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1 Summary 

1.1 English Version 
 

The conserved and essential histone chaperone FACT (Facilitates Chromatin 

Transcription) reorganises nucleosomes during DNA transcription, replication and repair 

and ensures both, efficient elongation of polymerases and nucleosome integrity. In 

mammalian cells, FACT is a heterodimer, consisting of SSRP1 and SUPT16. Although 

the genetics and biochemistry of FACT are relatively well understood, it is not known 

whether it confers cell-type dedicated functions. However, genome-wide expression 

analyses across cell and tissue types implicate a role of FACT in maintaining an 

undifferentiated state. Here, we show that in mouse embryonic stem cells (mESCs), 

depletion of FACT leads to up-regulation and alternative splicing of pro-proliferative 

genes and key pluripotency factors concomitantly with hyper-proliferation of mES cells. 

Additionally, genes involved in neurogenesis are de-repressed in the absence of FACT, 

leading to faster progression of neuronal differentiation. To understand the role of FACT 

in regulating transcription at these loci, we performed MNase digestion of chromatin 

coupled to deep sequencing (MNase-seq) and Nascent Elongating Transcript 

Sequencing (NET-seq). Genes up-regulated upon FACT depletion, are characterised by 

loss of MNase-resistance just upstream of the transcription start site, suggesting that 

nucleosome deposition by FACT dampens gene expression. Finally, in combination with 

the NET-seq data, we show that this FACT-dependent nucleosome distribution at the 

promoter region is closely associated with strong uni-directionality of RNA Polymerase II 

towards the coding region. Taken together, FACT promotes Pol II governing through 

nucleosome deposition and thus enables maintenance of an undifferentiated state. 
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1.2 German Version 
 

Das konservierte und essentielle Histon-Chaperon FACT (Facilitates Chromatin 

Transcription) reorganisiert Nukleosomen während der DNA-Transkription, Replikation und 

Reparatur und sorgt sowohl für eine effiziente Bewegung der Polymerasen durch das 

Chromatin als auch für die Nukleosomenintegrität. In Säugetierzellen formt FACT ein 

Heterodimer, bestehend aus SSRP1 und SUPT16. Obwohl die Genetik und Biochemie von 

FACT relativ gut verstanden sind, ist es nicht bekannt, ob es zelltypische und spezifische 

Funktionen verleiht. Allerdings implizieren genomweite Expressionsanalysen über Zell- und 

Gewebetypen eine Rolle von FACT bei der Aufrechterhaltung eines undifferenzierten 

Zustands. Hier zeigen wir, dass in murinen embryonalen Stammzellen (mESCs) die 

Depletion von FACT zu einer Hochregulierung und einem alternativen Spleißen von 

proproliferativen Genen und Genen kommt, die entscheidend für die Pluripotenz sind. 

Gleichzeitig sind viele Gene auch mit der Hyperproliferation von mES-Zellen assoziiert. 

Weiterhin sind andere Genen, die an der Neurogenese beteiligt sind, in Abwesenheit von 

FACT hochreguliert, was zu einer schnelleren Progression der neuronalen Differenzierung 

führt. Um die Rolle von FACT bei der Regulierung der Transkription an diesen Loci zu 

verstehen, haben wir MNase-Verdauung von Chromatin, gekoppelt an Micrococcal 

Nuclease-sequenzierung (MNase-seq) und ‚Nascent Elongating Transcript-Sequencing’ 

(NET-seq), durchgeführt. Bei der zweiten Methode wird die Position der RNA Polymerase 

nukleotidgenau und genomweit wiedergegeben. Genen, die nach der Depletion von FACT 

hochreguliert sind, zeichnen sich durch einen Verlust der MNase-Resistenz 5’ der 

Transkriptionsstartstelle aus, was darauf hindeutet, dass die Nukleosomenablagerung durch 

FACT an dieser Stelle die Genexpression dämpft. Schließlich zeigen wir in Kombination mit 

den NET-seq-Daten, dass diese FACT-abhängige Nukleosomenverteilung an der 

Promotorregion eng mit einer starken Unidirektionalität der RNA-Polymerase II in Richtung 

der kodierenden Region assoziiert ist. Zusammengenommen läßt sich sagen, dass FACT die 

Aufrechterhaltung eines undifferenzierten Zustands durch die Positionierung von 

Nukleosomen und Regulation von RNA Pol II beeinflusst. 
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2 Introduction 

2.1 Chromatin and nucleosomes 
 

Chromatin is defined as a tightly packed and regulated nucleo-protein (DNA and 

histone proteins) complex that is readily accessible and can be found in the 

nucleus of eukaryotic cells. The basic functional repeating unit of chromatin is the 

nucleosome which is composed of ~147 base pairs (bp) of DNA wrapped around 

a histone octamer comprising of two units of each of the H2A, H2B, H3, and H4 

histones (Schematic 1). All histones are subjected to different posttranslational 

modifications such as acetylation, phosphorylation, methylation, ubiquitination, 

and ADP-ribosylation. These modifications affect the biophysical properties of 

chromatin and have been shown to either promote or inhibit the functions of other 

factors. In addition, chromatin structure and especially nucleosomal properties 

can be robustly altered via the replacement of canonical core histones with 

alternate histone variants (Talbert & Henikoff, 2016), establishment or eviction of 

histones from DNA by ATP-dependent nucleosome remodellers (de Dieuleveult 

et al., 2016), and covalent histone modifications (Zentner & Henikoff, 2013).  

Key biological processes in eukaryotic systems, such as development and 

differentiation, are constantly regulated by DNA-binding proteins that dictate 

transcriptional programmes in a cell-specific manner. Despite chromatin 

undergoing many transitions at many levels of biological organisation, three 

classes are identified, with regards to the chromatin aspects that affect epigenetic 

modifications;  

i) specific histone marks associating with either promoter or enhancer 

regions,  
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ii) selective localised access to regulatory elements (“open chromatin”) 

emerges as chromatin structures hinder entry to underlying DNA 

sequence motifs (Thurman et al., 2012) and  

iii) long-range interactions between enhancers and targets regulate the 

nuclear architecture (Sanyal et al, 2012). 
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The advent of genome-wide chromatin immunoprecipitation-based techniques 

(ChIP-chip or ChIP-seq) has enabled the mapping of a vast amount of global 

histone modifications and transcription factors in many model organisms. A 

particular interest has arisen on modifications that are enriched over cis-

regulatory elements. Trimethylation of H3K4 (H3K4me3) and H3K36 

(H3K36me3) is a mark highly enriched on the promoters and gene body of 

actively transcribed genes, respectively.  

Other marks, such as H3K27Ac and H3K4me1 are usually localised over putative 

enhancers. Impairment of methyltransferase complexes leads to drastic 

reductions in H3K4me3 and H3K36me3 levels but the impact on the 

transcriptional landscape is minimal, suggesting that transcriptional regulation is 

not directly regulated by histone marks (Zentner & Henikoff, 2013).  

In fact, it has been suggested that posttranslational modifications may function as 

regulatory modules to some extent. Indeed, establishment of H3K36me3 on the 

gene body area has been linked to nucleosome stability and repression of cryptic 

transcription (Keogh et al., 2005). In general, histone modifications augment 

changes in nucleosome occupancy mediated by transcriptional elongation and 

chromatin remodelling factors.  
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Schematic 1: Chromatin compaction model. The DNA double helix is wrapped around 

histones forming the nucleosome; the basic structure of chromatin. Depending on the 

sparsity of nucleosomes across the genome, chromatin can be characterised as open 

(euchromatin) or closed (heterochromatin). This DNA-protein structure further undergoes 

further compaction and forms chromosomes that fit into the nucleus and hold the all the 

genetic information of an organism. 
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2.2 Chromatin structure and dynamics 

 

The presence of histone marks also defines the status of chromatin; either highly 

active and permissive (euchromatin) or closed and repressive (heterochromatin). 

Despite the non-permissive nature of heterochromatin, structural repressive DNA 

domains vary from one cell type to another, hence defining this type of 

heterochromatin as facultative (H3K27me3). In contrast, constitutive 

heterochromatin (H3K9me3, and H4K20me3) is permanently non-accessible 

among different cell types and usually devoid of genes as it is established around 

the centromeric and telomeric regions of chromosomes.  

Over the past 20 years, genetic screens in flies, yeast, and plants have identified 

key factors responsible for chromatin-dependent gene regulation, such as 

heterochromatin protein 1 (HP1), Suppressor of variegation 3 –9 (Su(var)3–9), 

Polycomb (Allis & Jenuwein, 2016). Alas, the molecular function of these factors 

with regard to enabling a euchromatin to heterochromatin transition, and vice-

versa, remains elusive. 

A successful interaction of transcription factors (TFs) with DNA regulatory 

elements requires the reorganisation of nucleosomal structures. Such 

disturbances in the nucleosomal landscape can be easily mapped via the 

detection of DNA sequences characterised by increased nuclease accessibility 

(DNase hypersensitive sites - Thurman et al., 2012). These “chromatin-

permissive” events are dedicated to cell-specific functions and govern diverse 

transcriptional programmes.  

Apart from the “canonical” histones that comprise the core unit of the 

nucleosome, evolutionary mechanisms have led to the emergence of histone 
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variants that bestow chromatin with special properties in a locus-specific manner. 

Core and variant histones display major differences with regard to spatial 

organisation and temporal expression pattern along the linear genome, with the 

histone variant-containing nucleosomes exhibiting specific and unique 

distributions. Histone deposition and eviction are necessary in modulating 

chromatin organisation and ultimately, DNA template-dependent biological 

functions. Hence, the evolution of specific chaperones and ATP-dependent 

remodellers has been a critical component in catalysing the above changes in 

chromatin structure (Buschbeck & Hake, 2017). All chromatin remodellers share 

a conserved helicase-like ATPase motor that powers all subsequent remodelling 

actions. However, they lack strong DNA-specific binding motifs as opposed to 

TFs. A chromatin remodeller – DNA contact is mediated via nucleosome binding 

through their N-terminal domains.  

Given the nucleosome-specific function of remodellers, it is not surprising that 

functional interactions also exist between chromatin remodellers and histone 

modifications. Deletion of histone acetyltransferases (HAT) is synthetically lethal 

with loss of RSC (Remodels the structure of chromatin) or SWI/ SNF (SWItch/ 

Sucrose Non-Fermentable) (Kasten et al., 2004). It is tempting to speculate a 

synergistic effect between remodellers and histone modifications. 
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2.3 Chromatin dynamics in early embryogenesis 

 

Embryonic cells acquire a cellular identity right after fertilisation that enables them 

to commit to a specific lineage. Yet, it is unknown how chromatin conformation 

within each cell promotes this commitment throughout the whole developmental 

cycle. Nevertheless, it is postulated that embryonic chromatin structure regulates 

cell fate by operating at two levels via the regulation of genes coding for lineage 

specific TFs and the alteration of chromatin dynamics and nuclear organization 

on a global scale (Burton & Torres-Padilla, 2014). 

A de novo chromatin assembly right after fertilisation results in the incorporation 

of newly synthesised histones (mainly hyperacetylated and hypomethylated) 

deriving from the maternal genome (Burton & Torres-Padilla, 2014). Thus, the 

newly assembled genome is devoid of heterochromatin. This loss of 

heterochromatin is consistent with a more open chromatin conformation 

characterising pre-implantation development (Ahmed et al., 2010) and the 

maintenance of a pluripotent state. In general, it has been previously proposed 

that this “open” chromatin conformation allows transcriptional programmes to 

swiftly switch upon the induction of a differentiated cell state (Gaspar-Maia et al., 

2011).  
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2.4 Chromatin and pluripotency 

 

The idea of an open chromatin in ES cells has been initially supported by electron 

microscopy, where heterochromatin levels in differentiated cells exhibited 

significantly higher levels of compact chromatin compared to ES cells (Park et al., 

2004). In addition, ChIP-seq analyses of both constitutive (H3K9me3) and 

facultative (H3K27me3) heterochromatin marks further support the prevalence of 

a more “compact” chromatin in a differentiated state (Hawkins et al., 2010).  

The presence of active gene expression marks (H3K4me3, H3K27Ac) is more 

prominent in ES cells as opposed to somatic cells. However, there are counter-

acting mechanisms that repress developmental regulatory genes, and hence 

maintain a pluripotent state. These developmental regulators are usually poised, 

i.e. they are characterised by the presence of both active (H3K4me3), and 

repressive (H3K27me3) histone marks (Azuara et al., 2006; Pan et al., 2007). 

This bivalent state allows, during differentiation, the rapid expression of lineage-

specific genes through loss of the repressive H3K27me3 mark, or the repression 

of genes through the loss of H3K4me3. 

Moreover, apart from active histone marks, open chromatin in ES may be 

maintained by ATP-remodellers and histone chaperones via nucleosome 

assembly/ disassembly as well as the unwinding of highly ordered structured 

chromatin. Taken into consideration the high expression levels of remodellers in 

ES cells (de Dieuleveult et al., 2016; Efroni et al., 2008) along with the 

abundance of active histone marks, it is possible that this collaboration 

orchestrates an open chromatin state on a global scale. 
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2.5 Histone chaperones 
 

Core histones have the ability to bind DNA in vitro, thus resulting in the formation 

of a diverse array of chromatin structures. A proper co-ordination of histone 

dynamics with regard to the assembly of well-defined nucleosomes is being 

conferred by key factors called histone chaperones. Histone chaperones are 

involved in multiple steps of nucleosome formation and maintain histone stability 

or degradation (Burgess & Zhang, 2013). Potential functions involve;  

1) regulating interaction of histones with importins,  

2) direction of specific enzymes to histones for the establishment of specific post-

translational marks (PTMs),  

3) facilitation of intra-histonic interactions for nucleosomal formation and stability 

(Buschbeck & Hake, 2017). On the other hand, chromatin remodellers use ATP 

to catalyse changes in chromatin structure and can allow the exchange of core 

histones with histone variants (Narlikar, Sundaramoorthy, & Owen-Hughes, 

2013).    

