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µξ Belief system of Operations in trust model

xii



List of Symbols

N Normal distribution

n Number of observations

ω Psychological cost parameter for over- and underforecast-

ing

P (X = x) Probability that a random variable X takes on value x

p̄ Threshold cost

po Unit overforecasting penalty

pu Unit underforecasting penalty

Φ Random variable of market condition

φ Realization of market condition

φ̂ Demand forecast

φ̂R Reference forecast

φ̂c Equilibrium forecast of Sales in computerized order de-

cisions model

φ̂ξ Equilibrium forecast of Sales in trust model

ΠC Expected profit of the company

ΠS Expected payoff of Sales

PLAN Dummy variable for the planning phase

POST Dummy variable for the post-implementation phase

Ψ Variance-covariance matrix of random effects

q Order quantity

q∗ Response function of Operations in equilibrium

qFB First-best order quantity

qsep Response function of Operations in separating equilib-

rium

xiii



List of Symbols

qsepR Response function of Operations in separating equilib-

rium of reference point model

qc Order function of Operations in computerized order de-

cisions model

qθ Equilibrium response function of Operations in näıveté
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1. Introduction1

“On the one hand, we want to benefit from cheating, while on the other, we want

to be able to view ourselves as honest, honorable people. This is where our amazing

cognitive flexibility comes into play: As long as we cheat by only a little bit, we can

secure the benefits and still view ourselves as marvelous human beings.”

Dan Ariely (Behavioral Economist)

1.1. Motivation

For many companies, the challenge to manage the internal supply chain from sourcing to serving

the end customer is growing (PwC, 2015). On the one hand, customer needs are now more

sophisticated and volatile than ever. On the other hand, operations networks are becoming

more global and complex in structure. A recent analysis by McKinsey & Company shows that

organizations are becoming more mature in managing their supply chains, which is reflected

in decreasing and converging high-level supply chain benchmarks, such as overall fill rates and

supply chain costs (Karlsson et al., 2017). However, when taking a more granular look, the

performance along individual dimensions, such as demand forecasting, is still heterogeneous.

For example, among consumer goods companies with similar levels of demand volatility, the

1 This thesis is an extended version of Scheele et al. (2017), which is joint work with Ulrich Thonemann and
Marco Slikker. It benefited from the comments of four anonymous referees and the editors of Management
Science. Preliminary research results have been presented at the following conferences: Behavioral Opera-
tions Management Conference (Washington, D.C., 2012), INFORMS Annual Meeting (Phoenix, AZ, 2012),
European Conference on Operational Research (Rome, 2013), MSOM SCM SIG Conference (Seattle, WA,
2014). An earlier working paper version was awarded the 2014 INFORMS Behavioral Operations Man-
agement Best Working Paper Award and was presented in the finalists session at the INFORMS Annual
Meeting (San Francisco, CA, 2014).
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1. Introduction

gap in forecast accuracy between median and top-quartile firms is still at 17 pp (Karlsson et al.,

2017).

The demand forecast is a major input factor in the internal planning process, which ranges

from inventory management and production planning to sourcing decisions. The operational

performance of a company depends to a large extent on how well it matches supply and

demand. Achieving a good match requires accurate information to be available to the decision

maker who is in charge of the supply decision. At many companies, different departments

are responsible for collecting demand information and making production or order decisions

(e.g., Shapiro, 1977; Eliashberg and Steinberg, 1993; Balasubramanian and Bhardwaj, 2004;

Oliva and Watson, 2009; Özer and Uncu, 2013). Typically, a sales or marketing division (Sales)

collects demand information and creates a demand forecast, which is then used by an operations

division (Operations) to make a production or order decision. The rationale behind this task

allocation is that Sales is close to the customer and has good information about future demand,

while Operations has good information about the effect that production and order decisions

have on cost. If the incentive system of Sales is not properly designed, the demand forecast

could be biased, which means that Operations would receive inaccurate demand information

and consequently make suboptimal decisions (Chen, 2005; Lawrence and O’Connor, 2005; Özer

et al., 2011).

Figure 1.1 shows an example of biased forecasts at a global pharmaceutical company. The

graphs show the demand forecasts that were produced three months in advance and the actual

monthly demand for four products over a period of 48 months. Most demand forecasts are

greater than the actual demand, with an average demand forecast inflation of 16.2 %. Further

analyses revealed that Sales personnel expect production quantities to increase in their demand

forecasts. Higher production quantities increase the availability of products, which results in

increased sales and sales bonuses. It is therefore not surprising that Sales has a tendency

to inflate demand forecasts. Note, however, that the demand forecasts and demands are

correlated, and the inflation is moderate. This implies that actual forecasts contain information

about future demands, as opposed to the predictions of an economic model with expected-

payoff-maximizing decision makers, which predicts that forecasts are entirely uninformative

2



1. Introduction

(see Theorem 1 in Özer et al. (2011) and Theorem 1 in Section 3.2). As Özer et al. (2011)

show in an inter-firm setting, this effect can be explained by a human desire to trust and be

trustworthy, which is further promoted in long-term relationships. One could expect similar

factors to influence forecast information sharing within a firm. However, as the data of Özer

et al. (2011) and Figure 1.1 suggest, these factors are not sufficient to remove biases from sales

forecasts.
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Figure 1.1.: Monthly forecasts and actual demand of example products (in thousand units)

Inspired by the example above, the objective of our research is to design incentive systems

for Sales that lead to truthful demand forecasts. The economics literature has analyzed in-

centive systems and has shown that monetary incentives play an important role in motivating

individuals (e.g., Prendergast, 1999; Lazear, 2000; Gibbons, 2005). Properly designed incentive

systems can further foster cross-functional collaboration (Ellinger, 2000) and improve supply

chain performance (Cohen et al., 2007). However, incentive system designers are faced with

certain challenges, such as choosing the right set of performance indicators (Kerr, 1975) and

predicting how human decision makers react to incentives (Fehr and Falk, 2002; Camerer and

Loewenstein, 2004). We address these issues in our analyses and the design of incentive systems

for truthful forecast information sharing within a firm.

3



1. Introduction

1.2. Context and Contribution

There exists a rich body of operations management (OM) literature on supply chain coordina-

tion. One branch of research in this field investigates how the actions of a supply chain dyad

can be aligned if information is distributed asymmetrically, i.e., if one actor is in possession of

information that the other actor needs to make an informed decision. Empirical investigations

in the semiconductor industry have shown, for example, that a downstream buyer who has su-

perior access to market information uses this advantage to manipulate the production decisions

of the upstream supplier (Cohen et al., 2003; Terwiesch et al., 2005). In contrast, it has been

shown that sharing sales and market information truthfully across organizational boundaries

can significantly improve the operational performance of the supply chain (e.g., Gaur et al.,

2005; Cui et al., 2015).

The focus of earlier publications was to design contracts that provide incentives for the better

informed party to reveal its private information truthfully to the uninformed party (Cachon,

2003). In many cases, these contracts require the better informed actor to “put his money

where his mouth is,” i.e., to send a costly signal that credibly conveys the private information

(Chen, 2003, p. 342). Alternatively, the uninformed party can try to motivate the informed

actor to release its information, such as by offering a menu of contracts. Both approaches

are used in the analyses of coordination mechanisms for truthful forecast information sharing.

For example, Cachon and Larivière (2001) study how a manufacturer can credibly signal high

demand to a supplier through an upfront payment to reserve capacity. Özer and Wei (2006)

compare capacity reservation and advance purchase contracts in a supplier-manufacturer rela-

tionship and derive conditions under which both types of contracts reveal the private demand

information of the manufacturer. Various extensions of the problem and alternative contract

forms have been analyzed (e.g., Mishra et al., 2007; Li and Zhang, 2008; Shin and Tunca, 2010;

Gümüş, 2014; Chen et al., 2016). Besides the use of formal contracts, repeated interactions

between supply chain partners can support truthful forecast information sharing because the

uninformed party can use review strategies to detect and punish untruthful behavior (Ren

et al., 2010).
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While the general structure of the problem is similar, few publications have analyzed the

issue of truthful forecast information sharing within a firm. In contrast to inter-firm informa-

tion exchange, a different set of mechanisms is available to coordinate the actions of decision

makers who belong to the same organization. In particular, performance-based incentive sys-

tems, such as the ones that we consider, allow for enforceable ways of “contracting” between

different departments. Research in Marketing and in OM has addressed the question of how to

incentivize Sales to provide accurate forecasts. Among the first to approach this problem, Go-

nik (1978) describes a sales incentive system, which ties the bonuses of sales personnel to their

forecasts. In essence, bonus payments under the Gonik scheme are piecewise linear functions

of revenues, where the self-selected forecast determines the kink in the function. By adjusting

the parameters of this incentive plan, a rational sales agent can be incentivized to provide

an accurate estimate of demand, which simultaneously serves as a sales target (Mantrala and

Raman, 1990). Alternatively, Sales can be offered a menu of linear contracts to elicit private

knowledge about the market and be motivated to exert sales effort (Chen, 2005; Chen et al.,

2016). Celikbas et al. (1999) present a model where Sales is penalized for overforecasting and

Operations is penalized for understocking. Assuming that the demand forecast of Sales is used

as an upper bound in the production decision of Operations, they find that the parameters of

such an incentive system can be set such that demand forecasts and production quantities are

coordinated.

The traditional OM approach to problems of inter- and intra-firm forecast information shar-

ing builds upon the assumption of rational decision makers who maximize their own payoffs.

This assumption has been relaxed in a growing stream of behavioral research on these topics. In

their study of forecast information sharing under wholesale price contracts, Özer et al. (2011)

show that trust and trustworthiness between a supplier and a manufacturer can explain why

forecasts are considerably more truthful than expected under rational decision-making assump-

tions. Their experimental data indicates that the degree of trust depends on environmental

factors, such as the cost of capacity, the level of demand uncertainty, and the cultural back-

ground (Özer et al., 2011, 2014). Furthermore, trust and trustworthiness seem to be affected

by the type of information that an informed supply chain partner communicates: Offering

5



1. Introduction

information that enables the uninformed party to make a decision generates higher trust than

offering advice or even making the decision on behalf of the uninformed party (Özer et al.,

2017). For situations where the upstream party is better informed, Beer et al. (2017) inves-

tigate both theoretically and experimentally if a supplier can signal its trustworthiness to a

buyer through pre-contractual investments. They find that the prices paid by the buyer, the

quality delivered by the supplier, and ultimately the overall supply chain profit are higher if a

supplier invests in the upfront signal. For situations where two firms in a supply chain dyad

receive different demand information, the experimental data of Hyndman et al. (2013) suggests

that pre-play communication can help them to align their capacity decisions even if the infor-

mation exchange is nonbinding. Ebrahim-Khanjari et al. (2012) develop a model that captures

the social characteristics of a salesperson (e.g., selfishness and loyalty) and derive theoretically

how these characteristics influence the degree of trust of a retailer in the salesperson’s forecast.

In situations where a supplier intends to design a menu of contracts but does not know the

holding cost of a buyer, the model of Voigt and Inderfurth (2012) and the experimental data of

Inderfurth et al. (2013) suggest that a holding cost signal can convey credible information and

hence improve supply chain performance only if the trustworthiness of the buyer and the trust

of the supplier are well aligned. They also find that there are situations of insufficient trust

and underreporting of the cost position, where communication harms the supply chain. Özer

and Zheng (2017) synthesize the existing knowledge of the role of trust and trustworthiness in

supply chain information sharing.

Our research builds on the work of Özer et al. (2011, 2014). We extend their model by

transferring it to an intra-firm context and adding forecast error penalties to the payoff function

of the informed party (Sales). Our theoretical and empirical findings contribute to the existing

literature on forecast information sharing in several ways: First, we provide robustness to the

finding that Sales is more trustworthy than predicted by expected-profit-maximizing behavior

even in the absence of formal incentives and that Operations anticipates this trustworthiness

when receiving the demand signal. We support this finding empirically with experimental

data and insights from a case study. Second, we show how forecast-based incentives influence

the forecast decision of Sales and subsequently the order decision of Operations. Third, by
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combining these insights, we derive conditions for Sales incentive schemes that enable truthful

forecast information sharing.

Research on behavioral OM has evolved significantly over the last two decades (reviews are

provided in Gino and Pisano, 2008; Bendoly et al., 2010). One stream of research in this field

focuses on individual decision biases, typically in newsvendor-type situations (e.g., Schweitzer

and Cachon, 2000; Bostian et al., 2008; Ho and Zhang, 2008; Katok and Wu, 2009; Ho et al.,

2010; Becker-Peth et al., 2013; Kremer et al., 2014; Zhang et al., 2016). Another stream of re-

search analyzes the behavioral drivers of strategic, interactive decision making in supply chains.

Besides trust and trustworthiness, supporting elements of cooperation also include concerns

for fairness (Cui et al., 2007; Katok and Pavlov, 2013; Katok et al., 2014; Ho et al., 2014)

and the existence of personal relationships (Loch and Wu, 2008). An inherent characteristic

of research in behavioral OM is the combination of different research methods (Croson et al.,

2013). A well-established method for discovering human decision biases and social preferences

in supply chain interactions is controlled laboratory experiments (Katok, 2011). In this thesis,

we combine the classical approach of model building with results of laboratory experiments.

More specifically, we build a model based on previous research and behavioral theory and use

experimental data to estimate the behavioral parameters of our model. We show that our

results are robust by conducting an out-of-sample validation experiment and provide evidence

that the main insights remain valid under repeated interaction. In the field of OM, there has

furthermore long been a call for more case and field research to complement the traditional

methods of modeling, optimization and simulation (e.g., Meredith, 1998; Fisher, 2007; Barratt

et al., 2011). We follow this call and complement the theoretical and experimental approach

by a case study that investigates the use of forecast-based incentives in practice. We hence

contribute methodologically to the growing body of behavioral OM research by using a multi-

method approach of formal modeling, human-subject experiments and field research to develop

and test sales incentive schemes for truthful forecast information sharing.

Our results have important implications. They show that firms can incentivize truthful

forecast information sharing by including a forecast-based component in the incentive system

of Sales. Our analyses indicate that behavioral factors play an important role in decision
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making. Taking these factors into account is crucial for predicting and influencing human

forecasting behavior.

1.3. Outline

In the following, we briefly outline the structure of the thesis. Chapters 2, 3 and 4 contain

the main results of our research – each with a different methodical focus. Chapter 5 serves to

provide further robustness to the previous results.

Chapter 2 contains a case study of a global pharmaceutical company, which motivated the

theoretical and experimental research of the following chapters. We characterize the initial

situation at the company, describe the process of introducing forecast accuracy incentives into

the target agreements of product managers at a local sales unit, and report the quantitative

and qualitative results of this pilot project.

In Chapter 3, we develop a game-theoretic model that describes the forecast exchange be-

tween Sales and Operations. We specify the sequence of events and develop utility functions

based on behavioral theory for both parties. We define three different types of incentive sys-

tems for Sales, all of which include a bonus for sales but differ in the way they penalize forecast

errors. We present a solution concept for the signaling game that we consider and derive

Pareto-dominant separating equilibria for the forecasting behavior of Sales and the ordering

behavior of Operations. Based on the theoretical results we develop a set of hypotheses.

Chapter 4 reports the results of laboratory experiments that test how well our model explains

the behavior of actual decision makers. We first describe the design of our main experiment,

address the laboratory protocol, and discuss the results of the experiment. Based on the

experimental data, we then estimate the behavioral parameters of our model and test the

hypotheses. We use the insights of the main experiment to define a new set of treatments that

we test in a validation experiment with a new group of subjects. We show that close-to-truthful

information sharing can be achieved by our approach.

Chapter 5 summarizes various analyses in support of the results of Chapters 3 and 4. We

first take a look at alternative models that relax the assumption of Bayesian belief updating
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and test different reference points in the valuation of the forecast error penalties. We then

report the results of additional experiments, where we replace the human Operations player

with a computer and let subjects play the forecasting game repeatedly with the same player

instead of different players. We conclude the chapter with a set of supporting analyses based on

the data of the main experiment. These include regressions to identify time and order effects,

treatment-specific parameter estimations, measures to ensure the overall understanding of the

experiment, and an analysis of subjects’ risk attitudes.

We conclude our work in Chapter 6. Besides summarizing our main results, we lay out how

these results can be used to guide the design of sales incentive systems in practice. We also

address the limitations of our research and provide directions for future research.
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2. Case Study: Forecast Accuracy Incentives

at a Pharmaceutical Company

In order to address our research question of whether and how properly designed incentive sys-

tems can remedy systematic biases in sales forecasts, we conducted field research at a Western

European pharmaceutical company (hereinafter called PharmaCo), which ranks among the top

20 global players in the industry with net sales of over EUR 10 billion and more than 40,000

employees worldwide. We use this case study to motivate our research question and to contex-

tualize the theoretical and experimental research that we conduct. Our field research follows a

mixed methods design, combining both quantitative and qualitative methods of analysis (e.g.,

Yin, 2009; Johnson and Onwuegbuzie, 2004). Information was collected from 2009 to 2010. We

conducted 14 semi-structured interviews with representatives from different functional areas

in six different countries. We also participated in three workshops where representatives from

local sales organizations and global supply chain management functions discussed the matter

of forecast accuracy and the potential effects of incentive-based interventions. These field ob-

servations were complemented by information from a range of documents, such as standard

operating procedures, organization charts and internal survey data that the company made

available for the purpose of our research. In addition, we had access to a global database of

forecast and sales data, which we used for quantitative analyses.

We will next describe the organization, forecasting process and forecasting performance at

the company at the beginning of our field research (Section 2.1). We will then present the

setup (Section 2.2) and results (Section 2.3) of the pilot project.
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2.1. Initial Situation

Over the last decade, operational topics such as forecasting and planning processes have become

increasingly important in the pharmaceutical industry (e.g., Ebel et al., 2013). Since sales

margins used to be high and reputation risks immanent, high service levels had been the

major objective for many years. Meanwhile, however, increasing price pressure due to health

care reforms and declining research efficiency were forcing the industry to become more cost

competitive. This transition from a mainly sales-focused to a cost-conscious organization

enabled us to accompany the introduction of forecast accuracy incentives in a pilot project

at PharmaCo.

The product portfolio of PharmaCo was split into two segments. One segment consisted of

pharmaceutical products that a physician must prescribe to a patient (prescription medicines).

The other segment involved products that were sold through pharmacies without prescription

(consumer products). The market for prescription medicines was relatively stable. Except for

effects caused by product lifecycle-related variations (e.g., during the launch phase and when

a product loses its exclusivity) or exceptional disruptions, such as regulatory interventions, de-

mand was generally driven by well-predictable patient populations and the share of prescribing

doctors. The demand for consumer products was more volatile as it was subject to the listing

decisions of pharmacies and consumer preferences.

PharmaCo was organized into two types of business units: sales units and production units

(see Figure 2.1). Sales units had the primary purpose of marketing and selling products to

a local or regional market. Within a sales unit, products were assigned to individual prod-

uct managers, who were responsible for creating monthly demand forecasts for their products.

Production units produced active pharmaceutical ingredients, bulk ware or finished goods and

supplied the latter to the global network of sales units. PharmaCo planned and produced en-

tirely to stock. The organizational interface between both units were demand managers on the

part of the sales units and supply managers on the part of the production units. Demand man-

agers collected forecasts from local product managers, translated them into net requirements

and communicated these to the supply managers in the relevant production units. Supply man-
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agers aggregated the net requirements from all sales units and generated production plans.

Sales unit Production unit

Sales unit

Demand forecast

 Markets and 
sells products 
to a local or 
regional market

 Responsible for 
producing a 
monthly 
demand 
forecast

Product 
management

 Collects 
forecasts and 
manages 
inventories

 Responsible for 
providing a 
reliable net 
requirements 
plan

Demand 
management

 Collects and 
aggregates net 
requirements 
from sales units

 Responsible for 
planning 
production 
according to an 
agreed service 
level 

Supply 
management

 Produces 
according to 
production 
plans

 Responsible for 
producing and 
shipping 
finished 
products on 
time

Production and 
logistics

Net requirements Production plan

Finished product

Figure 2.1.: Simplified organization and planning process at PharmaCo

Sales forecasts were made three months in advance and were updated once a month. The

forecasts were discussed in monthly consensus meetings between product managers and demand

managers. While product managers prepared and presented the forecasts, demand managers

challenged the underlying assumptions. In case of disagreement, product managers had the

decision right.

The forecast performance at PharmaCo was measured by means of a forecast accuracy

metric. The forecast accuracy of a particular stock keeping unit (SKU) was measured as the

absolute relative deviation between the forecast and actual sales

FCAit = max

(
1−

∣∣∣∣ASit − FCitASit

∣∣∣∣ , 0) , (2.1)

where ASit were actual unit sales of SKU i in month t and FCit was the unit sales forecast

for SKU i in month t that had been made three months in advance. For an aggregate view

across multiple SKUs, PharmaCo used a non-weighted average of the individual values.
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As shown by the example in Figure 1.1, demand forecasts at PharmaCo were systematically

biased at the time of our investigation. The forecast accuracy differed considerably between

the sales units and individual product managers. Figure 2.2 shows that the average forecast

accuracy across all sales units was 67 % in prescription medicines and 58 % in consumer prod-

ucts in 2009. Comparing the average forecast accuracy to that of the top five sales units in

each segment indicated a considerable room for improvement.

Sequence of events

+7-19 pp

74-86%

Top FiveAverage

67%

Top Five

58%

Average

70-75%

+12-17 pp

Prescription medicines Consumer products

Jan 2008 Jan 2009 Jan 2010 Dec 2010

Announce-
ment

Implemen-
tation

July 2009July 2008

Pre-announcement
phase 

(12 months)

Planning 
phase

(6 months)

Post-implementation
phase

(12 months)

Figure 2.2.: Forecast accuracy at PharmaCo

The forecast bias was not tracked at PharmaCo at the time of our investigation. We measured

the bias as the share of inflated forecasts, i.e., forecasts that were greater than actual demand.

If forecasts are unbiased, the expected value of this measure is 50 %. Values above 50 %

indicate a tendency for overforecasting. Values below indicate a tendency for underforecasting.

At the beginning of our research, the average forecast bias across all sales units was 58 % in

both segments, prescription medicines and consumer products. A more fine-granular analysis

revealed that the forecast bias was significantly greater than 50 % in nearly half of all sales

units (Wilcoxon signed-rank test, p < 0.05).

An internal survey at PharmaCo revealed that half of the demand managers in the sales

units where not satisfied with the forecast accuracy. 70 % of them believed that the low fore-

cast accuracy was due to a lack of motivation and the wrong incentives. Only 30 % believed

that the poor performance was due to a lack of skills. Our interviews supported these re-

sults. Product managers prioritized their sales targets over a good forecast performance. The

forecast for a particular month was made three months in advance, often without taking into
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account marketing campaigns or other unusual demand patterns. Product managers took any

opportunity to increase sales, for example, by means of a marketing campaign, and relied on

sufficient safety stock to cover the peak.

“At the moment, we have a huge campaign on [product name]. I know the forecast

process is key, but at the end of the day I want to push sales and add to the bottom

line of the company – even if this hurts my forecast accuracy.”

(Product manager, consumer products, South American sales unit)

Demand managers reported that product managers often submitted overly optimistic forecasts

to ensure sufficient supply and safety stocks. To some extent, demand managers could react

to inflated forecasts by temporarily building up more inventory than planned. However, if the

forecast inflation was too high, they had to cancel orders, which in turn disrupted production

plans or led to excess stock at the plants.

“The only thing they [product managers] experience is running out of stock if the

forecast was too low. To overcome this problem, they report high forecasts. They

always plan with buffers in their forecasts. If the forecast accuracy is 70–80 %, we

can handle it, but sometimes it is much worse. In the end, we [demand managers]

have to cancel orders.”

(Demand manager, Eastern European sales unit)

Next to the low forecast accuracy, demand managers were especially frustrated by the lack of

effort and cooperation on the part of product management.

“For us, accurate forecasts are the basis of our job and we think it is the responsibility

of product managers to improve the forecast. But in the end, they seem to have

other objectives. Forecasting is not one of their priorities, even though it should be.

Sometimes they don’t come to the consensus meetings. There is always an excuse.”

(Demand manager, Western European sales unit)

Some demand managers even felt that they could develop a better forecast than product

managers.
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“I tell you one thing: We can do it much better than them [product managers]. We

have tracked this over the last months. Our forecasts were better than those made

by product managers. But the problem is, if we did the forecast, they would blame

every shortage of supply on us.”

(Demand manager, Western European sales unit)

While demand and supply managers were not allowed to modify the forecast, they would,

however, adapt the net requirements to avoid excessive stock and potential destruction due to

expired shelf life times.

“The forecast is a holy thing. We cannot change it. But if we mistrust the forecast,

we adjust the net requirements and the stocks together with the demand managers.”

(Head of supply management, Southern European production unit)

Overall, there seemed to be a lot of tension between the different functional areas. To un-

derstand this conflict of interest in more detail, we analyzed the incentive systems of product

managers and demand managers. Figure 2.3 depicts the share of different objectives in the

variable compensation (end-of-year bonus payment) of product managers and demand man-

agers in the European country where we conducted the pilot project. The incentive systems

of other countries were similar. Next to individual qualitative objectives (such as the comple-

tion of a certain project) and participation in the overall company profit, both divisions were

incentivized by a set of performance indicators that were related to their respective core func-

tions. The incentive system of product managers contained a bonus for revenues and market

shares, but did not contain any operational objectives, such as forecast quality. Demand man-

agers were incentivized to optimize stock levels, keep requirements plans stable and achieve

the agreed service levels. This clear division of objectives seemed to be one of the reasons be-

hind the silo mentality that we encountered in the interviews and the resulting unsatisfactory

forecast quality.

One idea to improve the collaboration between product and demand managers at PharmaCo

was to make product managers accountable for forecast accuracy by including corresponding
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Figure 2.3.: Incentive system at PharmaCo

objectives in their target agreements and linking them to their variable compensation. We will

next describe how this idea was tested in a local pilot project.

2.2. Introduction of Forecast Accuracy Incentives

The pilot project was implemented in a major European country that comprised both a sales

unit and a production unit. The head of product management and the heads of demand

and supply management were involved from the beginning of the project. Figure 2.4 shows

the timeline of the project. The initiative was announced in July 2009. In the following six

months, a project team developed a formal “inventory policy,” which explained the relationship

between inventories and service levels and highlighted the importance of accurate forecasts.

The policy defined how forecast accuracy was measured and that forecast accuracy targets

should be included in the incentive systems of product managers. To increase the acceptance

of the proposed changes in product management, the policy did not specify at which weight

or percentage to include forecast accuracy in the target agreements. This decision was left to

the heads of product management and their team leaders. In December 2009, all stakeholders

signed the inventory policy and it became effective in January 2010.

In response to the new policy, the incentive systems in product management were changed.

Figure 2.5 shows an example of the product management team of a major product group

in prescription medicines. The changes in the other product groups and in the segment of
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Sequence of events
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Figure 2.4.: Timeline of the pilot project

consumer products were similar. Compared to the previous situation (see Figure 2.3), the

share of qualitative objectives of product managers and their team leaders was reduced and a

forecast accuracy target was added with 6 % and 4 % weights respectively. The incentive system

of the head of product management did not change. Note, however, that the overall financial

impact of the forecast accuracy incentive was comparably low. For example, the variable

compensation of a product manager was 12 % of the total annual salary, which corresponds

approximately to one and a half months of salary. Of that part, only 6 % was linked to the

forecast accuracy target.
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Figure 2.5.: New incentive system of product management
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2.3. Results

Figures 2.6 and 2.7 show how the forecast accuracy and forecast bias developed in the pilot sales

unit. We analyze forecasts that were made in the 12 months before the project was announced

(Pre), forecasts that were made in the planning phase (Plan), and forecasts that were made

in the 12 months after implementation (Post). Note that the length of the pre-announcement

phase and post-implementation phase are comparable because they both cover a whole year.

The aggregate data of the planning phase must be interpreted with caution because it might

be distorted by seasonal effects.
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Figure 2.6.: Development of forecast accuracy in pilot sales unit

The average forecast accuracy was 71.0 % in prescription medicines and 55.2 % in consumer

products before the forecast incentive project was announced. In prescription medicines, the

forecast accuracy improved only by a small degree to a value of 72.2 % with the change in

incentives. The difference to the baseline value is weakly significant (Wilcoxon signed-rank

test, p = 0.059). A random effects generalized least squares (GLS) regression of the forecast

accuracy (FCA) on dummy variables of two out of three project phases (PLAN and POST )
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indicates a slightly greater improvement. We formulate the regression function as follows:

FCAit = Intercept + ηPLAN · PLANit + ηPOST · POSTit + vi + uit, (2.2)

where SKUs are indexed by i and months by t. The error term is split into a product-specific

part (vi ∼ N (0, σ2
v)) and a part that is independent across all observations (uit ∼ N (0, σ2

u)) to

account for the grouped structure of the data. Table 2.1 reports the results. Compared to the

pre-announcement phase, the forecast accuracy improved by 2.9 pp in the post-implementation

phase (z-test, p = 0.015). A possible reason for the limited improvement in forecast accuracy

could be an unexpected governmental decrease of reference prices in the post-implementation

phase. With the announcement of the price adjustment, wholesalers stopped buying until after

the price cut was effective. As a result, demand was shifted between the months of May and

June, which had a negative effect on the forecast accuracy in these two months. We repeat the

above regression, but exclude the data of May and June in both the pre-announcement and

the post-implementation phase. Table 2.1 shows that the forecast accuracy improved by 3.9 pp

after the introduction of the new incentive system and that this effect is highly significant

(z-test, p = 0.003).
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Table 2.1.: Estimation results of forecast accuracy by project phase

In consumer products, the forecast accuracy increased significantly from 55.2 % to 62.6 %

after the implementation of the new target agreements (Wilcoxon signed-rank test, p = 0.002).

This segment was not affected by the governmental intervention. Table 2.1 reports the results
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2. Case Study: Forecast Accuracy Incentives at a Pharmaceutical Company

of a random effect GLS regression as specified in Equation (2.2). The estimate for the increase

in forecast accuracy between the pre-announcement and post-implementation phase is 7.8 pp

and is highly significantly different from zero (z-test, p < 0.001).
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Figure 2.7.: Development of forecast bias in pilot sales unit

With respect to the forecast bias, the results are visible in both product segments (see Figure

2.7). The average forecast bias in the pre-announcement phase was 58.0 % in prescription

medicines and 68.6 % in consumer products. Both values were significantly greater than 50 %

(Wilcoxon signed-rank test, p < 0.004). After the new incentives were introduced, the bias

reduced to 52.6 % in prescription medicines and 55.4 % in consumer products. Both values are

significantly smaller than in the pre-announcement phase (Wilcoxon signed-rank test, p = 0.044

in prescription medicines and p < 0.001 in consumer products). This analysis is supported by

a random effects logistic regression of the forecast bias (BIAS) on dummy variables of two out

of three project phases (PLAN and POST ):

log

(
P (BIASit = 1)

1− P (BIASit = 1)

)
= Intercept + ηPLAN · PLANit + ηPOST · POSTit + vi, (2.3)
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2. Case Study: Forecast Accuracy Incentives at a Pharmaceutical Company

where SKUs are indexed by i and months by t. P (BIASit = 1) denotes the probability that the

forecast of product i is positively biased in month t. The error term vi captures product-specific

deviations (vi ∼ N (0, σ2
v)). Table 2.2 reports the estimated logarithmic odds from which we

can calculate the probability for a positive bias by project phase. In prescription medicines,

the probability of a positive bias was 58.5 % in the pre-announcement phase, which reduced

to 48.2 % in the planning phase (z-test, p = 0.002) and to 52.1 % in the post-implementation

phase (z-test, p = 0.017). The estimates of the reduced dataset excluding the months of May

and June are similar. In consumer products, the probability of a positive bias was 69.6 % in the

pre-announcement phase, which reduced to 61.3 % in the planning phase (z-test, p = 0.016)

and to 55.6 % in the post-implementation phase (z-test, p < 0.001). Hence, even though the

forecast bias was not explicitly incentivized, it was significantly reduced as a result of the

forecast accuracy incentives.
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Table 2.2.: Estimation results of forecast bias by project phase

As the above analyses show, the introduction of forecast accuracy incentives in the pilot

country led to improvements in both forecast accuracy and forecast bias. Even though the

monetary incentive was comparably small, not only the quality of the forecasts but also the

overall awareness for the importance of good forecasts increased, as interviews of the post-

implementation phase revealed.

