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Zusammenfassung 

Pflanzen sind fortwährend von pathogenen und mutualistischen Mikroorganismen, 

zum Beispiel Pilzen, umgeben. Um sich gegen pilzliche Infektionen zu schützen, 

vertrauen Pflanzen auf die Immunität jeder einzelnen Zelle. Sobald über 

Oberflächenrezeptoren mikroorganismenspezifische Signalmoleküle, so genannte 

MAMPs, wahrgenommen werden, wird eine Abwehrreaktion ausgelöst. Dabei werden 

z.B. verzweigte β-1,3/1,6-Glukane aus der Pilzzellwand als MAMPs von 

Pflanzenrezeptoren detektiert, da diese die Pilzzelle als fremdartige Struktur 

identifizieren. Die Pilzzellwand ist ein hochdynamischer Zellbestandteil, dessen 

Struktur und Zusammensetzung sich permanent verändert, um sowohl eine pflanzliche 

Abwehrreaktion zu vermeiden als auch die Stabilität zu gewährleisten.  

Das Ziel dieser Untersuchung war die Identifizierung von Proteinen des 

mutualistischen Wurzelendophyten Serendipita indica und dessen Wirtspflanze 

Arabidopsis thaliana, die beim Schutz und der Erkennung von β-Glukanen eine Rolle 

spielen. Das S. indica Lektin WSC3 ist pflanzen- und pilzresponsiv transkriptionell 

induziert und lokalisiert an die S. indica Zellwand. In der Hefe Pichia pastoris wird 

WSC3-His in die Zellwand integriert und erhöht dort die Widerstandsfähigkeit 

gegenüber den zellwandschädlichen Substanzen Kongorot und Calcofluor Weiß. Es 

konnte weiterhin gezeigt werden, dass WSC3-His verzweigte β-1,3/1,6-Glukane 

binden kann und so zur Agglutination von Pilzzellen führt und zur Unterdrückung von 

β-1,3/1,6-Glukan-induzierten Abwehrreaktionen in Pflanzen beiträgt. Zusätzlich konnte 

gezeigt werden, dass das β-1,6-Glukan bindende Lektin FGB1 in der Lage ist, die von 

verschiedenen pilzlichen und bakteriellen MAMPs ausgelösten Abwehrreaktionen in 

Pflanzen zu unterdrücken. Bei der Untersuchung der β-1,3/1,6-Glukan-induzierten 

Abwehrreaktion konnten beachtliche Unterschiede, hinsichtlich der Stärke der 

induzierten Abwehrreaktionen, zwischen natürlichen A. thaliana Ecotypen festgestellt 

werden, die durch eine genomweiten Assoziationsstudie zur Identifizierung von 

möglichen Kandidaten genutzt wurden. 

Zusammenfassend kann festgehalten werden, das WSC3 möglicherweise ein 

strukturgebender Komponent ist, der zur Stabilisierung der S. indica Zellwand beiträgt, 

während FGB1 als universeller Suppressor von MAMP-induzierten Abwehrreaktionen 

agiert. Die beachtlichen Unterschiede zwischen den A. thaliana Ecotypen hinsichtlich 

der Reaktion auf Laminarin und die Ergebnisse der genomweiten Assoziationsstudie 

legen Nahe, dass mehrere Gene an dieser Abwehrreaktion beteiligt sind. 



 

Summary 

Plants are constantly surrounded by pathogenic and mutualistic microbes, for example 

fungi. To defend against fungal invaders plants rely on the innate immunity of each cell 

which is activated in response to the perception of microbe-associated molecular 

patterns, so called MAMPs, by specific plant surface receptors. Fungal cell wall derived 

polysaccharides like branched β-1,3/1,6-glucans are perceived as MAMPs and identify 

a fungal cell as non-self. The fungal cell wall is a highly dynamic organelle that is 

constantly reshaped to tailor its structure and composition to circumvent the activation 

of the plant defense while ensuring cell wall integrity especially during plant 

colonization. 

This study aimed to characterize proteins of the mutualistic root endophyte Serendipita 

indica and its experimental host plant A. thaliana that are engaged in β-glucan biology. 

The WSC-domain containing lectin WSC3, a member of a multigene family in S. indica 

is transcriptionally induced during plant colonization and in contact with a second 

fungus. The fusion protein WSC3-GFP localizes to the cell wall of S. indica, reduces 

the exposure of β-1,3-glucan and increases cell wall stress resistance in the yeast 

Pichia pastoris. Isothermal titration calorimetry revealed that WSC3-His binds the 

MAMP laminarin, a branched β-1,3/1,6-glucan and is able to agglutinate various fungal 

cells. Furthermore WSC3-His efficiently competes with the unknown plant receptor and 

thus prevents the induction of the production of reactive oxygen species (ROS) by 

laminarin but does not increase colonization of barley roots by S. indica. Additionally 

the secreted β-1,6-glucan specific lectin FGB1 of S. indica was shown to universally 

suppress ROS production in barley in response to the MAMPs laminarin, chitin and 

flg22. The investigation of the laminarin-induced ROS production in A. thaliana 

revealed great natural variation among 100 tested accession. A genome wide 

association screen identified several genetic loci that are potentially involved in 

laminarin-triggered defense responses in A. thaliana. 

Collectively these results suggest that WSC3 might act as a structural component of 

the fungal cell wall to maintain cell wall integrity while FGB1 is acting as universal 

suppressor of MAMP-triggered ROS production. Both proteins underline the pivotal 

role of the fungal cell wall in general and especially of β-glucans during plant-microbe 

interactions. The responsiveness of A. thaliana to laminarin is subject of great natural 

variation and potentially represents a multigenetic trait. 
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1. Introduction 

1.1 The plant immune system – repelling the bad, accommodating the good 

 

Plants are constantly interacting with microbes present in their surrounding. These 

microbes can be classified based on the nature of the interaction in beneficial, 

detrimental or neutral microbes. Past research on plant-microbe interactions strongly 

focused on the investigation of the molecular mechanisms underlying the interaction 

of one (mostly pathogenic) microbe with its host plant and resulted in the creation of 

the zig-zag model illustrating the different layers of the plant defense and 

corresponding microbial counter strategies (Jones & Dangl, 2006). In brief, an invading 

microbe is primarily recognized by conserved molecules that are not present in the 

plant and thus identified as non-self and potentially harmful. Such microbial molecules, 

designated as MAMPs for microbe-associated molecular patterns, are known for 

bacteria, fungi and oomycetes and are perceived by specific plant receptors, so called 

pattern-recognition receptors or PRRs (Boutrout & Zipfel, 2017, Yu et al., 2017). The 

recognition of MAMPs leads to several different cellular defense responses including 

Ca2+-influx into the cytoplasm, callose depositions into the cell wall and the production 

of reactive oxygen species (ROS) in order to repel the invader (Yu et al., 2017). This 

basal and undirected state of immunity, designated as MAMP-triggered immunity or 

MTI, successfully fights and repels non-adapted microbes (Yu et al., 2017). In turn 

adapted microbes employ specific, highly variable and often non-conserved proteins, 

so called effectors, to overcome MTI and to successfully colonize the host plant, a state 

called effector-triggered susceptibility or ETS (Lo Presti et al., 2015). As a 

consequence of the co-evolution of plants and adapted microbes the plants in turn 

developed a second arsenal of immune receptors, called NB-LRR receptors for 

nucleotide-binding site and leucine-rich repeat receptors, that specifically recognize 

microbial effector-proteins leading to effector-triggered immunity (ETI) often 

accompanied by a hypersensitive response (De Wit et al., 2009). Consequently 

microbes evolved effectors that are targeted against the NB-LRRs to suppress and 

circumvent their activity leading again to ETS. But also these effectors are potentially 

recognized by plant immune receptors, which restore the status of ETI. Over the last 

decade since the zig-zag model was introduced research on plant-microbe interactions 

accelerated calling for an update of the model (Pritchard & Birch, 2014; Cook et al., 
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2015). For example the integration of endogenous plant molecules that are released 

upon a microbial invasion and thus were termed danger-associated molecular patterns 

(DAMPs), is missing in the current model. DAMPs, for example extracellular ATP or 

elicitor peptides (PEPs), are often present in parallel to classical MAMPs but only 

partially activate the same defense responses (Yamaguchi & Huffacker, 2011; Choi et 

al., 2014; Tanaka et al., 2014). Furthermore the zig-zag model falls short in explaining 

how plants orchestrate the different layers of immunity considering the presence of a 

microbiome consisting of a myriad of microbes with various lifestyles. The microbiome 

of a plant is defined as the entity of all microbes that live in or on a plant and together 

with the plant collectively form a holobiont (Vandenkoornhuyse et al., 2015). The 

composition of the microbiome is not only shaped by the environment but also greatly 

influenced by the plant itself that for example recruits so called hub microbes that 

stabilize the microbiome (Coleman-Derr et al., 2016; Bai et al., 2015; Agler et al., 

2016). This process of direct and active shaping of the own microbiome to fulfill the 

current abiotic and biotic necessities was for a long time only known from animal 

systems but in the future will also massively influence the way of our understanding of 

the plant immune system (Ezenwa et al., 2012; Hacquard et al., 2017). The microbiome 

represents a novel layer that needs to be considered when describing the complexity 

of the plant immune system and was recently included into an updated version of the 

model (Hacquard et al., 2017). To enable such a scenario a sophisticated crosstalk 

between plants and the desired microbes is required to ensure that only the detrimental 

or neutral microbes are repelled and the beneficial microbes are accommodated. The 

communication of beneficial microbes and plants potentially is the result of million of 

years of co-evolution and may have its origin in the ancient arbuscular mycorrhiza (AM) 

symbioses between fungi of the division Glomeromycota and 80 % of the land plants 

(Redecker et al., 2000; Brundrett, 2009). Plants attract AM fungi for example by the 

production and release of strigolactones, a class of phytohormones that induces 

hyphal branching in AM fungi (Al-Babili & Bouwmeester, 2015; Pandey et al., 2016). 

AM fungi in turn secrete lipochitooligosaccharides designated as Myc-factors and 

short-chain chitin oligomers that induce lateral root formation and the components of 

the SYM-pathway needed to establish AM symbiosis (Maillet et al., 2011; Genre et al., 

2013). The plant receptors perceiving these AM-signals are conserved and share 

striking similarities with the receptors perceiving bacterial Nod-factors as signal to 

induce nodule formation a crucial step in the establishment of legume-rhizobium 
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symbiosis (Liang et al., 2014). It was hypothesized that the perception of the Myc -and 

Nod-factors share the same evolutionary origin which might be found in some ancient 

immune receptors of algae (Liang et al., 2014). Thus this intimate crosstalk between 

plants and symbiotic microbes relies on the integrity of a few plant components that 

are crucial for the perception of symbiotic signals and finally for the discrimination 

between beneficial and detrimental microbes. It was recently hypothesized that plants 

even safeguard these components with specific NB-LRRs that prevent the exploitation 

of these pathways by microbial cheaters (Hacquard et al., 2017). Nevertheless there 

are symbiotic microbes that confer beneficial effects to their host plant and act 

independently of the SYM pathway (Banhara et al., 2015). Furthermore not only 

pathogenic microbes employ effector proteins to suppress or modulate the plant 

immune system for successful colonization. Recent examples are the effector protein 

SP7 of the AM fungus Glomus intraradices that prevents induction of pathogenesis-

related genes by interaction with the transcription factor ERF19, the mycorrhiza-

induced small secreted protein MiSSP7 of the ectomyccorhizal fungus Laccaria bicolor 

that interferes with jasmonic acid signaling in Populus and the β-glucan-binding lectin 

FGB1 of the root endophyte Serendipita indica which suppresses MAMP-triggered 

immunity (Kloppholz et al., 2011; Plett et al., 2014; Wawra et al., 2016). 

Thus only a fine tuned plant immune system is able, to on the one hand side, allow the 

interaction with beneficial microbes that are crucial for plant fitness and on the other 

hand side to fight and restrict detrimental microbes that developed sophisticated 

strategies to overcome this barriers. The first layer of the immune system is the 

recognition of MAMPs by PRRs, which already by definition raises the question how a 

plant can distinguish between beneficial and detrimental microbes if conserved 

microbial molecules are sensed? Additionally the fungal cell wall constituent chitin 

exemplifies that the difference between a MAMP triggering a defense response and a 

symbiotic signaling molecule like a Myc- or Nod-factor might just be an acetyl-group or 

another chemical modification. Despite the fact that for example the A. thaliana 

genome encodes more than 600 receptor-like kinases for the perception of various 

signals, the receptors perceiving the antithetic chitin-signals belong to the same 

receptor family (Shiu & Bleeker, 2001; Liang et al., 2014). Thus understanding the 

function of plant PRRs as well as the microbial counter strategies is crucial to build an 

integrated picture of the plant immune system.  
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1.2 Chitin as an example for the complexity of pattern recognition and fungal 

counter strategies 

 

Chitin is a complex polysaccharide consisting of β-1,4-linked N-acetylglucosamine 

units and constitutes between 10 to 20 % of the dry mass of the cell wall of filamentous 

fungi (Bowman & Free, 2006). Chitin is not present in the plant tissue but as a crucial 

cell wall building block it is a potential MAMP strongly eliciting defense responses in 

plants and also a target for plant chitinases fighting fungal invaders. The relevance of 

chitin as a MAMP is underlined by the fact that A. thaliana possesses several receptors 

able to recognize chitin which mostly belong to a common receptor family designated 

as LysM-containing receptor-like kinases (LYKs). Nevertheless first steps to elucidate 

the mechanism of chitin-perception were made in rice (Oryza sativa) were the chitin 

oligosaccharide elicitor binding protein (OsCEBiP) was shown to form a heteromeric 

receptor complex with the chitin elicitor receptor kinase 1 (OsCERK1) in response to 

chitin-binding of OsCEBiP to elicit a defense response (Kaku et al., 2006; Shimizu et 

al., 2010; Hayafune et al., 2014). A similar mechanism was later also described in A. 

thaliana. The OsCERK1 homolog CERK1 (or LYK1) forms a chitin-induced receptor 

complex with high-affinity chitin-binding receptor LYK5 which leads to an induction of 

immune signaling by the intracellular kinase-domain of CERK1 (Miya et al., 2007; Cao 

et al., 2014). Additionally to its function in chitin-induced immune signaling CERK1 was 

recently shown to also mediate the recognition of bacterial peptidoglycan by the 

formation of a receptor complex with the LysM-containing receptors LYM1 and LYM3 

(Figure 1; Willmann et al., 2011). Thus current models describe CERK1 as central hub 

in immune signaling of A. thaliana by translating extracellular MAMP-signals that are 

perceived by high-affinity receptors into an intracellular activation of various defense 

responses (Rövenich et al., 2016; Couto & Zipfel, 2016). Even though the 

CERK1/LYK5 complex seems to be the main route for chitin perception and activation 

of defense responses there are more receptors shown to act in response to chitin. 

Another member of the LYK family, LYK4 is involved in chitin-induced defense 

signaling even though the mechanism is still elusive (Wan et al., 2012). Furthermore 

LYM2, the A. thaliana homolog of OsCEBiP acts independent of CERK1 and regulates 

plasmodesmata flux a secondary immune response (Faulkner et al, 2013; Narusaka 

et al., 2013). 
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Figure 1: CERK1 is involved in chitin- and 

peptidoglycan-perception in A. thaliana. Upon binding of 

the fungal MAMP chitin the transmembrane chitin elicitor 

receptor kinase 1 (CERK1) forms a heteromeric receptor 

complex with the LysM-containing receptor-like kinase 5 

(LYK5) to induce intracellular immune signaling mediated by 

the kinase-domain of CERK1. In the same way CERK1 is 

involved in the perception of bacterial peptidoglycan by 

binding of the MAMP to the LysM domain proteins 1 and 3 

(LYM1 and LYM3) which upon binding form a signaling 

complex with CERK1. Ellipse – LysM domain, stalk – protein 

backbone and transmembrane domain, rectangle – kinase 

domain. Figure adapted from Couto & Zipfel, 2016.  

 

 

LysM-containing plant receptors are not only involved in immune signaling upon chitin 

perception but do also act in response to the Myc-factors of AM fungi and Nod-factors 

of rhizobacteria to regulate symbiotic interactions (Den Camp et al., 2011; Liang et al., 

2013; Liang et al., 2014; Buendia et al., 2016). In addition recent evidence suggests 

that the CERK1 receptor of rice is not only involved in defense signaling but has a dual 

function and also mediates the perception of Myc- and Nod-factors (Miyata et al., 2014; 

Zhang et al., 2015). The complexity and multiplicity of the chitin-responsive receptor 

families illustrates on the one hand side the importance of chitin and chitin-derivatives 

in various plant processes and on the other hand side might be a results of a common 

evolutionary history (Liang et al., 2014). 

As multifaceted as the plant components perceiving and transducing chitin-signals are 

the fungal counter strategies. One possible way to avoid recognition of chitin is the 

modification of the cell wall for example through deacetylation of chitin to chitosan (El 

Gueddari et al., 2002). Another strategy was described in Magnaporthe oryzae where 

cell wall chitin is masked by α-1,3-glucan which protects it from the hydrolysis by plant-

derived chitinases (Fujikawa et al., 2012). In general protection of chitin from hydrolysis 

or inhibition of the hydrolytic enzyme activity seem to represent efficient strategies. The 

fungal effector Avr4 from Cladosporium fulvum binds to the chitin components of the 

cell wall and protects them from hydrolysis by chitinases (van den Burg et al., 2006). 

Direct targeting of chitinases mostly involves the cleavage of the enzymes by 

dedicated proteases (Naumann & Wicklow, 2013; Jashni et al., 2015). Due to the high 

binding affinity of the plant receptors, which was shown to be as low as 1 µM for LYK5 
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even extremely low concentrations of chitooligosaccharides are sufficient to trigger a 

defense response. Thus another fungal strategy is the sequestration of soluble chitin 

oligomers from the apoplast like described for the C. fulvum effector protein Ecp6 (de 

Jonge et al, 2010). Ecp6 consists of three LysM domains, which are also responsive 

for chitin-binding of the plant receptors but outcompetes the receptors with a much 

higher binding affinity in the picomolar range due to an intrachain dimerization of two 

of the LysM domains (Sanchez-Vallet et al., 2013). The sequestration of free chitin 

oligomers from the apoplast seems to be a very powerful strategy since homologous 

proteins to Ecp6 proposed to fulfill a similar mechanism were described in 

Zymoseptoria tritcii, Magnaporthe oryzae and Colletotrichum higginsianum (Marshall 

et al., 2011; Mentlak et al., 2012; Takahara et al., 2016). 

Chitin as a potent MAMP illustrates that both plants and fungi employ complex toolkits 

either to sense the invader or to prevent recognition and hydrolysis in order to 

successfully colonize the host. In the cell walls of the few fungi analyzed the most 

abundant fungal cell wall constituent is β-glucan which constitutes between 50 and 60 

% of its dry mass (Bowman & Free, 2006, Latgé, 2007; Latgé et al., 2017). β-glucans 

were described as potent elicitors of plant defense responses originating from the 

oomycete cell wall, which does not contain chitin (Fesel & Zuccaro, 2016a). Despite its 

higher abundance in the fungal cell wall and its potential to induce defense responses 

in plants its role in plant-microbe interactions is less understood than for chitin. 

 

1.3 β-glucan as a MAMP and its elusive perception 

 

The fungal cell wall was for a long time believed to form a rigid armor which is 

encapsulating the cytoplasm. Recently this view changed towards the description as 

highly dynamic organelle whose structure and compositions is constantly changing 

according to the cell type and the growth condition (Gheoghegan et al., 2017; Latgé et 

al., 2017). Especially during biotrophic interactions the remodeling of the cell wall 

architecture is crucial because the cell wall is mostly the first cellular structure which is 

getting into contact with the hosts immune system and thus represents the primary 

battleground (Gheoghegan et al., 2017; Latgé et al., 2017). As initially described fungal 

cell wall derived polysaccharides are potent elicitors of immune responses and thus 

their exposure needs to be prevented while maintaining cell wall integrity. Whereas 

chitin structure and content seems to be vastly similar in most of the analyzed fungi, 
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the glucan content and especially composition varies greatly between species 

(Bowman & Free, 2006; Latgé, 2007; Gheoghegan et al., 2017). The most abundant 

cell wall polysaccharides are β-glucans whereas between 65 % and 90% of the β-

glucans present in the cell wall are linked by β-1,3-glycosidic linkages forming long 

fibrils consisting of up to 1,500 glucose units interconnected with each other with β-

1,6-glycosidic linkages which account for 3 % to 10 % and confer rigidity to the cell wall 

(Figure 2; Shahinian & Bussey, 2000; Bowman & Free, 2006; Latgé, 2007). The linkage 

between the β-glucan network and chitin is mostly assembled by β-1,4-glycosidic 

linkages (Latgé, 2007). Besides β-glucans also α-glucans are part of the fungal cell 

whose content massively varies constituting for example up to 40 % of the A. fumigatus 

cell wall where it acts as cement to fill the pores (Ruiz-Herrera, 1991, Bowman & Free, 

2006; Latgé et al., 2017). Whereas chitin is located directly adjacent to the plasma 

membrane the β-glucan fibrils are primarily firmly bound to the rest of the cell wall 

constituent but were also found to be present around the hyphae as a matrix (Ruel & 

Joseleau, 1991; Ruiz-Herrera, 2012). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Simplified model of the fungal cell wall and its main constituents. The fungal cell wall is 

located in the extracellular space directly adjacent to the phospholipid bilayer of the cell membrane (dark 

blue). The innermost layer consists of chitin fibrils (brown), which are synthesized by transmembrane 

chitin synthases (light blue) that shuttle uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc, brown 

hexagons) trough the membrane and attach it to preexisting chitin fibrils. The most abundant cell wall 

polysaccharide is β-glucan, mostly β-1,3-glucan (dark green) and β-1,6-glucan (light green), which are 

synthesized in a similar way like the chitin fibrils by transmembrane β-1,3-glucan synthases (yellow) 

from uridine diphosphate-glucose units (UDP-Glc, green hexagons). The outermost layer consist of 

mannoproteins (red). Figure adapted from Fesel & Zuccaro, 2016a.  
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The mechanism of β-1,3-glucan synthesis is not fully understood but most probably is 

accomplished by transmembrane β-1,3-glucan synthases that attach intracellularly 

supplied uridine diphosphate-glucose (UDP-Glc) to preexisting β-glucan fibrils present 

in the extracellular space (Douglas, 2001; Ruiz-Herrera, 2012). Nevertheless the sheer 

abundance of β-glucan does not make it a potential MAMP especially since β-1,3-

glucan is also present in plant cell walls as callose reinforcements and thus is even 

discussed as potential DAMP (Beffa et al., 1996; Klarzynski et al., 2000). In contrast 

β-1,6-glucan is specific to fungi and oomycetes and not present in plants except of the 

some members of the phylum chromista, which makes it a potential MAMP (Bartnicki-

Garcia, 1968; Sietsma et al., 1969; Fesel & Zuccaro, 2016a). 

Accordingly the elicitor activity of β-glucan fragments originating from fungal and 

oomycete cell walls is known for a long time whereas the β-1,6-glycosidic linkages are 

crucial for the recognition (Ayers et al., 1976, Ebel et al., 1976; Albersheim & Valent, 

1978, Sharp et al., 1976a, b; Anderson 1978, 1980). Interestingly and contrasting to 

chitin the ability to recognize β-glucans as elicitors is not universal but varies greatly 

between different plant species and families (Albersheim & Valent, 1978 Anderson 

1978; Yamaguchi et al., 2000). Thus there is potentially a high degree of plant and 

microbe species specificity, which argues for several independent evolutionary events 

or is the result of persistent co-evolution between plant and microbes. As a result the 

non-physiological mixed β-1,3/1,6-glucan laminarin from the brown algae Laminaria 

digitata is widely used in research because it elicits various defense responses in 

different plants (Klarzynski et al, 2000; Aziz et al., 2003; Menard et al., 2004). 

Additionally not only structure and composition of the β-glucans seem to be important 

for recognition but also chemical modifications like sulfatations might make a difference 

(Menard et al., 2004, Menard et al, 2005; Gauthier et al., 2014). Nevertheless most of 

the studies in the past trying to identify the potential β-glucan receptor(s) were 

performed with mixed β-1,3/1,6-glucan released from Phytophtora cell walls by acid 

hydrolysis and yielded first evidence for the presence of a putative component 

necessary for β-glucan perception in soybean (Yoshikawa et al., 1983). The identified 

soluble glucan-binding protein (GBP) from soybean was further characterized 

revealing a particularly low binding affinity to the β-glucan ligand compared to the 

known chitin receptors and a specificity for β-1,6-glycosidic linkages (Schmidt & Ebel, 

1987; Cosio et al., 1990; Cheong & Hahn 1991; Cheong et al., 1992). Intriguingly 

subsequent studies of the GBP revealed that it does not possess the characteristics of 
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a classical receptor or receptor-like protein but consists of the expected glucan-binding 

domain and additionally a glucosidase domain exhibiting β-1,3-glucanase activity 

(Umemoto et al., 1997; Fliegmann et al., 2004). The GBP was further shown to bind 

and hydrolyze the oomycete-derived mixed β-1,3/1,6-glucan and also laminarin but 

can possibly be inhibited by direct competition by a cyclic β-1,3/1,6-glucan from a 

symbiotic bacterium (Mithöfer et al., 1996; Fliegmann et al., 2004). Furthermore 

homologs of the GBP are present not only in the Fabaceae as initially suspected but 

in nearly all plant families and were postulated to be part of the receptor complex that 

perceives the β-glucan signals (Fliegmann et al., 2004). In summary the GBP is a 

highly interesting candidate being essential for the tailoring and thus the perception of 

oomycete and potentially also fungal β-glucan MAMPs but does not perceive the signal 

directly. Thus the potential β-glucan receptor is still elusive. In general the research on 

β-glucan recognition is greatly hindered by the availability of suitable substrates. 

Neither the algal polysaccharide laminarin nor the oomycete-derived heptaglucoside, 

which was released from the cell wall by acid hydrolysis are physiological substrates 

that are present during the initial contact of plants and microbes. Despite their 

limitations both substrates as well as linear β-glucans are useful tools to study β-glucan 

recognition in plants. 

Even though the identity of the β-glucan receptor(s) and the mechanism of perception 

is unknown the recently discovered fungal strategies to avoid β-glucan recognition are 

pointing towards its importance as a MAMP. It was shown for the maize pathogen 

Colletotrichum graminicola that the expression of the β-1,3-glucan- and β-1,6-glucan-

synthases and thus the β-glucan content is reduced in the biotrophic hyphae colonizing 

living cells potentially to evade recognition (Oliveira-Garcia & Deising, 2013; Oliveira-

Garcia & Deising, 2016). Additionally expression of both genes and thus the β-glucan 

content was massively increased in the appressoria and necrotrophic hyphae to 

withstand the high turgor pressure and to enable rapid growth of the hyphae, 

respectively. Even though it is not clear how the decreased β-glucan content is 

compensated in the biotrophic hyphae, this mechanism seems to be an efficient way 

to balance between cell wall rigidity and the evasion of the detection by the plant 

immune system. Another mechanism was recently described involving the first fungal 

effector protein directly targeting β-glucan-induced immunity. The β-1,6-glucan specific 

lectin FGB1 of the root endophyte S. indica is suppressing β-glucan triggered immunity 
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in plant and additionally is altering the cell wall composition potentially to increase 

resistance to external stressors (Wawra et al., 2016). 

These examples clearly highlight the importance of β-glucan as crucial cell wall 

constituent to ensure cell wall stability and integrity that needs to be protected from 

hydrolysis and recognition. Nevertheless the mechanism of β-glucan recognition and 

the key players involved in this process on the plant side as well as the microbial 

strategies to evade recognition and to maintain cell wall integrity remain nebulous. The 

mutualistic root endophyte S. indica seems to be a valuable tool to dissect fungal 

mechanisms involved in β-glucan biology and additionally might help to understand the 

plant perception machinery. 

