have high concentrations of installed wind capacities. Both reasons imply that wind

capacities in the western area are higher valuated to the electricity system under

consideration of the physical transmission characteristics. Northern coastal areas

seem to be high valuated locations under the current market design but under con-

sideration of the grid situations they face lower revenues.

As wind operators act profit maximizing, they aim for building new wind capacities

at most profitable locations. Under nodal pricing revenues, wind investments seem to

be more profitable in the western area than in the northern are as identified under

zonal pricing revenues. This points to a locational discrepancy of profit optimal wind
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Figure 6.6: Difference of relative wind revenues between zonal pricing and nodal pricing for
each node within Germany. Wind revenues are relative to the capacity-weighted
German average wind revenue under zonal/nodal pricing and than differenti-
ated. A positive value indicates higher market revenues under zonal pricing.
The size of the nodes indicates the installed wind capacity per node. The size of
the nodes indicates the installed wind capacity per node. Results are for (a) all
nodes, (b) nodes with a positive delta, and (c) nodes with a negative delta.
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locations between both pricing regimes. Thus, the neglecting of the transmission

situation in the current market design causes wind capacities at system-unfavorable

locations. Under a future increase in wind capacities, to tackle this inefficiency may

become more important.

6.3.2 Value factor of wind

From an operators’ perspective, the wind revenues are the main aspect to assess

the value of wind production. However, the market value of wind is widely used

as an indicator to assess the value of wind to the electricity markets (e.g. Acker-

mann (2005), Hirth (2013), Hirth et al. (2015), Lamont (2008), Obersteiner and

Saguan (2011)). A similar indicator is the electricity base price, which neglects time

structure information as well but provides aggregated information. Thus, the inves-

tigation of the market value with its aggregated information is of high interest. The

following section provides an analysis of the nodal pricing value factors of wind as

well as the zonal pricing value factors of wind (cf. Section 6.2.6 for details of the

definition). For comparison reasons, the focus lies on the value factor (instead of

the value itself), which is denominated by the (regional) base prices.

Nodal pricing value factor of wind

The modeled nodal pricing value factor of wind production as to definition (6.8) is

calculated under a nodal pricing regime with respect to physical power flow char-

acteristics. The resulting nodal pricing value factors of wind production are shown

in Figure 6.7. Statistics can be found in Appendix 6.6.3. Note that for comparison

reasons, the lower range of the scale is limited to the 1%-quantile threshold of the

results, which represents a nodal pricing value factor of wind of 75%. The upper

range limit is chosen symmetric to this (i.e. 125%), although the maximum nodal

pricing value factor does not exceeds 111%.

A structural difference between northern and southern nodes becomes obvious.

The structural break crosses Germany along an imaginary diagonal line from north-

west to south-east. Most northern nodes under nodal pricing have value factors of

wind between 75% and 90% whereas southern nodes have in general higher values,

in the range from 95% to 100% (up to 110%). The structural break represents in-

sufficient grid transmission capacities which leads to regional price differences, e.g.

in hours of high wind feed-in. Breuer et al. (2013) and Burstedde (2012) identi-
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Figure 6.7: Markte value factor of wind production under nodal pricing for each node within
Germany. The size of the nodes indicates the installed wind capacity per node.

fied similar structural breaks caused by insufficient the grid capabilities. The mainly

congested lines are reported in Bundesnetzagentur (2016) and correspond to the

congested lines which are identified within this model.6

Comparison of the market value factor for wind under nodal pricing to zonal

pricing

Figure 6.8 shows the modeled regional value factor of wind under nodal pricing and

zonal pricing. Note that the colormaps are cut to the range from 75% to 125% for
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Figure 6.8: Comparison of the regional market value factors of wind production for each
node within Germany: (a) under nodal pricing, (b) under zonal pricing. The
size of the nodes indicates the installed wind capacity per node.

6Further research on the effects of a German market splitting assume a separation along a horizontal
line further southwards based on some heuristics, e.g. re-dispatch amount or reported congestion
(Egerer et al., 2016, Trepper et al., 2015). Based on own calculations, the paper in in line with
research on optimal zone configurations of (Breuer et al., 2013) or Burstedde (2012) with a mainly
diagonal congestion structure.
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comparison reasons and that, for the nodal pricing value factor of wind, wind values

down to 30% exist (cf. 6.10 in the appendix). The regional value factor of wind has

an average value of 94% and a smaller standard deviation of 1% under zonal pricing

compared to nodal pricing (mean: 91%, standard deviation: 10%). Details can be

found in 6.3. The lowest zonal pricing value factors of wind are concentrated in the

eastern-central area in Germany. In contrast to the zonal pricing value factors of

wind, the nodal pricing value factors of wind are low in that area as well, but are

even lower at the northern coast.

Differences in the nodal pricing and zonal pricing value factors

The difference between the regional wind value factor under nodal pricing and zonal

pricing is shown in Figure 6.6. For comparison, the colormaps are restricted to

±10%-points. The total differences are shown in a line plot in Figure 6.11.

The value factor may strongly deviate between zonal and nodal pricing. Differ-

ences up to -17%-points and +63%-points may arise. Additionally, the zonal pricing

smooths the regional effects which, in contrast, exist in the nodal pricing regime.

For the investigated case, the zonal pricing value factor has a 3%-points higher mean

and a 9%-points lower standard deviation compared to the value factor under nodal

pricing.

The difference in the value factors arises mainly due to the internalization of the

physical power flow characteristics of the grid to the dispatch model. The internal-

ized cost of transmission lead to different market prices (i.e. nodal prices) and finally

to a different value of wind. Especially windy situations cause such grid congestion.

Implications of the value factor analysis

The comparison shows that the market value factor of wind under zonal pricing

overestimates the value of wind in the northern area and underestimates it in the

southern area in comparison to the nodal pricing value factor of wind. The zonal

pricing value factor does not reflect the value of wind under consideration of the

transmission characteristics. Thus it is not suitable to assess the value of wind to

electricity systems. The nodal pricing value factor considers physical flow restrictions

and is therefore much more suitable to assess the value of wind to the electricity

system.

