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1 Introduction

Energy economic research contributes to a better understanding of energy markets,

such as resource and electricity markets. Within this broad field, research on mar-

kets, policy interventions and environmental issues is, among others, conducted.

One unique characteristic of energy markets, serving as ‘common ground’ for aca-

demic studies in the field of energy economics, is the condition of a reliable power

supply that satisfies power consumption over time and even more importantly in

real time. Given that supply and demand levels could change (rapidly) on a tem-

poral scale, based on for instance forced generation unit, transmission line outages,

sudden load changes or regulations, this seemingly unremarkable condition has far-

reaching implications for generators, consumers and policy makers alike. Whereas

both, the demand and supply side can individually contribute to a secure system,

policy makers may be willing to set the right framework for energy markets and

correct market failures or even implement policy instruments for a desired outcome.

In this thesis, the following four essays on energy economics, covering the listed

topics, are presented. Each chapter is based on a single article to which the authors

contributed equally:

Chapter 2: When are Consumers Responding to Electricity Prices? An Hourly Pattern

of Demand Elasticity (based on Knaut & Paulus (2016))

Chapter 3: Competition and Regulation as a Means of Reducing CO2-Emissions -

Experience from U.S. Fossil Fuel Power Plants (based on Growitsch et al. (2017))

Chapter 4: The Impact of Advanced Metering Infrastructure on Residential Electric-

ity Consumption - Evidence from California (based on Paschmann & Paulus (2017))

Chapter 5: Electricity Reduction in the Residential Sector - The Example of the Cal-

ifornian Energy Crisis (based on Paulus (2017))

The four essays are stand-alone and may be read in any order; however, with

the analysis of the demand side in Chapter 2, I intend to shed some light on the

commonly assumed inelastic demand assumption in electricity markets by study-

ing the German market. Chapter 3, 4 and 5 study policy interventions affecting

both, the generation and demand side in electricity markets. Whereas Chapter 3

1



1 Introduction

addresses policy intervention directed towards environmental protection, Chapter 4

and 5 rather investigate the impact on residential demand reduction through policy

interventions specifically targeting a change in electricity usage.

The presented methodologies to tackle the issues discussed and the topic selection

itself are guided by the author’s interest. The following introduction provides a brief

summary of the four essays, including the research question and a brief discussion

of the results. Furthermore, the author sets out how each of the four essays adds

to existing literature and serve for a better understanding of the investigated top-

ics. The introduction concludes with possible extensions for future research, critical

reflections and some improvements to methodologies for the essays.

1.1 Introducing the Essays

Chapter 2 focuses on the demand elasticity in the German wholesale market by ap-

plying a two stage least-squared estimation technique. Complementary to already

conducted research, the estimated demand elasticity is not sub-market specific. The

estimation is based on hourly time intervals. It is motivated by the thought that

utility resulting from electricity consumption for all end consumers differs in every

hour. Thus, the higher temporal resolution reveals hourly patterns for demand elas-

ticities ranging from -0.02 to -0.13 for the analyzed market area. The article adds

to attempts for measuring demand elasticities of higher temporal order in electricity

market by building on some initial thoughts of Bönte et al. (2015). However, an

analysis for Germany is so far lacking in the literature. Our analysis makes use of

the stochastic character of renewable generation that primarily affects the supply

side but not the demand side thereby serving as a suitable instrument in order to

solve simultaneity issues occurring in electricity markets. The found hourly elasticity

results for the German market may be used for further academic studies attempting

to model electricity markets with simulation methods where commonly demand de-

velopments for sectors are a prior defined as perfectly ‘inelastic’, a restriction that

from the author’s point of view is implicitly questioned.

Chapter 3 investigates the influences of regulation and gas prices on the emission

levels of fossil power plants for all states in the U.S. Research has been motivated by

the rising influence of shale gas in the past decade influencing gas prices and con-

sumption. It furthermore investigates the switch from a heavily coal-based genera-

tion portfolio to a less carbon-intense gas-fired generation portfolio over a thirteen

years period by taking gas price effects and a tightened CO2-regulation for emis-

2



1.1 Introducing the Essays

sion in the generation portfolio into account. The essay is based on Growitsch et al.

(2017) and uses nonparametric benchmarking techniques to first identify best prac-

tice states between 2000 and 2013. Example states and their generation portfolios

are used to back up results obtained by the approach and provide an intuitive under-

standing for some states, where initial interpretation of benchmarking results may

not be straightforward (i.e. for North Dakota). Secondly, a regression on the CO2

emission performance over time is conducted by controlling among others for gas

prices and all CO2-related regulation, occurring in the form of emission standards

and cap and trade systems. The empirical analysis presented in Chapter 3 adds to

the literature on benchmarking within the power generation field, where good and

bad outputs need to be simultaneously modeled. We make use of the standard as-

sumptions of Färe & Primont (1995) and extend the standard model of Shephard

(1953) by using an input distance function allowing for a multi-input and output

simulation that is indispensable when analyzing emissions of fossil power genera-

tion. Besides best practice states, our results show lower gas prices and stringent

CO2 regulations are suitable means to reduce CO2 emissions.

Chapter 4 analyzes the policy-induced Advanced Metering Infrastructure deploy-

ment in California and the related impact of additional information on residential

electricity consumption. Contrary to the other chapters, Chapter 4 is positioned in

the literature on behavioral economics linking informational feedback, the nature

of consumers being rationally bounded with residential electricity consumption (as

for instance also done by Allcott & Rogers (2014)). A rather systemic perspective is

framing this chapter by analyzing the respective impact of Advanced Metering In-

frastructure deployment on electricity savings. With the help of synthetic control

techniques (Abadie et al., 2010), the obstacle of not having a direct control group

within a large-scale framework is overcome. A Difference-in-Differences estimation

accounts for causality and persistency matters over a 13-year period. As such, the

chosen approach differs with respect to test pilots analyzing shorter time spans and

the fact that a subsample of the population may cause severe estimation bias. The

results show a significant negative impact of Advanced Metering Infrastructure on

monthly residential electricity consumption that ranges from 6.1% to 6.4% over the

respective period. Additionally, an impact of Advanced Metering Infrastructure on

residential electricity consumption only occurs in non-heating periods and does not

fade out over the analyzed time period.

Chapter 5 investigates supply shortages in the Californian electricity market and

the role of policy measures to contain the Energy Crisis. The contribution of this

3



1 Introduction

paper lies not only in the assessment of policy measures and electricity price effects

to curb residential electricity consumption, it furthermore reveals that consumption

in the Californian residential sector may be reduced by up to 12% triggered partly by

an adjustment within respect to secondary energy use in the residential sector. As my

results show, this ‘reduction potential’ or ‘residential comfort buffer’ is more likely

to be leveraged in summer periods which I relate to comfort issues that consumers

are not willing to ’sacrifice’ on in winter periods. Chapter 5 adds to the discussing

of electricity price impacts in residential electricity markets (Albadi & El-Saadany,

2008) and the effectiveness of short term policy measures targeting residential elec-

tricity reduction rather than technical replacements of household appliances that

commonly cover longer time periods. It is thus positioned in the context of policy

measures not related to changing technical household appliances. Methodologically,

Chapter 5 makes uses of a synthetic control group derivation. A nationwide analysis

for the impact of conservation programs, in particular the ’20/20’ rebate program

and the mass media campaign, emerging from the Californian Energy Crisis has not

been conducted so far. The mutual impact of conservation impacts is estimated via

a treatment regression.

1.2 Future Research and Possible Improvements to

Methodologies

Expect for Chapter 4 and 5 mutually sharing the application of a synthetic con-

trol group derivation, all four chapters address different research questions, each

of which requires a different methodology. Chapter 3 presents a non-parametric

benchmarking approach to model emission improvements over time, followed by an

applied econometric method. Even though the baseline model is extended by the

features of multiple inputs and outputs, reflecting that emissions cannot be reduced

without reducing electricity generation, some researchers tend to rather follow the

material balance constraint programing (i.e. Førsund (2008)) essentially imposing

the condition that residuals cannot be used when jointly modeling input and output

on a multi-dimensional level. The critique applied to previous literature may there-

fore also apply to the analysis presented here. In addition, the model may fail to in-

corporate important features of the industry on a micro level. Firm specific data may

thus grasps the fundamental industry structure of the fossil generation with more

detail. However, it may also be noted that the aggregated data used by the authors

stems from a detailed data survey conducted by the Energy Information Adminis-

4



1.2 Future Research and Possible Improvements to Methodologies

tration agency in the U.S. (i.e. EIA form-860) that builds upon data collection on

the power plant unit level. Although numerous estimation specification have been

tested, both with respect to appropriateness of the chosen instrument and variable

selection, estimation bias through variables possessing certain additional explana-

tory power cannot be ruled out with complete certainty.

Chapter 2 estimates hourly demand elasticity in the German market. With respect

to the applied instrument the authors are confident that chosen wind generation is

well-defined and appropriate for estimating prices in the first stage. Other instru-

ments may be considered for solving the endogeneity issue in order to support or

neglect our findings. Furthermore, extending the analysis over a multi-year period

would provide interesting insights into the degree of hourly demand elasticities over

longer periods. As data on renewable infeed has started to be officially published

in 2014, the authors consider an evaluation of other years as an interesting addi-

tional analysis. Lastly, the regional scope of the analysis lacks an important issue

not completely addressed in this chapter. In particular, the regional connection to

neighboring states where electricity may be bought at lower prices are only indi-

rectly reflected by using realized consumed volumes and electricity prices that have

been subject to trading prior to settlement.

As already stated, Chapter 4 and 5 methodologically share the application of a

synthetic control group derivation. The empirical analysis in Chapter 5 ends with

the year 2002 whereas the empirical analysis of Chapter 4 commences in 2003.

In both chapters, the methodological approach builds on Abadie et al. (2010) and

mimics the residential electricity consumption that would have occurred without

the treatment. The gathered data represent a wide range of socio-economic vari-

ables accounting on a monthly basis for both fluctuations of residential electricity

consumption over time and the respective differences between the states. The as-

sumption of parallel trends prior the policy treatment is valid in both chapters and

both chapters add to literature on policy-induced residential consumption changes.

Whereas Chapter 4 analyzes longer periods, Chapter 5 sheds light on whether or

not short term consumption changes may be realized. Methodologically, Chapter 4

specifically accounts for Advanced Metering Infrastructure penetration in the esti-

mation and Chapter 5 captures residential electricity consumption with a treatment

regression by using time dummies and controlling for all other explanatory vari-

ables. An empirical analysis for the conservation measures in Chapter 5 specifically

accounting for explanatory variables may provide a promising further research av-

enue.
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2 When Are Consumers Responding to Electricity
Prices? An Hourly Pattern of Demand Elasticity

System security in electricity markets relies crucially on the interaction between de-

mand and supply over time. However, research on electricity markets has been

mainly focusing on the supply side arguing that demand is rather inelastic. As-

suming perfectly inelastic demand might lead to delusive statements regarding the

price formation in electricity markets. In this article, we quantify the short-run price

elasticity of electricity demand in the German day-ahead market and show that de-

mand is adjusting to price movements in the short-run. We are able to solve the

simultaneity problem of demand and supply for the German market by incorporat-

ing variable renewable electricity generation for the estimation of electricity prices

in our econometric approach. We find a daily pattern for demand elasticity on the

German day-ahead market where price-induced demand response occurs in early

morning and late afternoon hours. Consequently, price elasticity is lowest at night

times and during the day. Our measured price elasticity peaks at a value of approxi-

mately -0.13 implying that a one percent increase in price reduces demand by 0.13

percent.

2.1 Introduction

Understanding the price elasticity of demand is important since demand adjustments

based on price movements contribute to the functioning of electricity markets. In

electricity markets it is worth stressing that balancing demand and supply occurs on a

high temporal frequency which, not only in Germany, results in debates on whether

or not it is possible to match demand and supply at all times. An inelastic price

elasticity of demand assumption, as often argued for the short-run, would imply

that the burden of balancing electricity consumption and generation at all times

rests with the supply side.

The empirical literature estimating long-run and short-run price elastictiy of de-

mand in electricity markets is extensive. For the short-run, peer-reviewed studies

have estimated the elasticity for different sectors and time intervals. Table 2.1 shows

7



2 When Are Consumers Responding to Electricity Prices? An Hourly Pattern of Demand Elasticity

that estimates of price elasticity vary from -0.02 to -0.3 depending on the chosen ap-

proach, the country-specific data and the sector. Taylor et al. (2005), for instance,

find that short-run elasticity ranges from -0.05 to -0.26 for the industrial sector in

North Carolina by using annual data. He et al. (2011) confirm this finding whereas

Bardazzi et al. (2015) measure a slightly higher elasticity in terms of magnitude for

the Italian industry sector. For the residential sector, numerous studies have been

performed as well (i.e. Ziramba (2008), Dergiades & Tsoulfidis (2008) and Hosoe &

Akiyama (2009)). However, little attention has been devoted to the price response

of the whole market with respect to wholesale prices. So far, this market has only

been investigated by Genc (2014) and Lijesen (2007). Whereas Genc (2014) ap-

plies a bottom-up Cournot modeling framework, Lijesen (2007) uses a regression

approach in order to quantify the price elasticity during peak hours. Genc and Lije-

sen conclude from their chosen approaches that the hourly price elasticity is rather

small. They furthermore argue that in peak hours demand switching behavior of

consumers barely occurs in practice.

In this article we extend the existing literature on short-run elasticity with respect

to the wholesale price in two ways. First, we use wind generation as an instru-

ment variable to solve the simultaneity problem of demand and supply.1 Second,

we account for the variation in utility from electricity consumption during the day.

Using hourly data on load, temperature, prices and wind generation for the German

day-ahead market in 2015, we quantify the level of price elasticity and its variation

throughout the day.

Our results show that the short-run price elasticity of demand in the German elec-

tricity market is not perfectly inelastic. Even though our obtained short-run price

elasticity of demand is generally low, consumers still react to price movements. Mea-

suring the price elasticity of demand can give a more meaningful understanding of

the contribution of demand reactions to system security. However, we stress that a

price elasticity of demand with respect to the day-ahead price is not explicitly show-

ing the contribution of each consumer group. The daily pattern of our estimate of

price elasticity reveals some prominent peaks in the morning and evening, where

the price elasticity of demand is highest. As expected, these hours show overall high

price levels providing incentives to consumers for a reduction of their consumption.

In the morning and evening hours, price elasticity varies between -0.08 and -0.13.

Thus, we infer that demand adjustments in these hours are to some extent beneficial

for consumers. On the contrary, we measure a lower price elasticity of demand at

1The approach is similar to Bönte et al. (2015).
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2.1 Introduction

Table 2.1: Literature review of estimated short-run elasticity
Source Type of model Type of data Elasticity Sector Region

Garcia-Cerrutti (2000) Dynamic random vari-
ables model

Annual -0.79 to 0.01,
mean -0.17

Residential California

Al-Faris (2002) Dynamic cointegration
and Error Correction
Model

Annual,
1970-1997

-0.04 / -0.18 Oman

Bjørner & Jensen (2002) Log-linear fixed effects Panel, 1983-
1996

-0.44

Boisvert et al. (2004) Generalized Leontief Peak: -0.05 TOU
Holtedahl & Joutz
(2004)

Cointegration and Error
Correction Model

Annual,
1955-1996

-0.15 Residential Taiwan

Reiss & White (2005) Reduced form approach Annual ,
1993 and
1997

0 to -0.4 Residential California

Taylor et al. (2005) Generalized McFadden
with nonlinear OLS and
Seemingly Unrelated
Regression

1994-2001 -0.26 to -0.05 Industry Duke Energy,
North Carolina

Bushnell & Mansur
(2005)

lagged residential prices -0.1 Residential San Diego

Error Correction Model Annual,
1969-2000

-0.263 Residential Australia

Bernstein et al. (2006) dynamic demand model
with lagged variables
and fixed effects

Panel, 1977-
2004
1977-1999

-0.24 to -0.21 Residential,
Commercial

US

Rapanos & Polemis
(2006)

1965-1999 -0.31 Greece

Halicioglu (2007) Bounds testing approach
to cointegration within
ARDL model

1968-2005 -0.33 Turkey

Lijesen (2007) reduced form regression
linear, loglinear

-0.0014 -0.0043 Wholesale Netherlands

Dergiades & Tsoulfidis
(2008)

Bounds testing approach
to cointegration within
ARDL model

1965-2006 -1.06 Residential US

Ziramba (2008) Bounds testing approach
to cointegration within
ARDL model

1978-2005 -0.02 Residential South Africa

Hosoe & Akiyama (2009) OLS/Translog cost func-
tion

1976-2006 0.09 to 0.3 Residential Japan

He et al. (2011) General equilibrium
analysis

2007 -0.017 to -0.019,
-0.293 to -0.311,
-0.0624 to
-0.0634

Industry,
residential,
agriculture

China

Bardazzi et al. (2015) Two-stage translog
model

Panel,
2000-2005

–0.561 to -0.299 Industry Italy

Genc (2014) Cournot competition
model

Hourly
2007, 2008

-0.144 to -0.013
-0.019 to -0.083

Wholesale Ontario

night times and during the day. A lower elasticity indicates less willingness of con-

sumers to adjust the consumption due to high or low electricity prices. This can be

due to the fact that economic activity in general is higher during daytime.

The remainder of the paper is organized as follows. Section 2.2 deepens the un-

derstanding of supply and demand in electricity markets. Section 2.3 describes the

data and presents the applied econometric approach. Section 2.4 discusses the esti-

mation results. Section 2.5 concludes.
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2 When Are Consumers Responding to Electricity Prices? An Hourly Pattern of Demand Elasticity

2.2 Measuring Market Demand Reactions Based on

Wholesale Prices

In order to specify our econometric model capturing demand reactions due to elec-

tricity wholesale price movements, knowledge about the supply and demand func-

tions in electricity markets is pivotal. In this section, we therefore describe the func-

tioning of the retail and wholesale electricity market before arguing that demand

elasticity can be estimated based on market demand being defined as aggregated

demand of all end consumer groups and wholesale electricity prices. We further

specify the drivers of demand and supply by setting up the respective functions.

2.2.1 The Retail Market for Electricity

Consumers commonly sign contracts with retailers to take charge of their electric-

ity demand. These contracts are subject to different possible tariff schemes ranging

from time-invariant pricing to real-time pricing. Tariff structures vary depending on

the consumer group and metering facilities.2 Small end consumers (e.g. households,

businesses, or small industries) in Germany are mostly on time-invariant tariffs. This

means that the price of electricity for these consumer groups is at the same level for

every hour over the entire year. These consumers therefore have little incentive to

adjust their demand in the short-run. For larger consumers, such as big industrial

companies, contracts are differently designed allowing them to benefit from adjust-

ing consumption in the short run.3

In Germany, the retail price that consumers pay for electricity consists of several

components. The most important component is the price for electricity generation,

which is the price that generators charge for the generation of electricity. Besides

paying for the generation of electricity, end consumers also pay for the transmission

and distribution of electricity, as well as for additional taxes and levies. In Germany,

for instance the retail price consists of network charges, the renewable support levy,

and taxes which are added to the wholesale price. Some of these additional price

2The electricity consumption of many end consumers is not observable over time because the metering
facilities only display the amount of electricity consumed but not during which period measurement
is performed.

3According to Bundesnetzagentur (2016), consumers can be grouped by their metering profile into
customers with and without interval metering. Only consumers with interval metering have the
technical capability to be billed depending on the time of usage. For Germany in 2014, 268 TWh
were supplied to interval metered customers and 160 TWh to customers without interval metering.
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2.2 Measuring Market Demand Reactions Based on Wholesale Prices

components vary substantially depending on the consumer group.4 The differing

retail prices for each consumer group lead to a total electricity demand of all con-

sumers that varies over the year. This aggregated demand of all end consumers is

equal to the observed load in the total electricity system.

2.2.2 The Wholesale Market for Electricity

The price for electricity generation is determined in the wholesale market. In prin-

cipal, the wholesale market allows different players to place bids that eventually

either result in produced quantities or demanded quantities for a specific point in

time. Participants in these markets are for example utilities, retailers, power plant

operators and large industrial consumers.

Figure 2.1(i) gives an exemplary overview of the five different players and their

corresponding electricity demand and supply on the wholesale market. The first two

players are two different utilities, A and B. As such, utility A and B illustrate cases

for players with different generation assets while at the same time each of them pos-

sesses different customer bases. However, for both utilities, we would expect that

generation for their own customer base depends on the marginal cost of genera-

tion. In other words, if the wholesale price is above the marginal cost of the utility’s

marginal cost of generation, the utility chooses to supply their customer base instead

of demanding quantities from the wholesale market.

The next player in the market we refer to is the retailer. As a retailer, supplying

electricity is by default not an option and therefore we expect them to demand elec-

tricity quantities only. The opposite is true for renewable and conventional genera-

tion players. With marginal costs of zero, renewable generation players offer their

production at very low cost compared to conventional generation players where

marginal costs are greater than zero and vary depending on the generation technol-

ogy.

Figure 2.1(ii) horizontally aggregates all demand and supply curves from each

player we identified. It thus shows the aggregated demand and supply, as well as

the realized equilibrium electricity price of 20 EUR/MWh.

Figure 2.1(iii) shows the resulting supply and demand bids by the individual play-

ers in the wholesale market. First, players that can only supply electricity, such as

renewable or conventional generators, appear in ascending order on the supply side

4In Germany, for example, electricity intensive industries are exempted from paying the renewable
support levy.
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(iii) Supply and demand in the wholesale market

Figure 2.1: Electricity price formation on the wholesale market

only. Second, retailers demand quantities and generally more, if prices are low.

Third, players that own generation assets and also have customers, net their supply

and demand positions internally before submitting bids. This is the case for utility

A and B. The bids for the demand and supply side depend on the internal netting of

supply and demand. In total this results in four possible outcomes for placing bids

which can be describes as follows

• sell bid on the supply side for generation units that have not been internally

matched and could satisfy the demand of other participants

• purchase bid on the demand side for demand that has not been internally

matched

• sell bid on the supply side, resulting from demand that has been matched

internally but would be able to reduce consumption if the price rises above a

given threshold (see e.g. demand of utility B with 90 EUR/MWh)

• purchase bid on the demand side for generation units that have internally be

matched but that would substitute their production if the price falls below

their marginal costs of generation.

Whereas the first two outcomes are intuitively straightforward, outcomes three

and four may seem counter intuitive at first. Due to the internal matching of sup-

ply and demand, parts of the demand and supply curve that have been internally
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2.2 Measuring Market Demand Reactions Based on Wholesale Prices

matched result in bids on the opposite side. By placing these bids, utilities can

optimize their position and choose to substitute formally demanded quantities to

supplied quantities or vice versa, above or below a certain wholesale price.

The supply and demand curves in Figure 2.1(ii) and 2.1(iii) look very different

from a first glance, but both result in the same price for electricity and lead to the

same allocation of resources. Nevertheless, both provide a very different impres-

sion of the price responsiveness of the demand side. Based on Figure 2.1(ii) the

demand side can be characterized as rather price inelastic. In the example, the level

of demand would not change if prices stay within a range of 5 to 80 EUR/MWh. Fig-

ure 2.1(iii) may however lead to the misleading conclusion that the demand side in

electricity markets is rather price elastic. Within the submitted supply and demand

bids at the wholesale market it is not possible to identify separate bids that actually

stem from generators or actual consumers of electricity. It is therefore not possi-

ble to estimate the demand elasticity of actual electricity consumers based on the

curves observed in the wholesale market. In order to estimate the demand elasticity

of the actual electricity consumers it is, however, possible to combine the wholesale

equilibrium price with the total load observed.

2.2.3 The Interaction of Wholesale and Retail Markets

Within this article we are interested in the reaction of electricity demand to electricity

prices. Because disaggregated load data for each consumer group with the respective

retail prices are not available, we focus our attention on the interaction of total

hourly demand and hourly wholesale electricity prices. Figure 2.2 shows the relation

we are interested in for an exemplary hour. The blue line depicts the supply curve for

electricity generation. The red line is the aggregated demand curve of all consumers

for electricity consumption. Consumers pay an average retail price of pr , which is

made up of the wholesale price for electricity (pw) and additional price components

(c).5 When we account for the effect of the additional price components, we obtain

the demand function that is observable in the wholesale market (wholesale demand,

red dashed line). The intersection of wholesale demand and wholesale supply leads

to point A and determines the wholesale price pw, as well as the quantity consumed

and produced qel . By inferring the relationship illustrated in Figure 2.2 and using

the wholesale price and total electricity demand, we are able to estimate the point

elasticity of the red dashed demand curve.

