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1Aim, thesis structure and major findings

1. Aim, thesis structure and major findings
Homozygous alterations in SMN1 are the most common genetic cause of spinal

muscular atrophy (SMA). However, the causing gene of many other cases with SMA

remain unknown.

My PhD project aimed to identify and analyze functionally novel genes causing motor

neuropathies. To this end, the current work led to the discovery of BICD2 as the causing

gene of spinal muscular atrophy, lower extremity-predominant, autosomal dominant,

type 2 (SMALED2 MIM 615290).

This PhD thesis starts with an introduction (Section 2) about the different SMA forms,

with emphasis on autosomal dominant SMA and focus on the lower extremity-

predominant form (SMALED). In the last part of the introduction, the cellular functions of

BICD2 are described including the role of this protein in neuronal tissue.

The major findings of my work are presented in Section 3, in conjunction with my

individual contributions for each scientific publication.

I summarized in Section 3.1 the discovery of BICD2 variants in affected individuals with

SMALED2 (Neveling; Martinez-Carrera et al. 2013, Synofzik et al. 2014). In addition, a

review is included where I elaborated on the clinical features of the affected individuals,

the locations of the mutations within the protein domains, and possible consequences at

the molecular level (Martinez-Carrera and Wirth 2015). Reading this review is highly

recommendable for a better overview of this part of the work.

Section 3.2 describes the pathological consequences that the different mutations exert

at cellular level: These were Golgi fragmentation in some cases (Neveling; Martinez-

Carrera et al. 2013) and alterations in the interaction with the dynein-dynactin complex

in others (Martinez-Carrera et al. 2018) . However, the striking finding was that

regardless of where the mutation is located in the protein, all of them altered the

microtubule array (arrangement), which led to aberrations in axon development in motor

neurons, the disease relevant cell type in SMALED2 (Martinez-Carrera et al. 2018).

Furthermore, I also include in this section, the findings from the characterization of the

first in vivo Drosophila model for SMALED2. I generated transgenic Drosophila lines that

carry the BICD2 variants found in individuals with SMALED2. By using the UAS-GAL4, I

was able to allow the expression of the transgenic construct (either wild type or mutant)

in a tissue-restricted manner. When expressed in neuronal tissue, but not in muscle, the
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BICD2 mutations caused impaired locomotion with reduced neuromuscular junction size,

a hallmark of developmental impairment (Martinez-Carrera et al. 2018).

In Section 3.3, I expand the knowledge about the spectrum of disorders that are

associated with variants in BICD2. The clinical presentation in such disorders differed

from the typical SMALED2. Two of the BICD2 variants that cause SMALED2, were also

identified in affected individuals with chronic myopathy (Unger et al. 2016), and novel

variants were associated with congenital arthrogryposis multiplex with respiratory failure

and early lethality, the most severe clinical presentation observed in association with

BICD2 (Storbeck et al. 2017).

In the next part of my thesis (Section 4), I include unpublished findings obtained during

functional investigation of endocytosis, centrosomes, and aggregate formation.

At last, I discuss the compilation of findings of my work (Section 5), correlate with the

findings of others, underline the novel insights into the disease and suggest possible

molecular mechanisms. Sections 6 and 7 include the summary and highlights of this

work. Section 8 includes an additional contribution (Komlosi et al. 2014)
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2. Introduction

2.1. Spinal muscular atrophies
Spinal muscular atrophies (SMAs) comprise a group of genetic disorders

characterized by aberrant development and/or loss of spinal motor neurons. The clinical

features of spinal muscular atrophy are wasting and weakness of muscles supplied by

the affected motor neurons (Emery 1971).

SMAs present a broad clinical spectrum, and differential diagnosis from other disorders

can be challenging due to the overlapping of symptoms. However, SMAs are often

classified based on the mode of inheritance (autosomal recessive, autosomal dominant,

X-linked), age of onset, and pattern of muscle weakness (i.e. proximal or distal).

2.1.1. Autosomal recessive and X-linked forms of SMA
The majority of the SMA cases are autosomal recessive linked to chromosome 5

(5q-SMA), and caused by homozygous deletion/mutation of the survival motor neuron 1

(SMN1) gene, localized on chromosome 5q12-q13 (Lefebvre et al. 1995, Wirth et al.

1999, Wirth 2000). The muscle weakness in 5q-SMA is usually symmetrical, more

proximal than distal, the lower limbs are more affected than upper. The 5q-SMA is

classified into four subtypes based on age of onset and severity of symptoms (MIM

253300, 253550, 253400, 271150).

X-linked forms of SMA (SMAX) affect mainly men and are considered of rare incidence.

The X-linked type I (SMAX1, MIM 313200) is characterized by adult onset of weakness

and atrophy of the limb and bulbar muscles, with fasciculations, and an increase in the

size of breast tissue (Harding et al. 1982). SMAX1 is associated with trinucleotide repeat

expansion CAG(n) in the androgen receptor gene (La Spada et al. 1991, Lund et al.

2001). In contrast to SMAX1, cases with X-linked SMA type II (SMAX2, MIM 301830)

show a neonatal onset of severe hypotonia, areflexia, contractures (muscle shortening)

and/or fractures. Death occurs in infancy due to respiratory failure (Ramser et al. 2008).

Variants in the gene encoding ubiquitin-activating enzyme-1 (UBA1) have been

described as causative of SMAX2 (Ramser et al. 2008). A less frequent X-linked SMA

type III (SMAX3, MIM 300489) affects distal muscles of lower limbs and later of upper

limbs. The symptoms appear in the first decade of life and are slowly progressive.

Variants in the ATP7A gene, which encodes a transmembrane copper-transporting

ATPase, have been identified in individuals with SMAX3 (Kennerson et al. 2010).
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2.1.2. Autosomal dominant SMAs
Autosomal dominant forms of SMA are considered highly heterogeneous and show

high variability of clinical features. It is estimated that less than 2% of the total cases of

SMAs are dominantly inherited (Farrar and Kiernan 2015).

In contrast to 5q-SMA, autosomal dominant SMAs are considered milder and without or

slow progression. Most of the dominant SMAs affect lower and upper limbs, with proximal

and/or distal pattern of muscle weakness and the age of onset ranges from congenital

to late adulthood (Table 1).

In the great majority of individuals with autosomal dominant SMA, the genetic causes

are unknown. However, the rapid advance in genetic screening due to massive parallel

sequencing and improvement in phenotypical classification have contributed remarkably

to the discovery and characterization of novel causative genes (Table 1).

2.1.2.1. Autosomal dominant SMAs that affect lower and upper extremities
f

This group of autosomal dominant SMAs that affects lower and upper limbs

includes:

The scapuloperoneal SMA (SPSMA MIM 181405) is characterized by weakness of the

scapular (shoulder blade) and peroneal (lower leg) muscles. The onset of the symptoms

is congenital or early childhood. Variants in TRPV4, have been described as the genetic

cause of SPSMA (Auer-Grumbach et al. 2010). TRPV4 is a transient receptor potential

cation channel that plays a role in neuronal signalling (Liedtke 2008). Variants in TRPV4

have been also associated with Charcot-Marie-Tooth type 2C (CMT2C MIM 606071)

(Landoure et al. 2010).

The Finkel SMA with late adult onset (SMAFK MIM 182980), presents proximal muscle

weakness and fasciculations. Variants in VAPB are associated to SMAFK (Nishimura et

al. 2004). VAPB encodes a vesicle-associated membrane protein that plays a role in the

unfolded protein response (UPR) and has been associated with amyotrophic lateral

sclerosis type 8 (ALS8 MIM 608627) (Kanekura et al. 2006).

The distal SMAs, also known as distal hereditary motor neuropathies (dHMN), cause

weakness and atrophy of lower and upper limbs with distal predominance. dHMN are

clinically and genetically diverse. The phenotypes of various dHMN overlap with other

disorders such as Charcot-Marie-Tooth and amyotrophic lateral sclerosis. Several types

and subtypes of dHMN have been associated with variants in genes that encode for

heat-shock proteins like HSPB8 (Irobi et al. 2004), HSPB1 (Houlden et al. 2008) and
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HSPB3 (Kolb et al. 2010), also the choline transporter SLC6A7 (Barwick et al. 2012) and

dynactin-1 (Puls et al. 2003), among others (Table 1).

Other two dominant SMAs with distal predominance are the hereditary neuropathy with

or without age-related macular degeneration (HNARMD MIM 608895) and the peripheral

neuropathy, myopathy, hoarseness, and hearing loss (PNMHH MIM 614369). HNARMD

has been associated with variants in the FBLN5 gene, which encodes the fibulin-5 that

might promote the deposit formation in macular degeneration (Mullins et al. 2007).

Regarding PNMHH, the identified causing-gene MYH14 encodes a member of the

myosin II family, which interact with cytoskeletal actin (Choi et al. 2011).
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Table 1. Current known disease-causing genes for autosomal dominant spinal muscular atrophies.
Limbs affected LL: lower limbs; UL: upper limbs; +++: majority of the cases; ++: some of the cases; +: few cases; -: no cases; CMT: Charcot-Marie-Tooth; HSP: Hereditary spastic
paraplegia; ALS: Amyotrophic lateral sclerosis; ADCL2: autosomal dominant cutis laxa-2

Type (MIM#) Gene Function Age of onset LL UL Proximal Distal Progressive Other features Allelic disorders
SPSMA (181405)
Scapuloperoneal TRPV4 Cation channel receptor

congenital,
early
childhood

+++ ++ - +++ Non or
slowly

Scapuloperoneal muscle
weakness, laryngeal palsy,
arthrogryposis

CMT(2C)

SMALED1 (158600)
Lower-extremity
predominant, 1

DYNC1H1 Subunit of the cytoplasmic
dynein complex

congenital to
adult +++ - +++ + Non or very

slowly
One case with cognitive
delay CMT (20)

SMALED2 (615290)
Lower-extremity
predominant, 2

BICD2 Dynein-dynactin adaptor
congenital,
early
childhood

+++ + +++ ++ Non or
slowly ± Arthrogryposis Late onset HSP

SMAFK (182980)
Finkel late-adult VAPB Vesicle-associated

membrane protein
median age
at 37 years +++ +++ +++ - Progressive Muscle cramps and

fasciculations ALS

HMN (Hereditary motor
neuropathies)
HMN2A (158590)
HMN2B (608634)
HMN2C (613376)
HMN2D (615575)
HMN5A (600794)

HMN5B (614751)
HMN7A (158580)
HMN7B (607641)

HSPB8
HSPB1
HSPB3
FBXO38
GARS
BSCL2
REEP1
SLC6A7
DCTN1

Heat-shock proteins

F-box family
Glycyl-tRNA synthetase
lipid droplet formation
G-protein-couple receptor
Choline transporter
Dynactin-1 or p150 (Glued)

childhood to
early
adulthood

~18 years

childhood
>20 years
adulthood

+++
+++
+++
+++
-

+++
++
+++

++
+
+++
+
+++

+++
++
+++

-
-
-
+++
-

-
-
+++

+++
+++
+++
+++
+++

+++
+++
+++

Rapid
Slowly
Slowly
Slowly
Slowly

Slowly
Slowly

Muscle paresis of the big toe

Calf weakness

Vocal cord paralysis
Vocal cord paralysis

Overlapping
phenotype with
CMT

ALS
HNARMD (608895)
Hereditary neuropathy with
or without age-related
macular degeneration

FBLN5 Adhesion of endothelial
cells

childhood to
adulthood +++ + - +++ Slowly

Macular degeneration in
some cases.
Demyelinating neuropathy.

