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Zusammenfassung 

Das hitzestabile Nukleoid-assoziierte Protein H-NS ist ein globaler Transkriptionsrepressor in 

Escherichia coli und anderen enterobakteriellen Spezies. H-NS bindet an AT-reiche DNA-

Regionen und reprimiert Gene welche für verschiedene Stressantworten und 

Pathogenitätsdeterminanten kodieren und durch horizontalen Gentransfer erworben wurden. 

Die Repression der Transkription durch H-NS erfolgt durch die Bildung eines repressiven 

Nukleoproteinkomplexes durch DNA-Versteifen (stiffening) oder DNA-Brückenbildung 

(bridging). H-NS blockiert die Bindung der RNA-Polymerase an den Promotor oder setzt sie 

am Promotor fest. StpA, ist ein Paralog von H-NS, welches ähnlich wie H-NS wirkt und einen 

heteromeren Komplex mit H-NS bildet. Einige Gene werden durch H-NS und StpA 

reprimiert. Die Repression der Transkription durch H-NS kann durch die Bindung 

spezifischer Transkriptionsregulatoren oder durch Änderung der DNA-Struktur aufgehoben 

werden.  

Die Transkriptionselongation und die Repression durch H-NS können möglicherweise 

interferieren. In vitro kann H-NS das Pausieren der RNA-Polymerase verstärken und die Rho-

abhängige Termination fördern. In vivo ist die H-NS-DNA Bindung reduziert, wenn die 

Transkription durch Hemmung Rho-vermittelter Termination gesteigert wird. 

In dieser Arbeit wurde die Wirkung der Transkriptionselongation auf H-NS- und H-NS/StpA-

reprimierte Promotoren analysiert. Die Ergebnisse zeigen, dass die Elongation der 

Transkription über eine von H-NS- und H-NS/StpA-gebundene Promotor-DNA-Region (bgl, 

proU, pdeL und appY) hinweg die Repression der Promotoren vermindert. Zum Beispiel 

bewirkt eine in das bglDRE (bgl downstream regulatory element) hinein gerichtete 

Transkription die Derepression eines H-NS reprimierten Promoters P3bgl innerhalb des bglDRE. 

Darüber hinaus verringert die Induktion eines stromaufwärts von bgl liegenden Operons (pst-

phoU) die Repression der bgl-Promotoren durch H-NS/StpA. Zusätzlich wurde eine inverse 

Korrelation zwischen der Transkriptionsrate und H-NS-Repression beobachtet. Die Daten 

legen nahe, dass die transkribierende RNA-Polymerase in der Lage ist, den H-NS (und StpA) 

Komplex umzustrukturieren. Durch diese Umstrukturierung während der Transkription 

kommt es vermutlich zur Dislokation von H-NS (und StpA) von der DNA und damit zur 

verminderten Repression, während bei niedrigen Transkriptionsraten der H-NS-

Repressionskomplex stabil ist. Dies impliziert die wechselseitige Interferenz zwischen 

Transkription und H-NS-Repression. Daher werden gering transkribierte AT-reiche Regionen 
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eher durch H-NS reprimiert werden, wohingegen eine effizient transkribierte Region die 

Bildung eines Repressionskomplexes nicht erlauben sollte. Im Kontext des Genoms kann das 

Durchlesen der Transkription von einem stromaufwärts gelegenen Locus, den H-NS-Komplex 

von stromabwärts gelegenen Genen verdrängen, und die Expression dieser Gene 

modifizieren. 
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Summary  

The heat-stable nucleoid-associated protein H-NS is a global transcriptional repressor in 

Escherichia coli and other Enterobacterial species. H-NS binds to AT-rich DNA regions 

repressing several stress response genes, pathogenic genes, horizontally acquired DNA and is 

also indicated to play a role in genome organization. Transcriptional repression by H-NS is 

mediated by the formation of nucleoprotein complex that stiffens or bridges DNA. H-NS 

represses transcription at the level of initiation by excluding or trapping the RNA polymerase 

at promoters. StpA is a H-NS paralogue that presumably acts similarly as H-NS and forms 

heteromeric complex with H-NS and some genes are repressed by H-NS and StpA. H-NS 

mediated repression can be relieved by binding of gene specific transcription factors or by 

perturbations of DNA structure.  

H-NS repression and transcription elongation may also interfere with each other. In vitro, H-

NS enhances RNA polymerase pausing and promotes Rho-dependent termination. 

Complementarily, inhibition of Rho-mediated termination resulting in increased transcription 

reduced H-NS binding.  

In this work, the effect of transcription elongation into H-NS and H-NS/StpA repressed 

promoters were analyzed. The results show that transcription elongation across the H-NS and 

H-NS/StpA bound DNA region of bgl, proU, pdeL and appY relieves the repression of 

promoter by H-NS and H-NS/StpA. For example, analysis of transcripts from bglDRE (bgl 

downstream regulatory element) revealed the presence of additional H-NS repressed promoter 

P3bgl which was de-repressed upon increase in transcription. Moreover, in the native context, 

transcription from upstream pst-phoU operon decreases H-NS/StpA repression of bgl 

promoters. Additionally, an inverse correlation between the transcription rate and H-NS 

repression was observed. The data suggest that the transcribing RNA polymerase is able to 

remodel the H-NS (and StpA) complex and/or dislodge H-NS (and StpA) from the DNA and 

thus relieve repression, while at low transcription rates the H-NS repression complex is stable. 

This implies mutual interference between transcription and H-NS repression. Poorly 

transcribed AT-rich regions are prone to be repressed by H-NS, whereas efficiently 

transcribed region do not allow the formation of repression complex. Furthermore, the 

transcriptional read-through from an upstream locus can concurrently dislodge the H-NS 

complex of downstream genes and modify their expression.  
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1. Introduction  

Escherichia coli possess an approximately 5 Mb circular genome which has to be compacted 

several thousand folds to be accommodated within the dimensions of the cells. Concurrently, 

the genome must be available for processes including but not limited to replication, 

segregation and gene regulation. Nucleoid compaction in E. coli is aided by several nucleoid-

associated proteins such as H-NS, HU, StpA and Fis. These proteins bind non-specifically 

across the genome, enabling wrapping, bending and bridging the DNA and many of them also 

acts as gene-regulators (Dillon & Dorman, 2010, Badrinarayanan et al., 2015). H-NS (Heat-

stable Nucleoid Structuring protein) is an abundant nucleoid-associated protein in E. coli and 

other Enterobacteriaceae which performs dual role in genome organization and 

transcriptional repression (Dorman, 2014a). Transcriptional repression by H-NS is enabled by 

the formation of nucleoprotein complex by bridging or stiffening DNA (Maurer et al., 2009). 

H-NS represses transcription at the level of initiation by excluding the RNA polymerase or by 

trapping the RNA polymerase at the promoter (Grainger, 2016). H-NS repression at the level 

of transcription initiation can be relieved by specific transcription regulators (Stoebel et al., 

2008, Will et al., 2015). However, whether H-NS also modulates later stages of transcription 

such as transcription elongation and termination has not been studied in detail. Conversely, 

the influence of transcription on H-NS repression has not been addressed yet. In this work, the 

interference of transcriptional elongation by RNA polymerase on H-NS repression was 

analyzed. 

1.1 H-NS, global repressor in E. coli 

H-NS is a pleiotropic regulator, which is highly conserved in Gammaproteobacteria (Tendeng 

& Bertin, 2003). H-NS plays a dual role in global transcriptional repression and genome 

organization (Dorman, 2004, Luijsterburg et al., 2006, Dorman, 2014a). H-NS protein is 

highly abundant, present at around 20,000 molecules per genome equivalent and controls the 

expression of 5% of the genes in E. coli (Ali Azam et al., 1999, Hommais et al., 2001). H-NS 

binds non-specifically to any DNA sequence with higher AT-content (Navarre et al., 2007). 

The T-A base step which forms the minor groove of the DNA is critical for H-NS binding 

(Gordon et al., 2011). A poor consensus motif has been defined for high affinity H-NS 

binding (Lang et al., 2007) (Figure 1C). H-NS first nucleates in AT-rich high affinity sites 

dispersed across the genome and subsequently polymerizes into the low affinity sites forming 

repressive nucleoprotein complex (Rimsky et al., 2001, Kahramanoglou et al., 2011, 

Bouffartigues et al., 2007). Genome wide H-NS binding determined using Chromatin 
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Immunoprecipitation-on-chip (ChIP-on-chip) studies have revealed H-NS binding to ~ 350 

loci spread across the E. coli genome (Lucchini et al., 2006, Grainger et al., 2006, 

Kahramanoglou et al., 2011). H-NS binds AT-rich DNA, a characteristic of xenogeneic DNA 

hence, H-NS plays a significant role in silencing horizontally acquired DNA including several 

virulence factors and pathogenicity islands (Navarre et al., 2007, Lucchini et al., 2006, 

Dorman, 2014b). H-NS also affects major DNA transactions such as conjugation, replication, 

transposition and recombination (Dorman, 2004, Dorman, 2014b, Helgesen et al., 2016).  

1.2 Regulation of the hns gene 

Ths hns gene is regulated at the level of transcription and post-transcription. The hns gene is 

negatively autoregulated, with Fis antagonizing H-NS mediated repression (Falconi et al., 

1993, Falconi et al., 1996). Iron regulator Fur and cold shock protein CspA also influences 

hns transcription (Brandi et al., 1994, Troxell et al., 2011). Moreover, auto repression of hns 

is exerted tightly when the replication fork is arrested, suggesting hns transcription is sensitive 

to the progression of cell cycle (Free & Dorman, 1995). Additionally H-NS expression is 

negatively at the post transcriptional level by DsrA (sRNA), which is induced upon stress 

(Brescia et al., 2004).  

1.3 Structure and binding modes of H-NS 

H-NS is a 15 kDa protein consisting of 137 amino acids (Falconi et al., 1988). It possess a N-

terminal oligomerization domain with two dimerization interfaces, followed by a short linker 

domain and C-terminal DNA- binding domain (Esposito et al., 2002, Grainger, 2016) (Figure 

1A). The N-terminal domain (1-83 residues) consists of four α-helices (α1-α4) which permits 

self-association by ‘head-to-head’ and ‘tail-to-tail’ contacts, thus enabling the formation of 

higher order H-NS oligomers (Esposito et al., 2002, Arold et al., 2010). The C-terminal 

domain (91-137 residues) consists of two β-sheets (β1 and β2), an α-helix (α5) and a 310 helix 

which forms a hydrophobic core stabilizing the C-terminal domain (Gordon et al., 2011) 

(Figure 1A). Conserved residues ‘(Q/R)GR’ in the C-terminal domain forms AT-hook motif 

in which the first (Q/R) and the last (R) side chain extend in opposite direction and docks into 

the AT-rich DNA minor groove (Gordon et al., 2011). H-NS thus binds to AT-rich DNA 

sequences forming repressive nucleoprotein complex. This nucleoprotein complex can bind to 

DNA in two modes, it can form linear complex by stiffening the DNA or form bridged 

complex by binding to two strands of DNA (Figure 1B) (Dame et al., 2005, Maurer et al., 

2009). However, the formation of stiffening or bridged complexes depends on the Mg
2+
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concentration in vitro, with higher Mg
2+

 concentration favoring the bridged H-NS DNA 

complex (Liu et al., 2010). 

 

 

Figure 1: Domain organization and binding modes of H-NS. (A) Schematic illustration of 

structural components and domain organization of H-NS protein. The N-terminal oligomerization 

domain (red) consists of four α-helices (α1-α4) and the C-terminal DNA-binding domain (orange) 

which comprises of two β-sheets (β1 and β2), an α-helix (α5) and 310 helix. The AT-hook motif 

consisting of residues (Q/R)GR is indicated (Arold et al., 2010, Gordon et al., 2011). (B) Schematic 

representation of binding modes of H-NS DNA complex. (i) In a linear H-NS DNA complex, H-NS 

binds to the adjacent DNA sites in linear arrangement and stiffens the DNA. (ii) In a bridged H-NS 

DNA complex, H-NS binds and bridges two strands of DNA. (C) Logo representation of 

experimentally determined H-NS binding motif taken from Lang et al., 2007. 

 

1.4 Mechanisms of repression and de-repression of H-NS at the level of transcription 

initiation 

H-NS repression predominantly occurs by counteraction of transcription at the level of 

initiation. Several mechanisms have been described for H-NS repressing transcription 

initiation. H-NS occludes the RNA polymerase from binding, traps the RNA polymerase or 

directly interacts with RNA polymerase to modulate its activity at the promoter regions 

(Grainger, 2016). Occlusion of RNA polymerase is the most common mechanism by which 

H-NS represses transcription initiation (Figure 2A). As stated earlier, H-NS preferentially 

binds to AT-rich DNA binding regions which is also characteristic of promoter region, hence 

H-NS binding coincides with the binding of RNA polymerase (Grainger et al., 2006, 

Panyukov & Ozoline, 2013, Singh et al., 2014). Thus, binding of H-NS in the promoter 

regions occludes the RNA polymerase binding (Yoshida et al., 1993). In some cases H-NS 
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forms a repressive loop by bridging distal H-NS binding sites in which RNA polymerase is 

trapped (Figure 2B). Trapping of RNA polymerase in such repressive loop has been shown 

for rrnB and hdeAB promoters (Dame et al., 2002, Shin et al., 2005). Further, H-NS can also 

directly interact with RNA polymerase and inhibit promoter escape by RNA polymerase 

activity (Figure 2C). In the Enteropathogenic E. coli LEE5 promoter region, H-NS was shown 

to directly interact with the alpha-subunit of RNA polymerase and prevent RNA polymerase 

isomerization to form an open promoter complex (Shin et al., 2012).  

 

  

Figure 2: Mechanisms of H-NS repression at the level of transcription initiation. (A) RNA 

polymerase occlusion. H-NS complex can occlude binding of RNA polymerase to the promoter 

(arrow) in linear or bridged conformation to repress transcription (Yoshida et al., 1993). (B) Trapping 

of RNA polymerase. H-NS can allow the formation of repression loops by bridging which may entrap 

the bound RNA polymerase and prevents translocation of RNA polymerase (Dame et al., 2002, Shin 

et al., 2005). (C) Repression by direct RNA polymerase interaction. H-NS can directly interact with 

alpha C-terminal domain of RNA polymerase and prevents isomerization of RNA polymerase at the 

promoter (Shin et al., 2012). 

 

In most of the cases studied, de-repression by H-NS at the level of transcription initiation is 

facilitated by trans-acting factors. These trans-acting factors can be canonical transcription 

factors which acts gene specifically or H-NS like proteins which disrupts the oligomerization 

state of H-NS and causes de-repression non-specifically. Gene-specific transcription factors 

competes with H-NS for binding sites and displaces H-NS or changes DNA topology to drive-
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off H-NS binding (Navarre et al., 2007, Stoebel et al., 2008, Will et al., 2015, Winardhi et al., 

2015). Ler and SsrB were shown to displace H-NS from promoter region (Desai et al., 2016, 

Winardhi et al., 2014, Walthers et al., 2011). Binding of VirB induces a conformational 

change which bends and remodels the DNA disrupting the H-NS DNA complex (Gao et al., 

2013). SlyA inhibits H-NS binding and alters the confirmation of DNA to enable initiation of 

transcription (Lithgow et al., 2007). In hdeAB and dps promoter, DNA bending by σ
70

 

associated RNA polymerase allows the formation of repression loop by H-NS, which is 

circumvented when σ
38

 associated RNA polymerase is bound (Shin et al., 2005, Grainger et 

al., 2008). Truncated protein orthologs of H-NS interact with H-NS and alter the 

oligomerization of H-NS preventing the formation of a repressive complex. Proteins such as 

gp 5.5 from bacteriophage T7 and H-NST from Enteropathogenic E. coli, bind to the N-

terminal region of H-NS thereby disrupting oligomerization by H-NS which is critical for 

silencing activity (Liu & Richardson, 1993, Williamson & Free, 2005, Levine et al., 2014). 

Apart from trans-acting factors environmental factors such as temperature and osmolarity can 

affect degree of curvature by increasing or decreasing bend angles in DNA, which eventually 

cause H-NS de-repression (Sinden et al., 1998, Amit et al., 2003, Prosseda et al., 2004). In 

virF promoter, H-NS repression is favored at lower temperature whereas at higher 

temperature DNA bending is reduced which displaces H-NS (Di Martino et al., 2016). 

Further, several pathogenic genes have been reported to be repressed by H-NS at lower 

temperature (25°C) which is alleviated at a higher temperature (37°C) (Trachman & Yasmin, 

2004, Yang et al., 2005, Ono et al., 2005). Moreover, in vitro analysis has shown that DNA 

bridging complex formation is inhibited at 37°C (Kotlajich et al., 2015). However, the 

mechanism by which these environmental factors influence H-NS activity and the DNA 

structure remains elusive.  

1.5 H-NS modulating transcription elongation and vice-versa 

In many gene loci H-NS binding extends several hundred base pairs into the coding region 

downstream of the promoter (Singh et al., 2014). H-NS complex bound in the coding region 

could encounter active elongation complex and can act as a road block for the transcribing 

RNA polymerase. H-NS road block can facilitate RNA polymerase pausing and termination 

of the elongation complex. On the other hand, transcribing RNA polymerase can also disrupt 

the bound H-NS complex. Thus, H-NS repression complex and the transcribing RNA 

polymerase could counteract each other (Landick et al., 2015). Recent evidences suggest both 

the phenomena may occur. 
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H-NS could interfere with transcription elongation and enable Rho dependent transcription 

termination. The bgl downstream regulatory element (DRE) which extends up to 700 bp 

downstream of the bgl promoter is repressed by H-NS (Nagarajavel et al., 2007). Efficient H-

NS repression by bglDRE requires the Rho terminator protein (Dole et al., 2004a). 

Furthermore, an in vitro transcription experiment with inverse bglDRE as template showed that 

bridged H-NS complex enhances RNA polymerase pausing thereby facilitating Rho 

dependent termination (Kotlajich et al., 2015). These results posit a model in which, H-NS 

complex increases the dwelling time of RNA polymerase at pause sites, enabling Rho to catch 

up with RNA polymerase to cause termination (Figure 3A). Moreover, genome wide ChIP 

analysis has also shown that H-NS binding sites coincide with Rho termination sites (Peters et 

al., 2012). Thus, this phenomenon of H-NS enabled pausing and termination by Rho might be 

true for many genes that are bound by H-NS.  

 

 

Figure 3: H-NS modulating transcription elongation and vice-versa (A) H-NS interfers with 

transcription elongation. Bridged H-NS complex causes pausing of RNA polymerase enabling Rho 

mediated termination (Kotlajich et al., 2015). (B) Transcription elongation decreases H-NS binding. 

Increased read-through of the RNA polymerase by inhibition of Rho or by other factors decreases H-

NS binding. H-NS, RNA polymerase and Rho are depicted in red, green and blue circles respectively 

(Chandraprakash & Seshasayee, 2014). 

 

While the H-NS complex could interfere with transcription, the converse phenomena of 

transcription elongation interferring with H-NS could also occur. Transcription elongation 

interfering with H-NS is supported by a genome wide ChIP experiment, showing decreased 

H-NS binding in several loci upon inhibition of transcription termination factor Rho. This 

decreased H-NS binding is probably due to increased read through of RNA polymerase into 

the H-NS bound region (Chandraprakash & Seshasayee, 2014) (Figure 3B). Moreover, single 
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molecule studies with optical tweezers have shown that a force of 7 pN is sufficient to 

dislodge DNA binding by a H-NS dimer, while the elongating RNA polymerase exerts a force 

of about 25 pN (Wang et al., 1998, Dame et al., 2006). These suggest that transcription 

elongation complex could dislodge H-NS complex, although experimental evidence for this is 

still lacking. 

1.6 Association of H-NS with other proteins 

H-NS does not act independently in all cases, but is often associated with other modulator 

proteins such as StpA and Hha. StpA is a paralogue of H-NS, which shares 59% sequence 

identity on amino acid level with H-NS (Zhang & Belfort, 1992). StpA also shares functional 

properties of H-NS by binding to AT-rich DNA sequences, forming bridged and linear 

filaments and silences gene expression (Sonnenfield et al., 2001, Lim et al., 2012, Muller et 

al., 2006). In hns mutants StpA binds to high affinity H-NS binding sites and silences the 

expression of horizontally acquired genes that are otherwise bound by H-NS (Srinivasan et 

al., 2013). Biochemical and genetic analysis have shown that StpA forms heteromeric 

complex with H-NS (Williams et al., 1996, Johansson et al., 2001). StpA levels are low in the 

exponential growth phase because stpA gene is repressed by H-NS at the transcriptional level 

and StpA is degraded post-translationally by Lon protease when it is not associated with H-

NS (Zhang et al., 1996, Johansson et al., 2001). A subset of genes in E. coli is bound and 

regulated by H-NS and StpA (Uyar et al., 2009, Srinivasan et al., 2013). In E. coli, bgl and 

leuO promoters are regulated by both H-NS and StpA (Wolf et al., 2006, Stratmann et al., 

2012). It is still an open question how StpA modulates the H-NS complex. 