5In Germany, most additional price components are added to the wholesale price independent on the
price level or quantity consumed.
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Figure 2.2: Supply and demand curves for one exemplary hour

The relations of the demand and supply curve in electricity markets are only

vaguely sketched in Figure 2.2. In reality, demand is fluctuating over time due to

varying utility levels throughout the day. The demand for electricity can be regarded

as a function of various inputs and the relation can be written as

d el = f (pw, HDD, time-of-the-day), (2.1)

where del is the quantity consumed, pw is the wholesale price for electricity, HDD

are heating degree days capturing the seasonality within the data. HDD measure the

temperature difference to a reference temperature. The variable therefore captures

the seasonal variation of electricity demand. For example, if outside temperature

is low, heating processes consume more electricity compared to warmer weather

conditions.6 In addition, electricity consumption depends on the time of usage. This

is mainly driven by the variation of the consumer’s utility function over the day.

Additional variables determining the level of demand, such as economic activity,

may also alter demand but are assumed to be time-invariant on an hourly basis and

within the considered time span. Therefore, we abstract from including additional

variables for the demand side in the short run.

Like the demand function, the supply of electricity can also be regarded as a func-

tion of multiple inputs with the wholesale price pw being one of them. We define

the supply function as:

6The data in Section 2.4 reveals that this relation is true for Germany, however it may not be applicable
to other countries. In warmer climates also cooling degree days (CDD) determine the demand for
electricity.
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sel = g(pw, p f uel , r), (2.2)

where sel is the quantity produced, p f uel is a vector of fuel prices and r is the

production of variable renewable energy.

In electricity markets, the structure of the supply side is commonly represented by

the merit order curve. It represents the marginal generation costs of all conventional

(fossil) power plants. The shape of the curve mainly depends on the technologies

being used for power generation and their respective fuel prices p f uel .7 However,

variable renewable electricity generation is becoming increasingly important within

the generation portfolio. This is particularly true for the German market region.

Since renewable technologies do not rely on fossil fuel inputs to generate electricity,

their fuel costs are close to zero. Additionally, its stochastic nature that is driven

by wind speeds and solar radiation makes generation vary throughout time. We

will later make use of the stochastic nature and by using wind generation as an

instrument variable within our econometric model.

2.3 Empirical Framework

2.3.1 Data

Our data set consists of hourly data for 2015. We include hourly data for load, day-

ahead-prices and the forecast of production from variable renewables for Germany.

In addition, HDD are calculated based on hourly temperatures that we obtain from

the NASA Goddard Institute for Space Studies (GISS). Summary statistics for all

variables are provided in Table 2.2.

Table 2.2: Descriptive statistics (for weekdays, without public holidays and Christmas time)

Variable Mean Std. Dev. Min. Max. Source

Load [GWh] 61.688 9.428 38.926 77.496 ENTSO-E
Wind Generation [GWh] 8.574 6.864 0.153 32.529 EEX Transparency
Day-ahead price [EUR/MWh] 35.6 11.5 -41.74 99.77 EPEX Spot
Temperature [◦C] 10.4 7.9 -6.3 34.6 NASA MERRA
Heating degree days [K] 10.1 6.9 0 26.3 NASA MERRA

The hourly load profile for Germany was taken from ENTSO-E. According to ENTSO-

E, load is the power consumed by the network including network losses but ex-

7Common power plant types and fuels are hydro power, nuclear, lignite, coal, gas and oil.
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cluding consumption of pumped storage and generating auxiliaries.8 The load data

includes all energy that is sold by German power plants to consumers.9 Load there-

fore is the best indicator on the level of demand in the German market area since

almost all energy sold has to be transferred through the grid to consumers. Fig-

ure 2.3(i) shows average hourly values for weekdays in the German market area

in a box plot. The plot shows significant differences in the level for night hours

(00:00-6:00, 19:00-00:00) compared to daytime. Also load peaks in the morning

(9:00-12:00) and evening hours (16:00-18:00). Especially in the evening, variation

in load levels is higher than at other times. The average load level is 62 GW and the

maximum peak load is 77 GW in the early evening hours.
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0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223

Hour

60

40

20

0

20

40

60

80

100
P

ric
e 

[E
U

R
/M

W
h]

(ii) Electricity price from EPEX
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(iii) Wind generation from EEX Transparency
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(iv) Solar generation from EEX Transparency

Figure 2.3: Hourly data for load, electricity price, wind and solar generation for 2015

We obtain the hourly day-ahead price for electricity from the European Power

Exchange (EPEX) which is the major trading platform for Germany. Historically the

day-ahead price has evolved as the most important reference price on an hourly level
8ENTSO-E collects the information from the four German transmission system operators (TSO) and

claims that the data covers at least 91% of the total supply. These quantities may also be reflected
in the day-ahead price which we can not account for.

9To a small amount load may also include energy that is sold from neighboring countries to the
German market. These trade flows impact the domestic electricity price and load. However, we
expect this impact to be rather small.
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in the wholesale electricity market. The day-ahead market run by EPEX Spot is by

far the most liquid trading possibility close to the point of physical delivery.10 The

price is determined in a uniform price auction at noon one day before electricity is

physically delivered. We follow this perspective and use the day-ahead price as our

reference price for electricity generation. Although not all electricity is sold through

the day-ahead-auction, the price reflects the value of electricity in the respective

hours and contains all available information on demand and supply at that specific

point in time. Figure 2.3(ii) shows a box plot for the hourly day-ahead electricity

price for each hour of the day. The average hourly day-ahead electricity price is

at 36 EUR/MWh over the 24 hours time interval and for weekdays (without public

holidays and Christmas time). The electricity price pattern is similar to the load

pattern emphasizing the fact that higher demand levels tend to increase prices in

the day-ahead market. Especially during peak times in the morning and evening

one can observe higher standard deviations and peaking prices. Standard deviation

over all hours is around 12 EUR/MWh.

Electricity generation from wind and solar power is taken from forecasts published

on the transparency platform by the European Energy Exchange (EEX). These fore-

casts result from multiple TSO data submissions to the EEX. Since they are submitted

one day before physical delivery, they contain all information that is relevant for par-

ticipants in the day-ahead market.11 Figure 2.3(iii) and 2.3(iv) show box plots for

electricity generation from wind and solar power. Due to weather dependent gen-

eration volatility, we observe a larger amount of volatility in the hourly data. Wind

generation varies steadily throughout the day with a small increase during the day.

Solar generation shows its typical daily pattern with no generation at night and peak

generation values for midday.

The level of demand does not only depend on the electricity price which in return is

partially influenced by generation from wind. We add temperature as an additional

parameter to our investigation of electricity demand since the level of temperature

is a main driver for the seasonal variation of demand. We compute a Germany wide

average temperature based on the reanalysis MERRA data set provided by NASA

(NASA, 2016). The hourly values are based on different grid points within Germany

that are spatially averaged in order to obtain a consistent hourly value for Germany.

Based on the hourly temperature we derive HDD that are relevant for the seasonal

10In 2015 264 TWh have been traded in the day-ahead market, compared to 37 TWh traded in the
continuous intraday market (EPEX Spot, 2016).

11We also considered taking the actual generation from renewables but reckon that the ex-ante fore-
casts are reflecting the causal relationship in a better way since decisions made on the day-ahead
market are based on forecast values.
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variation of demand in electricity markets.12

2.3.2 Econometric Approach

Due to the fact that the electricity price is endogenously determined by the inter-

action of demand and supply, we choose a two-stage approach to solve the simul-

taneity problem.13 As we are interested in estimating the demand function (2.1),

possible instruments affecting the price but not the level of demand have to be de-

termined. Possible instruments can be found on the supply side in (2.2), where fuel

prices (p f uel) and the production of variable renewable energy (r) are considered.

Although fuel prices are one of the major drivers for generation decisions, a closer

look reveals that they show little variation over the year 2015 (see Figure 2.6 in the

Appendix). Therefore, we exclude them from a further analysis within our frame-

work.

The production of variable renewable energy (r) can further be split into wind (w)

and solar (s) generation. Figure 2.4 depicts the respective correlations of renewable

generation with prices and load for each hour interval of the day. In Figure 2.4i, we

observe that the correlation between solar generation and load is higher in absolute

values than the correlation between wind generation and load. However, wind and

solar generation are correlated opposite in sign with load being positively correlated

with wind generation and solar generation negatively correlated with load.

Figure 2.4ii shows the correlation between renewable generation and electricity

price. Both, wind and solar generation are negatively correlated with the electricity

price, however their patterns are different throughout the day. The correlation be-

tween wind generation and electricity price weakens over the day until 17:00 where

the correlation is lowest with an absolute value of -0.45. From 17:00 on the cor-

relation between wind generation and price increases again. The pattern for the

correlation between solar generation and electricity price is reversed whereas the

increasing correlation until 17:00 is mainly driven by an increasing solar radiation.

Based on the generally high correlation of wind and prices and at the same time low

correlation of wind and load, we choose wind generation as an instrument for the

price.14

12We calculate HDDs based on a reference temperature of 20 ◦C.
13Durbin and Wu–Hausman test statistics show highly significant p-values. The null hypothesis tests

for all variables in scope being exogenous. With p-values for both test of both equal to 0,000 we
reject the null of exogeneity implying that prices and demand are endogenous.

14Statistically speaking, weak instruments may cause estimation bias if the correlation with the en-
dogenous explanatory variable (in our case pw

h,t) is very low.
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Figure 2.4: Correlations with load and prices in 2015

More formally, wind generation as a variable fulfills the two conditions

(1) cov[w, pw] 6= 0 and (2) cov[w,µ] = 0, where w is wind generation, pw the

wholesale electricity price and µ the error term of the general demand equation

not to be confused with the error term µh,t of equation (2.4). The first condition is

needed in order to provide unbiased electricity price estimates. In our context the

chosen instrument w correlates with the electricity price (see Figure 2.4(ii)). From

the second condition it follows that w and µ are not correlated.15 Because wind can

be regarded as a stochastic variable especially throughout the day and load inhibits

strong daily patterns, both can be regarded as independent (see Figure 2.4(i)). With

these two conditions fulfilled we are now able to postulate the first and second stage

equations. The first stage can be written as

pw
h,t = γ0,h + γ1,h ·wh,t + εh,t (2.3)

and the second stage as

qel
h,t = β0,h + β1,h ·dpw

h,t + β2 ·HDDt + β3 ·MONt + β4 · FRIt +µh,t . (2.4)

We estimate price coefficients β1,h and dummy coefficients β0,h on an hourly basis

h. We do this, because we expect the utility of electricity consumption to be different

in each hour of the day. Here, β0,h captures the price independent change of util-

ity from electricity consumption throughout the day. Since we observe a different

15Testing for validity expressed by cov[w,µ] = 0 within our framework is not feasible since our model
is exactly identified.
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demand pattern for working days and week-ends, we eliminate week-ends and hol-

idays from the data. Furthermore, we add dummies for Monday (MON) and Friday

(FRI)16 to capture differing demand levels at the beginning and end of the working

week. Based on our estimates, we can calculate the average hourly price elasticity

of electricity demand according to

εh =
pw

h

qh

∂ qh

∂ ph
=

pw
h

qh
β1,h, (2.5)

where εh is the hourly elasticity using the average price pw
h and average demand

qh in the respective hour of the day (h).

2.4 Empirical Application

By applying the econometric framework, we are able to estimate the level of price

elasticity of demand for the German day-ahead market on an hourly basis. The

regression is based on levels and elasticity is calculated with respect to the average

prices and quantities in each hour.17

The results of the estimation can be found in Table 2.3. When taking a look at the

price coefficients in Table 2.3(a), we can see that all price coefficients are negative

in sign and are significant at least at the 1% level. We note that coefficients during

morning hours (9:00-12:00) are lower in absolute values. The highest value can be

found at 17:00. In this particular hour, a wholesale price increase of 1 EUR/MWh

leads to a demand reduction of 201.8 MWh. The hourly dummy coefficients in Ta-

ble 2.3(a) capture the varying level of utility throughout the day. During the day,

hourly coefficients are higher than at other times. In the evening, we can observe

a peak in the level of utility, especially between 16:00 - 20:00 (see Figure 2.5(i)).

Beside the hourly coefficients, we also account for the influence of temperature and

weekdays on electricity demand. All coefficients are significant at the 0.1% level and

can be explained in their sign. HDD have a positive sign and thus increase electric-

ity demand. Mondays and Fridays are negative in sign, indicating that demand is

generally lower at the start of the week and at the end compared to other working

16For Mondays the dummy is positive for the time between 0:00 and 9:00. For Fridays the time frame
is from 17:00 to 23:00.

17In a previous version of the paper, we normalized our data to the median, which is why previous
estimates differ from this version. Furthermore, elasticity was calculated with respect to the average
price and quantity level including values of zero. As we are running a pooled regression many
observations of zero were included which resulted in low estimates of the elasticity.
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Figure 2.5: Hourly dummies and price elasticity of electricity demand in 2015

Since the focus of our work is on the hourly price elasticity of demand, we estimate

the elasticity based on the results from the basic regression. The results are displayed

in Figure 2.5(ii) and the numerical values can be found in Table 2.3(c).18

As observed before, all coefficients are negative in sign and significant at a strict

1% level. With the elasticity estimates at hand, we are able to plot a distinctive

pattern for the hourly price elasticity of demand for the German day-ahead market.

The unique shape of the hourly price elasticity of demand pattern is depicted above

in Figure 2.5(ii). Our results show that demand reactions are rather small. How-

ever, a perfect inelastic demand assumption can also be neglected. More precisely,

the elasticity is the lowest during night times (22:00 - 6:00). During these hours

electricity demand and utility from electricity consumption is generally lower (as

we can also observe from Table 2.3(a)). The graph shows two prominent peaks of

price elasticity of demand in the morning and in the evening. At these times working

hours start and end. Possible reasons for a high elasticity of demand at those times

is the shifting or delaying of consumption. When prices are low in the morning,

some processes may be able to start the operation earlier and thereby circumventing

a time with a higher electricity price level. The same might be true for the evening,

when the workday ends. Here working hours may be extended to lower price levels

at other times. Throughout the day, the price elasticity of demand remains relatively

18It is important to note that elasticity is calculated with respect to the wholesale price level and not
the retail price level, as represented by the dashed red demand curve in Figure 2.2. The elasticity
with respect to retail prices would be higher. For example if we consider the sum of additional
price components (c) to be 150 EUR/MWh, which is an average value based on Eurostat (2016)
for Germany, the highest elasticity measured would be -0.58 at hour 17:00-18:00. Without the sum
of additional price components, we obtain an elasticity of -0.13 as indicated in Table 2.3(c).
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Table 2.3: Regression results

Hour Price Dummy

0 -0.0847∗∗∗ (-3.98) .
1 -0.0853∗∗∗ (-4.18) -2.135∗∗ (-2.91)
2 -0.0781∗∗∗ (-4.23) -3.429∗∗∗ (-4.94)
3 -0.0960∗∗∗ (-4.89) -2.816∗∗∗ (-4.01)
4 -0.1150∗∗∗ (-5.60) -0.8526 (-1.18)
5 -0.1298∗∗∗ (-6.01) 3.714∗∗∗ (4.70)
6 -0.1322∗∗∗ (-4.96) 13.410∗∗∗ (11.95)
7 -0.1192∗∗∗ (-4.37) 20.620∗∗∗ (15.14)
8 -0.0743∗∗∗ (-3.55) 21.960∗∗∗ (19.48)
9 -0.0452∗∗ (-2.95) 20.940∗∗∗ (24.20)

10 -0.0421∗∗ (-2.69) 22.230∗∗∗ (26.42)
11 -0.0496∗∗ (-2.92) 23.720∗∗∗ (27.34)
12 -0.0557∗∗ (-3.01) 23.080∗∗∗ (26.61)
13 -0.0688∗∗∗ (-3.30) 22.590∗∗∗ (24.57)
14 -0.0844∗∗∗ (-3.58) 21.660∗∗∗ (22.02)
15 -0.1069∗∗∗ (-4.02) 21.240∗∗∗ (19.26)
16 -0.1486∗∗∗ (-3.66) 21.630∗∗∗ (13.19)
17 -0.2018∗∗ (-2.90) 24.990∗∗∗ (8.15)
18 -0.1349∗∗ (-2.65) 22.970∗∗∗ (9.41)
19 -0.1175∗∗ (-3.19) 21.410∗∗∗ (11.81)
20 -0.1327∗∗∗ (-5.14) 18.490∗∗∗ (15.26)
21 -0.1034∗∗∗ (-5.68) 13.760∗∗∗ (15.81)
22 -0.0890∗∗∗ (-4.66) 9.565 (11.29)
23 -0.0836∗∗∗ (-4.05) 4.164 (5.25)

(a) Dummy and price coefficients

Coefficient

Heating degree days 0.4679∗∗∗ (81.99)

Monday dummy -3.340∗∗∗ (-28.08)

Friday dummy -1.997∗∗∗ (-12.07)
Constant 46.57∗∗∗ (84.62)

Observations 5760
R2 0.940
Adjusted R2 0.939

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

(b) Regression coefficients

Hour Elasticity

0 -0.0456∗∗∗ (-3.96)
1 -0.0451∗∗∗ (-4.15)
2 -0.0394∗∗∗ (-4.20)
3 -0.0467∗∗∗ (-4.85)
4 -0.0561∗∗∗ (-5.57)
5 -0.0661∗∗∗ (-5.99)
6 -0.0792∗∗∗ (-4.95)
7 -0.0810∗∗∗ (-4.36)
8 -0.0501∗∗∗ (-3.54)
9 -0.0279∗∗ (-2.95)

10 -0.0240∗∗ (-2.68)
11 -0.0271∗∗ (-2.91)
12 -0.0283∗∗ (-3.00)
13 -0.0345∗∗∗ (-3.29)
14 -0.0425∗∗∗ (-3.57)
15 -0.0566∗∗∗ (-4.01)
16 -0.0828∗∗∗ (-3.64)
17 -0.1275∗∗ (-2.88)
18 -0.0912∗∗ (-2.64)
19 -0.0821∗∗ (-3.18)
20 -0.0875∗∗∗ (-5.12)
21 -0.0640∗∗∗ (-5.65)
22 -0.0543∗∗∗ (-4.63)
23 -0.0456∗∗∗ (-4.03)

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

(c) Elasticity
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2.5 Conclusion

low and is less significant. At those hours, economic activity is high and the option to

shift or delay electricity consumption might not be feasible for consumers. In other

words, consumers are bound to consume electricity which results in high electricity

consumption regardless of the price level.

2.5 Conclusion

We estimate the hourly pattern of price elasticity of demand for the German day-

ahead market, using hourly data on load, price, generation of wind and temperature.

By doing this, we are able to determine the degree of short-run demand response

within this market. To the best of our knowledge, a market-wide hourly analysis of

the price elasticity of demand has not been conducted so far.

Based on our two-stage regression approach which uses wind generation as an in-

strument to proxy the electricity price, we find that hourly price elasticity of demand

is not completely price inelastic. Especially during the morning and evening demand

is responding to price signals. Values for price elasticity range from approximately

-0.02 to -0.13 depending on the investigated hour. The hourly price elasticity pattern

reveals that elasticity is lowest in the night hours and around mid day. Low values

for price elasticity during night time (22:00 - 06:00) indicate that consumers are less

likely to react. Around middle day economic activity is high which may explain the

low elasticity values. Price elasticity of demand is the highest in the early morning

(04:00 - 07:00) and late afternoon (16:00 - 20:00) hours, with levels between -0.08

and -0.13.

The empirical results indicate a high level of variation in the price elasticity of

demand throughout the day in the German day-ahead market. Although the hourly

elasticity is low from a first glance, load shifting accumulates over the year. The

found elasticity pattern helps to understand when demand shifting occurs and when

demand may be able to contribute to system security in situations of low supply. We

find that especially during critical situations, such as peak times in the morning and

evening, price elasticity of demand is high and may contribute to a secure electricity

system.

Our research sheds some light on how flexible the German electricity market has

already been in 2015, given the underlying renewable generation of the German

day-ahead market. It may also give policy makers a starting point for evaluating the

interaction of supply and demand in electricity markets. In addition to the analy-
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sis of the day-ahead market, we reckon that further research on demand response

could focus on short-term markets, such as the intraday market. These markets are

essential to the integration of large amounts of renewable electricity because they

are able to balance forecast errors of wind and solar electricity. Whereas this addi-

tional research would gain further insights onto the short-term demand response,

we argue that currently the day-ahead market remains the most important market

where demand and supply are balanced.
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2.6 Appendix

2.6 Appendix

2.6.1 Price Development of Potential Other Instrument Variables
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Figure 2.6: Prices for coal, gas and co2 certificates from January to December 2015
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3 Competition and Regulation as a Means of
Reducing CO2-Emissions - Experience from
U.S. Fossil Fuel Power Plants

Levels of CO2 emissions from electricity generation in the U.S. have changed consid-

erably in the last decade. This development can be attributed to two factors. First,

the shale gas revolution has reduced gas prices significantly, leading to a crowding

out of the more CO2-intensive coal for electricity generation. Secondly, environmen-

tal regulations have been tightened at both the federal and the state level. In this

article, we analyze the relative CO2 emission performance across 48 states in the U.S.

using a two-stage empirical approach. In the first stage, we identify the states that

followed best practice between 2000 and 2013, by applying nonparametric bench-

marking techniques. In the second stage, we regress our CO2 emission performance

indicators on the state-specific national gas prices, the states’ CO2 regulatory poli-

cies and a number of other state-specific factors in order to identify the main drivers

of the developments. We find that the CO2 emission performance improved on av-

erage by 15% across all states from 2000 to 2013. Furthermore, our second-stage

results support the argument that decreasing natural gas prices and stringent reg-

ulatory measures, such as cap-and-trade programs, have a positive impact on the

state-specific CO2 emission performance.

3.1 Introduction

During the last decade, the electricity sector in the U.S. has undergone considerable

change. On the supply side, the plummeting of gas prices induced by the so-called

shale gas revolution has created incentives for power producers to increase gas usage

and even to switch investment decisions in new capacity from coal to gas. As natural

gas emits less than 50% of the CO2 per kwh that coal does, emissions might have

dropped as a result of fuel competition. Policy-wise, greenhouse gas emissions from

the generating fleet have become a nationwide concern: in 2013, U.S. electricity

generation accounted for more than 2,000 million tons of carbon dioxide (CO2)
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3 Competition and Regulation as a Means of Reducing CO2-Emissions

emissions, or about 38% of the total U.S. energy-related emissions. About 70%

of the electricity generated in 2013 was produced from fossil fuels (U.S. Energy

Information Administration (EIA), 2016b).

Recently, the U.S. government has announced that it will pursue CO2 reduction

strategies to cut CO2 emissions by 26-28% by 2025 compared to 2005 levels.19 One

important measure for achieving this aim is the so-called Clean Power Plan. As part

of this, the U.S. Environmental Protection Agency (EPA) has suggested regulations

to require existing power plants to reduce power sector emissions by 32% from their

2005 levels by 2030 (U.S. Environmental Protection Agency (EPA), 2015). Prior to

these new guidelines, the rules were also tightened to permit fewer carbon emissions

from electricity generation. States have introduced different means of regulation,

from CO2 performance standards (e.g. in Washington) to regional cap-and-trade

programs (e.g. the Regional Greenhouse Gas Initiative (RGGI)). Both trends, inter-

fuel competition and regulation, seem to have significantly decreased electricity-

related CO2 emissions. From their peak in 2007, CO2 emissions from electricity

generation dropped by about 16% between 2007 and 2013 (U.S. Energy Information

Administration (EIA), 2016b). Whether the main reason for CO2 reduction was

competition or regulation remains an empirical question.

In this article, we analyze the success of the U.S. states in reducing CO2 emis-

sions from fossil fuel power plants. We identify CO2 emission performance at the

state level over time, and drivers that may have contributed to changing CO2 devel-

opments. Faced with these developments, we argue that an overall fuel switching

from high emitters like coal-fired power plants to cleaner technologies like natural

gas combustion has occurred. To examine whether or not state-specific fuel price

developments and/or CO2 regulations also drove down emissions, we follow a two-

step approach. First, we employ nonparametric data envelopment analysis tech-

niques that allow us to measure the relative CO2 emission performance across states

considering the multiple-input and multiple-output production structure of electric-

ity generation. As inputs, we use fuel consumption and nameplate capacity, and,

as outputs, the electricity produced and CO2 emissions. In doing so, we are able

to provide a more comprehensive picture of each state’s fossil fuel electricity gen-

eration process and its relative CO2 emission performance, compared to a simple

output-oriented CO2 intensity measure, such as CO2 emissions per unit of electric-

ity produced. Comprehensive reviews of data envelopment analysis applications in

19Press statement released by the Office of the Press Secretary, The White House, accessible at
www.whitehouse.gov/the-press-office/2015/03/31/fact-sheet-us-reports-its-2025-emissions-
target-unfccc.
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energy and environmental studies can be found in Zhou et al. (2008) and Zhang &

Choi (2014). Furthermore, a number of studies have addressed the measurement

of the environmental efficiency of U.S. power plants (e.g., Färe et al., 2013, Hampf

& Rødseth, 2015, Sueyoshi & Goto, 2013, Sueyoshi et al., 2010, Welch & Barnum,

2009).