The value factor neglects the real production. It is not sufficient for detailed assess-
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Figure 6.9: Difference between the market value factor of wind production under zonal pric-
ing to nodal pricing within Germany. A positive value indicates a higher market
value factor under zonal pricing. The size of the nodes indicates the installed
wind capacity per node.
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ments. For this, the wind revenues are recommended (as discussed in Section 6.3.1).

However, the value factors may serve as a rough indicator, e.g. to compare the wind

contribution of different countries to each other.

6.4 Discussion

The results have highly relevant implications on different aspects of wind energy.

• Market revenues under zonal pricing incentivize inefficient locations com-

pared to the market revenues under nodal pricing. The revenues for wind

under zonal pricing do not consider the grid situations. Thus, zonal pricing

revenues would favor windy locations. Under consideration of the grid sit-

uation (nodal pricing), different locations are favorable which are identified

within this analysis. Optimal wind locations should thus be estimated under

consideration of the grid situations. The underlying approach with a nodal

pricing optimization model reflects one opportunity to identify optimal wind

locations.

• The value factor may serve as an indicator but does not reflect the wind rev-

enues accurately. The discrepancy between the revenues (cf. Figure 6.4i) and

value factor (cf. Figure 6.7) might serve as an example. The reason is that

the value factor does not consider the actual wind production. The definition

of the value factor is solely an aggregation of the wind-production-weighted

electricity prices. Thus, the value factor is not sufficient to assess locational

investment decisions in detail. However, the aggregated information in the

value factor might be suitable for various other investigation and is a widely

used indicator.

• The derived results are highly relevant for the design and implementation of

subsidy schemes. Wind capacity extensions are usually incentivized by addi-

tional subsidy payments. It is not finally answered which design of a subsidy

scheme is economically beneficial in which situation. This is subject of current

research (e.g. Pechan (2017) and Wagner (2016)). The underlying research

provides new insights for the design of optimal subsidy schemes. It shows

that market integrated subsidy schemes could be distorting if they do not in-

corporate the physical transmission situation. Thus, the transmission situation

should be considered in the subsidy scheme definition. Furthermore, subsidy

schemes which are partially or fully based on the wind production (e.g. fixed
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feed-in tariffs, fixed feed-in premiums) and have no grid component might

incentivize non-system-favorable locations. This could lead to more grid con-

gestion and should be avoided. The German government tries to avoid over-

investment of wind in system-unfavorable northern areas by a politically given

capacity restriction (cf. Bundesnetzagentur (2017)). The underlying approach

allows to identify and evaluate such suggestions. Moreover, in combination

with an adjusted subsidy scheme, a market driven solution could be imple-

mented to avoid over-investments. Dependent on the subsidy adjustment,

more risk is transferred to the wind producers (i.e. operators). The increased

risks could lead to increased investment costs. Therefore, adjustments should

be applied carefully.

However, the derived results have a drawback. The performed analysis is static,

i.e. a one-shot analysis of a current state without investment decisions. The mod-

eled wind results (revenues and value factors) are dependent on (1) the grid struc-

ture and (2) complementary installed (wind) capacities. Further investments may

change the regional revenues and value factors of wind. Additionally, further wind

capacities at the same or near-by nodes cause additional correlation effects. This

cannibalization effect would tend to decrease the regional revenues as well as the

regional value factors.

6.5 Conclusion

This paper investigates the modeled wind revenues and modeled wind value factors

under two pricing regimes: zonal pricing and nodal pricing. Focus is the German

electricity market due to a high share of wind production and regional different wind

speed structures. The revenues and the value factors of wind are assessed (1) under

nodal pricing with internalized transmission situations and (2) under zonal pricing

without internalized transmission situations. The nodal pricing regime is considered

as the economic efficient benchmark whereas the zonal pricing regime represents the

current European market design.

The contribution to existing literature is twofold: First, the regional revenues for

wind production under nodal pricing and zonal pricing are quantified and compared.

The revenues show strong deviations dependent on the transmission situations. The

revenues incentivize wind locations. Under zonal pricing (without grid considera-

tion) the regional incentives are identified as system-unfavorable. This might lead

to congestion increasing wind investments.
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Second, the value factor is identified. It does not reflect the operators’ revenue-

optimal locations. Thus, the value factor is not suitable as a detailed indicator. Fur-

thermore, the market value factor under zonal pricing overestimates windy locations

in contrast to the nodal pricing regime.

The derived results are highly relevant for the design and adjustment of wind

energy subsidy schemes which should consider the grid situations to achieve system

optimal wind locations.

Further research is necessary to account for dynamic investment decisions and to

find long-run optimal wind locations. This is technically possible with the underly-

ing model but simplifications might be necessary to guarantee tractable model size.

Another extension would consider the interdependency between the grid extension

and the capacity extension and analyze the robustness of a dynamic solution.

6.6 Appendix

6.6.1 Load Distribution

For the nodal electricity market model, all relevant location parameters have to be

matched to the nodes. For electricity production this is performed by the smallest

distance approach of the production’s location to the nodes. For the load distribu-

tion, this approach is not suitable. Thus, a regression is performed which estimates

the load consumption based on GDP and population.

The load distribution weights are derived via a least squares estimation of the

dependent variable load by the independent variables GDP and population, i.e.

Loadi = α+ β1GDPi + β2populationi + εi , for country i. (6.9)

The observations are on a European national level based on public available data

from Eurostat for the years 2011 to 2014. The estimated coefficients are β1 = 0.41

and β2 = 0.59. Those coefficienty represent the weights which are used to distribute

the total German load to the German counties (NUTS-3 areas), for which the GDP

and the population are known but the load is unknown. For each German county,

this reads as

Loadcount y = LoadGermany ·
�

0.41
GDPcount y

GDPGermany
+ 0.59

Populat ioncount y

Populat ionGermany

�

. (6.10)
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Furthermore, the areas are upsampled to the specific nodes by Voronoi diagrams.

For each node a surrounding area is determined which is characterized such that no

other node is closer for the surronding area. In this way, complete Germany is par-

titioned. In a second step, the calculated load distribution of the counties (NUTS-3

areas) are matched to the nodes dependent on the share of the overlapping Voronoi

areas. That means, if a county contains two nodes with equal area of the belong-

ing Voronoi diagrams, both nodes derive 50% of the county’s load. If the Voronoi

diagram of a node also contains other counties’ shares, the counties’ corresponding

load share is added.