Hha is a small basic protein that interacts with the N-terminal domain of H-NS providing an 

additional DNA-binding surface as it is positively charged (Ali et al., 2013, Wang et al., 

2014). The additional positive charge provided by Hha presumably stabilizes the H-NS-Hha 

DNA bridging complex (Ali et al., 2013, van der Valk et al., 2017) (Figure 4). Thus, H-

NS/Hha complex presumably enhances H-NS repression by forming a stable bridged 

repressive complex at a subset of H-NS regulated genes. In E. coli, Hha binds to a subset of 

genes that is bound by H-NS in the coding part of the genome (Ueda et al., 2013). In 

Salmonella, H-NS/Hha complex specifically affect horizontally acquired genes and does not 

affect housekeeping genes that are repressed by H-NS (Vivero et al., 2008, Banos et al., 

2009). Very few genes have been reported in E. coli and Salmonella which are regulated by 

Hha/H-NS complex. The H-NS/Hha complex represses haemolysin (hlyCABD) operon, htrA 

gene and esc operon of E. coli O157:H7 (Nieto et al., 2000, Forns et al., 2005, Sharma & 
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Zuerner, 2004). In Salmonella H-NS/Hha complex negatively regulates Salmonella 

pathogenicity island SPI-2 (Coombes et al., 2005, Silphaduang et al., 2007).  

 

 

Figure 4: Binding of Hha protein in H-NS complex. Hha (yellow) binds to the N-terminal domain 

of H-NS (red) providing an additional contact surface with a positive charge for DNA binding. Figure 

adapted and modified from Ali et al., 2013. 

 

1.7 Role of H-NS in genome organization 

H-NS is indicated to be involved in nucleoid organization because of its bridging property 

which could bridge distance DNA fragments enabling DNA compaction (Luijsterburg et al., 

2006, Dorman, 2014a). On a broad scale, E. coli genome is divided into four major 

macrodomains; Ori, Ter, Right, Left and two non-structured domains (Valens et al., 2004). 

Superimposed on the macrodomain structure is the chromosome organization as looped 

microdomains which are highly dynamic. E. coli chromosome possess approximately 400 

looped microdomains with 10-12 kb in length (Postow et al., 2004, Deng et al., 2005). The 

distribution of H-NS binding sites in the genome is consistent with the likely locations of the 

domain loop boundaries, and the bridging property of H-NS indicates the role of H-NS in 

stabilizing the microdomain loops (Noom et al., 2007, Dillon & Dorman, 2010). Additionally, 

insights from atomic force microscopy and single molecule experiments revealed 

condensation of large domains by H-NS suggesting a role for DNA condensation by H-NS 

(Dame et al., 2000, Ohniwa et al., 2013, Thacker et al., 2014). Moreover, H-NS, when 

overproduced lead to a highly condensed nucleoid which is lethal (Spurio et al., 1992, 

McGovern et al., 1994). The precise role of H-NS in the genome organization is yet to be 

determined. 

1.8 H-NS repression of proU and bgl operons 

 The bgl and proU operon are classical genetic loci for studying H-NS repression. The hns 

gene was first discovered as a part of bgl and proU operon and was named as osmZ and bglY, 

whose mutation lead to high expression levels of bgl and proU operon, respectively. Further 
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studies on proU and bgl operon enabled to elucidate the mechanism of repression and de-

repression of H-NS complex.  

The proU operon encodes ABC transporter for the transport of compatible solutes such as 

proline and glycine betaine (Lucht & Bremer, 1994, Gowrishankar & Manna, 1996). The 

proU operon consists of genes proV, proW and proX (Figure 5A). The proU operon is 

osmoregulated, at low osmolarity conditions it is repressed by H-NS and at high osmolarity 

concentrations the expression is high (Gowrishankar, 1985, Ueguchi & Mizuno, 1993, Lucht 

et al., 1994). The binding of H-NS complex to regulatory elements upstream and downstream 

of the promoter (URE and DRE) which is critical for nucleoprotein complex formation by H-

NS was first elucidated in proU operon (Overdier & Csonka, 1992). Later, this binding of H-

NS in upstream and downstream regulatory elements was discovered in other H-NS repressed 

genes such as bgl and hilA (Schnetz, 1995, Olekhnovich & Kadner, 2006). In proU, the 

nucleoprotein complex spreads from -230 nt upstream to +270 nt downstream of the promoter 

(Lucht et al., 1994, Badaut et al., 2002). H-NS binds to the 10 bp high affinity H-NS binding 

sites at +25 and +130 relative to the transcription start site and laterally oligomerizes along 

the DNA to the low affinity sites forming a repressive nucleoprotein complex (Bouffartigues 

et al., 2007). Although, the H-NS repression is well studied in proU, the mechanism by which 

the H-NS repression is relieved at high osmolarity remains a puzzle. 

 

 

Figure 5: E. coli proU and bgl operons. (A) Schematic representation of proU operon consisting of 

PproU promoter and proV, proW, proX genes. H-NS was shown to bind between -230 bp upstream to 

+270 bp downstream relative to the transcription start site from PproU (Lucht et al., 1994, Badaut et al., 

2002). (B) Schematic representation of bgl operon consisting of PproU and structural genes bglG, bglF, 

bglB. Two rho independent terminators t1 and t2 are present flanking bglG gene. CRP binding site is 

shown in grey. H-NS was shown to bind bgl atleast between -160 bp upstream to +700 bp downstream 

of the transcription start site (Schnetz, 1995, Dole et al., 2004b). 
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The bgl operon encodes for the proteins that enable uptake and utilization of aryl-β, D-

glucosides. The bgl operon consists of bglGFB genes and two rho independent terminators 

flanking bglG gene (Mahadevan et al., 1987, Schnetz et al., 1987, Schnetz & Rak, 1988) 

(Figure 5B). H-NS binds to upstream and downstream regulatory region of bgl promoter 

causing 100-fold repression (Schnetz, 1995). It was first shown in bgl that any trans-acting 

factor binding to the upstream AT-rich regulatory region can relieve the H-NS repression. 

Interestingly, binding of classical repressors such as λ repressor and LacI were shown to 

increase the transcription from bgl promoter by relieving repression by H-NS complex 

(Caramel & Schnetz, 1998). Repression by H-NS can also be overcome by spontaneous 

mutations, including the deletion of an AT-rich regulatory region upstream of the promoter, 

integration of insertion elements, and point mutations in the CRP-binding site (Schnetz & 

Rak, 1992, Mukerji & Mahadevan, 1997). Additionally, repression of bgl can also be 

abrogated by transcriptional factors LeuO and BglJ-RcsB, both of which counteract H-NS 

repression of bgl upstream regulatory element (Madhusudan et al., 2005, Salscheider et al., 

2014). Binding of H-NS at the bgl promoter with upstream and downstream elements, was 

shown to inhibit transcription initiation by targeting a step before open complex formation of 

RNA polymerase (Nagarajavel et al., 2007). Furthermore, repression by H-NS via bgl 

downstream regulatory element requires transcription termination factor Rho (Dole et al., 

2004b). Recent in vitro evidences also show enhancement of Rho mediated termination in bgl 

downstream element under the conditions where H-NS forms bridged complex by enabling 

pausing of RNA polymerase (Kotlajich et al., 2015). These suggest that H-NS complex could 

also modulate transcription elongation and termination in bgl and other genes. 

1.9 Objectives of the thesis 

H-NS, as a global repressor controls the expression of several pathogenic, stress response and 

horizontally acquired genes and it also plays a role in genome organization. Most of the 

studies to unravel the mechanism of H-NS repression and de-repression have been focussed at 

the level of transcription initiation. In most of the genes, H-NS represses transcription 

initiation by binding to the promoter region which is relieved by gene specific trans-acting 

factors (Stoebel et al., 2008, Will et al., 2015). In many genes H-NS binds several hundred 

bases downstream of promoter into the coding region (Singh et al., 2014), suggesting a role of 

H-NS in affecting transcription elongation. Recent evidences also suggest that transcription 

elongation could interfere with H-NS repression and vice versa (Chandraprakash & 

Seshasayee, 2014, Landick et al., 2015). In this thesis, I addressed the following objectives: 
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I studied whether transcription into H-NS and H-NS/StpA bound promoter regions relieves H-

NS and H-NS/StpA mediated repression. 

I addressed whether the change in processivity and speed of RNA polymerase modulates the 

H-NS repression complex. 

 I determined the role of Hha in H-NS/Hha complex and studied whether transcription into the 

H-NS/Hha complex modulates the repression. 

I studied whether transcription into the H-NS repressed gene relieves its long range 

chromosomal interaction with other H-NS repressed genes. 
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2. Results 

Recent studies on H-NS repression indicate that transcription elongation and H-NS repression 

could counteract each other (Landick et al., 2015, Chandraprakash & Seshasayee, 2014). 

However, the effect of transcription elongation on specific H-NS repressed genes has not been 

studied so far. In this work, I studied the effect of transcription elongation on selected H-NS 

repressed loci across the genome. Transcription directed towards the H-NS repressed gene 

was modulated by two inducible promoter modules. In one module, a constitutive PUV5 

promoter was combined with conditional terminator (PUV5tR1) and the second module is 

based on the arabinose inducible PBAD promoter. These experimental modules were inserted 

upstream of H-NS repressed gene to direct transcription into the specific H-NS repressed 

locus. The effect of transcription elongation was tested on classical H-NS repressed loci 

bglDRE and proU and also other H-NS and H-NS/StpA loci such as pdeL and appY, 

respectively. 

Additionally, I analyzed whether the speed of transcription is relevant for modulation of H-

NS repression using slow moving and fast moving RNA polymerase mutants. Furthermore, 

the regulatory role of Hha protein, a modulator of the H-NS complex was analyzed at three 

loci (yciF, ycdT, appY) in order to determine whether transcription into H-NS/Hha repressed 

loci relieves their repression. Further, H-NS role has been implicated in nucleoid structuring 

and it was reported that H-NS repressed loci that are located at distant sites on the 

chromosome co-localize into foci (Wang et al., 2011). Therefore, I wanted to test whether 

transcription into H-NS repressed gene in such foci affects their cellular localization. 

2.1 Experimental system for modulating transcription elongation 

In this work, I determined whether transcription elongation interferes with H-NS repression of 

selected genes. To modulate the rate of transcription elongation and to direct transcription into 

specific H-NS repressed locus, two different experimental systems were designed. The first 

system consisted of a constitutive variant of the PUV5 promoter and the conditional 

transcriptional terminator tR1. The second system consisted of an arabinose inducible PBAD 

promoter. 

In the PUV5tR1 system, the constitutive promoter PUV5 with terminator and anti-terminator 

complex (λtR1-N) from phage lambda is used to modulate transcription elongation. The λtR1 

is a Rho-dependent transcriptional terminator. The λN protein binds to nutR RNA region 

upstream of λtR1, and then further interacts with RNA polymerase along with host factors. 

Association of λN to the RNA polymerase increases the processivity and enables read-
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through at transcriptional terminators (Nudler & Gottesman, 2002, Roberts et al., 2008). To 

test whether the PUV5tR1 is suitable for modulating transcription elongation, PUV5tR1 module 

was fused to lacZ reporter and the expression was determined by β-galactosidase assay. As a 

control, PUV5 promoter is used without the tR1 (Figure 6A). These modules, PUV5tR1-lacZ 

(plasmid pKES269) and PUV5-lacZ (plasmid pKES268) were previously constructed in the 

laboratory (Brühl, 2011). I inserted these constructs, in the chromosome, which allows the 

expression analysis in single copy. λN was provided plasmidically with low-medium copy 

plasmid pKES219 that possess λN gene under the control of the IPTG inducible Ptac promoter 

(Muhr, 2008). In strain carrying PUV5tR1-lacZ construct, the β-galactosidase activity increases 

6-fold in the presence of λN protein both in wild-type (110 units to 640 units) and hns mutant 

(145 units to 941 units) (Figure 6A, left). This 6-fold increase in the presence of λN protein 

was also observed in an independent PUV5tR1-lacZ construct (plasmid pKEIB19) as 

determined previously in the laboratory (Bouchara, 2009). However, in the control PUV5-lacZ 

construct no increase in expression was observed in the presence and absence of λN protein 

both in wild-type and hns mutant (Figure 6A, right). This 6-fold increase in PUV5tR1-lacZ 

construct is in accordance with previously determined 80% termination at λtR1 (Rosenberg et 

al., 1978). Moreover, this 6-fold increase is observed both in wild-type and hns mutant, 

indicating H-NS has no effect on PUV5tR1 module. Thus, the PUV5tR1 module with λN protein 

can be used to modulate transcription to be further directed into H-NS repressed genes. 

The advantage of using the λtR1-N system is that the rate of transcription is modulated by λN 

which is a RNA binding protein, which will not influence DNA binding activity of H-NS. 

However, using this module the rate of transcription cannot be gradually increased. Moreover 

λN, along with other host factors modulates RNA polymerase and increases its processivity 

(Nudler & Gottesman, 2002, Roberts et al., 2008, Parks et al., 2014). In order to circumvent 

these limitations, in the second system, the arabinose inducible PBAD promoter was used to 

direct transcription into H-NS repressed regions. The PBAD promoter is known to possess 

stochastic behavior in the presence of arabinose due to negative and positive feedback 

regulation of genes involved in arabinose utilization. Negative feedback is caused by 

fermentation of arabinose by intracellular enzymes encoded by araBAD (Siegele & Hu, 

1997). Positive feedback is enabled by induction of transporters encoded by araFGH and 

araE enabling high uptake of arabinose (Siegele & Hu, 1997, Megerle et al., 2008). In order 

to avoid this feedback regulation and to allow the gradual induction by arabinose, the araC-

PBAD module was chromosomally inserted in strain U65 which carries deletions of araBAD 

and araFGH and low affinity transporter araE under control of a constitutive promoter (Pcp8) 
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(Kogenaru & Tans, 2014) (Breddermann & Schnetz, 2016). As the PBAD promoter is under 

catabolite regulation, cultures were grown in tryptone medium lacking glucose. Gradual 

induction of araC-PBAD construct with increasing concentration of arabinose was confirmed 

using a lacZ reporter fusion (Figure 6B). As the concentration of arabinose increased, the 

level of β-galactosidase activity increased in both wild-type and in the hns mutant similarly 

(Figure 6B). This shows that H-NS has no effect on araC-PBAD module. Taken together, these 

Figure 6: Experimental systems for modulating transcription elongation. (A) Schematic 

representation of PUV5 lacZ constructs with λ phage terminator tR1 and the control PUV5 lacZ construct 

integrated chromosomally. Expression levels given as β-galactosidase activities were determined in 

derivatives of Δ(lacI-lacZYA) strain S4084 (white bars) and isogenic hns mutant (grey bars). Anti-

terminator protein λN was provided plasmidically using transformants of plasmid pKES219 (+λN). 

Cultures were inoculated from fresh overnight cultures in LB medium to OD600 0.05 and grown to 

OD600 0.5. For transformants with plasmid pKES219, the LB medium was supplemented with 

kanamycin and 1 mM IPTG. Error bars represent standard deviation of three biological replicates (B) 

Schematic representation of araC-PBAD-lacZ construct integrated chromosomally. Expression level 

given as β-galactosidase activities were determined in derivative of ∆ara, ∆lac strain U65 and isogenic 

hns mutant. Cultures were inoculated from fresh overnight cultures in tryptone medium to an OD600 of 

0.05 and induced with 0, 2, 10, 50, 250 and 1000 µM arabinose. The expression levels of wild-type and 

hns mutant are indicated as solid and dashed lines, respectively. Average values of three biological 

replicates are shown. Standard deviation is less than 20%. The following strains were used (A) T2316 

(attB::PUV5-λtR1-lacZ/pKES269), T2318 (attB::PUV5-λtR1-lacZ hns/pKES269), T2261 (attB::PUV5-

lacZ/pKES268), T2279 (attB::PUV5-lacZ hns/pKES268) (B) U115 (attB::araC-PBAD-lacZ/pKEAR19), 

U127 (attB::ara-PBAD-lacZ hns/pKEAR19). 
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data show that araC-PBAD allows gradual increase of transcription with increasing 

concentrations of arabinose and araC-PBAD module can be used to direct transcription into the 

H-NS repressed loci. 

2.2 Transcription into H-NS repressed proU abrogates repression 

The proU operon consisting of proVWX genes is osmoregulated. At low osmolarity, the proU 

promoter is repressed by H-NS, whereas the expression is strongly increased at high 

osmolarity conditions (Gowrishankar, 1985, Lucht et al., 1994, Ueguchi & Mizuno, 1993). H-

NS binds to upstream and downstream regulatory elements of proU promoter enabling 

repression at low osmolarity (Dattananda et al., 1991, Overdier & Csonka, 1992, 

Bouffartigues et al., 2007). To investigate whether transcription into the H-NS repressed 

proU promoter abrogates the repression by H-NS, I inserted the PUV5tR1 module upstream of 

the proU promoter region within the native chromosomal context using λ-Red mediated 

homologous recombination (Figure 7A). Transcription initiated at PUV5 promoter can be 

directed into the H-NS repressed proU promoter region by providing anti-termination protein 

λN. The relative expression levels of proU were determined using qRT-PCR using primer 

specific to proV, the first gene of the proU operon. For qRT-PCR, RNA was isolated from 

bacteria grown in LB at low osmolarity (10 mM NaCl) and high osmolarity (300 mM NaCl) 

conditions. The wild-type proU locus was used as control. In strain containing PUV5tR1-PproU, 

the relative expression level was tested in the absence and presence of λN provided 

plasmidically. The expression levels, given in arbitrary units were determined relative to the 

expression level of wild-type proU at high osmolarity (300 mM NaCl). 

For wild-type proU, the relative expression level increased 500-fold from 0.22 at low 

osmolarity (10mM NaCl) to 100 at high osmolarity (300 mM NaCl) (Figure 7B). This 500-

fold increase at high osmolarity is in accordance with the previously determined several 

hundred fold osmoregulation of proU operon (Gowrishankar, 1985, Dattananda et al., 1991). 

Similarly, osmoregulation of PUV5 tR1-PproU was 600-fold in the absence of λN (Figure 2B, 

compare 0.25 and 154 units grown at 10 and 300 mM NaCl, respectively). This shows that the 

insertion of PUV5tR1 module does not affect proU osmoregulation. However, in the presence 

of λN protein, the relative expression of PUV5tR1-PproU increased from 0.25 to 22 at low 

osmolarity (10 mM NaCl) (Figure 7B, PUV5tR1-PproU). At high osmolarity, no difference in 

expression was observed in the presence and absence of λN protein (300 mM NaCl) (Figure 

2B, compare expression levels 154 and 158, PUV5tR1-PproU). These data show that the 
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expression of PUV5tR1-PproU increases at low osmolarity (10 mM NaCl) upon expression of 

λN. 

This increase in expression of PUV5tR1-PproU at low osmolarity might be due to the 

transcriptional read through from upstream PUV5tR1 promoter into the proV region. However, 

transcription directed from the upstream PUV5tR1 module might also de-repress the native 

proU promoter. In order to differentiate these possibilities, I performed 5ˈRACE analysis of 

RNA isolated from PUV5tR1-PproU grown at low osmolarity (10 mM NaCl) in the presence and 

absence of λN protein. For 5ˈRACE, primary transcripts were ligated to a RNA adapter and 

the transcription start site was determined by PCR using adapter specific and proV specific 

primer (Figure 7A, indicated by an arrow). In the absence of λN protein no products 

corresponding to PproU and PUV5 promoter were observed (Figure 7C). However, in the 

presence of λN products corresponding to transcripts initiated at PUV5 and the PproU promoters 

were detected (Figure 7C). These products were cloned and at least four clones of each were 

sequenced. The assemblies of the sequenced clones are shown in Figure 6C. In case of PUV5, 

all the four clones mapped to the known transcription start site of PUV5 promoter. In case of 

PUV5 three out of four clones mapped to the known transcription start site of PproU promoter 

and one clone mapped 3 bp upstream of the PproU promoter. Taken together, these data suggest 

that transcription into the H-NS repressed proU promoter region de-represses PproU promoter. 
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Figure 7: Transcription into the H-NS repressed proU promoter relieves its repression. (A) 

Schematic representation of proU operon consisting of PproU promoter and proV, proW, proX genes. 