 

1.4 Serendipita indica as a tool to disentangle β-glucan biology in plant-microbe 

interactions 

 

Fungal endophytes represent a powerful tool to investigate the defense mechanisms 

shared between but also specific for the response to beneficial and detrimental 

microbes respectively since they just recently diverged from their pathogenic ancestors 

or potentially mark an intermediate state during the evolution from a saprotrophic to a 

biotrophic lifestyle (Xu et al., 2013; Hacquard et al., 2016; Fesel & Zuccaro, 2016b). 

Especially the well-characterized mutualistic root endophyte S. indica (syn.: 

Piriformospora indica) may be of great interest for this purpose as in the past years it 

was developed as a model system for the order Sebacinales. Sebacinales represent 

one of the most basal orders within the basidiomycetes with members covering a large 

spectrum of fungal lifestyles from saprotrophs to ectomycorrhizal fungi with the 

exception of pathogens (Kohler et al., 2015; Garnica et al., 2016; Weiß et al., 2016). 

Sebacinales fungi are ubiquitously found in nearly all terrestrial ecosystems interacting 

with a large variety of plants including the model plant A. thaliana and might represent 

hidden players that have been overlooked for a long time probably due to the fact that 

they are in particular prone to conventional agriculture (Weiß et al., 2011; Oberwinkler 

et al., 2013; Riess et al., 2014; Verbruggen et al., 2014). S. indica potentially marks an 

intermediate state during the evolution from saprotrophic nutrition to (obligate) 

biotrophic nutrition which for example is reflected by the sustainment of an arsenal of 

plant cell wall degrading enzymes which allow the feeding on senescent plant tissue 

and synthetic growth medium and whose loss is considered as a hallmark of the 
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evolution of biotrophy (Schulz & Boyle, 2005; Veneault-Fourrey & Martin, 2011; 

Zuccaro et al., 2011; Kohler et al., 2015; Lahrmann et al., 2015). S. indica undergoes 

a transcriptomic and nutritional reprogramming during root colonization accompanied 

by the massive colonization of dead root tissue (Zuccaro et al., 2011; Lahrmann & 

Zuccaro, 2012; Lahrmann et al., 2013). Before switching to the cell death associated 

colonization phase S. indica hyphae are predominantly found within living root 

epidermal and cortex cells representing the initial biotrophic colonization phase 

(Zuccaro et al., 2011; Lahrmann & Zuccaro, 2012). Even though the colonization of 

plant roots is accompanied by the suppression of the plant immune system and the 

induction of programmed cell death S. indica confers a myriad of beneficial effects on 

its host plants potentially due to the fact that colonization is preferentially found in the 

maturation zone of the roots (Waller et al., 2005; Jacobs et al., 2011; Qiang et al., 

2012). These beneficial effects include increased nutrient uptake, growth, yield and 

resistance to biotic and abiotic stresses (Peskan-Berghöfer et al., 2004; Sherameti et 

al., 2005; Waller et al., 2005; Shahollari et al., 2007; Sherameti et al., 2008; Yadav et 

al., 2010; Lahrmann et al., 2015). Sequencing of the S. indica genome not only reflects 

the biphasic lifestyle combining initial biotrophic and subsequent saprotrophic nutrition 

but also uncovered a unique expansion of genes encoding proteins with carbohydrate 

binding properties (Zuccaro et al., 2011; Lahrmann & Zuccaro, 2012). The 

physiological relevance of this expansion of carbohydrate binding proteins which might 

be to compensate the lost ability to produce secondary metabolites is further 

substantiated by the fact that a large set of these genes is transcriptionally induced 

during root colonization (Zuccaro et al., 2011; Lahrmann & Zuccaro, 2012; Lahrmann 

et al., 2015; Fesel & Zuccaro, 2016b). Beneath the chitin-binding LysM proteins known 

as extinguishers of host immunity and the cellulose-binding CBM1 proteins potentially 

involved in loosening of the plant cell wall, WSC proteins are remarkably enriched in 

the genome of S. indica even though their function in plant-microbe interaction has not 

been reported so far (Gaulin et al., 2002; Saloheimo et al., 2002; DeJonge & Thomma, 

2009). Proteins with WSC domains have been initially described in the yeast 

Saccharomyces cerevisiae as transmembrane sensors activating the cell wall integrity 

(CWI) pathway and as part of a β-1,3-glucanase of Trichiderma harzianum and thus 

are thought to bind β-1,3-glucans (Verna et al., 1997; Cohen-Kupiec et al., 1999; 

Lodder et al., 1999). In total the genome of S. indica encodes 35 WSC proteins with 

22 of these being differentially expressed during colonization of plant roots (Zuccaro 
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et al., 2011; Lahrmann & Zuccaro, 2012). In total 28 of the WSC domain-containing 

proteins display a lectin-like structure meaning that they are devoid of other 

(enzymatic) domains expect of the WSC domain and a predicted signal peptide 

(Goldstein et al., 1980; Gabius et al., 2002). 

This highlights the importance of WSC proteins during plant colonization but raises the 

questions why S. indica needs so many proteins potentially involved in β-glucan 

biology? Thus studying the biological function of these WSC proteins and 

understanding their role during plant-microbe interaction might shed light on fungal 

mechanisms involved in β-glucan biology Beyond the vast number of proteins 

potentially involved in β-glucan biology the biphasic lifestyle of S. indica might require 

a remodeling of the cell wall to suit the needs of different nutritional strategies and 

cellular environments. In the hemibiotrophic maize pathogen Colletotrichum 

graminicola the synthesis and exposure of β-1,3- and β-1,6-glucan is tightly balanced 

to adapt the cell wall composition to the different needs during the biotrophic and 

necrotrophic colonization phase (Oliveira-Garcia & Deising, 2013; Oliveira-Garcia & 

Deising, 2016). The lifestyle switch observed in S. indica may also demand special 

strategies to tailor the cell wall composition and structure to the different colonization 

phases like described before for phytopathogenic fungi (Geoghegan et al., 2017). 

Furthermore the broad host range of S. indica might be the result of a universal strategy 

to prevent β-glucan recognition by the plant immune system which due to the 

uniqueness of the different β-glucan structures recognized by different plant species is 

hardly conceivable. Thus S. indica either is targeting a molecular hub involved in β-

glucan perception that is conserved among plant families or evolved various molecular 

tools to prevent recognition of the released β-glucan molecules which are employed 

according to the current plant host. In both cases studying these strategies might be 

of great value to better understand β-glucan biology on both sides of the interaction. 

Collectively these features turn S. indica into an interesting system to study β-glucan 

biology in plant-colonizing fungi. Due to the unique expansion of WSC proteins 

encoded in the S. indica genome which was later on also observed in the closely 

related sebacinoid fungus S. vermifera a closer look onto this protein family might give 

first insight in S. indica β-glucan biology.  
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1.5 Spotlight on the WSC tool kit of S. indica  

 

The WSC domain was first found as part of the cell wall stress-responsive components 

(WSC) in S. cerevisiae which act as transmembrane sensor proteins activating the cell 

wall integrity (CWI) pathway (Verna et al., 1997; Lodder et al., 1999). The CWI pathway 

acts via MAP kinase cascade and activates cellular responses as a reaction to osmotic 

or pH-stress, or in response to cell growth (Verna et al., 1997; Klis et al., 2002; Tong 

et al., 2016). The WSC domain itself consists of up to eight conserved cysteine 

residues and is located at the N-terminus of the WSC1-4 (Verna et al., 1997; Futagami 

et al., 2011; Jendretzki et al., 2011). WSC1-4 act as mechanosensors and possess a 

nanospring-like behavior that relies on the anchoring of the C-terminus of the protein 

at the plasmamembrane by its transmembrane domain and of the N-terminus at the 

cell wall by the WSC domain (Dupres et al., 2009; Jendretzki et al., 2011). When the 

integrity of the complex consisting of the plasmamembrane and the cell wall is 

disrupted the CWI pathway is activated leading to cell wall remodeling (Heinisch et al., 

1999; Levin 2005). Beneath anchoring WSC1-4 at the cell wall the WSC domain was 

furthermore shown to be crucial for the clustering of the WSC protein for example at 

sides of cell growth and thus was proposed to be additionally involved in the mediation 

of protein-protein interactions (Heinisch et al., 2010; Jendretzki et al., 2011). The 

WSC1-4 are not only present in S. cerevisiae but were also found to be involved in the 

activation of the CWI pathway in Kluyveromyces lactis, the filamenteous fungi 

Aspergillus nidulans, Neurospora crassa, and Beauveria bassiana and even in the 

algae Fuccus serratus (Rodicio et al., 2007; Futagami et al., 2011; Maddi et al., 2012; 

Herve et al., 2015; Tong et al., 2016). Additionally to the described function as CWI 

sensors WSC domains are also present in fungal β-1,3-glucanases for example of T. 

harzianum or in several proteins of the nematode-trapping fungus Monacrosporium 

haptotylum (Cohen-Kupiec et al., 1999; Andersson et al., 2013). The WSC domain-

containing proteins of M. haptotylum which interestingly show a comparable expansion 

like in S. indica are proposed to be involved in cell adhesion (Andersson et al., 2013). 

A phylogentic clustering of the concatenated amino acid sequences of the 35 WSC 

domain-containing proteins of S. indica reveals that those proteins cluster together that 

display a similar domain architecture (Figure 3). For example the proteins that cluster 

together in the lower part of the tree mostly display a lectin-like structure, a more or 
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less similar number of WSC domains per protein and a similar overall length of the 

protein. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Phylogenetic classification of the WSC proteins in S. indica and expression of the WSC 

proteins during Arabidopsis and barley colonization. The concatenated protein sequences of S. 

indica WSC proteins were aligned using the MUSCLE algorithm and subsequently phylogenetic 

clustering was performed using the maximum parsimony method with 1000 bootstraps in Mega7 (Kumar 

et al., 2016). Additionally the closest homologs of the S. indica gene PIIN_05825 (highlighted in red and 

subject of further analysis) in Serendipita vermifera (Sebve1_309621) was included into the analysis. 
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The overall domain architecture of the WSC proteins is depicted next to the phylogenetic tree with the 

length of the amino acid sequence in bold letters next to it. The respective Pfam domains are color 

coded like following: signal peptide – red, WSC domain – green, Glyoxal_oxid_N domain – brown, 

DUF1996 domain – blue, GH71 domain – yellow, DUF1929 domain – purple and SCOP domain – black. 

The heatmap shows the log2-fold changes for the expression of the WSC proteins during colonization 

of A.thaliana at 3 dpi (1st column, At 3dpi) and 14 dpi (2nd column, At 14dpi) and H. vulgare roots at 3 

dpi (3rd column, Hv 3dpi) and 14 dpi (4th column, Hv 14dpi), compared to cultivation on PNM. 

Transcriptome data for S. indica and S. vermifera resulted from microarray experiments published in 

Lahrmann et al., 2015 and data deposited at GEO (S. indica: GSE60736; S. vermifera: GSE60736).  

 

Interestingly those proteins form also the active tool kit of WSC domain-containing 

proteins which were shown to be transcriptionally induced during barley and 

Arabidopsis root colonization (Zuccaro et al., 2011; Lahrmann & Zuccaro, 2012). 

Within this active tool kit is the lectin-like WSC domain-containing protein encoded by 

the S. indica gene PIIN_05825 (highlighted in red) which is further termed WSC3. 

WSC3 consists of three WSC domains and a predicted signal peptide which resembles 

the domain structure of the immune-suppressive LysM lectins of C. fulvum, Z. tritcii, M. 

oryzae and C. higginsianum (De Jonge et al., 2010; Marshall et al., 2011; Mentlak et 

al., 2012; Takahara et al., 2016). Additionally WSC3 is among the most highly 

transcriptionally induced genes during colonization of barley and Arabidopsis roots and 

thus might be generally needed during plant colonization. The importance of WSC3 is 

further substantiated by the fact that the homologues protein Sebve1_309621 of the 

closely related sebacinoid fungus S. vermifera, which is also included in the 

phylogenetic analysis and clusters together with WSC3, shows a similar (up)regulation 

pattern during plant colonization (Lahrmann et al., 2015). 

WSC domain-containing proteins are promising candidates to fill the existing gap in 

our understanding of fungal strategies to cope with β-glucan as an activator of plant 

immunity and to maintain β-glucan integrity to ensure cell wall stability. WSC domain-

containing proteins are predicted to bind to β-1,3-glucan but their role in plant-microbe 

interactions is elusive. The S. indica lectin-like protein WSC3 is transcriptionally 

induced during colonization of plant roots and thus might be involved in mastering the 

requirements to hide and/or protect the β-glucan components of the S. indica cell wall. 
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1.6 Aim of this thesis 

 

The aim of this thesis was to gain a deeper insight into β-glucan biology during the 

interaction of the sebacinoid root endophyte S. indica with its experimental host plants 

H. vulgare and A. thaliana. Especially the expanded family of WSC domain-containing 

proteins of S. indica was further investigated using the candidate protein WSC3. WSC3 

was overexpressed in S. indica as GFP-fusion protein to study its localization and its 

effect on cell wall structure. Furthermore the recombinant expression in the yeast 

system Pichia pastoris was established to first biochemically characterize the purified 

protein and second to assess the impact of WSC3 on cell wall stress resistance in an 

organism devoid of WSC-lectins. The purified protein was biochemically analyzed in 

regards of its binding specificity and kinetics to several oligo- and polysaccharide 

ligands and tested for its impact on plant colonization and fungal growth. Ultimately 

WSC3 and the novel β-1,6-glucan specific lectin FGB1 were tested for their ability to 

suppress MAMP-triggered immunity in plants. 

To also shed light onto the plant components involved in β-glucan induced immunity a 

genome wide association screen was performed making use of the natural variation 

regarding the laminarin-induced ROS production. Therefore 100 A. thaliana 

accessions were assayed for their laminarin-induced reactive oxygen production. This 

data was used to identify genetic loci that can be linked to this trait in A. thaliana. 

Collectively these two approaches will help to understand how fungal derived β-

glucans are involved in plant-microbe interactions and which key components and 

strategies are employed by fungi and plants to cope with these molecules.  
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2. Results 

2.1 Functional characterization of a WSC-lectin of S. indica 

 

2.1.1 WSC3 is induced during root colonization and during contact with a plant 

pathogenic fungus and localizes to the S. indica cell wall 

 

The WSC-domain is proposed to bind to β-1,3-glucans but a function in plant microbe 

interactions has not been described so far. Therefore the WSC-protein encoded by the 

gene PIIN_05825, further termed as WSC3, was chosen for functional 

characterization. The microarray and RNAseq data collected during colonization of H. 

vulgare and A. thaliana were verified by qRT-PCR and additionally it was tested if 

WSC3 is transcriptionally induced during confrontation with the plant pathogenic 

ascomycete Bipolaris sorokiniana. Plants were inoculated with S. indica spores and 

roots were harvested after 1, 3, 7 and 14 days of growth on synthetic media under 

sterile conditions. For the assessment of transcriptional induction of WSC3 by the 

presence of a second fungus S. indica and B. sorokinana mycelia were mixed and 

grown for 2 days. The RNA was extracted from all the samples and reverse transcribed 

into cDNA, which was used for qRT-PCR with primers specific for the WSC3 encoding 

gene PIIN_05825 and the S. indica gene PIIN_03008 encoding the transcription 

elongation factor Tef routinely used as house keeping gene.  

Expression of WSC3 is highest at 1 dpi during colonization of H. vulgare roots (8.7-fold 

up-regulated), then declines to 3.7-fold up-regulation at 7 dpi and finally is 6.7-fold up-

regulated at 14dpi (Figure 4a). This expression pattern is in line with the microarray 

data, which showed an up-regulation of WSC3 at all time points of the interaction 

(Figure 3). The timing of expression suggests that WSC3 is relevant at all colonization 

stages but is particularly relevant during the initiation of the interaction. A similar 

expression pattern was observed for the interaction with A. thaliana even though at 

lower levels which is in line with the results of the microarrays. WSC3 is highest up-

regulated at 1 dpi (2.6-fold) and the expression decreased over time to 1.5-fold 

induction after 14 dpi. During the confrontation with B. sorokiniana in soil WSC3 was 

3.2-fold up-regulated compared to growth of S. indica in soil without the presence of 

B. sorokiniana. This suggests that WSC3 is not only involved in plant colonization but 

is also required during contact with a second fungus. 
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Since WSC-protein were proposed to bind to β-1,3-glucan and WSC3 harbors a signal 

peptide it was hypothesized that WSC3 may localize to the cell wall of S. indica. 

Therefore it was initially investigated if β-1,3-glucans are exposed during growth of S. 

indica in complex medium by visualization of the β-glucan components of the S. indica 

cell wall at an ultrastructural level using transmission electron microscopy. S. indica 

mycelium was grown for five days in liquid CM medium and used for immunogold 

labelling with WGA to visualize chitin and with a β-1,3-glucan-specific antibody (Figure 

4b). Transmission electron microscopy (TEM) was realized in collaboration with Dr. 

Ulla Neumann at the Central Microscopy Facility (CeMic) of the Max-Planck-Institute 

for Plant Breeding Research in Cologne. Gold particles conjugated to WGA localizing 

to areas where chitin is exposed are predominately found at the cell wall (CW, black 

arrow) of S. indica hyphae (Figure 4b pictures A and B). In the septa (black arrowhead) 

of S. indica and the dolipore (black asterisk), a basidiomycete-specific structure within 

the septa that allows exchange of the cytoplasm and nuclei between the two 

compartments, chitin is completely absent. In contrast the β-1,3-glucan-specific 

antibody localizes to the cell wall (CW, black arrow) but also to the septa (black 

arrowhead) and the dolipore (black asterisk) of S. indica hyphae (Figure 4b pictures C 

and D). Thus it was concluded that β-1,3-glucans are present in the cell wall of S. 

indica and accessible for the specific antibody especially at the septa. 

To study the subcellular localization of WSC3 the protein was expressed as fusion with 

a C-terminal GFP. A similar vector construct was used for the investigation of the 

subcellular localization of FGB1 (Wawra et al., 2016). The FGB1 promoter is not only 

induced during in planta growth but also during growth in synthetic complex medium 

(Wawra et al., 2016). Thus abundance and secretion of WSC3-GFP was investigated 

in the mycelium and culture filtrate of five transformants grown in complex by western 

blot using an anti-GFP antibody (Figure 4c). WSC3-GFP is solely present in the protein 

extract of the mycelial samples (upper blot) and was found in highest amounts in the 

transformants T1 and T3. Additionally to the growth in CM medium the transformants 

were also grown in liquid MYP medium, another synthetic, rich medium, which was 

recently shown in our group to increase secretion of other GFP fusion proteins 

(unpublished data). Nevertheless growth in MYP proofed to be less effective for the 

secretion of WSC3-GFP and even led to the cleavage of the fusion protein visible as 

free GFP in the protein extracts of the mycelium of transformant T1 and T3. 
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Figure 4: WSC3 is transcriptionally induced during root colonization and during contact with a 

root pathogen and localizes to the S. indica cell wall. a) Expression of WSC3 was quantified by qRT-

a b 
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PCR during the colonization of H. vulgare (red bars) and A. thaliana (blue bars) roots or during contact 

with the root pathogenic fungus B. sorokiniana (green bars). For plant colonization RNA was extracted 

1, 3, 7 or 14 days post inoculation (dpi) and for fungus-fungus interaction 42 hours post inoculation (hpi), 

reverse transcribed into cDNA and subsequently used for qRT-PCR. The expression of WSC3 was 

calculated using the 2-ΔΔCt method relative to the expression of SiTef and normalized to growth on PNM 

medium for 5 days (for expression in H. vulgare), on ½ MS medium for 7 days (for expression in A. 

thaliana) or to growth in soil without a second fungus (for expression with B. sorokiniana). Error bars 

indicate standard error of the mean calculated from four biological replicates. b) Chitin (A and B) was 

visualized by WGA conjugated with gold particles (visible as black dots) directly and is predominantely 

found in the cell walls (CW, black arrow) of S. indica hyphae but is completely absent in septa (black 

arrowheads) and in the dolipore (asterisk). β-1,3-glucan (C and D) was visualized with a monoclonal 

antibody produced in mouse and an anti-mouse antibody conjugated with gold particles (visible as black 

dots). β-1,3-glucan is also present in the cell walls (CW, black arrow) of S. indica hyphae and additionally 

in septa (black arrowheads) and in the dolipore (asterisk). Scale bar: 200 nm. c) Five S. indica 

transformants (T1 to T5) harboring the fusion protein WSC3-GFP driven by the FGB1 promoter were 

grown in CM medium or MYP medium before proteins were extracted from the mycelium (upper blot) or 

by precipitation from the culture filtrate (lower blot) and finally probed with an anti-GFP antibody and 

detected by a secondary HRP-conjugated anti-mouse antibody. As a control the untransformed wild 

type S. indica strain (WT) was processed in parallel. The band at 70 kDa corresponds to the WSC3-

GFP fusion protein (highlighted in the blot) whereas the band visible at around 30 kDa corresponds to 

free GFP after cleavage of the fusion protein. Before detection the blots were stained in Ponceau S to 

verify equal loading of all samples. For detection of the proteins blot were incubated in standard ECL 

solution and chemiluminescence was detected for 20 min. d) The gold particles conjugated to the chitin-

specific lectin WGA (upper plot, left part) and to the anti β-1,3-glucan antibody (upper plot, right part) 

were quantified from the TEM images taken from the dicaryotic S. indica reference strain (red bar) and 

the WSC3-GFP overexpressing transformant 3 (green bar). The total length of the fungal cell wall was 

measured from the images and used to calculate the number of gold particles per µm of cell wall. 

Whereas the number of gold particles specifically labelling chitin in the cell wall does not significantly 

differ between both strain, the number of gold particles labelling β-1,3-glucan is significantly reduced in 

the WSC3-GFP strain. The calculated β-1,3-glucan-to-chitin ratio (lower plot) was reduced to 50 % in 

the WSC3-GFP strain. Gold particles were count on 50 images each and error bar corresponds to the 

standard deviation calculated thereof. Asterik indicate significant differences (p < 0.05) calculated using 

an unpaired Students t-test. e) The S. indica transformant T1 and T2 were investigated by confocal laser 

scanning microscopy for the subcellular localization of the WSC3-GFP fusion protein. In T1 WSC3-GFP 

(green signal) is found in intracellular vesicles, potentially of the endoplasmatic reticulum or golgi 

apparatus (white arrowheads), which moved along the fungal hyphae towards the hyphal tip and at the 

periphery of the cell. The chitin-specific counterstain WGA-AF594 (red) labels the fungal cell wall and 

partially co-localizes with WSC3-GFP. In T2 where no protein was found in the western blot no signal 

was observed for WSC3-GFP indicating the specificity of the GFP-signal. Several z-stacks captured of 

the hyphae are combined in a maximal projection to cover the whole space of the hyphae. Error bars 

indicate 10 µm. 
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Free GFP (30 kDa) was also detectable in the mycelium samples of T1 and T3 grown 

in CM, which suggests that also in this medium the fusion protein is partially cleaved. 

In the protein extracts of the culture filtrate (lower blot) no WSC3-GFP fusion protein 

was detectable whereas free GFP was present in the filtrates of T1 grown in CM and 

T5 grown in MYP. 

Since overexpression of WSC3-GFP led to the accumulation of the protein within the 

mycelium the impact on the chitin- and β-1,3-glucan-specific immunogold-labelling was 

assessed by TEM. Mycelia of the dicaryotic wildtype strain of S. indica and the WSC3-

GFP expressing transformant T3 were labelled with WGA- and the β-1,3-glucan-

specific antibody both conjugated to gold particles. The number of gold particles was 

count from the TEM images and used to calculate the number of gold particles per µm 

of cell wall. The chitin-specific immunogold labelling with WGA was not altered by the 

overexpression of WSC3-GFP whereas the β-1,3-glucan-specific labelling was 

significantly reduced (Figure 4d). Consequently the β-1,3-glucan-to-chitin ratio is 

reduced to 50 % in the cell walls of the WSC3-GFP strain. This could be indicative of 

the localization of WSC3-GFP to the S. indica cell wall potentially leading to an altered 

exposure or content of β-1,3-glucan. 

Accordingly it was investigated if the fusion protein WSC3-GFP localizes to the cell 

wall of the S. indica transformants. The transformants T1, which showed the highest 

abundance of the uncleaved fusion protein and T2, which did not show any 

accumulation of the fusion protein in the western blot were grown in liquid CM medium 

and visualized by confocal laser scanning microscopy. The hyphae were 

counterstained with WGA conjugated with the fluorescence dye Alexa Fluor 594 

(AF594). Microscopical investigation of transformant T1 showed that WSC3-GFP was 

found in intracellular vesicles potentially of the endoplasmatic reticulum or the golgi 

apparatus (white arrowheads), which are moving along the fungal hyphae towards the 

hyphal tip and at the fungal cell wall (Figure 4e upper panel). In T1 co-localization of 

WSC3-GFP and the cell wall specific stain WGA-AF594 is visible which might indicate 

that WSC3-GFP localizes to the S. indica cell wall. The GFP signal is completely 

absent in T2 which is in line with the findings of the western blot (Figure 4e lower 

panel). Taken together the results of the western blot and microscopical investigation 

suggest that WSC3-GFP is secreted into the extracellular space, where it is partially 

cleaved resulting in the detected free GFP, but to a big proportion is also attached to 

the S. indica cell wall leading to a co-localization with WGA-AF594.  
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2.1.2 Recombinant WSC3-His increases P. pastoris cell wall stress resistance 

 

WSC3 consists of three WSC-domain each of them harboring eight conserved cysteine 

residues potentially involved in the formation of disulfide bonds. According to the 

NetNGlyc 1.0 and NetOGly 4.0 online tool WSC3 is predicted to contain two potential 

N-glycosilation sites and 19 potential O-glycosilation sites. Thus a eukaryotic 

expression system was chosen which favors the formation of the disulfide bonds. The 

yeast P. pastoris is a well-established expression system, which for example was 

successfully used to produce the cysteine-rich LysM-lectin Ecp6 from C. fulvum 

(DeJonge et al., 2010). Furthermore the genome of P. pastoris does not encode WSC-

lectins which opens the possibility to access the effect of overexpression of WSC3. 

The vector construct used for the expression of Ecp6 was provided as a kind gift from 

Bart Thomma (Wageningen University). The coding sequence of Ecp6 was replaced 

by WSC3 and the expression was driven by the methanol-inducible alcohol oxidase 1 

(AOX1) promoter. The produced WSC3 containing an N-terminal 6x His-tag was 

secreted into the culture medium guided by the α-secretion signal of S. cerevisiae. 

Thus WSC3-His was purified from the culture supernatant by its His-Tag.  

The culture supernatant was pre-purified by ion-exchange chromatography using 

TMAE anion-exchange material and SO3- cation-exchange material. For the specific 

purification of WSC3-His the flow through of the ion-exchange columns was subjected 

to a Ni2+-NTA column which has a high affinity to the His-tag. WSC3-His is predicted 

to have a molecular weight of 40 kDa and was detected in the elution fractions 1 and 

2 with a molecular weight of more than 50 kDa (Figure 5a). This difference of the 

molecular weight might be explained by posttranslational modifications like for example 

glycosylation of WSC3-His. Accordingly deglycosilation of the recombinantely 

produced WSC3-His yielded a second protein band on the SDS-PAGE at a size of 40 

kDa potentially corresponding to the unglycosilated protein (Figure 5a right gel). 