In a second stage, we regress the performance indicators we have obtained on the

state-specific natural gas prices, the states’ CO2 regulatory policies and a number

of other state-specific factors in order to identify the main drivers of the develop-

ment. This approach allows us not only to answer the question of whether fuel price

competition and/or emissions regulation have proven to be successful in compre-

hensively reducing greenhouse gases but also to evaluate the impact of regulatory

reforms at the state level.

The remainder of this article is organized as follows. Section 3.2 provides a short

overview of U.S. electricity generation from fossil fuels, and its trends. Section 3.3

describes the empirical approach. Section 3.4 presents and discusses the results and

Section 3.5 concludes.

3.2 U.S. electricity generation from fossil fuels 2000 - 2013

U.S. electricity generation has undergone substantial changes since the early 2000s.

Electricity generation from fossil fuels does not rely today on the same power gen-

eration technology mix that used to prevail within the U.S. fossil fuel market. The

reasons for this can be found on the regulatory as well as on the market side. On the

market side, one of the most prominent drivers has been the development of U.S.

shale gas production. In less than a decade, the production of shale gas in the U.S.

has managed to make U.S. gas imports irrelevant and has made the national gas

industry self-sufficient (Wang et al., 2014). As a consequence, the price structure of

fossil fuel inputs for electricity generation has changed significantly.

Figure 3.1 shows the cost of fossil fuel receipts at electricity generating plants in

dollars per million British thermal units (MMBtu) (U.S. Energy Information Admin-

istration (EIA), 2016a).20 We observe that, until 2008, fuel prices increased for all

fuel types shown. Interestingly, coal and petroleum prices started to increase again

after 2009, while the natural gas price declined. We partly link this gas price devel-

20The annual cost for fossil fuel receipts is calculated from the averages of monthly values, weighted
by quantities, in Btu across all U.S. states.
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opment to the additional shale gas production volumes that submerged the supply

side of the gas market. This development not only affected the U.S. natural gas prices

but, as a consequence, also boosted the role of natural gas-fired plants in electricity

generation (Krupnick et al., 2013).
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Figure 3.1: Cost of fossil fuel receipts at electricity generating plants in USD per million Btu

In this context, Figure 3.2 shows the shares of net electricity generation from fossil

fuels including coal, natural gas, petroleum and other gases over the same time

horizon (U.S. Energy Information Administration (EIA), 2015a). Here, we observe

that the share of net electricity generation from coal was 73% in 2000 and more

than three times higher than the share (22%) of net generation from natural gas

in that year. However, net generation from natural gas steadily increased over time

while net generation from coal significantly decreased supporting our argument that

decreasing gas prices made gas-fired generation more attractive. In 2013, 58% of

total U.S. net electricity generated from fossil fuels was generated from coal, and

41% from natural gas.

Taken together, these observations may lead to the conclusion that low gas prices

have triggered alterations in the use of fuels and the investment in coal or gas-fired

plants. However, such a conclusion is strongly dependent on the time horizon of

the study: as power plant capacity is assumed to be quasi-fixed in the short run, an

instantaneous fuel switch from coal to natural gas that alters the technology mix can

only be achieved if capacity is idle and favorable fuel prices trigger a quick response

of gas-fired generation. Contrary to this short-run response, the portfolio of power

generation technologies is subject to change in the long run. The addition of capacity

depends on the current and expected technology-specific investment cost and fuel

prices.
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Figure 3.2: Shares of total U.S. net electricity generation from fossil fuels in %

Besides the influence of shale gas on the market side, past and future regula-

tions also affect the portfolio of power generation technologies. As an example,

stricter regulation of CO2 provides incentives for an increased usage of gas-fired

power plants. Since generating electricity from natural gas produces nearly half

as much CO2 per kilowatt-hour as coal, such a stricter regulation of CO2 may de-

crease emissions. However, to date there have been no nation-wide standards that

require power plants to reduce their CO2 emissions. State-specific regulatory poli-

cies include overall greenhouse gas (GHG) reduction targets and, CO2 performance

standards related to power plants, as well as regional CO2-cap-and-trade systems

related to power plants. Some states adopted one or all of these measures in the

early years of this century, while others have not yet adopted any measures.21

Hence, given the developments in fuel prices and the various state-specific CO2

regulations, the CO2 emission performance in a state may be influenced by a fuel

switch from coal to gas in the short run. Such a switch is, however, constrained

by the availability of capacity. In the long run, however, a state can influence its

CO2 emission performance by re-designing regulations and making certain power

generation technologies more favorable than others. In this way, a state’s portfolio

of power generation technologies is, for instance, altered by building new gas-fired

power plants and retiring old coal-fired power plants, and thus the capacity share

of gas-fired power plants increases, and more natural gas can be used for electricity

production.

21A detailed overview on state-specific CO2 regulations is given in Section 3.3.3.
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3.3 Empirical approach

3.3.1 Benchmarking model

In order to analyze the state-specific CO2 emission performance of U.S. fossil fuel

power plants we model a production technology that includes both desirable and

undesirable outputs. If we assume that x = (x1, . . . , xN ) ∈ ℜN
+ denotes a vector of

inputs, y = (y1, . . . , yM ) ∈ ℜM
+ denotes a vector of desirable or good outputs, and

b = (b1, . . . , bI) ∈ ℜI
+ denotes a vector of undesirable or bad outputs, the production

technology set can be modeled as:

P(x) = {(y, b) : x can produce (y, b)}, (3.1)

where P(x) represents all the combinations of desirable and undesirable outputs

(y, b) that can be produced using the input vector x . P(x) is a convex and compact

set and satisfies the standard properties of "no free lunch", the possibility of inaction,

and strong or free disposability of inputs and good outputs (e.g. Färe & Primont,

1995).

Furthermore, in order to account for the joint production of desirable and undesir-

able outputs we follow Zhou et al. (2010) and impose two additional assumptions.

First, we assume the desirable and the undesirable outputs to be together weakly

disposable:

if (y, b) ∈ P(x) and 0≤ λ≤ 1, then (λy,λb) ∈ P(x). (3.2)

This assumption reflects the opportunity cost of abatement activities. In other

words, a reduction of undesirable outputs is not costless, and negatively influences

the production level of the desirable outputs.22

Second, the desirable and the undesirable outputs are considered as being null-

joint:

if (y, b) ∈ P(x) and b = 0, then y = 0. (3.3)

This means that no desirable outputs can be produced without producing some un-

desirable outputs.23

A production technology that seeks the maximal decrease of undesirable outputs

22The concept of weak disposability was introduced by Shephard (1970).
23The null-jointness assumption was introduced by Shephard & Färe (1974).
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and satisfies the above assumptions can be represented by an input distance function.

Introduced by Shephard (1953), such a function can be formally defined as:

D(x , y, b) = sup {θ : (y, b/θ ) ∈ P(x)} ≥ 1, (3.4)

where θ represents the proportion by which the undesirable output b is scaled to

reach the boundary or frontier of the production technology set P(x). The distance

function value θ is bounded below by one. A value of one identifies the observed

output vector as located on the frontier, whereas values greater than one belong to

output vectors below the frontier. When CO2 emissions are the only undesirable out-

put, Zhou et al. (2010) label this function as the Shephard carbon distance function.

Furthermore, the inverse of the function is closely related to Farrell’s 1957 measure

of input-oriented technical efficiency (TE), that is:

T E(x , y, b) = [D(x , y, b)]−1 ≤ 1. (3.5)

This measure is a pure technical measure of efficiency, focusing on how much good

and bad output is produced from a given quantity of inputs. In our case, efficiency

among the states can differ, in the sense that the same amount of fossil fuel and

the same amount of capacity can produce the same amount of electricity but fewer

CO2 emissions. This can be the result of using a better input quality, that is, by a

higher share of the state’s electricity output being produced from natural gas-fired

power plants that are less carbon-intensive. This share, in turn, is influenced by the

capacity share of natural gas-fired power plants in the state’s electricity generating

portfolio, and its utilization rate.

In order to measure efficiency changes over time, we combine the concepts of the

Malmquist CO2 emission performance index (MCPI) of Zhou et al. (2010) and the

global Malmquist productivity index (GPI) of Pastor & Lovell (2005). The derived in-

dex represents the state-specific CO2 emission performance over time and is termed

the global Malmquist CO2 emission performance index (GMCPI).

Compared to a conventional contemporaneous Malmquist productivity index that

constructs the reference technology in period t from the observations in that period

only, the GMCPI incorporates information from all observations in all periods. By

doing this, the GMCPI provides a single measure of productivity change, is circular,

and does not suffer from any infeasibility problems, thus avoiding the three well-

known problems of conventional contemporaneous Malmquist productivity indices

33



3 Competition and Regulation as a Means of Reducing CO2-Emissions

(Pastor & Lovell, 2005).

First, in order to define the GMCPI, we consider two benchmark technologies: a

contemporaneous benchmark technology and a global benchmark technology. Fol-

lowing Pastor & Lovell (2005), the contemporaneous benchmark technology is de-

fined as:

P t(x) = {(y t , bt) : x t can produce (y t , bt)}, with t = 1 . . . , T, (3.6)

and the global benchmark technology as:

PG
T (x) = conv{P1(x)∪ . . .∪ PT (x)}. (3.7)

The two technologies are graphically illustrated in Figure 3.3. The vertical axis

shows the desirable output y and the horizontal axis shows the undesirable output

b, i.e., CO2 emissions. P t and P t+1 represent the areas of all feasible combinations

of the desirable and the undesirable output that can be produced by the input vector

x in periods t and t+1, respectively. These technologies are enveloped by the global

technology PG
T that represents the area of all feasible input-output combinations in

all periods.
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Figure 3.3: Global Malmquist CO2 emission performance index (GMCPI)

Given Equation 3.4, and with DG(t) = DG(x t , y t , bt) and DG(t+1) = DG(x t+1, y t+1, bt+1),
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the GMCPI between period t and period t + 1 can now be defined as:24

GMC PI =
DG(t)

DG(t + 1)
, (3.8)

A value equal to one indicates no change in the CO2 performance between period

t and period t + 1. If the value is less than one, the CO2 performance decreased,

while a value greater than one represents an increase.

Furthermore, the GMCPI can be decomposed into two components: efficiency

change EC and best practice change BPC . That is,

GMC PI = EC × BPC , (3.9)

where

EC =
D(t)

D(t + 1)
, (3.10)

and

BPC =
DG(t)/Dt(t)

DG(t + 1)/Dt+1(t + 1)
. (3.11)

EC captures the change in the distance of an observation to its respective frontier

in periods t and t + 1. Considering points a1 and a2 in Figure 3.3 as the produc-

tion points of a decision making unit (DMU) in periods t and t + 1, EC is equal to

(ha1/hb1)/(ka2/kc2). EC > 1 indicates a decrease in the distance and hence effi-

ciency progress, whereas EC < 1 represents an increase in the distance and hence

efficiency regress. Similarly, a shift of the contemporaneous frontier away from or

towards the global frontier between period t and period t+1 is captured by BPC . In

Figure 3.3 BPC is calculated as BPC = ((ha1/hd1)/(ha1/hb1))/((ka2/kd2)/(ka2/kc2)).

BPC > 1 indicates technical progress, while BPC < 1 shows technical regress.

In order to determine the required global and contemporaneous distance func-

tions, we employ data envelopment analysis techniques. With s = t, t + 1 and

k = 1, . . . , K observations, the contemporaneous distance function for each observa-

tion k′ in each period s can be obtained by solving the following linear program:

24For notational convenience, we abbreviate the distance functions DG(x t , y t , bt),
DG(x t+1, y t+1, bt+1), Dt(x t , y t , bt) and Dt(x t+1, y t+1, bt+1), respectively, to DG(t), DG(t + 1),
D(t) and D(t + 1) in the following equations.
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[Ds (x s, y s, bs)]−1 =min
z

1
θ

s.t.
K
∑

k=1

zs
k y s

km ≥ y s
k′m, m= 1, . . . , M , (i)

K
∑

k=1

zs
k x s

kn ≤ x s
k′n, n= 1, . . . , N , (ii)

K
∑

k=1

zs
k bs

ki = θ bs
k′ i , i = 1, . . . , I , (iii)

zs
k ≥ 0, k = 1, . . . , K , (iv)

(3.12)

where zs
k are intensity variables assigning a weight to each observation k when con-

structing the best-practice frontier. The inequality constraints in (i) and (ii) guaran-

tee that observation k′ does not produce more desirable outputs or use fewer inputs

than the efficient benchmark on the frontier. The equality constraints in (iii) im-

pose weak disposability, and the non-negativity constraints in (iv) indicate that the

reference technology exhibits constant returns to scale.

Note that, with only one undesirable output, the optimal solutions to the linear

program under the assumption of weak disposability and the linear program under

the assumption of strong disposability are identical. In other words, with I = 1 the

equality constraint in (iii) can be replaced by the inequality constraint
∑K

k=1 zs
k bs

ki ≤
θ bs

k′ i (Oggioni et al., 2011).

Finally, with t = 1, . . . , T , the global distance function for each observation k′ in

each period s can be obtained by solving the following linear program:

�

DG (x s, y s, bs)
�−1
=min

z

1
θ

s.t.
T
∑

t=1

K
∑

k=1

z t
k y t

km ≥ y s
k′m, m= 1, . . . , M , (i)

T
∑

t=1

K
∑

k=1

z t
k x t

kn ≤ x s
k′n, n= 1, . . . , N , (ii)

T
∑

t=1

K
∑

k=1

z t
k bt

ki = θ bs
k′ i , i = 1, . . . , I , (iii)

z t
k ≥ 0, k = 1, . . . , K , (iv)

(3.13)

As before, in the case of a single undesirable output, the equality constraint in (iii)

can be replaced by the respective inequality constraint.

36



3.3 Empirical approach

3.3.2 Benchmarking data

We conduct our analysis using state-level panel data for 48 out of the 50 federal

states in the U.S. for a 13-year period starting in 2000 and ending in 2013.25 The

data come from the survey forms EIA-860 and EIA-923 of the U.S. Energy Informa-

tion Administration (EIA), which provide detailed information on the inputs and out-

puts of U.S. power plants (U.S. Energy Information Administration (EIA), 2015a,b).

As inputs we include aggregated fuel consumption measured in billion British

thermal units (Bn Btu)26 and aggregated nameplate capacity measured in gigawatts

(GW) for all coal- and natural gas-fired power plants in each state.27 Fuel consump-

tion directly influences power plant usage and therefore the desirable and undesir-

able output (net generation and CO2 emissions, respectively). Nameplate capacity

serves as a proxy for the capital input. In the short run, too much capacity is ineffi-

cient, since idle capacity will not be used for generation. However, in the medium

and long run a higher capacity offers more flexibility for switching fuels. Hence, the

capacity variable in our model reflects the trade-off between optimal capacity in the

short run and optimal flexibility in the medium and long run. Besides this inter-

pretation focusing on the electricity generation side of gas and coal, one may relate

inefficiencies to the fact that demand profiles trigger distances to the respective effi-

cient frontier of each state. This may for instance be the case when two states with

different demand profiles possess the same fossil fuel capacity mix, the same gas

price and additionally face identical CO2 regulatory constraints. Depending on the

respective demand structure, both with respect to season and day, gas-fired plants

may only be used as back-up capacity in one state, whereas in the other state gas-

fired generation covers demand at a certain level throughout the day. In both states

this would result in different generation and therewith emission output although the

production technology is identical in both states.

Table 3.1 provides descriptive statistics based on state-level data for the two input

variables, fuel consumption and generation capacity, and the two output variables,

CO2 emissions measured in million tons and net generation measured in gigawatt-

25Vermont is excluded because it has zero electricity production from coal or gas over this time period,
and so is Hawaii because of its geographic isolation from the mainland.

26We account for the state-specific heat values of coal by using the EIA’s State Energy Data System
(SEDS). The coal consumed by the electrical power sector in each state is calculated by dividing
the total heat content of coal received at the electrical power plants by the total quantity consumed
in physical units, which is collected on Form EIA-923 for each year.

27As the amount of electricity generated from petroleum is very small in the U.S. (see Figure 3.2) we
do not include petroleum-fired power plants in our analysis.
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hours (GWh), for the 48 U.S. states from 2000 to 2013.28 Emissions and net gener-

ation from coal and gas are used as outputs in order to reflect the link and trade-offs

between production and pollution.

The descriptive statistics shown in Table 3.1 reflect a wide range of values, since

power generation sizes and technologies differ across the states. Therefore, the table

primarily shows the size of the U.S. fossil fuel power generation sector. The depicted

minimum and maximum values can be directly linked to certain U.S. states.

Table 3.1: Descriptive statistics: state-level data 2000 to 2013

Unit Mean SD Min
value

Max
value

Net generation from coal and gas GWh 57,254.3 56,237.2 1,194.2 358,396.7
CO2 emissions million t 48.6 44.5 0.8 266.4
Fuel consumption Bn Btu 546,921.7 512,824.3 8,392.0 3,159,475.0
Nameplate capacity GW 15.9 16.1 0.7 101.5

Over the whole period, Texas is by far the largest CO2 emitter across all U.S. states

in the electrical power sector. With a peak value of 266 million tons of emitted CO2

in 2011, "Texan" CO2 emissions are more than twice the CO2 emissions of Ohio,

which rank in second place. At the same time, Texas also ranks highest in terms of

overall electricity generated and fuel consumed. Peak annual electricity generation

was equal to 358,397 GWhs and peak annual fossil fuel amounted to 3,159,475

billion Btu, both values occurring in the year 2011. In 2011 Texas had an installed

gas and coal-fired capacity of 101.5 GW. The minimum values shown in Table 3.1 all

belong to Idaho in 2000 and 2011.

3.3.3 Second-stage regression

In order to test which factors determine the differences in the CO2 emission perfor-

mances of the states over time, we regress their cumulative GMCPI obtained in the

first step of our analysis on several state-specific factors, in a second step. The cu-

mulative GMCPI until period t, rather than the GMCPI for each two-year period, is

used in order to account for all CO2 emission performance changes until that period.

As such the cumulative GMCPI is an aggregated measure capturing GMCPI changes

over time intervals up to a certain point in time (i.e. year) and is thus different from

28Because of some suspicious changes in one or more of the in- and outputs from one year to the other
(changes higher than 100%) we exclude the observations for Idaho and New Hampshire in the
years 2000 to 2002, as well as the observation for Maine in the year 2000, from our data set.
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a two-year comparison29:

CumGMC PIi t = α0 +α1GasPricei t +α2Tar get i t +α3Standardsi t +α4Capi t

+α5 ln GDPPCi t +α6NucSharei t +α7H ydroSharei t

+α8WindSharei t +αt Dumt +αi Dumi + εi t+1,
(3.14)

where GasPricei t is the annual state-specific natural gas electrical power price that

reflects the price of gas used by electricity generators. Tar get i t , Standardsi t and

Capi t are dummy variables equal to one if in state i and year t greenhouse gas emis-

sions targets, CO2 performance standards or a cap-and-trade program, respectively,

are in place and equal to zero otherwise. GDPPCi t is the annual real gross domestic

product (GDP) per capita by state. NucSharei t , H ydroSharei t and WindSharei t

are state i’s share of nuclear, hydroelectric and wind energy in state i’s total name-

plate capacity in year t. Dumt and Dumi denote year and state fixed effects, the α’s

are parameters to be estimated and the ε reflects the error term.

Data for the annual state-specific natural gas electrical power price are drawn from

the EIA Natural Gas Summary. The data originally come from the Federal Energy

Regulatory Commission (FERC), Form-423, and are in nominal dollars per thousand

cubic feet. The price index for GDP from the US Bureau of Economic Affairs (BEA)

is used to transform the nominal prices into constant prices based on the year 2009.

Data on the real GDP per capita are also taken from the BEA and are in 2009-dollars.

The summary statistics on the second-stage variables depicted in Table 3.2 reflect

the high heterogeneity among the states. The maximum real gas price of $11.56

per thousand cubic feet is observed for Georgia in 2005. In the same year, the price

in Alaska was only $3.72 per thousand cubic feet. As for real GDP per capita, the

maximum value of $70,918 is found for Alaska in 2009. This value is more than

twice the minimum value, which is found for Mississippi in 2001.

Similar differences can be seen for the shares of the three most common CO2-free

29An illustrative example is given in Table 3.5, where we use the full time span starting with the
change in emission performance between 2000 and 2001 and then multiply this GMCPI, which
relates measures of t and t + 1, with growth or de-growth rates resulting from all following years.
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Table 3.2: Determinants of CO2 emission performance: summary statistics

Unit Mean SD Min
value

Max
value

Gas price 2009 $ 6.14 2.12 2.16 11.55
Real GDP per capita 2009 $ 45 648 8 519 28 957 70 918
Nuclear share in nameplate capacity % 8.45 8.78 0 41.30
Hydroelectric share in nameplate capacity % 10.33 17.85 0 87.12
Wind share in nameplate capacity % 2.40 4.77 0 30.02
GHG emissions targets 0/1 0.24 0.43 0 1
CO2 performance standards 0/1 0.07 0.25 0 1
Cap and trade 0/1 0.07 0.25 0 1

electricity generation technologies in the states’ total nameplate capacity.30 The low

mean and standard deviation values for the share of wind show that the generation

of electricity from wind is of low relevance in many states in the time period of

the observations. In fact, in 37 of the 48 states the wind share in the nameplate

capacity is below 10% in all years. Noteworthy exceptions are Iowa, with a share of

about 30%, and North Dakota, with a share of about 27% in 2013. The nuclear and

hydroelectric share in nameplate capacity is about 10% on average. Exceptions here

are Idaho, with a hydroelectric share of about 87% in 2000, and New Hampshire

with a nuclear share of about 41% in 2000 and 2001.

Information on state-specific regulatory policies is taken from the website of the

Center for Climate and Energy Solutions (C2ES).31 The C2ES collects a variety of

data on state and regional climate actions within the U.S. Table 3.3 lists the states

that have adopted the state-specific regulatory policies to be tested and the dates

when these policies were put in place in each state. The most common policy is

the definition of GHG emissions targets. By 2013, 18 of the 48 states included in

the study had set emission reduction targets, to be achieved by a certain date. The

baseline and target years, as well as the reduction levels, vary among the states. The

most common short-term targets, to be met by 2020, are the reduction of emissions

to 1990 levels (four states) and to 10% below 1990 levels (eight states). In the long-

term, the targets vary between 50% and 85% below the 1990 and 2005 levels. Most

states have a long-term target year of 2050.

30As the share of solar thermal and photovoltaic in total nameplate capacity is far below 1% for almost
all states in the time period of the observations, it is not included in the analysis. Only Arizona,
California, North Carolina, New Jersey, Nevada, and New Mexico show values above 1%. The
maximum value is 4.3% in California in 2013. A similar argument applies to geothermal energy
and pumped storage. While in a limited number of states these technologies play a minor role,
they are not installed at all in the vast majority of states.