ADCL2

PNMHH (614369)
Peripheral neuropathy,
myopathy, hoarseness, and
hearing loss

MYH14 Myosin II, ATP-dependent
molecular motor childhood +++ + - +++ Progressive Hoarseness and hearing loss Deafness
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2.1.2.2. Autosomal dominant SMA that affects lower extremities
predominantly, type 1 (SMALED1)

The term SMALED was first used by Harms and colleagues, to distinguish a

dominant SMA with clear lower limb predominance from other dominant SMA forms with

upper extremity involvement (Harms et al. 2010). The first gene to be identified as

causative of SMALED was DYNC1H1 (SMALED1 MIM 158600).

Individuals with SMALED1 present difficulties to walk and show proximal leg weakness

with muscular atrophy without sensory involvement. The weakness and atrophy are

prominent in quadriceps muscles, and mild atrophy of distal leg muscles has been also

reported. In very few cases, the upper limbs are mildly affected. Reduced or absent

reflexes in the lower limbs are also reported. The symptoms appear in early childhood

and the course of the disease is non-progressive or very slowly progressive (Harms et

al. 2010, Harms et al. 2012, Tsurusaki et al. 2012). In many cases of SMALED1,

electromyography (EMG) and skeletal muscle biopsy show signs of chronic denervation

(Harms et al. 2010, Harms et al. 2012). Very few individuals with SMALED1 present

contractures.

Regarding the molecular basis of SMALED1, several heterozygous mutations in the tail

domain of the heavy chain of cytoplasmic dynein (DYNC1H1) have been described, and

experimental evidence suggested that these mutations disrupt dynein complex stability,

and/or affect its function (Harms et al. 2012, Hoang et al. 2017). Interestingly, it was

recently reported that the majority of the mutations do not affect binding of dynein to

dynactin and to its cargo adaptor BICD2 (Hoang et al. 2017). However, those mutations

decrease the travel distances of moving dynein-dynactin complex, presumably by

changes in the microtubule-binding domain of dynein (Hoang et al. 2017). Mutations in

the motor domain of DYNC1H1 are described as to possess the strongest effects on

dynein motility in vitro, and have been associated with malformations of cortical

development (MCD, MIM 614563) (Schiavo et al. 2013, Hoang et al. 2017).

2.1.2.3. Autosomal dominant SMA that affects lower limbs predominantly,
type 2 (SMALED2)

In 1994, Frijns et al. described a family of Dutch origin, in which the affected

individuals exhibited congenital nonprogressive atrophy and weakness predominantly of

lower limb muscles, in association with contractures in ankles and feet (Frijns et al.

1994). Tendon reflexes were reduced or absent. The affected individuals presented

difficulties when walking, such as the ability to walk only on toes and waddling gait.
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Histological studies of the affected muscles revealed evidence of a neurogenic disorder,

and signs of denervation and reinnervation (Frijns et al. 1994).

The pattern of inheritance was dominant and linkage to the 5q12-q13 region was

excluded. The phenotype of the disease observed in family 1 was described as dominant

non-5q SMA with lower limb predominance. However, the genetic cause was unknown.

This family described by (Frijns et al. 1994), constituted the starting point of my project.

We identified variants in the BICD2 gene as disease-causing (Section 3.1). The next

section includes an overview of the cellular functions of BICD2, which are widely

investigated.

2.2. BICD2: structure and function
Bicaudal-D (BicD) was initially identified in Drosophila melanogaster through a

characterization of two dominant lethal maternal mutations, which disrupt the

establishment of anterior and posterior polarity giving rise to bicaudal (two tails) embryos

(Mohler and Wieschaus 1986, Steward 1987, Schupbach and Wieschaus 1991).

Only one BicD gene is present in invertebrates, while mammals have two homologs

BICD1 and BICD2. In humans, BICD1 is localized in the chromosomal region 12p11.2-

p11.1 and is mainly expressed in brain, skeletal muscle and heart (Baens and Marynen

1997), while BICD2 localizes in the chromosomal region 9q22.3 and is ubiquitously

expressed.

Structural analysis in Drosophila revealed that more than half of the BicD protein consists

of heptad repeats. A heptad repeat is defined as a repeating pattern of seven amino

acids of which hydrophobic residues are preferentially located at positions 1 and 4

(McLachlan and Karn 1983). These heptad repeats are responsible of mediating the

packaging of one helix against another, resulting in the formation of coiled-coil (CC)

structures (Bruccoleri et al. 1986). The N-terminal domain contains the coiled-coil

segment 1 (CC1) and the coiled-coil segment 2 (CC2), and the C-terminal domain

contains the coiled-coil segment 3 (CC3).

In the case of BICD2, experimental evidence supports that the CC1 binds to CC3 and

undergo intramolecular interactions forming homodimers (Hoogenraad et al. 2001). It is

further proposed that once the CC3 engages in an interaction with other proteins, the

CC1 becomes available for interaction with other proteins. These protein interactions

seem to determine the cellular localization and function of BICD2 (Hoogenraad et al.

2001).
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2.2.1. BICD2 is an adaptor of dynein and functions in different cellular
processes

Motor adaptor proteins that link motors to cargo are commonly implicated in

controlling motor coordination and cargo movement (Schlager and Hoogenraad 2009,

Akhmanova and Hammer 2010, Jolly and Gelfand 2011, Fu and Holzbaur 2014). BICD2

is a widely studied cargo adaptor of cytoplasmic dynein, the major contributor to minus

end-directed microtubule transport (Figure 1) (Hoogenraad et al. 2001, Matanis et al.

2002, Splinter et al. 2010, Splinter et al. 2012).

Figure 1. Cartoon of dynein-dynactin-BICD2 complex.
Dynein (blue) moves toward the minus end of the microtubule. Dynein associates with dynactin (red) and
with BICD2 (yellow) to link to cargo (orange). Source: (Reck-Peterson 2015).

Dynein requires dynactin (name is derived from dynein activator) for nearly all of its

cellular functions (Holleran et al. 1998, Karki and Holzbaur 1999, Schroer 2004). Dynein

and dynactin bind to each other via the interaction of dynein intermediate chain and the

dynactin subunit p150 (Vaughan et al. 1995, Karki and Holzbaur 1999, King et al. 2003).

Several studies in vitro described that these two complexes exist as separate pools that

bind transiently, suggesting that additional factors must be present in cells to strengthen

this association in order to achieve long distance transport (Quintyne et al. 1999,

Habermann et al. 2001, Quintyne and Schroer 2002). Studies have suggested that the

N-terminal domain of BICD2 binds to the dynein-dynactin complex, not only to function

as a linker for cargos, but also to promote a stable interaction between dynein and

dynactin (Splinter et al. 2012).



10 Introduction

The C-terminal domain of BICD2 shows the highest degree of conservation among

metazoans and is the cargo-binding domain (Hoogenraad et al. 2001, Terenzio and

Schiavo 2010). BICD2 links the dynein-dynactin complex to cargos that are involved in

different dynein-mediated processes such as retrograde COPI-independent Golgi

transport, centrosome and nuclear positioning during mitotic entry, mRNA localization,

lipid droplet transport, endocytosis, and microtubule organization (Figure 2).

Figure 2. Functions of BICD2 in the cell.
Studies in mammals and/or Drosophila melanogaster have shown that BICD2 is involved in several cellular
processes. Source: (Martinez-Carrera and Wirth 2015).

2.2.2. COPI/independent Golgi transport
The C-terminal domain of BICD2 binds to the small GTPase RAB6A, which

coordinates the retrograde COPI-independent Golgi-ER pathway, a recycling route of

Golgi-resident membrane proteins that allows the assembly of functional Golgi stacks

(Hoogenraad et al. 2001, Young et al. 2005). The active form of RAB6A (GTP-bound) is

associated with the trans-Golgi membrane and recruits BICD2 via interaction with the

C-terminal domain. The N-terminal domain of BICD2 becomes available and recruits the

dynein-dynactin complex to transport RAB6A vesicles from the trans-Golgi to the ER

(Matanis et al. 2002).

BICD2 is considered a golgin due to its abundant coiled coil structure, localization at the

Golgi, and interaction with a member of the RAB family of GTPases (Barr and Short

2003, Short et al. 2005, Goud and Gleeson 2010). Golgins are proteins associated with

the Golgi apparatus and contribute to maintain its organization.
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2.2.3. Centrosome and nuclear positioning during mitotic entry
In early G2 phase, the C-terminal domain of BICD2 switches from interacting with

RAB6A to interact with RANBP2, a component of the nuclear pore (Splinter et al. 2010).

BICD2 in turn, recruits the dynein-dynactin complex to the nuclear envelope to facilitate

a proper positioning of the nucleus relative to centrosomes prior mitosis. However, the

mechanism that controls the shift of interacting partners of BICD2 during the cell cycle is

unknown.

2.2.4. mRNA localization
Studies in Drosophila have shown that the C-terminal domain of BicD interacts with

Egalitarian (Egl), a RNA-binding protein, whose human ortholog is EXD1 (exonuclease

3´-5´Domain Containing 1) (Bullock and Ish-Horowicz 2001, Delanoue and Davis 2005).

BicD recruits the dynein-dynactin complex to target the mRNA cargo to distinct cellular

compartments. This complex comprising BicD-Egl-dynein-dynactin is thought to

associate with further proteins that regulate translation and stability of transported

mRNA. During Drosophila development, the correct mRNA localization is crucial for

specifying anteroposterior and dorsoventral axes of oocytes and embryos (Weil 2014).

The identification of the mRNAs associated with BicD-Egl has been subject of

investigation. Clathrin heavy chain (Chc) mRNA has been identified as a cargo of BicD.

Chc mRNA requires BicD to be transported into the oocyte where is presumably needed

to establish microtubule polarity, an endocytosis-independent role of Chc (Vazquez-

Pianzola et al. 2014).