6.6.2 Statistics of the wind revenues per node under nodal pricing and
zonal pricing

Table 6.2 shows statistics of the nodal and zonal wind production revenues which

are compared in Figure 6.8. The wind revenues are relative to the capacity-weighted

average wind revenue for Germany. The average wind revenue under a nodal pricing

is 107% and above the zonal pricing average wind revenue of 87%. Note that the

revenues reflect the unweighted average of each node. Since more nodes are behind

the typical wind-driven grid congestion, the average wind revenue is higher under

nodal pricing. The statistics show that the nodal pricing leads to a broader range of

wind revenues compared to zonal pricing. The minimum and maximum are more

extreme as well.

Table 6.2: Statistics of the wind revenues under nodal pricing, zonal pricing and the dif-
ference (zonal − nodal pricing) per node. Percentage to the capacity-weighted
average wind revenues under nodal or zonal pricing, respectively. The nodes are
not weighted, i.e. each node counts as one observation.

Nodal pricing Zonal pricing Difference between
wind revenues [%] wind revenues [%] zonal and nodal

wind revenues [%-points]

mean 107 87 -21
std 56 35 45
min 6 5 -214
25% 75 64 -31
50% 97 84 -18
75% 131 106 -9
max 361 279 205
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6.6.3 Statistics of the market value factor of wind per node under
nodal pricing and zonal pricing

Table 6.3: Statistics of the wind value factor per node under nodal pricing, zonal pricing and
the difference (zonal value factor - nodal value factor).

Market value Market value Difference between
factor under factor under the market value factor

nodal pricing [%] zonal pricing [%] of zonal to
nodal pricing [%-points]

mean 91 94 3
std 10 1 10
min 31 89 -17
25% 87 93 -3
50% 94 94 -1
75% 98 94 6
max 111 98 63

Figure 6.10 shows the histograms of the market value factor of wind under nodal

and zonal pricing. The value factor under nodal pricing has a broader range and
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Figure 6.10: Histogram of the modeled market values of wind production per node under
zonal pricing (left) and nodal pricing (right)

less values around 100% in comparison to zonal pricing.

Figure 6.11 shows the differences between the market value factor of wind pro-

duction under nodal pricing and zonal pricing for each node in a lineplot (sorted

ascending).
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Figure 6.11: Lineplot of the difference between the market value factor of wind production
per node under nodal pricing and zonal pricing. Values are the percental point
difference of the market value factors of zonal to nodal pricing.

181





Bibliography

50Hertz (2017). Extrapolated actual wind power feed-in - 50hertz Transmis-

sion GmbH. Online; Accessed 26-Jul-2017; http://www.50hertz.com/en/Grid-

Data/Wind-power/Extrapolated-actual-wind-power-feed-in.

Acemoglu, D., Kakhbod, A., and Ozdaglar, A. (2017). Competition in Electricity

Markets with Renewable Energy Sources. The Energy Journal, 38(01).

Ackermann, T. (2005). Wind Power in Power Systems. In Wind Power in Power

Systems. John Wiley & Sons, Ltd.

AG Energiebilanzen (2016). Bruttostromerzeugung in Deutschland ab 1990 nach

Energieträgern.

AG Energiebilanzen (2017). Bruttostromerzeugung in Deutschland ab 1990 bis 2016

nach Energieträgern.

Allaz, B. (1992). Oligopoly, uncertainty and strategic forward transactions. Interna-

tional Journal of Industrial Organization, 10(2):297–308.

Allaz, B. and Vila, J.-L. (1993). Cournot Competition, Forward Markets and Effi-

ciency. Journal of Economic Theory, 59(1):1–16.

Amprion (2017). Photovoltaic infeed. Online; Accessed 26-Jul-2017;

https://www.amprion.net/Grid-Data/Photovoltaic-Infeed/.

APG (2017). Market Information - Genera-

tion Forecast. Online; Accessed 26-Jul-2017;

https://www.apg.at/en/market/Markttransparenz/generation/generation-

forecast.

Ausubel, L. M., Cramton, P., Pycia, M., Rostek, M., and Weretka, M. (2014). Demand

Reduction and Inefficiency in Multi-Unit Auctions. The Review of Economic Studies.

Bathurst, G., Weatherill, J., and Strbac, G. (2002). Trading wind generation in short

term energy markets. IEEE Transactions on Power Systems, 17(3):782–789.

183



Bibliography

Bertsch, J., Hagspiel, S., and Just, L. (2016). Congestion management in power

systems. Journal of Regulatory Economics, 50(3):290–327.

Bessembinder, H. and Lemmon, M. L. (2002). Equilibrium Pricing and Optimal

Hedging in Electricity Forward Markets. The Journal of Finance, 57(3):1347–1382.

Birge, J. and Louveaux, F. (1997). Introduction to stochastic programming, volume 9.

Springer-Verlag.

Bissolli, P. and Dittmann, E. (2001). The objective weather type classification of the

German Weather Service and its possibilities of application to environmental and

meteorological investigations. Meteorologische Zeitschrift, 10(4):253–260.

Bjørndal, M. and Jörnsten, K. (2008). Equilibrium prices supported by dual price

functions in markets with non-convexities. European Journal of Operational Re-

search, 190(3):768–789.

Bloys van Treslong, A. and Huisman, R. (2010). A comment on: Storage and the

electricity forward premium. Energy Economics, 32(2):321–324.

Bollmeyer, C., Keller, J. D., Ohlwein, C., Wahl, S., Crewell, S., Friederichs, P., Hense,

A., Keune, J., Kneifel, S., Pscheidt, I., Redl, S., and Steinke, S. (2015). Towards a

high-resolution regional reanalysis for the European CORDEX domain. Quarterly

Journal of the Royal Meteorological Society, 141(686):1–15.

Borenstein, S., Bushnell, J. B., and Wolak, F. A. (2002). Measuring Market Ineffi-

ciencies in California’s Restructured Wholesale Electricity Market. The American

Economic Review, 92(5):1376–1405.