Interestingly the SDS-PAGE analysis of the elution fractions revealed the occurrence 

of two bands exhibiting slightly different molecular weights. To rule out that a second 

protein was co-purified both bands were excised from the gel and analyzed by liquid 

chromatography coupled to a mass spectrometer (LC-MS) at the CECAD Proteomics 

facility in cooperation with Dr. Tobias Lamkemeyer. According to the LC-MS analysis 

only WSC3-His was present in both bands with 21 unique peptide matches that 

covered 60 % of the amino acid sequence highlighted as underlined letters (Figure 5b). 
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The LC-MS analysis verified the cleavage of the α-secretion signal, the presence of 

the 6x His-Tag and the presence of all three WSC-domains. Furthermore, no 

secondary protein was detected in a comparably high abundance like WSC3-His, 

which rules out the possibility of an unspecific co-purification of a protein of similar size 

like WSC3-His. Thus the two bands might correspond to different glycosylation 

patterns or the partial cleavage of the 6x His-tag. 

The expression of WSC3 fused to GFP in S. indica revealed that the protein is secreted 

and localizes to the cell wall. Since the P. pastoris cell wall is potentially composed in 

a similar way like the S. indica cell wall the question arose if a portion of WSC3-His is 

residing at the yeast cell wall. Thus a sequential fractionation of the cell wall proteins 

by different enzymatic and non-enzymatic treatments was performed like described for 

Candida albicans (Pitarch et al., 2002). The cells were mechanically disrupted by 

crushing in liquid nitrogen and the material was extensively washed to remove all 

soluble cytoplasmic components. The resulting insoluble cell wall material was treated 

with SDS and DTT to remove all non-covalently linked proteins residing at the cell 

surface. Subsequently the insoluble cell wall material was washed again to remove the 

SDS and DTT prior to the non-enzymatic and enzymatic treatments. The cell wall 

material was either treated with mild alkali conditions (30 mM NaOH) to remove 

proteins that are directly linked to β-1,3-glucan with alkali-labile bonds like O-glycosyl 

side chains (Pitarch et al., 2002). For the enzymatic extraction either a β-1,3-

endoglucanase or a β-1,3-exoglucanase was employed to remove proteins that are 

indirectly linked to β-1,3-glucan but get released by hydrolysis of the β-1,3-glucan 

fibrils. Furthermore a chitinase was used to extract chitin-linked proteins and a 

commercial Trichoderma Lysing Enzyme mix that contains various glucanases and 

chitinases. For all the treatments the solubilized supernatant and the remaining 

insoluble cell wall pellet was analyzed on a SDS-PAGE and finally probed with an anti-

His antibody (Figure 5c). The highest amounts of WSC3-His were detected in culture 

supernatant (marked with an asterisk). A faint band corresponding to WSC3-His was 

detectable in the P. pastoris crude cell extract sample which corresponds to the cell 

material directly taken after the mechanical disruption. The sample corresponding to 

the SDS-extraction step contained a small amount of WSC3-His visible as a faint band. 

The alkali treatment with NaOH did neither solubilize WSC3-His nor made it accessible 

for the antibody in the remaining cell wall material pellet. Thus it might be concluded 

that WSC3-His is not directly linked to β-1,3-glucan with an alkali-labile bond. 
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Figure 5: WSC3 was recombinantely produced in Pichia pastoris and increased cell wall stress 

resistance against Calcofluor White and Congo Red. a) Expression of WSC3 with an N-terminal 6x 

b 

c 

a 

d 
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His-tag was driven by the methanol-inducible AOX1 promoter and the fusion protein was secreted into 

the supernatant due to the presence of the α-secretion signal of S. cerevisiae. WSC3-His was purified 

from the culture supernatant with a Ni2+-NTA column exhibiting specific affinity to the 6x His-tag. WSC3-

His was eluted in 5 fractions whereas the fractions 1 and 2 contained the vast majority of the protein. 

The wash and elution fractions were analyzed on a 10 % Bis-Tris gel and stained with Coomassie 

brilliant blue. The predicted molecular mass of WSC3 is 40 kDa but the recombinantely produced WSC3-

His is running at a height corresponding to 50 kDa. Deglycosilation with a commercial deglycosilation 

mix yielded a second protein band at a size of 40 kDa. b) Since two protein bands of similar size were 

observed on the SDS-Page the purified WSC3-His was analyzed by LC-MS. Both protein bands were 

excised from the gel and were identified according to 21 unique peptides as WSC3-His. The WSC3-His 

amino acid sequence consists of the α-secretion signal of S. cerevisiae (red box) which is cleaved during 

secretion, the N-terminal 6x His-Tag (blue box) and three WSC-domains (green boxes). LC-MS 

identified 21 unique peptide matching the amino acid sequence of WSC3-His, which covered 60 % of 

the protein sequence after cleavage of the secretion signal and are underlined in blue. c) Cells of the 

WSC3-His expressing P. pastoris strain were mechanically disrupted and the water insoluble cell wall 

fraction was treated with a SDS extraction buffer. The remaining insoluble cell wall pellet was again 

washed and subsequently treated with NaOH, a β-1,3-endoglucanase, a commercial Trichoderma 

Lysing Enuyme Mix, a β-1,3-exoglucanase and a chitinase in parallel. The solubilized supernatant (S) 

and the remaining insoluble pellet (P) were loaded onto a SDS-PAGE, separated by size and finally 

probed with an anti-His antibody. The protein band corresponding to WSC3-His runs at a height 

corresponding to a molecular mass of 50 kDa (marked with asterisk). The intense bands corresponds 

to the β-1,3-endoglucanase which also contains a His-Tag and thus is detected by the anti-His antibody. 

Ponceau S staining of the western blot membrane was performed to verify equal loading of the 

supernatant and pellet samples. d) Drop dilution series of 6 successive dilutions of a starting cell 

suspension with an OD600 value of 1 (from left to right) corresponding to three independent WSC3-His 

expressing strains (1-3) and an albumin expressing reference strain. The strains were grown for 2 days 

on BMMY medium (top left), BMMY medium supplemented with 1 mM H2O2 (top right), supplemented 

with 50 mg/ml Calcofluor White (lower left) or supplemented with 100 mg/ml Congo Red (lower right). 

 

Among the enzymatic treatments only the β-1,3-endoglucanase and the β-1,3-

exoglucanase made WSC3-His accessible for the anti-His antibody whereas for both 

treatments the protein remained within the cell wall pellet and was not solubilized. The 

two major bands at a size of 35 kDa correspond to the commercial β-1,3-

endoglucanase which also contains a His-Tag. These results indicate that WSC3-His 

is not only secreted but also incorporated into the cell wall of P. pastoris where it is 

buried within the β-1,3-glucan fibrils and only made accessible for the antibody by 

hydrolysis of the β-1,3-glucan fibrils.  

To test if the incorporation into the cell wall has an effect on cell wall stress resistance 

three independent P. pastoris strains were used in a drop dilution test on media 



 

 

26 

containing 1 mM H2O2, 50 mg/ml Calcofluor White or 100 mg/ml Congo Red. The base 

medium supplemented with these stressors contained 2 % methanol, which induces 

the expression driven by the AOX1 promoter. As control a reference strain was picked 

that produces and secretes Albumin into the growth medium in a methanol-inducible 

manner to ensure that potential differences regarding the cell wall stress resistance do 

not originate from the expression of a heterologous protein in general. Albumin is an 

often-used reference protein that increases solubility of various compounds and is not 

known to be affecting cell wall stress resistance. All four strains were grown to an OD600 

value of 0.6 to 0.8, pelleted by centrifugation and resuspended in an appropriate 

volume of sterile water to an OD600 value of 1. The four independent strains were 

inoculated onto the different media in a drop dilution series starting from the solution 

with the OD600 value of 1 followed by five successive 1:10-dilutions. After two days of 

growth the cell wall stress resistance assay revealed that the WSC3-His expressing 

strains are more resistant to Calcofluor White and Congo Red (Figure 5d). Growth on 

BMMY and BMMY supplemented with 1 mM H2O2 was similar for all tested strains. 

Growth on Calcofluor White was strongly increased in the strains 1 and 2 and to a 

lesser extent also in strain 3. The albumin reference strain did not grow at all on the 

Calcofluor White medium. On Congo Red the WSC3 strains 1 and 2 exhibited the 

highest growth rate. The WSC strain 3 showed again a lower growth rate compared to 

strain 1 and 2 but still grew considerably better than the albumin control where none 

of the dilutions grew under this conditions. Thus it can be concluded that WSC3-His is 

incorporated into the P. pastoris cell wall and the production and secretion of WSC3-

His increases the resistance to the cell wall stressors Calcofluor White and Congo Red. 

 

2.1.3 WSC3-His binds the branched β-1,3/1,6-glucan laminarin but does not 

protect it from hydrolysis 

 

After verification of its purity and integrity WSC3-His was used for isothermal titration 

calorimetry (ITC) to determine its specificity to different oligo- and polysaccharide 

ligands. To focus the biochemical analysis of WSC3-His and to select the most 

probable oligo- and polysaccharide ligands for subsequent ITC a protein pull-down 

experiment with the insoluble polysaccharide fractions of H. vulgare and S. indica cell 

wall was performed. The insoluble, protein-free cell wall preparations were incubated 

with WSC3-His and subsequently analyzed via SDS-PAGE. WSC3-His co-precipitates 
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with the cell wall polysaccharides of S. indica but stayed in the supernatant fraction 

after incubation with the H. vulgare cell wall (Figure 6a). This suggests a specificity of 

WSC3-His for an oligo- or polysaccharide of fungal origin. 

Accordingly the mixed β-1,3/1,6-glucan laminarin, the linear β-1,3-glucan 

laminarihexaose, the β-1,6-linked glucose dimer gentiobiose and chitooctaose were 

included into the survey. Laminarin is an algal derived polysaccharide which is often 

used as a surrogate for branched β-1,3/1,6-glucans exhibiting a degree of 

polymerization of 30 with β-1,6-glycosidic side branches approximately at every tenth 

glucose molecule. Laminarihexaose is a synthetic, linear β-1,3-glucan consisting of six 

glucose units. Gentiobiose was also chemically synthesized and consists of two 

glucose molecules joined by a β-1,6-glycosidic linkage. Furthermore chitooctaose was 

tested which is the octamer of β-1,4-linked N-acetylglucosamine. ITC relies on the 

release or absorption of heat upon binding of a protein to a ligand. The ligand, in this 

case the oligo- and polysaccharides, is stepwise titrated into the protein containing 

sample cell. If binding occurs the temperature of the sample cell is altered and a 

reference cell is heated or cooled in parallel to keep both cells at an equal temperature. 

The resulting peaks correspond to an altered temperature within the sample cell, which 

is compensated in the reference cell what leads to the return of the signal to its starting 

point. The area of all the resulting peaks is integrated, plotted against the molar ratio 

of protein to ligand and fitted to a binding model to calculate the dissociation constant 

Kd as a measure of the affinity, the stoichiometry of the interaction n and the enthalphy 

ΔH of the reaction. The ITC measurements were performed and analyzed by Dr. 

Stephan Wawra who kindly provided the data and agreed on publication in this thesis. 

It was shown that WSC3-His binds to laminarin (black) but not to laminarihexaose 

(blue), gentiobiose (red) and chitooctaose (green; Figure 6b). The data were baseline 

corrected and the results from the control titration of the ligand into water were 

subtracted. Only upon binding of laminarin to WSC3-His heat was released in an 

exothermal reaction, which is visible as downward peaks in the left plot corresponding 

to the raw data of the measurement prior to fitting. For laminarihexaose, gentiobiose 

and chitooctaose not alteration of the temperature was detected which indicates that 

no binding of the protein to the ligand occurred. Since only laminarin was bound 

specifically by WSC3-His this dataset was fitted in single-binding-site-model visualized 

in the right plot. According to the manufacturers information concerning the length of 

the laminarin molecule and the degree of polymerization a molecular mass of 5 kDa 
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was assumed for laminarin and used to calculate the parameters of the reaction. The 

ITC measurement revealed a stoichiometry of the reaction of 1:3 meaning that one 

WSC3-His molecule binds three laminarin molecules which suggests that each of the 

three WSC-domains of WSC3-His is able to bind one laminarin molecule. The fact that 

WSC3-His did not bind to laminarihexaose indicates that the β-1,6-glycosidic side 

branches of laminarin are crucial for the binding which was also shown for FGB1 

(Wawra et al., 2016). Whereas FGB1 was able to bind to the disaccharide gentiobiose, 

WSC3-His showed no affinity indicating either the need of a mixed β-1,3/1,6-glucan for 

binding or purely the need of a bigger ligand. A Kd value of 12.5 µM ± 8.8 µM was 

calculated for the binding of WSC3-His to laminarin  

 

Figure 6: WSC3-His binds to the branched β-1,3/1,6-glucan laminarin but does not protect it from 

hydrolysis. a) A protein pull-down assay was performed to assess the affinity of WSC3-His to insoluble, 

protein-free cell wall preparations of H. vulgare and S. indica. After incubation with 20 µM WSC3-His 

the cell wall preparations were collected by centrifugation and the presence of WSC3-His in the pellet 

fraction (P) and the supernatant (S) were analyzed on a SDS-PAGE by Coomassie Brilliant Blue (CBB) 

staining. WSC3-His co-precipitates with the S. indica cell wall preparation but not with those of H. 

vulgare roots. b) Raw data of the ITC measurements for the titration of 1.5 mM chitooctaose into 16 µM 

WSC3-His (green), 1 mM of laminarihexaose into 20 µM WSC3-His (blue), 1 mM of gentiobiose into 21 

µM of WSC3 (red) and 0.9 mM laminarin into 18.5 µM WSC3-His (black) are depicted in the left plot. 

Downward peaks for the titration of laminarin indicate an exothermal binding to WSC3-His. The data for 

a b 

c 
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the binding of WSC3-His to laminarin was fitted in a single-binding-site-model (right plot) and used to 

calculate following parameters for the reaction assuming a molecular mass of laminarin of 5 kDa: n = 

3.1 ± 0.0967; K = 8 x 104 ± 1.13 x 105 M-1, Kd = 12.5 µM ± 8.8 µM, ΔH = -407.3 ± 18.25 cal/mol. All 

solutions were prepared in water and data were baseline corrected and results of the corresponding 

control titrations of the ligand into water were subtracted. All measurements, analysis of the data and 

calculation of the reaction parameters were performed by Dr. Stephan Wawra who kindly provided the 

figures and agreed on publication in this thesis. c) A commercial barley β-1,3-endoglucanase (0.125 

U/ml) was incubated with laminarin (5 mg/ml; blue), with WSC3 (10 µM; yellow), with laminarin and 

WSC3 (red) or as a control WSC3 with laminarin alone (green). The released glucose was quantified 

with a BCA assay after 5, 20 and 30 min of incubation at 42 °C. Error bars represent standard error of 

the mean of four replicates and significance was calculated with an unpaired Students t-test (p < 0.05). 

 

The fact that WSC3-GFP was found attached to the S. indica cell wall prompted us to 

test if it acts in a similar way than the C. fulvum chitin-binding lectin Avr4, which was 

previously shown to protect chitin from hydrolysis by plant-derived chitinases (van den 

Burg et al., 2006). In order to test this the ability of WSC3-His to prevent hydrolysis of 

laminarin by a barley β-1,3-endoglucanase was assessed in a BCA-assay that 

quantifies the amount of released glucose. Therefore the β-1,3-endoglucanase was 

incubated with laminarin (blue) or with laminarin and WSC3-His (red). As controls the 

β-1,3-endoglucanase was incubated solely with WSC3-His (yellow) or WSC3-His was 

incubated with laminarin alone (green; Figure 6c). After incubation for 30 min 1 mM of 

glucose was released from the 5 mg/ml laminarin by 0.125 U/ml of the β-1,3-

endoglucanase. The enzyme also released a slight amount of glucose from the WSC3-

His protein if both were incubated together without laminarin. This could potentially be 

explained by the partial hydrolysis of the attached glycosilations from the protein. On 

the other hand side the WSC3-His protein alone did not hydrolyze laminarin which was 

tested in parallel to rule out that WSC3-His possesses also a glucanase activity under 

the assay conditions. Interestingly WSC3-His did not or only to a marginal degree 

decrease the amount of the released glucose. Neither after 5 min, nor after 30 min a 

significant difference in the amount of released glucose could be detected between the 

sample with and without WSC3-His. Thus there is no detectable effect of WSC3-His 

which is in contrast to the mode of action described for Avr4 (van den Burg et al., 2006) 

but similar to FGB1 which also specifically binds laminarin but is not protecting it from 

hydrolysis (Wawra et al., 2016).  
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2.1.4 WSC3 is able to agglutinate fungal cells 

 

Since the expression of WSC3 is not only induced during plant colonization but is also 

responsive to the presence of a second fungus it was tested if addition of WSC3-His 

has an effect on the growth of S. indica, B. sorokiniana and U. maydis. As controls the 

6.2 kDa S. indica lectin FGB1 and the antifungal plant lectin wheat germ agglutinin 

conjugated with the fluorescence dye AlexaFluor 594 (WGA-AF594) were included 

(Mirelman et al., 1975; Wawra et al., 2016). The growth phenotype of the fungi was 

assessed microscopically after overnight growth for S. indica and B. sorokiniana and 

after 4 h of growth for U. maydis. Remarkably WSC3-His displayed a strong 

agglutination effect on all tested fungi whereas FGB1 did not and WGA-AF594 only 

partially led to the formation of aggregates (Figure 7a). The germination rate of the 

spores was not considerably decreased according to visual inspection when WSC3-

His was present. The phenotype and growth rate of S. indica and U. maydis was not 

different if the spores were treated with FGB1. Interestingly FGB1 seemed to have a 

negative effect on the germination and growth of B. sorokiniana. The amount of fungal 

filaments was decreased if FGB1 was present and the filaments showed shorter and 

swollen hyphae indicative of stress and cell death. WGA-AF594 is also agglutinating 

S. indica and U. maydis but to a lesser degree than WSC3-His. For B. sorokiniana no 

difference in the growth phenotype was visible between mock and WGA-AF594 

treatment. The minor effect of WGA-AF594 could potentially be explained by the 

fluorescence conjugate, which might interfere with the agglutination properties of 

WGA. Since the filamentous growth of S. indica and B. sorokiniana complicates the 

quantification of the agglutination effect of WSC3-His the agglutination was quantified 

for U. maydis by calculating the percentage of cells being included in such aggregates 

relative to the total number of cells (Figure 7b). WSC3-His led to an increase from 13% 

agglutinated cells observed for the mock treatment to more than 50 % agglutinated 

cells. Addition FGB1 agglutinated 15% of the cells whereas WGA-AF594 agglutinated 

45 % of the cells. The agglutinating effect of WSC3-His on fungal cells raises the 

question if it is additionally involved in the attachment of the spores to the root surface. 

To assess the adhesion of the spores to barley roots the roots were incubated in S. 

indica spore solution either containing water, native FGB1 or WSC3-His. The spores 

were visualized by staining with WGA-AF594 and counted manually on pictures taken 
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by confocal laser scanning microscopy. Addition of WSC3-His had no positive effect 

on the adhesion of S. indica spores to the surface of barley roots (Figure 7c). 

 

Figure7: WSC3-His leads to the formation of multicellular aggregates of S. indica, B. sorokiniana 

and U. maydis. (a) S. indica (1st row), B. sorokiniana (2nd row) and U. maydis (3rd row) were grown in 

the presence of water (1st column), 10 µM native FGB1 (2nd column), 10 µM WSC3-His (3rd column) or 

10 µM WGA-AF594 (4th column) in rich medium. Pictures of S. indica and B. sorokiniana were taken 

after 16 h or growth using a Leica M165 FC stereo microscope and scale bars are indicative of 500 µm. 

U. maydis was grown for 4 h before pictures were taken using a Leica DM2500 light microscope and 

scale bars represent 25 µm. (b) The degree of aggregation was quantified by calculating the percentage 
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of aggregated cells relative to the total number of cells in presence of water (red bar), 10 µM native 

FGB1 (blue bar), 10 µM WSC3-His (green bar) or 10 µM WGA-AF594 (yellow bar). Error bars indicate 

standard error of the mean of at least four biological replicates. No significant difference was observed 

between mock- and FGB1-treatment (a) whereas WSC3-His and WGA-AF594 treatment significantly 

increased aggregates (b) according to an unpaired Students t-test (p < 0.05). c) Adhesion of S. indica 

spores was calculated by counting the number of spores that attached to the roots surface from 

microscopical images acquired by confocal laser scanning microscopy. S. indica spore solution was 

either mixed with water (Mock, red bar), 10μM FGB1 (blue bar) or 10μM WSC3-His (green bar). Error 

bars represent the standard error of the mean of 3 biological replicates. No significant difference 

between the treatments was observed using an unpaired Students t-test (p < 0.05, indicated by the letter 

a) 

 

Both treatments resulted in average in 11,000 spores per cm of the roots. Only the 

addition of FGB1 had a mild but not significant negative effect onto the spore adhesion 

lowering the number by around 20 % to in average 9,000 spores per cm of the root. 

As a conclusion WSC3-His has the ability to agglutinate fungal cells of basidiomycete 

and ascomycete fungi without affecting the adhesion of S. indica spores to barley roots. 

The effect of this agglutination phenotype on spore germination and growth rate seems 

to be of minor relevance. Since β-glucans released from the fungal cell wall are potent 

elicitors of plant defense responses the next step aimed to investigate the ability of 

WSC3 and FGB1 to suppress β-glucan triggered ROS production and if WSC3 is able 

to increase the colonization rate of S. indica  

 

2.1.5 WSC3-His suppresses β-glucan triggered plant defense responses but 

does not increase root colonization 

 

To test the ability of WSC3-His to efficiently compete for the binding of β-glucan with 

the plant receptor an assay was performed monitoring the β-glucan triggered 

accumulation of reactive oxygen species (ROS). The production of ROS is one of the 

earliest plant defense responses which can be quantified in a luminol-based assay (Yu 

et al., 2017). Since the reaction to different β-glucans is less well studied than for 

example chitin and also the defense eliciting activity of different β-glucans greatly 

varies first attempts were made with different potential β-glucan molecules that might 

lead to the production of ROS in H. vulgare and A. thaliana Col-0 leaves. As positive 

control a crude suspension of shrimp shell chitin was used. Furthermore the β-glucans 

laminarin, laminarihexaose and gentiobiose were tested for their ability to elicit the 
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accumulation of ROS in H. vulgare and A. thaliana Col-0, the two best studied 

experimental host plants of S. indica. Laminarin is constantly used as mixed β-glucan 

defense elicitor either in its natural form or as sulfated derivative and was shown to 

trigger accumulation of reactive oxygen species (ROS) in Nicotiana tabacum, Vitis 

vinifera and H. vulgare (Klarzynski et al., 2000; Aziz et al., 2003; Menard et al., 2004; 

Gauthier et al., 2013; Wawra et al., 2016). Secondly laminarihexaose a linear β-1,3-

glucan consisting of six glucose molecules was tested for its ability to trigger ROS 

accumulation. Linear β-1,3-glucans have not been systematically studied as elicitors 

of ROS production but are described to induce various defense responses in Oryza 

sativa and Nicotiana tabacum (Inui et al., 1997; Klarzynski et al., 2000). Thirdly a 

disaccharide consisting of two β-1,6-glycosidic linked glucoses molecules, called 

gentiobiose, was synthesized by the group of Prof. Dr. Jürgen Seibel (Julius Maximilian 

University of Würzburg) and tested for the ability to trigger ROS production. 

Interestingly both laminarin and laminarihexaose showed immune-elicitation activity in 

H. vulgare (Figure 8a) whereas only chitin triggered ROS production in A. thaliana Col-

0 (Figure 8b). 

 

 

Figure 8: Potential fungal MAMPs differentially elicit ROS-production in H. vulgare (a) and A. 

thaliana Col-0 (b). ROS production was quantified in a luminol-based assay by the amount of emitted 

chemiluminescence. Plants were treated with 0.8 mg/ml chitin suspension (red diamond), 3.3 mg/ml 

laminarin (blue square), 20 µM laminarihexaose (green triangle), 20 µM gentiobiose (yellow circle) or 

with water as mock control (black cross). Values are mean of 12 replicates ± standard error of the mean. 

 

Elicitation with the chitin suspension led to a rapid increase of the chemiluminescence 

signal reaching the peak value after 10 min. In contrast to chitin addition of laminarin 

a b 
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led to a rather slow increase of the chemiluminescence reaching the peak nearly 40 

min after addition of the solution. Laminarihexaose yielded the lowest luminescence 

signal which peak is already reached 12 min after addition of the suspension. Addition 

of gentiobiose did not lead to a measurable increase in luminescence. In Arabidopsis 

thaliana Col-0 only the chitin suspension was able to trigger ROS production leading 

to a peak signal 13 min after elicitation. The addition of laminarin, laminarihexaose and 

gentiobiose led to nearly no increase of the signals. 

As a consequence the ability of WSC3-His and FGB1 to suppress β-glucan triggered 

defense responses was tested in H. vulgare with laminarin as elicitor. Immediately 

before the addition of laminarin 10 µM of either WSC3-His or native FGB1 were added 

and the production of ROS was recorded. The laminarin-triggered ROS accumulation 

was almost completely suppressed when 10 µM the native WSC3-His or FGB1 were 

added (Figure 9a). Remarkably neither WSC3-His nor FGB1 trigger the ROS 

production in barley. Thus it can be assumed that the proteins are not recognized as 

effector proteins and thus do not lead to ROS production as part of an effector-triggered 

immunity (ETI) response (Jones & Dangl, 2006). Hence it can be concluded that 

WSC3-His and FGB1 are able to suppress the laminarin-triggered ROS production in 

barley. Since also the flg22- and chitin-induced ROS production is suppressed in S. 

indica colonized plants it was also tested if WSC3-His and FGB1 are able to suppress 

ROS production triggered by chitohexaose and flg22.  

10 µM chitohexaose elicited a rapid increase of luminescence corresponding to the 

production of ROS, with a peak reached after 8 min (Figure 9b). Addition of 10 µM of 

FGB1 again almost completely suppressed the ROS production. Even though WSC3-

His also reduced the luminescence signal after the addition of chitohexaose the barley 

plants still reacted with a rapid ROS accumulation that reached around 30 % of the 

signal intensity recorded for chitohexaose alone. The pattern of the recorded ROS 

production and the velocity of the reaction are similar to that without WSC3-His 

present. Thus WSC3-His is able to partially suppress the ROS-production after 

chitohexaose elicitation whereas FGB1 is again completely damping the reaction. 

Since laminarin and chitohexaose both are oligosaccharides the bacterial peptide flg22 

was also tested to rule out that the immune suppressive effect of WSC3-His and FGB1 

purely rely on unspecific interactions with oligosaccharides. Flg22 is a conserved 22 

amino acid peptide of the bacterial protein flagellin and strongly induces plant defense 

responses and also the production of ROS.  
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Figure 9: Both WSC3-His and FGB1 suppress MAMP-triggered ROS production in barley but only 

FGB1 has a positive effect on barley root colonization by S. indica. ROS production was quantified 

in a luminol-based assay by the amount of emitted chemiluminescence. H. vulgare Golden Promise 

plants were treated with elicitor solution (red diamond), elicitor solution and 10 µM FGB1 (blue square), 

elicitor solution and 10 µM WSC3-His (green triangle), 10 µM FGB1 alone (yellow circle) and 10 µM 

WSC3-His alone (black cross) before the luminescence was recorded. Values are mean of at least 6 

(mostly 12) replicates ± standard error of the mean. As elicitor solution a) 3.3 mg/ml laminarin, b) 10 µM 

a b 
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chitohexaose or c) 20 nM flg22 were used. d) Ca2+-influx was quantified in a transgenic A. thaliana 

reporter line expressing cytoplasmic aequorin which oxidizes coelenterazine upon binding of Ca2+-ions 

which leads to the emission of chemilumindescence. A. thaliana aequorin plants were grown under 

sterile conditions for 5 to 7 days before the Ca2+-influx was induced by addition of 1 µM of flg22 (red 

diamond). Neither simultaneous addition of 10 µM FGB1 (blue square) nor the addition of 10 µM of 

WSC3-His (green triangle) reduced the chemiluminescence signal. WSC3-His alone (black cross) did 

not induced a Ca2+-influx whereas FGB1 alone (yellow circle) induced a slight increase of 

chemiluminescence. Values are mean of at least 6 replicates ± standard error of the mean. e) S. indica 

spore solution was either mixed with water (Mock, red bar), 10μM FGB1 (green bar) or 10μM WSC3-

His (blue). The colonization rate was quantified by qRT-PCR measuring the relative amount of fungal 

gDNA (SiTef) compared to plant gDNA (HvUbi). The colonization rate is normalized to the mock 

treatment which accordingly was set to 1. Quantification for the FGB1 treatment was performed by Dr. 