Even though, mRNA transport is an important process in mammals and BICD is highly

conserved among metazoans, the role of BICD in mRNA transport during development

in mammals has not been investigated. However, to study this possibility would be of

special interest not only in the field of developmental science but also for the

understanding of early developmental pathologies.

2.2.5. Lipid droplet transport
Lipid droplets are present at all developmental stages of Drosophila and are

particularly important as energy sources (Kuhnlein 2012). It has been described that lipid

droplets are moved by the dynein complex (Gross et al. 2000). Based on observations

in the composition and motion of lipid droplets, it has been suggested that BicD binds to

lipid droplets and recruits the dynein complex to transport those droplets in the forming

embryo (Larsen et al. 2008).
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In humans, increasing evidence suggests that disrupted lipid droplet function/localization

may contribute to neurodegenerative disorders, for example Huntington’s disease

(Martinez-Vicente et al. 2010), Parkinson´s disease (Cole et al. 2002), and hereditary

spastic paraplegias (Welte 2015). The role of BICD proteins in lipid droplet transport in

mammals and defects in lipid metabolism has not been explored.

2.2.6. Bidirectional transport
A binding between BICD2 and the tail domain of kinesin-1 has been previously

described (Grigoriev et al. 2007). However, this binding was suggested to be weaker

than the association of BICD2 with dynein-dynactin complex. By using yeast two-hybrid

system, the interaction between the middle part of BICD2 (Coiled coil 2 domain) and the

tail of kinesin-1 (KIF5A) has been confirmed. However, this interaction seems to be

strongly suppressed in the full-length BICD2, possibly by self inactivation due to

interaction of the N-terminal domain of BICD2 (Coiled coil 1 domain) with its C-terminal

domain (Coiled coil 3). Studies in Drosophila have suggested that BicD plays a role in

plus end-directed microtubule transport, and in balancing plus end (kinesin mediated)

versus minus end motion (dynein mediated) (Larsen et al. 2008). Recent studies have

shown that dynein-dynactin complex and kinesin are opponents in a tug-war competition

along microtubules, and BICD2 increases the force of dynein to successfully resist

against kinesin (Belyy et al. 2016).

2.3. Importance of BICD2 in neuronal tissue development

2.3.1. Cerebellar development
In vivo studies in a homozygous Bicd2 knockout mouse have provided further

insights into BICD2 function (Jaarsma et al. 2014). Bicd2-deficient mice show cerebellar

defects with severe hydrocephalus, and all died before postnatal day 30. Histological

examination has revealed deficits in granule cell migration in the cerebellum. It is known

that during cerebellar development, the granule cells (postmitotic neurons) migrate from

the external granular layer (EGL) toward their final destination within the internal granular

layer (IGL) (Figure 3) (Komuro and Yacubova 2003). The granule cells migrate along

Bergmann glia cells, which determine their correct position from the molecular layer (ML)

to the IGL (Komuro et al. 2001).



13Introduction

Figure 3. Cerebellar development and granule cell migration.
Precursor granule cells (blue spheres, top) proliferate in response to growth signals including sonic
hedgehog (shh) released by Purkinje cells (PC, purple). Postmitotic granule cells (orange sphere) start to
migrate and attach to Bergamnn glia cells (BG, red cells) to finally arrive at the internal granule layer. Source:
(Tharmalingam and Hampson 2016).

Further histological studies have shown that BICD2 is highly expressed in Bergmann

cells (Jaarsma et al. 2014). Moreover, conditional knockout mice, with Bicd2 depleted in

Bergmann cells, show decreased levels of Tenascin C, an extracellular matrix protein

produced by Bergmann glia cells, possibly by defects in secretion due to the BICD2

deficiency. Tenascin C is known to mediate the attachment of neurons to Bergmann cells

and stimulate migration (Bartsch et al. 1992, Chiquet-Ehrismann and Tucker 2011).

Importantly, besides the cerebellar defects, the homozygous Bicd2 knockout mice do not

show alterations in any tissue including spinal cord, and the heterozygous knockout mice

do not display a pathological phenotype (Jaarsma et al. 2014). Individuals with

SMALED2 do not show any pathological changes in the cerebellum. These differences

in phenotypes between Bicd2-deficient mice and individuals with SMALED2 indicate that

the missense BICD2 mutations exert gain-of-function effect rather than a loss-of-function

effect.

2.3.2. Synaptic vesicle recycling
In Drosophila, the complete absence of BicD expression leads to decreased larval

locomotion, and lethality is reported during pupa stage due to inability to eclose (Ran et

al. 1994, Li et al. 2010). However, the transgenic expression of BicD in pan-neuronal

tissue has been proven to fully rescue the larval locomotion and lethality, whereas
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expression in the muscles does not (Li et al. 2010). These observations suggest that

despite its widespread expression, BicD function is only obligatory in the nervous system

during development.

Subsequent studies have shown that the C-terminal domain of BicD binds to Clathrin

heavy chain (Chc), while the N-terminal domain recruits the dynein complex to transport

clathrin-associated synaptic vesicles for their efficient recycling (Li et al. 2010). More

studies seemed to be needed to investigate the extent of BicD participation in

endocytosis and neuromuscular junction morphology.



15Publications

3. Publications

The discovery of BICD2 as the causing gene of SMALED2

Neveling, K.*, Martinez-Carrera, L. A.*, Holker, I., Heister, A., Verrips, A., Hosseini-

Barkooie, S. M., Gilissen, C., Vermeer, S., Pennings, M., Meijer, R., Te Riele, M., Frijns,

C. J., Suchowersky, O., Maclaren, L., Rudnik-Schoneborn, S., Sinke, R. J., Zerres, K.,

Lowry, R. B., Lemmink, H. H., Garbes, L., Veltman, J. A., Schelhaas, H. J., Scheffer, H.

and Wirth, B. (2013). "Mutations in BICD2, which Encodes a Golgin and Important Motor

Adaptor, Cause Congenital Autosomal-Dominant Spinal Muscular Atrophy." Am J Hum

Genet 96(6): 946-954.
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"Dominant spinal muscular atrophy due to BICD2: a novel mutation refines the

phenotype." J Neurol Neurosurg Psychiatry 85(5): 590-592.
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Barkooie, S. M., Gilissen, C., Vermeer, S., Pennings, M., Meijer, R., Te Riele, M., Frijns,

C. J., Suchowersky, O., Maclaren, L., Rudnik-Schoneborn, S., Sinke, R. J., Zerres, K.,

Lowry, R. B., Lemmink, H. H., Garbes, L., Veltman, J. A., Schelhaas, H. J., Scheffer, H.

and Wirth, B. (2013). "Mutations in BICD2, which Encodes a Golgin and Important Motor
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Genet 96(6): 946-954.
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BICD2 mutations increase microtubule stability and cause defects in axonal and NMJ

development." Hum Mol Genet (Epub ahead of print).



16 Publications

Other disorders caused by variants in BICD2
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3.1. The discovery of BICD2 as the causing gene of SMALED2

3.1.1. Publications
Neveling, K.*, Martinez-Carrera, L. A.*, Holker, I., Heister, A., Verrips, A., Hosseini-
Barkooie, S. M., Gilissen, C., Vermeer, S., Pennings, M., Meijer, R., Te Riele, M., Frijns,
C. J., Suchowersky, O., Maclaren, L., Rudnik-Schoneborn, S., Sinke, R. J., Zerres, K.,
Lowry, R. B., Lemmink, H. H., Garbes, L., Veltman, J. A., Schelhaas, H. J., Scheffer, H.
and Wirth, B. (2013). "Mutations in BICD2, which Encodes a Golgin and Important Motor
Adaptor, Cause Congenital Autosomal-Dominant Spinal Muscular Atrophy." Am J Hum
Genet 96(6): 946-954.

*These authors contributed equally to this work.

Synofzik, M., Martinez-Carrera, L. A., Lindig, T., Schols, L. and Wirth, B. (2014).
"Dominant spinal muscular atrophy due to BICD2: a novel mutation refines the
phenotype." J Neurol Neurosurg Psychiatry 85(5): 590-592.

Martinez-Carrera, L. A. and Wirth, B. (2015). "Dominant spinal muscular atrophy is
caused by mutations in BICD2, an important golgin protein." Front Neurosci 9: 401.

3.1.2. Description
Almost 20 years after Frijns and colleagues described family 1, and thanks to the

advances in next generation sequencing, we were able to identify the genetic cause of

the dominant non-5q SMA in family 1 (Neveling; Martinez-Carrera et al. 2013). To identify

the chromosomal location of the disease-causing mutations, linkage analysis was

performed in nine members of family 1, which identified a locus on chromosome 9 (chr9:

94,4440,951-104,432,543). Exome sequencing was performed in a single affected

individual, and variants were filtered based on location on chromosome 9,

nonsynonymous exonic and splice-sites. After excluding known SNPs and previously

identified variants, just five variants in five different genes were found. Of those five

genes, only BICD2 was located within the linkage region. The heterozygous variant in

BICD2 (c.320C>T) results in the amino acid change p.Ser107Leu (Neveling; Martinez-

Carrera et al. 2013).

To search for further BICD2 variants that might cause dominant SMA, the seven exons

of BICD2 were analyzed by Sanger sequencing in twenty-three additional families with

dominant non-5q-SMA. Further two heterozygous variants (c.563A>C [p.Asn188Thr]

and c.2108C>T [p.Thr703Met]) were identified (Neveling; Martinez-Carrera et al. 2013).

A rare SNV (c.269A>G [p.Lys90Arg]) was identified in two additional families. However,

some affected individuals in these families did not carry this SNV, which discards this

variant as disease-causing.



18 Publications

A fourth heterozygous variant (c.2239C>T [p.Arg747Cys]) was identified in all the

affected individuals with dominant SMA, in a three-generation family (Synofzik et al.

2014).

Affected individuals with dominant SMA that carry BICD2 variants, present weakness

and atrophy predominantly affecting the proximal and distal muscles of the lower

extremities. For this reason, the pathology was named spinal muscular atrophy, lower

extremity predominant, autosomal dominant, type 2 (SMALED2 MIM 615290).

The symptoms are congenital or appear in early childhood, but few cases with late onset

have been also described. The course of the disease is slowly progressive or

nonprogressive. Tendon reflexes are reduced or absent. In the majority of the cases, the

SMALED2 phenotype is very mild, and during clinical examination may be first-glance

diagnosed as SMA type IV, the mildest form of the classical 5q-SMA. Delayed motor

milestones, waddling gait, and chronic walking on toes are commonly reported. It seems

very characteristic that many individuals with SMALED2 show evident wasting of the

lower limbs and a very broad upper body, which resembles a bodybuilder-like shape.

Another differential feature in many individuals with SMALED2 is the presence of

contractures in knee, feet, and/or hip, which correlates with congenital onset, possibly

due to decreased intrauterine movements (Neveling; Martinez-Carrera et al. 2013). In

contrast, very few individuals with SMALED1 (Harms et al. 2010, Harms et al. 2012) and

only very severe 5q-SMA cases present contractures (Rudnik-Schoneborn et al. 2008).