“The weight [on the forecast accuracy target] is still too low. However, for the

break-through moment it was good. For the first time, product managers are con-
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2. Case Study: Forecast Accuracy Incentives at a Pharmaceutical Company

cerned about the quality of their forecasts. We can see that the forecast accuracy is

improving.”

(Head of supply management, pilot country)

“The most important point was to include forecast accuracy in the objectives of

product managers. This showed that it matters.”

(Team leader product management, prescription medicines, pilot country)

In addition, it was made clear that the possibilities for incentivizing forecast accuracy would

always be limited due to the importance of other targets in the incentive systems of product

managers.

“You can never put a lot of weight on forecast accuracy in the variable compensation

of product managers. Their task is to manage a brand, so there will never be a large

bonus payment linked to the forecast accuracy target. But the crucial factor is that

they now have to discuss their achievements with their boss and nobody likes to

present an objective that he did not meet.”

(Head of product management, prescription medicines, pilot country)

The case example illustrates that incentives for forecast accuracy can have a positive effect

on the quality of demand forecasts, even if the monetary impact is comparably small. We

could witness an improvement in forecast accuracy and a reduction in forecast bias. However,

the forecast accuracy is still not at target level and there is still some systematic bias in the

forecasts. Furthermore, there are uncontrollable factors in a single-case field study, which could

have affected the above results. We take the example of PharmaCo therefore as an inspiration

to approach the problem by formal model building and controlled laboratory experiments

in order to increase the reliability of the conclusions. We will next translate the information

exchange between product management and demand management into a game-theoretic model

(Chapter 3) and test it in a series of experiments (Chapter 4).
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3. Game-Theoretic Model

3.1. Model Development

We consider a company where Sales is responsible for demand forecasting and Operations is

responsible for ordering. Sales has better information about the market demand than Opera-

tions and provides a demand forecast to Operations. Based on the demand forecast, Operations

decides on the order quantity. We will next describe the demand model and sequence of events

in detail (Section 3.1.1), derive the utility functions of Sales (Section 3.1.2) and Operations

(Section 3.1.3), and consider the perspective of the company (Section 3.1.4).

3.1.1. Demand Model and Sequence of Events

The demand of the product D = Φ +E is stochastic and consists of two components, a market

condition Φ and a symmetric market uncertainty E with mean zero. Sales and Operations both

know the distributions of Φ and E, but only Sales knows the realization of the market condition

φ. The distribution function of the market condition Φ is F (·) and the density function is f(·).

The distribution function of the market uncertainty E is G(·) and the density function is g(·).

The distribution function of demand is the convolution of the market condition and market

uncertainty, i.e., H(·) = F (·) ◦ G(·). All distribution functions are continuous, continuously

differentiable, and supported on R.

The sequence of events is as follows (see Figure 3.1): First, nature draws a realization of the

market condition φ. Sales observes the market condition φ and sends a nonbinding demand

forecast φ̂ to Operations. Operations receives the forecast φ̂, updates the belief about the

distribution of the market condition Φ, and orders quantity q. Then, nature draws a realization
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3. Game-Theoretic Model

of the market error ε. If the demand d = φ + ε is less than or equal to the order quantity q,

all demand is filled and q− d units are left over (overage quantity). If the demand d is greater

than the order quantity q, q units of the demand are filled and d − q units cannot be filled

(underage quantity). Finally, Sales and Operations receive their compensations.

Sequence of events

Draws
market
condition

Observes
market 
condition

Chooses
forecast

Receives
forecast

Updates 
belief 

Chooses
order 
quantity

Draws
market
error

Receives
compen-
sation

Actor Sequence of events

Nature

Sales

Operations

Receives
compen-
sation

Figure 3.1.: Sequence of events

3.1.2. Utility of Sales

Expected payoff function.

The incentive system of Sales consists of a fixed compensation, a sales bonus, and a forecast

error penalty. The fixed compensation is denoted by CS > 0 and is independent of sales and

demand forecasts. The sales bonus is proportional to the number of units sold and Sales receives

a unit sales bonus of b > 0. The forecast error penalty is proportional to the deviation of the

demand forecast φ̂ from the demand realization d. For each unit that the demand forecast φ̂

exceeds the demand realization d, a unit overforecasting penalty of po ≥ 0 is subtracted from

the compensation. For each unit that it falls below the realized demand, a unit underforecasting

penalty of pu ≥ 0 is subtracted. Given market condition φ, the expected payoff of Sales is

ΠS(q, φ̂ | φ) = CS + bEEmin(φ+ E, q)− EE
(
po[φ̂− (φ+ E)]+ + pu[(φ+ E)− φ̂]+

)
. (3.1)
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3. Game-Theoretic Model

The behavioral OM literature has identified various behavioral factors that affect decision

makers’ utilities. We next present a model that uses two behavioral factors to address important

individual and social preferences and, as we will see, that can explain and predict actual

forecasting and ordering behavior quite well. There are other behavioral aspects that could be

relevant in our setting, some of which can be captured by the factors that we use and others

that require modifications or extensions of the model. We postpone this discussion to Section

5.1.

Forecast error penalty factor.

An expected-payoff-maximizing decision maker is indifferent to the values of the individual

components of the compensation and bases decisions on the total expected payoff (Equation

3.1). However, actual decision makers do not necessarily base decisions on total expected pay-

offs, but might form mental accounts and evaluate elementary outcomes or sets of elementary

outcomes (Thaler, 1985, 1999; Kőszegi and Rabin, 2006). If elementary outcomes are segre-

gated, a value is assigned to each elementary outcome and the evaluation of the total outcome

is based on the sum of the values of the elementary outcomes. If elementary outcomes are in-

tegrated, the sum of the elementary outcomes (i.e., the total payoff) is valued. The concept of

mental accounting has proven to be a powerful tool to explain human behavior in OM decisions

(e.g., Ho and Zhang, 2008; Katok and Wu, 2009; Becker-Peth et al., 2013).

Thaler (1985, 1999) uses the value function of prospect theory (Kahneman and Tversky,

1979) to model the evaluation of outcomes. The function assigns value v(x) to an (elementary

or aggregate) outcome x relative to a reference point, where positive and negative deviations

from this reference point have different values. In particular, prospect theory establishes that

“losses loom larger than gains” (Kahneman and Tversky, 1979, p. 279). The disutility that a

subject experiences from losing is greater than the utility experienced from gaining the same

amount. The nontrivial issue in reference-dependent utility models is defining the reference

point. While some researchers use the status quo, i.e., the endowment at the time of making

a decision (e.g., Kahneman et al., 1990), others suggest that reference points are based on
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expectations (Kőszegi and Rabin, 2006), goals (Heath et al., 1999) or other salient pieces of

information (Ockenfels et al., 2015).

For our incentive system of Sales, the elementary outcomes are the fixed compensation,

sales bonus, and forecast error penalties. Whether elementary outcomes are segregated or

integrated in the evaluation process depends on the situation and the frame of the decision

problem (Thaler, 1985). Because theory does not provide clear guidance on how people eval-

uate outcomes in a setting like ours, we conducted a pre-experiment with 48 students at the

University of Cologne using Thaler’s (1985) “who is happier?” approach.

Pre-Experiment Mr. A and Mr. B work for the sales division of a company. At the

beginning of each month, Mr. A and Mr. B must provide a demand forecast for the following

month. At the end of the month, they both receive a fixed compensation and a performance-

based compensation. Last month, Mr. A provided a demand forecast of 1,500 units, demand

was 1,000 units, and 1,000 units were sold. He receives a sales bonus of EUR 100 for the

quantity sold in addition to his regular salary. Mr. B also provided a demand forecast of 1,500

units, demand was 1,000 units, and 1,000 units were sold. He receives a sales bonus of EUR

150 for the quantity sold, minus a penalty of EUR 50 for the deviation between the demand

forecast and actual demand, i.e., Mr. B also receives EUR 100 in addition to his regular salary.

Who is happier? Mr. A (40), Mr. B (1), no difference (7).

Although the total payoffs of Mr. A and Mr. B are the same, 83 % of subjects believe that

Mr. A, who receives only a sales bonus, is happier than Mr. B, who receives both a sales

bonus and a penalty for the forecast error. The result of the pre-experiment is in line with

mental accounting practices where elementary outcomes are segregated, losses are weighted

more heavily than gains and the reference point is zero.

In the more complex incentive system of Sales that we use in our model, Sales might form

different kinds of (expectations-based) reference points. For example, Sales might compare the

forecast decision with alternative possible forecast decisions that result in reference forecast

error penalties. We discuss such alternative reference points in Section 5.1.2 and proceed with

a reference point of zero. We operationalize this reference point using the linear version of the
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value function, v(x) = [x]+ − γ[−x]+, γ ≥ 1, which we apply to the elementary outcomes of

the payoff function (Equation 3.1).

Note that the forecast error-related part of the decision problem of Sales is similar in struc-

ture to the order decision of a newsvendor. One of the biases that has been identified in

newsvendor-type situations is ex-post inventory error minimization, which is proposed as an

explanation for pull-to-center ordering behavior (Schweitzer and Cachon, 2000; Ho et al., 2010;

Kremer et al., 2014). The underlying rationale is that subjects experience a negative utility for

each unit that the order quantity deviates from realized demand. An analogous pattern might

exist for over- and underforecasting. In addition to the monetary forecast error penalties, hu-

man decision makers could feel a negative utility for each unit that the forecast deviates from

realized demand. Following the approach of Schweitzer and Cachon (2000), we could add a

term −ω
∣∣∣φ̂− (φ+ E)

∣∣∣ to the payoff function of Sales, where ω is a psychological cost param-

eter for over- and underforecasting, which would increase the unit over- and underforecasting

penalty factors po and pu to po + ω and pu + ω. In our model, we multiply the unit over-

and underforecasting penalty factors po and pu by γ, which has a similar effect as adding ω to

them.

An important difference between the sales bonus payoff stream and the payoffs resulting

from forecast error penalties is not captured by our pre-experiment. This difference goes back

to the findings of Ellsberg (1961), who distinguishes between risk (i.e., uncertainty that can be

represented by measurable probabilities) and ambiguity (i.e., uncertainty with unknown prob-

abilities). For any choice of forecast, Sales can quantify the risk of over- and underforecasting

because the probability distribution of the market error E and hence the probability distribu-

tion of the forecast error are known. With respect to the sales bonus, however, the outcome

depends not only on the distribution of E but is also determined by the decision of Operations.

Since the order decision of Operations is subject to individual beliefs, preferences and biases,

the sales bonus is subject to ambiguity. There exists a large body of theoretical models and

experimental evidence, which shows that most people are ambiguity averse (for a review, see

Camerer and Weber, 1992). The literature suggests that ambiguity aversion is prevalent in

strategic games, where the ambiguity aversion relates to preferences and payoffs, and hence
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the actions of the opponent player (Pulford and Colman, 2007; Eichberger et al., 2008; Kelsey

and le Roux, 2015). Ambiguity aversion can influence decision making in our setting. A higher

valuation of risky payoffs from forecast error penalties compared to ambiguous payoffs from

sales bonus payments would be reflected in a higher behavioral parameter γ.

The discussion indicates that there are multiple theories that suggest a stronger relative

effect of forecast error penalties on the utility of Sales compared to sales bonuses. We do not

differentiate between the individual psychological drivers but rather quantify their combined

effect in the forecast error penalty factor γ.

Lying aversion factor.

Human decisions are affected by concerns about the well-being of others (e.g., Rabin, 1998; Fehr

and Falk, 2002; Cooper and Kagel, 2016). Particularly relevant for our setting is the insight that

people are more trustworthy than standard theory suggests because they experience a disutility

when lying to others (Gneezy, 2005; Charness and Dufwenberg, 2006; Vanberg, 2008; Lundquist

et al., 2009; Hurkens and Kartik, 2009; Erat and Gneezy, 2012; Gneezy et al., 2013; López-

Pérez and Spiegelman, 2013). There has been extensive discussion in the economics literature

about whether and how lying aversion can be distinguished from other social preferences, such

as fairness and inequity aversion (e.g., Gneezy, 2005) as well as analyses of the underlying

motives for this behavior, such as altruism, guilt aversion or belief-dependent lying aversion

(e.g., López-Pérez and Spiegelman, 2013). Engaging in these discussions is beyond the scope

of this thesis. Instead, we build on the robust finding that people tend to be more honest in

social interactions than standard theory suggests, even in one-shot interactions like the one

that we consider, where being trustworthy does not “pay” monetarily (Ashraf et al., 2006,

p. 194). This phenomenon has also been observed in supply chain settings, where one party

shares private information that another party needs to make a decision (e.g., Özer et al., 2011,

2014; Inderfurth et al., 2013; Beer et al., 2017). To capture the disutility of lying in our setup,

we follow the modeling approach of Özer et al. (2011) and include the term −β
∣∣∣φ̂− φ∣∣∣ in the

utility function of Sales. We refer to the factor β ≥ 0 as the lying aversion factor.
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Utility function.

With the above three components, we obtain the utility function of Sales:

US(q, φ̂ | φ) = CS+bEEmin(φ+E, q)−γEE
(
po[φ̂− (φ+ E)]+ + pu[(φ+ E)− φ̂]+

)
−β

∣∣∣φ̂− φ∣∣∣ .
(3.2)

We refer to the model with γ = 1 and β = 0 as the standard model and to models with γ > 1

or β > 0 as behavioral models.

In contrast to other models in the literature on sales force incentives (e.g., Albers, 1996), we

have not included an effort parameter in the utility function of Sales for two reasons. First,

in many industry contexts (including the example of PharmaCo in Chapter 2), demand is

comparably stable and can be influenced by means of sales and marketing efforts only in the

long term, whereas production and supply planning is done on a shorter time horizon. Our

model therefore reflects a scenario where Sales has already invested time and effort to shape

demand before the operational forecast is created. Second, our focus is on how behavioral

factors influence the reaction of Sales to different forecast incentive schemes. To separate these

effects from others, we focus on the trade-off between sales volume and forecast accuracy.

Incentive systems.

We consider three types of incentive systems for Sales. All incentive systems use the fixed

compensation CS and the unit sales bonus b, but differ in how they penalize forecast errors.

In a sales-bonus-only incentive system, forecast errors are not penalized (po = pu = 0). This

incentive system corresponds to the initial incentive system at PharmaCo and the one analyzed

by Özer et al. (2011). In an absolute forecast error incentive system, the absolute deviation

between demand and forecast is penalized, i.e., over- and underforecasting are penalized at

equal rates (po = pu > 0). Such incentive systems are frequently used in practice (e.g., Reese,

2001; Dershem, 2007; McKenzie, 2011). Even though PharmaCo used a forecast accuracy

measure instead of a forecast error measure, the new incentive system at the pilot sales unit was

similar to an absolute forecast error incentive system because over- and underforecasting were

also penalized at equal rates. In a differentiated forecast error incentive system, overforecasting
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is penalized more heavily than underforecasting (po > pu). Even though this approach has

been suggested in the literature (Gonik, 1978; Mantrala and Raman, 1990; Celikbas et al.,

1999; Chen, 2005; Chen et al., 2016), such incentive systems do not seem to be used in practice

except in rare cases (e.g., Gonik, 1978; Turner et al., 2007). However, as we will see, they can be

more effective and efficient than the other incentive systems to incentivize truthful information

sharing.

3.1.3. Utility of Operations

The incentive system of Operations consists of a fixed compensation and penalties for unfilled

demand and leftovers. The fixed compensation of the incentive system is CO > 0. The penalty

for unfilled demand is proportional to the demand that cannot be filled. For each unit that the

demand d exceeds the order quantity q, a unit underage cost of cu > 0 is subtracted from the

payoff. The penalty for leftovers is proportional to the number of units that are left over after

demand has been filled. For each unit that the order quantity q exceeds the demand d, a unit

overage cost of co > 0 is subtracted from the payoff. Following similar arguments as for the

development of the expected utility function of Sales (see also Schweitzer and Cachon, 2000),

we multiply the expected overage and underage penalties by the behavioral factor γO ≥ 1 and

obtain the following expected utility function of Operations:

UO(q) = CO − γOED
(
co[q −D]+ + cu[D − q]+

)
. (3.3)

If Operations knew the actual market condition φ, the only uncertainty would be the market

uncertainty E and the optimal order quantity would be

qFB(φ) = φ+G−1(α), (3.4)

where α = cu/(cu + co) is the critical ratio of Operations. We refer to qFB(φ) as the first-best

order quantity. Note that this quantity (as well as all other equilibrium order quantities that

we will analyze later) is independent of γO.
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3.1.4. Company Perspective

While our primary objective is to design incentive systems for truthful forecast information

sharing, we next discuss the conditions under which such incentive systems also maximize the

expected profit of the company. The unit profit margin is m and the unit overage and underage

cost of the company are cCo and cCu , respectively. Taking into account that the company has

to pay Sales and Operations their fixed and variable compensations, the expected profit of the

company is

ΠC(q, φ̂) =mED(D)− cCo ED[q −D]+ − cCu ED[D − q]+

−
(
CS + bEDmin(D, q)− ED

(
po[φ̂−D]+ + pu[D − φ̂]+

))
−
(
CO − ED

(
co[q −D]+ + cu[D − q]+

))
.

(3.5)

We consider situations where the unit overage and underage costs of Operations are aligned

with the objectives of the company (co = κcCo and cu = κcCu with factor κ > 0) such that the

expected-utility-maximizing solution of Operations qFB maximizes the expected profit of the

company.

The company faces a principal-agent problem, where the agents (Sales and Operations) might

have participation constraints or reservation utilities, such as those resulting from outside op-

tions (e.g., Prendergast, 1999). Let rS and rO denote these reservation utilities. The principal’s

(company’s) objective is to design an incentive system that maximizes the principal’s expected

profit ΠC while meeting the agents’ participation constraints (US ≥ rS and UO ≥ rO).

If we neglect the behavioral factors in the utility functions of Sales and Operations (standard

model), payoffs could be allocated arbitrarily between the company, Sales, and Operations. The

company could maximize its expected profit by calibrating the incentive system such that the

participation constraints are binding (US = rS and UO = rO). It could change the incentive

parameters b, po, pu, co and cu to incentivize first-best order quantities and adapt the fixed

compensations CS and CO to meet the participation constraints. The optimal profit of the

company would be ΠC(qFB) = mED(D)− cCo ED[qFB −D]+ − cCu ED[D − qFB]+ − rS − rO.

When taking the behavioral factors into account, the valuation of the variable compensation
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elements is different for Sales and Operations than for the company. In that case, incentiviz-

ing first-best order quantities is not necessarily optimal for the company. To illustrate this,

suppose that the participation constraints of Sales and Operations are binding for a given

incentive system that leads to non-first-best order quantities. Suppose further that increasing

the unit forecast error penalties of Sales leads to a change in forecasting behavior that allows

Operations to make a first-best order decision. This change in incentives changes the expected

variable compensation of Sales by ∆ΠS and increases the expected variable compensation of

Operations by ∆ΠO and the expected operational profit of the company by ∆ΠC . In order

to keep the participation constraints satisfied and binding, the company must adapt the fixed

compensations of Sales and Operations, i.e., it must change the fixed compensation of Sales

CS by −γ∆ΠS and decrease the fixed compensation of Operations CO by −γO∆ΠO. Hence,

changing from a non-first-best to a first-best incentive system increases the company’s expected

profit only if the expected increase in the company’s profit ∆ΠC exceeds the additional cost

of the incentive system, i.e., if ∆ΠC > (∆ΠS − γ∆ΠS) + (∆ΠO − γO∆ΠO). To determine

whether implementing such an incentive system is beneficial for the company, one would have

to compute the expected profit of the current and the first-best solution and analyze whether

the inequality is satisfied.

The inequality holds if the changes in the compensations of Sales and Operations are much

smaller than the change in the profit of the company. We consider such situations, and require

that the overage and underage costs of the company (cCo and cCu ) be considerably higher

than the variable incentive parameters (b, po, pu, co, cu). This assumption seems reasonable for

real applications. However, if it does not hold, incentivizing first-best order quantities is not

necessarily optimal from a company perspective.

In Section 3.2.2, we will show that different parameterizations of the incentive system of Sales

result in first-best order quantities. Under some parameterizations, Sales distorts the demand

forecast, but Operations is aware of this distortion and corrects the forecast to determine the

actual market condition. Under other parameterizations, Sales reports the demand forecast

truthfully and Operations can rely on the forecast without corrections. We are interested in

identifying incentive systems where the latter case applies, i.e., where forecast information is

32



3. Game-Theoretic Model

shared truthfully. Such incentive systems are appealing because the sales forecast is often

communicated and used beyond the organizational boundaries of Sales and Operations, where

people might not be aware of the distortion and correction activities. If forecasts are truthful,

they can be used by other departments for planning purposes without causing further biases.

This aspect is not included in the utility and cost functions of our model, but it implies that

an incentive system with first-best order quantities and truthful demand forecasts should be

preferred over one with distorted forecasts.

3.2. Model Analysis

The setting that we consider is a two-stage dynamic game with incomplete information, where

all the parameter values are common knowledge except for the realization of the market con-

dition φ. Because the informed player (Sales) moves first (by sending a demand forecast), our

setting corresponds to a signaling game. We next describe the equilibrium concept that we use

(Section 3.2.1) and then analyze the separating equilibria of the game (Section 3.2.2).

3.2.1. Equilibrium Concept

To solve the signaling game that we consider, we use the concept of perfect Bayesian equilibrium

(PBE) (for a formal definition, see Fudenberg and Tirole, 1991, pp. 324-326). This equilibrium

concept has previously been employed in a similar context by Özer et al. (2011). In such an

equilibrium, Sales chooses a demand forecast that maximizes the expected utility of Sales and

takes into account the response strategy of Operations. Operations updates the belief about

the market condition based on Bayes’ rule whenever possible and chooses the order quantity

that maximizes the expected utility of Operations, taking into account the (updated) belief of

the market condition.

Let σS be a signaling strategy of Sales, where σS(φ̂ | φ) denotes the probability that Sales

chooses forecast φ̂ given a market condition φ
(∫

φ̂ σS(φ̂ | φ) = 1
)

. Let µ be a belief system of

Operations, where µ(φ | φ̂) represents the belief that the market condition is φ given a demand
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forecast φ̂. Finally, let σO be an ordering strategy of Operations, where σO(q | φ̂) denotes the

probability that Operations chooses quantity q in response to a forecast φ̂
(∫

q σO(q | φ̂) = 1
)

.

A PBE is a set of strategies σS and σO and posterior belief system µ that satisfy the following

conditions:

(i) For all φ, φ̂: σS(φ̂ | φ) > 0 if

∫
q
σO(q | φ̂)US(q, φ̂ | φ)dq

= max
φ̂′∈R

∫
q
σO(q | φ̂′)US(q, φ̂′ | φ)dq,

(ii) for all q, φ̂: σO(q | φ̂) > 0 if

∫
φ
µ(φ | φ̂)UO(q | φ)dφ = max

q′∈R

∫
φ
µ(φ | φ̂)UO(q′ | φ)dφ,

(iii) for all φ, φ̂: µ(φ | φ̂) =
f(φ)σS(φ̂ | φ)∫

φ′∈R f(φ′)σS(φ̂ | φ′)dφ′
if

∫
φ′∈R

f(φ′)σS(φ̂ | φ′)dφ′ > 0,

otherwise, µ is any probability distribution on R.

Condition (i) states that Sales chooses a demand forecast with positive probability if it

maximizes the expected utility of Sales, taking into account the response strategy of Operations.

Condition (ii) ensures that for any demand forecast sent by Sales, Operations chooses an order

quantity that maximizes the expected utility of Operations, taking into account the (updated)

belief of the market condition. Condition (iii) states that Operations updates the belief about

the market condition based on Bayes’ rule whenever possible.

In the remainder of this thesis, we restrict our analyses to differentiable signaling strategies

(see the discussion in Mailath and von Thadden, 2013). To be more precise, we assume

that signaling strategies are continuous everywhere and differentiable everywhere except for

a countable number of points. For example, we expect that differentiability does not hold at

points where behavior switches from overforecasting to underforecasting or vice versa since the

utility function of Sales is not differentiable at such points.

Various types of equilibria can exist for the signaling game that we analyze (e.g., Sobel, 2009).

In a pooling equilibrium, the demand forecast is uninformative about the market condition

and Operations does not gain any insights beyond the prior belief. In a partially separating

equilibrium, Sales sends with positive probability the same demand forecast for some, but not
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all market conditions, such that Operations can update the prior belief based on the demand

forecast, but cannot distinguish market conditions with certainty. In a separating equilibrium,

Sales sends different demand forecasts for each market condition, which allow Operations to

infer the market condition with certainty. As laid out in Section 3.1.4, it is in the interest of the

company to enable first-best order quantities. Therefore, our focus is on separating equilibria,

where the signaling strategy of Sales is invertible, such that Operations can infer the true

market condition from the demand forecast. In such an equilibrium, the utility function of

Operations UO is strictly concave in the order quantity q and the associated optimal order

quantity is unique (see Proof of Theorem 1 in Appendix A.1). Since the utility function of

Sales US is strictly concave in φ̂ for a given q(φ̂), we can limit our attention to pure strategies

of Sales.

We define a separating PBE as the set of an invertible signaling function s∗, a response

function q∗, and posterior belief system µ∗(φ | φ̂) that satisfy the following conditions:

(i) For all φ: s∗(φ) ∈ argmax
φ̂

(
US(q∗(φ̂), φ̂ | φ)

)
,

(ii) for all φ̂: q∗(φ̂) ∈ argmax
q

(∫
φ
µ∗(φ | φ̂)UO(q | φ)dφ

)
,

(iii) for all φ, φ̂: µ∗(φ | φ̂) =


1 for φ̂ = s∗(φ),

0 otherwise.

A special case of separating equilibrium is a truth-telling separating equilibrium, where (i)

Sales communicates a truthful demand forecast (s∗(φ) = φ), (ii) Operations determines the

expected-utility-maximizing order quantity based on this demand forecast (q∗(φ̂) = φ̂+G−1(α))

and (iii) Operations believes that Sales reports the market condition truthfully (µ∗(φ | φ̂) = 1,

if φ = φ̂ and 0 otherwise). As discussed in Section 3.1.4, we will place particular emphasis on

the analysis of incentive systems that result in truth-telling separating equilibria.
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3.2.2. Analysis of Equilibria

The following theorem describes the conditions under which a Pareto-dominant separating

equilibrium exists. In a Pareto-dominant equilibrium, all the players are at least as well off

as in all the other equilibria and at least one (but not necessarily always the same) player

is strictly better off relative to each of the other equilibria. This definition implies that if a

Pareto-dominant equilibrium exists, it is unique. Since a Pareto-dominant equilibrium is a

focal equilibrium, we cannot be sure but have reason to believe that players coordinate on

this equilibrium (Stamland, 1999; Wang, 2006; Hyndman et al., 2013). All proofs are given in

Appendix A.1.

Theorem 1. If po > (b(1− α)− β)/γ, there exists a Pareto-dominant separating equilibrium

(ssep, qsep, µsep):

(i) For all φ: ssep(φ) = φ+ δsep,

(ii) for all φ̂: qsep(φ̂) = φ̂− δsep +G−1(α),

(iii) for all φ, φ̂: µsep(φ | φ̂) =


1 for φ = φ̂− δsep,

0 otherwise,

with distortion value

δsep =


G−1

(
b(1−α)+γpu−β

γ(pu+po)

)
for po − pu < 2 b(1−α)−β

γ ,

0 for 2 b(1−α)−β
γ ≤ po − pu ≤ 2 b(1−α)+β

γ ,

G−1
(
b(1−α)+γpu+β

γ(pu+po)

)
for po − pu > 2 b(1−α)+β

γ .

(3.6)

Otherwise, if po ≤ (b(1− α)− β)/γ, there exists no separating equilibrium.

An important implication of Theorem 1 is that the demand forecast is distorted by a dis-

tortion value δsep that is independent of the market condition φ. Equation (3.6) distinguishes

three cases that depend on the difference between the unit over- and underforecasting penalty.

In the first case, the difference is small and Sales inflates the demand forecast (δsep > 0).

In the second case, the difference is medium and Sales provides a truthful demand forecast
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(δsep = 0). In the third case, the difference is large and Sales deflates the demand forecast

(δsep < 0). In all cases, Operations anticipates the demand forecast distortion of Sales and cor-

rects the forecast such that the order decision is based on the true market condition and hence

qsep = qFB. Since our focus is on truthful forecast information sharing, we are particularly

interested in finding incentive systems that fulfill the condition of the second case. Note that

this condition can be achieved by many different incentive systems. For a given sales bonus

b, for example, all differentiated forecast error incentive systems with po − pu = 2b(1 − α)/γ

lead to truthful information sharing independently of the behavioral parameter β. For β > 0,

truthful information sharing can even be achieved by a range of differences po − pu.

In the proof of Theorem 1, we show that this equilibrium Pareto dominates all other sep-

arating equilibria. In particular, we show that if any other separating equilibrium exists, it

must be based on a signaling strategy s that results in forecasts s(φ) ≥ ssep(φ) for all φ ∈ R

with strict inequality for all φ in some interval I ⊆ R.

We also show that Sales has a unique preferred forecasting strategy spref (φ) = φ + δpref

with distortion value

δpref =


G−1

(
γpu−β
γ(pu+po)

)
for po − pu < −2β

γ ,

0 for −2β
γ ≤ po − pu ≤

2β
γ ,

G−1
(

γpu+β
γ(pu+po)

)
for po − pu > 2β

γ ,

(3.7)

that maximizes the forecast-dependent part of Sales’ utility function

UFCS (φ̂ | φ) = −γEE
(
po[φ̂− (φ+ E)]+ + pu[(φ+ E)− φ̂]+

)
− β

∣∣∣φ̂− φ∣∣∣ . (3.8)

Comparing Equations (3.6) and (3.7), it is straightforward to see that for any market con-

dition φ the equilibrium forecast ssep(φ) is weakly higher than the preferred forecast spref (φ).

Strict concavity and unimodality of UFCS further imply that sending signal ssep(φ) is also

weakly more costly for Sales than sending signal spref (φ). We only have δsep = δpref (and

hence minimal expected signaling costs in equilibrium) if 2(b(1−α)− β)/γ ≤ po − pu ≤ 2β/γ,

i.e., if δsep = δpref = 0. This requires a sufficiently large lying aversion of β ≥ b(1−α). Hence,
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even though the equilibrium of Theorem 1 Pareto dominates all other separating equilibria,

coordination between the two parties is always costly for Sales if the lying aversion is small.

The necessary condition for the existence of a separating equilibrium is for the unit overfore-

casting penalty po to be above the threshold cost p̄ = (b(1−α)−β)/γ, which can be rewritten

as b(1−α) < γpo+β. The left-hand side of the inequality is ∂US/∂q evaluated at q = qFB(φ).

The right-hand side is the limit of −∂US/∂φ̂ as φ̂ goes to infinity. Hence, for any Sales type φ

in a separating equilibrium, we require the incremental gain from an order quantity q that is

greater than the equilibrium order quantity qFB(φ) to be strictly smaller than the maximum

incremental cost of sending a signal φ̂ > ssep(φ). If this condition holds for the standard model

(γ = 1 and β = 0), it also holds for all other values γ > 1 and β > 0, which leads to the

following corollary:

Corollary 1. If a separating equilibrium exists for the standard model, there exists a separating

equilibrium for the behavioral model.

If the lying aversion is large compared to the unit sales bonus (β ≥ b(1− α)), the condition

po > p̄ holds for all overforecasting penalties po ≥ 0. Then, the disutility of lying associated

with each unit of forecast inflation (−β) exceeds the expected gain (b(1 − α)) independently

of the forecast error incentives. For smaller values of the lying aversion factor (β < b(1− α)),

only forecast error incentive systems with po > 0 can fulfill the necessary condition for the

existence of an equilibrium according to Theorem 1. The case distinctions for δsep further

imply that absolute forecast error incentive systems lead to inflated forecasts in equilibrium,

while differentiated forecast error incentive systems can be parameterized such that a truth-

telling equilibrium exists. We summarize the different characteristics of the incentive systems

in the following corollary:

Corollary 2. For a sufficiently small lying aversion (β < b(1 − α)), the following properties

hold:

(a) Sales-bonus-only incentive systems do not result in a separating equilibrium.
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(b) Absolute forecast error incentive systems can be parameterized such that a separating

equilibrium exists, but the demand forecasts are always inflated (δsep > 0). The equilibrium

forecast inflation δsep approaches zero as po = pu go to infinity.