Botterud, A., Wang, J., Bessa, R., Keko, H., and Miranda, V. (2010). Risk manage-

ment and optimal bidding for a wind power producer. In 2010 IEEE Power and

Energy Society General Meeting.

Breuer, C., Seeger, N., and Moser, A. (2013). Determination of alternative bidding

areas based on a full nodal pricing approach. In 2013 IEEE Power Energy Society

General Meeting, pages 1–5.

Bundeskartellamt (2011). Sektoruntersuchung Stromerzeugung und -großhandel.

Technical Report Abschlussbericht gemäß § 32e GWB, Bundeskartellamt.

Bundesnetzagentur (2014). Kraftwerksliste zum NEP 2014.

184



Bibliography

Bundesnetzagentur (2016). Monitoring Report 2015. Technical report, Bundesnet-

zagentur.

Bundesnetzagentur (2017). Aenderungsverordnung_eeav.

Bundesregierung (1991). Gesetz über die Einspeisung von Strom aus erneuerbaren

Energien in das öffentliche Netz (Stromeinspeisungsgesetz) vom 07. Dezember

1990 (BGBl I S. 2633).

Bundesregierung (2012). Gesetz zur Neuregelung des Rechtsrahmens für die

Förderung der Stromerzeugung aus erneuerbaren Energien Vom 28. Juli 2011.

Bundesregierung (2014). Erneuerbare-Energien-Gesetz vom 21. Juli 2014 (BGBl.

I S. 1066), das durch Artikel 1 des Gesetzes vom 13. Oktober 2016 (BGBl. I S.

2258) geändert worden ist.

Bundesregierung (2017). Gesetz zur Einführung von Ausschreibungen für Strom aus

erneuerbaren Energien und zu weiteren Änderungen des Rechts der erneuerbaren

Energien Vom 13. Oktober 2016.

Bunn, D. W. and Chen, D. (2013). The forward premium in electricity futures. Jour-

nal of Empirical Finance, 23:173–186.

Burke, D. J. and O’Malley, M. J. (2008). Optimal Wind Power Location on Trans-

mission Systems - A Probabilistic Load Flow Approach. In Proceedings of the 10th

International Conference on Probabilistic Methods Applied to Power Systems, 2008.

PMAPS ’08, pages 1–8.

Burke, D. J. and O’Malley, M. J. (2011). A Study of Optimal Nonfirm Wind Capacity

Connection to Congested Transmission Systems. IEEE Transactions on Sustainable

Energy, 2(2):167–176.

Burstedde, B. (2012). From nodal to zonal pricing: A bottom-up approach to the

second-best. In 2012 9th International Conference on the European Energy Market,

pages 1–8.

Bushnell, J. (2007). Oligopoly equilibria in electricity contract markets. Journal of

Regulatory Economics, 32(3):225–245.

Bushnell, J. B. and Oren, S. S. (1994). Bidder cost revelation in electric power

auctions. Journal of Regulatory Economics, 6(1):5–26.

185



Bibliography

Cameron, L. and Cramton, P. (1999). The Role of the ISO in U.S. Electricity Markets.

The Electricity Journal, 12(3):71–81.

Cannon, D. J., Brayshaw, D. J., Methven, J., Coker, P. J., and Lenaghan, D. (2015).

Using reanalysis data to quantify extreme wind power generation statistics: A 33

year case study in Great Britain. Renewable Energy, 75:767–778.

Carrion, M. and Arroyo, J. M. (2006). A computationally efficient mixed-integer

linear formulation for the thermal unit commitment problem. IEEE Transactions

on Power Systems, 21(3):1371–1378.

Cartea, l. and Villaplana, P. (2008). Spot price modeling and the valuation of elec-

tricity forward contracts: The role of demand and capacity. Journal of Banking &

Finance, 32(12):2502–2519.

Chao, H.-p., Peck, S., Oren, S., and Wilson, R. (2000). Flow-Based Transmission

Rights and Congestion Management. The Electricity Journal, 13(8):38–58.

Chao, H.-P. and Wilson, R. (2002). Multi-Dimensional Procurement Auctions for

Power Reserves: Robust Incentive-Compatible Scoring and Settlement Rules. Jour-

nal of Regulatory Economics, 22(2):161–183.

Chen, C., Duan, S., Cai, T., and Liu, B. (2011). Online 24-h solar power forecasting

based on weather type classification using artificial neural network. Solar Energy,

85(11):2856–2870.

Cludius, J., Hermann, H., Matthes, F. C., and Graichen, V. (2014). The merit order

effect of wind and photovoltaic electricity generation in Germany 2008–2016:

Estimation and distributional implications. Energy Economics, 44:302–313.

Conejo, A. J., Plazas, M. A., Espinola, R., and Molina, A. B. (2005). Day-ahead

electricity price forecasting using the wavelet transform and ARIMA models. IEEE

Transactions on Power Systems, 20(2):1035–1042.

Contreras, J., Espinola, R., Nogales, F. J., and Conejo, A. J. (2003). ARIMA mod-

els to predict next-day electricity prices. IEEE Transactions on Power Systems,

18(3):1014–1020.

Cosseron, A., Gunturu, U. B., and Schlosser, C. A. (2013). Characterization of the

Wind Power Resource in Europe and its Intermittency. Energy Procedia, 40:58–66.

186



Bibliography

Couto, A., Costa, P., Rodrigues, L., Lopes, V. V., and Estanqueiro, A. (2015). Impact of

Weather Regimes on the Wind Power Ramp Forecast in Portugal. IEEE Transactions

on Sustainable Energy, 6(3):934–942.

Couture, T. and Gagnon, Y. (2010). An analysis of feed-in tariff remuneration mod-

els: Implications for renewable energy investment. Energy Policy, 38(2):955–965.

Davis, M. J. (2010). Contrast coding in multiple regression analysis: Strengths,

weaknesses, and utility of popular coding structures. Journal of Data Science,

8(1):61–73.

de Frutos, M.-A. and Fabra, N. (2012). How to allocate forward contracts: The case

of electricity markets. European Economic Review, 56(3):451–469.

Dena (2014). Systemdienstleistungen 2030 - Sicherheit und Zuverlässigkeit einer

Stromversorgung mit hohem Anteil erneuerbarer Energien. Berlin.