In this Section, I include a review about all the individuals with SMALED2 that have been

reported (Martinez-Carrera and Wirth 2015). This review provides a summary of the

clinical presentation including age of onset, presence of contractures, and pattern of

muscular weakness/atrophy. Importantly, we show an overview about the location and

possible molecular mechanism of the different mutations.

3.1.3. Own contributions
My contributions to (Neveling; Martinez-Carrera et al. 2013) are split into two parts. Here

I include the part of the gene discovery and Section 3.2 includes the part of functional

analysis for this paper.

In the gene discovery part of the study (Neveling; Martinez-Carrera et al. 2013), I

designed, carried out and analyzed the exon sequencing of BICD2 in all twenty three

additional families. Subsequently to the variant identification, I performed the

corresponding segregation analysis. For the manuscript, I contributed with the design of

the figure 1, writing and reviewing.
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In (Synofzik et al. 2014), I performed the Sanger sequencing, identified the variant in

BICD2, and continued with segregation analysis. For the publication, I contributed with

the preparation of the figure, writing my corresponding part and reviewing the draft.

I wrote the review (Martinez-Carrera and Wirth 2015).

3.2. Functional analyses and disease model

3.2.1. Publications
Neveling, K.*, Martinez-Carrera, L. A.*, Holker, I., Heister, A., Verrips, A., Hosseini-
Barkooie, S. M., Gilissen, C., Vermeer, S., Pennings, M., Meijer, R., Te Riele, M., Frijns,
C. J., Suchowersky, O., Maclaren, L., Rudnik-Schoneborn, S., Sinke, R. J., Zerres, K.,
Lowry, R. B., Lemmink, H. H., Garbes, L., Veltman, J. A., Schelhaas, H. J., Scheffer, H.
and Wirth, B. (2013). "Mutations in BICD2, which Encodes a Golgin and Important Motor
Adaptor, Cause Congenital Autosomal-Dominant Spinal Muscular Atrophy." Am J Hum
Genet 96(6): 946-954.

*These authors contributed equally to this work.

Martinez Carrera, L. A., Gabriel, E., Donohoe, C., Hölker, I., Wason, A., Storbeck, M.,

Uhlirova, M., Gopalakrishnan, J. and Wirth, B. (2018). "Novel insights into SMALED2:

BICD2 mutations increase microtubule stability and cause defects in axonal and NMJ

development." Hum Mol Genet (Epub ahead of print).

3.2.2. Description of the studies
We proceeded to examine the effects of the four mutations described by us, on

cellular processes involving BICD2 and that have been previously described as affected

in neurodegenerative disorders, such as Golgi structure and interactions with dynein-

dynactin complex and RAB6A.

In vitro overexpression experiments and studies of fibroblasts derived from individuals

with SMALED2 showed that p.Thr703Met and p.Asn188Thr mutations cause Golgi

fragmentation (Neveling; Martinez-Carrera et al. 2013).

Interaction studies revealed that two mutations change the binding of BICD2 with the

dynein-dynactin complex. The p.Asn188Thr mutation slightly decreased the binding to

dynein. The p.Arg747Cys mutation increases the interaction of BICD2 with the p150

subunit of dynactin and decreases the interaction with RAB6A (Martinez-Carrera et al.

2018).
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We focused on the observations that some of the BICD2 mutations alter interactions with

the dynein-dynactin complex and/or cause Golgi fragmentation. We investigated whether

the BICD2 mutations impair microtubule organization. The fibroblast derived from

individuals with SMALED2 exhibit longer and hyperstable microtubules, in comparison

with controls. This effect was observed regardless of where the mutation is located,

which may constitute a common cellular mechanism affecting microtubules (Martinez-

Carrera et al. 2018).

The next step in our investigation was to determine the effect of BICD2 mutations on

motor neurons, the disease relevant cell type in SMALED2. Motor neurons

overexpressing BICD2 mutations developed axonal aberrations such as collateral

branching and overgrowth, possibly by alterations in the microtubule array (arrangement)

(Martinez-Carrera et al. 2018).

To study the in vivo consequences of BICD2 mutations, we generated a Drosophila

model for SMALED2. The specific expression of BICD2 mutations in neuronal tissue, but

not in muscle, led to impaired locomotion and reduced neuromuscular junction size

(Martinez-Carrera et al. 2018).

3.2.3. Own contributions
In the functional analysis part of (Neveling; Martinez-Carrera et al. 2013), I performed

the overexpression studies carrying out the site directed mutagenesis for each of the

constructs used, high scale plasmid preparation of the constructs, transfection, imaging,

analysis, and interpretation of the results. I conducted the expression analysis and Golgi

studies in primary fibroblast cells derived from individuals with SMALED2. I wrote the

corresponding part of functional analysis in the manuscript, and prepared the figures 3,

4 and S1.

In (Martinez-Carrera et al. 2018), I conducted the microtubule experiments in fibroblast

cells, imaged them, analyzed and interpreted results. I cloned, purified and high scale

produced the constructs for lentiviral transduction, isolated motor neurons and cultured

them. I stained the transduced motor neurons and imaged them using confocal

microscopy. I performed the quantification analyses, statistics, and interpretation.

Regarding the part of Drosophila melanogaster, I designed and established the construct

to be used for the generation of the transgenic flies, performed each cross to generate

the SMALED2 flies and controls, validated them by PCR and western blot, carried out

the locomotion tests. I dissected the NMJs from the larvae, stained, and imaged them

using confocal microscope. I analyzed the data, applied statistics, and interpreted the
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results. Regarding the interaction studies, I performed and analyzed all the experiments.

For the expression analysis of BICD2 in murine tissues, I dissected the tissues,

statistically analyzed and interpreted. I wrote the manuscript and prepared the figures 1,

2, 3, 4, 5, S1, S2, S3, S4, S5, S6, S7, S8, S9.
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3.3. Other disorders caused by variants in BICD2

3.3.1. Publications
Unger, A., Dekomien, G., Guttsches, A., Dreps, T., Kley, R., Tegenthoff, M., Ferbert, A.,
Weis, J., Heyer, C., Linke, W. A., Martinez-Carrera, L.A., Storbeck, M., Wirth, B.,
Hoffjan, S. and Vorgerd, M. (2016). "Expanding the phenotype of BICD2 mutations
toward skeletal muscle involvement." Neurology 87(21): 2235-2243.

Storbeck, M., Eriksen, B., Unger, A., Hölker, I., Aukrust, I., Martinez-Carrera, L.A.,
Linke, W. A., Ferbert, A., Heller, R., Vorgerd, M., Houge, G. and Wirth, B. (2017).
"Phenotypic extremes of BICD2-opathies: from lethal, congenital muscular atrophy with
arthrogryposis to asymptomatic with subclinical features." Eur J Hum Genet 25(9): 1040-
1048

3.3.2. Description of the studies

3.3.2.1. Chronic myopathy

The p.Ser107Leu and p.Thr703Met mutations that we previously described in

individuals with SMALED2, were also identified in two families where affected individuals

present muscle weakness due to chronic myopathic alterations of skeletal muscle fibers

with minor neurogenic changes (Unger et al. 2016). Muscle studies in affected individuals

showed impairment of Golgi integrity, increased Golgi-derived vesicles in muscle fibers,

and abnormal BICD2 localization. Two proteins, dysferlin and caveolin-3, were reported

as strongly reduced at the sarcolemma (cell membrane of muscle fiber cell) in almost all

muscle fibers. It is known that vesicular dysferlin is transported via kinesin in muscle cells

and is important for muscle membrane repair, and caveolin-3 has been implicated in the

trafficking of dysferlin to the plasma membrane (Cai et al. 2009, McDade and Michele

2014). Even though, the role of BICD2 in muscle has not been explored, it has been

speculated that BICD2 mutations affect the transport of exocytic cargoes containing

dysferlin and caveolin-3 leading to impaired muscle integrity (Unger et al. 2016).

Interestingly, segregation analysis of the individual with chronic myopathy that carries

the p.Thr703Met showed that his unaffected mother carries the same heterozygous

mutation. The mutant allele was confirmed to be expressed in the unaffected mother

(Storbeck et al. 2017). The clinical features in SMALED2 are known to be variable, for

example the presence of contractures and the onset of disease even in individuals

harbouring the same mutation (Martinez-Carrera and Wirth 2015). However, it was not

reported before an asymptomatic carrier, which suggest the existence of modifying

elements (Storbeck et al. 2017).
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3.3.2.2. Congenital arthrogryposis multiplex, respiratory failure and early
lethality

This study identified three variants in BICD2 (c.581A>G [p.Gln194Arg], c.1626C>G

[p.Cys542Trp] and c.2080C>T [p.Arg694Cys]), in cases with an extremely severe form

of congenital muscular atrophy with multiple joint contractures (arthrogryposis) affecting

the whole body, respiratory insufficiency and death within four months after birth

(Storbeck et al. 2017). Reduced fetal movement was reported. Two of the three

mutations were confirmed to be de novo.

The variant c.581A>G (p.Arg694Cys) has been previously described in two additional

families (Ravenscroft et al. 2016). In both cases the variant arose de novo, which

suggested this is a recurrent de novo variation in BICD2. Affected individuals presented

similar phenotypes as described by (Storbeck et al. 2017), but in addition, brain

alterations including microcephaly and bilateral perisylvian polymicrogyria (Ravenscroft

et al. 2016).

Muscle biopsy in individuals with congenital arthrogryposis multiplex revealed few

muscle fibers, atrophy, and in some very little muscle tissue comprising mostly fat

(Ravenscroft et al. 2016, Storbeck et al. 2017). Electromyography showed in two cases

neurogenic pathology with signs of denervation (Storbeck et al. 2017).

Importantly, none of these three arthrogryposis multiplex-associated mutations has been

found in individuals with SMALED2. In some cases of SMALED2 congenital contractures

have been reported. However, the multiple contractures and the lethality in these severe

cases, have never been seen before in typical cases of SMALED2.

Our study suggests that these mutations may have a more deleterious effect on BICD2

function, with an earlier in utero onset leading to reduced fetal movement and muscle

shortening (contracture). However, the exact mechanism how these mutations affect so

dramatically the early development of neurons and/or muscles is unknown.

These differences in the spectrum of disorders associated to BICD2 mutations, open the

possibility to investigate further pathological consequences and perhaps to elucidate

novel functions of BICD2.

