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i Abstract 

Abstract 

Without photosynthesis, life on Earth as we know it would not be possible. The quantification 

of photosynthesis and its spatio-temporal description from canopy to global scales is one of the 

key challenges in terrestrial ecology. Light absorbed by plants can be used for the 

photosynthetic process, reemitted as fluorescence or released as heat (non-photochemical 

Quenching, NPQ). Recently developed methods allow assessing sun induced chlorophyll 

fluorescence (F) by vegetation from remote sensing platforms. Due to its direct physical link 

to photosynthesis, F opens new possibilities to quantify photosynthesis (usually defined as 

gross primary productivity, GPP) and detect plant stress in space and time. 

In this thesis, seasonally and spatially resolved datasets from novel ground (SIF-Sys) and 

airborne (HyPlant) measurement systems are used to analyze the spatio-temporal relationships 

between F, the photochemical reflectance index (PRI), which is linked to NPQ, and the 

efficiency of light to carbon conversion (light use efficiency, LUE) under changing 

environmental conditions. It was found that the combination of red and far-red fluorescence 

yields (F687yield and F760yield) and PRI explain 65% of intra-daily and 89% of inter-daily changes 

in LUE of sugar beet plants. In addition, airborne observations are used to assess the 

spatiotemporal variation of F760yield, F687yield, the ratio between red- and far-red fluorescence 

(Fratio) and the enhanced vegetation index (EVI) for different plants within a flight line over the 

course of a day. Results demonstrate that F760yield and Fratio have strong variability in time and 

between crop types suffering from different levels of water shortage, indicating a strong 

sensitivity of F products to plant stress reactions. 

The findings described above are used to develop an empirical GPP model (GPPMR) based on 

F687yield, F760yield and PRI. Estimated GPP is then validated with GPP measurements derived 

from an eddy covariance tower (GPPEC) and also compared with estimates of GPP derived from 

currently used models employing fluorescence and greenness-based vegetation indices. Results 

show that the newly developed model combining F760yield, F687yield and PRI performs best in 

predicting intra- and inter-daily changes in GPP. The application of the GPP models to spatio-

temporal datasets demonstrates that, in general, fluorescence-based estimations better represent 

spatial variability in GPP than the ones based on common greenness-based vegetation indices. 

Finally, a new modeling scheme based on the photosynthetic energy balance to predict GPP by 

PRI and the total fluorescence signal (Ftot) in a more process oriented manner is proposed. 

In conclusion, this thesis provides evidence that the use of sun induced fluorescence improves 

estimates of GPP. However the most promising results are found when combining Fyield and 

PRI. In addition, it is shown that the ratio between red and far-red sun-induced fluorescence 

and their yields shows large potential for identifying spatio-temporal plant adaptation strategies 

in response to environmental stress. 
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iii Zusammenfassung 

Zusammenfassung 

Ohne den Prozess der Photosynthese wäre das Leben auf der Erde, so wie wir es kennen, nicht 

möglich. Die Quantifizierung des Photosynthese-Prozesses und die Darstellung seiner 

räumlichen und zeitlichen Adaptierung ist eine der zentralen Herausforderungen in der 

terrestrischen Umweltforschung. Von Pflanzen absorbiertes Licht kann für den Photosynthese 

Prozess genutzt, oder aber auch in Form von Wärme (nichtphotochemisches Quenching, NPQ) 

oder als Fluoreszenz abgegeben werden. Jüngste Fortschritte in der Sensorentechnik 

ermöglichen es nun, die von der Vegetation emittierte, sonneninduzierte Chlorophyll 

Fluoreszenz (F) mit Fernerkundungsmethoden zu erfassen. Aufgrund der direkten 

physikalischen Verbindung zwischen Fluoreszenz und Photosynthese eröffnen sich dadurch 

neue Möglichkeiten, die Photosynthese-Leistung (normalerweise beschrieben als brutto 

Primärproduktion, GPP) räumlich und zeitlich zu quantifizieren und Pflanzenstress zu 

bestimmen.  

In dieser Dissertation wurden neuartigen boden- (SIF-Sys) und flugzeuggestützte (HyPlant) 

gestützten Messsysteme genutzt, um die zeitlichen und räumlichen Beziehungen zwischen F, 

dem photochemischen Reflexionsindex (PRI – als Indikator für NPQ) und der 

Lichtnutzungseffizienz (LUE) unter wechselnden Umweltbedingungen zu analysieren. Dabei 

hat sich gezeigt, dass die Kombination aus roter und fern-roter Fluoreszenz Effizienz (F687yield 

und F760yield) und dem PRI 65% der täglichen und 89% der saisonalen Variabilität der LUE von 

Zuckerrübe erklärt. Zusätzlich wurden flugzeuggestützte Messungen genutzt, um die 

räumliche und zeitliche Variabilität von F760yield, F680yield, dem Verhältnis zwischen roter und 

fern-roter Fluoreszenz (Fratio) und dem sogenannten verbesserten Vegetationsindex (EVI) 

innerhalb eines Flugstreifens und eines Tages zu bestimmen. Die Ergebnisse zeigen in 

Abhängigkeit zur Wasserverfügbarkeit eine hohe Variabilität von F760yield und Fratio im Laufe 

eines Tages und hinsichtlich der Feldfruchtart. Dies deutet darauf hin, dass Fluoreszenz-

Produkte sensitiv auf Pflanzenstress reagieren. 

Die oben beschriebenen Ergebnisse wurden genutzt, um ein empirisches GPP Modell zu 

entwickeln, das auf F760yield, F687yield und PRI basiert. Die Ergebnisse wurden anschließend mit 

GPP-Werten, die aus Eddy Kovarianz Messungen (GPPEC) abgeleitet wurden, validiert und mit 

den Ergebnissen dreier derzeitig genutzten Modellen verglichen, die auf Fluoreszenz und 

Reflexion basieren. Die Ergebnisse zeigen, dass das neuentwickelte Modell, welches auf Fyield 

und PRI Informationen basiert, die Tages- und saisonale Variabilität von GPP am besten 

bestimmt. Die Anwendung der Modelle auf räumlich aufgelöste Daten zeigt, dass generell 

fluoreszenzbasierte Modelle die räumliche Variabilität von GPP besser erfassen als das Modell, 

welches allein auf Reflexionsindizes basiert. Abschließend wird der Entwurf für ein Modell 

vorgeschlagen, welches, basierend auf der photosynthetischen Energiebilanz, den PRI und die 

absolute Fluoreszenz (Ftot) nutzt, um GPP in einer stärkeren prozessorientierten weise zu 

bestimmen. 

Zusammengefasst stellt diese Arbeit heraus, dass sonneninduzierte Fluoreszenz die 

Abschätzung von GPP verbessert, wobei insbesondere die Kombination aus F und PRI die 

vielversprechendsten Ergebnisse liefert. Zusätzlich wird gezeigt, dass das Verhältnis von roter 

zu fern-roter Fluoreszenz sowie Fyield ein großes Potenzial haben, um stressbedingte raum-

zeitlichen Pflanzenanpassungsstrategien abzubilden. 
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1 Introduction 

1. Introduction 

Photosynthesis is a key process in terrestrial ecosystems. Life on earth, as we know it, 

would not be possible without it. Through the use of sunlight and water, carbon dioxide 

(CO2) is assimilated by plants to produce biomass, while oxygen (O) is released 

(Farquhar et al., 2001). The biomass serves as food, fiber and energy, while the 

exchange of carbon and oxygen affects the composition of our atmosphere. 

Photosynthesis is, therefore, often termed as gross primary production (GPP) (Denman 

et al., 2007), which can be defined as the sum of the photosynthesis by all leaves 

measured or estimated at ecosystem scale over a certain time (Chapin et al., 2006). 

Furthermore, photosynthesis significantly controls the energy, water and carbon 

exchange between soil, vegetation and the atmosphere (Bonan, 1995). Ozanne et al. 

(2003) estimated that up to 90% of the CO2 exchange between atmosphere and 

biosphere is related to photosynthesis. Therefore, an accurate estimation of actual GPP 

is critical for a comprehensive understanding of the carbon budget, however,  this still 

is one of the key challenges in terrestrial geoscience (IPCC, 2013).  

 

1.1.  Methods to estimate GPP 

The most direct measurement of photosynthesis can only be obtained at leaf level.  By 

the combination of a high precision gas analyzer and a pulse-amplitude modulation 

(PAM) fluorometer, the two photosynthetic processes (the dark and light reactions) can 

be non-destructively probed. This method, however can hardly provide measurements 

for a full canopy, much less for a whole ecosystem (Schreiber, 2004).  

The CO2 exchange (net ecosystem exchange; NEE) can be measured by gas exchange 

chambers for one or several plants at once. The CO2 concentration is measured within 

the open chamber, then the chamber is closed for a short time. The CO2 exchange can 

be calculated from the increase of CO2 within the chamber. To derive GPP from these 

measurements, the CO2 release by the plant (plant respiration) and by the soil (soil 

respiration) have to be known (Reicosky, 1990). Although the estimation of GPP on 

larger spatial extend is not possible with this method, the heterogeneity within the study 

area can be described by moving the chamber.  

The CO2 exchange between an ecosystem and the atmosphere can be estimated at a 

relatively high temporal resolution (ca. 30 min) by the eddy covariance (EC) method. 

However, these measurements only cover footprints of several hundred meters and are 

strongly affected by local setup and aerodynamic properties of the ecosystem 

(Baldocchi, 2008; Baldocchi et al., 2001).  
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The estimation of GPP at regional to global scales can be classified into three different 

methodological approaches: 1) process-based models; 2) measurement-based 

empirical upscaling models; or 3) models based on remotely sensed vegetation 

parameters. The different approaches are specified in the following paragraphs. 

1) Process-based models explicitly describe the ecosystem dynamics by translating 

physical or biological processes into numerical formulas. The advantage of this 

modeling approach is that it allows analyzing the system behavior and the interactions 

between processes, from canopy to global scale (Sitch et al., 2003). A problem of 

process-based models is that their accuracy depends on a proper parameterization. 

Parameterization is a method to simplify processes which are too small-scale or 

complex to be numerically represented. Ideally the parameterization is derived from 

observations, but recent studies show that process-based models often use unrealistic 

parameterization, and that a more realistic parameterization would even result in 

deteriorated estimations (Bonan et al., 2012; Rogers, 2014; Schimel et al., 2015).  

2) Empirical upscaling methods combine in-situ observations with empirical models 

(e.g. multi-tree ensemble (MTE) GPP by Jung et al. (2011)). Machine learning 

algorithms driven by substantial datasets from the global network of EC-Towers 

(FLUXNET c.f. Baldocchi et al. (2001)), meteorological data and information of land 

use can be utilized to estimate regional to global GPP. The main disadvantage of this 

method is that the accuracy of the GPP calculations is limited by the amount and quality 

of the observations. Validations of the MTE GPP show that seasonal patterns can be 

predicted well, but, due to environmental effects and disturbances (e.g. droughts, fires, 

heatwaves), inter annual variations are poorly captured. Furthermore, MTE GPP only 

estimates monthly values, which hampers the possibility to study daily variability (Jung 

et al., 2011, 2009).  

3) Space- and airborne-based spectroscopy can be considered the only technology that 

continuously observes important information about vegetation status and functions on 

field to global scale. Typically, vegetation indices (VIs) derived from optical 

measurements are employed in estimating GPP, under the assumption that 

physiological plant processes and the biochemical composition of vegetation control 

the optical properties of vegetation canopies (Hilker et al., 2008). It is important to note 

that all products derived from remote sensing platforms are only related to the light 

reactions of photosynthesis. Since the estimation of GPP also requires information on 

the dark reactions and stomata conductance, models are needed to transfer RS 

information to GPP. With this work the remote sensing based approaches to estimate 

GPP will be further investigated. 
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1.2.  Remote sensing of GPP 

The foundation of basically all remote sensing (RS) approaches to estimate GPP is the 

resource balancing paradigm (Field et al., 1995), which hypothesizes that the plant’s 

investment in the various resource-harvesting complexes is balanced, and that plant 

growth can be approximately estimated by measuring single growth-limiting factors. 

This idea is conceptualized in Monteith’s light use efficiency model (Monteith, 1972; 

Monteith and Moss, 1977), and used in all RS-based GPP estimates (Eq. 1): 

   𝐺𝑃𝑃 = 𝑃𝐴𝑅 ∙ 𝑓𝐴𝑃𝐴𝑅 ∙ 𝐿𝑈𝐸 (1) 

The model sets GPP in a proportional relationship with the incident photosynthetically 

active radiation (PAR), the fraction of PAR absorbed by the vegetation (fAPAR), and 

the photosynthetic light use efficiency (LUE; defined as the amount of µmol CO2 

absorbed per µmol photons). The challenge in RS is to parameterize the three terms of 

Monteith’s equation. PAR is defined by the spectra of light, which can be accurately 

modeled by radiative transfer models. The challenge of estimating PAR is mainly 

connected to the estimation of cloud cover, where the uncertainty increases with higher 

spatial and temporal resolution. In this work, in-situ measurements of PAR where used 

to exclude uncertainty related to the use of modeled datasets.  

  

1.2.1. Use of vegetation indices  

According to Hilker et al. (2008), fAPAR can be estimated through various methods, 

some of them based on its empirical non-linear relationship to vegetation indices e.g., 

to the normalized difference vegetation index (NDVI). However, the saturation of VIs 

in dense canopies and their sensitivity to the background contributions of soil or non-

photosynthetic vegetation components often leads to GPP being overestimated for 

sparse and less productive canopies and underestimated for dense and high productive 

canopies (Huete et al., 2002; Turner et al., 2003; Running et al., 2004; Xiao et al., 

2008). Quantifying LUE is challenging, and direct measurements are not yet possible. 

Besides unrealistically assuming a constant LUE, more sophisticated approaches adjust 

biome-specific potential LUE values by using meteorological variables derived from 

in-situ measurements and geo-statistical modeling (Jung et al., 2011; Running et al., 

2004; Ryu et al., 2011; Xiao et al., 2004). These approaches are based on vegetation 

greenness and do not show a direct mechanistic connection to actual photosynthesis, 

which is characterized by rapid and short-term adaptations to changing environmental 

conditions (e.g., fluctuating light, short term drought, etc.). Consequently, greenness-

based approaches tend to be more related to potential than to actual photosynthetic rates 

(Meroni et al., 2009). 
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1.2.2. Use of sun induced chlorophyll fluorescence 

Recently, sun-induced chlorophyll fluorescence (F) was proposed as a means to 

overcome the limitations mentioned previously when estimating GPP. Light energy 

absorbed by chlorophyll is channeled to three competitive pathways: (1) 

photosynthesis, (2) heat dissipation (non-photochemical quenching, NPQ), and (3) 

emission as fluorescence. Consequently, fluorescence is theoretically related to both 

APAR and LUE, which opens new perspectives to estimate GPP more accurately. 

Fluorescence light emitted by vegetation has a well-defined spectral shape, with two 

major peaks at 685nm (maxF<685>; red) and 740nm (maxF<740>; far-red) (Porcar-Castell 

et al., 2014). The radiance signal received at an optical sensor comprises two radiance 

fluxes: sunlight reflected by the surface and the emitted fluorescence. The fluorescence 

signal weakly adds to the reflected surface radiance (1-5% in the far-red), making its 

detection from RS challenging (Zarco-Tejada et al., 2000). 

Analytical and technical developments nowadays allow fluorescence to be reliably 

measured using ground (Burkart et al., 2015; Cogliati et al., 2015a; Damm et al., 

2010a), airborne (Damm et al., 2010b, 2011, 2014; Rossini et al., 2015; Rascher et al., 

2015), and satellite sensors (Frankenberg et al., 2014; Guanter et al., 2012; Joiner et 

al., 2011). The latter is currently derived from sensors onboard OCO-2 (Orbiting 

Carbon Observatory 2), GOSAT (Greenhouse Gases Observing Satellite), GOME-2 

(Global Ozone Monitoring Experiment-2) and SCIAMACHY (Scanning Imaging 

Absorption Spectrometer for Atmospheric Cartography). The primary objective of 

these missions is to track atmospheric carbon and ozone concentration, which results 

in fluorescence images with low spatial resolution (5 to 60km). Since the detection of 

atmospheric CO2 concentration by these satellites is realized in the infrared part of the 

spectrum, the retrieval of F is furthermore only feasible for the far-red peak. The 

recently selected Fluorescence Explorer (FLEX) as part of the ESA Earth Explorer 8 

mission will allow in the future (estimated launch 2022) an optimized global mapping 

of fluorescence in the red and far-red peak with a 300 meter spatial resolution.  

Since the estimation of F from remote sensing platforms became feasible, several 

approaches to estimate GPP by using F were presented. In one of the first approaches, 

Frankenberg et al. (2011) showed that spatial and temporal patterns of F present a 

strong linear correlation with GPP and that this linear relationship can then be used to 

infer GPP from satellite F measurements. However, the assumption of a linear 

relationship between GPP and F is problematic, since GPP and F both depend on the 

amount of absorbed photosynthetic active radiation (APAR) and therefore are not 

independent. Furthermore, this approach was developed to estimate GPP from monthly 

averaged satellite images (GOSAT, GOME-2) of F with coarse spatial resolution 

(0.5°), and it is unclear if this approach is feasible for measurements of F at high spatial 

and temporal resolution. 
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An APAR-independent approach was proposed by Guanter et al. (2014), who 

suggested a semi-mechanistic model to estimate GPP on the basis of the relationship 

of LUE and Fyield. In contrast to the assumption that GPP and F are linearly connected, 

this model assumes that the LUE changes with Fyield. Since this approach was also 

developed for GOSAT satellite images, it is still unclear how this relationship develops 

during a day or a season. Furthermore, this model does not consider the dissipation of 

energy as heat (non-photochemical quenching; NPQ) which may result in an 

underdetermined system description. Recent studies proposed the photochemical 

reflectance index (PRI) (Gamon et al., 1992)  as a proxy for LUE and as an indicator 

for NPQ activity (Porcar-Castell et al., 2012; Rahimzadeh-Bajgiran et al., 2012; Weng 

et al., 2006; Wu et al., 2015). Therefore, it is expected that the combination of F with 

PRI improves the estimation of GPP (Damm et al., 2015; Porcar-Castell et al., 2014; 

Wieneke et al., 2016). 

Another idea to use fluorescence for GPP estimation is to use process-based models as 

data integration platform. Fluorescence can, for example, be used as an observational 

constraint for GPP (Parazoo et al., 2014). Based on van der Tol et al. (2014), Lee et al. 

(2015) incorporated the estimation of fluorescence into a land surface model by using 

an empirical relationship between the relative light saturation of photosynthesis and 

NPQ. Measured sun induced fluorescence can then be used as an observational 

constraint of the land surface model. Zhang et al. (2014) proposed to use sun induced 

fluorescence as an estimator for model sensitive parameters to improve the 

parameterization of land surface models.  

Until now, most approaches to improve the estimation of GPP are based on empirical 

assumptions, either derived from active leaf level measurements of fluorescence or 

from coarse spatiotemporally resolved F images. Since active leaf level measurements 

of fluorescence are difficult to compare with passively measured F (Cendrero-Mateo 

et al., 2016), more field measurements with high temporal and spatial resolution are 

needed to improve the knowledge of the connection between F and GPP (Porcar-Castell 

et al., 2014). 
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1.3.  The Transregional Collaborative Research Center 32 

The research for this thesis was realized within the Transregional Collaborative 

Research Centre 32 (SFB/TR32) “Patterns in Soil-Vegetation-Atmosphere Systems: 

Monitoring, Modeling, and Data Assimilation”, funded by the German research 

foundation (DFG, Deutsche Forschungsgemeinschaft). The TR32 focuses on the 

research of energy, water and carbon exchange between soil, vegetation and 

atmosphere to better understand the underlying processes, interdependencies and 

resulting patterns. For this purpose the Rur catchment in western Germany was chosen 

as an extensive study area where many hydrologic, plant physiologic, and atmospheric 

key parameters were measured continuously over several years (project start; 2006) 

(Figure 1).  

Since 2012 the yearly executed HyPlant campaign is embedded in the TR32 D2 project, 

designed to map sun induced chlorophyll fluorescence at 760nm (F760) and 680nm 

(F680) from aircraft at a high spatial resolution of 1m (c.f. Section 3.2.3 and 3.3.3). Also 

developed within the TR32 D2 project, a new ground spectrometer system (SIF-Sys) 

allows for continuous measurement of vegetation reflectance, F760, F687, and their 

yields (F760yield and F687yield) with high temporal (6s) and spectral (full width at half 

maximum (FWHM); 1nm) resolution (c.f. Section 3.3.1). 
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Figure 1: Study area of the Transregional Collaborative Research Centre 32 (SFB/TR32), located in the Rur 

catchment of western Germany. Map shows the location of several measurement stations and the intensive 

measurement sub regions (red line). Small map in the upper right corner shows the location of weather radar 

stations and their range.  

Source: Transregional Collaborative Research Centre 32 
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1.4.  Aim of this Study 

The main purpose of this thesis is to investigate the spatiotemporal relationship of sun 

induced chlorophyll fluorescence, the photochemical reflectance index and light use 

efficiency, for a better system understanding towards an improved estimation of gross 

primary production from remote sensing data.   

The in-situ acquired dataset of the SIF-Sys (15 days acquired within two months) with 

high temporal (6s sampling time) resolution, and airborne maps acquired by the 

HyPlant sensor (in 2012 & 2015) with high spatial (1m) resolution are presented with 

this thesis. This extensive dataset is used to describe and analyze the intra- and inter-

daily relationship between F760yield and F687yield, their ratio (Fratio), the PRI and the LUE 

under changing environmental conditions (temperature and water availability) within 

sugar beet fields. From previous studies it is known that the PRI (photochemical 

reflectance index) serves as a good estimator for LUE (Cheng et al., 2013; Drolet et al., 

2008; Rossini et al., 2010; Wu et al., 2015), while the relationship between F and LUE 

is less strong (Cheng et al., 2013). Due to the link of the additive signal of red- and far-

red F to total sun-induced fluorescence (Ftotal) and the relationship of PRI to NPQ (non-

photochemical quenching) it is hypothesized, that: 

A combination of F760yield and F687yield and PRI is a better predictor of LUE than each 

on its own.    

The first null hypothesis of this work is, thus: 

 

1) The additive signal of F760+687yield does not add information to the prediction of 

changes in light use efficiency based solely on the PRI 

 

First maps of red- and far-red fluorescence are used to analyze spatial patterns of 

fluorescence and reflectance parameters. Since light absorbed by chlorophyll is in part 

re-emitted as fluorescence when the molecules return from excited to non-excited 

states, the intensity of the fluorescence signal is an indicator of photosynthetic energy 

conversion. Therefore, effects of plant adaptation to environmental conditions affecting 

photosynthesis should be detectable within fluorescence maps. Thus, it is hypothesized, 

that: 

Plant adaptation strategies are detectable with airborne based F observations. 

This leads to the second null hypothesis: 
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2) Spatiotemporal plant adaptation strategies are not detectable within maps of 

red- and far-red fluorescence.   

In order to analyze the potential of fluorescence to estimate GPP, in-field and remote 

sensing measurements are used, employing four different approaches with increasing 

complexity: (i) the commonly used reflectance based LUE model by Monteith (1972); 

(ii) the empirical F-GPP relationship approach proposed by Frankenberg et al. (2011); 

(iii) the semi-mechanistic approach by Guanter et al. (2014); (iv) a newly developed 

multiple regression model on the basis of PRI and F. Estimates of 30 min and daily 

averaged GPP, as well as maps of GPP, are calculated by these four models. Results 

are compared with each other and validated with eddy-covariance-and gas exchange 

chamber measurements. It is hypothesized that: 

Due to the consideration of NPQ by the use of the PRI the multiple regression model 

will result in better estimates of GPP. 

This lead to the third null hypothesis: 

 

3) The PRI, as a proxy for NPQ, does not improve fluorescence based intra- and 

inter-daily GPP estimations 

 

The aim of this thesis is to reject all three null-hypotheses. 

 

1.5.  Structure of this Study 

To fulfill the aims described in section 1.4 this study is structured as follows: The 

Introduction describes the state of the art of methods to estimate GPP and discusses the 

advantages of RS-based GPP estimates, in particular the ones based on sun-induced  

chlorophyll fluorescence (F). The aim of this study is also presented. Chapter 2 

summarizes the general process of photosynthesis and its estimation. A special focus 

lies here on discussing the link between fluorescence and the photosynthetic process 

and the methods to retrieve F. In Chapter 3, the Observation sites of Selhausen and 

Merzenhausen are described. Chapter 4 describes the statistical Models used in this 

Study to estimate GPP and their uncertainty. In Chapter 5, the spatio-temporal model 

results are presented and compared to in-situ measurements for a validation of the 

model precision and accuracy. Chapter 6 presents a discussion on the potential of 

fluorescence-based observations to improve GPP estimation in space and time. In 

Chapter 7 a concept of a mechanistic model that links fluorescence with photosynthesis 

is presented. In Chapter 8 and 9 the findings of this study are summarized and an 

outlook for future improvements of fluorescence retrieval and measurements are given.  
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2. The process of photosynthesis and its 

estimation 

In this chapter, an overview of the current knowledge about the photosynthetic process, 

its controlling mechanisms and response to environmental stress is given. The 

protection mechanisms of fluorescence and NPQ are described, and the state-of-the-art 

fluorescence retrieval methods are explained. Furthermore, a recently developed semi-

mechanistically model approach to estimate GPP from fluorescence is presented, and 

the current knowledge of plant stress detection by fluorescence is introduced.  

