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Abstract 

Iberia, and especially southern Spain, has been the focus of only limited palaeoclimatological research. 

The scarcity of palaeoclimate archives has led to an interpolation of archives from distant sites. The 

palaeoclimate reconstruction of southern Spain is therefore mainly based on the interpolation of marine 

records from the Alboran Sea, the Gulf of Cádiz and the North Atlantic Ocean. The understanding of 

the impact and effects of Holocene changes is relatively poor. The execution of palaeoclimatological 

research in southern Spain has been hampered by the lack of suitable sites. This thesis contributes to the 

understanding of the Holocene climate change in southern Spain with two new cores drilled in shallow 

saline lakes. The arid southern Spain is a region without deep natural lakes, these ´salinas´ represent a 

promising alternative for palaeoclimate research. 

 

In this thesis, the methods and results of sedimentary and palaeoclimatological analyses of the modern 

lake sediment and soil catchment samples of Laguna de Medina, and the sediment sequences of Laguna 

de Medina and Laguna Salada are presented. The methods include XRF scanning, MSCL logging, 

particle-size analysis, total (in)organic carbonate analysis, determination of total sulphur, and total 

nitrogen, and XRD analysis, reinforced with the statistical method principal component analysis. The 

results are used to characterize the sediments and to interpret the changing climatological and 

environmental settings during the Holocene. The modern sediments of Laguna de Medina were studied 

with the same methods, to obtain a modern analogue for the long record. 

 

The primary objective of this thesis was to disentangle the Holocene climate of southern Spain, based 

on the lacustrine archives Laguna de Medina and Laguna Salada using 25.65 and 12 m long cores, 

respectively. 

Shifts in sedimentary deposition and geochemical proxies identify that southern Spain is highly 

vulnerable and responsive to climate change. Sedimentological, geochemical, mineralogical and 

granulometric analysis of the lacustrine sediment sequences provide a detailed palaeoclimatological and 

–hydrological reconstruction of the changes for the last 9,600 cal yr BP (Laguna de Medina) and 8,500 

cal yr BP (Laguna Salada). 

 Based on these two new lacustrine archives, this thesis provides the first high-resolution palaeoclimate 

reconstruction for southern Spain and a new archive for the Holocene from a shallow desiccated lake. 

The two cores provide insight in the Holocene climate evolution, which is divided into three stages in 

southern Spain: 1) the warm and arid Early Holocene, 2) the humid climatic optimum in the Middle 

Holocene, and 3) the progressive aridification trend in the Late Holocene. The high-resolution record of 

Laguna de Medina gives insight in the timing and duration of rapid climate changes (RCC´s) during the 

Holocene. Five arid periods 9,160-7,870, 5,780-4,800, 3,150-2,420, 1,950-1,450, and 1,264-550 

cal yr BP and one humid period 550-170 cal yr BP could be identified and related to RCC in the 

Holocene. The sequence of Laguna de Medina reinforces the connection between global changes in the 

hydrological regime, rapid climate change and North Atlantic Oscillation dynamics. 
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Kurzfassung 

Iberia, und im Besonderen Südspanien, waren bisher nur wenig im Fokus der paläoklimatologischen 

Forschung. Der Mangel paläoklimatologischer Archive führte zu einer Interpolation weitentfernter 

Archive. Die paläoklimatologische Rekonstruktion Südspaniens basiert daher hauptsächlich auf der 

Interpolation von marinen Records des Alborischen Meer, des Golfs von Cádiz, und des 

Nordatlantischen Ozeans. Das Verständnis der Auswirkungen und Effekte der holozänen 

Veränderungen ist relativ schlecht. Die Durchführung paläoklimatologischer Forschung würde durch 

den Mangel an geeigneten Lokationen behindert. Diese Dissertation trägt zum Verständnis der 

holozänen Klimaveränderungen in Südspanien, anhand zweier, neu gebohrter Kerne aus flach salzigen 

Seen, bei. Das aride Südspanien ist eine Region ohne natürlich tiefe Seen, aber dafür sind die ´salinas´ 

eine vielversprechende Alternative für die paläoklimatologische Forschung. 

 

In dieser These werden die Methoden und Resultate der sedimentologischen und paläoklimatologischen 

Analysen der modernen Seesedimente und Bodenproben des Einzugsgebietes der Laguna de Medina, 

und die Sedimentsequenzen der Laguna de Medina und der Laguna Salada präsentiert. Die Methoden 

umfassen Röntgenfluoreszenzmessungen (XRF), Multisensorkernlogging (MSCL), 

Korngrößenanalyse, die Analyse des gesamten (in-) organischem Karbonates, die Bestimmung des 

gesamten Schwefel und gesamten Stickstoff, und Röntgendiffraktionsanalyse (XRD), kombiniert mit 

der statistischen Methode der Hauptkomponentenanalyse. Die Resultate werden benutzt, um die 

Sedimente zu charakterisieren, und um die veränderten Klima- und Umweltbedingungen während des 

Holozäns zu interpretieren. Die modernen Sedimenten der Laguna de Medina sind mit den gleichen 

Methoden analysiert worden, sodass ein modernes Analog für den langen Kern entstand. 

 

Das Hauptziel dieser These war es das holozäne Klima Südspaniens zu rekonstruieren, basierend auf 

den lakustrinen Archiven der Laguna de Medina und der Laguna Salada, unter Benutzung der 25,65 m 

und 12 m langen Kerne. 

Änderungen der sedimentologischen Ablagerung und der geochemischen Proxies zeigen, dass 

Südspanien sehr anfällig für Klimaänderungen ist und darauf reagiert. Sedimentologische, 

geochemische, mineralogische und granulometrische Analysen der lakustrinen Sedimentkernen liefern 

eine detaillierte paläoklimatologische und hydrologische Rekonstruktion der Veränderungen der letzten 

9.600 Kalender Jahre vor heute (Laguna de Medina) und 8.500 Kalender Jahre vor heute (Laguna 

Salada). 

Basierend auf diesen zwei neuen, lakustrinen Archiven, stellt diese These die erste hochaufgelöste, 

paläoklimatologische Rekonstruktion für Südspanien dar, und umfasst ein neues holozänes Archiv aus 

einem flachen, teilweise ausgetrockneten See. 

Die zwei neuen Kerne geben Einblick in die holozäne Klimaevolution, die sich in Südspanien in drei 

Stufen gliedert: 1) das warme und trockene Frühe Holozän, 2) das feuchte Klimaoptimum während des 

Mittleren Holozäns, und 3) die progressive Aridifizierung des Späten Holozäns. Der hochaufgelöste 

Kern der Laguna de Medina gibt Einblicke in die Zeit und Dauer der rapiden Klimaveränderungen 

(RCC) während des Holozäns. Fünf trockne Perioden wurden mit den RCCs im Holozän verbunden  

9.160-7.870, 5.780-4.800, 3.150-2.420, 1.950-1.450 und 1.264-550 Kalender Jahre vor heute und eine 

feuchte Periode zwischen 550-170 Kalender Jahre BP. Die Sequenz der Laguna de Medina verstärkt die 

Verbindung zwischen globalen Änderungen im hydrologischen Regime, dem RCC und der Dynamik 

der Nordatlantische Oszillation. 
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Coring team on the platform 
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1.1 Motivation 

Since 1950, the climate is changing in a more rapid way as has been seen before. The atmosphere and 

ocean are warming, snow and ice are melting and the sea level is rising (IPCC, 2014). The ongoing 

climate change is affecting areas in different ways. Polar regions are getting warmer resulting in ice and 

glacier melting, and the rise of the sea level. Humid regions are getting more humid and arid regions are 

getting more arid (IPPC, 2014).  

 

The arid southern Spain is very vulnerable for climatic changes (Giorgi and Lionello, 2008). The 

ongoing climate change leads to an increase in air temperatures, a decrease and more irregularity in 

precipitation (Bolle, 2003; de Castro et al., 2004; Met Office, 2011), and thus, to reduced water 

availability for surface and aquifer systems (Álvarez-Cobelas et al., 2005a). Aquifers, which are already 

overexploited, will experience problems with salinization (Puigdefábregas and Mendizabal, 1998). The 

changes in precipitation and evapotranspiration will not only affect the environment, but also the 

economy of Spain. Tourism and agriculture, two highly water-consuming sectors, will become more 

important in a socio-economic way (Gleick, 1993). Currently, tourism is the national work force for 

13 % of the population, but it will be hard to justify and maintain the enormous water use for tourists 

when the population suffers from water stress (Hein et al., 2009).  

 

From the ecological point of view, the ongoing climate change will have devastating effects on 

limnological systems. Spain has the greatest diversity of inland aquatic systems of Europe, containing 

unique flora and fauna, mainly triggered by the differences in climate, geology and the hydrological 

characteristics (Álvarez-Cobelas, 2005a). 49 Spanish wetlands are protected by the Ramsar Convention 

on Wetland of International Importance (Ramsar, Iran, 1971), including Laguna de Medina and Laguna 

Salada, the two lakes described in this thesis. 

 

Not only for the future of the Spanish lakes, climate predictions and the understanding of the 

Mediterranean limnology is important. It is very likely that in the course of climate changes the cold 

temperate limnological systems become more similar to the current Mediterranean limnological 

systems, so it is good to have references to the new stage of these systems (Arnell et al., 1996; Álvarez-

Cobelas et al., 2005b). 

Álvarez-Cobelas et al. (2005b) listed the three most important questions about the Spanish limnological 

ecosystems: 

 

- Will they still exist at the end of the century? 

- Are they still permanent or did they become temporary? 

- Will the biochemistry or biota change? 
 

 

It is hard to answer these questions for the Spanish limnological systems at this point. Firstly, because 

only a few long-term studies exist and more research about Spanish limnological systems is needed. 

Secondly, the human influence on these systems cannot be predicted exactly. Álvarez-Cobelas et al. 

(2005b) wrote: ´Many endangered Mediterranean limnosystems will survive if, and only if, 

Mediterranean societies appreciate them (which is not the case right now)´. In addition, regional climate 

models are at this stage not precise enough to predict the impact of global climate change in a regional 

scale. 

 

The current atmospheric concentrations of the greenhouse gasses (GHG) CO2, CH4, and N2O exceed the 

highest concentrations recorded in the ice cores during the last 800,000 years (IPCC, 2013b). Since 

1750, the concentration of CO2, CH4, and N2O increased by 40, 150, and 20 %, respectively (IPCC, 

2013b). Without analogue GHG conditions in the last 800,000 years, it is hard for climate modellers to 

develop a reliable model. Although climate modellers continued to develop climate models, climate 

fluctuations can still not be predicted precisely, not even until the end of this century. To predict the 

future climate changes, it is important to concentrate on the more recent past, the Holocene, where the 

boundary conditions are relatively similar as today. Especially, compared with the large changes 
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between glacial and interglacial periods (Wanner et al., 2008). During the Holocene, most of the 

terrestrial environments developed that are still persisting today (Wanner et al., 2008). 

For this purpose, it is important to have reliable palaeoclimate and -environmental archives in different 

regions. 

 

Relatively little is known about climate variations of southern Spain. Records, which continuously cover 

the last glacial-interglacial cycle, are mainly found in marine archives from the Alboran Sea (e.g. MD95-

2043; Cacho et al., 1999), the Gulf of Cádiz (e.g. MD99-2339; Voelker and de Abreu, 2011), and the 

North Atlantic off Portugal (e.g. MD95-2042; (Sánchez Goñi et al., 1999)) (Fig. 1.1). Although these 

records cover a long temporal range, the resolution, especially for the Holocene, is insufficient to 

reconstruct centennial-scale climatic changes throughout the Holocene. 

Terrestrial archives are sparse, especially in southern Spain, and often only covering (partly) the 

Holocene (Fig. 1.1). Therefore, the palaeoclimate of southern Spain is mainly based on the interpolation 

of distal marine records. The distance between the terrestrial archives is up to 600 km, crossing the 

climatic zones of the humid Atlantic IP (Portugal) to the arid Mediterranean IP (Schuck et al., 2013). 

Most of the terrestrial records do not have high-resolution data, or do not cover the entire Holocene. 

Extending this database with new archives will enhance the knowledge about the palaeoclimatic 

conditions and will help to tune the climate models for better climate predictions, especially for the tip 

of southern Spain. 

 

Lakes are promising archives for continental palaeoclimate and –environmental reconstruction (Cohen, 

2003), because lacustrine sedimentary sequences can provide continuous high-resolution records 

(Moreno et al., 2012).  

In the scope of the extension of lacustrine records, two lakes from the southern tip of Spain were cored 

during two field campaigns in September 2014 and March 2015, Laguna de Medina and Laguna Salada 

(Cádiz). The palaeoclimatological and -environmental conditions reconstructed from these retrieved 

sediments are the focus of this thesis.  

 

 
Fig. 1.1: Location of selected continental (orange dots), and marine archives (blue dots), as well as the 

locations of the studies lakes Laguna Salada and Laguna de Medina (red stars). 
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1.2 CRC 806 

This PhD thesis was conducted within the Collaborative Research Centre 806 (CRC 806) ´Our Way to 

Europe – Culture-Environment Interaction and Human Mobility in the Late Quaternary´. This is a DFG 

(Deutsche Forschungsgemeinschaft; German Science Foundation) funded interdisciplinary research 

project within the Universities of Aachen, Bonn and Cologne since 2009. Around 80 researchers from 

the institutes of geology, geography, archaeology and anthropology are working closely together.  

1.2.1 The origin of hominids 

Already 160 years ago, anthropologists and archaeologists began to investigate the origin of mankind. 

With the participation of the genetics into this discussion, the origin of the Anatomically Modern Human 

(AMH) or Homo sapiens sapiens, was found around 190,000 years ago (Richter et al., 2012). 

Most of the scientists agree the genus Homo originated in East Africa about 2.4 million years ago (Streit, 

1995). One group scientists denies this hypothesis, they state the genus Homo originated from Asia. 

Their argument is, if we cannot demonstrate the probable absence of a hominin in a region, we should 

reserve judgement as to when it first appeared there (Dennell and Roebroeks, 2005).  

 

The first dispersion of the predecessor of the AMH, the Homo erectus, was around 1.7-1.9 million years 

ago (Ron and Levi, 2001; Dennell and Roebroeks, 2005). This is the generally accepted ́ Out of Africa I´ 

theory (Lahr, 2010). The further evolution and dispersal of the AMH is still heavily discussed. Two 

main hypotheses divide the scientists into two groups (Richter, 1996): 

 

- The AMH originated from the regional tribes of the Homo erectus (i.e. the current European 

from the European Homo erectus, and the current Asian from the Asian Homo erectus). The 

close genetic relation between the current human population is the result of multiple contacts 

and mixing of the population. 

- The high genetic relation between the current human population occurred, because mankind 

originated from one ´root´ during a relative short time frame. This ´root´ has to be the Homo 

sapiens sapiens population in East Africa before it started to disperse. This is the ´Out of 

Africa II´ theory. 

 

The research focus of the CRC 806 is mainly based on the ´Out of Africa II´ theory, assuming the AMH 

originated from East Africa 190,000 years ago and started to migrate in several directions until they 

settled in Central Europe 40,000 years ago (Mellars and Stringer, 1990; Richter, 1996). There are two 

important routes to enter Europe (Fig. 1.2). The eastern trajectory, from East and North Africa via the 

Levante to Central Europe, is already proven. The western trajectory, from East Africa via Morocco, the 

Strait of Gibraltar to the Iberian Peninsula and Central Europe, is highly debated, and the key question 

for further research (Richter et al., 2012). More about the western trajectory in Chapter 1.2.2. 

The CRC 806 investigates the relation between the climatological and environmental forces on the 

development of the cultural system, and is established to capture the complexity of chronology, regional 

structure, climatic, environmental, and socio-cultural contexts of major intercontinental and 

transcontinental events of dispersal of the AHM from East Africa to Central Europe (Richter et al., 

2012). The time span of the CRC 806 covers the last 190,000 years with tree essential themes (Richter 

et al., 2012): 

 

1. The climatic, environmental and cultural context of the first expansion of the AMH´s dispersal 

from East Africa 190,000 years ago to its occupation in Central Europe 40,000 years ago.  

2. Secondary occurrences of expansion and retreat of the AMH, induced by climatic, 

environmental or cultural changes, for instance reoccupation after the glacials. 

3. Population changes, mobility and migration in coupled cultural and environmental systems, 

mainly due to the growing impact on the environment. 
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The major events in the history of the AMH are a result of several dispersal processes, which were 

initiated by human agency, climate and environment (Richter et al., 2012). The eastern and western 

route cover the most interesting areas for the research of the CRC 806 to investigate the trajectories of 

human migration (Fig. 1.2):  

Following these supposed trajectories, the CRC 806 is divided into four regional clusters, covering the 

research in East Africa (A), the Levante and Balkans (B), Morocco and the Iberian Peninsula (C) and 

Central Europe (D). Two integrative and methodological clusters support the regional clusters by 

computational modelling (E) and chronological techniques (F). The last cluster (Z) covers the 

centralized tasks as the database and educational purposes.   

 

1.2.2 The C Cluster: The Western Mediterranean – Bridge or Barrier? 

Within the context of the western trajectory, the C Cluster focusses on climatological, environmental 

and cultural changes in Morocco and the Iberian Peninsula (IP). Because of its diversity, the IP and 

Morocco are ideal areas to study the climatological and environmental forcing on cultural change and 

human adaptation. Especially the semiarid regions in southern Spain and the deserts in Morocco are 

very sensitive for even minor climatological changes (Giorgi and Lionello, 2008).  

The C cluster was established to investigate the possibility for the Strait of Gibraltar to function as a 

bridge or a barrier. The Strait of Gibraltar is an essential area in the settlement of the AMH, because it 

can be a possible connection between Africa and Europe (Currat et al., 2010). During the Last Glacial 

Maximum (LGM), the sea level was about 125±5 m lower (Fleming et al., 1998), reducing the width of 

the Strait of Gibraltar from 14 km to only 5 km (Richter et al., 2012).  

 

To investigate the possibility for the Strait of Gibraltar to function as a bridge, the cluster C is divided 

into three projects. Within project C1, more than 100 archaeological sites in Spain were reanalysed to 

test the cultural patterning of Late Neanderthals and AMH in their environmental setting based on 

stratigraphical data (Schuck et al., 2013). Project C2 investigates the contact between humans in Africa 

and Europe. To fulfil this project, the climatic and environmental conditions in Morocco and the cultural 

development of the Epipalaeolithic-Neolithic transition were studied. Moreover, intercontinental 

networks, and the impact of African development on the processes on the IP are under investigation 

(Schuck et al., 2013).  

The C3 Project is established to close the gap between the marine and terrestrial archives in southern 

Spain, mainly using lacustrine archives. Now, the distance between the existing palaeoclimate archives 

is up to 600 km, ranging from humid to arid climatological zones (Schuck et al., 2013). The focus of the 

C3 project is on MIS 3 to MIS 1, or in archaeological terms, the technocomplexes Late Middle 

 

- The eastern trajectory: The already 

proven principal eastern trajectory 

from East and North Africa via the 

Levante to Central Europe  

 

- The western trajectory: The highly 

debated western trajectory from East 

Africa via Morocco, the Strait of 

Gibraltar to the Iberian Peninsula and 

Central Europe. 
 

 

 

Fig. 1.2: CRC 806 ´Our Way to Europe´. The 

origin (source) of the AMH, the two different 

pathways (trajectories) and the settlement 

(sink) after Richter et al. (2012). 
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Palaeolithic - Early Upper Palaeolithic, Gravettian, Solutrean and Magdalenian. These technocomplexes 

are under investigation in the C1 project. The palaeoclimatological and -environmental data will be 

compared with the cultural changes and the results from the C1 project.     

 

Although the strait of Gibraltar could potentially have been a bridge for the western trajectory between 

Morocco and the IP, it was very likely never used (Richter et al., 2012). The present state of research 

argues that the AMH did reach the IP, but came from Central Europe. The AMH never penetrated the 

IP further south than the Ebro river valley (Zilhão, 2000). A possible reason for this frontier is the hyper 

aridity of southern Spain during MIS 3 (Vegas et al., 2010). Therefore, the impact of climatic and 

environmental changes is becoming more important in this discussion.  

Without the presence of the AMH, the southern IP turned into a refugium for the Neanderthals, where 

they survived longer than elsewhere in Europe (Finlayson et al., 2006; Finlayson and Carrión, 2007). In 

Europe, the replacement of the Neanderthals by the AMH took place around 40,000-30,000 cal yr BP 

(Mellars, 2004), while Neanderthals were found until 28,000 years ago at the southern tip of the IP 

(Finlayson et al., 2006). On the other side of the Strait of Gibraltar, in Morocco, the AMH was found, 

whereas Neanderthals never occurred (Richter et al., 2012). 

 

The impact of climatic and environmental changes is becoming more important in the archaeology. 

Therefore, a close cooperation between the different projects in the C cluster is important. The Spanish 

archaeological sites of Solutrean and Magdalenian technocomplexes (about 24,000 to 17,0000 cal BP) 

are clustered close to the shores in the north, east and south of the IP and close to the Tagus River in 

Portugal (Fig. 1.3).  

 

For a close collaboration between archaeologists 

and geologist, two lakes were selected closely 

situated to a cluster of Solutrean sites in the 

southern part of Spain. Laguna de Medina and 

Laguna Salada are both situated in the province 

of Cádiz, southern Spain (Fig. 1.3). 

Laguna de Medina was already researched by 

Reed et al. (2001). This study shows the data of 

a 10.31 m long core, spanning the last 9,000 

years. This record reflects the regional 

environmental and ecological changes, based on 

diatom data, supplemented with ostracods and 

pollen data. Extending this promising record 

would enhance the knowledge of the 

palaeoclimatic conditions of the Holocene.  

 

Comparing the lacustrine data and combining 

these with the cultural data from the Solutrean 

sites gives insight in the impact of climatological 

and environmental forcing on the behaviour and 

dispersal processes. 

 

Fig. 1.3: Distribution of the archaeological sites, geological archives, and the location of Laguna de 

Medina and Laguna Salada (red stars) on the Iberian Peninsula and Morocco. Shorelines are 100 m 

lower than today, matching the situation during the last glacial. After Kehl (2015) 
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1.3 Terrestrial palaeorecords in southern Spain 

As has been shown before, the terrestrial conditions on the IP are important to refine climate models 

and to understand the context of human adaptation and climate. In the following chapter, the state of the 

art of the Holocene archives of palaeoclimate conditions is briefly summarized. 

 

1.3.1 Lacustrine environments in Spain 

Already in 1948, a total of 2,474 lakes were listed in Spain. About 3.2 % of these lakes are inland salt 

lakes (Pardo, 1948), occurring in the semiarid and arid zones (Comín and Alonso, 1988). The 

Guadalquivir region in southern Spain is one of the four main districts with saline lakes (Comín and 

Alonso, 1988). The establishment of the endorheic character in southern Spain can be dated back to the 

Miocene (Plans, 1969). Most of the depressions, situated in a karstic and evaporitic catchment, were 

established during the Late Pleistocene due to karstic processes as dissolution and collapse (Ibañez, 

1973; 1975; Valero-Garcés et al., 2014).  

 

In assessment of the lakes in southern Spain, during the 1940´s, the presence of 140 lakes was revealed, 

17 of which are endorheic salt lakes (Dantín Cereceda, 1940). These lakes are mainly semi-permanent 

or temporary. Natural fluctuations result to desiccation in very arid years, or annual desiccation during 

summer (Alonso, 1998).  