Although histone chaperones share the common attribute of binding histones 

(either H3-H4 or H2A-H2B oligomers), a few of them can bind to specific histones 

(canonical or variants) alone (Obri et al., 2014). Despite this specificity, most 

histone chaperones play a crucial role in stabilising nucleosome oligomers in a 

free soluble state; a critical step for nucleosome formation. In addition, a 

collaboration between histone chaperones, and chromatin remodellers can 

influence gene expression by altering nucleosomal stability via canonical or 

variant histone deposition and thus enable/prevent the recruitment of TFs. 
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2.6 The histone chaperone FACT  

 

Several histone chaperones involved in nucleosome assembly have been shown, 

over the past two decades, to fundamentally alter chromatin structure, thus 

allowing crucial DNA-based processes such as DNA repair, replication, and 

transcription to take place by safeguarding non-nucleosomal histone-DNA 

interactions. They mainly bind to regions on the histones that are crucial for 

nucleosome formation, thus indicating a putative role in the stabilisation of 

oligomers in the free and soluble state adjacent to the nucleosome. In contrast to 

ATP-dependent remodelling factors, which use energy from ATP hydrolysis to 

disrupt histone-DNA contacts, nucleosome destabilisation by histone chaperones 

is mediated through the use of the spontaneous movement of the DNA around 

the dyad axis (Hondele et al., 2013). Moreover, histone chaperones, in tandem 

with ATP-dependent chromatin remodellers, deconvolute the organisation of 

highly ordered chromatin in order to enhance accessibility of cellular components, 

such as Pol II, thereby facilitating transcription (Venkatesh & Workman, 2015). 

The histone chaperone FACT (Facilitates Active Transcription) is a 180k Da 

heterodimer, comprising of SSRP1 (Structure Specific Recognition Protein 1) and 

SUPT16 (Suppressor of Ty 16) proteins, that promotes polymerase progression 

via nucleosome destabilisation (Belotserkovskaya et al., 2003; Orphanides et al, 

1999). Although the structure of FACT is highly conserved among eukaryotes, in 

yeast and fungi the SSRP1 subunit (Pob3 in yeast) lacks DNA binding affinity. 

Instead, DNA binding capacity is implemented by Nhp6 that loosely associates 

with the FACT complex and promotes its function in vivo; the displacement of 

H2A-H2B dimers to allow passage of the transcribing RNA polymerase (Winkler 
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& Luger, 2011). Interestingly, Nhp6 serves also as DNA binding mediator for 

other elongation factors, such as SPT6 (Suppressor of Ty 6). 

Deletion of FACT in yeast leads to inviability (Jeronimo et al., 2015) whereas a 

homologous deletion of Ssrp1 in mouse embryos compromises survival after 

preimplantation (Cao et al., 2003). Concomitantly, depletion of FACT in human 

cancer cells hinders cell proliferation indicating that FACT might serve as a 

potential drug target against tumorigenesis (Gasparian et al., 2011; Koman, 

Commane, & Paszkiewicz, 2012).  

Generally, in higher eukaryotes, FACT is highly enriched in stem and cancer cells 

while its levels are significantly reduced in differentiated cells. This suggest a role 

of FACT in maintaining an undifferentiated state (Garcia et al., 2011). 
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2.7 Transcriptional regulation by FACT 

 

FACT activity is crucial for transcriptional elongation and is enabled by two 

distinctive mechanistic models; (i) Histone removal in front of RNA Pol II, and (ii) 

nucleosome reassembly in its wake. The above processes have been elucidated 

in vitro and pinpoint; 

a) A strong affinity of FACT with nucleosomes via direct interaction with H2A-

H2B dimers that allows efficient transcriptional elongation (Orphanides et 

al., 1999). 

b) The disassembly of H2A-H2B dimers by FACT (Belotserkovskaya et al., 

2003). 

Corroborative evidence supports the above notion. In yeast, mutations that 

weaken the interaction between H2A-H2B and (H3-H4) tetramers can suppress 

defects in FACT function both in vivo and in vitro, reinforcing the role of FACT in 

promoting histone eviction (McCullough et al., 2011). A major debate in the field 

still rises with regard to whether H2A-H2B deposition is a directed and necessary 

result of FACT activity (Duina, 2011). As a result, apart from the orginal “dimer 

eviction model”, a second “non-eviction/ global accessibility model” suggests that 

the FACT-nucleosome complex results to tethering of all histone subunits in a 

specific conformation state that allows easier accessibility and loss of H2A-H2B 

dimers (Formosa, 2012). In this latter model, the eviction of H2A-H2B is not a 

consequence of FACT activity but instead it is mediated by extrinsic factors such 

as the force exerted by the elongating RNA Pol II. 
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2.8 Chromatin and FACT 

 

Previous reports pinpoint the involvement of FACT in transcriptional initiation and 

elongation through binding to the H3K4me3 mark, Chd1 chromatin remodeller, 

and Pol II (Sims et al., 2007). Moreover, FACT inactivation in yeast causes 

increased transcription through elevated Pol II and TATA-binding protein (TBP) 

occupancy (Mason & Struhl, 2003). This suggests a putative function of FACT in 

suppressing cryptic transcription at certain promoters.  

FACT is also influenced by the chromatin environment across transcribing genes 

by altering histone modifications. Mono-ubiquitination of H2B can mediate FACT-

dependent histone eviction during transcriptional elongation. On the contrary, 

mono-ubiquitination of H2A prevents transcriptional elongation by inhibiting FACT 

recruitment to chromatin (Zhou et al., 2008). Recently, it has also been observed 

that glutamine methylation (H2AQ105me) restricts binding of FACT on ribosomal 

DNA (Fig 1 - Tessarz et al., 2014).  

In addition to being a key contributor to transcriptional elongation, FACT is also 

involved in mRNA nuclear export (Hautbergue et al., 2009) as well as the efficient 

splicing of transcripts (Burckin et al., 2005). 
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Figure 1: FACT facilitates passage of the polymerase by remodelling chromatin. 

Methylation (me) of Gln105 (Q105me) in H2A prevents FACT from interacting with the 

H2A-H2B dimer and thus leads to decreased nucleosome reassembly in the wake of 

RNA polymerase I (RNA Pol I). Consequently, the formation of a more open chromatin 

takes place, devoid of nucleosomes, which ensures high levels of rDNA transcription. 

HMT, histone methyl transferase. (Taken from Tessarz & Kouzarides, 2014). 
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2.9 Transcription mechanics by RNA polymerase II  

 

RNA polymerase II (Pol II) is responsible for the transcription of DNA into mRNA 

with the aid of additional protein factors. Transcription is usually divided into three 

phases on the basis of the factors and the mechanisms that regulate Pol II. One 

of the most well studied mechanisms is the reversible phosphorylation of the 

largest subunit of Pol II; the carboxy-terminal domain (CTD) which contains a 

repeating heptapeptide sequence (YSPTSPS). The different factors and CTD-

phosphorylated residues that associate with Pol II in a stage-specific manner are 

summarised in Table 1. The initiation phase involves binding of Pol II (S5 ph) to 

the gene promoter region (Sainsbury, Bernecky, & Cramer, 2015), followed by 

the elongation phase, during which RNA synthesis occurs. Nevertheless, higher 

eukaryotes display an additional signal integration step that separates the two 

aforementioned phases and keeps the polymerase paused at promoter-proximal 

regions (Venkatesh & Workman, 2015). Transcriptional elongation is followed by 

termination, where the transcribed RNA is released from Pol II (S2 ph). This 

cyclic and continuous repetition of all three phases determines a gene’s 

expression levels and ensures normal cellular and organismal functions. 

The completion of transcriptional initiation does not necessarily guarantee a 

robust transition into transcriptional elongation. Pausing of RNAPII can be 

observed after the transcription of 20 and 60 nucleotides in almost 30% of the 

total human genes. However, this pausing is temporary, and hence allows Pol II 

to resume transcriptional elongation (I Jonkers & Lis, 2015). 

Pausing of Pol II at promoter-proximal regions is highly dependent on the core 

promoter features responsible for Pol II recruitment. This is accomplished via a 

synergistic effect between promoter-associated transcription factors (TFs), the 



Introduction 

 

23 
 

negative elongation factor (NELF), and DRB-sensitivity-inducing factor (DSIF) 

(Table 1). Phosphorylation of NELF/DSIF by the positive transcription elongation 

factor (P-TEFb) complex enables the release of paused Pol II and mediates the 

progression of transcriptional elongation. P-TEFb has also been shown to 

phosphorylate the elongating Pol II variant (Pol II S2), thus allowing promoter-

proximal pause release (Iris Jonkers, Kwak, & Lis, 2014) (Schematic 2). 

 

Although promoter-proximal pausing occurs in a wide range of eukaryotes, its 

function still remains to be elucidated. Jonkers and Lis (2015) propose three non-

exclusive models for its function: (1) The presence of a stalled Pol II is a 

characteristic of an active and open promoter; (2) Changes in gene expression 

are highly dependent on stimuli response. Therefore, gene expression can be 

accelerated by skipping transcriptional initiation and Pol II can enter a paused 

state. As a result, genes that display a higher paused Pol II will be activated more 

swiftly; (3) Due to co-transcriptional processing, Pol II is associated with several 

other proteins during transcription. The levels of pausing depend on a balance 

between pausing and activating factors. 

Transcriptional elongation is more complex than initially thought. Pol II elongation 

rates fluctuate between and within genes, and seem to facilitate splicing, 

termination, as well as genomic stability (Iris Jonkers et al., 2014). Transcriptional 

elongation by Pol II is a highly dynamic process and an indispensable part of the 

transcription cycle. ChIP of RNA pol II followed by sequencing, maps distribution 

of the polymerase across the genome and provides great insight with regard to 

RNA transcription. Nevertheless, caveats such as low resolution and vague 

strand specificity predominate. In addition, ChIP–seq of Pol II displays high 
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background levels on the gene body areas, and its use is restricted to highly 

expressed genes (I Jonkers & Lis, 2015). Hence, a number of techniques have 

been developed to study elongation rates on a genome-wide scale (Kwak et al., 

2013; Mayer & Churchman, 2016; Min et al., 2011). In Global run-on-sequencing 

(GRO-seq) and Precision run-on-sequencing (PRO-seq), Pol II is halted and then 

restarted in vitro under the presence of modified nucleotides that enable nascent 

RNA purification. Transcription run-on based methods are highly dependent on 

the transcriptional restart of Pol II under non-physiological conditions; thus 

avoiding detection of Pol II that is in the process of pause-recovery.  

Native elongating transcript sequencing (NET-seq) can capture nascent RNA 

transcripts at high resolution and detect unstable anti-sense transcripts before 

they are turned over by the cellular RNA degradation pathways (Mayer et al., 

2015).  This allows high resolution mapping of RNA polymerase (paused, 

recovering, and not paused) during initiation and elongation. It also enables the 

characterisation of distinctive regions of high Pol II pausing where splicing of 

RNA transcripts occurs.  
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Table 1: The CTD domain of Pol II serves as a protein-recruiting platform. Different 

phosphorylation statuses in the heptapeptide sequence (YSPTSPS) of the CTD domain 

of Pol II are crucial for transcriptional initiation, elongation, and termination. A diverse 

combination of kinases, histone chaperones, chromatin remodellers, and phosphorylated 

residues work in synergy for an efficient activity of Pol II (Venkatesh & Workman, 2015). 
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Schematic 2: Promoter architecture model. A typical eukaryotic promoter includes a 

nucleosome free region (NFR) upstream of the TSS where binding of most transcription 

factors (TFs) occurs. RNA Pol II is stalled by the NELF/DSIF. Its tail phosphorylation at the 

5th Serine (S5 ph) indicates proximal promoter pausing. When NELF/DSIF dissociates, Pol 

II is phosphorylated at the S2, thus marking its progression towards transcriptional 

elongation. Pol II can also transcribe on the opposite direction. However, those transcripts 

are immediately degraded by the exosome complex. 
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2.10 Alternative splicing of RNA transcripts 

 

Alternative splicing is defined as the process by which exons from a single gene 

can be either included or excluded from the final mature RNA (mRNA) product, 

making it an important regulatory crossroad between transcription and 

translation. Alternative splicing affects over 95% of all mammalian genes and 

multiple regulatory processes such as chromatin modifications and signal 

transduction (Kornblihtt et al., 2013).  

 The spliceosome is a multi-ribonucleoprotein complex that assembles at the 

splice sites of each intron and mediates the splicing process. A consensus 

sequence at each splice site is fundamental not only for recognition by the 

spliceosomal components but also for assessing the “strength” of the splicing site 

(Sibley, Blazquez, & Ule, 2016). The competition between “strong” and “weak” 

splice sites along the nascent pre-mRNA leads to alternative splicing of 

transcripts.  

The 5’ and 3’ splice sites mark the beginning and the end of each intron and 

undergo “cutting and sewing”. A combination of small nuclear ribonucleoproteins 

(snRNPs) U1, U2, U4, U5, and U6 and auxiliary factors (U2AF65, U2AF35) form 

the spliceosomal complex that performs two transesterification reactions 

necessary for intron excision and subsequent joining of selected exons (Fig 2). 