(c) Differentiated forecast error incentive systems can be parameterized such that a truthful

separating equilibrium exists (δsep = 0).

Theorem 1 also implies that differentiated forecast error incentive systems can achieve any

level of forecast distortion more economically than absolute forecast error incentive systems,

which results in the following corollary:

Corollary 3. For every absolute forecast error incentive system with equilibrium forecast dis-

tortion δsep, there exists a differentiated forecast error incentive system with the same equilib-

rium forecast distortion δsep with lower unit forecast error penalties po and pu, and hence with

a lower expected forecast error cost for Sales.

Our theoretical analyses provide insights into the expected effects of the incentive system on

the forecast decisions of Sales and the order decisions of Operations. In the next section, we

derive hypotheses about the expected behavior.

3.3. Hypotheses

In the development of our model, we included two behavioral factors: a forecast error penalty

factor γ and a lying aversion factor β. We argued that loss aversion and other behavioral biases

lead to a forecast error penalty factor γ that is greater than one. The disutility that people

experience from reporting information untruthfully suggests that the lying aversion factor β

is greater than zero, which is also what Özer et al. (2011) find in their experiments. If our

modeling assumptions hold and a separating equilibrium exists (po > p̄ = (b(1 − α) − β)/γ),

a model with γ > 1 and β > 0 explains the actual forecasts of Sales and order decisions

of Operations better than a model with γ = 1 and β = 0, which is stated in the following

hypothesis:

Hypothesis 1. For incentive systems with po > p̄,
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(a) a forecast error penalty factor γ that is greater than one, and

(b) a lying aversion factor β that is greater than zero

explain actual behavior better than the standard model with γ = 1 and β = 0.

Hypothesis 1 allows us to test whether differences between actual behavior and the standard

model predictions can be explained by the behavioral parameters and their underlying theories.

We cannot state the values of the expected forecast distortions and corrections because they

depend on the values of γ and β, which we do not know. However, for the special case of the

standard model, we know that the equilibrium forecast distortion is

δsepstd = G−1

(
b (1− α) + pu

pu + po

)
. (3.9)

Comparing Equations (3.6) and (3.9), one can observe that forecasts in a behavioral model

exhibit a directional shift from the standard model solution towards the market condition (effect

of β) and a general shift downwards (effect of γ). If the standard model predicts overforecasting

(po−pu < 2b(1−α)), the behavioral model predicts strictly smaller, and possibly even negative,

forecast distortions. If the standard model predicts truthful forecasting (po − pu = 2b(1− α)),

the behavioral model predicts either the same or negative forecast distortions. If the standard

model predicts underforecasting, there exists no unambiguous directional prediction of the

behavioral model. We summarize these properties in the following hypothesis:

Hypothesis 2. For incentive systems with po > p̄ and po − pu ≤ 2b(1− α),

(a) forecast distortions (φ̂− φ) are (weakly) smaller, and

(b) forecast corrections (q − φ̂) are (weakly) greater

than predicted by the standard model.

In addition to the directional predictions above, we can derive the structure of the forecasting

and ordering behavior from Theorem 1: Sales adds δsep to all market conditions and Operations

subtracts this value from the forecast. Özer et al. (2011, 2014) observe a similar pattern in

their experimental data. Hence, we expect to see the following correlations:

Hypothesis 3. For incentive systems with po > p̄, there exist positive correlations between
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(a) the market condition φ and the demand forecast φ̂,

(b) the demand forecast φ̂ and the order quantity q, and

(c) the order quantity q and the market condition φ.

For incentive systems with po > p̄, there exists a separating equilibrium and Operations can

derive the market condition from the demand forecast. For incentive systems with po ≤ p̄,

there does not exist a separating equilibrium, but partially separating or pooling equilibria can

exist. According to the definition of these equilibria, the market condition cannot always be

derived from the demand forecast, which we formulate as follows:

Hypothesis 4. For incentive systems with po > p̄, the correlations between

(a) the market condition φ and the demand forecast φ̂,

(b) the demand forecast φ̂ and the order quantity q, and

(c) the order quantity q and the market condition φ

are higher than for incentive systems with po ≤ p̄.

We chose the incentive system of Operations such that the order quantity that maximizes

Operations’ profit also maximizes the profit of the company. The better the information that

Operations can deduct from the demand forecast, the better the order decisions it can make.

This leads to the following hypothesis:

Hypothesis 5. Under incentive systems with po > p̄, the expected cost of Operations is lower

than under incentive systems with po ≤ p̄.

To test the above hypotheses and design incentive systems for truthful forecast informa-

tion sharing, we must know the values of the behavioral parameters γ and β. To estimate

these parameters and test whether human decision makers behave structurally as stated in the

hypotheses, we use a laboratory experiment.
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4.1. Main Experiment

4.1.1. Experimental Design

We conducted an experiment with two sessions and 32 subjects per session. In each session, 16

subjects were assigned to Sales and 16 subjects were assigned to Operations. The design of the

experiment is shown in Table 4.1. All monetary parameters are in experimental currency units

(ECUs) and an exchange rate of 1,000 ECUs per EUR 1 was used. In Session 1, we exposed

the subjects to sales-bonus-only and absolute forecast error incentive systems. In Session 2, we

exposed them to differentiated forecast error incentive systems. Within a session, half of the

subjects played the treatments in the order shown in Table 4.1 and the other half in reverse

order to reduce potential order effects. Within a treatment, the subjects of each subgroup

were randomly matched with another subject of the same subgroup at the beginning of each

period. Each treatment lasted eight periods. The decisions of each period were independent

of previous periods, i.e., excess demand of previous periods was lost and leftovers of previous

periods were discarded. More details, such as screenshots, instructions and questionnaires, can

be found in Section A.3 of the Appendix.

If existent, Table 4.1 reports the equilibrium distortion values δsep of the standard model and

directional predictions of the behavioral model. In the design of the experiment, we rely on

the standard model as opposed to the behavioral model because we cannot specify parameter

values for γ and β prior to the experiment. The treatments are chosen to cover a variety of

incentive schemes. We include the sales-bonus-only incentive system (Treatment 1) to analyze

a treatment where both the standard model and the behavioral model predict that no separat-
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Table 4.1.: Experimental design and model predictions of the main experiment

ing equilibrium exists, assuming that the lying aversion β is sufficiently small. Treatments 2–4

cover the absolute forecast error incentive system, including a setting (Treatment 2) where no

separating equilibrium exists under the standard model. Since we are most interested in de-

signing incentive schemes for truthful forecast information sharing, we include four treatments

(Treatments 5–8) with different parameterizations of the differentiated forecast error scheme,

including two treatments (Treatments 7 and 8) for which the standard model predicts truthful

forecast information sharing.

In all treatments, the market condition Φ is normally distributed with a mean of 100 and a

standard deviation of 30 and the market uncertainty E is normally distributed with a mean

of zero and a standard deviation of 30. To avoid negative demand realizations, we drew

realizations of Φ and E before the experiment and used them in both sessions. The ex-ante

probability of a negative demand for a distribution of D = (Φ + E) ∼ N (100, 42.432) is only

P (d < 0) = 0.0092. In line with Ho et al. (2010, p. 1896), we chose not to encounter subjects

with a truncated normal distribution, which would have added unnecessary complexity to the

experiment.

With respect to Operations, we are interested in analyzing how people process demand fore-

cast information rather than how they make optimal order quantity decisions. Therefore, we

chose a unit overage cost factor of co = 10 that is equal to the unit underage cost factor of
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4. Laboratory Experiments

cu = 10, which results in a critical ratio of α = 0.5. With this critical ratio and a zero-mean

normal distribution of the market uncertainty, the expected-utility-maximizing order quantity

is equal to the market condition. With other critical ratios, computing the expected-utility-

maximizing order quantity is more complex and deviations between the actual order quantities

and expected-utility-maximizing quantities could be due to effects other than demand infor-

mation processing, such as the pull-to-center effect (e.g., Schweitzer and Cachon, 2000). For a

critical ratio of α = 0.5, however, the data of Bostian et al. (2008) suggests that human decision

makers choose order quantities close to the optimum, i.e., close to the mean of a symmetric

distribution. We validated this presumption in our experiment by means of a post-experiment

question on hypothetical order quantities. We report the results in Section 5.3.3.

4.1.2. Experimental Protocol

The experiment was conducted at the Cologne Laboratory for Economic Research (CLER)

at the University of Cologne. The laboratory protocol was the same for all sessions and we

followed the good practices proposed by Katok (2011). We used the experimental programming

environment z-Tree (Fischbacher, 2007). Subjects were recruited from the subject pool of

the CLER using the recruitment software ORSEE (Greiner, 2015). Subjects were students

of economics, business administration, and information systems with an average age of 25.0

years. The instructions and screenshots of the software are contained in Sections A.3.1 and

A.3.3 of the Appendix. Additional subject pool characteristics are reported in Section A.3.6

of the Appendix.

After entering the laboratory, until the experiment was officially concluded, subjects were

not allowed to talk to each other and no communication was observed. After being randomly

assigned to seats, subjects received a handout with instructions, including example calculations

of the payoffs. The instructions were first read aloud by the instructor, then silently by each

subject. Subjects had to click a button on the screen to indicate that they were ready to start

the experiment. If subjects had questions, they could raise their hand and ask them quietly.

The instructor did not answer the question but rather directed subjects to the relevant part of

the instructions to ensure that one person was not better informed than another.
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4. Laboratory Experiments

Subjects were told that they were working for a company with a Sales and an Operations

department, where Sales forecasts customer demand and Operations decides on the production

quantity. They were informed of the random nature of the demand and of the activities they

were expected to perform in the experiment. The incentive systems and individual compensa-

tions were explained in detail and subjects were informed that they would be exposed to four

different treatments with eight periods each. They were also informed that they would not

play with the same person more than once within a treatment. Before the start of the actual

experiment, subjects had to answer a pre-experiment quiz (see Section A.3.2 of the Appendix)

to test if they had understood the instructions. To become acquainted with the software,

subjects played four test periods before the 32 periods of the actual experiment started. All

participants kept the role (Sales or Operations) that was assigned to them during the entire

experiment.

The sequence of events within a period was as follows: At the beginning of the period,

the computer randomly matched two players. The identity of the players was not revealed

either during or after the experiment. Then, the realization of the market condition φ was

privately shown to Sales. Sales could use decision support in the form of a table that showed

how the expected payoff of Sales depends on the demand forecast φ̂ and the order quantity q

(which Sales did not know, but could only estimate). Then, Sales entered a demand forecast

φ̂ and Operations received the demand forecast. Operations could use decision support in the

form of a table that showed how the expected payoff of Operations depends on the market

condition φ (which Operations did not know, but could only estimate) and the order quantity

q. Operations entered the order quantity q, a random error ε was generated, and the payoffs

of Sales and Operations were computed. All results (except for the realization of the market

condition) were shown to both players at the end of a period. The market condition and error

term of a period within a treatment were the same for all subjects.

After the last period was played, subjects could increase their payout by making a set

of Holt–Laury type lottery choices (Holt and Laury, 2002; Eckel and Grossman, 2008) (see

Section A.3.4 of the Appendix). Then, subjects filled out a questionnaire with demographic

data and some additional questions regarding the experiment (see Sections A.3.5 and A.3.6 of
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4. Laboratory Experiments

the Appendix). Finally, subjects were paid privately based on their performance. A session

lasted approximately 120 minutes and subjects earned an average of EUR 21.23, including a

fixed participation fee of EUR 2.50.

Compared to other experiments in economics or OM, the interactive decision task of our

experiment is fairly complex. In Section 5.3.3, we take a closer look at the different measures

that we took to support decision making and to ensure subjects’ understanding of the game.

4.1.3. Overview of Results

The results of the experiment are shown in Figure 4.1. The figure shows three graphs for each

of the eight treatments of the experiment. The left graph of a treatment shows the demand

forecast φ̂ plotted against the market condition φ, the middle graph shows the order quantity q

plotted against the demand forecast φ̂, and the right graph shows the order quantity q plotted

against the market condition φ. Each dot corresponds to one observation in the experiment.

The solid line in the left graph corresponds to the truth-telling solution. For incentive systems

for which the standard model (γ = 1, β = 0) has a separating equilibrium, the dashed lines

show the equilibrium forecasting and ordering predictions of the standard model.

Summary statistics are reported in Table 4.2. We use the metric forecast distortion (i.e., the

difference between the market condition and the demand forecast) to analyze the forecasting

behavior of Sales. We use the metric forecast correction (i.e., the difference between the order

quantity and the demand forecast) to analyze the ordering behavior of Operations. In addition,

we use the metric order deviation (i.e., the difference between the order quantity and the market

condition) to characterize the quality of the order decision of Operations. The aggregate results

of Table 4.2 already indicate that Sales subjects forecast considerably less than predicted by

the standard model, which is in line with the predictions of the behavioral model (see Table

4.1). Operations subjects seem to anticipate this behavior and correct forecast distortions.

Figures 4.2 and 4.3 visualize the effect of an incentive system on the payoffs to Sales and

Operations. We use the expected profit of Sales as well as the expected overage and underage

costs of Operations to quantify these effects. Note that the profit of Sales cannot be directly

compared across treatments because the unit sales bonus and forecast error penalties differ.
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Experimente 4 und 5 – rearranged for Diss
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Figure 4.1.: Forecast and order decisions of the main experiment
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Experimente 4 und 5 – rearranged for Diss
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Figure 4.1.: Forecast and order decisions of the main experiment (continued)
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Table 4.2.: Summary statistics of the main experiment

Especially in Treatments 1–3, the unit sales bonus is greater than in Treatments 4–8 and hence

profits are comparably high. The unit overage and underage cost of Operations is the same

in all treatments and the overall cost of Operations is comparable across treatments. Because

the critical ratio of Operations is aligned with the critical ratio of the company, we can use the

expected cost of Operations as a proxy for the profit of the company. Figure 4.3 suggests that

the cost of Operations is particularly high in the sales-bonus-only Treatment 1 and somewhat

high in Treatment 2, which is in line with the predictions of Table 4.1.

Because we used a within-subject design for each session, we analyzed the data for time and

treatment order effects. The detailed regression results are discussed in Section 5.3.1.

We next use the data of the experiment to estimate the behavioral parameters γ and β before

proceeding to test our hypotheses.

4.1.4. Estimation of Behavioral Parameters

Since we do not know whether a separating equilibrium exists for Treatments 1 and 2 (see

Table 4.1), we use the data of Treatments 3–8 to estimate the forecast error penalty factor γ

and the lying aversion factor β by maximum likelihood (ML) estimation. Based on Theorem
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Figure 4.2.: Expected profit of Sales in the main experiment
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Figure 4.3.: Expected cost of Operations in the main experiment
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1, we formulate a nonlinear mixed effects model

δit = uit +


G−1

(
bit(1−α)+γipu,it−βi

γi(pu,it+po,it)

)
for bit(1−α)−βi

γi
< po,it < pu,it + 2 bit(1−α)−βi

γi
,

0 for pu,it + 2 bit(1−α)−βi
γi

≤ po,it ≤ pu,it + 2 bit(1−α)+βi
γi

,

G−1
(
bit(1−α)+γipu,it+βi

γi(pu,it+po,it)

)
for po,it > pu,it + 2 bit(1−α)+βi

γi
,

where subjects are indexed by i and periods are indexed by t. The within-subject errors uit

are independently distributed as N (0, σ2
u). We model the parameters γ and β as random

coefficients to allow for time-constant unobserved heterogeneity among subjects. We separate

the fixed effects from the random effects of the parameters by defining γi = µγ + rγ,i and

βi = µβ + rβ,i, where µ =
( µγ
µβ

)
are the fixed effects of the parameters and ri =

( rγ,i
rβ,i

)
are the

subject-specific random effects, which follow a multivariate normal distribution N (0,Ψ) with

variance-covariance matrix Ψ =
(

σ2
γ ρσγσβ

ρσγσβ σ2
β

)
. Since the observations between subjects are

independent, but those within subjects are jointly conditional upon the random effects ri, we

use the likelihood function

L
(
µ,Ψ, σ2

u | δ
)

=
∏
i

∫
p
(
δi | µ, ri, σ2

u

)
p (ri | Ψ) dri

=
∏
i

∫
1

(2πσ2
u)Ti/2

· exp

(
− 1

2σ2
u

∥∥δi − δsepi

∥∥2
)

(4.1)

· 1

2πσγσβ
√

1− ρ2
· exp

(
− 1

2(1− ρ2)

(
rγ,i
σ2
γ

+
rβ,i
σ2
β

−
2rγ,irβ,iρ

σγσβ

))
dri,

where p(δi | ·) and p(ri | ·) are the densities of the corresponding multivariate normal distribu-

tions, Ti is the number of observations for subject i, and δsepi is a vector with the equilibrium

distortions according to Equation (3.6) given the respective values of the subject-specific pa-

rameters γi, βi and covariate vectors bi,po,i, and pu,i.

To estimate the parameters, we use the Lindstrom and Bates (1990) algorithm implemented

in the nlme package for R (Pinheiro et al., 2017). By reparameterizing γ̃i = log(γi), β̃i = log(βi)

and setting γi = exp(γ̃i), βi = exp(β̃i) in Equation (4.1), we restrict the optimization to positive

values for γ and β while keeping the optimization problem unconstrained (Pinheiro and Bates,
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2000, p. 351). Following up on the assumptions above, γ̃ and β̃ follow a multivariate normal

distribution and γ and β follow a multivariate log-normal distribution. We use µγ̃ , µβ̃, σγ̃ , σβ̃, ρ̃

to denote the distributional characteristics of the transformed variables.

Note: Standard errors are reported in parentheses. All fixed effects are significant at the 1% level (t-test). 
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Table 4.3.: Estimation results of behavioral models with γ and β

Tables 4.3 and 4.4 summarize the estimation results. We use the logarithm of the likelihood

(log(L)) and the Bayesian information criterion (BIC), defined as BIC = −2 log(L) + k log(n),

where n is the number of observations and k is the number of parameters, to assess the fit of

alternative models.

The random effects estimated in a model where both γ̃ and β̃ are treated as random coeffi-

cients (Model 1) are highly correlated (ρ̃ = −0.998). This result can be explained by the fact

that in the majority of treatments (Treatments 3–6) both behavioral parameters γ and β affect

forecast decisions in the same direction, i.e., they reduce the forecast inflation compared to the

standard model. In particular for subjects in Session 1, where we only use Treatments 3 and 4

for the estimation procedure, the standard model predicts overforecasting in both treatments

and either values of γ > 1 or values of β > 0 could be the reason for the more truthful forecast-
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Note: Standard errors are reported in parentheses. All fixed effects are significant at the 1% level (t-test). 
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Table 4.4.: Estimation results of reduced behavioral models

ing behavior that we observe in the experiment. We therefore follow the guidelines of Pinheiro

and Bates (2000) for the selection of random effects and test two alternative models with β̃

random only (Model 2) and γ̃ random only (Model 3) (Pinheiro and Bates, 2000, pp. 282–284

and pp. 359–360).

In Model 2, the standard deviation of β is approximately zero and the model provides a

significantly worse fit than Model 1 (likelihood ratio test, p < 0.001). In Model 3, we do not

lose explanatory power (likelihood ratio test, p = 0.8402) and obtain a lower BIC than for

Model 1. We conclude that Model 3 fits our data better than Models 1 and 2.

In Model 3, the forecast error penalty factor γ is log-normally distributed with a mean

of 3.571 and the lying aversion factor β is 1.805. The interpretation is that subjects evaluate

forecast error penalties 3.571 times higher on average than the equivalent sales bonus payments

and experience a negative utility of 1.805 ECUs for every unit of forecast distortion.

We further test the specification of our model by comparing Model 3 with three reduced

models, where only γ (Model 4) or β (Models 5 and 6) is included as an explanatory variable
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(Table 4.4). In Model 4, we set β = 0 and in Model 5, we set γ = 1, i.e., we use the parameter

values of the standard model. In Model 6, we set γ = 2 to test whether a “typical” loss aversion

factor of prospect theory is sufficient to explain the observed behavior (for a discussion on the

values of loss aversion factors, see Abdellaoui et al., 2007). The log-likelihood of Model 3 is

significantly higher than that of the reduced models (likelihood-ratio test, p < 0.001 for all

comparisons) and the BIC of Model 3 is lower than the BIC of the reduced models. These

results show that neither the overproportional weighting of forecast error penalties nor lying

aversion alone can explain the observed behavior as well as the combination of both effects.

The worse fit of Model 6 compared to Models 2 and 3 (likelihood-ratio test, p < 0.001 for

both comparisons) further indicates that the estimated value of the parameter γ is significantly

greater than two. This supports the presumption that the forecast error penalty factor γ

includes various behavioral drivers that influence behavior in the same direction rather than

loss aversion alone. We can further see from Figure 4.4 that the in-sample predicted forecasts

based on the parameter estimates of Model 3 are well aligned with the actual forecast decisions

made in each of the treatments.

The estimation procedure that we follow above builds upon the assumption that the within-

subject errors uit are independent and identically normally distributed with mean zero and

variance σ2
u. We use the within-subject residuals of the ML estimation to verify this assump-

tion. The histogram and quantile-normal plot in Figure 4.5 indicate that the distribution of

residuals is slightly leptokurtic. A Kolmogorov–Smirnov test confirms a significant deviation

from a normal distribution (p < 0.001) due to a kurtosis of 4.747. However, the residuals

are symmetrically distributed (skewness = 0.004) such that we can expect consistent, albeit

slightly inefficient estimates (Pinheiro and Bates, 2000, p. 180).

4.1.5. Tests of Hypotheses

To test our hypotheses, we must distinguish between treatments where a separating equilibrium

exists from those where we do not know if a separating equilibrium exists. Based on Corollary

1, we can conclude that an equilibrium along the lines of Theorem 1 exists for Treatments 3–8.

With respect to the sales-bonus-only incentive scheme of Treatment 1, the results of the ML
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estimation (Model 3 in Table 4.3) indicate that there is no such equilibrium. In order for a

separating equilibrium to exist, the condition po > (b(1−α)−β)/γ must hold. For Treatment

1, this requires β > b(1 − α) = 8, which is far above our estimate of β = 1.805. We further

corroborate this finding by analyzing subject-level ordinary least squares (OLS) estimates of

β. There is only one subject with an estimate of β = 8.69 > 8. For Treatment 2, it is unclear

whether a separating equilibrium exists. In order for a separating equilibrium to exist, we

require γ > (b(1−α)−β)/po = 1.732. The behavioral parameter γ is a random coefficient and

there is a nonnegligible probability that it is smaller than this value (P (γ < 1.732) = 10.6 %).

We will therefore only use Treatment 1 to compare the behavior of Sales and Operations in

a setting where no separating equilibrium exists to the behavior in Treatments 3–8, where a

separating equilibrium does exist. Unless stated otherwise, we use two-sided Wilcoxon signed-

rank tests and Mann–Whitney U tests based on subject-level averages by treatment to establish

statistical validity.

Hypothesis 1 predicts that a model with γ > 1 and β > 0 better explains actual behavior

than the standard model. The estimation results support this hypothesis. The mean estimate

of γ is significantly different from 1 and the estimate of β is significantly different from 0 (t-test,

p < 0.001 for both comparisons). Also, the explanatory power of Model 3 is significantly better

(likelihood ratio tests, p < 0.001) than that of Models 4 and 5, where γ and β are set to 1 and

0 respectively.

Hypothesis 2 states that forecast distortions are smaller and forecast corrections are greater

than predicted by the standard model. Figure 4.1 shows that the actual forecast distortions and

forecast corrections deviate systematically from the solutions of the standard model (dashed

lines) and Table 4.2 reports the corresponding averages. For Treatments 3–6, the standard

model predicts positive forecast distortions and negative forecast corrections. In line with

Hypothesis 2, the actual average forecast distortions are significantly smaller and the actual

average forecast corrections are significantly greater than predicted by the standard model

(one-sided Wilcoxon signed-rank test, p < 0.001 for all comparisons). For Treatments 7 and 8,

the standard model predicts forecast distortions and corrections of zero. The actual average

forecast distortions are significantly smaller than zero and the average forecast corrections
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are significantly greater than zero (one-sided Wilcoxon signed-rank test, p < 0.001 for all

comparisons). We conclude that actual behavior is different from the behavior predicted by

the standard model and that the behavioral model correctly describes the direction of deviation.

Hypothesis 3 predicts positive correlations between market conditions and forecasts, forecasts

and order quantities, and order quantities and market conditions. The scatter plots in Figure

4.1 indicate positive correlations between all three pairs. The corresponding correlation coef-

ficients are shown in Table 4.2. All correlations are significantly greater than zero (t-test after

Fisher z-transformation, p < 0.001 for all treatments), which provides support for Hypothesis

3.

The positive correlations of Treatment 1 provide robustness to the experimental results of

Özer et al. (2011, 2014), who also found that positive correlations under a sales-bonus-only

incentive system exist. In contrast to Özer et al. (2011, 2014), we differentiate between treat-

ments where a separating equilibrium exists (Treatments 3–8) and treatments where it does

not (Treatment 1). Hypothesis 4 states that the above correlations are higher in Treatments

3–8 than in Treatment 1. We can see from Figure 4.1 and Table 4.2 that the forecast distor-

tions and forecast corrections vary more in Treatment 1 than in Treatments 3–8. In support

of the hypothesis, the correlation coefficients ρ(φ̂, φ), ρ(q, φ̂) and ρ(q, φ) in Treatment 1 are

significantly lower than in Treatments 3–8 (t-test after Fisher z-transformation, p < 0.01 for

all comparisons).

Hypothesis 5 suggests that the expected cost of Operations is lower in Treatments 3–8 than

in Treatment 1. Because the operational costs of the company are proportional to the overage

and underage costs of Operations, this hypothesis is also indicative for the overall company

profit. Table 4.2 shows that the average expected cost of Operations is significantly higher in

Treatment 1 than in Treatments 3–8 (Wilcoxon signed-rank test for within-subject comparisons

to Treatments 3 and 4, p < 0.001; Mann–Whitney U test for between-subject comparisons to

Treatments 5–8, p < 0.001), which provides support for Hypothesis 5.

We conclude that the structural predictions of the behavioral model are supported by the

experimental data. In particular, the sales-bonus-only incentive system of Treatment 1 leads

to higher forecast inflations, lower correlations and higher expected operational costs than the
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incentive systems with forecast error penalties in Treatments 3–8.

Table 4.2 indicates that the actual average forecast distortions of Treatments 4 and 5 are

close to zero. While the actual average forecast distortion is significantly different from zero

in Treatment 4 (Wilcoxon signed-rank test, p < 0.01), it is not significantly different from

zero in Treatment 5 (Wilcoxon signed-rank test, p = 0.570). Using the mean parameter

estimates γ = 3.571 and β = 1.805, we can compute the in-sample predictions for Treatment

4 (δsep = 3.372) and Treatment 5 (δsep = 0). By coincidence, Treatment 5 covers the truthful

forecast sharing case. While this finding is generally in line with Corollary 2, it is based

on in-sample parameter estimates and hence has little external validity. To provide such a

validation, we next analyze how well the model works with out-of-sample subjects and out-of-

sample treatments.

4.2. Validation Experiment

4.2.1. Experimental Design and Results

In the validation experiment we used four treatments. Table 4.5 summarizes the design and re-

sults of the experiment. Treatments 9 and 10 were designed to incentivize truthful information

sharing based on the behavioral model. To obtain the parameter values for over- and under-

forecasting penalties, we used the mean values of the forecast error penalty factor (γ = 3.571)

and the lying aversion factor (β = 1.805) that we estimated above and selected two treatments

with integer parameter values (po−pu) ∈ [1.80; 3.81] that result in a distortion value of δsep = 0.

Treatments 11 and 12 were designed similarly based on the predictions of the standard model

requiring po − pu = 10.

We used the same experimental setup and protocol as in the main experiment and conducted

the validation experiment with 32 new subjects. Figure 4.6 shows the individual decisions of

the experiment. Table 4.5 summarizes the predictions of the standard model, the predictions

of the behavioral model, the average forecast distortions and the average forecast corrections

that we observed in the experiment. We use two-sided Wilcoxon signed-rank tests to compare

actual averages with the predictions of both models.
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Experiment 7 – overview of decisions
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Figure 4.6.: Forecast and order decisions of the validation experiment
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Note: Standard deviations are reported in parentheses. Correlation is the Pearson correlation coefficient. Expected cost of Operations and expected profit of 
Sales are reported in ECU, excluding fixed compensations ܥௌ and ܥை and expectations are taken with respect to ܧ.
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Table 4.5.: Design and results of the validation experiment

Treatments 9 and 10, which were designed with the behavioral model, have actual average

forecast distortions that are not significantly (Treatment 9, p = 0.836) or only weakly sig-

nificantly (Treatment 10, p = 0.093) different from zero. The standard model predicts much

greater distortions that are highly significantly different from the actual averages (p < 0.001

for both comparisons). The results are similar for the forecast corrections.

Treatments 11 and 12, which were designed with the standard model, have actual average

forecast distortions that are significantly below the prediction of the standard model (p < 0.003

for both comparisons). The behavioral model correctly predicts the underforecasting that we

observe and the actual forecast distortions are not significantly (Treatment 11, p = 0.642) or

only weakly significantly (Treatment 12, p = 0.079) different from these predictions. For the

forecast corrections, we obtain mixed results. In Treatment 11, the actual average correction

differs significantly from the prediction of the standard model (p < 0.001), but not from the

prediction of the behavioral model (p = 0.877). In Treatment 12, the actual average correction

does not differ significantly from the prediction of the standard model (p = 0.146), but differs

significantly from the prediction of the behavioral model (p < 0.002).

In addition to the statistical tests above, Figure 4.7 compares the individual decisions of

both Sales and Operations to the predicted values of the behavioral model. The visualization

supports the finding that actual forecast and order decisions are generally in line with the

predictions of the behavioral model. Note that, in contrast to the main experiment (Figure 4.4),

the predicted values for forecast distortions and corrections are based on the mean parameter
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Experiment 7 – predicted vs actuals
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Figure 4.7.: Predicted versus actual decisions of the validation experiment

estimates of the main experiment, and are hence the same for all subjects.

The results of the validation experiment show that the behavioral model generalizes well

and provides good estimates of the forecasting and ordering behavior of out-of-sample subjects

with out-of-sample treatments. The treatments that we designed with the behavioral model

perform well and deliver what they were designed for: They incentivize demand forecasts that

are only minimally distorted by Sales and minimally corrected by Operations.

4.2.2. Sensitivity Analysis

The sensitivity of the equilibrium behavior under different truth-telling incentive schemes de-

pends on the choice of forecast error incentives po and pu. For a normally distributed market

uncertainty E, it can be shown that the equilibrium forecast distortion δsep (see Equation 3.6)

is less sensitive to changes in the behavioral parameters γ and β for high unit forecast error
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penalties than for low ones if the difference po − pu is the same. More formally, for any two

sets of sales incentive parameters (b, po, pu) and (b, p̄o, p̄u) with po − pu = p̄o − p̄u and p̄o > po,

p̄u > pu, the following proposition holds:

Proposition 1. If an equilibrium forecast distortion δsep exists, then it is weakly less sensitive

to changes in the behavioral parameters γ and β under the incentive scheme (b, p̄o, p̄u) compared

to the incentive scheme (b, po, pu).

We use the same difference of po− pu = 2 in both Treatment 9 and 10, but the unit forecast

error penalties po and pu are lower in Treatment 10 than in Treatment 9. Hence, estimation

errors of the behavioral parameters and subject-specific deviations from the mean values of γ

and β can lead to higher forecast distortions in Treatment 10 than in Treatment 9. A similar

observation holds for Treatments 11 and 12, where the actual average forecast distortions of

Treatment 12 differ more strongly from the prediction of the behavioral model than the forecast

distortions of Treatment 11.

To visualize this property for the incentive systems of Treatments 9 and 10, Figure 4.8 shows

the equilibrium forecast distortion for different values of γ (horizontal axis) and β (vertical axis).

The white zone indicates parameter combinations for which the behavioral model predicts

truthful information sharing. The lines indicate parameter combinations of equal forecast

distortion with increasing distortion values (shown in white circles) towards γ = 1 and β = 0.