Now, almost 80 years later, several of these lakes are completely desiccated. The ongoing climate 

change extends the desiccated period, groundwater extraction results in complete desiccation, heavy use 

of agriculture increases soil erosion and silting up, and several lakes are even completely drained for 

agricultural purposes (Luque et al., 1999; García-Ruiz, 2010; IPCC, 2013a; Díaz-Paniagua and 

Aragonés, 2015). One of the most excessive examples is the drainage of Laguna de la Janda, in southern 

Spain. This lake, which had a surface area of around 87 km2, was drained in the 1930´s, and is now one 

of the biggest export areas for cotton and corn (Dantín Cereceda, 1940).  

 

Deep lakes are suitable for reconstruction of the climate history by reflecting the past climatic, 

environmental and hydrological changes (Cohen, 2003). In Spain, and particularly in southern Spain, 

natural deep lakes do not frequently occur. However, small endorheic salt lakes (in Spanish: Lagunas) 

are common and present an alternative for deep lakes. These lakes are semi-permanent or temporal, with 

annual summer desiccation (Fig. 1.4). An advantage is, these lakes are highly sensitive to even small 

climate changes. The coring procedure on a desiccated lake is much easier than on a permanent lake, 

because of the accessibility. On the other hand, it can be a challenge to establish a good chronological 

control (Höbig et al., 2016) since desiccation events may result in hiatuses or the lack of organic matter 

(Chapter 3: Laguna Salada; Schröder et al., 2017). 

 

The two lakes focused on in this thesis, Laguna de 

Medina and Laguna Salada, both in the province 

of Andalucía, show the differences between a 

semi-permanent lake (Laguna de Medina winter 

water depth: 3.2 m), which only dries out during 

very arid years, and a temporary lake (Laguna 

Salada winter water depth: 0.50 m) with annual 

summer desiccation. 

 

Fig. 1.4: Example of a lake during an arid 

summer period. Picture is Laguna Salada (close 

to Cádiz, southern Spain) in September 2016) 
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1.3.2 Holocene palaeoclimate archives in (southern) Spain 

The Holocene started about 11,700 cal years BP (Walker et al., 2009), and has been seen as a stable 

period for a long time. However, with the discovery of ice-rafted debris (IRD) in marine records (Bond 

et al., 1997), and in general the increase of high-resolution studies, short-term climate fluctuation 

became evident. It turned out, the Holocene climate is very dynamic, temperature and precipitation 

oscillations occurred mainly in southern Spain (Tarroso et al., 2016). The term rapid climate change 

(RCC) was introduced by Mayewski et al. (2004) for Holocene intervals with widespread evidence for 

climate change. The RCC´s are mainly based on the work of Denton and Karlén, (1973). Six periods of 

RCC are found during the Holocene: 9,000–8,000, 6,000–5,000, 4,200–3,800, 3,500–2,500, 1,200–

1,000, and 600–150 (Little Ice Age; LIA) yr cal BP. The RCC were all initiated by major changes in 

atmospheric circulation, polar cooling, and arid tropics, except for the LIA, which is reflected by polar 

cooling and humid tropics (Mayewski et al., 2004). Although the Holocene has a lot of RCC´s which 

are not fully understood, it is still often neglected in climate archives. 

 

Southern Spain is very vulnerable to global climatic changes on centennial to millennial timescale 

(Giralt et al., 1999), and responds to the changes in global atmospheric patterns (Martín-Puertas et al., 

2008). Numerous millennial-scale oscillations correlate with the Bond cycles, of which the onset, and 

end is linked to feedback fluctuations in oceanic, and atmospheric circulation, insolation, and vegetation 

cover (Bond et al., 1997; Gasse, 2000). The current moisture patterns are closely linked to the North 

Atlantic Oscillation index (NAO), which is calculated as the pressure differences between the Azores 

High and Icelandic Low (Hurrell, 1995). Research of a high-resolution record from SW Greenland 

recovered the NAO controlled the climate oscillations at least the last 5,200 years (Olsen et al., 2012). 

Positive (negative) NAO values coincide with more arid (humid) conditions on the IP, and with cold 

(warm) temperatures over Greenland (Sánchez Goñi et al., 2002). 

 

On the IP, several palaeoclimate studies were done in the last 50 years. Most of the terrestrial archives 

cover (partly) the Holocene, only a few penetrate into older sediments.  

On the southern part of the IP, only a few terrestrial archives include the last glacial-interglacial cycle 

(Fig. 1.1). The Padul peat bog covers the last >54,000 years (Florschütz et al., 1971; Pons and Reille, 

1988). This was the first record covering the complete postglacial vegetation history in a semi-arid 

region. The climatic fluctuations of the Holocene are of small amplitude. The Salines playa-lake 

focusses on the water availability of the last 70,000 years (Giralt et al., 1999). Both of the records have 

a poor age control for the Holocene. Comparison between the Padul peat bog and Salines playa lake 

resulted in a good correlation of the general trends in the Holocene. The Holocene is described as a 

humid period with some aridity crises at the beginning of the Holocene, the 8.2 ka event, and the middle 

Holocene, but the timing of the onset is questionable (Giralt and Juliá, 2003). The record from the 

Fuentillejo Maar includes the last 50,000 years. Some short cold and arid phases were found during the 

Holocene at 9,200-8,600, 7,500-7,000, and 5,500-5,000 cal yr BP, although the timing should be used 

with caution, because the age model of the Holocene is only based on two radiocarbon dates (Vegas et 

al., 2010). Laguna de Fuente de Piedra covers the last 28,000 years cal BP, and reflect the changes in 

facies in relation with climatological changes very well. However, this lake also deals with problems 

concerning the age model, the Holocene is only based on one radiocarbon date (Höbig et al., 2016).  

The insufficient temporal resolution of the long palaeorecords disables comparison of RCC variability. 
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The age control of most of the short records for the Holocene is considerably better. Changes in 

palaeoclimate are reflected by vegetation dynamics, and lake level changes. The Holocene is divided 

into three periods. 

 

The Early Holocene (prior to 8,000 cal yr BP) is characterized by a warm, dry and continental climate, 

reflected by low lake levels, and a transition towards steppe vegetation. In the lacustrine archives, this 

period is characterized by low lake levels or hypersaline conditions. Low lake levels are reconstructed 

in Lake Salines, SE Spain (Roca and Julià, 1997), Gallocanta Lake, NE Spain (Luzón et al., 2007), 

Portalet Lake, N Spain (González-Sampériz et al., 2006), Lake Siles, S Spain, (Carrion, 2002). In the 

La Mancha Plain, Central Spain, a transition towards more palustrine conditions coincides with a falling 

lake level (Dorado-Valiño et al., 2002) (Fig. 1.1). 

From the palynological point of view, warm and dry conditions are found in the Guadiana Basin, S-

Portugal, by the expansion of scrub and open-ground taxa (Fletcher et al., 2007). The same trend in 

visible in other Iberian pollen records, with the increase of xerophytes in the Segura Mountains, SE 

Spain (Carrion, 2002), steppe vegetation at San Rafael, SE Spain until 7,000 cal yr BP, (Pantaléon-Cano 

et al., 2003), a setback of arboreal vegetation and an increase in steppe vegetation in the La Mancha 

Plain, Central Spain, until 8,000 cal yr BP. In Villaverde, Central Spain, fire regime increases, (Carrión 

et al., 2001a), and in the Sierra de Estrela, Central Portugal, steppe to xerothermic forests occur until 

8,700 cal yr BP (van der Knaap and van Leeuwen, 1995). 

 

The Middle Holocene (roughly between 8,000-5,500 cal yr BP) represents the humid maximum, with 

a warm and moist oceanic climate, coinciding with the humid phase in the ́ green´ Saharan desert (Gasse 

et al., 1990). This period is reflected by maximum lake levels, an expansion in vegetation cover and low 

fire activity (Carrión et al., 2010).  

High lake levels are reconstructed in Gallocanta Lake around 8,100 (Luzón et al., 2007), Laguna de 

Medina between 6,320-4,800 cal yr BP based on diatoms (Reed et al., 2001), or between 8,000-6,700 

cal yr BP based on stable isotopes (Roberts et al., 2008), and in Lake Siles between 7,400-5,300 cal yr 

BP (Carrion, 2002) (Fig. 1.1). 

An increase in vegetation cover is found in San Rafael between 7,000-4,500 cal yr BP (Pantaléon-Cano 

et al., 2003), an increase in deciduous taxa and taxanomical diversity at the La Mancha Plain between 

8,000-6,100 cal yr BP (Dorado-Valiño et al., 2002), a change from a xerothermic to mesothermic forest 

in the Sierra de Estrela, between 8,700-5,670 cal yr BP (van der Knaap and van Leeuwen, 1995). Forest 

expansion was observed in the Guadiana Basin between 9,130-4,920 cal yr BP (Fletcher et al., 2007), 

and an increase of Quercus in Villaverde between 7,350-5,900 cal yr BP (Carrión et al., 2001a). 

 

The Late Holocene (onset between 5,500-4,500 cal yr BP) is a period of progressive aridification, 

although most of the archives show a complex evolution of several arid and humid intervals (Morellón 

et al., 2008). The onset of this arid period coincides with a change towards more positive NAO values 

(Sánchez Goñi et al., 2002; Moreno et al., 2012; Olsen et al., 2012). 

Low lakelevels or periods of desiccation are found in Laguna de Medina (Reed et al., 2001), Gallocanta 

Lake (Luzón et al., 2007), Lake Estanya (Morellón et al., 2008), Lake Siles (Carrion, 2002), and Lake 

Zoñar, S Spain (Martín-Puertas et al., 2008) (Fig. 1.1). 

Aridity trends are observed in pollen sequences in the Guadiana Basin by an expansion of shrublands 

(Fletcher et al., 2007), a transition towards steppe vegetation, and an increase in erosion in San Rafael 

(Pantaléon-Cano et al., 2003), an increase in steppe, and xerophytes in Villaverde, Sierra de Gádor and 

Sierra de Baza (Carrión et al., 2001a; 2003; 2007), a decline of arboreal vegetation at the La Mancha 

Plain (Dorado-Valiño et al., 2002), and an increase in steppe vegetation at the Padul peat bog (Pons and 

Reille, 1988). 
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1.4 Study sites 

In the focus of the C3 project, two lakes were selected for palaeoclimate and -environmental 

reconstruction: Laguna de Medina and Laguna Salada, both in the province of Andalucía, southern Spain 

(Fig. 1.5).  

The two lakes are a nature reserve since 1989, and protected by the Ramsar Convention on Wetland of 

International Importance (Ramsar, Iran, 1971), mainly because of their importance for nesting and 

overwintering water birds (Amat, 1984; Fernández-Palacios, 1990). 

The province of Andalucía is influenced by a Mediterranean climate, characterized by moderate and 

relatively humid winters, controlled by the dominance of westerlies, bringing precipitation to the area. 

The hot and arid summers are strongly controlled by the decreasing branch of the Hadley circulation, 

resulting in a rainfall minimum (Rodwell and Hoskins, 1996; 2001; Peel et al., 2007). The summer 

months have a five months water deficit (Paéz, 1991), significantly influencing the water table in the 

lakes, resulting in desiccation during (very) arid summers.  

 

 
Fig. 1.5: Overview of the Iberian Peninsula and the locations of Laguna Salada and Laguna de Medina 

 

Laguna de Medina is a small endorheic lake with a maximum water depth of 3.5 m. Two parallel cores 

were retrieved in the deepest part of the lake from a floating platform during two field campaigns in 

September 2014 and March 2015. It resulted in a composite record of 25.65 m. 

Laguna Salada is the biggest lake of the Complejo Endorreico del Puerto de Santa María, which consists 

furthermore of Laguna Chica and Laguna Juncosa. It is a semi-permanent endorheic lake with a 

maximum water level of 0.5 m. During the field campaign in September 2014, the lake was desiccated. 

Two parallel cores were retrieved from the middle of the lake with a Cobra drill hammer. It resulted in 

a composite record of 12 m. 

More detailed information about Laguna de Medina can be found in Chapters 2 and 3, and for Laguna 

Salada in Chapter 4. 

 

The two selected lakes are only 20 km apart from each other. This gives the opportunity to compare the 

climatic signal of the two sites. This gives also insight whether the sedimentological units and the 

lithofacies are a climatic signal, or mainly influenced by the surrounding geology. 

These lakes were selected, because they are situated close to the archaeological sites from the C cluster. 

Next to that, the southern tip of Spain is not researched jet, except for one study by Reed et al. (2001). 

Extending this study, will enhance the knowledge of the palaeoclimate of southern Spain.  
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1.5 Objectives  

The research results presented in this thesis comprise two lacustrine sediment cores from southern Spain, 

Laguna de Medina and Laguna Salada, and the lake surface sediment, and soil catchment samples of 

Laguna de Medina. The aim of this thesis is to reconstruct the palaeoclimatological and –environmental 

settings for the Holocene. 

 

Questions that arose during the three years of the Ph.D. are: 

 
 

- How do the modern processes help to unravel the palaeoprocesses? 

- How can we obtain a reliable age model? 

- What are good proxies for such saline environments? 

- Are the Holocene climate events synchronous in the two records, and how about the entire 

Iberian Peninsula? 
 

 

This thesis includes the following manuscripts to address these questions: 

 

 

Chapter 2: Modern sedimentation processes in Laguna de Medina, southern Spain, 

derived from lake surface sediment and catchment soil samples  

 
This chapter comprises my first paper, which is already published in the Journal of Limnology. In this 

study, results from the lake surface sediment and soil catchment samples from Laguna de Medina are 

discussed. For a better understanding of past processes, it is important to distinguish how the modern 

processes function. For this purpose, 46 lake surface and 32 soil catchment samples were analysed with 

the same methods as for the long sediment sequence. Based on statistical analysis, mineralogical, 

geochemical, elemental, and granulometric compositions of the samples, the lake surface sediments can 

be divided into six provinces of individual composition and depositional processes, mainly based on the 

surrounding geology. 

 

 

Chapter 3: A high-resolution Holocene palaeoclimate record from the Laguna de Medina, 

Cádiz, southern Spain 
 

The palaeoclimatological results from the 25.65 m long record of Laguna de Medina are presented in 

Chapter 3. The multi-proxy approach provided a high-resolution record for the last 9,600 years. Based 

on the sedimentological, geochemical, mineralogical, and ecological (ostracods) data, reinforced with a 

statistical tool, the long-term palaeoclimatological and –hydrological evolution of the lake was 

reconstructed. The Early Holocene (9,600-7,870 cal yr BP) was an arid period, followed by a humid 

period, characterized by the maximum lake level between 7,870-5,780 cal yr BP. After this period, the 

prolonged aridification (5,780-3,750 cal yr BP) led to a decrease in lake level, although the lake level 

remains relatively high. The last ongoing aridification trend (from 3,750 cal yr BP on) results in a drastic 

decrease in the lake level with several desiccation periods.  

Over this long-term trend, several periods of rapid climate change (RCC) resulted in short periods of 

aridification. Arid periods occurred between 9,160-7,870, 5,780-4,800, 3,150-2,420, 1,950-1,450 

(corresponding to the RWP), and 1,264-550 (corresponding to the MCA) cal yr BP. The last RCC is a 

humid period, reflecting the Little Ice Age (550-170 cal yr BP).  

The sequence of Laguna de Medina reinforces the connection between global changes in the 

hydrological regime, rapid climate change and NAO dynamics. 
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Chapter 4: A Holocene palaeoclimate record from the Laguna Salada, Cádiz, southern 

Spain 
 

In this manuscript, the results from the 12 m long record from Laguna Salada are discussed. The multi-

proxy study of this record represent the entire limnological history of the lake during the last 8,500 years. 

Based on the geochemical, and granulometric data, three humid phases were recognized. The Mid-

Holocene Optimum 8,500-5,900 cal yr BP, the Iberian Roman Humid Period (2,500-1,100 cal yr BP) 

and the Little Ice Age (750-250 cal yr BP). Three arid periods occurred, the Late Holocene aridification 

(5,900-2,500 cal yr BP), the Medieval Climate Anomaly (1,100-750 cal yr BP) and the modern period 

after the Little Ice Age (250 cal yr BP-now). 

 

 

Chapter 5: Synthesis 

 

The last chapter includes the synthesis based on the three manuscripts. The questions that arose during 

this thesis are answered and discussed.  
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Laguna de Medina by sunset 

Picture by Ascelina Hasberg 
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Chapter 2 

Modern sedimentation processes in Laguna 

de Medina, southern Spain, derived from 

lake surface and soil catchment samples 
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2.1 Abstract 

Modern processes influencing sediment composition in the endorheic lake Laguna de Medina, southern 

Spain, are disentangled by the analysis of 46 lake surface sediment and 32 catchment soil samples. Based 

on statistical analysis of the mineralogical, geochemical, elemental, and granulometric compositions of 

all samples, the lake surface sediments can be divided into six provinces of individual composition and 

depositional processes.  

High quartz contents and coarse grain sizes, reflecting input from ancient terraces of the Guadalete River 

that are exposed in the adjacent hinterland, characterize the lake sedimentation close to the northern 

shore. At the southeastern shore, sedimentation is characterized by terrestrial input of the Triassic 

Keuper facies via the most important inlet, the Arroyo Fuente Bermeja, as reflected by high relative 

intensities of Ti, K, Al, Fe, Mg, and Rb. Sediments close to the southern shore are characterized by high 

calcite contents, reflecting predominant sediment supply from the adjacent Cretaceous ´capas rojas´, a 

series of Subbetic deep-water marlstones and limestones. Close to the western shore, relatively high 

gypsum contents presumably are due to precipitation from upwelling ground water. Anthropogenic 

influence is only indicated in the northwestern and central eastern parts of the lake, where the surface 

sediments are significantly enriched in TOC and TN, reflecting enhanced primary production due to 

terrestrial organic matter supply from anthropogenic areas in the respective catchment. The central part 

of the lake is characterized by distal hemipelagic sedimentation, with high concentrations of clay and 

silt and a chemical and mineralogical composition that reflects a mixture of the sediment sources 

characterizing individual parts of the lake shores.  

The results of this study shed new light on the depositional processes and their potential spatial 

heterogeneity in small endorheic lakes. Furthermore, they will provide important information 

concerning the interpretation of the climate-controlled sedimentary processes through time, which are 

reflected in a 25.65 m long sediment record (Co1313) that was recovered in the lake centre in 2014 and 

2015. 
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2.2 Introduction 

Spain, especially the arid southern Spain, is very vulnerable to the ongoing climate change. For instance, 

the average air temperature rose 2-3 °C since the 1970´s (de Castro et al., 2004). The annual rainfall is 

reduced and droughts are increased since 1960 (Met Office, 2011). According to climate simulations, 

temperature over the next 30 years may rise another 1.1-1.2 °C during winter and 1.8-2.0 °C during 

summer, and precipitation may decrease by 7 to 9 mm month-1, leading to water stress for 25-60 % of 

Spain’s population (von Storch et al., 1993; Met Office, 2011; IPCC, 2013). Taking the more arid 

conditions of southern Spain, it can be expected that this region suffers more from water stress than the 

more humid northern Spain.  

 

Comparatively little is known about the natural climatic variability in southern Spain on millennial 

timescales, beyond the range of meteorological measurements, and its impact on the regional 

environment. Such information is important to decipher the kind and rates of the spatial extend, 

magnitude, and temporal relationships of climatic forcing and environmental change. Most of the 

terrestrial archives only cover parts of the Holocene, have poor time resolution or age control, or are 

highly discontinuous (Reed et al., 2001; Fletcher et al., 2007; Martin-Puertas et al., 2008; Wolf and 

Faust, 2015). Only a few sediment cores, from the Padul peat bog and the Fuentillejo Maar, penetrate 

into sediments representing the Last Glacial Maximum (e.g., Pons and Reille, 1988; Vegas et al., 2010). 

Consequently, our current understanding of the Late Pleistocene history of southern Spain, including its 

vegetation history, is predominantly based on data from marine sediment records, specifically from the 

Atlantic margin off Portugal (Voelker and de Abreu, 2011), the Gulf of Cádiz (Toucanne et al., 2007), 

and the Alboran Sea ( Martrat et al., 2014; Martinez-Ruiz et al., 2015). These records, however, integrate 

over large areas and thus lack sensitivity to detect the influence of climatic changes on regional scales.  

 

One promising continental archive in southern Spain is the sediment record in the Laguna de Medina 

(Fig. 2.1). In this small endorheic lake,  a 10 m sediment core was retrieved by Reed et al. (2001). 

According to chronostratigraphic, lithological information and palaeoenvironmental reconstructions, 

these sediments were continuously deposited during the past 9,000 years and reflect the regional 

environmental change with a high sensitivity. In order to extend the record in time, and to provide more 

material for further analyses also in the upper part, the record in the central part of the Laguna de Medina 

(site Co1313) was extended to 25.65 m during two coring campaigns in September 2014 and March 

2015. 

 

For a better understanding of the core composition and its significance for past environmental and 

climatic settings, 46 lake surface sediment and 32 catchment soil samples were taken, and analysed for 

their mineralogical, geochemical, elemental, and granulometric composition. Here, we present the data 

obtained from the surface samples, and discuss them in the light of the modern sedimentation processes, 

mainly controlled by the surrounding geology, post-depositional processes, and anthropogenic 

influences.  
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2.3 Study area 

Laguna de Medina (36°37´04”N, 06°03´13”W) 

is an endorheic semi-permanent karst lake 

(Valero-Garcés et al., 2014) in southern Spain 

(Fig. 2.1), located roughly 12 km southeast of 

Jerez, 25 km northeast of Cádiz and about 3 km 

south of the river Rio Guadalete. This second 

largest inland salt lake of Andalucía is a nature 

reserve since 1987 (de Vicente et al., 2012). It 

is located 30 m above sea level (a.s.l.), the 

surface area amounts to 1.2 km2, and the 

catchment area to 16 km2 (Reed et al., 2001). At 

the southeastern shore, the most important inlet, 

the Arroyo Fuente Bermeja, enters the lake. 

This is a temporary inflow, which is dry during 

summer months (Reed et al., 2001). In 

September 2014 and March 2015, the 

maximum water depths were 1.7 m and 3.2 m, 

and the salinities 6.0 PSU and 2.2 PSU, 

respectively. 

 

 

The catchment of the Laguna de Medina (Fig. 2.2) is karstic and evaporitic (Durán Valsero et al., 2009), 

dominated by terrestrial Triassic claystones (Keuper facies), gypsum-rich evaporites, and marlstones 

(Paez, 1991). The inlet Arroyo de Fuente Bermejo predominantly drains the Triassic Keuper facies 

(claystones, sandstones, dolomites, and gypsum). Also the eastern area of the lake is dominated by 

Triassic units (IGME, 1984). In the north, remnants of alluvial terraces of Pleistocene sandstones and 

conglomerates of about 45 to 50 m a.s.l. demarcate the border of the lake. The southern area of the lake 

is characterized by the ´capas rojas´, a series of Subbetic deep-water marlstones and limestones (Vera 

and Molina, 1999). In the western catchment, Tertiary clays, marls, calcarenites, and biomicrites occur  

(IGME, 1984). 

 

 
 

Figure 2.2: a) Geological map of the surroundings of Laguna de Medina, illustrating major 

stratigraphic units and fault systems (modified after IGME, 1984). The catchment area is encircled 

with a black line, the coring location of Co1313 is indicated by a red star. b) Legend for a). 
 