Stephan Wawra and data were taken from Wawra et al., 2016. Error bars represent the standard error 

of the mean of at least 4 biological replicates. No significant difference between the mock and WSC3-

His treatment was observed (a) whereas FGB1 significantly increased the colonization rate (b) according 

to an unpaired Students t-test (p < 0.05)  

 

20 nM of the synthetic peptide flg22 are sufficient to trigger the ROS production in 

barley. The ROS production was again almost completely suppressed when 10 µM of 

FGB1 were added whereas the same concentration of WSC3-His did not affect the 

flg22-triggered ROS production (Figure 9c). Thus the effect of WSC3-His to suppress 

the ROS production in barley is restricted to laminarin and chitohexaose whereas 

FGB1 suppresses the ROS production for all three tested MAMPs including the 

bacterial peptide flg22. 

The production of ROS is one of the earliest MAMP-triggered plant defense responses 

but acts downstream of the influx of Ca2+-ions from the apoplast or internal storages 

into the cytoplasm (Yu et al., 2017). The Ca2+-influx can be quantified as 

chemiluminescence using a transgenic A. thaliana line that expresses cytoplasmic 

aequorin. Upon binding of Ca2+-ions aequorin oxidizes its substrate coelenterazine 

which is externally supplied in the reaction buffer leading to the emission of 

luminescence. The ability of WSC3-His and FGB1 to prevent MAMP-triggered Ca2+-

influx was exemplarily tested for flg22 in the A. thaliana aequorin reporter line. 

Interestingly neither 10 µM of WSC3-His nor 10 µM of FGB1 were able to suppress 

the flg22-triggered influx from Ca2+-ions into the cytoplasm which occurred immediately 

after addition of 1 µM of flg22 (Figure 9d). WSC3-His alone did not lead to an increase 

of the luminescence signal whereas addition of FGB1 slightly induced Ca2+-influx. 

Consequently the addition of FGB1 and flg22 induced the highest luminescence signal 
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which equals the added signals of both molecules. This could either be due to the 

recognition of FGB1 as an effector protein triggering Ca2+-influx as an ETI response or 

due to the presence of Ca2+-ions in the FGB1 protein solution. For WSC3-His the 

results of the flg22-triggered Ca2+-influx are in line with the findings from the 

quantification of ROS after flg22 elicitation. Interestingly the flg22-induced Ca2+-influx 

is not suppressed by FGB1 whereas flg22-induced ROS production is effectively 

suppressed which might suggest a direct effect of FGB1 on the production of ROS. 

To test if the immune-suppressive properties of WSC3-His and FGB1 have a positive 

effect on root colonization of S. indica it was tested if addition of either of the two 

proteins increases the colonization rate in barley roots. Barley plants were inoculated 

with S. indica spores either supplemented with 10 µM FGB1 or WSC3-His and grown 

for 4 days under sterile conditions. Subsequently gDNA was extracted and the 

colonization rate was measured by quantification of the relative amount of fungal DNA 

by qRT-PCR. The effect of FGB1 onto the colonization rate was assessed before by 

Dr. Stephan Wawra and revealed a four-fold increased colonization rate in presence 

of FGB1 compared to the mock treatment (Wawra et al., 2016). For simplicity reasons 

this data is also depicted in figure 9e which shows that addition of the same amount of 

WSC3-His has no effect on the colonization rate of S. indica (Figure 9e). Thus it can 

be concluded that the immune-suppressive properties of FGB1 positively affect the 

colonization of barley roots by S. indica whereas the in vitro suppression of the 

laminarin- and chitohexaose triggered ROS production of WSC3-His have no direct 

effect on the colonization rate. 
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2.2 Identification of laminarin-responsive defense components by genome wide 

association screen 

 

2.2.1 Natural variation among A. thaliana accessions regarding their ability to 

recognize chitin and laminarin as MAMPs 

 

The initial survey of different potential glucan elicitors revealed that A. thaliana Col-0 

plants did not react to the branched β-1,3/1,6-glucan laminarin with the production of 

ROS. This was somewhat surprising since it was described before that laminarin or 

laminarin sulfate trigger the induction of PR-1 and PDF1.2 in A. thaliana Col-0 (Menard 

et al., 2004). On the other hand side natural variation among A. thaliana accessions in 

terms of MAMP recognition was described before for flg22 (Vetter et al., 2012). 

Therefore the responsiveness to laminarin was tested for 100 A. thaliana accessions 

in order to conduct a genome wide association (GWA) screen which could help to 

connect the potential phenotypic variation to their genetic basis. GWA screens were 

initially designed to uncover the genetic basis of human diseases but in recent years 

have gained raising interest in plant sciences. The study of natural variation within the 

A. thaliana population got kick-started with the release of the complete A. thaliana 

genome sequence in 2000 and got further accelerated by the initial description of the 

pattern of polymorphisms in 2005 and the development of the genotyping array 

containing 250,000 SNPs in 2007 (Kaul et al., 2000; Nordborg et al., 2005; Kim et al., 

2007). This 250K SNP chip set the foundation for a collection containing more than 

1,300 genotypes of globally distributed A. thaliana accessions which due to their 

publically availability build the basis to conduct genome wide association (GWA) 

screens in A. thaliana (Horton et al., 2012). GWA screens correlate the position of 

SNPs to a certain phenotype to enable the identification of genetic loci causal for the 

phenotype. GWA screens proofed their power identifying known flowering time and 

pathogen resistance genes (Aranzana et al., 2005; Atwell et al., 2010). To date GWA 

screens have been successfully applied to identify genes involved in salt tolerance, 

regulation of flowering time, regulation of glucosinolate levels, shade avoidance, heavy 

metal tolerance and the response to growth-promoting rhizobacteria (Baxter et al., 

2010; Li et al., 2010; Chan et al., 2011; Filiault & Maloof, 2012; Chao et al., 2012; 

Wintermans et al., 2016). 
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Figure 10: Natural variation in the responsiveness to the fungal-derived MAMPs chitin and 

laminarin among A. thaliana accessions. a) The responsiveness to chitin and laminarin was 
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quantified in a luminol-based assay measuring the production of ROS. The highest measured 

luminescence signal for each individual accession was normalized to the reaction of the accession Col-

0 which was always measured in parallel as control and respectively set to 1. The reaction to chitin (blue 

bars) was measured for 85 accessions in total and to laminarin (red bars) for 100 accessions. The tested 

accessions are depicted in the order of their responsiveness to laminarin. b) The accessions are sorted 

by the strength of their luminescence signal after chitin treatment starting from the weakest-reacting 

accession to the strongest-reacting accession (left to right). Col-0 is marked by a black error and Bor-1 

is highlighted as outlier. c) The accessions are sorted by the strength of their luminescence signal after 

laminarin treatment starting from the weakest-reacting accession to the strongest-reacting accession 

(left to right). Col-0 is marked by a black error and Jea-0, CLE.6, Bor-1, Ge-0 and Bla-1 are highlighted 

as outlier showing an extreme phenotype after laminarin treatment. 

 

100 natural A. thaliana accessions including a nested core collection, which represents 

95 % of the genetic diversity of all sequenced A. thaliana accessions were tested 

(McKhann et al., 2004). The seeds were provided by Prof. Dr. Adam Schikora (JKI 

Braunschweig) and Prof. Dr. Stanislav Kopriva (University of Cologne). The complete 

list of all tested accessions as well as their origin can be found in section 4.3.2 (Table 

2). To ensure that a accession which does not or only weakly react to laminarin-

elicitation is not showing any ROS production due to a general defect in immunity but 

due to a specific impairment in laminarin perception we included chitin as a positive 

control. The plants were stratified for three days at 4°C before they were grown under 

short day conditions for three to four weeks and harvested before bolting. The ROS 

production was triggered by the addition of 3.3 mg/ml laminarin and 0.8 mg/ml of a 

chitin suspension. To compare all measurements the peak luminescence signal 

obtained for each individual accession was normalized to the peak luminescence 

signal of Col-0. This method of normalization was possible since the speed and the 

timing of the reaction was equal for the individual accessions. 

In this way the responsiveness to chitin was quantified for 85 accessions (blue bars) 

and to laminarin for 100 accessions (red bars; Figure 10a). Among the accessions 

treated with chitin Bor-1 showed the highest luminescence peak being 4.78-times 

higher than the luminescence peak measured for Col-0. The accession Bg.2 exhibited 

the lowest luminescence peak after chitin treatment with 0.12-times the signal recorded 

for Col-0. The difference between weakest and strongest reaction to laminarin was 

interestingly much higher ranging from 0.21-times recorded for Fja1.5 to 19.34-times 

for Bla-1. Especially the number of accessions with extremely strong reactions to 

laminarin-treatment was much higher than for the chitin-treatment. This fact gets even 
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more obvious if the tested accessions are sorted by their signal strength (Figure 10b 

and c). For the chitin-treatment (Figure 10b) there was only one accession (Bor-1) 

which showed an extreme reaction which was remarkably higher than the other 

accessions. For the laminarin-treatment the number of “extreme” accessions, which 

are remarkably more reactive was much higher (Figure 10c). In total there were five 

accessions (Jea-0, CLE.6, Bor-1, Ge-0 and Bla-1) which showed at least a 10-fold 

stronger luminescence signal, and for Bla-1 a nearly 20-fold stronger signal than 

recorded for Col-0. 

At this stage it could be already concluded that the natural variation is higher regarding 

their responsiveness to laminarin than to chitin among A. thaliana accessions. 

Furthermore there is potentially not only one loci which is determining if a accessions 

is reacting to laminarin or not otherwise the difference between the different accessions 

would not be steadily increasing but one would expect two groups of accessions 

without intermediate states. Thus there might be several genetic loci that are 

quantitatively contributing to the elevated responsiveness of the more reactive 

accessions.  

 

2.2.2 GWA screen to identify and classify genetic loci involved in chitin- and 

laminarin-responsive ROS product 

 

Both datasets were subsequently used for a GWA screen using the GWAPP online 

resource (Seren et al., 2012). The chitin dataset was square root transformed and the 

laminarin dataset was box-cox transformed to ensure a normal distribution of the 

measured values. Furthermore the box-cox transformation of the laminarin dataset 

limited the influence of the highly reactive accessions because it minimized the 

difference between those five accessions and all the others. Afterwards both datasets 

were analyzed for marker–trait associations with an accelerated mixed model 

algorithm (amm) like described in Seren et al. 2012. The results are displayed in a 

Manhattan plot highlighting the position of the top 10,000 SNPs per chromosome, their 

location in the A. thaliana genome and the corresponding −log(p-value) specifying the 

significance of the association. The marker–trait associations for the chitin-treated 

plants revealed that none of the displayed SNPs is reaching the Bonferroni-Hochberg 

corrected false discovery rate (FDR) of 5 % depicted as purple dashed line (Figure 11a 

and b). 
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Figure 11: GWA screen for MAMP-triggered ROS production in A. thaliana accessions and GO 

term enrichment analysis for the identified gene sets. Manhattan plots for −log(p-value) SNP 

marker-trait associations are shown for chitin (a) and laminarin (b) treatment. Dashed purple line depict 

the nominal −log(p-value) of 6.5 which equals a FDR of 5 % after Bonferroni-Hochberg correction 

whereas the dotted black line highlights −log(p-value) of 4 which was used as threshold for the selection 

of genetic loci. The different shades of blue mark the five chromosomes of the A. thaliana genome from 

chromosome 1 (Chr 1) to chromosome 5 (Chr 5). SNPs with a minor allele count (MAC) of 5 are depicted 

as dots. The datasets were analyzed using the accelerated mixed model (amm). c) A list of 204 genes 

was retrieved from a GWA screen of 82 A. thaliana accessions tested for their responsiveness to chitin. 

The dataset was subjected to a single enrichment analysis (SEA) using the agriGO online database. 

Two GO terms corresponding to chitinase and hydrolytic activity were significantly enriched in the chitin 

dataset (red bars) compared to the A. thaliana genome used as reference (blue bars). Asteriks indicate 
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significant differences (p < 0.05) calculated using the Fisher significance test with a Yekutieli multi-test 

adjustment method. d) A list of 277 genes was retrieved from a GWA screen of 97 A. thaliana accessions 

tested for their responsiveness to laminarin-treatment and was subjected to a single enrichment analysis 

(SEA) using the agriGO online database. The two GO terms N-acyltransferase and N-acetyltransferase 

activity were significantly enriched in the laminarin dataset (red bars) compared to the A. thaliana 

genome used as reference (blue bars). Asteriks indicate significant differences (p < 0.05) calculated 

using the Fisher significance test with a Yekutieli multi-test adjustment method.  

 

If moderate marker–trait associations with a −log(p-value) of 4 are taken into account 

(dashed black line) 22 SNPs were found. The highest overall marker-trait association 

was found on chromosome three with a −log(p-value) of 5.85. There are several 

genetic hot spots with multiple SNPs present which supports the assumption that the 

genetic loci in this regions represent true marker-trait associations. 

For the laminarin-treated plants there were also no marker-trait associations reaching 

a Bonferroni-Hochberg corrected FDR of 5 % (Figure 11b). 26 SNPs were found 

showing moderate marker-trait associations with the highest −log(p-value) of 5.22 on 

chromosome one. Also for the laminarin-dataset there were genetic hotspots with 

several SNPs located in close proximity to each other. The initial statement that the 

responsiveness to both MAMPs is rather a multi-genetic than a mono-genetic trait is 

supported since several SNPs with moderate marker-trait associations were identified 

by the GWA screen.  

To use the GWA screen for the identification of genetic loci potentially involved in 

perception or processing of MAMP signals a −log(p-value) of 4 was defined as 

threshold for relevant marker-trait associations which is in accordance to previous 

studies and accounts for the fact that there are no a-priori candidate genes which could 

have been be used to estimate the power of the GWA screen (Atwell et al., 2010; 

Wintermans et al., 2016). Furthermore the perception of laminarin as a MAMP is 

potentially not only mediated by a single trait but rather an interplay of several factors. 

Another critical factor evaluating the outcome of a GWA screen is defining the area 

surrounding relevant SNPs to retrieve potentially affected genes from. An area of 20 

kb up- and downstream of each relevant SNP was analyzed which is in accordance 

with previous GWA screens and accounts for the linkage disequilibrium described for 

the A. thaliana population (Kaul et al., 2000; Atwell et al., 2010; Filiault & Maloof, 2012). 

The genes located within 20 kb up- and downstream of the 22 SNPs obtained from the 

GWA screen after chitin-treatment were selected and analyzed for the enrichment of 

gene ontology (GO) terms. A list of in total 204 genes was used for a single enrichment 
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analysis (SEA) identifying significantly (p = 0.05) enriched GO terms in the dataset 

using the agriGO online resource (Tian et al., 2017). In total two of the 190 identified 

GO terms were found to be significantly enriched in the dataset compared to the whole 

A. thaliana genome (Figure 11c). The two significantly enriched GO terms were 

chitinase activity (2.6 % in the chitin dataset vs. 0.06 % in the A. thaliana genome) and 

hydrolytic activity (16.8 % in the chitin dataset vs. 9.2 % in the A. thaliana genome). 

This means that the genes potentially affected by the SNPs with the highest marker-

trait association score identified by the GWA screen are more often involved in those 

molecular activities than the genes in the A. thaliana genome in general. In other words 

the phenotypic difference between the 82 tested accessions in terms of the ROS 

production triggered by chitin is mostly explained by the ability of the plants to 

hydrolyze chitin or compounds with glycosyl-linkages in general. 

From the GWA screen dataset for the laminarin-triggered ROS production in 97 A. 

thaliana accessions 26 SNPs with a marker-trait association score higher than a 

−log(p-value) of 4 were identified. From an area of 20 kb up- and downstream of these 

SNPs all genes were manually retrieved yielding a list of in total 277 genes. This 

dataset was again used for a single enrichment analysis (SEA) identifying significantly 

(p = 0.05) enriched GO terms in the dataset. In total two of the 265 identified GO terms 

were found to be enriched in the dataset compared to the whole A. thaliana genome 

(Figure 11d). The two enriched GO terms were N-acyltransferase activity (3.8 % in the 

laminarin dataset vs. 0.6 % in the A. thaliana genome) and N-acetyltransferase activity 

(1.9 % in the laminarin dataset vs. 0.17 % in the A. thaliana genome). Gene products 

classified as those types of transferases are generally involved in the transfer of acyl- 

and especially of acetyl-groups from specialized donor molecules predominantely onto 

proteins and polysaccharides. The contribution of those transferases to β-glucan 

triggered defense responses is not known so far but a general involvement in various 

defense-related processes was described before (DeFraia et al., 2010; DeFraia et al., 

2013). 

 

2.2.3 Identification of genes involved in laminarin-triggered ROS production 

 

The scope of the GWA screen was the identification of candidate genes, which are 

potentially involved in the perception of laminarin or the defense reactions induced by 

it. For the identification of such genetic loci the complete gene list containing 277 genes 
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which were retrived from an area of 20 kb up- and downstream of the SNPs with a 

marker-trait association score higher than a −log(p-value) of 4, were manually 

searched for those potentially involved in defense reactions according to the gene 

annotation in the TAIR9 database (www.arabidopsis.org). The first identified gene is 

located in proximity to a SNPs located on chromosome 1 which exhibits a −log(p-value) 

SNP marker-trait association score of 5.22 which is the highest score in this GWA 

screen (Table 1). The SNP is located 0.3 kb upstream of the transcription start of the 

gene LRK10 (AT1G18390) encoding a Leaf rust 10 disease-resistance locus receptor- 

like protein kinase-like 1.1. The encoded receptor is predicted to be localized in the cell 

membrane and is annotated to harbor an intracellular serine/threonine kinase domain 

potentially involved in signal transduction of ABA-mediated signals and drought 

resistance (Lim et al., 2015). The second gene was found in close vicinity to a SNP 

located on chromosome 2 which has a −log(p-value) marker-trait association of 5.18. 

The SNP is located 1.1 kb upstream of the gene NATA1 (AT2G39030) encoding the 

protein N-acetyl-transferase activity 1. NATA1 is annotated as ornithine N-delta-

acetyltransferase involved in the formation of the defense compound N-delta-

acetylornithine (Adio et al., 2011). Additionally on chromosome 5 a SNP with a −log(p-

value) marker-trait association of 4.39 was identified in the GWA screen that is located 

in an intron of the gene PROPEP4 (AT5G09980) that encodes the precursor of the 

elicitor peptide PROPEP4. PROPEP4 is cleaved to release the danger peptide PEP4, 

which belongs to a group of peptides that are activating pattern-triggered immune 

responses upon cleavage (Bartels et al., 2013). These three genes were selected from 

the complete gene list generated by the GWA screen with 97 accessions that have 

been investigated for their ability to recognize laminarin as a MAMP and to react to this 

stimulus with the production of ROS. Based on the gene annotation and ontology these 

genes might be involved in the perception of laminarin as a MAMP (LRK10), in the 

activation of pattern-triggered immunity (PROPEP4) or in fighting a potential invader 

(NATA1). Nevertheless none of the three genes is directly influenced by the SNP since 

none of the SNPs is causing a non-synonymous mutation within the coding sequence. 

Hence also all non-synonymous SNPs with a −log(p-value) marker-trait association of 

more than 3 were manually searched for those SNPs that are located within genes 

potentially involved in defense reactions according to the gene annotation in the TAIR9 

database. 
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Table 1: Candidate genes identified from the GWA screen of 97 accessions tested for their 

laminarin-triggered ROS production. 

Candidate 

gene (AGI) 

Gene annotation Gene ontology −log(p) SNP-

position 

AT1G18390 Leaf rust 10 

receptor- like protein 

kinase (LRK10) 

Receptor-like protein, 

potentially involved in 

stress resistance  

5.22 0.3 kb 

upstream 

AT2G39030 N-acetyltransferase 

activity 1 (NATA1) 

 

Involved in formation of 

defense compound N-

delta-acetylornithine 

5.18 1.1 kb 

upstream 

AT5G09980 Elicitor peptide 4 

precursor 

(PROPEP4) 

Precursor of the 

immunity activating 

danger peptide PEP4 

4.39 intron 

AT3G23650 Kinase-like protein Related to protein 

kinase 

3.51 Coding 

sequence 

(non-syn.) 

AT3G44400 TIR-NBS-LRR 

protein 

Disease resistance 

protein with receptor 

activity 

3.09 Coding 

sequence 

(non-syn.) 

AT4G02690 Bax inhibitor-1 family 

protein (LFG3) 

Suppressor of cell 

death potentially 

involved in disease 

resistance 

3.58 Coding 

sequence 

(non-syn.) 

AT5G17970 TIR-NBS-LRR 

protein 

Disease resistance 

protein with receptor 

activity 

3.04 Coding 

sequence 

(non-syn.) 

 

As additional criteria only genes were selected were the mutated allele variant is found 

in the highly reactive accessions Jea-0, Bor-1, Ge-0 and Bla-1 and not in the non-

responsive accessions and Col-0. This approach identified four more genes containing 

a Kinase-like protein (AT3G23650), two TIR-NBS-LRR receptors (AT3G44400 and 

AT5G17970) and a Bax inhibitor-1 protein (AT4G02690). All the identified proteins 

bear the potential to be directly involved in plant defense responses either by 

perception of microbial signals like the TIR-NBS-LRRs, by transduction of a perceived 



 

 

47 

signal like the Kinase-like protein or by inhibition of the Bax-induced cell death like the 

Bax inhibitor-1.  

Taken together the data from the GWA screen suggest that there is great natural 

variation within the A. thaliana population regarding the laminarin-triggered ROS 

production. The relatively small dataset of 97 accessions already identified several 

SNPs with moderate and high marker-trait associations and led to the identification of 

seven genes that have the potential to be involved in laminarin-triggered defense 

responses. As a conclusion from the GWA screen the ability to recognize and to react 

to laminarin elicitation is not a mono-genetic trait in A. thaliana that is detectable as a 

qualitative difference between reactive and non-reactive accession but rather a multi-

genetic trait that is characterized by quantitative differences between the accessions. 

The selected genes are subjected to further analysis for functional characterization to 

assess their influence on the laminarin-triggered ROS production in A. thaliana.  
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3. Discussion 

 

β-glucans are the main building block of the fungal cell walls analyzed to date and 

crucial for its function with known elicitor-activity on plant defense responses. The aim 

of this study was to obtain first hints on the molecular components of the root 

endophytic fungus S. indica involved in maintenance of β-glucan integrity and 

suppression of β-glucan induced immunity as well as the search for putative plant 

modules crucial for β-glucan signal perception and defense. Therefore the selected 

lectin WSC3, a member of the expanded protein family of WSC domain-containing 

proteins was functionally characterized regarding its participation in β-glucan biology.  

WSC3 was shown to be transcriptionally induced during plant colonization and during 

contact with a soil-borne root pathogen and resides at the S. indica cell wall where it 

affects cell wall structure (Figure 4). Expression of WSC3 in the yeast P. pastoris led 

to the incorporation of the protein into the β-glucan compound of the cell wall and 

drastically increased cell wall stress resistance (Figure 5). The recombinant protein 

WSC3-His was shown to bind the branched β-1,3/1,6-glucan laminarin but was not 

able to protect it from enzymatic hydrolysis (Figure 6). The exogenous addition of 

WSC3 to different fungi led to the formation of cellular aggregates but had no effect on 

adhesion of the S. indica spores to plant roots (Figure 7). The laminarin-triggered 

production of ROS was suppressed by WSC3 and FGB1, whereas FGB1 additionally 

suppressed the chitin- and flg22-induced ROS production leading to an enhanced 

colonization of S. indica which was not the case for WSC3 (Figure 9).  

For the identification of plant genes involved in β-glucan induced defense 100 A. 

thaliana accessions were tested for their ability to recognize laminarin as a MAMP 

which revealed remarkable natural variation of this trait (Figure 10). The performed 

GWA screen identified several genetic loci which might be involved in β-glucan induced 

defense and led to the selection of candidate genes (Figure 11 and table 1).  

 

3.1 WSC3 is an integral cell wall component increasing cell wall stability 

 

The results of the western blot and the cytological analysis suggest that WSC3-GFP is 

secreted, but resides at the fungal cell wall and is not released into the extracellular 

space. The fact that free GFP was detectable in the culture filtrate for some of the 

generated transformants may be the result of proteolytic cleavage of the fusion protein, 
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a phenomenon that has been observed for other secreted fusion proteins of S. indica 

like FGB1-GFP (Wawra et al., 2016). In contrast to FGB1-GFP were also the full length 

fusion protein was present in the extracellular space, WSC3-GFP could not be 

detected in the culture filtrate according to the western blot analysis. This most 

probably means that the GFP is cleaved from the cell wall bound WSC3-GFP and thus 

diffuses into the extracelluar space. The results of the western blot are in line with the 

microscopical investigation of the WSC3-GFP expressing transformants. The 

occurrence of GFP-signals within intracellular vesicles moving towards the hyphal tip 

might be seen as an additional hint that WSC3-GFP is secreted into the extracellular 

space since this is in line with the mechanism of conventional protein secretion 

predominantly occurring via golgi vesicles at the hyphal tip (Peberdy, 1994; Casadevall 

et al., 2009; Rodrigues et al., 2011). The idea that WSC3-GFP is secreted by the 

conventional secretion pathway via the golgi apparatus is furthermore not only 

supported by the occurrence of the fusion protein in such vesicles but also by the 

presence of a proline residue at the +2 position after the predicted signal peptide 

cleavage site. This amino acid motif was recently described as ER export signal and 

is enriched in secreted proteins of S. indica (Tsukumo et al., 2009; Zuccaro et al., 2011; 

Lahrmann & Zuccaro, 2012). The secreted fusion protein most probably localizes to 

the S. indica cell wall considering the overlap of the GFP signal with the signal of the 

chitin-specific fluorescence counter stain WGA-AF594 and the proofed affinity for 

branched β-1,3/1,6-glucans. The presence of WSC3-GFP at the cell wall of 

transformant T3 significantly decreased the labelling of cell wall β-1,3-glucans whereas 

the labelling of chitin was not altered compared to the wildtype strain. This could be a 

hint for a similar mechanism like described for FGB1 where deregulation leads to an 

alteration of the cell wall composition (Wawra et al., 2016). Another explanation could 

be that WSC3-GFP binds the exposed β-1,3-glucan moieties in the cell wall and in that 

way prevents detection by the β-1,3-glucan-specific antibody. Hence the cell wall 

composition would not altered but the exposure of β-1,3-glucans would be blocked 

which would be in line with the affinity of WSC3 for branched β-1,3/1,6-glucans. To 

gain a deeper insight into the effects of WSC3 on the cell wall composition of S. indica 

a cell wall linkage analysis like performed for the FGB1-GFP expressing strain might 

be also performed for the WSC3-GFP strain. Furthermore the expression of WSC3-

GFP driven from the native WSC3 promoter might be also tested in the future. This 

would ensure the right timing of the expression and would allow the investigation of the 
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localization of WSC3 during plant colonization of S. indica. First attempts to use the 

native promoter of WSC3 did not yield detectable amounts of WSC3-GFP. Considering 

the high portion of the fusion protein where the GFP is cleaved the use of another 

protein tag might be encountered. For example a rather short His-tag which could be 

detected by a specific antibody and visualized by TEM could prevent cleavage of the 

tag to ensure detection of the fusion protein even if produced in only low amounts.  