3.3.3. Own contributions
In the paper about chronic myopathy (Unger et al. 2016), I contributed with the constructs

used in the overexpression experiments performed in muscle. I contributed with the

preparation and revision of the manuscript.
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My contribution in (Storbeck et al. 2017) was to design and validate the PCR primers for

RNA expression analysis. I provided the protocol and advised about the BICD2

sequencing. For the manuscript, I prepared the table 1 to summarize the phenotypical

features, and contributed with the writing and revision of the draft.
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4. Unpublished findings

4.1. Impact of BICD2 mutations on endocytosis
The BICD2 disease-causing mutations, p.Thr703Met (Neveling; Martinez-

Carrera et al. 2013) and p.Arg747Cys (Synofzik et al. 2014), localize to the C-terminal

end of the BICD2 protein, which has been described in Drosophila melanogaster to

interact with clathrin heavy chain (Li et al. 2010). The function of clathrin is important

for the process of endocytosis and defects in endocytosis have emerged as a central

pathological hallmark of autosomal recessive SMA (Hosseinibarkooie et al. 2016,

Riessland et al. 2017). To test whether these BICD2 mutations have a direct impact

on endocytosis, the cellular uptake of Fluorescein isothiocyanate (FITC)-labelled

dextran was assayed in fibroblasts derived from affected individuals carrying the

p.Thr703Met and p.Arg747Cys mutations. Fibroblasts from control individual and

affected individuals were serum starved and subsequently treated with FITC-dextran

for 15, 30, or 60 minutes (Figure 4A and 4B). FITC-dextran uptake was measured

microscopically. The experiment was performed in triplicate.

Fibroblasts harboring the p.Thr703Met mutation displayed a significantly reduced

FITC-dextran uptake at all assayed time points (Figure 4C). Even though mutant cells

maintained dextran uptake over time, fluorescence levels were constantly lower as

compared to control fibroblasts. This may indicate diminished endocytosis caused by

this mutant BICD2 protein. However, cells carrying the p.Arg747Cys mutation

showed only minor deviations from control fibroblasts (Figure 4D). This suggests that

this mutation likely does not have any impact on the process of endocytosis in

fibroblasts. Thus, this assay pointed out possible alterations in endocytosis caused

by p.Thr703Met. However, FITC-dextran is in addition taken up by cells via pathways

other than clathrin-mediated endocytosis, for example fluid-phase endocytosis

(Pustylnikov et al. 2014).
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Figure 4. FITC-Dextran uptake in fibroblasts derived from affected individuals carrying the
p.Thr703Met and p.Arg747Cys mutations in BICD2.
Fibroblasts were serum starved and treated with FITC-dextran for 15, 30 and 60 minutes. FITC-dextran
uptake was analyzed microscopically. (A) and (B): Representative images of control and mutant fibroblasts
at the indicated time points. Red channel: Phalloidin-AlexaFluor568; blue channel: DAPI; green channel:
FITC-dextran. Scale bar corresponds to 50 µm. (C) and (D): Quantification of fluorescence intensity of FITC-
dextran. The experiments were performed in triplicate. 50 cells were counted per time point. Error bars
correspond to mean ± SEM. *P<0.05, **P<0.01, ***P<0.001 in unpaired two-tailed t-test.
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4.2. Impact of p.Thr703Met mutation on centrosomes and cell
cycle

Previous analyses have described a G2-phase-specific role of BICD2 in the

regulation of centrosome positioning prior mitosis (Splinter et al. 2010). To initiate

mitosis, centrosomes split at the end of G2-phase to later allow spindle formation (Wang

et al. 2014) (Figure 5A, left panel). The fibroblasts derived from an individual with

SMALED2 that carries the p.Thr703Met mutation showed particularly slow proliferation

rates in cell culture as compared to control and other BICD2 mutant cells. Mutant and

control cells were initially synchronized to G0 phase by serum starvation for 48 hours

(Figure 5A, right panel). Cell cycle was resumed by addition of serum. After 1 h of serum

addition, the cells are expected to be in G1/S phase transition and at 24 h to complete

the cell cycle (Gabriel et al. 2016). At the indicated time points, the cells were fixed and

centrosomes were immunostained using an antibody against -tubulin and confocal

imaged (Figure 5B). Joined centrosomes are visible as two nearby localized dots close

to the nucleus. Split centrosome are visible as apart dots.

Quantification of mutant vs. control cells showed only a slight increase of mutant cells

with split centrosomes directly after serum starvation and 1 hour after re-entry of cell

cycle (Figure 5C). Strikingly, almost 60 % of fibroblasts harboring the p.Thr703Met

mutation showed split centrosomes 24 hours after cycle re-entry, while only single

control cells displayed this phenomenon. This strongly suggests that almost all control

cells have completed cell cycle after 24 hours, but a large fraction of mutant cells failed

to enter mitosis. Evaluating the sole centrosome status without considering other

indicators, implies that many mutant cells are retained in G2-phase. The slow

proliferation might be attributable to aberrant cell cycle progression and/or pre-mitotic

cell cycle arrest.
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Figure 5. Centrosome splitting in primary fibroblasts carrying the p.Thr703Met mutation.
(A) Cell cycle and centrosome status. Left: scheme was modified based on the review by Wang et al. (Wang
et al. 2014). Right: experimental plan. (B) Representative confocal images of synchronized control fibroblasts
and fibroblasts harboring the p.Thr703Met mutation at 0, 1, and 24 hours after cell cycle re-entry. Red
channel: -tubulin (centrosomes); blue channel: DAPI (nuclei). Arrowheads point to areas that are magnified
in the squares. Scale bar corresponds to 20 µm. (C) Quantification of cells with joined and split centrosomes
(N= 150). The experiment was performed once.
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4.3. Implications of p.Arg747Cys mutation in protein structure
and aggregation

To functionally characterize the mutation p.Arg747Cys, the BICD2-tGFP construct

carrying the respective variant was generated as described in Section 4.5. HeLa cells

were transfected with wild type BICD2-tGFP and the mutant p.Arg747Cys construct

using lipofectamine. The cells transfected with the mutant, but not wild type construct,

showed cytoplasmic protein accumulations (Figure 6A). This phenomenon was observed

only for this particular mutant BICD2 construct and protein accumulation has never been

observed in cells transfected with other BICD2-tGFP constructs (Neveling; Martinez-

Carrera et al. 2013). To test whether these accumulations comprised insoluble and

aggregated protein, cell lysates of transfected HEK293T cells were fractionated into

soluble and insoluble fraction and analyzed by western blotting (Figure 6B). BICD2 was

normalized to -actin and the soluble/insoluble ratio was calculated as the mean of three

independent transfection experiments. The BICD2-tGFP construct harboring the

p.Arg747Cys mutation significantly displayed a 1.8-fold decrease of soluble/insoluble

ratio as compared to wild type BICD2-tGFP. This suggests that BICD2 p.Arg747Cys has

a propensity to become insoluble, which might be due to aberrant protein conformation.

Figure 6. The BICD2 p.Arg747Cys mutation forms insoluble aggregates.
(A) Representative images of HeLa cells after 48h of transfection with p.CMV-BICD2-tGFP constructs (wild type
and mutant p.Arg747Cys). Note that the mutant p.Arg747Cys forms aggregates, which are indicated by arrows.
(B) Upper panel: western blot of soluble and insoluble fractions from lysate of HEK293T cells transfected with
control and mutant constructs. For BICD2-tGFP detection, antibody against BICD2 was used. All BICD2 bands
were normalized to -actin expression. Lower panel: western blot quantification. The ratio of soluble/insoluble
BICD2 was calculated for each transfection experiment. Bars represent the mean ratios of 3 transfection
experiments. Error bars denote standard deviation. ** p<0.01 in unpaired two-tailed t-test.
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4.4. Summary of results obtained from functional
characterization of BICD2 mutations

Table 2. Overview of functionally assessed consequences of disease-causing BICD2 mutations.

Mutation p.Ser107Leu p.Asn188Thr p.Thr703Met p.Arg747Cys

Interaction
studies no alterations

↓ Dynein
intermediate
chain (DIC)

no alterations
↑ Dynactin p150
↓ RAB6A

Overexpression
in HeLa cells

Golgi
fragmentation

Golgi
fragmentation

Golgi
fragmentation

Insoluble
aggregates

Fibroblast cells no alterations

slight Golgi
fragmentation

severe Golgi
fragmentation,
centrosome
splitting,
G2-arrest,
↓ endocytosis

no alterations

Microtubule
(MT) dynamics

(fibroblasts)
↑ MT stability ↑ MT stability ↑ MT stability ↑ MT stability

MN
transduction

↑ axonal
branching

↑ axonal
branching

↑ axonal
branching,
extreme long
axons

↑ axonal
branching,
extreme long
axons,
altered
localization (at
growth cones,
concentrates
dynactin)

Fly model
system

NMJ size ↓
Locomotion ↓

N/A
NMJ size ↓
Locomotion ↓

N/A
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4.5. Methods (unpublished data)

4.5.1. Eukaryotic cell culture
Primary human fibroblasts, HEK293T (human embryonic kidney), and HeLa (cervical

cancer) cells were cultivated in DMEM (Dulbecco’s Modified Eagle Medium)

complemented with 10 % fetal bovine serum, penicillin, streptomycin and

amphotericin B. Cells were maintained in 25 cm² or 75 cm² tissue culture flasks under

sterile conditions at 37°C, 5 % CO2 and 95 % relative humidity. When reaching

confluence, cells were split using Trypsin-EDTA to detach cells from growing surface.

4.5.2. Endocytosis assay using FITC-dextran
To assess possible impact of mutated BICD2 protein on endocytosis, FITC-Dextran

uptake (fluorescein isothiocyanate coupled to Dextran) was assayed in primary

fibroblasts, as previously described (Hosseinibarkooie et al. 2016). In brief, prior to

treatment, cells were starved for 10 minutes in starvation media (transparent DMEM with

2 % fetal bovine serum). Cells were incubated with starvation medium containing 5 mg/ml

FITC-Dextran (Sigma-Aldrich 46945) for 15, 30 and 60 minutes, respectively. Untreated

cells after starvation were used for fluorescence background subtraction. Subsequently,

cells were washed in ice cold PBS and fixed in PBS containing 4% PFA for 10 minutes.

After washing in PBS, cells were immunostained with AlexaFluor568-phalloidin (1:100,

Life Technologies A12380) and DAPI (1 µg/ml, Sigma Aldrich D9542), followed by 3

washes with PBS for 15 min. Cells were rinsed with water and mounted using Mowiol.

The FITC-Dextran uptake (green channel intensity) was microscopically analysed using

a Zeiss microscope (Axio Imager.M2).