The points mark our estimates γ = 3.571 and β = 1.805 as well as deviations of plus/minus

50 % from the mean estimates. We can observe that larger values for γ and β do not change

the equilibrium prediction of zero inflation within the parameter space that we consider. If γ

and β become smaller, however, the prediction changes from truthful information sharing to

overforecasting. If both parameters deviate by −50 % from the mean, for example, our model

predicts forecast inflations of 4.4 units in Treatment 9 and 8.2 units in Treatment 10.

The results of the sensitivity analysis can also explain the comparably low expected cost

of Operations (267 ECUs) in the absolute forecast error incentive Treatment 4 of the main

experiment. Compared to all other treatments of the main experiment, Treatment 4 has the

highest unit forecast error penalties po and pu, which could be the reason why we observe the

lowest variances in forecast and order decisions and the lowest expected cost of Operations
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Sensitivity of parameters
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Figure 4.8.: Sensitivity of forecast distortions depending on behavioral parameter values
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in this treatment. However, as discussed in Section 4.1.5, the forecasts of Treatment 4 are

still significantly biased. We can use Treatment 9 of the validation experiment to verify that a

differentiated forecast error incentive system with a similar magnitude of forecast error penalties

incentivizes truthful forecasts, while leading to similar expected cost of Operations (273 ECUs)

that are not significantly different from the cost in Treatment 4 (Mann–Whitney U test, p =

0.366).
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While the behavioral model that we specified in Section 3.1 is grounded in theory and fits

the data well (both in-sample as well as out-of-sample), there are other potential explanations

for the behavior that we observe in the experiments. In the following, we therefore present

alternative models and their fit to our experimental data (Section 5.1), additional experimental

data (Section 5.2), and supplementary analyses of the data of the main experiment (Section

5.3) that provide robustness to our previous results.

5.1. Alternative Models

5.1.1. Non-Bayesian Belief Updating

To derive the separating equilibria of our behavioral model, we use the concept of PBE, which

assumes that signal receivers update their belief based on Bayes’ rule whenever possible (see

Section 3.2.1). Previous research has shown that this assumption can be violated in practice

(e.g., Charness and Levin, 2005). To see if the Bayesian concept captures belief updating in

our setting well, we test two alternative models that relax this assumption.

Trust model.

In the specific context of forecast information sharing, Özer et al. (2011) identify trust on the

part of the forecast receiver as the driving factor of belief updating. To test whether such an

approach explains the behavior better than the approach we used, we follow Özer et al. (2011)

and formulate a model where Operations applies a simple updating rule by forming a weighted

average of the observed forecast φ̂ and the prior distribution of the market condition Φ. We
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formulate the new belief

µξ(φ | φ̂) = fξ(φ | φ̂),

where fξ is the density function of ξφ̂+ (1− ξ)Φ and ξ ∈ (0; 1] is a trust factor. According to

the definition of the trust factor, equilibria in this model cannot be separating, i.e., Operations

cannot infer the true market condition, except for the special case of ξ = 1 and truthful

forecasts φ̂ = φ. We describe a set of equilibrium strategies for Sales and Operations under

trust-based belief updating in the following proposition:

Proposition 2. If Operations uses a trust-based belief updating rule µξ(φ | φ̂) = fξ(φ | φ̂), and

if at least po > 0 or β > 0, there exists the following equilibrium:

(a) The best response of Operations to a forecast φ̂ is the quantity

qξ(φ̂) = ξφ̂+ F−1
Z (α),

where FZ is the distribution function of Z = (1− ξ)Φ + E.

(b) The best response of Sales is the forecast φ̂ξ that solves the first-order condition

bξ
(

1−G
(
ξφ̂ξ + F−1

Z (α)− φ
))

= γ(po + pu)G
(
φ̂ξ − φ

)
− γpu


+β for po − pu < 2

γ

[
bξ
(
1−G

(
(ξ − 1)φ+ F−1

Z (α)
))
− β

]
,

−β for po − pu > 2
γ

[
bξ
(
1−G

(
(ξ − 1)φ+ F−1

Z (α)
))

+ β
]
.

For 2
γ

[
bξ
(
1−G

(
(ξ − 1)φ+ F−1

Z (α)
))
− β

]
≤ po−pu ≤ 2

γ

[
bξ
(
1−G

(
(ξ − 1)φ+ F−1

Z (α)
))

+ β
]
,

the best response of Sales is the truthful forecast, i.e., φ̂ξ = φ.

Note that qξ is independent of the incentive parameters. Operations interprets a forecast

φ̂ in the same way across all experimental treatments. For our experimental data with Φ ∼

N (100, 302), E ∼ N (0, 302) and α = 0.5, we have Z normally distributed with mean (1−ξ)·100

and hence F−1
Z (α) = (1−ξ)·100. Hence, for all ξ < 1 Operations corrects big forecasts (φ̂ > 100)

downwards and small forecasts (φ̂ < 100) upwards. Both predictions of the model are at odds

with what we observe in the experiments. For example, forecast corrections in Figure 4.1 and

66



5. Discussion

Table 4.2 differ depending on the treatment and the direction of forecast correction does not

depend on the magnitude of the forecast.

Since we do not have a closed-form solution for the forecasting behavior of Sales in the

trust model, we use subject-level OLS in order to estimate the behavioral parameters of the

trust model. We compare the model fit based on the BIC, which we calculate as BIC =

log(n)k+n log(RSS/n), where n is the number of observations, k is the number of parameters

and RSS is the sum of squared residuals. Table 5.1 compares the fit of alternative belief models

with that of our original behavioral model (Bayesian model) using the simplified estimation

procedure. Note that the estimates for γ and β of the Bayesian model in Table 5.1 are slightly

different from the estimates in Table 4.3 due to different assumptions regarding the distribution

of γ and β and the different estimation procedures. The higher BIC of the trust model indicates

that the Bayesian model provides a better fit to our data than the trust model. Note that

the median of the estimates for ξ is 1, implying that the majority of Sales subjects (25 out of

32 subjects) do not expect Operations to follow a strategy where the direction of the forecast

correction depends on the size of the forecast.

Note: Reported numbers are the mean, [median] and (standard deviation) of the subject-level estimates. 
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ߚ

ߦ

ߠ

Bayesian Model

4,159

4.059 [2.227] (4.599)
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Table 5.1.: Estimation results of models with alternative belief updating

Näıveté model.

An alternative approach to behavioral belief updating in signaling games is grounded in the

idea of sophisticated and näıve (or credulous) responses on the part of the signal receiver

(Crawford, 2003; Kartik et al., 2007). Suppose Sales played some invertible strategy s(φ).

A sophisticated response would be if Operations correctly inferred the forecast distortion and
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updated the belief to µ(φ | φ̂) = 1 for φ = s−1(φ̂) (and 0 otherwise). A näıve response would be

if Operations fully trusted the forecast and updated the belief to µ(φ | φ̂) = 1 for φ = φ̂ (and 0

otherwise). Our experimental data suggests that subjects seem to be quite sophisticated since

the average value of forecast corrections approximately offsets the average value of forecast

distortions (see Table 4.2). However, it is possible that some subjects do not fully adjust to

the sophisticated response but are more credulous than others. We use a factor θ ∈ (0; 1] to

indicate the “degree of näıveté” and we model the belief of Operations as

µθ(φ | φ̂) =


1 for φ = θφ̂+ (1− θ)s−1(φ̂),

0 otherwise.

Note that the näıveté-based belief is similar to the trust-based belief because both place some

weight on the actual forecast. The advantage of the näıveté model is that it takes into account

different incentive parameterizations because the remaining weight (1− θ) is not attributed to

the prior distribution Φ but to the inverted signal s−1(φ̂).

Based on the knowledge that, for a given set of incentive parameters, subjects seem to distort

forecasts by a fixed value that is independent of the market condition, we limit attention to

linear signaling strategies of the form sθ(φ) = φ + δ with s′θ(φ) = 1. Then, the following

proposition describes a set of equilibrium strategies for Sales and Operations:

Proposition 3. If Operations uses a näıveté-based belief updating rule µθ, and if at least po > 0

or β > 0, there exists the following equilibrium:

(a) The best response of Operations to a forecast φ̂ is the quantity

qθ(φ̂) = θφ̂+ (1− θ)s−1(φ̂) +G−1(α).

(b) The best response of Sales is the strategy sθ(φ) = φ+ δθ, where δθ solves the first-order
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condition

b
[
1−G

(
θδθ +G−1 (α)

)]
= γ [(po + pu)G (δθ)− pu]


+β for po − pu < 2

γ (b(1− α)− β),

−β for po − pu > 2
γ (b(1− α) + β).

For 2
γ (b(1− α)− β) ≤ po − pu ≤ 2

γ (b(1− α) + β), the best response of Sales is the truthful

forecast, i.e., δθ = 0.

Table 5.1 reports the results of subject-level OLS estimations. The estimates for θ suggest

that Sales expects Operations to be partly näıve and partly sophisticated. However, the BIC

of the näıveté model is bigger than the BIC of the base model, indicating that the base model

provides a better fit to our data due to a more economical use of parameters.

5.1.2. Expectations-Based Reference Points

In the formulation of the utility function of Sales (Section 3.1.2), we assume a status quo-based

reference point in the evaluation of forecast errors. As a result, all forecast error penalties are

perceived as losses and the effect of loss aversion is captured by the forecast error penalty

factor γ. Because we do not know if a status quo-based reference point of zero adequately

captures reference-dependent valuations in our setting, we next analyze alternative reference

points. Since there is no externally given reference point in our experiments, such as a goal or

target bonus level (e.g., Heath et al., 1999; Ockenfels et al., 2015), we explore the possibility

of expectations-based reference points in more depth.

Kahneman and Tversky (1979) had already acknowledged that “there are situations in which

gains and losses are coded relative to an expectation or aspiration level that differs from

the status quo” (Kahneman and Tversky, 1979, p. 286). According to Kőszegi and Rabin

(2006), expectations-based reference points are “determined endogenously” by the decision

maker (Kőszegi and Rabin, 2006, p. 1133) and as Ho et al. (2010) argue, these reference points

are likely to be formed based on salient pieces of information that the decision maker receives

or expects to receive.
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With regard to the forecast decision in our setting, the two most salient pieces of information

are the market condition φ and the demand realization d = φ + e. Hence, Sales could form

reference forecast error penalties by imagining a situation where the forecast matches the

market condition (the truthful forecast) or where the forecast matches actual demand and as

such causes no forecast error penalty. To test these two reference points formally, we follow the

approach of Kőszegi and Rabin (2006) and split the forecast error related part of the utility

function into “consumption utilities”

UPS (φ̂ | φ) = −EE
(
po[φ̂− (φ+ E)]+

)
,

UNS (φ̂ | φ) = −EE
(
pu[(φ+ E)− φ̂]+

)
,

and “gain-loss utilities”

v̄
(
poEE

(
[φ̂R − (φ+ E)]+ − [φ̂− (φ+ E)]+

))
,

v̄
(
puEE

(
[(φ+ E)− φ̂R]+ − [(φ+ E)− φ̂]+

))
,

where φ̂R is the reference forecast and v̄ is a value function. Compared to our original model,

we use a slightly modified version of the value function v̄(x) = τ [x]+−λτ [−x]+, where τ is the

weight on the gain-loss utility and λ ≥ 1 is a loss aversion factor.

If the reference forecast is the realized demand (φ̂R = d), Sales evaluates deviations from

the expected forecast error that would result if Sales forecasted realized demand correctly.

Then we have [φ̂R − (φ + E)]+ = [(φ + E) − φ̂R]+ = 0 and the value function is applied to

the negative consumption utilities UPS (φ̂ | φ), UNS (φ̂ | φ), which results in a total reference-

dependent forecast error utility of (1 +λτ)
(
UPS (φ̂ | φ) + UNS (φ̂ | φ)

)
. This model is equivalent

to our original model where the reference forecast error penalty is also equal to zero, with the

only difference that we have γ = 1 + λτ . Hence, we do not analyze this model further.

If the reference forecast is the market condition (φ̂R = φ), Sales evaluates deviations from

the expected forecast error that would result from a truthful forecast. Note that the resulting

reference point, i.e., the reference forecast error penalty from setting φ̂R = φ, is still stochastic
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due to the remaining uncertainty in E. Adding the respective gain-loss utilities to the utility

function of Sales gives

URS (q, φ̂ | φ) =CS + bEE (min(φ+ E), q)− EE
(
po[φ̂− (φ+ E)]+ + pu[(φ+ E)− φ̂]+

)
+ τ

(
poEE

[
[−E]+ − [φ̂− (φ+ E)]+

]+
+ puEE

[
[E]+ − [(φ+ E)− φ̂]+

]+
)

− λτ
(
poEE

[
[φ̂− (φ+ E)]+ − [−E]+

]+
+ puEE

[
[(φ+ E)− φ̂]+ − [E]+

]+
)

− β
∣∣∣φ̂− φ∣∣∣ .

(5.1)

The following proposition describes an equilibrium, which is structurally equivalent to the

equilibrium of Theorem 1, but based on the utility function of Equation (5.1):

Proposition 4. If Sales evaluates forecast error penalties relative to an expectations-based

reference point of φ̂R = φ, and if po > (b(1 − α) − β)/(1 + λτ), there exists a separating

equilibrium (ssepR , qsepR , µsepR ):

(i) For all φ: ssepR (φ) = φ+ δsepR ,

(ii) for all φ̂: qsepR (φ̂) = φ̂− δsepR +G−1(α),

(iii) for all φ, φ̂: µsepR (φ | φ̂) =


1 for φ = φ̂− δsepR ,

0 otherwise,

with distortion value

δsepR =


G−1

(
b(1−α)+(1+τ)pu−β
(1+τ)pu+(1+λτ)po

)
for po <

(1+τ)
(1+λτ)pu + 2 b(1−α)−β

(1+λτ) ,

0 for (1+τ)
(1+λτ)pu + 2 b(1−α)−β

(1+λτ) ≤ po ≤
(1+λτ)
(1+τ) pu + 2 b(1−α)+β

(1+τ) ,

G−1
(
b(1−α)+(1+λτ)pu+β
(1+λτ)pu+(1+τ)po

)
for po >

(1+λτ)
(1+τ) pu + 2 b(1−α)+β

(1+τ) .

(5.2)

The equilibrium of this model is structurally equivalent to the equilibrium of the original

behavioral model (see Theorem 1). The main difference is that γ is now replaced by either
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(1 + τ) or (1 + λτ). For example, in the domain of inflated forecasts (first case of δsepR ),

the expected overforecasting penalty is bigger than the expected overforecasting penalty from

reporting the true market condition. Hence po is weighed by (1 + λτ). On the contrary, the

expected underforecasting penalty is smaller than the expected underforecasting penalty from

reporting the true market condition. Hence pu is weighed by (1 + τ). Note that we cannot

keep the original parameter γ as a factor that scales the forecast error penalties and captures

the possible effects of ex-post forecast error minimization or ambiguity aversion because the

model would be overparameterized.

We use the equilibrium prediction δsepR in order to estimate the parameters τ, λ, and β

by ML estimation with mixed effects. Table 5.2 summarizes the estimation results of the

original behavioral model (Model 3 of Table 4.3) and two reference point models. Similar to

the estimation in Section 4.1.4, we assume that τ and λ are log-normally distributed random

coefficients and that β is a log-transformed fixed coefficient (Reference Point Model 1). We find

that the explanatory power of this model is slightly better than that of the original model but

at the cost of an additional parameter, which results in a slightly higher information criterion

(a BIC of 6,084 versus a BIC of 6,073). The random coefficients in Reference Point Model 1

are highly correlated (ρ = −0.987), indicating that the random effects of both parameters are

redundant. Besides, the standard deviation of λ is estimated to be zero, which suggests that

the random effect of the parameter does not yield additional value to the model.

We therefore reduce Reference Point Model 1 to a model where only τ is assumed to be

random (Reference Point Model 2). The BIC improves compared to Reference Point Model

1 and the removal of one parameter does not lead to a worse model fit (likelihood ratio test,

p > 0.05). However, the reduced model also falls slightly behind the goodness of fit of the

original model (a BIC of 6,076 versus a BIC of 6,073), indicating that the expectations-based

reference point that we consider does not provide a better explanation of the data than the

status quo-based reference point. Additionally, the interpretation of the estimates of Reference

Point Model 2 is similar to the original model: The estimate for λ is 0.976 and not significantly

different from 1 (t-test, p = 0.75). This implies that there is not a clear change in preferences

between the domains of gains and losses at the assumed reference point. Given λ ≈ 1, the
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Note: Reported numbers are the mean, [median] and (standard deviation) of the subject-level estimates. 

ߛ

ߚ

ݐ

ߠ

Bayesian Model

4,159

4.059 [2.227] (4.599)

2.610 [1.566] (2.600)

Estimates

BIC

Trust Model

4,348

3.728 [1.857] (4.754)

1.429 [0.476] (1.778)

0.871 [1.000] (0.335)

Naïveté Model

4,343

3.954 [1.857] (4.664)

1.949 [0.952] (2.238)

0.543 [0.500] (0.434)

Treatment
(ݑ//ܾ)

R1 (14/3/3)

R2 (10/6/4)

R3 (10/12/2)

Corr.
,߶)ߩ ߶)

0.95

0.91

0.89

Std. model
(one-shot)

n/a

38.4

0.0

Act. average 
(repeated)

8.0

-0.6

-8.6

Forecast distortion ߶ െ ߶

(12.2)

(15.2)

(16.8)

Note: Significances of differences between model predictions and actual averages (Wilcoxon signed-rank test): *** p < 0.01, ** p < 0.05, * p < 0.1. 
Standard deviations reported in parentheses. Correlation is the Pearson correlation coefficient.

Beh. model 
(one-shot)

19.5

0.0

-17.6

***

**

***

**

Corr.
(߶,ݍ)ߩ

0.84

0.82

0.82

Std. model
(one-shot)

n/a

-38.4

0.0

Act. average 
(repeated)

-6.8

-3.5

3.6

Forecast correction ݍ െ ߶

(16.2)

(19.2)

(15.5)

Beh. model 
(one-shot)

-19.5

0.0

17.6

***

***

***

*

Number of 
subjects

30

22

30

Note: Standard errors are reported in parentheses. 

Estimation
results

ఊߤ

ఊߪ

1.084 (0.125)

0.614

Mode

Mean

Std. dev.

2.028

3.571

2.416

Distribution 
of ,ߛ ,ߚ ߬, ߣ

Reference 
Point Model 2Original Model

Reference 
Point Model 1

log(ࣦ)

BIC

-3,021

6,076

-3,023

6,073

Goodness
of fit

-3,019

6,084

ఉ෩ߤ 0.563 (0.164)0.591 (0.133) 0.661 (0.157)

Mean 1.7561.805 1.936

ఛߤ
ఛߪ

0.640 (0.222)

0.975

0.698 (0.239)

1.048

ఒ෩ߤ

ఒ෩ߪ

-0.025 (0.077)-0.079 (0.074)

0.000

Mode

Mean

Std. dev.

0.733

3.053

3.849

0.671

3.480

4.919

௨ߪ 11.876 11.849 11.887

Mode

Mean

Std. dev.

0.976

0.976

0.924

0.924

0.000

Not used!

ߛ

ߚ

߬

ߣ

Table 5.2.: Estimation results of reference point models

only difference between δsep and δsepR is that the forecast error penalty factor γ of the original

model is replaced by (1 + τ) in the expectations-based reference point model. The estimates

of γ = 3.571 and (1 + τ) = 4.053 are similar in value as well. The same is true for the

estimates of the lying aversion factor β in both models (β = 1.805 in the original model and

β = 1.756 in Reference Point Model 2). Hence, we conclude that a model with a reference

forecast φ̂R = φ does not deliver a better explanation of our data than the original model and

that the interpretation of the parameters supports a reference point of zero.

We acknowledge that the discussion above only scratches the surface of the complex issue of

reference-dependent utility. Subjects might form all kinds of (potentially different and time-

varying) reference points based on their individual experience and subjective expectations. We
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have taken the two most salient pieces of information in our setting and used them to form

a reference point with regard to the forecast decision. The analyses indicate that a status

quo-based reference point provides a good explanation of the behavior that we observe in our

experiments.

5.2. Additional Experiments

5.2.1. Computerized Order Decisions

To further support our choice of behavioral parameters, we tested the extent to which their

effects are driven by the interaction between two human beings. We ran an experiment where

16 Sales subjects interacted with a computer instead of a human counterpart, repeating Treat-

ments 5–8 of the main experiment with the same choice of incentive parameters for Sales.

Again, half of the subjects played the treatments in the order shown in Table 4.1, and the

other half in reverse order. The design of the experiment and the results are summarized in

Table 5.3. Subjects received the same briefing as in the main experiment, with the only differ-

ence that their forecast now served as data input for a production planning system. We used

the rounded standard model predictions for the behavior of Operations as the decision rule

for the planning system. For example, in Treatment 5C the system planned to produce the

forecast minus 38 units. Subjects were informed about these automated decision rules. They

could use a decision support table, which showed that their expected profits were maximized

when choosing exactly the same amount of inflation that the system would subsequently deduct

from the forecast.

The best response of Sales in the computerized setting varies from the original setting because

the order decision of the computer is now a deterministic function qc(φ̂) = φ̂− c, where c is the

constant that the computer deducts from the forecast. The following proposition summarizes

the optimal response of Sales to such an ordering strategy:

Proposition 5. If the (automated) order decision is qc(φ̂) = φ̂ − c and if at least po > 0 or
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β > 0, the best response of Sales is the forecast φ̂c that solves the first-order condition

b
(

1−G
(
φ̂c − φ− c

))

= γ(po + pu)G
(
φ̂c − φ

)
− γpu


+β for po − pu < 2

γ [b(1−G(−c))− β],

−β for po − pu > 2
γ [b(1−G(−c)) + β].

(5.3)

For 2
γ [b(1−G(−c))− β] ≤ po − pu ≤ 2

γ [b(1−G(−c)) + β], the best response of Sales is the

truthful forecast φ̂c = φ.

Note: Standard deviations are reported in parentheses. Expected cost of Operations are reported in ECUs, 
excluding fixed compensation ܥை. Expectations are taken with respect to ܧ. 

Treatment
(ݑ//ܾ)

5C (10/6/4)

6C (10/8/2)

7C (10/10/0)

8C (10/12/2)

Standard 
model

38.1

15.9

0.0

0.0

Actual average 
(comp. experiment)

29.8

10.5

-3.5

-2.4

Forecast distortion ߶ െ ߶

(17.5)

(13.3)

(12.4)

(10.4)

Actual average 
(main experiment)

1.2

-8.4

-16.7

-14.8

(14.4)

(14.2)

(17.1)

(14.0)

Forecast 
correction by 

computer

-38.0

-16.0

0.0

0.0

Expected 
cost of 

Operations

283

264

259

254

(55.3)

(33.2)

(25.2)

(15.4)

Note: Standard deviations are reported in parentheses.

Treatment
(ݑ//ܾ)

5C (10/6/4)

6C (10/8/2)

7C (10/10/0)

8C (10/12/2)

Standard 
model

38.1

15.9

0.0

0.0

Actual average 
(computerized experiment)

29.8

10.5

-3.5

-2.4

Forecast distortion ߶ െ ߶

(17.5)

(13.3)

(12.4)

(10.4)

Actual average 
(main experiment)

1.2

-8.4

-16.7

-14.8

(14.4)

(14.2)

(17.1)

(14.0)

Forecast correction 
by computer

-38.0

-16.0

0.0

0.0

Changed for
DIss

Table 5.3.: Design and results of the computerized order decisions experiment

As argued in Section 3.1.2, payoffs in the incentive system of Sales differ in their level of

uncertainty when interacting with a human Operations player. While payoffs from forecast

error penalties depend on the known uncertainty in the market error E, the sales bonus is

ambiguous because it also depends on the (individual) quantity choice of Operations. Even

though we set α = 0.5 in the main experiment to minimize the potential biases in Operations’

order decision, Sales subjects cannot be sure that Operations players update their beliefs as

assumed and translate this belief into a rational order decision. Letting a computer make

this decision based on a known algorithm removes this ambiguity. In other words, for a given

forecast decision, Sales knows the order quantity with certainty and can hence compute the

expected sales bonus based on the known uncertainty in the market error E. Consequently,

forecast decisions in the computerized experiment should not be biased towards optimizing the

forecast error penalty, which we expect to result in a smaller parameter value γ. Note that
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the other drivers of γ (loss aversion and ex-post forecast error minimization) are not related

to the strategic nature of the game and should therefore still be reflected in the forecast error

penalty factor γ. Hence, we have the following hypothesis:

Hypothesis 6. The forecast error penalty factor γ in the computerized experiment is smaller

than in the main experiment, but larger than in the standard model, i.e., 1 < γ < 3.571.

In addition to removing the effect of ambiguity aversion, the modifications in the computer-

ized experiment should also eliminate social concerns (Katok and Wu, 2009). As discussed in

Section 3.1.2, we expect Sales to experience a disutility when lying to Operations. In the exist-

ing literature, lying aversion has only been studied in economic settings with social interactions.

We are not aware of any studies that test whether lying aversion prevails in interactions with

nonhuman players. Instead, all concurrent explanations for the phenomenon of lying aversion,

ranging from “guilt aversion” (Charness and Dufwenberg, 2006) to people having a “preference

for promise-keeping per se” (Vanberg, 2008), suggest that it is rooted in the interaction with

another human being. Hence, we do not expect subjects in the computerized experiment to

feel a disutility from reporting untruthful forecasts, which is formulated in the next hypothesis:

Hypothesis 7. The lying aversion factor β in the computerized experiment

(a) is smaller than in the main experiment, i.e., β < 1.805, and

(b) does not improve the fit of the model compared to a model without a lying aversion factor.

Figure 5.1 shows the results of the experiment, i.e., the individual forecast decisions and the

resulting order quantities. The dashed lines mark the equilibrium of Proposition 5 based on

the standard model assumptions (γ = 1, β = 0). Table 5.3 summarizes the predicted forecast

distortions under standard model assumptions, the actual average forecast distortions of the

main experiment and the actual average forecast distortions of the computerized experiment.

The average forecast distortions of the computerized experiment differ considerably from the

forecast distortions of the main experiment (Mann–Whitney U test, p < 0.001 for all compar-

isons). Furthermore, they are not significantly different from the predictions of the standard

model (Wilcoxon signed-rank test, p > 0.140 for all treatments).
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Experiment 6 (computer) – overview of
decisions
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Figure 5.1.: Forecast and order decisions of the computerized order decisions experiment
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Since we do not have a closed-form solution for the forecasting behavior of Sales (Equation

5.3), we use subject-level OLS to generate estimates for γ and β (see Computer Model 1 in

Table 5.4). In support of Hypothesis 6, the average estimate of γ = 1.585 is significantly

different from both the average ML estimate (γ = 3.571) and the average OLS estimate (γ =

4.059) of the main experiment (Mann–Whitney U test, p < 0.01 for both comparisons) but

significantly greater than one (Wilcoxon signed-rank test, p = 0.005). Similarly, in support

of Hypothesis 7(a), the average estimate of β = 0.770 is significantly different from the ML

estimate (β = 1.805, Wilcoxon signed-rank test, p = 0.008) and the average OLS estimate

(β = 2.610, Mann–Whitney U test, p = 0.006) of the main experiment.

Due to a restriction of β ≥ 0 in the estimation procedure to ensure existence of equilibria,

the average estimate of β = 0.770 is significantly greater than zero (Wilcoxon signed-rank

test, p = 0.008). Note, however, that the median estimate of β = 0.051 is close to zero. We

therefore estimate a restricted model (Computer Model 2) with β = 0. Computer Model 2

results in a slightly better aggregate model fit (BIC = 2,538) than Computer Model 1 (BIC =

2,542), which supports Hypothesis 7(b). Moreover, on the level of the individual subject, the

unrestricted model (Computer Model 1) delivers a significantly better fit to the data for only

two out of 16 subjects (F -test, p > 0.163 for 14 subjects, p < 0.05 for two subjects). Note that

we do not use likelihood ratio tests for model comparison as in the main experiment due to

the different estimation procedures.

Note: Reported numbers are the mean, [median], and (standard deviation) of 
the subject-level estimates. 

ߛ

ߚ

Computer Model 1

2,542

1.585 [1.091] (0.881)

0.770 [0.051] (1.698)

Estimates

BIC

Computer Model 2 

2,538

1.508 [1.090] (0.804)

Intercept

߶ (market condition)

߶ (forecast)

ܶ2 (14/3/3)

ܶ3 (12/7/7)

ܶ4 (10/10/10)

ܶ5 (10/6/4)

ܶ6 (10/8/2)

ܶ7 (10/10/0)

ܶ8 (10/12/2)

ݐ (period)

Forecast ߶ Quantity ݍVariable

56.282

0.872

-27.495

-34.061

-37.157

-39.868

-49.373

-57.565

-55.461

-0.154

***

***

***

***

***

***

***

***

***

***

(3.602)

(0.017)

(2.052)

(2.052)

(2.052)

(4.332)

(4.332)

(4.332)

(4.332)

(0.099)

10.258

0.643

13.398

22.116

25.628

26.831

27.740

30.289

30.610

0.111

***

***

***

***

***

***

***

***

***

**

(3.499)

(0.014)

(1.938)

(1.963)

(1.979)

(3.874)

(3.895)

(3.916)

(3.907)

(0.051)

Note: Significance of estimates (ݐ-test): ***   ** ,0.01 >  * ,0.05 > < 0.1. 
Standard errors are reported in parentheses. 

Note: Standard deviations are reported in parentheses. Expected cost of Operations are reported in ECUs, excluding fixed compensation ܥை and expectations 
are taken with respect to ܧ.

1 (16/0/0)

2 (14/3/3)

3 (12/7/7)

4 (10/10/10)

Treatment
(ݑ//ܾ)

5 (10/6/4)

6 (10/8/2)

7 (10/10/0)

8 (10/12/2)

40.7

13.3

6.9

3.9

All 
subjects

1.2

-8.4

-16.7

-14.8

Forecast distortion ߶ െ ߶

(41.6)

(16.0)

(12.3)

(11.8)

(14.4)

(14.2)

(17.1)

(14.0)

-38.9

-15.4

-3.9

1.0

All 
subjects

3.2

7.1

12.3

11.6

Forecast correction ݍ െ ߶

(46.0)

(20.3)

(14.4)

(9.7)

(13.2)

(14.9)

(15.0)

(15.2)

374

308

280

267

(169.0)

(87.4)

(67.9)

(39.7)

285

288

298

284

(72.1)

(66.9)

(80.6)

(68.1)

44.4

14.3

7.0

4.3

Normal 
order

3.5

-8.0

-19.1

-16.0

(53.3)

(19.4)

(13.0)

(9.7)

(15.5)

(15.2)

(20.1)

(11.8)

37.0

12.4

6.8

3.6

Reverse 
order

-1.0

-8.8

-14.4

-13.5

(25.0)

(11.7)

(11.7)

(13.6)

(12.9)

(13.4)

(13.2)

(15.9)

-48.0

-21.0

-9.1

-1.6

Normal 
order

5.7

10.4

16.0

15.6

(55.0)

(16.9)

(10.2)

(6.3)

(13.8)

(16.9)

(15.1)

(14.8)

-29.7

-9.7

1.2

3.6

Reverse 
order

0.6

3.9

8.6

7.5

(33.1)

(21.9)

(16.1)

(11.7)

(12.3)

(11.9)

(14.2)

(14.5)

All 
subjects

Expected cost of Operations

360

304

271

255

Normal 
order

293

295

305

270

(150.5)

(77.4)

(56.9)

(22.5)

(86.2)

(81.4)

(94.8)

(59.3)

386

312

290

278

Reverse 
order

277

281

292

298

(186.0)

(96.6)

(76.5)

(49.0)

(54.2)

(47.9)

(63.5)

(73.6)

Note: Standard deviations are reported in parentheses. 