The fact that the genome of S. indica encodes multiple WSC-proteins with similar 

domain architecture and expression suggest a high degree of redundancy which might 

complicate the investigation of overexpression and knock-out effects in S. indica. 

Therefore P. pastoris was used as model since it i) might also possess a cell wall 

consisting of β-glucans, ii) as eukaryotic expression system is able to form disulfide 

bonds and add glycosylation which might both be highly relevant for the folding and 

function of WSC3 and iii) is devoid of WSC-lectins except of the WSC1-4 homolgs 

known from S. cerevisiae. The recombinant WSC3-His protein produced in P. pastoris 

has a molecular weight of approximately 55 kDa according to the SDS-PAGE and is 

secreted. The predicted molecular weight of the full length WSC3-His protein based 

on its amino acid sequence is approximately 40 kDa after cleavage of the α-secretion 

signal. The deglycosilation of the recombinant protein with a commercial 

deglycosilation mix revealed that the unglycosilated protein exhibits the expected 

molecular weight of 40 kDa which suggests that the difference of the molecular weight 

at least partially originates from glycosylations. After deglycosilation of the recombinant 

WSC3-His a portion of the protein still exhibit a molecular weight of 55 kDa. This could 

argue for an incomplete removal of the glycosylation or the presence of an additional 

post-translational modification other than the glycosylation. Nevertheless it can be 

assumed that glycosylation sites within the S. indica protein are recognized by the P. 

pastoris glycosylation machinery. It is still elusive if the glycosylation pattern of the 

recombinant protein is identical to the native one especially regarding the known 

process of hyperglycosilation in yeast cells (Hamilton & Gerngross, 2007). The fact 

that the enzymatic protein extraction from the P. pastoris cell wall preparation revealed 

the accumulation of the recombinantely produced protein at the cell wall highlights that 

this potential difference in the glycosylation pattern does not influence the protein 

localization. The additional presence of WSC3-His in the culture filtrate of P. pastoris 

might be the result of the higher amount of expressed protein compared to the 

expression of WSC3-GFP in S. indica. This potentially could result in the release of the 
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secreted protein into the medium after all available binding sites for WSC3 within the 

cell wall are saturated with the protein. In the samples of the cell wall preparations 

treated with the β-1,3-Endo-or Exoglucanase an accumulation of WSC3-His was 

detectable on the western blot. WSC3-His even after the glucanase treatment 

predominately remained in the pellet fraction and was not solubilized to the 

supernatant of the enzymatically treated cell wall preparations. This might suggest that 

WSC3-His is not covalently linked to the β-glucans but most probably deeply buried 

within the β-glucan fibrils. The enzymatic treatment would hence simply loosen the β-

glucan structure and make WSC3-His accessible for the antibody. This would be in 

agreement to earlier studies describing proteins found within the fungal cell wall which 

are liberated by glucanases but are not covalently linked to the β-glucan moieties 

(Bernard et al., 2002; Latgé, 2007). Additionally those proteins described to be 

covalently linked to the cell wall mostly possess a GPI anchor which is crucial for the 

connection to the β-1,3/1,6-glucans but not present in WSC3 (Kapteyn et al., 1996; 

Kollár et al., 1997; Fuji et al., 1999; Yin et al., 2005). A similar enzymatic cell wall 

protein extraction was attempted from the S. indica WSC3-GFP strain with subsequent 

detection with an anti-GFP antibody. Unfortunately the amount of detectable fusion 

protein was low and due to the cleavage of the GFP, only free GFP was detectable in 

the culture filtrate. 

The WSC3-His expressing P. pastoris strains 1 to 3 showed a tremendously increased 

resistance to Calcofluor White and also Congo Red compared to the albumin-

expressing reference strain. Calcofluor White and also Congo Red are commonly 

associated with the synthesis and interconnection of cell wall chitin and β-1,3-glucan 

(Ram et al., 2006; Kopecka & Gabriel, 1992). These results suggest that WSC3 

strengthens the fungal cell wall against external stresses probably acting as a 

proteinaceous glue reinforcing the cell wall. Most of the proteins found within the cell 

wall which were hypothesized to be involved in cell wall reinforcement and stability 

were shown to be mannosylated via O-linked glycosylation which indeed might also be 

the case for WSC3 containing 19 predicted O-glycosilation sites. Thus WSC3 or even 

WSC proteins in general could represent a novel class of integral cell wall proteins that 

act as stabilizers of the β-1,3-glucan compound. Such cell wall reinforcing proteins are 

known from S. cerevisiae were they for example were found as part of the so called 

flexible building block of the cell wall consisting of β-1,3-glucan, β-1,6-glucan and chitin 
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establishing the core structure of the cell wall polysaccharides (Kollár et al., 1997; Yin 

et al., 2005).  

Taking the localization data of WSC3-GFP, the altered β-1,3-glucan-to-chitin ratio in 

S. indica and the increased cell wall stress resistance in P. pastoris by integration of 

WSC3-His into cell wall into account, it is tempting to speculate that WSC3 is involved 

in increasing the cell wall stability by reinforcing the β-glucan structure during such 

demanding conditions like the colonization of plant roots or the direct contact with a 

second fungus. Under such conditions were cell wall stability is crucial but highly 

challenged by the extreme conditions for example the presence of hydrolytic enzymes 

like chitinases and glucanases an integral proteinaceous glue reinforcing the cell wall 

would be valuable. Thus the expanded WSC protein family of S. indica might be an 

adaption to various external stresses which demand an additional reinforcement of the 

cell wall. 

 

3.2 WSC3 specifically binds the branched β-1,3/1,6-glucans laminarin 

 

WSC3-His exhibits a preference for oligo- and polysaccharides originating from the 

fungal cell wall which is in line with the proposed function of the WSC domain as cell 

wall anchor in yeast or as part of an antifungal β-1,3-glucanase (Cohen-Kupiec et al., 

1999; Lodder et al., 1999). Interestingly WSC3-His showed no affinity to 

laminarihexaose a hexamer of glucose units joined by β-1,3-glycosidic linkages which 

could have been expected from the afore mentioned reports proposing a binding 

specificity of the WSC domain to β-1,3-glucans. Instead only a binding to the branched 

β-1,3/1,6-glucan laminarin consisting of more than 30 glucose molecules was 

detected. Thus the performed ITC measurements represent the first experimental 

proof that not β-1,3-glucans but mixed β-1,3/1,6-glucans are the preferred target of 

WSC domain-containing proteins. Nevertheless an affinity of WSC3-His to linear β-

1,3-glucan cannot be completely ruled out at this stage since only a rather short ligand 

was tested in ITC which as reported for chitin-binding proteins might have a 

considerable impact on the binding affinity (deJonge et al., 2010; Liu et al., 2012). Still 

it is unlikely that WSC3-His would exhibit a binding to a longer linear β-1,3-glucan. 

Otherwise at least a weak binding of WSC3-His to laminarihexaose could have been 

expected in the ITC measurement which was not the case and also co-precipitation of 

WSC3-His with the plant cell wall preparation might have been observed in the pull 
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down experiments. WSC3-His binds laminarin with a Kd value of 12.5 µM ± 8.8 µM and 

a molar ratio of 1:3. Thus each of the three WSC-domains of WSC3 is potentially able 

to bind one molecule of laminarin or each of the three WSC-domains binds three 

distinct sites within one laminarin molecule. Both mechanisms would be supportive to 

the proposed function of WSC3 as cell wall β-glucan stabilizer assuming that one 

molecule of WSC3 joins three β-1,3/1,6-glucan fibrils or layers together. Also the fungal 

cell agglutination effect of WSC3 potentially relies on the connection of the β-glucan 

fibrils of neighbouring cells which might depend on the binding of at least two β-glucan 

molecules. The binding affinity of WSC3 to laminarin is in the same range like reported 

for the C. fulvum chitin-binding lectin Avr4 which binds chitohexaose with a Kd  value 

of 6.3 µM and the A. thaliana chitin-receptor CERK1 with a reported Kd  value of 45 µM 

(van den Burg et al., 2004; Liu et al., 2012). On the other hand side the immune 

suppressive effector Ecp6 of C. fulvum which exhibits a similar domain architecture 

like WSC3 binds chitin with a much higher Kd  value of 280 pM due to a novel intrachain 

LysM domain dimerization upon chitin binding (Sanchez-Vallet et al., 2013). Due to its 

high affinity Ecp6 outcompetes the plant chitin receptor and thus prevents stimulation 

of the plant immune system by free chitin oligomers (deJonge et al., 2010; Sanchez-

Vallet et al., 2013). The number of biochemically characterized β-glucan binding lectins 

from fungi is greatly limited. Only for the recently discovered β-1,6-glucan specific lectin 

FGB1 from S. indica the affinity to laminarin was calculated revealing an high affinity 

binding site with a Kd value of 80 nM (Wawra et al., 2016). The best characterized β-

glucan specific receptor is the mammalian receptor Dectin-1 which was reported to 

bind to laminarin with a Kd value of 10 µM (Brown, 2006; Brown et al., 2007). Further 

examples for β-glucan binding proteins are known from insects where for example in 

the cockroach Blaberus discoidales a β-1,3-glucan binding lectin is involved in 

recognition and immunity against fungi (Chen et al., 1999). The cockroach lectin also 

possess three distinct binding sites each binding one molecule of laminarin and was 

shown to effectively agglutinate yeast cell which is a striking structural and mechanistic 

similarity tor WSC3 (Chen et al., 1999). 

Concluding from that WSC3-His specifically binds the branched β-1,3/1,6-glucan 

laminarin with an affinity that is comparable to other lectins suggesting a physiologically 

relevant function of this association. Thus the cell wall reinforcing properties of WSC3 

could rely on the connection of several β-1,3/1,6-glucan branch points within the cell 

wall. This would also explain the decreased labelling of β-1,3-glucans within the cell 
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wall and would rather argue for a reduced exposure than for a reduction of the overall 

β-1,3-glucan content. The example of Ecp6 not only illustrates the sophisticated 

mechanisms evolved by plant colonizing fungi to prevent recognition but also the 

technical limitations of the ITC determination of the dissociation constant Kd. When 

produced in P. pastoris the high affinity binding pocket of Ecp6 is already pre-occupied 

by a chitin molecule present in yeast cells. Thus only the binding of the second chitin 

oligomer with a lower affinity is detectable by ITC and thus a Kd value of 6.4 µM was 

initially calculated for binding of chitohexaose (deJonge et al., 2010). Only if Ecp6 is 

produced in a mammalian cell culture system devoid of chitin the protein is produced 

in its native state and both chitin-binding events can be detected by ITC (Sanchez-

Vallet et al., 2013). Similar limitations might be expected for WSC3 since also β-

glucans are present in yeast cells and could pre-occupy a potential high affinity binding 

site. A second limitation is represented by the availability of suitable β-glucan ligands. 

Laminarin is widely used as a surrogate for branched β-1,3/1,6-glucans representing 

polysaccharides of fungal and oomycete origin. Nevertheless as a natural substrate 

the molecule length, the degree of polymerization and the purity differs between 

various batches. An alternative strategy would be the use of a chemically synthesized 

substrate like described for FGB1 (Wawra et al., 2016). Due to the highly challenging 

chemical procedure to synthesis pure and defined β-glucans (only the dimer 

gentiobiose was used for FGB1) and the limited availability of (solube) β-glucans 

laminarin is still used as a substrate. Though it has to be always considered that 

laminarin is not the physiological relevant ligand of WSC3 (and FGB1) since it only 

represents fungal derived branched β-glucans of similar structure. This might also 

explain why laminarin is not protected by WSC3 from hydrolysis by the plant β-1,3-

glucanase. The use of chemically synthesized oligosaccharides as potential ligands 

for WSC3 is currently attempted in a high throughput glycan array in cooperation with 

the group of Dr. Sebastian Pfrengle at the MPI of colloids and interfaces at Potsdam. 

This allows the testing of a broad spectrum of potential ligands, also such that are 

associated with potential glycosylation patterns of proteins, and avoids the bias 

introduced by the targeted testing of selected oligo- and polysaccharides. The revealed 

affinity of WSC3 to branched β-1,3/1,6-glucans seems plausible since it fits to the 

observed localization at the fungal cell wall, the ability of WSC3 to agglutinate fungal 

cells and the ability to prevent laminarin-triggered ROS production. Neverthless the 

presence of WSC-domains in other S. indica proteins for example in combination with 
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a glyoxal oxidase domain known from enzymes involved in lignin degradation in 

Phanerochaete chrysosporium or with the GH71 domain known from an α-1,3-

glucanase from L. bicolor opens up the possibility that branched β-1,3/1,6-glucans are 

not the only targets of WSC-proteins (Whittaker et al., 1999); Martin et al., 2008).  

 

3.3 WSC3 agglutinates fungal cells but is not involved in broad spectrum 

immune suppression 

 

The agglutinating properties of WSC3 are highly interesting since the relevance of 

aggregate formation for propagation and infection is known for a long time from 

bacteria but less described for fungi (Hall-Stoodley et al., 2004). Especially biofilms, a 

loose aggregation of cells which are embedded in a mostly polysaccharide matrix are 

highly relevant for bacterial infections and have been also described for fungi like 

Aspergillus niger (Fleming & Wingender, 2010; Priegnitz et al., 2011). The role of 

fungal biofilms in plant-microbe interactions are largely unknown but recent evidence 

suggests that S. indica might form such biofilms during plant colonization because 

microscopical investigations found FGB1-GFP localizing to a gel-like matrix 

surrounding the fungal hyphae, indicating the presence of β-glucans (S. Wawra, 

unpublished data). The presence of glucan-binding proteins in bacterial biofilms as 

structural component was shown before and thus it is tempting to speculate that WSC3 

might be involved in the process of biofilm or aggregate formation (Lynch et al., 2007). 

In such a scenario WSC3 would be not completely buried within the cell wall but 

protruds out of the cell wall into the external space in a similar way like described for 

adhesins from S. cerevisiae and C. albicans (Verstrepen et al., 2005; Latgé, 2007). In 

summary the agglutination of fungal cells might be considered as another hint that 

WSC3 could act as a fungal glue that connects β-1,3/1,6-glucans with each other. 

When incorporated into the cell wall like shown for P. pastoris WSC3 might act as 

proteinaceous cement that joins the β-1,3/1,6-glucan compounds of the cell wall. It 

needs to be considered that the external application of WSC3-His might not represent 

the physiologically relevant localization of the protein. Hence the agglutination of fungal 

cells could be seen as an additional proof for the ability of WSC3 to bind (exposed) β-

glucans in the fungal cell wall. 

Taking the affinity of WSC3-His to laminarin (Kd value of 12.5 µM) into account the 

binding affinity could potentially be sufficient to compete with the unknown β-glucan 
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responsive receptor presuming a similar affinity of the receptor to its ligand like 

described for other β-glucan or chitin binding receptors. Thus the suppression of the 

laminarin-triggered ROS production most probably relies on the sequestration of 

laminarin preventing the recognition by the unknown β-glucan receptor. The fact that 

10 µM of WSC3-His are sufficient to prevent recognition of 600 µM of laminarin points 

either towards the hypothesis that the commercial laminarin already contains trace 

amounts of shorter, more active β-glucans that are causal for the ROS production and 

also bound by WSC3-His. Alternatively it could be possible that the laminarin molecule 

itself is not the defense-activating component but that it is tailored by hydrolysis through 

plant-derived glucanases into shorter, more active parts. This would also explain why 

the plant defense response to laminarin is remarkably delayed compared to chitin- and 

flg22 elicitation. Like mentioned before the external addition of WSC3-His might lead 

to an unusual localization of WSC3. Thus the suppression of the laminarin-induced 

ROS production by WSC3-His might be seen as another line of evidence that WSC3 

is able to bind to branched β-1,3/1,6-glucans like laminarin. This is underlined by the 

fact that addition of WSC3-His together with S indica spores had no positive effect on 

the colonization rate.  

In contrast to WSC3, FGB1 seems to be a universal suppressor of MAMP-triggered 

ROS production which is achieved independently from binding to the MAMP translating 

into increased plant colonization. Hence FGB1 might directly interact with a so far 

unknown shared co-receptor or generally co-regulator which is involved in the 

perception of various MAMPs. The existence of such universal PTI regulators is 

illustrated by the existence of the receptor-like cytoplasmic kinase BIK1 which is 

involved in perception and activation of immunity of the bacterial MAMPs flg22 and 

elf18, the fungal MAMP chitin and the plant derived DAMP AtPep1 (Couto & Zipfel, 

2016). The cytoplasmic receptor-like kinase BIK1 might not be targeted by the 

apoplastic effector FGB1 but the mechanistic concept of shared components raises 

the possibility that also other so far unknown plant proteins exist that fulfill similar 

regulatory functions. Furthermore it is known from plant colonizing bacteria that these 

regulatory co-receptors are targeted by secreted effectors to deregulate plant PTI 

responses (Macho & Zipfel, 2015). Beneath tackling a shared co-receptor also a 

common motif or pattern present in different MAMP receptors, like a common 

glycosylation pattern might be the target of FGB1. It was recently reported that 

mutation of the α-1,3-manosyltransferase ALG3 of A. thaliana that is responsible for 
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the addition of a core oligosaccharide to several surface localized immune receptors 

leads to an altered localization and also a compromised signaling capacity of those 

receptors (Trempel et al., 2016). Thus it is not unthinkable that a fungal lectin-like 

effector protein like FGB1 is able to suppress the recognition of several completely 

different MAMPs by interacting with a common glycosylation pattern added to all these 

unrelated receptors. Another possibility is the direct targeting of the NAPDH oxidases 

or peroxidases at the plant plasmamembrane or cell wall, respectively, which are 

responsible for the generation of extracellular ROS (Yu et al., 2017). This would explain 

why the flg22-induced Ca2+-flux is not suppressed by FGB1 which is described to be 

crucial for subsequent ROS production (Ranf et al., 2011). Conceivable targets would 

be the respiratory burst oxidase homolg D (RBOHD) or the apoplastic peroxidases 

PRX33/34 which are the major enzymes involved in generation of ROS (Nuhse et al., 

2007; Daudi et al., 2012). Another MAMP-induced plant response that acts 

downstream of the Ca2+-flux but upstream of the generation of ROS are ion fluxes 

across the plant plasmamembrane. These ion fluxes and the responsible ion channels 

are crucial for the generation of extracellular ROS and thus might be a potential target 

for FGB1 to prevent MAMP-triggered ROS production (Jabs et al., 1997).  

In general WSC3 and FGB1 seem to vary greatly regarding their function even though 

both were shown to specifically bind to laminarin. Whereas WSC3 agglutinates fungal 

cells, suppresses the laminarin-induced ROS production but is not increasing 

colonization of plant roots, FGB1 has no obvious effect on fungal cells but has the 

ability to prevent ROS production after stimulation with various MAMPs which 

translates into an increased plant colonization rate. The reason for these difference 

might be the different protein structure and localization which might be the determinant 

for their function. WSC3 is a rather big protein and has the ability to bind three long 

polysaccharide molecules which is potentially the key for its cell wall reinforcing and 

fungal cell agglutinating properties. Furthermore WSC3 seems to reside at or within 

the fungal cell wall and thus its addition to fungal spores has no effect on the plant 

colonization even though it theoretically is able to prevent laminarin recognition. 

Contrastingly FGB1 is an extremely short protein that only binds one laminarin 

molecule or even the β-1,6-glycosidic linked dimer gentiobiose with an ultrahigh affinity 

to outcompete a potential β-glucan receptor. Furthermore it is not only present at the 

cell wall, but also released into the extracellular space where it may act directly at the 

plant cell as a universal PTI suppressor. Both proteins are β-glucan binding lectins 
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involved in plant colonization but potentially due to their contrasting characteristics 

fulfill completely different functions which nicely illustrate the dual relevance of β-

glucans as crucial components maintaining fungal cell wall integrity and at the same 

time potent elicitors of plant immunity. 

 

3.4 Summary: WSC3 as β-glucan adhesive? 

 

WSC3 is the first biochemically characterized WSC lectin with proofed specificity to the 

branched β-1,3/1,6-glucan laminarin. WSC3 localizes to the cell wall of S. indica and 

seemingly is even incorporated into it were it might be buried within the β-glucan fibrils. 

First hints point toward a possible function in connecting neighbouring β-1,3/1,6-glucan 

moieties with each other potentially to reinforce the S. indica cell wall during growth 

under stressful conditions. Thus WSC3 might act as a proteinaceous β-glucan 

adhesive that due to its localization within the cell wall serves as a structural 

component stabilizing the cell wall. Further investigations should test more potential 

polysaccharide ligands, the exact localization and association of WSC3 to the cell wall 

β-glucans and how and if cell wall composition and structure of S. indica is altered 

through WSC3 overexpression. The existence of the two lectins WSC3 and FGB1 both 

exhibiting affinity to branched β-1,3/1,6-glucans but fulfilling contrasting biological 

tasks illustrates the importance of β-glucans as essential components of the fungal cell 

wall that need to be fostered to prevent recognition while maintaining their integrity. 

Thus the expansion of WSC proteins within the S. indica genome might be seen as an 

adaption to the biphasic lifestyle of S. indica including a morphological and nutritional 

switch during the colonization of a broad range of different plant host without losing its 

capabilitiy allowing survival in an extremely competitive environment like the soil. An 

expanded WSC toolkit could enable S. indica to encounter these diverse requirements 

which are extremely challenging for the cell wall. Nevertheless the additional analysis 

of other members of the WSC protein family is needed which potentially are expressed 

under other growth conditions of S. indica than WSC3 to gain a deeper insight into the 

role of WSC proteins and to understand the reason for their expansion. The diverse 

features of WSC3 already give a small insight into the potential of WSC-proteins and 

the diverse functions they possibly fulfill. 
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3.5 Identification of defense components potentially involved in laminarin-

triggered plant defense 

 

The number of GWA screen studies using A. thaliana has tremendously increased over 

the past five years but most of them investigated well studied biological traits like the 

regulation of flowering. The advantage of the investigation of such traits is that a priori 

candidate genes are known that can be used first to judge if the present GWA screen 

has the power to identify true positive associations and second to use SNPs located in 

or in close proximity to the a priori candidate genes to refine the analysis (Filiault & 

Maloof, 2012). Due to the fact that no such a priori candidates are available the initial 

GWA screen was conducted with the relatively small number of 100 accessions. In 

general since the knowledge about the plant components that are potentially involved 

in β-glucan signal perception and processing is restricted, chitin as well-studied fungal 

MAMP was tested in parallel. The mechanisms of chitin signal perception and 

processing are not only well understood but potentially also well-conserved and might 

even date back to one ancient ancestor (Liang et al., 2014). This not only allowed the 

evaluation of the actual ROS measurement in terms of overall responsiveness of the 

tested accessions but also serves as training for the applied assumptions and 

performed analysis. Furthermore it was observed that the response to laminarin 

seemed to be partially dependent on plant development. The enmeshment of 

developmental processes and immunity in plants is so far only partially understood but 

nicely illustrated by the receptor-like kinase BAK1, a universal co-regulator of PTI 

which is simultaneously also involved in processing of developmental signals (Postel 

et al., 2010). The use of chitin as second MAMP thus ensured that the tested accession 

were not generally impaired in immunity. The GO term enrichment analysis after chitin-

treatment was thus performed to estimate the power of the dataset. The genes that 

are located in proximity to the SNPs with a marker-trait association higher than a 

−log(p-value) of 4 are significantly enriched for hydrolases especially chitinases. 

Taking into account that a crude chitin suspension that is prepared by mechanical 

disruption of complex chitin was used to elicit the ROS production the enrichment of 

chitinases that are in charge to further hydrolyze the chitin oligomers to produce more 

or more active immune-stimulating molecules is not surprising. This at first glance 

seems trivial but highlights that the ability of a plant to properly defend against an 

invading fungus not only depends on the perception of chitin as a MAMP but also on 
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the release and the tailoring of the MAMP. Additionally since none of the known chitin-

responsive defense receptors was identified by the GWA screen as hot spot for natural 

variation it might be concluded that these components are indeed conserved and 

potentially crucial for the defense against invading fungi. Together this suggests that 

the GWA screen is despite the limited number of tested accession powerful enough to 

identify genetic loci involved in defense after chitin elicitation and might also yield 

meaningful associations for the laminarin-treated plants. 

The GO term enrichment analysis of the genes identified by the GWA screen after 

laminarin-treatment revealed a significant enrichment of N-acetyltransferases. N-

acetyltransferases are involved in a myriad different cellular processes for example 

post-translational modification of proteins through the addition of acetyl-groups. 

Interestingly in A. thaliana the N-acetyltransferase Elongator subunit 3 (Elp3) is 

acetylating histones and thus positively regulates and accelerates the activation of 

various defense genes involved in basal immunity (DeFraia et al., 2010; DeFraia et al., 

2013). One of the candidate genes identified by the GWA screen also encodes an N-

acetyltransferase namely NATA1. NATA1 is an ornithine N-delta-acetyltransferase 

involved in the formation of the defense compound N-delta-acetylornithine (Adio et al., 

2011). Furthermore NATA1 acetylates putrescine and thus prevents the conversion to 

spermidine and spermine which serve as substrates for polyamine oxidases which are 

producing H2O2 in response to microbial attack (Lou et al., 2016). Interestingly several 

accessions lack NATA1 and thus to not produce N-acetylputrescine which makes it 

highly conceivable that natural variation at this genetic locus might contribute to the 

altered production of ROS in response to laminarin (Lou et al., 2016). The relevance 

of N-acetyltransferases during induction of plant immunity is further elaborated by the 

fact that several of these enzymes including a histone N-acetyltransferase and also 

NATA1 are significantly induced at transcriptional level at least at one time point during 

the interaction of A. thaliana with S. indica or S. vermifera, respectively (Lahrmann et 

al., 2015). Like NATA1 where the identified SNP is located within an intron and thus 

could impact processing of the transcribed mRNA, LRK10 and PROPEP4 represent 

two more candidate genes where the identified SNPs are not directly altering protein 

structure but rather impact protein expression. LRK10 encodes a plasmamembrane 

located receptor-like kinase first described in wheat conferring resistance to leaf rust 

disease (Feuillet et al., 1997). In A. thaliana LRK10 is present in two isoforms controlled 

by two different promoter regions and reported to be involved in drought stress and 
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ABA-mediated signaling (Lim et al., 2015; Shin et al., 2015). LRK10 harbors an 

extracellular WAK-domain which is described to be involved in carbohydrate binding 

and is part of the WAK1 receptor which activates defense signaling after perception of 

the plant DAMP oligogalacturonides (Brutus et al., 2010). Since LRK10 represents the 

only candidate gene with receptor-like properties, an extracellular carbohydrate 

binding domain and is also induced during S.india/S. vermifera interaction with 

A.thaliana it is tempting to speculate that it is the elusive β-glucan responsive receptor 

(Lahrmann et al., 2015). The third candidate gene is PROPEP4 a member of the 

AtPEP family of DAMPs. It is the precursor of the endogenous danger signal Pep4 

which is known to be involved in the amplification of external danger signals and the 

induction of innate immunity including the production of ROS (Huffaker et al., 2006; 

Huffaker & Ryan, 2007). Thus it might potentially be also involved in the response to 

laminarin and therefore is an interesting candidate especially since PROPEP4 is 

mostly expressed in plant roots where it could act in response to soil-borne fungi like 

S. indica. The WAK-domain of the LRK10 and Pep4 have in common that they are 

known to be either involved in DAMP perception or even functioning as DAMP. This 

raises the question if laminarin which only differs from the plant derived β-glucan 

callose by its β-1,6-glycosidic side branches is recognized rather as a DAMP than as 

a MAMP? NATA1 and Pep4 are both transcriptionally induced by the plant defense 

hormone jasmonic acid which production is strongly upregulated in plants in response 

to S. indica colonization (Fesel & Zuccaro, 2016b). Hence NATA1, LRK10 and Pep4 

are highly interesting candidates which might be involved in laminarin-induced defense 

responses even though none of them is structurally altered due to the corresponding 

SNPs identified by the GWA screen.  