Together with RNA-dependent ATPases and helicases, the spliceosome 

transitions from an inactive to a catalytically active state. 
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Alternative splicing is more prevalent in multicellular eukaryotes suggesting its 

significant biological importance with regards to the vast expansion of coding 

capacity that it provides. This divided organisation of eukaryotic genes into exons 

and introns seems to have two advantages; 

- Formation of new genes via non-disruptive recombination events that 

allowed the fusion of protein-coding exons from different ancestor genes. 

This mutational process is known as exon shuffling enables new genes to 

carry over the splicing signals of the ancestor genes (Hynes, 2012). 

 

- Expansion of coding capacity of eukaryotic genomes. A single gene can 

produce two or more mRNAs that are very similar but not identical. 

Subsequently, this allows the translation of different proteins. 
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Figure 2: The spliceosome mediates a two-step splicing reaction. Initially, the 

branch site, the 5’ splice site, and the 3’ splice site are recognised by the branchpoint 

binding protein (BBP), the U1 snRNP, and the auxiliary factors (U2AF65, U2AF35), 

respectively. The first transesterification step involves a nucleophilic attack by the 2’ OH 

group of a key adenosine in the branch consensus site on the 5ʹ splice site. This results 

to the formation of a branched RNA intermediate known as the intron lariat as well as to 

the release of a subset of snRNPs. In the second transesterification step, the 3’ OH 

group of the upstream exon attacks the 3ʹ splice site, producing a fusion of the adjacent 

exons (spliced mRNA). The excised intron is subsequently degraded (Kornblihtt et al., 

2013). 
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2.11 Alternative splicing and transcription 

 

Similarly to other pre-mRNA processing events, splicing is coupled to 

transcription, in a way that both processes influence each other via co-ordinated 

mechanisms. One of those mechanisms is kinetic coupling, where the rate of Pol 

II-mediated elongation affects the pace at which splice sites and regulatory 

sequences appear in the nascent pre-mRNA during transcription. Sequences 

associated with Pol II pausing, promote retention of exonic cassettes in the 

mRNA (Nogue et al, 2002) whereas elongation-promoting factors increase Pol II 

speed and hence allow exon skipping (Roberts et al, 1998). Indeed, the idea of a 

slow Pol II facilitating inclusion of alternative exons is supported by global 

analyses where dozens of alternative splicing events are affected by the 

treatment of human cells with strong inhibitors of elongating Pol II (Ip, Schmidt, & 

Pan, 2011). Nevertheless, he effects of kinetic coupling on spicing are highly 

dependent on the microenvironment as well as the different combinations of 

splicing regulators. 
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Figure 3: Effect of transcriptional elongation on alternative splicing. During RNA 

polymerase II (Pol II)-mediated transcription, exon skipping is achieved via fast 

elongation (left) that aids the recruitment of the spliceosome to the strong 3ʹ splice site of 

a downstream intron instead of the weak 3ʹ splice site of the upstream intron. On the 

other hand, slow elongation (right) favours the recruitment of spliceosome components 

to the upstream intron, which results in splicing commitment and exon inclusion 

(Kornblihtt et al., 2013). 
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2.12 Chromatin and alternative splicing 

 

Over the years, increasing evidence pinpoints a key role of chromatin in 

alternative splicing of transcripts via the establishment of histone modifications 

and nucleosome positioning. The initial idea of chromatin structure affecting 

alternative splicing originates from studies in mammalian cells, where exonic 

inclusion was increased in response to DNA replication (Kadener et al., 2001). A 

more compact chromatin state would act as a barrier to Pol II elongation and 

promote high exonic inclusion as result of kinetic coupling.  

Histone post-translational modifications, associating with either active 

(H3K36me3, H3K4me2/3, and H3K9Ac) or repressed (H3K9me2/3, and 

H3K27me3) transcription, are known to be indispensable regulators of alternative 

splicing. In neuronal cells, membrane depolarisation leads to accumulation of 

intragenic H3K9Ac which subsequently promotes an open chromatin state, 

increased Pol II elongation, and as a result exonic skipping in the NCAM (neural 

cell adhesion molecule) gene.  On the contrary, during neuronal differentiation, 

the repressive H3K9me2 and H3K27me3 marks are highly enriched over the 

NCAM gene body, thus promoting exonic inclusion via compromised Pol II 

elongation (Schor et al, 2009) (Fig 4).  

Taken together, external signals and differentiation pathways are capable of 

altering chromatin structure and ultimately influence the alternative splicing of 

mRNA transcripts. 
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Figure 4: Effect of chromatin on alternative splicing. External stimuli as well as the 

differentiation state of the cell affect the chromatin state which in turn impacts alternative 

splicing decisions. Here, it is shown a collaborative mechanism between histone 

modifications and transcription with regards to kinetic coupling and splicing (Schor et al, 

2009). 
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3 Aims 
 

The function of FACT has been well characterised in both genetics and 

biochemical terms. However, its molecular functions in higher eukaryotes with 

regard to controlling transcriptional elongation and nucleosome occupancy are 

yet to be determined. Moreover, the means by which pluripotency is maintained 

in the presence of FACT are still unknown. In this project, we are trying to answer 

the following questions that will shed light to the molecular functions of FACT in 

mouse embryonic stem cells (mESCs); 

1) What are the putative DNA binding sites for both FACT subunits (SSRP1, 

SUPT16)? Do they have autonomous and/or distinctive function? 

2) How does FACT affect the transcriptional landscape? 

3) Can the above changes in the transcriptome be reflected at a proteomic 

level? Does FACT serve as a docking site for additional proteins/TFs? 

4) How is FACT involved in the integrity of the nucleosomal landscape? 

5) Is FACT a critical component in the production of nascent RNA and the 

productive elongation of Pol II? To what extent do nucleosomes affect the 

progression of the FACT-Pol II complex? 

6) Wrapping up all the above, can FACT maintain pluripotency? 
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4 Results & Discussion 

4.1 FACT correlates with active gene expression 
 

High expression of FACT is associated with stem or less-differentiated cells 

(Garcia et al., 2011). Indeed, we were able to confirm that diminishing levels of 

FACT correlate with the differentiation state of the cell. The highest FACT mRNA 

levels were observed for cancer and stem cell lines, whereas the lowest were 

observed for the potently differentiated ones (NIH3T3 & MEFs, Fig. 5a). We also 

employed RNA-seq data of ES to cardiomycte differentiation at different 

timepoints to assess FACT levels (Wamstad et al., 2012). Indeed, both levels of 

Ssrp1 and Supt16 are reduced with the priming of ES cells towards a 

differentiated state (Fig. 5b) Thus, we chose to explore the means by which 

FACT maintains an undifferentiated state. 

 Initially, we applied to mESCs a chromatin immunoprecipitation and sequencing 

(ChIP-seq) assay to identify potential DNA binding regions for both FACT 

subunits. Both SSRP1 and SUPT16 proteins displayed high similarity in binding 

capacity with the highest correlation observed over the gene body area of all 

genes (Pearson’s correlation = 0.96, Fig. 6a), thus confirming their association to 

each other with regard to forming a protein complex.  

Subsequently, we examined FACT co-enrichment with several other transcription 

factors, histone marks, and chromatin remodellers over the gene body area of all 

annotated genes (n = 13,348). High correlation scores were observed between 

SSRP1, SUPT16, H3K4me3, H3K27ac, and Pol II variants (Pol II S5ph, Pol II 

S2ph) confirming the role of FACT in active gene expression (Fig. 6d & 7a). A 

good correlation was also observed between both FACT subunits and Chd1, in 
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line with data demonstrating physical interaction and co-localization in 

mammalian cells (Kelley, Stokes, & Perry, 1999). However, a lower correlation 

was observed between FACT and H3K36me3 on a genome wide level. 

H3K36me3 has been shown to be able to directly recruit FACT to actively 

transcribed genes (Carvalho et al., 2013). We suspect that the enrichment of 

FACT subunits around the TSS might mask this potential correlation as FACT 

subunits also co-localise to the gene body of actively transcribed genes and 

enrich towards the TES, similarly to H3M36me3. Pearson’s correlation remained 

elevated when we focused on active promoter and enhancer regions (n = 52,329) 

(Fig. 7b). Both subunits displayed very similar binding pattern to each other over 

the transcription start site (TSS), gene body and transcription end site (TES) of all 

the annotated genes (Fig. 6b) and were tightly linked to H3K4me3 (Fig. 6c). 

Importantly, FACT and Chd2 (functional equivalence to yeast Chd1 (de 

Dieuleveult et al., 2016)) exhibited opposite binding distribution patterns with the 

latter strictly encompassing the whole transcription unit (Fig. 3c). This is in 

agreement with genetic results obtained in yeast, demonstrating that Chd1 and 

yFACT have opposing functions during transcriptional initiation (Biswas et al., 

2008). Our data suggest that FACT is enriched on active transcription sites and is 

mainly involved in transcriptional elongation and termination.  
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Figure 5: FACT levels are diminishing in a differentiated state. a, qPCR 

measuring Ssrp1 mRNA levels among different cell lines. FACT levels are high in 

stem (mESCs) and cancer (N2a, B16) cells and are dramatically reduced in 

differentiated cells (MEFs, NIH3T3). b, Heatmap assessing the mRNA levels (RPKM) 

of FACT (Ssrp1, Supt16) at different timepoints of differentiation of ES cells to 

cardiomyocytes (Wamstad et al., 2012) (ESC = Embryonic Stem Cells, MES = 

Mesodermal cells, CP = Cardiac Precursors, CM = Cardiomyocytes). 
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Figure 6:  FACT correlates with active gene expression. a, Scatterplot of SSRP1 and 

SUPT16 coverage over all annotated genes (n = 13,348). b, Distribution of SSRP1 

relative to the TSS (± 2000 bp) and the TES (± 2000 bp) for four different gene classes 

ranked by level of RNA abundance (High, Medium, Low, Very Low). Gene clustering 

arises from division of mRNA expression into four different quantiles. c, Same as b but 

for SUPT16. d, Scatterplot of the log2SSRP1 coverage over log2 mRNA expression. 
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Figure 7: Correlated occupancies across FACT-bound regions. a, Heatmap representing 

Pearson’s correlation between FACT subunits (SSRP1, SUPT16), and other factors over the 

gene body area of all unique annotated genes (n = 13,348). b, Same as a but for 

promoter/enhancer regions (n = 52,329)  characterised by H3K27ac and/or H3K4me1 marks. c, 

Distribution of FACT and other factors (ChIP-seq tags indicated in blue) over the TSS of 13,348 

unique RefSeq genes, sorted by H3K4me3 levels. Coinciding RNA expression levels are shown 

in red. 
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4.2 FACT modulates cell proliferation in ES cells 

 

To investigate how FACT orchestrates transcriptional regulation in ESCs, we 

depleted SSRP1 levels using different combinations of short hairpin RNAs 

(shRNA – Fig. 8a & 8b). Surprisingly, we observed an increase in mESC 

proliferation following Ssrp1 knock-down (KD) as measured by proliferation rate 

using MTT assays (Fig. 8c & 8d). However, ablation of Ssrp1 levels in a 

neuroblastoma (N2a) and a skin cancer (B16) cell line did not cause a significant 

change in the proliferation rate of cells (Fig. 9a). In yeast, Spt16 inactivation 

leads to lethality of the mutant strains (Biswas et al., 2005). Concomitant to 

higher eukaryotes, inhibition of FACT has been linked to tumour size reduction 

and diminished tumour progression (Gasparian et al., 2011; Koman et al., 2012). 

In addition, Ssrp1 -/- mouse embryos die soon after preimplantation (Cao et al., 

2003). However, increased proliferation of mESCs following FACT depletion is in 

agreement with previously published data demonstrating that deletion of Ssrp1 in 

Drosophila neuroblasts (embryonic cells giving rise to neuronal fibres) leads to 

increased proliferation of this cell type (Neumüller et al., 2011). Therefore, our 

data suggest a distinctive function of FACT in ES cells compared to cancer and 

yeast with regard to controlling cell proliferation. 

 To understand the impact of FACT ablation on the transcriptional landscape, we 

sequenced the whole transcriptome (RNA-seq). In total, we characterised 3,003 

differentially expressed genes; 1,655 down-regulated and 1,348 up-regulated 

(Fig. 8e). Down-regulated genes were over-represented for pathways involved in 

development, while up-regulated genes were involved in metabolic processes 
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and positive regulation of cell growth (Fig. 8f), indicating that FACT negatively 

controls cell proliferation in ES cells.  

In addition, Mass spectrometry analysis of whole proteome between Control and 

Ssrp1 depleted conditions, displayed a high correlation (Pearson R= 0.52) among 

mRNA and protein levels (Fig. 9b). Interestingly, the SUPT16 protein levels, but 

not the mRNA levels, decrease dramatically following depletion of Ssrp1 levels, 

suggesting that the FACT complex is functional and able to exert its function only 

when both subunits are present.  

This interdependence has also been previously reported in human cells where in 

vitro differentiation (Garcia et al., 2011) or depletion (Safina et al., 2013) of either 

subunit leads to deterioration of both subunits. In addition, they similarly report no 

change in gene expression levels of either subunit upon FACT depletion. These 

data support a model where a very stable complex is promptly disrupted in 

specific conditions (e.g. cell differentiation) when it is no longer required. 