 

 
 

Figure 2.1: Overview of the Iberian Peninsula 

showing the location of Laguna de Medina (red star 
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The lake was formed as a result of 20 to 25 m diapiric uplift (Rodriguez Vidal et al., 1993), initiated by 

the high vulnerability of Triassic and Tertiary marls to halokinetic deformation (Wolf et al., 2014). The 

appearance of diapirs started in the Upper Miocene and has been related to extensional or compressional 

tectonics in the Gulf of Cádiz (Medialdea et al., 2009). In the Middle Pleistocene, the Rio Guadalete left 

the elevated areas and found its way in the valleys. The ground water dropped below the karst base level, 

resulting in sinkholes and the prolapse of old sinkholes. Laguna de Medina is an example of renewed 

karst sinking in Triassic gypsums, formed in the Upper Pleistocene (Rodriguez Vidal et al., 1993; 

Valero-Garcés et al., 2014). The modern configuration of the lake basin was probably established during 

the Late Pleistocene (Rodriguez Vidal et al., 1993). 

 

Laguna de Medina today experiences a Mediterranean climate (Peel et al., 2007). During summer, 

average temperatures of 26°C occur and the precipitation is very low, with a five months period of water 

deficit. Meso-scale levanters, easterlies with velocities of 10-20 m/s, are frequent (Meteorological 

Office, 1962). The winters are characterized by an average temperature of 6°C and a relatively high 

precipitation of up to 90 mm per month (Paez, 1991). Both the levanters and the westerlies are weaker 

and less frequent than during summer (Dorman et al., 1995). The intensity and distribution of 

precipitation in the area is particularly influenced by the Azores High (Rodrigo et al., 2001) and by 

fluctuations of the North Atlantic Oscillation (Wolf et al., 2014). The mean annual precipitation is 525 

mm, with a range of 250-975 mm (Paez, 1991). 

 

The Laguna de Media is a shallow saline lake functioning as a hydrologically closed system (Fernández-

Palacios, 1990). Nevertheless, there is a significant influence of ground-water inflow, which leads to the 

retention of water during summer times (Reed et al., 2001). The ground-water inflow is characterized 

by high salinities, due to dissolution of Triassic evaporites. This leads to a brine in the lake that consists 

of Ca-Na-Mg-Cl-SO4, resulting in gypsum precipitation (Eugster and Hardie, 1978). However, the 

groundwater infiltration is very low, due to little permeable underground (Fernández-Palacios, 1990), 

which makes the lake very vulnerable to variations in precipitation and evaporation. Today, the lake 

level is highly affected by the seasonal precipitation changes, resulting in summer desiccation in very 

arid years. Long-term studies from Furest and Toja (1984), Marazanof (1967), and Reed et al. (2001), 

and also the results from the two coring campaigns show a connection between lake level and salinity 

changes, especially after irrigation since 1948 (Tello Ripa and López Bermúdez, 1988). On the other 

hand, the relation between lake level and salinity is complex, because of re-dissolution of precipitated 

salts and gypsum, leading to an increase in salinity with an increasing lake level (Reed et al., 2001).  
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2.4 Material and methods 

 

In March 2015, 46 surface sediment samples 

were taken from the uppermost 2 cm of the lake 

bottom (Fig. 2.3). The samples were retrieved 

from a rubber boat using a gravity corer with a 

plastic liner of 63 mm diameter (UWITEC 

Corp., Austria). The sampling location was 

noted in the moment the gravity corer hit the 

lake bottom. Sampling partly failed close to the 

northern shore, where coarse sand and gravel 

dominate.  

The lake sediment sample set is complemented 

by 25 soil samples from the uppermost 5-10 cm 

in the catchment and 7 sediment samples from 

the Arroyo Fuente Bermeja, the only significant 

inlet.  These samples were collected in 

September 2014 and March 2015. 

 

 

 

Figure 2.3: Topographic map (green to red m a.s.l.) of the direct surroundings of Laguna de Medina, 

with the bathymetry (blue in m), and locations of lake surface (centre of squares) and catchment soil 

(black dots) samples. 

 

The analytical work on the samples was conducted in the laboratories of the University of Cologne. In 

a first step, the total of 78 samples were freeze-dried, in order to exclude transformation of gypsum 

(CaSO4 · 2H2O) to bassanite (CaSO4 · ½H2O) or anhydrite (CaSO4), which would cause a weight loss 

of 20.91 % (Stern et al., 1989; Eswaran and Zi-Tong, 1991; Porta, 1998). Subsequently, the bulk 

sediment samples were split into aliquots for different measurements.  

 

For the grain-size analyses, aliquots of the freeze-dried samples were pretreated with 10 ml NaCO3 at 

60°C for 18 hours in order to remove gypsum (Stern et al., 1989). Subsequently, carbonate (10 ml 10 % 

HCl, 50°C, 3 h), organic matter (5 ml 30 % H2O2, 50°C, 18 h), and biogenic silica (5 ml 1 M NaOH, 

90°C, 2 x 30 min) were removed. Between these steps, the samples were centrifuged and neutralized 

with deionized water. Before measurements, the samples were mixed with Na4P2O7 (0.05 %) and shaken 

for at least 12 hours to avoid flocculation of clay minerals. Each sample was measured three times in 

116 classes in a range between 0.04 and 2000 µm using the Laser Particle Size Analyser LS 13320 

(Beckman Coulter Corp.) and the Frauenhofer optical model. The grain-size distributions were 

calculated using the program GRADISTAT (Blott and Pye, 2001). 

 

The aliquots for mineralogical and geochemical analyses were ground to <63 µm by hand in agate 

beakers. Bulk mineralogical contents were determined by X-ray diffraction (XRD) on powder pellets 

using a diffractometer Bruker D8 Discover with Cu tube (λ = 1.5418 A, 40 kV, 30 mA) and the detector 

LYNXE_XE (opening angle = 2.9464°). The spectrum from 5° to 90° was measured in 4155 steps of 1 

sec. exposure time. The evaluation of the spectra to minerals was computed using Match! (Crystal 

Impact (2014), Bonn, Germany and SEARCH (Stoe and Cie (2003), Darmstadt, Germany) based on 

pdf2 (ICDD (2003), Philadelphia, USA). The evaluation of the concentration of the minerals was 

evaluated using TOPAS Rietveld (Coelho, 2003). 
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Relative element intensities were determined on pressed powder samples using an X-ray fluorescence 

(XRF) scanner (ITRAX; Cox Analytical Systems; Davies et al., 2015). Measurements were performed 

with 1 mm resolution and an exposure time of 60 s using a Cr-tube (settings: 50 kV, 38 mA), which 

provides a general overview of the elements lighter than Cr (Löwemark et al., 2011). 

 

For the analyses of total inorganic carbon (TIC) and total organic carbon (TOC), ca. 35 mg samples 

were mixed with 10 g of distilled water and measured via the thermal catalytic oxidation principle in the 

Dimatoc 2000 (Dimatec Corp.). The contents of total nitrogen (TN) and total sulphur (TS) were 

measured with a vario Micro cube (Elementar Corp.), in which 5 mg samples were combusted at 1200 

°C in a He and O2 flow and the element concentrations determined on the N2 and SO2 released by the 

thermal conductivity detector.  

 

Interpolation and mapping of the data derived from the lake surface sediment and catchment soil samples 

were carried out by the ArcGIS software by ESRI using the Kriging method (Oliver and Webster, 1990; 

Cressie, 1991). The principal component analysis (PCA) was conducted with PAST (Hammer et al., 

2001). 
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2.5 Results 

The grain-size distributions of the lake surface 

sediments and the soils in the catchment of 

Laguna de Medina show a high spatial 

variability. The lake surface sediments range in 

mean grain sizes between 4.0 and 362.1 µm 

(Fig. 2.4a). Coarsest grain sizes, with sand 

(>63 µm) contents of more than 40 %, occur 

along the northern and western lake shores (Fig. 

2.4b). However, sand is absent at distances 

>200 m from the shore. Here, silt (2–63 µm) 

and clay (<2 µm) dominate the sediment 

composition (Figs. 2.4c and 2.d). Highest silt 

contents (>60 %) are measured in front of the 

Arroyo de Fuente Bermeja inlet (Fig. 2.4b). The 

clay content is highest in the central part of the 

lake (Fig. 2.4d), but with up to 40 % below the 

silt fraction. The soil samples show coarsest 

grain sizes, with more than 50 % sand, in the 

northern catchment, and are much more fine 

grained than in the other lake areas (Fig. 2.4). 
 

Figure 2.4: Spatial distribution of (a) mean grain size and the volume percentages of (b) sand, (c) silt, 

and (d) clay in the lake surface sediments (black dots) and catchment soil samples (coloured circles). 

The major inlet streams are indicated by blue lines, contour lines show 1 m isobaths. 

 

The mineralogical composition of the lake surface sediment and catchment soil samples is dominated 

by calcite, quartz, dolomite, and gypsum (Fig. 2.5). Furthermore, pyrite, muscovite and some clay 

minerals occur as minor components. Calcite contents are elevated (>75 %) in soils at the southern shore 

and in the lake centre (Fig. 2.5a). The soil samples show highest values in the southern and parts of the 

western catchments. The quartz contents with >60 % are highest in the lake sediments close to the 

northern shore, and reach intermediate values 

(30-60 %) close to the western and eastern 

shores (Fig. 2.5b). This pattern only partly 

corresponds to the adjacent soil samples, which 

show similarly high values also in the 

southeastern catchment. Dolomite exhibits 

highest concentrations of >20 % in the soil 

samples close to the Arroyo Fuente Bermeja 

inlet (Fig. 2.5c). In the lake surface sediments, 

highest dolomite values of >4 % occur in front 

of this inlet, but also close to the northwestern 

lake shore. Gypsum amounts to <5 % in the lake 

surface sediments, reaching >3 % in the 

western, central, and eastern part of the lake 

(Fig. 2.5d). In the catchment soils, the gypsum 

contents reach values of >5 % but are more 

patchy and, with the exception of lowest values 

along the northern shore, do not provide a clear 

regional pattern.  
 

Figure 2.5: Spatial distribution of the volume percentages of (a) calcite, (b) quartz, (c) dolomite, and 

(d) gypsum in the lake surface sediments (black dots) and catchment soil samples (coloured circles). 

The major inlet streams are indicated by blue lines, contour lines show 1 m isobaths. 
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The bulk elemental composition of the lake 

surface sediments is dominated by calcium 

(Ca), which shows at least a factor 103 higher 

counts than all other elements. Highest Ca 

intensities occur in the southern and 

southwestern lake areas and in many soil 

samples from the adjacent catchments 

(Fig. 2.6a). Silicon (Si), in contrast, shows 

highest intensities in the northern lake and 

catchment (Fig. 2.6b). Relatively high 

intensities also occur in front of the inlets 

reaching the lake in its southwestern and 

southeastern parts. The distribution of 

zirconium (Zr) is similar to that of Si, except of 

a more pronounced minimum at the western 

shore and more variability of the soil samples in 

the catchment (Fig. 2.6c). The strontium (Sr) 

distribution is rather inversely correlated with 

Si and Zr, showing lowest intensities in the 

northeastern lake and catchment, and 

intermediate intensities in the southwestern and 

southeastern parts at the inlets (Fig. 2.6d). 

Potassium (K) has a distinct maximum in the 

southeastern part of the lake, in the vicinity of 

the Arroyo Fuente Bermeja inlet (Fig. 2.6e). A 

very similar pattern is shown by the elements 

aluminium (Al), iron (Fe), titanium (Ti), 

magnesium (Mg), and rubidium (Rb). The 

iron/manganese (Fe/Mn) ratio is higher in the 

eastern than in the western lake and catchment 

(Fig. 2.6f). 

 

Figure 2.6: Spatial distribution of counts of (a) Ca, (b) Si, (c) Zr, (d) Sr, (e) K, and (f) the ratio 

of Fe/Mn in the lake surface sediments (black dots) and catchment soil samples (coloured 

circles). The major inlet streams are indicated by blue lines, contour lines show 1 m isobaths. 
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TIC is highest (>5 %) in the southern part of the 

lake (Fig. 2.7a). The soil samples show similar 

values in the adjacent catchment, but also in 

most parts of the western and eastern 

catchments. TOC and TN exhibit very similar 

patterns (Figs. 2.7b and 2.7c). Distinct maxima 

occur in the northwestern and eastern lake, with 

TOC contents of up to 34 % and 23 %, 

respectively, and TN contents of ca. 1.5 %. 

Relatively high values of 2-6 % TOC and 0.3-

0.5 % TN also occur in the southern and central 

lake. In the catchment soils, TOC and TN 

concentrations are much lower and show rather 

irregular patterns with little similarities in 

adjacent lake and soil samples. The distribution 

of TS in the lake sediments shows distinct 

similarities to those of TOC and TN, with the 

exceptions that extreme values are missing and 

that the maximum in the western lake sediments 

is accompanied by relatively high values in the 

adjacent catchment soils (Fig. 2.7d). The C/N 

ratio (TOC/TN) shows a rather simple pattern 

in the lake sediments, with high values of >10 

along all shores and low values of < 10 in the 

lake centre, but more diverse values in the 

catchment soils (Fig. 2.7e). The C/S (TOC/TS) 

ratio (2.7-25.7) has some similarities in the lake 

sediments with the C/N ratio, however, the 

maxima are restricted to small areas at the 

northwestern, southwestern, and eastern shores, 

and they correspond with maxima in several 

soil samples from their adjacent catchments 

(Fig. 2.7f). 

 

Figure 2.7: Spatial distribution of the volume percentages of (a) TIC, (b) TOC, (c) TN, (d) TS 

and the ratios of (e) C/N and (f) C/S in the lake surface sediments (black dots) and catchment 

soil samples (coloured circles). The major inlet streams are indicated by blue lines, contour 

lines show 1 m isobaths. 
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The first and second principal components (PC) of the principal component analysis (PCA) of the lake 

surface sediments of Laguna de Medina explain 55.44 % and 16.79 % of the data, respectively (Fig. 2.8). 

The outcome plots within the 95% confidence ellipse. Negative loadings of PC1 are found by sand, the 

mean grain size, Si, Zr, quartz and C/N and C/S ratios. Positive loadings are reflected by the water depth, 

the fine-grained fractions (clay and silt), gypsum, calcite and TIC and Mn. Positive loadings of PC2 are 

reflected by TOC, TN and TS. Negative loadings include the elements Ti, K, Al, Rb, Fe and Mg and 

dolomite.  

 

 
 

Figure 2.8: Results of the principal component analysis (PCA) of the granulometric, 

mineralogical, elemental, and geochemical parameters. 
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2.6 Discussion 

Based on the granulometric, mineralogical, and geochemical parameters (Figs. 2.4-2.7), supported by 

the PCA (Fig. 2.8), the lake surface sediment samples of Laguna de Medina can be divided into six 

provinces of individual compositions and depositional processes (Fig. 2.9). 

 

At the northern shore (Province I), the lake surface sediments differ from those in all other parts of the 

lake by particularly coarse grain sizes, with high sand contents and a mean grain size of 100 – 362 µm 

(Figs. 2.4a and 2.4b). Furthermore, quartz, Si, and Zr are clearly enriched (Figs. 2.5b, 2.6b, 2.6c). All 

these proxies have high negative loadings on the PC1 in common (Fig. 2.8) and a very similar 

composition is found in the soil samples to the north of the lake. This suggests that sediment supply into 

the lake from the palaeoriver terraces of the Guadalete to the north, which consist of conglomerates, 

sands and gravels (IGME, 1984), dominates the sedimentation close to the northern lake shore. 

 

Province II occurs in the southeastern part of the lake, in front of the Fuente Bermeja inlet. The sediments 

are characterized by high contents of silt (Fig. 2.6b), as well as high intensities of lithogenic elements 

such as K (Fig. 2.6e), Al, Fe, Ti, Mg and Rb (not shown; Boës et al., 2011), as well as dolomite (Fig. 

2.5c). A similar composition is found in the fluvial sediments of the Fuente Bermeja and most of the 

adjacent soil samples, thus indicating that lake sediment composition is strongly influenced of riverine 

input by this major inlet. 

The chemical and mineralogical composition of the lake sediments suggests that the Fuente Bermeja 

mainly supplies weathering products of the Triassic Keuper facies, which is widely exposed in the 

catchment and consists of claystones, sandstones, and partly dolomites (IGME, 1984; Fig. 2.2). The 

dominance of this sediment source is also reflected by a distinct clustering of dolomite and the lithogenic 

elements in the PCA, showing positive loadings of PC1 and high negative loadings of PC2. Interestingly, 

dolomite clusters closer to the lithogenic elements than to the Ca. Ca is dominating in the entire lake, so 

an extra Ca input from dolomite is not significant. The effect of the Mg, on the other hand, is much more 

pronounced. That is the reason the dolomites cluster close to the lithogenic elements. The high silt 

contents of the surface sediments, and its wide distribution throughout the lake (Fig. 2.6b), reflect the 

main grain size provided by the inlet, but also that this fluvial input constitutes a significant contribution 

to sedimentation also in other lake parts. 

 

 

 

Figure 2.9: Geology in the 

near surroundings of the 

Laguna de Medina (cf. Fig. 

2.2) and spatial distribution of 

the six provinces of lake 

surface sediments with 

individual compositions and 

driving forces:  

 

I - input from palaeo river 

terraces;  

II - fluvial sediment supply;  

III - ´capas rojas´ influence;  

IV - gypsum precipitation;  

V - anthropogenic terrestrial 

organic matter supply;  

VI - distal background 

sedimentation 
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The lake sediments close to the southern shore (Province III) are characterized by high calcite and TIC 

concentrations, and high Ca intensities (Figs. 2.5a, 2.6a, 2.7b). In the PCA, these proxies show positive 

loadings in PC1 but negative loadings in PC2. The latter suggests a significantly different sediment 

source to that of the northern shore (Province I), which is characterized by high concentrations of 

sediment proxies with positive PC2 loadings that reflect clastic sediment supply. The carbonate-related 

proxies enriched in Province III, in contrast, rather suggest supply of weathering products from the 

adjacent Cretaceous ´capas rojas´, a series of Subbetic deep-water marlstones and limestones occurring 

to the south (IGME, 1984; Vera and Molina, 1999). This sediment source is also reflected in the 

composition of the soil surface samples to the south of the lake.  

 

Province IV is located in the western part of the lake (Fig. 2.6). It is characterized by high gypsum and 

TS concentrations, high Sr intensities, and C/N ratios >12 (Figs. 2.5d, 2.6d, 2.7d, 2.7e). The high C/N 

ratios indicate a high terrestrial influence on organic matter deposition (Meyers and Ishiwatari, 1993). 

The relatively high Sr concentration could partly be traced back to the Cretaceous carbonates, such as 

those in the ´capas rojas´ to the south, but also supports direct gypsum supply, which is suggested by 

elevated gypsum contents. In both cases, Sr is partly related to Ca (Kulp et al., 1952). A Ca, TS, and Sr 

supply in parts independent on the gypsum supply is also indicated in the PCA, where gypsum loadings 

around zero on PC2 differ from distinctly negative loadings of Ca, TS, and Sr (Fig. 2.6). The most likely 

source for terrestrial gypsum supply in Province IV is the western lake catchment. There, however, a 

patchy pattern in the respective soil samples (Fig. 2.7d) suggests that gypsum is exposed to the surface 

only locally. Therefore, the high gypsum, Sr, and TS concentrations in Province IV, partly extending 

further towards the lake centre (Province VI), most likely originate not only from surficial gypsum and 

carbonate supply but also from infiltrating groundwater, which is enriched with dissolved Ca and SO4 

ions (Burn and Palmer, 2014). This suggestion is supported by low C/S values in the centre of the lake 

(Fig. 2.7f), which suggest an enrichment of TS by gypsum accumulation. 

 

Province V is divided into two areas in the northwestern and central eastern parts of the lake. These 

areas are highly enriched in TOC and TN concentrations (Figs. 2.7a and 2.7c), indicating an increased 

amount of organic matter. TS is moderately enriched in these areas (Fig. 2.7d), suggesting that the 

sulphur is also partly adsorbed onto organic matter, and not only on the gypsum. This is also visible in 

the PCA, where TS plots between the organic compounds TOC and TN and the gypsum (Fig. 2.8). 

Adjacent to the areas in the north western and central eastern parts of the lake, much land is dedicated 

to agricultural use, like dry cultivation of cereals and sunflower (Reed et al., 2001), using the lake water 

for irrigation (Fernández-Palacios, 1990). Small gullies, which drain these agricultural areas enter the 

lake in both of the Provinces V. Hence, the higher TOC and TN concentrations in this province are 

probably an anthropogenic effect, with more terrestrial organic matter being mobilized and transported 

into the lake.  

 

Province VI is situated in the ´deep´ centre of the lake, where the influences of wave action and 

punctuated catchment supply are smallest. Here, low energy favours fine particles as clay and silt to 

settle (Figs. 2.4b and 2.4c). Sedimentation of gypsum and calcite is significant (Figs. 2.5a and 2.5c), 

with the former also being reflected by low C/S ratios (Fig. 2.7f). C/N ratios of <10 (Fig. 2.7e) suggest 

that the organic matter in the surface sediments originates mainly from autochthonous in-lake 

productivity (algae), with only restricted contribution from terrestrial sources (Meyers and Ishiwatari, 

1993). These interpretations are supported by PC1 of the PCA analysis, showing high positive loadings 

of clay, silt, gypsum, and calcite, and high negative loadings of C/S and C/N (Fig. 2.8). 
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2.7 Conclusions 

Based on the granulometric, mineralogical, elemental, and geochemical composition of the surface 

sediments in the Laguna de Medina, and the comparison with the composition of catchment soil samples, 

the following conclusions can be drawn concerning the modern sedimentation in this lake. 

 

Today, regional differences in the sedimentation in the Laguna de Medina, as documented in the 

sedimentary provinces I to VI (Fig. 2.9),  are predominantly controlled by the surrounding geology. This 

is mainly reflected in the mineralogical and elemental composition of the surface sediments, showing 

enrichments of quartz, dolomite, calcite, and gypsum, along with the associated elements, close to the 

northern, southeastern, southern, and western shores, respectively. In addition, enhanced organic matter 

deposition due to anthropogenic activity in the catchment is indicated close to the eastern and 

northwestern shores. In the central part of the lake, with a distance greater than 200 m from the shores, 

sediments are significantly more mixed, even if the sediment supply from the major inlet Arroyo de 

Fuente Bermejo could be still detected. 

 

No indication was found that lake currents have a strong impact on the modern sediment distribution in 

the Laguna de Medina. This differentiates this small endorheic lake from larger throughflow lakes, such 

as Lake Ohrid in the eastern Mediterranean area (Vogel et al., 2010) and Lake El´gygytgyn in the 

northeastern Russian Arctic (Wennrich et al., 2013). Furthermore, the Laguna de Medina today 

obviously is too shallow to have significant areal differences in bottom water redox conditions. This is 

for instance reflected in a Fe/Mn ratio independent on water depth (Fig. 2.4f), a proxy, which in deeper 

lakes, such as Lake El´gygytgyn, can be used to reconstruct times of anoxic bottom water conditions 

(Melles et al., 2012). Another difficulty is the double toll of Calcium, because it is partly bound on the 

calcite and also on the gypsum, so the Ca intensities cannot be used as a proxy for calcite in this lake. 