Dickey, D. A. and Fuller, W. A. (1979). Distribution of the Estimators for Autoregres-

sive Time Series with a Unit Root. Journal of the American Statistical Association,

74(366a):427–431.

Douglas, S. and Popova, J. (2008). Storage and the electricity forward premium.

Energy Economics, 30(4):1712–1727.

DWD (2017). The objective weather type classification. Online; Accessed 26-Jul-

2017; https://www.dwd.de/EN/ourservices/wetterlagenklassifikation/wetterlagenklassifikation.html.

Egerer, J., Weibezahn, J., and Hermann, H. (2016). Two price zones for the Ger-

man electricity market — Market implications and distributional effects. Energy

Economics, 59:365–381.

Elberg, C. and Hagspiel, S. (2015). Spatial dependencies of wind power and in-

terrelations with spot price dynamics. European Journal of Operational Research,

241(1):260–272.

Elzinga, K. G. and Mills, D. E. (2011). The Lerner Index of Monopoly Power: Origins

and Uses. The American Economic Review, 101(3):558–564.

EPEX SPOT (2017). Intraday Continuous German/Austria. On-

line; Accessed 26-Jun-2017; https://www.epexspot.com/en/market-

data/intradaycontinuous/intraday-table/-/DE.

EU Comission (2009). Official Journal of the European Union, L 140, 05 June 2009.

187



Bibliography

EU Comission (2013). European Commission guidance for the design of renewables

support schemes Accompanying the document Communication from the Commis-

sion Delivering the internal market in electricity and making the most of public

intervention - Comission Staff Working Document.

EUR-lex (2004). Guidelines on the assessment of horizontal mergers under the

Council Regulation on the control of concentrations between undertakings.

European Commission (2017). Commission Regulation (EU) establishing a guideline

on electricity balancing (Proposal).

Fabra, N., von der Fehr, N.-H., and Harbord, D. (2006). Designing electricity auc-

tions. The RAND Journal of Economics, 37(1):23–46.

Foley, A. M., Leahy, P. G., Marvuglia, A., and McKeogh, E. J. (2012). Current meth-

ods and advances in forecasting of wind power generation. Renewable Energy,

37(1):1–8.

Fripp, M. and Wiser, R. H. (2008). Effects of Temporal Wind Patterns on the Value

of Wind-Generated Electricity in California and the Northwest. IEEE Transactions

on Power Systems, 23(2):477–485.

Furió, D. and Meneu, V. (2010). Expectations and forward risk premium in the

Spanish deregulated power market. Energy Policy, 38(2):784–793.

Gabriel, S. A., Conejo, A. J., Fuller, J. D., Hobbs, B. F., and Ruiz, C. (2012). Com-

plementarity Modeling in Energy Markets. Springer Science & Business Media.

Google-Books-ID: Lu1L5wUea8IC.

Gerstengarbe, F.-W., Werner, P. C., Hess, P., and Brezowsky, H. (2010). Katalog

der Großwetterlagen Europas nach Paul Hess und Helmuth Brezowsky:(1881-2004).

PIK.

Green, R. (2007). Nodal pricing of electricity: how much does it cost to get it wrong?

Journal of Regulatory Economics, 31(2):125–149.

Green, R. J., Lorenzoni, A., Perez, Y., and Pollitt, M. G. (2006). Benchmarking Elec-

tricity Liberalisation in Europe. Working Paper, Faculty of Economics, University

of Cambridge, UK.

Green, R. J. and Newbery, D. M. (1992). Competition in the British Electricity Spot

Market. Journal of Political Economy, 100(5):929–953.

188



Bibliography

Grothe, O. and Müsgens, F. (2013). The influence of spatial effects on wind power

revenues under direct marketing rules. Energy Policy, 58:237–247.

Grothe, O. and Schnieders, J. (2011). Spatial dependence in wind and optimal wind

power allocation: A copula-based analysis. Energy Policy, 39(9):4742–4754.

Growitsch, C., Höffler, F., and Wissner, M. (2010). Marktkonzentration und

Marktmachtanalyse für den deutschen Regelenergiemarkt. Zeitschrift für En-

ergiewirtschaft, 34(3):209–222.

Gunturu, U. B. and Schlosser, C. A. (2012). Characterization of wind power resource

in the United States. Atmos. Chem. Phys., 12(20):9687–9702.

Hagspiel, S., Knaut, A., Peter, J., and others (2017). Reliability in Multy-Regional

Power Systems-Capacity Adequacy and the Role of Interconnectors. Technical

report, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).

Hallgren, W., Gunturu, U. B., and Schlosser, A. (2014). The Potential Wind Power

Resource in Australia: A New Perspective. PLOS ONE, 9(7):e99608.

Haucap, J., Heimeshoff, U., and Jovanovic, D. (2012). Competition in Germany’s

minute reserve power market: An econometric analysis. DICE Discussion Paper,

75.

Heffner, G. (2008). Loads Providing Ancillary Services: Review of International

Experience. Lawrence Berkeley National Laboratory.

Heim, S. and Götz, G. (2013). Do pay-as-bid auctions favor collusion? Evidence

from Germany’s market for reserve power. ZEW Discussion Paper, 13-035.

Henckes, P., Knaut, A., Obermüller, F., and Frank, C. (2018). The benefit of long-term

high resolution wind data for electricity system analysis. Energy, 143:934–942.

Henriot, A. (2014). Market design with centralized wind power management: han-

dling low-predictability in intraday markets. The Energy Journal, 35(1):99–117.

Hirschman, A. O. (1964). The Paternity of an Index. The American Economic Review,

54(5):761–762.

Hirth, L. (2013). The market value of variable renewables: The effect of solar wind

power variability on their relative price. Energy Economics, 38:218–236.

Hirth, L. (2016). The benefits of flexibility: The value of wind energy with hy-

dropower. Applied Energy, 181:210–223.

189



Bibliography

Hirth, L. and Müller, S. (2016). System-friendly wind power: How advanced wind

turbine design can increase the economic value of electricity generated through

wind power. Energy Economics, 56:51–63.

Hirth, L., Ueckerdt, F., and Edenhofer, O. (2015). Integration costs revisited – An

economic framework for wind and solar variability. Renewable Energy, 74:925–

939.