Moreover, this inter-regulation of SSRP1 and SUPT16 levels provides a FACT 

reformation barrier that is disrupted in abnormal conditions such as cancer.  
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Figure 8: FACT controls cell proliferation and developmental pathways. a, Western 

blots after transfection of mESCs with different combinations of Ssrp1 shRNA vectors 

(shRNA 1&2). Anti-α-Tubulin was used as a reference. b, Same as a but for a different 

combination of Ssrp1 shRNA vectors (shRNA 3&4). c, MTT assay following transfection 

with Ssrp1 shRNA 1&2 vectors. Values are mean and SE of three independent 

transfection experiments are displayed. Significance was calculated via a two-tailed t-test 

(*P < 0.05). d, Same as c but for a different combination of Ssrp1 shRNA vectors 

(shRNA 3&4). e, Volcano plot of differentially expressed genes between the 

Control and KD group. Values with logFC > 1 or logFC <-1 and Adjusted P.value 

< 0.01 are highlighted in red. f, Gene ontology analysis of all differentially 

expressed genes (Red: pathways for down-regulated genes, Blue: pathways for 

up-regulated genes). 
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Figure 9: Selective function of FACT in controlling mRNA and protein levels in ES 

cells. a, MTT assay following transfection with Ssrp1 shRNA 1&2 vectors in ES, N2a, 

and B16 cells. Values are mean and SE of three independent transfection experiments 

are displayed. Significance was calculated via a two-tailed t-test. b, Scatteplot of logFC 

of mRNA and protein levels following depletion of Ssrp1. c, Heatmap displaying the 

logFC (mRNA and protein) of several genes after depletion of Ssrp1 levels. 
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4.3 FACT controls expression of active genes via nucleosome deposition 

 

Despite FACT occupancy exhibiting high correlation with active gene expression, 

depletion of FACT levels in mESCs causes an abrupt de-regulation of genes that 

are bound by it. A low correlation (Pearson’s R = 0.11) was observed between the 

coverage of SSRP1 (ChIP-seq) and the gene fold change (RNA-seq) of those genes in 

the Ssrp1 KD (Fig. 10a). Apart from down-regulated genes, we discovered a class of 

genes whose expression was not influenced by FACT depletion despite being a FACT-

target. Interestingly, a third class of FACT-bound genes emerged, which displayed high 

levels of RNA, suggesting that FACT negatively regulates the expression of these genes 

in mESCs by preventing over-expression. 

Since FACT is responsible for the remodelling of nucleosomes in the front of 

RNA polymerase and the re-establishment of nucleosome integrity in its wake 

(Formosa, 2012), we next sought to investigate the changes in the nucleosomal 

landscape triggered by the absence of FACT. MNase-resistant 

mononucleosome-sized DNA fragments (135-170 bp) were purified from control 

and Ssrp1-depleted conditions, and sequenced.  Nucleosome occupancy was 

plotted for six different gene classes according to the presence of SSRP1 in the 

control group (ChIP-seq) and their relative Fold Change in the Ssrp1 KD state 

(RNA-seq) (Fig. 10b). Genes whose expression was not impacted in the KD (“No 

change” class) displayed similar mononucleosome patterns among SSRP1 and 

Non-SSRP1 targets, implying that FACT affects neither nucleosome occupancy 

nor gene expression in this gene class. On the other hand, genes that are down-

regulated in the Ssrp1 KD (“Down-regulated” class) and bound by FACT exhibit a 

global mononucleosomal shift by a few nucleotides right after the +1 nucleosome. 

In contrast, genes which are bound by FACT and up-regulated in the Ssrp1 KD 
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(“Up-regulated” class) display two mononucleosomes in the Nucleosome Free 

Region (NFR), which are lost in the absence of FACT. In addition, the +2 and +3 

nucleosome occupancy drops in the absence of FACT. This increased 

nucleosome occupancy at the promoter region is highly reproducible among the 

different replicates and seems to arise from three distinctive gene clusters of 

diverse expression levels  (Fig. 11). In concordance to the RNA-seq data, FACT 

dampens the expression of pro-proliferative genes by regulating the positioning of 

nucleosomes in the vicinity of the TSS.  

Corroboratively, this is in agreement with data generated in S. cerevisiae where 

FACT regulates local nucleosomal stability to maintain the repression of non-

coding transcripts (Feng et al., 2016). Moreover, at the long non-coding SER3 

locus in S. cerevisiae, absence of FACT leads to loss of nucleosomes at the 

promoter, which subsequently triggers expression of the gene (Hainer, Pruneski, 

Mitchell, Monteverde, & Martens, 2011), indicating that FACT might regulate 

expression of genes indirectly through the positioning of nucleosomes. 
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Figure 10: Nucleosome deposition by FACT dampens gene expression.  a, 

Scatterplot of log (SSRP1 coverage) (ChIP-seq) over logFC (RNA-seq). b, Nucleosome 

occupancy of all genes indicated in a. Datasets are split by their FACT occupancy status 

(SSRP1 and Non-SSRP1 targets) and their relative transcriptional direction (“Down-

regulated”, “No Change”, “Up-regulated”). 
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Figure 11: Reproducibility assessment of MNase-seq dataset a, Histogram showing 

the sequenced paired-end fragments lengths extracted from Control and Ssrp1 depleted 

conditions. Fragments between 135-170 bp (indicated in red) have been computationally 

selected and used to plot mono-nucleosomal occupancy over promoter regions. 

Correlation scatterplots (MNase-seq) accessing replicate reproducibility in each 

condition. Pearson’s correlation is indicated at the top of each plot. b, Nucleosome 

occupancy metaplots for each replicate for the composite metaplot in Figure 10b. This 

nucleosome occupancy at the promoter region derives from three distinctive gene 

clusters of diverse gene expression. 
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4.4 FACT and chromatin remodellers control gene expression 

 

Next, we wanted to determine whether there are factors that are decisive in 

determining if a gene changes its expression level upon depletion of FACT. We 

turned to nucleosome remodellers, and examined their distribution around the 

TSS of all three gene classes (SSRP1 targets). No change was observed in 

occupancy for Chd1, Chd2, or Chd4, but we detected a striking difference in 

Ep400, Smarcad1, and Chd6/8/9 (Fig. 12). This implicates that changes in the 

presence and occupancy degree of the latter ones are decisive for transcriptional 

activity upon depletion of FACT levels. 

The presence of FACT elicits a tight co-ordination of transcription over H3K4me3 

and bivalent (H3K4me3 and H3K27me3) promoters. In a highly bivalent state, 

Ep400, Chd6, and Chd8 bind exclusively to the -1 nucleosome upstream of the 

TSS. We hypothesize that in the absence of FACT, recruitment of the SWI/SNF 

complex occurs over certain promoter regions and further represses expression 

of those lineage-specific genes (Wilson & Roberts, 2011). This speculation is 

reinforced by the fact that we observe a nucleosomal shift in the “Down-

regulated” class (Ssrp1 KD); a mechanistic feature that has been previously 

reported to be driven by SWI/SNF (Nocetti & Whitehouse, 2016). In highly active 

genes (H3K4me3) both the +1 and -1 nucleosomes are engaged by Ep400, 

Chd6, and Chd8. In addition, our data suggest that promoters that are occupied 

by FACT, enable Set1 binding further downstream of the TSS which 

subsequently allows broad H3K4me3 and Pol II distribution. Other remodellers 

might bind as well but their function and contribution to transcriptional regulation 

remains unclear.  
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Nevertheless, the presence of Chd9 on the +1 nucleosome seems to play an 

essential part in the transcriptional decision between “Up-regulation” and “No-

change” when FACT is absent. Loss of FACT probably allows Chd9 to re-order 

chromatin and facilitate binding of TFs that will subsequently allow increased 

downstream mRNA production. Expression of Chd9 has been previously shown 

to display a critical role in cellular differentiation and bone growth (Marom, Shur, 

Hager, & Benayahu, 2006), whereas more recently a link between Chd9 and 

ribosomal transcription has been reported (Salomon-Kent et al., 2015). 

Considering that the high H3K4me3 “Up-regulated” class exhibits elevated 

occupancy of Chd9 on the +1 nucleosome, we hypothesise that Chd9 

reorganises chromatin and allows binding of GTFs in the absence of FACT. 
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Figure 12:  Distribution of different nucleosome remodellers over the TSS of FACT-

bound promoters. Datasets are split by their relative chromatin (H3K4me3 High, 

H3K4me3 Low) and gene expression status (“Down-regulated”, “No-Change”, “Up-

regulated”). Model of how FACT and chromatin remodellers might regulate 

transcriptional directionality over lowly (1
st

 model) and highly (2
nd

 model) expressed 

promoters. The whole model was derived by comparing the H3K4me3 High class 
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between the “Up-regulated” (High expression) and “Down-regulated” (Low expression) 

gene clusters. In the 1
st

 model, the presence of FACT will obstruct binding of the 

SWI/SNF complex (Fig. 19c-Smarcad1) to prevent down-regulation of lineage-specific 

genes. Moreover, global nucleosomal shifting after the +2 nucleosome will be avoided. In 

the 2
nd

 model, the presence of FACT enables binding of Set1 and ultimately 

establishment of a broad H3K4me3 mark. In addition, the Ep400-Chd6-Chd8-Chd9 

complex in the +1 nucleosome probably marks those promoters for up-regulation in the 

absence of FACT. 

 

  



Results & Discussion 

 

55 
 

4.5  Nucleosome deposition affects RNA pol II pausing index 

 

Over the last decade it has become apparent that promoter proximal pausing of 

RNA Pol II plays an important role in regulating gene expression (I Jonkers & Lis, 

2015). To explicate the interplay between the Pol II – FACT complex and RNA 

Pol II transcription, we performed NET-seq (Mayer et al., 2015) to identify 

transcribing RNA Pol II over SSRP1- and Non-SSRP1-bound  regions. A higher 

correlation and a significantly higher slope of nascent RNA – mRNA expression 

was observed over the SSRP1-bound regions in both the Control and the Ssrp1 

KD state (Fig. 13a,b) suggesting diverse elongation rates of Pol II in the absence 

of FACT. To confirm this, we measured the travelling ratio of Pol II over the three 

different gene classes (“Down-regulated”, “No Change”, and “Up-regulated”). 

Compared to the Non-SSRP1 target regions, SSRP1-bound regions whose 

expression is either down-regulated or not changed, did not display a significant 

difference in the Pol II pausing index (Fig. 13c). Nevertheless, genes that were 

upregulated in the absence of FACT exhibited, in the Control state, a lower 

pausing index compared to their Non-SSRP1 target counterparts. However, this 

difference was preserved in the absence of FACT, indicating that FACT has no 

effect on the release of paused Pol II and its successful progression towards 

transcriptional elongation. Given the differences in Pol II S2 density profiles 

(ChIP-seq- Fig. 13c) and promoter architecture as defined by MNase-seq (Fig. 

10b), it is tempting to speculate that genes upregulated by knock-down of FACT 

undergo a different pausing mechanism. 
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Figure 13: Pol II elongation rate is altered in the absence of FACT.  a, Scatterplots of 

log gene body coverage (NET-seq) versus log mRNA expression (RNA-seq) for SSRP1 

(n=4,576) and Non-SSRP1 (n=8,844) target regions in the Control (Z-score = 5.3, P < 

10-5) and Ssrp1 KD (Z-score = 7.2, P < 10-5)  state. b, Measure of Pol II pausing. 

Travelling ratio is defined as NET-seq density of proximal promoter versus gene body 

area. Normalised travelling ratios for each gene class are displayed as boxplots. 

Densities in each condition have been normalised to “Up-regulated / Non-SSRP1 

targets”. The Wilcoxon rank test was used to calculate significance between SSRP1 and 

Non-SSRP1 targets. c, Distribution of elongating Pol II variant (S2 ph – WT ES cells) 

over the TSS (± 2000 bp) of SSRP1- and Non-SSRP1-bound regions split by 

transcriptional regulation (“Up-regulated”, “No Change”, “Down-regulated”). The “Up-

regulated” SSRP1-bound gene class exhibits a different occupancy pattern. 
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4.6 Pol II density anti-correlates with nucleosome density 

 

To further explicate the impact of nucleosome occupancy on Pol II density, we 

initially interrogated the nuclesomal landscape over CTCF and H3K27Ac regions. 

The reason behind this is the fact that we employed a different MNase-seq 

protocol that only retains soluble chromatin and thus avoids calculation of biases 

arising from formaldehyde cross-linking. We split the data to either small (< 80 

bp) or larger (135-170 bp) fragments corresponding to transcription factor 

footprints and mono-nucleosomes, respectively. Nucleosomal occupancy over 

CTCF and H3K27Ac regions seems to be identical to previous reports (Carone et 

al., 2014; Teif et al., 2012), further reinforcing the legitimacy of our data (Fig 14 

a,b). We next sought to determine nucleosomal distribution over all exonic 

regions. Data obtained from insoluble chromatin suggest that nucleosome 

occupancy in the intronic regions is higher compared to the exons, as opposed to 

the soluble chromatin where the opposite effect is observed (Fig 14 c). Our 

MNase-seq findings are corroborative to the soluble chromatin pattern (Fig. 14 d) 

and anti-correlate with Pol II pausing (Fig. 14 e). Increased mono-nucleosome 

occupancy of exons in the Ssrp1 KD state negatively affects Pol II pausing over 

those regions. Therefore, our data suggest that the presence of nucleosomes 

influences to some extent pausing of Pol II over splice sites as well as over the 

whole exonic region.  