Allele PUV5tR1-PproU was generated by insertion of PUV5tR1 cassette 292 bp upstream of PproU 

promoter. Arrow indicates the position of proV specific primer (S728) used for 5ˈRACE.The qRT-

PCR amplicon is indicated. (B) Relative expression of proU operon (wild-type strain T1241) and 

allele PUV5tR1-PproU (strain T1642) was determined by qRT-PCR. RNA was isolated from cells 

grown at low and high osmolarity, in LB with 10 mM and 300 mM NaCl, respectively. Anti-

terminator protein λN was provided by transformation of strain T1642 with plasmid pKES219 (+λN), 

which was grown in medium supplemented with kanamycin and 1 mM IPTG. For qRT-PCR proV 

specific primers T520 and T521 were used. Ct values are normalized to expression levels of 16s rRNA 

determined by primers T528 and T529. The expression level (in arbitrary units) is determined relative 

to the expression level of wild-type proV (strain T1241) grown in high osmolarity (LB with 300 mM 

NaCl). Error bars represent standard deviation of three biological replicates. (C) Mapping of the 5ˈend 

of the transcript by 5ˈRACE of PUV5tR1-PproU (strain T1642) grown in LB medium with 10 mM 

NaCl. Adapter specific primer OA9 and proV specific primer S728 were used for PCR amplification. 

PCR was done for 30 cycles. 5ˈRACE products marked in black and white triangles were cloned and 

at least four clones of each were sequenced. The assemblies of the sequenced clone are shown. 

Transcription start sites (+1) are marked in bold and the RNA adapter is underlined. 5ˈend of the 

transcript mapped to known transcription start site (+1) of PUV5 in 4 out of 4 clones and PproU in 3 out 

of 4 clones.  
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2.3 De-repression of proU is directly proportional to the transcription rate 

My above results suggest that transcription into the H-NS repressed proU promoter region de-

represses the PproU promoter. In order to determine the correlation between the transcription 

rate and de-repression of PproU promoter, I inserted the araC-PBAD cassette upstream of the 

proU promoter region in the native chromosomal context (Figure 8A). The araC-PBAD module 

allows increasing the transcription rate gradually by inducing with increasing concentration of 

arabinose (0, 0.01, 0.05, 0.26, 1.3 mM). The strain containing araC-PBAD-PproU was grown in 

low osmolarity medium, under which PproU is repressed by H-NS (10 mM NaCl). The 

expression levels were determined using primer pairs that map upstream and downstream of 

PproU by qRT-PCR. The upstream primer pair measures the transcripts directed by PBAD 

promoter and the downstream primer pair measures the transcripts in the proV region directed 

by PBAD and PproU (Figure 8A). As expected, the transcript directed from PBAD promoter, 

increased with the increase in concentration of arabinose (Figure 8B, dashed line). Moreover, 

the level of proV, measured by downstream primers pair also increased with the increase in 

concentration of arabinose (Figure 8B, solid line). Additionally, the ratio between the 

transcription rate and the proV expression, measured by the upstream and downstream primer 

pairs respectively, was calculated to be constant across different arabinose concentrations 

(Figure 8B, grey line). This result shows that increasing the transcription rate from PBAD 

increases the expression of proV at low osmolarity and the ratio of transcripts between 

upstream and downstream of PproU is constant. 

To differentiate between the read through from PBAD promoter and PproU, 5ˈ RACE analysis 

was performed using proV specific primer (Figure 8A, indicated by arrow). As a control, 

wild-type proU was grown in LB at low and high osmolarity medium (10 and 300 mM NaCl). 

In wild-type proU, no product corresponding to PproU was observed at 10 mM NaCl, whereas 

PproU was detected at 300 mM NaCl (Figure 8C). In araC-PBAD-PproU, to determine the 

transcripts directed from PBAD and PproU, RNA was isolated from bacteria grown at low 

osmolarity medium (10 mM NaCl) with increasing concentrations of arabinose (0, 0.01, 0.05, 

0.26, 1.3 mM). In araC-PBAD-PproU, the amount of 5ˈRACE product corresponding to PBAD 

promoter increased with the increase in concentration of arabinose (Figure 8C). Additionally, 

with the induction of PBAD, a PproU specific 5ˈRACE product was apparent and its amount 

increased similar to the level of induction of PBAD (Figure 8C). These data validate the finding 

that transcription into H-NS repressed proU promoter region de-represses PproU and the 

transcription rate is proportional to the de-repression. 
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Figure 8: De-repression of PproU is directly proportional to rate of transcription into the 

promoter region. (A) Schematic representation of the allele araC-PBAD-PproU which was generated by 

inserting araC PBAD cassette 282 bp upstream of PproU promoter. Arrow indicates the position of proV 

specific primer used for 5ˈRACE. qRT-PCR amplicons upstream and downstream of PproU are 

indicated. (B) Expression levels were determined by qRT-PCR in allele araC-PBAD-PproU (strain U86). 

RNA was isolated from cells grown in LB medium at low osmolarity (10 mM NaCl) and induced with 

0, 0.01, 0.05, 0.26 and 1.3 mM arabinose in exponential culture. Transcript levels upstream of PproU 

(dashed line) were determined with primers OA94 and OA95 and transcript levels downstream of 

PproU (solid line) were determined with T520 and T521. Ct values are normalized to the expression 

levels of 16S rRNA determined with primers T528 and T529. The expression levels (in arbitrary units) 

are determined relative to the expression level of cells grown with 1.3 mM arabinose. The grey line 

indicates the ratio of transcripts between downstream and upstream regions of PproU. Error bars 

represent standard deviation of three biological replicates. (C) 5ˈ RACE analysis was done using proU 

specific primer S728 in wild-type (strain U65) grown in LB with 10 mM and 300 mM NaCl and araC-

PBAD-PproU (strain U86) grown in LB with 10 mM NaCl induced with 0, 0.01, 0.05, 0.26 and 1.3 mM 

arabinose. Bands corresponding to PBAD and PproU are indicated by closed and open arrow, respectively. 

PCR was done for 30 cycles. 
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2.4 Transcription into H-NS and H-NS/StpA repressed pdeL and appY abrogates 

repression 

StpA is a paralogue of H-NS protein which forms heteromeric complexes with H-NS (Zhang 

et al., 1996, Johansson et al., 2001). I wanted to determine whether transcription into other H-

NS and H-NS/StpA repressed genes abrogates repression similar to proU. In order to study 

this, pdeL and appY were chosen which were found to be bound by H-NS and H-NS/StpA, 

respectively, in a ChIP-Microarray (Uyar et al., 2009). The pdeL gene encodes for cyclic-di-

GMP phosphodiesterase and transcriptional regulator (Schmidt et al., 2005, Sundriyal et al., 

2014). The promoter of pdeL is repressed 15-fold by H-NS (Yilmaz, 2014). The appY gene 

encodes for an AraC type transcriptional regulator which is induced during anaerobiosis, 

phosphate starvation and stationary phase (Brondsted & Atlung, 1996, Atlung & Brondsted, 

1994). The promoter of appY gene is repressed by H-NS and bound by H-NS and StpA 

(Atlung et al., 1996, Uyar et al., 2009). 

In order to test whether transcription into pdeL abrogates repression, I inserted the PUV5tR1 

module upstream of pdeL promoter region at the native chromosomal locus (Figure 9A, left). 

The relative expression levels of wild-type pdeL and PUV5tR1-PpdeL were determined by qRT-

PCR using pdeL specific primers. For wild-type pdeL, the relative expression increased from 

5 units in the wild-type to 111 units in the hns mutant (Figure 9B left, PpdeL). This result 

shows a 22-fold H-NS repression of PpdeL. Next, the relative expression level of PUV5tR1-PpdeL 

was tested in wild-type and hns background in the presence and absence of λN protein. In the 

absence of λN, PUV5tR1-PpdeL was repressed 44-fold by H-NS (Figure 9B left, compare 

expression levels 1.5 and 66 in PUV5tR1-PpdeL). However, in the presence of λN protein, the 

relative expression increased from to 145 units in wild-type and to 180 units in hns mutant 

(Figure 9B left, PUV5tR1-PpdeL). These data show that the expression of PUV5tR1-PpdeL 

increases upon increasing the transcription elongation by λN. To distinguish read-through 

from the upstream PUV5 promoter and de-repression of PpdeL, 5ˈRACE analysis was performed 

with primer specific to pdeL. As control, 5ˈRACE product of the native pdeL locus was 

analyzed in wild-type and hns mutant. No product corresponding to PpdeL was observed for 

RNA isolated from wild-type, but a product corresponding to PpdeL transcript was observed 

for RNA isolated from hns mutant (Figure 9C, left, PpdeL). In case of PUV5tR1-PpdeL, in the 

absence of λN protein, no product corresponding to PUV5 and PpdeL transcripts were observed. 

However, in the presence of λN protein, bands corresponding to PUV5 and PpdeL were detected 

(Figure 9C, left, PUV5tR1-PpdeL). Cloning and sequencing of these bands showed that the 
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product of PUV5 mapped to the known transcription start site of PUV5 and the band 

corresponding to PpdeL mapped to 4 nucleotides downstream of the previously predicted PpdeL 

transcription start site (Shimada et al., 2005).The mapped transcription start site of PpdeL 

possesses a typical -10 region (TATAAT) which is the characteristic of most of the promoters 

in E. coli (Figure 9C). This indicates that the newly mapped transcription start site represents 

the actual transcription start site of PpdeL. Taken together, these data suggest that the 

transcription into the pdeL promoter region counteracts its repression by H-NS. 

Next, I studied whether transcription into appY abrogates its repression. For this, I inserted the 

PUV5tR1 module upstream of the appY promoter region in chromosomal context (Figure 9A, 

right). The relative expression levels were determined in wild-type, hns and hns stpA 

background, by qRT-PCR using primers mapping in appY gene. In wild-type background, 

PappY is repressed 75 fold by H-NS (Figure 9B right, compare expression levels 0.08 and 6 in 

PappY) and 1250 fold by H-NS/StpA (Figure 9B right, compare expression levels 0.08. and 100 

in PappY). This shows that appY promoter is strongly repressed by H-NS/StpA heteromeric 

complex. Next, the PUV5tR1-PappY expression was tested in wild-type, hns, and hns stpA 

background in the presence and absence of λN protein. In the presence of λN protein, the 

relative expression increased from 0.11 to 10 in wild-type (Figure 9B right, PUV5tR1-PappY). In 

hns mutant, the relative expression level increased from 9 to 46 units (Figure 9B right, 

PUV5tR1-PappY) and in hns stpA mutant the expression level remained the same (Figure 9B 

right, compare expression levels 116 and 109 in PUV5tR1-PappY). These data suggest that the 

relative expression level of PUV5tR1-PappY increases when transcription is directed into PappY 

by λN. In order to differentiate between the read-through from upstream PUV5 promoter and 

de-repression of PappY promoter, 5ˈRACE was performed. As control, RNA isolated from 

wild-type, hns and hns stpA background were used. In wild-type, PappY promoter is strongly 

repressed by StpA and weakly by H-NS, as the products corresponding to PappY were observed 

in hns stpA mutant, while they were weak in hns mutant, and not detected in wild-type (Figure 

9C right, PappY). Likewise, for PUV5tR1-PappY in the absence of λN protein, the products 

corresponding to PappY was seen weakly in hns and strongly in hns stpA mutant. However, in 

the presence of λN protein, in PUV5tR1-PappY the bands corresponding to PUV5 and PappY 

transcripts were detected in wild-type and it was also apparent in hns and hns stpA mutant 

background (Figure 9C right, PUV5tR1-PappY). Since the transcription start site of PappY is 

unknown, the PappY specific transcripts (PappY-1 and appY-2) from hns stpA mutant were cloned 

and sequenced. Products corresponding to PappY-1 transcripts mapped to 101 bp upstream of 

the translational start site of appY preceded by an ideal -10 region. Products corresponding to 
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appY-2 transcripts mapped within appY gene, 7 bp downstream of translation start site (Figure 

9C, PappY-1 and appY-2). Since all the transcripts analyzed are from TAP (Tobacco acid 

pyrophosphatase) treated samples, processed and the primary transcript could not be 

differentiated. Therefore, it remains to be analyzed whether appY-2 is a processed or primary 

transcript. For PUV5tR1-PappY, cloning and sequencing of the band corresponding to PUV5 

mapped to the known transcription start site of PUV5, and the bands corresponding to PappY 

transcripts mapped to PappY-1 and appY-2 transcripts. Collectively, these data suggest that the 

transcription into appY promoter region relieves repression by H-NS and StpA. 
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Figure 9: Transcription into pdeL and appY relieves repression by H-NS and H-NS/StpA 

respectively. (A) Schematic representation of PUV5tR1-pdeL (left) and PUV5tR1-appY (right) alleles in 

which PUV5 tR1 cassette was inserted 838 bp and 463 bp upstream of pdeL and appY start codon 

respectively. Arrow indicates the position of primers used for 5ˈRACE. qRT-PCR amplicons are 

indicated. (B) Expression levels of pdeL, PUV5tR1-pdeL (left) and expression levels of appY, PUV5tR1-

pdeL in wild-type (white bars), hns (grey bars) and hns stpA (dark grey bars) strain background, as 

indicated. The λN provided was provided by transformation with plasmid pKES219 (+λN), grown in a 

medium supplemented with kanamycin and 1 mM IPTG. For expression analyses of pdeL and appY 

wild-type strain T1241, hns mutant U72, and hns stpA mutant U73 were used, as indicated. Allele 

PUV5tR1-pdeL was analyzed in strains T1647 (wt) and T1713 (hns). Allele PUV5tR1-appY was analyzed 

in strains T1646 (wt), T1712 (hns), and T1949 (hns stpA). qRT-PCR was performed using pdeL 

specific primers T892, T893 and appY specific primers T910, T911 and the data were normalized to 

rpoD expression, determined with primers T247 and T248. For pdeL, the expression levels are 

determined relative to the expression level in hns mutant U72 (left). For appY, the expression levels 

are determined relative to the expression level in hns stpA mutant U73 (right). Error bars represent 

standard deviation of three biological replicates. (C) 5ˈ RACE was performed with pdeL and appY 

specific primers T930 and OA24. PCR was done for 30 cycles. Bands indicated with triangles were 

cloned and at least four clones were sequenced. Mapped 5ˈ mRNA ends (marked in bold) correspond 

to the known start site of the PUV5 promoter and the presumptive transcription start sites of PpdeL and 

PappY promoters each preceded by a -10 region (underlined). The mapped RNA 5’ end labelled appY-2 

maps within the appY coding region and may correspond to a promoter or processed transcript.  
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2.5 Transcription into bglDRE relieves H-NS repression and activates transcription from 

H-NS repressed promoter P3bgl within bglDRE 

The bgl operon encoding gene products for the uptake and utilization of aryl-β-glucosides is 

repressed ~100-fold by H-NS (Schnetz, 1995). Repression of bgl by H-NS requires upstream 

(URE) and downstream regulatory elements (DRE) (Schnetz, 1995, Dole et al., 2004a). The 

bglDRE region extends up to 700 bp downstream of the transcription start site of bgl and the 

presence of bglDRE itself causes 8-fold repression by H-NS (Nagarajavel et al., 2007). I 

wanted to determine whether transcription directed into the H-NS repressed bglDRE relieves H-

NS repression. To modulate transcription, arabinose inducible araC-PBAD module was used. 

This araC-PBAD cassette was inserted upstream of H-NS bound bglDRE to direct transcription 

into the bglDRE. Additionally, mVenus gene which is presumably not bound by H-NS was used 

as a control.  

Control constructs araC-PBAD-lacZ, araC-PBAD-mVenus-lacZ as well as the bglDRE containing 

constructs araC-PBAD-bglDRE-lacZ, araC-PBAD-mVenus-bglDRE-lacZ were integrated at the attB 

integration site in the chromosome (Figure 10A). The expression levels of these lacZ reported 

fusions were determined by β-galactosidase assay. First, I wanted to determine the expression 

levels of strains carrying control constructs PBAD-lacZ and PBAD-mVenus-lacZ with increasing 

concentrations of arabinose. For both reporter constructs, the expression increased with the 

increase in the arabinose concentrations, both in the wild-type and in the hns mutant 

background (Figure 10B). These data show that H-NS has no effect on PBAD-lacZ and PBAD-

mVenus-lacZ constructs. However, the absolute expression levels of PBAD-lacZ reporter 

was10-fold lower than of PBAD-mVenus-lacZ in both wild-type and hns mutant background 

(Figure 10B).  

To elucidate the reason for this decreased expression level, I used m-fold to predict the 

mRNA secondary structure of PBAD-lacZ (Zuker, 2003). For the prediction of mRNA 

secondary structure nucleotides from PBAD +1 transcription start site to the eighth codon of 

lacZ was used. The predicted secondary structure of PBAD-lacZ revealed a prominent stem-

loop structure with ∆G of -18.60 (Figure 11C (i)). I further modified araC-PBAD-lacZ which 

contains EcoRI, SpeI, XbaI sites and constructed PBAD-lacZ26 in which the SpeI site is deleted 

and the EcoRI and XbaI sites are combined (Figure 11A (ii)). The absolute expression level of 

PBAD-lacZ26 was ~2-fold decreased when compared to PBAD-lacZ in both wild-type and hns 

mutant (Figure 11B (ii)). The predicted m-fold structure of PBAD-lacZ26 also contained stem-

loop with ∆G of -16.10 (Figure 11C (ii)). Moreover, upon deletion of all the restriction sites, 



  2. Results 

28 

 

in PBAD-lacZ27 construct, the absolute expression level increased 10-fold in both wild-type and 

hns mutant (Figure 11A (iii), Figure 11B (iii)). In accordance with the expression analysis, the 

predicted secondary structure possess ∆G of -13.10 (Figure 11C (iii)). It is evident from the 

secondary structures of PBAD-lacZ alleles, that first few nucleotides of lacZ ORF with the 

nucleotides in the PBAD transcription start site enabled the formation of stem-loop structure. 

Hence, in PBAD-lacZ28, silent mutations were made in the 2
nd

, 5
th

 and 8
th

 codon of lacZ (Figure 

11A (iv)). The absolute expression level of PBAD-lacZ28 increased 100-fold when compared to 

the PBAD-lacZ in both wild-type and hns mutant (compare Figure 11B, (i) and (iv)) and the 

predicted m-fold structure with ∆G of -13.10 (Figure 11C (iv)). Thus, the decrease in 

expression level of PBAD-lacZ is due to the stem-loop structures formed in mRNA which 

affects the translation of the constructs.  

 

Fig 10: Expression analysis of araC-PBAD-lacZ and araC-PBAD-mVenus-lacZ constructs. (A) 

Schematic representation of araC-PBAD-lacZ constructs that carry mVenus and H-NS 

repressed bgl downstream regulatory element (bglDRE), as indicated. (B) Expression level 

given as β-galactosidase activities were determined in derivatives of ∆ara, ∆lac strain U65 

and isogenic hns mutant. Overnight cultures were inoculated in tryptone medium to an OD600 0.05, 

induced with 0, 2, 10, 50, 250 and 1000 µM arabinose and grown to OD600 0.5. Expression levels of 

wild-type and hns mutant were indicated in solid line and dashed line respectively. Expression 

level indicated is the average of three biological replicates. Standard deviation is less than 

20%. The following strains were used (i) U115 (attB::araC-PBAD-lacZ/pKEAR19), U127 (attB::araC-

PBAD-lacZ hns/pKEAR19) (ii) U123 (attB::araC-PBAD-mVenus-lacZ/pKEAR22), U130 (attB::araC-

PBAD-mVenus-lacZ hns/pKEAR22). 
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Figure 11: Expression analysis of araC-PBAD-lacZ constructs. (A) Schematic representation of 

araC-PBAD-lacZ constructs. Nucleotide sequence from transcription start (+1) of PBAD promoter to the 

eighth codon of lacZ were indicated for all the constructs and the mutations are marked in bold and 

underlined. Restriction sites are indicated in the sequence. (i) araC-PBAD-lacZ, (ii) araC-PBAD-lacZ26, 

(iii) araC-PBAD-lacZ27, (iv) araC-PBAD-lacZ28. (B) Expression level given as β-galactosidase activities 

were determined in derivatives of ∆ara, ∆lac strain U65 and isogenic hns mutant. Overnight cultures 

were inoculated in tryptone medium to an OD600 0.05, induced with 0, 2, 10, 50, 250 and 1000 µM 

arabinose and grown to OD600 0.5. The expression levels of wild-type and hns mutant were indicated 

in solid line and dashed line respectively. Expression level indicated is the average of three biological 

replicates. Standard deviation is less than 20%. (C) Secondary mRNA structures of araC-PBAD-lacZ 



  2. Results 

30 

 

constructs predicted using mfold software (Zuker, 2003). The predicted structure contains sequence 

from (+1) transcription start site of PBAD promoter until eighth codon in lacZ ORF. The restriction sites 

are marked in bold. Translation start (AUG) is given in bold capital letters. Predicted ∆G values are 

given. The following strains were used (i) U115 (attB::araC-PBAD-lacZ/pKEAR19), U127 

(attB::araC-PBAD-lacZ hns/pKEAR19) (ii) U134 (attB::araC-PBAD-lacZ26/pKEAR26), U138 

(attB::araC-PBAD-lacZ26 hns/pKEAR26) (iii) U141 (attB::araC-PBAD-lacZ27/pKEAR27), U145 

(attB::araC-PBAD-lacZ27 hns/pKEAR27) (iv) U142 (attB::araC-PBAD-lacZ28/pKEAR28), U146 

(attB::araC-PBAD-lacZ28 hns/pKEAR28). 