Encountering also SNPs with a marker-trait association higher than a −log(p-value) of 

3 but only taking those SNPs into account i) that lead to non-synonymous mutations 

directly affecting the amino acid composition, ii) that are predominantly found in the 

highly reactive accessions and iii) that are transcriptionally induced in response to 

biotic stresses according to the Arabidopsis eFP browser (bar.utoronto.ca; Winter et 

al., 2007) four more genetic loci could be identified. These assumptions were made to 

increase the possibility that the genetic loci identified in this way are representing 

meaningful candidates despite the lower marker-trait association threshold. One of 

these candidate genes (AT3G23650) encodes an intracellular kinase-like protein which 

potentially could mediate the transduction of the extracellular signal. Hence the natural 
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variation in regards of laminarin-triggered ROS productioncwould also originate from 

the ability of the plant to activate downstream defense responses like the accumulation 

of ROS. Like the kinase-like protein the two TIR-NBS-LRR proteins which were 

identified by the GWA screen are potentially also not directly involved in perception of 

laminarin as a MAMP. NBS-LRR proteins are a highly diverse class of plant proteins 

that intracellularly monitor and guard defense components that are targeted by 

mircrobial proteins to comprise plant defense responses (Marone et al., 2013). NBS-

LRR proteins directly or indirectly recognize specific microbial effector proteins as part 

of the adaptive plant immune system and are often the result of a co-evolution between 

plants and microbes (Dodds & Rathjen, 2010). This suggests that there are plant 

defense components that are either specific for laminarin-triggered defense responses 

or in general are activated upon microbial attack that are worth to be guarded by NBS-

LRRs. Thus knowing the guarded components or the corresponding microbial effectors 

would shed further light on the components involved in laminarin-induced defense. 

Nevertheless neither the kinase-like protein nor the TIR-NBS-LRRs might directly 

influence the laminarin-triggered ROS like for example NATA1. The fourth candidate 

gene which was identified by the GWA screen and contains a non-synonymous 

mutation is the LIFEGUARD 3 (LFG3) protein and belongs to the Bax inhibitor-1 (BI1) 

family. LFG proteins were shown to be involved in inhibition of cell death in plants and 

furthermore are supporting infection by plant pathogenic microbes (Wei et al., 2013). 

The exact cellular function of LFG proteins and how they influence microbial infections 

is still unknown but it was suggested that the elevated susceptibility might be 

connected to the ability of LFG proteins to regulate Ca2+-fluxes and thus to also prevent 

production of ROS (Eichmann et al., 2006; Weis et al., 2013). Hence there might be a 

direct connection between and altered structure and function of LFG3 in some of the 

tested A. thaliana accessions and their ability to produce ROS in response to laminarin 

perception. 

In summary the conducted GWA screen investigating the natural variation of 100 A. 

thaliana accessions regarding their responsiveness to the branched β-1,3/1,6-glucan 

laminarin identified several candidate genes that belong to well-described classes of 

defense-related plant proteins. This further highlights the importance of β-glucans as 

potent elicitors of plant defense responses. To further understand if these genes are 

specifically involved in laminarin-triggered defense or barely represent general defense 

components needs to be assessed by the functional characterization of these genes. 
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This will also help to understand their potential function but might be complicated by 

the fact that the largest collection of T-DNA knock-out lines was generated in Col-0 

background an accession that hardly shows any ROS production in response to 

laminarin. Furthermore the responsiveness to laminarin seems to be a multigenetic 

trait with several genetic loci that quantitatively contribute, a fact that greatly 

complicates the interpretation of the results and the identification of meaningful SNPs 

by GWA screens (Filliaut & Maloof, 2012). Prior to the initiation of the GWA screen a 

more simple genetic architecture of the trait was assumed, proposing that the presence 

or functionality of a laminarin-responsive receptor determines the ability of the 

accessions to initiate a defense response. The results obtained after the investigation 

of 100 accessions suggest a more complex genetic architecture with several genetic 

loci with small effect sizes that are also only present in a small number of accessions. 

A scenario like this demands a higher number of accessions which would increase the 

power of the GWA screen to also identify rare genetic loci with a small effect size (Korte 

& Farlow, 2013). Nevertheless the presented GWA screen yielded valuable insights 

into the mechanisms of laminarin-perception and response in A. thaliana. The following 

strategy could include i) the functional characterization of the so far identified 

candidates, ii) the investigation of more accession to increase the power of the GWA 

screen and iii) the additional QTL mapping approach after crossing of one strongly and 

one weakly reacting accession. 

 

3.6 General conclusion 

 

This work was conducted to shed light on the molecular strategies employed by S. 

indica to prevent activation of the plant immune system by cell wall derived β-glucans 

while maintaining cell wall integrity and to identify plant proteins potentially involved in 

β-glucan triggered defense responses. WSC3, a member of a multi-protein family was 

shown to specifically bind to the branched β-1,3/1,6-glucan laminarin to potentially 

reinforce the fungal cell wall during growth in challenging environments while FGB1 

prevents the activation of the plant immune response by the universal suppression of 

ROS production. A GWA screen revealed that the responsiveness to laminarin is a 

multigenetic trait in A. thaliana and identified several plant proteins that have the 

potential to be involved in laminarin-triggered defense responses. This all together 

underlines the importance of β-glucans as cell wall constituents and MAMPs that are 
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guarded in the mutualistic root endophyte S. indica by sophisticated mechanisms 

involving specific fungal proteins. These insights might help to engineer more resistant 

plants and to increase crop yield by transferring β-glucan responsive elements into 

plant species that are lacking the ability to recognize β-glucans as MAMPs. 

Furthermore a better understanding of the fungal cell wall structure and maintenance 

might help to develop effective and highly specific fungicides that directly compromiseh 

cell wall function and integrity. 
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4. Materials and sources of supply  

4.1 Materials and suppliers 

 

4.1.1 Chemicals and "kits" 

 

Chemicals and microbiological growth media components used in this thesis were 

purchased predominately from Carl Roth (Karlsruhe, Germany), Sigma Aldrich 

(Taufkirchen, Germany) and VWR (Darmstadt, Germany). Components of plant growth 

media were purchased at Duchefa (Haarlem, The Netherlands). 

Extraction of DNA from agarose gels was performed with the PROMEGA Wizard® SV 

Gel and PCR Clean-Up System (Mannheim, Germany). For the extraction of plasmids 

from E. coli, the DNA QIAprep® Spin Miniprep Kit (QIAGEN, Hiden, Germany) and the 

PROMEGA PureYield® Plasmid Midiprep system (Mannheim, Germany) were used. 

 

4.1.2 Buffers, solutions and media  

 

All buffers, media and solutions were autoclaved at 121°C for 15 min if not indicated 

differently. Heat sensitive solutions, media components and antibiotics were sterile 

filtrated through 0.22 µm Rotilabo ® syringe filters (Carl Roth, Karlsruhe, Germany) if 

volume was less than 50 ml or through 0.22 µm bottle top vacuum filtration systems 

(VWR, Darmstadt, Germany). 

 

4.1.3 Enzymes 

 

Restriction enzymes were purchased at New England Biolabs (Frankfurt/Main, 

Germany). For the amplification of DNA fragments the GoTaq G2 flexi Taq polymerase 

(Promega, Mannheim, Germany) and the Q5 Hifi Pfu polymerase (New England 

Biolabs, Frankfurt/Main, Germany) were used. Ligation of DNA fragments was 

performed using the T4 DNA Ligase purchased from New England Biolabs 

(Frankfurt/Main, Germany). For quantitative real time PCR experiments the GoTaq 

qPCR master mix (Promega, Mannheim, Germany) was used.  
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4.1.4 Oligonucleotides 

 

All oligonucleotides used as primers for PCR experiments were synthesized by Sigma 

Aldrich (Taufkirchen, Germany). The sequences of the used primers are listed in table 

2.  

 

Table 2: List of oligonucleotides used in this thesis 

Name Sequence (5´- 3´) Purpose 

05825 qPCR fw 

 

05825 qPCR rv 

CGGACAGCTACGAAAAGAGG 

 

GCTTGCCTAACTCCAATCCA 

Expression analysis 

of S. indica gene 

PIIN_05825 

 

SiTEF qPCR fw 

 

SiTEF qPCR rv 

 

GCAAGTTCTCCGAGCTCATC 

 

CCAAGTGGTGGGTACTCGTT 

Reference for gene 

expression analysis 

in S. indica 

(PIIN_03008 

transcription 

elongation factor, 

Tef) 

SiTEF qPCR Bs rv ACCCTTGCCCTCGGTCTTCT Reverse primer for 

PIIN_03008 

(transcription 

elongation factor, 

Tef) used in S. 

indica-B. 

sorokiniana 

interaction 

study 

 

BsTEF qPCR fw 

 

BsTEF qPCR rv 

 

TGCGTTGAGGCTTTCACTG 

 

GACGACGGACTTGATGACAC 

Reference for gene 

expression analysis 

in B. sorokiniana 

(COCSADRAFT_29

782, transcription 

elongation factor, 

Tef) 
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Name Sequence (5´- 3´) Purpose 

 

AtUBI qPCR fw 

 

AtUBI qPCR rv 

 

CCAAGCCGAAGAAGATCAAG 

 

ACTCCTTCCTCAAACGCTGA 

Reference for gene 

expression analysis 

in A. thaliana 

(AT3G62250, 

Ubiquitin5, UBI) 

 

HvUBI qPCR fw 

 

HvUBI qPCR rv 

 

CAGTAGTGGCGGTCGAAGTG 

 

ACCCTCGCCGACTACAACAT 

Reference for gene 

expression analysis 

in H. vulgare 

(MLOC_16862, 

Ubiquitin5, UBI) 

 

05825 trunc. fw 

 

05825 trunc. rv 

 

ACCCGGGGTCAACAAGCCATCTATCCC 

 

GACTGAATTCTCAGAATATGGAGAGCAA

TAGGC 

Cloning of 

PIIN_05825 as 

XmaI+EcoRI 

fragment into pPIC9 

vector for 

expression of N-

terminally truncated 

WSC3 in P. pastoris  

 

05825 wSP fw 

 

05825 w/o Stop rv 

 

GTCGCTAGCATGCTTTCCCTCAACTTGC 

 

CGGAAGCTTGAATATGGAGAGCAATAG

GC 

Cloning of 

PIIN_05825 as 

NheI+HindIII 

fragment into 

pGoGFP vector for 

expression of WSC3 

as GFP fusion with 

His/HA tag in S. 

indica 

 

pPIC9 Seq fw 

 

pPIC9 Seq rv 

 

TACTATTGCCAGCATTGCTGC 

 

GCAAATGGCATTCTGACATCC 

Sequencing primers 

for P. pastoris pPIC9 

vector to verify 

correct insertion of 

cloned fragments 
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Name Sequence (5´- 3´) Purpose 

HD 1.2 fw 

 

HD 1.2 rv 

AGATATCCGGAGGCGAGTTT 

 

CCTGAATCTGCTGTTCGTCA 

Primer for the S. 

indica mating type 

locus HD 1.2 

(PIIN_09977) 

HD 2.2 fw 

 

HD 2.2 rv 

ACATCTGGCTCCCATTTACG 

 

GTTGAGCTTTGGCTCGTTTC 

Primer for the S. 

indica mating type 

locus HD 2.2 

(PIIN_09978) 

HD 2.1 fw 

 

HD 2.1 rv 

ATGAGTACGATTGCCCAAGG 

 

TCGTCTCGTAGGCGACTTTT 

Primer for the S. 

indica mating type 

locus HD 2.1 

(PIIN_09916) 

HD 1.1 

 

HD 1.1 

CGATACCTACCCGCCTACAA 

 

CTTTTTAAGCGGTGCTGGAG 

Primer for the S. 

indica mating type 

locus HD 1.1 

(PIIN_09915) 

 

4.2 Bacterial and Fungal Strains  

 

4.2.1. Escherichia coli strains 

 

For all DNA cloning procedures described in this thesis, the E. coli strain Top10 

(Invitrogen, Karlsruhe, Germany) was used. E. coli strain Top10 has the following 

genotype: F- mcrA Δ(mrr-hsdRMS-mcrBC) φ80lacZΔM15 ΔlacX74 nupG recA1 

araD139 Δ(ara-leu)7697 galE15 galK16 rpsL(StrR) endA1 λ-. 

 

4.2.2 Pichia pastoris strains 

 

For the expression of WSC3 the P. pastoris strain GS115 was used (Invitrogen, 

Karlsruhe, Germany). P. pastoris GS115 has the his4 genotype and the Mut+ 

phenotype. As a reference for successful protein expression and secretion the P. 

pastoris strain GS115 Albumin was used. P. pastoris GS115 Albumin has the HIS4 

genotype and the MutS phenotype, secreting Albumin into the medium. For the 
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expression of WSC3 three independent P. pastoris strains were created in this thesis 

displaying HIS4 genotype and the MutS phenotype. 

 

4.2.3 Ustilago maydis strains 

 

For all experiments described in this thesis the haploid solopathogenic U.maydis strain 

SG200 (Kämper et al., 2006) derived from the FB1 strain was used.  

 

4.2.4 Bipolaris sorokiniana strains 

 

For all experiments described in this thesis the B. sorokiniana strain ND90Pr was used 

(Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, 

Germany).  

 

4.2.5. Serendipita indica strains 

 

The dicaryotic S. indica strain DSM11827 (Deutsche Sammlung von Mikroorganismen 

und Zellkulturen, Braunschweig, Germany) was used for all experiments described in 

this thesis and thus was designated as wild type. As second reference strain a 

homocaryotic S. indica strain generated by regeneration of protoplasts was used. The 

homokaryotic reference strain carries a geneticin resistance and was described in 

Wawra et al., 2016. 

As control strain for transgenic S. indica transformants the S. indica GoGFP strain 

harboring the pGPD::oGFP-tnos, pTEF::HYG-tnos construct and expressing cytosolic 

oGFP was used (Hilbert et al., 2012). 

The S. indica strain WSC3-GFP is derived from DSM11827 and was generated by 

random integration of the construct pFGB1::PIIN_05825::oGFP::HA/His-tnos, 

pTEF::Hyg-tnos into the genome of S. indica.  
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4.3 Plant cultivars and accessions 

 

4.3.1 Hordeum vulgare cultivars 

 

The H. vulgare strain Golden Promise was used for all experiments performed in this 

thesis. 

 

4.3.2. Arabidopsis thaliana accessions 

 

The list of the A. thaliana accessions used in this thesis and their origin can be found 

in table 3.

 

Table 3: List of used A. thaliana accessions and the source of supply 

Name ID Source 

Aa-1 7000 SK 

Ag.0 6897 SK 

Alc-0 6988 AS 

ALL1-2 1 SK 

An.1 6898 SK 

Ba-1 7014 SK 

Bay-0 6899 SK 

Bg.2 6709 SK 

Bla-1 7015 AS 

Blh-1 7034 AS 

Bor-1 5837 SK 

Bor-4 6903 SK 

Bsch-0 7031 SK 

Bur-0 5719 AS 

Can-0 8274 AS 

Cha-0 7069 SK 

CIBC-4 6729 SK 

CLE.6 78 SK 

Com-1 7092 SK 

Ct-1 6910 AS 
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Name ID Source 

Cvi-0 6911 AS 

Da-0 7094 SK 

Db-0 7100 SK 

Di-1 7098 SK 

Edi-0 6914 AS 

Enkheim-T 7121 AS 

Ep-0 7123 SK 

Est-0 7128 SK 

Fi-1 7139 SK 

Fja1.1 8422 SK 

Ep-0 7123 SK 

Est-0 7128 SK 

Fi-1 7139 SK 

Fja1.1 8422 SK 

Fja1.2 6019 SK 

Fja1.5 6020 SK 

Ga-2 7141 SK 

Gd.1 8296 SK 

Ge-0 8297 AS 

Gel-1 7143 SK 

Gie-0 7147 SK 

Go-0 7151 SK 

Gr-1 8300 AS 

Ha-0 7163 SK 

Hi-0 7167 SK 

Hn-0 7165 SK 

Hov4.1 8306 SK 

In.0 8311 SK 

Jea-0 91 AS 

Jm-0 8313 AS 

Ka.0 8314 SK 

Kas.2 8424 SK 

Kin-0 6926 SK 
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Name ID Source 

Kn-0 7186 AS 

Kondara 6929 AS 

LAC.3 94 SK 

LAC.5 96 SK 

Lc.0 8323 SK 

LDV.34 126 SK 

LDV.58 149 SK 

Lip-0 8325 AS 

Mh-1 7256 AS 

Mr.0 7522 SK 

Mrk.0 6937 SK 

Ms-0 6938 AS 

Mt-0 6939 AS 

N13 7438 AS 

N14 7446 AS 

N7 7449 AS 

NC.6 8246 SK 

Nd.1 6942 SK 

Nok1 7270 AS 

Nz-1 7263 SK 

Or.1 6074 SK 

Oy-0 6946 AS 

Pa-1 8353 AS 

Pan-10 7526 SK 

Per.1 8354 SK 

Petergof 7296 SK 

Pro.0 8213 SK 

Rak.2 8365 SK 

Ren.1 6959 SK 

Ri-0 7317 AS 

Rld-2 7457 AS 

ROM.1 267 SK 

Rubezhnoe-1 7323 AS 
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Name ID Source 

Sap-0 8378 AS 

Sav-0 8412 AS 

Shahdara 6962 AS 

Sp-0 7343 AS 

St-0 8387 AS 

Stw-0 8388 AS 

Ta-0 8389 AS 

Tottarp.2 6243 SK 

TOU-C-3 362 SK 

TOU-J-3 383 SK 

Tsu-0 7373 AS 

UKID48 5753 SK 

UKID80 5785 SK 

UKSE06-414 5202 SK 

UKSE06-482 5245 SK 

UKSE06-520 5264 SK 

Ull2.3 6973 SK 

Uod.7 6976 SK 

Var2.1 7516 SK 

Wil.1 8419 SK 

Ws-0 6980 SK 

Wt.5 6982 SK 

Zdr.6 6985 SK 

SK – Prof. Dr. Stanislav.Kopriva (University of Cologne) 

AS – Dr. Adam Schikora (Julius-Kühn-Institute Braunschweig) 

 

Additionally for the quantification for MAMP-induced Ca2+-fluxes an A. thaliana Col-0 

reporter line expressing cytoplasmic aequorin was used (Knight et al., 1991). 
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4.4 Vectors 

 

4.4.1 Vectors for protein expression in P.pastoris  

 

For the expression of WSC3 in P.pastoris the vector pPIC9 (Invitrogen, Karlsruhe, 

Germany) was used. pPIC9 contains the β-lactamase gene conferring transformed 

E.coli cells resistance to ampicillin. For selection of transformed P. pastoris cells the 

vector contains the HIS4 gene enabling growth on histidine-deficient medium. WSC3 

was amplified without introns from S. indica cDNA with a proof-reading Pfu polymerase 

and ligated after restriction enzyme digestion of vector and insert with XmaI and EcoRI. 

The expression of WSC3 is driven by the methanol-inducible AOX1 promoter. The 

secretion of WSC3 is ensured by the Saccharomyces cerevisiae α-factor secretion 

signal located N-terminally of the inserted sequence. For subsequent purification of the 

secreted WSC3 the protein is expressed with an N-terminal 6xHis tag. The correct 

insertion was verified by sequencing of the generated vector using the pPIC9 

sequencing primers (Invitrogen, Karlsruhe, Germany; Table 2) at GATC Biotech 

(Cologne, Germany).  

 

4.4.2 Vectors for transformation of S. indica 

 

For the transformation of S. indica for subsequent protein localization studies a 

modular vector derived from the pGoGFP vector (Hilbert et al., 2012) was used. The 

vector contains the β-lactamase gene conferring transformed E.coli cells resistance to 

ampicillin. For selection of transformed S. indica protoplasts the vector contains the 

hygromicin resistance gene which expression is driven by the TEF promoter. WSC3 

was amplified without introns from S. indica cDNA with a proof-reading Pfu polymerase 

and ligated after restriction enzyme digestion of vector and insert with NheI and HindIII. 

The expression of WSC3 is driven by the FGB1 promoter (Wawra et al., 2016). For 

subsequent localization of WSC3 the protein is expressed with a C-terminally fused, 

codon optimized GFP and 6xHis/HA tag. The correct insertion is verified by sequencing 

of the generated vector at GATC Biotech (Cologne, Germany; Table 2).  
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4.5. Bacterial, fungal and plant cultivation 

 

4.5.1. E. coli cultivation 

 

E. coli was cultivated on low salt lysogeny broth (LB) medium (0.5 % (w/v) yeast 

extract, 1 % (w/v) trypton, 0.5 % (w/v) NaCl) supplemented with 1.5 % (w/v) agar for 

the preparation of solid medium. For selection purposes 100 µg/ml ampicillin were 

added to the medium after autoclaving. The cultures were propagated at 37°C and for 

liquid cultures agitated at 250 rpm.  

 

 

 

4.5.2 P. pastoris cultivation 

 

P. pastoris was cultivated on YPD medium (1 % (w/v) yeast extract, 2 % (w/v) peptone, 

2 % (w/v) dextrose) supplemented with 1.5 % (w/v) agar for the preparation of solid 

medium. The cultures were grown at 28°C and liquid cultures were agitated at 220 

rpm. The detailed cultivation conditions for the expression of WSC3 are described in 

section 4.7.6. 

 

4.5.3 U. maydis cultivation 

 

U. maydis was grown on solid potato-dextrose-agar (PDA) medium at 28°C. For 

cultivation in liquid cultures U. maydis was grown in YEPS light medium (0.4 % (w/v) 

yeast extract, 0.4 % (w/v) peptone, 2 % (w/v) sucrose) with 220 rpm agitation. 

 

4.5.4 B. sorokiniana cultivation  

 

B. sorokiniana was grown on solid complex medium (CM-Bs) at 28°C. For cultivation 

in liquid medium B. sorokiniana was grown in MYP medium (0.7 % (w/v) malt extract, 

0.1 % (w/v) peptone, 0.05 % (w/v) yeast extract) at 28°C with 120 rpm of shaking.  

 

CM-Bs medium 

 

1 % (v/v) Solution A  

1 % (v/v) Solution B  
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CM-Bs medium (continued) 0.05 % (v/v) Srb’s micronutrients  

0.1% (w/v) yeast extract  

0.05% (w/v) peptone 

0.05% (w/v) Casamino acids  

1 % /w/v) glucose 

1.5% (w/v) Agar 

in dH2O  

autoclaved for 15 min at 121°C 

Solution A 

 

 

Solution B 

10% (w/v) Ca(NO3)2 x 4H2O 

in dH2O  

autoclaved for 15 min at 121°C 

2 % (w/v) KH2PO4 

2.5 % (w/v) MgSO4 x 7H2O 

1.5 % (w/v) NaCl 

in ddH2O 

adjust pH to 5.3 with NaOH 

filter sterilized 

Srb’s micronutrients 0.006 % (w/v) MnSO4 x H2O 

0.0057 % (w/v) H3BO3 

0.049% (w/v) ZnSO4 x 7H2O 

0.0013% (w/v) KI 

0.0037 (w/v) (NH4)6M07O24 x 4H2O 

0.039% (w/v) CuSO4 x 5H2O 

in dH2O  

autoclaved for 15 min at 121°C 

 

4.5.5. S. indica cultivation 

 

S. indica was cultivated on complex medium (CM) at 28°C. For cultivation in liquid 

culture S. indica was grown in CM medium at 120 rpm shaking. Transformed strains 

were selected for hygromicin resistance (80 µg/ml final concentration).  

 

CM medium 

 

5 % (v/v) 20x Salt solution  

0.1 % (v/v) Microelements  
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CM medium (continued) 0.2 % (w/v) Peptone  

0.1 % (w/v) Yeast extract  

0.1 % (w/v) Casamino acids  

1.5 % (w/v) Agar (for solid medium only) 

in dH2O  

autoclaved for 15 min at 121°C 

after autoclaving add 2 % (w/v) Glucose 

(filter sterilized) 

20x Salt solution 

 

 

12 % (w/v) NaNO3 

1.04 % (w/v) KCl 

1.04 % (w/v) MgSO4 x 7H2O 

3.04 % (w/v) KH2PO4 

in dH2O  

autoclaved for 15 min at 121°C 

Microelements 0.6 % (w/v) MnCl2 x 4H2O 

0.15 % (w/v) H3BO3 

0.265 % (w/v) ZnSO4 x 7H2O 

0.075 % (w/v) KI 

0.24 ‰ (w/v) Na2MO4 x 2H2O 

0.013 % (w/v) CuSO4 x 5H2O 

in dH2O  

autoclaved for 15 min at 121°C 

 

4.5.6. A. thaliana cultivation 

 

A. thaliana was grown on green house substrate supplemented with a Bacillus 

thuringiensis israelensis suspension for seed propagation or for oxidative burst 

measurement (see section 4.7.15). In both cases A. thaliana seeds were directly sown 

in round 9 cm pots and stratified for 3 days at 4°C in the dark. For seed propagation 

pots were subsequently transferred into the green house and grown for 11 days before 

plants were separated (5 plants per 9 cm pot with fresh substrate) and grown under 

green house conditions until siliques were formed and aerial parts of the plants started 

to dry. Seeds were collected through a sieve with a pore size of 450 µm (VWR, 

Darmstadt) and stored in paper bags at room temperature. 
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For oxidative burst measurements the pots were transferred into a phytochamber and 

plants were grown under short day conditions (8 h light, 16 h dark) with 47 µmol m-2 s-

1 of light at 24°C for 11 days before plants were separated (1 plant per 6 cm pot with 

fresh substrate). After separation plants were grown for 7 to 14 more days until leaves 

had a diameter of ≥ 5 mm but were harvested before bolting. 

For the quantification of Ca2+-fluxes a transgenic A. thaliana line expressing 

cytoplasmic aequorin was used. The seeds were surface sterilized for 10 min with 70 

% ethanol and 7 min with 100 % ethanol. After sterilization seeds were transferred onto 

half-strength Murashige and Skoog medium (including vitamins, pH 5.7) supplemented 

with 1 % (w/v) sucrose and 0.4 % (w/v) Gelrite and stratified for 3 days at 4°C in the 

dark. Subsequently the plants were transferred into a phytochamber and grown for 5 

to 7 days under short day conditions (8 h light, 16 h dark) with 47 µmol m-2 s-1 of light 

and 24°C.  

For A. thaliana – S. indica interaction studies plants were grown under sterile 

conditions after surface sterilization. After stratification plates were transferred to the 

phytochamber and grown for 11 days under short day conditions (8 h light, 16 h dark) 

with 47 µmol m-2 s-1 of light and 24°C. Before inoculation with S. indica 20 plants per 

square petri dish plants were transferred onto half-strength Murashige and Skoog 

medium (including vitamins, pH 5.7) supplemented with 0.4 % (w/v) Gelrite. 

 

4.5.7 H. vulgare cultivation 

 

H. vulgare plants were either grown on greenhouse substrate supplemented with a 

Bacillus thuringiensis israelensis suspension for oxidative burst measurement (see 

section 4.7.15) or sterilely for interaction studies with S. indica. In both cases seeds 

were surface sterilized with 12 % sodium hypochlorite for 1.5 h and subsequently 

washed 5 times for 20 min with sterile water. For oxidative burst measurements seeds 

were directly transferred into round 9 cm pots (3 plants per pot) and grown for 5-7 days 

under long day conditions (16 h light, 8 h dark) with 60% humidity and 190 μmol m-2 s-

1 at 22°C/18°C in a phytochamber. 

For interaction studies with S. indica seeds were transferred onto wet filter paper after 

surface sterilization and pre-germinated at room temperature for 3 days in the dark. 