In addition, our MNase-seq data are not in agreement with previous reports 

stating  that nucleosomal occupancy of exons is higher compared to introns 

(Tilgner et al., 2009). We followed an MNase treatment protocol that gets rid of 

insoluble chromatin and retains soluble nucleosomes that are not bound by 

proteins/ transcription factors. This allows a direct interrogation of the soluble 
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nucleosomal landscape and makes it ideal for studying proteins involved in 

chromatin/ nucleosome remodelling. Higher intronic nucleosome occupancy can 

also be observed in other published data where soluble chromatin has been 

extracted (Carone et al., 2014). In addition, chemical mapping of nucleosomes 

also supports a lower occupancy of nucleosomes over exonic regions (Voong et 

al., 2016). Nevertheless, the ingenuity of our results can be further supported by 

the nucleosomal distribution adjacent to CTCF and H3K27Ac binding sites which 

is identical to other MNase-seq profiles obtained both from soluble and insoluble 

chromatin (Carone et al., 2014; Teif et al., 2012).  

 

 

 

 



Results & Discussion 

 

60 
 

 

 



Results & Discussion 

 

61 
 

Figure 14: Quality control assessing MNase-seq/ NET-seq  integrity. a, CTCF peak 

midpoints were used as a reference and nucleosome occupancy for short (<80 bp) and 

long (135-170 bp) MNase footprints was plotted over the TSS. b, Same as a but for 

H3K27Ac. Both CTCF and H3K27Ac profiles are consistent with previous 

studies(Carone et al., 2014; Teif et al., 2012). c, MNase-seq datasets of soluble (higher 

intron occupancy) and insoluble (higher exon occupancy) chromatin retrieved from 

Carone et al. d, Mean nucleosomal density (207,232 exons) of our insoluble MNase-seq 

dataset. The soluble nucleosome profile in “c” is highly consistent to our MNase treated 

samples for both conditions where nucleosomal occupancy on introns is similar or higher 

compared to the exons.  Identical occupancy is also observed by chemical mapping of 

nucleosomes (Voong et al., 2016). e. NET-seq heatmaps and density plots over 41,356 

exons with the highest Pol II coverage. Solid lines on the NET-seq meta-exon plots 

indicate the mean values, whereas the shading represents the 95% confidence interval. 

Density around the 3’SS and 5’SS was scaled independently. Pol II occupancy over 

exonic regions is higher compared to introns as opposed to nucleosome occupancy. 
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4.7  FACT enables broad distribution of H3K4me3 

 

Taken into consideration the unanticipated MNase-resistance over the NFR 

region of the “Up-regulated” class in the control group, we sought to understand 

how chromatin modifications localise across the promoter regions of this class of 

genes. We compared regions that were characterised either by high or low levels 

of H3K4me3 (Fig. 15a). Intriguingly, we observed that the SSRP1-bound, high 

H3K4me3 regions exhibit a broad distribution of the chromatin mark; a result 

consistent with Set1 (responsible for H3K4me3 establishment) distribution over 

the TSS of the above genes. Set1 is recruited to the 5’ ends of genes by the Pol 

II S5ph variant while establishment of H3K4me3 enables Pol II elongation (Hsin & 

Manley, 2012). No broad H3K4me3 distributions were observed in the “No 

Change” or the “Down-regulated” gene classes (Fig. 15 b,c), with the latter being 

characterised by low gene expression and high enrichment of H3K27me3. Broad 

H3K4me3 domains have been previously linked before to cell identity and 

increased transcriptional elongation (Benayoun et al., 2014; Chen et al., 2015; 

Liu et al., 2016). Therefore, we focused more on the high H3K4me3 class of 

genes in the “Up-regulated” class in order to understand the consequences of 

directionality. Intriguingly, key pluripotency factors (e.g. Oct4,Sox2, Nanog, and 

Klf4) belong to this gene cluster. 
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Figure 15: FACT enables broad 

distribution of H3K4me3 via Set1 binding. 

Occupancy heatmaps and profiles  for 

H3K4me3, H3K27me3, and Set1 in the “Up-

regulated” (a), “No Change” (b), and “Down-

regulated” (c) class. Datasets are split by 

chromatin (H3K4me3 and Bivalent) and 

FACT binding status (SSRP1 and Non-

SSRP1 targets) in WT mESCs. Occupancy 

was plotted relative to the TSS ± 2000 bp. 
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4.8 FACT restricts divergent Pol II via nucleosome deposition 
 

H3K4me3 serves as a recruitment platform for TFs and RNA Pol II (Sims et al., 

2007). Strikingly, NET-seq density plots identified that SSRP1 targets displayed 

high levels of promoter proximal pausing of RNA Pol II at the TSS, but also a 

strong and wide Pol II distribution similar to the H3K4me3 mark with little signal of 

divergent Pol II in the anti-sense strand (Fig. 16- H3K4me3 High- SSRP1 

targets). The broad distribution in the sense strand was also confirmed by 

employing published GRO-seq data (Fig. 17). On the other hand, non-SSRP1 

target regions exhibited an equal distribution both in convergent and divergent 

Pol II (H3K4me3 High- Non-SSRP1 targets – Fig. 17).  Upon knock-down of 

FACT, SSRP1 targets display higher levels of convergent transcription, and even 

more strikingly, a strong increase (P < 10-27 and P < 10-20) in divergent 

transcription compared to the Non-SSRP1 targets. To understand how FACT 

inhibits divergent transcription, we examined nucleosomal distribution over these 

promoters. Both high and low H3K4me3 genes, targeted by FACT, exhibited 

significantly increased levels of nucleosome occupancy (P < 10-18 and P < 10-4) 

upstream of the TSS, as opposed to the non-bound counterparts. Upon FACT 

depletion, nucleosome occupancy is decreased upstream of the TSS (P < 10-8, P 

< 10-6), resulting in a more open chromatin conformation and bi-directional 

travelling of Pol II. 

Moreover, this increase in antisense transcription and loss of nucleosome 

occupancy is observed only in genes that are up-regulated upon FACT depletion 

(Fig. 16 & Fig. 17 a,b). These observations suggest that SSRP1-bound 

promoters construct directionality and inhibit divergent transcription by providing 
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a high level nucleosome barrier at the -1 and -2 nucleosomes. Such a scenario 

would be in agreement with data generated in S. cerevisiae where FACT 

regulates local nucleosomal stability to maintain the repression of non-coding 

transcripts(Feng et al., 2016). Taken together, FACT regulates unidirectional 

passage of RNA Pol II via nucleosome positioning.  
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Figure 16: FACT restricts divergent transcription via nucleosome deposition in the 

NFR.  NET-seq and nucleosome occupancy plots (Control and Ssrp1 KD group) split by 

chromatin and FACT-bound status. Solid lines on the MNase-seq and NET-seq 

metaplots indicate the mean values, whereas the shading represents either the SE of the 

mean (MNase-seq) or the 95% confidence interval (NET-seq). Significant changes in Pol 

II/ nucleosome density were calculated using a Wilcoxon rank test. 
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Figure 17: FACT enables broad distribution of RNA pol II over high H3K4me3 

promoters.  a, NET-seq density plots for the “No Change” class split by FACT binding 

status (SSRP1 and Non-Ssrp1 targets) and condition (Control and Ssrp1 KD). 

Occupancy was calculated relative to the TSS ± 2000 bp. b, Same as a but for the 

“Down-regulated” class. c, GRO-seq density plots derived from WT mESCs for the three 

different gene classes split by FACT binding status (SSRP1 and Non-Ssrp1 targets). 

Solid lines on the NET-seq and GRO-seq metaplots indicate the mean values, whereas 

the shading represents the 95% confidence interval. 
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Next, we focused on a single gene level to confirm whether nucleosome 

occupancy in the NFR hinders divergent transcription over FACT-bound 

promoters. Indeed, NET-seq antisense density seems to transit from convergent 

to divergent following depletion of Ssrp1 mRNA levels, concomitantly with 

nucleosomal loss in the NFR (Oct4 – SSRP1 target). On the contrary, Psmb6 

(Non-SSRP1 target) exhibits a slight increase of sense and anti-sense 

transcription in the Ssrp1 KD state without a significant change in nucleosome 

density. The above data suggest that FACT regulates unidirectional passage of 

RNA Pol II via nucleosome positioning (Fig. 18). 

 

 

 

Figure 18: Nucleosomal loss at the NFR instigates divergent transcription. 

Transcriptional activity (NET-seq) and nucleosome occupancy (MNase-seq) of SSRP1 

(Oct4) and non-SSRP1 (Psmb6) targets between Control and KD group. Nucleosomal 

loss in Oct4  is indicated by a red-dotted line 
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4.9 FACT facilitates the alternative splicing of mRNA transcripts 

 

High levels of H3K4me3 that span the first exon of the coding sequence have 

been implicated in efficient transcription (Bieberstein, Oesterreich, Straube, & 

Neugebauer, 2012). One potential explanation for this is that short exons are 

important for the precise recruitment of general transcription factors (GTFs). To 

further understand how FACT recruitment regulates gene expression, we 

examined the distribution of H3K4me3 and FACT over the first exon of all genes. 

Both H3K4me3 and FACT show high similarity in occupancy over the first exon, 

with the medium exon length class (> 250 and < 750 bp) displaying the highest 

occupancy over the first exon-intron junction (Fig. 19 a,b). 

 To determine the compendium of factors associating with FACT on actively 

transcribed regions, we performed an Immunoprecipitation (IP) for H3K4me3 

followed by mass spectrometry between the Control and Ssrp1 KD group. GTFs, 

cell cycle, and DNA proliferation components (MCM helicase complex) exhibited 

a significantly increased recruitment to H3K4me3 in the absence of FACT. 

Association of MCM and FACT has been previously reported in a cell cycle-

dependent matter (Tan, Liu, Lin, & Lee, 2010), thus potentially explaining the 

increased cell proliferation we observed following depletion of FACT levels. 

Components of the spliceosome (e.g. CWC15, U2AF1) and several splicing 

factors (e.g. RBM17, SF3B6) displayed significantly decreased recruitment on 

H3K4me3 in the Ssrp1 KD (Fig. 19 c). Interestingly, recruitment of components 

of the core spliceosome on H3K4me3 has been reported before in datasets using 

either peptides (Vermeulen et al., 2010) or modified nucleosomes (Bartke et al., 

2010).  
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We thus speculated about a potential involvement of FACT in alternative splicing. 

In total, we identified 356 Exon skipping/inclusion and 97 Intronic retention events 

in the KD group (Fig. 20  a,b,c).  Yeast spt16 mutant strains have been shown 

before to retain intronic regions as a result of a compromised splicing machinery 

(Burckin et al., 2005). Skipped and retained exons were split according to exon 

length (< 500 bp and > 500 bp) and FACT-bound status (SSRP1 and Non-

SSRP1 targets). Remarkably, the SSRP1-bound skipped exons exhibit lower 

length size in the alternative spliced “Long-exons” category (Fig. 20 d) compared 

to their non-bound counterparts (P = 0.02, Kolmogorov–Smirnov test), indicating 

an explicit facilitation of splicing for longer exons when FACT is present. 
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 Figure 19: FACT along with H3K4me3 serve as a protein docking site. a, Average 

distribution of SSRP1 and H3K4me3 aligned to the 5' Splice Site (5'SS) of all genes 

grouped by first exon length. b, Same as a but for SUPT16, c, Volcano plot of 

depleted/enriched proteins at H3K4me3 following Ssrp1 KD.  
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4.10 FACT is involved in the alternative splicing of gene isoforms 

 

As differential exon-intron GC content and nucleosome occupancy are 

associated with exonic splicing (Amit et al., 2012; Kornblihtt et al., 2013; Sibley et 

al., 2016) ,we next sought to identify whether differential nucleosome occupancy 

between the control and the Ssrp1 KD group is pivotal for alternative exon usage. 

We categorised the data according to the relevant exon skipping/ inclusion event 

(Fig. 20 a).  

Altered nucleosome distribution can affect alternative exon usage (Iannone et al., 

2015; Kornblihtt, Schor, Allo, & Blencowe, 2009). Hence, we interrogated 

nucleosomal distribution over 3’ and 5’ Splice Sites (SS). No significant difference 

was observed among the two conditions perhaps due to the presence of gene 

isoforms that encode different alternatively spliced exons. Nevertheless, we also 

determined RNA Pol II density derived from NET-seq data as this monitors the 

pausing degree at a single nucleotide resolution over splice sites (Mayer et al., 

2015). Similarly to the MNase-seq data, no significant changes were observed 

among the two conditions due to low read density (Fig. 21). 