Hirth, L. and Ziegenhagen, I. (2015). Balancing power and variable renewables:

Three links. Renewable and Sustainable Energy Reviews, 50:1035–1051.

Hogan, W. A. (1999). Transmission congestion the nodal-zonal debate revisited.

Hogan, W. W. (1997). A Market Power Model with Strategic Interaction in Electricity

Networks. The Energy Journal, 18(4):107–141.

IEA (2016). Next Generation Wind and Solar Power.

ISO New England (2011). Overview of New England’s Wholesale Electricity Markets.

Ito, K. and Reguant, M. (2016). Sequential Markets, Market Power, and Arbitrage.

American Economic Review, 106(7):1921–1957.

Jamasb, T. and Pollitt, M. (2005). Electricity Market Reform in the European Union:

Review of Progress toward Liberalization & Integration. The Energy Journal,

26:11–41.

James, P. M. (2007). An objective classification method for Hess and Brezowsky

Grosswetterlagen over Europe. Theoretical and Applied Climatology, 88(1-2):17–

42.

Jägemann, C. (2015). An Illustrative Note on the System Price Effect of Wind and

Solar Power: The German Case. Zeitschrift für Energiewirtschaft, 39(1):33–47.

Joskow, P. L. (2005). Markets for Power in the United States: An Interim Assessment.

SSRN Scholarly Paper ID 845785, Social Science Research Network, Rochester, NY.

Joskow, P. L. (2011). Comparing the Costs of Intermittent and Dispatchable Electric-

ity Generating Technologies. The American Economic Review, 101(3):238–241.

Joskow, P. L. and others (2008). Lessons Learned from the Electricity Market Liberaliza-

tion. Massachusetts Institute of Technology, Center for Energy and Environmental

Policy Research.

190



Bibliography

Just, S. (2011). Appropriate contract durations in the German markets for on-line

reserve capacity. Journal of Regulatory Economics, 39(2):194–220.

Just, S. and Weber, C. (2008). Pricing of reserves: Valuing system reserve capacity

against spot prices in electricity markets. Energy Economics, 30(6):3198–3221.

Kaimal, J. C. and Finnigan, J. J. (1994). Atmospheric Boundary Layer Flows:

Their Structure and Measurement. Oxford University Press. Google-Books-ID:

C7LnCwAAQBAJ.

Kaiser-Weiss, A. K., Kaspar, F., Heene, V., Borsche, M., Tan, D. G. H., Poli, P., Obregon,

A., and Gregow, H. (2015). Comparison of regional and global reanalysis near-

surface winds with station observations over Germany. Adv. Sci. Res., 12(1):187–

198.

Kiesel, R. and Paraschiv, F. (2017). Econometric analysis of 15-minute intraday elec-

tricity prices. Energy Economics, 64:77–90.

Knaut, A. and Obermüller, F. (2016). How to sell renewable electricity: Interactions

of the intraday and day-ahead market under uncertainty. EWI Working Paper

16/04, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).

Knaut, A., Obermüller, F., and Weiser, F. (2017). Tender Frequency and Market

Concentration in Balancing Power Markets. EWI Working Paper 2017-4, En-

ergiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).

Knaut, A. and Paschmann, M. (2017a). Decoding Restricted Participation in Se-

quential Electricity Markets. EWI Working Paper 17/05, Energiewirtschaftliches

Institut an der Universitaet zu Koeln (EWI).

Knaut, A. and Paschmann, M. (2017b). Price Volatility in Commodity Markets with

Restricted Participation. EWI Working Paper 17/02, Energiewirtschaftliches Insti-

tut an der Universitaet zu Koeln (EWI).

Knaut, A. and Paulus, S. (2017). When are consumers responding to electricity

prices? An hourly pattern of demand elasticity. Technical Report 2016-7, En-

ergiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).

Kreuz, S. and Müsgens, F. (2017). The German Energiewende and its roll-out of

renewable energies: An economic perspective. Frontiers in Energy, pages 1–9.

Kunz, F. (2013). Improving Congestion Management: How to Facilitate the Integra-

tion of Renewable Generation in Germany. Energy Journal, 34(4):55–78.

191



Bibliography

Lamont, A. D. (2008). Assessing the long-term system value of intermittent electric

generation technologies. Energy Economics, 30(3):1208–1231.

Lange, M. and Heinemann, D. (2002). Accuracy of short term wind power predic-

tions depending on meteorological conditions.

Lange, M. and Waldl, H.-P. (2001). Assessing the uncertainty of wind power predic-

tions with regard to specific weather situations (PDF Download Available).

Leuthold, F., Weigt, H., and von Hirschhausen, C. (2008). Efficient pricing for Euro-

pean electricity networks – The theory of nodal pricing applied to feeding-in wind

in Germany. Utilities Policy, 16(4):284–291.

Litvinov, E. (2010). Design and operation of the locational marginal prices-based

electricity markets. IET Generation, Transmission &amp; Distribution, 4(2):315–

323.

Longstaff, F. A. and Wang, A. W. (2004). Electricity forward prices: a high-frequency

empirical analysis. The journal of finance, 59(4):1877–1900.

Matke, C., Medjroubi, W., and Kleinhans, D. (2016). SciGRID - An Open Source

Reference Model for the European Transmission Network (v0.2).

McClendon, M. (1994). Multiple Regression and Causal Analysis. F E Peacock Pub -

Better World Books.

MISO (2016). Energy and Operating Reserve Markets: Business Practices Manual

(BPM-002-r16). Technical report.

Monforti, F., Gaetani, M., and Vignati, E. (2016). How synchronous is wind en-

ergy production among European countries? Renewable and Sustainable Energy

Reviews, 59:1622–1638.

Morales, J., Conejo, A., and Perez-Ruiz, J. (2010). Short-Term Trading for a Wind

Power Producer. IEEE Transactions on Power Systems, 25(1):554–564.

Morales, J. M., Conejo, A. J., Madsen, H., Pinson, P., and Zugno, M. (2013). Inte-

grating Renewables in Electricity Markets: Operational Problems. Springer Science

& Business Media. Google-Books-ID: QF24BAAAQBAJ.