 

2.1.  Photosynthesis 

Photosynthesis is the process were plants assimilate carbon dioxide (CO2) by using 

light energy and water (H2O) to produce biomass in form of carbohydrates (CH2O), 

and release oxygen O2. The overall chemical reaction is defined as: 

 

6𝐶𝑂2 + 6𝐻2𝑂 
𝑙𝑖𝑔ℎ𝑡
→    𝐶6𝐻12𝑂6 + 6𝑂2 

 

Carbohydrates are sugars that can be used by the plant to grow, for maintenance and 

for reproduction. Photosynthesis is controlled by three distinct processes: the light 

reactions, the dark reactions (Calvin-Cycle) and the stomata conductance. The light 

and dark reactions occur in the chloroplasts of leaves (Figure 2). The chloroplast 

consists of thylakoids and stroma. On the membrane of the thylakoid, the light reactions 

happen, while in the stroma CO2 is converted to sugar by the dark reactions. The CO2 

needed for the dark reactions diffuses into the stroma through the stomata (Bonan, 

2008). 
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Figure 2: Light and dark reactions (Calvin-Cycle) within a chloroplast. During the light reactions water and light 

is used to regenerate the energy carrier NADP+ (nicotinamide adenine dinucleotide phosphate) and ADP 

(adenosine diphosphate) to NADPH (nicotinamide adenine dinucleotide phosphate-oxidase) and ATP (adenosine 

triphosphate). Within the Calvin cycle NADPH and ATP are used to assimilate CO2 and to produce carbohydrates 

(sugar).   

Source: Pearson Education Inc. (2012) 

 

2.1.1. Light reactions 

The light reactions take place in the electron transport chain. This consists of a set of 

different complexes: photosystem II (PSII), cytochrome b6f (b6f), photosystem I (PS 

I), ferredoxin NADP reductase (FNR) and the ATP synthase. In addition to the 

complexes, mobile carriers - plastoquinone (PQ), plastocyanin (PC) and ferredoxin 

(FDX) - are also involved (Figure 3) (Lawlor, 2001).  
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Figure 3: Electron transport chain of the thylakoid membrane. Electrons released in the oxidation of H2O are 

transferred in the light along the photosynthetic electron transport chain via Photosystems I and II to Fdx which 

reduces NADPH via FNR. At the indicated points, protons are released into the thylakoid lumen for the synthesis 

of ATP via ATP synthase.  

Source: adapted from Meyer et al., 2009 

 

The membranes of the thylakoid contain chlorophyll and carotenoid pigments, which 

are able to absorb light energy (photons) and transfer this energy by resonance to the 

reaction center of PSII and PSI. The reaction centers of PSII and PSI differ in their 

chlorophyll a and b pigment composition. With a chlorophyll a/b ratio of 9, PSI has a 

higher chlorophyll a content as PSII (a/b ratio of 2.5). This results in slightly different 

absorption spectra. As a result, the electron transfer in PSII and PSI changes with the 

spectral properties of the incoming light. The PSII and PSI reaction centers are usually 

named after their red-peak absorption maximum as P680 (680 nm) and P700 (700 nm) 

respectively (Antal et al., 2013).  

When a photon hits a chlorophyll or carotenoid molecule in Photosystem II, resonance 

energy is produced and transferred through neighboring chlorophyll or carotenoid 

molecule to the reaction center of PSII. Two electrons are subsequently released and 

transferred to the mobile carrier PQ. In addition to the two electrons, PQ also picks up 

two protons (H+) from the stroma. The electrons lost from PSII are replaced by splitting 

up water (H2O) molecules into oxygen (O2) and protons, which are released into the 

thylakoid lumen. The PQ transports the two electrons to the cytochrome b6f complex, 

while the protons are released into the thylakoid lumen. By transferring the electrons 

to the next mobile carrier PC, the cytochrome b6f complex pumps two more protons 

into the thylakoid lumen, further increasing the electrochemical energy gradient. PC 

transports the electrons to PSI, where photons again energize electrons which are 

transferred over FDX to FNR. By being combined with the two electrons and a 

hydrogen ion, NADP+ (oxidized nicotinamide adenine dinucleotide phosphate) can be 
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reduced to NADPH (reduced nicotinamide adenine dinucleotide phosphate). The 

electrochemical energy gradient created by the electron transport chain is utilized by 

the ATP synthase to create ATP (adenosine triphosphate) from ADP (adenosine 

diphosphate) and Pi (inorganic phosphate) (Antal et al., 2013). For extra flexibility in 

ATP and NADPH production, plants can utilize the cyclic electron transport (CET) 

(Figure 3). The CET allows to transport electrons from FDX back to the mobile carrier 

PQ, which transport the electron again to the cytochrome b6f complex where a proton 

is pumped into the thylakoid lumen. By reusing the electron by CET, the ATP 

production is increased while NADPH production decreases (Porcar-Castell et al., 

2014). Several studies suggest that the energy partitioning between the photosystems 

by CET is a highly dynamic response to plant stress and environmental conditions 

(Eichelmann et al., 2005; Ivanov et al., 2001; Martin et al., 1978; Rumeau et al., 2007). 

Unfortunately, the seasonal and spatial dynamics of the energy partitioning by CET is 

still poorly understood (Porcar-Castell et al., 2014). 

 

2.1.2. Dark reactions 

During dark reactions, ATP and NADPH are used to fix CO2 in the form of sugar. The 

dark reactions (or Calvin Cycle) consist of three phases: carbon fixation 

(carboxylation), reduction and regeneration (Figure 2 and Figure 4). In the 

carboxylation phase, CO2 is fixed from an inorganic form into organic molecules. The 

enzyme ribulose bisphosphate carboxylase (RuBisCO) catalyzes a reaction where 

ribulose bisphosphate (RuBP) reacts with CO2 and water to form two phosphoglycerate 

(PGA). In the reduction phase, two ATP and two NADPH are used to convert the two 

PGA to two phosphoglyceraldehyde (PGAL). In this process, each NADPH loses one 

electron and each ATP one phosphate, resulting in their conversion to ATP, NADP+. 

Both molecules are then reused and reenergized during the light reactions. Since only 

one out of six PGAL leaves the Calvin cycle, and two PGAL are formed in each turn, 

three turns of the cycle are needed in order to export one PGAL for plant growth, 

maintenance and reproduction. In the last phase of the Calvin cycle, the regeneration 

phase, the remaining five PGAL and tree additional ATP molecules are used to 

regenerate RuBP (Bonan, 2008; Lawlor, 2001). With decreasing water availability of 

the plant, the risk of photorespiration increases. Photorespiration describes a process 

where RuBisCO catalyses oxidation (uptake of O2) instead of carboxylation (uptake of 

CO2). The oxidized product can be partially recovered by releasing CO2 which 

negatively affects the net ecosystem uptake of CO2 (Porcar-Castell et al., 2014). 
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Figure 4: Dark reactions (Calvin Cycle). The Calvin cycle has three stages. In stage 1, the enzyme RuBisCO 

incorporates carbon dioxide into an organic molecule, 3-PGA. In stage 2, the organic molecule is reduced using 

electrons supplied by NADPH. In stage 3, RuBP, the molecule that starts the cycle, is regenerated so that the cycle 

can continue. Only one carbon dioxide molecule is incorporated at a time, so the cycle must be completed three 

times to produce a single three-carbon GA3P molecule, and six times to produce a six-carbon glucose molecule 

(OpenStax). 

Source: Original by OpenStax modified by Robert A. Bear 

  

2.1.3. Stomata conductance 

Stomata are microscopic pores which regulate the uptake of CO2 and the release of O2 

and H2O by controlling the degree of opening and closing (Figure 5). Around 1% of a 

leaf area is covered by stomata. The stomata open to allow CO2 uptake, which is needed 

by the photosynthesis process, and close to prevent desiccation during transpiration. 

Stomata conductance describes the rate of CO2 entering and water vapor exiting the 

plant leaf, and is proportional to the maximum width of the stomata pores, where the 

upper limit of gas exchange is determined by the maximum stomata opening.  

Stomata opening and closing is affected by various environmental conditions. With 

increasing sunlight more energy is generated by PSII and PSI, which results in higher 

CO2 demand and a wide opening of the stomata. During night, the stomata close to 

prevent water loss (crassulacean acid metabolism (CAM) plants are an exception, but 

as they are not subject of this work, CAM plants will not be described here). When 

temperature is below or above the optimal value, stomata close. Another important 
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reason for stomata closure is an increase in the vapor pressure deficit. When the relative 

humidity of air decreases, a strong gradient in water vapor partial pressure between leaf 

and air creates a high potential for transpiration (Bonan, 2008). Water loss due to 

transpiration is closely related with high temperatures. When the loss of water cannot 

be counterbalanced by soil water uptake, the stomata close to prevent desiccation. 

 

 

Figure 5: Stomatal gas exchange. When the stoma is open and a gradient of CO2 between leaf and air exists, CO2 

enters the leaf and is assimilated in the chloroplast. To prevent dehydration, the stoma closes when a high gradient 

of H2O between leaf and air takes place.  

Source: modified after Bonan, 2008 

 

2.1.4. Regulation mechanisms of photosynthesis 

As described in the preceding chapters, the light and dark reactions are linked by the 

energy carriers NADPH and ATP and their depleted forms NADP+ and ADP, while 

CO2 needed for the biomass production enters through the stomata. Because of 

different sensitivity to environmental conditions, the balance of the light and dark 

reactions does not always match. For example, closed stomata slow down the dark 

reactions due to the lack of CO2, which leads to an excess supply of light within the 

photosystems. (Ensminger et al., 2006; Huner et al., 1996; Ögren and Öquist, 1984). 

When the photosystems absorb too much light energy, the photosynthetic machinery 

can be damaged. Damaged photosystems can recover overnight, except the plant faces 

other sustained environmental changes like drought or low temperatures.  A severely 
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damaged photosystem needs from days to weeks to fully recover (Porcar-Castell et al., 

2014). To prevent this damage, plants evolved regulatory mechanisms to control the 

energy balance between light and dark reactions (Demmig-Adams and Adams, 2006; 

Walters, 2005). A very effective protection mechanism is the reduction of chlorophyll 

pigments in the leaf, which results in a decreased light absorption. The relationship of 

absorbed light and chlorophyll content is not linear, since the increase of light 

absorption slows down with high values of chlorophyll content (Adams et al., 1990; 

Gitelson et al., 1998). Some species evolved protection strategies, where they increase 

the reflection of incoming light by changing canopy and leaf structure by adjusting leaf 

movement and angle (Arena et al., 2008), by leaf rolling (Kadioglu et al., 2012), by 

leaf pubescence (Ehleringer et al., 1976) or by changing the leaf epicuticular wax 

properties (Pfündel et al., 2008). In addition to the strategy of reflectance increase, 

plants can dissipate abundant light energy within the reaction center as heat (non-

photochemical quenching; NPQ) or chlorophyll fluorescence (Figure 6).   

 

Figure 6: Concept of the light reaction center within the photosystem. Solar photons are captured by chloroplasts 

and transferred to light reaction centers were the absorbed photon (exciton) can be used in the photochemistry to 

assimilate CO2, reemitted as fluorescence, or quenched by NPQ and released as heat. 

Source: adapted from Frankenberg et al., 2013 

 

2.1.5. Fluorescence and non-photochemical quenching 

When light reaches the plant leaf, photons are reflected, absorbed or transmitted. The 

absorbed fraction of photons excite the chlorophyll a electrons to a higher energy state. 

At shorter wavelengths photon energy is higher and therefore excite the electrons to 

the energy level S2. However, due to internal conversion the energy is rapidly lost as 

heat. Red photons excite electrons to energy state S1 directly. From S1 the electron can 

either relax to state S0 as fluorescence emission, as non-radiative thermal dissipation 
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(NPQ), or used for photosynthetic energy transfer. It is important to note that due to 

the dynamic changes of NPQ, no unique relationship between fluorescence and energy 

used for photochemistry exists (Porcar-Castell et al., 2014).  

 

 

Figure 7: Jablonski diagram illustrating the energy partitioning of absorbed photons in a chlorophyll molecule. 

The absorption of blue light raises an electron from ground state (S0) to higher energy states (S2). The energy is 

rapidly dissipated as heat mainly by internal conversion to the first excited state (S1). Absorption of red light 

produces the S1 state directly. From the S1 state electrons can relax to the ground state via emission of chlorophyll 

fluorescence photon, via non photochemical quenching (NPQ) and via photochemical quenching.  

Source: adapted from Porcar-Castell et al. (2014) 

 

The release of excessive energy as heat by NPQ is driven by two pH dependent 

mechanisms. When the electron transfer chain saturates, protons accumulate within the 

thylakoid lumen, which increases the electrochemical energy gradient and decreases 

the lumen pH. The protein PsbS reacts to photon increase or decrease by activating or 

deactivating NPQ, respectively. The second mechanism reacts to the decrease of pH 
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by de-epoxidation of xanthophyll cycle pigments, which results in an increase of NPQ. 

These two mechanisms operate on timescales of seconds to hours (Porcar-Castell et al., 

2014; Verhoeven, 2014).  

The activity of the xanthophyll cycle and the associated regulation of energy dissipation 

by NPQ generates an optical signal, which can be detected in the reflectance at around 

531 nm. The photochemical reflectance index (PRI) exploits the changes in reflectance 

at 531 nm and a reference wavelength to assess LUE, due to its relationship to NPQ 

(Gamon et al., 1992). Several studies demonstrate the potential of PRI as a remote 

sensing proxy for LUE (Cheng et al., 2013; Damm et al., 2010a; Drolet et al., 2008; 

Rossini et al., 2010; Wu et al., 2010). 

The F emission shows two peaks, the first peak is located in the red light (ca. 685 nm) 

the second peak in the far red light (ca. 740 nm). Since F contributes with a small 

fraction (ca. 1-5%) to the reflectance, these two signals must be separated from each 

other. The fluorescence peaks are located close to the atmospheric oxygen absorption 

bands B and A (687 nm and 760 nm respectively, Figure 8). Retrieval methods take 

advantage of this absorption features to decouple F from the total reflectance (Cogliati 

et al., 2015b; Meroni et al., 2009a) (c.f. Section 2.5).  

 

 

 

Figure 8: The upper part of the image shows the O2B and O2A absorption bands within the solar spectrum. The 

lower part of the image shows the spectral distribution of chlorophyll fluorescence emission and the reflectance of 

a winter wheat leaf. 

Source: Schickling (2012) 
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2.2.  Photosynthetic energy balance 

Figure 9 shows a conceptualized description of the photosynthetic energy partitioning. 

Depending on leaf and canopy structure, only a fraction of incoming PAR is absorbed 

(APAR) by the plant. Absorbed photons can be reemitted as fluorescence (Ftot), 

released as heat (NPQ) or used for photochemical quenching (PQ). It is assumed that 

both photosystems are equally exited (PQ/2), whereby the energy available for the 

Calvin cycle is defined by the electron transport rate (ETR). The efficiency of the light 

reactions is defined as quantum use efficiency (QUE). The CO2 assimilation rate (GPP) 

of the Calvin cycle depends on the stomata opening, the RuBisCO concentration and 

photorespiration.  

The resource balancing paradigm by Field et al. (1995) hypothesizes that the plant’s 

investment in the various resource-harvesting complexes is balanced and that plant 

growth can be sufficiently estimated by measuring only one growth-limiting factor. 

This factor is often termed as light use efficiency or LUE and can be calculated based 

on Eq. 1 as: 

   𝐿𝑈𝐸 =  
𝐺𝑃𝑃

𝐴𝑃𝐴𝑅
 (2) 

 

where now PAR · fAPAR = APAR. While the local determination of plant specific 

LUE is relatively easy, the estimation of LUE on regional to global scale is problematic 

and connected with a high uncertainty (Running et al., 2004).  
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Figure 9: Photosynthesis energy balance scheme. The absolute amount of energy available for photosynthesis is 

APAR, which is defined on incoming PAR and canopy dependent fAPAR. APAR can be used to produce 

photochemical energy (photochemical quenching; PQ), or released as heat (non-photochemical quenching; NPQ) 

or fluorescence (Ftot). The electron transport rate (ETR) provides energy for the regeneration of NADP+ and ADP. 

The CO2 assimilation efficiency by the Calvin cycle depends on the stomata conductance, the RuBisCO 

concentration and photorespiration. 

 

2.3.  Measuring photosynthetic activity on the leaf level 

The most direct measurement of photosynthesis can be achieved by the combined use 

of an infrared gas analyzer and a pulse-amplitude modulation (PAM) fluorometer. The 

infrared gas analyzer measures the uptake of CO2 and the release of H2O by the leaf. 

By using a mass balance approach, the CO2 assimilation and transpiration can be 

calculated. By additional measurement of leaf temperature, other important parameters 

like stomata conductance and intercellular CO2 concentration can be calculated. The 

PAM fluorometer measures fluorescence yield (φF) which provides information about 

the quantum yield of photosystem II (φPSII) and electron transport rate (ETR). Since 

these measurements can only be obtained on leaf level, these measurements are 

difficult to relate to F (Cendrero-Mateo et al., 2016). Therefore, no leaf level 

measurements were conducted as part of this thesis.  
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2.4.  Measurements of photosynthetic activity on the canopy level 

2.4.1. Eddy covariance measurements  

The exchange of matter (CO2 and H2O) and energy (latent- and sensible heat) between 

land surface and atmosphere is mainly driven by small scale turbulence caused by 

surface roughness induced wind shear or thermal convection. Depending on surface 

characteristics and atmospheric layering, the size of these turbulent eddies can range 

from millimeter to hundreds of meters, with their maximum height limited by the 

boundary layer height (Stull, 1988). The eddy covariance (EC) method measures these 

turbulent fluctuations (often referenced as eddies) with a high frequency of 10 to 20 Hz 

to determine vertical fluxes of heat, water vapor and gases. The equation for 

determining the fluxes are derived by simplification of the Navier-Stokes equation 

using the Reynolds’ decomposition (Foken, 2006; Stull, 1988). The Reynolds 

decomposition postulates that a quantity x can be described as the sum of its mean �̅� 

and the fluctuation around its average 𝑥′: 

   𝑥 =  �̅� + 𝑥′ (3) 

 

With the assumption that the density fluctuation and the mean vertical flow are 

negligible for horizontal homogenous terrain, the net ecosystem exchange of CO2 

(NEE, in µmol m-2 s-1) can be calculated by the determination of its covariance with 

the vertical wind velocity w, if CO2 and w are measured at the same point in time and 

space. 

   𝑁𝐸𝐸 = 
𝜌𝑎

𝑚
∙  𝑤′ ∙ [𝐶𝑂2]′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ (4) 

 

Where ρa is the dry air density [kg m-3], m the molar mass of CO2 [44.01 g mol-1], w 

the vertical wind velocity [m s-1] and [CO2] the mixing ratio of CO2 [ppm].   

In the last decade the EC method became the main technique for estimating energy and 

mass fluxes within an ecosystem (Baldocchi et al., 2001). With a integration time of 

half an hour, a temporal coverage of several years and the availability of EC 

measurements for different ecosystems (FLUXNET; https://fluxnet.ornl.gov/), EC data 

serves as a backbone for bottom-up estimates of continental carbon balance 

components (Jung et al., 2011; Papale and Valentini, 2003) and is increasingly used for 

land surface model parameterization and validation (Reichstein et al., 2005). EC 

measurements, conducted at 2 meter above canopy, cover footprints of several hundred 

meters and, therefore, only provide spatially discrete information about the ecosystem. 

Furthermore EC measurements are strongly affected by the local setup, meteorological 



 

  

23 The process of photosynthesis and its estimation 

conditions and aerodynamic properties of the ecosystem (Baldocchi, 2008; Baldocchi 

et al., 2001). For instance, a sufficient large and homogenous footprint, a relatively flat 

land surface and turbulent conditions are needed to obtain measurements with lowest 

uncertainty. The uncertainty fluctuates between 5-10% respective to the environmental 

conditions (Foken, 2006). It is important to note that the EC method only provides 

NEE, which is defined as: 

   𝑁𝐸𝐸 = 𝐺𝑃𝑃 − 𝑅𝑝𝑙𝑎𝑛𝑡 − 𝑅𝑠𝑜𝑖𝑙 (5) 

 

Where Rplant is the respiration by the vegetation and Rsoil the respiration by the soil. For 

the calculation of GPP, Rplant and Rsoil have to be known. By using the short-term 

temperature sensitivity of Rplant and Rsoil and night time measurements (GPP = 0), 

measurement gaps can be filled and NEE separated into GPP and Reco (Rplants + Rsoil) 

(Reichstein et al., 2005).  

 

2.4.2. Chamber measurements  

The first practical chamber for measuring CO2 exchange was described half a century 

ago by Lange (1962). Since then, the method was debated and further improved. Gas 

exchange chamber systems use enclosure methods, where several plants are enclosed 

in a transparent chamber for a short time (1-2 min). The transparency for solar radiation 

allows the plants to be photosynthetically active when the chamber is moved over the 

canopy. A ventilation system circulates the air within the chamber and allows an 

infrared gas analyzer to measure the changing CO2 and H2O concentration. The canopy 

net exchange of CO2 (NEE) and evapotranspiration (ER) can be calculated from the 

gas exchange rates on a mass basis, the chamber volume and soil area (Livingston and 

Hutchinson, 1995; Reicosky, 1990). Chamber measurement systems are portable 

between locations, cheap, easy to operate, and still provide the only approach to 

measure heterogeneity of canopy gas-exchange within a field (Langensiepen et al., 

2012; Livingston and Hutchinson, 1995; Steduto et al., 2002). A point of criticism 

against closed chamber measurements is that the microclimate within a chamber is 

altered during the sampling period, resulting in a distortion of the estimated CO2 and 

H2O exchange rates (Garcia et al., 1990; Burkart et al., 2007). Like the EC method, 

GEC (Gas-Exchange Chamber) usually only provide NEE. Since, GEC chambers 

normally do not measure during night, a flux partitioning like EC data is not feasible. 

To overcome this problem, dark chambers can be used to block the plant photosynthesis 

process by using non transparent material for the chambers. Resulting measurements 

of ecosystem respiration (Reco) can then be subtracted from NEE to calculate GPP.  
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2.4.3. Remote sensing of sun induced chlorophyll fluorescence 

The direct link of fluorescence to the photosynthetic process opens new perspectives 

in accessing photosynthesis at ecosystem scale (Damm et al., 2015; Frankenberg et al., 

2011; Guanter et al., 2014; Wieneke et al., 2016). F is a very weak signal on top of the 

reflected sun light (1-5%), but advances in sensor and retrieval methodology allow the 

disentanglement of F and the apparent reflectance by using terrestrial and solar 

absorption lines (Meroni et al., 2009a). With a signal to noise ratio < 1000 the retrieval 

of F760 in the O2A band is possible with a FWHM resolution of ca. 3nm, while the 

retrieval of F687 in the O2B band requires a FWHM of at least 1nm (Damm et al., 2011). 

Recent advances in sensor technology and retrieval methods allow now the passive 

measurement of sun induced chlorophyll fluorescence using ground (Burkart et al., 

2015; Cogliati et al., 2015a; Damm et al., 2010a), airborne (Damm et al., 2010b, 2014; 

Rossini et al., 2015; Rascher et al., 2015), and satellite sensors (Frankenberg et al., 

2014; Guanter et al., 2012; Joiner et al., 2011). With the selection of FLEX as an Earth 

Explorer 8 mission, it is expected that in the next few years the availability, quality and 

spatiotemporal coverage of ground and airborne measurements will increase 

drastically. In-situ and airborne measurements are needed to: 1. improve our 

knowledge of the relationship between F and GPP; and 2. as calibration and validation 

for the FLEX satellite mission (Porcar-Castell et al., 2014; Rascher et al., 2015). 

 

2.5.  Retrieval of sun induced chlorophyll fluorescence 

RS sensors developed for F estimation measure the incoming solar radiation, irradiance 

(I, in W sr-1 m-2 nm-1), and the outgoing radiation, radiance (L, in W sr-1 m-2 nm-1), with 

high spectral resolution. The relation of L to I describes the percentage of light reflected 

by the surface; reflectance (R, in %).  

   𝑅 =  
𝐿

𝐼
 (6) 

  

The upwelling radiance signal received at an RS sensor (�̃�) comprises of two radiant 

fluxes: sunlight reflected by the surface (L) and the emitted F.  

   �̃� =  𝑅 ∙ 𝐼 + 𝐹 (7) 

 

Therefore, only an apparent radiance (�̃�) can be measured and, thus, only an apparent 

reflectance (�̃�) can be calculated. The Frauenhofer absorption lines can be utilized to 

disentangle F from R. Frauenhofer lines are dark features in the visible spectrum of the 
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sun, which are caused by the absorption of light by certain elements in a specific 

wavelength (Joiner et al., 2011).  

All F retrieval methods base on the Fraunhofer line depth (FLD) method, developed 40 

years ago by Plascyk (Plascyk, 1975; Plascyk and Gabriel, 1975). The FLD method 

allows the estimation of F by measuring L and I inside and outside the Fraunhofer 

absorption lines, or at strong terrestrial atmospheric absorption bands like the O2 A- 

and B-band (760 and 687 nm respectively). In the following four commonly used 

retrieval methods are described. 