Despite NET-seq being a powerful technique in determining the position of Pol II 

genome-wide at a single nucleotide resolution, the library preparation steps are 

characterised by a substantial loss of genomic material that causes the 

emergence of numerous PCR duplicates in the final product (Mayer & 

Churchman, 2016). Although, here we present an improved version of NET-seq, 

future work should focus on optimally adjusting the library preparation with regard 

to maximising Pol II coverage. 
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Figure 20: FACT facilitates alternative splicing of RNA transcripts. a, Average 

distribution of SSRP1, SUPT16, and H3K4me3 aligned to the 5' Splice Site (5'SS) of all 

genes grouped by first exon length. b, Volcano plot of depleted/enriched proteins at 

H3K4me3 following Ssrp1 KD. c, Barplots representing the number of included/skipped 

exons categorized by their gene expression status (red: “Down-regulated”, cyan: “No 

change”, blue: “Up-regulated”). In total, we have identified 149 included and 207 skipped 

exon events in the Ssrp1 KD group. d, Graphical representation of an intronic retention 

event (Men1) in the KD group. Also, analysis of intron inclusion events or isoform 

switches after FACT depletion. Unspliced transcript percentage was measured according 

to band intensity. e, Gene ontology analysis of transcripts (FACT-bound) that display 

alternative exon usage between the two conditions. 
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Figure 21: Nucleosomal occupancy along with Pol II density drive alternative exon 

usage. Nucleosome occupancy and NET-seq density of FACT-bound exons that are 

differentially spliced upon depletion of Ssrp1. Solid lines on the NET-seq meta-exon plots 

indicate the mean values, whereas the shading represents the 95% confidence interval.  
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4.11 ES cells differentiate more efficiently into the neuronal lineage upon 

FACT depletion 
 

A fraction of the differential gene isoforms generated in the KD group is over-

represented in limbic system and dendrite development pathways (Fig. 20e). To 

confirm this, we induced ES cell differentiation towards a neuronal lineage via 

embryoid body formation and treatment with retinoic acid (Bibel, Richter, Lacroix, 

& Barde, 2007). We created early stage Neural Precursor Cells (NPCs – 3 days 

into the differentiation process) that express key neurogenesis markers (Pax6, 

Nes, Tubb3) but still maintain FACT and key pluripotency factors at a high level 

(Fig. 22a). A quarter of the up-regulated genes in ES cells after Ssrp1 KD 

overlaps with the up-regulated genes instigated by neuronal differentiation (P < 

10-13, Fisher’s exact test; Fig. 22b) and are over-represented in pathways 

involved in neuronal development. We then split these over-lapping genes 

according to FACT-bound status and interrogated nucleosome/ Pol II occupancy. 

Interestingly, all the neurogenesis-associated genes (based on gene ontology 

enrichment) found on this list are bound by FACT (n=38). Intriguingly, only these 

genes bound by FACT show a significant increase (P < 10-15) in divergent anti-

sense transcription concomitantly with loss of a nucleosomal impediment (P < 10-

46) (Fig. 22c). Up-regulation of FACT-bound genes in its absence coincides with 

a loss of nucleosome upstream of the TSS and an increase in antisense 

transcription. To test if de-repression of silenced genes in the absence of FACT 

follows a similar mechanism, we analysed nucleosome occupancy and RNA Pol 

II profiles over these genes. The observed changes in nucleosome and RNA Pol 

II occupancy were even more pronounced in this gene class, and exhibited 

similar patterns (Fig. 23). Divergent transcription has been suggested to enhance 
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transcription by opening up promoters and allowing binding of multiple 

transcription factors (Scruggs et al., 2015).  

Finally, to understand the biological impact of FACT depletion on neuronal 

development, we depleted Ssrp1 levels at the onset of neuronal differentiation 

and performed immunofluorescence for neurogenesis (β3-Tubulin) and dendritic 

(MAP2) markers at the same time point as the RNA-seq experiment. SSRP1 KD 

caused a substantial increase in the expression of those markers, indicating that 

loss of FACT function primes ES cells for the neuronal lineage and enhances 

early neuronal differentiation (Fig. 22d).   

Based on a genome-wide RNAi screen in Drosophila, Ssrp1 was discovered as a 

gene that will lead to hyper-proliferation of neuroblasts (Neumüller et al., 2011) – 

a neuronally committed cell type. Usually, neuroblasts divide asymmetrically at 

every stage, creating one cell that continues being a neuroblast, and one cell that 

becomes the Ganglion Mother Cell, which goes on to divide into neurons and glia 

cells (Brand & Livesey, 2011). Depletion of FACT shifts this balance and leads to 

more neuroblasts in expense of neurons. A comparison of expression patterns in 

the early developing mouse brain identified a set of only 13 genes, including 

Ssrp1 with high correlation of expression in the proliferating cells of the VZ of the 

neocortex at early stages of development (Vied et al., 2014). This is a 

transient embryonic layer of tissue containing neural stem cells (Rakic, 2009) and 

a place for neurogenesis during development dependent on the Notch pathway 

(Rash, Lim, Breunig, & Vaccarino, 2011). Our data demonstrates that FACT-

depleted ES cells differentiate much more efficiently into early neuronal 

precursors. Taken together, the data suggest an important role for FACT activity 

during neuronal differentiation and the proper levels of FACT might assist in 
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balancing proliferation speed and timing of differentiation processes. Another 

transcriptional elongation complex that interacts with FACT and was shown to 

lead to hyper-proliferation of Drosophila neuroblasts is the Paf1 complex 

(Neumüller et al., 2011). Interestingly, depletion of the Paf1 complex in mouse ES 

cells leads to a different transcriptional outcome than FACT depletion. Paf1 

down-regulation leads to loss of pluripotency, in part through down-regulation of 

the key pluripotency factors, including Nanog, Oct4, and Sox2 (Ding et al., 2009). 

Like FACT, the Paf1 complex can work as an activator and repressor of gene 

transcription in ES cells, leading to deregulation of around 1200 genes. This 

comparison between the FACT and Paf1-complex suggest that transcriptional 

regulators that impact the ES cell transcriptome in different ways can have similar 

roles during differentiation processes. 
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Figure 22: FACT regulates neurogenesis through Pol II / nucleosome dynamics. a, 

MA plot following depicting differential expression in NPCs versus WT ES cells. Up-

regulated genes are highlighted in blue whereas down-regulated genes are highlighted in 

red. b, Venn diagram showing the overlap of up-regulated genes between NPC vs 

mESCs and Control vs Ssrp1 KD mESCs. c, NET-seq and nucleosome occupancy plots 

(Control and Ssrp1 KD group) split by chromatin and FACT-bound status. Solid lines on 

the MNase-seq and NET-seq metaplots indicate the mean values, whereas the shading 

represents either the SE of the mean (MNase-seq) or the 95% confidence interval (NET-

seq). Significant changes in Pol II/ nucleosome density were calculated using a Wilcoxon 

rank test. d, Immunofluorescence (IF) analysis of early stage NPCs following Ssrp1 

depletion. (Blue) DAPI, nuclei; (Green) β3-Tubulin, neurons; (Red) MAP2, dendrites.  
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Figure 23: Distribution of chromatin marks, nucleosomes, and Pol II over lowly 

expressed/ repressed genes. a, Occupancy heatmaps and profiles (Figure 11b– Class 

3) for H3K4me3, H3K27me3, and Set1 split by chromatin (High H3K4me3 and Low 

H3K4me3) and FACT binding status (SSRP1 and Non-Ssrp1 targets). Occupancy was 

calculated relative to the TSS ± 2000 bp. b, NET-seq and nucleosome occupancy plots 

(Control and Ssrp1 KD group) split by chromatin and FACT-bound status. Solid lines on 

the MNase-seq and NET-seq metaplots indicate the mean values, whereas the shading 

represents either the SE of the mean (MNase-seq) or the 95% confidence interval (NET-

seq). Significant changes in Pol II/ nucleosome density were calculated using a Wilcoxon 

rank test.  
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5 Conclusion and Outlook 
 

As described above, the presented study has contributed in elucidating the 

molecular mechanisms under which FACT maintains pluripotency and governing 

of RNA Pol II in vivo. We have applied a wide range of sequencing and 

proteomics experiments (ChIP-seq, RNA-seq, MNase-seq, NET-seq, and Mass 

spectrometry) to fully characterise the interplay between FACT, nucleosomes, 

RNA Pol II, and chromatin dynamics. Our main findings are; 

 FACT is involved in transcriptional elongation and is tightly linked to active 

gene expression. In addition, we have characterised FACT as both an 

activator and repressor of transcription.  

 FACT ablation leads to little changes in nucleosome occupancy genome-

wide. In fact, it seems to regulate expression of a specific class of genes 

involved in embryonic development (e.g. Yamanaka factors) by placing 

nucleosomes upstream of the TSS and hence maintaining a closed 

chromatin conformation state. 

 FACT represses specifically genes involved in neurogenesis. Its depletion 

primes neural precursor formation by activation and alternative splicing of 

the above genes. 

 This nucleosome deposition upstream of the TSS hinders divergent 

travelling of Pol II. 

  FACT and several nucleosome remodellers control gene expression 

whereas the occupancy degree of the later ones seems to predict the 

change in gene expression levels in the absence of FACT. 
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Taken together, FACT maintains pluripotency through nucleosome deposition 

and Pol II governing. 

 

 

Figure 24: Model of the suppressive role of FACT in gene expression and 

maintenance of pluripotency. Upper; FACT places a nucleosomal barrier at the 

promoter region of genes involved in embryogenesis/ neurogenesis that hinders 

divergent travelling of Pol II and enables a closed chromatin conformation state. Lower; 

In the absence of FACT, the nucleosomal barrier is alleviated, thus allowing bi-directional 

travelling of Pol II, recruitment of GTFs, increased gene expression, and ultimately, 

activation of neurogenesis cues. 
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We have confirmed FACT’s involvement in transcriptional elongation. However, 

we have discovered that FACT is not contributing to the release of initiating Pol II 

to a successive elongation like NELF and P-TEFb. Since FACT binds also 

upstream of the TSS, could it also be involved in transcriptional initiation and 

assembly of the pre-initiation complex (PIC)?  

To address this question we would require interrogation of FACT occupancy and 

of other initiation complexes using more sophisticated/high resolution mapping 

approaches (ChIP-exo/ ChIP-nexus - (Shao & Zeitlinger, 2017)) followed by 

chemical inhibition of transcriptional elongation.  

Moreover, recent reports have shown that Pol II variants display different binding 

on nascent RNA as opposed to genomic DNA (Nojima et al., 2015). Could this be 

the same for FACT as well as for other elongation factors? Is there perhaps an 

intrinsic function for FACT that allows dynamic phosphorylation of Pol II as it 

synthesizes newly formed RNA? More specific and directed techniques would be 

required to be developed to structurally interrogate co-binding of FACT and Pol II 

during nascent RNA synthesis.  
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6 Materials  
 

Growth media and antibiotics 

 

DMEM + GlutaMax Gibco 
Fetal Bovine Serum (FBS) Gibco 
MEM non- essential amino acids Gibco 
Penicillin/ Streptomycin Gibco 
2-mercaptoethanol Gibco 
Leukaemia Inhibitory Factor (LIF) eBioscience 

Retinoic Acid (RA) Sigma 
Puromycin Sigma 
 

 

Buffers 

ChIP-seq Cell Lysis Buffer 

 

5 mM Tris  

pH8.0, 85 mM KCl 

0.5% NP40 

 

 Nuclei Lysis Buffer 

 

1% SDS 

10 mM EDTA 

50 mM Tris HCl 

 

 IP buffer 

 

0.01% SDS 

1.1% Triton-X-100 

1.2 mM EDTA 

16.7 mM Tris HCl, 

67 mM NaCl 

 

 TSE -150 

 

1% Triton-X-100 

0.1% SDS 

 2 mM EDTA 

20 mM Tris HCl 

150 mM NaCl 

 

 TSE -500 

 

1% Triton-X-100 

 0.1% SDS 

2 mM EDTA 
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20 mM Tris HCl 

500 mM NaCl 

 

 LiCl buffer 

 

0.25 M LiCl 

1% NP-40 

1% dioxycholate 

1mM EDTA 

10 mM Tris HCl 

 

 Elution Buffer 1% SDS 

0.1 M NaHCO3  

 

NET-seq Cytoplasmic lysis buffer 0.15% (vol/vol) NP-40          

10 mM Tris-HCl (pH 7.0) 

150 mM NaCl 

1× protease inhibitor mix (50×) 

25 μM α-amanitin 

10 U SUPERase 

RNase-free H2O 
 

 Sucrose buffer 50% (wt/vol) filter-sterilized sucrose 

10 mM Tris-HCl (pH 7.0) 

150 mM NaCl 

1× protease inhibitor mix (50×) 

25 μM α-amanitin 

20 U SUPERase 

RNase-free H2O 
 

 Nuclei wash buffer 1 mM EDTA  

0.1% (vol/vol) Triton X-100 

1× protease inhibitor mix (50×) 

25 μM α-amanitin 

40 U SUPERase 

PBS 
 

 Glycerol buffer  20 mM Tris-HCl (pH 8.0) 

75 mM NaCl 

0.5 mM EDTA 

100% (vol/vol) filter-sterilized glycerol 

0.85 mM filter sterilized DTT 

1× protease inhibitor mix (50×) 

25 μM α-amanitin 

10 U SUPERase 

RNase-free H2O 
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 Nuclei lysis buffer  1% (vol/vol) NP-40          

20 mM HEPES (pH 7.5) 

0.1 M EDTA 

300 mM NaCl 

10 M filter sterilized urea 

1 mM filter-sterilized DTT 

1× protease inhibitor mix (50×) 

25 μM α-amanitin 

10 U SUPERase 

RNase-free H2O 
 

 Chromatin resuspension 
solution 

1× protease inhibitor mix (50×) 

25 μM α-amanitin 

20 U SUPERase 

PBS 
 

 Bind / wash buffer 5 mM Tris-HCl (pH 7.0),  

2 M NaCl 

1 mM EDTA  

0.2% (vol/vol) Triton X-100 

RNase-free H2O 
 

 

 

NET-seq reagents 

- α-Amanitin (Sigma) 

- TBE buffer, 10× (Life Technologies, cat. no. 15581-044) 

- Urea, (Sigma-Aldrich, cat. no. U6504) 

- Sodium carbonate anhydrous, proteomics grade (VWR, cat. no. M138)  

- Sodium bicarbonate (VWR, cat. no. 3509) 

- Sodium acetate, RNase-free (3 M; Life Technologies, cat. no. AM9740)  

- NaCl, RNase-free (5 M; Life Technologies, cat. no. AM9760G)  

- EDTA, RNase-free (0.5 M; Life Technologies, cat. no. AM9260G) 

- Tris-HCl, RNase-free (1 M, pH 7.0; Life Technologies, cat. no. AM9850G)  

- Tris-HCl, RNase-free (1 M, pH 8.0; Life Technologies, cat. no. AM9855G) 

- NaOH solution (1.0 N; Sigma-Aldrich, cat. no. S2770) 

- HCl, hydrochloric acid concentrate (Sigma-Aldrich, cat. no. 38282) 

- SUPERase.In (Life Technologies, AM2696) 

- Protease inhibitor mix cOmplete, EDTA-free (Roche, 11873580001) 

- Benzonase nuclease (Sigma-Aldrich, cat. no. E1014) 

 

 miRNeasy mini kit (50; Qiagen, cat. no. 217004) 

 T4 RNA ligase 2, truncated (NEB, cat. no. M0242S) 

 SYBR Gold nucleic acid gel stain (10,000× concentrate; Life Technologies, cat. 

no. S-11494) 

 RNA control ladder (0.1–2 kb; Life Technologies, cat. no. 15623-100) 
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 DNA control ladder (10 bp; Life Technologies, cat. no. 10821-015) 

 TBE-urea (TBU) denaturing sample buffer, 2× (Life Technologies, cat. no. 