1 (16/0/0)

2 (14/3/3)

3 (12/7/7)

4 (10/10/10)

Treatment
(ݑ//ܾ)

5 (10/6/4)

6 (10/8/2)

7 (10/10/0)

8 (10/12/2)

40.7

13.3

6.9

3.9

All 
subjects

1.2

-8.4

-16.7

-14.8

Forecast distortion ߶ െ ߶

(41.6)

(16.0)

(12.3)

(11.8)

(14.4)

(14.2)

(17.1)

(14.0)

-38.9

-15.4

-3.9

1.0

All 
subjects

3.2

7.1

12.3

11.6

Forecast correction ݍ െ ߶

(46.0)

(20.3)

(14.4)

(9.7)

(13.2)

(14.9)

(15.0)

(15.2)

44.4

14.3

7.0

4.3

Normal 
order

3.5

-8.0

-19.1

-16.0

(53.3)

(19.4)

(13.0)

(9.7)

(15.5)

(15.2)

(20.1)

(11.8)

37.0

12.4

6.8

3.6

Reverse 
order

-1.0

-8.8

-14.4

-13.5

(25.0)

(11.7)

(11.7)

(13.6)

(12.9)

(13.4)

(13.2)

(15.9)

-48.0

-21.0

-9.1

-1.6

Normal 
order

5.7

10.4

16.0

15.6

(55.0)

(16.9)

(10.2)

(6.3)

(13.8)

(16.9)

(15.1)

(14.8)

-29.7

-9.7

1.2

3.6

Reverse 
order

0.6

3.9

8.6

7.5

(33.1)

(21.9)

(16.1)

(11.7)

(12.3)

(11.9)

(14.2)

(14.5)

Too w
D

Table 5.4.: Estimation results of the computerized order decisions experiment

While the experiment with automated order decisions does not exclude alternative behavioral

factors as drivers for the forecast and order decisions that we observe in the main experiment,

it does provide support for our choice of behavioral parameters: Both γ and β change with

78



5. Discussion

respect to the direction predicted by their underlying theories when we replace the human

Operations player with a computerized one.

5.2.2. Repeated Interactions

In our behavioral model and in the main experiment, we assume that Sales and Operations do

not know each other and interact only once. Their decisions are assumed to be independent

of any past experience or future expectations regarding the behavior of their counterpart.

Interactions between departments of one company, however, are likely to occur repeatedly. In

the case of forecast information sharing, this may happen on a monthly basis as shown in the

case example of PharmaCo (Chapter2). We therefore ran two additional experimental sessions,

where Sales subjects interacted with the same Operations player over the course of 30 periods.

The design of the experiment and the results are summarized in Table 5.5. Figure 5.2 shows

the individual forecast and order decisions of all subjects. Dashed lines mark the predictions

of the one-shot behavioral model (γ = 3.571, β = 1.805).

We chose one treatment of the main experiment with inflated forecasts to model the situation

that we frequently observed in practice (Treatment 2) and one treatment with truthful forecasts

(Treatment 5). Each treatment was played with a different group of subjects (30 subjects in

Treatment 2R and 22 subjects in Treatment 5R). Subjects received the same briefing as in the

main experiment, except that they were informed about the fact that they would interact with

the same partner throughout the entire experiment. Also, they were told that the experiment

would last between 20 and 40 periods in order to avoid endgame behavior. We excluded one

observation from the data where a Sales subject accidentally entered an order quantity of 1,000

instead of 100 in period 28, which (s)he reported to the experimenter when collecting the payoff.

Excluding all observations of this subject and his/her fellow player does not change the results

of our analyses. The analyses below are therefore based on all but this single observation.

Previous research has shown that repeated interactions and their resulting effect on reputa-

tion foster cooperation (Dal Bó, 2005). Unlike cooperative actions that are based on reciprocity

or fairness (e.g., Fehr and Schmidt, 1999; Bolton and Ockenfels, 2000), cooperative behavior in

repeated interactions is mainly due to the fact that the actors “expect future material benefits
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Treatment
(ݑ//ܾ)

R1 (14/3/3)

R2 (10/6/4)

Corr.
,߶)ߩ ߶)

0.95

0.91

Std. model
(one-shot)

n/a

38.4

Act. average 
(repeated)

8.0

-0.6

Forecast distortion ߶ െ ߶

(12.2)

(15.2)

Note: Significances of differences between model predictions and actual averages (Wilcoxon signed-rank test): *** p < 0.01, ** p < 0.05, * p < 0.1. 
Standard deviations reported in parentheses. Correlation is the Pearson correlation coefficient.

Beh. model 
(one-shot)

19.5

0.0

***

***

Corr.
(߶,ݍ)ߩ

0.84

0.82

Std. model
(one-shot)

n/a

-38.4

Act. average 
(repeated)

-6.8

-3.5

Forecast correction ݍ െ ߶

(16.2)

(19.2)

Beh. model 
(one-shot)

-19.5

0.0

***

***

Number of 
subjects

30

22

Treatment
(ݑ//ܾ)

R1 (14/3/3)

R2 (10/6/4)

Corr.
,߶)ߩ ߶)

0.95

0.91

Std. model
(one-shot)

n/a

38.4

Act. average 
(repeated)

8.0

-0.6

Forecast distortion ߶ െ ߶

(12.2)

(15.2)

Note: Standard deviations reported in parentheses. Correlation is the Pearson correlation coefficient.

Beh. model 
(one-shot)

19.5

0.0

Corr.
(߶,ݍ)ߩ

0.84

0.82

Std. model
(one-shot)

n/a

-38.4

Act. average 
(repeated)

-6.8

-3.5

Forecast correction ݍ െ ߶

(16.2)

(19.2)

Beh. model 
(one-shot)

-19.5

0.0

Number of 
subjects

30

22

Note: Standard deviations are reported in parentheses. Correlation is the Pearson correlation coefficient.

Treatment
(ݑ//ܾ)

R1 (14/3/3)

R2 (10/6/4)

Corr.
,߶)ߩ ߶)

0.95

0.91

Std. model
(one-shot)

n/a

38.4

Act. average 
(repeated)

8.0

-0.6

Forecast distortion ߶ െ ߶

(12.2)

(15.2)

Beh. model 
(one-shot)

19.5

0.0

Corr.
(߶,ݍ)ߩ

0.84

0.82

Std. model
(one-shot)

n/a

-38.4

Act. average 
(repeated)

-6.8

-3.5

Forecast correction ݍ െ ߶

(16.2)

(19.2)

Beh. model 
(one-shot)

-19.5

0.0

Number of 
subjects

30

22

Number of 
subjects

30

22

Note: Standard deviations are reported in parentheses. 

Treatment
(ݑ//ܾ)

2R (14/3/3)

5R (10/6/4)

Forecast distortion ߶ െ ߶

Act. avg. 
(repeated)

8.0

-0.5

(12.3)

(15.3)

Behavioral 
model

19.5

0.0

Forecast correction ݍ െ ߶

Act. avg.
(one-shot)

13.3

1.2

(16.0)

(14.4)

-6.8

-4.0

(16.2)

(19.1)

Act. avg. 
(repeated)

-15.4

3.2

(20.3)

(13.2)

Act. avg.
(one-shot)

-19.5

0.0

Behavioral 
model

Order deviation ݍ െ ߶

1.2

-4.7

(20.1)

(20.8)

Act. avg. 
(repeated)

-2.0

4.4

(24.3)

(19.3)

Act. avg.
(one-shot)

0.0

0.0

Behavioral 
model

Not used!

Not used!

Not used!

Note: Standard deviations are reported in parentheses. Expected cost of Operations are reported in ECUs, excluding 
fixed compensation ܥை. Expectations are taken with respect to ܧ. 

Treatment
(ݑ//ܾ)

2R (14/3/3)

5R (10/6/4)

Forecast distortion ߶ െ ߶

Act. avg. 
(repeated)

8.0

-0.5

(12.3)

(15.3)

Beh.
model

19.5

0.0

Forecast correction ݍ െ ߶

Act. avg.
(one-shot)

13.3

1.2

(16.0)

(14.4)

-6.8

-4.0

(16.2)

(19.1)

Act. avg. 
(repeated)

-15.4

3.2

(20.3)

(13.2)

Act. avg.
(one-shot)

-19.5

0.0

Beh.
model

Expected cost of
Operations

285

291

(30.4)

(30.4)

Act. avg. 
(repeated)

308

285

(87.4)

(72.1)

Act. avg.
(one-shot)

Too wide for
Diss

Table 5.5.: Design and results of the repeated interactions experiment

from their actions” (Fehr and Falk, 2002, p. 689). For example, in the case of signaling games,

the use of trigger or review strategies by the signal receiver (in our case Operations) can help

to uncover untruthful forecasting behavior (for a discussion and further references, see Ren

et al., 2010).

For their game of forecast information sharing with sales-bonus-only incentives, the exper-

imental data of Özer et al. (2011) suggests that forecasts are more truthful in a repeated

interaction than a one-time interaction but that some forecast distortion remains if Operations

cannot perfectly verify the amount of forecast distortion ex-post. Hence, we formulate the

following hypothesis:

Hypothesis 8. The absolute values of forecast distortions and corrections in a repeated inter-

action are

(a) smaller than those predicted by the one-shot behavioral model, and

(b) smaller than those observed in the one-shot experiment.

For incentive systems where the behavioral model predicts inflated forecasts and where

we observe inflated forecasts in the main experiment (Treatment 2R), Hypothesis 8 implies

that forecasts will be less inflated in a repeated interaction. For incentive systems where the

behavioral model predicts truthful forecasting and where we observe truthful forecasts in the

main experiment (Treatment 5R), the hypothesis implies that forecasts will also be truthful in

a repeated interaction.

Table 5.5 shows the predictions of the behavioral model (γ = 3.571, β = 1.805) under one-

shot assumptions next to the results of the one-shot and repeated interactions experiment. We
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Experiment 8 (repeated)

Treatment 2R (ܾ ൌ 14,  ൌ 3, ௨ ൌ 3)

Treatment 5R (ܾ ൌ 10,  ൌ 6, ௨ ൌ 4)

200

150

100

50

0

10050 150 2000

150

100

0

2000

50

100

200

50 150 100 150

100

200

0

50

50

150

2000

Demand forecast Order quantity Order quantity

Market condition Demand forecast Market condition

200

150

200

0

50

150

100

1000 50 100 150

50

0

200

100

500 200

150 150

100

50

0

200150100

200

500

Demand forecast Order quantity Order quantity

Market condition Demand forecast Market condition

Figure 5.2.: Forecast and order decisions of the repeated interactions experiment

find support for Hypothesis 8(a) in both treatments of the experiment. In Treatment 2R, the

actual average forecast inflation in the experiment is 8.0. It is significantly smaller than the

behavioral model prediction (Wilcoxon signed-rank test, p = 0.001), but significantly greater

than zero (Wilcoxon signed-rank test, p = 0.002). Similarly, the absolute average forecast

correction of 6.8 is significantly smaller than predicted by the behavioral model (Wilcoxon

signed-rank test, p = 0.001), but significantly greater than zero (Wilcoxon signed-rank test,

p = 0.004). For Treatment 5R, the one-shot behavioral model predicts truthful information

sharing and the results are in line with the prediction: The average forecast distortions and

corrections are not significantly different from zero (Wilcoxon signed-rank test, p > 0.5 in both

cases).

In order to test Hypothesis 8(b), we run GLS random effects regressions based on the data

of Treatments 2 and 5 of the main experiment and Treatments 2R and 5R of the repeated

interactions experiment. We regress the forecast φ̂ on the market condition φ, on a dummy
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variable T2 that differentiates Treatments 2 and 2R (T2 = 1) from Treatments 5 and 5R

(T2 = 0) and on two dummy variables that mark the repeated interaction treatments (T2R and

T5R). Note that we add two dummy variables for the repeated interaction setting because we

expect different effects of the repeated interaction in Treatment 2R compared to Treatment 5R.

Due to the different experimental setups of the main experiment (subjects played four different

treatments over eight periods each) and the repeated interactions experiment (subjects played

only one treatment over 30 periods), there could be other factors than the repeated interaction

that affect behavior. We try to control for part of these factors by adding the period t, and the

period within a treatment (tT ) as variables that represent the experience of a subject in the

regression. We run a similar regression for the order quantity q, except that we use the forecast

φ̂ as an explanatory variable instead of the market condition φ. The regression functions are

as follows:

φ̂it = Intercept+ηφ ·φit+ηFCT2 ·T2it+η
FC
T2R ·T2Rit+η

FC
T5R ·T5Rit+η

FC
t ·t+ηFCtT ·tT +vFCi +uFCit ,

and

qit = Intercept + ηφ̂ · φ̂it + ηQT2 · T2it + ηQT2R · T2Rit + ηQT5R · T5Rit + ηQt · t+ ηQtT · tT + vQi + uQit ,

where subjects are indexed by i and periods by t. The error terms are split into a subject-

specific part (vFCi ∼ N (0, σ2
v,FC), vQi ∼ N (0, σ2

v,Q)) and a part that is independent across all

observations (uFCit ∼ N (0, σ2
u,FC), uQit ∼ N (0, σ2

u,Q)) to account for the grouped structure of

the data.

Table 5.6 summarizes the results of both regressions. Because the overall experience t and

the experience within a treatment tT are highly correlated, including both variables causes

a multicollinearity problem. Therefore, we included only the time variable with the higher

explanatory power in each of the regressions. Confirming previous results, the treatment

dummy variable T2 is highly significant and indicates that, on average, subjects forecast 12.254

units more and order 15.744 units less in Treatment 2 (14/3/3) than in Treatment 5 (10/6/4).

In line with Hypothesis 8(b), we find that when playing Treatment 2 repeatedly with the
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3 (12/7/7)

4 (10/10/10)

Treatment (ܾ/ݑ/)

5 (10/6/4)

6 (10/8/2)

7 (10/10/0)

8 (10/12/2)

3.04

3.54

Mean

5.13

5.98

4.14

5.35

Forecast error penalty factor ߛ

2.73

3.27

Median

2.73

6.50

3.18

5.36

2.19

2.16

Std. dev.

3.93

3.59

2.59

3.37

OLS estimates by treatment

OLS estimates across all treatments

Random effects ML estimates

4.53

4.06

3.57

3.36

2.23

2.96

3.15

4.60

2.42

2.65

2.47

Mean

0.75

3.09

4.84

3.52

Lying aversion factor ߚ

3.03

1.62

Median

0.61

1.52

4.34

3.99

2.09

1.72

Std. dev.

0.97

3.52

3.31

3.34

2.89

2.61

1.80

2.52

1.57

1.80

2.49

2.60

n. a.

Intercept

߶ (market condition)

߶ (forecast)

ܶ2 (14/3/3)

ܶ2ܴ (14/3/3 repeated)

ܶ5ܴ (10/6/4 repeated)

ݐ (period)

்ݐ (period within treatment)

Forecast ߶

Variable

8.016

0.928

12.254

-5.758

-2.184

0.069

Estimate p-valueStd. Err.

2.869

0.009

3.836

3.843

4.169

0.043

0.005

0.000

0.001

0.134

0.600

0.104

Quantity ݍ

19.890

0.805

-15.744

8.573

-6.119

0.168

Estimate p-valueStd. Err.

3.021

0.012

3.679

3.581

3.877

0.054

0.000

0.000

0.000

0.017

0.115

0.002

Intercept

߶ (market condition)

߶ (forecast)

ܶ2 (14/3/3)

ܶ2ܴ (14/3/3 repeated)

ܶ5ܴ (10/6/4 repeated)

ݐ (period)

்ݐ (period within treatment)

Forecast ߶ Quantity ݍVariable

8.016

0.928

12.254

-5.758

-2.184

0.069

***

***

***

*

(2.869)

(0.009)

(3.836)

(3.843)

(4.169)

(0.043)

19.890

0.805

-15.744

8.573

-6.119

0.168

***

***

***

**

***

(3.021)

(0.012)

(3.679)

(3.581)

(3.877)

(0.054)

Note: Significance of estimates (ݖ-test): ***   ** ,0.01 >  * ,0.05 > < 0.1. 
Standard errors are reported in parentheses. 

Not used

Table 5.6.: Regression results of repeated interaction effects

same partner (T2R), subjects forecast less (−5.758 units) and order more (8.573 units) than

in the one-shot interaction. This effect is significant for the order quantities (p = 0.017), but

it does not attain conventional levels of statistical significance for the forecasts (p = 0.134).

When playing Treatment 5 repeatedly (T5R), we do not expect to find behavior that differs

from the one-shot interaction and the regressions show that neither forecasts (p = 0.600) nor

order quantities (p = 0.115) are significantly different from those in a one-shot interaction. We

conclude that we find directional support for Hypothesis 8(b).

Figure 5.3 shows the average forecast distortions over time for the two treatments. We

analyzed the data for time and learning effects by conducting a random effects GLS regression

of the forecasts on the market conditions and periods. Period is not a significant explanatory

variable (z-test, p > 0.2 for both treatments), which indicates that forecasting behavior does

not change significantly over time.

Figure 5.4 shows the average forecast corrections over time. The ordering behavior is more

volatile than the forecasting behavior, especially in the first half of the experiment. A random

effects GLS regression of the order quantities on the forecasts and periods reveals that period

is a significant explanatory variable in at least one of the treatments (z-test, p = 0.001 in

Treatment 2R and p = 0.104 in Treatment 5R). In both treatments, order quantities increase

over time (0.23 units per period in Treatments 2R and 0.15 units per period in Treatment 5R).

This observation is consistent with the regression results in Table 5.6 that Operations subjects
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Figure 5.3.: Average forecast distortions over time in the repeated interactions experiment

Experiment 8 (repeated)
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Figure 5.4.: Average forecast corrections over time in the repeated interactions experiment
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tend to become slightly more cooperative over time. We will further investigate this finding in

the one-shot setting of the main experiment in Section 5.3.1.

We conclude that repeated interactions alleviate the problem of distorted forecast infor-

mation to some extent, but do not entirely remedy forecast biases in the case of ill-defined

forecast incentives. This finding is in line with our observations at PharmaCo, where some

bias remained in the forecasts after the implementation of forecast accuracy incentives (see

Section 2.3). Additionally, the above analyses suggest that incentive schemes which lead to

truthful information sharing in one-time interactions also support truthful forecasts in a re-

peated game setting. Hence, companies can use the behavioral model of Chapters 3 and 4 to

design incentive systems for truthful forecast information sharing despite a potential violation

of the one-time interaction assumption.

5.3. Supporting Data Analyses

5.3.1. Analysis of Time and Order Effects

In our main experiment, each subject played multiple periods under multiple treatment con-

ditions. We hence run a set of random effects GLS regressions to identify possible time trends

over the course of 32 periods as well as potential treatment order effects caused by the within-

subject design used in each of the two sessions (for a detailed discussion on between- and

within-subject designs, see Charness et al., 2012).

Time effects.

To test if the behavior of subjects in our experiment changes systematically over time, we

regress the forecast φ̂ on the market condition φ, dummy variables for seven out of eight

treatments (T2 to T8) and the period t (t = 1..32). We run a similar regression for the order

quantity q, except that we use the forecast φ̂ as an explanatory variable instead of the market

condition φ. We formulate the regression functions as

φ̂it = Intercept + ηφ · φit + ηFCT2 · T2it + ...+ ηFCT8 · T8it + ηFCt · t+ vFCi + uFCit , (5.4)
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and

qit = Intercept + ηφ̂ · φ̂it + ηQT2 · T2it + ...+ ηQT8 · T8it + ηQt · t+ vQi + uQit , (5.5)

where subjects are indexed by i and periods by t. The error terms are split into a subject-

specific part (vFCi ∼ N (0, σ2
v,FC), vQi ∼ N (0, σ2

v,Q)) and a part that is independent across all

observations (uFCit ∼ N (0, σ2
u,FC), uQit ∼ N (0, σ2

u,Q)) to account for the grouped structure of

the data. We also tested for learning effects within a treatment by adding another variable

to Equations (5.4) and (5.5) that marks the period within a treatment, tT = 1..8, however,

the estimates were not significantly different from zero in the forecast or the order quantity

regression (z-test, p > 0.5).

Note: Reported numbers are the mean, [median], and (standard deviation) of 
the subject-level estimates. 

ߛ

ߚ

Computer Model 1

2,542

1.585 [1.091] (0.881)

0.770 [0.051] (1.698)

Estimates

BIC

Computer Model 2 

2,538

1.508 [1.090] (0.804)

Intercept

߶ (market condition)

߶ (forecast)

ܶ2 (14/3/3)

ܶ3 (12/7/7)

ܶ4 (10/10/10)

ܶ5 (10/6/4)

ܶ6 (10/8/2)

ܶ7 (10/10/0)

ܶ8 (10/12/2)

ݐ (period)

Forecast ߶ Quantity ݍVariable

56.282

0.872

-27.495

-34.061

-37.157

-39.868

-49.373

-57.565

-55.461

-0.154

***

***

***

***

***

***

***

***

***

***

(3.602)

(0.017)

(2.052)

(2.052)

(2.052)

(4.332)

(4.332)

(4.332)

(4.332)

(0.099)

10.258

0.643

13.398

22.116

25.628

26.831

27.740

30.289

30.610

0.111

***

***

***

***

***

***

***

***

***

**

(3.499)

(0.014)

(1.938)

(1.963)

(1.979)

(3.874)

(3.895)

(3.916)

(3.907)

(0.051)

Note: Significance of estimates (ݖ-test): ***   ** ,0.01 >  * ,0.05 > < 0.1. 
Standard errors are reported in parentheses. 

Note: Standard deviations are reported in parentheses. Expected cost of Operations are reported in ECUs, excluding fixed compensation ܥை and expectations 
are taken with respect to ܧ.
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Table 5.7.: Regression results of time effects in the main experiment

Table 5.7 shows the coefficient estimates for both regressions. The significantly positive

estimates for ηφ and ηφ̂ support our previous finding that (a) forecasts depend on the market

condition and (b) order decisions are driven by the forecast (compare Section 4.1.5). The

comparably low estimate ηφ̂ = 0.643 in the order quantity regression is considerably driven

by the sales-bonus-only treatment (Treatment 1). Individual regressions by treatment result

in estimates ηφ̂ = 0.278 for Treatment 1 and in estimates ηφ̂ ∈ (0.700; 0.889) for all other

treatments. The coefficients of the treatment dummies are all significantly different from zero,
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5. Discussion

confirming that the use of forecast error incentive schemes leads to different levels of forecasting

and ordering than a sales-bonus-only incentive scheme.

We find time effects in both the forecast decisions of Sales and in the order decisions of

Operations. The size of these effects is moderate: On average, Sales inflates the forecast 4.9

units less and Operations orders 3.6 units more at the end of each session compared to the

beginning. Both trends indicate an increased level of cooperation over time. However, since

both parties adjust their decisions over time, this adaptation is not reflected in the overall

operational performance. When regressing the expected cost of Operations on the treatment

dummies and the period, the time trend is not significant (z-test, p = 0.250).

Interestingly, the time trends in both the forecast and order decisions are at odds with the

time trends that Özer et al. (2011) find in their data. Under their sales-bonus-only incentive

system, forecast inflation increases and order decisions decrease over time, hence cooperation

seems to deteriorate over time. These different observations could be an indicator that the

more truthful forecasting behavior under forecast error incentive systems has a positive effect

on cooperation over time. However, additional experimental data would be needed to test if

this reversal in time effects is truly a result of the different incentive systems or rather a result

of the different experimental setups, e.g., due to the use of multiple treatments per subject in

our setting versus one treatment per subject in the experiment of Özer et al. (2011).

To analyze whether the time trends found in the above regressions are driven by our experi-

mental design, we run separate regressions by session. We regress the forecast φ̂ on the market

condition φ, dummy variables for three out of four treatments (T2 to T4 for Session 1 and T6

to T8 for Session 2), the period t and a dummy SG that indicates whether a subject played

the treatments in the order shown in Table 4.1 (SG = 0) or in reverse order (SG = 1). We also

tested for interaction effects between period and subgroup, but did not find any of significance

(z-tests, p > 0.1 in all regressions). Again, we run a similar regression for the order quantity

q, except that we use the forecast φ̂ as an explanatory variable instead of the market condition

φ.

Table 5.8 shows the coefficient estimates for both sessions. The time coefficients ηFCt and

ηQt have the same signs as in the regression on the entire data set. With respect to the forecast
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decisions, the time effect is significant only in Session 2. With respect to the order decisions,

the time effect is significant only in Session 1. We conclude that the time trends reported in

Table 5.7 are prevalent (though not necessarily significant anymore) in both sessions of our

experiment. However, the overall effect is moderate and we limit its impact on behavior in

each of the treatments by the use of a reverse order design for half of the subjects. Hence,

we do not investigate this issue any further, but acknowledge that it is a by-product of our

repeated one-shot interaction design.

Intercept

߶ (market condition)

߶ (forecast)

ܶ2 (14/3/3)

ܶ3 (12/7/7)

ܶ4 (10/10/10)

ݐ (period)

ܩܵ (subgroup)

Forecast ߶ Quantity ݍVariable

Session 1

54.343

0.902

-27.469

-34.001

-37.068

-0.141

-2.566

***

***

***

***

***

(5.863)

(0.030)

(2.581)

(2.581)

(2.582)

(0.099)

(6.407)

14.586

0.569

11.303

19.462

22.679

0.180

10.182

***

***

***

***

***

**

*

(5.617)

(0.022)

(2.304)

(2.353)

(2.382)

(0.085)

(6.001)

Intercept

߶ (market condition)

߶ (forecast)

ܶ6 (10/8/2)

ܶ7 (10/10/0)

ܶ8 (10/12/2)

ݐ (period)

ܩܵ (subgroup)

Forecast ߶ Quantity ݍVariable

Session 2

19.321

0.842

-9.475

-17.634

-15.504

-0.166

0.453

***

***

***

***

***

***

(4.021)

(0.015)

(1.321)

(1.322)

(1.323)

(0.051)

(5.035)

30.216

0.756

1.883

5.247

5.244

0.045

-6.700

***

***

***

***

**

(2.967)

(0.017)

(1.397)

(1.414)

(1.406)

(0.053)

(2.997)

Note: Significance of estimates (ݐ-test): ***   ** ,0.01 >  * ,0.05 > < 0.1. Standard errors are reported in parentheses. 
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***

***

***

***

***

**

*

(5.617)

(0.022)

(2.304)

(2.353)

(2.382)

(0.085)

(6.001)

Intercept
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߶ (forecast)

ܶ6 (10/8/2)

ܶ7 (10/10/0)

ܶ8 (10/12/2)
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Forecast ߶ Quantity ݍVariable

Session 2

19.321

0.842

-9.475

-17.634

-15.504

-0.166

0.453

***

***

***

***

***

***

(4.021)

(0.015)

(1.321)

(1.322)

(1.323)

(0.051)

(5.035)

30.216

0.756

1.883

5.247
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0.045

-6.700

***

***

***

***

**

(2.967)

(0.017)

(1.397)

(1.414)

(1.406)

(0.053)

(2.997)

Note: Significance of estimates (ݖ-test): ***   ** ,0.01 >  * ,0.05 > < 0.1. 
Standard errors are reported in parentheses. 

Table 5.8.: Regression results of time and order effects by session of the main experiment
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Order effects.

While the regressions on the session level (see Table 5.8) do not point to any systematic

differences in the behavior of the subgroups over time, they do show evidence of order effects.

The estimates of ηFCSG and ηQSG indicate that the order of treatments does not seem to matter

for the Sales subjects, but that it plays a significant role in the decisions of the Operations

subjects. We use the subgroup-specific statistics reported in Table 5.9 and Figure 5.5 to verify

this pattern. In Session 1, Operations subjects who experienced rather truthful forecasting

behavior in Treatment 4 (10/10/10) at the beginning of the experiment ordered ηQSG = 10.182

units more on average than those who experienced high levels of inflation in the sales-bonus-only

treatment (Treatment 1 (16/0/0)) first. When regressing the data of each treatment separately,

this effect is significant at the 5 % confidence level in Treatment 4 only (ηQSG = 5.163) even

though the estimates in Treatments 1–3 are all positive (ηQSG ∈ (10.675; 13.000)). A similar logic

applies to Session 2: Operations subjects who were first exposed to rather truthful forecasting

behavior in Treatment 5 (10/6/4) place higher orders than the subjects who are confronted with

considerable forecast distortions in Treatments 7 (10/10/0) and 8 (10/12/2) at the beginning

of the game (ηQSG = −6.700). Separate regressions by treatment of Session 2 show that the

subgroup is a significant determinant of order decisions at the 5 % level in Treatments 5 and

6 (ηQSG = −5.865 and ηQSG = −6.803 respectively). While not significant, the estimates in

Treatments 7 and 8 have similar values (ηQSG = −6.209 and ηQSG = −7.479 respectively). It

thus seems that subjects consider the history of the game and the experience of previous

treatments even though they play anonymously with different partners in each period.

A possible explanation for the systematically different behavior of the subgroups lies in the

concept of reciprocity. Reciprocal people “reward kind actions and punish unkind ones” (Falk

and Fischbacher, 2006, p. 293). The mechanism of reciprocity was originally studied in the

context of bilateral interactions (e.g., Fehr and Schmidt, 1999; Bolton and Ockenfels, 2000).

However, further research in this area has shown that a person A tends to reciprocate the

behavior experienced in an interaction with person B to a third person C who was not part

of the original interaction (for the concept of “indirect reciprocity,” see Nowak and Sigmund,

2005). Hence, Operations subjects who experienced truthful forecasts at the beginning of the

89



5. Discussion

Note: Reported numbers are the mean, [median] and (standard deviation) of 
the subject-individual estimates. 
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Note: Significance of estimates (t-test): *** p < 0.01, ** p < 0.05, * p < 0.1. 
Standard errors are reported in parentheses. 

Note: Standard deviations are reported in parentheses. Expected cost of Operations are reported in ECU, excluding fixed compensation ܥை and expectations 
are taken with respect to ܧ.
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Table 5.9.: Summary statistics by order of play of the main experiment
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Figure 5.5.: Expected cost of Operations by order of play of the main experiment
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game might reciprocate this seemingly cooperative behavior by choosing higher order quantities

in later periods.

While there could be other reasons for why subjects behave differently in the two subgroups,

our main interest is whether the existence of order effects biases the results of our main exper-

iment in Section 4.1. Thanks to the reverse order design between the two subgroups in each

session, we cover both the case of positive and negative social experience at the beginning of

the game in the data of our main experiment. Hence, the spread of decisions in our data might

be comparably high, but the data should not be systematically distorted due to experimen-

tal order effects. To further substantiate this presumption, we analyze the experimental data

based on only the first treatment that a subject played. For subjects in Session 1, we use the

data of Treatments 1 and 4, depending on the order of play, and for subjects in Session 2, we

use the data of Treatments 5 and 8.

To estimate the behavioral parameters γ and β based on the reduced data set, we run the

nonlinear mixed effects ML regression specified in Section 4.1.4 based on the data of Treatments

4, 5 and 8 only. As in the original estimation, we exclude Treatment 1 because we do not have

an equilibrium prediction for it. In analogy to Table 4.4, we compare the estimation results of

the full data set (Model 3) to the new estimation results based on the reduced data set (Model

7) in Table 5.10. In Model 7, the random effects are degenerated (σγ̃ ≈ 0), which can be

attributed to the small sample size (24 subjects, 8 observations per subject). The fixed effect

of γ is highly significant (t-test, p < 0.001), whereas the fixed effect of β is not significantly

different from zero (p = 0.154). To test whether both behavioral parameters are needed to

explain the data, we run two additional regressions, where only γ (Model 8) or only β (Model

9) are included as (random) explanatory variables. By comparison of the BIC, we find that

Model 8 fits the data better than Model 7, while the fit of Model 9 is worse than that of Model

7. Hence, based on the reduced data set, a lying aversion factor β > 0 does not seem to be

needed, whereas the forecast error penalty factor γ improves the explanatory power of the

model.

With respect to our hypotheses (see Sections 3.3 and 4.1.5), the reduced data set supports

nearly all previous findings. For Hypotheses 2–5, the analyses of the reduced data set deliver
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Note: Standard errors are reported in parentheses.

log(ࣦ)
BIC

ఊߤ
ఊߪ

Mode
Mean
Std. dev.

Estimation
results

ఉ෩ߤ
ఉ෩ߪ

௨ߪ

Mode
Mean
Std. dev.