 

Next, I wanted to test whether H-NS repression via bglDRE is relieved by transcription from 

the upstream PBAD promoter. In order to study the effect of transcription on bglDRE, control 

constructs with PBAD-lacZ28, PBAD-mVenus-lacZ and constructs containing bglDRE, PBAD-

bglDRE-lacZ and PBAD-mVenus-bglDRE-lacZ were integrated in the chromosome (Figure 12A). 

The expression levels of these lacZ reporter fusions were determined by β-galatosidase 

assays. In the control constructs, PBAD-lacZ28 and PBAD-mVenus-lacZ, the expression increased 

with the increase in the arabinose concentration in both wild-type and hns mutant background. 

However, the absolute expression level of PBAD-mVenus-bglDRE-lacZ was ~10 fold lower than 

of PBAD-lacZ28 (Figure 12B, compare PBAD and PBAD-mVenus). Expression of PBAD-bglDRE-

lacZ, in wild-type, was low at 0 µM arabinose and increased with increasing arabinose 

concentration. However, in the hns mutant background, expression was high at 0 µM and 

further increased with increase in arabinose concentration (Figure 12B). Likewise expression 

of PBAD-mVenus-bglDRE-lacZ, in wild-type, also increased with the increase in the arabinose 

concentration, but possessed ~10 fold lower expression when compared to PBAD-bglDRE-lacZ 

from 10 µM to 1000 µM arabinose concentrations. Expression of PBAD-mVenus-bglDRE-lacZ, 

in hns mutant background, was high at 0 µM and increased at higher arabinose concentrations 

(10 µM to 1000 µM) (Figure 12B). However, the expression of PBAD-mVenus-bglDRE-lacZ 

was ~10 fold lower when compared to PBAD-bglDRE-lacZ from 10 µM to 1000 µM arabinose 

concentrations (Figure 12B, compare PBAD-bglDRE-lacZ and PBAD-mVenus-bglDRE-lacZ). These 

data show that upon induction of PBAD, the expression of bglDRE increase and constructs with 

mVenus have lower expression compared with isogenic constructs without mVenus.  

Since the mVenus constructs have ~10 fold lower expressions in both wild-type and hns 

mutant background compared to the isogenic construct without mVenus, the secondary 

structure formed by the mVenus mRNA was predicted using m-fold software. The predicted 

secondary structure of the mVenus mRNA shows a strong stem-loop structure with high ∆G 

of -16.30 (Figure 13). Thus, this stem-loop structure of mVenus mRNA may inhibit 

translation of mVenus constructs. Interestingly, in PBAD-bglDRE-lacZ and PBAD-mVenus-bglDRE-
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lacZ even without induction of PBAD at 0 µM arabinose, high expression was observed in hns 

mutant (Figure 12B, PBAD bglDRE and PBAD mVenus bglDRE). This indicates the presence of an 

H-NS repressed internal promoter within bglDRE.  

 

 

 

Figure 12: Transcription from upstream PBAD promoter decreases H-NS repression of bglDRE. (A) 

Schematic representation of araC-PBAD-lacZ constructs that carry mVenus and the H-NS repressed bgl 

downstream regulatory element (bglDRE), as indicated. (B) Expression level given as β-galactosidase 

activities were determined in derivatives of ∆ara, ∆lac strain U65 and isogenic hns mutant. Overnight 

cultures were inoculated in tryptone medium to an OD600 0.05, induced with 0, 2, 10, 50, 250 and 1000 

µM arabinose and grown to OD600 0.5. The expression levels of wild-type and hns mutant were 

indicated in solid line and dashed line respectively. Expression level indicated is the average of three 

biological replicates. Standard deviation is less than 20%. The following strains were used (i) U142 

(attB::araC-PBAD-lacZ/pKEAR28), U146 (attB::araC-PBAD-lacZ hns/pKEAR28) (ii) U123 

(attB::araC-PBAD-mVenus-lacZ/pKEAR22), U130 (attB::araC-PBAD-mVenus-lacZ hns/pKEAR28) (iii) 

U124 (attB::araC-PBAD-bglDRE-lacZ/pKEAR23), U131 (attB::araC-PBAD-bglDRE-lacZ hns/pKEAR23) 

(iv) U126 (attB::araC-PBAD-mVenus-bglDRE-lacZ/pKEAR25), U133 (attB::araC-PBAD-mVenus-bglDRE-

lacZ hns/pKEAR25). 
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Figure 13: Secondary structure of PBAD-mVenus mRNA. Secondary mRNA structure of PBAD-

mVenus mRNA predicted using mfold software (Zuker, 2003). The predicted structure contains 

sequence from (+1) transcription start site of PBAD promoter until eighth codon in mVenus ORF. 

Translation start (AUG) is given in bold capital letters. 

 

To locate the locus of the putative H-NS repressed internal promoter qRT-PCR and 5ˈRACE 

was performed. RNA was isolated from wild-type and hns mutant strains carrying PBAD-

mVenus-bglDRE-lacZ construct grown with 0, 10, and 250 µM arabinose. For qRT-PCR, 

primer pairs specific for mVenus, bglDRE, and lacZ locus were used respectively (Figure 14A). 

For mVenus, in both wild-type and hns mutant background, expression level was low at 0 µM 

arabinose and increased at 10 µM and 250 µM arabinose (Figure 14A, mVenus). These data 

show that transcript levels in mVenus locus depend on PBAD induction and are not repressed 

by H-NS. For bglDRE, expression level was lower at 0 µM arabinose in wild-type and the 

expression level increased at 10 µM and 250 µM arabinose. Interestingly, bglDRE transcript 

levels in hns mutant background were high at 0 µM arabinose, while further increase in 

transcript levels were observed at 10 µM and 250 µM arabinose (Figure 14A, bglDRE). 

Similarly, for lacZ transcripts, in wild-type, the expression level was low at 0 µM arabinose 
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and increased at 10 µM and 250 µM arabinose, while in hns mutant background, the 

expression level was high at 0 µM arabinose, and further increased at 10 µM and 250 µM 

arabinose. High transcript levels observed at 0 µM arabinose, in hns mutant for bglDRE and 

lacZ, is in accordance with my above result, which indicates the presence of H-NS repressed 

internal promoter within bglDRE transcribing bglDRE and lacZ.  

In order to precisely map the internal promoter within bglDRE, in PBAD-mVenus-bglDRE-lacZ 

construct, 5ˈRACE was performed. RNA was isolated from wild-type and hns mutant strain 

carrying araC-PBAD-mVenus-bglDRE-lacZ grown with 0, 10 and 250 µM arabinose. RNA was 

treated with or without RppH (RNA 5ˈPyrophosphohydrolase) in order to differentiate 

primary and processed transcripts, respectively. For 5ˈRACE analysis, primers specific to 

mVenus and bglDRE were used, in order to determine the transcription from upstream PBAD and 

the internal promoter in bglDRE. With mVenus specific primer, PBAD specific primary transcript 

were observed at 10 µM and 250 µM arabinose in wild-type and hns mutant background 

whereas no product was seen at 0 µM arabinose (Figure 14B, mVenus). With bglDRE specific 

primer, at 0 µM arabinose no product is observed, whereas at 10 µM and 250 µM arabinose, 

P3bgl primary transcript and the bgl-4 processed transcript were observed. Moreover, in hns 

mutant at 0 µM arabinose, P3bgl primary transcript is observed and in 10 µM and 250 µM 

arabinose concentration both P3bgl and bgl-4 were detected. The presence of processed 

transcript bgl-4, in wild-type and hns mutant is observed only at 10 µM and 250 µM 

arabinose concentrations which suggests that the bgl-4 processed transcript could arise from 

the processed product of upstream PBAD transcript. Cloning and sequencing of the product 

corresponding to PBAD, mapped to 2 bp upstream of previously determined PBAD transcription 

start site (Lee & Carbon, 1977) (Figure 14C). Cloning and sequencing of product 

corresponding to P3bgl, mapped to 8 bp upstream of the translation start of bglDRE with the 

apparent -10 region (TATAAA) (Figure 14C). Cloning and sequencing of the product 

corresponding to processed transcript bgl-4, mapped to 121 bp downstream of the translation 

start of bglDRE (Figure 14C). These data show the presence of H-NS repressed promoter P3bgl 

within bglDRE. The data further show that the transcription from upstream PBAD promoter 

activates transcription from P3bgl and relieves repression of bglDRE by H-NS. 
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Figure 14: Transcription from upstream PBAD promoter into bglDRE activates transcription from 

P3bgl. (A) Schematic representation of araC-PBAD-mVenus-bglDRE-lacZ construct. The qRT-PCR 

amplicons are indicated for the respective locus. Arrows indicate the position of 5ˈRACE primers 

used. (B) Expression levels of mVenus, bglDRE and lacZ were determined by qRT-PCR of RNA 

isolated from bacteria grown in tryptone medium with 0, 10 and 250 µM arabinose in wild-type (strain 

U137) and hns mutant (strain U140). For qRT-PCR mVenus specific primers OA443 and OA444, 

bglDRE specific primers OA457 and OA458, lacZ specific primers T888 and T889 were used. The Ct 

values were normalized to rpoD levels as determined by qRT-PCR, using primers T247 and T248. 
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The relative expression levels are determined relative to the expression level in hns mutant at 250 µM 

arabinose for each locus. The relative expression level of the wild-type and hns mutant is indicated in 

solid line and dashed line, respectively. Relative expression level indicated is the average of three 

biological replicates and error bars indicates standard deviation. (B) 5ˈRACE analysis of the RNA was 

isolated from wild-type (strain U137) and hns mutant (strain U140) with 0, 10, 250 µM arabinose 

induction in exponential phase. The samples were treated with or without RppH and the transcripts 

were analyzed using adapter specific primer OA9 and gene specific primer OA493 (mVenus) or 

OA489 (bglDRE). PCR was done for 30 cycles. Indicated bands were cloned and at-least two clones of 

each were sequenced. (C) The sequence of pKEAR25 (araC-PBAD-mVenus-bglDRE-lacZ) plasmid is 

shown and the 5ˈRACE primer binding sites are indicated. 5ˈend of transcripts PBAD, P3bgl and bgl-4 

transcripts mapped to the sites that are marked in bold and underlined and the -10 region are 

underlined. PBAD transcript mapped to 2 bp upstream of the previously mapped PBAD promoter (marked 

in bold). P3bgl mapped to 8 bp upstream of the translation start ATG (marked in bold) of bglDRE and 

bgl-4 was mapped 121 bp downstream of the translation start of bglDRE in the coding region. 

 

H-NS repression via bglDRE is facilitated by Rho terminator protein (Dole et al., 2004b). 

Further in vitro assays have shown that H-NS binding using an antisense template of bglDRE 

facilitates RNA polymerase pausing and enhances Rho mediated termination (Kotlajich et al., 

2015). Thus, H-NS complex bound to bglDRE could interfere with transcription elongation or 

termination. In order to analyze whether H-NS interferes with transcription elongation or 

termination in bglDRE, conditional terminator anti-terminator module (λtR1-N) from phage 

lambda was used under the control of constitutive promoter PUV5. This PUV5tR1 module was 

further used to modulate transcription elongation into H-NS repressed bglDRE and lacZ was 

used as reporter gene to determine the expression. Additionally mVenus gene, which is not 

repressed by H-NS was used as control.  

First I addressed whether transcription elongation into the H-NS bound bglDRE, activates P3bgl 

in PUV5tR1-bglDRE-lacZ. To this end, 5ˈRACE analysis was performed of RNA isolated from 

the wild-type and hns mutant strains carrying constructs PUV5tR1-bglDRE-lacZ in the presence 

and absence of λN protein. In wild-type, without the presence of λN protein, no transcript was 

observed, whereas in the presence of λN protein, bands corresponding to primary transcript 

PUV5 and P3bgl were observed. However, the intensity of the product corresponding to P3bgl is 

lower than PUV5 (Figure 15A). In the hns mutant, in the absence of λN protein, the band 

corresponding to primary transcript P3bgl was observed, whereas in the presence of λN protein 

the primary transcripts corresponding to PUV5 and P3bgl were observed similar to wild-type 

(Figure 15A). Cloning and sequencing of the indicated bands revealed that the transcripts 

mapped to known transcription start site of PUV5 and P3bgl. This shows that the transcription 

from upstream PUV5 promoter activates the internal promoter P3bgl. 
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Figure 15: Transcription from the upstream PUV5 activates transcription from P3bgl. (A) 5ˈRACE 

was performed in strain carrying PUV5tR1- bglDRE-lacZ using bglDRE specific primer OA489 (indicated 

with arrow). PCR was done for 30 cycles. Bands marked with asterisk were cloned and atleast two 

clones were sequenced. PUV5 and P3bgl transcripts mapped to known transcription start site (+1) of PUV5 

and P3bgl respectively. The following strains were used, T204 (attB::PUV5tR1-bglDRE-lacZ/pKEIB14), 

T233 (attB::PUV5tR1-bglDRE-lacZ hns/pKEIB14). (B) 5ˈ RACE was performed in strain carrying PUV5-

mVenus-tR1-bglDRE-lacZ using bglDRE specific primer OA489 (indicated with arrow). PCR was done 

for 30 cycles. Bands marked with asterisk were cloned and atleast two clones were sequenced. PUV5 

and P3bgl transcripts mapped to known transcription start site (+1) of PUV5 and P3bgl respectively. The 

following strains were used, T2255 (attB::PUV5-mVenus-tR1-bglDRE-lacZ/pKEAR14), T2273 

(attB::PUV5-mVenus-tR1-bglDRE-lacZ hns/pKEAR14). 

 

In the construct PUV5tR1-bglDRE-lacZ, the PUV5 promoter is in close proximity to the H-NS 

repressed P3bgl and bglDRE. Thus, the H-NS may polymerize into PUV5 promoter and also 

repress PUV5 promoter. In order to increase the distance of the upstream PUV5 promoter from 

bglDRE, mVenus which is not bound by H-NS was inserted between PUV5 and bglDRE. 5ˈRACE 

analysis was performed with the RNA isolated from the strains carrying constructs PUV5-

mVenus-tR1-bglDRE-lacZ in wild-type and hns mutant background in the presence and absence 

of λN protein. In wild-type without the presence of λN protein, no transcript was observed, 

whereas in the presence of λN protein, bands corresponding to primary transcript PUV5 and 

P3bgl were observed with similar band intensity. In the hns mutant, in the absence of λN 

protein, the band corresponding to primary transcript P3bgl was seen, whereas in the presence 

of λN protein the primary transcripts corresponding to PUV5 bgl and P3bgl were seen similar to 

wild-type (Figure 15B). Cloning and sequencing of the indicated bands revealed that the 

transcripts mapped to known transcription start of PUV5 and P3bgl. This result suggests that in 

PUV5-tR1-bglDRE-lacZ, H-NS might have polymerized into the proximal PUV5 promoter from 

bglDRE which is de-repressed upon induction of λN protein (compare P3bgl in Figure 15A and 

15B). However, in PUV5-mVenus-tR1-bglDRE-lacZ, since bglDRE is distal to the PUV5 promoter 

with the presence of mVenus between PUV5 and bglDRE, H-NS might not have polymerized into 



  2. Results 

37 

 

the PUV5 promoter and the transcription directed by PUV5 promoter activated internal promoter 

P3bgl. 

In order to analyze whether H-NS interferes with transcription elongation or termination in 

bglDRE, β-galactosidase assay was performed in strains carrying constructs PUV5tR1-bglDRE-

lacZ, PUV5-mVenus-tR1-bglDRE-lacZ and control constructs PUV5tR1-bglDRE-lacZ, PUV5-

mVenus-tR1-lacZ. The expression levels determined by β-galactosidase assay could not be 

interpreted because of the high variations in the lacZ read out caused due to the context 

dependent termination of λtR1. Moreover, because of the presence of H-NS repressed internal 

promoter P3bgl upstream of bglDRE, whether bglDRE affects elongation or termination could not 

be determined. 

2.6 Induction of pst-phoU operon located upstream of bgl decreases H-NS repression of 

bgl  

To test whether transcription into the H-NS repressed promoter relieves repression in the 

native context, I chose H-NS repressed bgl operon which is preceeded by the pst-phoU 

operon. The bgl operon is repressed ~100 fold by H-NS and efficient repression requires 

upstream and downstream elements extending from -160 bp to +700 bp from the Pbgl 

promoter (Schnetz, 1995, Dole et al., 2004b). The pst-phoU operon is located immediately 

upstream of the bgl operon. I addressed whether transcription of the upstream pst-phoU 

operon relieves H-NS repression of bgl in the native context (Figure 16A). The pst-phoU 

operon belongs to the Pho regulon and pst-phoU operon is activated under low phosphate 

conditions (Hsieh & Wanner, 2010). To test whether transcription from the upstream pst-

proU operon decreases repression of bgl, the expression of bgl was analyzed under low and 

high phosphate conditions. The wild-type E.coli K-12 strain BW30270 and the hns mutant 

strain U72 were grown in MOPS minimal medium at high and low phosphate concentrations 

(2 mM and 0.1 M K2HPO4, respectively). Since the bgl promoter is catabolite regulated by 

cAMP-CRP, the strains were grown with 2% glycerol as a carbon source. The relative 

expression of bgl was determined by qRT-PCR using primers located upstream of the bgl 

terminator t1. The expression level given in arbitrary units, were determined relative to the 

expression of bgl in hns mutant U72 grown at high phosphate (2mM K2HPO4). In wild-type, 

the expression level of bgl was 6 under high phosphate condition (2 mM K2HPO4) and the 

expression level increased to 28 under low phosphate condition (0.1 mM K2HPO4) (Figure 

16B). However, in hns mutant, the expression of bgl is significantly higher than the wild-type, 

as expected, and no difference in expression level was observed in low and high phosphate 
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conditions (Figure 16B, compare 109 and 94 grown at 2 and 0.1 mM phosphate, respectively). 

These data show that the expression of bgl increases under low phosphate conditions. 

However, this increase in expression of bgl might be due to the read-through from upstream 

pst-phoU operon. 

In order to investigate whether the transcription from the upstream pst-phoU operon at low 

phosphate condition, activates the native bgl promoters, 5ˈRACE analysis was performed. 

RNA was isolated of the wild-type and hns mutant strains grown in MOPS minimal medium 

with 2% glycerol at low and high phosphate conditions (0.1 mM and 2 mM K2HPO4). For 

5ˈRACE analysis, primer OA442 mapping upstream of bgl terminator t1 and primer OA489 

mapping to bglG gene were used. For the wild-type, at high phosphate condition (2 mM 

K2HPO4), no transcript was observed with primer OA442 (Figure 16C, OA442). However, at 

low phosphate condition (0.1 mM K2HPO4), a product corresponding to the Pbgl transcript 

was detected, which was also evident in hns mutant at low and high phosphate conditions (0.1 

mM and 2 mM K2HPO4) (Figure 16C, OA442). Cloning and sequencing of the indicated 

bands revealed that the transcripts mapped to the known transcription start site of Pbgl. In 

order to determine whether P3bgl is also activated, 5ˈRACE analysis was performed with 

primer OA489 mapping to bglG gene. For wild-type, grown at high phosphate conditions (2 

mM K2HPO4), no transcript was observed with primer OA489 (Figure 16C, OA489). 