LC6876) 

 SuperScript III first-strand synthesis system (Life Technologies, cat. no. 18080-

051) 

 CircLigase ssDNA ligase; (Biozym, cat. no. CL4111K) 

 Saline–sodium citrate (SSC), 20× (Life Technologies, cat. no. AM9763) 

 Phusion high-fidelity (HF) DNA polymerase (2,000 U/ml; NEB, cat. no. M0530S) 

 

 TBE-urea gels, 15% (wt/vol) (Life Technologies, cat. no. EC68852BOX)  

 TBE-urea gels, 10% (wt/vol) (Life Technologies, cat. no. EC68752BOX)  

 TBE gels, 8% (wt/vol) (Life Technologies, cat. no. EC62152BOX)  

 Mini-Cell polyacrylamide gel box, XCell SureLock (Life Technologies, cat. no. 

EI0001)  

 Black gel box (LI-COR, cat. no. 929-97301)  

 

 

NET-seq depletion oligos 

Symbol Transcript DNA sequence (5'-3') 

Snord49a snoRNA AGTCAGCCAGGAGCAGTTATCGTCAGTTATCGAC 

Rn45s rRNA GAGAGCCGCCCGAACGACCGACTTCCCTACGGGCCC 

Snord65 snoRNA CTTCAGAAAACCATAGGCTCACCACTACCAATCT 

Snord82 snoRNA GAACCATGGGGTTGAAATGAAATATGCTGATGTGCT 

Snord49b snoRNA GTCAGCTAACTAGGGATGTCGTCAGTTGTCGCAT 

Snord2 snoRNA AGTGATCAGCAAGAGTATTCTCTTCATTTCAGGTCA 

Snord99 snoRNA TCTCAGTCCCATATCCGCATTTCTCATCCATAGA 

Snord95 snoRNA CAGCTCAGAAACAGCCTCTGGATTTCAGCAAAGCAA 

Snord55 snoRNA CGTGGGGAAGCCAACCTTGGAGAGCTGAGCGTGC 

Snord68 snoRNA CATCAGATGGAAAAGGGTTCAAAAGTACTTTCAT 

Snord32a snoRNA GACTGTGAGATCAACCCATGCACCGCTCTGAGACTC 

Snord87 snoRNA GTTTCTTTGAAGAGAGAATCTTAAAAGACTGAGA 

Rmrp ncRNA CGCACCAACCACACGGGGCTCATTCTCAGCGCGGCTAC 

Snord100 snoRNA CTCGCTGAGGAAACTGCACGTCACCCTCCTGAAA 

Snora68 snoRNA GTGCAGTGCCCCCCAGAGTGAATCAGTAGGCTCTACAGAA 

Rnu3a snRNA AACCACTCAGACTGTGTCCTCTCCCTCTCAACCCTCAA 

Snord42b snoRNA GAGACCTGTGATGTCTTCAAAGGAACCACTGATG 

Snord83b snoRNA TGAGGAATTATTCCCTGTTGCCTTCCTTCTGAGA 

Snord110 snoRNA TTGCTCAGACACATGGAGTCGTCAGTGATCTCTCAGGG 

Snord47 snoRNA CCTCAGAAATAAAATGGAACGGTTTAAAGGTGAT 
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Antibodies 

SSRP1 Biolenends 

SUPT16 Cell signalling 

Alpha-tubulin Abcam 

β3-Tubulin Cell signalling 

MAP2 Millipore 

H3K4me3 Active motif 

 

 

7 Methods 
 

Cell culture. The E14 cell line (mESCs) was cultured at 37 °C, 7.5% CO2, on 

0.1% gelatin coated plates, in DMEM + GlutaMax™ (Gibco) with 15% fetal bovine 

serum (Gibco), MEM non- essential amino acids (Gibco), penicillin/streptomycin 

(Gibco), 550 µM 2-mercaptoethanol (Gibco), and 10 ng/ml of leukaemia inhibitory 

factor (LIF) (eBioscience). HEK293T, N2a, MEFs, NIH3T3, and B16 cell lines 

were cultured at 37 °C, 5% CO2 in DMEM + GlutaMax™ (Gibco) with 10% fetal 

bovine serum (Gibco), and penicillin/streptomycin (Gibco). Early Neuronal 

Precursor Cells (NPCs) were generated as previously described (Bibel et al., 

2007). Briefly, embryoid bodies were created with the hanging drop technique 

and were further treated with 1 µM retinoic acid (RA) for 4 days. RA-treated 

embryoid bodies were trypsinised and cultured in DMEM + GlutaMax™ (Gibco) 

with 15% fetal bovine serum without LIF for 3 days. 
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Depletion of SSRP1 from mESCs via shRNA and RNA preparation. E14 were 

transfected with lentiviral vectors containing either a scramble Control or Ssrp1 

shRNAs (MISSION® shRNA, Sigma) with the following sequences: 

Scramble 

Control 

 

CCGGGCGCGATAGCGCTAATAATTTCTCGAGAAATTATTAGCGCTATCGCGCTTTTT 

shRNA 1 

(Ssrp1) 

 

CCGGGCGTACATGCTGTGGCTTAATCTCGAGATTAAGCCACAGCATGTACGCTTTTTG 

shRNA 2 

(Ssrp1) 

 

CCGGGCAGAGGAGTTTGACAGCAATCTCGAGATTGCTGTCAAACTCCTCTGCTTTTTG 

shRNA 3 

(Ssrp1) 

 

CCGGCCGTCAGGGTATCATCTTTAACTCGAGTTAAAGATGATACCCTGACGGTTTTTG 

shRNA 4 

(Ssrp1) 

 

CCGGCCGTCAGGGTATCATCTTTAACTCGAGTTAAAGATGATACCCTGACGGTTTTTG 

 

A combination of two different Ssrp1 shRNAs was used (1&2, 3&4) at a time and 

depletion was quantified via western blotting using a monoclonal anti-Ssrp1 

antibody (Biolegends). Anti-alpha Tubulin was used as a reference control. The 

1&2 combination was used for subsequent experiments as it yielded higher 

depletion of SSRP1 levels (Extended Fig 2a,b). Generation and transfection of 

shRNA vectors was done as previously described(Ramezani & Hawley, 2002). 

Fourty-eight hours (48h) after transfection, puromycin (2 µg /ml) selection was 

applied for an additional 24h period, before cell collection and RNA preparation. 

Total RNA was obtained via phenol-chloroform extraction (QIAzol Lysis Reagent 

– QIAGEN) followed by purification via Quick-RNA™ MicroPrep (Zymo 

Research). Library preparation and ribosomal depletion were performed via the 

NEBNext Directional RNA Ultra Kit (NEB) and the RiboZero Kit (Illumina) 
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according to the manufacturer’s instructions, respectively. Four different 

biological replicates (Control or SSRP1-depleted mESCs) were prepared and 

processed for transcriptome analysis. 

 

MTT proliferation assay.  48h after transfection, different cell densities (3x104, 

2x104, 1x104) were seeded on 96-well plates (Sarstedt) along with puromycin (2 

µg /ml). Twenty-four hours later, the CellTiter 96® Non-Radioactive Cell 

Proliferation Assay kit (Promega) was used according to the manufacturer’s 

instructions in order to assess the rate of cell proliferation between the two 

conditions (Control, Ssrp1 KD). Statistical analysis was performed using a two-

tailed t-test. 

 

Transcriptome analysis in SSRP1-depleted mESCs. Sequenced reads were 

aligned to the mm10 genome via STAR (v 2.4.1b)(Dobin et al., 2013). Gene and 

exon counts were obtained from featureCounts of the Rsubread package 

(R/Bioconductor). Only reads with CPM (counts per million) > 1 were kept for 

subsequent analysis. Counts were normalised using the internal TMM 

normalisation in edgeR(Robinson, McCarthy, & Smyth, 2009) and differential 

expression was performed using the limma(Ritchie et al., 2015) package.  

Significant genes with an absolute logFC > 1 and Adjusted P.Value < 0.01 were 

considered as differentially expressed. The “No Change” gene class (n=2,179) 

was obtained from genes with an Adjusted P.Value > 0.05.  The diffSplice 

function implemented in limma was used to identify differentially spliced exons 

between the two conditions. Significant exons with an FDR < 0.001 were 
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considered as differentially spliced. Retention Introns were identified using the 

MISO (Katz, Wang, Airoldi, & Burge, 2010) (Mixture of Isoforms) probabilistic 

framework. 

 

Retention intron events. We verified the presence of retained introns in the 

Ssrp1 KD by randomly selecting ten intron retention events. The FastStart SYBR 

Green Master (Roche) was used along with the following primers to amplify via 

PCR the retained intragenic regions;  

 

Gene name Forward primer Reverse primer 

Men1 ATTTCCCAGCAGGCTTCAGG GGGATGACACGGTTGACAGC 

Dvl1 CCTGGGACTACCTCCAGACA CCTTCATGATGGATCCAATGTA 

Map4k2 GCTGCAGTCAGTCCAGGAGG TCCTGTTGCTTCAGAGTAGCC 

Ctsa GCAATACTCCGGCTACCTCA TGGGGACTCGATATACAGCA 

Pol2ri CGAAATCGGGAGTGAGTAGC GGTGGAAGAAGGAACGATCA 

Wipf2 TAGAGATGAGCAGCGGAATC TCGAGAGCTGGGGACTTGCA 

Fuz GACCCAGTGTGTGGACTGTG GACAAAGGCTGTGCCAGTGG 

Rfx5 CACCAGTTGCCCTCTCTGAA CAATTCTCTTCCTCCCATGC 

Fhod1 CACCAGGGAGCAGAGATGAT CCATCAACATTGGCCTAACC 

Tcirg1 AGCGACAGCACTCACTCCTT CAACACCCCTGCTTCCAGGC 

 

Amplified products were run on a 1.5% Agarose gel and visualized under UV. 

Band quantification was performed with ImageJ. 
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Chromatin Immunoprecipitation (ChIP) of FACT subunits. ChIP was 

performed in ~20 million ES cells, per assay, as described previously(Tessarz et 

al., 2014) with a few modifications. Briefly, cells were crosslinked with 1% 

formaldehyde for 20 min followed by quenching for 5 min with the addition of 

glycine to a final concentration of 0.125 M. After washing with PBS buffer, cells 

were collected and lysed in Cell Lysis buffer (5 mM Tris pH8.0, 85 mM KCl, 0.5% 

NP40 ) with proteinase inhibitors (10 µl/mL Phenylmethylsulfonyl fluoride (PMSF), 

1 µl/mL Leupeptin and 1 µl/mL Pepstatin). Pellets were spun for 5 min at 5000 

rpm at 4°C. Nuclei were lysed in Nuclei Lysis Buffer (1% SDS, 10 mM EDTA, 50 

mM Tris HCl) and samples were sonicated for 12 min. Samples were centrifuged 

for 20 min at 13,000 rpm at 4°C and the supernatant was diluted in IP buffer 

(0.01% SDS, 1.1% Triton-X-100, 1.2 mM EDTA, 16.7 mM Tris HCl, 167 mM 

NaCl) and the appropriate antibody was added and left overnight with rotation at 

4°C. Anti-Ssrp1 and anti-Supt16 antibodies were purchased from Biolegends 

(#609702) and Cell Signalling (#12191) respectively. Two biological replicates 

were prepared for each FACT subunit, using independent cell cultures and 

chromatin precipitations. Protein A/G Dynabeads (Invitrogen) were added for 1h 

and after extensive washed samples were eluted in Elution Buffer (1% SDS, 0.1 

M NaHCO3). 20 µL of 5 M NaCl were added and samples were reverse-

crosslinked at 65°C for 4h. Following phenol-chloroform extraction and ethanol 

precipitation, DNA was incubated at 37°C for 4h with RNAse (Sigma). 

ChIP-seq library preparation, sequencing, and peak-calling. Approximately 

10-20 ng of ChIP material was used for library preparation. End-repair and 

adaptor ligation was prepared as described previously with a few 

modifications(Tessarz et al., 2014). Double sided size selections (~200 – 650bp) 
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were performed using the MagSI-NGS Dynabeads (MagnaMedics, #MD61021) 

according to the manufacturer’s instructions. Purified adapter-ligated ChIP 

material was run on a high sensitivity DNA chip on a 2200 TapeStation (Agilent) 

to assess size distribution and adaptor contamination. 