 

Taking these findings concerning the modern sedimentation in the Laguna de Medina, sediment cores 

from the central part of the lake should reflect quite well how the identified driving forces have changed 

in their relative importance throughout the last millennials. Hence, the 25.65 m long core Co1313 

recovered from the central part of the Laguna de Medina from its location and length has a high potential 

to provide new important insights into the regional climatic and environmental conditions in southern 

Spain during the Holocene. 
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Laguna de Medina in the morning fog 

Picture by Florian Steiniger 
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3.1 Abstract 

The high-resolution lacustrine sequence from the centre of Laguna de Medina (Cádiz, southern Spain) 

covers the last 9,600 years, evidenced by 20 calibrated 14C dates. This semi-permanent saline lake gives 

insight in the palaeoclimatic and -hydrological conditions since the Early Holocene. Due to its basin 

morphology, the lake is very vulnerable for hydrological changes. 

The record provides a detailed history of the depositional regime, the infilling of the sinkhole after its 

formation, the transition from deep lake with steep sides, to a shallow elongated lake, the chemical 

evolution of the lake, the influence of the climate, and rapid climate changes during the Holocene.  

Based on the sedimentological, geochemical, mineralogical, and ecological (ostracods) data, supported 

with the statistical analyses of the principal component analysis, the record can be divided into four 

different periods. The Early Holocene, the period prior to 7,870 cal yr BP, is a warm and wet period 

with low lake levels. This period is followed by a phase of maximum lake level between 7,870-5,780 

cal yr BP, reflected by the laminated facies, and a change in the ostracod assemblage towards more 

saline species. Interestingly, this humid period has the highest salinity, which is probably the result of 

enhanced catchment dissolution of the gypsum-rich Triassic geology due to the increased humidity. 

From 5,780-3,750 cal yr BP, the lake level dropped significantly, mainly reflected by the facies, the 

reduction of the laminations, and the occurrence of aragonite. However, the lake remains relatively deep, 

mainly due to its shape, with anoxic bottom water conditions. The last period from 3,750 cal yr BP on 

is characterized by a progressive aridification with several desiccation phases, enhanced gypsum 

precipitation, and a dominance of mesohaline ostracods.  

Over this long-term trend, several periods of short-term climate change, coinciding with the rapid 

climate change of the Iberian Peninsula, resulted in periods of aridification. Short arid periods 

interrupting the long-term trend occurred between 9,160-7,870, 5,780-4,800, 3,150-2,420, 1,950-1,450 

(corresponding to the Roman Warm Period), and 1,264-550 (corresponding to the Medieval Climate 

Anomaly) cal yr BP. One humid period (550-170 cal yr BP) coincides with the last known Rapid Climate 

Change, reflecting the Little Ice Age. 

The sequence of Laguna de Medina reinforces the connection between global changes in the 

hydrological regime, rapid climate change and North Atlantic Oscillation dynamics. 
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3.2 Introduction 

The Western Mediterranean, and in particular its arid regions, is very vulnerable to even small climatic 

and hydrological changes (Giorgi and Lionello, 2008). For irrigation of the land, aquifers are exploited. 

However, the total consumption of ground water in Spain exceeds the yearly input by 163 %, indicating 

the aquifers are overused (Puigdefábregas and Mendizabal, 1998). As a result, 25 % of the irrigated land 

already faces problems with soil salinization (Szabolcs, 1990). Due to the onging climate change, 

droughts are increasing since 1960 (Met Office, 2011), and climate simulations predict a decrease in 

summer precipitation (Giorgi and Lionello, 2008), and a northward extension of arid lands for the next 

decades (Gao and Giorgi, 2008). Consequently, soil salinization is expected to increase further, causing 

huge problems with land irrigation (Puigdefábregas and Mendizabal, 1998). 

 

In order to enhance the quality of the climate prediction for the next decades, it is important to know 

how climatic settings behave under different boundary conditions. Relatively little is known about these 

settings since the last glacial on the southern IP, due to the scarcely of long and continuous terrestrial 

climate archives (Roberts et al., 2008). Since only a few archives cover the entire Holocene (e.g. Carrión 

et al., 2001a, b; Reed et al., 2001; Fletcher et al., 2007; Martin-Puertas et al., 2008), our knowledge of 

the Holocene climate history on land is mainly based on information from distal marine sediment cores 

(e.g. Combourieu-Nebout et al., 1998, 2002, 2009; Sánchez-Goñi et al., 1999; Martrat et al., 

2004;Voelker et al., 2006, 2009; Voelker and de Abreu, 2011). Additional terrestrial archives are needed 

to complement this information by more data reflecting the conditions on land directly. This especially 

holds true for the precipitation, which cannot be reconstructed properly from marine records.  

 

Amongst the promising archives of the climatic and environmental history of the IP are the sediment 

records in small endorheic lakes (Spanish: Salinas), which are frequent in southern Spain. These lakes 

may be influenced by temporary desiccation, causing hiatuses in very arid years (Höbig et al., 2016). 

However, some of the lakes are permanent and thus provide continuous high-resolution records (Moreno 

et al., 2012). Furthermore, the sediments in these lakes can be highly sensitive to even small climatic 

changes, in particular of precipitation, because these changes may lead to strong changes in lake level 

and brine concentration (Fritz, 1996). 

 

Laguna de Medina is such a small and shallow saline lake in southern Spain (Fig. 3.1). The 25.65 m 

long sediment core Co1313, recovered from the centre of the lake, provides the first continuous and 

high-resolution terrestrial record for the last 9,600 years from the southern tip of the IP. This study 

presents a multi-proxy approach of the record, involving sedimentological, mineralogical, geochemical, 

and paleoecological methods. Due to its exceptionally high temporal resolution, the record reflects not 

only long-term, millennial-scale climatic and environmental changes, but also short-term, decadal to 

centennial-scale events (rapid climate changes), and can be linked to oscillations of the NAO. 
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3.3 Study site 

Laguna de Medina (36°37´04”N, 06°03´13”W) is the second largest inland playa lake in Andalucía, 

southern Spain (de Vicente et al., 2012). Due to its importance for water birds (Amat, 1984), it became 

a protected Nature Reserve and a Wetland of International Importance included in the Ramsar 

Convention in 1989 (de Vicente et al., 2012). The lake today is surrounded by agricultural land, 

dominated by orchards of olive trees, and is used as source for irrigation (Rodríguez-Rodríguez et al., 

2012). 

 

Laguna de Medina is a semi-permanent, warm polymictic, and saline lake (Lewis, 1983), with a surface 

area of 1.2 km2, and a catchment area of 16 km2, located 30 m above sea level (Fig. 3.1). The largest 

inlet, the Arroyo de Fuente Bermeja, enters the lake at its southeastern shore. This temporary inflow, 

being dry during summer months (Reed et al., 2001), is the most important source of clastic sediment 

supply (van ’t Hoff et al., 2017). The maximum lake water depth today is 3.5 m, limited by the height 

of a ditch that overflows when the lake surface exceeds its level (Rodríguez-Rodríguez et al., 2012). 

During field campaigns in September 2014 and March 2015, the water depths were up to 1.7 m and 

3.2 m, respectively. Permanent lakes in the arid Spain require a water depth of >2 m in normal years 

(Alonso, 1998), indicating Laguna de Medina is a semi-permanent water body that only dries out during 

very arid years.  

 

 
Figure 3.1. Overview of the setting of Laguna de Medina. a) Location of Laguna de Medina on the 

Iberian Peninsula. b) Digital Elevation Model (in m a.s.l.) of the catchment area (encircled in black) of 

the Laguna de Medina, and the coring position of Co1313 (red dot). Blue lines indicate the most 

important inlets. 

 

 



52 

 

The lake basin was probably established during the Late Pleistocene, due to diapiric uplift in 

combination with karstic processes such as dissolution and collapse, resulting in sinkhole (Rodriguez 

Vidal et al., 1993; Valero-Garcés et al., 2014; Wolf et al. 2014). The southern catchment is dominated 

by the Cretaceous ´capas rojas´, a series of Subbetic deep-water marlstones and limestones (Vera and 

Molina, 1999) (Figs. 2.1 and 2.9). In the eastern and western catchment, terrestrial Triassic Keuper 

facies (claystones, sandstones, dolomites and gypsum) are dominant, and the northern catchment is 

characterized by coarse sand and gravel from the palaeoriver terraces of the Guadalete (IGME, 1984). 

 

Laguna de Medina today experiences a Mediterranean climate (Peel et al., 2007). The summers are hot 

and dry, driven by the Azores high pressure system (Sumner et al., 2001). This results in a period of five 

months with water deficit (Paez, 1991). During the moderate winter, the Azores High shifts southward. 

This enables mid-latitude storms to reach the region, making the winters relatively wet, with 

precipitation up to 90 mm per month (Sumner et al., 2001). The average annual precipitation is 

525 ± 275 mm/year and the average effective rainfall is 171 mm/year (Rodríguez-Rodríguez et al., 

2012). On a decadal scale, the climate variability in southern Spain is mainly influenced by the North 

Atlantic Oscillation (NAO), with a positive (negative) NAO resulting in more arid (more humid) winters 

(Wanner et al., 2001; Trigo et al., 2004). 

 

The Laguna de Medina functions as a hydrologically closed system (Fernández-Palacios, 1990). A 

significant influence of highly saline ground-water inflow results in gypsum precipitation, mainly in the 

western part of the lake (Eugster and Hardie, 1978; van´t Hoff et al. 2017), and leads to the retention of 

water during summer times (Reed et al., 2001). However, due to little permeable underground, the 

influence of ground water is small (Fernández-Palacios, 1990), which makes the lake very vulnerable 

to variations in precipitation. Today, the lake level is highly affected by seasonal precipitation changes, 

resulting in summer desiccation in very arid years. The average conductivity is 6.11 mS/cm, but 

fluctuated heavily (4.65-12.88 mS/cm) during a monitoring study of 84 months by de Vicente et al. 

(2012). The average total alkalinity is 2.13 meq/l and the pH is 7.98 (de Vicente et al., 2012). 

 

The sediment record at the bottom of Laguna de Medina was first investigated by Reed et al. (2001). 

Based on paleolimnological proxies (diatoms, ostracods, foraminifera, molluscs, aquatic pollen, and 

lithology), fluctuations in water level and salinity were reconstructed, which were traced back to 

significant precipitation changes during the last 9,000 years. These findings significantly complemented 

marine geological research in the adjacent oceans (Fig. 1.1), which, although they suggest rapid climate 

change throughout the Holocene, are relatively stable due to the low temporal resolution (Martrat et al., 

2007; Fletcher et al., 2009).  

The study presented here builds on a new, much longer sediment record from the Laguna de Medina 

(Co1313), which provides a much better time resolution and is investigated by additional geochemical 

and mineralogical proxies.   
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3.4 Material and methods 

Field work 

The core Co1313 originates from 3 m long core sections, which were retrieved from two parallel 

sediment cores in the centre of the Laguna de Medina in September 2014 and March 2015 (Fig. 3.1). 

Coring was conducted from a floating platform with a percussion piston corer (UWITEC Corp., 

Austria). On site, the cores were cut into up to 1 m long sections, which were stored dark and dry until 

further processed in the laboratory. 

 

Analytical work 

All the analytical work was conducted at the laboratories of the University of Cologne. First, the cores 

were cut lengthwise into two core halves, which were used for core description and photographical 

documentation. One core halve was logged with 1 cm resolution for magnetic susceptibility at an MSCL 

(Multi-Sensor Core Logger, GeoTek; Weber, 1997). The core sections from the parallel holes were 

correlated to a core composite of 25.65 m length, based on matching of both cores using the sedimentary 

structures and fluctuations of the magnetic susceptibility in overlapping core parts. 

Subsequently, the core composite was scanned for chemical composition with 2 mm resolution at an 

XRF scanner (ITRAX X-Ray Fluorescence scanner, COX Analytical Systems; Davies et al., 2015). The 

XRF scans were run with an exposure time of 10 s and Cr-tubes set to 50 kV and 38 mA, thus providing 

a good overview of the elements lighter than Cr (Löwemark et al., 2011). The XRF data were smoothed 

using a 19-pt running mean to reduce the noise.  

 

The composite core was subsampled at intervals of 6 cm, leading to 427 discrete samples for 

geochemical analysis. For the granulometric analysis, every 4th sample was used, resulting in 107 

samples. In a first step, the samples were freeze-dried in order to exclude transformation of gypsum 

(CaSO4 · 2H2O) to bassanite (CaSO4 · ½H2O) or anhydrite (CaSO4). Subsequently, the bulk sediment 

samples were split into aliquots for different measurements.  

 

For the geochemical analysis, one aliquot of the samples was ground to <63 µm to enlarge the surface 

area. For the analyses of total inorganic carbon (TIC) and total organic carbon (TOC), ca. 35 mg of the 

ground samples was mixed with 10 g distilled water and measured with a Dimatoc 2000 (Dimatec 

Corp.). The contents of total nitrogen (TN) and total sulphur (TS) were measured on parallel sample 

aliquots of 5 mg with a vario Micro cube (Elementar Corp.).  

 

For grain-size analyses, another aliquot was pretreated with 10 ml NaCO3 at 60°C for 18 hours, 10 ml 

10 % HCl at 50°C for 3 hours, 5 ml 30 % H2O2 at 50°C for 18 hours, and 5 ml 1 M NaOH at 90°C for 

two times 30 min, in order to remove the gypsum, carbonate, organic matter, and biogenic silica, 

respectively. Between the different steps, the samples were centrifuged and neutralized with deionized 

water. Prior to the measurements, the samples were mixed with Na4P2O7 (0.05 %) and shaken for at least 

12 hours to avoid flocculation of clay minerals. Each sample was measured three times in 116 classes 

in a range between 0.04 and 2000 µm using a Laser Particle Size Analyser LS 13320 (Beckman Coulter 

Corp.) and the Frauenhofer optical model. The grain-size distributions were calculated using the 

program GRADISTAT (Blott and Pye, 2001). 

 

For the mineralogical and elemental powder analyses, 111 aliquots of the ground samples were chosen 

from interesting parts of the record. Bulk mineralogical contents were determined by X-ray diffraction 

(XRD) on powder pellets using a diffractometer Bruker D8 Discover with Cu tube (λ = 1.5418 A, 40 kV, 

30 mA) and the detector LYNXE_XE (opening angle = 2.9464°). The spectrum from 5° to 90° was 

measured in 4155 steps of 1 sec. exposure time. The evaluation of the spectra to minerals was computed 

using Match! (Crystal Impact (2014), Bonn, Germany and SEARCH (Stoe and Cie (2003), Darmstadt, 

Germany) based on pdf2 (ICDD (2003), Philadelphia, USA). The evaluation of the concentration of the 

minerals was evaluated using TOPAS Rietveld (Coelho, 2003).  
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Afterwards, this aliquot was scanned on the XRF scanner with a 1 mm resolution and an exposure time 

of 60 s using a Cr-tube (settings: 50 kV, 38 mA) for relative element intensities to statistically evaluate 

the elemental and mineralogical data using a principal component analysis (PCA) conducted with PAST 

(Hammer et al., 2001). The outcome of the PCA plots within the 95% confidence interval.  

 

The samples for the ostracod and foraminifera analyses were freeze-dried and an aliquot of 5.0 to 12.4 g 

was submerged in tap water and solidly frozen (-20°C), and later wet-sieved on a 63 µm mesh. The 

residue was freeze-dried and scanned under a stereomicroscope (magnification 64-fold) for ostracod 

remains. Carapaxes were counted as two valves, broken valves with more than 50% preserved were 

counted as a single valve. The taxonomy and ecological interpretation followed the studies by Meisch 

(2000), Mezquita et al. (2005), and Rasouli et al. (2016). The ostracod species were classified by their 

salinity preferences (< 0.5 ‰ – freshwater species; 0.5 – 5.0 ‰ mesohaline species; > 5.0 ‰ polyhaline 

species). Further, the ostracod record was assessed to identify objective intervals by a constrained 

hierarchical cluster analysis, and used to reconstruct past host water conductivity based on the weighted 

average ecological preferences of Iberian ostracod species (Mezquita et al. 2005). The ostracod record 

investigated by Reed et al. (2001) was numerically treated similarly to compare both sedimentary 

records. A Gaussian LOESS filter was applied to the inferred conductivity data to smooth the results 

within a 95% confidence interval. All numerical calculations, and analyses were completed with the 

software package R version 3.2.5 including the libraries: rioja and vegan (R Core Team, 2016). 

 

Radiocarbon dating  

Chronostratigraphic information was obtained by radiocarbon measurements of 20 samples. 14C dating 

was performed on plant material and root fragments of presumably terrestrial origin, in order to avoid 

falsification by reservoir or hardwater effects from aquatic carbon. All samples were treated using a 

modified protocol according to Rethemeyer et al. (2013). 14C contents were measured on a 6 MV 

Tandetron AMS (HVE, The Netherlands) at the University of  Cologne (COL, Dewald et al., 2013) and 

on a NEC compact model 0.5 MV AMS at the 14CHRONO Centre at Queen´s University Belfast (UBA). 

The 14C dates were calibrated by OxCal v. 4.2 (Ramsey, 2009) using the INT-Cal13 curve (Reimer et 

al., 2013). The software package Bacon 2.2 (Blaauw and Christen, 2011) using R (R Development Core 

Team, 2013) was used to construct the age model. Overall stable sedimentation rates (mem.strength = 6, 

mem.mean = 0.7, thick = 10 cm) and expected sedimentation rates (acc.shape = 1.5, acc.mean = 4) were 

considered. 
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3.5 Results 

 

3.5.1 Sedimentology and geochemistry 

The sediment record Co1313 is composed of five main lithofacies, based on the sedimentary structures, 

colours and lithologies (Fig. 3.2). In the first five meters (25.50-20.45 m), the sediments mainly are built 

up of lithofacies A (Fig. 3.2a). This facies consists of massive carbonate-rich clayey silty sediment 

without traces of bioturbation and a few poor indications of some laminations (Fig. 3.3). The colour 

varies between lightbrown and dark brown. It is interrupted twice by lithofacies B (Fig. 3.2b), consisting 

of massive clayey carbonate-rich silts alternating with weakly laminated sediments with mm thick 

gypsum and carbonate laminae (Fig. 3.3). The massive sediments are mostly grey. Laminations are mm 

to cm-fine (0.5-2 cm). For lamination description see Facies C. Facies B becomes more common further 

up, building up most of the sediment between 19.90-6.51 m, but occurs only once in the uppermost core 

part, in a depth of 4.30-4.15 m. The first occurrence of lithofacies C (Fig. 3.2c) at 20.45 m depth marks 

a significant transition in the sediments record, initiated by the onset of the laminated sediments. Facies 

C consists of highly laminated sediments with mm think gypsum and carbonate layers (Fig. 3.3). Mm-

fine laminations are varying in colour between green, white, yellow and brown and in grain-sizes 

between clay-size up to 3 mm. Coarse grained laminae consist of gypsum. It repeatedly occurs between 

up to 8.30 m depth, most frequently between 20.45-13.23 m, alternating with facies B.  

In facies B and C, white mottles occur between 20.45-6.51 m (indicated by the red stars in Fig. 3.3), 

which consist of 80-90% elemental sulphur (Fig. 3.2f).  

The uppermost 6.51 m of the record consists of an alternation of lithofacies D and E (Fig. 3.3). Facies 

D (Fig. 3.2d) is built up of massive carbonate-rich clayey silts with traces of bioturbation, mainly of 

roots. The colour varies between dark brown and brown-greyish. Lithofacies E (Fig. 3.2e), consists of 

massive carbonate-rich clayey silts with white and/or green mottling of carbonates and gypsum 

evaporates and traces of bioturbation. The colour varies between light-brownish and brown-greyish. 

White mottling consisting of 1-3 mm and green mottling consisting of 1-5 mm large spots. 

 

 
A representative picture of the five different facies (A-E) and the sulphur mottles, including the 

sedimentological characteristics and the interpretation. 
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The mineralogical composition is dominated by calcite (50-70%), kaolinite (10-20%), and quartz (10-

20%), and single layers with gypsum enrichments of up to 50 % (Fig. 3.3) which are also visible as light, 

coarse-grained bands by naked eye. Besides, dolomite, aragonite, pyrite, halite, muscovite, and some 

clay minerals occur in minor amounts.  

 

The grain-size distribution of the clastic sediment components is dominated by silt (60-70 %) and clay 

(30-40 %). About 90 % of the grains fall within the fractions clay to medium silt (<16 µm). The grain-

size distribution shows little fluctuations downcore (Fig. 3.3). The mean grain-size ranges between 3.0 

and 11.4 µm, with only 2 outliers up to 13.1 and 15.8 µm, induced by the input of (fine) sand, only 

occurring in 20.50-19.50 m sediment depth (Fig. 3.3). 

 

Variations in the magnetic susceptibility coincide with concentration changes of quartz, kaolinite, and 

the elements Titanium (Ti) Rubidium (Rb), Iron (Fe), Potassium (K), Aluminium (Al), and Silicon (Si), 

which all show an increased variability between 20.50-14.00 m (Figs. 3.3 and 3.5). The Sr/Ca ratio 

matches variations of gypsum in the lower core part very well, with highest variations in the laminated 

parts. Highest intensities are found in the laminated parts, as well as in the upper part of the record. S/Al 

has its own character, with maxima in the sulphur mottles (Fig. 3.2e), which only occur in lithofacies C 

and D (Fig. 3.3). 

 

The total inorganic carbon (TIC) follows the same trend as calcite, decreasing towards the top of the 

record (Fig. 3.3). The total organic carbon (TOC) shows an increasing trend towards the top of the record 

(Fig. 3.3). The C/N ratio is high (>17) in several intervals until 20.50 m, stable and low (<7) until 6.00 m 

and again high (>15) and unstable towards the top of the record (Fig. 3.3). 

 

The sediment record alternates between homogeneous and laminated sediments. The most remarkable 

shift occurs at 20.45 m, with the transition from massive homogeneous to laminated lithofacies, inducing 

an increase in complexity and variability of the sediment proxies (Fig. 3.3). Above 14.00 m, most of the 

proxies lose their variability and remain relatively stable towards the top, except for the minerals 

dolomite, aragonite and gypsum, as well as the C/N ratio. These proxies remain instable and vary 

towards the top of the record. The laminations disappear around 6.40 m, the sediments are now 

homogeneous and bioturbated. 

 

Clustering of the geochemical and mineralogical proxies is strengthened by the outcome of the principal 

component analysis (PCA, Fig. 3.5). The first three components of the PCA of 111 samples explain 

83.1 % of the total variance of the record. Negative loadings of PC1 are reflected by the minerals calcite, 

dolomite, aragonite and gypsum, the elements Ca, Sr and S, and the TIC. Positive loadings include the 

magnetic susceptibility (MS), the minerals quartz and kaolinite, and the elements Rb, Fe, Ti, K, Al and 

Si. Positive loadings of PC2 are reflected by the minerals gypsum, dolomite and aragonite and the 

elements S and Sr. Loadings clustered around zero contain the MS, the minerals quartz and kaolinite, 

and the elements Rb, Fe, Ti, K, Al and Si. Negative loadings are reflected by calcite, TIC, and Ca. 

Positive loadings of PC3 (not shown) are reflected by the contents of TOC and N. 

 

3.5.2 Ecological proxies: Ostracods and Foraminifera 

The ostracod record is continuous throughout the analysed samples (Fig. 3.4). In total, the fossil fauna 

holds 16 taxa (Tab. 3.1) that are known to be halotolerant species (Athersuch et al., 1989; Meisch, 2000; 

Mezquita et al., 2005; Rasouli et al., 2016).  

Seven ostracod zones were identified by a constrained hierarchical cluster analysis of the relative 

abundance record. 
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Figure 3.4. Sum of total abundance of adult (filled bars) and juvenile (open bars) ostracods, and relative 

abundance of ostracod assemblages (Cyprideis torosa, freshwater species, mesohaline species, 

polyhaline species, and absolute abundance of Foraminifera [Forams]) for Laguna de Medina. 