Morales-España, G., Latorre, J. M., and Ramos, A. (2013). Tight and Compact MILP

Formulation of Start-Up and Shut-Down Ramping in Unit Commitment. IEEE

Transactions on Power Systems, 28(2):1288–1296.

192



Bibliography

Motta, M., Barthelmie, R. J., and Vølund, P. (2005). The influence of non-logarithmic

wind speed profiles on potential power output at Danish offshore sites. Wind

Energy, 8(2):219–236.

Müsgens, F. and Ockenfels, A. (2011). Design von Informationsfeedback in Regelen-

ergiemärkten. Zeitschrift für Energiewirtschaft, 35(4):249–256.

Müsgens, F., Ockenfels, A., and Peek, M. (2014). Economics and design of balancing

power markets in Germany. International Journal of Electrical Power & Energy

Systems, 55:392–401.

Müsgens, P. D. F., Ockenfels, P. D. A., and Peek, M. (2012). Balancing Power Markets

in Germany: Timing Matters. Zeitschrift für Energiewirtschaft, 36(1):1–7.

Newey, W. K. and West, K. D. (1987). Hypothesis Testing with Efficient Method of

Moments Estimation. International Economic Review, 28(3):777–787.

Obermüller, F. (2017a). Build Wind Capacities at Windy Locations? Assess-

ment of System Optimal Wind Locations. EWI Working Paper 17/09, En-

ergiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).

Obermüller, F. (2017b). Explaining Electricity Forward Premiums - Evidence for the

Weather Uncertainty Effect. EWI Working Paper 17/10, Energiewirtschaftliches

Institut an der Universitaet zu Koeln (EWI).

Obersteiner, C. and Saguan, M. (2011). Parameters influencing the market value

of wind power – a model-based analysis of the Central European power market.

European Transactions on Electrical Power, 21(6):1856–1868.

Ocker, F., Braun, S., and Will, C. (2016). Design of European balancing power mar-

kets. In 2016 13th International Conference on the European Energy Market (EEM),

pages 1–6.

Ostrowski, J., Anjos, M. F., and Vannelli, A. (2012). Tight Mixed Integer Linear

Programming Formulations for the Unit Commitment Problem. IEEE Transactions

on Power Systems, 27(1):39–46.

Overall, J. E. and Spiegel, D. K. (1969). Concerning least squares analysis of exper-

imental data. Psychological Bulletin, 72(5):311.

Paraschiv, F., Fleten, S.-E., and Schürle, M. (2015). A spot-forward model for elec-

tricity prices with regime shifts. Energy Economics, 47:142–153.

193



Bibliography

Paschmann, M. (2017). Economic Analysis of Price Premiums in the Presence of Non-

convexities - Evidence from German Electricity Markets. EWI Working Papers.

Pechan, A. (2015). The Effect of Market Design on Spatial Distribution of Wind

Energy Installation. Oldenburg: Carl von Ossietzky Universität.

Pechan, A. (2017). Where do all the windmills go? Influence of the institutional set-

ting on the spatial distribution of renewable energy installation. Energy Economics,

65:75–86.

Pinson, P., Chevallier, C., and Kariniotakis, G. (2007). Trading Wind Generation From

Short-Term Probabilistic Forecasts of Wind Power. IEEE Transactions on Power

Systems, 22(3):1148–1156.

PJM (2017). PJM Manual 11: Energy & Ancillary Services Market Operations (Re-

vision: 88). Technical report.

Richter, J. (2012). On the interaction between product markets and markets for pro-

duction capacity: The case of the electricity industry. EWI Working Paper, 11/09.

Ritter, M. and Deckert, L. (2017). Site assessment, turbine selection, and local feed-

in tariffs through the wind energy index. Applied Energy, 185, Part 2:1087–1099.

Roques, F., Hiroux, C., and Saguan, M. (2010). Optimal wind power deployment in

Europe—A portfolio approach. Energy Policy, 38(7):3245–3256.

Ruiz, C., Conejo, A. J., and Gabriel, S. A. (2012). Pricing Non-Convexities in an

Electricity Pool. IEEE Transactions on Power Systems, 27(3):1334–1342.

Saloner, G. (1987). Cournot duopoly with two production periods. Journal of Eco-

nomic Theory, 42(1):183–187.

Schill, Pahle, G. (2016). DIW Berlin: On Start-up Costs of Thermal Power Plants in

Markets with Increasing Shares of Fluctuating Renewables.

Schweppe, F. C., Tabors, R. D., Caraminis, M. C., and Bohn, R. E. (1988). Spot

pricing of electricity.

Sensfuß, F., Ragwitz, M., and Genoese, M. (2008). The merit-order effect: A de-

tailed analysis of the price effect of renewable electricity generation on spot mar-

ket prices in Germany. Energy Policy, 36(8):3086–3094.

194



Bibliography

Shi, J., Lee, W. J., Liu, Y., Yang, Y., and Wang, P. (2012). Forecasting Power Out-

put of Photovoltaic Systems Based on Weather Classification and Support Vector

Machines. IEEE Transactions on Industry Applications, 48(3):1064–1069.

Staffell, I. and Pfenninger, S. (2016). Using bias-corrected reanalysis to simulate

current and future wind power output. Energy, 114:1224–1239.

Stull, R. B., editor (1988). An Introduction to Boundary Layer Meteorology. Springer

Netherlands, Dordrecht.

Swider, D. J. and Weber, C. (2007). The costs of wind’s intermittency in Germany:

application of a stochastic electricity market model. European Transactions on

Electrical Power, 17(2):151–172.

Tennet (2017). Actual and forecast photovoltaic en-

ergy feed-in | Tennet. Online; Accessed 26-Jul-2017;

https://www.tennettso.de/site/en/Transparency/publications/network-

figures/actual-and-forecast-photovoltaic-energy-feed-in_land?

The Wind Power (2016). Europe wind farms database.

TransnetBW (2017). Key figures | TransnetBW GmbH. Online; Accessed 26-Jul-

2017; https://www.transnetbw.com/en/transparency/market-data/key-figures.

Transparency, E. (2017). Transparency in Energy Markets - Solar & Wind Power

Production.