 

2.5.1. Fraunhofer line depth (FLD) method 

The FLD method assumes that the wavelength (λ) with highest absorption inside the 

absorption band (λin) and the reference wavelength outside the absorption band (λout) 

are close enough to each other to consider �̃� and F as constant:   

   �̃�𝑖𝑛 = �̃�𝑜𝑢𝑡 ;  𝐹𝑖𝑛 = 𝐹𝑜𝑢𝑡 (8) 

Based on this assumption and Eq. 7, F can be expressed as: 

   𝐹𝐹𝐿𝐷 = 
𝐼𝑜𝑢𝑡∙ 𝐿𝑖𝑛− 𝐿𝑜𝑢𝑡∙ 𝐼𝑖𝑛

𝐼𝑜𝑢𝑡− 𝐼𝑖𝑛
 (9) 

 

Figure 10: Principle of the FLD sun induced chlorophyll fluorescence retrieval. In the left figure the red curve 

symbolize the irradiance. In the middle figure the red curve symbolizes the upwelling radiance, the green curve the 

reflectance and the green line the fluorescence. The right Figure shows that the irradiance (I) outside and inside of 

the absorption band is linearly related to the radiance (L) outside and inside the absorption band. The offset of this 

linear relationship is the fluorescence.  

Source: Rascher et al. (2015) 

 



 

 

26 Chapter 2 

The FLD method is easy to use and only requires radiance measurement outside and 

inside of the absorption band. The main criticism against this method is the assumption 

that �̃� and F are constant over this wavelength range which has been questioned by 

several studies (Alonso et al., 2008; Meroni et al., 2010; Meroni and Colombo, 2006; 

Moya et al., 2004).  

 

2.5.2. Three channel Fraunhofer line depth (3FLD) method 

Maier et al. (2003) proposed the use of three spectral channels to solve Eq. 9 to 

overcome the limitations of the FLD assumption. Instead of using a single reference 

channel on the left shoulder of the absorption band, a second reference channel on the 

right shoulder is used to calculate the average of both reference channels. By using 

three channels instead of two, this method assumes that  �̃� and F vary linearly in the 

considered spectral range. The 3FLD method provides an improved estimate of 

fluorescence in the O2A band, but is considered to perform poorly within the O2B band. 

Since the left and right shoulder of the O2B absorption band are located far from each 

other, the assumption of a linear relationship between �̃� and F seems to be 

underdetermined (Alonso et al., 2008; Meroni et al., 2009a). 

 

2.5.3. Improved Fraunhofer line depth (iFLD) method 

Based on the FLD method, Alonso et al. (2008) developed the improved Fraunhofer 

line depth method. The iFLD method enhanced estimations of F by incorporating 

correction coefficients which improve the description of reflectance and fluorescence 

spectral characteristics. Alonso et al. (2008) pointed out that the assumption of Eq. 8 is 

not valid, which results in an overestimation of the F signal. Within the absorption 

band, I and L decrease proportionally to each other. On the contrary, F does not 

decrease proportionally with I, which results in a stronger �̃� (cf. Eq. 7) and, therefore, 

an increase of �̃� within the absorption band (cf. Figure 11 blue dashed line). 

    �̃� =  
�̃�

𝐼
 (10) 

In order to correct for the false FLD assumption of Eq. 8, the correction coefficients αR 

and αF have to be defined:  

   �̃�𝑜𝑢𝑡 = 𝛼𝑅 ∙  �̃�𝑖𝑛 ;  𝐹𝑜𝑢𝑡 = 𝛼𝐹 ∙  𝐹𝑖𝑛  (11) 

Since these coefficients can vary widely from one case to another (e.g. due to changes 

in the canopy structure), the correction coefficients are not static and can therefore not 

be defined generally. Figure 11 shows that the real reflectance (without F) is smooth 
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(black line), while the apparent reflectance shows a bump (blue dashed line) due to the 

relatively stronger fluorescence signal within the absorption band. The correction 

coefficients can now be calculated by interpolating across the absorption band. 

Polynomial splines of fourth order showed best interpolation results (red dashed line) 

(Alonso et al., 2008). Then: 

 

𝛼𝑅 = 
�̃�𝑜𝑢𝑡

�̂�𝑖𝑛
 (12) 

where �̂�𝑖𝑛 is the interpolated apparent reflectance within the absorption band. The F 

correction coefficient is calculated as: 

 

𝛼𝐹 = 
𝐼𝑜𝑢𝑡

𝐼𝑖𝑛
∙  𝛼𝑅 (13) 

where 𝐼𝑖𝑛 is the interpolated irradiance within the absorption band. F can now be 

derived as: 

   𝐹𝑖𝐹𝐿𝐷 = 
𝛼𝑅∙ 𝐼𝑜𝑢𝑡∙ 𝐿𝑖𝑛− 𝐿𝑜𝑢𝑡∙ 𝐼𝑖𝑛

𝛼𝑅 ∙ 𝐼𝑜𝑢𝑡− 𝛼𝐹 ∙ 𝐼𝑖𝑛
 (14) 

 

 

Figure 11: Concept of the iFLD method. The real reflectance (black line) cannot be measured because of the 

additive signal of fluorescence (blue dashed line). The bump in the fluorescence is caused by the O2A absorption 

band. To correct for this bump cubic (green dotted line) or polynomial splines (red dot-dashed line) can be used. 

The difference between apparent reflectance and real reflectance is the fluorescence.    

Source: Alonso et al. (2008) 
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2.5.4. Spectral fitting method (SFM and SpecFit) 

Spectral fitting methods (SFM) determine the true reflectance (R) and F by adjusting 

mathematical functions, to describe the spectral behavior of F and R within a defined 

spectral window. The mathematical functions for F and R are parameterized by a least 

square nonlinear curve-fitting optimization technique that minimizes a cost function 

(Cogliati et al., 2015b; Meroni et al., 2010; Meroni and Colombo, 2006). Cogliati et al. 

(2015b) compared 54 different combinations of mathematical functions to describe F 

and R close to the O2 absorption bands. They found that a combination of piecewise 

cubic spline and Voigt spectral functions provide high accuracy in the O2A and O2B 

bands. Due to their strong absorption features, the spectral fitting window of the SFM 

algorithms normally focus on the retrieval of F in the range of the O2 bands. In this 

range, F shows a higher contribution to total radiance and is therefore less affected by 

instrumental noise.  

Based on the SFM method Cogliati et al. (2015b) presented a new approach (SpecFit) 

to extend the spectral fitting window to the whole spectral region where fluorescence 

emission occurs (670-780 nm). Even though the idea underlying the SpecFit algorithm 

is the same than for the SFM, the mathematical functions used to predict total 

fluorescence and reflectance are more complex. While the reflectance signature in the 

red to far-red spectral region can be reproduced by the piecewise cubic spline, the red 

and far-red F emission peaks have to be estimated from different combinations of 

Gaussian, Lorentzian, and Voigt profiles (Cogliati et al., 2015b). Results showed that 

the performance of the SpecFit retrieval is comparable to those obtained with the SFM 

method. However, the possibility of retrieving the full spectrum of fluorescence opens 

new perspectives for further investigation of plant species and traits, plant reactions to 

changing environmental conditions and photosynthetic rates (Cogliati et al., 2015b). 

The downside of the SFM and SpecFit retrieval is that both require datasets with a 

minimum spectral resolution of 0.3 nm FWHM (full with high maximum), which is 

still technically challenging.  
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2.6.  Modeling approaches for estimating GPP using remotely 

sensed F 

2.6.1. Simple linear scaling approach 

One of the first approaches to estimate GPP from F was proposed by Frankenberg et 

al. (2011). It was shown that spatial and temporal patterns of satellite derived F strongly 

correlate linearly with GPP derived from EC-upscaling methods (Jung et al., 2011), 

satellite reflectance data (Zhao and Running, 2010) and climatology model data (Van 

Der Werf et al., 2003). In this approach, GPP can therefore be estimated as: 

𝐺𝑃𝑃 = 𝑎 + 𝐹 ∙ 𝑏 [µmol CO2 m
-2 s-1] (15) 

where a and b are the statistically derived offset and slope, respectively. Even though 

GPP and F are mainly driven by APAR, it is assumed that the F signal also contains 

information about the plant status. The problematic aspect of this assumption is that 

the satellite data (GOSAT, GOME-2) provides a spatial (0.5° footprint) and temporally 

(monthly) coarse mixed signal. This raises doubts about how much information about 

the plant status the GOSAT derived F really provides (Yang et al., 2015). 

 

2.6.2. Semi-mechanistic approach 

Guanter et al. (2014) recently proposed a new approach, which does not assume a linear 

relationship of F with GPP but is based on the relationship of APAR independent LUE 

and Fyield. GPP can therefore be expressed as: 

   𝐺𝑃𝑃 =  𝐹 ∙  
𝐿𝑈𝐸

𝐹𝑦𝑖𝑒𝑙𝑑
 (16) 

Were the LUE is calculated from Eq. 2 and Fyield as: 

   𝐹𝑦𝑖𝑒𝑙𝑑 =
𝐹

𝑃𝐴𝑅∙𝑓𝐴𝑃𝐴𝑅
 (17) 

 

Due to the lack of long-term field measurements, the inter- and intra-daily (i.e. between 

days and within a day, respectively) relationship between LUE and Fyield is still unclear.  

Yoshida et al. (2015) compared the relationship of modeled LUE with satellite derived 

Fyield (GOME) and found that under moderate light conditions in the morning, LUE and 

Fyield show a constant ratio. Since these findings are based on spatiotemporal averaged 

satellite derived Fyield and modeled LUE, these findings need to be confirmed by field 

measurements. 
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2.6.3. Using process based models  

The radiative transfer and energy balance model SCOPE (Soil Canopy Observation, 

Photochemistry and Energy fluxes) simulates photosynthesis, fluorescence and NPQ 

(van der Tol et al., 2009). SCOPE became recently an important tool in F-

photosynthesis studies (Damm et al., 2015; Verrelst et al., 2016; Zhang et al., 2014). 

Remotely sensed F can be used to parameterize SCOPE for an improved estimate of 

GPP, but the use of F as an input parameter is still not possible. Additionally, SCOPE 

has to be driven by forcing data (e.g. chlorophyll content, maximum rate of 

carboxylation, LAI) which are especially difficult to obtain for larger simulation areas. 

Furthermore, SCOPE is computationally expensive, which makes it unfeasible for 

global or continental simulations with higher resolution.  

In another approach, process based dynamic global vegetation models (DGVMs) are 

used as data integration platform fluorescence observations. Parazoo et al. (2014) for 

example, used observations of satellite fluorescence to constrain photosynthesis 

estimated by an ensemble of DGVM simulations.  In another approach, Lee et al. 

(2015) incorporated the estimation of fluorescence into the community land surface 

model 4.5 (CLM4.5) by assuming an empirical relationship between the relative light 

saturation of photosynthesis and NPQ (van der Tol et al., 2014). Remotely sensed F 

can then be used as an observational constrain for the CLM. Zhang et al. (2014) show 

that F can also be used as an estimator for DGVM sensitive parameters like the Vcmax, 

which can lead to an improved estimation of GPP by of land surface models. 

Nevertheless, all of these approaches are based on empirical assumptions derived from 

either leaf level actively measured fluorescence or satellite derived F with coarse 

spatiotemporal resolution. Since long-term measurements of F in combination with 

simultaneous CO2 flux measurement are rare, a characterization of the relationships 

between Ftot, NPQ, and PQ is still problematic, and a mechanistically link between F 

and GPP not yet possible.  

 

2.7.  Fluorescence as an estimator of plant stress 

A recent meta-analysis by (Ač et al., 2015) collected 73 peer reviewed articles 

investigating the link between water, temperature or nutrient stress and their effect on 

passive and active measured leaf and canopy fluorescence. Their results suggest that 

water stress is associated with a decrease of red and far-red fluorescence, while the 

fluorescence ratio provided inconsistent results. Chilling significantly increased red 

and far-red fluorescence, whereas heat showed a decrease in both fluorescence peaks 

and in the fluorescence ratio. Nitrogen deficit decreased far-red fluorescence, which 

results in an increase in the fluorescence ratio. It is important to note that only five of 
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the reviewed articles dealt with passive canopy measurements of far-red sun induced 

fluorescence (F760) and only one with red sun induced fluorescence (F687). This means 

that our current knowledge of the link between fluorescence and stress is mostly based 

on active leaf level measurements (Ač et al., 2015; Porcar-Castell et al., 2014). 

The most commonly used technique to measure active leaf level chlorophyll 

fluorescence is the pulse amplitude modulated (PAM) fluorometry (Genty et al., 1989; 

Schreiber, 2004), where a saturating light pulse is used to characterize the fluorescence 

quenching mechanisms and to determine the quantum use efficiency of PSII (φPSII) 

(c.f. Section 2.3). A detailed description of this method can be found in Schreiber 

(2004). From active leaf level measurements, it is known that PSII and PSI differ in 

their contribution to the total fluorescence spectra (Buschmann, 2007; Franck et al., 

2002). The contribution of PSI fluorescence fluctuates between 0 and 50% depending 

on environmental conditions, species and spectral region. While the contribution of PSI 

in the red region is lowest, the maximum is located in the near infrared. Thus, the shape 

of the fluorescence spectra contains information about the photosystem activity (Agati 

et al., 2000; Dau, 1994; Franck et al., 2002; Genty et al., 1990; Peterson et al., 2001; 

Pfündel, 1998), and consequently about plant stress (c.f. Section 2.1.4). 

While active leaf level measurements helped understanding the link between stress and 

fluorescence, results cannot be easily transferred to passive canopy measurements 

(Cendrero-Mateo et al., 2016). The relationship of PSII and PSI contribution to total 

sun induced canopy fluorescence can be influenced by three different mechanisms.  

1) Changes in the chlorophyll concentration affect the reabsorption of F687. A 

decrease of the chlorophyll content results in lower reabsorption of red light, 

and consequently in an increase of the PSII fluorescence signal (F687). It is 

known that net changes of leaf chlorophyll content happen at time scales of 

days (García-Plazaola and Becerril, 2001; Lu et al., 2001).  

2) Seasonal changes of the PSII and PSI absorption spectra could equally affect 

the contribution of the photosystems to the fluorescence signal.  

3) Under the assumption that sustained forms of NPQ do not operate in a similar 

fashion in both photosystems and that the photosystems are deeply down-

regulated due to stress conditions, the contribution of PSI fluorescence to the 

total fluorescence would dramatically increase (Porcar-Castell et al., 2014).  

Due to the lack of long term passive canopy measurements of red and far-red 

chlorophyll fluorescence, the diurnal and seasonal dynamics of the PSI and PSII 

contribution are still unclear (Ač et al., 2015; Porcar-Castell et al., 2014). In particular, 

the third mechanism remains controversial.  
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3. Observations 

3.1.  Study area (TR32) 

The TR32 project intense study area is located in the catchment of the Rur, a river in 

the central western part of North Rhine-Westphalia, Germany (Figure 12 A&B). The 

local climate is characterized by an annual mean temperature of 11°C and an annual 

mean precipitation of around 700mm/year (LANUV NRW, 2014). The region is 

dominated by agriculture. The dominant crop type is sugar beet followed by maize, 

rapeseed, and potato. Two measurement campaigns were performed as part of this 

work. Both with the focus on sugar beet. The first measurement campaign was carried 

out in 2012 close to the village of Selhausen, the second in 2015 close to the village of 

Merzenhausen. The focus of the first measurement campaign was to explore the 

spatiotemporal relationship of GPP to F in the course of one day, while the second in-

situ campaign aimed at studying the temporal relationship between GPP and F during 

a growing season.  

 

Figure 12: Study area location within Germany (A), the catchment area of the river Rur (B), land use 

classification of the Selhausen flight line (C1, 50.8612 N / 6.4539 E), position of the MSS reference 

spectrometer and the net ecosystem exchange canopy chambers in Selhausen (D1), land use 

classification of the Merzenhausen site (C2, 50.9297 N / 6.2969 E), position of the SIF-Sys spectrometer 

(red dot), the Eddy Covariance Tower and the soil water sensors in the Merzenhausen sugar beet field 

(D2). 
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3.2.  Selhausen campaign 2012 

The experimental site of the first measurement campaign was located close to the 

village of Selhausen (50.864N, 6.452E, altitude 103 m above sea level). It covers 1.4ha 

(200m x 70m) with a gentle slope of 4° in east-west direction. The upper part of the 

field is more gravelly than the lower part, resulting in a lower water-holding capacity 

in that area (Rudolph et al., 2015; Stadler et al., 2015). In 2012 the field was cultivated 

with sugar beet, which grew from March (day of year (DOY): 87) to September (DOY: 

254). Ground measurements were carried out in sugar beet field G (Figure 12C) with 

fully developed leaves and a fractional cover of 90% (BBCH-Code: 39 – the 

Biologische Bundesanstalt, Bundessortenamt und CHemische Industrie (BBCH) code 

describes the phenological status of a plant. BBCH-Code: 39 indicate that the Rosette 

growth is completed and that leaves cover 90% of the ground). Imaging spectroscopy 

data were acquired with the HyPlant sensor on August 23, 2012 (DOY: 236). The 

observation took place under clear sky conditions. A rain event with a precipitation 

sum of 0.12 mm was recorded one day before the airborne data acquisition, and the 

maximum air temperature was 23°C. Sunrise was at 4:32 a.m., solar noon at 11:35 a.m. 

and sunset at 6:36 p.m. UTC (Coordinated Universal Time). 

 

3.2.1. Field spectroscopy 

During the 2012 flight campaign, the custom-made measurement setup Manual 

Spectrometric System (MSS) was used to continuously measure irradiance and surface-

leaving radiance to eventually derive F emissions at 760 nm (F760), as well as the 

absorbed photosynthetic active radiation (APARMSS) in the field. The spectrometer 

system was designed for high-temporal frequency sampling of radiometric 

measurements. Briefly, top of canopy radiances were measured using two portable 

spectrometers (HR4000, OceanOptics, USA) characterized by different spectral 

resolutions. The first instrument covered the visible and near-infrared range (400 nm 

to 1000 nm) with a full width at half maximum (FWHM) of 1 nm, facilitating the 

computation of different VIs. The second instrument covered a restricted spectral range 

(700 nm to 800 nm) with a finer spectral resolution (full width at half maximum; 

FWHM = 0.1 nm) and was specifically intended for F760 measurements in the oxygen 

absorption band O2-A. Both spectrometers were housed in a Peltier thermally regulated 

box (model NT-16, Magapor, Zaragoza, Spain), keeping the internal temperature at 

25°C to reduce dark current drifts. Both spectrometers were spectrally and 

radiometrically calibrated with known standards (CAL-2000 mercury argon lamp and 

LS-1-CAL calibrated tungsten halogen lamp, OceanOptics, USA). The instrument’s 

fiber optics were mounted on a horizontal rotating arm to observe alternately the 

canopy and a calibrated white reference panel (Labsphere, Inc., USA) and thus to 

measure surface irradiance. The MSS was installed on a fixed position (Figure 12D) 
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but the 1.5 m radial-arm was sequentially (ca. 1-3 minutes) placed over three positions 

and observations were averaged to cover potential field heterogeneity. Measurements 

started at 8:35 a.m. and finished at 4:10 p.m. UTC. 

F760 emissions were retrieved using the spectral fitting method (described in Section 

2.5.4, (Meroni et al., 2010)), assuming a linear variation of reflectance and fluorescence 

in the O2-A absorption band region (759.0 nm to 767.7 nm) (c.f. Section 2.5.4). 

Resulting F values are hereafter named F760,MSS. APARMSS was derived from measured 

radiances as the difference between incident and reflected radiance, integrated over the 

spectral region from 400 nm to 700 nm (Damm et al., 2010a). Fyield is the fluorescence 

use efficiency, indicating the fraction of photons that are re-emitted from the absorbed 

photons. We calculated F760yield from MSS measurements as: 

   𝐹760𝑦𝑖𝑒𝑙𝑑𝑀𝑆𝑆 = 
𝐹760𝑀𝑆𝑆

𝐴𝑃𝐴𝑅𝑀𝑆𝑆
   (18) 

 

3.2.2. Canopy gas-exchange chambers and leaf area index 

Seven connector frames at different positions were permanently installed within a sugar 

beet field (Figure 12D). The chamber comprised a 50cm height adapter and a 30cm 

height chamber top. The chamber top was equipped with a LI-COR 6400 XT IRGA 

(LI-COR, Lincoln Nebraska, USA) gas analyzer and was moved between the connector 

frames during the flight campaign to measure NEECC (µmol CO2 m
-2 s-1) and PARCC 

(µmol m-2 s-1). Soil respiration (Rsoil,CC, µmol CO2 m
-2 s-1) was measured using a LI-

8100 (LI-COR, Lincoln Nebraska, USA) soil gas analyzer within the connector frames. 

The measurements started around 8:10 a.m. and ended at 3:00 p.m. UTC, resulting in 

five measurements per chamber position. The partitioning of NEECC in GPPCC and 

respiration fluxes can be expressed as: 

   𝐺𝑃𝑃𝐶𝐶 = −𝑁𝐸𝐸𝐶𝐶 + (𝑅𝑠𝑜𝑖𝑙,𝐶𝐶 + 𝑅𝑝𝑙𝑎𝑛𝑡,𝐶𝐶) (19) 

 

Since no dark chamber measurements where available, Rplant,CC could not be obtained 

directly from the chamber measurements. To estimate Rplant,CC we used measurements 

of an nearby EC tower positioned in a sugar beet field at the same growing stage. 

Assuming that field mean RCC,soil and REC,soil are not significantly different, Rplant,CC 

was calculated as: 

   𝑅𝐸𝐶,𝑝𝑙𝑎𝑛𝑡 ≈ 𝑅𝐸𝐶,𝑒𝑐𝑜𝑠𝑦𝑠𝑡𝑒𝑚 − 𝑅𝐶𝐶,𝑠𝑜𝑖𝑙 (20) 

And: 
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   𝑅𝐶𝐶,𝑝𝑙𝑎𝑛𝑡 ≈  
𝑅𝐸𝐶,𝑝𝑙𝑎𝑛𝑡

𝑁𝐸𝐸𝐸𝐶
∙ 𝑁𝐸𝐸𝐶𝐶  (21) 

 

For the flux partitioning of the NEEEC, the online processing tool based on Reichstein 

et al. (2005) was used. Because the measurement intervals were irregular, observation 

times were harmonized by linearly interpolating chamber data. To ensure that the 

chamber measurements were not significantly distorted due to microclimate alteration 

within the chamber, we correlated GPPCC with the destructively-measured leaf area 

index (LAI). The LAI measurements were conducted on the day of flyovers with a leaf 

area meter LI-3100C (LI-COR Bioscience, Lincoln, Nebraska) at the position of the 

canopy chambers (Figure 12D). The significant positive relationship (r² = 0.84) 

between derived GPPCC and measured LAI indicates that the chamber measurements 

captured the infield variability of GPP well. To account for measurement and 

interpolation errors due to the lack of RCC,plant, we assume an uncertainty of 10% (Graf 

et al., 2013; Wang et al., 2013). 

To calculate LUECC from chamber measurements, APAR needs to be known. PAR was 

measured by the individual canopy chambers and fAPAR was modeled using the 

radiative transfer model SCOPE version 1.51 (van der Tol et al., 2009), parameterized 

with in-situ measured LAI and half-hourly atmospheric data obtained from a nearby 

meteorological station. We applied an average chlorophyll a and b concentration of 80 

mg cm-2 and a maximum carboxylation rate (Vcmax) of 80 µmol m-2 s-1. The Ball Berry 

stomatal conductance parameter was set to 10 and the vegetation height was set to 0.6 

m. A spherical leaf distribution of the sugar beet plants was assumed. Further details 

on the SCOPE model can be found in van der Tol et al., (2009). 

 

3.2.3. Airborne (HyPlant) measurements 2012 

Airborne images were acquired on the 23rd of August 2012 using the imaging 

spectrometer HyPlant (Specim, Oulo, Finland). HyPlant, which has been operated 

since 2012 by the research center Jülich, was developed within the framework of ESA’s 

Fluorescence Explorer (FLEX) mission Phase A activities and is an airborne 

demonstrator for the FLEX satellite mission. It was specifically designed to monitor 

functional vegetation information, including emitted F and other important plant 

functional traits. The instrument is a push-broom imager consisting of two modules 

measuring surface radiance in the spectral ranges from 380 nm to 2500 nm (DUAL 

module) and from 670 nm to 780 nm (FLUO module). The high resolution FLUO 

module covers the red and far-red region of the electromagnetic spectrum with high 

spectral resolution (FWHM of 0.25 nm). This allows retrieving emitted F signals in the 

two atmospheric oxygen bands, O2-A (760 nm; F760) and O2-B (687 nm; F687). The 
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good performance of HyPlant enables, for the first time, F760 and F687 to be measured 

in high spatial resolution at field and ecosystem scale (Rascher et al., 2015; Rossini et 

al., 2015). 

In addition to F760 and F687, five commonly applied vegetation indices sensitive to 

different properties of vegetation canopies were calculated. As biomass sensitive 

indices, the Normalized Different Vegetation Index, NDVI, (Rouse et al., 1973), and 

the Enhanced Vegetation Index, EVI, (Huete et al., 2002) were evaluated. The 

Transformed Chlorophyll Absorption in Reflectance Index, TCARI, (Haboudane et al., 

2002) and the Modified Chlorophyll Absorption Ratio Index, MCARI2, (Haboudane 

et al., 2004) were both tested as sensitive indices for green biomass. Furthermore, the 

performance of the Photochemical Reflectance Index, PRI, (Gamon et al., 1992) was 

investigated. The PRI is sensitive to pigment changes related to the xanthophyll cycle 

and frequently employed as proxy for LUE as an indicator for NPQ activity (Peguero-

Pina et al., 2008; Porcar-Castell et al., 2012; Rahimzadeh-Bajgiran et al., 2012). The 

equations for all listed indices can be found in Table 1. 