However, at low phosphate condition (0.1 mM K2HPO4), products corresponding to Pbgl, 

P3bgl and bgl-4 transcript were detected. The same was apparent in hns mutant grown at low 

and high phosphate conditions (0.1 mM and 2 mM K2HPO4) (Figure 16C, OA489). Cloning 

and sequencing of the indicated bands revealed that the products corresponding to Pbgl, P3bgl 

and bgl-4 mapped to the known transcription start of Pbgl, P3bgl and bgl-4, respectively. These 

results show that the transcription from the upstream pst-phoU operon, decreases H-NS 

repression of bgl and activates the native Pbgl and P3bgl promoters. 
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Figure 16: Induction of the pst-phoU operon reduces repression of the bgl operon by H-NS. (A) 

Schematic of the intergenic region between the pst-phoU and the bgl operon. H-NS/StpA binding 

region (grey bar), the bgl promoters Pbgl and P3bgl, the CRP-binding site (CRP), bgl terminator t1, 

which is the target of substrate-specific regulation of bgl are indicated. qRT-PCR amplicon and the 

primers used for 5ˈRACE analysis are indicated. (B) Relative bgl transcript levels determined by qRT-

PCR with primers OA98 and OA99, values normalized to 16srRNA levels determined with primers 

T528 and T529. Strains BW30270 (wild-type) and U72 (∆hns) were grown in MOPS minimal 

medium with 2% glycerol at high (2mM K2HPO4) and low phosphate concentrations (0.1mM 

K2HPO4). (C) 5ˈ RACE analysis of strains BW30270 (wild-type) and U72 (∆hns) grown in MOPS 

minimal medium with 2% glycerol at high (2mM K2HPO4) and low phosphate concentrations (0.1mM 

K2HPO4) using bglDRE primers OA442 and OA489 and adapter specific primer T265. PCR is done for 

30 cycles. The bands marked with asterisk were cloned and atleast 2 clones were sequenced. PUV5 and 

P3bgl, bgl-4 transcripts mapped to known transcription start site (+1) of PUV5, P3bgl and bgl-4 

respectively.  

 

 

 



  2. Results 

40 

 

2.7 Slow and fast moving RNA polymerase mutants did not affect the H-NS repression 

in bglDRE and proU 

 My above results show that transcription rate is inversely proportional to H-NS repression. In 

my above results, transcription rate into the H-NS bound region was modulated by using 

conditional terminator anti-terminator complex (λtR1-N) and arabinose inducible PBAD 

promoter. I further wanted to test whether the speed of transcription is relevant for modulation 

of H-NS repression. I tested whether slow and fast moving RNA polymerase, modulates H-

NS repression differently. The rpoB gene encodes for β-subunit of RNA polymerase which 

interacts with DNA template during the transcription process (Chenchik et al., 1982). To test 

the effect of speed of transcription, I used slow moving RNA polymerase mutants rpoB8 and 

rpoB*35 and the fast moving RNA polymerase mutant rpoB2. The rpoB2 possess less 

pausing and low termination efficiency and accelerated elongation rate (Jin et al., 1988, 

McDowell et al., 1994, Kogoma, 1994), the rpoB8 possess high termination efficiency and 

defective elongation (Jin & Gross, 1991, Jin et al., 1992, Yarnell & Roberts, 1999) and the 

rpoB*35 is defective in open complex formation (Trautinger & Lloyd, 2002). The bgl 

downstream element (DRE) and proU upstream and downstream element (URE and DRE) 

which are repressed by H-NS were used as reporters to test H-NS repression. The alleles 

rpoB8, rpoB2 and rpoB*35 were transduced in strain containing constructs PUV5tR1-P3bgl-

bglDRE-lacZ and proUURE-PproU-proV-lacZ. In PUV5tR1-P3bgl-bglDRE-lacZ, the transcription can 

be increased by the presence of λN protein. Since proU is osmoregulated and repressed by H-

NS at low osmolarity conditions, the strain containing proUURE-PproU-proV-lacZ was tested in 

low osmolarity (10 mM NaCl) and high osmolarity (300 mM NaCl) medium. The expression 

levels of the lacZ reporter fusions were determined by β-galactosidase assays.  

For the strain containing PUV5tR1-bglDRE-lacZ construct, in wild-type background, the 

expression level was 6 units and increased to 360 units in the presence of λN protein. In 

rpoB2, rpoB8 and rpoB*35 mutant background no difference in expression level was 

observed in the absence and presence of λN protein compared to the wild-type (Figure 17A, 

compare wt, rpoB8, rpoB2, rpoB*35). Therefore, RNA polymerase mutants did not 

significantly affect H-NS repression of bglDRE. In a strain containing the proUURE-PproU-proV-

lacZ construct, in wild-type background at low osmolarity (10 mM NaCl), the expression 

level was 2.3 units which increased to 684 units at high osmolarity conditions (300 mM NaCl) 

(Figure 17B). In the rpoB2, rpoB8 and rpoB*35 mutant background no significant difference 

in expression level is observed under low and high osmolarity conditions when compared to 

the wild-type (Figure 17B, compare wt, rpoB8, rpoB2, rpoB*35 grown at 10 mM NaCl and 
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300 mM NaCl). These data show that slow moving RNA polymerase mutants rpoB8 and 

rpoB*35 and fast moving RNA polymerase mutant rpoB2 do not significantly modulate the 

H-NS repression of bglDRE and proU. 

 

 

 

Figure 17: Slow moving and fast moving RNA polymerase mutants did not affect the H-NS 

repression in bglDRE and proU. (A) Schematic representation of PUV5-tR1-bglDRE-lacZ construct 

integrated chromosomally. Expression levels given as β-galactosidase activities were determined in 

derivatives of Δ(lacI-lacZYA) strain S4084. Anti-terminator protein λN was provided plasmidically 

using transformants of plasmid pKES219 (+λN). Overnight cultures were inoculated in LB medium to 

OD600 0.05 and grown to OD600 0.5. For transformants with plasmid pKES219, LB medium was 

supplemented with kanamycin and 1mM IPTG. Average value of three biological replicates is shown 

as bars and error bars indicate standard deviation. The following strains were used, T204 (wt), T2165 

(rpoB8), T2162 (rpoB2), T2149 (rpoB*35). (B) Schematic representation of proUURE-PproU-proV-lacZ 

construct integrated chromosomally. Expression levels given as β-galactosidase activities were 

determined in derivatives of Δ(lacI-lacZYA) ΔproU strain S541. Overnight cultures were inoculated in 

LB medium containing 10mM or 300 mM NaCl to OD600 0.05 and grown to OD600 0.5. Average value 

of three biological replicates is shown as bars and error bars indicate standard deviation. The following 

strains were used, S4066 (wt), T2154 (rpoB8), T2159 (rpoB2), T1815 (rpoB*35). 

 

2.8 Hha plays a minor role in repression of yciF, ycdT and appY genes 

Hha is a small basic protein which provides an additional binding surface to H-NS complex 

and stabilizes the bridging complex of H-NS (Ali et al., 2013, Wang et al., 2014, van der Valk 

et al., 2017). I wanted to determine whether the transcription into Hha/H-NS genes relieves 

repression. In order to address this yciF, ycdT and appY genes were chosen. The ycidT, ycdT 

and appY genes were shown to be bound by Hha and H-NS in ChIP analysis (Ueda et al., 

2013). Hence, ycidT, ycdT and appY genes are likely to be regulated by Hha along with H-NS 

and H-NS/StpA. 
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First, I wanted to evaluate whether Hha indeed plays a significant role in the repression of 

yciF, ycdT and appY along with H-NS and H-NS/StpA. To this end, the relative expression of 

yciF, ycdT and appY are determined by qRT-PCR in wild-type, hns, hns stpA, hha, hha hns 

and hha hns stpA mutant backgrounds. RNA was isolated from strains grown in LB medium 

with 300 mM NaCl, since Hha regulated the expression of proteins at high salt conditions and 

similar growth conditions were used for ChIP analysis of Hha (Balsalobre et al., 1999, Ueda 

et al., 2013). The relative expression level is given in arbitrary units with respect to the 

expression level of hns stpA mutant. The yciF gene expression is 0.2 in wild-type which 

increased to 92 in hns and 102 in hns stpA mutant background. This shows that yciF gene is 

repressed 460-fold by H-NS and that StpA does not contribute significantly to repression. In 

hha mutant background the expression increased 2-fold when compared to wild-type (Figure 

18, yciF, compare 0.2 and 0.5 of wt and hha). But there was no significant change in 

expression level of yciF between hns, hns stpA and isogenic hha mutant background (Figure 

18, yciF, compare 92 and 88 in hns and hha hns, compare 102 and 100 in hns stpA and hha 

hns stpA). In ycdT, the expression is 1.1 in wild-type and 15 in hns mutant and 111 in hns 

stpA mutant. This shows that ycdT is repressed 14 fold by H-NS and 100 fold by H-NS/StpA 

complex. In ycdT, the expression in hha mutant increased ~2 fold in hha and hha hns mutant 

when compared to the isogenic wild-type and hns mutant (Figure 18, ycdT, compare 1.1 to 2.1 

in wt and hha and 15 to 27 in hha hns and hns stpA). No significant difference is seen in 

expression between hns stpA and hha hns stpA mutant (Figure 18, compare 111 and 109 in 

hns stpA and hha hns stpA). The appY gene is 14-fold regulated by H-NS (Figure 19, compare 

0.7 and 10 in wt and hns) and 155-fold regulated by H-NS/StpA (Figure 18, compare 0.7 and 

109 in wt and hns stpA). The appY gene is ~2 fold repressed by Hha (Figure 18, appY, 

compare 0.7 and 1.6 in wt and hha) and there is no significant change in expression in hha 

hns and hha hns stpA when compared to the isogenic hns and hns stpA mutant background 

(Figure 18, appY, compare 10 and 16 in hns and hha hns, compare 109 and 100 in hns stpA 

and hha hns stpA). These results suggest that yciF, ycdT and appY genes are only 2 fold 

regulated by Hha, while the regulation by H-NS and H-NS/StpA complex is much more 

significant. Since yciF, ycdT and appY are merely 2 fold regulated by Hha it was not tested 

further to address whether transcription into these genes relieves the Hha/H-NS repression. 
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Figure 18: Hha does not have significant effect on yciF, ycdT and appY genes. Relative expression 

levels of yciF, ycdT, and appY were determined in RNA isolated from strains T1241 (wild-type), U72 

(hns), U73 (hns stpA), U110 (hha), U111 (hha hns), U112 (hha hns stpA) using qRT-PCR. RNA was 

isolated from strains grown in LB with 300mM NaCl. qRT-PCR was performed using yciF specific 

primers OA161 and OA162, ycdT specific primers OA163 and OA164, appY specific primers T910 

and T911 and the data were normalized to rpoD expression, determined with primers T247 and T248. 

The expression levels (in arbitrary units) are determined relative to the expression level in U112 (hha 

hns stpA) for each locus. Average value of three biological replicates is shown as bars and error bars 

indicate standard deviation. 
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3. Discussion 

H-NS causes transcriptional repression by forming extended nucleoprotein complex on DNA 

which is also considered relevant for genome organization. H-NS complex silences 

transcription at the stage of transcription initiation and specific trans-acting proteins are 

required for relieving H-NS repression at specific loci (Stoebel et al., 2008, Will et al., 2015). 

H-NS binding to longer tracts of DNA into the coding part of gene suggests that it could 

impede transcription elongation and vice versa (Landick et al., 2015). Although there are 

indications of transcription elongation and H-NS repression negatively influencing each other, 

it is still unclear how transcription elongation and H-NS repression modulate each other 

(Chandraprakash & Seshasayee, 2014, Kotlajich et al., 2015). In this study, the influence of 

transcription elongation on H-NS repression was analyzed. My results show that the 

transcription directed into the H-NS binding regions can relieve H-NS and H-NS/StpA 

repression. I showed that transcription directed from upstream promoter into the H-NS and H-

NS/StpA binding region of bgl, proU, pdeL and appY abrogates their H-NS and H-NS/StpA 

repression. Moreover, in the native context, at low phosphate conditions, transcription from 

the upstream pst-phoU operon de-repressed the H-NS/StpA repressed promoter of bgl. 

However, the speed and the processivity of the RNA polymerase tested with slow and fast 

moving RNA polymerase mutants did not have influence on H-NS repression of bglDRE and 

proU. In the context of chromosomal organization, long range chromosomal interaction of the 

H-NS repressed genes and the intragenic looping of bgl mediated by H-NS could not be 

observed with chromosome capture confirmation (3C) assay. 

 3.1 How do transcription elongation and H-NS repression modulate each other?  

My results support a model of transcription elongation interfering with H-NS repression. At 

high transcription rate, RNA polymerases will trail behind one another thereby displacing H-

NS. RNA polymerase can also re-model the DNA which enables the displacement of H-NS 

complex. The continuous engagement of RNA polymerase may prevent re-formation of H-NS 

nucleoprotein complex. At low transcription rate, H-NS complex would be stable to act as 

road-block and induces RNA polymerase pausing and facilitate Rho-dependent transcription 

termination (Figure 21). This mutual interference between transcription and H-NS repression 

could indicate that poorly transcribed AT-rich DNA regions are prone to H-NS repression, 

whereas H-NS repression complex may not be formed in highly transcribed regions. 

Additionally, transcriptional read-through from the upstream genes could concomitantly 
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abrogate the H-NS repression of downstream genes thus influencing the transcription of the 

neighboring genes. 

  

 

Figure 21: Model depicting mutual interference between transcription rate and H-NS repression 
(A) At high transcription rate RNA polymerase dislodges H-NS or modifies DNA complex to enable 

dislodging of H-NS causing de-repression of downstream promoter. At high transcription rate, because 

of the continuous engagement of RNA polymerase H-NS cannot re-bind to form stable nucleoprotein 

complex. (B) At low transcription rate H-NS road-block enables RNA polymerase to pause facilitating 

Rho mediated transcription termination.  

 

My results show that transcription elongation can counteract H-NS repression. However, 

whether RNA polymerase reads through the H-NS road-blocks and dislodges the H-NS 

complex or whether transcription remodels the DNA to displace the H-NS is un-clear. H-NS 

dimer bound to DNA can be displaced with a relatively weak force of 7 pN per dimer (Dame 

et al., 2006). The elongating RNA polymerase during transcription generates a force of up to 

25 pN (Wang et al., 1998). Thus, RNA polymerase exerts considerably higher force which 

could displace H-NS from DNA. Moreover, co-operation between elongating RNA 

polymerase molecules was shown to read through the transcriptional road-blocks in vitro and 

in vivo (Epshtein et al., 2003). Thus the elongating RNA polymerases could dislodge the 

bound H-NS. However, slow and fast moving RNA polymerase with varying processivity did 

not influence the H-NS repression of bglDRE and proU (Figure 17). Hence, H-NS de-

repression could depend on the number of transcribing RNA polymerase with respect to the 

transcription rate rather than the processivity of the transcribing RNA polymerase. The 
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influence of transcription rate on H-NS repression could be tested using in vitro transcription 

assay. The transcription rate into the H-NS repressed promoter can be modulated using an 

active upstream promoter together with varying the concentration of RNA polymerase. Upon 

increasing the concentration of RNA polymerase enabling higher transcription rate, 

transcripts from the H-NS repressed downstream promoter might be detected. 

The process of transcription elongation could also cause structural changes in DNA which in 

turn leads to displacing H-NS complex. Elongating RNA polymerase causes negative 

supercoiling upstream and positive supercoiling downstream of the elongating complex in 

DNA (Liu & Wang, 1987, Chong et al., 2014). In eukaryotes it was shown that at high 

transcription rate multiple transcribing RNA polymerase complexes can displace histone 

complexes from DNA (Kulaeva et al., 2013, Teves & Henikoff, 2014). Moreover, in 

eukaryotes it was shown that transcription induced supercoiling could dislodge histone 

complexes from DNA (Teves & Henikoff, 2014). Thus the transcription caused supercoiling 

could remodel the DNA’s topology downstream and possibly dislodge the H-NS complex 

from DNA.  

Like RNA polymerase complex dislodging H-NS, the H-NS complex can also interfere with 

the process of transcription elongation. H-NS repression of bglDRE requires Rho dependent 

termination (Dole et al., 2004b). In vitro experiments with inverse region of bglDRE have 

shown that H-NS bridging complexes act as a road block for the elongating RNA polymerase 

enabling RNA polymerase pausing thereby facilitating termination of transcription by 

termination factor Rho (Kotlajich et al., 2015). Contrarily, ChIP-seq analysis has shown that 

inhibiting Rho and therefore indirectly promoting transcription elongation decreased H-NS 

occupancy in the chromosome (Chandraprakash & Seshasayee, 2014). These experiments 

suggest a synergy between Rho mediated transcription termination and H-NS repression. H-

NS complex by acting as road-block could increase the RNA polymerase dwelling time on the 

DNA at the pause site which is a prerequisite for Rho dependent termination (Ray-Soni et al., 

2016).  

3.2 What is the role of StpA and Hha proteins interacting with H-NS? 

StpA is a paralogue of H-NS possessing 59% sequence identity with H-NS (Zhang & Belfort, 

1992). Similar to H-NS, StpA also binds to AT-rich DNA and forms stiffening and bridging 

complexes on DNA and causes transcriptional repression (Sonnenfield et al., 2001, Lim et al., 

2012). Biochemical and genetic analysis have shown that StpA forms heteromeric complexes 

with H-NS, however the mechanism of how StpA modulates the H-NS complex is unknown 
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(Williams et al., 1996, Johansson et al., 2001). StpA levels are low in exponential phase since 

the stpA gene is negatively regulated by H-NS at the transcriptional level and post-

translationally StpA protein is degraded by Lon protease when it is not associated with H-NS 

(Zhang et al., 1996, Wolf et al., 2006, Johansson et al., 2001). ChIP experiments have shown 

that there is significant overlap between the StpA binding sites with the H-NS (Uyar et al., 

2009, Srinivasan et al., 2013). Further analysis of StpA binding sites by ChIP analysis showed 

StpA specifically binds to high affinity H-NS binding sites in the absence of H-NS. Moreover, 

these sites are enriched in highly expressed horizontally acquired genes (Srinivasan et al., 

2013). Thus StpA might provide an additional back-up layer of transcriptional repression in a 

subset of H-NS repressed genes that are otherwise highly expressed in the absence of H-NS. 

Among the genes analyzed in this study, proU, pdeL and yciF were not affected by StpA but 

were repressed only by H-NS (Kavalchuk, 2011, Yilmaz, 2014) (Figure 18), whereas appY 

and ycdT were strongly repressed by StpA (Figure 9, Figure 18). The appY, ycdT genes might 

belong to horizontally acquired genes possessing high affinity H-NS binding sites. Moreover, 

my result shows that transcription into appY promoter which is strongly repressed by StpA 

enables de-repression of StpA (Figure 9). Thus StpA nucleoprotein complexes can be 

counteracted by transcription similar to H-NS complex.  

Hha is a small basic protein, which forms heteromeric complexes with H-NS. Hha interacts 

with the N-terminal domain of H-NS and provides an additional binding surface with the 

positive charge to H-NS, thus enabling bridged H-NS/Hha complex formation (Ali et al., 

2013, Wang et al., 2014, van der Valk et al., 2017). Moreover, bridged H-NS complex was 

shown to be more efficient in repression than linear H-NS complex (Kotlajich et al., 2015). 

Since, Hha facilitates bridged H-NS complex it could enable the formation of more stable 

repression complex. Hha may not be able to bind to DNA by itself since it lacks the C-

terminal DNA binding domain. This is supported by the ChIP experiments showing complete 

loss of Hha binding upon deletion of H-NS. However, H-NS binding is not affected in the 

absence of Hha (Ueda et al., 2013). In E. coli, although ChIP analysis shows Hha binding 

regions along with H-NS in subset of H-NS regulated genes, transcriptome analysis shows no 

differences in transcriptome levels between wild-type and hha and between hns and hns hha 

mutant (Ueda et al., 2013, Srinivasan et al., 2013). This is consistent with my results showing 

merely 2 fold difference in relative expression of ycdT, yciF and appY genes between hha and 

isogenic wild-type background (Figure 18). Since, Hha provides an additional binding surface 

and enables bridging of H-NS protein, Hha was also speculated to be involved with H-NS in 



  3. Discussion 

48 

 

chromosome compaction (Wang et al., 2014, Singh et al., 2016). Thus Hha might play a 

significant role in chromosome structuring with H-NS rather than a regulatory role. 

3.3 What are the consequences of interplay between transcription and H-NS repression 

on genome organization? 

Organization of nucleoid is mediated by supercoiling, nucleoid associated proteins and 

macromolecular crowding but the precise role of each on the overall chromosome 

organization is unknown. On a broad scale, E. coli chromosome is divided into four major 

macrodomains; Ori, Ter, Right, left and two non-structured domains (Valens et al., 2004). 