31 http://www.c2es.org/us-states-regions, last accessed 29.02.2016.
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Table 3.3: State-specific regulatory policies

Year GHG emissions targets CO2 performance
standards

Cap and trade

2000 OR
2001 CT, MA, ME, NH, RI OR
2002 CT, MA, ME, NH, RI, NY OR
2003 CT, MA, ME, NH, RI, NY OR
2004 CT, MA, ME, NH, RI, NY OR, WA
2005 CT, MA, ME, NH, RI, NY, CA, NM OR, WA
2006 CT, MA, ME, NH, RI, NY, CA, NM, AZ OR, WA, CA
2007 CT, MA, ME, NH, RI, NY, CA, NM, AZ, FL, IL,

MN, NJ, OR, WA
OR, WA, CA, MT

2008 CT, MA, ME, NH, RI, NY, CA, NM, AZ, FL, IL,
MN, NJ, OR, WA, CO

OR, WA, CA, MT

2009 CT, MA, ME, NH, RI, NY, CA, NM, AZ, FL, IL,
MN, NJ, OR, WA, CO, MD, MI

OR, WA, CA, MT,
IL

CT, DE, MA, MD,
ME, NH, NJ, NY, RI

2010 CT, MA, ME, NH, RI, NY, CA, NM, AZ, FL, IL,
MN, NJ, OR, WA, CO, MD, MI

OR, WA, CA, MT,
IL

CT, DE, MA, MD,
ME, NH, NJ, NY, RI

2011 CT, MA, ME, NH, RI, NY, CA, NM, AZ, FL, IL,
MN, NJ, OR, WA, CO, MD, MI

OR, WA, CA, MT,
IL

CT, DE, MA, MD,
ME, NH, NJ, NY, RI

2012 CT, MA, ME, NH, RI, NY, CA, NM, AZ, FL, IL,
MN, NJ, OR, WA, CO, MD, MI

OR, WA, CA, MT,
IL, NY

CT, DE, MA, MD,
ME, NH, NY, RI

2013 CT, MA, ME, NH, RI, NY, CA, NM, AZ, FL, IL,
MN, NJ, OR, WA, CO, MD, MI

OR, WA, CA, MT,
IL, NY

CT, DE, MA, MD,
ME, NH, NY, RI,
CA

Note: Arizona (AZ), California (CA), Colorado (CO), Connecticut (CT), Delaware (DE), Florida (FL),
Illinois (IL), Maine (ME), Maryland (MD), Massachusetts (MA), Michigan (MI), Minnesota (MN),
Montana (MT), New Hampshire (NH), New Jersey (NJ), New Mexico (NM), New York (NY), Oregon
(OR), Rhode Island (RI), Washington (WA).
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In addition to GHG emissions targets, six states have adopted CO2 performance

standards. The standards and their area of application differ considerably among the

states. While in some states the standards only apply to specific (e.g. baseload) or

new power plants, in others they apply to all power plants. Furthermore, standards

might require generators to reduce emissions from power plants directly to a given

emissions rate per output unit, or they might also allow indirect measures such as,

payments to third-party mitigation projects. Overall, no consistent pattern in the

design of state-level CO2 performance standards is observable.

The last regulatory policy included in our analysis is the implementation of a cap-

and-trade program. Cap-and-trade is a system that sets a decreasing limit on emis-

sions from one or multiple economic sectors. Below the cap there is a market in

which the entities convered by the program can trade carbon allowances. An entity

that emits less than its allocated limit can sell its allowances to an entity that emits

more, and vice versa. The less an individual entity emits, the less it pays. Hence,

there is an economic incentive to reduce emissions.

Within the observed period a cap-and-trade system was only implemented in the

north and Mideast of the U.S. and in California. In its first control period from 2009-

2011 the Regional Greenhouse Gas Initiative (RGGI) included fossil fuel electricity

generation in ten northern and mid-eastern states (see Table 3.3: Vermont is one

of the ten but is not included in our data set.). All fossil fuel power plants with 25

megawatts or greater capacity had to comply with the cap, with the aim of stabilizing

emissions between 2009 and 2014 and achieving a 10% reduction by 2019. New

Jersey withdrew from the system before the start of the second control period in

2012. Furthermore, in 2013 California implemented an overall emission cap that

applies to all major industrial sources and electric utilities. By 2015 the system was

enlarged to distributors of transportation fuels, natural gas, and other fuels. Each

year the total amount of allowances is reduced by 3% in order to reduce emissions.

3.4 Results

3.4.1 Benchmarking results

Table 3.4 reports the CO2 emission efficiency scores for each state for the years 2000,

2006 and 2013, obtained from the linear program given in Equation 3.13. In 2013

the best results are achieved by the New England states Maine (1.00), Rhode Island

(0.95) and Connecticut (0.94), as well as California (0.87) and Oregon (0.80). Con-
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sidering the other years, this ranking is stable only for Maine and Rhode Island. In

all years, Maine and Rhode Island are ranked either first or second, reflecting their

exceptionally high shares of electricity generated from natural gas (more than 95%

and 100% in all years, for Maine and Rhode Island respectively).

Table 3.4: CO2 emission efficiency scores per state

State 2000 2006 2013 Rank
2013

State 2000 2006 2013 Rank
2013

Alabama 0.44 0.47 0.57 18 Nebraska 0.41 0.41 0.40 44
Alaska 0.47 0.50 0.51 27 Nevada 0.57 0.69 0.78 8
Arizona 0.48 0.55 0.54 22 New Hampshire 0.64 0.70 13
Arkansas 0.40 0.47 0.48 29 New Jersey 0.54 0.57 0.80 6
California 0.68 0.78 0.87 4 New Mexico 0.47 0.46 0.49 28
Colorado 0.49 0.48 0.46 32 New York 0.56 0.59 0.77 9
Connecticut 0.53 0.73 0.94 3 North Carolina 0.44 0.44 0.54 21
Delaware 0.42 0.43 0.64 14 North Dakota 0.46 0.47 0.45 33
Florida 0.53 0.64 0.73 11 Ohio 0.44 0.44 0.47 30
Georgia 0.44 0.46 0.58 17 Oklahoma 0.47 0.53 0.53 24
Idaho 0.64 0.73 10 Oregon 0.76 0.79 0.80 5
Illinois 0.38 0.39 0.39 46 Pennsylvania 0.44 0.46 0.55 20
Indiana 0.43 0.43 0.43 35 Rhode Island 0.90 0.97 0.95 2
Iowa 0.36 0.37 0.37 48 South Carolina 0.46 0.46 0.51 26
Kansas 0.40 0.40 0.39 47 South Dakota 0.42 0.40 0.42 38
Kentucky 0.45 0.42 0.42 41 Tennessee 0.42 0.41 0.40 45
Louisiana 0.51 0.53 0.59 16 Texas 0.52 0.55 0.57 19
Maine 0.88 1.00 1 Utah 0.56 0.52 0.51 25
Maryland 0.48 0.44 0.41 42 Virginia 0.40 0.41 0.53 23
Massachusetts 0.55 0.70 0.78 7 Washington 0.50 0.55 0.60 15
Michigan 0.44 0.43 0.42 37 West Virginia 0.51 0.47 0.44 34
Minnesota 0.41 0.39 0.42 39 Wisconsin 0.37 0.39 0.42 40
Mississippi 0.45 0.53 0.72 12 Wyoming 0.51 0.49 0.47 31
Missouri 0.41 0.42 0.43 36 Mean 0.48 0.52 0.57
Montana 0.48 0.44 0.41 43 Median 0.46 0.47 0.52

Note: To conserve space, only the values for the first, the middle and the last year of sample
are presented. The values for all years are available from the authors upon request.

The other top performer states show a rather heterogeneous development. For

example, in 2000, Connecticut only reached an efficiency score of 0.53. In the years

to 2013 Connecticut almost doubled this score, reaching a value of 0.94 in 2013.

Interestingly, from 2000 to 2013, Connecticut increased the share of natural gas

in the total electricity generated from coal and natural gas from 56% to 96%. In

contrast, the natural gas shares in California and Oregon increased only slightly,

from, respectively, 98% and 71% in 2000 to 99% and 79% in 2013. The rankings of

California and Oregon vary between second and fifth place within these years.

The low performer states in 2013 are the Midwest states of Iowa (0.37), Kansas

(0.39), Illinois (0.39), and Nebraska (0.40), as well as Tennessee (0.40). Interest-
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ingly, while the low performance states all show a high share for coal generation,

other states with even higher shares perform better. For example, Wyoming, with a

coal share of almost 100%, is ranked at place 31. These results show that, in addi-

tion to the coal and gas capacity mix, the CO2 content of the burned coal and the

overall capacity utilization also influence the efficiency rankings.

As the efficiency scores in Table 3.4 are obtained from a within-year comparison,

they only present a static view of the CO2 emission performance of the states. In

order to evaluate the CO2 emission performance over time, we calculate the GMCPI

defined in Equation 3.8 for each two-year period and each state. The cumulative

GMCPIs over the period 2000-2013 are reported in Table 3.5.

The results show that, on average, the states improved their CO2 emission per-

formance from 2000 to 2013 by about 15%. Furthermore, for 34 of the 48 states

a positive development in the CO2 emission performance is shown. The top five

performers are Connecticut (1.76), Mississippi (1.62), Delaware (1.54), New Jersey

(1.47), and Massachusetts (1.53). The low performers are Montana (0.86), Mary-

land (0.86), West Virginia (0.88), Utah (0.92), and Kentucky (0.92). On average,

the CO2 emission performance of the low performers decreased by about 11% from

2000 to 2013.

As shown in Equations 3.9-3.11, the GMCPI can be decomposed into two compo-

nents. Table 3.6 depicts the cumulative efficiency change and the cumulative best

practice change. First, referring to the cumulative best practice change, the results

indicate a positive rate of technological change over time, on average and for 44 of

the 48 states. The average rate of cumulative best practice change is 13%. While

this result suggests technological improvements for almost all input mixes and lev-

els, it does not indicate whether all states have implemented these improvements.

A state’s positive rate of cumulative best practice change simply indicates a shift

of the state’s relevant portion of the contemporaneous frontier towards the global

frontier, between the first period and the last period. However, it does not indicate

whether the state actually operates on that frontier or causes its own outward shift

(Färe et al., 1994). For example, the highest rate of cumulative best practice change

is shown for Louisiana, and is about 79%. However, we also observe a cumulative

efficiency decrease for Louisiana of about 36%. This means that, for Louisiana’s pro-

duction technology, CO2 reducing innovations occurred over time, but Louisiana was

not able to follow these innovations. Graphically speaking, over the observed period

Louisiana was not able to catch-up to the outwardly shifting contemporaneous fron-

tier towards the global frontier. Overall, Louisiana’s cumulative GMCPI indicates an
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Table 3.5: Cumulative GMCPI per state over the period 2000-2013 (2000= 1)

State CumGMCPI Rank State CumGMCPI Rank

Alabama 1.31 12 Nebraska 0.99 36
Alaska 1.09 25 Nevada 1.37 8
Arizona 1.13 22 New Hampshire 1.20 16
Arkansas 1.19 18 New Jersey 1.47 4
California 1.28 13 New Mexico 1.02 33
Colorado 0.95 42 New York 1.38 7
Connecticut 1.76 1 North Carolina 1.21 15
Delaware 1.54 3 North Dakota 0.97 39
Florida 1.40 6 Ohio 1.07 27
Georgia 1.32 10 Oklahoma 1.12 24
Idaho 1.33 9 Oregon 1.06 28
Illinois 1.04 30 Pennsylvania 1.26 14
Indiana 0.98 37 Rhode Island 1.06 29
Iowa 1.01 34 South Carolina 1.13 23
Kansas 0.98 38 South Dakota 0.99 35
Kentucky 0.92 44 Tennessee 0.96 41
Louisiana 1.15 20 Texas 1.08 26
Maine 1.16 19 Utah 0.92 45
Maryland 0.86 47 Virginia 1.31 11
Massachusetts 1.53 5 Washington 1.20 17
Michigan 0.97 40 West Virginia 0.88 46
Minnesota 1.03 32 Wisconsin 1.15 21
Mississippi 1.62 2 Wyoming 0.93 43
Missouri 1.03 31 Mean 1.15
Montana 0.86 48 Median 1.11
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increase in its CO2 emission performance of about 15%.

Table 3.6: Cumulative GMCPI decomposition per state over the period 2000-2013 (2000 =
1)

State CumEC CumBPC State CumEC CumBPC

Alabama 1.10 1.19 Nebraska 0.87 1.14
Alaska 1.02 1.07 Nevada 1.08 1.27
Arizona 0.90 1.25 New Hampshire 1.13 1.06
Arkansas 1.14 1.05 New Jersey 1.35 1.09
California 1.24 1.04 New Mexico 0.88 1.17
Colorado 0.76 1.25 New York 1.28 1.08
Connecticut 1.67 1.05 North Carolina 1.13 1.07
Delaware 1.43 1.08 North Dakota 1.16 0.84
Florida 1.31 1.07 Ohio 0.93 1.16
Georgia 1.25 1.06 Oklahoma 1.05 1.07
Idaho 0.78 1.66 Oregon 0.86 1.23
Illinois 0.96 1.08 Pennsylvania 1.34 0.94
Indiana 0.84 1.17 Rhode Island 1.00 1.06
Iowa 0.88 1.15 South Carolina 0.96 1.17
Kansas 0.92 1.07 South Dakota 0.89 1.12
Kentucky 0.76 1.21 Tennessee 0.83 1.16
Louisiana 0.64 1.79 Texas 1.03 1.05
Maine 1.10 1.06 Utah 0.99 0.94
Maryland 0.68 1.27 Virginia 1.23 1.06
Massachusetts 1.31 1.08 Washington 0.95 1.26
Michigan 0.91 1.06 West Virginia 0.83 1.05
Minnesota 0.85 1.21 Wisconsin 1.08 1.06
Mississippi 1.49 1.09 Wyoming 1.00 0.93
Missouri 0.98 1.06 Mean 1.03 1.13
Montana 0.85 1.02 Median 0.99 1.08

An opposing picture is shown for, for example, Rhode Island. The cumulative effi-

ciency change value of 1 and the equal cumulative best practice change and GMCPI

values of 1.06 suggest that Rhode Island in all years operated on the best practice

frontier and pushed it’s relevant portion outwards towards the global frontier by

technological innovations. Overall, Rhode Island realized an increase in its CO2

emission performance of about 6% as a result of technological innovations.

A third example is given by North Dakota. North Dakota is one of the four states

for which we observe a negative rate of technological change over time, namely

−16%. This result indicates an inward shift of North Dakota’s relevant portion of

the contemporaneous frontier away from the global frontier. Such a result occurs if

the states that determine this portion of the frontier experience a deterioration of

their technological performance over time. In fact, Wyoming’s cumulative efficiency

change value of 1 and its cumulative best practice change value of 0.93 suggest that

Wyoming is one of these states. Other states may have also belonged to this group
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in some years, but have been able to compensate for this in other years by input

adjustments.

Altogether, our results on cumulative efficiency change and cumulative best prac-

tice change suggest that some innovative states shifted the contemporaneous frontier

towards the global frontier by implementing technological innovations. However,

the decline in cumulative efficiency change for 24 of the 48 states shows that half of

the states were not able to follow these innovations and to catch-up to the new best

practice frontier.

A better view of the CO2 emission performance over time is shown in Figure 3.4,

which depicts the cumulative GMCPI trends for the top and bottom performers for

the period 2000-2013. While the lower part of the figure shows a relatively steady

decline in the CO2 emission performance of the bottom performers over time, the

upper part indicates a relatively strong increase in the CO2 emission performance

of the top performers, particularly after 2008. This may be a first indication that

the significant decrease in the natural gas price after 2008 is a major driver of CO2-

reduced electricity generation from fossil fuel power plants, although this is yet to

be proven.

3.4.2 Second-stage regression results

Table 3.7 present the estimation results for Equation 3.14. As reverse causality, that

is, not only regulation has an impact on the CO2 emission performance but the CO2

emission performance also has an impact on the regulation, might be a problem, we

first conduct a test of endogeneity. The test provides moderate evidence against the

null hypothesis that the regulatory variables are exogenous (p=0.031). Therefore,

we estimate two model specifications: one treating the regulatory variables as ex-

ogenous, and one treating the regulatory variables as endogenous. In the latter we

apply the two-stage least squares (2SLS) estimator and instrument the regulatory

variables with their first lags as well as with a dummy variable equal to one in the

case of a governor from the democrat party, and zero otherwise. Both specifications

include state and year fixed effects.

The results of the two specifications are very similar. The regression diagnostics for

the 2SLS specification suggest that the instrumental variables used for the regulatory

variables are sufficient. The under-identification test rejects the null hypothesis that

the model is not identified (p<0.01), the over-identification test fails to reject the

null hypothesis that the instruments are not valid (p>0.50), and the Kleinbergen-
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Figure 3.4: Cumulative GMCPI trends for the top and bottom performers for the period 2000-
2013
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3.4 Results

Table 3.7: Determinants of CO2 emission performance: estimation results

Fixed effects 2SLS

Variable Parameter Coef. Std. err. Coef. Std. err.

Constant α0 2.356∗∗ (1.191) −
Gas price α1 −0.011∗∗ (0.004) −0.011∗∗∗ (0.004)
GHG emissions targets α2 0.003 (0.018) 0.040 (0.029)
CO2 performance standards α3 0.043 (0.029) 0.022 (0.038)
Cap-and-trade system α4 0.077∗∗∗ (0.026) 0.137∗∗∗ (0.042)
Real GDP per capita (log) α5 −0.097 (0.110) −0.126 (0.119)
Nuclear share in nameplate
capacity

α6 −0.014∗∗ (0.006) −0.014∗∗ (0.006)

Hydroelectric share in
nameplate capacity

α7 −0.010∗∗ (0.004) −0.009∗∗ (0.004)

Wind share in nameplate
capacity

α8 −0.008∗∗∗ (0.001) −0.007∗∗∗ (0.001)

State fixed effects αi yes yes

Year fixed effects αt yes yes

R-squared R2 0.802 0.490

Adjusted R-quared R2(adj.) 0.767 0.400

Endogeneity test P-value − 0.071

Underidentification test P-value − 0.000

Overidentification test P-value − 0.500

Kleinbergen-Paap F-statistic − 15.258

Observations N 437 436

Notes: Robust standard errors in parentheses. Instruments for 2SLS: First lags of regulatory
variables and dummy variable for party of the governor. ∗∗∗, ∗∗ and ∗: significant at the 1%-, 5%-, and
10%-level. All estimations were performed in Stata 13.1 using the official areg command and the
user-written xtivreg2 command developed by Schaffer (2012).
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Paap F-statistic is greater than the rule of thumb of 10 (15.258), indicating that weak

instruments are no problem.

The results in Table 3.7 indicate a statistically significant impact of the natural

gas price, and a regional cap-and-trade-system, as well as the state’s shares of nu-

clear, hydroelectric and wind energy in total nameplate capacity, on the state’s CO2

emission performance of fossil fuel power plants. As expected, an increase in the

natural gas price has a negative impact on the cumulative GMCPI. In both specifi-

cations the estimated coefficient of −0.011 suggests that a $1 increase in the price

decreases the cumulative GMCPI by one percentage point. Similar results are shown

for the shares of the most common CO2-free electricity generation technologies in

the state’s total nameplate capacity. The estimated coefficients of between −0.007

and −0.014 suggest that an additional percentage point in the shares decreases the

cumulative GMCPI by between 0.7 and 1.4 percentage points. This result can be

explained by a lower incentive for states with a high share of CO2-free electricity

generation capacity to reduce the C02 emissions from their fossil fuel generation

capacity.

Finally, among the regulatory variables we only find a statistically significant im-

pact for a regional cap-and-trade system. The estimated coefficients indicate that the

implementation of such a system increases the cumulative GMCPI by 7.7 and 13.7

percentage points, respectively, for the two specifications. This result emphasizes

that stringent regulation is the most important driver of the states’ CO2 emission

performance.

3.5 Conclusions

CO2 emissions from fossil-fueled electricity generation in the U.S. have dropped con-

siderably in the last decade. As U.S. states seem to show varying success in reducing

these CO2 emissions, the objective of this article was to compare the relative CO2

emission performance of fossil fuel power plants across the states for the period

2000-2013. In particular, we analyzed whether or not the inter-fuel competition

induced by the shale gas revolution and/or state-specific CO2 regulations have con-

tributed to the developments over time.

For a better understanding of the state-specific CO2 emission performance over

time we first applied a nonparametric benchmarking approach. In doing this, we did

not just consider a simple measure of CO2 intensity, such as CO2 emissions per unit
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of electricity produced, but we also took other factors, such as fuel consumption and

nameplate capacity, into account. This approach allowed us to measure the relative

CO2 emission performance across states, considering both the input and the output

dimension of the states’ fossil fuel electricity generation profiles, and hence provided

a more comprehensive picture of the states’ relative CO2 emission performance than

a simple output-oriented CO2 intensity measure.

In particular, we used a ‘global’ Malmquist CO2 performance index (GMCPI) to

measure each state’s performance against a global benchmarking technology. The

cumulative GMCPI obtained can be interpreted as a total factor CO2 emission per-

formance index between 2000 and 2013. Overall, we find that the CO2 emission

performance across all states improved, on average, by 15% from 2000 to 2013.

Decomposing the performance index into its elements, efficiency change and tech-

nological change, revealed that this development was mainly due to technological

progress. However, the observed efficiency decline in 24 of the 48 states shows that

half of the states were not fully able to implement the technological improvements

introduced in some innovative states.

To test whether fuel competition and/or emissions regulations led to an improve-

ment in the CO2 emission performance over time, we regressed the cumulative GM-

CPI on natural gas prices, regulatory policies and a number of other state-specific

factors. Altogether, the results support the argument of increased inter-fuel competi-

tion induced by the shale gas revolution and the positive impact of this on electricity-

related CO2 emissions. That is, lower natural gas prices come with a higher state-

specific CO2 emission performance over time. Furthermore, considering state-level

regulatory policies, the results suggest a positive impact of regional cap-and-trade

programs on the state-specific CO2 emission performance over time.

As for the other two regulatory policies considered, there may be several reasons

why we do not find them to have a statistically significant impact on the states’ CO2

emission performance. First, the setting of a GHG emissions target does not nec-

essarily come with a set of concrete actions. In most states there is a long period

between the announcement of a target and the implementation of mandatory regu-

lations within the individual sectors. Hence, GHG emissions targets can be seen as

a soft type of regulatory policy rather than a stringent set of actions. Second, the

design of CO2 performance standards varies enormously among the states. While

some standards may have an impact, others may not. In all likelihood, this het-

erogeneity prevents us from finding a statistically significant impact of state-specific

CO2 performance standards in general.
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Altogether, we conclude that lower gas prices and stringent CO2 regulations are

suitable means to reduce electricity-related CO2 emissions. However, although the

effect of lower natural gas prices is statistically significant, it should be carefully

interpreted. Taken literally, a $5 drop in the natural gas price, as observed on the

national level between 2008 and 2013, is estimated to increase a state’s CO2 emis-

sion performance by about 5 percentage points. Whether or not this effect is small

or large in environmental terms cannot be clearly answered within our framework.

A more comprehensive evaluation should include all the economic and environmen-

tal costs (and benefits): in the case of natural gas, this also incorporates the envi-

ronmental costs resulting from shale gas exploitation. A similar argument applies

to our estimated effect of cap-and-trade regulation. While regional cap-and-trade

programs seem to be very effective in reducing CO2 emissions, policy makers should

carefully weigh the costs and benefits of such programs before considering a regional

and sectoral expansion.
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4 The Impact of Advanced Metering
Infrastructure on Residential Electricity
Consumption - Evidence from California

One important pillar in the debate about energy-saving measures addresses energy

conservation. In this paper, we focus on the deployment of advanced metering in-

frastructure to reduce the impact of limited information and bounded rationality of

consumers. For California, we empirically analyze the influence of a statewide and

policy-driven installation of advanced metering infrastructure. We apply synthetic

control methods to derive a suitable control group. We then conduct a Difference-

in-Differences estimation and find a significant negative impact of smart meters on

monthly residential electricity consumption that ranges from 6.1 to 6.4%. Second,

such an impact only occurs in non-heating periods and does not fade out over the

analyzed time period.

4.1 Introduction

In the light of exacerbated discussions on climate targets and emission reduction

goals, energy-saving measures have become increasingly important. In the residen-

tial sector, such measures have to account for specific characteristics such as limited

information and bounded rationality. Although there should be a natural interest in

reducing electricity consumption, it is common knowledge that the savings potential

is yet to be leveraged. In this paper, we analyze the impact of advanced metering

infrastructure (AMI) on residential electricity consumption. The AMI feeds back

real-time information on electricity consumption and enables bidirectional commu-

nication between the consumer and the respective service utility.

Since, from a consumer‘s perspective, cost recovery after installing AMI is at least

questionable, pilot tests and policy-induced measures are the prevalent ways of eval-

uating smart-meter deployment. The respective impact of smart meters on electric-

ity consumption may differ in both frameworks. In pilot tests, a loss of generality

resulting from small samples and the Hawthorne effect, whereby individuals alter
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their behavior in response to their awareness of being observed, may be relevant.

Therefore, we focus on a statewide policy measure and identify a lack of empirical

evidence in the existing literature. On the basis of our analyses, decision makers

may assess the effectiveness of a policy-driven deployment of smart meters.

We analyze the impact of AMI based on empirical evidence from California. Fol-

lowing the Californian Energy Crisis in 2001, the government issued a decision re-

garding statewide deployment of smart meters in the Energy Action Plan II of 2005.

As a consequence, the three major service utilities committed themselves to installing

AMI right across their service areas beginning in 2008. As such, smart meters provide

consumers and utilities with more detailed consumption information.32 We compare

the Californian development of residential electricity consumption over time with

the respective one in a synthetic control group named ‘Synthetic California’. We

construct this control group using synthetic control methods in order to resemble

Californian characteristics (Abadie et al., 2010). Furthermore, we isolate the effect

of advanced metering infrastructure by filtering out distorting effects such as energy

savings related to energy-efficiency measures.