 

Table 1: Equations for examined spectral vegetation indices 

 Equation Reference 

𝑁𝐷𝑉𝐼 =  
𝑅800 − 𝑅670
𝑅800 + 𝑅670

 (Rouse, 1974) 

 𝐸𝑉𝐼 = 2.5 ∙  
𝑅800 − 𝑅670

𝑅800 + 6 ∙  𝑅670 − 7.5 ∙ 𝑅400 + 1
 (Huete et al., 2002) 

  

 𝑃𝑅𝐼 =  
𝑅570 − 𝑅531
𝑅570 + 𝑅531

 (Gamon et al., 1992) 

  

 𝑇𝐶𝐴𝑅𝐼 = 3 ∙ [(𝑅700 − 𝑅670) − 0.2 ∙ (𝑅700 − 𝑅550) ∙ (
𝑅700
𝑅670

)] 
(Haboudane et al., 

2002) 

   

 
𝑀𝐶𝐴𝑅𝐼2 =

1.5 ∙ (2.5 ∙ (𝑅800 − 𝑅670) − 1.3 ∙ (𝑅800 − 𝑅550)

√2 ∙ (𝑅800 + 1)
2 − (6 ∙  𝑅800 − 5 ∙ √𝑅670) − 0.5

 (Haboudane et al., 

2004) 
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3.3.  Merzenhausen campaign 2015 

The campaign in 2012 showed that an infield spectrometer system was needed which 

is able to detect F760 and F687 with high temporal and spectral resolution over several 

days. In the 2015 campaign, a new fluorescence measurement system was used (SIF-

Sys), which was able to fulfill these requirements. The goal of the 2015 campaign was 

to track changes in the relationship of LUE, PRI, F760 and F687 under changing variable 

condition during growing season.  

The experimental site of the second measurement campaign was located close to the 

village of Merzenhausen (50.930N, 6.296E, altitude 92m above sea level). The site 

covers a 7.2ha (200m x 300m) flat field cropped with sugar beet. Sowing was in mid 

of April (day of year (DOY): 103), harvest was end of October (DOY: 302). Ground 

measurements started end of June (DOY: 181), when leaves were fully developed 

(BBCH-Code: 39) and ended end of August (DOY: 243). The automated system started 

taking measurements at 6 a.m. UTC and stopped at 4 p.m. UTC. The field soil texture 

is classified as silt loam (Ahrends et al., 2014; Graf et al., 2013). Within the period of 

our measurements, a heat wave struck the region with temperatures up to 35° C and 

absent precipitation, resulting in a decrease of soil moisture from DOY: 179 to DOY: 

199.  

 

3.3.1. Field spectroscopy 

The field spectrometer system (SIF-Sys) is a successor of earlier developments of the 

Forschungszentrum Jülich and the University Milano Bicocca (Cogliati et al., 2015a; 

Julitta et al., 2016; Rossini et al., 2010). SIF-Sys consists of one or more spectrometers, 

connected to a double fiber in a way that the vegetation and the hemispherical 

irradiance can be observed at the same time and by the same device. A microcontroller, 

running a specially developed firmware, controls the spectrometer, the optical system, 

and stores acquired spectral data in the SD card. The instrument performance is 

observed by a couple of environmental and internal sensors which read-out in parallel. 

To ensure stable measurements, the spectrometer is housed in a separate and actively 

cooled insulated chamber. The technical description and evaluation can be found in 

Burkart et al. (2015). 

The optical path of the system is optimized for high light-throughput for a decrease in 

integration time and a simultaneous increase of the signal-to-noise level. With this very 

fast acquisition time, around 5000 measurements per day are possible. The retrieval of 

sun induced fluorescence is possible in the O2A and O2B oxygen absorption bands, 

allowing for insights about the photosynthetic performance of PSII and PSI. By using 

an active fluorescence reference (LED) within the plant canopy, the error budget of 
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SIF-Sys can be estimated and tracked over the whole measurement period (Burkart et 

al. 2015). 

The error of the fluorescence retrieval is determined by fast changes in the irradiance, 

the optical fibers (e.g. spectral shift), the measurement system (temperature 

dependency) and the fitting of the retrieval itself. The newly developed LED error 

estimation scheme allows for a quantification of random and systematic errors of the 

retrieval. Two LEDs with a spectral range over the O2A and O2B band respectively, 

were placed within the field of view of the SIF-Sys. The LEDs are switched on around 

1.2 seconds after the radiance measurement. The received signal, consists of the 

vegetation radiance and the LED light. The power of the LED within the respective 

absorption band is calculated as: 

   𝐿𝐸𝐷𝑝𝑜𝑤𝑒𝑟 = 𝐿𝐸𝐷𝜔 − 𝐿𝜔 (22) 

 

Where 𝐿𝐸𝐷𝜔 is the radiance of the vegetation in addition to the LED signal and Lω the 

radiance at the lowest point within the respective absorption band (ω). The LEDpower is 

compared with a LEDpower estimated after the iFLD retrieval where the LEDpower,iFLD is 

calculated as: 

   𝐿𝐸𝐷𝑝𝑜𝑤𝑒𝑟,𝑖𝐹𝐿𝐷 = 𝐹𝐿𝐸𝐷𝜔 − 𝐹𝜔 (23) 

 

Where Fω is the retrieved fluorescence and FLEDω the retrieved fluorescence from the 

vegetation and LED in the respective absorption band ω. Thus the absolute retrieval 

error (δretrival) is: 

   𝛿𝑟𝑒𝑡𝑟𝑖𝑣𝑎𝑙 = 𝐿𝐸𝐷𝑝𝑜𝑤𝑒𝑟,𝑖𝐹𝐿𝐷 − 𝐿𝐸𝐷𝑝𝑜𝑤𝑒𝑟 (24) 
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3.3.2. Eddy- covariance tower measurements 

A permanently installed EC-tower was located 3 m to the field spectrometer setup. The 

EC method is based on the concept that turbulent fluxes, so called eddies, transport 

energy and matter between surface and atmosphere, allowing estimates of surface 

fluxes. The vertical components of these eddies were measured with an open-path 

infrared gas analyzer (LI7500, LI-COR, Lincoln, NE, USA) at a measurement height 

of 2 m and a frequency of 20 Hz. The net CO2 exchange or net ecosystem exchange 

(NEE) was estimated as: 

   𝑁𝐸𝐸 = 
𝜌𝑎

𝑚𝐶𝑂2
𝑤′𝑐′̅̅ ̅̅ ̅̅  (25) 

 

Where ρa is the dry air density (kg m-3), 𝑚𝐶𝑂2 is the molar mass of CO2 (44.01 g mol-

1) and 𝑤′𝑐′̅̅ ̅̅ ̅̅  the covariance of w the vertical wind velocity (m s-1) and c the mixing ratio 

of carbon dioxide (ppm). Resulting NEE is averaged to 30 minutes. Analog to chapter 

3.2.2, GPP was estimated using the online flux partitioning tool based on Reichstein et 

al. (2005).  

 

3.3.3. HyPlant measurements 2015  

For the HyPlant campaign 2015 one overflight over Merzenhausen was realized at the 

30th of June. Sun induced fluorescence at 760 nm and at 680 nm were mapped with a 

1 m resolution at 1:02 p.m. UTC. Even though the technical specifications of the 

HyPlant sensor did not change from 2012 to 2015, hardware updates, preprocessing 

software developments and retrieval software updates resulted in higher image quality. 

For instance, a hardware updates corrected for a too wide point spread function and 

decreased the occurrence of temporarily detector failures (bad pixels). Preprocessing 

Software helped in the removal of the remaining bad pixels and in the compensation of 

remaining effects stemming from the point spread function. The retrieval algorithm 

was updated from the linear 3FLD method to the non-linear iFLD method, which 

allowed the retrieval of fluorescence in the O2B Band (F680) and reduced the noise in 

F760 and F680 maps.   

 

3.3.4. Calculating indicators for plant stress  

Plant stress can be defined as a disturbance down regulating the plant capacity for CO2 

assimilation (lowering the LUE). As explained in detail in Sections 2.1 and 2.7, plant 

stress can be triggered by many different environmental conditions. The most common 
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kinds of stress are water deficiency, low and high temperatures, lack of nutrients, illness 

and pest infections. Since the field used in this study was frequently fertilized and no 

illnesses or pest infections were noted, this work focuses on the description of heat and 

water stress. As heat and water stress are closely linked with each other (Seneviratne 

et al., 2006), it is difficult to treat them separately. In this campaign, only 2m air 

temperature measurements were available, while a robust interpretation of temperature 

stress would require knowing, in addition, the canopy temperature. Attempts to 

calculate canopy temperature by inverting the surface energy balance method (Jackson 

et al., 1987) were insufficient because of the high uncertainty of the retrieved canopy 

temperature. As temperature stress on plants is largely due to the increase of 

evaporative demand in the stomata, the vapor pressure deficit (VPD) was calculated as 

an indicator of stress due to high temperatures. The vapor pressure deficit is defined as 

the difference of the ambient water vapor pressure and the potential saturated water 

vapor of the air.  A high VPD results in an accelerated plant transpiration because of 

diffusion processes (c.f. Section 2.1.3). VPD is calculated as: 

   𝑉𝑃𝐷 = (
(100−𝑅𝐻)

100
) ∙ 𝑆𝑉𝑃 (26) 

 

Where RH is the relative humidity, calculated from absolute humidity and temperature, 

and SVP (in Pa) the saturated vapor pressure calculated as: 

 
  𝑆𝑉𝑃 = 0.6108 ∙  10

(
7.5∙𝑇

(𝑇+237.3)
) 

 (27) 

 

and T is the temperature in Celsius. The temperature was measured with a sonic 

Anemometer (CSAT3, Campbell Scientic, Inc., Logan, USA) and the absolute 

humidity with a humidity probe (HMP45C, Vaisala Inc., Helsinki, Finland). Both were 

installed on the 2m-high micrometeorological station in a distance of 3m to the field 

spectrometer and averaged over 30min. 

Drought stress can be best described by the plant available water (PAW). The PAW 

describes how much water (in mm) is available for the plant and was calculated as: 

   𝑃𝐴𝑊 = (𝜃 − 𝜃𝑤𝑝) ∙  (
𝑚𝑑

10
) (28) 

 

Where θ is the volumetric soil water content (vol %), measured with a water content 

reflectometer (CS616, Campbell Scientic, Inc., Logan, USA), md is the measurement 

depth (2.5 cm) and θwp the wilting point. The wilting point was derived on the basis of 
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Rawls and Brakensiek (1989) as a function of the texture, where the texture was 

ascertained in earlier field campaigns.  

 

Table 2: Soil texture in four depths in Merzenhausen 

 0-35  (cm) 35-47 (cm) 47- 97 (cm) 97-150 (cm) 

Clay (%) 13.4 18 22.7 18 

Silt (%) 81.9 78.9 74.9 79.4 

Sand (%) 4.7 3.1 2.4 2.6 

 

The most direct indicator for plant stress is the LUE. Under non stressed conditions, 

the LUE follows a diurnal cycle with highest values in the morning and evening and 

lowest values during noon because of light saturation effects of the photosystems. 

Under stress conditions the plant has particular adaptation strategies (c.f. Section 2.1.4) 

and can therefore compensate for certain levels of stress. Under severe stress however, 

LUE is much lower than under non-stressed conditions. The LUE was calculated as 

described in Eq. 2, where PAR was derived from a quantum sensor (LI-190, LI-COR, 

Lincoln, NE, USA) and fAPAR was calculated from the difference between incident 

and reflected radiance, integrated over the spectral region from 400 nm to 700 nm.  

 

3.3.5. Data processing 

To avoid errors from cloud related light scattering 17 out of 62 measurement days 

(DOY: 182 to DOY: 243) under clear sky conditions were selected for this study. 

Outliers were removed by filtering values three times the standard error. In order to 

harmonize the data, the dataset was resampled to the lowest temporal resolution the 

dataset provided (30 min from EC measurements). The 30 min dataset (306 samples) 

was used to analyze if short term adaptation strategies by the plant can be tracked by 

fluorescence and PRI. For a better understanding of the inter-daily relationship of LUE, 

PRI, F the dataset was resampled to daily mean (17 samples) values. Table 3 gives an 

overview of the parameters used by this study. 
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Table 3: measured and derived parameters of the Merzenhausen campaign 

Parameter Abbreviation Unit Data basis Equation 

Vapor pressure 

deficit  
VPD hPa 

Temperature 

& absolute 

humidity 

Eq. 26 

Plant available 

water 
PAW mm 

Soil water 

content 
Eq. 28 

light use 

efficiency 
LUE 

µmol CO2 / µmol 

photons 

NEE & 

APAR 
Eq. 2 

Photochemical 

reflectance 

indices 

PRI a.u. 
radiance & 

irradiance 
Table 1 

fluorescence 

yield at 760nm 
F760yield 

(mW/sr/nm) / 

(µmol photons/s) 

radiance & 

irradiance 
Eq. 17 

fluorescence 

yield at 687nm 
F687yield 

(mW/sr/nm) / 

(µmol photons/s) 

radiance & 

irradiance 
Eq. 17 

fluorescence 

ratio 
Fratio ratio 

radiance & 

irradiance 
F687 / F760 
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4. Model descriptions 

4.1.  Data usage 

For an adequate comparison and interpretation of the GPP model approaches (c.f. 

Section 4.2), it is necessary to understand how LUE, PRI and F are affected by 

changing environmental conditions. For this purpose, the ground measurements of 

2015 were used to analyze the changing relationship of LUE, PRI and F in time, while 

the 2012 maps are used to better understand the diurnal change in spatial patterns of 

F760, F680, Fratio, F760yield and F680yield. Subsequently, temporal and spatial patterns of GPP 

are calculated by four different models. While intra- and inter-daily estimations of GPP 

are driven and validated by the 2015 dataset, the spatial patterns of estimated GPP are 

driven and validated by the 2012 dataset. Due to the lack of ground measurements of 

F687 in 2012, the performance of the multiple regression model in estimating spatial 

patterns of GPP had to be validated with the 2015 dataset.  

 

4.2.  Estimation of GPP  

4.2.1. Reflectance based vegetation indices 

The estimation of GPP by reflectance based VIs are based on the LUE approach by 

Monteith. In regional or global applications of the Monteith LUE approach, the LUE 

is normally estimated as a function of maximum LUE, minimum T and VPD (Running 

et al., 2004). For this study, it was decided to use measured mean LUE, which allows 

for a better comparison between reflectance and fluorescence based GPP models.   

Intra-daily GPPVI was calculated based on 30min averaged PAR derived from SIF-Sys, 

30min averaged fAPAR derived from VIs and daily mean LUE derived from eddy 

covariance measurements. Inter-daily GPPVI was calculated based on daily averaged 

PAR derived from SIF-Sys, daily averaged fAPAR derived from VIs and daily mean 

LUE derived from eddy covariance measurements. GPP derived from this approach is 

referenced as GPPVI and expressed as: 

   𝐺𝑃𝑃𝑉𝐼 = 𝑃𝐴𝑅𝑆𝐼𝐹−𝑆𝑦𝑠 ∙ 𝑓𝐴𝑃𝐴𝑅𝑉𝐼 ∙ 𝐿𝑈𝐸̅̅ ̅̅ ̅̅
𝐸𝐶   (29) 

 

Where fAPARVI was calculated as: 

   𝑓𝐴𝑃𝐴𝑅𝑉𝐼 = 𝑘 ∙ 𝑉𝐼𝑆𝐼𝐹−𝑆𝑦𝑠 (30) 
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Where k is a linear scaling factor derived from the relationship of measured fAPAR 

and VISIF-Sys. VISIF-Sys was calculated from spectral measurements of SIF-Sys. 

Maps of GPP were calculated for the three overflights by approximating fAPAR from 

four different vegetation indices. Where GPPVI can be expressed as: 

   𝐺𝑃𝑃𝑉𝐼 = 𝑃𝐴𝑅𝐶𝐶 ∙ 𝑓𝐴𝑃𝐴𝑅𝑉𝐼 ∙ 𝐿𝑈𝐸𝐶𝐶   (31) 

 

The used diurnal cycle of PARCC corresponds to the mean of seven canopy chamber 

measurements. Spatial information of fAPARVI was calculated as: 

   𝑓𝐴𝑃𝐴𝑅𝑉𝐼 = 𝑘 ∙ 𝑉𝐼𝐻𝑦𝑃𝑙𝑎𝑛𝑡 (32) 

 

With k estimated from the relationship between in-field modeled fAPARCC (cf., 

Section 3.2.3) and all HyPlant VIs for each individual flight line. Actual LUECC for 

sugar beet was calculated for each overflight time window as: 

   𝐿𝑈𝐸𝐶𝐶 = 
𝐺𝑃𝑃𝐶𝐶

𝐴𝑃𝐴𝑅𝐶𝐶
         (33) 

 

Where GPPCC corresponds to the mean of the seven canopy chambers and APARCC to 

the averaged model results calculated in Section 3.2.2. 

 

4.2.2. Statistical GPP-F relationship model 

Based on the assumption that GPP and F scale linearly with each other, GPP can be 

estimated with a linear regression model. GPP derived from this approach is referenced 

as GPPF and calculated as:  

   𝐺𝑃𝑃𝐹 = 𝑎 + 𝑏 ∙ 𝐹 (34) 

 

Where a is the offset and b the slope of the regression. For the intra-daily estimation 

the regression model was derived from 30 min GPPEC and F760,SIF-Sys. GPPEC was 

derived from eddy covariance measurements and F760,SIF-Sys from in situ spectrometer 

measurements in 2015. The derived regression model for the intra-daily dataset is: 

   𝐺𝑃𝑃𝐹 = 10.5 + 12.9 ∙ 𝐹760,𝑆𝐼𝐹−𝑆𝑦𝑠 (35) 
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Where the R² is 0.31 and the uncertainty of the offset and of the slope is ± 1.0 for both.  

The inter-daily estimation of the regression model was derived from daily averaged 

GPPEC and F760,SIF-Sys measurements (Figure 31 B). The derived regression model for 

the inter-daily dataset is: 

   𝐺𝑃𝑃𝐹 = 15.0 + 9.7 ∙ 𝐹760,𝑆𝐼𝐹−𝑆𝑦𝑠 (36) 

 

The R² is 0.51 and the uncertainty of the offset and of the slope is ± 2.4 and 2.3 

respectively. 

The spatiotemporal estimation of GPPF, based on a regression model derived from 

GPPCC and F760,MSS
 (Figure 31 C), and GPPCC is derived from the averaged seven 

canopy chambers and F760,MSS from in situ spectrometer measurements in 2012. The 

derived regression model for the spatiotemporal estimation of GPPF is: 

   𝐺𝑃𝑃𝐹 = 4.72 + 13.44 ∙ 𝐹760,𝑀𝑆𝑆 (37) 

 

Where the R² is 0.72. The uncertainty of the offset and slope of all linear regression 

models were calculated from the orthogonal distance of the standard error in GPP and 

F760. 

 

4.2.3. Statistical LUE-F760 relationship model 

Based on the approach by  Guanter et al. (2014), F can be expressed in analogy to Eq. 

(1) as: 

   𝐹 = 𝑃𝐴𝑅 ∙ 𝑓𝐴𝑃𝐴𝑅 ∙ 𝐹𝑦𝑖𝑒𝑙𝑑   (38) 

 

By rearranging Eqs. (1) and (38) GPP can be expressed as: 

   𝐺𝑃𝑃𝜙 = 𝐹760 ∙  
𝐿𝑈𝐸

𝐹760𝑦𝑖𝑒𝑙𝑑
 (38) 

 

GPP derived from this approach is referenced as GPPΦ. For the intra-daily estimation 

of GPPΦ, 30 min averaged F760 retrieved from SIF-Sys is used. The LUE-F760yield ratio 

is based on daily averaged LUEEC and F760yield,SIF-Sys measurements. The inter-daily 
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estimation of GPPΦ, relies on daily averaged F760,SIF-Sys and daily averaged LUEEC and 

F760yield,SIF-Sys measurements.  

   𝐺𝑃𝑃𝜙 = 𝐹760,𝑆𝐼𝐹−𝑆𝑦𝑠 ∙  
𝐿𝑈𝐸̅̅ ̅̅ ̅̅ 𝐸𝐶

𝐹760𝑦𝑖𝑒𝑙𝑑,𝑆𝐼𝐹−𝑆𝑦𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 (39) 

 

Diurnal spatiotemporal patterns of GPPΦ are calculated as:  

   𝐺𝑃𝑃𝜙 = 𝐹760,𝐻𝑦𝑃𝑙𝑎𝑛𝑡 ∙  
𝐿𝑈𝐸𝐶𝐶

𝐹760𝑦𝑖𝑒𝑙𝑑,𝑀𝑆𝑆
 (40) 

 

Where F760,HyPlant is derived from HyPlant 2012 aerial images for the three different 

overflight times, LUECC is derived from the mean of the seven gas exchange and 

F760yield.MSS is calculated from MSS spectrometer measurements. 

 

4.2.4. Multiple regression model 

The estimation of GPPΦ by the LUE-F760 relationship model does not consider that 

excessive energy can also be released as heat by the process of non-photochemical 

quenching (NPQ). To overcome this limitation a multiple regression model was used 

for estimating intra-, inter-daily and spatial GPPMR. Based on the assumption that the 

PRI can be used as a proxy for NPQ, the non-linear relationship between PRI, F760yield 

+ F687yield and LUE define a model for the intra- and inter-daily estimation of GPPMR. 

The model makes use of PRI and the additive yields of red and far-rad F in linear and 

quadratic terms, where the calculation coefficients differ for the intra- and inter-daily 

estimations. The intra-daily model is: 

   𝐿𝑈𝐸𝑀𝑅 = 0.02 − 4.91 ∙ (𝐹760𝑦𝑖𝑒𝑙𝑑 + 𝐹687𝑦𝑖𝑒𝑙𝑑) − 0.20 ∙ 𝑃𝑅𝐼 +

603.33 ∙  (𝐹760𝑦𝑖𝑒𝑙𝑑 + 𝐹687𝑦𝑖𝑒𝑙𝑑)
2
+ 4.66 ∙ 𝑃𝑅𝐼2 

(41) 

  

The inter-daily model is: 

   𝐿𝑈𝐸𝑀𝑅 = 0.01 + 7.79 ∙ (𝐹760𝑦𝑖𝑒𝑙𝑑 + 𝐹687𝑦𝑖𝑒𝑙𝑑) − 0.05 ∙ 𝑃𝑅𝐼 −

1240.63 ∙  (𝐹760𝑦𝑖𝑒𝑙𝑑 + 𝐹687𝑦𝑖𝑒𝑙𝑑)
2
+ 5.18 ∙ 𝑃𝑅𝐼2 

(42) 

 

The relationship of intra- and inter-daily PRI, F760yield + F687yield and LUE are described 

in more detail in Section 5.2.3 and 5.2.4 respectively.  



 

  

49 Model descriptions 

Based on the Monteith LUE model, GPPMR can be calculated as: 

 

 
  𝐺𝑃𝑃𝑀𝑅 = 𝑃𝐴𝑅 ∙ 𝑓𝐴𝑃𝐴𝑅 ∙ 𝐿𝑈𝐸𝑀𝑅   (43) 

For the intra- and inter-daily estimates, PAR and fAPAR are derived from the SIF-Sys 

measurements. For the spatial estimates of GPPMR, PAR was derived from SIF-Sys 

measurements and fAPAR from HyPlant EVI as explained with Eq. 32.   

 

4.3. Spatio temporal changes of fAPARVI and F760yield 

The spatial patterns of greenness-based and fluorescence-based estimates of GPP are 

characterized by fAPARVI and F760, both derived from HyPlant measurements. Since 

temporal changes of F760 mainly depend on APAR, F760yield was calculated as: 

   𝐹760𝑦𝑖𝑒𝑙𝑑 = 
𝐹760

𝑃𝐴𝑅𝐶𝐶∙ 𝑓𝐴𝑃𝐴𝑅𝑉𝐼
  (44) 

 

Maps of fAPARVI and F760yield were grouped by overflight time and crop type. Groups 

are separated in homogenous sugar beet fields, heterogeneous sugar beet fields, rape 

seed and maize. To avoid errors due to point spread, field edges were not selected.  

 

4.4.  Model validation 

To validate the performance of the GPP estimations by greenness-based and 

fluorescence-based approaches, results were compared with in-field measurements of 

GPP derived from an eddy-covariance tower and gas exchange chamber. Since the 

estimation of intra- and inter-daily GPP is based on the measurements from 

Merzenhausen 2015, results were compared with available eddy covariance 

measurements. Except for GPPMR, spatiotemporal patterns of modeled GPP were 

compared with gas exchange chamber measurements from Selhausen 2012. The mean 

of GPPEVI, GPPF and GPPΦ within a 3 m buffer around the canopy chamber positions 

was calculated, in order to minimize potential errors of the canopy chamber global 

positioning system and errors related to the point spread function of HyPlant.  

As F687yield and PRI were not measured with the MSS in 2012, spatial GPPMR was 

calculated with HyPlant 2015 and validated with upscaled GPP derived from an eddy-

covariance tower. By analyzing wind speed and direction the footprint of the EC-Tower 

measurements during the 2015 HyPlant overflight (1p.m.) was located. The average 

fAPAR within the footprint was calculated from HyPlant as described in Eq. 32. The 
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relationship between fAPAR and GPPEC within the footprint is then used to estimate 

spatial patterns of GPP.  

All results were compared for their coefficient of determination (R²), root mean square 

error (RMSE) and relative RMSE (rRMSE), the statistical bias (BIAS) and the slope 

of the regression line (slope). The R² is a statistical measure of how much variance of 

the dependent variable Y can be explained by a regression model. The difference of the 

measured value (Yi) and the predicted value (𝑌�̂�) are the residuals and the sum of all 

squared residuals is the variance. The coefficient of determination is given as the ratio 

of explained and overall variance of the model. 