4.5.3. Analysis of centrosomes in primary fibroblasts
Primary fibroblasts were initially synchronized by serum starvation as previously

described (Gabriel et al. 2016). Upon reaching desired confluency, cells were incubated

in DMEM containing 0.5% fetal bovine serum for 48 hours. Starvation media was

replaced by DMEM containing 10 % fetal bovine serum and cells were incubated for 24

hours. Cells were washed in warm serum-free medium and fixed for 15 minutes in warm

PBS containing 4% PFA. After removal of fixation solution, cells were washed three times

for 3 minutes with PBS without MgCl2 containing 30 mM glycine. Cells were

permeabilized for 10 minutes at room temperature in PBS containing 0.5 % Triton X 100

and repeatedly washed three times for three minutes in PBS/glycine. Blocking was

carried out for 2 hours at room temperature or overnight at 4°C in PBS containing 0.5 %

fish-gelatin. Subsequently, cells were incubated with primary antibody (mouse anti
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-tubulin 1:500, Sigma-Aldrich T6557) in blocking solution at 4°C overnight followed by

2x3 minute washing steps with blocking solution. Incubation with secondary antibody

(Alexa Fluor 568 donkey anti-mouse 1:1000, Life Technologies A10037) and DAPI (1

µg/ml, Sigma Aldrich D9542) was performed for 1 h at room temperature, followed by

2x3 minute washing steps and rising with water prior mounting with Mowiol.

Confocal images were acquired using an Olympus Fluoview FV 1000 scanning confocal

microscope and processed using Adobe Photoshop.

4.5.4. Generation of a mutant BICD2 p.Arg747Cys expression vector
A pCMV6 vector containing the wildtype BICD2 cDNA was acquired from Origene (Cat.

No. RG209960). The vector encodes human wild type BICD2 protein that is C-terminally

tagged with turbo-GFP (tGFP). The BICD2 variant c.2239C>T (p.Arg747Cys) was

introduced by site-directed mutagenesis using the Agilent QuikChange II XL kit (200521)

according to the manufacturer’s instructions. Oligonucleotides for mutagenesis were

5’-CACCTTCTCCTCGCTGTGTGCTATGTTTGCCAC-3’ (sense) and

5’-GTGGCAAACATAGCACACAGCGAGGAGAAGGTG-3’ (antisense). The cDNA

sequence obtained upon site-directed mutagenesis was validated by Sanger sequencing

of the insert. In preparation for transfection experiments, recombinant plasmids were

produced in large scale and isolated using the EndoFree Plasmid Maxi Kit (Qiagen

12362) according to the manufacturer’s instructions.

4.5.5. Solubility assay for mutant BICD2 protein
To express mutant BICD2 protein, HEK293T cells were transiently transfected with

BICD2 expression vectors (wild type and harboring the p.Arg747Cys mutation). Cells

were transfected in 6-well plates at a confluence of approx. 80% using the

Lipofectamine2000 transfection reagent (Life Technologies 11668019). 3 µg of plasmid

DNA and 10 µl of transfection reagent were each mixed with 250 µl of OptiMEM

transfection medium according to the manufacturer’s instructions. Cells were cultivated

for 48 hours after transfection to allow expression of recombinant protein. Cells were

washed in PBS and centrifuged at 4°C, 2000 x g for 15 seconds. The cell pellet was

resuspended in 100 µl PBS containing protease inhibitors, sonicated 3 times for 30

seconds and incubated for 10 minutes on ice. The lysate was centrifuged for 20 minutes

at 16,000 x g and 4°C to sediment insoluble debris. The supernatant was collected as

the soluble fraction. The pellet was resuspended in RIPA buffer complemented with 2%

SDS, 2 mM DTT and protease inhibitors. The lysate was incubated at room temperature

and vortexed 3 times in a 15 minute interval. The sample was centrifuged at 16,000 x g

to sediment insoluble debris. The supernatant was collected as the insoluble fraction of
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proteins. Protein fractions were analyzed by SDS-PAGE with subsequent western

blotting. Briefly, proteins were resolved in 12% acrylamide gels and transferred to PVDF

membranes that were previously activated with methanol. Blocking was performed using

TBS 6% milk powder for 2 h at room temperature. The membrane was then incubated

at 4°C overnight with the primary antibody rabbit anti BICD2 (1:1000, Sigma-Aldrich

HPA023013) and 1 h at room temperature with mouse anti -actin (1:20,000, Proteintech

60008). After washing 5 times for 5 minutes with TBS-tween, the HRP-conjugated

secondary antibodies against mouse IgG (1:10,000, Dianova 115035000) and against

rabbit IgG (1:5,000, Cell Signaling 7074) were added and incubated for 1 h at room

temperature. The blot was washed 5 times for 5 minutes with TBS-tween. For band

detection, Super Signal West Pico Chemiluminescent substrates (Thermo Scientific

34078) were used following the manufacturer´s instructions.

4.5.6. Statistical analyses
Unpaired two-tailed t-test was calculated using GraphPad Prism version 6.0d.
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5. Discussion
Autosomal dominant spinal muscular atrophies are considered highly heterogeneous

due to the variability in clinical presentation and diversity of causing genes.

In a combinatorial strategy of using next-generation sequencing (NGS) technologies and

Sanger sequencing, the data presented in this PhD thesis identified heterozygous

missense variants in BICD2 in affected individuals with spinal muscular atrophy, lower

extremity predominant, autosomal dominant inherited (SMALED). The identification of

BICD2 as SMALED-causing gene, allowed the characterization of the second type of

SMALED (SMALED2 MIM 615290).

Simultaneously to us, other two research groups described variants in BICD2 as the

genetic cause of SMALED2 (Oates et al. 2013, Peeters et al. 2013). Almost 50 cases

with SMALED2 have been reported to be caused by variants in BICD2 (Martinez-Carrera

and Wirth 2015). This number of cases is expected to increase overtime, thanks to the

inclusion of BICD2 in several gene panels, which are being more widely and frequently

used in genetic diagnostics.

In general, the clinical presentation of SMALED2 is mild. However, the onset and

presence of contractures are variable in affected individuals. Of the four variants

identified in this work, two variants (c.320C>T [p.Ser107Leu] and c.2108C>T

[p.Thr703Met]) were found in cases with congenital onset and feet contractures

(Neveling; Martinez-Carrera et al. 2013). The other two variants (c.563A>C

[p.Asn188Thr] and c.2239C>T [p.Arg747Cys]) were identified in individuals with a late

onset in adulthood and without contractures, reasons why these variants are thought to

be the mildest (Neveling; Martinez-Carrera et al. 2013, Synofzik et al. 2014).

This doctoral thesis further focused on the uncovering and understanding of the

pathological consequences of the BICD2 mutations mentioned above. The functional

analysis of the BICD2 mutations showed alterations in different processes, where BICD2

has an important function.
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5.1. Alterations exerted by mutations in BICD2

c.320C>T (p.Ser107Leu)

The variant c.320C>T has been frequently described (in 29 of 49 cases) and is

considered a hotspot mutation (Rossor et al. 2015). This variant is located within a

cytosine-guanine (CpG) dinucleotide. Cytosine is subject of methylation nevertheless,

spontaneous deamination of 5-methylcytosine may occur, yielding thymine instead

(Shen et al. 1994).

Previously, this variant was reported to increase the interaction with dynein (Oates et al.

2013, Peeters et al. 2013). However, our interacting studies showed no difference in

interaction in comparison with wild type (Martinez-Carrera et al. 2018). The

discrepancies might be due to differences in cell types used for the co-

immunoprecipitation or due to differences in interpretation/analysis of the band

intensities of immunoprecipitants and inputs.

Golgi fragmentation was observed upon overexpression of this mutant in HeLa cells

(Neveling; Martinez-Carrera et al. 2013). This observation was also reported by another

group (Peeters et al. 2013). Golgi fragmentation has been associated with inhibition of

dynein function (Burkhardt et al. 1997, Harada et al. 1998, Quintyne et al. 1999). It is

possible that even when the interaction between BICD2 and dynein is not altered, the

motility and/or function of dynein can be affected. However, to explore this possibility,

the analysis of function and activity of dynein-dynactin complex is necessary.

c.563A>C (p.Asn188Thr)

This variant decreases the interaction of BICD2 with the intermediate chain of dynein

(Martinez-Carrera et al. 2018). Upon overexpression of this mutation, HeLa cells showed

Golgi fragmentation which was also observed in fibroblast derived from individuals with

SMALED2 carrying this variant (Neveling; Martinez-Carrera et al. 2013).

c.2108C>T (p.Thr703Met)

This mutation is localized in the BICD2 domain that interacts with RAB6A, a small

GTPase that coordinates Golgi-ER transport (Hoogenraad et al. 2001). Nevertheless, no

change in the interaction with RAB6A was observed (Martinez-Carrera et al. 2018).
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However, our experimental evidence suggests that this mutation exerts alterations in

Golgi structure (Neveling; Martinez-Carrera et al. 2013), endocytosis and centrosome

splitting (Section 4, unpublished findings).

Fibroblast cells derived from an affected individual that carries this mutation, showed

extremely diffused (interpreted as fragmented) Golgi apparatus (Neveling; Martinez-

Carrera et al. 2013). The grade of fragmentation was more prominent for this mutation

in comparison with the fibroblast harboring the p.Asn188Thr mutation, possibly

correlating with the severity of the disease.

Further experiments suggested that this mutation decreased endocytosis (Section 4.1,

unpublished findings). Studies in Drosophila have shown that BicD interacts with clathrin

heavy chain and recruits the dynein complex to promote endocytosis (Li et al. 2010).

However, the interaction with clathrin was not assessed in the present study. It is also

possible that the impaired endocytosis might be due to incorrect recruitment of dynein

complex to mediate vesicle transport.

Additionally, the fibroblasts carrying the p.Thr703Met mutation showed centrosome

splitting, which is compatible to G2 phase of the cell cycle. Even after stimulation for a

period of time (24 h), in which it is expected that the cells complete a cell cycle, the

mutant cells continued with their centrosomes in split status suggesting an arrest in G2

phase. It is known that in the late G2 phase, prior to entry mitosis, BICD2 contributes to

tether the centrosomes together through regulation of dynein and kinesin-1 (Splinter et

al. 2010). The p.Thr703Met mutation might alter this regulation failing to maintain the

centrosomes together impeding the entry to mitosis. However, the implications of altered

centrosome splitting specifically in postmitotic motor neurons and how this may affect

motor neuron function and maintenance are unclear.

c.2239C>T (p.Arg747Cys)

The p.Arg747Cys mutation is localized in the C-terminal domain of BICD2, and

decreased the interaction of BICD2 with RAB6A. Unexpectedly, this mutation increased

the amount of coprecipitated p150 subunit of dynactin (Martinez-Carrera et al. 2018).

The p150 subunit is part of the dynactin complex, together with the dynactin subunit 2

(DCTN2) (Echeverri et al. 1996, Holzbaur and Tokito 1996). Previous studies suggested

that the C-terminal domain of BICD2 interacts with DCTN2 (Matanis et al. 2002). Even

though, the direct interaction with DCTN2 was not analyzed in the current study, the
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increased coprecipitated amount of p150 suggests that this mutation recruits more

dynactin into the complex.