We find a significant reduction of the average monthly residential electricity con-

sumption in California that effectively ranges between 6.1 and 6.4% during our pe-

riod of observation. However, we identify a clear seasonal pattern of electricity sav-

ings, showing significant reductions of electricity consumption only in non-heating

periods. We suggest that this may be due to the fact that some household appliances

are more likely to be substitutable in non-heating periods and thus provide higher

saving potentials. On the contrary, heating represents a more basic need and there-

fore electricity consumption patterns may be less likely to change during heating

periods.33 Finally, our results suggest that the impact of additional informational

feedback on electricity consumption is continuous during our period of observation.

We reckon that, at least within the seven years under analysis, smart-meter deploy-

ment is a suitable way to achieve overall electricity savings in the residential sector.

However, for service utilities, an ongoing assessment of the respective impact on elec-

tricity consumption may be beneficial to foster persistent effects. Finally, seasonal

fluctuations with respect to the impact of AMI suggest that energy-conservation mea-

sures should be complemented by other energy-saving measures in order to achieve

a general and continuous reduction in electricity consumption.

32The smart meters may provide data with higher temporal resolution and device-specific information.
33In the US, up to 65% of households have electric space heating and thus a significant impact on

electricity consumption is expected.
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4.2 Literature Background

The remainder of the paper is organized as follows. Section 4.2 provides the

main literature background. In Section 4.3, we depict the identification strategy for

measuring the impact of smart meters on residential electricity consumption. We

then present the most relevant characteristics of residential electricity consumption

in Section 4.4 and furthermore provide a broad overview on energy-saving measures

that are relevant for the analysis. Our applied empirical approach and the data are

described in Section 4.5, and the respective results are discussed in Section 4.6.

Finally, we draw conclusions in Section 4.7.

4.2 Literature Background

When analyzing the impact of AMI on residential electricity consumption, we es-

sentially expect the respective influence to be triggered by additional informational

feedback. The paper at hand in a broader context is hence positioned in behavioral

economics. One important pillar for such literature deals with aspects surrounding

bounded rationality, which may serve as an explanatory approach for the actual be-

havior of consumers. As the provision of informational feedback directly addresses

the limited information of consumers, we first focus on some basic principles in the

literature. According to Simon (1957), the term ‘bounded rationality’ refers to the

rationality that is exhibited by the economic behavior of humans. More precisely,

rationality is assumed to be bounded due to the limited information that individ-

uals have at certain reference points in time. Naturally, how decisions are taken,

assuming that individuals first face a lack of perfect information and second are

not even capable of processing all the information they encounter, remains an open

question. The joint answer given by behavioral economists and psychologists has

directed researchers to the aspect of time itself. Over time, decisions of individuals

are influenced by new information that, after being ‘fed back’ to the individuals, trig-

gers adjustments in their decisions. Such an informational feedback (or ‘learning’)

re-aligns initial thinking, punishes deviant behavior, and leads to the amelioration of

decisions (Arthur, 1991, 1994, North, 1994). Arthur (1994) labels this behavioral

‘process’ as inductive reasoning, implying that the individual initially assumes a va-

riety of working hypotheses, acts upon the most credible ones, and then replaces

them by new ones if they fail to work. Thus, the interplay between economic and

psychological research evidently can not be neglected (Rabin, 1998, Simon, 1986).

The essence of bounded rationality and informational feedback has inspired a

vast body of prior research, not only in the field of energy (e.g., DiClemente et al.,
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2001). Above all, the impact of providing feedback on consumption is of particular

interest. In the related literature, such an effect has most often been measured

with the help of empirical work that is constrained by data and/or the experimental

design itself. Therefore, the setting of experimental studies and the selection of

variables are crucial.34 This paper addresses the relevance of bounded rationality

in the energy sector. In this context, informational feedback incorporates a measure

that is supposed to effect an overall reduction of electricity consumption based on

additional information. A summary of experimental energy-related studies has been

published by Faruqui et al. (2010). The authors conducted their survey based on

pilot programs in the United States, investigating the effect of in-home displays on

consumer behavior, and found that reductions in consumption from such programs

reached 7% on average. More recent research has been conducted by Gans et al.

(2013) dealing with the effect of informational feedback on residential electricity

consumption. In that study, the authors analyze the impact of smart meters in a

large-scale natural experiment in Northern Ireland. They find that the decline in

residential electricity consumption induced through smart meters ranges between

11 and 17%.

Targeting an overall reduction of electricity demand, the literature distinguishes

between three different types of energy-saving measures. Despite the energy-conser-

ving impact of informational feedback, electricity consumption can also be influ-

enced by energy-efficiency programs and demand response. Whereas informational

feedback induces a behavioral change so that ‘using less electricity’ results as the

outcome, energy efficiency aims at a reduced energy usage while maintaining a

comparable level of service (Boshell & Veloza, 2008, Davito et al., 2010, Gillingham

et al., 2006). Efficiency is thus closely linked to the installation of energy-efficient

technologies within households such as freezers, refrigerators, dishwashers, light

bulbs, and other appliances. In contrast to these direct measures, demand response

is related to the electricity market itself. Despite a reduction of peak demand that

was observed in field experiments on dynamic pricing (Faruqui & Sergici, 2010),

Joskow & Wolfram (2012) stress that the overall penetration of demand response

measures in the US has been low so far. For California, the impact of demand re-

sponse programs is still negligible today. In this paper, we focus on the isolated

impact of deploying AMI and thus position this article in the literature analyzing

energy-conservation measures.

Recently, behavioral literature has focused on the growing appreciation of how

34A review of such features from experimental studies can be found in Selten (1998).
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non-price interventions can affect consumer behavior. As such, informational feed-

back provided to the consumer is pivotal in order to increase the household‘s re-

sponsiveness and likewise influence its electricity consumption. Among others, All-

cott (2011) reports that providing social norm information induces consumers to

conserve electricity. Allcott & Rogers (2014) expand the analysis on social norms by

using data from the Opower program, in which home energy reports based on social

comparison are repeatedly provided to residential electricity consumers.

Supplementing prior research, we focus on the impact of AMI in a large-scale

framework rather than analyzing short-term pilot programs. Moreover, the litera-

ture so far gives a long list of issues related to the explanatory power of pilot tests.

Such aspects cover, inter alia, the representative nature of the sample, the time hori-

zon, additional and distorting monetary incentives, and measurement errors. Fur-

thermore, a Hawthorne effect may be identified, reflecting the fact that people may

alter their behavior when they know that they are participating in an experimental

study (Adair, 1984). Thus, the transferability of results from pilot tests to a larger

and more general context is at least questionable. We intend to fill this gap by de-

riving an empirical approach that will allow us to draw conclusions from an energy-

conservation measure induced by statewide policy. Complementing prior research,

we are thus able to assess the effectiveness of a policy-driven deployment of smart

meters in the context of energy-conservation measures.

4.3 Identification Strategy

In the US, smart-meter35 deployment in several states is fostered by legislation.

While some states have not passed any smart-meter legislation yet, others have

already fully adopted smart-meter plans. Figure 4.1 depicts the status of smart-

metering legislation across the US states.

We use the dichotomy of states with significant impact of smart-metering legisla-

tion and states with negligible smart-meter penetration rates in order to derive an

experimental setting. On the one hand, we identify the statewide and policy-induced

smart-meter deployment in California as a treatment that allows us to analyze the

impact of smart meters on consumption. On the other hand, states that do not yet

have any smart-meter penetration may serve as a control group.

35Such smart meters are part of the Advanced Metering Infrastructure (AMI). For more details on AMI
see Section 4.8.1 of the Appendix.
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Figure 4.1: Smart-metering legislation across the US states (Energy Information Administra-
tion 2011)

The installation of smart meters refers to a short and precisely controllable period,

essentially ranging from 2009 to 2011. Being a statewide measure, all residential

customers are affected in the same manner. By analyzing the development of elec-

tricity consumption before, during, and after the deployment of smart meters, we

are thus able to clearly relate back possible changes to the trigger event. We further-

more isolate the respective impact in question by controlling for the other electricity

saving impacts (i.e. energy efficiency and self-consumption from renewable ener-

gies).

We would like to observe the development of residential electricity consumption in

a population that faces the introduction of informational feedback over time (treat-

ment group) and the respective control group. The control group should ideally re-

produce the characteristics of the population that experiences the treatment. Since

the characteristics influencing residential electricity consumption are heterogeneous

across the US states, we do not expect a single state to resemble Californian con-

sumption characteristics appropriately. In this paper, we therefore apply synthetic

control methods in order to evaluate what might be a control group that meets the

above outlined requirements. We thereby aim to guarantee quasi-randomness. In a

next step, we then conduct a Difference-in-Differences estimation to test for causality

as well as to quantify the reduction effect in scope.
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4.4 The Californian Case

In order to evaluate the impact of deploying smart meters in California, it is first nec-

essary to understand the most relevant drivers of residential electricity consumption

and its development over time. This is crucial since, besides the deployment of

smart-meter infrastructure, further political measures were adopted that tackle is-

sues related to energy conservation, energy efficiency, and demand response. When

it comes to energy savings, California is one of the most ambitious states, with vari-

ous measures having been adopted to achieve an overall decrease of electricity con-

sumption and thus greenhouse gas emissions. Beginning with the energy crisis in

California in 2001, policy makers decided to foster an increase of energy efficiency

with a particular focus on the residential sector.

In this regard, there were repeatedly updated energy action plans, all of which

defined goals for energy consumption (California Energy Commission, 2003). These

action plans mainly aimed at:

• meeting energy growth needs as well as optimizing resource efficiency and

energy conservation;

• reducing electricity demand;

• ensuring security of gas and electricity supply including the provision of an

appropriate infrastructure;

• achieving goals with respect to renewable energies and distributed electricity

generation.

In order to tackle the above aims, the Energy Action Plan considered measures fos-

tering voluntary dynamic pricing, explicit incentives for demand reduction, rewards

for demand response, energy-efficiency investments, energy-conservation measures,

energy-efficiency programs, and programs that support improvements of energy ef-

ficiency when it comes to buildings and devices. Furthermore, within the scope of

the Energy Action Plan 2 in 2005, the government issued a decision for a large-

scale deployment of smart meters (California Energy Commission, 2005). As a

consequence, the three major investor-owned utilities (IOUs), namely Pacific Gas

& Electric (PG&E), Southern California Edison (SCE), and San Diego Gas & Electric

(SDG&E), started programs that deployed AMI within their service areas. As de-

picted in Figure 4.2, these IOUs cover more than 75% of all customer accounts36 in

36These numbered 13,845,610 in December 2015 and the respective energy consumption is related
to a share greater than 70%.
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California (2015).

Figure 4.2: Investor-Owned Utilities (IOUs) and the respective share of Californian customer
accounts (2015, Dec.)

Below, we explain the most relevant types of measures and their impact on res-

idential electricity consumption in more detail. We distinguish between measures

related to energy efficiency of buildings and devices, demand response triggered

by electricity price schemes, and energy conservation including, among others, the

deployment of AMI.

Demand Response Through Electricity Tariff Design

‘Load shifting’ is a typical demand response from electricity consumers. It occurs if

consumers are able to react to price signals from the electricity market. Technically,

a consumer reduces load in response to a signal from a service provider or grid op-

erator. Today, electricity consumers in the residential sector in California face either

a tiered tariff scheme or a time-of-use pricing scheme. In tiered tariff schemes, elec-

tricity prices are relative to a ‘baseline’ consumption of electricity within a defined

territory. As such, the tariff scheme follows a typical quantity-dependent pricing that

varies across predefined blocks of usage. The number of tiers offered and temporal

definitions with respect to peak, semi-peak, and off-peak vary among IOUs, and peak

prices can be more than twice the off-peak ones.37 In general, consumers receive

their electricity and gas bills at the end of each month, following a standardized

30-days billing cycle. Billing contains information on daily gas and electricity usage

gathered by smart meters throughout the cycle. Consumers are thus able to identify

37We provide two simplified versions of residential tiered and time-of-use schedules in Section 4.8.7.

60



4.4 The Californian Case

monthly variations of gas and electricity usage on daily and monthly levels.38

A two-tiered tariff had already been implemented in California prior to the en-

ergy crisis in 2000. However, with the energy crisis and the inconvenience caused

by blackouts that were induced by supply shortages, regulators enhanced the tier

structure by introducing five tiers. These were removed again in 2013 due to on-

going discussions on tier design and, as of today, Californian tariff design relies on

time-of-use pricing that distinguishes between peak and off-peak times. Addition-

ally, the implementation of real-time pricing has so far been ruled out as an option

in California.

A change in tiered electricity tariff design could potentially provoke slight changes

in overall consumption levels. This may, for example, be the case if load shifting

causes a decrease in electricity consumption in peak periods which is even higher

than the respective increase in off-peak periods. Within this paper, we assume that

there is no significant impact of implementing more or less tiers on the absolute elec-

tricity consumption. To support this hypothesis, we test the assumption of parallel

trends within our empirical analysis. We would expect potential distorting effects

related to a change in the electricity tariff design, if any, to be uncovered within this

procedure since the introduction of five tiers in California was in the pre-treatment

periods.

Energy Efficiency

Besides regulatory efforts to ensure security of supply through tier design, nu-

merous energy-efficiency policy measures which are directed towards a reduction

of energy consumption exist for California (Office of Energy Efficiency and Renew-

able Energy, 2016). The majority of energy-efficiency measures are so-called rebate

programs.39 The three major IOUs, PG&E, SDG&E, and SCE, have all offered energy-

efficiency rebate programs for energy-efficient technologies since 2006. Within these

programs, consumers willing to replace equipment with energy star labelled de-

vices receive a per unit rebate.40 Such incentives are particularly designed to reduce

load through state-of-the-art devices. While the utility level remains constant with

the same service offered (i.e., for example, cooling in the fridge), less electricity is

needed to ensure this service. Empirical evidence reveals a need to distinguish be-

38Sample bills from PG&E, SDG&E and SCE can be found under the service portal from each IOU.
39Additionally, appliance standards on a national level have been implemented in the Appliance Effi-

ciency Regulations for California in 2006 as well as the Public Benefits Funds for Renewables and
Efficiency launched in 1998.

40Further details on the applicable residential equipment are provided at the website
’http://programs.dsireusa.org/system/program/’.
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tween different devices. Light bulbs, refrigerators, and freezers provide rather robust

empirical evidence for electricity reduction if replaced within households. Thus, we

expect a significant impact of energy-efficiency measures on electricity consumption

(Gillingham et al., 2006). We therefore account for energy savings related to energy

efficiency by adjusting electricity consumption data so that the impact of informa-

tional feedback can be studied independently.41

Energy Conservation

Finally, a change of consumption behavior is another way to achieve a reduction

of electricity consumption. Through behavioral changes, ‘consuming less electricity’

with a given technology portfolio is feasible. However, information on the consump-

tion must be revealed in such a way that consumers are able to make informed de-

cisions. As bounded as these decisions may be, decisions change and, in most cases,

may improve if such information is provided to consumers. In this paper, we focus

on the three major IOUs in California, which are adopting plans to distribute smart

meters to all households in their respective service areas. In fact, these plans were

transformed into physical deployment of smart meters, as depicted in Figure 4.3.

The deployment of AMI began in 2008, and first achieved a penetration rate above

10% in 2009.

Figure 4.3: Share of Californian (three major IOUs) households with AMI (smart meters)
over time

41For more details, see Section 4.5.
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As of 2011 the share of Californian households with AMI corresponds to the share

of customer accounts covered by the three major IOUs.42

Households having installed AMI with the respective smart meters are now able

to track their daily electricity consumption via a meter on the device. Additionally,

consumption data are processed by the utility and, as in the case of SDG&E, for

instance, are provided to the customer via on online tool. With the help of the

customer tool, households are able to check their gas and electric usage on a daily

basis. By connecting a home area network to the smart meter, households are able

to track energy consumption information and more details on their energy-usage

profile. Most commonly, thermostats and in-home displays are state of the art in

such technical setups (San Diego Gas and Electricity, 2016).

4.5 Data

We base our empirical analysis on variables that may have information on both fluc-

tuations of residential electricity consumption over time and the respective differ-

ences between the states. We use monthly state-specific data, and in the following

we briefly depict the variables we use as well as the respective sources.

4.5.1 Dependent Variable: Residential Electricity Consumption

We define the dependent variable in order to make it possible to isolate the impact of

AMI on residential electricity consumption from other policy measures that coincide

with the deployment of smart meters and that may also influence residential elec-

tricity consumption. We therefore correct data on residential electricity consumption

provided by the IOUs for both own consumption related to residential photovoltaic

(PV) electricity generation and electricity savings achieved through energy-efficiency

programs. That is to say, we mimic the development of residential electricity con-

sumption as if there was no treatment besides smart meters. The respective formula

is depicted in Equation 4.1.

Demand res,ad j
m,s = Demand res,bil led

m,s

+ Sel f Consumptionres,PV
m,s

+ Savingsres,ee
m,s

(4.1)

42The share of Californian households in services areas that are covered by the three major IOUs may
vary over time.
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Our initial data on residential electricity consumption consists of monthly (m)

state-specific (s) electricity sales in the residential sector, which we label Salesres
m,s. As

far as California is concerned, we only include data for the three major IOUs, PG&E,

SCE, and SDG&E, in line with our identification strategy. Since the IOUs cover the

major share (i.e. > 75%) of residential customers in California, we assume that

there is no loss of representative nature. In the next step, we divide Salesres
m,s by the

respective number of customer accounts in order to get the average monthly electric-

ity consumption per household for which consumers are billed (Demand res,bil led
m,s ).

We use this relative measure in order to compare residential electricity consumption

in different states independently of the total level of consumption, which may dif-

fer. As outlined above, we now account for the average electricity generation from

PV systems, which replaces electricity purchased from the grid. In general, Califor-

nia uses a billing system that is called net metering. The essence of this procedure

refers to households being directly billed for their total electricity purchase minus

the amount of energy that they feed back into the grid. Thus, there is a direct in-

centive for self-consumption of electricity generated from renewable energy sources.

This self-consumed energy (Sel f ConsumptionPV,residential
m,s ) has to be added to the

basic electricity consumption data in order to get unbiased values.43

Second, we adjust our data for residential electricity savings that result from en-

ergy efficiency (ee) programs (Savingsres,ee
m,s ). The respective data are collected from

the individual service utilities in the US states and are listed in Table 4.1.44 Such

data are based on the technical savings potential, which is the number of residential

devices that face a specific efficiency upgrade multiplied by the respective electric-

ity consumption.45 However, it is not clear whether or not the data are equal to

the actual reduction in electricity consumption. First, rebound effects may not be

ruled out. The existing literature, however, provides little support for such an in-

crease in energy use, which is known as backfire (Gillingham et al., 2015). Second,

Fowlie et al. (2015) found that projected savings from energy-efficiency programs

may exceed actual reductions many times over. We therefore aim to control whether

measurement errors with regard to energy efficiency savings may bias our empiri-

cal results. In the context of our identification strategy, we explicitly guarantee that

smart meters are accessible at the time of the defined treatment period starting in

43For more details on the calculation methodology, see Section 4.8.5.
44We restrict our analysis to residential efficiency programs in California, New York, and New Mex-

ico since those are the relevant states resulting from the synthetic control methods according to
Section 4.6.1.

45In the example of New York, the data are furthermore corrected for free-rider and spillover effects
(New York State Department of Public Service, 2016).
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2009. As there is a time lag between significant energy-efficiency savings begin-

ning in 200646 and the treatment, we are able to control for the accuracy of the

methodology in filtering out the impact of energy-efficiency measures by testing for

the assumption of parallel trends before the treatment.

As regards the data references for California, we rely on the California Energy

Efficiency Statistics for the three major IOUs of interest (California Public Utilities

Commission, 2016), for New York we take state-wide Energy Efficiency Portfolio

Standard (EEPS) Program Electricity Savings Data (New York Office of Information

Technology Services, 2016), and for New Mexico we review annual efficiency re-

ports published by the major service utility47 (Public Service Company New Mexico,

2016). An overview on the respective data is provided in Table 4.1. Whenever only

a subset of utilities provides energy savings data, we restrict our empirical analysis

to the average residential electricity consumption within the respective service area.

However, the corresponding utilities that provide data cover the majority of house-

holds in their states and thus we assume their representative nature. By now adding

Savingsres,ee
m,s , we finally get the average adjusted residential electricity consumption

per household (Demand res,ad j
m,s ), which we use as the dependent variable within our

empirical framework.

Table 4.1: Energy efficiency savings data

State Utilities Period of time Resolution

California PG&E, SCE, SDG&E 2006-2015 Monthly
New York Statewide 2008-2015 Monthly
New Mexico PNM 2008-2015 Monthly

4.5.2 Explanatory Variables

By using panel data, we account for both cross-sectional and cross-temporal dif-

ferences within the US states. Since we encounter varying temporal and spatial

resolutions among our explanatory variables, we have to adjust some of our data

in order to perform our estimation approach. For instance, household survey data

are only available on census region level in most cases. Thus, we first address this

spatial issue by assigning federal states to the census regions where necessary. As a

46The development of energy-efficiency savings in California is illustrated in Figure 4.7 in Sec-
tion 4.8.2.

47This is the Public Service Company of New Mexico, which covers more than 50% of all customer
accounts in New Mexico.
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consequence, we face a minor loss of cross-sectional explanatory power. Second, for

the chosen period between 2002 and 2015, we need to distinguish between continu-

ously updated data with monthly observations, yearly available data, and household

survey data based on observations in 2001, 2005, and 2009. For some survey data,

we are able to add data for the years 2011 and 2013. In order to obtain an overall

monthly and state-specific dataset, we use previous observations if no updated data

are available.

Table 4.2 gives an overview of all variables that are used in our empirical analysis.

Furthermore, it provides further details such as a brief explanation of each vari-

able and depicts the respective sources. Key to our identification strategy is the de-

ployment status of AMI (Energy Information Administration, 2016b). It reflects the

treatment under analysis by measuring the progress of installation of smart meters

by households over time. We furthermore include explanatory variables concerning

the employment level, wages, residential electricity sales, customer accounts, and

electricity prices that are published by the US Energy Information Administration

(EIA) or the Bureau of Labor Statistics (BLS). It is worth mentioning that the elec-

tricity price is calculated as an average value across all tariff tiers. Furthermore, the

EIA also provides data on residential electricity consumption, which are the basis

for the derivation of the dependent variable. Data are provided on a monthly and

state-specific level.

In addition, we include climate data. More precisely, heating degree days (HDDs)

and cooling degree days (C DDs) are calculated based on per state temperature val-

ues that we obtain from the meteorological data forms of the National Oceanic

and Atmospheric Administration (National Oceanic and Atmospheric Administra-

tion, 2016).48

Complementing these data, we add data reflecting household characteristics with

a focus on electricity usage behavior and appliances. Such data are taken from the

Residential Energy Consumption Survey (RECS) and the American Household Sur-

vey (AHS) for three and five reference points in time, respectively, namely 2001,

2005, 2009, 2011, and 2013. The survey data consist of different technologies and

the percentage of households using specific electrical appliances. For instance, we

include data on the average number of refrigerators per household, the share of

households that use electric heating, and the usage intensity of heating by fuel type

for census regions and states. Physical household characteristics such as the average
48To derive HDDs, for example, the difference between daily high and low temperatures is compared

to the threshold of 65 ◦F and summed over all days of a month. The respective data are furthermore
standardized to 1000.
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number of rooms per household, the average number of electric ovens, and the av-

erage floor space available per household are additionally gathered on a state level.

Data on the share of household members with a high-school diploma or higher as

well as the average number of ‘elderly’ people living in each state are taken from

RECS as well. Finally, as we expect macro-economic indicators to be relevant when

explaining the development of electricity consumption over time, we include data

on the unemployment level and adjusted gross domestic product. Hereby, we also

control for the impact of the Great Recession. Both indicators are taken from the

BLS. In addition, Table 4.3 shows descriptive statistics for all variables used for our

empirical estimations under Section 4.6.2.

4.6 Empirical Analysis

Following the identification strategy from Section 4.3, we use a two-stage empirical

approach. First, we derive a control group by applying synthetic control methods.49

In a second step, we conduct a Difference-in-Differences estimation to quantify the

effect under analysis.