 
𝑅2 = 

∑ (𝑌�̂� − �̅�)
2𝑛

𝑖=1

∑ (𝑌𝑖 − �̅�)2
𝑛
𝑖=1

 (45) 

 

The RMSE is a measure of the difference between predicated and observed values: 

 

  𝑅𝑀𝑆𝐸 =  √
∑ (𝑌𝑖− 𝑌�̂�)

2𝑛
𝑖=1

𝑛
 (46) 

The BIAS between predicted and observed values is calculated as: 

   𝐵𝐼𝐴𝑆 =  
∑ (𝑌𝑖− 𝑌�̂�)
𝑛
𝑖=1

𝑛
  (47) 

 

4.5.  Model uncertainties 

Each parameter used by the four different models was attributed with an error range. 

The error range of each parameter propagates to the absolute model uncertainty. The 

uncertainty for MSS derived PAR, fAPAR and F760 as well as SIF-Sys derived PAR, 

fAPAR and PRI is based on the square root of their variance (standard deviation; σ). 

The standard deviation was calculated as: 

 
  σ =  √

1

𝑛
 ∑ (𝑋𝑖 − �̅�)2
𝑛
𝑖=1  (48) 

 

Where �̅� is the arithmetic mean of the variable 𝑋.  

The uncertainty estimation for SIF-Sys derived F760 and F687 is based on an active light 

reference within the measurement footprint and is in detail described in Section 3.3.1. 
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GPP values derived from EC measurements were attributed with an relative error of 

10% (Foken, 2006).  

The random error of all HyPlant derived parameters was calculated from a 

homogeneous training area within the maps, while systematic error in the F760,HyPlant 

retrieval method were considered as described in Damm et al. (2011). Uncertainties of 

the linear regression models were calculated from the error of the dependent and 

independent variables. The absolute uncertainty of each model depends on the 

propagation of the error for each parameter. 
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5. Results 

For a better understanding of diurnal plant adaptation strategies under excessive heat 

and water scarcity, the diurnal measurements of 2012 and the seasonal measurements 

of 2015 are described first.  The 30-min averaged and daily averaged data of the 2015 

campaign are then used to describe the intra- and inter-daily relationships of LUE, PRI, 

F760yield & F687yield and Fratio to VPD and PWD, as well as between each other. 

Fluorescence maps of the 2012 HyPlant campaign were used to analyze and compare 

spatiotemporal patterns of EVI, F760, F687, Fratio, F760yield and F687yield. After a 

quantification of the SIF-Sys measurement uncertainty, intra- and inter-daily, as well 

as spatiotemporal estimates of GPP are presented and compared with each other.   

 

5.1.  In situ measurements  

Since the ground-based measurements of 2012 are the basis of the spatiotemporal GPP 

estimation, the diurnal dynamics of the variables on the airborne campaign day (23rd of 

August 2012) are analyzed here in more detail. Field averaged APARCC, used for the 

LUECC calculation, increased to a maximum of 1300 µmol m-2s-1 at solar noon. The 

field average GPPCC sharply increased from sunrise to a maximum CO2 uptake of 35 

µmol CO2 m
-2s-1 at 9.20 a.m. UTC. Afterwards, the uptake slowly decreased until 3.00 

p.m. UTC, when the measurements stopped (Figure 13A). During the morning hours, 

a decrease of field averaged LUECC from 0.037 to a minimum of 0.024 after solar noon 

and a subsequent increase to 0.029 until the end of measurements at 3 p.m. (Figure 

13C) can be observed. 

MSS measurements started at 8:35 a.m. with APARMSS values of 255 Wm-2 and F760 

values of 1.48 mW m-2sr-1nm-1. APARMSS and F760 followed a typical diurnal cycle for 

clear sky conditions, albeit with F760 fluctuating more strongly. The maxima of 

APARMSS and F760 were reached around 11 a.m. with 350 W m-2 and 2.4 mW m-2sr-1 

nm-1, respectively. Both values decreased (APARMSS = 220 W m-2 s-1 and F760= 1.3 

mW m-2sr-1 nm-1) until 3:00 p.m. (Figure 13B). To reduce the noise of the F760 signal, 

a moving average of 30 m was calculated for the F760yield,MSS. From 8:35 a.m. to 12:40 

p.m., F760yield,MSS showed a steady decrease from 0.0066 to 0.0056. Afterwards, it 

steadily increased to 0.0070 at 3:00 p.m. (Figure 13C).  

The resulting relationship between LUECC and F760yield,MSS changed over the 

measurement day resulting in a relative low coefficient of determination (R² = 0.17). 

From 8:35 a.m. to solar noon, the ratio between LUECC and F760yield,MSS showed a strong 

decrease, followed by a more or less constant relationship by the end of measurements 

(Figure 13D).  
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Figure 13: Interpolated diurnal cycle of gross primary production (GPP; solid line) and absorbed 

photosynthetic active radiation (APAR; dashed line) averaged over seven net ecosystem exchange (NEE) 

chambers within a sugar beet field. Vertical line marks local solar noon (A). Diurnal sun-induced 

chlorophyll fluorescence (F760; crosses) and APAR (dots) measured by Manual Spectrometric System 

(MSS). Vertical line marks local solar noon (B). Interpolated diurnal light use efficiency (LUECC ; 

dashed line) derived from canopy chambers, F760yield (points) and moving average of F760yield (solid line) 

derived from MSS. Vertical line marks local solar noon (C). Diurnal relationship of LUECC to F760yield 

(points), 30 m moving averaged (solid line), diurnal course of temperature (dashed horizontal line) and 

flight windows (dashed vertical lines) (D). 

 

From the 15 days of measurements with clear sky conditions in Merzenhausen during 

2015, four exemplary days were chosen to describe the diurnal behavior of the key 

parameters (c.f. Table 3) in detail. The four chosen days represent high temperature 

(noon T over 30 °C, PAW over zero mm; red squares, DOY: 242), water scarcity (noon 

T under 25 °C, PAW under zero mm; blue triangles, DOY: 187), high temperature in 

combination with drought (noon T over 30 °C, PAW under zero mm; black stars, DOY: 

182) and moderate temperature with sufficient water (noon T under 25 °C, PAW over 

zero mm; green dots, DOY: 238) conditions (Figure 14). Because of the known 

temperature-moisture feedback (Seneviratne et al., 2006), VPD is highest on days with 

high temperature and water scarcity. The LUE shows, for all four cases, a decrease 

until solar noon and a subsequent rise to the same- or higher LUE level. However, 
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during the days affected by water scarcity or by a combination of water scarcity and 

high temperature, the light-use is by 50 to 100% less efficient than under sole high 

temperature or moderate conditions. Especially after solar noon, the LUE increases 

under high temperature or moderate conditions much faster than under conditions of 

water scarcity or a combination of water scarcity and high temperature. No significant 

difference in LUE can be found between days under moderate or high temperature 

conditions. Under water scarcity only, the LUE is slightly higher than for days affected 

by both water scarcity and high temperature. 

The PRI follows a diurnal cycle with the highest values during solar noon and the 

lowest values in the morning and evening. Highest absolute values were measured on 

days affected by water scarcity. On days with sufficient soil water, the PRI is lower 

and less variable. Overall, the PRI inversely follows the LUE.  

Under water scarcity or water scarcity and high temperature conditions, F760yield 

followed a diurnal cycle with lowest values during solar noon and highest values in the 

morning and evening. Under high temperature and moderate conditions, F760yield 

steadily decreased from 7 a.m. to 4 p.m. by 35-50%. Under sole water scarcity, values 

of F760yield were nearly as low as under water scarcity combined with high temperature 

conditions, when the lowest values were found. Nevertheless, after solar noon F760yield 

rose to the same intensity as under high temperature or moderate conditions. 

The F687yield showed lowest values under water scarcity conditions before solar noon, 

and highest values under water scarcity & high temperature conditions. Under sole high 

temperature and moderate water conditions, F687yield was quite stable over the day. In 

general, after solar noon F687yield values did not vary strongly under any condition. 

Under water scarcity and water scarcity & high temperature conditions, the ratio 

between F687 and F760 strongly increased until noon and subsequently decreased until 

the evening. The days under sole high temperature and moderate conditions show a 

much slower and not as strong increase of the Fratio during the day, both being very 

similar to each other. 
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Figure 14: Diurnal evolution of absorbed photosynthetically active radiation (APAR), temperature, plant available 

water (PAW), light use efficiency (LUE), Photochemical Reflectance Indices (PRI), fluorescence yield in the O2A- 

and O2B-Band (F760yield and F687yield) and the ratio of red to far red fluorescence (F687/F760) for four representative 

days in 2015 within a sugar beet field located in Merzenhausen, Germany. The four chosen days represent high 

temperature (noon T over 30°C, PAW over zero mm; red squares, DOY: 242), water scarcity (noon T under 25°C, 

PAW under zero mm; blue triangles, DOY: 187), high temperature in combination with drought (noon T over 30°C, 

PAW under zero mm; black stars, DOY: 182) and moderate temperature with sufficient water (noon T under 25°C, 

PAW over zero mm; green dots, DOY: 238) conditions.  
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For the 2012 dataset, the diurnal relationship between LUECC and the averaged 

F760yield,MSS was evaluated separately for data acquired before and after LUECC and 

F760yield,MSS are lowest (one hour after solar noon) (Figure 15). From morning to 

afternoon (12:45 p.m.) the relationship between LUECC and F760yield,MSS shows an 

exponential decrease with an R² of 0.8.  After 12:45 p.m. F760yield,MSS values are 

characterized by a wider range than the LUECC values, leading to a steep slope 

coefficient of the linear regression fit and a higher coefficient of determination (R² = 

0.95). 

 

Figure 15: Relationship of LUECC estimated from canopy gas-exchange chamber measurements and 

averaged F760yield,MSS from MSS fluorescence ground measurements. Points symbolize measurements 

until 12:45 p.m. UTC, cross markers symbolize measurements from 12:45 p.m. UTC to 3:00 p.m. UTC. 

The lines show the best fit of the relationship. The coefficient of determination (R²) for before noon- and 

after 12:45 p.m. UTC are 0.80 and 0.95 respectively. 

 

To further investigate the diurnal evolution of LUE to F760yield, the four exemplary days 

(Figure 16) and the full dataset (Figure A52) of the 2015 Merzenhausen campaign were 

analyzed. All days in Figure 16 show a strong decrease of F760yield until solar noon with 

a weak decrease in LUE. After solar noon, the relationship evolves differently for each 

day. Under normal environmental conditions, as well as under high VPD conditions, 

the LUE strongly increases while F760yield stays relatively constant. Under water 

scarcity or water scarcity with high VPD, both LUE and F760yield increase, showing 

thereby a stronger relationship of LUE and F760yield under environmental stress.  
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Figure 16: Diurnal change of LUE and F760yield relationship during an unstressed day (green line, top left, DOY: 

238), a day under water scarcity (blue line, top right, DOY: 187), a day of excessive temperature (red line, bottom 

left, DOY: 242) and a day of high temperature and water scarcity (black line, bottom right, DOY: 182).  

 

The full dataset (Figure A52) supports these findings. As shown in Figure A49 the full 

dataset can be grouped into days which are affected by water scarcity or water scarcity 

in combination with high VPD (DOY: 181-213) and days which were not affected by 

water scarcity (DOY: 213-242). Figure 17 demonstrates that under non-stressed 

conditions, no significant relationship of LUE to F760yield was found (Figure 17 left 

plot), while under water scarcity the relationship is stronger but not linear (Figure 17 

right plot). A further separation of the water scarcity affected data points into before 

and after solar noon revealed that the parabolic shape of the distribution is not solely 

connected to the time of day, but also observed between single days with strong 

variations in LUE but low variations in F760yield (DOY: 183, 185). Figure 18 shows the 

relationship of F687yield to LUE under normal- and water-stressed conditions. Under 

non-water scarcity conditions the relationship of LUE to F687yield shows a moderate 

positive correlation (R = 0.46), while under water scarcity the relationship is weak and 

negative (R= -0.16). When affected by water scarcity, F687yield is highly variable 

(0.0001-0.0010 mWm-2sr-1nm-1) while the LUE is relatively low (0.01-0.025 

µmolCO2m
-2s-1).  
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Figure 17: Relationship of LUEEC derived from eddy covariance tower and F760yield derived from SIF-Sys under 

stressed- (left plot) and unstressed (right plot) environmental conditions. Data was collected in 2015 Merzenhausen 

within a sugar beet field. The data represent 15 clear sky measurement days collected over 2 month. Small circles 

indicate: PAW < 0 mm; medium circles: 0 mm<PAW<10 mm; big circles: PAW > 10mm. Color gradient indicates 

the vapor pressure deficit. Black line was drawn by hand to indicate the similarity to Figure 15. 

 

 

Figure 18: Relationship of LUEEC derived from eddy covariance tower and F687yield derived from SIF-Sys under 

unstressed- (left plot, R = 0.46) and water scarcity (right plot; R = -0.16) conditions. Data was collected in 2015 

Merzenhausen within a sugar beet field. The data represent 15 clear sky measurement days collected over 2 month. 

Small circles indicate: PAW = 0 mm; medium circles: 0 mm<PAW<10 mm; big circles: PAW > 10mm. Color 

gradient indicates the vapor pressure deficit. 
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5.2.  Plant adaptation strategies in time and space 

As described in Chapter 2, light energy absorbed by plants can be released as heat 

(NPQ), fluorescence (Ftot) or used for photosynthesis (PQ). Although none of these 

parameters can be measured/retrieved with currently available technique on canopy 

scale, proxies can be used to better understand the relationships between the three 

energy pathways. In this Section the PRI (as a proxy for NPQ), F760yield & F687yield (a 

proxy for APAR relative Ftot emission) and LUE (a proxy for APAR relative PQ) are 

used to describe their relationship under changing environmental conditions (excessive 

heat and water scarcity). Furthermore, fluorescence maps taken in 2012 by the HyPlant 

sensor are used to analyze and compare spatiotemporal changes of EVI, F760, F687, 

F760yield and F687yield. 

 

5.2.1. Limiting effects on LUE 

For a better interpretation of the link between LUE, PRI and F, limiting environmental 

conditions like heat or water scarcity have to be described beforehand. Figure 19 

describes the relationship of plant available water (PAW) to LUE and the connection 

to vapor pressure deficit. To reduce the noise due to diurnal fluctuations, the daily mean 

values (7 a.m. to 4 p.m.) of LUE, PAW and VPD were calculated for the 15 days of 

measurements. Lowest values of LUE where found when PAW is negative, i.e. the 

sugar beet has no access to soil water. With increasing available water, the LUE 

increases linearly, resulting in a strong positive relationship between PAW and LUE 

(R = 0.8). High VPD only results in reduced LUE when soil water is limited.  

 

Figure 19: Light use efficiency (LUE) versus plant available water (PAW) under changing vapor pressure deficit 

(VPD). Data was collected within a sugar beet field, in 2015 Merzenhausen, Germany. Small circles indicate: PAW 

< 0 mm; medium circles: 0 mm<PAW<10 mm; large circles: PAW > 10mm. The color gradient indicates the vapor 

pressure deficit. LUE shows a strong positive correlation with PAW. The correlation coefficient (R) is 0.8.   
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5.2.2. Limiting and amplifying effects on F and PRI 

In this Section, the intra- and inter-daily datasets of fluorescence and PRI are described 

in terms of their relationship with heat and water stress.  

The Fratio showed a strong positive relationship with intra- and inter-daily VPD (R = 

0.63 and 0.73 respectively), explaining 40% of the intra- and 53% of the inter-daily 

variation in VPD (Figure 20 and Figure 21). It has to be noted that the variance of Fratio 

and VPD strongly increases with PAW<0mm. The PRI only showed a moderate 

positive relationship with intra- and inter-daily VPD (R= 0.53 and 0.58 respectively), 

explaining only 28% of the intra- and 33% of the inter-daily variation in VPD. The PRI 

showed a strong negative relationship with intra- and inter-daily PAW (R = 0.74 and 

0.78 respectively), while explaining 55% of intra- and 61% of inter-daily variation in 

PAW. A strong positive relationship was also found between the additive yields of F760 

and F687 (F760yield+687yield) and intra- and inter-daily PAW (R = 0.73 and 0.82 

respectively), explaining 53% of the intra- and 67% of the inter-daily variance in PAW. 

In general, the averaged inter-daily fluorescence and PRI shows stronger relationship 

towards PAW and VPD than the 30 min dataset.  

 

Figure 20: Relationship of 30-min PRI, Fratio and F760+687yield to vapor pressure deficit (VPD) and plant available 

water PAW) within a sugar beet field, in 2015 Merzenhausen, Germany. Small circles indicate: PAW < 0 mm; 

medium circles: 0 mm<PAW<10 mm; big circles: PAW > 10mm. Black line represent best linear model fit. A full 

overview of all tested parameters can be found in Figure A54 in the Appendix. 
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Figure 21: Relationship of daily PRI, Fratio and F760+687yield to vapor pressure deficit (VPD) and plant available 

water (PAW) within a sugar beet field, in 2015 Merzenhausen, Germany. Small circles indicate: PAW < 0 mm; 

medium circles: 0 mm<PAW<10 mm; big circles: PAW > 10mm. Black line represent best linear model fit. A full 

overview of all tested parameters can be found in Figure A55 in the Appendix.



 

  

63 Results 

5.2.3. PRI, F and LUE under changing environmental 

conditions 

In Section 5.1, results showed that the relationship of F760yield and F687yield with LUE 

changes with stress and time of the day. For a better understanding of the relationship 

between intra- and inter daily values of Fyield, Fratio, PRI and LUE under changing 

environmental conditions their relationships are assessed in this Section. 

Despite the finding from Section 5.1 the best fitting models describing the relationship 

of F760yield and F687yield with LUE are linear. While the correlation between F760yield and 

F687yield to LUE is moderate (R = 0.45 and 0.33 respectively), the additive signal of 

F760yield and F687yield improves the correlation coefficient to 0.52 (Figure 22 A-C). On 

the contrary, the daily mean variance of LUE can be very well explained by F760yield, 

F687yield and F760+687yield (R = 0.82, R = 0.77 and R = 0.9 respectively) (Figure 21 A-C). 

It is worth mentioning that the additive signal of F760yield and F687yield explains more 

variance in LUE, than each variable alone.  

The relationship between PRI (30-min and daily mean) and LUE is found to be best 

explained by a power law (R² = 0.55 and R² = 0.76 respectively, shown in Figure 22 

and Figure 23). Interestingly, the 30-min mean variance in PRI can be best described 

by the Fratio (R² = 0.53), while the daily mean variance in PRI shows a strong negative 

linear relationship towards F760+687yield (R² = 0.87).  

The relationship of 30-min Fratio and LUE (Figure 22C) shows clusters of extreme VPD 

and PAW values. Low VPD values for example cluster around a Fratio of 0.5 with 

strongly varying LUE (0.010 to 0.04 µmol CO2 / µmol photons). At a slightly higher 

Fratio (0.7), high VPD values with sufficient PAW aggregate along the LUE axis (0.010-

0.040 µmol CO2 / µmol photons). At low LUE (< 0.015 µmol CO2 / µmol photons), 

values are distributed along the Fratio axis (0.7-2.4). These values are characterized by 

insufficient PAW and high VPD (Figure 22 D). The PRI shows a strong discrimination 

of PAW and a weaker discrimination of VPD (c.f. Section 5.2.3).  

The relationship of Fratio and PRI combines the information of both signals and show 

clusters of low VPD with positive PAW (Fratio < 0.6 and PRI < -0.01), high VPD in 

combination with positive PAW (Fratio > 0.6 and PRI < -0.01), low VPD with negative 

PAW (Fratio 0.3-0.7 and PRI 0.0-0.03) and high VPD in combination with negative 

PAW (Fratio > 0.8 and PRI > 0.02). These results are also reflected in the inter-daily 

dataset, but due to the much lower sample size, they are difficult to identify (c.f. Figure 

23 D- F).  
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Figure 22: Relationship of 30-min F760yield, F687yield, F760+687yield, Fratio and PRI to LUE (A-E) and Fratio to PRI (F) 

within a sugar beet field, in 2015 Merzenhausen, Germany. Small circles indicate: PAW < 0 mm; medium circles: 

0 mm<PAW<10 mm; big circles: PAW > 10mm. Color gradient indicates the vapor pressure deficit. Black line 

represent best model fit, red line represent non-linear model fit of the F760yield and F687yield relationship to LUE. 
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Figure 23: Relationship of daily F760yield, F687yield, F760+687yield, Fratio and PRI to LUE (A-E) and Fratio to PRI (F) within 

a sugar beet field, in 2015 Merzenhausen, Germany. Small circles indicate: PAW < 0 mm; medium circles: 0 

mm<PAW<10 mm; big circles: PAW > 10mm. Color gradient indicates the vapor pressure deficit. Black line 

represent best model fit.
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5.2.4. Analyzing dynamic changes in LUE by PRI and Fratio 

Results of Section 5.2.2 and 5.2.3 showed the potential of PRI and Fratio to describe 

plant short term adaptation to high VPD and water scarcity. This Section intends to 

evaluate whether dynamic changes in LUE can be explained by PRI and Fratio. Figure 

24 shows the complex non-linear relationship between intra-daily PRI, Fratio, and LUE 

under changing environmental conditions (3D animation: http://gop.meteo.uni-

koeln.de/~swieneke/3D_plot_F_ratio_30min.gif). The color gradient describes the 

strength of VPD, the size of the circles indicates PAW. As in the previous Figures, the 

size of the circles reflects PAW.  

LUE is lowest when VPD is high and water not accessible to the sugar beet. Under 

these conditions, PRI and Fratio are highest. With increasing water availability, LUE 

increases while PRI and Fratio decrease, with Fratio presenting higher sensitivity to low 

LUE values and PRI a high sensitivity to medium LUE values. PRI and Fratio are less 

sensitive to highest values of LUE. This relationship results in a helix shaped curve. It 

must be noted that especially in the lower range of PRI and upper range of Fratio several 

outliers with high LUE values occur.  

 

 

Figure 24: 3 Dimensional plot of intra-daily Fratio, PRI and LUE relationship under changing plant available water 

(PAW) and vapor pressure deficit (VPD) within a sugar beet field, in 2015 Merzenhausen, Germany. Small circles 

indicate: PAW < 0 mm; medium circles: 0 mm<PAW<10 mm; big circles: PAW > 10mm. Color gradient indicates 

the strength of the VPD. 

http://gop.meteo.uni-koeln.de/~swieneke/3D_plot_F_ratio_30min.gif
http://gop.meteo.uni-koeln.de/~swieneke/3D_plot_F_ratio_30min.gif
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5.2.5. Analyzing intra-daily changes in LUE by PRI and Fyield 

Results of Section 5.2.2 and 5.2.3 showed that in contrast to the intra-daily dataset, the 

inter-daily Fyield has a strong relationship with LUE. The Section intends to evaluate if 

inter-daily changes in LUE can be better explained by a combination of PRI and Fratio 

than sole PRI. Figure 25 shows the non-linear relationship of inter-daily PRI, 

F760yield+687yield, and LUE under changing environmental conditions (3D animation: 

http://gop.meteo.uni-koeln.de/~swieneke/3D_plot_interdaily.gif). The color gradient 

describes the strength of VPD, the size of the circles indicates PAW (small 

PAW<0mm, medium 0<PAW<10mm, big PAW>10mm). The black lines indicate the 

least-squares regression model describing best the relationship between PRI and Fratio 

with LUE. 

The lowest values of LUE correspond to high values of PRI and low values of 

F760yield+687yield, while the highest values of LUE correspond to low values of PRI and 

high values of F760yield+687yield. The best fitting non-linear regression model (c.f. Eqs. 

42) explains 89% (R² = 0.89) of the variability in LUE, which is slightly higher than 

the R² (0.84) for the PRI to LUE relationship found in Section 5.2.3. This model is used 

to calculate inter-daily and spatial GPPMR (c.f. Sections 4.2.4 and 5.5.4). 

 

 

Figure 25: 3 Dimensional plot of the inter-daily F760+687yield , PRI and LUE relationship under changing plant 

available water (PAW) and vapor pressure deficit (VPD) within a sugar beet field, in 2015 Merzenhausen, Germany. 

Small circles indicate: PAW < 0 mm; medium circles: 0 mm<PAW<10 mm; big circles: PAW > 10mm. Color 

gradient indicates the strength of the VPD. 

http://gop.meteo.uni-koeln.de/~swieneke/3D_plot_interdaily.gif
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5.2.6. Spatiotemporal dynamics of F760, F687 and their ratio 

HyPlant’s first fluorescence maps demonstrating diurnal changes in both fluorescence 

peaks are shown in Figure 26. Maps of F760 and F687 show the highest fluorescence 

values during solar noon and lower values in the morning and afternoon. The highest 

values of F760 and F687 were measured within the sugar beet fields and especially in the 

field centers. The F760 maps show spatial patterns similar to the reflectance-based EVI, 

with a gradient of F760 values from the field borders to the field center. The F687 maps 

are noisier and, for most fields, present lower (around twofold) values than average 

F760, which is in agreement with findings by Rossini et al. (2016) who found that for 

various plant species red fluorescence values are lower than far-red fluorescence 

values. In contrast, during solar noon F687 in sugar beet field B and rapeseed field C 

show higher values than F760, consequently resulting in a positive Fratio (Figure 27). In 

general, sugar beet field B shows higher heterogeneity than sugar beet fields D to H. A 

fundamental difference can be seen in all maize fields, where F760 and F687 values are 

very low and stable over the day, while the high EVI indicate a dense canopy structure 

(Figure 26).  