 

The first ostracod zone (O1; bottom to 20.40 m) is characterised by a well-established freshwater fauna 

with some influence of mesohaline species. The following ostracod zone (O2; 20.40-19.44 m) is 

dominated by mesohaline species, especially P. newtoni. The third ostracod zone (O3; 19.44-18.48 m) 

holds polyhaline species incl. C. torosa and foraminifera species, i.e. Ammonia beccarii. The next zone 

(O4; 1848-1560 m) is a mix of freshwater species, here especially Ilyocypris sp., mesohaline species 

and the occurrence of polyhaline C. torosa. The succeeding species assemble of the adjacent zone (O5; 

15.60-13.44 m) is dominated by C. torosa, which is accompanied by mainly freshwater species and 

minor abundance of mesohaline species. Then a sharp transition occurs in the following ostracod zone 

(O6; 13.44-12.24 m), as valves of C. torosa disappear and the species assemblage splits in freshwater, 

mesohaline waters and only few peaks of polyhaline species (i.e. E. mareotica). The top most zone (O7; 

12.24 m to top) comprises a stable domination of valves of mesohaline species and successively fading 

of singular occurrence of polyhaline species (i.e. E. mareotica). C. torosa has a last occurrence between 

4.80 and 4.56 m. 

 

The occurrence of foraminifera tests is sporadic and restricted to samples of the lower part of the core. 

Ammonia beccarii (Linnaeus, 1758) was the only species found in our core samples. 
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Table 3.1. List of ostracod taxa in core Co1313 and previous study from Reed et al. (2001). The 

calculated optimum conductivity (optiCOND) as given in Mezquita et al. (2005) is used to classify 

species in freshwater (0-1.5 mS cm-1), mesohaline (1.5-8.0 mS cm-1) and polyhaline (>8.0 mS cm-1) 

groups. 
 

Taxa name 

 

Ostracods: 
 

Co1313 Reed et al. 

(2001) 

optiCOND 

(mS cm-1) 

 

Group 

Candona neglecta 

(Sars, 1887) 

X X 0.457 Freshwater 

Cyprideis torosa 

(Jones, 1850) 

X X 31.623 Polyhaline 

Cypris bispinosa 

(Lucas, 1849) 

X  1.479 Freshwater 

Darwinula stevensoni 

(Brady and Robertson, 1870) 

X X 1.230 Freshwater 

Eucypris mareotica 

(Fischer, 1855) 

X X 48.978 Polyhaline 

Eucypris pigra 

(Fischer, 1851) 

X  0.676 Freshwater 

Herpetocypris intermedia 

Kaufmann, 1900 

X  0.891 Freshwater 

Heterocypris incongruens 

(Ramdohr, 1808) 

X  1.148 Freshwater 

Heterocypris salina 

(Brady, 1868) 

X X 2.089 Mesohaline 

Ilyocypris sp.1 

 

X X 1.023 Freshwater 

Leptocythere sp.1 

 

X  NA Polyhaline 

Limnocythere inopinata 

(Baird, 1843) 

X  2.455 Mesohaline 

Loxoconcha elliptica 

(Brady, 1868) 

X  19.953 Polyhaline 

Plesiocypridopsis newtoni  

(Brady and Robertson, 1870) 

X X 5.128 Mesohaline 

Sarscypridopsis aculeata 

(Costa, 1847) 

X  7.943 Mesohaline 

Trajancypris clavata 

(Baird, 1838) 
 

X  1.660 Mesohaline 

Foraminifera: 

Ammonia beccarii 

(Linnaeus, 1758) 
 

X X NA  
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3.5.3 Chronology 

The age-depth model for the Laguna de Medina is based on 20 14C dates, and provides a chronology for 

the last 9,600 years (Tab. 3.2). Except for three dates (UBA-32743, COL3423, and COL3291), the 

calibrated dates provide a systematic sequence of increasing age with increasing depth. The δ13C values 

of the measured samples are in the range of -48.3 to -12.9 ‰, although most of the samples are within 

the range of -25 to -20 ‰, suggesting the organic material is from terrestrial origin (Meyers and 

Ishiwatari, 1993). 

 

Table. 3.2. Results of AMS radiocarbon measurements conducted on the sediment record Co1313 from 

the Laguna de Medina 

 

 

 

 

 

 

 

 

 

Lab  

sample no. 
 

Depth (cm) Age (yr) 

uncalibrated 

± (yr) Age (yr) 

calibrated 

± (yr) δ13C 

(‰) 

COL3288 48 – 50 287 44 362 62 -36.8 

UBA-32745 183 – 185 1345 24 1247 60 -15.7 

UBA-32746 242 – 244 1160 29 1080 98 -20.9 

UBA-32747 317 – 319 2098 26 2069 70 -16.0 

COL3412 360 – 364 2537 43 2621 131 -21.2 

UBA-32748 394 – 396 2694 25 2803 46 -18.4 

UBA-32743 447 – 449 7291 52 8091 106 -23.0 

UBA-32744 477 – 479 2998 33 3201 130 -20.7 

COL3413 672 – 676 3669 42 4017 130 -20.5 

COL3414 1144 – 1146 4573 46 5250 199 -22.8 

COL3415 1146 – 1151 4675 46 5446 134 -15.9 

COL3416 1154 – 1156 4586 45 5257 203 -16.8 

COL3417 1303 – 1307 5341 104 6113 201 -48.3 

COL3419 1540 – 1542 5351 45 6138 138 -24.6 

COL3420 1624 – 1626 5450 59 6212 187 -24.8 

COL3421 1878 – 1880 6253 55 7141 139 -21.4 

COL3423 2020 – 2022 10967 63 12858 141 -23.9 

COL3291 2048 – 2050 5023 40 5777 117 -28.2 

COL3425 2283 – 2285 8001 61 8832 184 -21.1 

COL3427 2493 – 2497 8128 53 9128 142 -12.9 
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3.6 Discussion 

 

3.6.1 Origin of allochthonous and autochthonous sediment components 

The principal component analysis (PCA) shows clustering of elements, minerals, the magnetic 

susceptibility (MS), and geochemical data. The PCA can be defined into five sediment components, 

reflecting the sedimentation and the conditions of the lake from a desiccated or shallow lake towards a 

deep lake (Fig. 3.5). This typical sequence is found in many saline lakes on the Iberian Peninsula (e.g. 

Martín-Puertas et al., 2011). 

 

The PC1 reflects the difference between in-lake sedimentation (endogenic components), as the gypsum, 

evaporite and carbonate component on the negative end, and allochthonous sedimentation, reflected by 

the terrestrial component on the positive end (Fig. 3.5). PC1 can be used as an indicator for changes in 

sediment supply. The endogenic components (gypsum, evaporite and carbonate) are indicative for 

(highly) concentrated shallow (or desiccated) environments, whereas high lake levels coincide with a 

terrestrial origin (Martín-Puertas et al., 2011). The terrestrial input is indicative for the presence of an 

active inlet (Renaut and Gierlowski-Kordesch, 2010). The Arroyo de Fuente Bermejo in the southeastern 

part of the lake is the main carrier of the terrestrial components (van ’t Hoff et al., 2017). However, a 

significant change in grain-size distribution is not noted during phases of increased terrestrial input, so 

the influence of wind can be neglected. The modern sedimentation patterns indicate the influence of 

coarse-grained sediments is limited to the first 200 m from the shore lines (van ’t Hoff et al., 2017). 

 

 
 

Figure 3.5. Outcome and interpretation of the PCA of the results of the geochemical, mineralogical 

data, and the magnetic susceptibility. The arrows indicate interpretation of the axes.  
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Shallow lakes have been featured by excessive natural fluctuations in water levels, driven by irregular 

precipitation patterns (Alvarez-Cobelas et al., 2005). This results in desiccation in arid years. The PC2 

reflects these natural fluctuations from desiccation to the deep lake very well. This typical evaporitic 

sequence (Giralt and Juliá, 2003), due to evaporation and concentration processes, is clearly reflected in 

the Laguna de Medina. When the lake level decreases, carbonates, sulphates and chlorites are the main 

endogenic salts that precipitate (Eugster and Hardie, 1978). During a lake refilling phase, siliciclastic 

input and carbonate precipitation form the major mineral composition (Giralt et al., 1999). 

1. The gypsum component reflects gypsum precipitation, which is enriched due to dissolution of 

the Triassic underground (IGME, 1984), and coincides with a shallow lake with highly saline 

conditions, or a desiccated lake with a gypsum crust (Stein et al., 1997). The high Sr intensities 

reinforces this assumption, since Sr exchanges with Ca in gypsum as salinity or evaporation 

increases (Santisteban et al., 2016).  

2. During the first infilling phase, dissolution of the gypsum crust takes place, increasing the 

salinity. This favours precipitation of dolomite and aragonite (Vegas et al., 2010).  

3. When the gypsum crust is entirely dissolved, and the input of fresh water continues, the lake is 

developing toward more fresh conditions, favouring precipitation of calcite as found in the 

carbonate component (Martín-Puertas et al., 2011).  

4. During the lake level high-stand, the terrestrial component is sedimented, indicating an increase 

in lake surface, weathering of the Keuper facies in the catchment and higher alluvial input via 

the Arroyo de Fuente Bermejo (van ’t Hoff et al., 2017).  

 

PC3 reflects the organic component, and is identified by high values of N and TOC. The TOC 

concentration is highest during anoxic periods of lake level high stands, because of the good preservation 

of organic matter (Meyers and Lallier-Vergès, 1999). 

 

The element Calcium (Ca) normally is a good indicator for the presence of carbonate, but Ca correlates 

very badly with both TIC and calcite (r2 is 0.58 and 0.41 resp.), and plots in the PCA between the 

evaporite and endogenic carbonate component. This bad correlation indicates a more complex pattern 

with two different origins, namely gypsum (CaSO4·2H2O) and carbonates (aragonite, calcite (CaCO3), 

and dolomite (CaMgCO3)). 

 

Anoxic bottom conditions evidenced by native sulphur mottles 

The S in the record are not only traced back to gypsum, but also partly of sulphur mottling. The sulphur 

mottling occurs in the laminated parts of the sediment record. The white spots pushes the laminated 

sediments away, and consists of diagenetic elemental sulphur (red stars in Fig. 3.3). Offsetting of the 

existing sediments by native sulphur is also found in Lake Lisan in Israel (Torfstein et al., 2008). Native 

sulphur is formed during anoxic periods due to bacterial sulphate reduction (BSR), in lakes with SO4
2- 

concentrations >100 µM (Rudd et al., 1986; Ziegenbalg et al., 2010). Dissolution of gypsum by 

precipitation and the supply of dissolved gypsum via the ground water delivered SO4
2- for microbial 

sulphate reduction. Organic matter is oxidized by sulphate-reducing bacteria, which leads to production 

of reduced sulphur species (Feely and Kulp, 1957). This happens in the lower water body of the stratified 

lake, or within the bottom sediments (Ziegenbalg et al., 2010). Highest concentrations of elemental 

sulphur were recovered in near-surface sediments (Urban et al., 1999). Therefore, it is likely the 

diagenetic sulphur spots in this core are formed close at the water-sediment surface, indicating anoxic 

bottom conditions during the deposition of facies B and C (Fig. 3.6). 

Hydrogen sulphide is either abiologically or biologically oxidized to native sulphur, but the exact 

mechanisms are still unknown (Machel, 1992). In fact, in hypersaline lakes, accumulation of native 

sulphur was not detected yet in Holocene sequences (Ziegenbalg et al., 2010; Lindtke et al., 2011). 



63 

 

3.6.2 Genesis of the facies 

The record of Laguna de Medina can be divided into four units (Fig. 3.3), mainly based on the alternation 

of the different lithofacies (Fig 3.6). Unit 1 is dominated by facies A, with some interruption of facies 

B. Unit 2 consists of an alternation of facies B and C, with a dominance of facies C. Unit 3 consists also 

of an alternation of facies B and C, here with a dominance of facies C. Unit 4 is characterized by an 

alternation of facies D and E. 

 

 
Figure 3.6. Basin Fill; Model of different stages of the Laguna de Medina during the deposition of the 

facies in the former sinkhole 

 

 

Lithofacies A (Characterizing for Unit 1, Fig. 3.6) reflects a period of moderate heavily fluctuating water 

levels and salinity, indicated by the conductivity and the C/N ratio (Figs. 3.3 and 3. 8). Several peaks of 

high C/N ratios indicate pulses of terrestrial organic matter in a lacustrine environment (Meyers and 

Ishiwatari, 1993). The terrestrial component is high during phases of traces of small laminations, 

indicating enhanced fluvial supply from the Arroyo de Fuente Bermejo (van ’t Hoff et al., 2017). 

However, generally, the terrestrial component is low, reflecting a low energy regime, little alluvial 

influence, and a relatively arid period (Valero-Garcés et al., 2014). The carbonate component is high in 

facies A, suggesting a relatively high water table with enhanced weathering of the adjacent marl- and 

limestones. However, the lack of lack of laminae suggest a moderate water table. The high carbonate 

content can also be the result of the instable period after the collapse of the sinkhole, and reflecting a 

change in ground water regime and enhanced erosion due to a change in the hydrological setting. 

However, it is not exactly known when the sinkhole collapsed, so this hypothesis cannot be tested.  

Facies B (dominant in Unit 3, Fig. 3.6) reflects a relatively humid period with a fluctuating, and 

relatively high salinity (Fig. 3.8). The fluctuating behaviour of the lake level is reflected by the 

alternation of deposition of massive clayey silts during shallower phases and laminations during deeper 

phases (Valero-Garcés et al., 2014). The terrestrial component is moderate, reflecting moderate fluvial 

input during a period with relatively low precipitation. The evaporite component is highest in this facies, 
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representing a period of moderate lake levels and relatively high salinity. The diagenic sulphur mottles 

indicate anoxic bottom conditions (Ziegenbalg et al., 2010). 

Facies C (mainly present in Unit 2, Fig. 3.6) represents a humid period with the maximum lake level, 

high salinity with anoxic bottom conditions (Ziegenbalg et al., 2010), characterized by the occurrence 

of finely laminated sediments (Valero-Garcés et al., 2014) (Fig. 3.8). The occurrence of Loxoconcha 

elliptica, Leptocythere sp. and even foraminifera confirm a high salinity. TOC is highest during this 

period, probably due to the high water level, and the anoxic bottom water conditions, preserving the 

organic matter (Meyers and Lallier-Vergès, 1999; Ziegenbalg et al., 2010). Here, the terrestrial 

component is highest, indicating enhanced fluvial supply from the Arroyo de Fuente Bermejo due to 

enhanced precipitation, and a high lake level (Valero-Garcés et al., 2014; van ’t Hoff et al., 2017). The 

carbonate component is relatively high, although lower than in facies A, probably due to the 

predominant influence of the terrestrial components. In general, the gypsum component is low, with the 

exception of some peaks, which indicate desiccation events, or highly concentrated waters (Martín-

Puertas et al., 2011). The high lake level disables the precipitation of gypsum, despite the high salinity 

(Torfstein et al., 2008). 

In other Spanish lakes, like Lake Arreo (Corella et al., 2013) and Lake Zoñar (Martin-Puertas et al., 

2008; 2011), changes between stratified and mixed waters are reflected by the alternation of massive 

and laminated facies. This fluctuating water level is clearly show in the alternation of facies B and C in 

Unit 2 and 3. Stratification and the occurrence of anoxic conditions is mainly controlled by the water 

depth (Wetzel, 2001). Stratification is limited by a minimum water depth of 6 m (Shaw et al., 2002). 

Both facies B and C are characteristic for a deep-water phase, although fluctuating (Fig. 3.6 Unit 2 

and 3).  

Facies D, reflects an arid period with shallow lake levels, indicated by traces of bioturbation, especially 

of roots (Valero-Garcés et al., 2014). The gypsum component is relatively low, probably because of 

dissolution of the gypsum crust during infilling of the lake after desiccation. This also explains the 

relatively high evaporite component in comparison with the gypsum component. Carbonate and 

terrestrial component increase, indicating periods of filling after desiccation. The C/N ratio is low, 

indicating a lacustrine origin of the organic matter (Meyers and Ishiwatari, 1993). 

Facies E reflects an arid period with very shallow waters, and periods of desiccation. The carbonate and 

evaporite mottling, and bioturbation are indicators for desiccation (Valero-Garcés et al., 2014). The 

gypsum component is relatively high, suggesting periods of aerial exposure and gypsum precipitation. 

The evaporite component is low during these phases, indicating no phases of infilling. The calcite 

content is decreasing towards the top, reflecting a decreasing water level. The high C/N peaks reinforces 

this statement, indicating enhanced terrestrial organic influence (Meyers and Ishiwatari, 1993). The 

terrestrial component is low, indicating a low energy regime and little alluvial input (Valero-Garcés et 

al., 2014). The Arroyo de Fuente Bermejo is presumably dry during these arid periods. 

 



65 

 

3.6.3 Age model 

In southern Spain, most of the lakes are shallow saline water bodies (<0.50 m), which are characterized 

by excessive natural fluctuations in water levels, driven by the five months summer water deficit and 

the irregular precipitation patterns of the Mediterranean climate (Alvarez-Cobelas et al., 2005; Peel et 

al., 2007). This results in desiccation in arid years, leading to hiatuses and preservation problems for 

organic matter. Organic material may even be absent in shallow lakes with annual desiccation events, 

such as the Laguna de Salada (Cádiz; Chapter 4) and Laguna Salada (Campillos; Schröder et al., 2017). 

Laguna de Medina only dries out in exceptionally arid years, leading to relatively good preservation of 

organic matter. This allowed to radiocarbon date the material of terrestrial origin, thereby bypassing the 

hard water effect. Furthermore, previous studies faced difficulties with radiocarbon dating of bulk 

organic material in carbonate-rich areas, because of the hard water effect (e.g. Höbig et al., 2016).  

 

The results of the age model suggest that most of the 14C ages are reliable (Fig. 3.7). However, the 

resulting age/depth succession is bracketed by a few 14C ages, which obviously are erroneous. This 

includes the 14C dates of samples UBA-32746 (242-244 cm depth), and COL3291 (2048-2050 cm), 

which obviously are too young, in the order of 100 and 2000 years, respectively. The small errors of 

UBA-32746 may for instance be due to bioturbation or penetration of younger roots into older sediments 

(Kaland et al., 1984). The larger error of COL3291 might be due to contamination of younger bacteria 

or humic acids, because the piece of wood was not bleached properly during the preparation (Kaland et 

al., 1984). Too old ages are found in the samples UBA-32743 (447-449 cm), COL3417 (1303-1307 cm), 

and COL3423 (2020-2022 cm), in the order of 5000, 100 and 5000 years, respectively. A too low carbon 

content (280 µm) in sample COL3417 could explain the small error. The larger errors might represent 

the input of reworked organic material from older sediments outside the lake during periods of increased 

catchment erosion (Nambudiri et al., 1980; MacDonald et al., 1991). 

 

 

 
Figure 3.7. Age-depth model for Laguna de Medina. The orange ages represent this study, the green 

ages reflect the ages by Reed et al., 2001. 
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3.7 Interpretation 

 

3.7.1 Comparison with the Reed et al. (2001) record from Laguna de Medina 

This high-resolution record from the Laguna de Medina is not the first sediment core retrieved from this 

lake. Former studies (Reed et al., 2001; Roberts et al., 2008) were focused on the palaeoecological 

changes based on diatoms, pollen and ostracods, and δ18O of ostracods, and covers the last 9,000 years.  

Although retrieved from the same lake, the core Co1313 and the core of Reed et al. (2001) show some 

remarkable differences. Most striking feature between the two sediment records is the difference in 

sedimentation rate. The Reed record is 10 m long, covers the last 9,000 year, and has a constant 

sedimentation rate of 1.1 mm/yr. This in contrast to our core, which is 25.65 m long, and includes the 

last 9,600 years with sedimentation rates varying between 1.1-3.8 mm/yr. The sequence until 2,820 cal 

yr BP has the highest sedimentation rate (3.8 mm/yr). The modern sedimentation rate is around 1.1 

mm/yr (Fig. 3.7). 

According to Reed et al. (2001), the lake has always been relatively shallow. However, sedimentological 

features in our record, as the facies, the laminations, and the sulphur mottles suggest periods of a deep 

lake with anoxic bottom water conditions (Shaw et al., 2002; Ziegenbalg et al., 2010). A possible 

solution for this discrepancy can be found in the genesis of the lake (Fig. 3.6), whose origin was 

controlled by karstic processes (Durán Valsero et al., 2009), leading to a funnel-shaped sinkhole with 

steep margins (Palmquist, 1979). Steep-sided lakes are beneficial to stratification, contributing to a 

dynamic depositional environment with abrupt changes in geochemical and limnological factors, e.g. 

oxic/anoxic conditions at the lake bottom (Renaut and Gierlowski-Kordesch, 2010).  

In lakes with such a hyperboloid morphology (Lehman, 1975), sediment from the littoral zone is 

redeposited in the deeper basin of the lake (Davis, 1968; 1973). Probably, the Reed core was retrieved 

from the margin of the lake, and our core was taken inside of the steep walls of the sinkhole, explaining 

the high sedimentation rate in Co1313 in contrast to the low sedimentation rate of the Reed core.  

In the margins, the sediments are more often exposed to the air, which could cause hiatuses, enhanced 

gypsum precipitation, and bad preservation of organic matter (Meyers and Lallier-Vergès, 1999; Martin-

Puertas et a., 2008; Valero-Garcés et al., 2014). In the Reed core, the gypsum content fluctuated between 

40-90 %, this in contrast to our record, where the gypsum varies between 0-20 %, with only one 

exception to 50 % (Fig. 3.8). The aerial exposure during lower lake levels in the margins, also explains 

the variances in preservation and quality of the pollen and diatoms. In the Reed core, the upper 5 m do 

not contain any diatoms and in the lower 5 m, the diatoms are poorly preserved. The pollen are badly 

preserved in the entire record. This in contrast to the excellent preservation of the diatoms (H. Vossel, 

pers. comm. 2016) and pollen (T. Schröder, pers. comm. 2017) in Co1313. 

Although retrieved from different sites in the lake, the two cores show some striking similarities. The 

salinity, based on the ostracod assemblages (Mezquita et al., 2005), follows the same trend, showing 

two peaks around 7,400 and 6,000 cal yr BP (Fig. 3.8). The highest salinity coincides with the maximum 

lake level. This paradox is found in the Reed core as well, which might be explained by a change in 

ground water regime or due to redissolution of gypsum in the catchment. The coherence between the 

salinity and Ti between 7,870-5,780 cal yr BP suggests enhanced catchment erosion, which increases 

the input of dissolved salts, and gypsum into the lake. The high water table avoids gypsum precipitation, 

which only takes place during desiccation events. In the Reed core, highest gypsum concentrations are 

found during this period, reinforcing the hypothesis this core was retrieved from the margins, which are 

much more sensitive to small lake level fluctuations. 

The sedimentation rates of the two cores vary widely between 9,600-2,820 cal yr BP. Co1313 has a 

fluctuating sedimentation rate between 2.9-3.5 mm/yr. The Reed core has a stable sedimentation rate of 

1.1 mm/yr. From about 2,820 cal yr BP, both of the age models merge and have a relative stable 

sedimentation rate of 1.1 mm/yr towards the top (Fig. 3.7). This suggest, from 2,820 cal yr BP on, the 

sinkhole is completely filled up and the morphology of the lake is more or less equal in both coring sites 

(Lehman, 1975). 