Certain proteins have defined macrodomain specificity to enable proper chromosomal 

replication and segregation. MatP protein binds specifically to Ter macrodomain enabling the 

separation of daughter chromosomes during cell division (Thiel et al., 2012). SlmA proteins 

bind to the Ori macrodomain and play an important role in chromosome positioning (Tonthat 

et al., 2011) (Figure 22).  

 

 

Figure 22: Transcription caused H-NS de-repression may involve in microdomain remodelling. 

E. coli chromosome contains four macrodomains. Ori, Non-structured domain right (NSR), Right, Ter, 

Left and Non-structured domain left (NSL). Ori and Ter macrodomains are bound by MatP (blue) and 

SlmA (yellow) proteins, respectively. Superimposed on macrodomains are microdomain loops which 

are presumambly stabilized by H-NS complex. Transcription enabling the dislodging of H-NS 

complex could cause topological change in domain organization. Figure adapted and modified from 

Valens et al., 2004. 
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Superimposed on the macrodomain structure, the nucleoid is organized into topologically 

isolated looped DNA microdomains. E. coli chromosome contains ~400 of looped 

microdomains with 10-12 Kb in length which are highly dynamic (Postow et al., 2004, Deng 

et al., 2005). H-NS was proposed to play a role in microdomain organization stabilizing the 

domain boundaries (Hardy & Cozzarelli, 2005, Noom et al., 2007). The bridging property of 

H-NS protein also supports the role of H-NS on microdomain organization (Dillon & 

Dorman, 2010, Dorman, 2014a). Transcriptionally silent Extended Protein Occupancy 

Domains (tsEPODs) present across the genome have low transcription activity and are 

presumably bound with nucleoid-associated proteins (Bryant et al., 2014). The tsEPODs have 

been indicated as potential chromosomal organizational hubs that may insulate the 

topologically isolated microdomains and macrodomains (Vora et al., 2009). Subsequent 

analysis of H-NS binding regions by ChIP analysis have shown significant correlation 

between the H-NS binding regions and the position of tSEPODs and horizontally acquired 

genes (Zarei et al., 2013). Therefore H-NS might bind to tsEPODs and stabilize the loops in 

microdomains.  

The phenomenon of DNA supercoiling was also indicated to be involved in the formation and 

maintenance of microdomain loops (Hardy & Cozzarelli, 2005, Travers & Muskhelishvili, 

2005). Moreover, supercoiling was also shown to affect transcription and vice versa (Travers 

& Muskhelishvili, 2005, Ma et al., 2013). My results show that transcription can dislodge H-

NS complex. Thus, transcription into the H-NS stabilized loops in the microdomain could 

dislodge the H-NS complex, thereby changing the supercoiling state and local genome 

architecture (Figure 22). Organization of chromosome is the result of the interplay between 

several factors including transcription, supercoiling, H-NS and other nucleoid-associated 

proteins. How each of these factors influence each other thereby affecting the overall 

chromosome organization remain to be studied. Hi-C assays enabling high resolution 

mapping of chromosome organization can be exploited to understand the mechanistic 

interdependence of H-NS repression, supercoiling and transcription on nucleoid organization. 
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4. Materials and Methods 

4.1 Bacterial strains, plasmids and oligonucleotides 

E. coli strains used in this study are listed in Table 1, a list of plasmids is given in Table 2 and 

sequences of oligonucleotides are given in Table 3. 

Table 1: E. coli strains  

Strain Genotype Reference / Construction
a 

E. coli K12 strains  

CY15014 W3110 trp
R
 rpoB2 (Yanofsky & Horn, 1981) 

JW0449-5 Δ(araD-araB)567 ΔlacZ4787(::rrnB-3) Δhha-745::kan λ-, rph-1, 

Δ(rhaD-rhaB)568 hsdR514 (CGSC#8608) 

(Baba et al., 2006) 

M182 stpA Δ(lacIPOZYA)74 galU galK strA stpA::TcR (Zhang et al., 1996) 

N4735 AB1157 rpoB*35 arg
+
 (Trautinger & Lloyd, 2002) 

SMMT8 KL226 rpoB8 btuB::Tn10 (Meenakshi & Munavar, 2015) 

T1734 N4735 rpoB*35 zja::cmR N4735 x PCR T919/T920 (pKD3) 

T2142 KL226 rpoB8 btuB::Tn10 zja::cmR SMMT8 x PCR T919/T920 (pKD3) 

T2145 W3110 trp
R 

rpoB2 zja::cmR CY15014 x PCR T919/T920 

(pKD3) 

CSH50 bgl° Δ(lac-pro) ara thi (Miller, 1972) 

S541 CSH50 Δbgl-AC11 ΔlacZ-Y217 (Dole et al., 2002) 

S3077 S541 ΔproUFRT (Kavalchuk et al., 2012) 

MG1655 

fnr
-
 

E. coli K-12 fnr
- 
ilvG

- 
rph

-
 (CGSC#6300)  

Labarotory collection #S527 

(Guyer et al., 1981) 

S3754 S527 (MG1655 fnr
- 
) ΔhnskanR  (Stratmann et al., 2012) 

MG1655 E. coli K-12 wild-type ilvG
- 
rph

-
 (CGSC#6300)  

Laboratory collection #S3836 

CGSC#6300 

BW30270  MG1655 rph
+ 

Laboratory collection #S3839 

CGSC #7925 

S3974 BW30270
+
 ilvG

+ 
(=MG1655 rph

+
 ilvG

+
)

 
(non-motile) (Venkatesh et al., 2010) 

T208 S3974 ilvG
+
 ΔhnskanR (non-motile) (Stratmann et al., 2012) 

S4084 S3974 Δ(lacI-lacZYA)FRT (non-motile) Lab collection 

T1241 BW30270 ilvG
+
 (motile) (used as wild-type E. coli K-12 strain) (Pannen et al., 2016) 

U65 T1241 ∆ara, ∆lac, ∆araEp-531FRT, φPcp8araE-535, Δ(araH-

araF)572FRT 

(Breddermann & Schnetz, 2016) 

U71 T1241 ΔhnskanR T1241 x T4GT7 (S3754) 

U72  T1241 ΔhnsFRT U71 x pCP20 

U73 T1241 ΔhnsFRT stpA::TcR U72 x T4GT7 (M182 stpA::TcR) 

U107 T1241 Δhha-745kanR T1241 x P1 vir (JW0449-5) 

U108 T1241 ΔhnsFRT Δhha-745kanR U72 x P1 vir (JW0449-5) 

U109 T1241 ΔhnsFRT stpA::TcR Δhha-745kanR U73 x P1 vir (JW0449-5) 

U110 T1241 Δhha-745FRT U107 x pCP20 

U111 T1241 ΔhnsFRT Δhha-745FRT U108 x pCP20 

U112 T1241 ΔhnsFRT stpA::TcR Δhha-745FRT U109 x pCP20 

 

E. coli K12 strains with proU lacZ fusions at attB integration site 

S4066 S3077 attB::(Spec
R
 PproU proVHA lacZ) (Kavalchuk et al., 2012) 

T1810 S3077 attB::(Spec
R
 PproU proVHA lacZ) rpoB*35 zja cmR S4066 x P1vir (T1734) 
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T1815 S3077 attB::(Spec
R
 PproU proVHA lacZ) rpoB*35 zja FRT T1810 x pCP20 

T2154 S3077 attB::(Spec
R
 PproU proVHA lacZ) rpoB8 zja ::cmR  S4066 x P1vir (T2142)  

T2159 S3077 attB::(Spec
R
 PproU proVHA lacZ) rpoB2 zja ::cmR  S4066 x P1vir (T2145)  

 

E. coli K12 strains with bglDRE lacZ fusions at attB integration site 

 

T204 S4084 attB::(Spec
R
 PUV5 λtR1 bglDRE lacZ) Lab collection (attB::pKEIB14) 

T233 S4084 attB::(Spec
R
 PUV5 λtR1 bglDRE lacZ) ΔhnsFRT Lab collection (derivative of T204) 

T2148 S4084 attB::(Spec
R 

PUV5 λtR1 bglDRE lacZ) rpoB*35 zja cmR T204 x P1vir (T1734) 

T2149 S4084 attB::(Spec
R 

PUV5 λtR1 bglDRE lacZ) rpoB*35 zja FRT T2148 x pCP20 

T2162 S4084 attB::(Spec
R 

PUV5 λtR1 bglDRE lacZ) rpoB2 zja ::cmR  T204 x P1vir (T2145)  

T2165 S4084 attB::(Spec
R 

PUV5 λtR1 bglDRE lacZ) rpoB8 zja ::cmR T204 x P1vir (T2142)  

T2255 S4084 attB::(Spec
R
 PUV5 mVenus λtR1 bglDRE lacZ) S4084/pLDR8 x pKEAR14 

T2256 S4084 attB::(Spec
R
 PUV5 mVenus bglDRE lacZ) S4084/pLDR8 x pKEAR15 

T2259 S4084 attB::(Spec
R
 PUV5 mVenus lacZ) S4084/pLDR8 x pKEAR18 

T2260 S4084 attB::(Spec
R
 PUV5 mVenus λtR1 lacZ)  S4084/pLDR8 x pKEAR20 

T2261 S4084 attB::(Spec
R
 PUV5 lacZ) S4084/pLDR8 x pKES268 

T2265 S4084 attB::(Spec
R
 PUV5 mVenus λtR1 bglDRE lacZ) ΔhnskanR T2255 x T4GT7 (T208) 

T2266 S4084 attB::(Spec
R
 PUV5 mVenus bglDRE lacZ) ΔhnskanR T2256 x T4GT7 (T208) 

T2269 S4084 attB::(Spec
R
 PUV5 mVenus lacZ) ΔhnskanR T2259 x T4GT7 (T208) 

T2270 S4084 attB::(Spec
R
 PUV5 mVenus λtR1 lacZ) ΔhnskanR T2260 x T4GT7 (T208) 

T2271 S4084 attB::(Spec
R
 PUV5 lacZ) ΔhnskanR T2261 x T4GT7 (T208) 

T2273 S4084 attB::(Spec
R
 PUV5 mVenus λtR1 bglDRE lacZ) ΔhnsFRT T2265 x pCP20 

T2274 S4084 attB::(Spec
R
 PUV5 mVenus bglDRE lacZ) ΔhnsFRT T2266 x pCP20 

T2277 S4084 attB::(Spec
R
 PUV5 mVenus lacZ) ΔhnsFRT T2269 x pCP20 

T2278 S4084 attB::(Spec
R
 PUV5 mVenus λtR1 lacZ) ΔhnsFRT T2270 x pCP20 

T2279 S4084 attB::(Spec
R
 PUV5 lacZ) ΔhnsFRT T2271 x pCP20 

T2316 S4084 attB::(Spec
R
 PUV5 λtR1 lacZ) S4084/pLDR8 x pKES269 

T2317 S4084 attB::(Spec
R
 PUV5 λtR1 lacZ) ΔhnskanR T2316 x T4GT7 (T208) 

T2318 S4084 attB::(Spec
R
 PUV5 λtR1 lacZ) ΔhnsFRT T2317 x pCP20 

T2346 S4084 attB::(Spec
R
 PUV5 λtR1 bglDRE lacZ) ΔbglGFBH-yieLKkanR T204 x PCR OA459/OA460 

(pKD4) 

T2347 S4084 attB::(Spec
R
 PUV5 mVenus λtR1 bglDRE lacZ) ΔbglGFBH-

yieLKkanR 

T2349 x PCR OA459/OA460 

(pKD4) 

T2348 S4084 attB::(Spec
R
 PUV5 λtR1 bglDRE lacZ) ΔbglGFBH-yieLKFRT T2346 x pCP20 

T2349 S4084 attB::(Spec
R
 PUV5 mVenus λtR1 bglDRE lacZ) ΔbglGFBH-

yieLKFRT 

T2347 x pCP20 

T2352 S4084 attB::(Spec
R
 PUV5 λtR1 bglDRE lacZ) ΔbglGFBH-yieLKFRT 

ΔhnskanR 

T2348 x T4GT7 (T208) 

T2353 S4084 attB::(Spec
R
 PUV5 mVenus λtR1 bglDRE lacZ) ΔbglGFBH-

yieLKFRT ΔhnskanR 

T2349 x T4GT7 (T208) 

T2354 S4084 attB::(Spec
R
 PUV5 λtR1 bglDRE lacZ) ΔbglGFBH-yieLKFRT 

ΔhnsFRT 

T2352 x pCP20 

T2355 S4084 attB::(Spec
R
 PUV5 mVenus λtR1 bglDRE lacZ) ΔbglGFBH-

yieLKFRT ΔhnsFRT 

T2353 x pCP20 

T2378 S4084 attB::(Spec
R
 PUV5 mVenus 48 bp λtR1 lacZ) S4084/pLDR8 x pKEAR29 

T2379 S4084 attB::(Spec
R
 PUV5 mVenus 48 bp λtR1 bglDRE lacZ) S4084/pLDR8 x pKEAR30 

T2380 S4084 attB::(Spec
R
 PUV5 mVenus 48 bp λtR1 lacZ) ΔhnskanR T2378 x T4GT7 (T208) 

T2381 S4084 attB::(Spec
R
 PUV5 mVenus 48 bp λtR1 bglDRE lacZ) ΔhnskanR T2379 x T4GT7 (T208) 

T2392 S4084 attB::(Spec
R
 PUV5 mVenus 48 bp λtR1 lacZ) ΔhnsFRT T2380 x pCP20 

T2393 S4084 attB::(Spec
R
 PUV5 mVenus 48 bp λtR1 bglDRE lacZ) ΔhnsFRT T2381 x pCP20 

T2416 S4084 attB::(Spec
R
 PUV5 λtR1 mVenus lacZ) S4084/pLDR8 x pKEAR31 
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T2417 S4084 attB::(Spec
R
 PUV5 λtR1 mVenus bglDRE lacZ) S4084/pLDR8 x pKEAR32 

T2418 S4084 attB::(Spec
R
 PUV5 λtR1 mVenus lacZ) ΔhnskanR T2416 x T4GT7 (T208) 

T2419 S4084 attB::(Spec
R
 PUV5 λtR1 mVenus bglDRE lacZ) ΔhnskanR T2417 x T4GT7 (T208) 

T2420 S4084 attB::(Spec
R
 PUV5 λtR1 mVenus lacZ) ΔhnsFRT T2418 x pCP20 

T2421 S4084 attB::(Spec
R
 PUV5 λtR1 mVenus bglDRE lacZ) ΔhnsFRT T2419 x pCP20 

U115 U65 attB::(Spec
R 

araC PBAD lacZ) U65/pLDR8 x pKEAR19 

U123 U65 attB:: (Spec
R 

araC PBAD mVenus lacZ) U65/pLDR8 x pKEAR22 

U124 U65 attB:: (Spec
R 

araC PBAD bglDRE lacZ) U65/pLDR8 x pKEAR23 

U125 U65 attB:: (Spec
R 

araC PBAD lacZ) ΔhnskanR U115 x T4GT7 (T208) 

U126 U65 attB:: (Spec
R 

araC PBAD mVenus bglDRE lacZ) U65/pLDR8 x pKEAR25 

U127 U65 attB:: (Spec
R 

araC PBAD lacZ) ΔhnsFRT U125 x pCP20 

U128 U65 attB:: (Spec
R 

araC PBAD mVenus lacZ) ΔhnskanR U123 x T4GT7 (T208) 

U129 U65 attB:: (Spec
R 

araC PBAD bglDRE lacZ) ΔhnskanR U124 x T4GT7 (T208) 

U130 U65 attB:: (Spec
R 

araC PBAD mVenus lacZ) ΔhnsFRT U128 x pCP20 

U131 U65 attB:: (Spec
R 

araC PBAD bglDRE lacZ) ΔhnsFRT U129 x pCP20 

U132 U65 attB:: (Spec
R 

araC PBAD mVenus bglDRE lacZ) ΔhnskanR U126 x T4GT7 (T208) 

U133 U65 attB:: (Spec
R 

araC PBAD mVenus bglDRE lacZ) ΔhnsFRT U132 x pCP20 

U134 U65 attB:: (Spec
R 

araC PBAD lacZ26) U65/pLDR8 x pKEAR26 

U135 U65 attB:: (Spec
R 

araC PBAD mVenus bglDRE lacZ) ΔbglGFBH-

yieLKkanR 

U126 x PCR OA459/OA460 

(pKD4) 

U136 U65 attB:: (Spec
R 

araC PBAD lacZ26) ΔhnskanR U134 x T4GT7 (T208) 

U137 U65 attB:: (Spec
R 

araC PBAD mVenus bglDRE lacZ) ΔbglGFBH-

yieLKFRT 

U135 x pCP20 

U138 U65 attB:: (Spec
R 

araC PBAD lacZ26) ΔhnsFRT U136 x pCP20 

U139 U65 attB:: (Spec
R 

araC PBAD mVenus bglDRE lacZ) ΔbglGFBH-

yieLKFRT ΔhnskanR 

U137 x T4GT7 (T208) 

U140 U65 attB:: (Spec
R 

araC PBAD mVenus bglDRE lacZ) ΔbglGFBH-

yieLKFRT ΔhnsFRT 

U139 x pCP20 

U141 U65 attB:: (Spec
R 

araC PBAD lacZ27)  U65/pLDR8 x pKEAR27 

U142 U65 attB:: (Spec
R 

araC PBAD lacZ28) U65/pLDR8 x pKEAR28 

U143 U65 attB:: (Spec
R 

araC PBAD lacZ27) ΔhnskanR U141 x T4GT7 (T208) 

U144 U65 attB:: (Spec
R 

araC PBAD lacZ28) ΔhnskanR U142 x T4GT7 (T208) 

U145 U65 attB:: (Spec
R 

araC PBAD lacZ27) ΔhnsFRT U143 x pCP20 

U146 U65 attB:: (Spec
R 

araC PBAD lacZ28) ΔhnsFRT U144 x pCP20 

 

E. coli K12 strains with promoter insertions upstream of H-NS repressed loci 

T1634 T1241 φ(kanRPUV5 λtR1 proU) T1241 x PCR T864/T865 

(pKES305) 

T1642 T1241 φ(FRTPUV5 λtR1 proU) T1634 x pCP20 

T1641 T1241 φ(kanRPUV5 λtR1 pdeL) T1241 x PCR T866/T867 

(pKES305) 

T1647 T1241 φ(FRTPUV5 λtR1 pdeL) T1641 x pCP20 

T1654 T1241 φ(FRTPUV5 λtR1 pdeL) ΔhnskanR T1647 x T4GT7 (T208) 

T1713 T1241 φ(FRTPUV5 λtR1 pdeL) ΔhnsFRT T1654 x pCP20 

T1637 T1241 φ(kanRPUV5 λtR1 appY) T1241 x PCR T858/T859 

(pKES305) 

T1646 T1241 φ(FRTPUV5 λtR1 appY)  T1637 x pCP20 

T1653 T1241 φ(FRTPUV5 λtR1 appY) ΔhnskanR T1646 x T4GT7 (T208) 

T1712 T1241 φ(FRTPUV5 λtR1 appY) ΔhnsFRT T1653 x pCP20 

T1949 T1241 φ(FRTPUV5 λtR1 appY) ΔhnsFRT stpA::Tc
R
 T1712 x T4GT7 (M182 stpA::Tc

R
) 
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U80 T1241 φ(kanRaraC PBAD proU)  T1241 x PCR T864/OA79 

(pKEAR3) 

U83 U65 φ(kanRaraC PBAD proU) U65 x P1vir (U80) 

U86 U65 φ(FRTaraC PBAD proU)  U83 x pCP20 

a
 Transductions were performed with phages T4GT7 (Wilson et al., 1979) and P1vir (Miller, 1992), represented 

as “strain number of the recipient x phage (donor strain)’’. Chromosomal deletions and insertions were 

constructed by λ-Red mediated recombination (Datsenko & Wanner, 2000). The parent strain, oligonucleotides 

and plasmids used for the generation of PCR fragment for λ-Red mediated recombination are represented as 

“parent strain x PCR oligonucleotides (plasmid)’’. Flipping of the FRT (Flp recombinant target site) flanked 

resistance cassette by Flp recombinase was performed using plasmid pCP20 (x pCP20). Promoter lacZ fusions 

were integrated into phage λ attachment site attB by site-specific recombination, as described (Diederich et al., 

1992, Dole et al., 2002). All the constructed and transduced alleles were characterized by PCR using 

oligonucleotides given in Table 3. 
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Table 2: Plasmids  