4.6.1 Derivation of the Control Group Using Synthetic Controls

States are rather heterogeneous. This implies that characteristics driving residential

electricity consumption exhibit significant regional variation. Above all, these char-

acteristics include climatic conditions such as temperature and humidity, housing,

and social characteristics as well as demographic aspects. Consequently, it is ques-

tionable whether a single US state adequately resembles Californian characteristics

with respect to residential electricity consumption. In order to circumvent such hin-

drances, we apply synthetic control methods and derive a weighted combination of

US states that we use as the control group, ‘Synthetic California’. The application

of synthetic control methods is positioned in the context of a vast body of exist-

ing literature that gives further insights into methodological details (e.g. Abadie &

Gardeazabal (2003), Abadie et al. (2010), and Abadie et al. (2015)). The individual

weights for the synthetic counterfactual are determined according to the objective

function expressed by Formula 4.2.

min
w
(X1 − X0 ·w)′V (X1 − X0 ·w) (4.2)

49The respective procedure is described in detail in Section 4.6.1.
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Table 4.2: List of variables and references

Label Explanation Resolution Region Measure Ref(2016)

AM Im,s Share of households
with AMI

Yearly State-
specific

% EIA

C DDm,s,
HDDm,s

Cooling degree days,
Heating degree days

Monthly State-
specific

1000◦F NOAA

Clothesdr yerm,s Avg. share of electric
clothesdryers

’01,’05,’09 Census
regions

Relative
share

RECS

Customersres
m,s Total residential

customer counts
Monthly State-

specific
Total EIA

Demand res,bil led
m,s Avg. electricity sales per

household
Monthly State-

specific
MWh EIA

Educationm,s Share of household
members with a high
school degree or higher

’01,’05,’09,
’11,’13

Census
regions

Relative
share

RECS

Elderl yPeoplem,s Avg. number of old
people living in a
household

’01,’05,’09,
’11,’13

Census
regions

Total RECS

Feed backPV
m,s Total residential

feed-back (grid) from
PV

Monthly State-
specific

MWh EIA

F loorspacem,s Avg. floorspace per
household

’01,’05,09 Census
regions

m2 RECS

GDPm,s Total real GPD per
employee

Yearly State-
specific

mil.
USD

BLS

Heating
Equipmentm,s

Share of households
using electric heating

’01,’05,’09 Census
regions

Percent RECS

I r radiat ionm,s Avg. (1998-2009)
solar irradiation

Monthly State-
specific

kWh/
m2/da y

NREL

MainHeatingm,s Share of households
with electricity as
main heating fuel

’01,’05,’09 Census
regions

Relative
share

RECS

Ovenm,s Avg. number of
electric ovens per
household

’01,’05,’09 Census
regions

Total RECS

Priceres
m,s Avg. electricity price

for residential
customers

Monthly State-
specific

Euro/
kWh

EIA

Re f ri geratorsm,s Avg. number of
refrigerators per
household

’01,’05,’09 Census
regions

Total RECS

Roomsm,s Avg. number of
rooms per household

’01,’05,’09 Census
regions

Total RECS

Unemplo ymentm,s Unemployment level Yearly State-
specific

Relative
share

RECS

Wagem,s Avg. weekly wage Monthly State-
specific

1000
USD

BLS

Notes to Table 4.2: Census regions include 9 regions and 4 states (CA, NY, FL, TX) if not otherwise
stated. The exact references are: NOAA (National Oceanic and Atmospheric Administration, 2016),
RECS (Energy Information Administration, 2016a), EIA (Energy Information Administration, 2016b),
BLS (Bureau of Labor Statistics, 2016), NREL (National Renewables Energy Laboratory, 2016).
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Table 4.3: Descriptive statistics

Variable N Mean SD Min 25% Median 75% Max

C DDm,s 2352 0.07 0.10 0.0 0.0 0.003 0.10 0.58
Clothesdr yerm,s 2352 0.77 0.14 0.47 0.54 0.84 0.90 0.97
Demand res,ad j

m,s 2352 0.81 0.27 0.41 0.60 0.73 0.95 1.97
Educationm,s 2352 0.59 0.03 0.54 0.56 0.59 0.62 0.64
Elderl ypeoplem,s 2352 0.33 0.03 0.28 0.31 0.33 0.34 0.37
F loorspacem,s 2352 2049 250 1568 1895 2080 2289 2405
GDPm,s 2352 0.006 0.001 0.004 0.005 0.006 0.007 0.009
HDDm,s 2352 0.47 0.42 0.00 0.06 0.38 0.80 1.92
HeatingEquipmentm,s 2352 0.25 0.17 .06 0.13 0.23 0.29 0.65
MainHeatingm,s 2352 0.22 0.16 0.06 0.09 0.18 0.24 0.62
Ovenm,s 2352 1.02 .02 1.00 1.01 1.01 1.03 1.09
Priceres

m,s 2352 0.111 0.038 0.048 0.082 0.100 0.141 0.241
Re f ri geratorsm,s 2352 1.24 0.05 1.14 1.20 1.23 1.28 1.30
Roomsm,s 2352 5.81 .32 5.19 5.65 5.93 6.13 6.21
Unemplo ymentm,s 2352 0.06 0.02 0.02 0.05 0.06 0.08 0.12
Wagem,s 2352 0.85 0.18 0.52 0.52 0.80 0.96 1.46
AM Im,s 2352 0.03 0.16 0.00 0.00 0.00 0.00 0.99

Here w denotes a vector with weights for each state that has yet to be derived. The

individual weights sum up to one. In order to optimize these weights, we rely on

a procedure that minimizes the distance vector between Californian pre-treatment

characteristics (X1) and the respective characteristics of the resulting control group

(X0w). These characteristics include all variables that are depicted in Section 4.5.

We divide the pre-treatment period into two sub-periods. In more detail, we consider

a first pre-treatment period (1) that starts in 2002 and ends in 2005. Based on this

first period, we calculate the weights for the synthetic control group according to

the above mentioned methodology. Additionally, we define a second pre-treatment

period beginning when the Energy Action Plan in California was adopted (2006) and

continuing until the beginning of the treatment period in 2009 (see Figure 4.5). The

second pre-treatment period allows the assumption of parallel trends to be tested.

With regard to the data, the varying temporal resolution does not distort the

derivation of a synthetic control group since the respective methodology is based

on averages over time. More precisely, neglecting temporal variability, the chosen

approach aims to determine weights such that average values of the explanatory

variables during the first pre-treatment periods are resembled. We then account

for the relative importance of the individual explanatory variables X by introducing

a weight vector V . Following standard synthetic control methods (e.g., Abadie &
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Gardeazabal, 2003), we rely on a regression-based technique in order to derive V .50

Naturally, the set of time periods for determining V is also restricted to the first set

of pre-treatment periods.

The set of states that are considered to be control group candidates is restricted.

Suitable candidate states should exhibit no significant impact of AMI during the

entire period of observation. Thus, we use a subset of states with a smart meter

penetration lower than 10% as possible control group candidates. The respective

threshold exactly matches the definition of our treatment as we consider the treat-

ment period beginning in the first year with a Californian share of AMI higher than

10%. The remaining candidate states are depicted in Figure 4.4.

Figure 4.4: Candidate states with low AMI penetration

As a result, we obtain Synthetic California, which combines the states of New

York and New Mexico, which are given weights of 62.5 and 37.5% respectively. A

deeper analysis of the underlying causal relations reveals that New York adequately

resembles Californian housing characteristics, whereas New Mexico is particularly

characterized by similar climate conditions.

We now reduce our initial dataset by considering just the two sections, California

and Synthetic California. The variables for Synthetic California are calculated as

the weighted combination X0w. The resulting development of residential electricity

consumption is depicted in Figure 4.5(i), where we highlight the three periods that

we differentiate. For illustration purposes, Figure 4.5(ii) depicts the respective dif-

ference plot. In order to support the claim of a suitable control group, it is crucial

50Details on weights are listed in Section 4.8.4.
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that the pattern of residential electricity consumption in Synthetic California before

the treatment resembles the respective real Californian one. We therefore compare

the differences in residential electricity consumption between the two sections in

both pre-treatment periods. In general, the consumption pattern in the upper figure

is characterized by seasonal trends. More precisely, the development of residential

electricity consumption exhibits recurrent upwards and downwards movements in a

range between 430 and 830 kWh/month. The figures show that the seasonal com-

ponent, in particular, is reproduced accurately. As regards the differences in levels,

the respective values in California and Synthetic California differ only slightly be-

tween the two pre-treatment periods. In more detail, whereas the residential elec-

tricity consumption in the first pre-treatment period is 11 kWh lower on average

in California compared to Synthetic California, the respective average difference is

-15 kWh in the second pre-treatment period. Even though there is no perfect pre-

treatment match in both periods, the respective difference is rather constant until

the treatment period. Additionally, the average difference in residential electricity

consumption amounts to -36 kWh in the post treatment periods, which already indi-

cates a significant treatment effect. We therefore assume that residential electricity

consumption would have developed identically in California and Synthetic Califor-

nia if there had not been any additional treatment. Simply put, the assumption of

parallel trends is valid. We now focus on the development of residential electric-

ity consumption after the treatment. Essentially beginning in 2010, we observe a

clear excess of negative differences, indicating a significant impact of AMI on elec-

tricity consumption. Furthermore, the absolute value of peak differences is doubled

compared to the pre-treatment periods. To sum up, our descriptive results already

indicate a negative influence of smart meters on residential electricity consumption.

However, we address the question of causality and quantify the impact under anal-

ysis within the next section.

4.6.2 Difference-in-Differences Estimation Results

We define the yearly share of AMI as the treatment variable and thereby account

for the respective deployment process. In more detail, there is a time lag between

the decision for the smart-meter deployment and the ability of every household to

use AMI which is directly reflected by the treatment variable. We apply a linear

Difference-in-Differences estimation in levels according to Formula 4.3. We aim to

estimate the coefficient γ to shed light on whether or not a significant decrease of res-

idential electricity consumption due to smart-meter deployment has been achieved.
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(i) Synthetic controls: Descriptive comparison

(ii) Synthetic controls: Difference plot

Figure 4.5: Descriptive comparison and differences between the development of residential
electricity consumption in California and ‘Synthetic California’
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For our estimation, we rely on monthly data gathered over 14 consecutive years

(2002-2015). According to the estimation approach, we directly use the differences

between the respective values for California and Synthetic California.51 Besides the

treatment variable, we control for other potential impacting factors. We use the

subset of variables that provide monthly observations, because data with a tempo-

ral variability different from that exhibited by the dependent variable would lead

to distorted results and issues of collinearity. First, we include monthly average

electricity prices (Priceres
m ). Furthermore, we consider data for HDDm and C DDm

to account for weather conditions. Finally, we account for macro-economic impact

factors comprising wage data (Wagem) and the development of the unemployment

level (Unemplo ymentl vlm). In addition to the explanatory variables, we estimate

the error term µm using robust standard errors to account for heteroscedasticity. It

is worth mentioning that we do not estimate an aggregate constant term but control

for different periods.

∆Demand res,ad j
m = α1DummyPre−Treatment1 +α2DummyPre−Treatment2

+ γ∆AM Im

+ β1∆Priceres
m

+ β2∆C DDm + β3∆HDDm

+ β4∆Unemplo ymentl vlm + β5∆Wagem

+µm

(4.3)

We conduct a two-stage least squares regression analysis to address issues related

to endogeneity of electricity prices. In more detail, one may expect simultaneity of

residential electricity consumption and the respective prices due to mutual bidirec-

tional dependencies. We therefore use the lagged electricity price as an instrument52

for the original explanatory variable. We argue that the electricity prices from past

months affect the current prices (cov[Priceres
m−1, Priceres

m ] 6= 0) since, for example,

fixed price components do not change on a monthly basis. We identify a high first-

order autocorrelation of 96% in California and 76% in Synthetic California.53 At the

same time, we do not expect the electricity price from the previous month to impact

the current electricity consumption as it does not reflect the price that households

51We provide an overview of the respective descriptive statistics in Section 4.8.3.
52A Kleiberger-Paap test indicates that the hypothesis of weak instruments may be rejected.
53Lower values compared to California may be traced back to the use of a weighted combination of

electricity prices.
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are actually charged. Thus, there should be no direct impact on the decision ra-

tionale of households other than through its impact on the current electricity price

and thus we assume that the exclusion restriction is valid (cov[Priceres
m−1,µ] = 0).

As well as the electricity price, it is relevant to comment on the other explanatory

variables included. By default, weather conditions are a factor given exogenously

and the economic variables such as wage data are most commonly assumed to have

a unidirectional impact on electricity consumption as well. Moreover, we do not

expect our estimation to be biased by omitted variables, since we include the most

relevant variables that, according to prior literature, are assumed to have an impact

on residential electricity consumption. Finally, we isolated the impact of AMI such

that we do not expect any other policy measures to influence the artificial electricity

consumption we use.

To investigate the impact of the treatment in question and to break down the re-

spective temporal development, we depict estimates for three specifications, namely

IV (1), IV (2), and IV (3). Put simply, IV (1) measures the aggregate impact of de-

ploying AMI in California on the state-wide residential electricity consumption. Re-

sults for IV (1) are displayed in Table 4.4, where we find the treatment effect to be

significant at the 1% level. A 100% diffusion rate of AMI triggers an average monthly

residential electricity reduction of 31 kWh per household, which is equivalent to a

relative reduction of 5.1%. These estimation results provide the first evidence of

causality and both estimates which are controlling for significant differences in the

pre-treatment periods are insignificant. However, additional insights and further ev-

idence for causality are provided in Section 4.8.6. Thus, we claim that there is no

systematic difference between the Californian and the Synthetic Californian devel-

opment of residential electricity consumption other than that induced through the

AMI.

All in all, the p-value of the model suggests significance. With regard to the addi-

tional explanatory variables included, both C DD and HDD reveal highly significant

coefficients, and reduced regressions show that they constitute the major share of

explanatory power. This is plausible as both variables reflect the need for electric-

ity through, for example, air conditioning in non-heating periods and heating in

colder months. In addition, we see a slightly significant negative impact of the un-

employment level. An increasing unemployment rate tends to be accompanied by

decreasing wages, which reduces the available budget for the electricity bill. Finally,

we observe a negative coefficient for the electricity price, as increasing prices are

expected to create incentives for reducing electricity consumption. However, the
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Table 4.4: IV Estimates for DiD estimation

Dependent variable: ∆Demand res,ad j
m

Explanatory variable IV (1) IV (2) IV (3)

Pre-Treatment1 -0.07 -0.002 -0.003
(0.007) 0.007) 0.007)

Pre-Treatment2 -0.10 -0.006 -0.004
(0.008) (0.008) (0.008)

Non-heating Heating
∆Share AM Itotal,m -0.031∗∗∗ -0.042∗∗∗ -0.01

(0.01) (0.01) (0.01)

Non-heating Heating
∆Share AM I2009−2011,m -0.020 0.024

(0.025) (0.02)

Non-heating Heating
∆Share AM I2012−2014,m -0.041∗∗∗ -0.008

(0.013) (0.016)

Non-heating Heating
∆Share AM I2015,m -0.039∗∗ -0.031

(0.016) (0.022)

∆Priceelec,res
m -0.46 -0.48 -0.36

(0.51) (0.49) (0.57)
∆C DDm 0.66∗∗∗ 0.67∗∗∗ 0.68∗∗∗

(0.08) (0.08) (0.081)
∆HDDm 0.04∗∗ 0.06∗∗∗ 0.05∗∗∗

(0.02) (0.02) (0.02)
∆Unemplo ymentl vlm -0.53∗ -0.46 -0.88∗∗

(0.20) (0.24) (0.36)
∆Wagem 0.05 0.04 (0.07)

(0.06) (0.06) (0.06)
observations 167 167 167
R2 0.45 0.47 0.48
F 23.8 22.91 17.17
p-value 0.00 0.00 0.00

Notes to Table 4.4: Robust standard errors in parentheses. ∗ / ∗∗ / ∗∗∗ : significant at the 0.05 /0.02 /
0.01 error level respectively. We use data from January 2002 until December 2015.
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respective estimate is insignificant, which may be traced back to the data availabil-

ity. Furthermore, we do not directly use the electricity prices that households are

actually charged; instead we use averages across all tariff periods and service areas.

In addition to IV (1), we specify IV (2) in order to investigate seasonal variations

of the treatment effect under analysis. We differentiate between heating and non-

heating periods, all of which are defined within the same year. We define heating

periods to cover the months from January to March and from October to December.

We observe a significant impact of AMI in non-heating periods, whereas there is no

significant influence in colder months. The respective reduction in non-heating pe-

riods amounts to 42 kWh per household per month (6.7%). We expect some devices

to be more likely to be substitutable in summer periods (such as air conditioning,

dryers etc.), whereas electric heating in the heating period is a more basic need. As

one main finding, we thus conclude that the potential for energy conservation can

basically be leveraged by households in non-heating periods. At the same time, the

average residential electricity consumption in the states under consideration tends

to be higher in the non-heating periods. Thus, policy makers may achieve a slight

reduction of the electricity consumption in peak months by deploying AMI. Such a

finding is especially important in the light of the Californian energy crisis, which was

the event triggering the deployment of smart meters. However, we are well aware

that we do not control for the one-time peak load but focus on the overall electricity

consumption.

In addition to IV (2), we specify IV (3) in order to analyze the temporal structure

of the impact of smart meters on residential electricity consumption and to address

the question of continuous effects. More precisely, we split up the post-treatment

periods into three sub-periods and differentiate between heating and non-heating

periods. Overall, we get similar results with respect to the influence of the climate

factors C DD and HDD. Furthermore, the macroeconomic indicator is now signif-

icant at the 2% level and the respective estimate is slightly higher than in IV (1).

As regards the treatment effect, we identify additional evidence for seasonality. The

impact of AMI on residential electricity consumption is significant in non-heating

periods only. Analyzing differences between the non-heating periods in all three

post-treatment periods, we first find that the impact of AMI is insignificant in the

first post-treatment period. We argue that this finding may be traced back to the

introductory phase of deploying smart meters. In the first period, there are no ob-

servations available that reflect a state in which all households are able to access

AMI. The aggregate effect in which we are interested may thus be derived instead
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from the last two post-treatment periods with AMI being fully deployed. From 2012

to 2015, we observe a relative reduction of residential electricity consumption that

ranges from 6.1% to 6.4%. Compared to the literature, this is a little lower than the

reductions gained from field experiments, as mentioned in Section 4.2. In addition,

we find that this reduction potential related to AMI is rather continuous over time.

We find no evidence that the impact under analysis comes to an abrupt end after

some years. However, it may be worth considering an extended period of observa-

tion in future research. Finally, the temporal structure identified supports the hy-

pothesis of causality. One may, in particular, assume that the methodology to isolate

the impact of AMI from energy efficiency savings is imprecise. However, if that were

the case, we would expect significant differences in electricity consumption before

the deployment of smart meters was completed, as rather constant energy-efficiency

savings were achieved from 2007 onwards (see Figure 4.7 in the Appendix). Rather

to the contrary, we identify coefficients that strongly comply with the temporal de-

velopment of the share of AMI.

4.7 Conclusion

One topic worth stressing in the light of climate targets and emission reduction goals

focuses on energy conservation. Within the residential sector, the design of energy-

saving programs has to account for unique behavioral aspects such as limited infor-

mation and bounded rationality. Against this backdrop, we investigate how AMI is

impacting on residential electricity consumption at the state level over time. Our

identification strategy is based on a decision for statewide smart-meter deployment

by the government of the state of California in 2005. As such, the treatment on

which we are focusing is policy-driven and not based on a natural experiment or

pilot program as predominantly studied in prior research. We are thus able to cir-

cumvent hindrances stemming from a lack of generality or Hawthorne effects. We

aim at assessing the overall effectiveness of policy measures related to energy con-

servation. To the best of our knowledge, such a framework has not been studied so

far.

We apply a two-stage empirical approach. First, we derive a control group as a

weighted combination of US states using synthetic control methods. We find a com-

bination of New York and New Mexico that reproduces the characteristics of Califor-

nia appropriately. We then descriptively depict the development of residential elec-

tricity consumption in California and its counterfactual, ‘Synthetic California’, and
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find an indication for a change in consumption after 2009 when introducing smart

meters. In order to draw inferences regarding causality and significance, we apply a

Difference-in-Differences estimation in a second step. Our results comprise two ma-

jor findings, all of which contribute to the existing literature on energy conservation.

First, we observe a significant reduction in electricity consumption induced through

AMI in non-heating periods that essentially ranges from 6.1 to 6.4%. In contrast,

there is no significant reduction in heating periods. Thereby we infer that reduc-

tions in electricity consumption induced by smart-meter deployment are linked to

seasonality. Second, based on our empirical results, we find an indication that the

impact of additional informational feedback on residential electricity consumption is

continuous during the period analyzed. However, we are not able to draw a unique

conclusion on persistence due to a lack of further periods of observation.

Summarizing our findings, we suggest that the Californian smart-meter deploy-

ment is effective in leveraging energy-saving potentials. We expect this finding to

be mainly attributable to the additional informational feedback that smart meters

provide. In essence, this information may be the cornerstone for altering consump-

tion decisions that have been taken previously. Theory suggests that breaking the

rationality boundaries improves decisions with respect to electricity savings. We

find an indication that the impact of smart meters on consumption is continuous.

However, for service utilities it may be worth implementing monitoring procedures

in order to assess the long-term impact of smart meters. Furthermore, it may be

worth considering supplementary informational feedback such as programs that fo-

cus on social comparisons. Finally, we find that the influence of AMI exhibits strong

seasonal variations. Thus, it may be beneficial to consider complementary energy-

saving measures.
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4.8 Appendix

4.8.1 The General Functioning of the Advanced Metering Infrastructure

Figure 4.6 shows the simplified functioning of the AMI. As depicted, the AMI first

enables the collection of consumption data differentiated by energy source. The con-

sumption data are collected by a smart meter device that then processes and trans-

mits the data via an electronic network to the end user. As such, the AMI could pro-

vide real-time consumption data with electricity price information, allowing users

to curb electricity consumption if electricity prices are increasing. As information

flows iteratively between the meter and the end user, we stress that such a system is

a closed informational system allowing (potentially) for correction of consumption

in a continuous manner (see ‘inductive process’ from Section 4.2).

Figure 4.6: Simplified illustration of Advanced Meter Infrastructure (AMI) and its informa-
tional feedback
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4.8.2 Development of Energy-Efficiency Savings in California

Figure 4.7: Development of energy-efficiency savings in California over time

Depicting the development of energy-efficiency saving estimates for California in

Figure 4.7, we identify a significant and rather continuous impact of energy-saving

measures beginning in 2007.

4.8.3 Descriptive Statistics: Difference-in-Differences Variables

Table 4.5: Descriptive statistics: Differences in levels (California minus Synthetic California)

Variable N Mean SD Min 25% Median 75% Max

∆C DDm 168 0.01 0.05 -0.12 0.00 0.005 0.002 0.18

∆Demand res,ad j
m 168 -0.02 0.05 -0.20 -0.05 -0.02 0.00 0.11

∆HDDm 168 -0.22 0.22 -0.83 -0.41 -0.18 -0.01 0.09

∆Priceres
m 168 0.005 0.015 -0.079 -0.003 0.006 0.014 0.039

∆Unemplo ymentm 168 0.016 0.012 0.00 0.00 0.01 0.027 0.04

∆Wagem 168 0.03 0.05 -0.14 0.01 0.04 0.06 0.10

∆AM Im 168 0.393 0.444 0.000 0.000 0.131 0.954 0.997
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4.8.4 Empirical Results: Weight Vector V for the Exogenous Variables

The weight vector V is presented in Table 4.6.

Table 4.6: Weights of the exogenous variables

Label Weight

C DDm,s 0.109

Clothesdr yerm,s 0.091

Educationm,s 0.008

Elderl ypeoplem,s 0.010

F loorspacem,s 0.071

GDPm,s 0.119

HDDm,s 0.263

HeatingEquipmentm,s 0.090

MainHeatingm,s 0.040

Ovenm,s 0.000

Priceres
m,s 0.042

Re f ri geratorsm,s 0.009

Roomsm,s 0.083

Unemplo ymentm,s 0.000

Wagem,s 0.149

4.8.5 PV Self-Consumption

In general, we calculate the quantity of self-consumed electricity generation as the

difference between the total electricity generation by PV systems and the amount

that is fed back into the grid. Monthly data with respect to the total electricity gen-

eration from renewable energy plants in the residential sector that is fed back into

the grid are provided by the U.S. Energy Information Administration (EIA) (Energy

Information Administration, 2016b). Furthermore, the EIA provides data on the to-

tal capacity of PV systems installed on a residential level. However, there are no

publicly available monthly data on the total PV electricity generation in households.