67 

 

3.7.2 Long-term palaeoclimate reconstruction / Long-term depositional history 

The differences in ages between the two records from Laguna de Medina indicate the lake was not 

always as shallow as it is nowadays (Figs. 3.7). The geochemical proxies and the lithofacies confirm 

this hypothesis (Figs. 3.6 and 3.8). Four main limnological units are identified based on shifts in the 

lithofacies, and the mineralogical, elemental, and ecological (ostracods) proxies (Fig. 3.8). 

 

Unit 1: Dry and warm Early Holocene (9,590 – 7,870 cal yr BP) 

Unit 1 reflects the period just after the sinkhole formation, the lake was a deep hole with steep margins, 

and functioned as a new water basin for the precipitation in the catchment. Unit 1 represents a phase of 

moderate waters with rapid fluctuations in salinity, as indicated by the freshwater and mesohaline 

ostracod assemblages- The lake level is relatively low, as indicated by the peaks in C/N ratio, which 

suggest an alternation between lacustrine and terrestrial origin of the organic matter (Meyers, 1997). 

The period is interrupted by one desiccation event around 8,870 cal yr BP, as evidenced by gypsum 

precipitation. The rapid changes in salinity are indicated by the alternation of the ostracod species 

Plesiocypridopsis newtoni, Cyprideis torosa, Darwinula stevensoni and Ilyocypris sp. 

On the southern IP, the Early Holocene (prior to 8,000 cal yr BP) is a warm period with arid conditions, 

associated with an increase in xerophytic, and steppe vegetation (Pantaléon-Cano et al., 2003: Fletcher 

et al., 2007; Schneider et al., 2016), and a drop in lake level (Carrión, 2002; Morellón et al., 2008) 

(Fig. 3.8). The Alboran Sea has a relatively low SST, causing arid conditions on land because of the low 

evaporation quotient (Cacho et al., 2002). Several desiccation events are recognized during this period 

in the Mediterranean region, although the timing is not synchronous, for example in Lake Siles two 

desiccation events at 9,300 and 8,400 cal years BP occurred. 

 

Unit 2: Maximum lake level during the Holocene Climate Optimum (7,870 – 5,780 cal yr BP) 

The start of unit 2 is marked by a strong desiccation event around 7,970 cal yr BP, denoted by gypsum 

precipitation, as well as the onset the laminated sediments. Unit 2 reflects a humid period, with increased 

precipitation, as reflected by the increased terrestrial components (Fig. 3.8). The dominance of facies B 

and C indicate the maximum water level >6 m (Shaw et al., 2002). Diagenetic sulphur spots reinforce 

this argument, indicating anoxic bottom water conditions (Ziegenbalg et al., 2010). Unit 2 is 

characterized by a remarkable shift in ostracod assemblages towards more saline conditions, indicated 

by an increase in Cyprideis torosa, and the occurrence of Loxoconcha elliptica, Leptocythere sp. and 

even foraminifera. Paradoxically, this period represents the maximum lake level and the highest salinity. 

Reed et al. (2001) found this paradox as well, which can either be explained by a change in ground water 

influx, or by redissolution of gypsum and salts in the catchment (see Chapter 3.7.1).  

During this period, the sinkhole is rapidly filled up with sediments, with a sedimentation rate of 

3.5 mm/yr. In comparison with other lakes, e.g. Lake Zonar (1.50 mm/yr), Lake Siles (0.08 mm/yr), 

Laguna de Fuente de Piedra (0.50 mm/yr), and Sierra de Gádor (0.37 mm/yr), the sedimentation rate is 

extremely high in this unit (Carrion, 2002; Carrión et al., 2003; Martín-Puertas et al., 2008; Corella et 

al., 2011; Höbig et al., 2016). Such high sedimentation rates are normally found in estuarine 

environments after the rapid sea level rise, e.g. in the Guadiana estuary in Portugal (Fletcher et al., 2007). 

The high sedimentation rate is caused by the hyperboloid form of the lake, removing sediment from the 

littoral zone to the deepest part of the lake (Davis, 1968; 1973; Lehman, 1975). 

In the Spain, roughly the period between 8,000-5,500 is a humid period, reflecting the Holocene Climate 

Optimum (Fletcher and Zielhofer, 2013). For the core in the margin of Laguna de Medina, Reed et al. 

(2001) found the highest lake levels between 6,320-4,800 cal yr BP based on diatoms, Roberts et al. 

(2008) found a maximum lake level 8,000-6,700 cal yr BP based on stable isotopes. In the Segura 

Mountains in southern Spain, between 7,420-5,300 cal yr BP, a period with increased summer droughts 

and a warm and wet climate is found (Carrión et al., 2010). In the pollen sequences, an increase in 

mesophytic species (Fig. 3.8) is found in Lake Siles (S Spain) and Cañada de la Santa Cruz (S Spain) 

(Carrión et al., 2001b; Carrión, 2002). Interestingly, the new sediment record from Lake Sidi Ali 

(Morocco) is characterized by a long-term lake level low stand from 6,600-5,400 cal yr BP, probably 

induced by a decrease in winter rain (Zielhofer et al., 2016).  
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Unit 3: Lake level shallowing, transition towards more arid conditions (5,780 – 3,750 cal yr BP) 

Unit 3 reflects a period of relatively high lake level >6 m (Shaw et al., 2002), although lower than Unit 

2, indicated by the dominant occurrence of facies B. The salinity dropped and fluctuates, Cyprideis 

torosa disappears. The aragonite, and dolomite concentrations are high, indicating shallower, and 

brackish water. However, the bottom water conditions are still temporarily anoxic, as approved by the 

occurrence of diagenetic sulphur spots (Ziegenbalg et al., 2010).  

During this period, the sinkhole is continuously filled up with a sedimentation rate of 3.2 mm/yr, 

changing the bathymetry of the lake from a lake with steep sides towards a shallow lake. 

In Spain, many lakes show a drop in lake level from about 5,500 cal yr BP. In de Sierra de Gádor (SE 

Spain), maximum lake levels are found (based on pollen) until 5,500 or (based on lacustrine evidences) 

until 5,900 cal yr BP (Carrión et al., 2003). In Lake Siles (S Spain), the maximum lake level is found 

until 5,400 cal yr BP (Carrión, 2002), and in San Rafael (SE Spain) until 5,500 cal yr BP (Yll et al., 

1994). Palynological records from the Algarve coast (S Portugal) show an aridification and a trend 

towards more xerophytic species from 5,000 cal yr BP on (Schneider et al., 2016). The drop in lake level 

is initiated by an aridification trend due to a change towards more positive NAO values (Olsen et al. 

2012). In the Sahara, the African Humid Period ended around 5,500-5,000, resulting in increasing 

aeolian sediment transport, suggesting an aridification (Swezey, 2001; deMenocal et al., 2000; Bard, 

2013). 

 

Unit 4: Dry and warm Late Holocene with increased aridification and desiccation (3,750 cal yr BP – 

today) 

Unit 4 reflects a shallow lake, with periods of desiccation, as indicated by the evaporite mottles in facies 

E (Valero-Garcés et al., 2014). This Unit starts with the disappearance of the laminations and the 

diagenetic sulphur spots. The ostracods suggest a mesohaline lake (Fig. 3.8). 

Many lakes in Spain have indications for several periods of desiccation, although not synchronous, e.g. 

Lake Siles (S Spain) and Lake Zoñar (S Spain) (Carrion, 2002; Martín-Puertas et al., 2008). Lake 

Estanya (N Spain) has an almost continuous low lake level (Morellón et al., 2008, 2011), and pollen 

from Lake Siles, the Sierra Gádor, Villaverde and San Rafeal (all S Spain) indicate xerophytic species 

(Yll et al., 1994; Carrión, 2002; Carrión et al., 2001a; 2003; Pantaléon-Cano et al., 2003). Microcharcoal, 

related to an enhanced fire regime due to droughts, is increased in Lake Siles and Cañada de la Cruz 

(both S Spain) (Carrión et al., 2001; Carrión, 2002). 
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3.7.3 Short-term climate events: Rapid Climate Change 

Research of the Holocene palaeoclimate based on glacier investigations by Denton and Karlén (1973) 

indicated six periods of rapid climate change (RCC): 9,000–8,000, 6,000–5,000, 4,200–3,800, 3,500–

2,500, 1,200–1,000, and 600–150 cal years BP (Mayewski et al., 2004). In the Western Mediterranean 

region, three RCC´s are predominantly recognized, 6,000-5,000, 3,500–2,500, and 600–150 (Fletcher 

and Zielhofer, 2013). Generally, the RCC´s resulted in an aridification, characterized by a lake level 

drop, a change to more arid-tolerant vegetation, and an enhanced fire regime (Carrion, 2002; Fletcher et 

al., 2007; Morales-Molino et al., 2013), at the timing of a SST cooling in the Western Mediterranean 

Sea (e.g. MD95-2043; Cacho et al., 2002). Only the last RCC, at the timing of the LIA, is reflected by 

an increase in humidity. In Laguna de Medina, most of the known Holocene RCC´s are found in the 

record (Fig. 3.8, grey bars). 

Interestingly, well-known climate events as the 8.2, 6.4, and 4.2 ka events are not recognizable in the 

sediment record. These events, coinciding with the Bond events, are best recognizable in the North 

Atlantic region (Bond et al., 1997), although also recognized in Spain. Reed et al. (2001) did found a 

trend towards more desiccation around 7,985 cal yr BP, and linked this to the 8.2 event. However, in 

our record, this period is characterized by a change towards more humid conditions. The reason these 

events were not found in our record is still unclear. Presumably, the lake was too deep and stable during 

these periods, or the deep channel was not sensible enough for these changes. 

Other small events were found in the Medina record. There are desiccation events of gypsum 

precipitation and high salinity at 7,770, 7,660, 7,500, 6,920, 6,870, 6,070, 5,820, and 5,800 cal yr BP, 

as indicated by the Sr/Ca peaks (Martín-Puertas et al., 2010). 

 

RCC I (9,160-7,870 cal yr BP) 
From 9,160-7,870 cal yr BP, repeated pulses of terrestrial organic matter reach the lake, characterizing 

a low lake level due to an arid period (Meyers and Ishiwatari, 1993). One desiccation event occurred 

8,890-8,830 cal yr BP. Arid period I coincides with the RCC 9,000-8,000 cal yr BP. Although not jet 

convincingly found in the Western Mediterranean, in other regions this is a severe event. In the high 

latitudes, this cooling event led to an increase in glaciers, enhanced ice-rafting and strengthened 

atmospheric circulation (Mayewski et al., 2004). Whereas in the low latitudes, this event resulted in a 

period of aridification, e.g. in Africa, where this event resulted low lake levels or desiccation (deMenocal 

et al., 2000; Gasse, 2000). This RCC coincides with an increase in microcharcoal in Lake Siles and 

Cañada de la Cruz (Fig. 3.8) on the IP (Carrión et al., 2001b; Carrión, 2002). A drop in the sea surface 

temperature (SST) is found in the Alboran Sea, resulting in less evapotranspiration leading to arid 

condition on the IP (Cacho et al., 2002). 

 

RCC II (5,780-4,800 cal yr BP) 

This RCC is one of the abrupt climate changes, which is best recognized in the Western Mediterranean 

region (Fletcher and Zielhofer, 2013). It is indicated by the ´cool poles, dry tropics´ pattern, and features 

ice-rafting in the North Atlantic Ocean (Bond et al., 1997; Mayewski et al., 2004).  

In Laguna de Medina, RCC II (5,780-4,800 cal yr BP) initiates the end of the maximum lake level, 

although the lake level was still relatively high after 5,780 cal yr BP. RCC II resulted in the short-term 

disappearance of fresh water ostracods. Four desiccation events are recognizable based on the Sr/Ca 

ratio at 5,800 5,630, 5,520, and 5,320 cal yr BP (Fig. 3.8). 

During this RCC, foraminifera are found between 6,130-4,800 cal yr BP, indicating a highly saline lake. 

The aragonite concentration is highest during this period, reflecting a concentrated brine due to enhanced 

evaporation (Pérez et al., 2002). 

In the Alboran Sea, a drop in SST resulted in a reduction of evaporation, which initiated an aridification 

on land (Cacho et al., 2002). In other regions in the Western Mediterranean, the aridification resulted in 

a drop of lake level, e.g. desiccation of Lake Siles (Carrión, 2002). In Lake Estanya, this resulted in the 

onset towards a long-term drier hydrological regime (Morellón et al., 2011). This RCC event initiated 

the end of the African Humid Period, changing the Saharan desert from a greenly vegetated environment 

to a hyperarid desert (Fontes et al., 1985; deMenocal et al., 2000; Gasse, 2000), and initiates the onset 

to long-term aridification signals over the southern IP (Carrión et al., 2010).  



71 

 

 

RCC III (around 3,750 cal yr BP) 

Evidence for the RCC event between 4,200-3,800 cal yr BP is scarce, especially on the IP (Mayewski 

et al., 2004). Also in Laguna de Medina, this event is not convincing. It is although very likely, RCC III 

initiated the transition from the deep water facies B and C towards more drier conditions with the 

occurrence of the low water facies D and E around 3,750 cal yr BP. The onset in Laguna de Medina 

coincides with a high NAO phase, resulting in more aridity (Olsen et al., 2012). 

In Europe, the effects on glaciers are weak, in comparison with North America (Mayewski et al., 2004), 

but in Africa, enhanced drier conditions are found (Gasse, 2000).   

 

RCC IV (3,150-2,420 cal yr BP) 

The aridification effects of RCC IV (3,150-2,420 cal yr BP) are good recognizable on the IP. Pollen 

records show a decline in forests, indicating a phase of drier, and cooler conditions (Combourieu Nebout 

et al., 2009; Fletcher and Sánchez Goñi, 2008), or even a trend towards more xerophytic species 

(Fletcher et al., 2007). In Laguna de Medina, this event is clearly recognizable in the facies, with the 

transition towards facies E, indicating desiccation, and the increase in gypsum and aragonite between 

3,150-2,420 cal yr BP, reflecting aridification. In Lake Siles, an increase in microcharcoal and a 

desiccation phase was found between 3,500-2,700 cal yr BP (Carrion, 2002). Lake desiccation or a 

significant drop in lake level is also found in other lakes on the IP, e.g. in Lake Zoñar, Laguna de 

Gallocanta, and in the Sierra de Gador (Pérez et al., 2002; Martín-Puertas et al., 2008; Jiménez-Moreno 

and Anderson, 2012). 

 

Roman Warm Period (1,950-1,450 cal yr BP). 

The short arid period occurring 1,950-1,470 cal yr BP coincides with the Roman Warm Period (RWP). 

This arid period is the warmest period in the last 2,000 years. It is characterized by an increase in 

xerophytic vegetation and a drop in lake level (Corella et al., 2011; Moreno, et al., 2012). In Laguna de 

Medina, this period is reflected by the gypsum peak, coinciding with a positive NAO phase (Olsen et 

al., 2012).  

This period is characterized by a high input of Saharan dust, and minor fluvial input in the Algerian-

Balearic basin (Nieto-Moreno et al., 2011). In la Basa de la Mora, an increase in poaceae is indicative 

for the aridification during the RWP (Moreno et al., 2012). 

 

RCC V + Medieval Climate Anomaly (1,264-550 cal yr BP) 

This northern European humid RCC coincides with a predominantly positive NOA phase (Olsen et al., 

2012), which results in aridification on the IP (Wanner et al., 2001; Trigo et al., 2004). This period is 

directly followed by a large hydrological change representing the Medieval Climate Anomaly (MCA) 

from 1,050-650 cal yr BP (Moreno, et al., 2012). 

In Laguna de Medina, it is hard to distinguish the transition between these two arid periods, therefore 

they are described as one period. This arid period is reflected by the occurrence of facies E, an increase 

in gypsum and aragonite, and the peaks in C/N ratio between 1,264-550 cal yr BP. The timing of this 

event is almost synchronous with aridification features in Lake Zoñar, where aridity was found from 

1,350–730 cal yr BP (Martín-Puertas et al., 2008).  

Lower lake levels are also found in northern Spain, in Lake Arreo from 1,060-650 cal yr BP (Corella et 

al., 2013), Estanya Lake from 800-650 cal yr BP (Morellón et al., 2011), Lake Montcortés from 1,260-

490 cal yr BP (Corella et al., 2011), and in Central Spain in Laguna de Taravilla, where the lack of a 

good age model difficult the timing (Valero Garcés et al., 2008). An increase in microcharcoal is found 

in Lake Siles, reflecting arid periods with an enhanced fire regime (Carrión, 2002). 
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RCC VI (600-150 cal yr BP Little Ice Age) 

Subsequently to the MCA, the Little Ice Age (LIA) started. This RCC is the only one that deviates from 

the ´cool poles, dry tropics´ RCC´s. This one is indicated by ´cool poles, wet tropics´ (Mayewski et al., 

2004). The northern regions suffer a temperature drop of 1-3° C (Sousa et al., 2006). Generally, the LIA, 

which induces increased precipitation on the IP, occurred between 650-100 cal yr BP (Moreno et al., 

2012). However, the in the Mediterranean region, the LIA is divided in three main humid periods: 380-

320, 170-150, and 120-80 cal yr BP (Sousa and García-Murillo, 2003).  

In the record of Laguna de Medina, the period after the MCA stays arid with some interruptions of more 

humid phases. Generally, the period between 600-150 cal yr BP coincides with a humid period. The 

LIA starts at 550 cal yr BP. Three humid periods occur around 542-457, 362-324, and after 170 cal yr 

BP. After 170 cal yr BP, it is hard to interpret the proxy data, because the core is extremely water 

saturated, and the XRF data are influenced by the water content, and therefore not reliable. The second 

humid phase in Laguna de Medina coincides perfectly with the first humid phases noticed in southern 

Spanish archives. Both of them occur during negative NAO phases, which resulted in increased 

precipitation (Trigo et al., 2004; Olsen et al., 2012). 
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3.8 Conclusions 

The sediment core Co1313 was retrieved from the deepest part of the Laguna de Medina, in the former 

sinkhole. This gave the opportunity to analyse a high-resolution sediment record, which covers the last 

9,600 years. Supported by the PCA, which shows the differences in origin of the sediments, and the lake 

level fluctuations, a palaeoclimalitogical and –hydrological reconstruction was made. The palaeoclimate 

reconstruction for Laguna de Medina shows the long-term climate evolution of the lake, which can be 

divided into four units. The period prior to 7,870 cal yr BP reflects the warm and dry Early Holocene. 

From 7,870-5,780 cal yr BP, the lake experiences its maximum lake level, with anoxic bottom water 

conditions. In the period until 3,750 cal yr BP, the lake has still a high lake level with anoxic bottom 

water conditions, but an aridification trend, and a transition towards a shallower lake level is already 

recognizable. The period from 3,750 cal yr BP on reflects the arid Late Holocene. The lake is shallow, 

and endured several periods of desiccation.  

Over this long-term trend, several short-term climate changes are recognizable, coinciding the RRC of 

the Mediterranean region. Severe arid RCC are found 9,160-7,870, 5,780-4,800, 3,150-2,420, 1,950-

1,450 (corresponding to the RWP), and 1,264-550 (corresponding to the MCA) cal yr BP. The last RCC 

is the humid period coinciding with the LIA 550-170 cal yr BP. 

The sequence of Laguna de Medina reinforces the connection between global changes in the 

hydrological regime, rapid climate change and NAO dynamics. 
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Laguna Salada during a desiccation event 

Picture by Jasmijn van ´t Hoff 
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4.1 Abstract 

 
The multi-proxy study of a sediment core from Laguna Salada, Cádiz, provides a record of changes in 

climate and humidity of the last 8,500 years in southern Spain, evidenced by three 14C AMS dates. 

The lake originated 8,500 cal yr BP due to collapse of the karstic environment, resulting in a sinkhole. 

This is clearly visible by an increase of coarse grain-sizes between 8,500-8,100 cal yr BP. Maximum 

lake level occurred from 8,500-5,900 cal yr BP, coinciding with the Mid-Holocene climatic optimum. 

This phase ended with an arid phase 5,900-2,500 cal yr BP, reflecting the Late Holocene aridification. 

In the last 2,500 years, the sedimentation rate increased, representing enhanced erosion due to human 

influence. Two humid periods, coinciding with the Iberian Roman Humid Period (2,500-1,100 cal yr 

BP) and the Little Ice Age (750-250 cal yr BP), and an arid period, reflecting the Medieval Climate 

Anomaly (1,100-750 cal yr BP) were found in the sediment sequence. 

The humid, and arid periods are synchronous with the general climate patterns on the Iberian Peninsula 

(IP), triggered by the North Atlantic Oscillation (NAO). 
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4.2 Introduction 

The arid southern Spain is very vulnerable, even for small climatic changes (Giorgi and Lionello, 2008). 

Especially with the focus on the ongoing climate change, climate models predict an aridification of arid 

areas (IPCC, AR5). This will lead to an increase in droughts, a continuing overexploitation of aquifers 

and an increase in water stress. The groundwater discharge already decreased strongly during the last 

century, because of a decrease in precipitation, and an increase in evapotranspiration (Aguilera and 

Murillo, 2009). Overexploiting of these aquifers will lead to more water stress and a higher risk of 

salinization (Puigdefábregas and Mendizabal, 1998). 

Precipitation is decreasing, but on the other hand, heavy rainfalls are likely to become more frequent, 

causing more erosion (Jiménez Cisneros et al., 2014). This will affect semiarid areas, as southern Spain, 

the most. Especially highly cultivated areas are very vulnerable for soil erosion (García-Ruiz, 2010). 

Bussi et al. (2013) show, a single erosion event produced up to 43 % of the total sediments over almost 

20 years.  

 

In southern Spain, small endorheic depressions established during the Late Pleistocene and Early 

Holocene in the karstic and evaporative areas (Valero-Garcés et al., 2014). Many of them are called 

´Salada´, after the high salinity of the lakes (Pardo, 1948). The lakes are shallow, with a brine mainly 

consisting of Cl-SO4-Na-Ca-Mg. During the arid summer months, this results in precipitation of 

gypsum, halite, dolomite and calcite (Dantín, 1942; Schütt, 1998; Martín-Puertas et al., 2011). With the 

focus of the ongoing climate change, the decrease in precipitation, and the increase in evapotranspiration 

will have enormous effects on the small shallow lakes. The period of summer desiccation will increase, 

and possibly, the lakes will eventually desiccate permanently.  

 

One of these small endorheic depressions is Laguna Salada, a shallow lake with a water depth of 0.5 m, 

and annual summer desiccation (Alonso, 1998). This lake is very suitable for palaeoclimate studies, 

since it reacts strongly on aridification trends during the Holocene.  

This study focusses on the effects of climatological changes during the Holocene on a small Spanish 

limnological system. Other papers focus mainly on relatively deep lakes (Pérez-Obiol and Julià, 1994; 

Martín-Puertas et al., 2008), but also the shallow lakes do have a huge potential for palaeoclimate 

reconstruction (Höbig et al., 2016). One of the advantages is, these lakes react on even small climatic 

and hydrological changes. On the other side, this can also be a problem, causing hiatuses. In general, 

these ´Saladas´ make it possible to establish a more detailed overview of the desiccation events of the 

area during the different climatic phases in the Holocene (Pérez et al., 2002).  