Plasmid No. Relevant features
b 

Reference / Construction 

pVs133 mVenus (yfp variant) in pTrc99a  Obtained from Surjik lab 

pKD4 FRT kan
R
 FRT oriRγ amp

R
 (Datsenko & Wanner, 2000) 

pKD13 FRT kan
R
 FRT tL3 oriRγ amp

R
 (Datsenko & Wanner, 2000) 

pCP20 cI857 PR λ flp in pSC101-ori repts amp
R
 (Cherepanov & Wackernagel, 1995) 

pLDR8 cI857 PR λ int in pSC101-ori repts kan
R
 (Diederich et al., 1992) 

pBAD30 araC PBAD rrnB-T1 p15A-ori amp
R
 (Guzman et al., 1995) 

pUC12 Plac lacZ'(alpha) pMB1-ori amp
R
 (Vieira & Messing, 1987) 

pKK177-3 Ptac rrnB-T1T2 in pBR amp
R
  (Brosius & Holy, 1984) 

pFDY400 Ptac hns rrnB-T1 T2 pKK-ori amp
R
 (Schnetz & Wang, 1996) 

pKENV68 bglURE PUV5 bglDRE lacZ in p15A kan
R
 attP 

spec
R
 

(Nagarajavel et al., 2007) 

pKES268 PUV5 MCS lacZ in p15A kan
R
 attP spec

R
 (Salscheider et al., 2014) 

pKES269 PUV5 tR1 lacZ in p15A kan
R
 attP spec

R
 Lab collection 

pFDY241 bglURE PUV5 bglG bglF bglB in p15A kan
R
 attP 

spec
R
 

Lab collection 

pKEIB13 PUV5 bglDRE lacZ in p15A kan
R
 attP spec

R
 Lab collection 

pKEIB14 PUV5 bglDRE tR1 lacZ in p15A kan
R
 attP spec

R
 Lab collection 

pKES214 bglURE PUV5 t1 bglG rrnB-T1 in pUC amp
R
 Lab collection 

pKES215 bglURE PUV5 bglDRE rrnB-T1 in pUC amp
R
 Lab collection 

pKES219 lacI
q
 tacOP N in p15A kan

R
 Lab collection 

pKES288 pKD4 with MCS Lab collection 

pKES305 PUV5 tR1 in pKD13 Lab collection 

pKEAR3 araC PBAD in pKD4 
 
 

Cloning of araC PBAD by PCR (pBAD30, 

primers OA75/OA76) in pKES288, 

EcoRI/SalI 

pKEAR6 bglURE PUV5 bglDRE rrnB-T1 T2 in pBR amp
R
 Cloning of bglURE PUV5 bglDRE by PCR 

(pKENV68, OA269/S726) in pKK177-3, 

BamHI/PstI 

pKEAR7 bglURE PUV5 tR1 bglDRE rrnB-T1 T2 in pBR 

amp
R
 

Cloning of bglURE PUV5 tR1 bglDRE by PCR 

(pKEIB14, OA236/S726+ pFDY241, 

OA269/S196) in pKK177-3, BamHI/PstI 

pKEAR14 PUV5 mVenus tR1 bglDRE lacZ in p15A kan
R
 

attP spec
R
 

Cloning of mVenus by PCR (pVs133, 

primers OA354/OA355) in pKEIB14, 

EcoRI/MunI 

pKEAR15 PUV5 mVenus bglDRE lacZ in p15A kan
R
 attP 

spec
R
 

Cloning of mVenus by PCR (pVs133, 

primers OA354/OA355) in pKEIB13, 

EcoRI/MunI 

pKEAR18 PUV5 mVenus lacZ in p15A kan
R
 attP spec

R
 Cloning of mVenus by PCR (pVs133, 

primers OA354/OA355) in pKES268, MunI 

pKEAR19 araC PBAD lacZ in p15A kan
R
 attP spec

R
 Cloning of araC PBAD by PCR (pBAD30, 

primers OA75/OA359) in pKES268, 

SalI/XbaI 

pKEAR20 PUV5 mVenus tR1 lacZ in p15A kan
R
 attP spec

R
 Cloning of mVenus by PCR (pVs133, 

primers OA354/OA355) in pKES269, MunI 

pKEAR22 araC PBAD mVenus lacZ in p15A kan
R
 attP 

spec
R
 

Cloning of mVenus by PCR (pVs133, 

primers OA354/OA355) in pKEAR19, 

EcoRI/MunI 

pKEAR23 araC PBAD bglDRE lacZ in p15A kan
R
 attP spec

R
 Insertion of bglDRE from pKEIB13 into 

pKEAR19, Eco81I/SpeI 
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pKEAR25 araC PBAD mVenus bglDRE lacZ in p15A kan
R
 

attP spec
R
 

Insertion of bglDRE from pKEIB13 into 

pKEAR22, Eco81I/SpeI 

pKEAR26 araC PBAD lacZ26 in p15A kan
R
 attP spec

R
 Cloning of araC PBAD by PCR (pBAD30, 

primers OA75/OA456) in pKES268, 

SalI/XbaI 

pKEAR27 araC PBAD lacZ27 in p15A kan
R
 attP spec

R
 Deletion of linker between NheI and XbaI in 

pKEAR19  

pKEAR28 araC PBAD lacZ28 in p15A kan
R
 attP spec

R
 5ˈend mutations of lacZ by PCR in 

pKEAR19 (primers OA478/OA429)  

pKEAR29 PUV5 mVenus 48bp tR1 lacZ in p15A kan
R
 attP 

spec
R
 

Cloning of tR1 with 48 bp upstream 

sequence by PCR (λdv1, primers 

OA497/T244) in pKEAR20, MunI/SpeI 

pKEAR30 PUV5 mVenus 48bp tR1 bglDRE lacZ in p15A 

kan
R
 attP spec

R
 

Cloning of tR1 with 48 bp upstream 

sequence by PCR (λdv1, primers 

OA497/T244) in pKEAR14, MunI/SpeI 

pKEAR31 PUV5 tR1 mVenus lacZ in p15A kan
R
 attP spec

R
 Cloning of mVenus by PCR (pVs133, 

primers OA538/OA539) in pKES269, SpeI 

pKEAR32 PUV5 tR1 mVenus bglDRE lacZ in p15A kan
R
 

attP spec
R
 

Cloning of mVenus by PCR (pVs133, 

primers OA538/OA539) in pKEIB14, SpeI 
 

b
 The following abbreviations are used FRT = Flp recombinase target site; MCS = multiple cloning site. Genes 

encoding antibiotic resistance are designated as spec
R 

= spectinomycin resistance, kan
R 

= kanamycin resistance 

amp
R 

= ampicillin resistance, cm
R 

= chloramphenicol resistance. ori represents origin of replication.  

bglDRE represents regions including t1RAT and +1 to +964 relative to the transcription start site of bgl operon. t1RAT 

indicates AA to T mutation at position +67 and +68 in bglt1 making the expression independent of BglG 

mediated anti-termination(Nagarajavel et al., 2007). 

 λtR1 region consists of nutR and λtR1 terminator sequence. CGCTCTTACACATTCCAGCCCTG 

AAAAAGGGCATCAAATTAAACCACACCTATGGTGTATGCATTTATTTGCATACAT. The nutR 

sequence is underlined. 

The sequence of lacZn alleles from the transcription start site (+1) of PBAD to first eight codons of lacZ are as 

follows: 

pKEAR19 (lacZ) atacccgtttttttgggctagcgaattcactactagtagcatctagagcttcacaggaaacagctATGaccatgattacggattcactg 

pKEAR26 (lacZ26) atacccgtttttttgggctagcgaattctagagcttcaccttcacaggaaacagctATGaccatgattacggattcactg  

pKEAR27 (lacZ27) atacccgtttttttgggctagagcttcacaggaaacagctATGaccatgattacggattcactg 

pKEAR28 (lacZ28) atacccgtttttttgggctagagcttcacaggaaacagctATGacAatgattacAgattcactT 

ATG represents start codon of lacZ. Mutated nucleotides are underlined. 
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Table 3: Oligonucleotides  

Number Sequence
c
 Description and use 

OA9 gcgcaagcttTCCTGTAGAACGAACACTAGAAG 5ˈ RACE RNA adapter specific 

primer with HindIII site 

OA24 cagttctagaAGGCAGCTCATTATTCACGTCG appY, 5ˈRACE  

OA75 ctgagtcgacTTATGACAACTTGACGGCTACATCATTC Cloning of araC PBAD  

OA76 tacggaattcGCTAGCCCAAAAAAACGGG Cloning of araC PBAD  

OA79 ATTTCCCTGCTGCGGGTAGTGATATTTTTGAAAATAACA

CCgccatggtccataggatccatactag 

araC-PBAD insertion at proU 

OA94 GTTGCATTATTCGCCTGAAACCAC Upstream region of PproU in PBAD 

proU, qRT-PCR 

OA95 TCCCGTGATATAAGGGCTGAGAGC Upstream region of PproU in PBAD 

proU, qRT-PCR 

OA98 CCCGACTTCACCAGTATTCTCTGG bgl, qRT-PCR 

OA99 AATGACTGGATTGTTACTGCATTCG bgl, qRT-PCR 

OA104 ATGCCGCATTTGCCAGAAAACAAC gltF, 3C 

OA106 AGTACTGAGCGGAGTTTCTTACAGCT ydeO, 3C 

OA107 GCAGCTTGAGTAGCAGTCGTTCTTTC pdeL, 3C 

OA108 AACAGCAACTGATGGAAACCAGCC lacZ, 3C 

OA151 AGCCAGACGCATAACTTCTTCATCGC rpoB, 3C 

OA152 AATGCTCACCGTTAAGTCTGATGACG rpoB, 3C 

OA153 TCGTCTTCCAGTTCGATGTTGATACC rpoB, 3C 

OA154 AGGCGGTATGACCAACCTGGAACG rpoB, 3C 

OA157 TTTCTGTGCTCATTACTGACCTCCG Analysis of Δhha-745FRT  

OA158 AGAAATGGCGGAAGTCAGGTAATCG Analysis of Δhha-745FRT 

OA161 CGTAACTGGCAATCTCATAATGCTCG yciF, qPCR 

OA162 CATGAAATGTGTGGCAATGGAAGG yciF, qPCR 

OA163 AAGCATACGACCAGATGACCTTTTAGC ycdT, qPCR 

OA164 CTCAACATTTTCCCGAATCCTTTCC ycdT, qPCR 

OA178 ACCATTGCCAGTTTGCGATTAAACG bgl, 3C 

OA179 TCCTTGCTATGAACATGCAAATCACC bgl, 3C 

OA180 GGGAAAGATAGCGACAAATAATTCACCA bgl, 3C 

OA181 GAAATCCTGCCCCTTCACGTAGTAGAAG bgl, 3C 

OA236 GCTTTACACTTTATGCTTCCGGCTCGTA Cloning of bglURE PUV5 tR1 

bglDRE 

OA269 ccgggatccgtcgacGCGTTCGCGCGGATGGACATTGACGAAG

C 

Cloning of bglURE PUV5 bglDRE 

OA354 acgtgaattcGAGCTCAGGAGTGTGAAATG Cloning of mVenus 

OA355 cagcaggcctgttattcaattgTTACTTGTACAGCTCGTCCATGCC Cloning of mVenus 

OA359 ctagtctagaTGCTACTAGTAGTGAATTCGCTAGCCCAAAAA

AACG 

Cloning of araC PBAD 

OA429 TAACCGTGCATCTGCCAGTTTG Cloning of lacZ fragment 

OA442 actgggatccCCCGACTTCACCAGTATTCTCTGG bglDRE, 5ˈRACE 

OA443 TATCACCGCCGACAAGCAGAAGAAC mVenus, qRT-PCR 

OA444 TGTTCTGCTGGTAGTGGTCGGCG mVenus, qRT-PCR 

OA456 ctagtctagaattcGCTAGCCCAAAAAAACG Cloning of araC PBAD 

OA457 ACGCGCTGGCGAAAGAATTAAC bglDRE, qRT-PCR 

OA458 TAATACGATCACAGGTTGCCATCACC bglDRE, qRT-PCR 

OA459 CAGGCCGGAGCGTAATTCACACATCCGGCCTTATTTCTT

AAGCgtgtaggctggagctgcttcg 

Deletion of bgl operon 

OA460 AATCCCAATAACTTAATTATTGGGATTTGTTATATATAA Deletion of bgl operon 
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CTTTATcatatgaatatcctccttagttcctattcc 

OA478 agcatctagaGCTTCACAGGAAACAGCTATGACAATGATTAC

AGATTCACTTGCCGTCGTTTTACAACGTCG 

Cloning of mutated lacZ fragment 

OA489 actgggatccTAATACGATCACAGGTTGCCATCACC bglDRE, 5ˈRACE 

OA493 ctgagtcgacTGTTCTGCTGGTAGTGGTCGGCG mVenus, 5ˈRACE 

OA497 acgtcaattgAGGTAAAGCCCTTCCCGAGTAAC Cloning of λtR1with 48 bp 

upstream sequence 

OA538 acgtactagtGAGCTCAGGAGTGTGAAATGGTG Cloning of mVenus 

OA539 acgttctagaTTACTTGTACAGCTCGTCCATG Cloning of mVenus 

S93 CCGGGCCGACAACAAAGTCA Analysis of attB integration 

S95 CATATGGGGATTGGTGGCGA Analysis of attB integration 

S118 TGCGGGCCTCTTCGCTATTA Analysis of attB integration 

S126 GGTTTTTATAACGAACATCCAGGTTC bgl, 3C 

S164 GAGCAGGGGAATTGATCCGGTGGA Analysis of attB integration 

S182 ATAAGATGCCGTGGAACCAA Analysis of stpA::TcR 

S183 CGCTTACACTACGCGACGAA Analysis of stpA::TcR 

S196 ATTATACGAGCCGGAAGCATAAAGTGTAAAGCC Cloning of bglURE PUV5 tR1 

bglDRE 

S487 AAAGCCCACTTCATCTTTCGGTAACT bgl, 3C 

S726 ccgctgcagtctagaTTTCAGTGTTCTTTGCGCACG  Cloning of bglURE PUV5 bglDRE 

S728 tttctagaTCCTTGTTCGATATATTTGAACGC proU 5ˈ RACE  

T123 AGCGCAACGCAATTAATGTGAGTTAGCTCA Analysis of clones in pUC12 

T124 TCGCTATTACGCCAGCTGGCGAAAG Analysis of clones in pUC12 

T244 cagtactagtAATTGATTGAATGTATGCAAATAAATGCA Cloning of λtR1 

T247 GACGAAGAAGATGGCGATGACGAC rpoD, qRT-PCR  

T248 TTCCTGAGCGGTAGCGTGACTG rpoD, qRT-PCR  

T265 GCGCGAATTCCTGTAGAACGA 5ˈ RACE RNA adapter specific 

primer with EcoRI site 

T268  AUAUGCGCGAAUUCCUGUAGAACGAACACUAGAAGAA

A  

5ˈ RACE RNA Adapter  

T334 TGGCGAAGTAATCGCAACATCC Analysis of attB integration 

T520 AACTGGGCTATCGCTTGGCGTA proU, qRT-PCR  

T521 CGAAATGATGCCGACATACTGTTGG proU, qRT-PCR  

T528 GGTGTAGCGGTGAAATGCGTAGAG 16srRNA, qRT-PCR  

T529 CTCAAGGGCACAACCTCCAAGTC 16srRNA, qRT-PCR  

T858 TCGGTGTGTTATTTGTTTGTTTGATGTTATGCTTTTGCGC

Cgtgtaggctggagctgcttcg 

PUV5 λtR1 insertion at appY  

T859 GAAAATCAATTGATAAAATACATCTAAACAACCTTTTG

Ggggatccgaattctactagtaattgattg 

PUV5 λtR1 insertion at appY 

T864 GAAAGCGGTTGAAACAGAAGATGAAGACTGGAATTTCT

GAGgtgtaggctggagctgcttcg 

PUV5 λtR1 insertion at proU 

T865 ATTTCCCTGCTGCGGGTAGTGATATTTTTGAAAATAACA

CCgggatccgaattctactagtaattgattg 

PUV5 λtR1 insertion at proU 

T866 TGATTGTTATTGCATAAAACCGCGCCATGTCTGCATATG

gtgtaggctggagctgcttcg 

PUV5 λtR1 insertion at pdeL 

T867 CCGTATAGATATAACGTATCAAGAGGTAGGAGAAACAG

CGCgggatccgaattctactagtaattgattg 

PUV5 λtR1 insertion at pdeL 

T892 TGACGGGCTGTGAGGTGCTTG pdeL, qRT-PCR  

T893 TCATCAGTTGGCGGGTCATTATG pdeL, qRT-PCR  

T910 TCAATGTCGTAGCCCAGAAATGTG appY, qRT-PCR  

T911 CCATCTGTGACGCCGATTATTTTC appY, qRT-PCR  

T912 GCTGGTGGCACTGGGTAGTTGTTA Analysis of attB integration 

T919 TTCGCCCTGGACAACATTCCTGCTGACGGCACTACCATA Analysis of cmR insertion at zja 
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AAgtgtaggctggagctgcttcg 

T920 GGAAGATGAAAAACGCAAGGTTGTTGAAAGCGTTGTGT

TTTcatatgaatatcctccttagttcctattcc 

Analysis of cmR insertion at zja 

T921 CTTCAGTCTGCTGCATCCTGG Analysis of zja::cmR insertion 

T922 TTCTCACCGCACGACGATCG Analysis of zja::cmR insertion 

T930 cagttctagaGAACTCTTGCAGAAAAACACGAAAATC 

 

pdeL, 5ˈRACE  

c 
Oligonucleotide sequences are given in 5ˈ to 3ˈ direction. Homologous sequences to the indicated target are 

shown in capital letters and the sites for restriction endonucleases are underlined. 
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4.2 Media and antibiotics 

Compositions of media and concentrations of antibiotics used are given below. 

LB Medium:   10 g of Bacto Tryptone, 5 g of Yeast extract, 5 g of NaCl per 1000 ml. 

LB Agar Plates:  10 g of Bacto Tryptone, 5 g of Yeast extract, 5 g of NaCl, 15 g of 

Bacto Agar per 1000 ml. 

SOB Medium:  20 g of Bacto Tryptone, 5 g of Yeast extract, 0.5 g of NaCl, 1.25 ml of 

2 M KCl per 1000 ml. pH was adjusted to 7.0 with NaOH. After 

autoclaving 10 ml of 1 M MgCl2 was added. 

SOC Medium:  19.8 ml of 20% glucose was added to 1000 ml of SOB medium. 

20 x M9: 140 g Na2HPO4, 60 g KH2PO4, 20 g NH4Cl per 1000 ml. 

M9 Minimal Medium: 50 ml of 20x M9, 1 ml of 0.1 M CaCl2, 1 ml of 1 M MgSO, 0.5 ml of  

1 mM FeCl3 per 1000 ml. 15 g of Bacto Agar was added for plates. 

MOPS Minimal  

Medium: MOPS minimal medium was prepared according to the procedure 

described previously (Neidhardt et al., 1974).  

Stock solutions: Freshly prepared 1 M MOPS (pH 7.4 with 10 M KOH), freshly 

prepared 1 M Tricine (pH 7.4 with 10 M KOH), freshly prepared      

10 mM FeSO4.7 H2O, 1.9 M NH4Cl, 0.276 M K2SO4, 5 mM CaCl2, 

0.528 M MgCl2, 5 M NaCl, 0.132 M K2HPO4, 10 M KOH, 10 M 

NaOH, micronutrient stock, 20% glucose, 80% glycerol, 10% salicin. 

Micronutrient stock: 3 mg of (NH4)6Mo7O24.4H2O, 24 mg of H3BO3, 7 mg of CoCl2, 2.5 

mg of CuSO4, 16 mg of MnCl2, 2.8 mg of ZnSO4. The components 

were dissolved in 80 ml of Milli-Q H2O and the total volume was 

brought to 100 ml. The micronutrient stock solution was further filter 

sterilized and stored at room temperature. 

10x MOPS Mixture: 1 litre of 10x MOPS mixture was prepared by mixing the following 

components in the order given to prevent precipitation of salts. 400 ml 

of 1 M MOPS (pH 7.4), 40 ml of 1 M Tricine, 10 ml of 10 mM 

FeSO4.7 H2O, 50 ml of 1.9 M NH4Cl, 10 ml of 0.276 M K2SO4, 10 ml 

of 5 mM CaCl2, 10 ml of 0.528 M MgCl2, 100 ml of 5 M NaCl, 10 ml 

of micronutrient stock and 360 ml of Milli-Q H2O. This mixture was 
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filter sterilized with a 1 litre capacity 0.2 micron filter and aliquoted 

into 100 or 200 ml plastic bottles and frozen at -20°C. 