This is due to the concept of net metering. Thus, we use a heuristic approach in order

to derive PV electricity generation data. More precisely, our approach is based on the

monthly average global horizontal irradiance, which is given in kWh
m2d for each state

by the National Renewable Energy Laboratory (National Renewables Energy Labora-

tory, 2016). The respective averages were derived from observations between 1998
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and 2009 and do not vary across the years during our period of observation. We as-

sume a typical efficiency of 13.2% for PV systems and a power density of 9m2/kW p.

For illustration purposes, our calculation methodology is expressed in Equation 4.4.

Sel f Consumptionres,PV
m,s = Instal ledCapaci t y res,PV

m,s · I r radiat ion
GHI
m,s

· Da ysmonth · E f f icienc y PV · AreakW p

− FeedBackres,PV
m,s

(4.4)

4.8.6 Difference-in-Differences Estimation: Additional Evidence for
Causality

By controlling for differences in electricity consumption apart from those related to

AMI, we provide additional evidence for causality. In more detail, we include yearly

time dummies in addition to the share of AMI to control for other impacting factors.

All the respective time dummies yield insignificant coefficients as depicted in Table

4.7. One may claim, therefore, that we identify no impact on residential electricity

consumption other than that induced through the deployment of smart meters.
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Table 4.7: IV Estimates for DiD estimation when controlling for yearly time dummies

Dependent variable: ∆Demand res,ad j
m

Explanatory variable IV (1)

2003 -0.003
(0.008)

2004 -0.009
(0.009)

2005 0.009
(0.021)

2006 0.011
(0.011)

2007 -0.006
(0.01)

2008 0.022
(0.028)

2009 0.049
(0.034)

2010 0.056
(0.050)

2011 0.078
(0.052)

2012 0.041
(0.037)

2013 0.035
(0.029)

2014 0.002
(0.034)

∆Share AM Itotal,m -0.035∗∗∗

(0.015)
∆Priceelec,res

m -0.42
(1.08)

∆C DDm 0.70∗∗∗

(0.09)
∆HDDm 0.03∗∗∗

(0.02)
∆Unemplo ymentl vlm -0.22

(0.13)
∆Wagem 0.07

(0.06)
observations 167
R2 0.45
F 23.8
p-value 0.00

Notes to Table 4.7: Robust standard errors in paren-
theses. ∗ / ∗∗ / ∗∗∗ : significant at the 0.05 /0.02 /
0.01 error level respectively. We use data from Jan-
uary 2002 until December 2015.
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4.8.7 Simplified Residential Schedules

Residential schedules from PG&E and SCE, as shown in Figure 4.8, may not fully

reflect the wide range of tariff designs provided by the IOUs. As one example, we

do not consider schedules from the CARE program where customers are eligible

for reduced tariffs. Moreover, rate structures may be subject to changes over time.

Our data were collected in the first quarter of 2016. However, the samples below

illustrate tier and time-of-use schedules in a simplified way.

Figure 4.8: Simplified schedules for tier and time-of-use in the residential sector

Generally, tiers may be subject to change in terms of numbers, territory, and pricing

as well. Significant differences in the tariff structure for time-of-use schedules stem

from the definitions of peak and off-peak. In the above example, PG&E defines peak

hours as ranging from 12 am to 6 pm, whereas all other hours are declared off-peak.

For SCE, peak hours are defined as ranging from 2 pm to 8 pm. The off-peak period

begins at 8 am and lasts until 2 pm. Additionally, the period from 8 pm to 10 pm is

considered as off-peak. The ‘super off-peak’ period comprises the hours between 10

pm and 8 am, while peak is replaced by off-peak at weekends.
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The Example of the Californian Energy Crisis

Leveraging conservation potential within the residential sector is one important topic

for countries aiming to save electricity. In this article, I study the conservation pro-

grams that were initiated in order to counteract electricity blackouts within the Cal-

ifornian Energy Crisis. By applying synthetic control techniques I first identify the

overall electricity reduction for the residential sector. The effectiveness of conserva-

tion programs taken to leverage electricity reduction potential is then estimated with

a treatment regression. I find that a reduction is jointly achieved by the mass me-

dia campaign and ‘20/20’ rebate program resulting in quarterly reductions between

6% to 12%. I furthermore argue that despite the possibility of replacing electrical

household equipment, some residential consumers must have been able to change

consumption habits to uncover the majority of this potential.

5.1 Introduction

Efforts to encourage reductions in residential electricity consumption have a long

history in the State of California. The starting point for an analysis of mechanisms

targeting reductions has been the Energy Crisis when severe supply shortages caused

electricity outages during the year 2000. As a consequence, the academic debate

about the consumer’s willingness and capability to reduce electricity consumption

over short time horizons has been raised during the crisis and beyond. In a broader

context the debate focuses today on identification strategies of potentially available

electricity reductions and find ways to effectively leverage them.

In the residential sector, energy economic related research primarily considers

electricity price-driven mechanisms, both theoretically and empirically, arguing that

stronger electricity price signals reaching the consumer might effectively reduce con-

sumption in ’stressed’ electricity market situations. In this context real time pricing

has been extensively discussed, however conclusive evidence on reduction effects

is lacking so far. Empirically, findings are often based on field experiments that fall

short of making general statements. By studying the unique events of the Energy Cri-
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sis, I contribute to the analysis of electricity prices impacts on an aggregated level

and complement prior research by studying the impact of two state-induced conser-

vation measures whose impact has so far only found minor attention and, to the best

of my knowledge, not been quantified so far. In the particular case of California, the

nationwide efforts to promote electricity savings through the mass media campaign

and ‘20/20’ rebate program mutually targeted a behavioral change for electricity us-

age as opposed to a monetary incentive program targeting a replacement of technical

household equipment. As such it implicitly raised the question if electricity reduc-

tions over short time spans can be realized through a change in electricity use by

encouraging residential consumers with monetary and non-monetary conservation

programs.

The article at hand empirically analyzes the effectiveness of the two conservation

programs jointly and covers a 48-month period that fits the events before and after

the Energy Crisis. Such an analysis needs to be unbiased of other (technical) energy

efficiency or other conservation programs than the ones analyzed, ruling out inter-

actions with other programs over the same period. My analysis methodically makes

use of constructing a synthetic control group leading me to the structural compari-

son of the residential consumption in the treatment (California) and control group

state (‘Synthetic Energy Crisis California’). The differences in residential electricity

consumption allow to comment on an overall residential consumption reduction and

have not been quantified so far. I then measure and evaluate the different sources

impacting residential electricity reduction with a treatment regression.

I find that a reduction of residential electricity consumption in California ranges

between 6% to 12% depending on the quarter of the respective post crisis year.

Over the years 2001 and 2002 the quarterly reductions timely coincide with the

mass media campaign and the ‘20/20’ rebate program. By controlling for the influ-

ence of weather, economic indicators and the residential electricity price, my treat-

ment regression results show overall higher residential electricity reductions from

the conservation programs in 2001 compared to 2002 which I relate to the fade-out

of the mass media campaign in 2002. Furthermore, residential electricity reduction

occurred more strongly over the summer months compared to winter months pro-

viding some evidence that consumers willingness to give up a certain comfort level

in winter is restricted. In total, the initially targeted 20% of electricity reduction for

the residential sector has never been reached, neither by the ‘20/20’ rebate program

nor by the joint impact of the mass media conservation campaign and the ‘20/20’

rebate program.
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Overall, I conclude that the measured electricity reductions have been strongly

supported by the ‘20/20’ rebate program and the mass media campaign. The ef-

fectiveness of the two conservation programs has been enhanced by the design of

each program. In particular, the mass media campaign and the rebate programs con-

veyed a clear and easy to understand message to the residential consumer facilitating

information processing for the consumer as for instance compared to complex pric-

ing schemes (Ito, 2014). My findings make a valuable contribution to the debates

around electricity conservation programs and their effectiveness while accounting

for the impact of residential electricity prices on consumption. Since residential

electricity reductions based on the programs occurred, a portion of residential con-

sumers must have been able to change certain habits that reduced electricity usage

and thus uncovered electricity saving potential. At the same time it is reasonable

to assume that no major change in household equipment stock occurred. I argue

that this stems from the unique events of the crisis, the short time span and the non-

existence of other fierce reduction programs targeting a replacement of household

equipment.

The remainder of this article is organized as follows. Section 5.2 provides a litera-

ture background for the Energy Crisis from an economic and regulatory perspective

and discusses electricity price impacts on residential electricity consumption. Sec-

tion 5.3 discusses the conservation programs for the Californian market in detail. A

data description is presented in Section 5.4 and Section 5.5 shows the used estima-

tion approaches and discusses the estimation results. Section 5.6 concludes.

5.2 Literature

Literature surrounding the Californian Energy Crisis is divided into analyses attempt-

ing to understand the economic and regulatory factors leading to the Energy Crisis,

the conservation programs taken to contain the Energy Crisis and demand responses

in the Californian energy market. Furthermore, regulatory suggestions to prevent

further crises are made.

Causes for the crisis in California have been analyzed in different articles. Eco-

nomic and regulatory factors triggering the crisis are extensively studied by Woo

(2001), Stenglein (2002), Blumstein et al. (2002) and Weare (2003), who all em-

phasize that such factors included a shortage of generating capacity while electricity
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demand sustained54, bottlenecks in related (gas) markets, faulty market design and

potential market power abuse. Whereas all of the above articles describe the root

causes for the Energy Crisis in detail, Wolak (2003) and Borenstein (2002) stress

regulatory-driven mitigation strategies that could prevent such crisis. In particular,

Wolak (2003) argues that instant regulatory intervention is crucial to correct sup-

ply break downs in flawed markets and conservation programs have to be quickly

implemented if a meaningful distressing effect on the energy balance is desired. In

contrast to this rather short term focus of Wolak’s article, Borenstein (2002) stresses

that long term contracts between buyers and sellers in electricity markets may gener-

ally stabilize the market and thus provide a certain security of supply in the long run.

Joskow (2001) adds to those factors the analysis of power procurement initiatives

helping to stabilize in his view the energy market.

Besides the causes for the crisis, the effect of demand responses due to electric-

ity prices in the Californian electricity market has been studied as well. The pre-

dominant motivation for that is that demand response programs target to relieve

the demand side thereby triggering bill savings, contributing to a reliable electric-

ity system through reduced outages and reducing potential market power. Albadi

& El-Saadany (2008) provide a comprehensive summary of demand response op-

tions for electricity markets, distinguishing between incentive and price based pro-

grams. As opposed to direct load control programs, the latter contain electricity

price based demand responses such as peak and off-peak, time-of-use and real time

pricing that have strongly been discussed in the context of the Energy Crisis since

their individual contributions remain debated. Herter et al. (2007), for instance, ar-

gue that peak pricing results in demand reductions, however the results are based on

a rather small field experiment making an assertion claiming generality in a larger

framework questionable. Borenstein (2002) stresses that a real time pricing scheme

might stimulate instant demand and supply reactions, thereby benefiting the func-

tioning of the market as a whole. However, his theoretical thoughts require from the

residential consumer the processing of all information resulting from a non-linear

pricing scheme, an argument that Ito (2014) takes up in his work. Contrary to the

literature streams on demand-reducing impacts of real-time pricing, Ito (2014) ar-

gues that consumers faced with complex non-linear pricing schemes are not able

to draw right conclusion from such complex schemes. As such he concludes that,

if at all, consumer react to average rather than marginal prices, making non-linear

54The authors consistently argue these shortages are linked to the low hydro reservoirs during the
Energy Crisis, the 16GW capacity revisions made at the end of the summer 2000, and the lack of
investments into new capacity prior to the crisis.
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pricing schemes in terms of electricity conservation useless. By studying the residen-

tial electricity consumption reduction in the San Diego’s service area, Reiss & White

(2003) argue that besides the price impacts consumers reacted to the broadcasted

mass media campaign more than initially expected thereby extending price based

arguments made in conjunction with residential electricity reduction.

It is worth stressing that during the Energy Crisis residential customers in Cali-

fornia were charged for electricity usage based on two-tiered tariffs distinguishing

between consumers using a static baseline consumption volume or a high volume.

When faced with two-tiered tariffs, it remains questionable to argue that residen-

tial consumers reacted to the price changes, since neither a price signal is provided

to the residential consumers, nor did consumers sign contracts reflecting instanta-

neous electricity price changes. Additionally, wholesale price increases were not

fully passed on to the residential consumer during the Energy Crisis (Wolak, 2003).

Furthermore, doubts on consumers willingness and ability to filter out the price ef-

fect amid all other sources impacting demand (i.e. weather) raises further doubts

on the consumer’s responsiveness to residential electricity prices. To sum up, evi-

dence on factors such as electricity prices remains ambiguous and an analysis of the

root causes for demand reduction during the Energy Crisis needs to incorporate all

demand variation sources.

In my article, I therefore first determine the overall residential electricity reduc-

tions, which may be more broadly interpreted as reduction potential.55 Surprisingly,

this first step is so far lacking in the literature and provides a baseline against which

all demand reducing efforts regardless of their origins can be assessed. Secondly, any

electricity price effects resulting from price movements are taken into my analysis

allowing me to comment on a electricity price-driven impact on residential consump-

tion. Thirdly, by focusing on the effects of two residential conservation programs,

I evaluate their consumption reducing effect for the residential sector through a

treatment estimation. The two investigated residential conservation programs are

unbiased of other efficiency programs and have so far found only minor attention in

the literature which is partly due to the challenges that need to be overcome when

constructing suitable control groups on a national level. Contrary to the issue of a

potentially ‘modest’ price signal within the residential sector, the analyzed conserva-

tion programs provided a clear and simple consumption-reducing message directly

addressing the consumer.

55A reduction potential describes an amount of electricity reduction that can be (theoretically) realized
but might not be fully leveraged in reality due to, for instance, comfort issues and a consumer’s
sluggish adjustment with respect to secondary energy use.
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5.3 The Energy Crisis and its containment through

conservation programs

During the Californian Energy Crisis the Californian residents suffered from elec-

tricity outages not due to extreme weather conditions but rather low hydro reser-

voirs, and large undertaken capacity revisions during times when electricity demand

increased (Energy Information Administration, 2017) and wholesale power prices

spiked (CPEC, 2000). According to Weare (2003) electricity consumption increased

by about 3 percent between 1998 and 2000 in California and from 2000 to 2001

by 6 percent (Energy Information Administration, 2016b). The resulting imbalance

between an increased demand and unchanged generation capacity was also flagged

by the Californian Independent System Operator (CAISO) which, as a consequence,

in summer 2000 declared an emergency stage 1 alert for system security reasons.

As the events unfolded, the threat for outages continued and reached its peak

shortly thereafter in November 2000 when 16 gigawatts of the total generation ca-

pacity were taken out of the market by Pacific Gas & Electric (PG&E), Southern

California Edison (SCE) and San Diego Gas & Electric (SDG&E) due to servicing

(c.f. Blumstein et al. (2002)).56 The 16 GW reflected 35% of the total Californian

generation capacity. Although servicing has been rationalized based on heavy plant

running times during the summer 2000 by the three major investor-owned utili-

ties (IOUs), other arguments for offline plants have been discussed, such as Joskow

(2001) arguing that market manipulations may have played an important role.

Whatever the exact reasons have been, the threat for blackouts was severe and

state leaders decided to throw considerable resources into promoting electricity con-

servation programs targeting a reduction in electricity usage from 2001 on. The

undertaken conservation programs to contain the Californian Energy Crisis were ac-

companied by strong governmental policies (International Energy Agency, 2005).

Over half a billion dollars were allocated in the beginning by the Californian legisla-

ture to fund these conservation programs as a short-term policy action for electricity

conservation. One of those programs was a mass media campaign belonging to the

marketing campaign ‘Flex Your Power’ that was coordinated through the State of

California and the Consumer Services Agency (Todd & Wood, 2006). In January

2001 this conservation effort was signed and became active. It included voluntary

partnerships working on the reduction of electricity consumption, the distribution of

56The Figure 5.4 of the Appendix provides a monthly comparison for capacity revisions between 1999
and 2000 shortly before the conservation programs for containment of the Energy Crisis unfolded.
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informational material to consumers, the promotion of energy conservation lessons

and small events promoting the future use of Energy Star appliances. The ‘Flex Your

Power’ program however focused on the mass media broadcasts to promote a delib-

erate use of electricity during the Energy Crisis (Bender et al., 2002). The target of

the ’Flex Your Power’ campaign to reduce electricity consumption and peak demand

over summer periods was encouraged by a series of television, radio and newspaper

ads, as well as educational material. To induce a behavioral change in electricity

usage, the campaign concretely promoted shifting laundry and dish washing from

peak hours to off-peak hours, turning-off lights, unplugging equipment and adjusting

thermostats of electricity intense air conditions (Lutzenhiser, 1993). The ads used

were designed in a way to attract different target audiences defined by age, ethnicity

and language spoken. The campaign particularly targeted the summer of 2001 and

2002, however it didn’t come to a complete stop in other seasons. Except for two

off-air periods in April 2001 and March-April 2002, the mass media campaign was

conducted regularly until summer 2002 and with an initial frequency of 50 television

and radio ads per week from February through mid-September 2001. After Septem-

ber the frequency for television and radio spots decreased to 25 times per week in

2001. Full-page newspaper ads ran one time per week from May through July 2001.

For the rest of this first program year newspaper ads appeared every second week.

In parallel, the State of California launched a conservation rebate program in order

to further contain the crisis. The ‘20/20’ rebate program encouraged nationwide

consumers conservation behavior and rewarded consumers for electricity savings.

Therefore, the California Public Utility Commission (CPUC) passed on an executive

order to the three largest Californian investor-owned utilities (IOUs) and urged all

three to implement a rebate program. The program consisted of a 20% discount to

customers on their monthly bills in June, July, August and September 2001 and in

July, August, September and October 2002 respectively. Discounts were offered if the

customers consumed 20% less electricity compared to the same months in 2000.57

All customers who qualified participated automatically in this rebate program and

were credited for conservation efforts by the internal billing system of each utility.

Figure 5.1 shows the two conservation programs and their implementation peri-

ods. Whereas the mass media campaign for electricity reduction continued over a

longer time span, however with varying intensity, the ‘20/20’ conservation rebate

57SDG&E customers had to reduce their residential electricity consumption by 15% compared to 2000.
A residential sample bill accounting for conservation efforts under the ‘20/20’ program is shown
in Figure 5.3 of the Appendix.
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Figure 5.1: Californian residential electricity consumption and conservation programs

program targeted summer periods where residential electricity consumption was

historically at high levels. The average electricity consumption per household dis-

played in figure 5.1 depicts the respective residential electricity consumption before

the first signs the crisis in the summer of 2000 (Section 5.2). As such, Figure 5.1

also shows that the two state-induced conservation programs unfolded rapidly after

the supply shortage in November 2000.

5.4 Data

My empirical analysis is based on a 48-month period starting in January 1999. Vari-

ables contain information on residential electricity consumption over time and ac-

count for differences between the states. These differences are reflected over time

within the panel data set. Since some of the data used as explanatory variables dis-

play varying temporal and regional resolutions (see Table 5.1), I adjust the data in

such a way that it first fits the monthly temporal resolution and second that it re-

flects state-specific data thereby extending prior data work of Paschmann & Paulus

(2017). The adjustment is solely done for the household survey data obtained from

Energy Information Administration (2016a).
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5.4.1 Dependent Variable: Residential electricity consumption

I gather monthly residential electricity consumption data from the Energy Informa-

tion Administration (2016b) in order to analyze the impact of electricity conser-

vation programs within the context of the Energy Crisis. To measure conservation

program impacts on residential electricity consumption during the Energy Crisis,

other energy efficiency or conservation programs and their impacts on residential

electricity consumption need to be thoroughly accounted for. The reason for this

is that other programs might distort the impact of the analyzed conservation pro-

grams on residential electricity consumption. Fortunately, rigor programs targeting

electricity reduction through energy efficiency or conservation programs have been

implemented after and foremost as a consequence of the Energy Crisis leading to En-

ergy Action Plans in 2003 and 2005 (California Energy Commission, 2003, 2005).58

Energy efficiency and conservation programs for the residential sector before the

Energy Crisis were thus negligible despite early implementation attempts for net

metering in 2000 (CPUC, 2005).59 Due to the lack of energy efficiency and conser-

vation programs prior to the Energy Crisis, an adjustment of residential electricity

consumption data is not needed.

The data on residential electricity consumption itself consists of monthly (m) state-

specific (s) electricity sales in the residential sector including data for PG&E, SCE,

and SDG&E. Residential customer of all three IOUs account for the major share of all

Californian residential customers (> 72%) and residential electricity consumption

(> 74%) over the respective period. This guarantees no loss of representative nature

when assessing the impact of the analyzed conservation programs in the residential

sector. Monthly state-specific electricity sales are then divided by the respective num-

ber of customers in order to derive the average monthly electricity consumption per

household (Demand res
m,s).

5.4.2 Explanatory Variables

Table 5.1 gives an overview of all variables used for the synthetic control group

derivation and the two stage treatment regression. Electricity consumption is de-

58Both Energy Action Plans considered programs that provided explicit incentives for demand reduc-
tion and energy efficiency investments, fostered dynamic pricing, and issued additional energy
conservation programs.

59Renewable capacity deployment with net metering was low, not reaching 25MW by 2005 for the res-
idential sector. It took until the roll out of smart metering devices to accurately program residential
fed-back electricity volumes.
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pendent on the respective season, triggering the usage of a series of devices or appli-

cations within the residential sector. Thus, cooling degree days (CDDs) and heating

degree days (HDDs) are calculated for all U.S. states from 1999 to 2002.60 The me-

teorological data stems from the National Oceanic and Atmospheric Administration

(NOAA). Other explanatory variables such as residential electricity consumption,

sales, number of customers, and average electricity prices are taken from the U.S.

Energy Information Administration (EIA). Data on the employment level and wages

stem from the Bureau of Labor Statistics (BLS). All data from the EIA and the BLS is

provided on a monthly and state-specific level.

In order to explain relative differences of residential electricity consumption be-

tween the U.S. states, I furthermore rely on household survey data for each U.S. state.

The Residential Energy Consumption Survey (RECS) and the American Household

Survey (AHS) provide suitable sources in which data for electricity intense house-

holds equipment and appliances such as the average number of refrigerators or elec-

tric ovens per household are published. Additionally, the survey gathers data on

physical and demographic household characteristics such as for instance the average

number of rooms or floorspace per household or the share of household members

with a high school degree or higher as well as the average number of kids living in

each state and household. All variables and thus all details including sources and

temporal resolution are shown in Table 5.1. Raw data from RECS is converted into

monthly values assuming no change over time until the next reference point.61 For

the given 48-months period analyzed, I am able to make use of two reference points

in time. The data for these reference points stem from the national surveys in 2001

and 2005.

60To compute HDDs, all days showing differences between daily high and low temperatures above
65◦Df are summed up for the month and standardized to 1000.

61Despite the fact that monthly data is not available in RECS, such a data conversion is applicable
if monthly variation over time is assumed to be low, which may be the case for some variables
(i.e. average floor space). All descriptive statistics used for the empirical estimations are shown in
Table 5.3 of the Appendix.
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Table 5.1: List of variables and references

Label Explanation Resolution Region Measure Ref(2017)

C DDm,s
HDDm,s

Cooling degree days,
Heating degree days

Monthly State-
specific

Total NOAA

Clothesdr yerm,s Share of electric
clothesdryers

’01,’05 Census
regions

Relative
share

RECS

Demand res
m,s Elec sales per household Monthly State-

specific
kWh EIA

F loorspacem,s Avg. floor space per
household

’01,’05 Census
regions

m2 RECS

GDPm,s Total real GDP
divided by number of
employees

Yearly State-
specific

USD BLS

Heating
Equipmentm,s

Share of households
using electric heating

’01,’05 Census
regions

Percent RECS

MainHeatingm,s Share of households
with electricity as
main heating fuel

’01,’05 Census
regions

Percent RECS

Ovenm,s Avg. number of
electric ovens per
household

’01,’05 Census
regions

Total RECS

Priceres
m,s Avg. electric price for

residential customers
Monthly State-

specific
Cents/
kWh

EIA

Re f ri geratorsm,s Avg. number of
refrigerators per
household

’01,’05 Census
regions

Total RECS

Roomsm,s Avg. number of
rooms per household

’01,’05 Census
regions

Total RECS

Unemplo ymentm,s Unemployment level Yearly State-
specific

Relative
level

RECS

Wagem,s Avg. weekly wage Monthly State-
specific

USD BLS

Kidsm,s Avg. number of
children

Monthly State-
specific

Total RECS

Notes to Table 5.1: Census regions include 9 regions and 4 states (CA, NY, FL, TX) if not otherwise stated. The
exact references are: NOAA (National Oceanic and Atmospheric Administration, 2016), RECS (Energy Information
Administration, 2016a), EIA (Energy Information Administration, 2016b), BLS (Bureau of Labor Statistics, 2016),
NREL (National Renewables Energy Laboratory, 2016).
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5.5 Empirical Application

I use a two-stage empirical approach to assess the impact of electricity conservation

during the Energy Crisis based on the identified electricity reduction. First, I derive a

synthetic control group reproducing Californian residential electricity consumption

characteristics. As a result this control group resembles the Californian residential

electricity consumption pattern, however the control group will not be exposed to

events that happened in California during the post crisis years 2001 and 2002. Fur-

thermore, I display the development of residential electricity consumption in the

treatment state (California) and the control group state ‘Synthetic Energy Crisis Cal-

ifornia’ (SECC) on monthly basis. To link residential electricity reduction to its in-

fluencing factors, I then conduct a two stage least-squared treatment regression in a

second step. The regression aims at analyzing the significance of state-level residen-

tial electricity conservation programs, i.e. the mass media campaign for electricity

conservation and the ‘20/20’ rebate program, and their mutual impact on residential

electricity consumption.