Samples were single-end deep-sequenced and reads were aligned to the mm10 

genome using Bowtie2 (v 2.2.6) (Langmead & Salzberg, 2012). Peak-calling was 

performed using PePr (v 1.1) (Zhang, Lin, Johnson, Rozek, & Sartor, 2014) with 

peaks displaying an FDR < 10-5 considered as statistically significant. Peak 

annotation was performed via the chipenrich(Welch et al., 2014) R package with 

the following parameters (locusdef = "nearest_gene", method = "broadenrich").  

 

ChIP-seq normalisation and metagene analysis. All the ChIP-seq BAM files 

were converted to bigwig (10 bp bin) and normalised to x1 sequencing depth 

using Deeptools (v 2.4)(Ramirez et al., 2016). Blacklisted mm9 co-ordinates were 

converted to mm10 using the LiftOver tool from UCSC and were further removed 

from the analysis.  Average binding profiles were visualised using R (v 3.3.0). 

Heatmaps were generated via Deeptools. For the average profiles in Extended 

Fig 1a,b, RPKM values from Control ES RNA-seq data were divided into four 

different quantiles and the average profile for each FACT subunit was generated 

for each quantile. The Pearson’s correlation plot in Figure 1a was generated 

using all unique annotated mm10 RefSeq genes (n = 13,348) from UCSC 

(blacklisted regions were removed). The mESC promoter/enhancer regions 

identified in Shen et al(Shen et al., 2012) were used for the generation of Figure 
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1b. H3K4me3 ChIP-seq tag densities were split by k-means clustering into three 

categories in order to remove genes with low H3K4me3 density.  

 

MNase-seq following SSRP1 depletion in mESCs. ES cells were cultured and 

transfected with shRNA vectors as described above. Biological replicates were 

obtained from two independent transfection experiments for each shRNA vector. 

Briefly, ~5 million cells were crosslinked with 1% formaldehyde for 20 min 

followed by quenching for 5 min with the addition of glycine to a final 

concentration of 0.125 M. After washing with PBS buffer, cells were collected and 

lysed in Cell Lysis buffer (5 mM Tris pH8.0, 85 mM KCl, 0.5% NP40 ) with 

proteinase inhibitors (10 µl/mL Phenylmethylsulfonyl fluoride (PMSF), 1 µl/mL 

Leupeptin and 1 µl/mL Pepstatin). Nuclei were gathered by centrifugation (5000 

rpm for 2 min) and were treated with 10 Kunitz Units/106 cells of micrococcal 

nuclease (NEB, #M0247S) for 5 min at 37°C. The reaction was stopped with the 

addition of 60 µl 50 mM EDTA, 25 µl 5 M NaCl, 15 µl 20% NP-40 and incubated 

on a rotator for 1h at room temperature to release soluble nucleosomes. Samples 

were centrifuged for 5 min at 10,000 g and supernatant was transferred to a new 

tube. This centrifugation step is important to obtain highly soluble nucleosomes 

and remove nucleosome-protein complexes, which can raise bias in subsequent 

data interpretation(Carone et al., 2014) (See Extended Fig. 8). Samples were 

reverse-crosslinked by incubating overnight at 65°C with 0.5% SDS and 

proteinase K. Following phenol-chloroform extraction and ethanol precipitation, 

DNA was incubated at 37°C for 4h with RNAse (Sigma). All the samples were run 

in a 2% agarose gel and fragments <200 bp were extracted and purified using the 
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NucleoSpin® Gel and PCR Clean-up kit (Macherey-Nagel) according to the 

manufacturer’s instructions.  

Purified DNA (500 ng) was used for library preparation as described above. The 

only difference was the PCR amplification step where we used the same 

conditions as mentioned in Henikoff et al (Henikoff, Belsky, Krassovsky, 

MacAlpine, & Henikoff, 2011) but with only three amplification cycles. Libraries 

were verified using a 2200 TapeStation and were paired-end deep-sequenced 

(~250 million reads per sample).  

 

MNase-seq normalisation and metagene analysis. All the MNase-seq BAM 

files were converted to bigwig, binned (1 bp), smoothed (20-bp window), and 

normalised to x1 sequencing depth using Deeptools (v 2.4). Moreover, they were 

split into two different categories according to fragment length; <80 bp 

Transcription factor (TF)-sized fragments and 135-170 bp mononucleosome 

fragments). Average nucleosome occupancy profiles were visualised using R (v 

3.3.0). For the Extended Fig 8c, the mm10 annotated exon list for 

mononucleosomal profiling was obtained from UCSC.  

 

Mass spectrometry sample preparation and analysis.  Nuclei were isolated 

from ~5 million ES cells under hypotonic conditions and samples were incubated 

overnight at 4°C with an anti-H3K4me3 antibody (Active Motif, #39159) in the 

presence of low-salt Binding buffer (150 mM NaCl, 50 mM Tris-HCl pH 8.0, 1% 

NP-40), protease inhibitors, and Protein G Dynabeads (Invitrogen). The following 

day, after several rounds of bead washing with Binding Buffer, samples were 
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incubated overnight at 37°C with Tris pH 8.8 and 300 ng Trypsin Gold (Promega). 

In total, four samples were prepared for each condition (Control, Ssrp1 KD). 

Peptides were desalted using StageTips(Rappsilber, Ishihama, & Mann, 2003)  

and dried. The peptides were resuspended in 0.1% formic acid and analyzed 

using liquid chromatography - mass spectrometry (LC-MS/MS). 

 

LC-MS/MS analysis. For mass spectrometric analysis, peptides were separated 

online on a 25 cm 75 μm ID PicoFrit analytical column (New Objective) packed 

with 1.9 μm ReproSil-Pur media (Dr. Maisch) using an EASY-nLC 1000 (Thermo 

Fisher Scientific). The column was maintained at 50°C. Buffer A and B were 0.1% 

formic acid in water and 0.1% formic acid in acetonitrile respectively. Peptides 

were separated on a segmented gradient from 5% to 25% buffer B for 45 min, 

from 25% to 35% buffer B for 8 min, and from 35% to 45% buffer B for 4 min, at 

200nl / min. Eluting peptides were analyzed on a QExactive HF mass 

spectrometer (Thermo Fisher Scientific). Peptide precursor mass to charge ratio 

(m/z) measurements (MS1) were carried out at 60000 resolution in the 300 to 

1500 m/z range. The top ten most intense precursors with charge state from 2 to 

7 only, were selected for HCD fragmentation using 27% collision energy. The m/z 

of the peptide fragments (MS2) were measured at 15000 resolution, using an 

AGC target of 1e6 and 80 ms maximum injection time. Upon fragmentation, 

precursors were put on an exclusion list for 45 seconds. 

LC-MS/MS data analysis. The raw data were analyzed with MaxQuant(Jurgen 

Cox & Mann, 2008) (v 1.5.2.8) using the integrated Andromeda search engine 

(Jürgen Cox et al., 2011). Fragmentation spectra were searched against the 
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canonical and isoform sequences of the mouse reference proteome (proteome ID 

UP000000589, downloaded August 2015) from UniProt. The database was 

automatically complemented with sequences of contaminating proteins by 

MaxQuant. For the data analysis, methionine oxidation and protein N-terminal 

acetylation were set as variable modifications. The digestion parameters were set 

to “specific” and “Trypsin/P,” allowing for cleavage after lysine and arginine, also 

when followed by proline. The minimum number of peptides and razor peptides 

for protein identification was 1; the minimum number of unique peptides was 0. 

Protein identification was performed at a peptide spectrum matches and protein 

false discovery rate of 0.01. The “second peptide” option was on in order to 

identify co-fragmented peptides. Successful identifications were transferred 

between the different raw files using the “Match between runs” option, using a 

match time window of 0.7 min. Label-free quantification (LFQ)(Jurgen Cox, Hein, 

Luber, & Paron, 2014) was performed using an LFQ minimum ratio count of 2.  

Identification of co-enriched proteins. Analysis of the label-free quantification 

results was done using the Perseus computation platform(Tyanova et al., 2016) 

(v 1.5.0.0) and R. For the analysis, LFQ intensity values were loaded in Perseus 

and all identified proteins marked as “Reverse”, “Only identified by site”, and 

“Potential contaminant” were removed. Upon log2 transformation of the LFQ 

intensity values, all proteins that contained less than four missing values in one of 

the groups (control or Ssrp1 KD) were removed. Missing values in the resulting 

subset of proteins were imputed with a width of 0.3 and down shift of 1.8. Next, 

the imputed LFQ intensities were loaded into R where a two side testing for 

enrichment was performed using limma(Kammers, Cole, Tiengwe, & Ruczinski, 
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2015; Ritchie et al., 2015). Proteins with an adjusted p-value of less than 0.05 

were designated as significantly enriched in the control or knockdown. 

 

NET-seq library preparation.  ES cells were cultured and transfected with 

shRNA vectors as described above. Biological replicates were obtained from two 

independent transfection experiments for each shRNA vector. NET-seq libraries 

were prepared as previously described(Mayer & Churchman, 2016) with a few 

modifications. Briefly, chromatin associated nascent RNA was extracted through 

cell fractionation in the presence of α-amanitin, protease and RNAase inhibitors. 

> 90% recovery of ligated RNA and cDNA was achieved from 15 % TBE-Urea 

(Invitrogen) and 10% TBE-Urea (Invitrogen), respectively, by adding RNA 

recovery buffer (Zymo Research, R1070-1-10) to the excised gel slices and 

further incubating at 70°C (1500 rpm) for 15 min. Gel slurry was transferred 

through a Zymo-Spin IV Column (Zymo Research, C1007-50) and further 

precipitated for subsequent library preparation steps. cDNA containing the 3’ end 

sequences of a subset of mature and heavily sequenced snRNAs, snoRNAs, and 

rRNAs, are specifically depleted using biotinylated DNA oligos. Oligo-depleted 

circularised cDNA was amplified via PCR (5 cycles) and double stranded DNA 

was run on a 4% low melt agarose gel. The final NET-seq library running at ~150 

bp was extracted and further purified using the ZymoClean Gel DNA recovery kit 

(Zymo Research). Sample purity and concentration was assessed in a 2200 

TapeStation and further deep sequenced in a HiSeq 2500 Illumina Platform 

(~400 million reads per replicate). 
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NET-seq analysis. All the NET-seq fastq files were processed using custom 

Python scripts (https://github.com/BradnerLab/netseq) to remove PCR duplicates 

and reads arising from RT bias. Reads mapping exactly to the last nucleotide of 

each intron and exon (Splicing intermediates) were further removed from the 

analysis. The final NET-seq BAM files were converted to bigwig (1 bp bin), 

separated by strand, and normalised to x1 sequencing depth using Deeptools (v 

2.4) with an “–Offset 1” in order to record the position of the 5’ end of the 

sequencing read. NET-seq tags sharing the same or opposite orientation with the 

TSS were assigned as ‘sense’ and ‘anti-sense’ tags, respectively.  Average Pol II 

occupancy profiles were visualised using R (v 3.3.0). In Fig 2g, the Proximal 

Promoter region was defined as -30 bp and +250 bp around the TSS. For Fig 2f, 

gene body coverage was retrieved by averaging all regions (FACT-bound and 

non-FACT-bound) +300 bp downstream of TSS (Transcription Start site) and -

200 bp upstream of TES (Transcription End Site). Comparison of the two linear 

regressions was performed by calculating the z-score via 

z =
β1 −  β2

√sβ1
2 +  sβ2

2

 

where β and 𝑠𝛽 represent the ‘slope’ and the ‘standard error of the slope’, 

respectively. P value was calculated from the respective confidence level yielded 

by the z score.  

 

Immunofluorescence and confocal microscopy. Early Neuronal Precursor 

Cells (NPCs) were generated and Ssrp1 levels were knocked-down as described 

above. Cells were fixed with 100% Ethanol for 10 min and processed for 

https://github.com/BradnerLab/netseq
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immunofluorescence. Permeabilisation and blocking was performed for 1 h at 

room temperature with 1% BSA and 0.1% NP-40 in PBS. Incubation with primary 

antibodies was carried at room temperature for 2 hours by using rabbit anti-β3-

Tubulin (1:300; Cell Signaling) and mouse anti-MAP2 (1:300; Millipore.). After 

washing in blocking buffer, the secondary antibodies anti-rabbit and anti-mouse 

Alexa Fluor 568 (1:1,000; Life Technologies.) were applied for 2 h at room 

temperature. Slides were extensively washed in PBS and nuclei were 

counterstained with DAPI before mounting. Fluorescence images were acquired 

using a laser-scanning confocal microscope (TCS SP5-X; Leica), equipped with a 

white light laser, a 405-diode UV laser, and a 40× objective lens. 

 

Gene Ontology Analysis. All GO terms were retrieved from the metascape 

online platform (http://metascape.org/). 

 

Accession numbers and references of publicly available data sets. 

H3K4me3, H3K27me3, Pol II S5ph, H3K4me1, H3K27Ac, CTCF (ENCODE; 

https://www.encodeproject.org/); Ep400, Chd1, Chd2, Chd4, Chd6, Chd8, Chd9 

(de Dieuleveult et al., 2016) : GSE64825; Set1 (Cxxc1) (Denissov et al., 2014): 

GSM1258239; p53(Li et al., 2012): GSE26360; Pol II S2ph (Brookes et al., 2016): 

GSM850470; GRO-seq (Min et al., 2011): GSE27037, Smarcad1 (Xiao et al., 

2017) : GSE45338. 

 

 

http://metascape.org/
https://www.encodeproject.org/
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