MOPS Minimal  

Medium: 100 ml of 10x MOPS mixture and 880 ml of Milli-Q H2O were mixed. 

0.132 M K2HPO4 was added to the final concentration of 0.1 mM 

(phosphate limiting condition) or 2 mM (phosphate sufficient 

condition) and brought to the final volume of 990 ml. The pH was 

adjusted to 7.2 with 10 M NaOH and filter sterilized. Final 

concentration of 0.5% glucose or 2% glycerol or 0.2 % salicin was 

used as a carbon source. Before use, required carbon source was 

added and the volume was adjusted to 1000 ml. 

 

T4 Top Agar: 6 g of Bacto Agar, 10 g of Bacto Tryptone, 8 g of NaCl, 2 g of Tri-

sodium citrate dihydrate, 3 g of Glucose per 1000 ml 

Antibiotics:  Antibiotics were used at the following concentrations: ampicillin 50 

µg/ml, chloramphenicol 15 µg/ml, kanamycin 25 µg/ml, 

spectinomycin 50µg/ml, tetracyclin 12 µg/ml, rifampicin 100 µg/ml. 
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4.3 Standard molecular techniques 

Standard molecular biology techniques such as cloning, PCR, agarose gel electrophoresis 

were performed according to published protocols (Ausubel et al., 2005). Sequencing was 

done by GATC Biotech AG, Konstanz, Germany. Sequences were analyzed using VNTI 11 

software (Thermo Fisher Scientific, USA). 

4.4 CaCl2 competent cells and transformation 

TEN Buffer: 20 mM Tris-HCl (pH 7.5), 1 mM EDTA, 50 mM NaCl 

For transformation with plasmids and ligation samples CaCl2 competent cells were prepared. 

For preparing CaCl2 competent cells, 200 µl of fresh overnight culture was inoculated in 25 

ml of LB medium and incubated at 37°C. The culture was grown to OD600 0.3, harvested on 

ice and centrifuged at 3000 rpm (A-4-62, 5810R Eppendorf) for 10 minutes at 4°C. Pellets 

were resuspended in 12.5 ml of ice cold 0.1 M CaCl2 and incubated on ice for 20 minutes, 

followed by centrifugation at 3000 rpm (A-4-62, 5810R Eppendorf) for 10 minutes at 4°C. 

Pellets were resuspended in 1 ml of ice cold 0.1 M CaCl2. These cells were directly used for 

transformation or glycerol (15% final concentration) was added and kept on ice for one hour 

and stored at -80°C. For transformation, 1 to 100 ng of plasmid DNA or 10 µl of ligation 

samples was added to TEN buffer to a final volume of 50 µl. To this ligation samples, 100 µl 

of competent cells were added on ice and samples were incubated in ice for 20 minutes and 

incubated at 42°C for 2 minutes for heat shock treatment. Samples were immediately placed 

on ice for 5 minutes and 1 ml of LB medium was added and samples were transferred to 

culture tube and incubated for 1 hour at appropriate temperature in shaker. 100 µl was plated 

on plates with appropriate antibiotics. The rest of the sample was pelleted by centrifugation, 

resuspended in 100 µl LB medium and plated on plates with appropriate antibiotics and 

incubated at appropriate temperature.  

4.5 Electrocompetent cells and electroporation 

Electrocompetent cells were used for gene deletion or insertion using λ-Red Gam mediated 

recombination (Datsenko & Wanner, 2000). For the preparation of electrocompetent cells 

cultures were grown in 3 ml SOB medium with appropriate antibiotics at appropriate 

temperature. 50 ml of SOB medium was inoculated with 200 µl of overnight culture with 

appropriate antibiotics and grown to OD600 0.6. The culture was kept on ice for an hour, 

transferred to pre-chilled tubes and centrifuged for 15 minutes at 3000 rpm (A-4-62, 5810R 

Eppendorf) at 4°C. The pellet was re-suspended in 50 ml ice-cold sterile H2O and centrifuged 

for 15 minutes at 3000 rpm (A-4-62, 5810R Eppendorf) at 4°C. The supernatant was 
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discarded and the cell pellet was resuspended in 25 ml ice-cold sterile H2O and centrifuged 

for 15 minutes at 3000 rpm (A-4-62, 5810R Eppendorf) at 4°C. The pellets were resuspended 

in 2 ml of ice-cold 10% glycerol and pelleted by centrifugation at 6000 rpm (F-45-24-11, 

5415R Eppendorf) for 15 minutes at 4°C. The cell pellet was resuspended in 200 µl sterile 

ice-cold 10% glycerol. The cells were either used immediately for electroporation or 

incubated in ice for an additional hour and 40 µl aliquots were made and stored at -80°C. For 

electroporation, 40 µl of electrocompetent cells were mixed with PCR fragment (100 ng/µl in 

H2O) or 0.1 ng of plasmid and incubated on ice for 10 minutes. The mixture was transferred 

to a pre-chilled electroporation cuvette (Bio-Rad) and placed in an electroporator (Gene 

pulser, Bio-Rad). Electroshock was given 1.8 kV for 3 milliseconds. 1 ml of SOC medium 

was immediately added to cuvettes and cells were transferred to culture tubes and incubated 

for 1 hour at 37°C. After incubation, 100 µl was plated on plates with appropriate antibiotics. 

The remaining culture was incubated at room temperature overnight and spun down at 5000 

rpm (F-45-24-11, 5415R Eppendorf) for 5 min. The pellet was resuspended in 100 µl SOC 

medium and plated on plates with appropriate antibiotics. 

4.6 Chromosomal integration into attB sites 

Integration of lacZ reporter fusions into the chromosomal λ attachment site attB was 

performed according to the method described previously (Diederich et al., 1992, Dole et al., 

2002). The desired strain was transformed with temperature-sensitive helper plasmid pLDR8 

which encodes λ integrase. The transformants carrying pLDR8 were selected on LB 

kanamycin plates at 28°C and used for preparing CaCl2 competent cells. Overnight culture of 

pLDR8 was setup in LB with kanamycin at 28°C, and the culture was diluted 20-fold in LB 

with kanamycin and grown at 37°C for 90 minutes. This temperature shift allows the 

expression of integrase and arrests the replication of pLDR8, since it has a temperature 

sensitive origin of replication. The culture was harvested on ice and was made chemically 

competent. The desired plasmid with the reporter fusion was digested with BamHI or BglII to 

create origin less fragments having spectinomycin resistance gene. These fragments were gel 

purified, 10 ng was re-ligated and used to transform competent cells. Since these competent 

cells express integrase, it allows the integration of attP site in the plasmid into the attB site of 

the chromosome. For selection of integrants, 200 µl was plated on premwarmed LB plates 

with spectinomycin and incubated at 42°C overnight. The transformants were restreaked on 

LB plates with spectinomycin and analyzed for kanamycin sensitivity (loss of pLDR8). The 

transformants were further analyzed by PCR using primers S93/S164, S95/T912, S95/S164, 
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and T334/S118 to verify proper integration and to exclude dimers. Two independent clones 

were selected and stored for further expression analyses.  

4.7 Gene deletion and insertion using λ-Red mediated recombination 

Gene deletion and insertion was carried out according to the method described (Datsenko & 

Wanner, 2000). This method is based on homologous recombination between linear DNA 

fragments and the chromosomal locus using λ-Red mediated recombination. Linear DNA 

containing antibiotic resistance gene flanked by FRT (Flp Recombination Target sites) was 

amplified from plasmid pKD3/pKD4/pKD13 or its derivatives. The oligonucleotides used for 

PCR were designed to have 36 to 50 nucleotide homology to the chromosomal locus. The 

PCR products were further gel purified and eluted in H2O. Briefly, the cells were transformed 

with the temperature sensitive plasmid pKD46, which encodes the λ‐Red system under the 

control of an arabinose inducible promoter. Electrocompetent cells were prepared from 

cultures grown at 28°C in SOB medium supplemented with 10 mM L‐arabinose for induction 

of λ‐Red recombinase. 100 ng of the gel purified PCR product was electroporated into the 

cells harboring pKD46. The recombinants were selected at 37°C and restreaked on LB plates 

supplemented with suitable antibiotics. The loss of pKD46 was confirmed by ampicillin 

sensitivity and the insertion of the target gene was confirmed by PCR using primers flanking 

the inserted region. The antibiotic resistance genes are flanked by FRT (Flp recombinase 

target sites). The antibiotic resistance markers were removed by transforming the strains with 

helper plasmid pCP20 encoding the site specific Flp recombinase gene which is under 

temperature sensitive promoter. The transformants were selected on LB ampicillin plates at 

28°C. Selected transformants were restreaked on LB plates and incubated at 42°C which 

induces the Flp recombinase and loss of pCP20 plasmid. The removal of the antibiotic 

resistant cassette was confirmed by antibiotic sensitivity of the clones and by PCR. 

4.8 β‐galactosidase assay 

Z-Buffer (pH 7.0): 60 mM Na2HPO4, 40 mM NaH2PO4, 10 mM KCl, 1 mM MgSO4, 100 

µg/ml of chloramphenicol 

β‐galactosidase assay was performed as described (Miller, 1992). Briefly, cultures were 

grown overnight in LB medium or tryptone medium with antibiotics, if necessary. 8 ml 

cultures were inoculated to an OD600 of 0.05 and grown to an OD600 of approximately 0.5. For 

induction, IPTG (isopropyl‐β‐D‐thiogalactopyranoside, final concentration of 1mM) or 

arabinose (varying concentrations) was added, to the exponential culture where indicated. The 

bacteria were harvested and β‐galactosidase activities were determined. The assays were 
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performed in Z‐buffer with dilutions of bacterial cultures. β-galatosidase acitivity was 

detected using ONPG (o-nirophenyl-β-galoctoside) as substrate and activity was determined 

with the following formula: 1 unit = [OD420 x dilution factor x 1000]/ [OD600 x time 

(minutes)]. The assays were performed with at-least three independent biological replicates.  

4.9 Transduction using T4GT7 phage 

Generalized transduction by using T4GT7 phage was carried out as described (Wilson et al., 

1979). For the preparation of a lysate, 100 μl of overnight culture of the donor strain was 

incubated with serially diluted 100 μl of wildtype T4GT7 lysate and was incubated at room 

temperature for 20 minutes. 1ml of LB was added and the mixture was transferred to a culture 

tube containing 3 ml of T4 top agar at 44°C. The warm top agar mix was plated on fresh LB 

plates and incubated overnight at 37°C. Plates that showed confluent lysis were taken and 

lysate was prepared by chloroform extraction. For transduction of the allele of interest, 100 μl 

of the overnight culture of the recipient strain was incubated with 0.1 to 10 μl of the lysate 

prepared from the donor strain. The mixture was incubated at room temperature for 15 

minutes and was plated on plates containing appropriate antibiotics. The transductants were 

restreaked three to four times to get rid of contaminating phages. The transfer of the desired 

allele was confirmed by PCR and the lysate was stored for further use. 

4.10 Transduction using P1vir phage 

Transduction using P1vir phage was performed as described (Miller, 1992). Freshly prepared 

wild-type P1 vir lysates with 10
9
 to 10

10 
pfu/ml is used for lysate preparation. For the 

preparation of P1vir lysate from donor strain, 100 µl overnight culture of the donor strain was 

added to 5 ml LB medium supplemented with 2.5 mM CaCl2 and grown to OD600 0.2. Then, 

100 µl of P1vir lysate (10
9
 to 10

10 
pfu/ml) was added to and the cells are allowed to grow for 

3 to 4 hours until the culture lyses. 20-40 µl chloroform was added to the lysed cultures and 

vortexed well. The samples were then centrifuged at 4500 rpm (A-4-62, 5810R Eppendorf) 

for 10 minutes to clear the lysate from cell debris. The supernatant was transferred to a fresh 

tube and stored with few drops of chloroform at 4°C. For transduction, the recipient strain 

was grown in LB medium supplemented with 2.5 mM CaCl2 to OD600 0.5. 1 ml of the 

recipient cells was centrifuged, supernatant was discarded and the pellet was resuspended in 1 

ml LB medium with 2.5 mM CaCl2. 100 µl of P1vir lysate prepared from the donor strain was 

added. The mixture was vortexed and incubated for 30 min at 37°C for phage adsorption. 

After incubation, 100 μl of 1 M Trisodium citrate was added and the mixture was vortexed 

vigorously to prevent further adsorption of phages. The infected cells are pelleted by 
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centrifugation, resuspended in LB containing 50 mM Trisodium citrate and incubated for 45 

minutes in shaker at appropriate temperature. After incubation, cells are pelleted by 

centrifugation and washed with 1 ml Mg-saline three times. The pellet was resuspended in 

100 µl of Mg-saline and plated on LB plates with appropriate antibiotics. Transductants were 

restreaked, analyzed by PCR and stored for further use. 

4.11 RNA extraction 

For RNA extraction, fresh overnight cultures were used to inoculate 8 ml of medium with 

antibiotics if necessary, to OD600 0.05. IPTG (1 mM) or arabinose (varying concentrations) 

was added and grown till OD600 0.5. 1 ml or 2 ml of culture was mixed with twice the volume 

of RNA Protect Bacteria Reagent (Qiagen) and RNA was isolated using RNeasy Mini Kit 

(Qiagen) according to manufacturer’s instructions with on-column DNase I (Qiagen) 

digestion. RNA was eluted in RNase free H2O and the RNA concentration was determined by 

measuring absorbance at 260 nm and the quality of RNA was checked by denaturing urea 

PAGE. RNA samples were stored at -80°C for further use. 

4.12 Urea PAGE 

10 x TBE Buffer (1000 ml): 108 g of Tris base, 55 g of boric acid, 40 ml of 0.5 M EDTA (pH 

8.0) 

The quality of RNA sample was tested using denaturing urea polyacrylamide gel 

electrophoresis. 1 µg of RNA sample was mixed with equal volume of 2 x RNA loading dye 

(95% formamide, 0.025% bromophenol blue, 0.025% xylene cyanol, 0.025% SDS, 0.025% 

EtBR, 0.5 mM EDTA) (Thermo Fisher Scientific), heated at 70°C for 10 minutes and spun 

down. Samples were loaded onto denaturing urea polyacrylamide gel (5% acrylamide (19:1), 

7 M Urea, 0.5 x TBE) and run with 0.5x TBE buffer at 200V for 1.5 hours. As a marker, 5 µl 

of RiboRuler low range RNA ladder (Thermo Fisher Scientific) was used. The gel was 

stained in 0.5 x TBE containing ethidium bromide (10 µg/ml final concentration) for 15 

minutes. The gel was checked for intact 2904 nt (23S rRNA) and 1542 nt (16S rRNA) RNA 

bands without degradation for each sample, which is an indication for good quality RNA 

sample preparation (Sambrook and Russel, 2001). 

4.13 cDNA synthesis 

cDNA synthesis was performed using Superscript III First Strand Synthesis kit (Thermo 

Fisher Scientific) according to manufacturer’s instruction. Briefly, 1 µg of RNA was mixed 

with 4 µl of random hexamers (50 ng/µl) and 2 µl of dNTPs (10 mM) to the final volume of 

10 µl. The sample was incubated at 65°C for 5 minutes and placed on ice. To this, 2 µl of 10 x 
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Reverse Transcription Buffer (Thermo Fisher Scientific), 4 µl of 25 mM MgCl2, 2 µl of 0.1 M 

DTT, 1 µl of RNaseOUT (40 U/µl) and 1 µl of Superscript III reverse transcriptase (200 U) 

was added to the final volume of 20 µl. The mixture was incubated at 25°C for 10 minutes, 

50°C for 1 hour and the reaction was terminated by incubating at 85°C for 5 minutes and 

placed on ice. RNA was removed by adding 1 µl of RNase H and incubated at 37°C for 20 

minutes. The cDNA samples were stored at -20°C. 

4.14 qRT-PCR 

Relative expression levels of mRNA was determined by qRT-PCR using SYBR green dye in 

C1000 touch thermal cycler with optical reaction module CFX96 (Bio-Rad). RNA isolation 

and cDNA synthesis was done as described. For one assay, 4 µl of dNTPs (1 mM each), 4 µl 

of 5 x GoTaq buffer (Promega), 6.8 µl of DEPC treated H2O, 0.8 ml of DMSO, 0.2 µl of 

SYBR green (1:1000 in DMSO), 0.2 µl of GoTaq DNA Polymerase (Promega) or 10 µl of 

qPCR master mix (Promega) and 6 µl of DEPC treated H2O with 1 µl of each primer (10 

pmol/µl) were used. 2 µl of appropriately diluted cDNA was added as template. For the 

internal control 16S rRNA and rpoD 1:10000 and 1:10 dilutions were used, respectively. The 

reagents and the template was pipetted onto 96 well plate (Bio-Rad) and sealed with optical 

quality adhesive film (Bio-Rad) and spun down briefly. The plate was placed on the C1000 

touch thermocycler and the following PCR program was used: 94°C for 3 min, 40 x (94°C for 

10 s, 58°C for 30 s, 72°C for 30 s), 72°C for 10 min. A melting curve analysis was performed 

from 50°C leading to 95°C in steps of 0.5°C. Each sample was analyzed in triplicates and 

pooled cDNA with appropriate dilutions were used as standards to determine the efficiency of 

PCR. 16S rRNA or rpoD gene was used as a reference gene for normalization. The relative 

expression was determined using the 2
-ΔΔCT

 method (Livak & Schmittgen, 2001). 

4.15 5ˈRACE 

5ˈRACE (Rapid Amplification of cDNA Ends) was used to determine the 5ˈ nucleotide of the 

RNA which represents the transcription start site of the transcript. 5ˈRACE analysis was 

performed according to the published protocol (Wagner & Vogel, 2005). RNA was isolated as 

described above. 12 µg of RNA was brought to the final volume of 86.5 µl with DEPC treated 

H2O. To this 10 µl of 10 x Tobacco Acid Pyrophosphatase buffer (for Tobacco Acid 

Pyrophosphatase enzyme) or 10 µl of NEB buffer 2 (for RppH enzyme), 0.5 µl of RNase 

Inhibitor (SUPERase IN, Ambion) were added and the contents were spilt equally into two 

tubes. To one tube, 1 µl of Tobacco Acid Pyrophosphatase (10U/µl) (Epicentre 

Biotechnologies) or 2 µl of RNA 5’ pyrophosphohydrolase (5U/µl) (RppH, NEB) was added. 
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The samples were incubated at 37°C for 30 min. After incubation, 5 µl of RNA Adapter (100 

pmol/µl) and 100 µl of H2O was added. Enzyme was removed by 

phenol:chloroform:isoamylalcohol (25:24:1) extraction followed by ethanol precipitation. The 

RNA pellet was resuspended in 12 µl H2O, heated to 90°C for 5 min and placed on ice for 5 

min. For adapter ligation, 2 µl of 10x RNA ligation buffer (NEB), 2 µl of 10 mM ATP stock 

(NEB), 2 µl DMSO, 1.8 µl T4 RNA ligase (20U) (NEB) pre-mixed with 0.2 µl RNase 

inhibitor was added and the samples were incubated at 17°C overnight. After incubation, 4 µl 

of Random hexamers (50 ng/µl) and 128 µl of H2O were added. Enzyme and buffer was 

removed by phenol:chloroform:isoamylalcohol (25:24:1) extraction followed by ethanol 

precipitation. The RNA pellet was dissolved in 20 µl of DEPC treated H2O and 10 µl of RNA 

was used for cDNA synthesis as described. For PCR amplification, Platinum Taq DNA 

Polymerase (Thermo Fisher Scientific) was used according to the manufacturer’s instructions 

with adapter specific and gene specific primer and 2 µl of cDNA as template in a 50 µl 

reaction. 25 µl of PCR products were run on 2% agarose gel. The bands indicated were 

purified, restriction digested, ligated and cloned in pUC12 and sequenced. 
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5ˈ RACE rapid amplification of cDNA 5ˈ ends 

amp ampicillin 

bp base pairs 

cam chloramphenicol 

DMSO dimethyl sulfoxide 

dNTP deoxynucleoside triphosphate 

DRE downstream regulatory element 

EDTA ethylenediaminetetraacetic acid 

FRT (FRT site) Flp recombinase target site 

IPTG isopropyl-β-D-thiogalactopyranoside 

kan kanamycin 

kDa kilo dalton 

nt nucleotide 

ORF open reading frame 

ODX optical density at X nm wavelength  

PAGE polyacrylamide gel electrophoresis 

PCR polymerase chain reaction 

qRT-PCR quantitative real-time polymerase chain reaction 

rpm revolutions per minute 

spec spectinomycin 

tet tetracycline 

URE upstream regulators element 

wt wild-type 
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