 

The palaeoclimatological and -hydrological evolution of Laguna Salada, Cádiz, has been researched by 

studying a 12 m sediment sequence drilled in the centre of the lake. This record, which covers the entire 

limnological history of the lake since its establishment, shows the different arid and humid phases during 

the last 8,500 years. 
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4.3 Study site 

Laguna Salada (36°37´04”N, 06°03´13”W) is a small endorheic lake situated roughly 13 km north from 

Cádiz, southern Spain (Fig. 4.1). The entire complex is a nature reserve since 1989, and Laguna Salada 

is also protected by the Ramsar Convention on Wetland of International Importance (Ramsar, Iran, 

1971). The area is an important area for wintering and nesting water birds, including the endangered 

species Oxyura leucocephala, Fulica cristata and Porphyrio porphyrio (Fernández-Palacios, 1990).  
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Figure 4.1: Maps of the study area. a) Geological map of the surroundings of Laguna Salada, including 

the major stratigraphic units and fault systems (modified after IGME, 1984). The coring location is 

indicated with a red dot and the three lakes are identified with the numbers 1-3. b) Legend for a). c) 

Location of Laguna Salada on the Iberian Peninsula 
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Laguna Salada is the biggest of the three lakes of the natural reserve ´Complejo Endorreico del Puerto 

de Santa María´, which consists furthermore of Laguna Chica and Laguna Juncosa. It is located 28 m 

above sea level (a.s.l.) and has a surface area of 27 ha and a catchment area of 157 ha. Laguna Chica 

and Laguna Juncosa have a surface area of 8 and 4 ha, and a catchment area of 118 and 77 ha, 

respectively. The lakes are mainly fed by rainfall. Lagunas Salada and Chica have a maximum water 

depth of about 0.5 m, and desiccate annually during the arid summer. Laguna Juncosa, mainly due to its 

small size, is temporal, and is only present during periods of heavy rain. The area is surrounded by salt 

cedar (Tamarix spp.), reed (Typha dominguensis), rushes (Juncus acutus), and other xerophytic species 

(Junta de Andalucía, 2003). 

 

Like many other small endorheic basins in southern Spain, Laguna Salada was formed during the Late 

Pleistocene-Early Holocene, due to karstic processes (Valero-Garcés et al., 2014). The catchment 

consists mainly of ´Albarizas´, white marls with diatoms and foraminifera (Calderón and Arana, 1896). 

Patches of conglomerates with oyster and pectinides occur in the southern and eastern catchment 

(IGME, 1984) (Fig. 4.1). 

The climate is a Mediterranean marine climate, with hot and dry summers, and moderate and relatively 

wet winters (Peel et al., 2007). The summer results in a five month water deficit, resulting in annual lake 

desiccation. The average annual precipitation is 613 mm/yr (Rodríguez-Rodríguez et al., 2012). 

 

Laguna Salada is highly saline, with precipitation of clay-gypsum in the arid seasons. The salinity 

depends on the water depth, with high salinities during periods of a low water table. The brine consist 

of Cl-SO4-Na-Ca-Mg ions, the pH fluctuates between 7.4 and 9.3 (Junta de Andalucía, 2003). 

The surrounding areas are heavily used for agriculture, mainly vineyards. This leads to an increase in 

erosion and the enhanced silting up of the lakes. Laguna Salada is also used as supply sources for 

irrigation water. 
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4.4 Material and methods 

Field work 

The cores were retrieved in 1 m long sections from two parallel sediment cores (LS1 and LS2) from the 

centre of the desiccated lake in September 2014 with a cobra drill hammer. Post-recovery, the cores 

were stored dark and dry. 

 

Analytical work 

In the laboratories of the University of Cologne, the cores were halved lengthwise and described. 

Subsequently, the cores were photographed and scanned with a 2 mm resolution (settings: 50 kV, 38 Ma, 

10 s) at a XRF scanner (ITRAX X-Ray Fluorescence from COX Analytical Systems), using Cr-tubes 

(Davies et al., 2015).  

To reduce noise, XRF data were smoothed using a 5-pt running mean. Correlation of the sections was 

done optically, and based on the Ca and S results from the XRF scanning, leading to a composite core 

of 12 m length. 

 

For the analytical work, the composite core was firstly sampled at intervals of 6 cm. Secondly, the 

samples were freeze-dried, and subsequently, the bulk sediment samples were split into three aliquots 

for different measurements.  

For the grain-size analyses, the pretreatment of the 55 samples was done following van ’t Hoff et al. 

(2017). Each sample was measured three times in 116 classes in a range between 0.04 and 2000 µm 

using the Laser Particle Size Analyser LS 13320 (Beckman Coulter Corp.), and the Frauenhofer optical 

model. The grain-size distributions were calculated using GRADISTAT (Blott and Pye, 2001). 

To analyse the geochemical composition, 176 samples were ground to <63 µm. The analyses of total 

inorganic carbon (TIC), and total organic carbon (TOC) were conducted on 35 mg of sediment mixed 

with 10 g distilled water on a Dimatoc 2000 (Dimatec Corp.).  

The contents of total nitrogen (TN) and total sulphur (TS) were measured on 5 mg sample with a vario 

Micro cube (Elementar Corp.) 

 

The principal component analysis (PCA) was conducted with PAST (Hammer et al., 2001), based on 

the XRF, TOC, TIC, TS, and TN data of 53 samples.  

 

Radiocarbon dating  

Radiocarbon analysis of three samples was performed on terrestrial plant material to exclude the hard 

water effect. The datings were conducted by Beta Analytic (Miami, USA), using Accelerator Mass 

Spectrometry (AMS). The 14C dates were calibrated using the INT-Cal04 curve (Reimer et al., 2013). 

The age model was conducted by linear interpolation between the age points, assuming a constant 

sedimentation rate between the age points.  
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4.5 Results and Discussion 

4.5.1 Chronology 

The age model for Laguna Salada is a chronology for the last 8,500 years (Fig. 4.2), based on three AMS 
14C ages (Tab. 4.1), which were obtained on terrestrial organic matter. The year of the coring campaign 

(2014) was taken as the date of the sediment–water interface. The δ13C values of the three samples vary 

between -24 to -20 ‰, indicating a terrestrial origin of the organic material (Meyers and Ishiwatari, 

1993).  

 

 

Table 4.1: Radiocarbon ages of terrestrial plant material samples from Laguna Salada (ages calibrated 

using INT-Cal04 (Reimer et al., 2013)). 

 

 

Small lakes often cause problems concerning the creation of the age model (Höbig et al., 2016). 

Preservation of the organic matter is depending on presence of a permanent water body (Meyers and 

Lallier-Vergès, 1999). In small lakes with annual desiccation, like the ´Lagunas´ in southern Spain, the 

TOC content is often very low, making it difficult to pick a reliable amount of terrestrial organic matter.  

Arid periods with prolonged permanent desiccation cause problems concerning the chronological 

interpolation (Rodó et al., 2002). In Laguna Salada (Cádiz), with the exception of the section 12.00-

8.50 m, the TOC is <1 %. The lack of organic matter causes the low-resolution age model. 

Laguna Salada (Campillos), a small saline lake in SE Spain, is one of the examples for a ´Laguna´ 

dealing with difficulties to obtain a reliable chronology (Schröder et al., in review). In this lake, the 

partial lack of organic matter, and the occurrence of several hiatuses difficult the interpretation of the 

sediments based on an age model.  

Several processes in the lake influence the ages of the obtained organic matter. Bioturbation and root 

penetration may make dates younger, while catchment erosion may increase the ages (Kaland et al., 

1984). Although it is hard to test the reliability of the age model on only three dates, the age model 

seems reliable, with increasing ages with increasing depths. However, the ages should be used with 

caution. 

 

Lab sample  

Label 
 

 

Depth (cm) 
 

age (y) 

uncalibrated 

 

+-(y) 
 

age (y) 

calibrated 

 

δ13C 
 

Sample mat. 

 

Surface 
 

 

0 
 

Sept. 2014 
 

1 
 

-64.7 
 

- 
 

reference 

Beta – 445440 
 

6.02-6.04 2,420 30 2,498 -23.1 Plant material 

Beta – 429887 
 

9.72-9.74 6,750 
 

30 
 

7,678 -23.4 Plant material 

Beta – 429888 
 

10.92-10.93 7,390 40 8,280 -20.6 
 

Plant material 
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4.5.2 Sedimentation rate  

The sedimentation rate varies throughout the core (Fig. 4.2). The section 12.00-11.40 m is not included 

in the sedimentation rates, because these sediments reflect the weathered bedrock.  

The lower part (11.40-9.72 m), which coincides with the origin of the lake, has a sedimentation rate of 

1.8 mm/yr. The relatively high sedimentation rate might be a consequence of the instability just after 

the collapse of the karstic environment, resulting in a sinkhole.  

The middle part (9.72-6.02 m) has a low sedimentation rate of 0.7 mm/yr. Low sedimentation rates 

during arid periods is linked to aridity in Lake Salines, where Burjachs et al. (2016) presume erosion or 

deflation as the cause for the low sedimentation rates. Sedimentation rates are often low during lake 

level low stand or desiccation, because of erosion (deflation due to wind action), and the lesser amounts 

of accumulated sediments (Rodó et al., 2002; Cohen, 2003; Hupy, 2004; Magny et al., 2007). Long 

periods of desiccation increases the problems of chronological interpolation, causing hiatuses (Rodó et 

al., 2002). 

In the upper six meters (upper 2,500 cal yr BP), the sedimentation rate increases to 2.3 mm/yr. Since the 

Roman Period (~2,000 cal yr BP), increased human activity is found on the IP, often associated with 

deforestation, enhanced erosion, silting up of lakes, and farming expansion (García-Ruiz, 2010; Moreno 

et al., 2011). This high sedimentation rate is probably the result of the intensification of the agricultural 

areas in the surrounding of the lake (Carrión, et al., 2003). Modern studies showed the lake is silting 

because of heavy agricultural use (Junta de Andalucía, 2003). 

 

 

 
Figure 4.2: Age-depth model of calibrated radiocarbon ages (Reimer et al., 2013) for Laguna Salada 

based on linear interpolation. 
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4.5.3 PCA: Origin of allochthonous and autochthonous sediment components 

To explain the dependency relationship of the different proxies, a PCA was conducted (Hammer et al., 

2001). The first three principal components (PC) of the PCA explain 57.3, 15.2, and 9.8 % of the data, 

respectively (Fig. 4.3). The outcome of the data points plots within the 95% confidence ellipse.  

The PCA plot shows elemental and geochemical data, and can be divided into four different components. 

The organic component consists of TOC and TN, and is mainly explained by positive loading of PC3 

(not shown). The carbonate component is characterized by the elements Sr, Ca, and the TIC, and has 

positive loadings of both PC1 and PC2. The evaporite component only consists of TS and has negative 

loadings of both PC1 and PC2. The terrestrial component includes the elements Si, Al, K, Ti, Fe, and 

Rb. This component has positive loadings for PC1 and negative to slightly positive loadings for PC2.  

 

 
Figure 4.3: Outcome and interpretation of the Principal Component Analysis. 

 

The terrestrial component reflects the input of sediment from outside of the lake, and is often used as an 

indicator for high lake level (Giralt and Juliá, 2003; Martín-Puertas et al., 2011). However, the 

surrounding geology of this lake is overprinted by carbonates (Fig. 4.2), difficulting the interpretation 

of the terrestrial component, because it is overprinted by the carbonate component. Maxima of the 

terrestrial component might be caused by the dilution effect by the carbonate component. During humid 

periods, erosion leads to an increase of the carbonate component, overprinting input of the terrestrial 

component. The carbonate component is also partly from terrestrial origin, but a differentiation between 

authigenous and terrigenous influence cannot be made based on the PCA.  

 

The evaporite component reflects gypsum precipitation, and is relatively low throughout the core. 

Gypsum is not abundant in the catchment, only in the east some patches of gypsum occur (Fig. 4.2). The 

influence of gypsum via groundwater is low, the lake is mainly fed by rainwater (Junta de Andalucía, 

2003). However, the influence of groundwater cannot be neglected during the initial phase of the lake. 

The collapse of the sinkhole probably caused a shift in the hydrological settings in the surroundings of 

the lake, resulting in a slightly increased evaporite component.  

 

Interestingly, Sr plots closely to TIC, and Ca. In saline lakes, Sr is often a good indicator for 

palaeosalinity, due to the exchange of Sr for Ca under saline conditions (Dodd and Crisp, 1982; 

Santisteban et al., 2016), and plots closely to TS. In this case, the high amount of carbonates in 
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comparison to gypsum overprinted the signal of Sr in the gypsum. The S/Al ratio in this lake is much 

lower as in other saline lakes, like e.g. Laguna de Medina (Chapter 3).  

 

Based on the PCA, following proxies were selected to reflect the geochemical variability in the Salada 

record (Fig. 4.4). For the organic component, both TOC and TN contents are shown, extended with the 

C/N ratio, which allows to divide the organic matter from a terrestrial, and a limnological origin (Meyers 

and Ishiwatari, 1993). The Ca/Ti ratio, and the TIC concentration reflect the periods of high carbonate 

precipitation, and low terrestrial input (Corella et al., 2013). Ti indicates periods with enhanced 

terrestrial input (Boës et al., 2011). The S/Al ratio represents the evaporite component, reflecting periods 

of gypsum precipitation due to a low lake level of entire desiccation (Roca and Julià, 1997). 

 

5.5.4 Palaeoclimatological / Palaeohydrological reconstruction 

The sediment record of Laguna Salada covers the entire lacustrine history of the lake, starting in the 

weathered bedrock. Based on the lithology (Tab. 4.2), sedimentology, geochemical and granulometric 

results, the sequence can be divided into six phases of different palaeoclimatological and –hydrological 

periods (Fig. 4.4), and is compared with archives form the IP (Fig. 4.5). 

 

 Table 4.2: Lithostratigraphic description and interpretation for Laguna Salada 
 

 

Depth (cm) 
 

 

Lithology 
 

Interpretation 

Based in the facies classification of 

Valero-Garcés et al., 2014 
 

 

0-36 
 

Dark grey organic-rich clayey silts with 

evaporative mottles (green, yellow, 

white), and gypsum nodules 

 

Palustrine-Littoral: Deposited in shallow 

or desiccated environment.  

Periods of subaerial exposure and 

evaporite formation. 

 

36-270 Light to dark brown clayey silts with 

traces of bioturbation, evaporite mottling 

and gypsum nodules. The mottles are 

green, yellow and white, with gypsum 

grains. 180-200 cm: Dark grey clayey 

silts with fragments of shells. 

 

Littoral: Deposited in shallow or 

desiccated environment.  

Periods of subaerial exposure and 

evaporite formation. 

270-633 Light brown clayey silts with less green 

mottles and some dark brown bands and 

shells fragments (bivalves). 

 

Sub-Littoral: Deposited in a moderate 

deep environment (dark bands and shells), 

with a few periods of shallowing (mottles). 

633-971 Massive dark grey clayey silts with traces 

of bioturbation and evaporite mottles 

 

Littoral: Deposited in a shallow 

environment with periods of desiccation. 

971-1134 Dark grey sandy silts with many shell 

fragments (bivalves) and a high 

component of organic matter  

 

Distal: Deposited in a deep environment, 

with a permanent water body. 

1134-1200 
 

Yellow-beige carbonate-rich silt. No 

lacustrine sediments anymore 

Substratum: No lacustrine deposits, this 

is weathered bedrock. 
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I: Stable landscape prior to 8,500 cal yr BP (12.00-11.40 m) 

The landscape was presumably stable prior to 8,500 cal yr BP. The sequence starts in the weathered 

bedrock, consisting of yellow-beige sediments, which are silt dominated (80 %), with a small sand 

content (9 %). The weathered bedrock is completely different in colour, and composition from the rest 

of the core (Tab. 4.2). The mean grain-size is 21 µm. The terrestrial component is relatively high, 

reflecting the influence of weathering on the original bedrock. The carbonate content is high, with a low 

gypsum content. TOC (<0.50 %) and TN (0.02 %) are low. The C/N ratio is high, indicating a terrestrial 

origin of the accumulated organic matter in the weathered bedrock (Meyers and Ishiwatari, 1993). 

 

II: Collapse of the sinkhole 8,500-8,100 cal yr BP (11.40-10.50 m) 

The stable phase ends abruptly with the collapse of the karstic environment, resulting in a sinkhole, and 

the onset of the lacustrine environment. The sediments are sandy silts with a high organic component, 

and many shell fragments (bivalves), reflecting a period of a relatively deep lake (Moreno et al., 2011; 

Valero-Garcés et al., 2014). The onset of the collapse of the sinkhole is clearly reflected in the grain-

size distribution by the input of sand (up to 82 %). The mean grain-size fluctuates between 21-163 µm. 

The sedimentation rate is with 1.8 mm/yr relatively high, induced by the coarse grain-size, and the 

instability of the steep walls. Ti and Ca/Ti show the same strong fluctuations, reflecting the instable 

character of the sinkhole just after its collapse with some pulses of increased terrestrial material and 

carbonates (Corella et al., 2013). The C/N ratio, which varies between 7-12, reflects a lacustrine origin 

of the organic matter (Meyers and Ishiwatari, 1993). The increased TOC and TN are likely a result of 

better preservation due to the increased water table (Meyers and Lallier-Vergès, 1999).  

 

 
Fig. 4.4: Lithology, geochemical and granulometric data for Laguna Salada, as well as the different 

phases. Arid phases are indicated by light grey bars. The substratum is indicated by a dark grey bar. 

Valid calibrated AMS data are also indicated 
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III: Initial phase of the lake 8,100-5,900 cal yr BP (11.40-8.52 m)  

After the stabilization of the walls of the sinkhole, there is no more input of sand, and the grain-size 

distribution becomes relatively stable. The sediments are now dominated by silt (70-90 %) and clay (10-

30 %). The organic component is most dominant during this humid period (Fig. 4.4), reflecting the initial 

phase of the lake. The high water level induces the good preservation of organic matter (Meyers and 

Lallier-Vergès, 1999). During this lacustrine period, characterized by the low C/N ratio (Meyers and 

Ishiwatari, 1993), the TOC (max. 2.40 %)  and TN (max. 0.25 %) are high and slowly decreasing. This 

indicates either a drop in productivity or in preservation of the organic matter (Meyers and Lallier-

Vergès, 1999), reflecting a decreasing humidity (Moreno et al., 2011). 

This humid phase coincides with the Middle Holocene humidity maximum (roughly between 8,000-

5,500 cal yr BP). this humid period was clearly reflected in the Saharan vegetation records, reflecting 

aperiod in which the Saharan desert turned ´green´ (Gasse et al., 1990). This period with a warm and 

moist climate is reflected by the maximum lake level in e.g. Lake Siles, Lake Gallocanta, Laguna de 

Medina, and a lacustrine deposit in the Sierra de Gádor (Reed et al., 2001; Carrion, 2002; Carrión et al., 

2003; Luzón et al., 2007; Roberts et al., 2008). In the fluvial system of the Guadalete River, soil 

development due to preservation by a continuous vegetation cover reflects this humid phase between 

8,000 and until 6,000 cal yr BP (Wolf et al., 2014). 
 

IV: Late Holocene aridification 5,900-2,500 cal yr BP (8.52-6.06 m)  

Around 5,900 cal yr BP, the permanent lake changes into a semi-permanent lake. This is best reflected 

in the C/N ratio, which varies between 9-60, representing pulses of lacustrine and terrestrial input of 

organic matter (Meyers and Ishiwatari, 1993). During this arid period, the lake level is unstable, with 

several desiccation events. This is an unfavourable environment for the preservation of organic matter, 

resulting in a low organic component. TOC is further decreasing, whereas TN varies a lot. Peaks in S/Al 

reflect increased gypsum precipitation during periods of desiccation (Celia Martín-Puertas et al., 2008). 

Ca/Ti is relatively stable and Ti is slightly increasing, reflecting an increase in terrestrial input.  

The Late Holocene is a period of progressive aridification, although the onset is not synchronous on the 

IP (Fletcher and Zielhofer, 2013). The timing and the intensity are still in debate, since records show a 

complex system with several arid and humid periods (Morellón et al., 2008). The onset from a humid to 

an arid phase is around 5,500-5,000 cal yr BP, and coincides with a change towards more positive NAO 

values (Sánchez Goñi et al., 2002; Moreno et al., 2012; Olsen et al., 2012). Low lake levels and 

desiccation are found all over the IP, e.g. in Laguna de Medina, Lake Siles, Lake Zoñar, and Lake 

Gallocanta (Reed et al., 2001; Carrion, 2002; Luzón et al., 2007; Martín-Puertas et al., 2008; Morellón 

et al., 2008). In the Guadalete fluvial system, the arid period occurred between 4,300-2,400 cal yr BP is 

indicated by landscape stability due to a low sediment supply (Wolf et al., 2014). In north Africa, lowest 

lake levels were found from 6,000 cal yr BP on (Lamb et al., 1999). 

 

V: Iberian Roman Humid Period; 2,500-1,100 cal yr BP (6.06-2.88 m) 

After the unstable period with desiccation events, the lake stabilizes, and has a constant water table. 

TOC (<0.50 %) and TN (<0.03 %) are low, and the C/N ratio indicates a lacustrine phase with some 

small inputs of terrestrial organic material (Meyers and Ishiwatari, 1993). Ti is generally low, but 

indicates some pulses of enhanced terrestrial input. Also in the Montcortés Lake (N Spain), a low input 

of terrestrial components characterize this humid period (Corella et al., 2011). The TS (<0.10 %) and 

S/Al are low and stable, indicating a permanent water table (Martín-Puertas et al., 2008). TIC is 

relatively high, reflecting enhanced carbonate precipitation due to a higher water table, or enhanced 

dissolution of the adjacent carbonates in the catchment due to enhanced precipitation (Roca and Julià, 

1997).  

This humid period 2,500-1,100 cal yr BP coincides with the overall more humid period on the IP, the 

Iberian Roman Humid Period (Moreno et al., 2012). This humid period was found in Lake Zoñar 

(S Spain), the Basa de la Mora sequence (SE Spain), in the Somolinos tufa lake record (C Spain), and 

in Montcórtes Lake (N Spain) (Martín-Puertas et al., 2009; Corella et al., 2011; Currás et al., 2012; 

Pérez-Sanz et al., 2013). Some lakes in north Africa show a humid period with high lake levels, e.g. 

Lake Sidi Ali (Morocco) (Lamb et al., 1999). 
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VI: Aridification /Desiccation 1,100 cal yr BP-now (2.88 m-top) 

The second arid period (VIa; 1,100-750 cal yr BP) in the Laguna Salada matches the Medieval Climate 

Anomaly (1,500-650 cal yr BP; Moreno, et al., 2012). The lake changes from a permanent lake to a 

temporary lake. The increased gypsum precipitation, which is reflected by the TS content and S/Al ratio, 

represents a desiccated period. Desiccation is increasing towards the top of the record (VIc). The modern 

lake is known to desiccate annually. The terrestrial component is high during this phase, presumably an 

anthropogenic effect of increased erosion of the agricultural areas during the wet winter periods (Boës 

et al. 2011; Bussi et al., 2013). This is reinforced by the high sedimentation rate of 2.3 mm/yr.  

This progressive aridification is interrupted by a short relatively humid phase (VIb: 750-250 cal yr), 

without gypsum precipitation (low S/Al ratio). The age model of the Salada is not good enough for an 

evident comparison. However, the timing suggests this humid period could be the LIA, found 650-100 

cal yr BP (Sousa and García-Murillo, 2003). The LIA is known as a generally cold and humid period 

with stronger climatic variability (Valero Garcés et al., 2008; Moreno et al., 2012). A switch towards 

more negative NAO values resulted in heavy rainfall (Olsen et al., 2012). This is noted by relatively 

high lake levels, e.g. in Lake Zoñar (Martín-Puertas et al., 2008, 2009), and an intensive period of 

sedimentation in the Guadalete fluvial system (Wolf et al., 2014). 