Distribution 
of ߛ and ߚ

Goodness
of fit

Model 
description

-791
1,604

0.937 (0.098)
0.000

2.553
2.553
0.000

Model 7

0.431 (0.301)

14.930

1.539
1.539

 ߛ random
 ߚ fixed
 ݊	 ൌ 	192

-3,023
6,073

1.084 (0.125)
0.614

2.028
3.571
2.416

Model 3

0.591 (0.133)

11.876

1.805
1.805

 ߛ random
 ߚ fixed
 ݊	 ൌ 	768

ߛ

ߚ

-779
1,575

1.154 (0.191)
0.736

1.845
4.160
3.529

Model 8 

12.901

 ߛ random
 ߚ ൌ 0
 ݊	 ൌ 	192

-815
1,645

Model 9

1.300 (0.068)
0.008

16.853

3.668
3.668
0.030

 ߛ ൌ 1
 ߚ random
 ݊	 ൌ 	192

Table 5.10.: Estimation results based on the first treatments of the main experiment

similar significant results as the analyses of the full data set. For Hypothesis 1, the findings

are mixed: Based on the estimation results above, we find support for the hypothesis that

the behavioral model explains actual decisions better than the standard model. However,

only the forecast error penalty factor γ seems to be relevant in this context and we do not

find evidence for the existence of a lying aversion factor β > 0. Given the reduced set of

treatments, however, this deviation from previous results can be explained. As indicated in

Section 4.1.4, there is an overlap in the directional effects of γ and β: In the behavioral model,

both parameters predict a reduction in forecast inflation if the standard model predicts forecasts

that are higher than the actual market condition. This is the case in Treatments 4 and 5 and

the experimental observation is in line with this prediction. In Treatment 8, the standard model

predicts truthful forecasts, but average forecasts in the experiment are deflated. This effect

can only be explained by a forecast error penalty factor γ > 1 (a lying aversion factor β > 0

would support the prediction of the standard model). Hence, only for one third of observations

(and subjects) of the reduced data set do the behavioral effects that we investigate influence
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decisions in different directions. Given that subjects play only one treatment in the reduced

data set, the decisions of Treatment 8 could be attributed to comparably low individual values

of γ for these subjects, rather than average values of γ whose “downward effect” is partially

offset by an “upward effect” of β. Therefore, the forecast error penalty factor γ is sufficient to

explain all of the observed behavior in this subset of treatments and the lying aversion factor

β does not increase the explanatory power of the model.

To summarize, we acknowledge that there are order effects caused by the within-subject

design of our experiment. However, we limited the impact of order effects on our results by

the reverse order of play for half of the subject pool. As a result, the spread of decisions in our

data set is comparably wide, but we can confirm that almost all of our previous results hold

when analyzing a reduced data set which eliminates potential order effects.

5.3.2. Estimation of Treatment-Level Parameters

The parameter estimation in Section 4.1.4 is based on the data of all treatments of the main

experiment, where we know that a separating equilibrium exists based on Corollary 1. To

analyze, if the magnitude of the behavioral parameters γ and β depends on the incentive

parameters, we estimate the behavioral parameters separately for each treatment of the main

experiments. Since the small sample size of only eight observations per subject and treatment

causes convergence problems in the ML procedure that we use in Section 4.1.4, we estimate

the treatment-level parameters based on OLS by subject.

Table 5.11 summarizes the results. The mean estimate of the forecast error penalty factor γ

varies from 3.04 in Treatment 3 to a value of 5.98 in Treatment 6. The mean estimate of the

lying aversion factor β varies from 0.75 in Treatment 5 to a value of 4.84 in Treatment 7. This

comparably wide spread of estimates could be explained by (a) the small sample size of eight

data points per regression and (b) the directional overlap of the behavioral parameters that we

discuss in Section 4.1.4, which makes it difficult to differentiate between the effects of γ and

β in some of the treatments. The high standard deviations of the estimates indicate that the

estimates are not very precise. In fact, for the estimates of the forecast error penalty factor γ,

we only find a significant difference when comparing Treatment 6 with Treatments 3 (Mann–
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3 (12/7/7)

4 (10/10/10)

Treatment (ܾ/ݑ/)

5 (10/6/4)

6 (10/8/2)

7 (10/10/0)

8 (10/12/2)

3.04

3.54

Mean

5.13

5.98

4.14

5.35

Forecast error penalty factor ߛ

2.73

3.27

Median

2.73

6.50

3.18

5.36

2.19

2.16

Std. dev.

3.93

3.59

2.59

3.37

OLS estimates by treatment

OLS estimates across all treatments

Random effects ML estimates

4.53

4.06

3.57

3.36

2.23

2.96

3.15

4.60

2.42

2.65

2.47

Mean

0.75

3.09

4.84

3.52

Lying aversion factor ߚ

3.03

1.62

Median

0.61

1.52

4.34

3.99

2.09

1.72

Std. dev.

0.97

3.52

3.31

3.34

2.89

2.61

1.80

2.52

1.57

1.80

2.49

2.60

n. a.

Intercept

߶ (market condition)

߶ (forecast)

ܶ2 (14/3/3)

ܶ2ܴ (14/3/3 repeated)

ܶ5ܴ (10/6/4 repeated)

ݐ (period)

்ݐ (period within treatment)

Forecast ߶

Variable

8.016

0.928

12.254

-5.758

-2.184

0.069

Estimate p-valueStd. Err.

2.869

0.009

3.836

3.843

4.169

0.043

0.005

0.000

0.001

0.134

0.600

0.104

Quantity ݍ

19.890

0.805

-15.744

8.573

-6.119

0.168

Estimate p-valueStd. Err.

3.021

0.012

3.679

3.581

3.877

0.054

0.000

0.000

0.000

0.017

0.115

0.002

Table 5.11.: Estimation results by treatment of the main experiment

Whitney U test, p = 0.036) and 7 (Wilcoxon signed-rank test, p = 0.013). For the estimates

of the lying aversion factor β, only the estimates of Treatment 5 differ significantly from the

estimates of the other treatments (Mann–Whitney U test for between-subject comparisons, p ∈

(0.001; 0.011); Wilcoxon signed-rank test for within-subject comparisons, p ∈ (0.001; 0.043)).

The last three lines of Table 5.11 provide a comparison of the average treatment-level OLS

estimates to average subject-level OLS estimates across all treatments and to the random

effects ML estimates of Section 4.1.4. The comparison shows that the average results of the

different estimation approaches are similar.

5.3.3. Measures of Quality Control

Due to the complexity of the main experiment, we took different measures to ensure that

subjects had a good understanding of the game. In particular, we used the pre-experiment

quiz and the post-experiment questionnaire to validate the understanding. Additionally, we

provided decision support tables that relieved subjects of calculating expected values, but

which allowed them to concentrate on the dynamic decision problem.
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Pre-Experiment Quiz.

Before the experiment started, subjects answered a multiple choice quiz on screen to test their

understanding of the sequence of events, the basic rules of the probability distribution, and the

calculation of profits (see Section A.3.2 of the Appendix). We clustered nine multiple-choice

questions in blocks of three on the screen and subjects could only advance to the next screen

after having answered all three questions correctly. If one question was answered incorrectly,

subjects were only told that there was an error, i.e., the incorrectly answered question was not

revealed in order to avoid a “trial-and-error” strategy. They were incentivized by a payment

of 1,000 ECUs (= EUR 1) for each block of questions that they answered correctly in the first

try. The experiment did not start before all subjects had completed the quiz and answered

all questions correctly. To test if subjects understood the rules and logic of the game well, we

analyzed the number of errors they made in the pre-experiment quiz. An error occurred if at

least one of three questions on the screen was answered incorrectly. The histogram in Figure 5.6

summarizes the results. One third of all subjects (31 %) answered the quiz without any errors.

The vast majority of subjects (88 %) had a maximum of three errors. Given that subjects did

not receive feedback on which one of three questions they had answered incorrectly, this shows

that they had a fairly good understanding of the game.

Hypothetical Order Quantities.

In Section 4.1.1, we argue that a critical ratio of α = 0.5 for Operations should lead to

comparably unbiased order decisions. We validated this assumption by means of a question in

the post-experiment questionnaire (see Section A.3.5 of the Appendix). 31 out of 32 Operations

subjects in both sessions answered the questionnaire. We asked them which order quantity they

would choose if they knew that the true market condition was 75 (100, 125). The majority of

subjects, i.e., 80.6 % (83.9 %, 80.6 %) chose the market condition and hence the optimal order

quantity. The remaining subjects chose both too low and too high order quantities, resulting

in average order quantities of 76.03 (101.23, 124.35) that are close to and not significantly

different from the true market condition (t-test, p > 0.05). The histograms in Figure 5.7 show

the distribution of choices for each of the market conditions.
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Figure 5.6.: Distribution of errors in the pre-experiment quiz of the main experiment
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Decision support.

In each period, both Sales and Operations subjects could use a decision support table (see

screenshots in Figures A.4 and A.5 of the Appendix). We tracked the use of the button that

triggered the display of the table in order to see how intensively the decision support was used.

Figure 5.8 displays the share of subjects across periods that looked at the decision support

tables.

As expected, the majority (72 %) of both Sales and Operations subjects displayed the table

in the first test period. In the remaining test periods, 30 % of Sales and 19 % of Operations

subjects on average used the decision support. During the 32 actual periods of the game, 17 %

of Sales and 7 % of Operations subjects on average made use of the tables. Given that their

decision matrix was static across the entire game, it is not surprising that Operations subjects

used the decision support significantly less than Sales subjects (Mann–Whitney U test based on

averages by period, p < 0.001), whose decision matrix changed based on the incentive system

and market condition. Overall, the pattern of use suggests that decision support was needed

at the beginning of the game, but that most subjects became confident in their decisions and

developed their own strategies over time.

5.3.4. Analysis of Risk Attitudes

After the 32 regular rounds of the main experiment were finished, we gave subjects a set

of lottery decisions to elicit their risk attitudes. We followed the basic design of Holt and

Laury (2002) and adapted the monetary values to our payout system. Table 5.12 shows the

ten decision tasks that we used. In each decision task, subjects had the choice between a

comparably safe option (Option A) and a more risky option (Option B). In the end, a random

number was drawn to choose which lottery would be played. The respective profit was added

to the profit that had previously been achieved in the experiment.

The decision tasks are designed such that the expected payouts of both options are increasing

from decision task 1 to 10. However, the expected payout of Option A is increasing slowly,

whereas the expected payout of Option B is increasing quickly. In decision task 1, the expected

payout of Option A (820 ECUs) is considerably higher than that of Option B (238 ECUs). In
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Figure 5.8.: Use of decision support in the main experiment

decision task 9, the expected payout of Option B (1,738 ECUs) is considerably higher than

that of Option A (980 ECUs). A risk-neutral decision maker would choose the safe option

(A) in decision tasks 1 to 4 and the risky option (B) in decision tasks 5 to 9. Decision task

10 serves as a sanity check since both options are safe payouts, i.e., all subjects, independent

of their risk attitudes, should choose Option B with the higher payout. If people assess risks

consistently, they should only switch once from Option A to Option B over the course of the

ten decisions.

Figure 5.9 shows the distribution of safe choices, i.e., the choices of Option A, across the ten
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Number of subjects

Note: Standard errors are reported in parentheses. 

Demographics

 Age (years)

 Gender

 Female

 Male

Study background

 Semester of studies

 Level of studies

 Bachelor

 Master

 Course of studies

 Business Administration

 Economics

 Information Systems

 Other

 Attended basic OM course

 Yes

 No

Sales

25.9 (3.1)

43.8%

56.2%

7.2 (4.1)

46.9%

53.1%

59.4%

28.1%

9.4%

3.1%

68.8%

31.2%

32

Operations

24.2 (3.6)

43.8%

56.2%

6.2 (4.9)

62.5%

37.5%

65.6%

25.0%

6.3%

3.1%

68.8%

31.2%

32

Total

25.0 (3.4)

43.8%

56.2%

6.7 (4.5)

54.7%

45.3%

62.5%

26.6%

7.8%

3.1%

68.8%

31.2%

64

1,000 ECUs 800 ECUsDecision

Option A

1,925 ECUs 50 ECUs

1 10% 90% 10% 90%

Option B

2 20% 80% 20% 80%

3 30% 70% 30% 70%

4 40% 60% 40% 60%

5 50% 50% 50% 50%

6 60% 40% 60% 40%

7 70% 30% 70% 30%

8 80% 20% 80% 20%

9 90% 10% 90% 10%

10 100% 0% 100% 0%

Table 5.12.: Design of the risk aversion task

decision tasks. The graph is based on the responses of 58 out of 64 subjects. We excluded four

subjects due to preference reversals in the sense that they switched multiple times between

Options A and B starting with decision task 1 through to 10. We excluded an additional two

subjects because they chose the option with the lower safe payout in decision task 10.

Due to the switching point of a risk-neutral decision maker between decisions 4 and 5, we

classify all subjects with five or more safe choices as risk-averse (Holt and Laury, 2002). Across

all subjects, 82.8 % are risk-averse with slightly more prevalence among Sales subjects (89.7 %)

than Operations subjects (75.9 %). The average number of safe choices is 6.2, which also

reflects the more risk-averse attitude of Sales subjects with an average value of 6.4 safe choices

compared to 5.7 safe choices among Operations subjects. Risk preferences in our subject pool

are generally in line with findings in previous research, which show that most people behave

in a risk-averse manner (Holt and Laury, 2002; Eckel and Grossman, 2008).

Extending the analyses of Section 5.3.1, we run a random effects GLS regression of the

forecast φ̂ on the market condition φ, dummy variables for seven out of eight treatments (T2

to T8), the period t (t = 1..32) and the number of safe choices (SAFE). We run a comparable

regression for the order quantity q, except that we use the forecast φ̂ as an explanatory variable

instead of the market condition φ. Each regression is based on the data of 29 out of 32 subjects.

Table 5.13 summarizes the regression results. We do not find evidence that the risk attitude
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Figure 5.9.: Distribution of safe choices in the main experiment
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(5.255)
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Note: Significance of estimates (ݖ-test): ***   ** ,0.01 >  * ,0.05 > < 0.1. 
Standard errors are reported in parentheses. 
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ܱܲܵܶ
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Note: Significance of estimates (ݖ-test): ***   ** ,0.01 >  * ,0.05 > < 0.1. 
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0.537

0.052

0.078

***

**

***

(0.022)

(0.022)

(0.018)

0.677

0.004

0.029

***

**

(0.020)

(0.014)

(0.012)

0.674

0.012

0.039

***

***

(0.021)

(0.015)

(0.013)

Full

1,911

76

Excl. May/June

1,657

76

Model

Observations
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Full

1,450

55

Intercept

ܰܣܮܲ

ܱܲܵܶ

Prescription medicines Consumer products

Note: Significance of estimates (ݖ-test): ***   ** ,0.01 >  * ,0.05 > < 0.1. 
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0.827

-0.367

-0.604

***

**

***

(0.106)

(0.152)

(0.127)

0.342

-0.413

-0.258

***

***

**

(0.104)

(0.131)

(0.108)

0.328

-0.400

-0.237

***

***

**

(0.106)

(0.135)

(0.118)

Full

1,911

76

Excl. May/June

1,657

76

Model

Observations

Groups

Full

1,450

55

Table 5.13.: Regression results of risk aversion effects
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is a significant explanatory variable in either the forecast decision of Sales (z-test, p = 0.630)

or in the order decision of Operations (p = 0.108). This finding is generally in line with

the underlying theories of our behavioral model and the design of the main experiment. As

discussed in Section 3.1.2, the elements of the expected payoff of Sales differ in their levels of

uncertainty. The forecast error penalty is subject to a quantifiable risk given by the uncertainty

in the random market error E. The sales bonus is not only subject to the uncertainty in the

market error but also to an unknown uncertainty in the order quantity decision of Operations.

In other words, the sales bonus is the result of a compound lottery with an ambiguous stage

(the order decision of Operations) followed by a risky stage (the realization of the market error).

In our experiments, we never vary the market risk, which is always E ∼ N (0; 30). Hence, it

is not surprising that the concept of risk aversion cannot explain the different valuations of

the two payoff streams. Instead, as argued before, ambiguity aversion could be a driving force

for the increased weight on the forecast error penalty compared to the sales bonus, which is

represented by the forecast error penalty factor γ in the utility function of Sales.
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6.1. Summary of Results

In this thesis, we investigated the impact of forecast-based incentive systems on the accuracy

of demand forecasts within a firm. We motivated and contextualized our research by a case

study of a global pharmaceutical company that introduced forecast accuracy incentives in the

target agreements of their sales and marketing personnel. The qualitative results showed that

forecast accuracy incentives increased the overall awareness for the importance of good forecasts

and improved the collaboration between sales and operations departments. The quantitative

analyses showed an improvement in forecast accuracy and a reduction in forecast bias.

Due to the high number of uncontrollable effects in a single case field study, we transferred

the forecast information exchange to a game-theoretic model. In this model, we considered a

company where Sales is responsible for demand forecasting and Operations is responsible for

ordering. Our interest was to examine the effect of different forecast error incentive systems

for Sales on demand forecasting and order decisions. We developed utility functions of Sales

and Operations and included behavioral factors that capture an overproportional reaction to

forecast error penalties and an aversion to lying to other people. We modeled the demand fore-

casting and ordering process as a signaling game and derived the Pareto-dominant separating

equilibria of the game.

In a next step, we tested the model in a laboratory experiment and showed that actual forecast

and order decisions deviate significantly from those of an expected-payoff-maximizing decision

maker. We estimated the behavioral parameters to design incentive systems for truthful fore-

cast information sharing. We conducted a validation experiment, which showed that (close to)
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truthful information sharing can be achieved and that the incentive systems designed with the

behavioral model outperform those that were designed with the standard model. We further

tested the design of our behavior model by constructing alternative models with non-Bayesian

belief updating and expectations-based reference points, but found that our behavioral model

provides the better fit to the data of our experiments. We also showed that actual behavior

in nonhuman and repeated interactions changes as expected based on the behavioral theories

underlying our model.

Our research shows that forecast-based incentives can improve the accuracy of demand

forecasts. It further shows that it does not suffice to consider the monetary elements of an

incentive system to model forecasting behavior accurately, but that behavioral factors are also

important. For incentive system designers, it is critical that they acknowledge the relevance of

these factors because incentive systems that ignore them may perform poorly. In settings like

the one we described, a natural human aversion to lying and repeated interactions between

decision makers can cause forecasts to be more truthful than standard theory would suggest,

even without formal incentives. To improve forecast accuracy further, managers can include a

forecast-based component in the incentive system for their sales personnel.

6.2. Design Implications

We can use the behavioral model of Chapter 3 and the experimental results of Chapter 4 to

derive implications for the design of sales incentive systems in practice. We argued that it is

in the best interest of a company to choose an incentive system that enables truthful forecast

information sharing. As our analyses show, there are multiple design options that fulfill this

condition. In the following, we briefly discuss their differences in order to provide guidance to

managers who are interested in reducing forecast biases and increasing the efficiency of their

supply chain.

First, an incentive system designer needs to choose the class of incentive system. Both

theory (Corollary 2(a)) and experimental results (Treatment 1) suggest that a sales-bonus-only

incentive system leads to distorted forecasts. Unless the sales bonus is small (such that the
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natural aversion to lying offsets the incentive to inflate the forecast), means such as using

forecast error incentive systems are required to achieve truthful forecasting. With regard to

absolute forecast error incentive systems, theory predicts that forecasts will be inflated unless

the sales bonus is small. In contrast to the sales-bonus-only incentive system, this inflation

trends to zero as the forecast error incentives become large (Corollary 2(b) and Treatment

4). A differentiated forecast error incentive system can be parameterized for truthful forecast

information sharing (Corollary 2(c) and Treatments 5, 9 and 10). In particular, it is more

economical in terms of requiring smaller forecast error penalties than an absolute forecast error

incentive system to achieve the same level of (potentially small) forecast distortion (Corollary

3).

Our analyses indicate that only differentiated forecast error incentive systems incentivize

truthful forecast information sharing. However, there are practical considerations that may

favor an absolute forecast error incentive system. For example, an absolute forecast error

incentive system is less complex due to the smaller number of parameters. It also has a more

intuitive interpretation that forecasts should neither be too high nor too low, which might be

a desirable message when introducing forecast error incentives. Finally, if the forecast error

incentives are sufficiently high, the remaining bias in the forecasts might be small. Hence,

depending on the context, an absolute forecast error incentive system can be the preferred

option in practice even if a small forecast bias remains.

Second, an incentive system designer must choose the parameters b, po, and pu. For a dif-

ferentiated forecast error incentive system, Theorem 1 shows that all parameter combinations

with (po − pu) ∈ [2(b(1 − α) − β)/γ; 2(b(1 − α) + β)/γ] fulfill the condition of zero forecast

inflation. For a given unit sales bonus b, the choice of the unit forecast error penalties po and

pu depends on the objectives of the company. On the one hand, it may be necessary to limit

the impact of forecast error incentives on the incentive system of Sales by setting low unit

forecast error penalties. For example, at PharmaCo, the sales and marketing division used the

variable compensation budget of their employees to incentivize typical sales targets and was

hesitant to include variable compensation elements that were intended to improve operational

performance. The smaller po and pu, the smaller the share of the variable compensation budget
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that is required to support these incentives. On the other hand, as the analysis in Section 4.2.2

shows, there is an argument for robustness that prefers incentive systems with high unit fore-

cast error penalties: The higher po and pu, the less sensitive an equilibrium prediction of (close

to) zero inflation is to deviations in the behavioral parameters γ and β. Hence, there is no

unanimous recommendation regarding the size of the forecast error penalties. Incentive system

designers need to balance both arguments when choosing the parameters for their respective

setting.

Even if the particular setup in a company differs from the one that we investigated in our

model and experiments, we believe that our general results hold across a range of applications

for several reasons: (i) As long as the demand forecast is used to trigger supply, the inherent

conflict between sales maximization and forecast error minimization remains. Hence, forecast

error penalties can be used to incentivize Sales to forecast truthfully. (ii) With respect to

the choice of incentive parameters, the conditions that we derived for a truth-telling incentive

scheme allow for a range of truth-telling parameter combinations. A truth-telling solution

is therefore quite robust to small changes in the values of both incentive parameters and

behavioral parameters. Incentive system designers can furthermore increase the robustness of

a truth-telling parameter combination by choosing higher forecast error penalties. (iii) If the

interaction between Sales and Operations is repeated over time, the truth-telling parameter

combinations of the one-shot model still hold and deviations from the truth-telling solution

are even more unlikely. (iv) Beyond the conditions of a truth-telling solution, monotonicity

of the distortion function further implies that the direction of change in human behavior is

predictable. Hence, in practice, the parameters of an incentive scheme can be calibrated over

time to fit a particular setting.

6.3. Boundaries and Future Research

Our research takes a multimethod approach to the question of how to incentivize truthful

forecast information sharing within a firm. We have shown that forecast-based incentives have

the potential to improve the forecasting performance in theory as well as in practice. The
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combination of field research and game-theoretic modeling covers two ends of a spectrum. On

the one hand, the case study at PharmaCo is complex, rich in information and subject to a large

number of uncontrollable factors. On the other hand, our behavioral model is a highly simplified

representation of reality that captures a small number of factors only. Both approaches offer

valuable insights into the effect of forecast-based incentives on demand forecasts, but are also

limited in their very own ways.

First, it is a natural limitation of a case study that it is highly specific to the object of

investigation and its outcomes might hence not be externally valid (for an extended discussion,

see Yin, 2009). For example, the organizational setup, the forecasting processes, and the

existing incentive landscape at PharmaCo are probably unique and influence the way forecasts

are created and interpreted. Also, the highly regulated market environment of a pharmaceutical

company is special and different from that of other industries. Hence, our field research would

benefit from replications in other organizations to substantiate the findings of our particular

case and to help identify moderating effects that influence the way forecast-based incentives

affect forecasting decisions. Another limitation of our case study is that the implementation of

forecast accuracy incentives at PharmaCo did not follow a top-down plan but was the result of

a process that was shaped by various stakeholders. As researchers, we were primarily observers

rather than designers of this process. A fruitful avenue of future research in this respect could

be field experiments that allow for more control over the implementation of new incentives. For

example, one could test a differentiated forecast error incentive system in one treatment group

versus an absolute forecast error incentive system in another treatment group to investigate if

the efficiency advantage of our experimental analyses holds in practice.

Second, it is an inherent property of a theoretical model that it is a reduced mapping of the

real world (see, e.g., the model definition of Stachowiak, 1973). We have designed a model

that is reduced to the incentives under investigation and that captures selected behavioral

elements. By choosing a high level of reduction, we kept our model analytically tractable

and could derive equilibria with the potential to predict human behavior. However, there

are many elements of a real world setting that our model does not capture. For example,

personal relationships between Sales and Operations, career concerns or other nonmonetary
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incentives could naturally dampen forecast distortions. This becomes obvious in the case

study of PharmaCo, where forecasts are not as distorted as one might expect in the absence

of forecast-related incentives. An interesting pursuit in the future would be to test how these

factors influence forecast accuracy beyond the effect of forecast-based incentives.

Besides adding factors that our model does not capture, there is also potential to better

understand the current parameters of the model. We have used two behavioral parameters

to capture various human biases that could be relevant in our setting. Our estimation results

combined with additional experiments have shown that these two factors explain actual behav-

ior well and can be used to design incentive systems for truthful forecast information sharing

in our setting. However, it would be interesting to analyze the underlying behavioral drivers in

more detail to make even better behavioral predictions under different conditions. This could

be achieved by decomposing the forecast error penalty factor γ into its basic elements and

testing their individual effects in targeted experiments, e.g., by using priming techniques or

post-experiment survey questions.

Moreover, incentive systems in organizations can differ from the simple one that we con-

sidered and implementations could require adaptations of our incentive system design. For

instance, if a company uses a particular performance measure to quantify forecast accuracy

(such as the mean absolute percentage error that was used at PharmaCo), it might want to

link incentives to this performance measure as opposed to using the penalty function that we

used. Given what is known about mental accounting and reference-dependent preferences (see

Section 3.1.2), changes in the structure of the incentive system are likely to change human

behavior. For example, forecast accuracy targets might provide external reference points that

change the evaluation of gains and losses. Previous research also suggests that it matters

whether incentives in an organization are common knowledge or private information of the

respective actor. The disclosure of incentive conflicts may lead to perverse effects in the sense

that it increases the bias in information exchange between an informed and uninformed party

(Cain et al., 2005). Hence, future research could investigate the effect of different variants of

forecast-based incentives on forecasting decisions and how the level of incentive information

matters.
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Lastly, there is reason to believe that the effect of economic incentives on behavior does

not always follow a monotonic relationship. One line of research in economics suggests that

monetary incentives may backfire, i.e., they may reduce intrinsic motivation and crowd out

socially desired behavior, such as trust and lying aversion (e.g., Fehr and Fischbacher, 2002;

Malhotra and Murnighan, 2002; Bowles, 2009). There is, however, no unanimous answer with

regard to the conditions under which this is the case. While some research suggests that

incentives must be sufficiently large to avoid such negative effects (Gneezy and Rustichini,

2000), other studies suggest that even small monetary incentives motivate people to be honest

when they could obtain a much larger amount by lying (Wang and Murnighan, 2017). It would

therefore be interesting to investigate further how the size of forecast-based incentives affects

behavior and whether, e.g., small incentives bear the risk of increasing forecast distortions

instead of reducing them.

To summarize, there are multiple directions for future research in the field of behavioral

OM that emerge from this thesis. Our limited understanding of the complex mechanisms

in human decision making offer ample potential for more research on the effect of (forecast-

based) incentives under different conditions. A promising and insightful way forward seems

to be the combination of theory-based laboratory experiments and field research. On the one

hand, controlled experiments allow for a rigorous and comparably simple test of the effect of

individual treatment variables. On the other hand, field research ensures that the practically

relevant variables are tested and that the experimental results are replicable in practice.
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A.1. Proofs

A.1.1. Proof of Theorem 1

We will first show that (ssep, qsep, µsep) is a separating equilibrium of the forecast information

sharing game if po > (b(1 − α) − β)/γ. We will then show that this equilibrium Pareto-

dominates all other differentiable separating equilibria. We conclude the proof by showing

that no differentiable separating equilibrium exists if po ≤ (b(1−α)− β)/γ. Supporting phase

line diagrams and vector field plots are contained in Appendix A.2.

It is straightforward to verify that µsep satisfies Bayesian consistency of beliefs. Also,

qsep(φ̂) = φ̂ − δsep + G−1(α) is a sequentially rational response for Operations to a signal

φ̂ given the updated belief µsep(φ | φ̂). To see this, rewrite UO for a given φ as

UO(q | φ) = CO − γO
(
co

∫ q−φ

−∞
G(x)dx+ cu

(
EE(E) + φ− q +

∫ q−φ

−∞
G(x)dx

))

and take the first derivative with respect to q: ∂UO(q|φ)
∂q = −γO ((cu + co)G(q − φ)− cu). Setting

∂UO(q|φ)
∂q = 0, solving for q and setting φ = φ̂ − δsep according to µsep yields qsep(φ̂) = φ̂ −

δsep + G−1(α). The second derivative ∂2UO(q|φ)
∂q2

= −γO(cu + co)g(q − φ) confirms that UO is

strictly concave over the support of g and hence qsep is the unique maximizer of UO given ssep

and µsep. We proceed by showing that ssep is a sequentially rational strategy for Sales in a

separating equilibrium.

Suppose that, in equilibrium, Sales adopts some invertible, differentiable signaling function

s : R→ R (see assumption in Section 3.2). Let s(φ) be the signal sent by type φ. A separating
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equilibrium requires Operations to be able to infer the type that sent the signal and to react

sequentially rationally. Hence, Operations updates the belief to µ(φ | s(φ)) = 1 if φ = s−1(s(φ))

and 0 otherwise. Based on this belief, Operations sets q(s(φ)) = s−1(s(φ)) + G−1(α) =

φ + G−1(α). For s to be a sequentially rational strategy for Sales given the belief system

µ and response function q, there must be no incentive for a type φ to mimic some other type

φ̄ 6= φ. Hence, in order to verify that the particular strategy ssep satisfies sequential rationality

in a separating equilibrium, we will show that the first- and second-order conditions

∂US(q(s(φ̄)), s(φ̄) | φ)

∂φ̄

∣∣∣∣
φ̄=φ

= 0, and

∂2US(q(s(φ̄)), s(φ̄) | φ)

∂φ̄2
≤ 0 for all φ̄,

hold for s = ssep at every point where US and ssep are differentiable. We first rewrite US as

US(q, φ̂ | φ) = CS + b

(
q −

∫ q−φ

−∞
G(x)dx

)
− γpo

∫ φ̂−φ

−∞
G(x)dx

− γpu

(∫ φ̂−φ

−∞
G(x)dx+ EE(E)− (φ̂− φ)

)
− β

∣∣∣φ̂− φ∣∣∣ , (A.1)

making use of EEmin(φ + E, q) =
∫ q−φ
−∞ (φ + x)g(x)dx +

∫∞
q−φ qg(x)dx = q −

∫ q−φ
−∞ G(x)dx,

EE
[
φ̂− (φ+ E)

]+
=
∫ φ̂−φ
−∞ ((φ̂ − φ) − x)g(x)dx =

∫ φ̂−φ
−∞ G(x)dx, and EE

[
(φ+ E)− φ̂

]+
=∫∞

φ̂−φ(x− (φ̂− φ))g(x)dx =
∫ φ̂−φ
−∞ G(x)dx+ EE(E)− (φ̂− φ). We express the expected utility

of Sales in equilibrium for a market condition of φ when sending a signal s(φ̄) that triggers

reaction q(s(φ̄)) as

US(q(s(φ̄)), s(φ̄) | φ) =CS + b

(
φ̄+G−1(α)−

∫ φ̄−φ+G−1(α)

−∞
G(x)dx

)
− γpo

∫ s(φ̄)−φ

−∞
G(x)dx

− γpu

(∫ s(φ̄)−φ

−∞
G(x)dx+ EE(E)− (s(φ̄)− φ)

)
− β

∣∣s(φ̄)− φ
∣∣ .

(A.2)
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Differentiating Equation (A.2) with respect to φ̄ gives

∂US(q(s(φ̄)), s(φ̄) | φ)

∂φ̄
=b
(
1−G

(
φ̄+G−1(α)− φ

))
− γ

(
(po + pu)G(s(φ̄)− φ)− pu

)
s′(φ̄)

−βs′(φ̄) for s(φ̄) > φ,

+βs′(φ̄) for s(φ̄) < φ,

(A.3)

where s′(φ̄) denotes the first derivative of s with respect to φ̄. Evaluating Equation (A.3) at

φ̄ = φ and setting equal to 0 gives the first-order condition as a differential equation:

s′(φ) =


b(1−α)

γ[(po+pu)G(s(φ)−φ)−pu]+β for s(φ) > φ,

b(1−α)
γ[(po+pu)G(s(φ)−φ)−pu]−β for s(φ) < φ.