The germinated seeds were transferred into 1062 ml Weck® jars (Weck, Wehr-

Öflingen, Germany) containing 100 ml 1/10 PNM medium and grown for the indicated 



 

 

79 

times in presence of S. indica under long day conditions (16 h light, 8 h dark) with 60% 

humidity and 190 μmol m-2 s-1 at 22°C/18°C in a phytochamber. 1/10 PNM medium 

was composed like following 

 

1/10 PNM 

 

 

 

 

 

 

0.5 mM KNO3  

0.0005 % KH2PO4 

0.00025 % K2HPO4 

2 mM MgSO4 x H2O 

0.2 mM Ca(NO3)2 

0.25% (v/v) Fe-EDTA  

0.00025 % NaCl 

0.4% (w/v) Gelrite 

pH adjusted to 5.7 with KOH 

in dH2O  

autoclaved  

after autoclaving add: 10 mM MES pH 

6.0 (filter sterilized) 

Fe-EDTA  

 

0.55 % (w/v) FeSO4 x 7H2O 

0.75% (w/v) Na2EDTA x 2H20 

boiled in dH2O and stirred for 30 min  

 

4.6. Microbiological methods 

 

4.6.1 Preparation of chemocompetent E. coli cells 

 

Chemocompetent E. coli cells were prepared according to the RbCl/CaCl2 method and 

used for the propagation and multiplication of cloned vector constructs. 1 ml of an E. 

coli Top10 liquid culture grown in low salt LB-medium at 37°C was used to inoculate 

600 ml fresh low salt LB-medium supplemented with 10 mM MgSO4 and 10 mM MgCl2. 

The culture was grown at 37°C until OD600 reached 0.4 to 0.6 which corresponds to E. 

coli cells in the exponential growth phase. The culture was cooled on ice for 20 min 

before the cells were harvested by centrifugation at 3,000 rpm for 15 min. The 

supernatant was discarded and the cells were resuspended in 100 ml cold RF I solution 

with a pre-chilled glass pipet. The cells were incubated in the RF I solution for 60 min 
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on ice before they were pelleted again like described above. After discarding the 

supernatant the cell pellet was resuspended in 6 ml RF II solution and incubated for 

15 more min on ice. For long time storage the chemocompetent cells, were split into 

50 µl aliquots which were flash frozen in liquid nitrogen and stored at -80°C.  

 

RF I solution 

 

 

 

 

100 mM RbCl  

50 mM MnCl2 x 4H2O 

30 mM Potassium acetate 

10 mM CaCl2 x 2H2O 

15 % (w/v) glycerol 

pH adjusted to 5.8 with acetic acid 

in ddH2O  

filter sterilized 

RF II solution 

 

 

10 mM MOPS buffer 

10 mM RbCl 

75 mM CaCl2 x 2H2O 

15 % (w/v) glycerol 

pH adjusted to 6.8 with NaOH 

in ddH2O  

filter sterilized 

 

4.6.2 Heat shock transformation of E. coli 

 

The chemocompetent E. coli cells were used for heat shock transformation of vector 

constructs. An aliquot of the chemocompetent cells was thawed on ice before up to 5 

µl of the ligation mixture or purified plasmid were added and the cells were incubated 

for 20 min on ice. The heat shock was conducted subsequently for 45 s at 42°C and 

the cells were immediately cooled down on ice for 2 min afterwards. For the 

regeneration of the transformed cells 500 ml low salt LB-medium was added and the 

cells were incubated for 45 min at 37°C. Prior to plating the cells on selection plates 

containing 100 µg/ml ampicillin the cells were pelleted for 1 min at 13,300 rpm and the 

supernatant was discarded only leaving 50 µl, which was used for the resuspension of 

the cell pellet. The plates were incubated over night at 37°C. On the next day cell 

material of colonies potentially containing the right vector construct were used for a 
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colony PCR to verify the presence of transformed plasmid. Transformed colonies were 

used to inoculate 5 ml liquid cultures containing 100 µg/ml ampicillin which were grown 

over night at 37°C prior to extraction of the plasmid DNA. The plasmid DNA pre-mixed 

with suitable primers was sequenced by GATC Biotech (Cologne, Germany) to ensure 

the correctness of the vector cinstruct. 

 

4.6.3 Transformation of P. pastoris 

 

Transformation of P. pastoris was performed using the Pichia EasyComp® Kit 

(Invitrogen, Karlsruhe). For the selection the transformed cells were plated on RDB 

medium deficient of histidine. 

 

RDB plates 

 

 

 

 

 

1 M sorbitol 

2% (w/v) Agar 

in dH2O 

autoclaved for 15 min at 121°C 

after autoclaving add: 

1.34% (w/v) Yeast Nitrogen Base 

(without  amino acids, with (NH4)2SO4) 

4x10-5% (w/v) biotin 

2% (w/v) dextrose 

0.005% (w/v) of each L-glutamic acid, L-

methionine, L-lysine, L-leucine, L-

isoleucine 

all solutions filter sterilized 

 

4.6.4. Collection of S. indica chlamydospores 

 

Three to four weeks old S. indica plates were covered with 5 ml water containing 

0.002% Tween20 and spores were harvested by scratching the surface of the plate 

with a spatula and a scalpel. Filtration of the solution through a Miracloth filter (pore 

size 22-25 µm; Merck Millipore, Darmstadt, Germany) was performed, to remove 

residual fungal mycelium and medium. The spores, which went through the filter, were 

spun down at 3,500 rpm for 7 min and washed twice with 10 ml Tween water. Finally 
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the spores were resuspended in sterile water and counted using a Neubauer Improved 

counting chamber with 0.1 mm depth and set to a concentration of 500,000 spores/ml. 

For long time storage the spore solution was supplemented with 40 % (v/v) glycerol, 

frozen in liquid nitrogen and stored at -80°C.  

 

4.6.5. Collection of B. sorokiniana chlamydospores  

 

B. sorokiniana chlamydospores were collected in a similar way as S. indica spores with 

some minor adaptions. The surface of a 10 to 12 days old plate was covered with 5 ml 

water containing 0.002% Tween20 and only scratched with a spatula to avoid 

extensive disruption of the mycelium. The spore solution was filtrated through a 

Miracloth filter and the spores, which went through the filter were pelleted at 4,000 rpm 

for 10 min and subsequently washed twice with 10 ml sterile water. After washing the 

spores were resuspended in sterile water, counted in a Neubauer Improved counting 

chamber with 0.1 mm depth and set to a concentration of 5,000 spores/ml.  

 

4.6.6. S. indica – H. vulgare interaction studies 

 

For S. indica – H. vulgare interaction studies three pre-germinated H. vulgare seedlings 

were transferred into one Weck® jar containing 100 ml 1/10 PNM medium and 1 ml of 

S. indica spore solution containing 500,000 spores was added. For the mock controls 

1 ml of sterile water was added to the jars. The roots of the plants were harvested after 

1, 3, 7 and 14 days of inoculation by cutting 4 cm of the roots starting 0.5 cm below the 

seed, washing the roots thoroughly in sterile water and flash freezing the material in 

liquid nitrogen. The material of 4 jars per time point was collected as biological 

replicates. The material was stored at -80°C until RNA was extracted (see section 

4.7.2). 

To assess the effect of recombinant WSC3, 9 µM of the protein were mixed to the 

spore solution prior to addition of the spores to the roots. As control spores without 

protein was added to the roots. The experiment was performed twice with three 

biological replicates each. The material was harvested like described above and stored 

at -80°C until DNA was extracted (see section 4.7.1). 
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4.6.7. S. indica – A. thaliana Col-0 interaction studies 

 

For S. indica – A.thaliana interaction studies 20 A. thaliana plants were transferred 

from half-strength Murashige and Skoog medium (including vitamins, pH 5.7) 

supplemented with 1 % sucrose to ½ MS plates without sucrose and 0.3 ml of a S. 

indica spore solution containing 500,000 spores per ml was added to the roots of each 

plant. For the mock controls 0.3 ml of sterile water was added. The roots of the plants 

were harvested after 1, 3, 7 and 14 days of inoculation by cutting 4 cm of the roots 

starting 0.5 cm below the seed, washing the roots thoroughly in sterile water and flash 

freezing the material in liquid nitrogen. The material of 3 plates per time point was 

pooled as one biological replicate and 4 biological replicates were collected per time 

point. The material was stored at -80°C until RNA was extracted (see section 4.7.2). 

 

4.6.8 S. indica - B. sorokiniana interaction on soil 

 

S. indica - B. sorokiniana confrontation experiment was performed to investigate the 

expression of the WSC3 encoding gene PIIN_05825 in response to direct contact to a 

second fungus. S. indica GoGFP and B. sorokiniana were grown in liquid MYP medium 

at 28°C and 120 rpm of shaking for four or three days, respectively. The mycelium of 

both cultures was filtered through a Miracloth filter and washed three times with sterile 

ddH2O before disrupting the mycelial aggregates like described in section 4.6.9. The 

crushed mycelium of both fungi was regenerated for one day at 28°C with 120 rpm of 

shaking in fresh MYP medium. For the confrontation assay the mycelium of both fungi 

was filtered through a Miracloth filter again and 0.5 g of S. indica GoGFP mycelium 

and 0.5 g of B. sorokiniana mycelium were mixed well, resuspended in 5 ml sterile 

ddH2O and added to 30 g of autoclaved Cologne land soil (CAS10, kindly provided by 

Prof. Dr. Paul Schulze-Lefert). As a control 1 g of filtered S. indica GoGFP mycelium 

was resuspended in 5 ml sterile ddH2O and mixed with 30 g of the same soil. After 42 

h of incubation at 28°C the fungal mycelium was harvested from the surface of the soil, 

flash frozen in liquid nitrogen and stored at -80°C until RNA was extracted (see section 

4.7.2). The confrontation assay was performed by Debika Sarkar who kindly provided 

the material for RNA extraction. 
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4.6.9. S. indica protoplastation and PEG-mediated transformation 

 

For the transformation of S. indica a 250 ml culture in liquid CM medium was inoculated 

with 1 ml of a spore solution set to a concentration of 2.5 x 104 spores/ml and grown 

for 7 days at 28°C with 120 rpm of shaking. After 7 days the mycelium was collected 

by filtration through a Miracloth filter and washed with 50 ml 0.9 % NaCl solution before 

it was resuspended in 20 ml fresh CM medium. The mycelial aggregates were 

disrupted using a Microtron® MB550 homogenizer (Kinematica, Luzern, Switzerland) 

for 10 s and the homogenized culture was regenerated for 3 days at 28°C with 120 

rpm of shaking in a total volume of 150 ml fresh CM medium. After the regeneration 

the young mycelium was filtered again through a Miracloth filter and washed with 50 

ml of 0.9 % NaCl solution to remove spores and residual medium. For the 

protoplastation the mycelium was resuspended in 20 ml SMC supplemented with 2 % 

(w/v) Trichoderma harzianum lysing enzymes (Sigma Aldrich, Taufkirchen, Germany) 

which was sterile filtrated prior to use. The mycelium was protoplasted for 2 h at 32°C 

at 100 rpm of shaking. The protoplastation was checked microscopically with a Leica 

DM2500 light microscope (Wetzlar, Germany) and the reaction was stopped by 

filtration through a Miracloth and addition of an equal volume of cold STC solution. The 

protoplasts which went through the filter were pelleted at 4,000 rpm for 10 min and 

washed for three times in total with cold STC solution. The protoplasts were finally 

resuspended in an appropriate volume of cold STC and stored on ice until the 

transformation. 

50 µg of the plasmid DNA to be transformed were linearized on the day before by 

overnight incubation with 20 Units of the restriction enzyme BsaAI and precipitated for 

10 min at room temperature by addition of 0.5 volumes of 7.5 M ammonium acetate 

and 2 volumes of 100 % isopropanol. The plasmid DNA was pelleted by centrifugation 

for 30 min at 13,300 rpm, washed twice with 75 % ethanol, dried for 5 min at room 

temperature and finally resuspended in 10 µl sterile ddH2O. The linearized plasmid 

DNA was stored on ice until the transformation. 

For the transformation 70 µl of the protoplast solution were mixed with 10 µl of the 

linearized vector, 1 µl of a 15 mg/ml heparin solution and 10 Units BsaAI and incubated 

on ice for 10 min. Prior to another incubation step for 15 min on ice 0.5 ml of a freshly 

prepared, filter sterilized (0.45 µm filter) STC solution supplemented with 40 % (w/v) 

PEG 3350 (Sigma Aldrich, Taufkirchen, Germany) were added to the protoplast 
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solution. Finally the protoplast solution was mixed with 5 ml of the top medium which 

was kept at 45°C to prevent solidification and distributed on 20 ml solidified bottom 

medium containing 80 µg/ml hygromycin for selection of positive transformants. After 

solidification of the top medium the plates were incubated at 28°C As a positive control 

protoplasts were plated on bottom medium without hygromycin to assess if protoplasts 

were able to regenerate while protoplasts plated on bottom medium with hygromycin 

were used as negative control to ensure that the selection with hygromycin prevents 

regeneration of untransformed protoplasts. 

First colonies emerging 14 d after transformation were transferred to new CM plates 

supplemented with 80 µg/ml of hygromycin and to liquid CM medium for microscopy. 

All clones that were further used were checked whether they are homo- or dicaryotic. 

Therefore genomic DNA was extracted like described in section 4.7.1 and 100 ng of 

the DNA was used as template for a PCR amplifying unique regions of the four mating 

type loci HD 1.1 (PIIN_09915), HD 2.1 (PIIN_09916), HD 1.2 (PIIN_09977) and HD 

2.2 (PIIN_09978). Dicaryotic transformants possess all four loci whereas homokaryotic 

transformants only possess HD 1.2 and HD 2.2. 

 

SMC 

 

 

 

 

 

STC 

 

 

 

 

 

Bottom medium (MYP) 

 

 

 

 

1.33 M sorbitol 

50 mM CaCl2 x 2H2O 

20 mM MES 

pH adjusted to 5.8 

in ddH2O 

autoclaved for 15 min at 121°C 

1M sorbitol 

50 mM CaCl2 x 2H2O 

10 mM Tris.HCl 

ph adjusted to 7.5 

in ddH2O 

autoclaved for 15 min at 121°C 

0.7 % (w/v) malt extract 

0.1 % (w/v) peptone 

0.05 % (w/v) yeast extract 

1.2 % (w/v) agar 

0.3 M sucrose 
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Bottom medium (MYP, continued)) 

 

 

Top medium (MYP) 

 

 

 

80 µg/ml hygromycin 

in dH2O 

autoclaved for 15 min at 121°C 

0.7 % (w/v) malt extract 

0.1 % (w/v) peptone 

0.05 % (w/v) yeast extract 

0.6 % (w/v) agar 

0.3 M sucrose 

in dH2O 

autoclaved for 15 min at 121°C 

keep at 45°C until use 

 

4.6.10 Assessment of fungal growth phenotype in presence of WSC3 

 

The ability of WSC3 to agglutinate fungal cells/spores was investigated for the fungi U. 

maydis, B. sorokiniana and S. indica. U. maydis was grown over night in a liquid 5 ml 

YEPS light culture and the OD600 of the culture was measured subsequently. The 

culture was diluted with fresh YEPS light to an OD600 of 0.4. B. sorokiniana and S. 

indica spores were collected like described above (see 4.6.4 and 4.6.5). B. sorokiniana 

spores were diluted to 500 spores/ml in MYP medium and S. indica spores were diluted 

to 50,000 spores/ml in CM medium. 100 µl of the cell/spore solutions were transferred 

to individual wells of a 96-well plate. The recombinant WSC3 was sterile filtrated 

through a 0.22 µm filter and 10 µM were added to the individual wells. As controls 10 

µM wheat germ agglutinin conjugated with an AlexaFluor 594 fluorescence probe 

(WGA-AF594; Invitrogen, Karlsruhe, Germany) or 10 µM native FGB1 were added to 

the individual wells. As mock control sterile ddH2O was used. To each well sterile 

ddH2O was added to a final volume of 150 µl. Germination and phenotype of U. maydis 

was assessed microscopically after 4 h of incubation at 28°C with 250 rpm of shaking 

and for B. sorokiniana and S. indica after overnight incubation at 28°C with 120 rpm 

shaking. Pictures were taken using a Leica M165 FC stereo microscope or a Leica 

DM2500 light microscope (Wetzlar, Germany). For U. maydis the agglutination effect 

was quantified by counting the aggregated cells relative to the total number of cells. 

An aggregate was defined as structure with more than 2 cells being in direct contact 

with each other but not connected, as for example dividing cells. 
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4.6.11 Adhesion of S. indica spores to barley roots 

 

The ability of WSC3 and FGB1 to foster the adhesion of S. indica spores to barley 

roots was investigated. Therefore barley seeds were germinated for 5 d on wet filter 

paper at room temperature in the dark. First 4 cm of the roots starting 0.5 cm below 

the seed were cut into 1 cm pieces and incubated in 1 ml S. indica spore solution set 

to 500,000 spores/ml in 100 mM Tris buffer pH 8.0 for 1 min. Three individual spore 

solutions collected from three individual plates were used. The spore solutions were 

supplemented with 10 µM WSC, 10 µM FGB1 or sterile ddH2O as mock control. All 

solutions furthermore contained 5 µg/ml of the chitin-specific lectin WGA conjugated 

with the fluorescence probe AlexaFluor594 to specifically stain the spores. Pictures of 

the roots pieces were taken using a Leica TCS SP8 confocal microscope (Wetzlar, 

Germany) with an excitation wavelength of 561 nm and detection between 610-650 

nm. 10 µm wide z-stacks of the root pieces were recorded to completely image all 

layers of the root before counting the spores and measuring the dimensions of the root 

piece using the Fiji software (Schindelin et al., 2012).  

 

4.6.12 Cell wall stress resistance assay 

 

The cell wall stress resistance assay was performed to investigate if P.pastoris 

transformants expressing WSC3-6xHis display elevated resistance to the cell wall 

stressors Congo Red, Calcoflour White and H2O2. Three independent WSC3-6xHis 

expressing P.pastoris transformants and an Albumin expressing reference strain were 

grown overnight in liquid YPD medium, diluted the next day to OD600 of 0.2 and grown 

for 2 h at 28°C with 250 rpm of shaking to an OD600 of 0.6 to 0.8. The cells were 

subsequently pelleted by centrifugation at 3,500 rpm for 10 min and washed once with 

1 ml sterile ddH2O. The cells were resuspended in an appropriate volume of sterile 

ddH2O corresponding to an OD600 of 1. From this solution 5 consecutive serial dilutions 

from 1:10 to 1: 100,000 were prepared and 6 µl of each solution were dropped onto 

BMGY and BMMY plates (see section 4.7.6) supplemented with either 100 µg/ml 

Congo Red, 50 µg/ml Calcoflour White (Sigma Aldrich, Taufkirchen, Germany), 1 mM 

H2O2 (Sigma Aldrich, Taufkirchen, Germany) or without any supplements and grown 

for 2 d at 28°C before pictures were taken. 
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4.7. Molecular and biochemical methods 

 

4.7.1. DNA isolation 

 

Genomic DNA was extracted from S. indica colonized H. vulgare roots to quantify 

fungal colonization. The colonized roots were harvested like described before (see 

section 4.6.6) and ground in liquid nitrogen using mortar and pestle. Approximately 200 

mg of the ground material were mixed with 1 ml of the extraction buffer at room 

temperature for 10 min on a Stuart SB3 rotator (Cole-Parmer, Staffordshire, UK). 

Before centrifugation at 10,000 x g for 20 min, 1 ml of a chloroform:isoamylalcohol 

(24:1) mixture was added and mixed for 5 min. After centrifugation the upper phase 

was transferred into a new tube and mixed with 0.2 volumes of 100 % ethanol for 5 

min at room temperature. Before the samples were centrifuged again for 20 min at 

10,000 x g, 1 ml of a chloroform:isoamylalcohol (24:1) mixture was added and mixed 

for 5 min. The DNA was precipitated from the upper phase by addition of an equal 

volume of 100% isopropanol and overnight incubation at 4°C. The DNA was pelleted 

by centrifugation for 20 min at 5,000 x g and subsequently washed with 900 µl 70 % 

ethanol. The washed pellet was air dried, dissolved in TE buffer (pH 8.0) containing 

1µl RNAse A (10 mg/ml pH 7.4) and incubated for 60 min at 37°C  

 

Extraction buffer 

 

 

 

 

TE buffer 

100 mM Tris-HCl (pH 7,5) 

50 mM EDTA (pH 8)  

1,5 M NaCl 

2% (v/v) Cetrimonium bromide 

25 mM ß-Mercaptoethanol  

10 mM Tris-HCl 

1 mM EDTA (pH 8.0) 

ph adjusted to 8.0 

in ddH2O 

autoclaved for 15 min at 121°C 
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4.7.2. RNA isolation  

 

The RNA was either extracted from S. indica colonized A.thaliana or H. vulgare roots, 

from S. indica grown in axenic culture or from mixed S.indica – B. sorokiniana 

mycelium grown on soil to assess the expression of the S. indica gene PIIN_05825 

encoding the WSC3 protein. The material was harvested like described before (see 

section 4.6.6, 4.6.7 and 4.6.8) and ground in liquid nitrogen using mortar and pestle. 

For RNA-extraction from liquid culture, the mycelium was collected by filtration through 

a Miracloth filter, washed with 0.9 % NaCl and also ground in liquid nitrogen using 

mortar and pestle. For the extraction of RNA from S. indica grown on plate, the 

mycelium was carefully scratched from the plate using a scalpel and subsequently also 

ground in liquid nitrogen using mortar and pestle. 200 mg of the ground material were 

mixed with 1 ml TRIzol (Invitrogen, Karlsruhe, Germany) and thoroughly vortexed at 

1,500 rpm using a vibrax shaker (IKA, Staufe, Germany) until the material was 

completely suspended. Prior to centrifugation of the samples at 13,300 rpm for 30 min 

at 4°C 200 µl chloroform were added and the samples were again vortexed on the 

vibrax shaker at 1,500 rpm for 20 s. 500 µl of the upper aqueous phase were 

transferred to a new tube and mixed with 500 µl 100 % isopropanol followed by 

precipitation of the RNA at 4°C for 1 h. The precipitated RNA was pelleted by 

centrifugation at 13,300 rpm for 30 min at 4°C and washed with 1 ml of 75 % ethanol 

diluted water supplemented with 0.1 % DEPC. After washing the ethanol was 

discarded, the pellet was dried at room temperature and resuspended in 30 µl 

nuclease-free water (Promega, Mannheim, Germany) at 65°C for 5 min with gentle 

shaking. The integrity of the RNA was checked by agarose gel electrophoresis on a 1 

% 1 x TAE gel and RNA concentration was measured on a NanoDrop 2000c 

(ThermoScientific, Schwerte, Germany) at a wavelength of 260 nm. The RNA was 

stored at -80°C or directly used for cDNA synthesis (see section 4.7.3). 

 

50 x TAE buffer 

 

 

 

2 M Tris-HCl 

2 M acetic acid 

50 mM EDTA (pH 8) 

in ddH2O  

autoclaved for 15 min at 121°C  
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4.7.3. DNase digestion and cDNA synthesis 

 

Prior to the synthesis of cDNA from RNA genomic DNA was removed by a DNase I 

digestion (Thermo Scientific, Schwerte, Germany). 1µg of the RNA was mixed with 1 

µl 10 x DNase I Buffer, 1 µl DNase I (1 U/µl) and the reaction volume was brought to 

10 µl in total with nuclease-free H2O. After 30 min of incubation at 37°C the reaction 

was stopped by addition of 1 µl 50 mM EDTA and heating to 65°C for 10 min. 

The DNA-free RNA was directly transcribed into cDNA using the 1st strand cDNA 

synthesis kit supplied by Thermo Scientific (Schwerte, Germany) according to the 

manufacturer’s instructions. In brief, 9 µl of the DNase I-digested RNA were mixed with 

1 µl Oligo-dT, 1 µl random hexamer primers and heated for 5 min at 65°C. After chilling 

the RNA on ice 4 µl 5 x reaction buffer, 1 µl Ribolock RNase inhibitor (20 U/µl), 2 µl 10 

mM dNTPs and 2 µl MMLV reverse transcriptase were added and the reaction mixture 

was incubated for 5 min at 25°C. The reverse transcription was performed at 42°C for 

1 h prior to heat inactivation of the enzyme at 70°C for 5 min. The cDNA was diluted 

to 2.5 ng/µl and stored at -80°C for later use. 

 

4.7.4. Quantitative real-time PCR 

 

Quantitative real-time PCR (qRT-PCR) was either performed to quantify the 

colonization of H. vulgare roots by S. indica in presence or absence of WSC3 using 

genomic DNA as template for the reaction or to analyze the expression of the S. indica 

gene PIIN_05825 during colonization of H. vulgare and A. thaliana, during the 

confrontation of S. indica with B. sorokiniana or during growth of S. indica in axenic 

culture, in all cases using RNA transcribed into cDNA as template. The qRT-PCR was 

performed using the GoTaq qPCR mastermix (Promega, Mannheim, Germany) which 

already contained all reaction components and only was supplemented with the 

template DNA and 0.5 µM of the appropriate forward and reverse primer. For the gene 

expression analysis during the S. indica - B. sorokiniana confrontation experiment 20 

ng of cDNA were used as template in a reaction volume of 20 µl. For all other 

experiments 10 ng of template DNA/cDNA were used in a reaction volume of 15 µl. 

The PCR reaction was performed in a BioRad CFX96 Touch cycler (BioRad, Munich, 

Germany) using following program: initial denaturation for 3 min at 95 °C, followed by 

40 cycles of 15  s at 95 °C, 20  s at 59 °C, 30  s at 72 °C and a melt curve analysis from 
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65°C to 95°C with an increment of 0.5°C each 0.05 s. Four biological replicates were 

analyzed in parallel on one plate with three technical replicates per sample. The 

relative DNA amount or relative expression was calculated according to the 2-ΔΔCt 

method (Livak and Schmittgen, 2001). 

 

4.7.5 Purification of FGB1 from S. indica culture supernatant 

 

The detailed purification protocol for FGB1 is published in Wawra et al., 2016. In brief, 

native FGB1 was purified from the culture supernatant of a 7 d S. indica culture grown 

in CM. After removal of the mycelium the supernatant was filtrated through a 0.22 µm 

filter, diluted 1:1 with dH2O and the pH was raised with sodium acetate buffer to 5. The 

supernatant was then applied to columns containing EMD TMAE Hicap and Fractogel 

EMD SO3-  ion exchange material (both Merck, Darmstadt, Germany) which were 

subsequently washed with 10 mM sodium acetate buffer pH 5 to remove unbound 

proteins. FGB1 and all the other proteins bound to the SO3-  column were removed by 

stepwise elution with 10 mM sodium acetate buffer pH 5 supplemented with 1.5 M 

NaCl. The elution fractions containing the crude FGB1 concentrate were further 

purified by centrifugation in a Spin-X UF spin concentrator with a cutoff of 30 kDa 

(Corning, Wiesbaden, Germany), which led to a separation into a ≥ 30 kDa fraction 

that is not passing the filter and a ≤ 30 kDa fraction that is passing through the filter 

and contains FGB1. The ≤ 30 kDa fraction was then applied to a Spin-X UF spin 

concentrator with a cutoff of 5 kDa (Corning, Wiesbaden, Germany) to concentrate the 

purified FGB1. FGB1 was finally dialyzed once for 3 h against 3 L of water and and for 

a second time overnight against 3 L of water. 

 

4.7.6 Expression and purification of WSC3 in P. pastoris 

 

WSC3 was expressed in the methanotrophic yeast P. pastoris and subsequently 

purified via its 6x His-Tag from the culture supernatant. 500 ml BMGY were inoculated 

with the WSC3-expressing transformant and grown for 3 days at 28°C with 220 rpm 

shaking in baffled flasks. Subsequently the cells were pelleted by centrifugation at 

4,000 rpm for 25 min, resuspended in a total volume of 2 L BMMY medium and grown 

for 24 h at 28°C with 220 rpm of shaking. Afterwards the cells were removed from the 

medium by centrifugation at 4,000 rpm for 30 min and remaining cells were further 
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discarded from the supernatant by filtration through a 0.45 µm filter. The cell-free 

supernatant was diluted 1:1 with water, supplemented with 1 mM of PMSF and 1 mM 

of NiSO4 and the pH was raised above pH 7 through addition of 1 M sodium phosphate 

buffer pH 7.3. Prior to the application of the supernatant to the ion exchange columns 

the solution was again filtrated through a 0.45 µm filter to remove precipitated salts. 