 

 

 

 

 
Fig. 4.5: Summary of the Holocene arid (grey bars), and humid periods in Laguna Salada, and a 

compilation of palaeoclimatological archives from southern Iberia. Titanium, C/N, and S/Al from 

Laguna Salada compared with the mesophytic and xerophytic pollen percentages from Lake Siles 

(Carrion, 2002), pollen percentages of Quercus and xerophytes from the Lower Guadiana Basin 

(Fletcher et al., 2007), periods of floodplain stability and aggradation of the Guadalete River (Wolf et 

al., 2014). 
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4.6 Conclusions 

Palaeoclimate reconstruction for the Laguna Salada represents the entire limnological history of the lake, 

reflecting humid and arid periods. The lake developed due to collapse of the karstic system, resulting in 

a sinkhole around 8,500 cal yr BP. The limnological history of the lake can be divided into six 

palaeohydrological periods. The period prior to 8,500 cal yr BP reflects a stable landscape, before the 

establishment of the lake. The lake originated 8,500-8,100 cal yr BP, as the result of collapse. The 

sinkhole was rapidly filled up with water during the humid period 8,100-5,900 cal yr BP. This period is 

characterized by the maximum lake level, synchronous with the Mid-Holocene Climate Optimum. The 

arid period from 5,900 cal yr BP - today reflects the onset of the Late Holocene aridification. This 

progressive aridification is disrupted by two humid periods. The Iberian Roman Humid Period (2,500-

1,100 cal yr BP), and the Little Ice Age (750-250 cal yr BP). The arid period (1,100-750 cal yr BP) 

intermitting these humid periods coincides with the Medieval Climate Anomaly. The last 300 years 

(from 250 cal yr BP) reflect the modern arid times, with annually desiccation of the lake.  

Despite the chronological uncertainties due to the poor amount of fixed age points, the 

palaeoclimatological trends of the Laguna Salada are in trend with the climatic development across 

southern Iberia, and contribute to a better understanding of the Holocene climate variability.  
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Laguna de Medina and the platform 

Picture by Florian Steiniger 
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Chapter 5 

Synthesis 
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5.1 Synthesis 

Terrestrial palaeoclimate archives are sparse in southern Spain, and reconstructions are mainly based on 

distal low-resolution marine records. The principle aim of this thesis was to obtain a reliable 

reconstruction for the development of Holocene climate in southern Spain based on lacustrine archives. 

Due to the scarcity of deep natural lakes, two shallow saline lakes (´Salinas´) were cored during two 

coring campaigns: Laguna de Medina and Laguna Salada.  

Several questions came up during this thesis, in this chapter, these questions are answered. 

 

5.1.1 How do the modern processes help to unravel the palaeoprocesses? 

For a better understanding of the modern processes, a study was performed on lake surface sediment 

and soil catchment samples of the Laguna de Medina. Based on the geochemical, mineralogical, and 

granulometric data, the lake was divided into six different provinces with different influences. Some 

interesting and helpful conclusions for the interpretation of the long sediment record were obtained (van 

’t Hoff et al., 2017). 

 

In the modern situation, sand does not reach the coring site, and is only deposited within 200 m from 

shores. Thus, the absence of sand in the long core implies that the coring position was always distant to 

the lakeshores, and does not reflect a climatic signal. Moreover, the modern sediments contain terrestrial 

components (K, Al, Fe, Ti, Mg, and Rb). These sediments are brought into the lake via the most 

important inlet, the Arroyo de Fuente Bermejo in the southeastern part of the lake. This inlet is dry 

during summer months, and arid periods. Increased terrestrial input in the long record indicates enhanced 

catchment erosion, and a more sufficient fluvial supply due to enhanced precipitation.  

The modern samples contain a high calcite content, which is delivered to the lake by dissolution of the 

adjacent ´capas rojas´, a series of marlstones and limestones. This finding from the modern samples is 

in particular important, since calcite is often interpreted as authigenoc bioproduction. Based on the 

analogue study, however, it became clear that increased carbonate content in the long core is rather 

attributed to enhanced erosion due to increased precipitation, than being a signal of increased 

productivity. The PCA of the long sediment sequence of Laguna de Medina shows an increased 

carbonate content during periods of relatively high lake levels, reflecting increased erosion and 

dissolution of the ´capas rojas´ during high lake levels.  

Gypsum in the modern samples is restricted to the eastern part of the lake. Probably, the ions from 

dissolved Triassic gypsum from the catchment are brought into the lake by upwelling groundwater. 

Another source for gypsum into the lake is the weathering and dissolution of the Keuper facies, which 

is directly brought into the lake via surface water. Based on this finding, and increase in salinity in the 

record can be caused by a change in ground water regime, enhanced weathering of the Keuper facies 

(enhanced precipitation), or result from desiccation of the lake (enhanced evapotranspiration). Increased 

gypsum precipitation is restricted to the arid period (Stein et al., 1997). 

In the centre of the lake, at the location of core Co1313, distal background sedimentation occurs. The 

sediments consist mainly of silt and clay, and contain a mixture of the other components. Entangling the 

sediments of the long record will prove when the influence of which modern province was dominating 

the sediments. 

 

The study focused on the lake surface sediment and soil catchment samples in Laguna de Medina 

delivered a modern analogue for the interpretation of the long sediment sequence from deepest part of 

the lake.  
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5.1.2 How can we obtain a reliable age model? 

Laguna de Medina is a semi-permanent lake, which desiccates only during very arid years. Laguna 

Salada is a temporal lake, and desiccates annually. Due to the shallowness of the lakes, both react very 

sensitive on even small climate changes (Giorgi and Lionello, 2008). However, such shallow saline 

basins are insufficient environments for the preservation of organic matter (Meyers and Lallier-Vergès, 

1999). 

Obtaining reliable chronologies is a challenging task in many saline archives (Santiago Giralt et al., 

1999; Höbig et al., 2012, Schröder et al., in review). Desiccation phases may result in the loss of organic 

matter (Meyers and Lallier-Vergès, 1999). Many processes result in a shift to older ages, as the input of 

reworked catchment material during erosion phases, or the hard water effect (Eichinger, 1983; Valero-

Garcés et al., 2000). Other processes, like root penetration, bioturbation or the influence of younger 

humic acids (the result of not properly bleaching the samples before the measurements) result in a shift 

towards younger ages (Kaland et al., 1984).  

The TOC content varies around 1.5-2.5 % in Laguna de Medina, which was enough to pick a reliable 

amount of terrestrial organic matter for radiocarbon dating. Terrestrial organic matter was picked to 

bypass the hard water effect (Eichinger, 1983). Twenty samples were radiocarbon dated. Most of the 

dates seemed reliable, providing a consistent age-depth relationship. However, five of the samples 

seemed erroneously, by producing age reversals. Two of the dates had a significant younger age, which 

could only be explained by bioturbation or the contamination of humic acids (Kaland et al., 1984). Three 

dates had a significant older age, this could be explained by the input of reworked material (Kaland et 

al., 1984). More in Chapter 3.6.3. 

For Laguna Salada, sampling of suitable organic material for radiocarbon dating was very hard, and 

failed in the upper 8 m, where the TOC <1 % already reflected the wide lack of organic matter. Only 

the part from 11.30-9.00 m contains 1.5-2.5 % organic carbon, allowing to pick a sufficient amount of 

organic matter. Therefore, the age-depth model for Laguna Salada relies only on three radiocarbon dates. 

This makes is impossible to control whether these ages are reliable, or contain (small) errors. Likewise, 

for another Laguna Salada (Campillos), organic remains suitable for radiocarbon dating were sparse. 

This small saline lake in SW Spain desiccates annually, resulting in a low organic carbon content, and 

the hiatuses difficult the interpretation of the dates (Schröder, in review).  

 

To obtain a reliable age-model in the future, some proposals to improve the current age-model with 

different techniques are listed: 

An approach to improve this age model with additional dates, is to date shells or snails parallel to the 

existing ages obtained from organic matter. The parallel dating enables the calculation of the hard water 

effect on the shells or snails. This was already effectively used by Reed et al. (2001) to bypass the hard 

water effect. Knowing the calculated hard water effect for this lake gives the opportunity to date more 

shell fragments or snails from other parts of the record, and subtract the hard water effect on the newly 

obtained ages to improve the chronology. 

Another method to obtain a chronology on only small amounts of organic matter is to date pollen grains. 

This is a better method than dating bulk sediment, especially in limestone-rich settings due to the hard 

water effect (Brown et al., 1989). Attempts to date pollen in Laguna Salada (Campillos) failed due to 

the absence of pollen. Future studies have to demonstrate whether pollen are sufficient present in the 

record for Laguna Salada (Cádiz).  

For new studies in such shallow saline environments, it is recommended to core the sedimentary 

sequences with black liners to avoid interaction of sun light with the minerals. This allows optically 

stimulated luminescence (OSL) dating to determine the age of burial (sedimentation) using the quartz 

or feldspars in the record. This technique is very well suited for Holocene sediments (Aitken, 1998). 

Another method that can be very useful in small saline lakes is palaeomagnetic analysis of the sediments. 

Especially for older (>100ka) records, polarity change gives robust reliable dates. But also for shorter 

records, proxies for the strength and direction of the Earth's magnetic field can be correlated to reference 

records, available for the past 700 ka (Constable & Korte, 2015).  
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 5.1.3 What are good proxies to reconstruct the palaeoclimatological conditions 

in saline environments? 

Saline limnological environments like Laguna de Medina and Laguna Salada contain typically a brine 

of Ca-Na-Mg-Cl-SO4, resulting in gypsum precipitation (Eugster and Hardie, 1978). Enhanced gypsum 

precipitation during arid phases and lake desiccation is found in many salt lakes over the world (Pérez 

et al., 2002; Torfstein et al., 2008; Pérez-Sanz et al., 2013). The typical evaporation cycle in a saline 

lake starts with gypsum precipitation. An increase in water level results in the redissolution of the 

gypsum crust, and dolomite and aragonite precipitate. The input of enhanced fresh water will lead to 

carbonate precipitation, and in the end to the input of terrestrial components (Roca and Julià, 1997; 

Giralt and Juliá, 2003; Martín-Puertas et al., 2011). 

The principal component analysis (PCA) based on the geochemical, mineralogical data, and the 

magnetic susceptibility of 111 samples from Laguna de Medina reflects these four stages very well. 

Gypsum (or TS content) is very suitable to reconstruct desiccation events in the Holocene, and 

functioned in Laguna de Medina and Laguna Salada very well. The gypsum concentration (or TS 

content) was significantly higher in Laguna de Medina during arid periods. The precipitation of gypsum 

is a complex system with influences of the climate, geology, ground water, and dissolution processes. 

However, the precipitation of gypsum is restricted to arid periods, and a good indicator for aridification 

events in the Holocene (Torfstein et al., 2008; Martín-Puertas et al., 2011). 

Periods of a high water level disable the precipitation of gypsum during humid periods (Torfstein et al., 

2008). The analysis of the lake surface sediment, and soil catchment samples of Laguna de Medina 

indicates an area of enhanced gypsum precipitation in the lake, probably due to enhanced upwelling of 

gypsum-ion-rich ground water.  

Laguna Salada, although desiccating every year, does only show a small increase in gypsum during arid 

events. The main difference between these two lakes is the surrounding geology. Both lakes are situated 

in a karstic and evaporitic catchment, consisting of carbonates, marls, Keuper facies, and gypsum. The 

catchment of Laguna Salada consist mainly of carbonates, the ‘alborizas’. Keuper facies and gypsum 

only occur in small patches in the catchment (IGME, 1984). 

Aragonite turned out to be a good indicator for the start of aridification of the Late Holocene in Laguna 

de Medina, and was also used to reflect arid periods of RCC. The carbonate content (characterized by 

calcite precipitation) was more complex to interpret, because of the carbonate-rich catchments for both 

of the lakes. However, in general, the higher carbonate content reflects enhanced erosion, and dissolution 

during a high lake level (Giralt et al., 1999; Martín-Puertas et al., 2011). The terrestrial component 

(characterized by K, Al, Fe, Ti, Mg, and Rb) reflects the periods of increased fluvial activity due to 

enhanced precipitation, and coincides with a high lake level. In Laguna de Medina, the increased 

terrestrial component reflects very well the maximum lake level.  

Other proxies that were used in this thesis are the Sr/Ca ratio and the C/N ratio. The Sr/Ca ratio is often 

used in saline environments to reconstruct the salinity (Dodd and Crisp, 1982), because Sr exchanges 

for Ca under very arid or saline conditions (Santisteban et al., 2016). For the Laguna de Medina, this 

proxy clearly reflects the desiccation. In Laguna Salada, this proxy was not applicable. The carbonate 

content (Ca) dominated the sequence, Sr was only available in very small intensities. The PCA reflected 

this very well, by a cluster of carbonates and Sr in the one corner, and the TS in the other corner.  

The C/N ratio was very useful to interpret the origin of the organic matter in the sediment cores. This 

ratio clearly differentiated between periods of enhanced organic matter from terrestrial origin, reflecting 

lake level low stands, and periods with organic matter from lacustrine origin (algae), characterizing for 

periods with lake level high stands (Meyers and Ishiwatari, 1993). 

The salinity, in Laguna de Medina based on the occurrence of ostracod assemblages (Mezquita et al., 

2005), gave insight in an interesting paradox. The period with the maximum lake levels correlates with 

the maximum salinity. With the use of other proxies (e.g. Ti), the hypothesis is that increased salinity is 

a result of enhanced weathering and dissolution in the catchment (consisting of gypsum-rich Keuper 

facies), delivering dissolved evaporites into the lake. The highly concentrated brine led to an increase in 

salinity, but the high lake level disabled the precipitation of gypsum. 
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5.1.4 Are the Holocene climate events synchronous in the two records, and how 

about the entire Iberian Peninsula? 

Based on the proxies, the two records could be divided into several arid and humid periods. The long-

term trend is relatively synchronous in both of the records. The period prior to ~8,000 cal yr BP reflects 

the warm and arid Early Holocene. The period between 8,000-5,500 represents the humid climatic 

optimum in the Middle Holocene, characterized by maximum lake levels. The period from 5,500 cal yr 

BP on reflects the progressive aridification trend in the Late Holocene.  

This long-term trend is interrupted by several short-term climate changes, the rapid climate changes 

(Mayewski et al., 2004; Fletcher and Zielhofer, 2013). In the high-resolution record of Laguna de 

Medina, this gave the opportunity to investigate the timing, duration, and effects of the Holocene RCC´s 

on the limnological evolution, and to compare them with rapid climate change in other Iberian archives 

(Fig. 5.1). 

 

The long-term trend is more of less synchronous in both studied cores, and is similar to the Iberian 

Holocene climate trend. The Early Holocene (prior to 8,000 cal yr BP) is a warm and arid period with 

low lake levels and an increase in xerophytic vegetation (Fig. 5.1). The Early Holocene is found in 

Laguna de Medina prior to 7,870 cal yr BP. Laguna Salada is too young, and its initial phase too instable 

to recognize the Early Holocene. Iberian archives indicate the Mid Holocene (8,000-5,500 cal yr BP) as 

a humid phase with increased lake levels and a rise in mesophytic vegetation. In Laguna de Medina and 

Laguna Salada, maximum lake levels are found 7,870-5,900 cal yr BP and 8,500-5,900 cal yr BP, 

respectively. These findings are in line with many Iberian archives (Fig. 5.1), like in Lake Siles and 

Cañada de la Cruz, where an increase in microcharcoal indicate an increase in fire regime, and a low 

lake level due to aridity (Carrión, 2002). 

After 5,500 cal yr BP, most of the Iberian archives reflect a progressive aridification trend, resulting in 

a drop in lake level, and a transition towards xerophytic vegetation, induced by a general trend towards 

more positive NAO values (Olsen et al., 2012). In Laguna de Medina, the lake level is still relatively 

high until 3,750 cal yr BP, but the progressive aridification trend is already visible from 5,900 cal yr BP. 

In Laguna Salada, this transition is found from 5,900 cal yr BP on. In Lake Siles, the Guadiana Basin, 

Canadaa de la Cruz, and the four sites from the Segura Mountains (d) reflect this humid period with an 

increase in mesophytic vegetation (Carrión et al., 2001a; 2001b; Carrión, 2002; Fletcher et al, 2007). 

High lake levels are found in many Iberian lakes, like Lake Siles, and Lake Estanya (Carrión 2002; 

Morellón et al., 2009), but also in African lakes as Lake Sidi Ali, Sebkha Melalla, and Hassi el Mejnah 

(Gasse et al., 1999; Lamb and van der Kaars, 2008). 

 

Short-term trends are mainly visible in the Laguna de Medina record. However, during the last 2,500 

years, also Laguna Salada reflects a transition in arid and humid periods. 

 

The Iberian Roman Humid Period or the Roman Warm Period (RWP) is reflected in Iberian archives 

between 2,600-1,600 cal yr BP (Morellón et al., 2012), and is found in Laguna de Medina between 

1,950-1,450 cal yr BP, and in Laguna Salada between 2,500-1,100 cal yr BP. The difference in the onset 

and the duration of the RWP can be the result of the poor age control for Laguna Salada. A change in 

solar forcing caused this humid period (van Geel et al., 1996; 1999). 

The subsequent arid period of the Medieval Climate Anomaly (MCA; 1,050-1,600 cal yr BP) is detected 

in several Iberian archives, e.g. in Lake Zoñar, Taravilla, Arreo, and Estanya (Martin-Puertas et al., 

2008; Valero-Garcés et a., 2008; Morrellón et al., 2009; Moreno et al., 2012; Corrella et al., 2013). The 

MCA is reflected by enhanced gypsum precipitation in both Laguna de Medina (1,050-650 cal yr BP), 

and Laguna Salada (1,100-750 cal yr BP).  

The aridity trend in the Late Holocene is interrupted once more by the humid Little Ice Age (LIA; 650-

100 cal yr BP). This period, induced by a change towards more negative NAO values (Olsen et al., 

2012), is characterized by relatively high lake levels, e.g. in Lake Zoñar and Lake Arreo (Martín-Puertas 

et al., 2008, 2009; Corella et al., 2013). In Laguna de Medina, the LIA is found between 650-150 cal yr 

BP, and in Laguna Salada between 750-250 cal yr BP.
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5.2 Importance of Laguna de Medina and Laguna Salada for the CRC 806 

This thesis is part of the CRC 806 ´Our Way to Europe´. In the archaeology, the impact of climatic and 

environmental changes is becoming more important. This resulted in a close collaboration between the 

geologists and archaeologists of the C cluster. The Spanish archaeological sites of Solutrean and 

Magdalenian technocomplexes (about 24,000 to 17,0000 cal BP) are clustered close to the shores in the 

north, east and south of the IP and close to the Tagus River in Portugal. Laguna de Medina and Laguna 

Salada were selected, because of their close situation to a cluster of Solutrean sites in southern Spain. 

This would give the opportunity to compare the palaeoclimatological and -environmental data with the 

cultural changes and the results from the C1 project. 

 

In this regard, core Co1313 from Laguna de Medina looked very promising. A rough interpolation based 

on the older study from Reed et al. (2001) suspected an age around 23,000 years for the 25.65 m long 

record. However, with the establishment of the age model, it turned out the record was only 9,600 years. 

Also Laguna Salada, 8,500 cal yr BP, does not reach the Pleistocene-Holocene boundary.  

Laguna de Medina and Laguna Salada are too young for a comparison between climatological and 

environmental forcing on the cultural processes within the Solutrean technocomplexes.  

 

However, the records proved to be very good palaeoclimate archives for the Holocene. Especially 

Laguna de Medina turned out to be highest-resolution archive for Holocene climate changes on the 

Iberian Peninsula. This high-resolution record is therefore very promising for further studies concerning 

human impact on the environment (currently analysed by T. Schröder in the framework of the CRC 

806), and the effect of rapid climate change on the human behaviour and impact.  
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5.3 The future for Laguna de Medina and Laguna Salada in the light of the 

ongoing climate change 

The records of Laguna de Medina and Laguna Salada showed the impact of the past climatological 

changes in the ecosystems. With the focus on the ongoing climate change, some question about the 

Spanish limnological ecosystems came up (Álvarez-Cobelas et al., 2005b): 

 

- Will they still exist at the end of the century? 

- Will they still be permanent or will they become temporary? 

- Will the biochemistry or biota change? 

 

The ongoing climate change will have devastating effects on small shallow lakes as the two analysed in 

this thesis. Irrigation plays a very important role in southern Spain. In the last decades, a significant 

increase in demand for irrigation water is signalised, as the result of an increase in economic 

productivity. However, since 2005, farmers are forced to modernise the irrigation techniques to save 

water (Expósito and Berbel, 2017). The water of Laguna de Medina and Laguna Salada are both used 

for irrigation purposes for the surrounding agricultural areas. This influences the already water level, 

which is already fluctuating by natural changes, enormously (Rodríguez-Rodríguez et al., 2012). 

With the focus on the ongoing climate change, droughts will increase and precipitation will decrease 

(Bolle, 2003; de Castro et al., 2004; Met Office, 2011), resulting in reduced water availability for surface 

waters (Álvarez-Cobelas et al., 2005a). 

 

Laguna Salada will suffer first from reduced water availability. The temporary lake with annual 

desiccation is highly vulnerable for small climate changes (Giorgi and Lionello, 2008). It is very likely, 

the desiccation period will start earlier in the year and will be extended (Williams, 2002). The 

surrounding agricultural areas are highly sensible for erosion (García-Ruiz, 2010). Enhanced erosion is 

already noticeable in the record since the Roman Period. During this period with increased human 

influence, the sedimentation rate increased to 2.3 mm/yr. Interpolation of this sedimentation rate to the 

end of the century results in an extra ~20 cm sediment. On a maximum lake level of 50 cm, this is a 

significant change. Soon, Laguna Salada will be completely silted up, and not be a depression in the 

landscape anymore.  

This has many consequences for the flora and fauna. The lake is protected by the Ramsar Convention 

on Wetland of International Importance (Ramsar, Iran, 1971), because of its importance for wintering 

and nesting water birds (Fernández-Palacios, 1990). However, without a water body, water birds will 

choose another place to nest or overwinter (Davis et al., 2010). 

 

Laguna de Medina has a higher lake level, currently only desiccating in very arid years. A high 

correlation between the lake level and the salinity of the lake is found, especially after the increased 

water abstraction for irrigation since 1948 (Tello Ripa and López Bermúdez, 1988). The higher lake 

level means a longer retention of the water, increasing the salinity, probably also affecting the species 

living in the lake. Taking the sedimentation rate of 1.8 mm/year in account, this will result in a 

sedimentation of about 25 cm more until the end of the century. This is a relatively high amount for the 

lake. However, it will not have devastating effects on the limnological system jet.  

The ongoing climate change will likely change the semi-permanent lake into a temporal lake, which 

becomes similar to the modern configuration of Laguna Salada. However, this will not take place before 

the end of the century. Nesting and overwintering water birds are very likely to still use the lake at the 

end of the century.  

 

Most important sentence is for both of the lakes (Álvarez-Cobelas et al., 2005b): ´Many endangered 

Mediterranean limnosystems will survive if, and only if, Mediterranean societies appreciate them (which 

is not the case right now)´. 
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