Figure 27 shows the ratio between red and far-red fluorescence (Fratio). Highest values 

of Fratio are found in parts of sugar beet field B where plants undergo a severe drought 

stress due to low water holding capacity of the gravely soil, originating from sediments 

of a fossil river bed of the Rur river (Rudolph et al., 2015; Weihermüller et al., 2007). 

Pictures in Figure 28 show stressed and less stressed sugar beet plants located in field 

B. The sugar beet affected by strong water stress were located in the lower left corner, 

where high Fratio values were observed, while the lower stressed sugar beet plants were 

located in the field center, where lower Fratio values were observed. 

All rapeseed fields, which were in early growing stage at the time of the campaign, 

show increased Fratio values, while the maize fields, which were in late growing stage, 

showed lowest Fratio values. The Fratio in sugar beet field B is highest during noon, while 

Fratio in the rapeseed fields reaches maximum values in the afternoon. Sugar beet fields 

D, E, F, G and H show little change in the Fratio except for areas with low EVI where 

plants again suffer from severe drought stress (eastern field boarder of D, E and G, 

Figure 27). 
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Figure 26: Maps of fluorescence at 760 nm (F760) and 687 nm (F687) recorded at 9:56 a.m., 11:50 a.m. 

and 2:05 p.m. on 23 of August 2012, Selhausen, Germany. Only the F760 maps were validated with 

ground measurements. Upper left map shows the land use of the flight line, the position of the reference 

spectrometer (MSS) and the location of the canopy chambers used to derive GPPCC. Lower left map 

shows the enhanced vegetation index (EVI). 
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Figure 27: Maps of F687 to F760 ratio (Fratio) calculated for 9:56 a.m., 11:50 a.m. and 2:05 p.m. on 23 of 

August in 2012 Selhausen, Germany. Left map shows the land use of the flight line, the position of the 

reference spectrometer (MSS) and the location of the canopy chambers used to derive GPPCC. The map 

second from the left shows the enhanced vegetation index (EVI). 

 

 

 

Figure 28: Left picture shows less stressed sugar beet in the center of field B. Right picture shows sugar beet under 

severe water stress located in the west corner of field B. Both pictures were taken on the 23. August 2012 around 

solar noon.  

Source: Alexander Damm 
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5.3.  Fluorescence measurement uncertainty 

As described in Section 3.3.1, a novel uncertainty estimation method was implemented 

with the SIF-Sys. Because of their different magnitudes and for better comparability, 

the absolute error of the F760 and F687 iFLD retrieval was recalculated to relative error 

(Figure 29 and Figure 30). The cross markers represent the relative error of each 

measurement, while the red line describes the relative error of the 30-min average. The 

variance of the F760 and F687 error is strongest during the first week (DOY 182 to 187), 

but reduces during the measurement campaign (discussed in Section 6.7). The 30-min 

averaged F760 error is close to zero, with a small underestimation (from -0.7 up to -

9.1% daily average error), over the whole measurement period. However, the 30-min 

average of the F687 error shows an offset with a strong overestimation (up to 64% daily 

average error), especially at the beginning of the measurement campaign (DOY: 182 

to 198). Like the random error, the systematic error is reduced during the process of 

the measurement campaign. F760 and F687 were corrected by subtracting the 30-min 

average of the variance (red line in Figure 29 and Figure 30) from the absolute F760 and 

F687 values. Resulting diurnal fluorescence is shown in Figure A50 and Figure A51 in 

the Appendix. 
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Figure 29: Relative error of F760 measurements estimated from LED reference light. Crosses symbolize 

measurements, while the red line represent the 30 minute average. Measurements were taken within a sugar beet 

field in 2015 Merzenhausen, Germany.    
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Figure 30: Relative error of F687 measurements estimated from LED reference light. Crosses symbolize 

measurements, while the red line represent the 30 minute average. Measurements were taken within a sugar beet 

field in 2015 Merzenhausen, Germany.
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5.4.  The correlation between GPP and F 

Based on the assumption that F760 is not only related to the absorbed radiation (APAR), 

but also to the LUE, GPP should be predictable by F760. Results show that intra-, inter-

daily and spatially-averaged GPP strongly correlate with F760 (R = 0.56, 0.71, 0.85 

respectively, shown in Figure 31). The intra-daily regression (Figure 31 A) presents 

the highest variation in the relationship between GPP to F760, while the spatiotemporal 

regression (Figure 31 C) shows a relative low variance. This implies that with increased 

smoothing (intra- to inter-daily and plot size to field average) the relationship between 

GPP and F760 strengthens. The regression models used here are described in Section 

4.2.2 and further used for the estimation of GPP by F760 in Sections 5.5.2 and 5.6.2. 

 

 

Figure 31: Relationship of intra- (A), inter-daily (B) and spatiotemporal GPP to F760. GPPEC was derived from an 

eddy covariance tower and F760,SIF-Sys from the SIF-Sys spectrometer in 2015, Merzenhausen. GPPCC was derived 

from field averaged canopy chamber measurements and F760,MSS from the MSS spectrometer in 2012, Selhausen. 

The blue line shows the intercept and slope of the regression model. The model best describing the intra-daily 

relationship is GPPF = 10.5 + 12.9 * F760,SIF-Sys. The model best describing the inter-daily relationship is GPPF = 

15 + 9.7 * F760,SIF-Sys. The model best describing the spatiotemporal relationship is GPPF = 4.72 + 13.44 * F760,MSS. 
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5.5.  Intra- and inter-daily estimation of GPP 

In this Section, GPP is calculated from four different models described in Section 4.2. 

The color gradient of the figures of this Section describes the strength of vapor pressure 

deficit (VPD), the size of the circles indicate the plant available water (PAW). Small 

circles represent a PAW lower than 0 mm, medium circles a PAW between 0 mm and 

10 mm and the biggest circles correspond to a PAW higher than 10 mm. Results are 

shown for the full intra- and inter-daily dataset. The black lines indicate the identity 

line, while the blue line describes the correlation line between estimated and EC 

derived GPP. All models provide a statistically significant fit at the 95% confidence 

level. For a better interpretation of model estimates under environmental stress, the 

intra-daily dataset was separated between low environmental stress (VPD < 14 hPA 

and PAW >0mm) and stronger environmental stress (VPD >= 14 hPA and PAW 

<=0mm). Because of the lack of data points the inter-daily dataset was analyzed in its 

full size. 

 

5.5.1. Using reflectance based vegetation indices  

Five different VIs (NDVI, EVI, PRI, MCARI2I and TCARI) were used to find the best 

representation for fAPAR used by the LUE model (c.f. Section 4.2.1). Best results were 

found for the enhanced vegetation Index (EVI).  

Figure 32 A shows EVI based modeled and EC derived GPP for the 30-min 

Merzenhausen dataset. Results show that all data points are distributed along the 

identity line with a stronger variance at medium level GPP and an underestimation of 

GPPEC in the upper data range. This results in an overall underestimation of GPPEC 

(BIAS = -6.83 %). The coefficient of determination (R²) provides a moderate result of 

0.48 while the root mean square error (RMSE) is relatively high (5.25 µmol CO2 /m²s, 

i.e. 20.74 %). The differentiation of the dataset resulted in an improved estimation of 

GPPEVI under low environmental stress factors (R² = 0.57, BIAS = -6.18 % and RMSE 

= 4.69 µmol CO2 /m²s (16.04 %)) compared to a worsened estimation of GPPEVI 

affected by higher VPD and negative PAW (R² = 0.42, BIAS = -6.14 % and RMSE = 

5.51 µmol CO2 /m²s (22.51 %)). 

Figure 32 B shows EVI-based modeled and EC-derived GPP for the daily mean 

Merzenhausen dataset. With a slope of 0.69, the correlation line shows an 

underestimation of GPPEC in the upper data range where VPD is low and PAW high. 

While the overall BIAS increased to -7.93 %, the RMSE decreased (2.54 µmol CO2 

/m²s (10.07 %)) and the R² significantly improved (0.82) in comparison to the intra-

daily analysis.   
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Figure 32: Scatter plot of estimated (GPPEVI) and measured (GPPEC) intra- and inter-daily gross primary 

production (GPP) of sugar beet. Points represent 30-min (A) and daily (B) average values of 15 days under clear 

sky conditions between July and August 2015, Merzenhausen. Small circles indicate: PAW < 0 mm; medium circles: 

0 mm<PAW<10 mm; big circles: PAW > 10mm. Color gradient indicates the vapor pressure deficit. Modeled GPP 

based on Monteith LUE model driven by EVI as an estimator for fAPAR. For plot A the coefficient of determination 

(R²) is 0.48, the overall BIAS is -6.83 %, the RMSE is 5.25 µmol CO2 /m²s (20.74 %) and the slope 0.77. For plot B 

the coefficient of determination (R²) is 0.82, the overall BIAS is -7.93 %, the RMSE is 2.54 µmol CO2 /m²s (10.07 

%) and the slope 0.69). 

 

5.5.2. Using a statistical GPP-F relationship model 

Based on the model best describing the relationship between F760 and GPPEC, GPPF760 

was estimated for the intra- and inter-daily dataset (c.f. Sections 4.2.3 and 5.4). Figure 

33 A shows that modeled GPPF760 underestimates GPPEC in the high value range, 

resulting in a negative BIAS of 6.55%, a slope of 0.55, a low R² of 0.32 and a relatively 

high RMSE (5.72 µmol CO2 /m²s, 22.59 %). Since a clear horizontal distribution 

between high and low VPD is visible, the separation of the dataset does not 

significantly improve the estimation of GPPEVI. Under low or no stress conditions the 

R² stays at 0.32 while the BIAS turn’s positive (5.83 %). Under increased VPD and 

negative PAW, the R² slightly decreases to 0.3, while the BIAS is -9.2%. 

Figure 33 B shows F760 based modeled and EC derived GPP for the daily averaged 

Merzenhausen dataset. Like for the intra-daily prediction of GPPF760, the inter-daily 

prediction underestimates GPP in the high value range, where VPD is low and PAW 

high. In the lower value range however the inter-daily prediction performs better, 

resulting in a higher regression line slope (0.52) and coefficient of determination (0.52). 

The BIAS and the RMSE decreases to -1.73 and 2.8 µmol CO2 /m²s (11.1 %), 

respectively. However, an overestimation in the higher value range is still visible.  
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Figure 33: Scatter plot of estimated (GPPF760) and measured (GPPEC) intra- and inter-daily gross primary 

production (GPP) of sugar beet. Points represent 30-min (A) and daily (B) average values of 15 days under clear 

sky conditions between July and August 2015, Merzenhausen. Small circles indicate: PAW < 0 mm; medium circles: 

0 mm<PAW<10 mm; big circles: PAW > 10mm. Color gradient indicates the vapor pressure deficit. Modeled GPP 

based on GPP-F correlation model. For plot A the coefficient of determination (R²) is 0.32, the overall BIAS is -

6.55 %, the RMSE is 5.72 µmol CO2 /m²s (22.59 %) and the slope 0.55). For plot B the coefficient of determination 

(R²) is 0.52, the BIAS is 0 %, the RMSE is 2.73 µmol CO2 /m²s (10.82 %) and the slope 0.52). 

 

5.5.3. Using LUE-F760yield relationship model 

Figure 34 A shows modeled intra-daily GPPΦ based on the F760yield to LUE ratio 

approach proposed by Guanter et al. (2014) and GPPEC derived from eddy-covariance 

measurements. Results indicate that modeled intra-daily GPPΦ varies strongly around 

the identity line with a wider range of estimated GPPF760 then GPPEC. While GPPF760 

underestimates for lower plant productivity, it tends to overestimate high plant 

productivity, and presents an overall BIAS of 2.92%. Due to a strong accumulation of 

data points around 18-25 µmol CO2 /m²s and above the identity line, the resulting slope 

is 0.81. The overall coefficient of determination is with 0.29 low and the RMSE with 

7.63 µmol CO2 /m²s (30.15 %) high. The segmentation of the dataset shows an 

improved R² (0.60), but very high BIAS (17.57 %) and RMSE (9.23 CO2 /m²s (31.56 

%)) for low/none stress condition. Under higher VPD and PAW deficit the R² decrease 

to 0.19, the BIAS improves to 1.44% and the RMSE stays at 7.63 µmol CO2 /m². 

Figure 34 B compares modeled inter-daily GPPΦ with derived inter-daily GPPEC. 

Results show that data points are distributed close to the identity line with higher 

variance in the medium range of GPP. The slope of the correlation line is very close to 

one (1.04) and the coefficient of determination is much stronger than for the intra-daily 

result (0.78). Interestingly, data points affected by stronger environmental stressors are 

closely distributed around the identity line and therefore much better represented than 
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in the intra-daily analysis. The overall BIAS (1.78 %) and the RMSE (2.23 µmol CO2 

/m²s or 8.84 %) are relatively low.  

 

 

Figure 34: Scatter plot of estimated (GPPϕ) and measured (GPPEC) intra- and inter-daily gross primary production 

(GPP) of sugar beet. Points represent 30-min (A) and daily (B) average values of 15 days under clear sky conditions 

between July and August 2015, Merzenhausen. Small circles indicate: PAW < 0 mm; medium circles: 0 

mm<PAW<10 mm; big circles: PAW > 10mm. Color gradient indicates the vapor pressure deficit. Modeled GPP 

based on GPP-F correlation model. For plot A the coefficient of determination (R²) is 0.29, the BIAS is 2.92 %, the 

RMSE is 7.63 µmol CO2 /m²s (30.15 %) and the slope 0.81). For Plot B the coefficient of determination (R²) is 0.78, 

the BIAS is 1.78 %, the RMSE is 2.23 µmol CO2 /m²s (8.84 %) and the slope 1.04). 

 

5.5.4. Using multiple regression model 

Based on the best fitting non-linear multiple regression model described in Section 

5.2.4 GPPMR was calculated and compared with GPPEC. Figure 35 A shows that data 

points are distributed around the identity line where low GPP values are underestimated 

whereas mid to high GPP values, and in particular values with low VPD, are slightly 

overestimated. The resulting slope is close to the identity line (0.94) and the BIAS is, 

with 4.34 %, relatively low. The R² is the highest (0.55) of all intra-daily models and 

the RMSE of 5.25 µmol CO2 /m²s (20.74 %) is similar to the intra-daily GPPEVI and 

GPPF760 models. GPP values affected by weak environmental stressors showed higher 

R² (0.64), a stronger positive BIAS (11.42 %) and a slight increase in RMSE (5.39 

µmol CO2 /m²s, 18.43%). Under higher VPD and PAW deficit, the R² decreases to 

0.53, the BIAS improves to 2.62 % while the RMSE stays at 5.28 µmol CO2 /m². 

Based on the best fitting non-linear multiple regression model described in Section 

4.2.4, GPPMR was calculated and compared with GPPEC. Figure 35 B shows that the 

points closely align along the identity line with a slope of 0.94 and a slight 
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overestimation of 4.35%. The R² is, with 0.79, comparatively high and the RMSE low, 

with 2.26 µmol CO2 /m²s (8.96%). Neither the VPD nor the PAW seem to have no 

particular effect on the estimation quality. 

 

 

 

Figure 35: Scatter plots of estimated (GPPMR) and measured (GPPEC) intra- (A) and inter-daily (B) gross primary 

production (GPP) of sugar beet. Points represent 30-min (A) and daily (B) average values of 15 days under clear 

sky conditions between July and August 2015, Merzenhausen. Small circles indicate: PAW < 0 mm; medium circles: 

0 mm<PAW<10 mm; big circles: PAW > 10mm. Color gradient indicates the vapor pressure deficit. Modeled GPP 

based on GPP-F correlation model. For plot A the coefficient of determination (R²) is 0.55, the BIAS is 4.34 %, the 

RMSE is 5.25 µmol CO2 /m²s (20.74 %) and the slope 0.94). For plot B the coefficient of determination (R²) is 0.79, 

the BIAS is 4.35 %, the RMSE is 2.26 µmol CO2 /m²s (8.96 %) and the slope 0.95). 

 

 

5.5.5. Summary of intra- and inter-daily GPP estimation 

Table 4 shows an overview of intra-daily estimated GPP relative to the eddy-covariance 

derived GPP. The multiple regression model showed the highest coefficient of 

determination R² = 0.55) and a correlation line slope close to one (0.94). The root mean 

square error (RMSE) and the relative RMSE are lowest for the GPPEVI and GPPMR 

model: 5.25 µmol CO2 /m²s and 20.74 %, respectively. All models tend to perform 

better for GPP values during lower VPD and sufficient PAW conditions (Figure 32, 

Figure 33, Figure 34 and Figure 35). Except of the multiple regression model, all 

models perform worse for GPP values affected by higher VPD values and negative 

PAW. Altogether, the GPPMR model performed best for the intra-daily dataset. 
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Table 4: Results of intra-daily estimation of GPP from four different models (GPPEVI, GPPF760, GPPϕ and GPPMR) 

correlated with eddy-covariance derived GPPEC. Best results are marked in bold numbers. 

 

intra-daily models 

  GPPEVI GPPF760 GPPΦ GPPMR 

R² 0.48 0.32 0.29 0.55 

slope 0.77 0.55 0.81 0.94 

RMSE (µmol CO2 /m²s) 5.25 5.72 7.63 5.25 

relative RMSE (%)  20.74 22.59 30.15 20.74 

BIAS (%) -6.83 -6.55 2.92 4.34 

Mean uncertainty (%) 10.22 8.28 46.63 8.27 

 

Figure 36 summarizes the 15 diurnal cycles of estimated and EC derived GPP and their 

respective coefficient of determination, where the colored area defines the uncertainty 

of the respective models. In most days (9 out of 15) the GPPEVI and GPPMR perform 

well with an R² at least over 0.5 and relative low uncertainty. However, five days 

(DOY: 181, 183, 184, 184, 185) in the first week of the measurement campaign 

coincide with the 2015 summer heat wave, showing lower R² and higher uncertainty 

than other days. The models estimating GPPF760 and GPPΦ perform worse than the 

GPPEVI and GPPMR models. Particularly noticeable is the high uncertainty of GPPΦ and 

the identical R² values for GPPF760 and GPPΦ, which will be further explained in 

Section 6.4. 
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Figure 36: Diurnal cycle of estimated GPPEVI (green dashed line and triangles), GPPF760 (red dotted line and stars), 

GPPΦ (yellow solid line and cycles), GPPMR (blue dotted line and squares) and reference GPPEC (black solid line 

and cycles) for sugar beet in2015 Merzenhausen. Shaded areas illustrate the respective model uncertainty.   
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An overview of inter-daily estimated GPP relative to the eddy-covariance derived GPP 

is shown in Table 5. The GPPEVI model showed the highest coefficient of determination 

R² = 0.82), closely followed by the GPPMR (0.79) and GPPΦ (0.78) model. All models 

present low RMSE and relative RMSE. Interestingly, the GPPΦ model, which 

performed as the worst predictor of the intra-daily dataset, shows for the inter-daily 

dataset the best results, with RMSE of 2.23 µmol CO2 /m² (8.84 %) and a slope close 

to one (1.04), closely followed by the GPPMR model with an RMSE of 2.26 2.23 µmol 

CO2 /m²s (8.96%) and an slope of 0.95. In general, the values of VPD and PAW did 

not significantly influence the performance of the model.  

 

Table 5: Results of inter-daily estimation of GPP from four different models (GPPEVI, GPPF760, GPPϕ and GPPMR) 

relative to eddy-covariance derived GPPEC. Best results are marked in bold numbers. 

inter-daily models 

  GPPEVI GPPF760 GPPΦ GPPMR 

R² 0.82 0.52 0.78 0.79 

slope 0.69 0.60 1.04 0.95 

RMSE (µmol CO2 /m²s) 2.54 2.80 2.23 2.26 

relative RMSE (%)  10.07 11.1 8.84 8.96 

BIAS (%) -7.93 -1.73 1.78 4.35 

Mean uncertainty (%) 10.11 16.16 38.77 9.51 

 

Figure 37 shows the daily relative deviation of modeled GPP from GPPEC. As shown 

in Table 5 the RMSE is similar for all models with best results for GPPΦ. The relatively 

strong negative BIAS of GPPEVI (-7.93%), indicates a systematic underestimation of 

the reflectance based model. The GPPΦ and the GPPMR  model showed a small 

overestimation with 1.78 % and 4.35 % respectively. Figure 38 shows the relative 

model uncertainty. The highest uncertainty is given by the GPPΦ model (38.77 %), 

followed by the GPPF760 model (16.16 %) and the GPPEVI and GPPMR model with 10.11 

% and 9.51 % respectively. In general, the uncertainty is highest (especially for the 

GPPΦ model) in the first week of measurements (DOY: 181-187), which is very likely 

related to higher temperatures in the measurement system.  
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Figure 37: Deviation of modeled GPP (GPPEVI: green bar, GPPF760: blue bar, GPPΦ: yellow bar and GPPMR: red 

bar) from eddy covariance derived GPP for sugar beet, where estimates based on 2015 measurements in 

Merzenhausen. The mean bias is -6.85 % for GPPEVI, 0.99 % for GPPF760, 1.84 % for GPPϕ and 4.73 % for GPPMR.  

 

 

 

 

Figure 38: Model uncertainty in percent (GPPEVI: green bar, GPPF760: blue bar, GPPΦ: yellow bar and GPPMR: 

red bar). The mean uncertainty is for GPPEVI 10.11 %, for GPPF760 16.16 %, for GPPΦ 38.77% and for GPPMR 9.52 

%. GPP estimates based on 2015 measurements within a sugar beet field located in Merzenhausen, Germany.  
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5.6.  Estimation of spatiotemporal GPP 

In this Section, estimates of the GPPEVI, GPPF760 and GPPΦ models are compared with 

infield measured GPP derived from ecosystem canopy chambers of the 2012 Selhausen 

campaign. Since the GPPMR model needed additional in-situ measurements of PRI and 

F687yield, which were not available for the 2012 campaign, this model was compared 

with maps of GPP upscaled from  GPPEC and EVIHyPlant measured in 2015 (c.f. Section 

4.4). All models provide a statistically significant fit at the 95% confidence level. In 

Section 5.6.5 spatial patterns of the best fitting fluorescence based model and the best 

fitting reflectance based model of the 2012 HyPlant campaign are analyzed and 

compared with each other. Furthermore, GPP maps calculated with the multiple 

regression model are shown and compared with GPP maps upscaled from EC 

measurements and HyPlant-derived EVI. 

 

5.6.1. Using reflectance based vegetation indices 

Five different VIs (NDVI, EVI, PRI, MCARI2I and TCARI) were used to find the best 

representation for fAPAR used by the LUE model (c.f. Section 4.2.1). Best results were 

found for the enhanced vegetation Index (EVI). Figure 39-A shows EVI-based 

modeled and EC-derived GPP for the spatiotemporal Selhausen dataset. Results present 

high agreement between the GPPCC and GPPEVI values at medium levels of ca. 25-35 

µmol CO2 m
-2s-1. However, for the lower (upper) data range, GPPEVI calculations tend 

to overestimate (underestimate) GPPCC, resulting in a low slope of 0.49. Overall, the 

R2 is high (0.8), mostly because of the concentrated data points for low GPP, however, 

for higher GPP there is a bigger spread. Due to over- and under estimations, the overall 

BIAS is -4.28 % relatively small, while the RMSE is, with 5.86 µmol CO2 /m²s (19.35 

%), relatively high. The uncertainty for GPPEVI sums up to 12.26% while the 

uncertainty for GPPCC is assumed to be 8% following Norman et al. (1997).    

 

5.6.2. Using GPP-F760 relationship model 

Based on the linear regression model between GPPCC,MSS and F760,MSS (c.f. Section 

4.2.2), GPPF760 was calculated (Figure 39 B). Results show a high agreement between 

the GPPCC and GPPEVI values at medium levels of ca. 25-35 µmol CO2 m
-2s-1. However, 

in the lower data range GPPF760 is slightly overestimated, while in the upper data range 

it is strongly underestimated. This results in a slope of 0.54 and a strong negative BIAS 

of -16.23 %. Despite a strong R² of 0.8, the RMSE and the uncertainty are, with 6.71 

µmol CO2 /m²s (22.14 %) and 24.38% respectively, high. 
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5.6.3. Using LUE-Fyield relationship model 

Figure 39-C shows modeled spatiotemporal GPPΦ, based on the F760yield to LUE ratio 

approach proposed by Guanter et al. (2014), compared to GPPCC derived from 

ecosystem canopy chamber measurements. While GPPΦ in the lower data range is close 

to the identity line, values in the upper data range are underestimated. This results in a 

slope of 0.71 and in a negative BIAS of -11.43%. The R² is higher (0.84) and the RMSE 

lower (5.23 µmol CO2 /m²s , 17.26 %) than for the GPPEVI and GPPF760 models. The 

uncertainty is high, but not as high as for GPPF760 (17.26% against 24.38%). 