5.5.1 Synthetic control group derivation and results

Residential electricity consumption varies substantially on a federal and regional

level. Most of the difference are due to states’ demographic structures with re-

spect to age or family structure, climatic conditions, economic aspects as well as

housing and social characteristics. Such a rich set of explanatory variables for resi-

dential electricity consumption imposes strong requirements on a potential control

group state reflecting Californian characteristics before the Energy Crisis in Califor-

nia. Thus, a single state may not be able to capture Californian residential electricity

consumption appropriately. As a consequence, I apply a synthetic control method

for the Energy Crisis in order to resemble the residential electricity consumption in

California before the Energy Crisis. As a result, the SECC resembles the Californian

residential consumption pattern prior to the events of the Energy Crisis by using a

weighted combination of all U.S. states. The derivation of the control group with

synthetic control methods is mainly based on Abadie & Gardeazabal (2003), Abadie

et al. (2010) and Abadie et al. (2015), however applications on energy-economic

related topics remain rare except for Paschmann & Paulus (2017).

The individual weights (w) for the synthetic control group state are determined

by minimizing the difference between Californian characteristics (Y1) and the re-

spective characteristics in the resulting control group (Y0 ·w). Equation 5.1 provides
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the formal description for minimizing this difference with the following objective

function

min
w
(Y1 − Y0 ·w)′V (Y1 − Y0 ·w). (5.1)

Nonnegative synthetic control weights (w) reflect states with similar consumption

characteristics of the treatment state. State weights w sum up to one and the all data

described under Section 5.4 are used for the derivation of the synthetic control group

state.62 To account for the relative importance of the individual explanatory vari-

ables Y of each state, a vector V containing nonnegative components is determined

with a standard regression technique, as described by Abadie & Gardeazabal (2003)

or Abadie et al. (2010). Based on the regression, the V vector is chosen such that

residential electricity consumption per household for California before the tipping

point of the Energy Crisis is best reproduced by the synthetic control. The weight

vector V is computed by using all periods prior to the events of the Energy Crisis,

since V may vary before and after these events due to different underlying causal

relations between the residential consumption and its explanatory variables.63

Before measuring and commenting on the impact of the two nationwide imple-

mented conservation programs on Californian residential electricity during the En-

ergy Crisis, I identify a suitable point in time allowing me to distinguish between the

actual Californian residential electricity development and a synthetic one display-

ing a counter factual consumption development. Furthermore, this point in time,

motivated by the Energy Crisis outages, enables me to relate back all consumption

impacts in the following periods to this point in time. I identify the 16 gigawatts

capacity revisions of November 2000 as triggering event for the synthetic controls

state since the November events constituted the peak of all destabilizing effects in

the electricity market up to that point. It therefore supports the argument that sup-

ply shortages destabilized the electricity market to a point of ‘no return’. As such, the

chosen point in time additionally coincides with an official statement from the Fed-

eral Energy Regulatory Commission (FERC) which in November 2000 announced

that the Californian Energy System is ‘flawed’ (Wolak, 2003).

As states for the control group should display similar residential consumption pat-

62Temporal resolution of the data is to some extend neglected within the synthetic control method,
since the method is based on average values of the explanatory variables over all pre-treatment
periods, regardless of the selected pre-treatment period.

63Details on weights are listed in Table 5.4 of the Appendix.
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terns prior to events of the Energy Crisis, consumption patterns across all states are

thoroughly analyzed before the use of the synthetic control. Clearly, the hetero-

geneity of consumption patterns across all U.S. states is large, showing states with

consumption patterns differing in levels and monthly cycles. Thus, the set of suitable

states for the synthetic control is naturally restricted since some states exhibit similar

residential electricity consumption patterns and increases over the summer periods

in 2000. Comparing year-over-year residential consumption increases in California

with others states indicates that states with similar patterns and demand increases,

i.e. between 5% to 10%, are Colorado, Missouri, Nebraska, New Mexico, Oklahoma,

Texas and Utah.64

Not surprisingly, the synthetic control state ‘Synthetic Energy Crisis California’

(SECC) combines a subset of the above states. As a result, the synthetic control

group states are Texas, Colorado and New Mexico, where Texas has a weight of 4%,

Colorado has a weight of 13% and the weight of New Mexico amounts to 83%. A

first comparison based on meteorological data such as average, maximum and min-

imum temperature, HDDs and CDDs reveals that New Mexico and Colorado have

similar climate conditions and Texas resembles some of California’s economic indi-

cators such as average weekly wages or relative real income for the analyzed period.

Robustness checks supporting the use of a synthetic control have been performed,

in particular with respect to pre-period time selection and parallel trends. Vary-

ing the data base prior to the Energy Crisis leaves post treatment synthetic control

state patterns as shown in Figure 5.2. Variations with respect to consumption pat-

terns are below 1%. Additionally, a test to verify the parallel trends assumption for

residential electricity consumption has been carried out. By splitting the entire pre-

treatment period into sub-periods, the test shows that the assumption of parallel

trends is valid.65

Figure 5.2 shows that prior to the treatment, the residential electricity consump-

tion pattern of ‘Synthetic Energy Crisis California’ resembles the actual Californian

pattern. This is especially true when comparing both seasonality patterns and con-

sumption levels. Californian residential consumption exhibits upwards and down-

wards movements in a range between 460 kWh/month and 705 kWh/month. Sim-

ilar seasonal patterns in levels are found for ‘Synthetic Energy Crisis California’ with

residential electricity consumption per household ranging between 480 kWh/month

64Residential electricity consumption for those states over the 48-month period are depicted in Fig-
ure 5.6 of the Appendix.

65A detailed description on the test is provided in Section 5.7.6.

98



5.5 Empirical Application

Figure 5.2: Descriptive Comparison for the ’Synthetic Control Group’-State (SECC) and Cal-
ifornia

and 705 kWh/month. On average, residential electricity consumption of ‘Synthetic

Energy Crisis California’ is 4 kWh/month lower than the pattern for California over

the pre-treatment months. Thus, the synthetically derived SECC state reflects an

accurate however not perfect match.

Periods after the treatment continue to show fluctuating patterns of positive and

negative differences. However, after the year 2000 larger differences are observable

in Figure 5.2. The residential consumption pattern for California shows an excess

of negative differences (see Figure 5.5 of the Appendix) of on average -65kWhs.

Taken together, the comparison is indicative of the negative influences on residential

electricity consumption in the post treatment years 2001 and 2002. Nevertheless,

the statistically negative excess of electricity has yet to be analyzed and put into

perspective considering the conservation programs taken during the post treatment

years 2001 and 2002.

5.5.2 Two-stage least-squared treatment regression and results

To quantify residential reduction stemming from the conservation programs, I con-

duct a two-stage least-squared treatment regression. By empirical design, the im-

pact of the conservation impact is jointly analyzed using data for California and for
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SECC. The effect of the conservation is jointly analyzed since both, the media cam-

paign and the ‘20/20’ rebate program, occurred over the same time and mutually

targeted a behavioral consumption change rather than the replacement of technical,

more efficient, household equipment. The treatment term in the regression captures

the electricity conservation within the Californian residential sector by interacting

the observations of California and quarterly time periods within the Energy Crisis

years 2001 and 2002. By applying a two-stage least-squared treatment regression, I

am furthermore able to address endogeneity issues within electricity markets where

electricity prices and residential electricity consumption are mutually dependent, es-

pecially if time horizons coincide. Although I expect the electricity price data used to

be largely independent from the consumption since the electricity price I compute

is averaged across IOUs and over the month thereby not clearly linking regional

residential prices and consumption, endogeneity may not be completely ruled out.

Another reason for that is that reverse causality may also stem from the ‘20/20’ re-

bate program itself since the program intended to achieve lower consumption levels

based on the respective residential price in that month. Lutzenhiser (1993) and

Hass et al. (1975), for instance, argue that consumer’s consciousness with respect to

consumption and prices is more sensible in stressed situations increasing the likeli-

hood to react to the conservation programs. I thus apply a two-stage least-squared

treatment regression in order to first ‘disconnect’ the consumption in month m from

the residential electricity price in the same month and secondly from indirect price

sensitivity originating from the ‘20/20’ rebate program. The Equation 5.2 shows the

first stage of the regression with residential electricity price lags

ln pres
s,m = intercept1 + γ

′ ln pres
s,m−1 + εs,m, (5.2)

where ln pres
s,m is the logarithmic residential electricity price of the state s in month

m and ln pres
s,m−1 is the logarithmic electricity price from the previous month. Further-

more, the standard instrument variable requirement, such as cov[pres
s,m, pres

s,m−1] 6= 0

has been verified, confirming the overall high autocorrelation (>0.8) among resi-

dential prices.66

The Equation 5.3 displays the second stage that accounts for other explanatory

variables besides the instrumented residential electricity price. This log-linear esti-

66Testing for validity, expressed by cov[demand res
s,m,µ] = 0, is not feasible since the model is exactly

identified. However, supporting qualitative evidence for supply shocks other than those discussed
impacting the error term after the treatment is not present.

100



5.5 Empirical Application

mation equation

ln demand res
s,m = intercept2 +α

′Dummym +δ
′ t reatmentqr t y,y

+ β ′1Y 1s,m + β
′
2 ln Y 2s,m +µs,m

(5.3)

allows me to comment on relative effect and captures both, linear and logarithmic

explanatory variables, expressed by Y 1s,m and ln Y 2s,m. For linear explanatory vari-

ables, I choose weather conditions that are by definition exogenous. More precisely,

I use heating and cooling degree days (HDD, CDDs) in order to infer on weather

influences altering residential electricity consumption. For logarithmic explanatory

variables, average weekly wage and the estimated residential electricity price from

Equation 5.2 is used. Other influences on consumption arise from physical housing

characteristics, however those are highly correlated to wage providing a good proxy

for physical housing characteristics.67 On the left hand side of the Equation 5.3, the

logarithmic dependent variable ln demand res
s,m reflecting the residential state-specific

consumption is displayed. The treatment coefficient δ′ will provide insights into the

residential electricity reduction during the Californian Energy Crisis years 2001 and

2002 on a quarterly basis. Since I account for a general time trend with respect to

residential electricity consumption by using monthly dummies (Dummym) over the

48-months period, the treatment term covers quarterly time horizons for each year

in order to filter all other effects not related to monthly time trends.68

The estimation results reveal some interesting insights that are summarized in

Table 5.2. First, I find that the cooling or heating degree days positively impact the

residential electricity consumption through either the usage of air conditioning or

electric heating within the residential sector. The magnitudes of the coefficients for

CDDs and HDDs are low and significant at the 1% level contributing thus to the

explanatory power of the overall regression model.69 Furthermore, weekly wages

reflect the purchasing power per state on a monthly basis. Those wages can partially

be spent for electrical household equipment or more generally reflect the consumer’s

attitude towards residential electricity consumption by accounting for their income.

67Other explanatory variables such as family size or consumers’ education have been analyzed and
neglected for the estimation due to overall little variation within the data over the analyzed short
time period.

68Variation for the estimation with respect to treatment time selection have been tested. Monthly
treatment terms can be neglected, since high correlations between the monthly dummies and the
treatment occur leading to estimation bias. The highest temporal resolution is thus obtained by
quarterly treatment terms.

69R-squared is 90%.

101



5 Electricity Reduction in the Residential Sector

As a monetary variable, wage is also closely linked to macro-economic indicators

such as the gross domestic product (GDP) that similarly influences the electricity

consumption pattern over the year. Additionally, wage is likely to relate to housing

characteristics, such as housing size or even family size (i.e. number of children

per household). As such the impact of wage on residential electricity consumption

accounts for multiple factors. In the estimation, the coefficient for weekly wage is

significant and shows a high positive influence on residential consumption.

Contrary to that, the estimation results reveal that the residential electricity price

does not statistically impact the residential electricity consumption. This seems plau-

sible since Californian residential electricity prices lacked instantaneous adjustment

to wholesale price movements and, more importantly, residential consumers were

not on real time pricing schemes during the Energy Crisis and rather signed contracts

with their utilities for two-tiered tariffs over longer time periods.

I observe a significant impact of quarterly treatment terms whereas the impact

of the treatment term differs with respect to the quarters of the years 2001 and

2002, as shown in Table 5.2. The respective electricity reduction in the first quarter

is 9.1% which amounts to a reduction in levels of on average 50 kWhs per month

and household.70 The reduction effect coincides from a temporal perspective with

the launch and thus the fierce promotion of electricity conservation within the mass

media campaign in January 2001. In the second quarter of 2001 my results are

indicative of a 11.0% reduction (52 kWhs) whereas from a timely perspective the

potential conservation effects arising from the media campaign and the ‘20/20’ re-

bate program overlap solely in June 2001. The treatment term for the 3rd quarter,

t reatmentQ3,2001, fully covers the ’20/20’ rebate program and the impact of the me-

dia campaign showing a maximum reduction of 12.1% reduction (68 kWhs). The

first, second and third quarterly treatment effects within 2001 are furthermore sig-

nificant at the 1% level. During the fourth quarter in 2001, no significant electricity

reduction occurs which I relate to consumers’ comfort issue preferring warm housing

environments during winter. As radio, newspaper and television spots for electricity

conservation continued, however with lower frequency, my estimation results reveal

further electricity reductions for the following year. The quarterly treatment coef-

ficients are however overall lower in terms of magnitude and decrease over time

compared to 2001. The reduction in 2002 is 9.0% (down by 0.1%) in the first quar-

ter, 6.4% (down by 4.6%) in the second quarter and 8.1% (down by 4.0%) in the

third quarter. Thus, policy makers may achieve a reduction of electricity consump-

70The treatment coefficient δ is transformed by using [exp(δ)-1].
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tion in on and off-peak months by implementing conservation programs whereas the

impact of conservation programs is more strong in summer months.

Table 5.2: Determinants of monthly residential electricity consumption: IV estimation re-
sults

Dependent variable: lndemand res
m,s

Explanatory variable Coefficient Std. error

C DDm,s 0.0008∗∗∗ (0.000)
HDDm,s 0.0002∗∗∗ (0.000)
lnWagem,s 0.2172∗∗∗ (0.070)
lnPriceres

m,s -0.1199 (0.103)

t reatmentQ1,2001 -0.0956∗∗∗ (0.025)
t reatmentQ2,2001 -0.1169∗∗∗ (0.027)
t reatmentQ3,2001 -0.1290∗∗∗ (0.035)
t reatmentQ4,2001 -0.0128 (0.023)
t reatmentQ1,2002 -0.0938∗∗∗ (0.038)
t reatmentQ2,2002 -0.0666∗∗ (0.031)
t reatmentQ3,2002 -0.0845∗∗∗ (0.034)
t reatmentQ4,2002 -0.0446 (0.033)

intercept2 -2.226∗∗∗ (0.683)
monthly controls yes

observations 96
R2 0.897
F 59,73

Notes: Robust standard errors in parentheses. Instruments for 2SLS: Price lag (m-1)
variable.∗∗∗, ∗∗ and ∗: significant at the 1%-, 5%-, and 10%-level.
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5.6 Conclusion

As a consequence of electricity outages that occurred in California in 2000, the State

of California decided to curb electricity consumption with the help of two state-

promoted conservation programs in the Energy Crisis targeting the years 2001 and

2002. With a potential residential consumption reduction, policy makers were hop-

ing to contain the Energy Crisis and its electricity blackouts. Although the mass

media campaign and the ‘20/20’ rebate program faced some initial critique, the

Californian Government implemented both on a national level targeting behavioral

changes for electricity usage in order to reduce residential electricity consumption.

The article at hand empirically analyzes the effectiveness of the two conserva-

tion programs jointly by conducting an empirical analysis in two consecutive steps.

First, I make use of constructing a synthetic control group, called ‘Synthetic Energy

Crisis California’ (SECC), not exposed to governmental conservation programs that

resulted from the Energy Crisis. The resulting synthetic control group state leads me

to the structural comparison of a treated and untreated state, whereas I interpret the

resulting difference between the consumption patterns as reduction potential, that

without the crisis would not have been revealed and has so far not been quantified.

In a second empirical step, I conduct a two stage least-squared treatment regression

assessing the effectiveness of the implemented conservation programs. By control-

ling for weather, electricity prices and economic indicators, I specifically filter out

the conservation effect for all four quarters of the years 2001 and 2002.

As expected, I find that heating or cooling increase residential consumption as

well as the purchasing power of households, expressed by the significant positive

coefficient of the wage indicator. I relate the positive impact of wages on residential

consumption to the fact that wage is a good proxy for purchasing power interacting

with a variety of influences on residential electricity consumption, such as housing

and family size or conservation attitude itself. I furthermore find that residential

consumption reductions temporally overlap with the conservation efforts in a con-

sistent manner. Electricity reductions occur more strongly in 2001 compared to 2002

ranging between 6% and 12% depending on the analyzed quarter. Since the mass

media ran with lower frequency in 2002 and was put into a broader energy saving

context, this downward trend seems to be plausible. My result furthermore show

that an envisaged residential electricity reduction of 20% has never been achieved

neither by the ‘20/20’ rebate program or by the rebate program itself nor jointly by

the rebate program and the mass media conservation campaign. Reasons for that
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are that not all customers, if at all, reacted likewise to the conservation incentives.

Furthermore, I argue that an electricity consumption change driven by a structural

replacement of household equipment was not present during the Energy Crisis and

in particular not in the years 2001 and 2002. Firstly because no fierce policy in-

centivized residential consumers to replace equipment in the short time span and

secondly attention was channeled towards conservation through altering electric-

ity use. Thus, some residential consumers were rather able to change consumption

habits in order to reduce electricity usage.

Nevertheless the estimation results need to interpreted with care, since I do not

specifically control for the mass media campaign and the ‘20/20’ rebate program.

This is primarily driven by not finding suitable control variable data for the mass

media campaign and the ‘20/20’ rebate program that would explicitly account for

the impact on residential electricity consumption. Additionally, some residential

electricity reduction may also stem from other factors; an example for that could be

a residential electricity consumer who made efforts to reduce electricity consumption

during the Energy Crisis however was neither influenced by the media campaign nor

participated in the rebate program due to not reaching the threshold of 20%.

Also, reductions in electricity consumption that resulted from the Energy Crisis

cannot be generalized to other states in the U.S. or different countries. An argument

to bring forward is that households and consumer (behavior) differ when analyzing

other regions. Besides differences due to macro economic and geographically as-

pects on a country level, further differences stem from socio-economic and physical

characteristics of households, as well as to the preference ordering of the individual

household members when it comes to comfort issues. Nevertheless an analysis on

obtrusive policy events can be carried out separately for other countries and sectors

by thoroughly applying synthetic control techniques in order to address impacts on

consumption in larger frameworks with lacking control groups.
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5.7 Appendix

5.7.1 Exemplary residential sample bill from Southern California
Edison (SCE)

Figure 5.3: Sample bill including ’20/20’ rebate for residential customers. [Source: South-
ern California Edison, 2017]

5.7.2 Total capacity revisions by the major three IOUs in 1999 and
2000

Figure 5.4: Un- or scheduled capacity revisions by IOUs in MW. [Source: Blumstein et al.,
2002]
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5.7.3 Descriptives for synthetic control and regression data

Table 5.3: Descriptive Statistics

Variable N Mean SD Min 25% Median 75% Max

C DDm,s 490 111 163 0 0 16 177 651

Clothesdr yerm,s 490 0.8 0.117 0.472 0.758 0.806 0.869 0.94

Demand res,ad j
m,s 490 0.857 0.318 0.432 0.615 0.77 1.012 1.947

F loorspacem,s 490 1980 236 1568 1757 1977 2277 2289

GDPm,s 490 0.003 0 0.002 0.003 0.003 0.003 0.004

HDDm,s 490 390 377 0 30 296 663 1504

HeatingEquipmentm,s 490 0.259 0.109 0.108 0.177 0.237 0.65 0.475

MainHeatingm,s 490 0.186 0.149 0.031 0.111 0 .179 0.247 0.5

Ovenm,s 490 1.066 0.011 1.043 1.058 1.064 1.076 1.081

Priceres
m,s 490 0.078 0.018 0.052 0.066 0.074 0.086 0.147

Re f ri geratorsm,s 490 1.205 0.0458 1.139 1.179 1.2 1.233 1.295

Roomsm,s 490 5.728 0.233 5.134 5.597 5.809 6.948 6.014

Unemplo ymentm,s 490 4.404 1.085 2.7 3.4 4.4 5.3 6.8

Wagem,s 490 614 86 475 549 593 669 837

Kidsm,s 490 0.694 0.044 0.648 0.648 0.696 0.738 0.738

5.7.4 Synthetic weight vector V for the exogenous variables

Table 5.4: Weights of the exogenous variables

Label Weight

C DDm,s 0.041

Clothesdr yerm,s 0.012

F loorspacem,s 0.181

GDPm,s 0.041

HDDm,s 0.129

HeatingEquipmentm,s 0.135

MainHeatingm,s 0.017

Ovenm,s 0.023

Priceres
m,s 0.121

Re f ri geratorsm,s 0.116

Roomsm,s 0.044

Unemplo ymentm,s 0.106

Wagem,s 0.029

Kidsm,s 0.002
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5.7.5 Difference Plot - Synthetic Control Group State ’SECC’ and
California

Figure 5.5: Synthetic Control Results - Difference Plot
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Development of residential electricity consumption in pre-selected
states

(i) Colorado

(ii) Missouri
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(iii) Nebraska

(iv) New Mexico
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(v) Oklahoma

(vi) Texas
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(vii) Utah

Figure 5.6: Residential consumption in pre-selected states over 48-month period
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5.7.6 Parallel trends test

Testing for parallel trends assures that the use of the consumption patterns for Cali-

fornia and the derived control group state is indeed following similar patterns before

the crisis, unbiased of any other consumption-reducing influences (i.e. other pro-

grams or events). Therefore, I make use of using a difference-in-difference estima-

tion based on data for the treated and untreated state. As explanatory variables, I use

HDD, CDD, unemployment level, wages, lagged residential electricity prices, pre-

treatment (pre_t r t), interim-treatment (int_t r t) and post-treatment (post_t r t)

time dummies. The respective time dummies reflect the months in 1999 (pre_t r t),

2000 (int_t r t) and 2001-2002 (post_t r t). Among others, estimates for the treat-

ment dummies are provided in Table 5.5. Two meaningful insights for the synthetic

control approach can be derived; first, I can neglect other consumption reducing

impacts shortly before the Energy Crisis due to the non-significant coefficient of the

interim-treatment time dummy (int_t r t). Thus, the parallel trends assumption is

valid. Second, the negative impact on residential electricity consumption of the

post_t r t time dummy (−0.158, significant at the 5% level) provides first evidence

for an aggregated reduction through conservation programs that are studied in more

depth in Section 5.5.2.
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Table 5.5: IV Estimates when controlling for pre- and post crisis treatment time dummies

Dependent variable: ∆Demand res
m

Explanatory variable IV

pre_t r t -0.085
(0. 699)

int_t r t -0.108
(0.0934)

post_t r t -0.158∗∗

(0.0830)
∆Priceelec,res

m -1.4904
(2.4594)

∆C DDm 0.0003∗∗∗

(0.0001)
∆HDDm 0.0001∗

(0.0001)
∆Unemplo ymentl vlm 0.0639

(0.0616)
∆Wagem 0.0006

(0.0004)
observations 48
R2 0.70
F 29.3
p-value 0.00

Notes to Table: Robust standard errors in
parentheses. ∗ / ∗∗ / ∗∗∗ : significant at the
0.1 / 0.05 / 0.01 error level respectively. Data
used covers a 48-month period from January
1999 until December 2002.
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