Trepper, K., Bucksteeg, M., and Weber, C. (2015). Market splitting in Germany – New

evidence from a three-stage numerical model of Europe. Energy Policy, 87:199–

215.

Twomey, P., Green, R. J., Neuhoff, K., and Newbery, D. (2006). A Review of the

Monitoring of Market Power The Possible Roles of TSOs in Monitoring for Market

Power Issues in Congested Transmission Systems. Working Paper.

Twomey, P. and Neuhoff, K. (2010). Wind power and market power in competitive

markets. Energy Policy, 38(7):3198–3210.

US Department of Justice, Federal Trade Commission (2010). Horizontal Merger

Guidelines (08/19/2010).

Usaola, J. and Angarita, J. (2007). Bidding wind energy under uncertainty. In

International Conference on Clean Electrical Power, 2007. ICCEP ’07, pages 754–

759.

195



Bibliography

Vandezande, L., Meeus, L., Belmans, R., Saguan, M., and Glachant, J.-M. (2010).

Well-functioning balancing markets: A prerequisite for wind power integration.

Energy Policy, 38(7):3146–3154.

Viehmann, J. (2011). Risk premiums in the German day-ahead Electricity Market.

Energy Policy, 39(1):386–394.

Viehmann, J. (2017). State of the German Short-Term Power Market. Zeitschrift für

Energiewirtschaft, 41(2):87–103.

Vlachos, A. and Biskas, P. (2013). Demand Response in a Real-Time Balancing Market

Clearing With Pay-As-Bid Pricing. IEEE Transactions on Smart Grid, 4(4):1966–

1975.

von der Fehr, N.-H. and Harbord, D. (1998). Competition in Electricity Spot Mar-

kets. Economic Theory and International Experience. Working Paper 05/1998,

Memorandum, Department of Economics, University of Oslo.

Wagner, J. (2016). Grid Investment and Support Schemes for Renewable Electricity

Generation. EWI Working Paper 2016-8, Energiewirtschaftliches Institut an der

Universitaet zu Koeln (EWI).

Wallace, S. W. and Fleten, S.-E. (2003). Stochastic Programming Models in Energy.

In A. Ruszczynski, a. A. S., editor, Handbooks in Operations Research and Manage-

ment Science, volume Volume 10, pages 637–677. Elsevier.

Wang, Q., Zhang, C., Ding, Y., Xydis, G., Wang, J., and Østergaard, J. (2015). Review

of real-time electricity markets for integrating Distributed Energy Resources and

Demand Response. Applied Energy, 138:695–706.

Weron, R. (2007). Modeling and Forecasting Electricity Loads and Prices: A Statistical

Approach. John Wiley & Sons. Google-Books-ID: cXcWdMgovvoC.

WindEurope (2017). Wind in power: 2016 European statistics.

Zhang, B., Johari, R., and Rajagopal, R. (2015). Competition and Coalition For-

mation of Renewable Power Producers. IEEE Transactions on Power Systems,

30(3):1624–1632.

Zhang, Y., Wang, J., and Wang, X. (2014). Review on probabilistic forecasting of

wind power generation. Renewable and Sustainable Energy Reviews, 32:255–270.

196


	Introduction
	Methodology overview
	Extended Abstracts

	How to Sell Renewable Electricity - Strategic Interaction in Sequential Markets
	Introduction
	Background and literature
	Background
	Literature overview

	The Model
	Cournot Competition of Renewable Producers
	Renewable Producer Monopoly
	Renewable Producer Monopoly in the Context of a Strict Convex Marginal Cost Function
	Renewable Producer Oligopoly

	Flexibility and its Role in Short-term Markets
	Incentives of Renewable Producers to Withhold Production
	Prices, Welfare, Producer Surplus and Consumer Surplus
	Prices and the Role of Arbitrageurs
	Producer Surplus
	Consumer Surplus
	Welfare

	Concluding Remarks
	Appendix
	Proof of Proposition 2.3
	Proof of Proposition 2.4
	Proof of Proposition 2.6


	Explaining Electricity Forward Premiums - Evidence for the Weather Uncertainty Effect
	Introduction
	Background
	Theoretical model
	Empirical evaluation
	Weather classification

	Theory
	Empirical evidence
	Data
	Effect of the weather types on the mean forward premium level (Hypothesis A)
	Weather classifications as a distinction of wind and solar forecast uncertainty
	Forward price premiums rise with wind and solar production uncertainty (Hypothesis B)

	Conclusion
	Appendix
	On the order of the German electricity supply curve
	Proof of Proposition 3.1
	Statistics on the data
	The wind and solar production level gives insufficient information on forecast errors
	Effect coding results for cyclonality at 500 hPa
	Wind and solar uncertainty translates to price uncertainty
	Requirement checks for the regression analysis


	Tender Frequency and Market Concentration in Balancing Power Markets
	Introduction
	Background
	On the Functioning of the Balancing Power Market
	Market Concentration

	Methodology
	Modeling Approach
	Input Data and Assumptions

	Results
	System Costs
	Provision of Balancing Power
	Market Concentration
	Influence of additional Demand Response on the Market Concentration

	Conclusion
	Appendix
	Input Data for Modeling
	Robustness Checks
	RSI concentration index for secondary balancing power


	The Benefit of Long-term High Resolution Wind Data for Electricity System Analysis
	Introduction
	Methodology
	A model for high resolution wind power production
	Application of REOM: A European long-term dataset

	Results
	Evaluation of the underlying reanalysis dataset
	Evaluation of the REOM model
	Long-term variability of wind power production
	Balancing potentials in Europe and Germany
	Balancing potentials within Germany

	Conclusions and implications
	Appendix
	Distribution of installed wind capacity
	Completeness of the wind park dataset
	Evaluation


	Build Wind Capacities at Windy Locations? Assessment of System Optimal Wind Locations
	Introduction
	Methodology
	General model description
	Fundamental equations
	Input Data
	Model limitations
	Revenues of wind
	Value of wind
	Description of wind data
	Description of pv data

	Results
	Wind revenues
	Value factor of wind

	Discussion
	Conclusion
	Appendix
	Load Distribution
	Statistics of the wind revenues per node under nodal pricing and zonal pricing
	Statistics of the market value factor of wind per node under nodal pricing and zonal pricing


	Bibliography