 

5.6.4. Using a multiple regression model 

Based on the best fitting non-linear multiple regression model described in Section 

4.2.4, GPPMR was calculated and compared with upscaled GPPEC (Figure 39 D). In 

contrast to the results shown previously, the GPPMR model systematically 

overestimates GPP with values approaching the identity line at high value range (20 – 

24 µmol CO2 /m²s). This results in a slope of the distribution fit of 0.75 and a positive 

BIAS of 7.36 %. The RMSE is very low, 1.48 µmol CO2 /m²s (6.62 %), while the R² 

is 0.83. The mean uncertainty values of GPPMR and upscaled GPPEC are 15.31 % and 

11.15 % respectively.  
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Figure 39: Scatter plot of spatio-temporal estimated (GPPEVI, GPPF760, GPPϕ , GPPMR) and measured (GPPCC) 

gross primary production (GPP) of a sugar beet field in 2012, Selhausen, Germany (A-C) and a sugar beet field in 

2015, Merzenhausen, Germany. Modeled GPPEVI based on Monteith LUE model driven by EVI as an estimator for 

fAPAR, GPPF760 based on a linear regression model between GPPCC and F760,MSS, GPPϕ based on LUE-Fyield model 

(Guanter et al., 2014) and GPPMR based on a multiple regression model of LUE, F760yield, F687yield and PRI. The 

coefficient of determination (R²) for GPPEVI, GPPF760, GPPϕ and GPPMR is 0.8, 0.8, 0.84 and 0.83 respectively. The 

BIAS for GPPEVI, GPPF760, GPPϕ and GPPMR is -4.28%, -16.23%, -11.43% and 7.36 respectively. The relative 

RMSE for GPPEVI, GPPF760, GPPϕ and GPPMR is 19.35%, 22.14%, 17.26% and 6.62% respectively. The slope for 

GPPEVI, GPPF760, GPPϕ and GPPMR is 0.49, 0.54, 0.71 and 0.75 respectively.  

 

5.6.5. Maps of reflectance- and fluorescence based GPP 

Since GPPF760 and GPPΦ show very similar patterns, only the better performing 

fluorescence based GPPΦ is compared with the reflectance based GPPEVI. GPPEVI and 

GPPΦ maps (Figure 40) indicate that highest productivity levels are reached before 

solar noon and lowest values can be observed in the afternoon. For homogenous fields 

with high plant coverage like D, F and G (Figure 40) there are similar spatial patterns 

in the GPPEVI and GPPΦ maps. Contrastingly, heterogeneous fields with areas of lower 

plant density (E, H and especially B) demonstrate the differences between GPPEVI and 
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GPPΦ. While field B and H have lower values in the GPPΦ maps, higher values of GPPΦ 

in field E compared with the GPPEVI values are observed. In general, GPPEVI maps 

indicate a more homogenous productivity level within the fields and are more sharply 

contoured compared with GPPΦ (e.g., tractor tracks are clearly visible in fields D, E, 

and G).  

 

Figure 40: Maps of estimated GPP for sugar beet based on EVI and F760 at 9:56 a.m., 11:50 a.m. and 

2:05 p.m. UTC in 2012 Selhausen, Germany. 

 

FAPAREVI and F760yield characterize the spatial patterns of the reflectance and 

fluorescence based models, respectively. Therefore, these two parameters were 

compared regarding their spatiotemporal changes during the measurement day. In 

general lowest F760yield values were detected for rapeseed field C and maize field A and 

highest values for sugar beet field D, E, F and G. F760yield increases from 9:56 a.m. to 

11:50 a.m. within all agricultural fields (Figure 41). Especially for field B, a strong 

increase of F760yield was observed during morning hours and, interestingly, the 

formation of a distinctive diurnal course with maximum values during solar noon and 

a decrease towards the afternoon. In contrast, F760yield in the maize field (A in Figure 

41) constantly increased throughout the day and maximum values were measured in 

the afternoon.  
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Figure 41: Spatial patterns of fAPAR and F760yield for different local times. The maps are, from left to 

right, fAPAR estimated by EVI; F760yield at 9:56 a.m.; 11:50 a.m.; 2:05 p.m. UTC in 2012 Selhausen, 

Germany. 

 

The histogram in Figure 42 illustrate the changes in fAPAR and F760yield that occur in 

the course of one day. While fAPAREVI changes only slightly, the distribution of 

F760yield values, on the contrary, changes depending on overflight time and land use. For 

the more homogeneous sugar beet fields D to H, F760yield constantly increases over the 

day (Figure 42B), while F760yield of the heterogeneous sugar beet field B decreases in 

the 2:05 p.m. overflight (Figure 42D). Maize field A shows a constant increase of 

F760yield over the day with a proportionally stronger increase in the 2:05 p.m. overflight 

(Figure 42F). During the first two overflights, rapeseed field C showed an increase in 

F760yield and a decrease for the 2:05 p.m. overflight. Overall the sugar beet fields start 

and end with higher F760yield values than the maize and rapeseed fields in the morning 

and the afternoon. 
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Figure 42: Probability density function of fAPAR (left) and F760yield (right) for the overflights at 9:56 

a.m. (blue), 11:50 a.m. (red) and 2:05 p.m. (green). Figures A and B show the probability distribution 

of sugar beet fields D-H. Figures C and D show the probability distribution of sugar beet fields B. 

Figures E and F show the probability distribution of maize field A. Figures G and H show the probability 

distribution of rapeseed field C. 



 

 

90 Chapter 5 

Figure 43 shows the land use classification, the spectral vegetation indices EVI and 

PRI and the fluorescence yield at 760 and 680nm. The PRI and both fluorescence yields 

were used to drive the multiple regression model described in Section 4.2.4. Due to 

improvements in the signal to noise ratio and detector sensitivity, the 2015 HyPlant 

data appear much less noisy than the 2012 fluorescence maps. The PRI shows higher 

values for less dense canopies (lower EVI) which could be related to the sensitivity of 

PRI to canopy structure and to slow changes in leaf pigments during the growing season 

(Stylinski et al., 2002). The F760yield is highest in the northern winter barley field and 

for the southern sugar beet field. High values of Fyield within the tractor tracks can be 

explained by the different noise levels in F and EVI (Fyield is calculated from EVI 

derived fAPAR). While the F760yield clearly discriminates between different land uses, 

the F680yield is much more homogenous. Figure 44 shows GPPEC upscaled from EC 

measurements by EVI (c.f. Section 4.2.4) and GPPMR estimated by the multiple 

regression model. The maps show nearly identical patterns of GPP although GPPMR 

shows slightly higher values, especially within the tractor tracks.  

 

 

Figure 43: Maps of the land use, enhanced vegetation index (EVI), photochemical reflectance index (PRI) and 

fluorescence yield at 760 and 680 nm (F760yield and F680yield) measured by HyPlant on the 30.06.2015 in 

Merzenhausen, Germany.  
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Figure 44: GPP maps upscaled from EC by EVI (GPPEC) and estimated by the multiple regression model (GPPMR) 

based on HyPlant F760yield, F687yield and PRI observed on the 30.06.2015 in Merzenhausen, Germany.  

    

 

5.6.6. Summary of spatiotemporal GPP estimation 

Table 6 shows the performance overview of the GPPEVI, GPPF760 and GPPΦ models in 

estimating spatiotemporal GPP and the performance of the GPPMR model in estimating 

spatial GPP. Since the GPPMR is compared with a different dataset (Merzenhausen 

2015), a direct comparison of the results from Selhausen 2012 is not feasible. The 

GPPEVI, GPPF760 and GPPΦ models all show a high coefficients of determination, which 

is mainly given by one chamber measurement located over sugar beet plants with low 



 

 

92 Chapter 5 

leaf area index (LAI: 1.46), resulting in lowest measured and estimated GPP values. 

The GPPΦ model performs here as the best predictor with estimated GPPΦ closer to the 

identity line. All models underestimate high values of canopy chamber derived GPPCC, 

whereby the GPPEVI performs slightly better than the GPPΦ. The lowest BIAS is 

estimated by the GPPEVI model, which is mainly related to the strong overestimation of 

GPP in the lower value range which balance the underestimation in the upper value 

range. Therefore, lowest RMSE is also provided by the GPPΦ model. Altogether, the 

GPPΦ model performed best for the spatiotemporal dataset. 

The GPPMR model performed very well in estimating spatial patterns in upscaled 

GPPEC. Nevertheless, it has to be noted that GPPMR and upscaled GPPEC are not 

completely independent since both use EVI as model driver (GPPMR uses EVI as a 

proxy for fAPAR, GPPEC is scaled with EVI). However, since the measurement field 

in Merzenhausen is relatively homogenous (c.f. Figure 44), it is hypothesized that the 

regression improvement, due to a dependent variable, is relatively weak.  

 

Table 6: Overview of spatiotemporal model performance. The GPPEVI, GPPF760 and GPPϕ were validated with 

ecosystem canopy chamber derived GPPCC at seven loctions. Field patterns of GPPMR were compared with upscaled 

GPP derived from eddy-covariance and HyPlant EVI. Best results are marked in bold numbers. Because of the 

different forcing data GPPMR is not directly comparable to the other models. 

spatiotemporal models 

  GPPEVI GPPF760 GPPΦ GPPMR 

R² 0.8 0.8 0.84 0.83 

slope 0.49 0.54 0.71 0.75 

RMSE (µmol CO2 /m²s) 5.86 6.71 5.23 1.48 

relative RMSE (%)  19.35 22.14 17.26 6.62 

BIAS (%) -4.28 -16.23 -11.43 7.36 
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6. Discussion 

6.1.  In situ measurements 

The in-situ measurements in 2012 show that LUECC follows a typical diurnal cycle, 

where values are highest early in the morning and decrease with excess light supply 

(c.f. Figure A49), high air temperatures, and decreasing soil water contents due to high 

evapotranspiration (Hilker et al., 2008). Since the maximum air temperature during the 

observation period did not exceed 23°C, we assume that temperature alone is not a 

limiting factor. Furthermore, the agricultural field was repeatedly fertilized, thus 

nitrogen/nutrient deficits are unlikely. Therefore, we assume that the LUE was 

decreased by 1) a downregulation of photosynthesis due to high levels of incoming 

radiation and 2) the associated stomatal closure to reduce transpiration. The diurnal 

course of F760yield,MSS is similar to that of LUECC, however, it is characterized by a 

different slope. During the decrease of LUECC and F760yield,MSS, excess light energy is 

dissipated as heat (NPQ). The subsequent increase of LUECC and F760yield,MSS during 

the afternoon hours is most likely caused by a decrease of NPQ and a larger fraction of 

energy being used for photosynthesis. These results indicate that, in our study, 

changing radiation conditions are, most likely, the dominant effect on the 

downregulation of photosynthesis during noon time. The consistent use of F to estimate 

changes in photosynthetic activity critically relies on reliable estimates of NPQ. As 

mentioned, in homogenous canopies NPQ can be accessed by the photochemical 

reflectance index (PRI) (Grace et al., 2007; Meroni et al., 2008; Rahimzadeh-Bajgiran 

et al., 2012; Weng et al., 2006), but unfortunately the PRI was not available for the 

2012 campaign.  

The highly variable ratio of LUECC to F760yield,MSS over the day, especially during early 

morning, (cf., Figure 13D) contrasts with the assumption of a constant ratio under 

moderate light conditions in the morning (Yoshida et al., 2015). Figure 15 indicates a 

changing relationship between Fyield and LUE after solar noon. After solar noon, the 

LUE does not recover to the same level as before solar noon, which may be related to 

the still increasing temperature and progressive lower water availability. It has to be 

noted that the high R² partly results from the interpolation method used for estimating 

F760yield and LUECC. Nevertheless, non-interpolated results of the Merzenhausen 

campaign are in agreement with these findings, which suggests that diurnal LUE should 

not be easily linearly related to F760yield.  

The in-situ measurements in 2015 show a general decrease of diurnal LUE with 

increasing solar radiation and an analog increase of PRI. A decrease of LUE can be 

explained by protection mechanisms against strong solar radiation. Due to its 

sensitivity to the xanthophyll cycle, the PRI is an indicator for the protection 
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mechanism of NPQ. An increase in PRI represents an amplifying of the xanthophyll 

cycle and the connected release of energy by NPQ as heat. A decrease in LUE with a 

simultaneous increase in PRI can be found for all measurement days (c.f. Figure A49).  

The relationship between LUE and the two fluorescence yields (F760yield and F687yield) 

are more complex. Under moderate environmental and sole high temperature 

conditions (green circles and red squares in Figure 14) F760yield steadily decreases while 

F687yield is steady over the days. The relatively low and steady PRI indicates that the 

solar energy is mainly used for photosynthesis, which is in agreement with a high and 

increasing LUE. Interestingly, until solar noon (around 12 a.m.) the relationship 

between F760yield and LUE is weak and positive, and after solar noon is strongly 

negative. For unstressed days their absolute values are at their highest values.  

On the days with increased environmental stress (black stars and blue triangle in Figure 

14), the LUE and both fluorescence yields are generally low while PRI is strongest. 

With rising temperature and no available soil water, the stomata close to prevent 

desiccation. CO2 diffusion into the plant will consequently be minimized, which results 

in a downregulation of the Calvin-cycle and the light reactions (c.f. Section 2.1.1- 

2.1.3) and a decrease of the LUE. The strong PRI indicates that excessive energy is 

mainly released as heat by the NPQ protection mechanism. Due to a strong increase in 

F687yield and relatively low F760yield (especially for the day affected by water scarcity and 

high VPD) the Fratio is very high, which could indicate a strong activity of the protection 

mechanisms in PSII (c.f. Section 2.1.5). It has to be noted that due to severe stress, the 

plant canopy could also be affected by leaf wilting and leaf rolling (c.f. Section 2.1.4 

and Figure 28). This would increase the F687yield due to decreased reabsorption effects. 

Nevertheless, recent work observed the same behavior of the Fratio in response to 

drought stress for winter wheat, where the canopy structure is much less affected by 

water scarcity (Cendrero-Mateo et al., 2015). This suggests that two effects reveal plant 

stress in the fluorescence signal: the structural change in the canopy and changes in the 

process of photosynthesis. 

The general increase in LUE after solar noon to an even higher level than in the 

morning (c.f. Figure A49) implies that the sugar beet plants are able to adapt to 

changing environmental conditions. In the first week of the measurement campaign an 

intense heat period was recorded. During this time, the LUE does not recover after solar 

noon. LUE shows only little response to increased temperature when there is 

abundance of soil water, this implies that high temperature alone may not be a good 

indicator for constraining LUE. The vapor pressure deficit (VPD) describes the 

difference between the amount of moisture in the air and the moisture holding capacity 

of the air at a given temperature. High VPD will result in increased transpiration which 

can be regulated by stomata conductance. Therefore, the vapor pressure deficit (VPD) 
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is used in the following as an indicator for limitations on the LUE due to stomata 

closure.  

The diurnal relationships between LUE and F760yield show very variable behaviors 

within and between days (c.f. Figure A52 in appendix). While most days show a 

boomerang-shaped relationship between LUE and Fyield (in agreement with 2012 

measurements), the diurnal course can be inverted. These results point out that the 

relationship between LUE and Fyield is not always linear and mostly changes around 

solar noon. Since the strongest environmental stress occurs around solar noon and the 

energy yields of fluorescence and photosynthesis are both low at this time, it can be 

assumed that the excessive energy is released as NPQ. The PRI as a proxy for NPQ 

shows a steady decline starting at 11th July 2015 (c.f. Figure A49). In part this is related 

to improved environmental conditions after the heat wave, which results in higher LUE. 

Since Fyield increases in both peaks, a reduced amount of energy is dissipated as NPQ. 

It has to be noted that a decrease in PRI could also be related to a decrease in the 

pigment pools during the end of the growing season (Stylinski et al., 2002) or to 

structural changes in the canopy (Wu et al., 2010). A correction method developed by 

Wu et al. (2010) was applied to the PRI, to correct for chlorophyll and structural effects. 

Unfortunately this correction method overcorrected the PRI, which resulted in a 

destruction of the diurnal patterns (not shown). Therefore, it has been decided not to 

apply this correction method.  

 

6.2.  Remote sensing of intra- and inter-daily plant adaptation 

strategies 

Results of Section 5.2.2 show that the best inter- and intra-daily predictor of plant 

response to VPD variations is the Fratio while the best predictor for the influence of 

PAW is the PRI and F760yield+687yield. These results are in conformity with the meta-

analysis by (Ač et al., 2015), who found the Fratio to be the best predictor for heat stress 

while  water stress is in general associated with a decrease of the red and far-red 

fluorescence (c.f. Section 2.7). With high VPD and low PAW, the stomata close to 

protect the plant for desiccation. With closed stomata, less CO2 can enter the plant for 

the assimilation process, the dark reactions slows down, and excessive light energy is 

mainly released as NPQ which results in an increase of PRI. Under increased 

environmental stress conditions F760yield and F687yield decreases. When PAW is below 

zero, the variance in F687yield strongly increases. For days under severe water scarcity 

and high VPD, the F687yield shows higher values than for F760yield, resulting in an overall 

high Fratio. This could either indicate a changing contribution of PSII and PSI emitted 

fluorescence, a decrease of F687 reabsorption as consequence of canopy wilting and 

folding, or a combination of both mechanisms. However, both mechanisms defining 
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the Fratio are direct reactions to water scarcity, which can be used to improve the 

prediction of plant productivity under drought conditions.   

Results of Section 5.2.3 show that the PRI has the strongest relationship to intra- and 

inter-daily LUE, with a clear discrimination of PAW, while no discrimination of VPD 

is found. The Fratio however, clearly discriminates high and low VPD values and shows 

a sensitivity towards PAW. An even more nuanced discrimination of water scarcity 

and VPD is visible in the PRI to Fratio relationship, where clusters of similar VPD and 

PAW values are evident. Intra-daily F760yield and F687yield are difficult to relate with LUE 

because of their strong variance. Since the fluorescence data is already integrated from 

6 seconds sampling time to 30 minutes, the strong variance is more likely a result of 

the complex processes within photosystems, than noise. It is important to note that 

F760yield+687yield shows a stronger relationship with LUE than the sole Fyield signals. Since 

F760yield and F687yield are differently affected by PSII and PSI, the combination of both 

signals seems to add information, explaining more variation in the LUE. An increase 

or decrease in intra-daily Fyield can have varying reasons and strongly depend on NPQ, 

since this is the main process for releasing excess energy within the photosystems (van 

der Tol et al., 2014). This also explains the strong non-linear relationship between intra- 

and inter-daily LUE and PRI. These findings are consistent with the strong intra- and 

inter daily relationships between PRI and LUE. The relationships between the different 

variables are generally stronger for the daily averaged data, especially for the 

relationship between F760yield+687yield and LUE and also F760yield+687yield, and PRI. 

Results of Section 5.2.4 show that strong relationship of PRI with LUE and its 

discrimination of PAW, in combination with the capability of the Fratio to discriminate 

between high and low values of PAW and VPD, results in an overall good explanation 

of the intra-daily dynamics of the LUE. The results support the findings of Sections 

5.2.2 and 5.2.3 that under high NPQ (high PRI values) and lowest LUE, the 

contribution of emitted F from PSI to total emitted F increases drastically (high Fratio). 

Even though this strong increase of the Fratio is partly connected to a decrease in 

reabsorption, other studies (Ač et al., 2015; Cendrero-Mateo et al., 2015) and results of 

the spatiotemporal patterns in this work (c.f. Section 5.2.6) present similar results for 

vegetation less affected by stress related changes in the canopy structure (e.g. maize or 

winter wheat). Outliers of relatively high LUE with high PRI, Fratio, VPD and negative 

PAW, could be related to measurement errors of the eddy-covariance method. Due to 

a complex non-linear relationship, between LUE, PRI and Fratio an appropriable model 

was not found.  

Results of Section 5.2.5 demonstrate that a combination of PRI and Fyield improves the 

estimation of LUE. While the intra-daily dataset shows a complex non-linear 

relationship between the three variables PRI, Fratio and LUE, the inter-daily relationship 

between PRI, F760yield+687yield and LUE allows defining a suitable regression model. 
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Since the additive signal of F760yield and F687yield shows a stronger correlation with LUE 

(c.f. Sections 5.2.3 and 5.2.5) it is strongly suggested to move further towards the 

retrieval of total fluorescence. Although the SFM retrieval (Meroni et al., 2009b) is 

capable of retrieving total fluorescence, a high spectral resolution (0.3 nm FWHM) is 

needed for a proper discrimination of the Fraunhofer lines. Since the current setup of 

the SIF-Sys does not fulfill these specifications (c.f. Section 3.3.1.) the retrieval of Ftot 

was not possible. Results of the intra- and inter-daily dataset provide strong evidence 

that fluorescence strongly contributes in the interpretation of short term stress reactions 

and their impact on LUE. 

 

6.3.  Remote sensing of spatiotemporal plant adaptation strategies 

Results show that amongst the vegetation indices, the EVI, performs best as a proxy 

for spatial variability of fAPAR in the LUE model. Since the EVI was designed to be 

less sensitive to saturation effects and to soil reflectance (Huete et al., 2002), it 

estimated the upper and lower levels of plant productivity better than the other 

vegetation indices tested. However, the estimates of GPPEVI show both saturation 

effects at high canopy density and the effects of soil reflectance for sparse canopies. 

Since the EVI is particularly sensitive to canopy structure, fAPAR values did not 

change significantly across the investigated fields over the day. Minor changes detected 

are most likely related to surface anisotropy effects in combination with the 

illumination geometry rather than to plant adaptation to changing environmental 

conditions.  

The comparison of HyPlant’s first fluorescence maps in both peaks (F760 and F680) 

indicates that differences in canopy structure and species have an impact on Fratio (cf. 

Figure 26 & Figure 27). During unstressed conditions, variations in Fratio are most likely 

related to structural variables such as canopy chlorophyll content: F760 generally 

increases with increasing chlorophyll concentration, while F687 decreases due to re-

absorption of the emitted F signal in this wavelength (Buschmann, 2007). Under 

environmental stress (i.e., drought, heat), values of Fratio can change due to changes in 

the leaf and canopy structure (e.g., leaf angle adjustments and movement (Arena et al., 

2008; Kadioglu et al., 2012)), again affecting the re-absorption of red fluorescence. 

Moreover, these variations may be related to physiological changes that, in turn, affect 

Fratio, which reflects a changing contribution of fluorescence emission from 

Photosystem I (PSI) and Photosystem II (PSII) in response to plant stress (Porcar-

Castell et al., 2014). The meta-analysis by (Ač et al., 2015) showed that water-, 

temperature- and nitrogen-stress differ in their effect on Fratio. Since rapeseed is still in 

the growing phase, the high values of Fratio are most likely linked to lower reabsorption 

due to low chlorophyll content and low leaf area. High values of Fratio in sugar beet 

fields with low EVI, however, cannot be solely linked to lower re-absorption effects. 
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From electrical conductivity measurements and soil profiles it is known that various 

fields in this area show high gravel content, originating from sediments of a fossil river 

bed of the Rur river (Rudolph et al., 2015; Weihermüller et al., 2007). The high gravel 

content strongly affects the water holding capacity as well as the soil organic carbon. 

This results in a significant lower plant density in sugar beet field B and the eastern 

border of field D, E and G. With increasing temperature and low water availability, 

sugar beet plants located on the fossil river bed are strongly affected by water stress, 

compared to other plants. The derived Fratio map captures this effect and reveals higher 

Fratio values for water stressed plants, in agreement with results discussed in (Ač et al., 

2015). The ability to track the variation of this ratio from unstressed to stressed 

conditions over time and space can therefore help in distinguishing between different 

sources of stress.  

Maps of F760yield are characterized by a strong diurnal variability, which can be related 

to dynamic plant adaptation strategies to variable environmental conditions. In Section 

5.1 it was shown that under non- and low-stress conditions in the morning, the LUE 

presents an exponential decrease relative to F760yield (c.f. Figure 15). After noon, this 

relationship becomes linear and F760yield increases much more strongly than LUE. A 

similar behavior can be observed in the F760yield maps derived from HyPlant, where 

most fields present little changes in F760yield before noon and a stronger increase after 

noon. Interestingly, in sugar beet fields with high Fratio, the F760yield is mostly constant 

over the day. It is therefore assumed that the positive relationship of LUE to Fyield could 

be inverted during strong environmental stress conditions, when NPQ reaches high 

levels (Figure 41).  

The different behavior in F760yield of sugar beet (low increase until noon and the 

subsequent stronger increase) compared to maize (steady but low increase over the day) 

might be explained by a better adaptation of C4 plants to dry and high light conditions, 

while the low F760yield in rapeseed could be associated to their early growing stage. 

 

6.4.  Estimation of intra- and inter-daily GPP 

Results of Section 5.4 show that all four models have problems in estimating intra-

daily GPP, while the estimation of inter-daily GPP shows significantly better results. 

Since all models depend on different parameters and parameter combinations, their 

performance mainly depends on the ability of the indices to capture the vegetation state. 

Here, the results of intra- and inter-daily estimations are discussed and validated.   

As the GPPEVI model uses daily averaged LUE derived from measurements, the diurnal 

plant adaptation depends on EVI only. Greenness-based vegetation indices (like the 

EVI) are generally known for their overestimation of sparse and underestimation of 

dense vegetation cover. Since the canopy density of the observed sugar beet was 
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relatively homogenous and dense (due to the end of growing season), the systematic 

underestimation of intra- and inter-daily GPPEVI was relatively small (-6.83 % and -

7.93% respectively, c.f. Figure 32). Despite the moderate R² of intra-daily estimates 

(0.48), the strong variance and the systematic underestimation highlight the 

problematic representation of intra-daily plant adaptation by the EVI. The inter-daily 

results show less variance and significantly higher R² (0.83), but also a stronger 

negative bias, indicating a systematic underestimation of seasonal GPP by the EVI due 

to spectral saturation effects. The overall model uncertainty is relatively small (about 

10%), which is mainly due to the low standard error in the EVI measurements. It has 

to be noted that the GPPEVI model, as it is used in this thesis, strongly depends on daily 

measured LUE and therefore is limited in its application. Actually, the concept of this 

model can be applied for global estimations of GPP, but these models are based on 

calculated LUE, which has been shown to be highly uncertain (Huete et al., 2002; 

Turner et al., 2003; Running et al., 2004; Xiao et al., 2008). In this work the GPPEVI 

serves more as a reference for the performance of reflectance based VIs, used for 

comparison. 