Overexpression in HeLa cells from a CMV-BICD2-tGFP vector carrying this mutation,

using transfection via Lipofectamine, showed aggregate formation (Section 4.3,

unpublished findings). Analysis of soluble and insoluble fractions confirmed that this

protein displayed more insolubility in comparison with control. However, this mutant did

not show aggregate formation in lentiviral transduced motor neurons, which is possibly

due to weaker gene expression of lentiviral transduction as compared to transfection of

CMV vectors by lipofection (Martinez-Carrera et al. 2018). Thus, it cannot be stated with

certainty whether protein aggregation of mutant BICD2 protein occurs in motor neurons

under physiological conditions.

5.2. Pathological consequences of alterations in different cellular
processes due to BICD2 mutations

Our results showed that SMALED2-associated BICD2 mutations exert alterations in

different cellular processes, which are in general very important for all the cells. However,

alterations in any of those processes may contribute to the impairment of motor neurons,

the cell type that seems to be primarily affected in SMALED2.

Golgi fragmentation was observed in association with some of the mutations (Martinez-

Carrera and Wirth 2015). Previous studies have shown that in undifferentiated neurons

the coordinated position and activity of centrosomes, Golgi apparatus and endosomes

is necessary to undergo polarization (de Anda et al. 2005). We cannot discard the

possibility that BICD2 mutations may affect neuronal polarization. However, to address

this question it would be necessary to establish an experimental set up in very early

developmental stages using tools, such as cell reprogramming.

We found that fibroblasts from an affected individual with SMALED2 presented

decreased endocytosis (Section 4.1, unpublished findings). Fibroblast cells and other

cell types share mechanisms of endocytosis. For the development and maintenance of

neurons, endocytosis is crucial (Cosker and Segal 2014). Studies in Drosophila have

shown that BicD is required to promote synaptic vesicle recycling (Li et al. 2010). The

effect of decreased endocytosis observed in fibroblast might be of greater impact in the

synapse with potential consequences specifically present in neurons.

Some of the mutations alter the interaction with dynein-dynactin complex (Martinez-

Carrera et al. 2018). Dynein-dynactin complex is the major motor complex driving minus

end-directed microtubule transport. In neurons, intracellular transport is fundamental for
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morphogenesis, function and survival (Hirokawa et al. 2010). Multiple studies have

shown that BICD2 functions as cargo adaptor and regulator of dynein (Hoogenraad et

al. 2001, Matanis et al. 2002, Splinter et al. 2010, Splinter et al. 2012). The mutations in

BICD2 that change interaction with the dynein-dynactin complex may impair the function

of this complex, transport and/or targeting of cargos that are necessary for development

and maintenance of neurons. Regarding the mutations that do not display any alteration

in interactions, we cannot discard the possibility that these mutations might also impair

dynein movement by changing the stability of the complex (Hoang et al. 2017).

5.3. SMALED2-associated BICD2 mutations stabilize
microtubules in fibroblast cells

Further studies performed in the fibroblast cells derived from the affected individuals with

SMALED2 revealed that the microtubules in the mutant cells are more stable and

resistant to depolymerization in comparison to control (Martinez-Carrera et al. 2018). The

most significant and strongest effect was observed in the cells carrying the mutation

p.Thr703Met, which also showed a high disruption of the Golgi apparatus (Neveling;

Martinez-Carrera et al. 2013). Previous studies have shown that the close association

between the Golgi apparatus and the microtubule dynamics plays and important role in

Golgi structure and function (Burkhardt 1998).

These results strongly suggest that BICD2 mutations stabilize microtubules. However, it

has never been reported before whether BICD2 participates in the formation and/or

stabilization of microtubules.

5.4. BICD2 mutations share a common effect on motor neurons
Motor neurons that express the mutations located in the C-terminal domain of BICD2,

p.Thr703Leu and p.Arg747Cys, showed extreme long axons in comparison with control

(Martinez-Carrera et al. 2018). Strikingly, the four BICD2 mutations cause aberrations in

axonal morphology. The axons developed extreme long branches, which might have as

pathological consequence, misguidance and failure to innervate the targeted muscle, a

phenomenon previously reported in regeneration studies (Brushart 1988, Al-Majed et al.

2000, Guntinas-Lichius et al. 2001, Guntinas-Lichius et al. 2002).

Similarly, increased axonal branching and outgrowth have been reported in studies

performed in neurons upon kinesin-5 depletion or dynein overexpression (Ahmad et al.

2006, Myers and Baas 2007).
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It is important to mention that the microtubule network (array) in the axon is assembled

differently. The so called neuronal microtubules are nucleated at the centrosome located

in the cell body, and then severed into short and long fragments by proteins such as

spastin and katanin (Yu et al. 1993, Ahmad et al. 1999) Those microtubule fragments

are then transported by dynein from the centrosome along the axon and aligned at the

plus-end tip (Baas et al. 2006). Those fragments act as nucleating elements for the

assembly of other microtubules. However, this process is dynamic and requires kinesin

to promote retraction, acting as a growth brake by antagonize the forces of dynein (Myers

and Baas 2007).

In this manner, the balance between dynein and kinesin is crucial to assure the correct

assembly of the axonal microtubule array. BICD2 interacts also with kinesin and has an

important function in the regulation of force balances between dynein and kinesin (Belyy

et al. 2016). Even though changes by BICD2 mutations in the interaction with kinesin

were not addressed in our interacting studies, it is of consideration that alterations on

one motor protein can affect the function of the other.

We hypothesize that BICD2 is involved in the assembly of microtubules in motor

neuronal axons. This possible function of BICD2 has never been described and might

constitute a key clue to understand the direct pathomechanism of BICD2 mutations.

5.5. SMALED2 Drosophila model: BICD2 mutations cause
locomotion impairment with defects in NMJ development

The p.Ser107Leu and p.Thr703Met mutations, associated with congenital onset of

SMALED2 and contractures were studied in vivo. The generated mutant and wild type

Drosophila lines carry in one allele the transgenic vector and in the other the endogenous

BicD, in attempt to mimic the heterozygous dominant state of SMALED2 (Martinez-

Carrera et al. 2018). We were able to control the expression of the mutations in a tissue

specific manner by using the UAS-GAL4 system. The two mutants when expressed in

neuronal tissue, showed impaired locomotion in adults and reduced NMJ size in the third

larval stage. Upon expression only in muscles, the mutants did not show any locomotion

impairment. These findings confirm the pathogenicity of BICD2 mutations in vivo and

support that neurons are specifically affected. As mentioned in previous sections, studies

in Drosophila have shown that indeed BicD plays an important role in NMJ development

due to synaptic vesicle recycling (Li et al. 2010). Further analyses are needed to clarify

whether the BICD2 mutations alter the NMJ development via impairing dynein transport

at the synapse, effects on microtubules or clathrin mediated endocytosis.
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5.6. BICD2 mutations are associated with other disorders
besides SMALED2

5.6.1. Chronic myopathy
We consider that the p.Ser107Leu and p.Thr703Met mutations cause a severe

SMALED2 presentation due to the congenital onset and presence of contractures. In

addition, these mutations were clearly confirmed as pathological with neuron specificity.

However, the same mutations were found in individuals with chronic myopathy, affecting

primarily muscles and with only minor neurogenic changes (Unger et al. 2016). Further

analysis in muscle showed striking impairment of Golgi integrity and vesicle pathology.

In addition, overexpression studies evidenced abnormal localization of both mutants. A

specific BICD2 function in muscle has not been described. However, these clinical and

functional findings point to possible effects of this BICD2 mutations on muscle that may

be evident only in more complex organisms but not in Drosophila.

We have also demonstrated that BICD2 expression levels in mouse muscles increase

over time, a phenomenon that is more evident observed in gastrocnemius, the most

commonly affected muscle in SMALED2 and chronic myopathy (Martinez-Carrera et al.

2018).

The mother of the affected individual with chronic myopathy associated with the

p.Thr703Met mutation, also carries the same mutation but is unaffected (Storbeck et al.

2017).

It is unclear how these individuals with chronic myopathy did not develop major

neurogenic changes as in SMALED2 individuals or shown in our SMALED2 animal

model. We are convinced that these mutations have the potential to impair motor

neurons. However, other factors such as genetic modifiers may contribute to protect from

potential alterations in motor neurons, and even in the case of the unaffected carriers, to

avoid any pathological feature.

5.6.2. Congenital arthrogryposis multiplex, respiratory failure and early
lethality

The recent identification of three BICD2 variants in lethal cases of congenital

arthrogryposis multiplex and respiratory failure, expand the spectrum to a severe

extreme of BICD2-pathies (Storbeck et al. 2017). This striking phenotype points that

those BICD2 mutations may exert different pathological effects than those observed in

the current work. The causes of congenital arthrogryposis are often attributed to a very
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early in utero onset of muscular atrophy that leads to reduced fetal movement. Further

analyses are needed to investigate the mechanism of how these particular mutations

cause such pathological effects in early development. It is important to consider that

BICD2 might have other cargos or functions still not known, and that alterations in these

processes or pathways may be responsible of devastating consequences.
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5.7. Synopsis of alterations to due to SMALED2-causing BICD2
mutations

We include an overview of the different defects in cellular processes, exerted by BICD2

mutations (Figure 7). Despite each mutation seems to exert different consequences, all

cause microtubule hypestability and aberrations in axonal morphology. This strongly

suggests a shared pathomechanism, while the disease severity may be defined by

individual effects of a respective mutation. Two BICD2 mutations present not only

pathological consequences in axon development but also at NMJ level. All together, we

provided substantial experimental evidence of the pathological effects due to BICD2

mutations leading to motor neuronal defects causing SMALED2.

Figure 7. Schematic synopsis of alterations due to SMALED2- causing BICD2 mutations.
Each of the cellular processes where BICD2 mutations exert an alteration is shown. The rectangles comprise
the magnification representation of the alteration, and the corresponding mutation(s) that are implicated.
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6. Summary
Autosomal dominant spinal muscular atrophy is considered rare in comparison with

the recessive 5q-linked form. However, for the majority of autosomal dominant SMA, the

genetic causes are unknown. In this respect, the present doctoral thesis focused on the

identification and functional characterization of the disease-causing gene of autosomal

dominant spinal muscular atrophy, lower extremity-predominant, type 2 (SMALED2 MIM

615290).