(A.4)

Setting s = ssep, with (ssep)′(φ) = 1, Equation (A.4) holds for b(1−α)−β
γ < po < 2 b(1−α)−β

γ + pu

and for po > 2 b(1−α)+β
γ + pu. For 2 b(1−α)−β

γ + pu ≤ po ≤ 2 b(1−α)+β
γ + pu, we have ssep(φ) = φ

and Equation (A.4) is not defined, but we can verify for this case that the right hand side of

Equation (A.3) evaluated at φ̄ = φ is > 0 for s(φ) < φ and < 0 for s(φ) > φ.

The second derivative of Equation (A.2) is

∂2US(q(s(φ̄)), s(φ̄) | φ)

∂φ̄2
=− bg

(
φ̄+G−1(α)− φ

)
− γ(po + pu)g(s(φ̄)− φ)s′(φ̄)s′(φ̄)

− γ
(
(po + pu)G(s(φ̄)− φ)− pu

)
s′′(φ̄)


−βs′′(φ̄) for s(φ̄) > φ,

+βs′′(φ̄) for s(φ̄) < φ.

(A.5)

Setting s = ssep, with (ssep)′(φ̄) = 1 and (ssep)′′(φ̄) = 0, the right hand side of Equation (A.5)

simplifies to −bg
(
φ̄+G−1(α)− φ

)
− γ(po + pu)g(φ̄ + δsep − φ) < 0 for ssep(φ̄) 6= φ, i.e., US

is strictly concave in φ̄ for signals ssep(φ̄) to the left and to the right of φ. Since we have

β ≥ 0 by assumption, concavity extends to ssep(φ̄) = φ. Hence we can conclude that ssep is a

sequentially rational strategy for Sales and that (ssep, qsep, µsep) is a separating equilibrium of
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the game.

To prove that (ssep, qsep, µsep) Pareto-dominates all other differentiable separating equilibria,

we analyze all additional candidate equilibrium signaling strategies of Sales in a differentiable

separating equilibrium. A candidate equilibrium signaling strategy sc must be continuous,

invertible, differentiable everywhere except for a countable number of points and where it is

differentiable it must satisfy Equation (A.4). Where Equation (A.4) is not defined (sc(φ) = φ),

it must satisfy

lim
sc(φ)→φ−

∂US(q(sc(φ̄)), sc(φ̄) | φ)

∂φ̄

∣∣∣∣
φ̄=φ

≥ 0, and

lim
sc(φ)→φ+

∂US(q(sc(φ̄)), sc(φ̄) | φ)

∂φ̄

∣∣∣∣
φ̄=φ

≤ 0.

In the following, we first develop some general arguments for the evaluation of potential

candidate equilibrium signaling strategies, before differentiating several cases based on the

values of b, po and pu. For ease of analysis, we substitute u(φ) = s(φ)−φ and u′(φ) = s′(φ)−1

to transform Equation (A.4) into an autonomous differential equation

u′(φ) =


b(1−α)

γ[(po+pu)G(u(φ))−pu]+β − 1 for u(φ) > 0,

b(1−α)
γ[(po+pu)G(u(φ))−pu]−β − 1 for u(φ) < 0,

(A.6)

where u expresses the forecast distortion as a function of the type φ. Any candidate equilibrium

signaling strategy sc has a corresponding candidate equilibrium distortion strategy uc defined

by uc(φ) = sc(φ)− φ.

We start by making use of the requirement that a candidate equilibrium signaling strategy

sc and hence a candidate equilibrium distortion strategy uc must be continuous.

Lemma 1. Any candidate equilibrium distortion strategy uc must have a single interval co-

domain C ⊆ R.

Proof. Proof of Lemma 1. The proof follows directly from the requirement of continuity, i.e.,

lim
φ→φ0

uc(φ) = uc(φ0) for all φ0 ∈ R. �

We next exploit the fact that Equation (A.6) is an autonomous differential equation.
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Lemma 2. Any candidate equilibrium distortion strategy uc must be monotonic.

Proof. Proof of Lemma 2. Let uc be a candidate equilibrium distortion strategy, i.e., uc is

continuous and differentiable everywhere except for a countable number of points and, where

it is differentiable, it satisfies Equation (A.6). Suppose uc is nonmonotonic. Then we can

find types φ1 < φ2 < φ3 such that we either have uc(φ2) < min{uc(φ1), uc(φ3)} or uc(φ2) >

max{uc(φ1), uc(φ3)}. We analyze the first case only, the second case is analogous. Also assume

that uc(φ1) ≥ uc(φ3), the remaining subcase is analogous. Since uc is nondifferentiable at a

countable number of points only and uc(φ2) < uc(φ3), there exists φ4 ∈ (φ2, φ3) with uc(φ4) ∈

(uc(φ2), uc(φ3)) and u′c(φ4) > 0. Denote u0 = uc(φ4). Let A = {φ ∈ (φ1, φ2) | uc(φ) = u0}.

By the intermediate value theorem this set is nonempty and continuity of uc implies that the

maximum of this set is well defined. Denote this maximum by φ5. With uc being the solution

to an autonomous differential equation, we have u′c(φ5) = u′c(φ4) > 0 implying there exists

some ε > 0 with ε < φ2 − φ5 such that uc(φ5 + ε) > uc(φ5) = u0. The intermediate value

theorem then implies the existence of φ6 ∈ (φ5 + ε, φ2) with uc(φ6) = u0. This contradicts φ5

being the maximum of A. We conclude that uc is monotonic. �

Next, we exploit the requirement that a candidate equilibrium signaling strategy sc must

be invertible. Note first, that the utility function of Sales is separable. Let USBS (q | φ) =

bEEmin((φ + E), q) be the quantity-dependent and UFCS (φ̂ | φ) = −γEE(po[φ̂ − (φ + E)]+ +

pu[(φ+E)− φ̂]+)−β
∣∣∣φ̂− φ∣∣∣ be the forecast-dependent part of the expected utility function of

Sales. By setting
∂UFCS
∂φ̂

equal to 0, solving for φ̂ and verifying that
∂2UFCS
∂φ̂2

= −γ(po + pu)g(φ̂−

φ) < 0 for all φ̂ 6= φ, we find that Sales has a unique preferred forecast φ̂pref (φ) = φ + δpref

with distortion value

δpref =


G−1

(
γpu−β
γ(pu+po)

)
for po < pu − 2β

γ ,

0 for pu − 2β
γ ≤ po ≤ pu + 2β

γ ,

G−1
(

γpu+β
γ(pu+po)

)
for po > pu + 2β

γ ,

(A.7)

that maximizes UFCS .
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Lemma 3. Any candidate equilibrium distortion strategy uc must take values uc(φ) ≥ δpref

for all φ.

Proof. Proof of Lemma 3. Invertibility requires a continuous candidate signaling strategy sc to

be strictly monotonic. Hence (as uc(φ) = sc(φ)−φ), in the analysis of the candidate distortion

strategy uc we require either u′c(φ) ≤ −1 for all φ or u′c(φ) ≥ −1 for all φ. Using Equation

(A.6) it is straightforward to verify that we have u′c(φ) < −1 for all φ ∈
{
φ | uc(φ) < δpref

}
and

u′c(φ) > −1 for all φ ∈
{
φ | uc(φ) > δpref

}
. Since we have u′c(φ) < −1 but uc(φ) < δpref bound

from above, there exists no candidate distortion strategy uc that takes on values uc(φ) < δpref

while covering the entire type space. We conclude that uc can only take on distortion values

uc(φ) ≥ δpref . �

We continue by ruling out linear signaling strategies of the form sc(φ) = φ + δ for δ 6= δsep

and hence constant distortion strategies uc(φ) = δ for δ 6= δsep. We use the following lemma

to further restrict cases where Equation (A.6) is not defined (uc(φ) = 0 and uc(φ) = δpref ).

Lemma 4. A candidate equilibrium distortion strategy uc can only take values uc(φ) = δ for

all φ in some interval I ⊆ R if δ = δsep.

Proof. Proof of Lemma 4. Assuming that Sales plays strategy uc(φ) = δ for all φ ∈ I, the

sequentially rational response for Operations is q(φ̂) = φ̂−δ+G−1(α) to all signals φ̂ associated

with types in I. As defined above, a candidate equilibrium distortion strategy uc must satisfy

Equation (A.6). It is straightforward to verify for δ > 0 (i.e., uc(φ) > 0) that uc satisfies

Equation (A.6) if and only if δ = δsep = G−1
(
b(1−α)+γpu−β

γ(pu+po)

)
. Similarly, for δ < 0 (i.e.,

uc(φ) < 0) uc satisfies Equation (A.6) if and only if δ = δsep = G−1
(
b(1−α)+γpu+β

γ(pu+po)

)
. For δ = 0

we require

lim
uc(φ)→0+

∂US(q(φ̄+ uc(φ̄)), φ̄+ uc(φ̄) | φ)

∂φ̄

∣∣∣∣
φ̄=φ

≤ 0, and

lim
uc(φ)→0−

∂US(q(φ̄+ uc(φ̄)), φ̄+ uc(φ̄) | φ)

∂φ̄

∣∣∣∣
φ̄=φ

≥ 0.

This holds if and only if 2 b(1−α)−β
γ + pu ≤ po ≤ 2 b(1−α)+β

γ + pu, i.e., if δ = δsep = 0. �
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Finally, we exploit the requirement of Pareto dominance. In a separating equilibrium, Oper-

ations always chooses qFB(φ). Hence the expected utility of Operations UO(qFB(φ)) and the

quantity-dependent expected utility of Sales USBS (qFB(φ) | φ) are the same in all separating

equilibria. It follows that a separating equilibrium with signaling strategy s1 Pareto dominates

another separating equilibrium with signaling strategy s2 if UFCS (s1(φ) | φ) ≥ UFCS (s2(φ) | φ)

for all φ and UFCS (s1(φ) | φ) > UFCS (s2(φ) | φ) for at least one φ. We will also say that

one signaling (distortion) strategy Pareto dominates another if the corresponding separating

equilibrium Pareto dominates the other.

Lemma 5. A candidate equilibrium distortion strategy uc that takes on values uc(φ) > δsep

for all φ in some interval I ⊆ R and takes on values uc(φ) = δsep for all φ ∈ R \ I is Pareto

dominated by the strategy usep that takes on distortion values usep(φ) = δsep for all φ ∈ R.

Proof. Proof of Lemma 5. We can see from the definitions of δsep (Equation 3.6) and δpref

(Equation A.7) that we have δsep ≥ δpref for any combination of parameter values. If Sales

plays strategy uc(φ) then we have UFCS (φ + uc(φ) | φ) = UFCS (φ + δsep | φ) for all φ ∈ R \ I.

For all φ ∈ I, we have UFCS (φ + uc(φ) | φ) < UFCS (φ + δsep | φ) because uc(φ) > δsep ≥ δpref

for all φ ∈ I and δpref is the optimum of the strictly concave function UFCS . Since Φ is a

continuous random variable with domain R, there is a positive probability of having φ ∈ I and

we conclude that usep Pareto dominates uc. �

We now differentiate four cases based on the values of b, po, pu and the properties of Equation

(A.6). We use the function w given by

w(u) =


b(1−α)

γ[(po+pu)G(u)−pu]+β − 1 for u > 0,

b(1−α)
γ[(po+pu)G(u)−pu]−β − 1 for u < 0,

(A.8)

to examine the first derivative of u as a function of u only and hence ease the following

expositions. It is straightforward to verify that we have w′(u) < 0 always. The following cases

are supported by phase line diagrams and example vector field plots in Appendix A.2.

Case 1:
(
po > 2 b(1−α)+β

γ + pu

)
. We have δsep = G−1

(
b(1−α)+γpu+β

γ(pu+po)

)
< 0 and δpref =

G−1
(

γpu+β
γ(pu+po)

)
< 0 with δpref < δsep and distinguish seven regions of forecast distortions:
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(1.i) For u > 0, we have −1 < w(u) < 0 with lim
u→0+

w(u) = b(1−α)
1
2
γ(po−pu)+β

− 1 and lim
u→∞

w(u) =

b(1−α)
γpo+β

− 1.

(1.ii) For u = 0, w(u) is not defined.

(1.iii) For δsep < u < 0, we have −1 < w(u) < 0 with lim
u→δsep+

w(u) = 0 and lim
u→0−

w(u) =

b(1−α)
1
2
γ(po−pu)−β − 1.

(1.iv) For u = δsep, we have w(u) = 0.

(1.v) For δpref < u < δsep, we have w(u) > 0, w′(u) with lim
u→δpref+

w(u) = ∞ and

lim
u→δsep−

w(u) = 0.

(1.vi) For u = δpref , w(u) is not defined.

(1.vii) For u < δpref we have w(u) < −1 with lim
u→−∞

w(u) = − b(1−α)
γpu+β −1 and lim

u→δpref−
w(u) =

−∞.

Note the following for this and all subsequent cases: First, given Lemma 1, a candidate

equilibrium distortion strategy uc must take values in one region only or in several adjacent

regions. Second, given Lemma 2, in these adjacent regions a strategy uc must be either all

increasing (w(uc) ≥ 0) or all decreasing (w(uc) ≤ 0).

In case 1, region (1.iv) covers the Pareto-dominant equilibrium distortion strategy usep(φ) =

δsep. We rule out all distortion strategies that take values in region (1.vii) by Lemma 3. We

further rule out distortion strategies that take more than an isolated value in region (1.vi) by

Lemma 4. Also, no candidate equilibrium distortion strategy uc exists with values in region

(1.v) because uc must be concave (w(uc) > 0 and w′(uc) < 0) in this region and therefore

cannot stay in the region for φ→ −∞. Finally, any candidate equilibrium distortion strategy

in regions (1.i) to (1.iii) is Pareto dominated by usep (see Lemma 5).

Case 2
(

2 b(1−α)−β
γ + pu ≤ po ≤ 2 b(1−α)+β

γ + pu

)
. We have δsep = 0. Based on the value of

δpref , we differentiate two subcases:

Case 2a
(
po > pu + 2β

γ

)
. We have δpref = G−1

(
γpu+β
γ(pu+po)

)
< 0 and distinguish five regions

of forecast distortions:

(2a.i) For u > 0, we have −1 < w(u) < 0 with lim
u→0+

w(u) = b(1−α)
1
2
γ(po−pu)+β

−1 and lim
u→∞

w(u) =

b(1−α)
γpo+β

− 1.

(2a.ii) For u = δsep = 0, w(u) is not defined.
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(2a.iii) For δpref < u < 0, we have w(u) > 0 with lim
u→δpref+

w(u) = ∞ and lim
u→0−

w(u) =

b(1−α)
1
2
γ(po−pu)−β − 1.

(2a.iv) For u = δpref , w(u) is not defined.

(2a.v) For u < δpref , we have w(u) < −1 with lim
u→δpref−

w(u) = −∞ and lim
u→−∞

w(u) =

− b(1−α)
γpu+β − 1.

Region (2a.ii) covers the Pareto-dominant equilibrium distortion strategy usep(φ) = δsep = 0.

Similar to the line of arguments in case 1, we rule out all distortion strategies that take values

in region (2a.v) by Lemma 3. We further exclude distortion strategies that take more than

an isolated value in region (2a.iv) by Lemma 4. Also, there does not exist any candidate

equilibrium distortion strategy with values in region (2a.iii) because such a strategy must be

concave in this region and can hence not stay in the region for all φ. Finally, any candidate

equilibrium distortion strategy that takes values in region (2a.i) is Pareto dominated according

to Lemma 5.

Case 2b
(
po ≤ pu + 2β

γ

)
. We have δpref = 0 and distinguish three regions of forecast distor-

tions:

(2b.i) For u > 0, we have −1 < w(u) < 0 with lim
u→0+

w(u) = b(1−α)
1
2
γ(po−pu)+β

−1 and lim
u→∞

w(u) =

b(1−α)
γpo+β

− 1.

(2b.ii) For u = δsep = δpref = 0, w(u) is not defined.

(2b.iii) For u < 0, we have w(u) < −1 with lim
u→0−

w(u) = b(1−α)
1
2
γ(po−pu)−β − 1 and lim

u→−∞
w(u) =

− b(1−α)
γpu+β − 1.

Region (2b.ii) covers the Pareto-dominant equilibrium distortion strategy usep(φ) = δsep =

δpref = 0. Distortion strategies with values in region (2b.iii) can be ruled out based on Lemma 3

and distortion strategies with values in region (2b.i) are Pareto dominated by usep (see Lemma

5).

Case 3
(
b(1−α)−β

γ < po < 2 b(1−α)−β
γ + pu

)
. We have δsep = G−1

(
b(1−α)+γpu−β

γ(pu+po)

)
> 0 and

differentiate three subcases based on the value of δpref :

Case 3a
(
po > pu + 2β

γ

)
. We have δpref = G−1

(
γpu+β
γ(pu+po)

)
< 0 and distinguish seven regions

of forecast distortions:

117



A. Appendix

(3a.i) For u > δsep, we have −1 < w(u) < 0 with lim
u→δsep+

w(u) = 0 and lim
u→∞

w(u) =

b(1−α)
γpo+β

− 1.

(3a.ii) For u = δsep, we have w(u) = 0.

(3a.iii) For 0 < u < δsep, we have w(u) > 0 with lim
u→δsep−

w(u) = 0 and lim
u→0+

w(u) =

b(1−α)
1
2
γ(po−pu)+β

− 1.

(3a.iv) For u = 0, w(u) is not defined.

(3a.v) For δpref < u < 0, we have w(u) > 0 with lim
u→δpref+

w(u) = ∞ and lim
u→0−

w(u) =

b(1−α)
1
2
γ(po−pu)−β − 1.

(3a.vi) For u = δpref , w(u) is not defined.

(3a.vii) For u < δpref we have w(u) < −1 with lim
u→−∞

w(u) = − b(1−α)
γpu+β−1 and lim

u→δpref−
w(u) =

−∞.

Region (3a.ii) covers the Pareto-dominant equilibrium distortion strategy usep(φ) = δsep.

Distortion strategies that take values in region (3a.vii) are not possible due to Lemma 3. We

can also rule out distortion strategies that take more than an isolated value in regions (3a.iv)

or (3a.vi) by Lemma 4. Further, no candidate equilibrium distortion strategy uc exists with

values in regions (3a.iii), (3a.v) or in a combination of regions (3a.iii)-(3a.v) because uc must be

concave in these regions and therefore cannot cover the entire type space while staying within

these regions. Lastly, any candidate equilibrium distortion strategy with values in region (3a.i)

is Pareto dominated by usep according to Lemma 5.

Case 3b
(
pu − 2β

γ ≤ po ≤ pu + 2β
γ

)
. We have δpref = 0 and distinguish five regions of forecast

distortions:

(3b.i) For u > δsep, we have −1 < w(u) < 0 with lim
u→δsep+

w(u) = 0 and lim
u→∞

w(u) =

b(1−α)
γpo+β

− 1.

(3b.ii) For u = δsep, we have w(u) = 0.

(3b.iii) For 0 < u < δsep, we have w(u) > 0 with lim
u→δsep−

w(u) = 0 and lim
u→0+

w(u) =

b(1−α)
1
2
γ(po−pu)+β

− 1.

(3b.iv) For u = 0, w(u) is not defined.

(3b.v) For u < 0, we have w(u) < −1 with lim
u→0−

w(u) = b(1−α)
1
2
γ(po−pu)−β − 1 and lim

u→−∞
w(u) =

− b(1−α)
γpu+β − 1.
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Region (3b.ii) covers the Pareto-dominant equilibrium distortion strategy usep(φ) = δsep.

Distortion strategies in region (3b.v) are not allowed due to Lemma 3. We can also exclude

distortion strategies that take more than an isolated value in region (3b.iv) by Lemma 4. Since

any candidate equilibrium distortion strategy with values in region (3b.iii) must be concave

in this region, there is no such strategy that stays within the region for all φ. Finally, any

candidate equilibrium distortion strategy that takes values in region (3b.i) is Pareto dominated

by usep (see Lemma 5).

Case 3c
(
po < pu − 2β

γ

)
. We have δpref = G−1

(
γpu−β
γ(pu+po)

)
> 0 and distinguish seven regions

of forecast distortions:

(3c.i) For u > δsep, we have −1 < w(u) < 0 with lim
u→δsep+

w(u) = 0 and lim
u→∞

w(u) =

b(1−α)
γpo+β

− 1.

(3c.ii) For u = δsep, we have w(u) = 0.

(3c.iii) For δpref < u < δsep, we have w(u) > 0 with lim
u→δsep−

w(u) = 0 and lim
u→δpref+

w(u) =

∞.

(3c.iv) For u = δpref , w(u) is not defined.

(3c.v) For 0 < u < δpref , we have w(u) > 0 with lim
u→δpref−

w(u) = −∞ and lim
u→0+

w(u) =

b(1−α)
1
2
γ(po−pu)+β

− 1.

(3c.vi) For u = 0, w(u) is not defined.

(3c.vii) For u < 0, we have w(u) < −1 with lim
u→0−

w(u) = b(1−α)
1
2
γ(po−pu)−β − 1 and lim

u→−∞
w(u) =

− b(1−α)
γpu+β − 1.

Region (3c.ii) covers the Pareto-dominant equilibrium distortion strategy usep(φ) = δsep.

Values in regions (3c.v)-(3c.vii) cannot be part of a candidate equilibrium distortion strategy

due to Lemma 3. Also, not more than an isolated point of region (3c.iv) can be part of a

candidate equilibrium distortion strategy (see Lemma 4). Any candidate equilibrium distortion

strategy with values in region (3c.iii) must be concave in this region and therefore cannot cover

the entire type space without leaving the region. Lastly, any candidate equilibrium distortion

strategy that takes values in region (3c.i) is Pareto dominated by usep (see Lemma 5).

Case 4
(
po ≤ b(1−α)−β

γ

)
. δsep does not exist. We differentiate three subcases based on the

value of δpref :
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Case 4a
(
po > pu + 2β

γ

)
. We have δpref = G−1

(
γpu+β
γ(pu+po)

)
< 0 and distinguish five regions

of forecast distortions:

(4a.i) For u > 0, we have w(u) > 0 with lim
u→∞

w(u) = b(1−α)
γpo+β

− 1 and lim
u→0+

w(u) =

b(1−α)
1
2
γ(po−pu)+β

− 1.

(4a.ii) For u = 0, w(u) is not defined.

(4a.iii) For δpref < u < 0, we have w(u) > 0 with lim
u→0−

w(u) = b(1−α)
1
2
γ(po−pu)−β − 1 and

lim
u→δpref+

w(u) =∞.

(4a.iv) For u = δpref , w(u) is not defined.

(4a.v) For u < δpref , we have w(u) < −1 with lim
u→δpref−

w(u) = −∞ and lim
u→−∞

w(u) =

− b(1−α)
γpu+β − 1.

Distortion strategies with values in region (4a.v) are not allowed due to Lemma 3. Further,

a candidate equilibrium distortion strategy can at most take an isolated value in regions (4a.ii)

and (4a.iv) based on Lemma 4. Finally, any candidate equilibrium distortion strategy that

goes through regions (4a.i) and (4a.iii) must be concave and therefore cannot stay within

these regions while covering the entire type space. We conclude that no candidate equilibrium

distortion strategy exists in case 4a.

Case 4b
(
pu − 2β

γ ≤ po ≤ pu + 2β
γ

)
. We have δpref = 0 and distinguish three regions of

forecast distortions:

(4b.i) For u > 0, we have w(u) > 0 with lim
u→∞

w(u) = b(1−α)
γpo+β

− 1 and lim
u→0+

w(u) =

b(1−α)
1
2
γ(po−pu)+β

− 1.

(4b.ii) For u = 0, w(u) is not defined.

(4b.iii) For u < 0, we have w(u) < −1 with lim
u→0−

w(u) = b(1−α)
1
2
γ(po−pu)−β − 1 and lim

u→−∞
w(u) =

− b(1−α)
γpu+β − 1.

Distortion strategies in region (4b.iii) are excluded based on Lemma 3. In region (4b.ii), at

most an isolated value can be part of a candidate equilibrium distortion strategy (see Lemma

4). Any candidate equilibrium distortion strategy in region (4b.i) must be concave and cannot

therefore stay within the region for all φ. We conclude that there is no candidate equilibrium

distortion strategy in case 4b.
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Case 4c
(
po < pu − 2β

γ

)
. We have δpref = G−1

(
γpu−β
γ(pu+po)

)
> 0 and distinguish five regions

of forecast distortions:

(4c.i) For u > δpref , we have w(u) > 0 with lim
u→∞

w(u) = b(1−α)
γpo+β

− 1 and lim
u→δpref+

w(u) =∞.

(4c.ii) For u = δpref , w(u) is not defined.

(4c.iii) For 0 < u < δpref , we have w(u) < −1 with lim
u→δpref−

w(u) = −∞ and lim
u→0+

w(u) =

b(1−α)
1
2
γ(po−pu)+β

− 1.

(4c.iv) For u = 0, w(u) is not defined.

(4c.v) For u < 0, we have w(u) < −1 with lim
u→0−

w(u) = b(1−α)
1
2
γ(po−pu)+β

− 1 and lim
u→−∞

w(u) =

− b(1−α)
γpu−β − 1.

We rule out distortion strategies with values in regions (4c.iii)-(4c.v) based on Lemma 3.

Also, there cannot be a candidate equilibrium distortion strategy that takes more than an

isolated value in region (4c.ii) based on Lemma 4. Lastly, any candidate equilibrium distortion

strategy with values in region (4c.i) must be concave and therefore cannot cover the entire

type space without leaving the region. We conclude that there is no candidate equilibrium

distortion strategy in case 4c.

We can thus summarize that, given po >
b(1−α)−β

γ (see cases 1-3), ssep is the Pareto-dominant

differentiable strategy for Sales in response to the ordering strategy qsep, which is played by

Operations in any separating equilibrium. We can further say that for po ≤ b(1−α)−β
γ (see case

4), no candidate equilibrium signaling strategy and hence no differentiable separating equi-

librium exists. We conclude that whenever differentiable separating equilibria of the general

forecast error game exist, the equilibrium (ssep, qsep, µsep) Pareto dominates all other differen-

tiable separating equilibria. �

A.1.2. Proof of Proposition 1

Recall that the market uncertainty E is symmetrically distributed with mean zero (see Section

3.1.1). Suppose the distribution function of the market uncertainty G(·) is weakly concave

on R− and weakly convex on R+. This includes the normal distribution that we use in the

experiments.
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We use the partial derivatives of δsep with respect to the behavioral parameters γ and β to

express the sensitivity of δsep to changes in γ and β:

∂δsep

∂γ
=


− b(1−α)−β
γ2(pu+po)

(G−1)′
(
b(1−α)+γpu−β

γ(pu+po)

)
≤ 0 for po − pu < 2 b(1−α)−β

γ ,

0 for 2 b(1−α)−β
γ ≤ po − pu ≤ 2 b(1−α)+β

γ ,

− b(1−α)+β
γ2(pu+po)

(G−1)′
(
b(1−α)+γpu+β

γ(pu+po)

)
≤ 0 for po − pu > 2 b(1−α)+β

γ ,

(A.9)

and

∂δsep

∂β
=


− 1
γ(pu+po)

(G−1)′
(
b(1−α)+γpu−β

γ(pu+po)

)
≤ 0 for po − pu < 2 b(1−α)−β

γ ,

0 for 2 b(1−α)−β
γ ≤ po − pu ≤ 2 b(1−α)+β

γ ,

+ 1
γ(pu+po)

(G−1)′
(
b(1−α)+γpu+β

γ(pu+po)

)
≥ 0 for po − pu > 2 b(1−α)+β

γ .

(A.10)

Let d = po − pu = p̄o − p̄u denote the difference in the unit forecast error penalties and

substitute po + pu = 2pu + d. Note that, ceteris paribus, for any d the conditions for the three

different cases of δsep are the same. Note further that ∂δsep

∂γ ≤ 0 in all cases and that ∂δsep

∂β ≤ 0

in the domain of overforecasting (first case) and ∂δsep

∂β ≥ 0 in the domain of underforecasting

(third case).

For ease of exposition of the following arguments, we drop the case conditions which are the

same as above. We take the cross-partial derivative of ∂δsep

∂γ with respect to pu

∂δsep

∂γ∂pu
=



2 b(1−α)−β
γ2(2pu+d)2

(G−1)′
(
b(1−α)+γpu−β

γ(pu+po)

)
+ (2(b(1−α)−β)−γd)(b(1−α)−β)

γ3(2pu+d)3
(G−1)′′

(
b(1−α)+γpu−β

γ(pu+po)

)
,

0,

2 b(1−α)+β
γ2(2pu+d)2

(G−1)′
(
b(1−α)+γpu+β

γ(pu+po)

)
+ (2(b(1−α)+β)−γd)(b(1−α)+β)

γ3(2pu+d)3
(G−1)′′

(
b(1−α)+γpu+β

γ(pu+po)

)
,

(A.11)
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to express how the sensitivity of δsep with respect to γ changes for a given d but different

values of pu. Making use of the case conditions (d < 2(b(1 − α) − β)/γ in the first case and

d > 2(b(1 − α) + β)/γ in the third case) and the properties of the distribution of the market

uncertainty ((G−1)′(x) ≥ 0 for all x, (G−1)′′(x) ≤ 0 for all x ∈ (0; 0.5) and (G−1)′′(x) ≥ 0

for all x ∈ (0.5; 1)), we can show that ∂δsep

∂γ∂pu
≥ 0 for all three cases. Hence, given that δsep

decreases with increasing values of γ (∂δ
sep

∂γ ≤ 0), it decreases less strongly for bigger values of

pu and hence po.

Similarly, dropping the case conditions again, we take the cross-partial derivative of ∂δsep

∂β

with respect to pu

∂δsep

∂β∂pu
=


+ 2
γ(2pu+d)2

(G−1)′
(
b(1−α)+γpu−β

γ(pu+po)

)
+ 2(b(1−α)−β)−γd

γ2(2pu+d)3
(G−1)′′

(
b(1−α)+γpu−β

γ(pu+po)

)
,

0,

− 2
γ(2pu+d)2

(G−1)′
(
b(1−α)+γpu+β

γ(pu+po)

)
− 2(b(1−α)+β)−γd

γ2(2pu+d)3
(G−1)′′

(
b(1−α)+γpu+β

γ(pu+po)

)
,

(A.12)

to express how the sensitivity of δsep with respect to β changes for a given d but different

values of pu. Making use of the case conditions and the properties of G(·), we can show that

∂δsep

∂β∂pu
≥ 0 in the first case (overforecasting) and ∂δsep

∂β∂pu
≤ 0 in the third case (underforecasting).

Hence, given that δsep decreases in β in the domain of overforecasting (∂δ
sep

∂β ≤ 0) and increases

in β in the domain of underforecasting (∂δ
sep

∂β ≥ 0), it does so less strongly for bigger values of

pu and hence po. �

A.1.3. Proof of Proposition 2

Given a trust-based belief µξ(φ | φ̂) = fξ(φ | φ̂), where fξ is the density function of ξφ̂+(1−ξ)Φ

and ξ ∈ (0; 1], it is straightforward to verify that the best response of Operations to a forecast φ̂

is qξ(φ̂) = ξφ̂+F−1
Z (α), where FZ is the distribution function of Z = (1− ξ)Φ+E. To see this,

note that Operations faces a newsvendor problem with demand distribution ξφ̂+(1− ξ)Φ+E.

To derive the optimal response of Sales to an order strategy qξ, we differentiate US(qξ(φ̂), φ̂ |
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φ) with respect to φ̂

∂US(qξ(φ̂), φ̂ | φ)

∂φ̂
=bξ

(
1−G

(
ξφ̂+ F−1

Z (α)− φ
))

− γ(po + pu)G(φ̂− φ) + γpu


−β for φ̂ > φ,

+β for φ̂ < φ,

(A.13)

and set ∂US
∂φ̂

= 0 to obtain the first-order condition

bξ
(

1−G
(
ξφ̂ξ + F−1

Z (α)− φ
))

= γ(po + pu)G
(
φ̂ξ − φ

)
− γpu


+β for φ̂ξ > φ,

−β for φ̂ξ < φ,

(A.14)

where φ̂ξ is a forecast that solves the first-order condition.

We confirm concavity of US over R \ {φ} by means of the second derivative

∂2US(qξ(φ̂), φ̂ | φ)

∂φ̂2
=− bξ2g

(
ξφ̂+ F−1

Z (α)− φ
)
− γ(po + pu)g(φ̂− φ) < 0 for all φ̂ 6= φ.

Given that US is concave on (−∞, φ) and on (φ,∞) and we have lim
φ̂→φ−

∂US
∂φ̂
≥ lim

φ̂→φ+
∂US
∂φ̂

for

all φ, there is at most one solution to Equation (A.14) for a given φ. If that solution exists, it

maximizes the utility of Sales.