The supernatant was first applied to the EMD TMAE Hicap material and the flow 

through was applied to the Fractogel EMD SO3-  ion exchange material (both Merck, 

Darmstadt, Germany) with a flow rate of 7 ml/min. Since WSC3 neither binds to the 

TMAE material nor the SO3- material at this pH the flowthrough was applied to a column 

containing Ni2+-NTA sepharose beads (Qiagen, Hilden, Germany) with a flow rate of 3 

ml/min. The Ni2+-NTA column was washed with 10 volumes of 10 mM sodium 

phosphate buffer pH 7.3 supplemented with 10 mM imidazole (Merck, Darmstadt, 

Germany) before WSC3 was eluted stepwise with 10 mM sodium phosphate buffer pH 

7.3 containing 300 mM imidazole. The collected protein fractions were analyzed on a 

SDS-PAGE (see section 4.7.9) and those containing pure WSC3 protein were pooled 

and dialyzed against 3 L of water overnight at 4°C. The dialyzed protein was 

concentrated using Spin-X UF spin concentrators with a cutoff of 30 kDa (Corning, 

Wiesbaden, Germany). To investigate if WSC3 is glycosilated by P. pastoris the protein 

was deglycosilated using the protein deglyosilation mix II of NEB (Frankfurt/Main, 

Germany) according to the manufacturers protocol. 

 

BMGY 1% (w/v) Yeast Extract 

2% (w/v) Peptone 

in dH2O 

autoclaved for 15 min at 121°C 

after autoclaving add: 

100 mM Potassium Phosphate pH 6.0 

1.34% (w/v) Yeast Nitrogen Base 

(without amino acids, with (NH4)2SO4) 

4x10-5% (w/v) biotin 

1% (w/v) glycerol 

all solutions filter sterilized 

BMMY 

 

1% (w/v) Yeast Extract 

2% (w/v) Peptone 
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BMMY (continued) in dH2O 

autoclaved 

after autoclaving add: 

200 mM Potassium Phosphate pH 6.0 

2.7 % (w/v) Yeast Nitrogen Base (without 

amino acids, with (NH4)2SO4) 

8 x 10-5 % (w/v) biotin 

2 % (w/v) methanol 

all solutions filter sterilized 

 

4.7.7 Isothermal Titration Calorimetry  

 

Isothermal titration calorimetry (ITC) was performed and analyzed like described in 

Wawra et al., 2016 to investigate the affinity of recombinantely produced WSC3-His to 

different oligo- and polysaccharides. All ITC measurements were performed by Dr. 

Stephan Wawra and data were kindly provided for publication in this PhD thesis. In 

brief, ITC quantifies the binding affinity of a protein to a ligand by measurement of the 

heat that is released when binding of the ligand to the protein occurs. As ligands 

Laminarin (Sigma Aldrich, Taufkirchen, Germany) at a concentration of 0.9 mM, 

laminarihexaose (Megazyme, Bray, Ireland) at a concentration of 1 mM, chitooctaose 

(Isosep, Tullinge, Sweden) at a concentration of 1.5 mM and gentiobiose (provided by 

Prof. Dr. Jürgen Seibel, Julian-Maximilians University of Würzburg) at a concentration 

of 1 mM were used. WSC3 and all used ligands were dissolved in water and 

concentrations of WSC3 are given in the result part (Figure 6). All measurements were 

conducted at 20°C and the data were baseline corrected and data from the control 

titration of the ligands into water has been subtracted.  

 

4.7.8 TCA precipitation of proteins 

 

To analyze the secreted protein fraction of S. indica and P. pastoris proteins were 

precipitated from the culture supernatant using trichloric acid (TCA). 20 ml of the 

respective culture supernatant or protein solution were mixed with 5 ml of 95 % (w/v) 

TCA and incubated overnight at 4°C. Subsequently 20 ml acetone were added and the 

protein precipitate was collected by centrifugation at 8,000 x g for 30 min. The protein 
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pellet was washed twice with acetone and shortly dried at 99°C to evaporate residual 

acetone. The pellet was resuspended in 100 µl Laemmli SDS buffer, heated for 10 min 

at 99°C and proteins were analyzed on SDS-PAGE (see section 4.7.9). 

 

4.7.9 SDS PAGE 

 

SDS-PAGE was performed in order to separate proteins according to their size and 

charge. Samples were mixed with an appropriate volume of Laemmli SDS buffer and 

boiled for 10 min at 99°C. Subsequently samples were loaded onto self-prepared 10 

% Bis-Tris gels (stacking gel 5 %) and run in 1 x MES-SDS running buffer containing 

5 mM Na2S2O5 for 45 min at 180 V in a BioRad Mini-PROTEAN tetra cell 

electrophoresis chamber (BioRad, Munich, Germany). After electrophoresis the gels 

were shortly washed in dH2O and stained for 1 h in Coomassie staining solution with 

gentle shaking. Gels were destained in destaining solution for approximately 3 h and 

then kept in dH2O. Size of the proteins was estimated using the protein marker Page 

Ruler Prestained (ThermoScientific, Schwerte, Germany). 

 

Laemmli SDS buffer 

 

 

 

 

 

10 % Bis-Tris gel 

 

 

 

 

 

20 x MES-SDS Running buffer 

 

 

 

Coomassie staining solution 

0.1 M Tris (pH 6.8) 

2 M thiourea 

8 M Urea 

8 % (w/v) SDS 

2 % (v/v) β-mercaptoethanol 

in dH2O 

333 mM Bis-Tris pH 6.4 

10 % (w/v) arcylamide/bisacrylamide (30 

% / 0.8 %) 

0.1 % (w/v) ammonium persulfate 

0.001 % (v/v) TEMED 

in ddH2O 

1 M MES 

1 M Tris 

20 mM EDTA (pH 8) 

2 % (w/v) SDS 

30 % (v/v) methanol 
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Coomassie staining solution (continued) 

 

 

 

 

Destaining Solution 

17.5 % (v/v) ethanol 

10 % (v/v) acetic acid 

2 % (w/v) Coomassie R-250 

0.2 % (w/v) Coomassie G-250 

in ddH2O 

50 % (v/v) methanol 

7 % (v/v) acetic acid 

in ddH2O 

 

4.7.10 Western Blot 

 

Western blot analysis was performed for the direct detection of recombinant WSC3-

6xHis in P. pastoris cultures or of WSC3-GFP in S. indica transformants. Loading 

volume of the analyzed samples was estimated from a Coomassie-stained SDS-PAGE 

according to the signal intensity of prominent protein bands. For the transfer of the 

proteins to a nitrocellulose membrane the gel, the membrane and two Whatman filter 

papers were equilibrated in transfer buffer and assembled like following from bottom 

to top: filter paper – membrane – gel – filter paper. The proteins were blotted using the 

semidry Fastblot B43 from Biometra (Göttingen, Germany) for 45 min at 375 mA. After 

blotting the gel was washed for 5 min in membrane wash buffer and subsequently 

stained for 5 min in Ponceau S solution. The excessive Ponceau S solution was 

washed away with 1 x PBS and the membrane was scanned. After the membrane was 

completely destained in PBS the membrane was incubated with the primary antibody 

in 1 x PBS supplemented with 2.5 % (w/v) milk powder and 0.1 % (v/v) Tween20 for 1 

h at room temperature. For the detection of WSC3-6xHis an anti-His antibody directly 

conjugated to HRP (Qiagen, Hilden, Germany) was used as 1:1,000 dilution and for 

the detection of WSC3-GFP an anti-GFP antibody (Roche, Mannheim, Germany) was 

used as 1:1,000 dilution. After the primary antibody solution was removed the 

membrane was washed three times for 5 min each in 1 x PBS before the secondary 

antibody was added in 1 x PBS supplemented with 2.5 % (w/v) milk powder and 0.1 % 

(v/v) Tween20 and incubated for 1 h at room temperature. For the detection of the anti-

GFP antibody a secondary anti-mouse antibody conjugated to HRP (Sigma Aldrich, 

Taufkirchen, Germany) at 1:1,000 dilution was used. The membrane was finally 

washed again for three times 5 min in 1 x PBS before the Pierce ECL Western blot 
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substrate (ThermoScientific, Schwerte, Germany) was added and the 

chemiluminescence was detected using the Gel Doc XR+ device from BioRad (Munich, 

Germany). 

 

Transfer buffer 

 

 

 

 

 

Membrane wash buffer 

 

 

 

Ponceau S solution 

 

 

20 x PBS 

48 mM Tris 

20 mM HEPES 

1 mM EDTA (pH 8) 

1.3 mM Na2S2O5 

1.3 mM dimethylformamide 

in ddH2O 

0.1 M maleic acid 

0.15 M NaCl 

0.3 % (v/v) Tween20 

in ddH2O 

0.1 % (w/v) Ponceau S 

1 % (v/v) acetic acid 

in ddH2O 

2.76 M NaCl 

54 mM KCl 

202.8 mM Na2HPO4 x 2H2O 

35.2 mM KH2PO4 

in ddH2O 

 

4.7.11 Laminarin protection assay 

 

An enzyme protection assay was performed to investigate if WSC3 is able to protect 

laminarin (Sigma Aldrich, Taufkirchen, Germany) from the hydrolysis by an endo-1,3-

β-D-glucanase from barley (Megazyme, Bray, Ireland). Therefore an BCA-assay was 

performed which relies on the reduction of Cu2+- to Cu+-ions by the reducing end of 

mono- and oligosaccharides which are generated by the hydrolysis of laminarin. The 

Cu+-ions are chelated by the bicinchoninic salt (BCA) which leads to the formation of 

a complex that absorbs light at a wavelength of 540 nm. This complex can be used for 

the colorimetric quantification of the released reducing sugars using glucose solutions 

at different concentrations as calibration curve.  
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Following reactions were performed with four replicates in parallel in 100 mM sodium 

acetate buffer pH 5 in a total volume of 125 µl at 40 °C with 900 rpm of shaking in a 

TS1 thermoshaker (Biometra, Göttingen, Germany): 

 (A) 0.125 U/ml endo-1,3-β-D-glucanase + 5 mg/ml laminarin 

 (B) 10 µM WSC3 + 5 mg/ml laminarin 

 (C) 0.125 U/ml endo-1,3-β-D-glucanase + 10 µM WSC3 

 (D) 0.125 U/ml endo-1,3-β-D-glucanase + 10 µM WSC3 + 5 mg/ml laminarin 

10 µl sample were taken out of the reaction mixture right after mixing (0 min) and after 

5 min, 10 min, 15 min, 20 min, 30 min and 40 min of incubation, mixed with 90 µl of 

ddH2O and heated for 5 min at 99°C to inactivate the enzyme and stop the reaction. 

The samples were kept on ice until all samples were collected and 50 µl of each sample 

was mixed with 50 µl of the BCA working solution containing 77.7 % (v/v) BCA solution 

A, 2.3 % (v/v) BCA solution B and 20 % (v/v) ethanol. The samples were subsequently 

incubated for 1 h at 80°C before the OD540 was measured in 96-well plates in a Tecan 

Spark 10M plate reader (Tecan, Männedorf, Switzerland). To generate the calibration 

curve 12 glucose solutions at concentration ranging from 0 mM to 1.4 mM were treated 

in a similar way. 

 

BCA solution A 

 

 

BCA solution B 

 

 

 

3.9 mM Bicinchoninic acid disodium salt 

588 mM Na2CO3 

in ddH2O 

175 mM aspartic acid 

314 mM Na2CO3 

45 mM CuSO4 x 5H2O 

in ddH2O 

 

4.7.12 Protein pull-down with cell wall preparations 

 

The ability of WSC3-His to bind protein-free cell wall preparations from S. indica 

mycelium and H. vulgare roots was investigated. Therefore, S. indica mycelium from a 

seven day old liquid culture grown in CM and root material from ten day barley plants 

grown in 1/10 PNM medium were collected and ground in liquid nitrogen using a pestle 

and mortar. The ground material was dissolved in 1 ml PBS containing 0.1 mg/ml 

Proteinase K (ThermoScientific, Schwerte, Germany). After incubation for 1.5 h at 
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55°C the Proteinase K was inactivated by 10 min incubation at room temperature with 

1 mM PMSF. The cell wall material was spun down at 13,300 rpm for 3 min, washed 

three times with sterile H2O and dried over night at room temperature. After drying the 

material was ground again for 1 min and resuspended in 500 µl sterile H2O and 

sonificated for 30 s (duty cycle 40%, output control 4; Branson Sonifier 250, Branson 

Ultrasonics, Danbury, USA). 5 mg of the ground cell wall material was incubated with 

20 µM WSC3-His in a total volume of 800 µl. The samples were incubated for 3 h at 

room temperature or overnight at 4°C on a rotating shaker. The insoluble fraction was 

centrifuged down at 13,300 rpm for 5 min and the supernatant was collected. The pellet 

fraction was washed three times with sterile H2O and resuspended in Laemmli SDS 

buffer. The proteins were precipitated from the supernatant with TCA like described in 

4.7.8 and also resuspended in Laemmli SDS buffer. All samples were boiled for 10 min 

at 99°C prior to loading on a SDS-PAGE like described in 4.7.9. 

 

4.7.13 Enzymatic extraction of cell wall proteins 

 

An enzymatic extraction of cell wall localized proteins was performed to investigate if 

WSC3-6xHis is covalently bound to the cell wall of the P. pastoris. P. pastoris 

transformants were grown like for the expression and purification of WSC3 and cells 

were collected by centrifugation after growth in BMMY (see section 4.7.6). 20 ml of the 

P. pastoris culture supernatant was precipitated with TCA (see section 4.7.8). The P. 

pastoris cell pellet was crushed in liquid nitrogen using mortar and pestle and around 

50 mg of the crude extract were heated in 150 µl Laemmli SDS buffer for 10 min at 

99°C. The remaining material was washed 5 x with cold ddH2O, 3 x with cold 5 % NaCl, 

3 x with cold 2 % NaCl, 3 x with 1 % NaCl and 3 x with 1 mM PMSF to remove residual 

medium, loosely bound proteins and other contaminants like polysaccharides. The 

remaining pellets were heated to 99°C for 20 min in 500 µl SDS extraction buffer. 

Afterwards the cell wall material was collected by centrifugation at 3,000 x g for 20 min 

and washed 5 x with 100 mM sodium acetate buffer (pH 5) supplemented with 1 mM 

PMSF while the supernatant was transferred to a fresh tube, mixed with an equal 

volume of Laemmli SDS buffer and heated for 10 min to 99°C. The pellets were split 

into 5 fractions after washing and treated like following overnight: 

 (A) 30 mM NaOH at room temperature 
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(B) 25 U/ml endo-1,3-β-D-glucanase from barley in 100 mM sodium acetate 

buffer(pH 5) at 37 °C 

(C) 20 mg/ml Trichoderma harzianum lysing enzymes in 100 mM sodium 

acetate buffer(pH 5) at 37 °C 

(D) 5 U/ml exo-1,3-β-D-glucanase from Trichoderma virens (Megazyme, Bray, 

Ireland) in 100 mM sodium acetate buffer(pH 4.5) at 37 °C 

(E) 9 mg/ml chitinase from Trichoderma viride (Sigma Aldrich, Taufkirchen, 

Germany) in 100 mM sodium acetate buffer(pH 5) at room temperature 

After the treatment the cell wall material was pelleted by centrifugation at 3,000 x g for 

20 min and the pellets were washed twice with ddH2O while the supernatant was mixed 

with an equal volume of Laemmli SDS buffer and heated for 10 min to 99°C. The 

washed cell wall pellets were resuspended in 150 µl Laemmli SDS buffer and heated 

to 99°C for 10 min. All samples were loaded on 10 % Bis-Tris gels (see section 4.7.9) 

and further analyzed towards the presence of WSC3-6xHis by Western blot (see 

section 4.7.10). 

 

SDS extraction buffer 

 

 

50 mM Tris-HCl (pH 8) 

100 mM EDTA (pH 8) 

2 % (w/v) SDS 

10 mM DTT 

in ddH2O 

 

4.7.14 Preparation of the chitin suspension 

 

A chitin suspension was prepared from water insoluble shrimp shell chitin (Sigma 

Aldrich, Taufkirchen, Germany) to elicit the ROS-production in A. thaliana and H. 

vulgare leaves (see section 4.7.15). 50 mg chitin were homogenized in 5 ml of sterile 

ddH2O using mortar and pestle for 5 min. The suspension was heated to 40 s in a 

microwave at maximum watt, transferred to a 15 ml Falcon tube and the volume was 

filled to 5 ml with sterile ddH2O. The suspension was subsequently sonificated for 2 

min at power level 5 and a duty cycle of 30 % to further homogenize the solution. The 

water insoluble fraction was collected by centrifugation for 6 min at 3,000 rpm and the 

supernatant was diluted 1:1 in sterile ddH2O to obtain the working solution at an 

approximate concentration of 5 mg/ml. 
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4.7.15 Quantification of reactive oxygen species (ROS) 

 

The production of ROS as early plant defense response was quantified using a luminol-

based assay that relies on the oxidation of the luminol-derivative L-012 (Wako 

Chemicals, Neuss, Germany) ROS, mostly H2O2, produced by the plant for example 

in response to MAMPs is decomposed by a supplemented HRP (Sigma Aldrich, 

Taufkirchen, Germany) and the generated oxygen reacts with the luminol molecule 

leading to a conformational change, which in turn leads to the emission of 

chemiluminescence. 

ROS production was measured in A. thaliana and H. vulgare plants that have been 

grown like described in 4.5.6 and 4.5.7, respectively. Leaf discs with a diameter of 5 

mm were cut out the rosette leaves of the A. thaliana plants or the second and third 

leaf of the H. vulgare plants using a Biopsy puncher (A. Hartenstein, Würzburg, 

Germany). The leaf discs were carefully transferred to white, flat bottom 96-well plates 

(Biozym, Hessisch Oldendorf, Germany) and incubated in 200 µl tap water for 16 h at 

room temperature in the dark. Prior to the ROS measurement the water was replaced 

by 200 µl 10 mM MOPS buffer pH 7.4 supplemented with 10 µM L-012 and 10 µg/ml 

HRP. The background luminescence was measured for 10 cycles with 1 min per cycle 

and an integration time of 450 ms per well. Prior to the injection of the MAMP-solution 

the indicated proteins and buffers were added by hand at the indicated final 

concentration. As MAMPs Laminarin (Sigma Aldrich, Taufkirchen, Germany), a chitin 

suspension (see section 4.7.12), laminarihexaose (Megazyme, Bray, Ireland), 

chitohexaose (Isosep, Tullinge, Sweden), gentiobiose (provided by Prof. Dr. Jürgen 

Seibel, Julian-Maximilians University of Würzburg) and flg22 (Genscript, Piscataway, 

USA) were used and injected with 200 µl/s into the wells. The luminescence was 

recorded for 100 cycles with 1 min per cycle and an integration time of 450 ms per well 

using a Tecan Spark 10M or Tecan M200 Pro plate reader (Tecan, Männedorf, 

Switzerland). 

 

4.7.16 Quantification of MAMP-induced Ca2+-fluxes 

 

The influx of Ca2+-ions into the plant cytoplasm is one of the earliest defense responses 

after recognition of MAMPs. The Ca2+-influx can be quantified using an A.thaliana Col-

0 reporter line expressing cytoplasmic aequorin which upon binding of Ca2+-ions is 
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oxidizing coelenterazine (Promega, Mannheim, Germany) and thus produces a 

chemiluminescence signal proportional to the amount of Ca2+-ions. The plants were 

grown like described in 4.5.6 and 6 plants of similar size per treatment were transferred 

into white, flat bottom 96-well plates (Biozym, Hessisch Oldendorf, Germany) 

containing 50 µl reconstitution buffer and stored overnight in the dark at room 

temperature. The next day the background luminescence was measured for 5 cycles 

with 1 min per cycle using a Tecan Spark 10M or Tecan M200 Pro plate reader (Tecan, 

Männedorf, Switzerland). Prior to the injection of 1 µM flg22 (Genscript, Piscataway, 

USA) to induce the Ca2+-influx 10 µM of either FGB1 or WSC3-His were added to the 

wells by hand. As mock control 2 mM MES pH 5.7 was added. The emitted 

luminescence was recorded for 30 cycles with 1 min per cycle.  

 

Reconstitution buffer 2 mM MES (pH 5.7) 

10 mM CaCl2 

10 µM coelenterazine 

 

4.8. Microscopy 

 

4.8.1 Confocal microscopy 

 

Confocal microscopy was performed using a Leica TCS SP8 confocal microscope 

(Wetzlar, Germany) to visualize the localization of WSC3-GFP in S. indica 

transformants. The transformants were grown for 6 to 14 days in liquid CM medium at 

28°C with 120 rpm of shaking. Some of the fungal mycelium was transferred to a 1.5 

ml Eppendorf tube containing 1 ml tap water and 5 µg/ml of WGA-AF594 (Invitrogen, 

Karlsruhe, Germany). Prior to microscopy 100 µl of 1 M Tris pH 8 were added, raising 

the pH of the solution to increase the GFP fluorescence signal. The GFP-fluorescence 

was excited using an Argon laser at a wavelength of 488 nm and the emitted light was 

detected at a wavelength range of 500-540 nm using a hybrid detector (HyD). The 

WGA-AF594 signal was excited with the DPSS laser at a wavelength of 561 nm and 

the emission was detected at a wavelength range of 605-660 nm using a 

photomultiplier (PMT). To also detect unspecific background signal a diode at 405 nm 

was used and emission was detected at 420-460 nm using a hybrid detector (HyD). 

Pictures were taken at a resolution of 1024 x 1024 pixels with a line average of 2 to 6 



 

 

102 

and a frame accumulation of 2 to 4. For the analysis of the pictures the Fiji software 

(Schindelin et al., 2012) was used. 

 

4.8.2 Transmission electron microscopy 

 

Transmission electron microscopy was realized in collaboration with Dr. Ulla Neumann 

at the Central Microscopy Facility (CeMic) of the Max-Planck-Institute for Plant 

Breeding Research in Cologne to visualize the chitin and β-1,3-glucan components in 

the S. indica cell wall at the ultrastructural level. The homokaryotic reference strain S. 

indica GenR was grown for 5 d at 28°C with 120 rpm of shaking in liquid CM, the 

mycelium was filtered through a Miracloth filter, and homogenized like described above 

(see section 4.6.9). The homogenized mycelium was regenerated for 2 d in liquid CM 

at 28°C with 120 rpm of shaking before further processing at the MPIPZ. For TEM 

analysis, samples were fixed in 2.5 % glutaraldehyde and 2 % paraformaldehyde in 

0.05 M sodium cacodylate buffer, pH 6.9, for 2 h at room temperature followed by an 

overnight incubation at 4°C. After thorough rinsing with 0.05 M sodium cacodylate 

buffer, the samples were post-fixed for 1 h on ice with 0.5 % OsO4 in 0.05 M sodium 

cacodylate buffer, pH 6.9, supplemented with 0.15 % potassium ferricyanide. 

Thereafter the samples were again thoroughly rinsed with 0.05 M sodium cacodylate 

buffer and dehydrated in an ethanol series from 10 % to 100 %, then in different 

ethanol:acetone mixtures and finally in 100 % acetone. Subsequently, samples were 

infiltrated with 25% Araldite 502/EmBed 812 (EMS, Hatfield, USA) in acetone. Further 

resin infiltration and final embedding was performed with the help of the EMS poly III, 

an evaporation-controlled automated embedding and polymerization device (EMS, 

Hatfield, USA). Ultrathin sections (70 – 90 nm) were prepared like described before 

(Micali et al., 2011; Kleemann et al., 2012). For the detection of β-1,3-glucan, the 

samples were immunogold labelled like described in Micali et al., 2011 using a 1:100 

dilution of the mouse monoclonal anti-β-1,3-glucan antibody (Biosupplies Australia 

Pty., Parkville, Australia). Detection of chitin was performed using undiluted WGA 

conjugated with 10 nm gold particles (EY Laboratories, San Mateo, USA) for 3 h at 

room temperature, followed by thorough rinsing with TRIS buffer and water. 

Transmission electron microscopy was performed using a Hitachi H-7650 TEM 

(Hitachi, Krefeld, Germany) operating at 100 kV. The acquired pictures were further 

analyzed using the Fiji software (Schindelin et al., 2012). 
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For the quantification of chitin and β-1,3-glucan within the fungal cell wall the 

corresponding gold particles after staining with WGA for chitin and an anti-β-1,3-glucan 

antibody for β-1,3-glucan were counted from at least 50 pictures. The dicaryotic S. 

indica wildtype strain and the S. indica WSC3-GFP transformant number 3 were grown 

on solid CM plates for three weeks. Agar blocks were cut from the outer edge of the 

culture and processed like described above. After counting the gold particles the length 

of the cell wall was quantified from the taken pictures using the Fiji software and the 

number of gold particles per µm of cell wall was calculated. The average of gold 

particles/µm cell wall was calculated from all pictures and subsequently the β-1,3-

glucan-to-chitin ratio was calculated and normalized to the the dicaryotic S. indica 

wildtype strain which accordingly was set to 1. 

 

4.8.3 Light microscopy 

 

Light microscopy was performed using a Leica M165 FC stereo microscope or a Leica 

DM2500 light microscope (Wetzlar, Germany). The acquired pictures were further 

analyzed using the Fiji software (Schindelin et al., 2012). 

 

4.9 Bioinformatics 

 

4.9.1 Genome wide association screen - GWAS 

 

The genome wide association (GWA) screen was performed to correlate the 

phenotypic differences between A. thaliana accession regarding their responsiveness 

to the MAMPs laminarin and chitin to genotypic differences. The peak luminescence 

values measured in the oxidative burst assay (see section 4.7.15) were normalized to 

those of the reference accession Col-0 (set to a value of 1) and subjected to a GWA 

screen using the GWAPP online resource (Seren et al., 2012). The laminarin dataset 

was box-cox transformed and the chitin dataset was square root transformed to ensure 

a normal distribution, analyzed using the amm-algorithm and finally used to create a 

Manhattan plot of the −log(p-value) SNP marker–trait associations with a minor allele 

count (MAC) of 5. SNPs with a −log(p-value) of 4 and all genes being located 20 kb 

up- and downstream of these SNPs were subjected to further analysis. Gene 

annotations and ontologies were retrieved from TAIR9 (www.arabidopsis.org).  
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4.9.2 agriGO 

 

The agriGO toolkit and database was used for a GO-term enrichment analysis of the 

A. thaliana gene list created from the genome wide association (GWA) screen to 

generate a functional profile of the genes identified by the GWAS. The agriGO version 

2.0 was used and a single enrichment analysis (SEA) was performed (Tian et al., 

2017).  

 

4.9.3 Mega7 

 

A phylogenetic analysis of the 35 WSC-encoding genes was conducted using Mega7 

(Kumar et al., 2016). Additionally the closest homolog of the WSC3-encoding gene 

PIIN_05825 of the close relative Serendipita vermifera (Sebve1_01124) was included. 

The homolog was identified by a blastp search against the non-redundant protein 

sequences database (nr) with the full length WSC3 protein sequence as query. The 36 

concetanated amino acid sequences of the WSC domains were aligned using the 

MUSCLE algorithm (Edgar, 2004) with the Unweighted Pair Group Method with 

Arithmetic Mean (UPGMA) clustering method. The alignment was subjected to a 

phylogenetic clustering generating a maximum parsimony tree using the Subtree-

Pruning-Regrafting (SPR) algorithm with 1,000 bootstraps. 
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