Results of the GPPF760 model show low R² and high RMSE for intra- and inter-daily 

GPP estimations. Since both parameters (GPP and F760) depend on APAR, a much 

stronger coefficient of determination should be expected. A separate consideration of 

samples under stressed and non-stressed conditions showed no improvement in the 

estimation. Since F760 represents only a small fraction of the dissipated energy, it can 

be assumed that F760 alone is an insufficient proxy for GPP. The uncertainty of the 

model for intra- and inter-daily estimates (16.76% and 18.12% respectively) is mainly 

defined by the uncertainty of F760 measurements.  

The performance of the GPPΦ model strongly differs between intra- and inter-daily 

estimates. While intra-daily estimates present strong variance, resulting in the lowest 

R² (0.29) and the highest RMSE (7.63 µmol CO2 /m²s, 30.15%), the inter-daily results 

show high R² (0.78) and the lowest RMSE (2.23 µmol CO2 /m²s, 8.85%). Both models 

depend on the daily averaged LUE/F760yield ratio. Results of Section 5.1 showed that, 

depending on NPQ, the diurnal relationship between LUE and F760yield varies strongly 

within and between days. The negligence of NPQ results in a misinterpretation of intra-

daily GPP. Inter-daily estimations however, seem to be less sensitive to diurnal changes 

in the LUE/F760yield ratio and NPQ, resulting in significant better results. The error 

propagation of the uncertainty in F760, F760yield and LUE results in an overall high 

uncertainty of almost 47%.  

The GPPMR model shows the best results for intra-daily GPP estimation. The use of 

PRI as an indicator for NPQ significantly improves the intra-daily estimates. 

Interestingly, GPPMR distinguish between high and low values of VPD: while GPP is 

overestimated for low values of VPD, it is underestimated for high values of VPD. This 
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can be related to the findings of Section 5.2.2 and 5.2.3 which demonstrate the 

discriminability of PAW and VPD by a combination of PRI and F. These findings 

support the argument that a combination of PRI and fluorescence allows for an 

improved representation of intra-daily plant adaptation. The inter-daily estimation 

shows similar results than the GPPΦ model, indicating that the PRI, as an estimator for 

NPQ, does not significantly improve the estimation of inter-daily GPP. Due to the 

sensitivity of the multiple regression model to PRI, the overall uncertainty (8.62% 

intra-daily and 9.56% inter-daily) mainly depends on its standard error. It has to be 

noted that the uncertainty of the independent variable (LUE) was neglected in the 

multiple regression model. Therefore, the overall uncertainty of the GPPMR model is 

underestimated.  

 

6.5.  Spatiotemporal estimation of GPP 

The comparison of GPPEVI, GPPF760 and GPPΦ with GPPCC (c.f. Section 5.6) indicate 

a better performance of the F-based estimations of GPP at low CO2 assimilation rates. 

A potential explanation is that F760 is not affected by signal contributions from the 

canopy background (e.g., soil, non-photosynthetic material). This finding is in 

agreement with the results of Section 6.4, where a similar behavior of GPPEVI was 

found. Additional information of the LUE to F760yield ratio allows a better representation 

of low and high plant productivity for the GPPΦ model, in contrast to the GPPF760 

model. The uncertainty levels of GPPF760 and GPPΦ estimates highlight the need for 

improved instrumentation, particularly in terms of signal stability (SNR). Nevertheless, 

similar spatial patterns found for GPPΦ and GPPEVI maps provide evidence that 

airborne-based F760 measurements are sensitive to spatial variations of photosynthetic 

activity. The low GPP estimates from both models in field B, the eastern border of field 

D, E and the lower eastern corner of field G (Figure 40), can be related to a high gravel 

content of the soils, originating from sediments of a fossil river bed of the Rur river 

(Rudolph et al., 2015; Weihermüller et al., 2007). The lower water holding capacity of 

such soils limits plant growth, which is clearly reflected in the observations. 

The comparison between GPPMR and GPPEC indicate a systematic overestimation of 

the multiple regression model, especially in the lower value range. Since the upscaling 

of GPPEC is based on EVI, the overestimation of GPPMR in the higher value range could 

be related to an underestimation of GPPEC due to saturation effects in EVI. The stronger 

overestimation of GPPMR in the lower value range may be related to the overestimation 

in the Fyield within the tractor tracks.  
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6.6.  Model applicability for satellite based remote sensing data  

The biggest advantage of the GPPF760 model is its easy applicability for satellite-based 

remote sensing data. Besides ground measurements of GPP, only satellite-derived F760 

is needed to estimate global GPP. The first successful application of this model with 

GOSAT retrieved fluorescence was shown by Frankenberg et al. (2011). The spatial 

and temporal high resolution data of this thesis however, showed that F760 alone is a 

poor indicator for the dynamics in photosynthesis. This leads to the assumption that the 

strong relationship of GPP with fluorescence retrieved by GOSAT, that has coarse 

spatiotemporal resolution (0.5° and monthly time-step), is mainly due to their common 

dependent variable APAR.   

The diurnal and seasonal change in the LUE to F760yield relationship makes the satellite 

application of the GPPΦ model problematic. Operational ground measurement 

combining systems of EC and spectrometer within different ecosystems would be 

necessary to calculate the daily mean LUE to Fyield ratio. Since only a few fluorescence 

measurement systems are in use at the moment, the applicability of the GPPΦ model at 

global scale is currently unfeasible.  

Even though the GPPMR model showed the most promising results, its application to 

satellite data poses several challenges. A satellite based estimation of GPPMR would 

require measurements of PRI and Fyield. As discussed in Sections 3.3 and 5.6.4 the PRI 

is affected by canopy structure and leaf pigment pools (like chlorophyll), which 

aggravates the interpretation of the PRI as an indicator for NPQ. Therefore, new 

algorithms have to be developed to remove the seasonal changes in PRI (Wu et al., 

2010). The Fyield is calculated from F and APAR. Global estimates of APAR are based 

on modeled PAR and reflectance-based fAPAR. Since fAPAR is also attributed with a 

certain uncertainty (Fensholt et al., 2004) the overall uncertainty of Fyield increases. 

Furthermore, in-situ measurements of fluorescence, reflectance and CO2 fluxes in 

different ecosystems are needed to parameterize the multiple regression model.  

  

6.7. Measurement uncertainty of the SIF-Sys 

The strong random error in both F signals and the strong systematic error in the F687 

signal at the beginning of the measurement campaign are very likely related to high 

temperature within the electronic section of the measurement system. While the section 

with the spectrometer was consistently cooled down to 25 C°, the electronic section 

heated up to temperatures exceeding 50 °C. Figure A53 shows that there is a positive 

relationship between the overestimation of the F687 signal and the temperature in the 

electronic section of the measurement system (R = 0.54). A high temperature gradient 

between the cooled and uncooled part of the FLOX system could have an effect on the 
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optical fibers. This could affect the measured spectra which, in turn, affects the curve 

fitting of the iFLD method, resulting in an overestimation of fluorescence. The F687 is 

more strongly affected by this error because the iFLD curve fitting of the O2B bands is 

much more sensitive than the curve fitting of the O2A band. Even if the quantification 

of this error allows for a correction, it is strongly suggested to analyze these effects in 

more detail and to avoid, in future campaigns, high temperatures in any part of the 

measurement system. 

 

6.8.  Reliability of retrieved F760 and F687 maps 

HyPlant’s FLUO module allows, for the first time, simultaneous retrievals of F760 and 

F687 in validated physical units with high spatial resolution (cf., Section 5.5.1 and 

Rascher et al. (2015)). Maps of F760 and F687 for 2012 and 2015 appear noisy when 

compared with the maps of calculated VIs (Figure 26 & Figure 43). These effects are 

caused by a combination of the lower signal-to-noise ratio (F emissions are a small 

radiation flux of the signal eventually measured at a remote sensor) and the detector 

sensitivity (the high spectral and spatial resolution reduces the energy actually 

measured at the detector array). However, apparent noise effects do not limit the 

interpretation of the F retrievals and can be further compensated by applying a spatial-

spectral binning. In the 2012 HyPlant maps, gradients in F760 and derived data products 

(i.e., GPP760) from the border to the center of the fields were observed. These gradients 

are partly caused by a sensor effect (i.e., a point spread function non-uniformity) which 

was solved by a hardware change in 2014 and thus do not appear in the 2015 HyPlant 

map. This effect, however, does not impact the results of the spatiotemporal GPP 

estimation since measurements from homogeneous field centers were deliberately 

analyzed. With the 2012 HyPlant campaign some of the first maps of F687, providing 

interesting insights into the information content of F. The higher variability of F687 

relative to F760 was also documented by Rossini et al. (2015) over a grassland site and 

is most likely caused by the higher retrieval noise associated with the narrow O2B 

absorption band. 
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7. Towards a mechanistic model linking 

fluorescence with photosynthesis 

 

Findings of the preceding chapters showed that seasonal changes in LUE can be 

accessed by the PRI and fluorescence. However, the PRI is only a proxy for NPQ, and 

fluorescence is still not available in its full spectrum. Furthermore, fluorescence and 

PRI only represent the light reactions, while the LUE is also defined by the dark 

reactions and the stomata conductance. Therefore, dynamic changes in diurnal LUE 

cannot be fully captured by PRI and fluorescence.  

In this chapter, a new mechanistic scheme is proposed to account for the mentioned 

shortcomings of empirical models. Instead of relating PRI and fluorescence to LUE, 

results of this work were used to determine the electron transport rate (ETR), which 

then can be used to determine the maximum rate of electron transport (Jmax). Jmax is, 

besides Vcmax (maximum rate of carboxylation), an important parameter in the Farquhar 

et al. (1980) photosynthesis model used by the majority of land surface models. Jmax 

can be derived from leaf level PAM fluorometer measurements (c.f. Section 2.3) and 

is normally sampled on several leaves and plants to derive an average Jmax. Seasonal 

measurement of Jmax, which also account for spatial heterogeneity, are time and cost 

intensive. The possibility to derive ETR and consequentially Jmax from remotely sensed 

data would, therefore, not only reduce work and costs, but also allow for a better 

representation of plant adaptation in land surface models.  

The model proposed here is based on the assumption that absorbed light is distributed 

between the pathways of photochemical-quenching (PQ), non-photochemical 

quenching (NPQ) and fluorescence (F):  

   𝐴𝑃𝐴𝑅 = 𝑃𝑄 + 𝑁𝑃𝑄 + 𝐹 (49) 

 

While APAR can be calculated from modeled or measured PAR and reflectance based 

fAPAR, NPQ and total F can only be estimated by the proxy PRI and F760, respectively. 

To calculate NPQ from the PRI, the normalized PRI values (ranging from 0-1) are set 

to correspond to the range between minimum and maximum NPQ: 

𝑁𝑃𝑄 ≈ (
(𝑃𝑅𝐼 − 𝑃𝑅𝐼𝑚𝑖𝑛)

(𝑃𝑅𝐼𝑚𝑎𝑥 − 𝑃𝑅𝐼𝑚𝑖𝑛)
∙ (𝑁𝑃𝑄𝑚𝑎𝑥 − 𝑁𝑃𝑄𝑚𝑖𝑛) + 𝑁𝑃𝑄𝑚𝑖𝑛) ∙ 𝐴𝑃𝐴𝑅 (50) 
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while Ftot was calculated as: 

 
 𝐹𝑡𝑜𝑡 ≈  (

(𝐹760− 𝐹760,𝑚𝑖𝑛)

(𝐹760,𝑚𝑎𝑥− 𝐹760,𝑚𝑖𝑛)
∙ (𝐹𝑡𝑜𝑡,𝑚𝑎𝑥 − 𝐹𝑡𝑜𝑡,𝑚𝑖𝑛) + 𝐹𝑡𝑜𝑡,𝑚𝑖𝑛) ∙ 𝐴𝑃𝐴𝑅   (51) 

 

Maximum and minimum values of PRI and F760 can be derived from seasonal spectral 

measurements, while maximum and minimum values of NPQ and Ftot are plant 

dependent parameters which can only be derived from leaf level measurements. Since 

no leaf level measurements were available for this study, NPQmax, NPQmin, Ftot,max and 

Ftot,min were set to 98%, 17.5%, 2% and 0.5% respectively (Buschmann C. oral 

presentation). The ETR can then be calculated as: 

   𝐸𝑇𝑅 = (𝐴𝑃𝐴𝑅 − 𝑁𝑃𝑄 − 𝐹𝑡𝑜𝑡) ∙ 0.5 (52) 

 

Where the factor 0.5 assumes an equal excitation of both photosystems. By driving Eq. 

52 with a diurnal dataset of PRI and F760, the maximum ETR (equivalent to Jmax) can 

be determined.   

Figure 45 shows the artificial diurnal cycle of GPP and the input data for the ETR 

model: APAR, F760 and PRI. GPP increases with APAR until 10 a.m., stabilizes with 

highest APAR and subsequently decreases after 2 p.m. F760 follows the diurnal cycle 

of APAR and PRI the diurnal cycle of GPP. The artificial dataset represents a day 

during growing season under sole light stress conditions over noon.  

Figure 46 shows the measured diurnal cycle of GPP, APAR, F760 and PRI on August 

30 2015 within a sugar beet field. The maximum temperature was 30°C, the maximum 

VPD 20hPA and the minimum PAW 15 mm. GPP follows a typical diurnal cycle with 

highest values around solar noon. Since the canopy of the sugar beet is fully developed, 

the overall CO2 assimilation rate is relatively high (40 µmol CO2 m
-2s-1). The F760 and 

PRI follow a similar diurnal cycle as APAR. The PRI is very low, with maximum at -

0.33, indicating a low activity of the xanthophyll cycle.  
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Figure 45: Idealized diurnal cycle of GPP, APAR, F760 and PRI based on artificial data.  

 

Figure 46: Measured diurnal cycle of GPP, APAR, F760 and PRI within a sugar beet field on the 30.08.2015 in 

Merzenhausen, Germany. The temperature was max. 30 C°, VPD 20 hPA and PAW between 15 and 20 mm. 
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Artificial and measured PRI, F760 and APAR were used to drive the ETR model (Eq. 

52). Results are plotted against APAR to allow a better comparison with the literature 

(Figure 47 & Figure 48).  

The idealized and measured data show that, with increasing APAR, the CO2 

assimilation saturates and consequently the LUE decreases. As a protection 

mechanism, NPQ and Ftot increase exponentially with APAR. Literature shows that the 

reaction of NPQ and Ftot to increasing APAR varies strongly over day, season and 

species, which makes this comparison difficult. However, in general, a linear or 

exponential increase can be found (Bilger et al., 1995; Cendrero-Mateo et al., 2015; 

Porcar-Castell, 2011; Schickling, 2012). PQ and ETR show an asymptotic increase but 

no saturation effect like GPP, which is also in disagreement with the literature. It has 

to be noted that ETR is normally estimated by exposing a leaf with an increasing light 

pulse. Since the ETR model is forced with diurnal measurements, and the photosystems 

adapt to changing environmental conditions, the light response curves of the measured 

data show less strong saturation effects and more variability. Resulting absolute values 

of estimated ETR are in agreement with ETR measurements performed in sugar beet 

with similar CO2 assimilation rate (max. 40 µmol CO2 m
-2s-1

 with an ETR of max. 400 

µmol m-2
 s

-1) (Schickling, 2012). However, in order to validate the proposed model 

scheme, a combined dataset of diurnal sun induced fluorescence and leaf-level PAM 

fluorometer measurements, encompassing a full growing season, would be required.  
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Figure 47: NPQ, Ftot, PQ and calculated ETR by the ETR mode. The ETR model was driven by artificial data to test 

the model for plausibility.    



 

 

112 Chapter 7 

 

Figure 48: Measured NPQ, Ftot, PQ and calculated ETR by the ETR model. The ETR model was driven by SIF-Sys 

measurements within a sugar beet field on the 30.08.2015 in Merzenhausen, Germany 
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8. Summary and Conclusion 

In this work, the first high resolution maps of red and far-red fluorescence as well as 

the first continuous ground-based measurements of seasonal red and far-red 

fluorescence are presented (c.f. Section 3.3.1). The novel LED-based uncertainty 

estimation of the ground measurement system (SIF-Sys) shows that the uncertainty of 

sun induced fluorescence at 760nm (F760) and especially at 687nm (F687) increases with 

temperature. A spectral shift between the radiance and irradiance optic was corrected, 

but surely further increased the overall uncertainty (c.f. Section 5.3). A sufficient 

cooling and a careful calibration of the measurement system is essential. Since the O2B 

band is not as deep and not as well defined as the O2A band, the retrieval of F687 shows 

a significant higher uncertainty (up to 9.1% for F760 and up to 64% for F687 daily 

average error). Measurements with novel systems showed that the uncertainty of the 

F687 retrieval can be reduced by increasing the spectral resolution (c.f. Section 6.7). A 

higher spectral resolution is also inevitable for the retrieval of the full fluorescence 

signal. Future technological and methodological advances will allow interpreting the 

fluorescence signal in its full sense.   

It was shown that due to the sensitivity of the photochemical reflectance index (PRI) 

to the xanthophyll cycle, which in turn is linked to the non-photochemical quenching 

(NPQ), and the representation of total fluorescence efficiency (Fyield) by F760yield and 

F687yield, the intra- and inter-daily variations in light use efficiency (LUE) can be best 

described by a combination of these signals (R² = 0.65 and 0.89 respectively). The first 

null hypothesis (“The additive signal of F760+687yield does not add information to the 

prediction of changes in light use efficiency based solely on the PRI”) can therefore be 

rejected (c.f. Section 5.2.3 and 5.2.5). Results also showed that the strength of F760yield 

and F687yield and the ratio of F687 and F760 (Fratio) bring important insights about plant 

adaptation strategies (c.f. Section 5.2.4 and 5.2.5). It must also be noted, that the PRI 

and fluorescence are linked to the light reactions, while the LUE is also determined by 

the dark reactions and the stomata conductance. Therefore, the PRI and fluorescence 

cannot fully explain the diurnal dynamics of LUE. Nevertheless, the inter-daily 

relationships between fluorescence parameters, PRI and LUE are much stronger than 

the diurnal ones. The diurnal dynamics in plant adaptation strategies thus seem to be 

less important when integrated over a day (c.f. Section 6.2 and 6.3). These findings are 

important for future experiments concerning the interpretation of satellite-retrieved 

fluorescence and its link to photosynthesis.    

Maps of F760yield show APAR-independent spatial-temporal changes over the day, with 

distinct behaviors between crop types. The significant lower values of F760yield in corn 

and rapeseed, the fundamentally different behavior of F760yield in sugar beet and maize 

during the day, and the changing Fratio in time and between species are strong indicators 
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of a distinct response of plant species to environmental stress and their F emission (c.f. 

Section 5.2.6). Spatio-temporal patterns of combined F687 and F760 estimates and their 

relationship to APAR significantly contribute to our understanding of canopy structural 

effects on the re-absorption of F and of the delicate balance between the three 

competing pathways of photosynthesis, NPQ, and F (c.f. Section 6.3). These findings 

reject the second null hypothesis: Spatiotemporal plant adaptation strategies are not 

detectable within maps of red- and far-red fluorescence”.  

Results contribute evidence that F allows improving estimates of GPP and its dynamics 

under changing environmental conditions. Due to the direct link between fluorescence 

and photosynthesis, complementary information compared to commonly used 

greenness-based remote sensing variables can be retrieved from spectroscopic 

measurements. The multiple regression model using PRI, F760yield and F687yield as 

predictors of LUE showed best results (R² = 0.55 and 0.79 for intra- and inter-daily 

estimations respectively) (c.f. Section 5.5 and 5.6). Supporting the idea that a 

combination of PRI and fluorescence can be used to access diurnal and seasonal CO2 

assimilation rates (c.f. Section 6.4, 6.5, 6.6). The third null hypothesis (“The PRI, as a 

proxy for NPQ, does not improve fluorescence based intra- and inter-daily GPP 

estimations”) can therefore be rejected. 

In conclusion, this thesis provides evidence that the use of sun induced fluorescence 

improves estimates of GPP, where in particular the combination of Fyield and PRI shows 

the most promising results. In addition it is was shown that the ratio of red and far-red 

F and their yields can be potentially used to identifying spatio-temporal plant 

adaptation strategies in response to environmental stress. 
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9. Outlook 

With the recent selection of FLEX as part of the future Earth Explorer 8 mission by 

ESA (planned launch in 2022), it can be expected that the availability, quality and 

spatiotemporal coverage of sun-induced chlorophyll measurements will strongly 

increase over the next years. More measurements are needed to understand the complex 

relationship between F, NPQ and photosynthesis of different species and under 

changing environmental conditions. The results of this work demonstrated the 

importance of measuring fluorescence in both oxygen absorption bands. It is 

furthermore recommended to move towards a retrieval of total fluorescence, as it 

provides more complete information about the state of vegetation. 

In this work, the potential for estimating GPP and LUE by using empirical and semi-

mechanistic models was shown, where the combination of F and PRI showed to 

improve the intra- and inter-daily estimation of GPP. Since the PRI is affected by 

canopy structure and seasonal changes in the pigment pools, the interpretation of the 

PRI as an indicator for NPQ is difficult. Therefore, new algorithms have to be 

developed to remove the seasonal degradation of the PRI. In the future, FLEX will 

provide all relevant parameters identified in this study (F in both peaks and PRI as a 

proxy for NPQ). This, in combination with additional ground measurements for 

validation and comparison, yields a high potential to advance our understanding and 

capability to quantify biosphere dynamics in response to global change. Since 

fluorescence measured from space suffers from spatiotemporal gaps due to cloud 

contamination, pure remote sensing based GPP estimates will only be able to track 

seasonal changes. Process-based land surface models can be used to overcome this 

problem by either using sun induced chlorophyll fluorescence as observational 

constrain on photosynthesis (Lee et al., 2015; Parazoo et al., 2014), or using sun-

induced chlorophyll fluorescence to improve parameterization of important variables 

like Jmax and Vcmax . As shown in this work, the use of APAR dependent sun induced 

chlorophyll fluorescence is problematic, since it can lead to the misinterpretation of the 

actual photosynthetic activity of the plant. Therefore, it will be necessary to calculate 

global maps of Fyield, which in turn requires high quality information on APAR.  

This work highlights the difficulties in interpreting the complex relationship between 

sun induced chlorophyll fluorescence and photosynthesis on inter- and especially intra-

daily timescale, but also shows its potential to improve photosynthesis’ estimates. The 

results found raise the question whether there is enough process-understanding to 

explain the link between GPP and sun induced chlorophyll fluorescence. Although new 

insights about the link between GPP and F are presented here, more studies over full 

growing seasons and within different vegetation types are needed in the future. 
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Figure A49: Overview of measured diurnal parameters within sugar beet for all 15 clear sky days in 2015, 

Merzenhausen, Germany. The photosynthetic active radiation (PAR), temperature and vapor pressure deficit (VPD) 

were obtained from a meteorological station, the light use efficiency (LUE) was derived from eddy covariance 

measurements, the plant available water (PAW) was calculated from two soil moisture sensors, the F760yield and 

F687yield, the Fratio and the photochemical reflectance index (PRI) were derived from a spectrometer system (SIF-

Sys). All measurements were taken within the sugar beet field.  
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Figure A50: Overview of F760 measurements under clear sky condition and resampled to one minute. The red area 

describes the uncertainty calculated from a LED reference measurement. Measurements were taken in 2015 within 

a sugar beet field located in Merzenhausen, Germany. 
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Figure A51: Overview of F687 measurements under clear sky condition and resampled to one minute. The red area 

describes the uncertainty and the blue area describes the overestimation of the F687 signal calculated from a LED 

reference measurement. Measurements were taken in 2015 within a sugar beet field located in Merzenhausen, 

Germany. 
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Figure A52: Diurnal relationship between LUEEC and F760yield. Black line shows idealized behavior of diurnal 

relationship. The grayscale indicates the morning (white: 8 a.m.) and afternoon samples (black: 4 p.m.). 

Measurements were taken in 2015 within a sugar beet field located in Merzenhausen, Germany.
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Figure A53: Daily averaged relative F687 offset in relationship to temperature within the electronic section of the 

measurement system SIF-Sys. Measurements were taken in 2015 within a sugar beet field located in Merzenhausen, 

Germany. 

 

 

 

 

 

 

 

 

 

 



 

  

125 Appendix 

 

Figure A54: Relationship of 30-min PRI, Fratio and Fyields to vapor pressure deficit and plant available water. Small 

circles indicate: PAW < 0 mm; medium circles: 0 mm<PAW<10 mm; big circles: PAW > 10mm. Black line 

represent best linear model fit. Measurements were taken in 2015 within a sugar beet field located in Merzenhausen, 

Germany 
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Figure A55: Relationship of daily PRI, Fratio and Fyields to vapor pressure deficit and plant available water. Small 

circles indicate: PAW < 0 mm; medium circles: 0 mm<PAW<10 mm; big circles: PAW > 10mm. Black line 

represent best linear model fit. Measurements were taken in 2015 within a sugar beet field located in Merzenhausen, 

Germany.  
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Figure A56: 3 Dimensional plot of daily Fratio, PRI and LUE relationship under changing environmental conditions. 

Small circles indicate: PAW < 0 mm; medium circles: 0 mm<PAW<10 mm; big circles: PAW > 10mm. Color 

gradient indicates the vapor pressure deficit. Measurements were taken in 2015 within a sugar beet field located in 

Merzenhausen, Germany. 
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