We next derive the conditions under which a solution to Equation (A.14) exists. For po >

−β/γ, we have lim
φ̂→−∞

∂US
∂φ̂

> 0 and lim
φ̂→∞

∂US
∂φ̂

< 0. It follows that there is either a solution to

Equation (A.14) or we have lim
φ̂→φ−

∂US
∂φ̂

> 0 and lim
φ̂→φ+

∂US
∂φ̂

< 0, which implies that the truthful

forecast φ̂ξ = φ is the best response of Sales.

For po ≤ −β/γ, we have lim
φ̂→∞

∂US
∂φ̂
≥ 0, i.e., there exists no solution to Equation (A.14).

Because we have po ≥ 0, β ≥ 0 and γ ≥ 1 by definition, this case can only occur if we have

po = β = 0 and hence lim
φ̂→∞

∂US
∂φ̂

= 0. We conclude that there exists a unique equilibrium

response φ̂ξ for all Sales types φ if at least po > 0 or β > 0.

For ease of interpretation, we rewrite the case conditions of Equation (A.14) in terms of the
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incentive parameters po and pu by replacing φ̂ξ > φ with the requirement

lim
φ̂→φ+

∂US

∂φ̂
> 0 ⇔ po − pu <

2

γ

[
bξ
(
1−G

(
(ξ − 1)φ+ F−1

Z (α)
))
− β

]
, (A.15)

and by replacing φ̂ξ < φ with the requirement

lim
φ̂→φ−

∂US

∂φ̂
< 0 ⇔ po − pu >

2

γ

[
bξ
(
1−G

(
(ξ − 1)φ+ F−1

Z (α)
))

+ β
]
. (A.16)

�

A.1.4. Proof of Proposition 3

In analogy to the proof of Theorem 1 (Appendix A.1.1), it is straightforward to verify that the

best response of Operations given a näıveté-based belief

µθ(φ | φ̂) =


1 for φ = θφ̂+ (1− θ)s−1(φ̂),

0 otherwise,

is qθ(φ̂) = θφ̂+ (1− θ)s−1(φ̂) +G−1(α).

To derive the optimal response s(φ) of Sales to an order strategy qθ, suppose a Sales type φ

sent a signal s(φ̄) corresponding to some type φ̄. We first differentiate US(qθ(s(φ̄)), s(φ̄) | φ)

with respect to φ̄ :

∂US(qθ(s(φ̄)), s(φ̄) | φ)

∂φ̄
=b
(
1−G

(
θs(φ̄) + (1− θ)φ̄+G−1(α)− φ

)) (
θs′(φ̄) + (1− θ)

)

− γ
(
(po + pu)G(s(φ̄)− φ)− pu

)
s′(φ̄)


−βs′(φ̄) for s(φ̄) > φ,

+βs′(φ̄) for s(φ̄) < φ.

(A.17)
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Assuming a linear signaling strategy sθ(φ̄) = φ̄+ δθ, Equation (A.17) simplifies to

∂US(qθ(sθ(φ̄)), sθ(φ̄) | φ)

∂φ̄
=b
(
1−G

(
θδθ + φ̄+G−1(α)− φ

))

− γ(po + pu)G(φ̄+ δθ − φ) + γpu


−β for φ̄+ δθ > φ,

+β for φ̄+ δθ < φ.

(A.18)

A sophisticated belief is based on the assumption that Operations can infer the true market

condition φ from the signal φ̂. We hence require Sales to signal the true type and we thus

evaluate Equation (A.18) at φ̄ = φ

∂US(qθ(sθ(φ̄)), sθ(φ̄) | φ)

∂φ̄

∣∣∣∣
φ̄=φ

=b
(
1−G

(
θδθ +G−1(α)

))

− γ(po + pu)G(δθ) + γpu


−β for δθ > 0,

+β for δθ < 0.

(A.19)

We set Equation (A.19) equal to zero to derive the first-order condition for the best response

of Sales

b
[
1−G

(
θδθ +G−1 (α)

)]
= γ [(po + pu)G (δθ)− pu]


+β for δθ > 0,

−β for δθ < 0.

(A.20)

We check concavity of US by means of the second derivative

∂2US(qθ(sθ(φ̄)), sθ(φ̄) | φ)

∂φ̄2
=− bg

(
θδθ + φ̄+G−1(α)− φ

)
− γ(po + pu)g(φ̄+ δθ − φ) ≤ 0 for φ̄+ δθ 6= φ.

(A.21)

Since we have β ≥ 0 by assumption, it is straightforward to verify that concavity of US extends

to φ̄+ δθ = φ. Hence, if a solution to the first-order condition of Equation (A.20) exists, it is

unique and it maximizes the utility of Sales.

We next derive the conditions under which a solution to Equation (A.20) exists. Note that

we can treat Equation (A.19) as a sectionwise continuous function of δθ. For po > −β/γ, we
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have

lim
δθ→−∞

∂US
∂φ̄

∣∣∣∣
φ̄=φ

> 0 and lim
δθ→∞

∂US
∂φ̄

∣∣∣∣
φ̄=φ

< 0.

It follows that there is either a solution to Equation (A.20) or we have

lim
δθ→0−

∂US
∂φ̄

∣∣∣∣
φ̄=φ

> 0 and lim
δθ→0+

∂US
∂φ̄

∣∣∣∣
φ̄=φ

< 0,

and hence δθ = 0 is the best response of Sales. For po ≤ −β/γ, we have

lim
δθ→∞

∂US
∂φ̄

∣∣∣∣
φ̄=φ

≥ 0,

i.e., there exists no solution to Equation (A.20). Because we have po ≥ 0, β ≥ 0 and γ ≥ 1 by

definition, this case can only occur if we have po = β = 0 and hence

lim
δθ→∞

∂US
∂φ̄

∣∣∣∣
φ̄=φ

= 0.

We conclude that there exists a unique equilibrium distortion value δθ for all Sales types φ if

at least po > 0 or β > 0.

For ease of interpretation, we rewrite the case conditions of Equation (A.20) in terms of the

incentive parameters po and pu by replacing δθ > 0 with the requirement

lim
δθ→0+

∂US
∂φ̄

∣∣∣∣
φ̄=φ

> 0 ⇔ po − pu <
2

γ
(b (1− α)− β) , (A.22)

and by replacing δθ < 0 with the requirement

lim
δθ→0−

∂US
∂φ̄

∣∣∣∣
φ̄=φ

< 0 ⇔ po − pu >
2

γ
(b (1− α) + β) . (A.23)

�
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A.1.5. Proof of Proposition 4

In analogy to the proof of Theorem 1, it is straightforward to verify that µsepR satisfies Bayesian

consistency of beliefs and that qsepR is a sequentially rational response of Operations given µsepR .

It remains to show that ssepR is a sequentially rational response of Sales given qsepR .

We first resolve the expected values and rewrite URS as

URS (q, φ̂ | φ) = CS + b

(
q −

∫ q−φ

−∞
G(x)dx

)
− γpo

∫ φ̂−φ

−∞
G(x)dx

− γpu

(∫ φ̂−φ

−∞
G(x)dx+ EE(E)− (φ̂− φ)

)


+τpu

(
φ̂− φ−

∫ φ̂−φ
0 G(x)dx

)
− λτpo

∫ φ̂−φ
0 G(x)dx− β

(
φ̂− φ

)
for φ̂ > φ,

−λτpu
(
φ− φ̂−

∫ 0
φ̂−φG(x)dx

)
+ τpo

∫ 0
φ̂−φG(x)dx+ β

(
φ̂− φ

)
for φ̂ < φ.

(A.24)

To derive the optimal response s(φ) of Sales to an order strategy qsepR , suppose a Sales type φ

sent a signal s(φ̄) corresponding to some type φ̄. We first differentiate URS (qsepR (s(φ̄)), s(φ̄) | φ)

with respect to φ̄:

∂URS (qsepR (s(φ̄)), s(φ̄) | φ)

∂φ̄
= b

(
1−G

(
φ̄+G−1(α)− φ

))
− γ

(
(po + pu)G

(
s(φ̄)− φ

)
− pu

)
s′(φ̄)

+τpu
(
1−G

(
s(φ̄)− φ

))
s′(φ̄)− λτpoG

(
s(φ̄)− φ

)
s′(φ̄)

−βs′(φ̄) for s(φ̄) > φ,

+λτpu
(
1−G

(
s(φ̄)− φ

))
s′(φ̄)− τpoG

(
s(φ̄)− φ

)
s′(φ̄)

+βs′(φ̄) for s(φ̄) < φ.

(A.25)

In a separating equilibrium, we require Sales to send a signal that corresponds to the true type

φ. We hence evaluate Equation (A.25) at φ̄ = φ and set it equal to zero to derive the first-order
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condition as a differential equation:

s′(φ) =


b(1−α)

((1+τ)pu+(1+λτ)po)G(s(φ)−φ)−(1+τ)pu+β for s(φ) > φ,

b(1−α)
((1+λτ)pu+(1+τ)po)G(s(φ)−φ)−(1+λτ)pu−β for s(φ) < φ.

(A.26)

Setting s = ssepR , with (ssepR )′(φ) = 1, Equation (A.26) holds for b(1−α)−β
1+λτ < po < 2 b(1−α)−β

1+λτ +

1+τ
1+λτ pu and for po > 2 b(1−α)+β

1+τ + 1+λτ
1+τ pu. For 2 b(1−α)−β

1+λτ + 1+τ
1+λτ pu ≤ po ≤ 2 b(1−α)+β

1+τ + 1+λτ
1+τ pu,

we have ssepR (φ) = φ and Equation (A.26) is not defined, but we can verify for this case that

the right hand side of Equation (A.25) evaluated at φ̄ = φ is > 0 for s(φ) < φ and < 0 for

s(φ) > φ. Hence, the strategy ssepR fulfills the first-order condition.

For ssepR , the second derivative of Equation (A.24) is

∂2URS (qsepR (ssepR (φ̄)), ssepR (φ̄) | φ)

∂φ̄2
=− bg

(
φ̄+G−1(α)− φ

)
− γ(po + pu)g

(
φ̄+ δsepR − φ

)

−(τpu + λτpo)g

(
φ̄+ δsepR − φ

)
for φ̄+ δsepR > φ,

−(λτpu + τpo)g
(
φ̄+ δsepR − φ

)
for φ̄+ δsepR < φ,

(A.27)

which is < 0 for all φ̄ + δsepR 6= φ. That is, URS is strictly concave in φ̄ for signals ssepR (φ̄)

to the left and to the right of φ. Since we have β ≥ 0 by assumption, concavity extends to

ssepR (φ̄) = φ. We can conclude that ssepR is a sequentially rational strategy for Sales and that

(ssepR , qsepR , µsepR ) is a separating equilibrium of the game with reference-dependent forecast error

valuations.

�
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A.1.6. Proof of Proposition 5

To derive the optimal response of Sales to an order strategy qc(φ̂) = φ̂ − c, we differentiate

US(qc(φ̂), φ̂ | φ) with respect to φ̂

∂US(qc(φ̂), φ̂ | φ)

∂φ̂
=b
(

1−G
(
φ̂− φ− c

))
− γ(po + pu)G(φ̂− φ) + γpu


−β for φ̂ > φ,

+β for φ̂ < φ,

(A.28)

and set ∂US
∂φ̂

= 0 to obtain the first-order condition

b
(

1−G
(
φ̂c − φ− c

))
= γ(po + pu)G

(
φ̂c − φ

)
− γpu


+β for φ̂c > φ,

−β for φ̂c < φ,

(A.29)

where φ̂c is a forecast that solves the first-order condition.

To verify the existence and uniqueness of solutions to Equation (A.29), we first confirm

concavity of US over R \ {φ} by means of the second derivative

∂2US(qc(φ̂), φ̂ | φ)

∂φ̂2
=− bg

(
φ̂− φ− c

)
− γ(po + pu)g(φ̂− φ) < 0 for all φ̂ 6= φ. (A.30)

Given that US is concave on (−∞, φ) and on (φ,∞) and we have lim
φ̂→φ−

∂US
∂φ̂
≥ lim

φ̂→φ+
∂US
∂φ̂

for

all φ, there is at most one solution to Equation (A.29) for a given φ. If that solution exists, it

maximizes the utility of Sales.

We next derive the conditions under which a solution to Equation (A.29) exists. For po >

−β/γ, we have lim
φ̂→−∞

∂US
∂φ̂

> 0 and lim
φ̂→∞

∂US
∂φ̂

< 0. It follows that there is either a solution to

Equation (A.29) or we have lim
φ̂→φ−

∂US
∂φ̂

> 0 and lim
φ̂→φ+

∂US
∂φ̂

< 0, and hence φ̂c = φ is the optimal

forecast.

For po ≤ −β/γ, we have lim
φ̂→∞

∂US
∂φ̂
≥ 0, i.e., there exists no solution to Equation (A.29).

Because we have po ≥ 0, β ≥ 0 and γ ≥ 1 by definition, this case can only occur if we have

po = β = 0 and hence lim
φ̂→∞

∂US
∂φ̂

= 0. We conclude that there exists a unique equilibrium
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response φ̂c for all Sales types φ if at least po > 0 or β > 0.

For ease of interpretation, we rewrite the case conditions of Equation (A.29) in terms of the

incentive parameters po and pu by replacing φ̂c > φ with the requirement

lim
φ̂→φ+

∂US

∂φ̂
> 0 ⇔ po − pu <

2

γ
[b(1−G(−c))− β] , (A.31)

and by replacing φ̂c < φ with the requirement

lim
φ̂→φ−

∂US

∂φ̂
< 0 ⇔ po − pu >

2

γ
[b(1−G(−c)) + β] . (A.32)

�

A.2. Phase Line Diagrams and Vector Fields

The following figures serve to visualize additional candidate equilibrium distortion strategies

discussed in the proof of Theorem 1. The phase line diagrams describe the slope of u based on

the properties of w(u) (rightward pointing arrows: u is increasing, leftward pointing arrows: u is

decreasing, filled dots: the slope of u is 0, empty dots: the slope of u is not defined). Expressions

on top of the phase line denote the limits of w(u) towards infinity and from both sides at points

where w(u) changes sign and/or is not defined. The vector fields illustrate the behavior of u

depending on φ. They are based on an error distribution of E ∼ N (0, 30) and a critical ratio

of α = 0.5. For each phase there are graphs of example initial conditions (IC) including an

initial condition u(0) = δsep that corresponds to the Pareto-dominant differentiable separating

equilibrium. Where applicable, dotted lines represent u(φ) = δpref .
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Vector Fields
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Figure A.1.: Vector field plots of candidate equilibrium distortion strategies
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Figure A.1.: Vector field plots of candidate equilibrium distortion strategies (continued)
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Figure A.1.: Vector field plots of candidate equilibrium distortion strategies (continued)

A.3. Details of the Main Experiment

The experiment was conducted in German. The corresponding instructions and questionnaires

are available upon request from the author.

A.3.1. Instructions

At the beginning of the experiment, subject received the following instructions (exemplary for

the second session (Treatments 5–8) of the main experiment), which were first read aloud by

the instructor and then silently by each subject.

Overall situation.

In this experiment, you are working for a company that produces and sells a single product.

Half of you will assume the role of a salesperson, the other half of you will assume the role of

a production planner within this company.
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• It is the task of a salesperson to generate a sales forecast for the product and to commu-

nicate this forecast to the production planner. The salesperson possesses information on

demand for the product, that the production planner does not have.

• It is the task of a production planner to decide how much the company will produce

based on the sales forecast.

For the entire duration of the experiment, you will assume the role either of a salesperson or

of a production planner. You will be informed at the beginning of the experiment which role

you have been assigned to.

Demand information.

The real demand for the product of the company is unknown at the beginning of a period. It

depends on the overall market condition and additional random factors.

• The market condition is the expected value of demand and can take on a different value

in each period. The market condition follows a normal distribution with a mean of 100

units and a standard deviation of 30 units. The realization of the market condition is

known only to the salesperson.

• Random factors can cause the realization of demand to deviate from the market con-

dition. The random factors follow a normal distribution with a mean of 0 units and a

standard deviation of 30 units. The realization of random factors is known neither to the

salesperson nor to the production planner.

A characteristic of normally distributed random variables is that on average 68 % of all

realizations (i.e., of effectively drawn random numbers) are within an interval of plus/minus

one standard deviation of the mean. On average 95 % of all realizations are within an interval of

plus/minus two standard deviations of the mean. Figure A.2 shows an example with a market

condition of 120 units. Then real demand will be within the interval of 90 (= 120− 1 · 30) to

150 (= 120 + 1 · 30) with 68 % probability and within the interval of 60 (= 120− 2 · 30) to 180

(= 120 + 2 · 30) with 95 % probability.
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… NORMALLY DISTRIBUTED ERRORS
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Figure A.2.: Example of demand distribution

At the end of each period (after the salesperson has communicated a forecast and the produc-

tion planner has chosen a production quantity) real demand occurs. The production quantity

chosen by the production planner determines how many units of the product can be sold.

There are three possibilities:

• Production quantity > demand: If production exceeds demand, all demand can be filled.

The remaining units (overage quantity) cannot be stored and therefore cannot be used

in subsequent periods.

• Production quantity < demand: If production is less than demand, only part of the

demand can be filled. The difference between demand and production quantity (overage

quantity) cannot be filled in subsequent periods.

• Production quantity = demand: If production equals demand, all demand can be filled

and there are neither overage nor underage quantities.
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Information on your compensation.

In each period you have the opportunity to earn bonuses valued at virtual currency units (ECU

= experimental currency unit). Over the course of the experiment you will play four different

scenarios in random order (A, B, C, D).

Compensation of the production planner: The calculation of the production planner’s bonus

is the same across all four scenarios. The bonus of a period is composed of a fixed component,

an overage component and an underage component.

• Fixed component: In each period, the production planner receives a fixed amount of 2,000

ECUs.

• Overage component: For each unit of overage quantity, 10 ECUs are deducted from the

overall bonus. For example, for an overage quantity of 50 units, the overage component

would be 50 · (−10) ECUs = −500 ECUs.

• Underage component: For each unit of underage quantity, 10 ECUs are deducted from

the overall bonus. For example, for an underage quantity of 50 units, the underage

component would be 50 · (−10) ECUs = −500 ECUs.

The magnitude of overage and underage quantities depends on the production quantity

decision of the production planner and on the demand realization. The production planner

does not know the demand but must estimate it based on the forecast of the salesperson. Table

A.1 shows two examples of how to calculate the bonus of the production planner in case of an

overage quantity (Example 1) and an underage quantity (Example 2).

Compensation of the salesperson: The calculation of the salesperson’s bonus varies by sce-

nario; the structural composition, however, is the same. The bonus of a period is composed

of a fixed component, a forecast component and a sales component. In the following, the cal-

culation will be explained with placeholders X and Y, which need to be replaced with values

depending on the scenario.

• Fixed component: In each period, the salesperson receives a fixed amount of 1,000 ECUs.
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4

Profit Produktionsmanager

Production quantity
> demand

 Forecast (of salesperson)
 Production quantity (of production planner)
 Demand realization

110
130
100

110
130
140

 Number of units sold
(minimum of production quantity and demand)

 Overage quantity
 Underage quantity

100

30
--

130

--
10

 Fixed component
 Overage component

(minus 10 ECUs for each unit of overage quantity)
 Underage component

(minus 10 ECUs for each unit of underage quantity) 
 Overall bonus (Fixed component

- overage component - underage component)

2,000
-300

--

1,700

2,000
--

-100

1,900

Production quantity
< demand

Example 1 Example 2

Table A.1.: Example bonus calculation of the production planner

• Forecast component: For each unit that the forecast deviates from the demand, some

ECUs will be deducted from the salesperson’s bonus. It will be distinguished between

an overestimation of demand (the forecast is greater than the demand) and an underes-

timation of demand (the forecast is smaller than the demand):

– Overestimation of demand: For each unit that the forecast is greater than the real

demand, X ECUs will be deducted from the salesperson’s bonus. For example, for

an overestimation of 50 units, the forecast component would be 50 · (−X) ECUs.

– Underestimation of demand: For each unit that the forecast is smaller than the real

demand, Y ECUs will be deducted from the salesperson’s bonus. For example, for

an underestimation of 50 units, the forecast component would be 50 · (−Y ) ECUs.

The magnitude of the forecast component depends on the forecast decision of the sales-

person and on the demand realization.

• Sales component: The salesperson receives 10 ECUs for each unit of the product sold.

For example, for a sold volume of 50 units, the sales component would be 50 ·10 ECUs =
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500 ECUs. The number of units sold depends on the production quantity decision of the

production planner and the on the demand realization.

The placeholders X and Y of the forecast component must be replaced by scenario as shown

in Table A.2.

PROGNOSEBONUS

 Scenario A
 Scenario B
 Scenario C
 Scenario D

-6
-8
-10
-12

-4
-2
--
-2

Overestimation of
demand

(placeholder X)

Underestimation of
demand

(placeholder Y)

Table A.2.: Values of placeholders by scenario of the experiment

Both players (salesperson and production planner) will be informed, over the course of the

experiment, which scenario is to be played. Table A.3 shows two examples of how to calculate

the bonus of the salesperson in scenario A in case of an overestimation of demand (Example

1) and an underestimation of demand (Example 2).

In total you will play 32 periods (plus 4 test periods). At the end of the experiment,

the computer will randomly choose 8 of these 32 periods. The sum of ECUs that you have

earned in these 8 periods determines your overall payout. Additionally, you will have two more

possibilities to increase your payout:

• You can earn an additional amount of 3,000 ECUs by correctly answering the questions

of the pre-experiment-questionnaire. You will receive 1,000 ECUs for each block of 3

questions that you answer correctly at your first try.

• At the end of the experiment, you can increase your payout by performing two additional

tasks.

When finished, you will receive your payout based on the sum of ECUs you earned. You will

receive EUR 1 for every 1,000 ECUs.
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5

Profit Sales Manager

 Forecast (of salesperson)
 Production quantity (of production planner)
 Demand realization

110
130
100

110
130
140

 Overestimation of demand
 Underestimation of demand
 Number of units sold

(minimum of production quantity and demand)

10
--

100

--
30
130

 Fixed component
 Forecast component: Overestimation of demand

(Minus 6 ECUs for each unit of overestimation)
 Forecast component: Underestimation of demand

(Minus 4 ECUs for each unit of underestimation)
 Sales component

(Plus 10 ECUs for each unit sold)
 Overall bonus (Fixed component

- forecast component + sales component)

1,000
-60

--

1,000

1,940

1,000
--

-120

1,300

2,180

Forecast
> demand

Forecast
< demand

Example 1 Example 2

Table A.3.: Example bonus calculation of the salesperson in scenario A

Sequence of events.

At the beginning of each period, one salesperson and one production planner will be randomly

matched. You will interact with a different participant of this experiment in each period and

you will never get to know who you are playing with. The general sequence of actions in each

period is the following (see Figure A.3):

1. Generation of market condition: At the beginning of each period the computer generates

a random market condition (i.e., the expected value of demand for that period).

2. Display of market condition: The salesperson receives information about the market con-

dition. This information will be displayed only on the salesperson’s screen; the production

planner will not see this information.

3. Communication of forecast: The salesperson sends a forecast to the production planner.

The production planner sees the forecast on his screen.
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4. Decision of production quantity: The production planner decides how much the company

will produce. This decision can be, but does not have to be based on the forecast.

5. Generation of demand: The computer generates the real demand. Based on the demand

and the production quantity the computer calculates how many units of the product can

be sold.

6. Calculation of bonuses: Based on the forecast, the demand, the number of units sold, the

overage and the underage quantity, the computer calculates the bonuses of both players.

3

FLOW OF THE GAME – EACH PERIOD CONSISTS OF THE SAME STEPS

Salesperson Production
planner

Computer

 Communication
of forecast

3

 Generation of
market condition

1

 Display of
market condition

2  Decision of
production quantity

4

 Generation of
demand

5

 Calculation
of bonuses

6

Figure A.3.: Sequence of actions in each period
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A.3.2. Pre-Experiment Quiz

By way of example, the following set of questions relates to the second session (Treatments

5–8) of the main experiment. Correct answers are marked in the checkboxes.

1. Are you going to play all rounds of the experiment with the same partner?

� Yes, all rounds with the same partner

� No, each round with a different partner

� No, 10 rounds each with the same partner

2. What is the relationship between the forecast and the market condition?

� The forecast has to be equal to the market condition

� The forecast has to be higher than the market condition

� The salesperson can choose the forecast freely

3. What is the relationship between the forecast and the production quantity?

� The production quantity has to be equal to the forecast

� The production quantity has to be lower than the forecast

� The production planner can choose the production quantity freely

4. Who knows the market condition (=the expected value of demand) with certainty?

� The salesperson

� The production planner

� Both

5. Imagine the market condition is 85 units. In which interval will the real demand be with

95 % probability?

� Between 55 and 115 units

� Between 25 and 145 units

� Between 60 and 180 units
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6. Evaluate the statement “The more the production planner produces, the higher the ex-

pected sales bonus of the salesperson.”

� True

� False

� Neither true nor false

7. Imagine the production planner produced 70 units. The demand is 90 units. What is

the profit of the production planner?

� 1,800 ECUs

� 2,000 ECUs

� 1,600 ECUs

8. Imagine the salesperson chose a forecast of 120 units. The production planner produced

130 units. The demand is 90 units. What is the profit of the salesperson in scenario A?

� 1,780 ECUs

� 2,120 ECUs

� 1,720 ECUs

9. Imagine the salesperson chose a forecast of 60 units. The production planner produced

60 units. The demand is 90 units. What is the profit of the salesperson in scenario A?

� 1,480 ECUs

� 1,420 ECUs

� 1,780 ECUs
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A.3.3. Screenshots

Format A2  Skalierung 50%

Scenario 
information

Production
quantity
decision

History of
the game

Forecast 
information

Optional 
decision
support

Scenario 
information

Forecast 
decision

History of
the game

Market 
condition

information

Optional 
decision
support

Period

Period

Figure A.4.: Example decision screen of SalesFormat A2  Skalierung 50%

Scenario 
information

Production
quantity
decision

History of
the game

Forecast 
information

Optional 
decision
support

Scenario 
information

Forecast 
decision

History of
the game

Market 
condition

information

Optional 
decision
support

Period

Period

Figure A.5.: Example decision screen of Operations
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Format A2  Skalierung 50%

History of the
game

Period

Decisions and
actual demand

Profit

History of the
game

Period

Results

• Quantity sold

• Overage and
underage
quantities

• Forecast error

Decisions and
actual demand

Profit

Results

• Quantity sold

• Overage and
underage
quantities

• Forecast error

Operations

Sales

Figure A.6.: Example results screen of SalesFormat A2  Skalierung 50%

History of the
game

Period

Decisions and
actual demand

Profit

History of the
game

Period

Results

• Quantity sold

• Overage and
underage
quantities

• Forecast error

Decisions and
actual demand

Profit

Results

• Quantity sold

• Overage and
underage
quantities

• Forecast error

Operations

Sales
Figure A.7.: Example results screen of Operations
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A.3.4. Elicitation of Risk Attitudes

After the regular duration of the experiment, subjects were asked to make ten lottery decisions.

The following instructions (translated from German) were displayed on screen (see Figure A.8):

You now have the possibility to increase your payout for the experiment. Your profit in this

part of the experiment depends on your own decisions only. It will be added to your profit

from the forecast sharing task and will be paid out at the end of the experiment.

In the following, you have to make ten decisions. Each decision is a choice between “Option

A” and “Option B”. In the end, only one of the ten decisions will be used to calculate your

additional profit. Before you proceed, please read the following instructions.

After having made your ten decisions, the computer will generate two random numbers. The

first number determines, which one of the ten decisions is chosen for the profit calculation. The

second number determines the profit for the option (A or B) that you chose in this particular

decision task. Even though you will make ten decisions, only one will affect your profit. Every

decision has the same probability to be chosen in the end and you do not know yet which one

it will be.

Pleas take a look at the first decision task. In Option A, you will receive a profit of 1,000

ECUs with a probability of 10 % and a profit of 800 ECUs with a probability of 90 %. In

Option B, you will receive a profit of 1,925 ECUs with a probability of 10 % and a profit of 50

ECUs with a probability of 90 %. The remaining decisions are similar, however, the chances

of winning the higher payout are increasing. In decision number 10, the probability for the

higher payout is even 100 %, i.e., you are choosing between a sure payout of 1,000 ECUs and

a sure payout of 1,925 ECUs.

To summarize, you are making ten decisions of choosing between two Options A and B. You

can choose Option A in some decisions and Option B in others. You can make your decisions

in any order and you can change them as often as you like.

A.3.5. Post-Experiment Questionnaire

At the end of the experiment, subjects answered a questionnaire that tested their overall

understanding of the game and gave them the possibility to explain their decisions. Answering
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Format A2  Skalierung 50%

Scenario 
information

Production
quantity
decision

Forecast 
information

Optional 
decision
support

Period

Lottery
decisions

Task
instructions

Figure A.8.: Screenshot of lottery decisions

the questionnaire was voluntary and the responses did not affect the payout. The questions

differed according to the role the subject played throughout the experiment.

Questionnaire for Sales.

1. In each of the scenarios, did you report the true market condition to Operations?

• Scenario A:

� My forecast was usually higher than the market condition

� My forecast usually corresponded to the market condition

� My forecast was usually lower than the market condition

• Scenario B:

� My forecast was usually higher than the market condition

� My forecast usually corresponded to the market condition

� My forecast was usually lower than the market condition

• Scenario C:
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� My forecast was usually higher than the market condition

� My forecast usually corresponded to the market condition

� My forecast was usually lower than the market condition

• Scenario D:

� My forecast was usually higher than the market condition

� My forecast usually corresponded to the market condition

� My forecast was usually lower than the market condition

2. Please describe, in which situations you reported a forecast that was higher than the true

market condition?

3. Please describe, in which situations you reported a forecast that was lower than the true

market condition?

4. Which scenario was best for you personally?

� Scenario A

� Scenario B

� Scenario C

� Scenario D

5. Which scenario was best for the entire company?

� Scenario A

� Scenario B

� Scenario C

� Scenario D

Questionnaire for Operations.

1. Imagine, you knew the true market condition. Which order quantity would you choose

if...
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• ...the market condition was 75?

• ...the market condition was 100?

• ...the market condition was 125?

2. In each of the scenarios, do you think the salesperson reported the true market condition?

• Scenario A:

� The forecast was usually higher than the market condition

� The forecast usually corresponded to the market condition

� The forecast was usually lower than the market condition

• Scenario B:

� The forecast was usually higher than the market condition

� The forecast usually corresponded to the market condition

� The forecast was usually lower than the market condition

• Scenario C:

� The forecast was usually higher than the market condition

� The forecast usually corresponded to the market condition

� The forecast was usually lower than the market condition

• Scenario D:

� The forecast was usually higher than the market condition

� The forecast usually corresponded to the market condition

� The forecast was usually lower than the market condition

3. Please describe, in which situations you chose an order quantity that was higher than

the forecast?

4. Please describe, in which situations you chose an order quantity that was lower than the

forecast?
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5. Which scenario was best for you personally?

� Scenario A

� Scenario B

� Scenario C

� Scenario D

6. Which scenario was best for the entire company?

� Scenario A

� Scenario B

� Scenario C

� Scenario D
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A.3.6. Subject Pool Characteristics

Before collecting their payouts, we asked subjects to answer some statistical questions. Table

A.4 summarizes the results.

Number of subjects

Note: Standard errors are reported in parentheses. 

Demographics

 Age (years)

 Gender

 Female

 Male

Study background

 Semester of studies

 Level of studies

 Bachelor

 Master

 Course of studies

 Business Administration

 Economics

 Information Systems

 Other

 Attended basic OM course

 Yes

 No

Sales

25.9 (3.1)

43.8%

56.2%

7.2 (4.1)

46.9%

53.1%

59.4%

28.1%

9.4%

3.1%

68.8%

31.2%

32

Operations

24.2 (3.6)

43.8%

56.2%

6.2 (4.9)

62.5%

37.5%

65.6%

25.0%

6.3%

3.1%

68.8%

31.2%

32

Total

25.0 (3.4)

43.8%

56.2%

6.7 (4.5)

54.7%

45.3%

62.5%

26.6%

7.8%

3.1%

68.8%

31.2%

64

Table A.4.: Subject pool characteristics of the main experiment
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