By applying next generation sequencing and Sanger sequencing, we were able to

identify in affected individuals with SMALED2, four heterozygous missense variants

(c.320C>T [p.Ser107Leu], c.563A>C [p.Asn188Thr], c.2108C>T [p.Thr703Met] and

c.2239C>T [p.Arg747Cys]) in the Bicaudal-D2 gene (BICD2 MIM 609797). Moreover, to

gain insights into the pathogenesis of SMALED2, the molecular consequences of these

protein alterations were further investigated using in vitro and in vivo approaches.

BICD2 is a highly conserved protein and interacts with several important players involved

in axonal transport (dynein-dynactin complex [DTCN2] and kinesin [KIF5A]), endocytosis

(clathrin heavy chain), vesicle transport (RAB6A) and others. BICD2 has been implicated

in retrograde dynein-mediated axonal transport along the microtubules, in the vesicle

transport from the Golgi apparatus to the endoplasmic reticulum and in the centrosome

positioning.

Our in vitro studies revealed that each of the SMALED2-associated mutations exerts

different consequences in the cell, including Golgi fragmentation, changes in interaction

with dynein-dynactin complex and RAB6A, decreased endocytosis, centrosome splitting

and G2 phase arrest, and aggregate formation. Studies performed in fibroblast cell lines

derived from individuals with SMALED2 showed that all the mutations cause microtubule

hyperstability.

Clinical findings of affected individuals suggest that the motor neuron is the

disease-relevant cell type in SMALED2. Transduced motor neurons that express the

SMALED2-associated mutations displayed axonal aberrations such as increased

branching and overgrowth. Both findings, microtubule hyperstability and axonal

aberrations during development, strongly suggest an involvement of BICD2 either in

formation, stability or assembly of microtubules. Thus, our data points to a novel function

of BICD2 in microtubule regulation, that when altered constitutes a shared

pathomechanism of SMALED2-associated mutations, while the disease severity may be

defined by individual effects of a respective mutation.
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We generated and characterized the first in vivo model for SMALED2. We made use of

the bioengineered tools of Drosophila melanogaster, a widely used animal system in

studies of neurodevelopmental disorders. The Drosophila lines that expressed in

neuronal tissue the mutant BICD2 constructs showed markedly impaired locomotion

during early adulthood with reduced neuromuscular junction size during development.

No pathological effect was observed when expressing the mutations in muscle, which

supports a primarily neurogenic involvement, as reported by clinicians in SMALED2

cases. The mutations studied in the Drosophila model for SMALED2, were identified in

individuals with chronic myopathy. This finding opened up a controversial debate of

whether those mutations affect primarily neurons or muscles. Histological and functional

studies revealed that these BICD2 mutations alter Golgi structure in muscle and possibly

exocytosis. In addition, one asymptomatic carrier was identified suggesting variable

expressivity or incomplete penetrance, possibly due to the presence of protective genetic

modifiers.

Unexpectedly, our study unraveled an early lethal form of congenital arthrogryposis

multiplex with respiratory failure associated to de novo variants in BICD2. The extreme

pathological consequences due to these mutations may lead to the uncovering of a likely

different mechanism as the observed in SMALED2.

Thus, the investigations carried out during this PhD project led to the discovery of BICD2

as the genetic cause of SMALED2, provided substantial experimental evidence of the

pathological effects due to BICD2 mutations, and contributed to the identification of other

disorders associated to BICD2.
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7. Zusammenfassung
Autosomal dominante spinale Muskelatrophie tritt im Vergleich zu 5q-assoziierter SMA

selten auf, doch für die meisten dominanten Formen ist die genetische Ursache nicht

bekannt. Daher konzentriert sich die vorliegende Doktorarbeit auf die Identifizierung und

funktionelle Charakterisierung des krankheitsverursachenden Gens für autosomal

dominante spinale Muskelatrophie mit vorwiegender Beinbeteiligung Typ 2 (SMALED2,

MIM615290).

Durch die Anwendung von Hochdurchsatz-Sequenziertechnologien (NGS) und Sanger

Sequenzierung konnten wir die vier folgenden heterozygoten missense-Varianten im

Bicaudal D2 (BICD2) Gen (MIM 609797) bei Patienten mit SMALED2 identifizieren:

c.320C>T [p.Ser107Leu], c.563A>C [p.Asn188Thr], c.2108C>T [p.Thr703Met] and

c.2239C>T [p.Arg747Cys]. Des Weiteren wurden die molekularen Konsequenzen dieser

Veränderungen in der Proteinsequenz in vitro und in vivo analysiert, um tiefere Einblicke

in die Entstehung der Pathogenität von SMALED2 zu ermöglichen.

BICD2 ist ein hoch konserviertes Protein, das mit Proteinen, die im axonalen Transport

(Dynein-Dynactin Komplex [DTCN2] und Kinesin [KIF5A]), Endozytose (clathrin heavy

chain), vesikulärer Transport (RAB6A) und anderen, interagiert. BICD2 spielt eine

wichtige Rolle im retrograden Dynein-abhängigen axonalen Transport entlang der

Mikrotubuli, im vesikulären Transport vom Golgi zum endoplasmatischen Reticulum und

im Zentrosom.

Unsere in vitro Studien zeigten, dass jede der mit SMALED2 assoziierten Mutationen

verschiedene zelluläre Konsequenzen nach sich zieht. Diese umfassen Fragmentierung

des Golgiapparats, Veränderungen der molekularen Interaktion mit Dynein-Dynactin

sowie mit RAB6A (ein Regulator von Transportprozessen zwischen endoplasmatischem

Reticulum und Golgiapparat), verminderte Endocytose, Aufspaltung der Zentrosomen

sowie Zellzyklusunterbrechung in der G2-Phase, und letztlich die Bildung von Protein

Aggregaten. Experimente an Fibroblasten, die von an SMALED2 erkranken Individuen

generiert wurden, deuteten auf eine gesteigerte Stabilität der Mikrotubuli hin. Dieses

Verhalten war allen getesteten BICD2 Mutationen gemein.

Klinische Befunde der betroffenen Individuen lassen vermuten, dass es sich bei

SMALED2 um eine primäre Erkrankung der unteren motorischen Neuronen handelt.

Murine motorische Neuronen, die mit SMALED2 assoziierten mutierten BICD2

Konstrukten transduziert wurden, zeigten axonale Störungen wie z.B. die häufige

Bildung von Verzweigungen und verstärktes axonales Längenwachstum. Letzteres und

die erhöhte Stabilität der Mikrotubuli lassen vermuten, dass BICD2 entweder in die
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Bildung, die Stabilität, oder den Zusammen- und Umbau größerer Mikrotubulifragmente

involviert ist. Unsere Daten lassen auf eine neue Funktion von BICD2 bei der Regulation

von Mikrotubuli schließen, die – falls beeinträchtigt – einen gemeinsamen

Pathomechanismus SMALED2-assoziierter Mutationen darstellt, wobei der

Schweregrad der Erkrankung durch individuelle Effekte der jeweiligen Mutation definiert

sein könnte.

Im Rahmen der durchgeführten in vivo Studien, haben wir das erste Tiermodel für

SMALED2 generiert und charakterisiert. Die Taufliege Drosophila melanogaster ist

genetisch leicht zu manipulieren und ist ein häufig genutzter Modelorganismus zur

Untersuchung neuronaler Erkrankungen. Die Expression mutierter BICD2 Konstrukte in

neuronalem Gewebe in Drosophila führte zu deutlichen motorischen Defiziten der

jungen, adulten Fliegen und zu verminderter Größe der neuromuskulären Endplatten

während der Entwicklung. Verkleinerte motorische Endplatten oder motorische Defizite

waren nicht nachweisbar, wenn mutierte BICD2 Konstrukte in muskulärem Gewebe

exprimiert wurden. Dies deutet auf ein primär neurogenes Geschehen hin, so wie es an

Hand klinischer Daten zu vermuten wäre. Die Identifizierung einiger BICD2 Mutationen

in Individuen mit chronischer Myopathie eröffnete eine kontroverse Diskussion über die

entweder neuronale oder muskuläre Ätiologie von SMALED2. Histologische und

funktionelle Untersuchungen zeigten, dass Myopathie-assoziierte BICD2 Mutationen die

Struktur des Golgiapparats verändern und möglicherweise die Exozytose beeinflussen.

Außerdem wurde ein klinisch asymptomatischer Träger einer krankheitsverursachenden

BICD2 Mutation identifiziert, was auf eine variable Expressivität und ggf. reduzierte

Penetranz in Anwesenheit genetisch modifizierender Faktoren hindeutet.

Unerwarteter Weise konnten wir eine frühletale Form multipler kongenitaler

Arthrogrypose mit respiratorischer Insuffizienz mit de novo Mutationen in BICD2 in

Verbindung bringen. Basierend auf diesen Mutationen könnte eine derart

schwerwiegende klinische Ausprägung zur Identifizierung weiterer BICD2 bezogener

Krankheitsmechanismen führen, die über die von SMALED2 bekannten Mechanismen

hinausgehen.

Zusammenfassend führten die im Rahmen dieser Doktorarbeit durchgeführten Studien

zur Identifizierung von BICD2 als genetische Ursache von SMALED2 und unterstützen

durch grundlegende experimentelle Beweisführung die pathologische Kausalität der

BICD2 Mutationen. Sie leisten außerdem einen Beitrag zur Identifizierung weiterer

BICD2-assoziierter Erkrankungen.
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8. Additional investigations during the PhD thesis

8.1. Publication
Komlosi, K., Hadzsiev, K., Garbes, L., Martinez Carrera, L. A., Pal, E., Sigurethsson, J.

H., Magnusson, O., Melegh, B. and Wirth, B. (2014). "Exome sequencing identifies Laing

distal myopathy MYH7 mutation in a Roma family previously diagnosed with distal

neuronopathy." Neuromuscul Disord 24(2): 156-161.

8.2. Abstract of the publication1:
We described a Hungarian Roma family, originally investigated for autosomal dominant

distal muscular atrophy. The mother started toe walking at 3 years and lost ambulation

at age 27. Her three daughters presented with early steppage gait and showed variable

progression. Muscle biopsies were nonspecific showing myogenic lesions in the mother

and lesions resembling neurogenic atrophy in the two siblings. To identify the causative

abnormality whole exome sequencing was performed in two affected girls and their

unaffected father, unexpectedly revealing the MYH7 mutation c.4849_4851delAAG

(p.K1617del) in both girls, reported to be causative for Laing distal myopathy. Sanger

sequencing confirmed the mutation in the affected mother and third affected daughter.

In line with variable severity in Laing distal myopathy our patients presented a more

severe phenotype. Our case is the first demonstration of Laing distal myopathy in Roma

and the successful use of whole exome sequencing in obtaining a definitive diagnosis in

ambiguous cases.

8.3. Own contributions
I contributed with the primer design, establishment, performance, and analysis the

sequencing of the DYNC1H1 and BICD2 for all the individuals included in this study.

1 The abstract is extracted from the original publication
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